

MODELING AND
SIMULATION OF
DISCRETE-EVENT
SYSTEMS

MODELING AND
SIMULATION OF
DISCRETE-EVENT
SYSTEMS

Byoung Kyu Choi
Department of Industrial and Systems Engineering, KAIST, South Korea
Department of Computer Science, KAU, Saudi Arabia

Donghun Kang
Department of Industrial and Systems Engineering, KAIST, South Korea

Cover image: 08-17-09 © Mark Divers (iStock photo ID: 10295380)

Copyright © 2013 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the Web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created
or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional
where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or
other damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic formats. For more information about Wiley products,
visit our website at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:
Choi, Byoung Kyu, 1949–
  Modeling and simulation of discrete-event systems / Byoung Kyu Choi, Donghun Kang.
   pages cm
  Includes index.
  ISBN 978-1-118-38699-6 (cloth)
  1.  Discrete-time systems–Simulation methods.  I.  Kang, Donghun, 1981–  II.  Title.
  T57.62.C377 2013
  003'.83–dc23
                  2013013970

Printed in the United States of America

10  9  8  7  6  5  4  3  2  1

http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com

v

CONTENTS

PREFACE	 xvii

ABBREVIATIONS	 xix

PART I  BASICS OF SYSTEM MODELING AND SIMULATION	 1

1.	 Overview of Computer Simulation	 3

1.1	 Introduction	 3
1.2	 What Is a System?	 4

1.2.1	 Definitions of Systems	 4
1.2.2	 Three Types of Systems	 4
1.2.3	 System Boundaries and Hierarchical Structure	 5

1.3	 What Is Computer Simulation?	 6
1.3.1	 What Is Simulation?	 6
1.3.2	 Why Simulate?	 7
1.3.3	 Types of Computer Simulation	 8

1.4	 What Is Discrete-Event Simulation?	 9
1.4.1	 Description of System Dynamics	 10
1.4.2	 Simulation Model Trajectory	 10
1.4.3	 Collecting Statistics from the Model Trajectory	 11

1.5	 What Is Continuous Simulation?	 11
1.5.1	 Manual Simulation of the Newtonian 	

Cooling Model	 12
1.5.2	 Simulation of the Newtonian Cooling Model 	

Using a Simulator	 12
1.6	 What Is Monte Carlo Simulation?	 12

1.6.1	 Numerical Integration via Monte Carlo Simulation	 12
1.6.2	 Risk Analysis via Monte Carlo Simulation	 14

1.7	 What Are Simulation Experimentation and Optimization?	 15
1.8	 Review Questions	 16

vi    CONTENTS

2.	 Basics of Discrete-Event System Modeling and Simulation	 17

2.1	 Introduction	 17
2.2	 How Is a Discrete-Event Simulation Carried Out?	 17

2.2.1	 Event Routines	 18
2.2.2	 Simulation Model Trajectory	 19
2.2.3	 Manual Simulation Execution	 19
2.2.4	 Flow Chart of Manual Simulation Procedure	 22

2.3	 Framework of Discrete-Event System Modeling	 23
2.3.1	 What Are Modeling Components and 	

Reference Model?	 23
2.3.2	 What Is a Discrete-Event System (DES) Modeling

Formalism?	 24
2.3.3	 What Is a Formal Model and How Is It Specified?	 26
2.3.4	 Integrated Framework of DES Modeling	 29

2.4	 Illustrative Examples of DES Modeling and Simulation	 32
2.4.1	 How to Build and Simulate an Event Graph 	

Model of a DES	 33
2.4.2	 How to Build and Simulate an ACD Model of a DES	 35
2.4.3	 How to Build and Simulate a State Graph Model 	

of a DES	 37
2.5	 Application Frameworks for Discrete-Event System 	

Modeling and Simulation	 38
2.5.1	 How Is the M&S Life Cycle Managed?	 38
2.5.2	 Framework for Factory Life-Cycle Support	 39

2.6	 What to Cover in a Simulation Class	 40
2.6.1	 Event-Based M&S and Event-Graph Simulation 	

with SIGMA®	 41
2.6.2	 Activity-Based M&S and Hands-On Modeling 	

Practice with Arena®	 41
2.6.3	 State-Based M&S	 41

2.7	 Review Questions	 42

PART II  FUNDAMENTALS OF DISCRETE-EVENT SYSTEM
MODELING AND SIMULATION	 43

3.	 Input Modeling for Simulation	 45

3.1	 Introduction	 45
3.2	 Empirical Input Modeling	 46

3.2.1	 Nonparametric Modeling	 46

CONTENTS   vii

3.2.2	 Empirical Modeling of Individual Data	 46
3.2.3	 Empirical Modeling of Grouped Data	 47

3.3	 Overview of Theoretical Distribution Fitting	 48
3.3.1	 Data Independence Checking	 48
3.3.2	 Distribution Function Selection	 49
3.3.3	 Parameter Estimation	 49
3.3.4	 Goodness-of-Fit Test	 49
3.3.5	 Overview of Random Variate Generation	 49

3.4	 Theoretical Modeling of Arrival Processes	 50
3.4.1	 Theoretical Basis for Arrival Process Modeling	 50
3.4.2	 Generation of Inter-Arrival Times for a Constant 	

Arrival Rate	 51
3.4.3	 Generation of Inter-Arrival Times for Varying 	

Arrival Rates	 52
3.5	 Theoretical Modeling of Service Times	 53

3.5.1	 Generation of Service Time in the Absence of Data	 53
3.5.2	 Generation of Service Times from Collected Data	 55

3.6	 Input Modeling for Special Applications	 57
3.6.1	 Interfailure Time Modeling	 57
3.6.2	 Inspection Process Modeling	 58
3.6.3	 Batch Size Modeling	 59

3.7	 Review Questions	 59
Appendix 3A: Parameter Estimation	 60

3A.1	 Exponential Distribution	 60
3A.2	 Erlang Distribution	 60
3A.3	 Beta Distribution	 61
3A.4	 Weibull Distribution	 62
3A.5	 Normal and Lognormal Distributions	 64

Appendix 3B: Random Variate Generation	 64
3B.1	 Exponential Random Variate	 64
3B.2	 Erlang Random Variate	 65
3B.3	 Beta Random Variate	 65
3B.4	 Weibull Random Variate	 66
3B.5	 Normal and Lognormal Random Variates	 67
3B.6	 Triangular Random Variate	 67

4.	 Introduction to Event-Based Modeling and Simulation	 69

4.1	 Introduction	 69
4.2	 Modeling and Simulation of a Single Server System	 70

viii    CONTENTS

4.2.1	 Reference Modeling	 70
4.2.2	 Formal Modeling	 71
4.2.3	 Model Execution	 72

4.3	 Execution Rules and Specifications of Event Graph Models	 72
4.3.1	 Event Graph Execution Rules	 72
4.3.2	 Tabular Specification of Event Graph Models	 73
4.3.3	 Algebraic Specifications of an Event 	

Graph Model	 75
4.4	 Event Graph Modeling Templates	 75

4.4.1	 Single Queue Models	 76
4.4.2	 Tandem Line Models	 80

4.5	 Event Graph Modeling Examples	 82
4.5.1	 Flexible Multi-Server System with Fluctuating 	

Arrival Rates	 82
4.5.2	 Car Repair Shop	 82
4.5.3	 Project Management Modeling	 84
4.5.4	 Conveyor-Driven Serial Line	 85
4.5.5	 Inline-Type Manufacturing Cell Modeling	 86

4.6	 Execution of Event Graph Models with SIGMA	 91
4.6.1	 Simulation of a Single Server System with SIGMA	 92
4.6.2	 Simulation of a Conveyor-Driven Serial Line with

SIGMA	 95
4.7	 Developing Your Own Event Graph Simulator	 99

4.7.1	 Functions for Handling Events and 	
Managing Queues	 99

4.7.2	 Functions for Generating Random Variates	 101
4.7.3	 Event Routines	 101
4.7.4	 Next Event Methodology of Simulation 	

Execution	 102
4.7.5	 Single Server System Simulator	 103

4.8	 Review Questions	 106

5.	 Parameterized Event Graph Modeling and Simulation	 107

5.1	 Introduction	 107
5.2	 Parameterized Event Graph Examples	 108

5.2.1	 Introducing Index Variables to a Repeating 	
Event-Vertex Pattern	 108

5.2.2	 Passing Attribute Values of Each Entity along 	
Event Vertices	 109

CONTENTS   ix

5.3	 Execution Rules and Specifications of the Parameterized 	
Event Graph	 110
5.3.1	 Execution Rules of the PEG Model	 110
5.3.2	 Tabular Specifications of the PEG Model	 110
5.3.3	 Algebraic Specifications of the PEG Model	 111

5.4	 Parameterized Event Graph Modeling of Tandem Lines	 112
5.4.1	 PEG Modeling of an Unlimited Buffer 	

Tandem Line	 112
5.4.2	 PEG Modeling of a Limited Buffer Tandem Line	 113
5.4.3	 PEG Modeling of a Conveyor-Driven Serial Line	 114

5.5	 Parameterized Event Graph Modeling of Job Shops	 115
5.5.1	 PEG Modeling of a Simple Job Shop without 	

Transport	 115
5.5.2	 PEG Modeling of a Job Shop with Transport 	

and Setup Times	 117
5.5.3	 PEG Modeling of an Inline Job Shop	 118
5.5.4	 PEG Modeling of a Mixed Job Shop	 121

5.6	 Execution of Parameterized Event Graph Models Using 	
SIGMA	 122
5.6.1	 Collecting Sojourn Time Statistics Using SIGMA

Functions	 123
5.6.2	 Simulating a Simple Service Shop with SIGMA	 126
5.6.3	 Simulation of a Three-Stage Tandem Line Using 	

SIGMA	 128
5.6.4	 Simulation of the Simple Job Shop with 	

SIGMA	 131
5.7	 Developing Your Own Parameterized Event Graph 	

Simulator	 137
5.7.1	 Tandem Line PEG Simulator	 137
5.7.2	 Simple Job Shop PEG Simulator	 140

5.8	 Review Questions	 142

6.	 Introduction to Activity-Based Modeling and Simulation	 143

6.1	 Introduction	 143
6.2	 Definitions and Specifications of an Activity Cycle 	

Diagram	 145
6.2.1	 Definitions of an ACD	 146
6.2.2	 Execution Rules and Tabular Specifications 	

of an ACD	 147
6.2.3	 Algebraic Specifications of an ACD	 148

x    CONTENTS

6.3	 Activity Cycle Diagram Modeling Templates	 150
6.3.1	 ACD Template for Flexible Multi-Server System

Modeling	 151
6.3.2	 ACD Template for Limited Buffer Tandem 	

Line Modeling	 152
6.3.3	 ACD Template for Nonstationary Arrival Process	 153
6.3.4	 ACD Template for Batched Service Modeling	 153
6.3.5	 ACD Template for Joining Operation Modeling	 154
6.3.6	 ACD Template for Probabilistic Branching 	

Modeling	 154
6.3.7	 ACD Template for Resource Failure Modeling	 155

6.4	 Activity-Based Modeling Examples	 156
6.4.1	 Activity-Based Modeling of a Worker-Operated 	

Tandem Line	 156
6.4.2	 Activity-Based Modeling of an Inspection-Repair 	

Line	 157
6.4.3	 Activity-Based Modeling of a Restaurant	 158
6.4.4	 Activity-Based Modeling of a Simple Service 	

Station	 159
6.4.5	 Activity-Based Modeling of a Car Repair Shop	 160
6.4.6	 Activity-Based Modeling of a Project 	

Management System	 161
6.4.7	 Activity-Based Modeling of a Conveyor-Driven 	

Serial Line	 161
6.5	 Parameterized Activity Cycle Diagram and Its 	

Application	 163
6.5.1	 Definition and Specifications of Parameterized 	

ACD	 163
6.5.2	 Rules for Executing the P-ACD Model	 164
6.5.3	 P-ACD Modeling of Tandem Lines	 165
6.5.4	 P-ACD Modeling of Job Shops	 168

6.6	 Execution of Activity Cycle Diagram Models with a 	
Formal Simulator ACE®	 171
6.6.1	 Simulation of Single Server Model with ACE	 171
6.6.2	 Simulation of Probabilistic Branching Model 	

with ACE	 175
6.6.3	 Simulation of Resource Failure Model with ACE	 176
6.6.4	 Simulation of Simple Service Station Model 	

with ACE	 180
6.7	 Review Questions	 183

CONTENTS   xi

7.	 Simulation of ACD Models Using Arena®	 184

7.1	 Introduction	 184
7.2	 Arena Basics	 185

7.2.1	 Arena Modeling Environment	 186
7.2.2	 Building a Flowchart Model of a Process-Inspect 	

Line	 187
7.2.3	 Completing a Static Model of a Process-Inspect 	

Line	 191
7.2.4	 Arena Simulation and Output Reports	 192
7.2.5	 Arena Modules	 194

7.3	 Activity Cycle Diagram-to-Arena Conversion Templates	 197
7.3.1	 Template for Fixed Multi-Server Modeling	 198
7.3.2	 Template for Flexible Multi-Server Modeling	 201
7.3.3	 Template for Balking (Conditional Branching) 	

Modeling	 202
7.3.4	 Template for Limited Buffer Tandem Line Modeling	 204
7.3.5	 Template for Nonstationary Arrival Process 	

Modeling	 205
7.3.6	 Template for Joining Operation Modeling	 206
7.3.7	 Template for Inspection (Probabilistic Branching)

Modeling	 207
7.3.8	 Template for Resource Failure Modeling	 208

7.4	 Activity Cycle Diagram-Based Arena Modeling Examples	 209
7.4.1	 ACD-Based Arena Modeling of a 	

Worker-Operated Tandem Line	 210
7.4.2	 ACD-Based Arena Modeling of Restaurant	 211
7.4.3	 ACD-Based Arena Modeling of a Simple Service 	

Station	 213
7.4.4	 ACD-Based Arena Modeling of a Project 	

Management System	 214
7.4.5	 ACD-Based Arena Modeling of a Job Shop	 216
7.4.6	 ACD-Based Arena Modeling of a Conveyor-Driven 	

Serial Line	 219
7.5	 Review Questions	 223

8.	 Output Analysis and Optimization	 224

8.1	 Introduction	 224
8.2	 Framework of Simulation Output Analyses	 225

8.2.1	 Verification and Calibration	 225

xii    CONTENTS

8.2.2	 Simulation Experimentation	 226
8.2.3	 Communication and Presentation	 227

8.3	 Qualitative Output Analyses	 228
8.4	 Statistical Output Analyses	 230

8.4.1	 Statistical Output Analyses for Terminating 	
Simulations	 230

8.4.2	 Statistical Output Analyses for Nonterminating
Simulations	 231

8.4.3	 Statistical Output Analyses for Comparing 	
Alternative Systems	 233

8.5	 Linear Regression Modeling for Output Analyses	 234
8.5.1	 Linear Regression Models	 234
8.5.2	 Regression Parameter Estimation	 235
8.5.3	 Test for Significance of Regression	 236
8.5.4	 Linear Regression Modeling Example	 238
8.5.5	 Regression Model Fitting for Qualitative Variables	 240

8.6	 Response Surface Methodology for Simulation 	
Optimization	 241
8.6.1	 Overview of RSM for Process Optimization	 241
8.6.2	 Searching for Optimum Regions with 	

the Steepest Ascent	 241
8.6.3	 Second-Order Model Fitting for Optimization	 245

8.7	 Review Questions	 247
Appendix 8A: Student’s t-Distribution	 248

8A.1	 Definition	 248
8A.2	 Derivation of the t-Statistic	 248
8A.3	 Table of Critical t-Values with Degrees of

Freedom (df)	 248
Appendix 8B: Student’s t-Tests	 249

8B.1	 One Sample t-Test	 249
8B.2	 Unpaired Two Sample t-Test	 250

PART III  ADVANCES IN DISCRETE-EVENT SYSTEM 	
MODELING AND SIMULATION	 253

9.	 State-Based Modeling and Simulation	 255

9.1	 Introduction	 255
9.2	 Finite State Machine	 256

9.2.1	 Existing Definitions of Finite State Machines	 256

CONTENTS   xiii

9.2.2	 Finite State Machine Models	 257
9.2.3	 Finite State Machine Modeling of Buffer Storage 	

and Single Server Systems	 258
9.2.4	 Execution of Finite State Machine Models	 259

9.3	 Timed Automata	 261
9.3.1	 Language and Automata	 261
9.3.2	 Timed Automata	 262
9.3.3	 Timed Automata with Guards	 263
9.3.4	 Networks of Timed Automata	 266

9.4	 State Graphs	 267
9.4.1	 State Variables and Macro States	 267
9.4.2	 Timers and System Variables	 268
9.4.3	 Conventions for Building State Graphs and State

Transition Tables	 269
9.5	 System Modeling with State Graph	 271

9.5.1	 State Graph Modeling of Dining Philosophers	 271
9.5.2	 State Graph Modeling of a Table Tennis Game	 272
9.5.3	 State Graph Modeling of a Tandem Line	 275
9.5.4	 State Graph Modeling of a Conveyor-Driven 	

Serial Line	 275
9.5.5	 State Graph Modeling of Traffic Intersection 	

Systems	 279
9.6	 Simulation of Composite State Graph Models	 283

9.6.1	 Framework of a State Graph Simulator	 283
9.6.2	 Synchronization Manager	 284
9.6.3	 Atomic Simulators	 287
9.6.4	 Table Tennis Game Simulator	 290
9.6.5	 State Graph Simulator for Reactive Systems	 293
9.6.6	 SGS®	 295

Appendix 9A: DEVS	 295
9A.1	 Definitions of DEVS	 295
9A.2	 DEVS Simulators	 297

10.	 Advanced Topics in Activity-Based Modeling and Simulation	 299

10.1	 Introduction	 299
10.2	 Developing Your Own Activity Cycle Diagram Simulators	 300

10.2.1	 Tocher’s Three-Phase Process	 300
10.2.2	 Activity Scanning Algorithm	 302
10.2.3	 ACD Simulator	 304

xiv    CONTENTS

10.2.4	 P-ACD Simulator	 306
10.2.5	 Collecting Statistics	 309

10.3	 Modeling with Canceling Arc	 310
10.3.1	 ACD Model of Single Server System with Reneging	 311
10.3.2	 ACD Model of Resource Failure	 312
10.3.3	 ACD Model of Time-Constrained Processing	 313
10.3.4	 Execution of Canceling Arc	 313

10.4	 Cycle Time Analysis of Work Cells via an Activity Cycle 	
Diagram	 313
10.4.1	 Cycle Time Analysis of Single-Armed Robot 	

Work Cell	 314
10.4.2	 Cycle Time Analysis of Single Hoist Plating Line	 316
10.4.3	 Cycle Time Analysis of Dual-Armed Robot 	

Cluster Tool	 319
10.5	 Activity Cycle Diagram Modeling of a Flexible 	

Manufacturing System	 322
10.5.1	 ACD Modeling of Job Flows in FMS	 323
10.5.2	 P-ACD Modeling of Job Routing in FMS	 323
10.5.3	 P-ACD Modeling of AGV Dispatching Rules 	

in FMS	 325
10.5.4	 P-ACD Modeling of Refixture Operation and

Heterogeneous FMS	 327
10.6	 Formal Model Conversion	 329

10.6.1	 Conversion of ACD Models to Event Graph 	
(EG) Models	 329

10.6.2	 Conversion of ACD Models to State Graph 	
(SG) Models	 330

10.6.3	 Examples of Formal Model Conversion	 331
Appendix 10A: Petri Nets	 334

10A.1	 Definitions of Petri Nets	 334
10A.2	 Petri-Net State and Execution	 335
10A.3	 Extended Petri Nets and the ACD	 336
10A.4	 Restricted Petri Nets	 337
10A.5	 Modeling with Petri Nets	 337

11.	 Advanced Event Graph Modeling for Integrated Fab Simulation	 338

11.1	 Introduction	 338
11.2	 Flat Panel Display Fabrication System	 339

11.2.1	 Overview of FPD Fab	 339
11.2.2	 FPD Processing Equipment	 340
11.2.3	 Material Handling System	 342

CONTENTS   xv

11.3	 Production Simulation of a Flat Panel Display Fab	 343
11.3.1	 Modeling of Uni-Inline Job Shop	 343
11.3.2	 Modeling of Oven Type Job Shop	 345
11.3.3	 Modeling of Heterogeneous Job Shop	 346
11.3.4	 Object-Oriented Event Graph Simulator for 	

Production Simulation	 346
11.4	 Integrated Simulation of a Flat Panel Display Fab	 350

11.4.1	 Modeling of Job Shop for Integrated Simulation	 350
11.4.2	 Modeling of Conveyor Operation	 353
11.4.3	 Modeling of the Interface between Conveyor 	

and Inline Stocker	 355
11.4.4	 Modeling of the Interface between Uni-inline 	

Cells and Inline Stocker	 357
11.4.5	 Modeling of the Interface between Oven and 	

Inline Stocker	 358
11.4.6	 Modeling of Inline Stocker Operation	 358
11.4.7	 Integrated Fab Simulator	 361

11.5	 Automated Material Handling Systems-Embedded 	
Integrated Simulation of Flat Panel Display Fab	 362
11.5.1	 Concept of AMHS-Embedded Fab Simulation	 363
11.5.2	 Framework of AMHS-Embedded Fab 	

Simulation System	 364
11.5.3	 Simulator for AMHS-Embedded Integrated 	

Fab Simulation	 366
11.5.4	 IFS®	 368

12.  Concepts and Applications of Parallel Simulation	 371

12.1	 Introduction	 371
12.2	 Parallel Simulation of Workflow Management 	

System	 372
12.2.1	 Enactment Service Mechanism of WfMS	 372
12.2.2	 Framework of Parallel Simulation of WfMS	 373
12.2.3	 State Graph Modeling of an Enactment Server 	

and Sync Manager	 375
12.2.4	 State Graph Modeling of Participant Simulators	 377
12.2.5	 Implementation of a Workflow Simulator	 377

12.3	 Overview of High-Level Architecture/Run-Time 	
Infrastructure	 378
12.3.1	 Basics of HLA/RTI	 379
12.3.2	 HLA Federation Architecture	 381
12.3.3	 Overview of Federation Execution	 382

xvi    CONTENTS

12.4	 Implementation of a Parallel Simulation with High-Level
Architecture/Run-Time Infrastructure	 383
12.4.1	 The Sushi Restaurant Federation	 383
12.4.2	 Preparation of an FED File	 384
12.4.3	 Preparation of the Federate Code 	

(of the Production Federate)	 386
12.4.4	 Executing the Restaurant Federation	 391

REFERENCES	 395

INDEX	 400

Online Supplements

Numerous supplemental materials including software downloads are provided
on the official website of the book at http://VMS-technology.com/book. The
supplemental materials are grouped into (1) M&S practices with commercial
simulators, (2) developing your own dedicated simulators, and (3) integrated
simulation of electronics Fabs. The commercials simulators covered are an
event-based simulator SIGMA®, an activity-based simulator ACE®, a state-
based simulator SGS®, and an entity-based simulator Arena®.

xvii

PREFACE

This book provides comprehensive, in-depth coverage of modeling and simula-
tion (M&S) of discrete-event systems (DESs). Here, the term M&S refers to
computer simulation, with an emphasis on modeling real-life DESs and exe-
cuting the models. The current state-of-the-art in DES M&S is a result of the
breakthroughs in the following areas: (1) activity-based modeling formalism
pioneered by K.D. Tocher in late 1950s; (2) the advent of process-oriented
simulation languages, such as GPSS and SLAM, in the early 1970s; (3) state-
based modeling formalism, or DEVS, founded by Bernard Zeigler in the mid-
1970s; and (4) event-based modeling formalism as matured by Lee Schruben
since the early 1980s.

There exists at least one classic textbook in each area—a textbook on
activity-based modeling by Carrie, a few books on state-based (DEVS) model-
ing by Zeigler, a textbook on event-based modeling by Schruben, and a few
books on process-oriented languages such as Arena® and ProModel®. In addi-
tion, there are quite a few books focusing on statistical notions of computer
simulation. The researchers in each area advocate their own views as central
to DES M&S. Only a couple of books (e.g., Fishwick) propose an integrated
model engineering framework.

This book presents an integrated M&S framework covering all four DES
M&S breakthrough areas. It is a product of 30 years of teaching at KAIST, as
well as sponsored research and development projects at the authors’ lab at
KAIST, VMS (virtual manufacturing system) Lab, which has been a
government-endowed National Research Lab since 1999. In particular, the
practice-oriented theme of this book is a result of the authors’ decade-long
experience in developing simulation-based scheduling (SBS) solutions for
Samsung Electronics and other companies in Korea. Virtually all the Sam-
sung’s semiconductor fabrication plants (Fabs) and flat panel display (FPD)
Fabs are run utilizing solutions originated by the authors’ lab, and upgraded
and supported by a spin-off venture company.

This book is divided into three parts: Part I, Basics of System Modeling
and Simulation; Part II, Fundamentals of Discrete-Event System Modeling and
Simulation; and Part III, Advances in Discrete-Event System Modeling and
Simulation. Parts I and II are designed as a primary textbook for an under-
graduate level M&S course in Industrial Engineering, Computer Science, and
Management Science. With Part III, it is designed as a graduate-level course.
This book comprehensively covers the state-of-the art modeling formalisms

xviii    Preface

and execution algorithms in DES M&S thereby serving as a main reference
for M&S researchers in academia. This book provides an easy-to-understand
guide for simulation practitioners in industry using off-the-shelf simulators
such as SIGMA® and Arena®. Finally, this book reveals a number of “secrets”
for developing your own simulators: event graph simulator, ACD simulator,
state graph simulator, and integrated Fab simulator—making it a valuable
resource for M&S solution developers.

The book is largely self-contained, and few prerequisites are needed for
understanding its main contents. However, some prior knowledge will help
readers understand specific sections:

(1)	 Basic knowledge of statistics and probability (Chapter 3, Input
Modeling);

(2)	 Basic knowledge of linear algebra (Chapter 8, Output Analysis and
Optimization)

(3)	 Experience with computer programming (Sections on developing your
own simulators, e.g. Sections 5.7 and 10.2).

Perhaps the most critical prerequisite for mastering this book is enthusiasm
and commitment toward M&S. This book is about the art of M&S, and like
other art forms, can only be mastered through persistent practice.

The authors wish to express their special thanks to Prof. K.H. Han of
Gyeongsang National University for using part of this book in his class and
providing valuable comments that led to its improvement; to Prof. I.K. Moon
of Seoul National University and Prof. S.C. Park of Ajou University for
their input during the early stage of writing this book; and to Prof. Lee Schru-
ben of Berkeley for his encouragement and support. For developing sample
models and exercise problems, and for executing “prototype” simulation
models appearing in the book, we would like to thank our graduate students
in the VMS Lab at KAIST, especially H.S. Kim, T.J. Choi, and E.H. Song.

Finally, Byoung Choi thanks his wife, Yong, and his son and best friend
Samuel, for their support and encouragement. Donghun Kang thanks his
parents for their loving care and support.

Byoung Kyu Choi
Donghun Kang

Daejeon, Korea, June 2013

xix

ABBREVIATIONS

ACD activity cycle diagram IFS integrated factory simulator
AGV automated guided vehicle LCD liquid crystal display
AMHS automated material handling system LEL local event list
AON activity-on-node LP logical process
AQL average queue length M&S modeling and simulation
AST average sojourn time MCS material control system
ATM automatic teller machine MDP message delivery packet
ATT activity transition table MEL move-type event list
AWT average waiting time MLE maximum likelihood estimator
BTO bound-to-occur MS mean square
CAL candidate activity list MSR message send request
DES discrete-event system OOEG object-oriented event graph
EFD entity flow diagram P-ACD parameterized ACD
EG event graph PDM process definition model
EO event object PEG parameterized event graph
EOS end of simulation RSM response surface methodology
Fab Fabrication line (or plant) RTD real-time dispatcher
FED federation execution data RTI run time infrastructure
FEL future event list SG state graph
FIFO first-in-first-out SOM simulation object model
FMS flexible manufacturing system SS sum of square
FOM federation object model TAG time advance grant
FPD flat panel display TAR time advance request
FSA finite state automata VE virtual environment
FSM finite state machine WfMS workflow management

systemHLA high level architecture

1

BASICS OF SYSTEM MODELING AND
SIMULATION

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

PART I

We think by “constructing mental models and then simulating them in order
to draw conclusions or make decisions.” Thus, modeling and simulation (M&S)
constitutes the central part of our thinking process. “I think, therefore I am”
is a philosophical statement used by the French philosopher Descartes, which
became a foundational element of Western philosophy. Therefore, if we
combine the philosophical notion of thinking with the engineering definition
of M&S, we may say that “we are engineers and scientists because we can
model systems and simulate them.” Furthermore, if our brain is not powerful
enough to simulate a given complex system, we rely on computers to perform
a computer simulation.

A dictionary definition of simulation is the technique of imitating the
behavior of some situation by means of an analogous situation or apparatus
to gain information more conveniently or to train personnel, while an aca-
demic definition of computer simulation is the discipline of designing a model
of a system, simulating the model on a digital computer, and analyzing the
execution output. In recent years, the term modeling and simulation (M&S)
seems to be preferred to the term for computer simulation, with an emphasis
on modeling. Part I of this book has two chapters, and it aims to provide the
readers with a basic but comprehensive treatment of computer simulation.

Chapter 1, “Overview of Computer Simulation,” will provide answers to the
following basic questions in computer simulation:

1.	 What is a system?
2.	 What is computer simulation?
3.	 What is discrete-event simulation?
4.	 What is continuous simulation?
5.	 What is Monte Carlo simulation?
6.	 What are simulation experimentation and optimization?

2    Basics of System Modeling and Simulation

Chapter 2, “Basics of Discrete-Event System Modeling & Simulation,” aims
to provide answers to the following basic questions in discrete-event system
(DES) M&S:

1.	 How is a discrete-event simulation carried out?
2.	 What are modeling components and a reference model?
3.	 What is a discrete-event system modeling formalism?
4.	 What is a formal model and how it is specified?
5.	 What is the integrated framework of discrete-event system modeling?
6.	 How do we build and simulate an event graph or activity cycle diagram

(ACD) model of a DES?
7.	 How is the M&S life cycle managed?

3

CHAPTER 1

Overview of Computer Simulation

The wise man is one who knows what he does not know.
—Tao Te Ching

1.1  INTRODUCTION

Richmond [2003] defines thinking as “constructing mental models and then
simulating them in order to draw conclusions or make decisions.” Namely, he
defines thinking as mental simulation. When the situation is too complex to
be analyzed by mental simulation alone, we rely on computer simulation.
According to Schruben [2012], simulation models provide unlimited virtual
power: “If you can think of something, you can simulate it. Experimenting in
a simulated world, you can change anything, in any way, at any time—even
change time itself.”

Fishwick [1995] defines computer simulation as the discipline of designing
a model of a system, simulating the model on a digital computer, and analyzing
the execution output. In the military, where computer simulation is extensively
used in training personnel (e.g., war game simulation) and acquiring weapon
systems (e.g., simulation-based acquisition), the term modeling and simulation
(M&S) is used in place of computer simulation. In this book, these two terms
are used interchangeably.

The purpose of this chapter is to provide the reader with a basic under-
standing of computer simulation. After studying this chapter, you should be
able to answer the following questions:

1.	 What are the common characteristics that lead to a conceptual definition
of system?

2.	 What are the three types of systems?
3.	 What are the three subsystems in a feedback control system?
4.	 What are the three types of virtual environment simulation?

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

4    Overview of Computer Simulation

5.	 What are the three types of computer simulation?
6.	 What is the simulation model trajectory of a discrete-event system?
7.	 What is Monte Carlo simulation?
8.	 What is sensitivity analysis in simulation experimentation?

This chapter is organized as follows: Definitions and structures of systems
are given in Section 1.2. Section 1.3 provides definitions and applications of
simulation. The subsequent three sections introduce the three simulation
types: discrete-event simulation in Section 1.4, continuous simulation in Section
1.5, and Monte Carlo simulation in Section 1.6. Finally, a basic framework of
simulation experimentation is presented in Section 1.7.

1.2  WHAT IS A SYSTEM?

1.2.1  Definitions of Systems

Systems are encountered everywhere in the world. While those systems differ
in their specifics, they share common characteristics that lead to a conceptual
definition of a system. In Wu [1992], a system is defined as “a collection of
components which are interrelated in an organized way and work together
towards the accomplishment of certain logical and purposeful end.” Thus, any
portion of the real world may be defined as a system if it has the following
characteristics: (1) it has a purpose or purposes, (2) its components are con-
nected in an organized manner, and (3) they work together to achieve common
objectives. A system consisting of people is often called a team. Needless to
say, a mere crowd of people sharing no common objectives is not a team.

When defining a system, the concept of state variable plays a key role. A
state variable is a particular measurable property of an object or system.
Examples of state variables are the number of jobs in a buffer, status of a
machine, temperature of an oven, etc. A system in which the state variables
change instantaneously at discrete points in time is called a discrete-event
system, whereas a system in which state variables change continuously over
time is called a continuous system.

1.2.2  Three Types of Systems

Our universe, which is full of systems everywhere, may be viewed from the
five levels of detail (Fig. 1.1): from the subatomic level to cosmological level.
In the subatomic level, interactions among the components of a system are
described using quantum mechanics, which is a physical science dealing with
the behavior of matter and energy on the scale of atoms and subatomic par-
ticles. It is interesting to find that quantum mechanics is also used in modeling
a system at the cosmological level [Mostafazadeh 2004]. Thus, a system in the
subatomic level or cosmological level may be called a quantum system.

What Is a System?   5

A system in the electromechanical level usually has components whose
physical dynamics are described using differential equations of effort, such as
force and voltage, and flow, such as velocity and current [Karnopp et al. 2000].
The behaviors of ecological systems and socioeconomic systems are usually
described using differential equations of flow [Hannon and Ruth 2001]. As a
result, these systems are called a continuous system or a differential equation
system.

Systems in the middle level are industrial systems which are more conve-
niently described in terms of discrete events, and they are discrete-event
systems. An event is an instance of changes in state variables. A special type
of this system is a digital system such as a computer whose states are defined
by a finite number of 0s and 1s.

1.2.3  System Boundaries and Hierarchical Structure

Everything in our world is connected to everything else in some way, which is
known as the small world phenomenon [Kleinberg 2000]. Thus, in order to
define a system, it is first necessary to isolate the components of the system
from the remaining world and to enclose them within a system boundary.

A set of isolated components of primary interest is called a target system. The
target system may have a number of subsystems, and it may be a subsystem of a
higher-level system called a wider system. The wider system is separated from
the external environment by a boundary [Wu 1992]. In summary, a typical
system consists of a target system (composed of its subsystems) and a wider
system (in which the target system is included). The system of interest consisting
of a target system and its wider system is often referred to as a source system.

Most dynamic systems in engineering and management are feedback
control systems. Key subsystems in a feedback control system are operational,
monitoring, and decision-making subsystems. The operational subsystem
carries out the system’s tasks, and the monitoring subsystem monitors system
performances and reports to the decision-making subsystem. The decision-
making subsystem is responsible for making decisions and taking corrective
actions. The relationships among the target feedback control system, its sub-
systems, wider system, and external environment are shown in Fig. 1.2 [Wu
1992]. For example, if your simulation study is focused on an emergency room
of a hospital, the emergency room would become the target system and the
hospital the wider system.

Fig. 1.1.  Five levels of details of system definitions in the universe.

Subatomic
World

Electro-
mechanical

Systems

Industrial Systems
(Factory, Office)

Socio-
economic,
Ecological
Systems

Cosmological
Systems

Quantum system Continuous system Discrete-event system Continuous system Quantum system

6    Overview of Computer Simulation

The wider system influences the target system by setting goals, supporting
operations, and checking performances. The target system is subject to distur-
bances from the external environment. In addition, the external environment
provides the wider system with higher-level objectives and other external
influences.

Exercise 1.1. Give an example of a feedback control system involving
people and identify all the components of the system.

1.3  WHAT IS COMPUTER SIMULATION?

1.3.1  What Is Simulation?

A dictionary definition of simulation is “the technique of imitating the behav-
ior of some situation by means of an analogous situation or apparatus to gain
information more conveniently or to train (or entertain) personnel.” “Some
situation” in the definition corresponds to a source system, and an apparatus
is a simulator. As elaborated in the definition, there are two types of simulation
objectives: one is to gain information and the other is to train or entertain
personnel. The former is often called an analytic simulation and the latter a
virtual environment simulation [Fujimoto 2000].

The main purpose of an analytic simulation is the quantitative analysis of
the source system based on “exact” data. Thus, the simulation should be exe-
cuted in an as-fast-as-possible manner and be able to precisely reproduce the
event sequence of the source system. An analytic simulation is often referred

Fig. 1.2.  Hierarchical structure of feedback control system.

Disturbances

External InfluencesHigher-level Objectives

EXTERNAL
ENVIRONMENT

What Is Computer Simulation?   7

to as a time-stamp simulation. A virtual environment simulation is executed in
a scaled real-time while creating virtual environments, and it is often referred
to as a time-delay simulation. Shown in Fig. 1.3 are scenes from a war-game
simulation and from a computer game.

An analytic simulation with human interaction is called a constructive simu-
lation, and one without human interaction an autonomous simulation. If
humans interact with the simulation as a participant, it is referred to as human-
in-the-loop (HIL) simulation; if machines or software agents interact with the
simulation, it is called a machine-in-the-loop (MIL) simulation. A virtual envi-
ronment simulation without HIL/MIL is often called a virtual simulation; one
with HIL only a constructive simulation; one with both HIL and MIL a live
simulation. Figure 1.4 shows the classification of computer simulation.

1.3.2  Why Simulate?

Modeling and simulation is the central part of our thinking process. When the
situation is too complex to be analyzed by mental simulation alone, we use a
computer for simulating the situation. Let’s consider the following situations:

Fig. 1.3.  Examples of virtual environment simulation.

8    Overview of Computer Simulation

1.	 Finding optimal dispatching rules at a modern 300-mm semiconductor
Fab

2.	 Evaluating alternative designs for hospitals, post offices, call centers, etc.
3.	 Designing the material handling system of a 3 billion dollar thin film

transistor–liquid crystal display (TFT-LCD) Fab
4.	 Planning a wireless network for a telecommunication company
5.	 Evaluating high-tech weapons systems for a simulation-based

acquisition
6.	 Designing or upgrading the urban traffic system of a big city
7.	 Evaluating anti-pollution policies to control pollutions in river systems
8.	 Evaluating risks in project schedules and financial derivatives

For the above real-life situations, simulation may be the only means to
tackle the problems. In practice, simulation may be needed because experi-
menting with the real-life system is not feasible; your budget does not allow
you to acquire an expensive prototype; a real test is risky; your customer wants
it “yesterday”; your team wants to test several solutions and to compare them;
you would like to keep a way to reproduce its performances later.

The simulation of a discrete-event system is called a discrete-event simula-
tion, and that of a continuous system a continuous simulation. A class of com-
putational schemes that rely on repeated random sampling to compute their
results is referred to as Monte Carlo simulation. Among the above situations,
Situations 1–6 are concerned with a discrete-event simulation. Situation 7 is
concerned with a continuous simulation and Situation 8 with a Monte Carlo
simulation.

1.3.3  Types of Computer Simulation

As depicted earlier in Fig. 1.1, the dynamic systems in the universe can be
classified into five levels and three types. The three types of dynamic systems
are: (1) discrete-event systems, (2) continuous systems, and (3) quantum
systems. Thus, it is conceivable that there is one type of computer simulation
for each system type. Discrete-event simulation and continuous simulation are
widely performed on computers, but the direct simulation of quantum systems

Fig. 1.4.  Classification of computer simulation.

Computer Simulation

Autonomous Constructive (HIL) Constructive (HIL)Virtual Live (HIL+MIL)

Analytic Simulation
(Time-stamp simulation)

VE Simulation
(Time-delay simulation)

What Is Discrete-Event Simulation?   9

on classical computers is very difficult because of the huge amount of memory
required to store the explicit state of the system [Buluta and Nori 2009].

Continuous simulation is a numerical evaluation of a computer model of a
physical dynamic system that continuously tracks system responses over time
according to a set of equations typically involving differential equations. Let
Q(t) and X(t) denote the system state and input trajectory vectors, respec-
tively. Then, a linear continuous simulation is a numerical evaluation of the
linear state transition function dQ(t)/dt = AQ(t) + BX(t), where A and B are
coefficient matrices.

Discrete-event simulation is a computer evaluation of a discrete-event
dynamic system model where the operation of the system is represented as a
chronological sequence of events. In state-based modeling (see Chapter 9), the
system dynamics is described by an internal state-transition function (δint:
Q→Q) and an external state-transition function (δext: Q × X→Q), where Q is
a set of system states and X is a set of input events. Thus, discrete-event simu-
lation can be regarded as a computer evaluation of the internal and external
transition functions.

Another type of popular computer simulation is the Monte Carlo simula-
tion, which is not a dynamic system simulation. It is a class of computational
algorithms that rely on repeated random sampling to compute the numerical
integration of functions arising in engineering and science that are impossible
to evaluate with direct analytical methods. In recent years, Monte Carlo simu-
lation has also been used as a technique to understand the impact of risk and
uncertainty in financial, project management, and other forecasting models.

1.4  WHAT IS DISCRETE-EVENT SIMULATION?

Figure 1.5 depicts a single server system consisting of a machine and a buffer
in a factory. The dynamics of the system may be described as follows: (1) a job
arrives at the system with an inter-arrival time of ta, and the job is loaded on
the machine if it is idle; otherwise, the job is put into the buffer; (2) the loaded
job is processed for a service time of ts and unloaded; (3) when a job is
unloaded, the next job is loaded if the buffer is not empty. In Fig. 1.5, the state
variables of the system are q and m, where q is the number of jobs in the buffer

Fig. 1.5.  A single server system model.

Arrive Load Unload

Process [ts]Generate[ta]

10    Overview of Computer Simulation

and m denotes the status (Idle or Busy) of the machine, and the events are
Arrive, Load, and Unload.

1.4.1  Description of System Dynamics

Using the state variables and events, the system dynamics of the single server
system may be described more rigorously as follows: (1) when an Arrive event
occurs, q is increased by one, the next Arrive event is scheduled to occur after
ta time units, and a Load event is scheduled to occur immediately if m ≡ Idle(=0);
(2) when a Load event occurs, q is decreased by one, m is set to Busy(=1), and
an Unload event is scheduled to occur after ts time units; (3) when an Unload
event occurs, m is set to Idle and a Load event is scheduled to occur immedi-
ately if q > 0. The dynamics of the single server system may be described as a
graph as given in Fig. 1.6, which is called an event graph.

1.4.2  Simulation Model Trajectory

An executable model of a system is called a simulation model, and the trajec-
tory of the state variables of the model is called the simulation model trajec-
tory. Let {ak} and {sk} denote the sequences of inter-arrival times (ta) and
service times (ts), respectively. Then, the simulation model trajectory of the
single server system would look like Fig. 1.7, where {ti} are event times, X(t)
is input trajectory, and Q(t) = {q(t), m(t)} denotes the trajectory of the system

Fig. 1.6.  Event graph describing the system dynamics of the single server system.

q= 0; m= Idle

Fig. 1.7.  Simulation model trajectory of the single server system.

a1

s1 s2 s3

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

s4

a2 a3 a4 a5 a6 a7

0

q(t)

m(t)

X(t)

Q(t)= {q(t), m(t)}

What Is Continuous Simulation?   11

state variables. The “time” here means a simulation time, which is a logical
time used by the simulation model to represent physical time of the target
system to be simulated.

At time t1 (=a1), a job J1 arrives at an empty system and is loaded on the
idle machine to be processed for a time period of s1. In the meantime, another
job J2 arrives at time t2 (=a1 + a2), which will be put into the buffer since the
machine is busy. Thus, the buffer will have one job during the time period [t2,
t3], which is denoted as a shaded bar in the buffer graph q(t) of Fig. 1.7. At t3
(=t1 + s1), the first job J1 is unloaded and the job J2 in the buffer is loaded on
the machine. At t4 (=t3 + s2), J2 is finished and unloaded, which will make the
system empty again. Thus, the machine is busy during the time period [t1, t4].
At time t5 (=a1 + a2 + a3), another job J3 arrives at the system and is loaded on
the machine, and so on.

1.4.3  Collecting Statistics from the Model Trajectory

When simulating a service system, one may be interested in such items as (1)
queue length, (2) waiting time distribution, (3) sojourn time, (4) server utiliza-
tion, etc. In the case of the single server system, the following statistics can be
collected from the model trajectory.

1.	 Queue length q(t) statistics during t ∈ [t0, t10]: AQL (average queue
length)
–	 AQL = {(t3 − t2) + (t7 − t6) + 2(t8 − t7) + (t9 − t8) + 2(t10 − t9)}/t10

2.	 Waiting time {Wj} statistics for the first four jobs: AWT (average waiting
time)
–	 AWT = {W1 + W2 + W3 + W4}/4 = {0 + (t3 − t2) + 0 + (t8 − t6)}/4 = (t3

− t2 + t8 − t6)/4
3.	 Sojourn time {Sj} statistics for the first four jobs: AST (average sojourn

time)
–	 AST = AWT + Average service time = AWT + (s1 + s2 + s3 + s4)/4

4.	 Server utilization during t ∈ [t0, t10]: U (utilization)
–	 U = {(t4 – t1) + (t10 – t5)}/t10

1.5  WHAT IS CONTINUOUS SIMULATION?

As mentioned in Section 1.3.3, continuous simulation is a numerical evaluation
of a computer model of a physical system that continuously tracks system
responses over time, Q(t), according to a set of equations typically involving
differential equations like dQ(t)/dt = f[Q(t), X(t)], where X(t) represents con-
trols or input trajectory.

As an example, consider a Newtonian cooling model [Hannon and Ruth
2001]. Let σ(t) be the cooling rate, then the temperature T(t) changes as

12    Overview of Computer Simulation

dT(t)/dt = –σ(t). The cooling rate is expressed as σ(t) = κ*[T(t) – Ta], where κ
is cooling constant and Ta is ambient temperature.

1.5.1  Manual Simulation of the Newtonian Cooling Model

The governing differential equation may be approximated by the following
difference equation:

	 T t t T t t * t T t * T t T * t for t t t ta() () () () [()] , , , ,+ = − = − − =∆ ∆ ∆ ∆ ∆ ∆σ κ 0 2 3 	

Let’s assume T(0) = 37°C, Ta = 10°C, κ = 0.06, and Δt = 0.1, then the temperature
curve T(t) may be evaluated as follows:

	

T T * T * 1 37 6* * 1 37 16(.) () . [] . . () . .0 1 0 0 06 0 10 0 0 0 37 10 0 0= − () − = − − = − 22

T T * T * *

=
= − − = −

36 838

0 2 0 1 0 06 0 1 10 0 1 36 838 0 06 3

.

(.) (.) . [(.)] . . . (66 838 10 0 1

36 677

.) .

.

−
=

*

�

	

1.5.2  Simulation of the Newtonian Cooling Model Using a Simulator

The cooling model may be simulated by using a commercial simulator such as
STELLA®, as depicted in Fig. 1.8. In STELLA®, the level of state variable is
regarded as a stock and the change in state variable as flow. In Fig. 1.8, TEM-
PERATURE is a stock and COOLING-RATE is a flow. COOLING CON-
STANT and AMBIENT TEMPERATURE are parameters. These and other
data are provided to the simulator via dialog boxes.

1.6  WHAT IS MONTE CARLO SIMULATION?

Monte Carlo simulation methods are a class of computational algorithms that
rely on repeated random sampling to compute their results. They were devel-
oped for performing numerical integration of functions arising in engineering
and science that were difficult to evaluate with direct analytical methods. In
recent years, Monte Carlo simulation has also been used as a technique to
understand the impact of risk and uncertainty in financial, project manage-
ment, and other forecasting models.

1.6.1  Numerical Integration via Monte Carlo Simulation

As an example of numerical integration, consider the problem of finding
the value of π via simulation. I am sure you have memorized the value of
π as 3.14159. . .: but, for the moment, assume that you do not remember the
value.

What Is Monte Carlo Simulation?   13

In order to obtain the value of π via a Monte Carlo simulation, let’s consider
the circle shown in Fig. 1.9. It is a circle with a unit radius (r = 1) and its center
is located at (1, 1). Uniform random variables with a range of [0, 2] are gener-
ated in pairs and are used as coordinates of points inside the square. Let
n = total number of points generated (i.e., inside the square) and m = number
of points inside the circle, and let Ac and As denote the areas of the circle and
square, respectively. Then, the value of m/n approaches to the ratio Ac/As for

Fig. 1.8.  STELLA® block-diagram modeling and output plot of the cooling system.

AMBIENT TEMPERATURECOOLING CONSTANT

COOLING RATE

TEMPERATURE

Fig. 1.9.  A circle of unit radius to compute the value of π via Monte Carlo
simulation.

14    Overview of Computer Simulation

a large n. Since we know that Ac = πr2 = π and As = 4, we can compute π from
the following relation: m/n = Ac/As = π/4 → π = 4 m/n [Pidd 2004].

For the reader who may be curious about the execution of the simple Monte
Carlo simulation, Java codes for (1) generating uniform random numbers and
(2) computing the value of π are given below.

(1)  Java code for generating uniform random number U ∼ Uniform[0, 1]
double U = Math.random(); // Java function //
(2)	 Java code for finding the value of pi:
double m = 0, n = 0;
double max = 10000; // total number of sampling
while (n < max) {
 double u1 = Math.random();
 double u2 = Math.random();
 double x = 2.0 * u1;
 double y = 2.0 * u2;
 if (((x - 1) * (x - 1) + (y - 1) * (y - 1)) <= 1) m++;
 n++;
} // end of while
double phi = 4.0*m/n;

Exercise 1.2. Modify the above Monte Carlo simulation program (Java
code) to compute the shaded area under the piece-wise linear function in
Fig. 1.10.

1.6.2  Risk Analysis via Monte Carlo Simulation

Consider a project consisting of three tasks1: Task1, Task2, and Task3. Esti-
mates of the time durations for the individual tasks are given in Table 1.1. We
are interested in estimating the risk (or chance) of failing to meet a given
project duration, say 15 months.

Fig. 1.10.  Area under a piece-wise linear function.

2

1

2 6 8
x

y

1 This example was taken from www.riskamp.com.

http://www.riskamp.com

What Are Simulation Experimentation and Optimization?   15

It is well accepted that the duration times are assumed to follow beta dis-
tribution (see Chapter 3). In the Monte Carlo simulation, values for the task
duration times are randomly generated from respective beta distributions. The
results of 500 simulation runs are summarized in Table 1.2, from which one
may conclude that the risk of failing to finish the project within 15 months is
about 20%. In recent years, Monte Carlo methods are quite popular in finan-
cial derivatives and option pricing evaluations.

1.7  WHAT ARE SIMULATION EXPERIMENTATION AND
OPTIMIZATION?

The rules that govern the behavior of the system are called laws, while the
rules under our control are called policies. When we experiment to determine
the effects of changing the parameters of laws, we are doing a sensitivity
analysis. When we experiment with changes in the control factors of policies,
we are doing optimization [Schruben and Schruben 2001]. Both the parame-
ters of laws and control factors of policies become handles of simulation
experimentation. Both the optimization and sensitivity analysis may be per-
formed in a simulation study. A simulation study should be carried out with

1.	 clear objectives of the study together with a set of performance
measures;

2.	 output variables that can be mapped into the performance measures;
3.	 well-defined handles with which the simulation runs are to be

controlled.

An experimental frame is a specification of the conditions under which the
simulator is experimented with [Zeigler et al. 2000], and it is concerned with
simulation optimization. As shown in Fig. 1.11, an experimental frame for
simulation optimization consists of five steps: (1) an initial value of each

TABLE 1.1.  Range Estimates for Individual Tasks

Task Min (most optimistic) Most likely Max (most pessimistic)

Task1 4 months 5 months 7 months
Task2 3 months 4 months 6 months
Task3 4 months 5 months 6 months
Total 11 months 14 months 19 months

TABLE 1.2.  Results of 500 Simulation Runs

Time duration (months) 12 13 14 15 16 17 18
of on-time finishes 1 31 171 394 482 499 500
% of on-time finishes 0% 6% 34% 79% 96% 100% 100%

16    Overview of Computer Simulation

handle is generated; (2) a simulation run is made to compute values of the
output variables; (3) performance measures are computed from the output
variables; (4) the performance measures are evaluated to see if the results are
acceptable; (5) if the results are not acceptable, go back to Step 2 with a revised
set of handle values. Steps 3, 4, and 5 are often called transducer, acceptor, and
generator, respectively.

1.8  REVIEW QUESTIONS

1.1.  What are the common characteristics that lead to a conceptual definition
of system?

1.2.  Give a definition of a team based on the concept of system.

1.3.  What is the difference between a source system and a target system?

1.4.  What are the three key subsystems in a feedback control system?

1.5.  What is an analytic simulation?

1.6.  What is time-stamp simulation?

1.7.  What would be the two popular areas where virtual environment simula-
tion is used?

1.8.  What is constructive simulation?

1.9.  What is the main output from a continuous simulation?

1.10.  In simulation, a rule under our control is called a policy. What is a law?

1.11.  What is sensitivity analysis in simulation experimentation?

1.12.  What is simulation optimization?

1.13.  What is the role of the acceptor in an experimental frame?

Fig. 1.11.  Experimental frame for simulation optimization.

Start

Stop

17

CHAPTER 2

Basics of Discrete-Event System
Modeling and Simulation

All models are wrong, some are useful.
—George E.P. Box

2.1  INTRODUCTION

A discrete-event system (DES) is a discrete-state and event-driven system in
which the state changes depend entirely on the occurrence of discrete events
over time. Examples of discrete-event systems include manufacturing systems,
transportation systems such as urban traffic networks, service systems such as
hospitals, and communication systems such as wireless networks, etc. This
chapter aims to cover all the key subjects of and important issues in autono-
mous simulation of such discrete-event systems.

This chapter is organized as follows. Section 2.2 describes a step-by-step
procedure for performing a discrete-event simulation. Section 2.3 deals with
the fundamentals of DES modeling and introduces the concepts of reference
model, modeling formalisms, and integrated framework of DES modeling.
Illustrative examples are given in Section 2.4. Section 2.5 presents modeling
and simulation (M&S) applications frameworks, and the last section addresses
the issue of what to cover in a simulation class.

2.2  HOW IS A DISCRETE-EVENT SIMULATION CARRIED OUT?

Reproduced in Fig. 2.1 are the reference model and event graph of the single
server system introduced in Chapter 1 (Section 1.4). There are two state vari-
ables (Q and M) and three event types (Arrive, Load, and Unload) in the
system. Q is the job count, the number of jobs in the buffer; M denotes the

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

18    Basics of Discrete-Event System Modeling and Simulation

status (Idle or Busy) of the machine; and ta and ts denote interarrival times
and service times, respectively.

2.2.1  Event Routines

A set of actions invoked by the occurrence of an originating event is called an
event routine. Event routines systematically describe the dynamic behavior of
the single server system. Event routines for the three event nodes in the event
graph of Fig. 2.1 are listed in Table 2.1 and a brief description for each event
routine is given below:

1.	 When an Arrive event occurs at time t, (1) the job count in the buffer is
increased by one, Q = Q + 1; (2) a Load event is scheduled to occur
immediately if the Machine is idle, M ≡ Idle; (3) a next Arrive event is
scheduled to occur at time t + ta.

2.	 When a Load event occurs at time t, (1) the job count in the buffer is
decreased by one, Q = Q − 1; (2) the machine is set to busy (M = Busy);
(3) an Unload event is scheduled to occur at time t + ts.

Fig. 2.1.  Reference model and event graph of the single server system.

Arrive Load Unload

Process [ts]Generate[ta]

Q= 0; M= Idle

TABLE 2.1.  Event Routines for the Event Nodes of the Event Graph in Fig. 2.1

Event
Name

Event Node in the
Event Graph Event Routine

1.  Arrive Q = Q + 1; // increase the job-count by one
If (M ≡ Idle), schedule an event <Load,

Now>;
Schedule an event <Arrive, Now + ta>

2.  Load Q = Q − 1; //decrease the job-count by one
M = Busy; // set the machine to busy.
Schedule an event <Unload, Now + ts>

3.  Unload M = Idle; // set the machine to idle
If (Q > 0), schedule an event <Load, Now>

How Is a Discrete-Event Simulation Carried Out?   19

3.	 When an Unload event occurs, (1) the machine is set to idle, M = Idle;
(2) a Load event is scheduled to occur now if Q > 0.

2.2.2  Simulation Model Trajectory

An executable model of a system is called a simulation model. Shown in Fig.
2.2 is the simulation model trajectory of the single server system. Jobs have
inter-arrival times {ai} = {3, 2, 4, 1.5, 1.5, 3.5 . . .} and service times {si} = {3, 2,
4.5, 3 . . .}, where ai and si are the values for the ith job Ji.

Initially, the system is empty and the machine is ready, thus Q = 0 and
M = Idle. The event times {tk} are determined as follows:

1.	 At time t1 = 3, J1 arrives at the system and is loaded on the machine.
2.	 At time t2 = 5, J2 arrives at the system and is stored in the buffer.
3.	 At time t3 = 6, J1 is unloaded from the machine, and J2 is loaded on the

machine.
4.	 At time t4 = 8, J2 is unloaded from the machine.
5.	 . . .

In order to simulate the system dynamics, we need a mechanism for process-
ing future events. A future event is an event that has been scheduled to occur
in the future, and a future event that has the smallest, i.e., earliest, event time
is called the next event. The event-processing mechanism consists of event
cards and the future event list (FEL): the event-name and event time of a future
event are recorded in an event card and it is stored in the FEL in an ascending
order of event time.

2.2.3  Manual Simulation Execution

2.2.3.1  Initialization  At the beginning, (1) the simulation time is set to
zero and the state variables are initialized as Q = 0 and M = Idle, and (2) an

Fig. 2.2.  Simulation model trajectory of the single server system.

20    Basics of Discrete-Event System Modeling and Simulation

Arrive event is scheduled to occur at time t1 = 3. The task of the “scheduling
of an Arrive event to occur at time 3” is carried out by creating an event card
with “Event-name = Arrive & Event-time = 3” and storing it in the FEL.
Depicted in Fig. 2.3 are the state variables and FEL after initialization.

2.2.3.2  Next Event Processing  The next event processing step starts with
retrieving the next event from the FEL. First, the next event <Arrive, 3> is
retrieved as depicted in Fig. 2.4(a) and the simulation time is set to 3. Then,
the retrieved event is executed to update the state variables and FEL as

Fig. 2.3.  State variables and FEL after initialization.

Fig. 2.4.  (a) State variables and FEL after the retrieval of <Arrive, 3>; (b) state vari-
ables and FEL after the execution of <Arrive, 3>; (c) state variables and FEL after the
execution of <Load, 3>; (d) state variables and FEL after the execution of <Arrive, 5>;
(e) state variables and FEL after the execution of <Unload, 6>.

(a)

(b)

(c)

(d)

(e)

How Is a Discrete-Event Simulation Carried Out?   21

follows: (1) the new job J1 is stored in the buffer and its job count is increased
by one (Q = 0 + 1); (2) since the machine is Idle, a Load event is scheduled to
occur now, i.e., at time 3, which is carried out by storing the event card <Load,
3> in the FEL; (3) an Arrive event is scheduled to occur at time 5 (=
3 + a2 = 3 + 2), which is carried out by storing the event card <Arrive, 5> in
the FEL. The state variables and FEL after the execution of the next event
<Arrive, 3> are shown in Fig. 2.4(b).

At the second step, the next event <Load, 3> is retrieved from the FEL of
Fig. 2.4(b) and it is executed so that: (1) the job J1 is loaded on the machine,
the job count Q is decreased by 1, and the machine is set to busy (Q = 0 &
M = Busy); (2) an Unload event is scheduled to occur at time 6 (= 3 + s1 = 3 + 3),
namely, <Unload, 6> is stored in the FEL. The state variables and FEL after
the execution of the next event <Load, 3> are shown in Fig. 2.4(c), where
<Arrive, 5> becomes the next event.

At the third step, <Arrive, 5> is retrieved from the FEL of Fig. 2.4(c) and
is executed so that: (1) the new job J2 is stored in the buffer and Q is increased
by 1; (2) an Arrive event is scheduled to occur at time 9 (= 5 + a3 = 5 + 4). The
state variables and FEL after the execution of <Arrive, 5> are shown in Fig.
2.4(d), where <Unload, 6> become the next event.

At the fourth step, <Unload, 6> is retrieved and executed to set the machine
to idle (M = Idle) and to schedule a Load event to occur immediately because
Q > 0. The state variables and FEL after the execution of <Unload, 6> are as
shown in Fig. 2.4(e), where the next event is <Load, 6>.

The trajectory of the state variables and FEL during the manual simula
tion up to the event time t3 is given in Table 2.2. The first row contains the

TABLE 2.2.  Trajectory of the State Variables and FEL during Manual Simulation

Event
occurrence

Job

State
update

Time
delay

Scheduled
event

Future events list
(FEL)

RemarkTime Name Q M
Next
event

Future
event

0 Initialize — 0 Idle a1 = 3 <Arrive,
a1>

<Arrive,
3>

— Fig.2.3

t1 = 3 Arrive J1 1 Idle a2 = 2 <Load, 3>,
<Arrive,
3 + a2>

<Load,
3>

<Arrive,
5>

Fig.2.4(b)

t1 = 3 Load J1 0 Busy s1 = 3 <Unload,
3 + s1>

<Arrive,
5>

<Unload,
6>

Fig.2.4(c)

t2 = 5 Arrive J2 1 Busy a3 = 4 <Arrive,
5 + a3>

<Unload,
6>

<Arrive,
9>

Fig.2.4(d)

t3 = 6 Unload J1 1 Idle 0 <Load, 6> <Load,
6>

<Arrive,
9>

Fig.2.4(e)

t3 = 6 Load J2 0 Busy s2 = 2 <Unload,
6 + s2>

<Unload,
8>

<Arrive,
9>

22    Basics of Discrete-Event System Modeling and Simulation

information given in Fig. 2.3: event time is 0; Q = 0 and M = Idle; the scheduled
event is <Arrive, a1> with a1 = 3; the next event is <Arrive, 3>. The second row
contains the information given in Fig. 2.4(b), and so on.

Exercise 2.1. Retrieve the next event <Load, 6> from the FEL of Fig. 2.4(e),
execute it, and update the state variables and FEL. Continue the manual simu-
lation a few more steps.

2.2.4  Flow Chart of Manual Simulation Procedure

The manual simulation procedure described in Section 2.2.3 can be described
in the form of flow chart as depicted in Fig. 2.5. The simulation procedure
consists of three steps: The initialization step, next event retrieval step, and
event execution step:

1.	 At the initialization step, the state variables are initialized as Q = 0 &
M = Idle, and the initial event <Arrive, 3> is stored in the FEL as depicted
in Fig. 2.3.

2.	 At the next event retrieval step, the next event in the FEL is retrieved
and the clock variable Now is set to the event time of the retrieved next
event.

3.	 At the event execution step, the event routine (see Table 2.1) of the
retrieved next event is executed.

4.	 Go back to step 2 (next event retrieval step) if the termination condition
is not met.

In the flow chart, NOW is the current simulation time.

Fig. 2.5.  Flow chart of the manual simulation procedure.

1. Initialization step:
Q= 0; M= Idle;
Schedule <Arrive, 3> in FEL

2. Next-event retrieval step:
Retrieve the ‘next-event’ card from FEL;
EVENT Name of the next-event;
NOW Time of the next-event;

Terminate?
No

Future event list
(FEL)

Name: Arrive
Time: 3

EVENT?Arrive

Name: xxx
Time: …

Name: xxx
Time: …

Unload
Load

Yes
End

3. Event execution step:

 Idle),

Framework of Discrete-Event System Modeling   23

2.3  FRAMEWORK OF DISCRETE-EVENT SYSTEM MODELING

In this section, the framework of discrete-event system modeling will be ana-
lyzed in terms of (1) modeling components and reference model, (2) modeling
formalism and formal model, and (3) formal modeling tools and model
specification.

2.3.1  What Are Modeling Components and Reference Model?

2.3.1.1  Modeling Components  From a practitioner’s point of view, the aim
of a discrete-event simulation is to learn about the behavior and performance
potential of the system, and it is accomplished by the activities in which the
resources and entities in the DES engage. From a system theoretic point of
view, a DES can be viewed as a state machine consisting of a set of states, a
set of events, a partial state transition function, and the initial and final states.

DES modeling components are a set of basis components of a DES used
for describing the system dynamics. From the above observation, the modeling
components of DES are resources, entities, activities, events, and states. Among
them, resources and entities are referred to as physical modeling components,
while activities, states, and events are logical modeling components. A resource
such as a machine that is engaged in an activity is called an active resource and
a resource such as a buffer used in storing entities is called a passive resource.

2.3.1.2  Reference Model  An informal description of system dynamics
using modeling components is referred to as a reference model of a DES. Let’s
consider the single server system shown in Fig. 2.1(a). It is an open system
where entities are created from and disposed to the outside world. For an
autonomous simulation, it is convenient to make it a closed system by treating
the outside world as a job creator responsible for creating jobs. Then, the
closed single server system may look like Fig. 2.6.

Fig. 2.6.  (a) Source systems and (b) reference model of a single server system.

10

- Entities
- Resources

- Activities
- States
- Events

Source Systems

Create [ta]

Process [ts]

Machine (M=Idle)

Load Unload

Job

Reference Model

Arrive

Job-Creator creates a
new job at every ta

min.; the new job is
loaded on Machine if it

is idle, otherwise the
job is stored in Buffer;

the loaded job is
processed for

minutes and unloaded;
the freed machine loads

another job from the
buffer if it is not empty.

(a) (b)

tp

Job Creator

Buffer (Q)

24    Basics of Discrete-Event System Modeling and Simulation

The modeling components of the single server system of Fig. 2.6 are: (1)
Entities are jobs; (2) Resources are Machine, Job-creator, and Buffer; (3)
Activities are job creation and job processing; (4) State variables are the
Machine status (M = Idle/Busy) and Buffer status (Q = number of jobs); (5)
Events are Arrive, Load, and Unload. System dynamics is described using the
modeling components as follows: Job-creator creates a new job at every ta
minutes; the new job is loaded on the Machine if it is idle, otherwise the job
is stored in Buffer; the loaded job is processed by the Machine for a time
period of ts and then unloaded; the freed Machine loads another job from the
Buffer if it is not empty.

The reference model structure (left-hand side of Fig. 2.7) has three layers:
(1) At the core of the structure are physical modeling components—Entity
and Resource—that constitute the static model of a DES; (2) at the next layer
are logical modeling components—Activity, Event, and State—corresponding
to the functional model of the DES; and (3) at the outer layer is an informal
description of the system dynamics that corresponds to the control model of
the DES. This view of the reference model structure is similar to the classical
object-oriented modeling paradigm [Rumbaugh et al. 1991].

The roles of a reference model are depicted in the right-hand part of Fig,
2.7. System modeling needs a team effort involving domain engineers who
have a working knowledge of the system, simulation experts who are respon-
sible for building simulation models, and other stakeholders. A reference
model should serve as an official system description for domain engineers and
at the same time as a systematic model description for simulation experts. In
addition, it should serve as a mechanism for communication among the stake-
holders of the simulation project.

2.3.2  What Is a Discrete-Event System (DES) Modeling Formalism?

In this book, a DES modeling formalism is defined as a well-defined set of
graphical conventions for specifying a DES. It has a formal syntax and can be
executed by a simulation algorithm. There are three types of DES modeling

Fig. 2.7.  The structure and role of a reference model.

Operational
system description

for domain engineers

Technical
model description for

simulation experts

Reference
Model

Reference
Model

Mechanism
for communication among

stake holders

Framework of Discrete-Event System Modeling   25

formalisms, one for each logical modeling component: activity-based, event-
based, and state-based modeling formalisms. The modeling formalisms had
been developed from different origins: (1) activity-based modeling formalism
from the flow diagram method of Tocher [Hollocks 2008]; (2) event-based
modeling formalism from event-scheduling languages such as SIMSCRIPT;
(3) state-based modeling formalism from the state transition diagram method
of finite state machine (FSM) modeling [Mealy 1955] and the DEVS (Discrete-
EVent-system Specification) [Zeigler et al. 2000]. More details on FSM and
DEVS can be found in Chapter 9 of this book.

Each of the modeling formalisms employs a graphical modeling tool: the
activity cycle diagram (ACD) is used in the activity-based modeling formalism;
the event graph in the event-based modeling formalism; and the state graph
in the state-based modeling formalism. Among the three modeling formalisms,
the first two are often referred to as worldviews: activity-scanning worldview
and event-scheduling worldview. Summarized in Table 2.3 are the relationships
among modeling formalisms, modeling tools, and worldviews.

2.3.2.1  Activity-Based Modeling Formalism and Activity Cycle Diagram 
In the activity-based modeling formalism, the dynamics of system is described
in terms of the activities of the active resources and entities in the system. It
uses the activity cycle diagram (ACD) that was invented by Tocher [Tocher
1960]. Tocher’s original work was followed by some further development work.
An activity-based simulation language named ECSL® was developed [Clem-
entson 1986] and a classical ACD was formally defined [Carrie 1988]. The
classical ACD had some inherent limitations in handling complex systems
[Hlupic and Paul 1994], and hierarchical ACD [Kienbaum and Paul 1994] and
extended ACD [Martinez 2001] were proposed in order to enhance its model-
ing power. More recently, a formal specification of extended ACD was given
and its generality was established [Kang and Choi 2011].

2.3.2.2  Process-Oriented Simulation Languages and Entity-Flow Diagram 
When only the activity cycles of the entities in the system are considered, the
activity-based modeling formalism becomes an entity-based modeling formal-
ism or process interaction worldview [Carson 1993]. The sequence of activities

TABLE 2.3.  Relationships Among Modeling Formalisms, Modeling Tools, and
Worldviews

Modeling Formalism
Graphical

Modeling Tools
Related World Views or System

Specification

Activity-based formalism ACD Activity scanning world view
Event-based formalism Event Graph Event scheduling world view
State-based formalism State Graph DEVS (Discrete event system spec)

26    Basics of Discrete-Event System Modeling and Simulation

of an entity is often referred to as an entity-flow, and a diagram depicting the
entity-flow is called an entity-flow diagram (EFD) [Harrell et al. 2012]. A flow
of entities can be regarded as a time-ordered sequence of events that is often
referred to as a process. Thus, entity-based modeling is often referred to as
process-oriented modeling [Pritsker and Pegden 1979]. The process-oriented
modeling approach (or process interaction worldview) is adopted in many of
the modern simulation languages including Arena [Kelton et al. 2007] and
ProModel [Harrell et al. 2012]. These simulation languages are often referred
to as a process-oriented simulation language.

2.3.2.3  Event-Based Modeling Formalism and Event Graph  In the event-
based modeling formalism, a system is modeled by defining the changes that
occur at event times and the system dynamics is described using an event
graph. The event-based modeling concept was realized in the SIMSCRIPT
language in 1960s [Kiviat et al. 1969] and an event graph is formally defined
in 1980s [Schruben 1983]. In the event graph, events are represented as vertices
and the relationships between events are represented as directed arcs. Event
graph models are very compact. Yet, event graph models are capable of
describing any system that can be implemented on a modern computer [Savage
et al. 2005]. An event-based simulation language SIGMA® has been developed
and widely used for modeling various types of DES [Schruben and Schruben
2006].

2.3.2.4  State-Based Modeling Formalism and State Graph  In the state-
based modeling formalism, the dynamics of a system is described in terms of
the states of the resources in the system. The state-based modeling method is
originated from the classical finite state machine (FSM) that was used for
modeling the behavior of sequential circuits [Mealy 1955], where the concept
of the state transition diagram was introduced. In 1970s, the classical FSM
evolved to the classical DEVS in which internal transitions are also allowed
[Zeigler 1976]. DEVS can be regarded as a special form of timed automata
[Alur 1999] or timer-embedded FSM [Lee et al. 2010]. An in-depth treatment
on the subject of the state-based modeling is provided in Part III (Chapter 9)
of this book.

2.3.3  What Is a Formal Model and How Is It Specified?

A formalism-based modeling tool is referred to as a formal modeling tool.
Among the DES modeling tools mentioned in the previous subsection (Section
2.3.2), ACD, event graph, and state graph are formal modeling tools. The EFD
[Harrell et al. 2012] is a subset of the ACD, and it is not a formal modeling
tool (we may call it a semi-formal modeling tool).

A DES model described with a formal modeling tool is referred to as a
formal model if it provides a complete description of the system in a concise

Framework of Discrete-Event System Modeling   27

and clear manner. A well-known algorithm is available for each of the formal
models: the activity-scanning algorithm for ACD models [Carrie 1988]; the
next event scheduling algorithm for event graph models [Schruben and Schru-
ben 2006]; and the time-synchronization algorithm for state graph models [Lee
et al. 2010]. In the following, we give an ACD model as a formal model of the
single server system in Fig. 2.6. An event graph model was presented earlier
in this chapter (Fig. 2.1), and is briefly reiterated here. The state graph model
will be discussed in Part III (Chapter 9) of this book.

2.3.3.1  Event Graph Model of the Single Server System  The event graph
model of the single server system in Fig. 2.1 is a formal model that provides a
complete and unambiguous description of the system dynamics of the DES
from the event’s point of view. An Arrive event increases the job count by 1
(Q++), always schedules the next Arrive event to occur after a time period of
ta, and triggers a Load event if the machine is idle (M ≡ Idle). The Load event
sets the machine to busy (M = Busy), decreases the job count by 1 (Q−−), and
schedules an Unload event to occur after a time period of ts. The Unload event
resets the machine to idle (M = Idle) and triggers a Load event if the job count
is positive (Q > 0). The event graph model can be executed with the next
scheduling event algorithm (Chapter 4).

2.3.3.2  ACD Model of the Single Server System  ACD consists of indi-
vidual activity cycles. There is one activity cycle for each active resource, and
one for each entity type. ACD is a bipartite directed graph having activity
nodes denoted by rectangles and queue nodes by circles. Referring back to
the single server system in Fig. 2.6, there are (1) two activities called Create
and Process, (2) two active resources called Job-creator and Machine, and (3)
one entity-type Job. Shown in Fig. 2.8 is an ACD model of the single server
system. There is a resource activity cycle for each resource (Job-creator and
Machine) indicated by dashed lines, and one entity activity cycle (Job cycle)
indicated by solid lines. The ACD model is a complete and unambiguous
description of the system dynamics of the single server system, and it provides
a natural and intuitive view of the system dynamics.

The ACD model in Fig. 2.8 can be directly executed with a formal ACD
simulator (see Chapter 6) or converted to a Petri-net model to be executed

Fig. 2.8.  ACD model of the single server system in Fig. 2.6.

Create (ta) Process (ts)

C M

JobsBuffer(Q)

28    Basics of Discrete-Event System Modeling and Simulation

with a Petri-net executor. A Petri-net model corresponding to this ACD model
is given in Fig. 2.9. A Petri net is a bipartite directed graph consisting of places,
transitions, and arcs, where an arc runs from a place to a transition or vice
versa. A place is called an input place if an arc runs from the place to a transi-
tion. Likewise, it is called an output place if an arc from a transition runs into
the place. Places in a Petri net may contain a number of tokens. Any distribu-
tion of tokens over the places will represent a state of the net called a marking.
A transition of a Petri net may fire whenever there are sufficient tokens at its
input places; when it fires, it consumes these tokens, and places the tokens at
its output places. If time delay is allowed for a transition to fire, it is called a
timed transition. A Petri net with timed transitions is called a timed Petri net
(TPN), which is equivalent to an ACD. More details of Petri net are provided
in Appendix of Chapter 10.

An ACD model may easily be converted to an EFD and executed with a
process-oriented simulation language. An EFD model of the single server
system is given in Fig. 2.10 along with its Arena flowchart. The EFD is the
same as the entity activity cycle of the ACD in Fig. 2.8, and it does not provide
a complete description of the system: Information about the resource-activity
cycles of the ACD model has to be provided separately.

2.3.3.3  Specification of a Formal Model  It is always possible to specify a
formal model in an algebraic form. For example, a classical ACD model that
is a bipartite directed graph consisting of a set of activity nodes and a set of
queue nodes can be specified as follows [Kang and Choi 2011]:

Fig. 2.9.  Petri-net model corresponding to the ACD model of Fig. 2.8.

Fig. 2.10.  Entity-flow diagram and Arena flowchart of the single server system.

Framework of Discrete-Event System Modeling   29

MACD = <A, Q, I, O, τ, μ0>, where
A = {a1, a2 . . . an}: finite set of activities,
Q = {q1, q2 . . . qm}: finite set of queues,
I = {ia ⊆ Q | a ∈A}: input function, a mapping from a set of queues to

an activity,
O = {oa ⊆ Q | a ∈A}: output function, a mapping from an activity to a

set of queues,
τ = ∈ ∈+{ | }t a Aa R0 : time delay function,

µ µ0 0= ∈ ∈+{ | }q q QN : finite set of initial token values for each queue.

As an example, the ACD model given in Fig. 2.8 of the single server system
may be specified as follows:

MACD (Fig. 2.8) = <A, Q, I, O, τ, μ0>, where
A = {a1: CREATE, a2: PROCESS}
Q = {q1: Jobs, q2: C, q3: Buffer, q4: M}
I(a1) = {q1, q2}; I(a2) = {q3, q4}
O(a1) = {q2, q3}, O(a2) = {q4, q1}
τ(a1) = ta; τ(a2) = ts

μ0(q1) = ∞; μ0(q2) = 1; μ0(q3) = 3; μ0(q4) = 1

A formal model can also be specified in a tabular form. For practical pur-
poses, specifying a formal model as an algebraic form is both tedious and hard
to read, thus a tabular structure may be preferred for describing a formal
model. As will be seen in Section 2.4, there is a well-defined tabular represen-
tation scheme for each of the three types of formal model: activity transition
table for the ACD model; event transition table for the event graph model;
object interaction table and state transition table for the state graph model.

2.3.4  Integrated Framework of DES Modeling

The current state-of-the-art in DES modeling is a result of major break-
throughs in the four areas mentioned in Section 2.3.2: (1) the activity-based
modeling formalism; (2) the advent of process-oriented simulation languages;
(3) the event-based modeling formalism; (4) the state-based modeling formal-
ism. The modeling formalisms have been developed largely independently, and
each of them was treated more or less as a separate framework of DES model-
ing. Among the four, the state-based modeling formalism is often referred to
as a system specification and the remaining three as worldviews.

Based on the observations in Sections 2.3.1 through 2.3.3, this section pres-
ents an integrated framework of DES modeling. The proposed integrated
framework consists of an integrated structure and an integrated procedure for
DES modeling.

30    Basics of Discrete-Event System Modeling and Simulation

2.3.4.1  An Integrated Structure of the DES Model  It was shown in Section
2.3.1 that all discrete-event systems can be described by a reference model
consisting of physical and logical modeling components. Physical modeling
components are resources and entities in the system, and logical modeling
components are activities, events, and states. As there are three kinds of formal
modeling tools (i.e., ACD, event graph, and state graph), one corresponding
to each type of logical modeling component (i.e., activity, event, and state)
three types of formal models can be constructed for a given reference model:
ACD model, event graph model, and state graph model.

Figure 2.11(a) shows an integrated structure of a DES model consisting of
three layers: (1) At the core of the integrated structure is the static model layer
consisting of the physical modeling components—Entity and Resource; (2) at
the next layer is the functional model layer constituted with the logical model-
ing components—Activity, Event, and State; (3) at the outer layer is the
dynamic model layer defined by the three types of primary formal models—
ACD model, EG (event graph) model, and SG (state graph) model. Also
indicated in the integrated structure is that the EFD (entity-flow diagram) or
Petri-net model can be obtained from an ACD model. Figure 2.11(b) depicts
the conversion relations among the formal models. As mentioned in Section
2.3.3, an ACD model can be automatically converted into an EFD model or
a Petri-net model. As will be seen in Chapter 10, Section 10.6, an ACD model
can also be converted into an EG model or SG model as well.

2.3.4.2  Integrated Procedure for DES Modeling  There exist various
means to execute a simulation model of a given source system. Examples
include: (1) entity-based simulation languages such as Arena [Kelton et al.
2007] and ProModel [Harrell et al. 2012], (2) Petri-net executors [Camurri and
Coglio 1997], (3) ACD tool kits [Kang and Choi 2011] and (4) event-based
simulation languages such as SIGMA [Schruben and Schruben 2006].

Fig. 2.11.  (a) Integrated structure and (b) conversion relations of DES models.

ACD
model

SG
model

EG
model

EFD
model

TPN
model

(a) (b)

Framework of Discrete-Event System Modeling   31

Regardless of the means used in executing a simulation model, construction
of an executable simulation model from a given source system should follow
a well-defined procedure. Figure 2.12 shows an integrated procedure for DES
modeling consisting of three phases: the reference modeling phase, where a
reference model of the DES is constructed from the source system; the formal
modeling phase, where a formal model is obtained from the reference model;
and the model execution phase, where the formal model is executed using a
simulator. There exists at least one simulator in each of the five modeling
formalisms. Moreover, free student-version copies are available as listed at the
bottom of Fig. 2.12.

The reference modeling phase consists of four steps: (1) identify the physical
modeling components—Entity, Active Resource, and Passive Resource; (2)
define the logical modeling components—Activity, Event, and State; (3)
describe the system dynamics in terms of the identified modeling components;
(4) qualify the reference model against the source system. The referenced
model qualification is a rigorous, systematic analysis of model relevance and
consistency with the source system to ensure the reference model is fit for
purpose.

The formal modeling phase consists of (1) selecting a modeling tool that is
most compatible with the reference model; (2) building a formal model; (3)
converting the formal model into another model if necessary; and (4) validat-
ing the formal model against the reference model. The formal model validation
is a systematic analysis of model fidelity and sensitivity against the reference
model to ensure the formal model is an accurate representation of the refer-
ence model. Selecting a best modeling tool for a given reference model is an
open problem that deserves a further in-depth research. Model conversion
among the formal models is another research area that deserves further
investigation.

The model execution phase consists of (1) selecting a simulator suitable for
executing the formal model; (2) preparing input data for making simulation
runs; and (3) verifying the correctness of the simulation program against the
formal model. The simulator verification is the process of making sure that the

Fig. 2.12.  An integrated procedure for DES modeling.

Event Graph Model

ACD Model

TPN Model

EFD Model

State Graph Model

Reference
Model

SIGMA1)

ACE3)

SGS5)

CPN Tools4)

ARENA®
Source
System
(DES)

- Entity
- Active Resource
- Passive Resource

- Activity
- State (Variable)
- Event

Reference modeling phase Formal modeling phase Execution phase

Arena2)

32    Basics of Discrete-Event System Modeling and Simulation

written computer program corresponds precisely to the formal model [Fish-
wick 1995].

2.3.4.3  Criteria for Evaluating Models and for Selecting Modeling Tools 
One may look for a model that is correct and perfect, but is it possible to have
a correct model? George E.P. Box, who was an English chemist and statistician,
is credited with the quote: “All models are wrong, some are useful.” This quote
may be an answer to the above question: We should look for a good model,
not the correct one, and a good model is a useful one that serves its purposes.
Is it possible to have a perfect model? Perhaps an answer to this question may
be found from Antoine de Saint Exupery, a French writer and aviator, who is
credited with the quote: “Perfection is achieved, not when there is nothing
more to add, but when there is nothing left to take away.” A perfect model is
the one that contains just enough elements to make it useful.

A DES simulation model may be specified by using one of the formal
modeling tools or programmed by employing a simulation package. Formal
modeling tools are event graph, ACD, and state graph. Popular simulation
packages include Arena®, AutoMod®, EXTEND®, SIGMA®, etc. Guidelines
for selecting a formal modeling tool or a simulation language that is suitable
for a given reference model are:

1.	 Choose one that has clear semantics and exact syntax.
(a)  Choose ACD if the system is described in terms of the activities of

resources
(b)	 Choose state graph if the system is described in terms of interacting

objects
(c)	 Choose event graph if the system is described in terms of interre-

lated events
(d)	 Choose Arena, etc., if the system is described in terms of flows of

entities
2.	 Choose one that has high modeling power.
3.	 Choose one that supports easy model building, communication, and

validation.
4.	 Choose one that is amenable to easy implementation.

2.4  ILLUSTRATIVE EXAMPLES OF DES MODELING AND
SIMULATION

This section aims to help the readers become acquainted with the modeling
formalisms and show how to build and simulate formal models of a simple
DES. For this purpose, a two-stage tandem line shown in Fig. 2.13 will be used
as an example. The two-stage tandem line is obtained by concatenating two
single server systems. The modeling components of the two-stage tandem line
are as follows:

Illustrative Examples of DES Modeling and Simulation   33

1.	 Entity: Job
2.	 Resources: Creator; Server1; Server2; Buffer1; Buffer2//unlimited-

capacity buffer
3.	 Activity (time delay): Create (ta); Process1 (t1); Process2 (t2)
4.	 State variables: number of idle servers (s1, s2); number of jobs in Buffer

(q1, q2)
5.	 Event: Arrive {q1++}; Load1 {q1−−, s1 = 0}; Unload1 {s1 = 1, q2++}; Load2

{q2−−, s2 = 0}; Unload2 {s2 = 1}

2.4.1  How to Build and Simulate an Event Graph Model of a DES

An event graph model is a network of event nodes describing the events that
take place in the system and the relationships among these events [Schruben
1983]. The event types found in the system of Fig. 2.13 are Arrive, Load1,
Unload1, Load2, and Unload2. At the beginning, an Arrive event is scheduled,
and then a sequence of events follows the flow of entities in the system.

2.4.1.1  Event Graph Modeling  Shown in Fig. 2.14(a) is the initial state of
the event graph where an Arrive event is scheduled with s1 = s2 = Idle (=1).
When an Arrive event occurs, the job count in Buffer1 is increased by 1 (q1++),
another Arrive event is scheduled to occur after ta minutes, and if Server1 is
Idle (s1 > 0), a Load1 event is scheduled to occur immediately. The situation
is depicted in Fig. 2.14(b), which we call an event-routine graph.

Actions taken at an occurrence of a Load1 event are: decrease the job count
in Buffer1 (q1−−); set Server1 to Busy (s1 = 0); schedule an Unload1 event to
occur after t1 minutes. They are depicted in Fig. 2.14(c) as an event-routine

Fig. 2.13.  Reference model of a two-stage tandem line.

Fig. 2.14.  Event routine graphs for (a) Start, (b) Arrive, (c) Load1, and (d) Unload1
events.

Arrive
Load1

{q1++}

Arrive

ta

Load1
t1

--

Load1 Load2

(a) (b) (c) (d)

34    Basics of Discrete-Event System Modeling and Simulation

graph. The occurrence of an Unload1 event will result in the following actions
as depicted in Fig. 2.14(d): Server1 is set to idle (s1 = 1); the job count in
Buffer2 is increased (q2++); a Load1 event is scheduled to occur now if q1 > 0;
a Load2 event is scheduled to occur now if s2 > 0. As mentioned earlier
(Section 2.2.1), a set of actions taken at an occurrence of an event is called an
event routine.

If we assemble the individual event-routine graphs of Fig. 2.14 into a “com-
posite” event graph, we obtain the event graph shown in Fig. 2.15. The infor-
mation specified in the event graph model can be summarized in a table called
an event transition table. Table 2.4 is an event transition table for the event
graph model shown in Fig. 2.15.

Exercise 2.2. Complete the event graph model of the two-stage tandem
line by adding the event-routine graphs for Load2 and Unload2 events. Con-
struct an event transition table for the full event graph of the two-stage tandem
line.

2.4.1.2  Simulation of the Two-Stage Tandem Line Model with SIGMA® 
Figure 2.16 shows a SIGMA event graph model of the two-stage tandem
line that was generated by clicking and dragging the mouse. As will be
shown in Chapter 4, it is very straightforward to build an event graph using
SIGMA®.

If you double click the event vertex Arrive, a vertex dialog box like the one
in Fig. 2.17(a) will show up where you provide the state change information
(e.g., Q1 = Q1 + 1). If you double click the self-loop edge of the Arrive event,

Fig. 2.15.  Partial event graph model of the two-stage tandem line.

Load1 Unload1

{q1++} {s1++, q2++}

(s1>0)

(q1>0)

Arrive
t1

ta

Load2
(s2>0)

{q1--, s1--}

q1=2
q2=0
s1=1
s2=1

TABLE 2.4.  Event Transition Table for the Event Graph of Two-Stage Tandem Line

Event Name State Change
Edge

Condition Time Delay Next Event

Start q1 = 2, q2 = 0; s1 = s2 = 1; Always 0 Arrive
Arrive q1++; Always ta ∼ Exp(10) Arrive

s1 > 0 0 Load1
Load1 q1−−; s1−−; Always t1 ∼ Uni(9,11) Unload1
Unload1 s1++; q2++; q1 > 0 0 Load1

s2 > 0 0 Load2

Illustrative Examples of DES Modeling and Simulation   35

an edge dialog box of Fig. 2.17(b) will show up where you specify the inter-
arrival time distribution (e.g., 10*ERL{1}).

2.4.2  How to Build and Simulate an ACD Model of a DES

2.4.2.1  ACD Modeling  An activity cycle diagram (ACD) model consists
of activity cycles, one for each entity and one for each active resource in the
system. An activity cycle is a closed and alternating sequence of an active state
(activity) denoted by a rectangle and a passive state (queue) denoted by a
circle [Carrie 1998].

Referring back to Fig. 2.13, the two-stage tandem line system has three
active resources: Creator, Server1, and Server2. On a close examination, all
the resources are in an idle state. Buffer1 has two jobs, and Buffer2 has no
jobs. Depicted in Fig. 2.18(a) are the activity cycles of the three resources in
the system. A job created by Creator goes into Buffer1 from which it is loaded
on Server1 for processing. Then it moves to Buffer2 to be processed by Server2.
This “job flow” is modeled as an activity cycle of the job as shown in Fig.
2.18(b).

By combining the activity cycles in Figs. 2.18(a) and 2.18(b) together, an
ACD model of the two-stage tandem line is obtained as shown in Fig. 2.19.
Also shown in the ACD are the distribution functions, Exp(10) and Uni(9,11),
for the inter-arrival times and processing times.

The information specified in an ACD model can be summarized in a table
called an activity transition table. Table 2.5 is an activity transition table for the
ACD model shown in Fig. 2.19. For each activity, (1) its firing condition is

Fig. 2.16.  SIGMA® event graph model.

Fig. 2.17.  SIGMA (a) Vertex dialog box and (b) Edge dialog box.

(a) (b)

36    Basics of Discrete-Event System Modeling and Simulation

Fig. 2.18.  (a) Activity cycles of the resources in the two-stage tandem line system;
(b) activity cycle of the job in the two-stage tandem line system.

S2 S1 C

Q1 ()Q2

(a)

(b)

Fig. 2.19.  ACD model of the two-stage tandem line.

C S1

Q1

S2

Q2

TABLE 2.5.  Activity Transition Table for the Event Graph of Two-Stage Tandem
Line

No
Activity
Name

At Begin BTO Event At End

Condition Action Time Name Action
Influenced
Activities

1 Create (C ≡ 1) C−− Exp(10) Arrived Q1++,
C++

Create,
Process1

2 Process1 (Q1 > 0) &
(S1 > 0)

Q1−−,
S1−−

Uni(9,11) Processed1 S1++,
Q2++

Process1,
Process2

3 Process2 (Q2 > 0) &
(S2 > 0)

Q2−−,
S2−−

Uni(9,11) Processed2 S2++ Process2

Initial State C = 1, S1 = 1, S2 = 1, Q1 = 2, Q2 = 0

specified in the At-begin Condition field and the resulting state changes are
given in the At-begin Action field; (2) the time-delay and name of the bound-
to-occur event (BTO event) are specified in the BTO-event Time and BTO-
event Name fields, respectively; (3) the state changes at the BTO event are
specified in the At-end Action field. The ACD model may be simulated by
using an ACD executor (see Chapter 6) or converted into a process-interaction
simulation program like Arena (see Chapter 7).

2.4.2.2  Simulating the ACD Model with Arena®  It is fairly straightforward
to prepare Arena simulation inputs from an ACD model. In order to perform
simulation with the Arena software, (1) all the resources and entities are
declared first, (2) a flowchart model denoting the entity flow is generated,
and (3) the attributes of each block (or module) are entered in its dialog box.

Illustrative Examples of DES Modeling and Simulation   37

Shown in Fig. 2.20 are a resource data model and an entity data model in the
Basic Process Template of Arena, where the resources (S1 & S2) and entity
(Job) of the two-stage tandem line are declared.

Shown in Fig. 2.21 is an Arena flowchart model of the two-stage tandem
line. The Create activity in the ACD model of Fig. 2.19 is mapped to the
Create1 block in Arena flowchart model of Fig. 2.21, the Disposed queue is
mapped to Dispose1 block, and the activity nodes are mapped to Process
blocks.

Shown in Fig. 2.22 are dialog boxes for inputting data needed to define the
Create block and Process1 block. In the Create block dialog box, the inter-
arrival time distribution is defined as Type = Random (Expo) and Value = 10.
In the Process block dialog box, the service time distribution is specified as
Delay Type = Uniform, Minimum = 9, and Maximum = 11.

2.4.3  How to Build and Simulate a State Graph Model of a DES

The first step in state-based modeling is to identify objects in the system and
construct an object interaction diagram describing interactions among the
objects in the system. There are five objects (Creator, Buffer1, Server1, Buffer2,
and Server2) in the two-stage tandem line, and they interact with each other

Fig. 2.20.  Declarations of Resource (S1 and S2) and Entity (Job).

Resource - Basic Process Entity - Basic Process

Entity Type Initial Picture Holding Cost / Hour

0.0Job Picture. Box

Double-click here to add a new row.

1

2

S1

Name Type Capacity

Fixed Capacity 1 1

1Fixed CapacityS2

Fig. 2.21.  Arena® flowchart model of the two-stage tandem line.

Fig. 2.22.  Arena dialog boxes for defining Create module and Process module.

38    Basics of Discrete-Event System Modeling and Simulation

via event messages: Creator sends an Arrive message to Buffer1; Buffer1 sends
a Load1 message to Server1, which sends back an Unload1 message to Buffer1;
Server1 sends an Unload1 message to Buffer2; Buffer2 sends a Load2 message
to Server2, which sends back an Unload2 message to Buffer2. By combining
all the individual interactions, the object interaction diagram of the two-stage
tandem line system is obtained as shown in Fig. 2.23.

The second step in state-based modeling is to draw a state transition diagram
for each object in the system. The object interaction diagram and the indi-
vidual state-transition diagrams form a state graph of the system. In order to
execute the state graph model of the system, the information described in a
state transition diagram is specified in a state transition table. An extensive
treatment on the subject is provided in Chapter 9 of this book.

2.5  APPLICATION FRAMEWORKS FOR DISCRETE-EVENT SYSTEM
MODELING AND SIMULATION

2.5.1  How Is the M&S Life Cycle Managed?

Shown in Fig. 2.24 are various activities and entities involved in a real-life
M&S project, which we call the M&S life-cycle management framework. The
life-cycle management framework consists of four phases: problem definition
phase, modeling phase, simulation phase, and implementation (or application)
phase:

1.	 Phase 1 is the problem definition phase consisting of (1) diagnosis and
analysis of a real-life situation from which a source system is identified
and the objectives of the study are defined, (2) defining experimental
frames, and (3) collecting data.

2.	 Phase 2 is the modeling phase consisting of (1) the descriptive modeling
step for building a reference model and (2) the formal modeling step for
building a formal model from the reference model by employing a mod-
eling formalism. Also carried out in this phase are reference model
qualification and formal model validation. A model qualification is a
rigorous, systematic analysis and evaluation of the reference model for
its relevance and consistency with observed behavioral data to ensure
that the models are fit for purpose.

3.	 Phase 3 is the simulation phase where (1) a simulator is implemented
from the formal model using a simulation software tool if necessary, (2)
a series of experimentation is performed with the simulator according to

Fig. 2.23.  Object interaction diagram of the two-stage tandem line.

Creator Buffer1 Server1Arrive Load1 Unload1
Buffer2 Server2Load2

Unload2

Discrete-Event System Modeling and Simulation   39

the specifications of the experimental frame, and (3) the simulator is
verified against the formal model.

4.	 Phase 4 is the implementation phase, consisting of (1) output analysis,
(2) simulator calibration, and (3) making decisions and taking actions. A
simulator calibration is a systematic procedure for fine-tuning the simu-
lator by adjusting model parameters so that the simulation outputs
conform to actual trajectories of the target system.

Reference model qualification, formal model validation, and simulator veri-
fication and calibration are the key feedback functions in M&S life-cycle
management.

2.5.2  Framework for Factory Life-Cycle Support

More than a 50 years ago, K.D. Tocher tried to solve the congestion control
problem at United Steels in the U.K. [Tocher 1960]. He argued that “in more
complex plants, in which there is a multiplicity of possible routes for the
steel through the plant, it is possible to minimize congestion and maximize the
rate of flow by a (simulation-based) scheduling procedure.” It is truly remark-
able that Tocher, who invented the ACD, tried to use simulation as an opera-
tion management tool in the 1960s. Congestion control is also a key issue in
operation management for a modern electronics Fab (i.e., fabrication plant)
such as a semiconductor Fab or a flat panel display (FPD) Fab.

Fig. 2.24.  M&S life-cycle management framework.

40    Basics of Discrete-Event System Modeling and Simulation

The authors have been working with FPD makers to develop simulation-
based Fab scheduling systems [Park et al. 2008] and a Fab simulator for an
integrated simulation of production and AMHS (automated material handling
system) [Song et al. 2011]. Shown in Fig. 2.25 are the four phases of Fab life
cycle together with action items for Fab life-cycle management. The four
phases are (1) planning phase for a new Fab, (2) the new Fab design phase,
(3) Fab operation management phase, and (4) Fab upgrading and renovation
phase. An integrated Fab simulator may be used as a decision-support tool
covering the entire Fab life cycle. Issues in developing such an integrated Fab
simulator will be addressed in Chapter 11.

2.6  WHAT TO COVER IN A SIMULATION CLASS

There exists a large volume of knowledge on modeling and simulation of
discrete-event systems, and choosing the right topics to cover in a simulation
class is not an easy task in simulation education. Key topics addressed so far
in this chapter are as follows:

1.	 How to perform a manual simulation for executing an event graph model
2.	 How to develop a reference model of a DES
3.	 How to build an event-graph model and simulate it with a simulation

package
4.	 How to build an ACD model and convert it to an EFD model
5.	 How to simulate an EFD model with a commercial simulation package
6.	 How to build a state-graph model and simulate it with a simulation

package

Fig. 2.25.  Framework of simulation-based Fab life-cycle support. SBA, simulation-
based acquisition; AMHS, automated material handling system; RTD, real-time dis-
patcher; MCS, material control system for AMHS.

Integrated Fab Simulator

• Fab In/Out Plan

•

• RTD Rules

• MCS Rules

• Fab L/O Design

• EQP Arrange

• AMHS* Design

• Op. Rules

• Risk/Investment

• Fab Capacity

• SBA

• Project Mngt

• Fab L/O Change

• EQP Replace

• AMHS Change

• New EQP

What to Cover in a Simulation Class   41

2.6.1  Event-Based M&S and Event-Graph Simulation with SIGMA®

At the heart of discrete-event system simulation is the concept of event-based
modeling and simulation with an event graph. Thus, it is essential for an engi-
neering simulation student to learn how to build and simulate an event-graph
model of a DES. An event-graph model may be less intuitive than an entity-
flow diagram model, but it is very flexible and powerful for describing complex
discrete-event systems concisely.

Shown in Fig. 2.26 is an event-graph model of a homogeneous job shop
that can be used as a template for modeling various types of job shops such
as machine shops, electronics Fab, restaurants, hospitals, etc.

Basics of event-graph modeling and simulation are presented in Chapter 4.
How to model a large system as a parameterized event graph with SIGMA®
is discussed in Chapter 5, where the job shop model of Fig. 2.26 will be exe-
cuted with SIGMA®.

2.6.2  Activity-Based M&S and Hands-On Modeling Practice
with Arena®

It is essential for an undergraduate simulation class in an engineering school
to give students hand-on experiences on modeling with a popular simulation
package. There are quite a few simulation packages based on the entity-flow
view (also known as the process-oriented or process-interaction view). Exam-
ples include Arena®, AutoMod®, and EXTEND®. Most of those packages are
quite simple to learn and use, and student copies are readily available free of
charge.

It would be enough for the students to get exposed to one package. Once
the students get used to one package, they will be able to learn other packages
by themselves. For this purpose, we chose to use Arena® in addition to the
ACD simulator ACE® in this book. An approach to converting an ACD model
to an Arena simulation program is elaborated in Chapter 7.

2.6.3  State-Based M&S

The subject of state-based modeling and other advanced topics in Part III may
be skipped in an undergraduate simulation class in an ordinary engineering

Fig. 2.26.  Event graph model of a homogeneous job shop.

Load
(s)

Unload
(j, p, s)Arrive

ta

--

Enter-Q
(j, p, s)

Exit
(j)

j

m(1)=5
m(2)=7
…
m(8)=4

For i=1~8
{q(i)=Null}

42    Basics of Discrete-Event System Modeling and Simulation

school. This topic may be covered in a graduate-level class. State-based model-
ing is suitable for modeling a discrete-event system that is naturally described
in terms of interacting objects in the system. As can be seen in the modeling
example of the two-stage tandem line, the state graph may not be a suitable
tool for modeling such a system. On the other hand, a complex urban traffic
network may be properly modeled by a state graph.

Figure 2.27 shows an object interaction diagram model of a table tennis
game played by two players—Player-A and Player-B—with their friend watch-
ing the game. The two players interact with each other by sending a Ball event
message (meaning that the ball is sent to the opponent’s table) or an Out event
message (when the ball went out of bounds). The friend may send a Stop
message to the players to interrupt in the middle of game, and the players send
a Game-over message to the friend when the game is over. When modeling
this kind of system, state-based modeling would be the choice. Detailed discus-
sions on the subject may be found in Chapter 9 of this book.

2.7  REVIEW QUESTIONS

2.1.  What is an event routine?

2.2.  What is the next event?

2.3.  What are the three logical modeling components?

2.4.  What is a modeling formalism?

2.5.  What are the three worldviews in discrete-event system modeling?

2.6.  What is a reference model of a discrete-event system?

2.7.  What are the requirements of a formal model?

2.8.  What is model qualification?

2.9.  What is simulator calibration?

Fig. 2.27.  Object interaction diagram model of a table tennis game.

Player-A Player-B

Friend

Stop

Game Over Game Over

43

FUNDAMENTALS OF DISCRETE-
EVENT SYSTEM MODELING AND
SIMULATION

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

A practical definition of a discrete-event system (DES) is given as “a system
designed to process some sort of entities with some kind of resources.” Exam-
ples of DESs are hospital emergency rooms and operating rooms, car repair
shops, serial assembly lines, semiconductor fabrication lines, restaurants, urban
traffic systems, etc. Part II, which is the main part of the book, is concerned
with how to build simulation models of these DESs and perform simulation
analyses. All the three classical modeling formalisms—event-based, activity-
based, and entity-based formalisms—together with input modeling and output
analyses are covered in Part II. The three classical modeling formalisms are
also known as event scheduling, activity scanning, and process-interaction
worldviews. There are six chapters, Chapters 3 to 8, in Part II.

Chapter 3 and Chapter 8, respectively, cover all the essential input modeling
and output analyses topics that a simulation practitioner should know. After
studying these two chapters, you should be able to do the following:

1.	 Generate inter-arrival times and service times from empirical data
2.	 Generate various theoretical random variates
3.	 Generate inter-arrival times for fluctuating arrival rates
4.	 Estimate the parameters of various distribution functions
5.	 Verify and calibrate the simulation logic
6.	 Compute confidence intervals of simulation outputs
7.	 Apply the response surface methodology to simulation optimization

Chapters 4 and 5 are devoted to event-based modeling and simulation (M&S).
By studying these two chapters, you should be able to do the following:

PART II

44    Fundamentals of Discrete-Event System Modeling and Simulation

1.	 Provide formal specifications of (parameterized) event graph models
2.	 Build event graph models of various types of systems including job shops
3.	 Execute event graph models with the event-based simulator SIGMA®

4.	 Develop your own event graph simulator

Chapters 6 and 7 are devoted to activity-based and entity-based M&S,
respectively. By studying these two chapters, you should be able to do the
following:

1.	 Provide formal specifications of activity cycle diagram (ACD) models
2.	 Build ACD models of various types of systems including job shops
3.	 Execute ACD models with the activity-based simulator ACE®

4.	 Use the entity-based simulator Arena®

5.	 Convert ACD models into Arena® models and perform simulation runs.

45

CHAPTER 3

Input Modeling for Simulation

As far as the laws of mathematics refer to reality, they are not certain,
and as far as they are certain, they do not refer to reality.

—Albert Einstein

3.1  INTRODUCTION

Discrete-event dynamic systems have some probabilistic elements, and a close
match between the simulation input model and the true underlying probabi-
listic mechanism associated with the source system is required for successful
simulation analyses. Input modeling defines mechanisms for generating random
inputs of a simulation model. The general question is how to model a proba-
bilistic element such as the arrival process or service times given a data set
collected on the element of interest [Leemis 2001].

Let’s assume that you have an automatic teller machine (ATM) in your
building and that you have collected the data in Table 3.1 by observing the
first 10 customers during a lunch hour. The ATM and the nearby floor space
can be modeled as a single server system whose reference model and event
graph model were given in Fig. 2.1 of the previous chapter. Then, how would
you use the data listed in Table 3.1 to simulate your ATM system?

In general, if the actual data collected are available, there are three ways
to model input: (1) trace-driven simulation, in which the collected data values
are directly used in the simulation; (2) empirical input modeling, in which
random variables for simulation are generated directly from the collected data;
(3) theoretical input modeling, in which the parameters of a theoretical distri-
bution function are estimated from the actual data and random variables are
generated from the fitted distribution function.

This chapter is organized as follows. We start with the subject of empirical
input modeling (for inter-arrival times as well as service times) in Section 3.2,
and follow with a brief section (Section 3.3) on theoretical distribution fitting.

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

46    Input Modeling for Simulation

Section 3.4 deals with theoretical input modeling of inter-arrival times,
and Section 3.5 deals with theoretical input modeling of service times. The last
section (Section 3.6) covers input modeling for special applications.

3.2  EMPIRICAL INPUT MODELING

In empirical input modeling, random variables for simulation are generated
directly from the collected data. There are three ways to generate random
inputs from collected data {Xi} without fitting a theoretical distribution func-
tion: the nonparametric modeling method, empirical modeling of individual
data, and empirical modeling of grouped data.

3.2.1  Nonparametric Modeling

A simple approach to generating random inputs from collected data {Xi} is to
use a nonparametric model, in which the value of the random variable x is
repeatedly sampled from collected data {Xk: k = 1 ∼ n} with probability 1/n.
The nonparametric input modeling method may be implemented as follows:

1.  Generate a uniform random number U ∼ Uni(0,1).
2.	 Set P = n × U and compute the index k = [P] + 1; // [P] is the integer part

of P.
3.	 Return x = Xk.

Example 3.1, Generate a service time using the nonparametric method
from the service time data {Xk} given in Table 3.1. Let the value of the gener-
ated uniform random number U ∼ Uni (0, 1) be 0.369881, then the index ‘k’
in the nonparametric modeling method is computed as k = [n × U] + 1 = [10 ×
0.369881] + 1 = 4. Thus, x = X4 = 65 is sampled as an empirical service-time to
be used in a simulation.

3.2.2  Empirical Modeling of Individual Data

Let {X(k): k = 1 ∼ n} be the individual ordered sample data in an increasing
order, then their empirical distribution F(x) is a piecewise linear function with
F(X(k)) = (k − 1) / (n − 1). Now, generate a uniform random number U and

TABLE 3.1.  Collected Data for the First 10 Customers of an ATM during a
Lunch Hour

Observation number (k) 1 2 3 4 5 6 7 8 9 10

Inter-arrival time in sec {Ak} 121 13 87 36 7 236 8 33 152 67
Service time in sec {Xk} 56 51 73 65 84 58 62 69 44 66

Empirical Input Modeling   47

then sample the value of a random variable x from F(x) as depicted in Fig. 3.1,
which is called inverse transformation.

1.	 Generate a uniform random number U ∼ U(0,1).
2.	 Set P = (n − 1) × U and J = [P] + 1; // [P] is the integer part of P.
3.	 Return x = X(J) + (P − J + 1) × (X(J+1) − X(J)).

Example 3.2. Table 3.2 shows the ordered service-time data {X(k)} that were
obtained by rearranging the collected data in Table 3.1 in an ascending order.
If the value of U is 0.369881 as before, we have P = (n − 1) × U = 9 × 0.36988
1 = 3.328929 and J = [P] + 1 = 4. Then, an empirical service time is generated
as:

	
x X P X X= + − + × − = +

× − = +
+() () ()() () (.)

() .
4 4 1 44 1 58 0 328929

62 58 58 1 3166 59 316= . .
	

3.2.3  Empirical Modeling of Grouped Data

When the data are grouped into m adjacent intervals {[a0, a1), [a1, a2) . . . [am–1,
am]} and the jth interval contains nj observations, the grouped data distribution
function G(x) is also a piecewise linear function with G(a0) = 0 and
G a n nj

j
i() /= ∑1 for j = 1 ∼ m (with n = Σ nj).

Then, as depicted in Fig. 3.2, the random variable x can be sampled from
the empirical distribution G(x) using the following inverse transformation
method:

TABLE 3.2.  Ordered Service-Time Data Obtained from the Collected Data in
Table 3.1

Ascending order index (J) 1 2 3 4 5 6 7 8 9 10

Ordered service time data {X(J)} 44 51 56 58 62 65 66 69 73 84

X(1) X(2) X(3) X(4) X(5)

0.25

0.50

0.75

1.00

U

x
x

F(x)

F(x) U x = F–1(U)

Inverse transformation

Fig. 3.1.  Generation of random variable x from individual data (n = 5).

48    Input Modeling for Simulation

1.	 Generate U ∼ U(0,1).
2.	 Find integer J such that G(aJ) ≤ U < G(aJ+1).
3.	 Return x = aJ + [U − G(aJ)] × (aJ+1 − aJ) / [G(aJ+1) − G(aJ)].

Exercise 3.1. Table 3.3 shows the grouped service-time data that were
obtained by grouping the ordered data of Table 3.2 into five adjacent intervals
{[40, 50), . . . , [80,90]}. Assuming the value of U is 0.369881 as before, generate
an empirical service time.

3.3  OVERVIEW OF THEORETICAL DISTRIBUTION FITTING

Distribution fitting is a classical statistical estimation process consisting of data
independence checking, distribution function selection, parameter estimation,
and goodness-of-fit testing.

3.3.1  Data Independence Checking

The first step in theoretical input modeling is to check whether the obtained
data are independent. A simple method of assessing data independence is to
plot a scatter diagram. For the data X1, X2 . . . Xn listed in time-order of col-
lection, pairs (Xi, Xi+1) for i = 1 ∼ n − 1 are plotted on an x-, y-coordinate system

Fig. 3.2.  Generation of random variable from grouped data (m = 5).

a0 a1

1

U

x

x

G(x)

a2 a3 a4 a5

G(a4) = (n1 + n2 + n3 + n4) / n

G(a3) = (n1 + n2 + n3) / n

G(a2) = (n1 + n2) / n

G(a1) = (n1) / n

0

TABLE 3.3.  Grouped Service-Time Data Obtained from the Ordered Data in Table 3.2

Group index
(j) 1 2 3 4 5

Intervals of
service
times

a0 = 40 − 50 a1 = 50 − 60 a2 = 60 − 70 a3 = 70 − 80 a4 = 80 − 90 = a5

Frequency (nj) 1 3 4 1 1
G(aj) =

(Σ(nj)/n)
1/10 4/10 8/10 9/10 1.0

Overview of Theoretical Distribution Fitting   49

(Xi as x-value and Xi+1 as y-value). If the plotted points are randomly scattered,
one may conclude that the data are independent.

3.3.2  Distribution Function Selection

The second step is to select a suitable candidate distribution function based
on some theoretical justification and/or by observing the shape of the histo-
gram. For example, exponential distribution and Erlang distribution are com-
monly selected for inter-arrival times, while Weibull distribution is the choice
for an interfailure time distribution. Service-time distributions that are widely
used are beta distribution and lognormal distribution.

3.3.3  Parameter Estimation

The third step is to estimate the parameters of the selected distribution.
Maximum likelihood estimator (MLE) is the preferred choice for parameter
estimation, but other methods may be used when the MLE does not have a
simple form. For example, the MLE is used for exponential, normal, and log-
normal distributions; the method of moment for Erlang and beta distributions;
the rank regression method for Weibull distribution. More details may be
found in Appendix 3A of this chapter.

3.3.4  Goodness-of-Fit Test

The fourth step of theoretical distribution fitting assesses the model adequacy
by using a goodness-of-fit test such as the chi-square test. Here, data are
grouped into m adjacent intervals {[a0, a1), [a1, a2) . . . [am–1, am]} so that the jth
interval contains nj observations (with n = Σnj), and a test statistic χ2 is con-
structed using the expected proportion pj computed from the fitted density
function ˆ()f x as follows:

	 χ 2
2

1

()
, where ()

1

=
−

=
=∑ ∫

−

n np
np

p f x dxj j

jj

m

j
a

aj

j

ˆ . 	 (3.1)

Then, the test statistic is checked against the chi-square value with (m − 1)
degrees of freedom. An extensive treatment on the subject may be found in
Law [2007].

3.3.5  Overview of Random Variate Generation

Having fitted a theoretical distribution for each type of input model, the final
phase of input modeling generates random variates for simulation. When the
distribution function has a closed-form inverse function, the inverse-transform
method is the choice. Otherwise, special methods of generating random vari-
ables may be employed. More details may be found in Appendix 3B.

50    Input Modeling for Simulation

Table 3.4 summarizes the distribution functions for different input model
types, methods of parameter estimation, and methods of random variate gen-
eration. Erlang and exponential distributions are exclusively used in modeling
inter-arrival times, whereas beta and uniform distributions are commonly used
in modeling service times. Due to its flexibility, Weibull distribution is mostly
used in modeling interfailure times.

There are three popular methods for parameter estimation: the maximum
likelihood method for estimating the parameters of exponential and normal
distributions; the method of moment for Erlang and beta distributions; and
the rank regression method for Weibull distribution. The most popular method
for random variate generation is the inverse-transform method, which is used
in generating exponential, Erlang, and Weibull random variates. Details on the
subjects are covered in the appendixes of this chapter.

3.4  THEORETICAL MODELING OF ARRIVAL PROCESSES

3.4.1  Theoretical Basis for Arrival Process Modeling

A Poisson process is a continuous stochastic process in which events occur
independently of one another. The Poisson process is a collection {N(t): t ≥ 0}
of random variables, where N(t) is the number of events (arrivals) that have
occurred up to time t (starting from time 0).

For a homogeneous Poisson process, the number of arrivals between time
t and time t + s is given as N(t + s) − N(t) and has a Poisson distribution. Let
λ be the arrival rate (expected number of arrivals in any interval of length 1),
then the probability of k arrivals during [t, t + s] is given by [Cinlar 1975]:

TABLE 3.4.  Summary of Theoretical Distribution Fitting and Input Modeling

Input Variable
Types Distributions

Parameter
Estimation

Generation
Methods

Inter-arrival
time

Exponential (θ) Maximum likelihood
method

Inverse-transform

Erlang (k, θ) Method of moment Convolution of
exponential

Service time
(Repair time)

Triangular (a, b, c) Composition
method

Beta (α, β) Method of moment Acceptance–
rejection

Normal (μ, σ) Maximum likelihood
method

Box & Muller
method

Lognormal (μ, σ) Maximum likelihood
method

Conversion of
normal variate

Interfailure
time

Weibull (α, β) Rank regression
method

Inverse-transform

Theoretical Modeling of Arrival Processes   51

	 P N t s N t k e s k ks k[() ()] () / ! , , ,+ − = = = …−λ λ for 0 1 2 	

Consider the waiting time T1 until the first arrival. Clearly T1 is more than
s if and only if the number of arrivals before time s is 0. Combining this prop-
erty with the above probability distribution for the number of homogeneous
Poisson process events in a fixed interval gives

P[]T s P N s P N s N e s es s
1

00 0 0 0> = = = − = = =− −[()] [() ()] () / ! .λ λλ   (3.2)

Consequently, the waiting time until the first arrival T1, which is equivalent
to an inter-arrival time, has an exponential distribution with a density function
given by f(t) = λe−λs and its expected value given by E(T1) = θ = 1/λ.

The waiting times between k occurrences of the event in a homogeneous
Poisson process follow an Erlang distribution, which was developed by A.K.
Erlang to examine the number of telephone calls that might be made at the
same time to the operators of the switching stations.

3.4.2  Generation of Inter-Arrival Times for a Constant Arrival Rate

When the arrival process is stationary with an arrival rate λ, the inter-arrival
times follow Erlang (k,θ) with θ = 1/λ. It becomes an exponential distribution
when k = 1. The shape of the density function is dependent on the shape of
parameter k and scale parameter θ as can be seen in Fig. 3.3, and the density
function is defined as

	 f x
x e
k

k k x

()
()!

.
/

=
−

− − −θ θ1

1
	

Fig. 3.3.  Erlang-k density function.

0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10 12 14 16 18 20

k = 1, q = 2

k = 9, q = 0.5

k = 5, q = 1

k = 3, q = 2

k = 2, q = 2

52    Input Modeling for Simulation

3.4.2.1  Parameter Estimation  If a sufficient amount of inter-arrival time
data {Xi} is available, estimators of the parameters are obtained from the
sample moments as discussed in Appendix 3A (k is an integer):

	 ˆ () /[()]; ˆ [()]/ ,k m m m m m m≅ − = −1
2

2 1
2

2 1
2

1θ 	 (3.3)

where the first sample moment m1 and second sample moment m2 are given
by

	 m x x m xn i
i

n

n i
i

n

1
1

1
2

1 2

1
= = =

= =∑ ∑; . 	

If k = 1, it becomes an exponential distribution and Eq. 3.3 reduces to

	 ˆ .θ = =m x1 	 (3.4)

Example 3.3. The parameters of the Erlang distribution representing the
inter-arrival distribution of the ATM system introduced in Section 3.1 can be
estimated from the inter-arrival times data {Ak} in Table 3.1 as follows. The
first and second sample moments are calculated as m1 = 76 and m2 = 10,816.6.
From Eq. 3.3, the Erlang parameters k and θ are computed as k = 1.146 and
θ = 66.3. Since k is close to 1, we have an exponential distribution. Thus, the
inter-arrival times in the ATM system follow an exponential distribution with
mean = 66.3.

3.4.2.2  Random Variate Generation  As described in Appendix 3B, an
exponential random variate x is generated via an inverse transformation as
follows:

1.	 Generate u ∼ U(0,1).
2.	 Return − ˆ ln()θ u .

Utilizing the fact that the sum of independent exponential random variables
is an Erlang random variable, the Erlang-k random variate x is generated as
follows:

1.	 Generate independent ui ∼ U(0.1) for i = 1 ∼ k.
2.	 Return − ∏()=

ˆ lnθ i
k

iu1 .

3.4.3  Generation of Inter-Arrival Times for Varying Arrival Rates

Let’s assume the inter-arrival times are exponentially distributed, but the
arrival rate λ(t) is changing over time. This arrival process is called a nonsta-
tionary Poisson process, which is common in many service systems such as
banks, cafeterias and barber shops.

Theoretical Modeling of Service Times   53

A widely used method called thinning for generating nonstationary inter-
arrival times is shown in Fig. 3.4. It starts with a previous arrival time t = t1 and
generates an inter-arrival time Δt for the maximum arrival rate λ* by using a
uniform random number U1. Thus, from the result of Section 3.4.1, we have
Δt = – (1/λ*) ln(U1) and t2 = t + Δt. Now generate another uniform random
number U2, and if U2 ≤ λ(t2) / λ*, then accept t2 as the next arrival time, else
set t = t2 and start over. The thinning method of generating arrival times may
be summarized as follows (start with i = 1):

1.	 Set: t = ti–1.
2.	 Generate: U1 ∼ U(0, 1) and U2 ∼ U(0, 1).
3.	 D = –(1/λ*) ln(U1); //exponential random variable with θ = 1/λ*.
4.	 t = t + D.
5.	 If U2 ≤ λ(t)/λ*, then return ti = t, else go back to step 2.

3.5  THEORETICAL MODELING OF SERVICE TIMES

3.5.1  Generation of Service Time in the Absence of Data

In some simulation studies it may not be possible to collect the service-time
data, but we have some knowledge or information about the service time
distribution, such as its range [a, b] and mode c. The lower bound ‘a’ is often
referred to as the most optimistic estimate of service time, the upper bound ‘b’
as the most pessimistic estimate, and the mode ‘c’ as most-probable estimate.
Figure 3.5 shows the density functions that are commonly used in modeling

Fig. 3.4.  Generation of exponential inter-arrival times for varying arrival rates.

t

(t)

*

t = t1

t

t2

(t2)

Fig. 3.5.  Service-time distributions in the absence of data.

a
x

b a
x

b a
x

b a
x

b c c c

Uniform (a, b)

h

Triangular (a, b, c) House (a, b, c, h) Beta (a, b, c, µ)

54    Input Modeling for Simulation

service times and activity durations in the absence of collected data: uniform,
triangular, house, and beta distribution.

3.5.1.1  Uniform Random Variate: X∼ Uniform (a, b)  When only the range
data [a, b] is given, a simple but useful method is to generate the service time
X from the uniform distribution U(a, b). Namely, let U ∼ U(0,1) then the
uniform random variate X∼ U(a, b) is generated by

	 X a b a U= + − ×() . 	 (3.5)

3.5.1.2  Triangular Random Variate: X∼ Triangular (a, b, c)  If the mode c
is also given in addition to the range data [a, b], service times may be sampled
from a triangular distribution. Service-time random variate X following the
triangular distribution Triangular (a, b, c) may be generated by using a com-
position method (see Appendix 3B) given below:

1.	 Set p = (c − a)/(b − a).
2.	 GenerateU1 ∼ U(0,1);U2 ∼ U(0,1).
3.	 If U1 ≤ p, then X a c a U= + −() 2 , else X c b c U= + − − −()()1 1 2 .

3.5.1.3  House Distribution Random Variate: X∼ House (a, b, c, h)  When
the height (h) the house is also specified (in addition to a, b, and c), service
time may be sampled from the house distribution (See Fig. 3.5). As depicted
in Fig. 3.6, a composition method is employed to generate house-distribution
random variates X.

1.	 Set r = h(b −a); p = (1 − r)(c − a)/(b −a); q = 1 − (p + r).
2.	 Generate U1 ∼ U(0,1) and U2 ∼ U(0,1).
3.	 If (U1 ≤ p), then X a c a U= + −() 2 (see Fig. 3B.3 in Appendix 3B),

else if (U1 ≤ p + q), then X c b c U= + − − −()()1 1 2 ,
else X = a + (b − a)(U2).

3.5.1.4  Beta Random Variate: X∼Beta(α,β)  A choice for the service-time
distribution with a finite range is a beta distribution. The density function f (x) of
the standard beta distribution Beta(α,β) that has a unit range [0, 1] is given by

Fig. 3.6.  Generation of “house” random variate via the composition method.

x
a

h

c b

Area = r

Area = p Area = q

p + q + r = 1

Theoretical Modeling of Service Times   55

	 f x
x x

B
()

()
(,)

,= −− −α β

α β

1 11
	

where B z z t t dtz z(,) ()1 2 0
1 1 11 21= ∫ −− − denotes the beta function.

Let c and μ, respectively, denote the mode and mean of the beta distribution
with a finite range [a, b]. If c ≠ μ, the parameters α, β of the standard beta
distribution Beta(α,β) may be estimated from the following relations (see
Appendix 3A):

ˆ ()
; ˆ () ˆ ; ()/()& ()/(),α β α µ= −

−
= − = − − = − −u m

m u
u

u
m c a b a u a b a

2 1 1
  (3.6)

where m and u are the mode and mean of the standard beta distribution.
There are quite a few methods for generating beta random variates [Law

2007, Cheng 1978]. A simple yet effective algorithm by Cheng [1978] for gen-
erating Y Beta∼ (,)ˆ ˆα β is given in Appendix 3B. Then the beta random variate
X with a general range [a, b] can be obtained from Y as follows:

	 X a b a Y= + −() . 	

3.5.2  Generation of Service Times from Collected Data

When data {Xi} collected from the target system are available, the first step
may be to construct the histogram of {Xi} to identify the range and shape of
the distribution. Popular candidates for service time distribution are beta and
lognormal as shown in Fig. 3.7.

3.5.2.1  Beta Random Variate: X∼Beta(α,β)  If the service times have a
finite range [a, b], beta distribution is the choice for generating them. The
parameters of the standard beta distribution Beta(α,β) can be estimated using
the following equation (see Appendix 3A):

Fig. 3.7.  Service-time distributions when collected data are available.

Beta (a, b, ,)

0
x

a
x

b0

LN (, 2)

56    Input Modeling for Simulation

	 �α
ν

β
ν

= − −



 = − − −



u

u u
u

u u(1)
1 ; (1)

(1)
1 ,ˆ 	 (3.7)

where the u and v are the mean and variance of the standard beta distribution,
and they are given by

	 u x a b a s b a= − − = −()/(); /() ,ν 2 2 	 (3.8)

where the sample mean and sample variance are computed from the collected
data:

	 x X s X xn i
i

n

n i
i

n
= = −

= − =∑ ∑1

1

2 1
1

2

1
; () . 	

Once the parameters are estimated from Eq. 3.7, the beta random variate
is generated the same way as discussed in Section 3.5.1.

Example 3.4. The ATM service-time data shown earlier in Table 3.1 have
a sample mean of 62.8 and sample variance of 129.96. The range of the ATM
service time is [a = 40, b = 90]. Thus, from Eq. 3.8, the mean and variance of
the standard beta distribution are obtained as u = (62.8 − 40)/50 = 0.456;
v = 129.96/(50 × 50) = 0.052. Finally, from Eq. 3.7, the parameters of the stan-
dard beta distribution are computed as

	 �α β= − − = =0.456[0.456(1 0.456)/0.052 1] 1.72; 2.05.ˆ 	

3.5.2.2  Lognormal Random Variate: X∼LN(μ,σ2)  Finally, if the service-
time distribution is skewed to the right, they are generated from the lognormal
distribution LN(μ,σ2) whose parameters can be estimated as

	 ˆ ; ˆ (ˆ) .
/

µ σ µ= = −



∑ ∑1 1 2

1 2

n
In X

n
In Xi i 	 (3.9)

For given parameters μ and σ2, the relationship between the lognormal
random variate X ∼ LN(μ,σ2) and the normal random variate Y ∼N(μ,σ2)are
as follows:

	 X eY= . 	 (3.10)

Thus, lognormal random variates X ∼ LN(μ,σ2) can be generated from
normal random variates as follows:

1.	 Generate Y ∼ N(μ,σ2). (See Appendix 3B.5.)
2.	 Return X = eY.

Input Modeling for Special Applications   57

3.6  INPUT MODELING FOR SPECIAL APPLICATIONS

3.6.1  Interfailure Time Modeling

Interfailure time is modeled by the Weibull distribution Weibull (α,β) mainly
due to its flexibility as shown in Fig. 3.8. If the failure rate decreases over time,
then use α < 1; if the failure rate is constant over time, then use α = 1 (i.e.,
exponential distribution); if the failure rate increases over time, then use α > 1.

As presented in Appendix 3A, Weibull parameters can be estimated from
the collected interfailure time data {Xi} by using a rank regression method. In
order to estimate the parameters, the collected data {Xi} are rearranged in an
increasing order to obtain a set of ordered sample data {X(i): i = 1 ∼ n} and the
median rank Ri of the i-th sample data X(i) is computed using the following
equation:

	 R i Ni = − +(.)/(.).0 3 0 4 	 (3.11)

Then, the sequence of ordered rank data pairs {X(i), Ri} are fitted to the
Weibull distribution as depicted in Fig. 3.9.

Fig. 3.8.  Weibull density function.

0

0.5

1

1.5

2

0.0 0.5 1.0 1.5 2.0 2.5

a = 0.5, b = 1

a = 1.0, b = 1

a = 5.0, b = 1

a = 1.5, b = 1

Fig. 3.9.  Estimation of Weibull parameters via rank regression.

X(1) X(2) X(3) X(4) X(5)

1.00

x
0

R1

R2

R3

R4

R5

αβ)/(1)(texF --=

58    Input Modeling for Simulation

As described in Appendix 3A, the procedure for estimating Weibull
parameters α, β from the ordered-rank pairs {X(i), Ri} may be summarized as
follows:

1.  Transform data {X(i), Ri} to form a linear equation (y = a + bx)

	 x X y Ri i i i= = − −ln(); ln{ ln []}.() 1 	 (3.12)

2.	 Compute the least-square estimators of a and b

	 ˆ / ; ˆ ˆ .b x y nx y x nx a y bxi i

i

n

i

i

n

= −








 −









 = −

= =
∑ ∑

1

2 2

1

	

3.	 Obtain the Weibull parameter estimators

	 ˆ ˆ; ˆ (ˆ / ˆ)α β= = −b e a b .	 (3.13)

Since the Weibull distribution function is easily inverted, Weibull random
variates are generated employing the inverse-transform method. Namely,
Weibull (α,β) random variate X is obtained from a uniform random variate U
as follows:

	 X U= ∗ −β α(ln) ./1 	 (3.14)

3.6.2  Inspection Process Modeling

A Bernoulli process is a discrete-time stochastic process consisting of a
sequence of independent random variables {Xi} taking values over two symbols
(0 or 1) such that P[Xi = 1] = p for all i. Distribution functions associated with
the Bernoulli process include binomial bin(t,p) and negative binomial negbin
(s,p) distributions (geometric is a special case of negative binomial).

1.	 bin (t,p):
t

x
p px t x





− −()1 for x = 0∼ t.

2.	 negbin (s,p):
s x

x
p ps x

+ −





−
1

1() for x = 0, 1, 2 . . .

In quality control system simulations, input modeling of defective items
is required. As an inspection process is a Bernoulli process, the number of
defective items in a batch of size b can be sampled from the binomial distri
bution bin (b,p) and the number of inspections before encountering d
defective items can be sampled from the negative binomial distribution
negbin(d,p). Here, p is the probability of an item is defective. What distribution
is used for the number of inspections before encountering the first defective
item?

Review Questions   59

3.6.3  Batch Size Modeling

In many service systems, customers may arrive in groups or batches. When
frequency data collected from the source system is available and reliable, a
simple yet effective method for generating batch sizes is the empirical model-
ing of the original frequency data. Namely, a batch size is sampled from the
frequency data.

If the frequency data are not available (or unreliable) but the average batch
size B is given, a theoretical distribution fitting method can be employed.
When the maximum batch size b is given (1 ≤ B ≤ b), the binomial distribution
X∼bin (t,p) is a choice. The parameters of binomial distribution are estimated
as follows:

	 ˆ ; ˆ ()/ .t b p B t= − = −1 1 	 (3.15)

Then, batch sizes following the binomial distribution bin (t,p) are gener
ated as

1.	 Generate {Ui ∼ U(0,1) for I = 1 ∼ t}.
2.	 For i = 1 ∼ t {If Ui ≤ p then Zi = 1, else Zi = 0}.
3.	 X = ΣZi.
4.	 Return B = X + 1.

3.7  REVIEW QUESTIONS

3.1.  What is trace-driven simulation?

3.2.  What are the three ways to empirically generate random inputs from
collected data?

3.3.  What is the nonparametric input modeling method?

3.4.  What is the inverse-transformation method of generating a random
variable?

3.5.  Where is a scatter diagram plotting used?

3.6.  What test is widely used in the goodness-of-fit test?

3.7.  How is the Erlang distribution defined in a homogeneous Poisson
process?

3.8.  What is a nonstationary Poisson process?

3.9.  What is the thinning method of generating a next arrival time?

3.10.  What is a Bernoulli process?

60    Input Modeling for Simulation

APPENDIX 3A: PARAMETER ESTIMATION

In this appendix, how to estimate parameters for the major continuous distri-
butions listed in Table 3.4 will be explained in just enough detail for readers
to implement their own input modeling functions. Distributions covered are
exponential, Erlang, Beta, Weibull, normal, and lognormal. For a more com-
prehensive treatment on the subject, the reader is referred to Law [2007].

3A.1  Exponential Distribution

The exponential distribution Expo(θ) is defined by the scale parameter θ, and
it is widely used in the field of queuing theory mainly due to its simplicity. For
x > 0, the density function f(x) and distribution function F(x) are given by

	 f x e F x ex x() ; () ./ /= = −− −1
1

θ
θ θ 	 (3A.1)

The mean and variance of an exponentially distributed random variable are
θ and θ2, respectively.

The parameter θ is estimated by using the maximum likelihood method,
and the resulting estimator is called a maximum likelihood estimator (MLE).
Let {xi: for i = 1 ∼ n} denote n independent observations, then the likelihood
function is given by the product of density functions as follows:

	 L x x x f x en i
n x

i

n
i(, |) (|) (/) ./

1 2
1

1� θ θ θ θ= = ∑−()
=∏ 	 (3A.2)

The natural logarithm of the likelihood function is expressed as
(x x ni

n
i= ∑()=1 /):

	 Λ = = − () = − −
=∑ln ln(/) / ln / .L n x n nxi

i

n
1

1
θ θ θ θ 	 (3A.3)

Differentiating Λ, setting it equal to 0, and solving for θ, the MLE is
obtained as:

	 ∂ ∂ = − + − = ⇒ =Λ / [1/ (1/)] 0 .2θ θ θ θn x xˆ 	 (3A.4)

3A.2  Erlang Distribution

The Erlang distribution is defined by the shape parameter k and scale param-
eter θ and is widely used in modeling arrival processes. For x > 0 and positive
integer k, the density function is given by (the distribution function does not
have a simple form):

Appendix 3A: Parameter Estimation   61

	 Density function: ()
()!

.
/

f x
x e
k

k k x

=
−

− − −θ θ1

1
	 (3A.5)

The mean (μ) and variance (σ2) of an Erlang random variable are:

	 µ θ σ θ= =k k; .2 2 	

If k = 1, it becomes an exponential density function. If k is a real number,
it becomes a gamma density function.

As there are no closed-form solutions for the MLE of the parameters, the
method of moment is employed in estimating the parameters k and θ. Let {xi:
for i = 1 ∼ n} denote n independent observations, then the first sample moment
m1 and second sample moment m2 are:

	 m x x m xn i
i

n

n i
i

n

1
1

1
2

1 2

1
= = =

= =∑ ∑; . 	 (3A.6)

On the other hand, the first and second population moments E(X) and
E(X2) of the Erlang density function are:

	 E X xf x dx k E X x f x dx k k[] () ; [] () () .= = = = +∫ ∫θ θ2 2 21 	 (3A.7)

Equating the population moments in Eq. 3A.7 with the sample moments
in Eq. 3A.6 and solving for the parameters k and θ, we obtain (k is an integer):

	 ˆ () /[()]; ˆ [()]/ .k m m m m m m≅ − = −1
2

2 1
2

2 1
2

1θ 	 (3A.8)

3A.3  Beta Distribution

The beta distribution Beta(α,β) is defined by the shape parameter α and scale
parameter β and is widely used in modeling service times, especially, in the
field of project management. For 0 < x < 1, the density function is given by
(the distribution function does not have a simple form):

	 Density function: ()
()
(,)

,f x
x x

B
= −− −α β

α β

1 11
	 (3A.9)

where the beta function is B z z t t dtz z(,) ()1 2 0
1 1 11 21= ∫ −− − . The mean μ and vari-

ance σ2 of a beta random variable are:

	 µ α
α β

σ αβ
α β α β

=
+

=
+ + +

;
() ()

.2
2 1

	 (3A.10)

62    Input Modeling for Simulation

Further, if α > 1 and β > 1, the mode (m) of the density function is
given by:

	 m = −
+ −
α

α β
1

2
. 	 (3A.11)

There are no closed-form solutions for the MLE of the parameters. Thus, a
method of moment is employed in estimating the parameters. Namely, we
solve Eq. 3A.10 for α and β, and then replace the population mean μ with
sample mean x and population variance σ2 with sample variance s2 to have:

	 ˆ ()
; ˆ ()

()
,α β= − −



 = − − −



x

x x
s

x
x x

s
1

1 1
1

1
2 2 	 (3A.12)

where x
n

xi
i

n
=

=∑1
1

 and s
n

x xi
i

n
2 2

1

1
1

=
−

−
=∑ () .

Alternatively, when m ≠ μ, the parameters may be expressed with respect
to the mean μ and mode m as follows:

	 ˆ ()
; ˆ () ˆ .α β α= −

−
= −u m

m u
u

u
2 1 1

	 (3A.13)

3A.4  Weibull Distribution

The Weibull distribution Weibull (α,β) is defined by the shape parameter α
and scale parameter β and is widely used in the field of life data analysis due
to its flexibility: If the failure rate decreases over time, then α < 1; if it is con-
stant, then α = 1; if it increases, then α > 1. For x > 0, the density function f (x)
and distribution function F(x) are given by

Fig. 3A.1.  Beta density function.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a = 2, b = 5

a = 2, b = 2

a = 5, b = 1

a = 1, b = 3

a = b = 0.5

Appendix 3A: Parameter Estimation   63

	 f t t e F t et t() ; () .(/) (/)= = −− − − −αβ α α β βα α1 1 	 (3A.14)

As there are no closed-form solutions to estimating the parameters α and
β, the estimates of the parameters are commonly obtained by using rank
regression. A rank regression method for estimating α and β from a set of
ordered sample data {X(i) for i = 1 ∼ N} will be explained in the following. An
example of ordered data for a sample size of 6 (N = 6) is given below.

	 X X X X X X() () () () () (); ; ; ; ; .1 2 3 416 34 53 75 93 120= = = = = =5 6 	 (3A.15)

The median rank Ri of the i-th sample data X(i) of size N can be estimated
using the following equation:

	 R
i

N
i = −

+
0 3
0 4
.
.

. 	 (3A.16)

For the ordered data given in Eq. 3A.17, their median ranks may be esti-
mated as:

	 R R R R R R1 2 3 4 5 60 11 0 26 0 42 0 58 0 73 0 89= = = = = =. ; . ; . ; . ; . ; . . 	 (3A.17)

In order to apply the rank regression method, the nonlinear distribution
equation F(t) in Eq. 3A.14 has to be linearized. Namely, rearranging F(t) and
taking the natural logarithm of both sides of the equation yields:

	 ln[()] (/) ln{ ln[()]} ln() ln().1 1− = − → − − = − +F t t F t tβ α β αα 	 (3A.18)

The above equation is a linear equation of the form y = a + bx, where

	 y F t x t= − − =ln{ ln[()]}; ln()1 	 (3A.19)

	 a b= − =α β αln(); . 	 (3A.20)

As given by Eq. 8.16 in Chapter 8, the least-square estimators of the coef-
ficients in the linear regression model (y = a + bx) are expressed as (n = sample
size):

	 ˆ ˆ ; ˆ / ,a y b x b x y nx y x nxi i

i

n

i

i

n

= − = −








 −











= =
∑ ∑

1

2 2

1

	 (3A.21)

where x x n y y ni i= ∑ = ∑/ ; / . From the relations in Eq. 3A.21, xi and yi are
expressed in terms of ordered sample data and median ranks as follows:

	 x X y Ri i i i= = − −ln(); ln{ ln[]}.() 1 	 (3A.22)

64    Input Modeling for Simulation

And, from Eq. 3A.22, the estimators of the parameters α and β are
expressed as

	 ˆ ˆ; ˆ .(ˆ / ˆ)α β= = −b e a b 	 (3A.23)

3A.5  Normal and Lognormal Distributions

Many measurements, ranging from psychological to physical phenomena can
be approximated, to varying degrees, by the normal distribution N(μ,σ2). If
ln(X) follows a normal distribution N(μ, σ2), then X follows a lognormal dis-
tribution LN(μ, σ2). While the mechanisms underlying these phenomena are
often unknown, the use of the normal model can be theoretically justified by
assuming that many small, independent effects are additively contributing to
each observation (for a real value of x). The density function is given by (dis-
tribution function has no closed form expression):

	 f x e x() .() /= − −1

2 2

22 2

πσ
µ σ 	 (3A.24)

The mean and variance are μ and σ2, respectively, and their MLEs are:

	 ˆ ; ˆ () .µ σ= = = −− =∑x s X xn i
i

n
2 1

1
2

1
	 (3A.25)

APPENDIX 3B: RANDOM VARIATE GENERATION

In this appendix, methods of generating random variates for major continuous
distributions are explained in some detail. Distributions covered are exponen-
tial, Erlang, Beta, Weibull, normal, lognormal, and triangular distributions.
There are available free libraries at http://www.codeproject.com/KB/recipes/
Random.aspx.

3B.1  Exponential Random Variate

An exponential random variate x∼Expo(θ) is generated by the inverse trans-
form method. This method is based on the observation that “If X ∼ F(x) and
U∼ U(0,1) then we have U = F−1(X),” as depicted in Fig. 3B.1.

Since the exponential distribution is F(x) = 1 − e−x/θ, the distribution function
is easily inverted to obtain the following inverse-transform relationship:

	 u e e u x ux x= − ⇒ = − ⇒ = − ∗ −− −1 1 1/ / () ln().θ θ θ 	

Utilizing the fact that “(1 − U) ∼ U(0,1) if U ∼ U(0, 1),” an exponential
random variate X is generated from a standard uniform random variable U
as follows:

http://www.codeproject.com/KB/recipes/Random.aspx
http://www.codeproject.com/KB/recipes/Random.aspx

Appendix 3B: Random Variate Generation   65

Fig. 3B.1.  Inverse-transform method of random variate generation.

1.00

U = F(X)

X = F–1(U)
x

F(x)

u

	 X U= − ∗θ ln . 	 (3B.1)

3B.2  Erlang Random Variate

An Erlang-k random variate X∼Erlang (k,θ) with mean θ is defined as X = ΣYi
for i = 1 ∼ k, where Yi’s are independent, identically distributed (IID) expo-
nential random variables with mean θ / k. Thus, an Erlang-k random variate
X can be generated as a sum of the k IID exponential random variates, which
is known as the convolution method of random variate generation. Namely, an
Erlang-k random variate is generated as a convolution of exponential random
variates:

	 X Y k U k Ui

i

k

i

i

k

i

i

k

= = − ∗ = − ∗




= = =

∑ ∑ ∏
1 1 1

{ (/) ln()} (/) ln .β β 	 (3B.2)

3B.3  Beta Random Variate

As the direct methods (i.e., inverse-transform and convolution methods) are
not applicable to Beta distribution Beta(α,β), the acceptance–rejection method
is used in generating a beta random variate. In general, the acceptance–
rejection method makes use of a majoring function g(x) of the density function
f (x) for which we wish to generate random variates. The majoring function
g(x) is required to have the following properties: (1) g(x) ≥ f (x); (2) m =
∫ g(x) dx < ∞; (3) random variate Y ∼ g(x) / m is easily generated. Then the
acceptance–rejection method of generating a random variate X ∼ f (x) may be
summarized as follows (see Fig. 3B.2):

Fig. 3B.2.  Acceptance–rejection method of random variate generation.

x

f(Y)

Y

g(x)

f(x)

g(Y)

66    Input Modeling for Simulation

(1)  Generate Y having density function g(x) / m;
(2)	 Generate U ∼ U(0,1), independent of Y ;
(3)	 If U ≤ f(Y) / g(Y) then return X = Y, else go back to step (1).

Applying the acceptance–rejection idea to generating a beta random variate
is not a trivial problem, and there are quite a large number of beta random
variate generation methods available in the literature (see for example, Cheng
[1978], Schmeiser and Babu [1980]). Given below is the basic method of gen-
erating a standard beta random variate presented in Cheng [1978]. It is an
acceptance–rejection method where the following functions are used as density
function f (y) and majorizing function g(y):

Beta density function: f(y) = yα − 1/[B(α,β)(1 + yα + β)] for y > 0
Majorizing function:g(y) = λμ yλ − 1(μ + yλ)−2.

Y ∼ f (y) is known as the beta variate of the second kind Beta2(α,β). The
following acceptance–rejection algorithm generates Y ∼Beta2(α,β) for α > 0
and β > 0.

0.	 Initialization:
–  A = α + β;
–	 If then B else B A Amin(,) max(,) ()/();α β α β αβ≤ = = − −− −1 2 21 1

–	 C = α + B−1;

1.	 Generate: U1 ∼ U(0,1)&U2 ∼ U(0,1).
2.	 Set: V = B log[U1/(1 − U1)]; W = α · ev.
3.	 If { log[/()] log } log()A A W C V U U⋅ + + ⋅ − <β 4 1

2
2 then go to step (1); //

rejection.
4.	 Return: Y = W/(β + W).

Then, the standard beta variate X ∼ Beta(α,β) with density function Eq.
3A.9 can be obtained from the beta random variate Y ∼Beta2(α,β) as follows
[Cheng 1978]:

	 X Y Y= +/().1 	

3B.4  Weibull Random Variate

As with the exponential distribution, the Weibull distribution Weibull(α,β) func-
tion is easily inverted to obtain the following inverse-transform relationship:

	 u e x ut= − ⇒ = ∗ − −−1 1 1(/) /{ ln()} .β αα β 	

Appendix 3B: Random Variate Generation   67

Since (1 − U) ∼ U(0,1) if U ∼ U(0,1), a Weibull random variate X is gener-
ated from:

	 X U= ∗ −β α(ln) ./1 	 (3B.3)

3B.5  Normal and Lognormal Random Variates

Box and Muller [1958] developed a popular method for generating a normal
random variate. It makes use of the relation that “X1 and X2 given by Eq. 3B.4
are IID N(0,1) if U1 and U2 are IID U(0,1).”

	 X U U X U U1 1
1 2

2 2 1
1 2

22 2 2 2= − = −(ln) cos(); (ln) sin()./ /π π 	 (3B.4)

Thus, once the parameters μ and σ2 are estimated, normal random variates
may be generated by using the method of Box and Muller [1958]:

1.	 Generate U1 ∼ U(0,1) & U2 ∼ U(0,1).
2.	 Compute Z1 = (−2 ln U1)1/2 cos(2πU2); Z2 = (−2ln U1)1/2 sin(2πU2).
3.	 Return X Z X Z1 1 2 2= + ⋅ = + ⋅ˆ ˆ ; ˆ ˆµ σ µ σ .

Since the normal random variates are generated in pairs, X1 and X2 are
computed on each odd-numbered call to the generation function (but only X1
is returned), and X2 is returned on each subsequent even-numbered call. Let
X be a normal random variate sampled from N(m,s2), then a lognormal random
variate Y sampled from LN(m,s2) is obtained from Y = eX.

3B.6  Triangular Random Variate

A double-triangle distribution Triangular(a,b,c)is defined by the lower bound
value (a), upper bound value (b), and peak value (c). Depicted in Fig. 3B.3 are
single-triangle density functions and random variates. A random variate of the
“up-hill” triangle is generated as follows:

	 Y a c a U= + −() . 	 (3B-5)

And, the random variate of the “down-hill” triangle is generated as:

	 Y c b c U= + − − −()().1 1 	 (3B.6)

Fig. 3B.3.  Single-triangle density functions and random variates.

a c

2 / (c – a)

y

UacaY)(–+=

c b

2 / (b – c)

y

)11)((UcbcY –––+=

68    Input Modeling for Simulation

Fig. 3B.4.  Double-triangle density function.

x
a

2 / (b – a)

b

Area = p Area = (1 – p)

p = (c – a) / (b – a)

c

])1(1[)(else

)()()(if

)/()(

2/1
2

2/1
21

UcbcX

UacaXpU

abacp

−−×−+=

×−+=<

−−=

Then, the random variate of the double-triangle (see Fig. 3B.4) can be
generated from the two single-triangle random variates by using the composi-
tion method. The composition method [Law 2007] calls for generating
U1 ∼ U(0,1) and checking whether U1 < p. If so, generate an independent
U2 ∼ U(0,1) and return X = a + (c − a) × (U2)1/2; Otherwise, return X = c +
(b − c) × (1 − (1 − U2)1/2).

69

CHAPTER 4

Introduction to Event-Based Modeling
and Simulation

Little people discuss other people. Average people discuss events. Big
people discuss ideas.

—R.E. Kalman

4.1  INTRODUCTION

This chapter is about the creative ideas for modeling and simulation of discrete-
event systems using the concept of event. We often hear about events in the
evening news, on the radio, and, more recently, through social media channels.
If something that happened results in some meaningful changes, it is called an
event. If we can identify the logical and temporal relationships between those
events, we can understand our present situation better and may even be able
to predict the future. Event-based modeling is a fundamental method of rep-
resenting our knowledge about a discrete-event system, in which the dynamics
of the system are represented by an event graph. An event graph is a network
model of the logical and temporal relationships between the events. An event
graph is a formal model that is easily implemented using the next-event meth-
odology of simulation execution.

The purpose of this chapter is to provide a comprehensive coverage of
event-based modeling and simulation (M&S) using the “ordinary” (i.e., non-
parameterized) event graph. Event-based M&S involving a parameterized
event graph is covered in the next chapter. After studying this chapter, you
should be able to:

1.	 Provide an algebraic specification of an event graph model
2.	 Construct an event transition table for a given event graph model

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

70    Introduction to Event-Based Modeling and Simulation

3.	 Build event graph models for single queue systems that have various
features such as balking/reneging, batched service, assembly operation,
and resource failure

4.	 Build event graph models of various types of tandem line systems such
as time-constrained processing lines and conveyor-driven serial produc-
tion lines

5.	 Build event graph models of special systems such as a flexible service
shop, a car repair shop, a project management system, and an inline
manufacturing cell

6.	 Simulate any event graph model using the commercial simulator
SIGMA®

7.	 Develop your own computer simulation program for any event graph
model

The remainder of the chapter is organized as follows. Section 4.2 reviews
the integrated procedure for discrete-event simulation modeling using a single
server system as an example. Then, the execution rules and formal specifica-
tions of an event graph model are presented in Section 4.3, followed by a
section on event graph modeling templates. These modeling templates serve
as building blocks for constructing larger models. Some real examples of event
graph modeling are presented in Section 4.5, and the method of executing
event graph models with SIGMA is explained in Section 4.6. Finally, a method
for developing your own simulator is presented in the last section of this
chapter.

4.2  MODELING AND SIMULATION OF A SINGLE SERVER SYSTEM

It was emphasized in Chapter 2 that the “integrated procedure for discrete-
event system modeling” should be followed regardless of the modeling formal-
isms used. In this section, a method for applying the integrated procedure to
the event-based modeling formalism is illustrated using the single server
model presented in Chapter 2 (see Fig. 2.6). In event-based modeling formal-
ism, a system is modeled by describing the changes that occur at different
event times and the system dynamics are represented by an event graph.

4.2.1  Reference Modeling

The reference model of the single server system that was described in Chapter
2 is reproduced in Fig. 4.1(a). An informal description of the system dynamics
in terms of the physical and logical modeling components is referred to as the
reference model. The physical modeling components are classified into entities,
active resources, and passive resources: Jobs are the entities; Job Creator and
Machine are active resources; and Buffer is a passive resource. Among the

Modeling and Simulation of a Single Server System   71

logical modeling components, (1) job creation and job processing are activities,
(2) the machine status (M) and buffer status (Q) are state variables, and (3)
Arrive, Load, and Unload are events.

The dynamics of the single server system can be described in terms of the
modeling components (Job Creator, Machine, Buffer, Job, create, process,
arrive, load, unload) as follows: the Job Creator creates a new Job for a dura-
tion of ta minutes, which makes a new Job arrive every ta minutes; the new Job
is loaded on the Machine if it is idle, otherwise the Job is stored in the Buffer;
the loaded Job is processed by the Machine for ts minutes and then unloaded;
the freed Machine loads another Job from the Buffer if it is not empty.

4.2.2  Formal Modeling

Reproduced in Fig. 4.1(b) is the event graph of the reference model in Fig.
4.1(a). A discrete-event system model described using a formal modeling tool
is referred to as a formal model. It provides a complete description of the
system in a concise and clear manner and can be executed with a well-defined
simulation algorithm.

The event graph in Fig. 4.1(b) is interpreted as follows: (1) An Arrive event,
which increases the job count by one (Q++), always schedules an Arrive event
to occur after ta and schedules a Load event if the machine is idle (M ≡ 1). (2)
A Load event, which sets the machine to busy (M−−) and decreases the job
count by one (Q−−), schedules an Unload event to occur after ts. (3) The
Unload event resets the machine to idle (M++) and schedules a Load event if
the buffer is not empty (Q > 0).

Fig. 4.1(a).  Reference model of single server system (reproduced from Fig. 2.6).

Buffer: Q

Machine: M

Job Creator

Arrive Load Unload

Process [ts]

3 Jobs

Create [ta]

Fig. 4.1(b).  Event graph of the single server system (reproduced from Fig. 2.1).

72    Introduction to Event-Based Modeling and Simulation

4.2.3  Model Execution

As mentioned in Chapter 2, the systematic method of specifying an event
graph model is the use of an event transition table. This is a table in which the
state change, edge condition, action-type (schedule/cancel), time delay, and
destination events are specified for each event node. Table 4.1 shows an event
transition table for the event graph in Fig. 4.1(b) with ta ∼ Exp(5) and
ts ∼ Exp(2). Then, (as explained in Section 4.7.5), an event routine is obtained
for each row of the event transition table so that the single server model is
executed with your own event graph simulator. Alternatively, (as explained in
Section 4.6.1), the event graph model in Fig. 4.1(b) is converted to a SIGMA-
compatible event graph so that the single server model is executed with
SIGMA.

4.3  EXECUTION RULES AND SPECIFICATIONS OF EVENT
GRAPH MODELS

An event graph is a graphical formal model consisting of a set of event nodes
and a set of directed edges. It provides a complete description of a discrete-
event system (DES) in a concise and clear manner. Since the graphical model
is to be interpreted by a human, its execution rules have to be described
unambiguously. A graphical model can be specified in algebraic form (to be
analyzed by a human logically) as well as in computer-readable form (to be
executed on a computer).

4.3.1  Event Graph Execution Rules

There are two types of edges in an event graph: scheduling edges and canceling
edges. In this subsection, the event vertex execution rules for these two types
of edges are described [Schruben and Schruben 2001].

4.3.1.1  Execution of an Event with a Scheduling Edge  Shown in Fig. 4.2
is an event vertex with a scheduling edge, which indicates that “whenever the

TABLE 4.1.  Event Transition Table for the Single Server System

No
Originating

Event
State

Change Edge Condition Action Delay
Destination

Event

0 Initialize Q = 3;
M = 1;

1 True schedule 0 Arrive

1 Arrive Q++; 1 True schedule ta = Exp(5) Arrive
2 M > 0 schedule 0 Load

2 Load M--; Q--; 1 True schedule ts = Exp(2) Unload
3 Unload M++; 1 Q > 0 schedule 0 Load

Execution Rules and Specifications of Event Graph Models   73

originating event E1 occurs, the state (s) changes according to fE1(s). Then, if
the edge condition c1 is true, the destination event (E3) is scheduled to occur
after a time delay of t1.” The scheduled execution time (τ) of E3 is obtained
by adding the time delay (t1) to the current execution time (Clock) of E1.
Namely, τ = Clock + t1.

4.3.1.2  Execution of an Event Having a Canceling Edge  Shown in Fig. 4.3
is an event graph with a canceling edge denoted by the dashed arrow. This
event graph indicates that “whenever the originating event E2 occurs, the state
‘s’ changes to fE2(s). Then, if the edge condition c2 is true, the scheduled event
E3 is canceled immediately.” If there is more than one event scheduled in the
future event list, only the first one (i.e., the one with the smallest event time)
may be canceled.

4.3.2  Tabular Specification of Event Graph Models

Let’s consider an event vertex (E1) with a scheduling edge to event vertex E2
and a canceling edge to event vertex E3 as shown in Fig. 4.4. The event graph
indicates that “whenever event E1 occurs, the state ‘s’ changes to fE1(s). Then,
if the edge condition c1 is true, event E2 is scheduled to occur after t1; and if
the edge condition c2 is true, event E3 is canceled immediately.”

The event execution rules for the event graph of Fig. 4.4 can be specified
in a tabular form called an event transition table. As shown in Table 4.2, each
originating event is specified using five data fields: state change, edge condition,
action type (schedule or cancel), time delay, and destination event.

Fig. 4.2.  Event graph with a scheduling edge.

Fig. 4.3.  Event graph with a canceling edge.

Fig. 4.4.  Event graph with a scheduling edge and a canceling edge.

74    Introduction to Event-Based Modeling and Simulation

Figure 4.5 shows an event graph model with five event vertices. The rectan-
gular box in the event graph denotes the initialize-event, where the state
variables are initialized (Q = 0 and M = 1) and two events (E1 and E4) are
scheduled. The first three events (E1–E3) constitute a single server system
(compare with Fig. 4.1). An event transition table for the event graph model
of Fig. 4.5 is given in Table 4.3.

TABLE 4.2.  Event Transition Table for the Event Graph of Figure 4.4

Originating
Event

State
Change Edge Condition Action Delay

Destination
Event

E1 s = fE1(s) 1 c1 schedule t1 E2
2 c2 cancel 0 E3

Fig. 4.5.  Event graph model with an initialization box.

E2 E3

{Q++} {M=0; Q--} {M= 1}

(M>0)

(Q>0)

E1
t3

t1

Q=0; M=1;

E5 E4

{M=1} {M= –1 }

t4

t5

t4

(Q>0)

TABLE 4.3.  Event Transition Table for the Event Graph in Figure 4.5

No
Originating

Event
State

Change Edge Condition Action Delay
Destination

Event

0 Initialize Q = 0;
M = 1;

1 True schedule 0 E1
2 True schedule t4 E4

1 E1 Q++; 1 True schedule t1 E1
2 M > 0 schedule 0 E2

2 E2 M = 0;
Q−−;

1 True schedule t3 E3

3 E3 M = 1; 1 Q > 0 schedule 0 E2
4 E4 M = − 1; 1 True schedule t5 E5

2 True cancel 0 E3
5 E5 M = 1; 1 Q > 0 schedule 0 E2

2 True schedule t4 E4

Event Graph Modeling Templates   75

4.3.3  Algebraic Specifications of an Event Graph Model

An event graph is a directed graph consisting of a set of event vertices (V), a
set of directed edges (E), and a set of state variables (S). The edge set E rep-
resents the temporal and logical relationships between a pair of vertices.
Associated with each vertex (v ∈ V) is a state transition function (fv ∈ F);
associated with each edge (e ∈ E) are edge conditions (ce ∈ C), time delays
(de ∈ D), and action types (ae ∈ A; schedule or cancel). Thus, an event graph
model M can be defined as a 7-tuple structure [Savage et al. 2005]:

M = <V, E, S, F, C, D, A>, where
V = {v}: set of event vertices
E = {eod= (vo, vd)}: set of edges // vo: originating event; vd: destination event
S = {s}: set of state variables
F = {fv: S → S ∀v ∈ V}: set of state transition functions associated with V
C = {ce: S→[0,1] ∀e ∈ E}: set of conditions associated with E
D d e Ee= ∈ ∀ ∈∞{ }R0 : set of time delays associated with E
A = {ae ∈ [scheduling, canceling] ∀e ∈ E}: action type set

For example, the algebraic components of the event graph model in Fig. 4.1
(single server system) are as follows:

1.	 V = {v1 = Arrive, v2 = Load, v3 = Unload}
2.	 E = {e1 = (v1, v1), e2 = (v1, v2), e3 = (v2, v3), e4 = (v3, v2)}
3.	 S = {Q, M}
4.	 F = {f1: Q++; f2: M−−, Q−−; f3: M++}
5.	 C = (c1: True; c2: (M ≡ 1), c3: True; c4: (Q > 0)}
6.	 D = {d1 = ta; d2 = 0; d3 = ts; t4 = 0}
7.	 A = {a1 = a2 = a3 = a4 = scheduling}

Exercise 4.1. Specify the algebraic components of the event graph in Fig. 4.5.

4.4  EVENT GRAPH MODELING TEMPLATES

The modeling templates introduced here may be used as building blocks for
modeling large systems. The single server event graph model shown in Fig.
4.1(b) is the baseline event graph model of a single queue system where a
“table type” machine processes one job at a time, and the arriving jobs are
stored in an infinite capacity buffer. This baseline model will be embellished
and/or extended to cover more realistic and/or complex situations. Many of
the modeling templates in the following are borrowed from Schruben and
Schruben [2001].

76    Introduction to Event-Based Modeling and Simulation

4.4.1  Single Queue Models

By embellishing the baseline model of Fig. 4.1(b), a number of single queue
models may be generated: a multi-server model, a limited waiting space model,
a reneging queue model, a batched service model, an assembly-operation
model, a resource priority model, and a resource failure model.

Exercise 4.2. Simplify the baseline model Fig. 4.1(b) by removing the Load
event.

4.4.1.1  Flexible Multi-Server Model with Varying Number of Servers  If
a single queue system has more than one server, it is called a multi-server
system. When the number of servers n is constant, the single server event graph
model becomes a multi-server model if we set M = n (n > 1) in the initialize
box.

Now, consider the case where the number of servers n(t) at time t varies
over time, which we call a flexible multi-server model. Then, the event graph
model of a flexible multi-server system can be represented as shown in Fig.
4.6, where M(t) denotes the number of idle machines at time t. It should be
noted that the self-scheduling edge of the Load event vertex is introduced in
order to manage the abrupt increase in the number of servers.

4.4.1.2  Limited Waiting Space Model (Balking Model)  If the limited-
capacity waiting space is full, an arriving job may not be able to enter the
system and leave the system permanently, which is referred to as balking. Let
c denote the capacity of the waiting space, and then the balking is modeled by
introducing an Enter event as shown in Fig. 4.7.

4.4.1.3  Impatient Customer Model (Reneging Model)  When customers
arrive at a system that includes a queue and a server, they will enter the queue

Fig. 4.6.  Event graph model of a flexible multi-server system.

M(t)= M + (n(t) – n(0)); n(t): number of servers at time t

Fig. 4.7.  Limited waiting space event graph model.

Load Unload

{Q++} {M--, Q--} {M++}

(M>0)

(Q≥1)

Arrive
ts

ta

Q=0; M=1 Enter
(Q<c)

Event Graph Modeling Templates   77

if there is room. Once in the queue, they may choose to leave it if they have
waited too long, which is often called reneging in queuing theory. As depicted
in Fig. 4.8, a Leave event is introduced to manage the reneging situation: (1)
every Enter event schedules a Leave event to occur after tr minutes; (2) every
Unload event cancels the oldest Leave event that has been scheduled, if there
is one; and (3) every Leave event decreases Q by one (denoting the reneging
customer).

Exercise 4.3. Construct a single server system event graph for reneging
without balking.

4.4.1.4  Nonstationary (Fluctuating) Arrival Rates Model  The method of
generating exponential random variates with fluctuating arrival rates has been
explained in Chapter 3 (refer to Fig. 3.4 of Section 3.4.3). Let λ(t) denote the
arrival rate at time t and it is bound by λ*, then the thinning method of gen-
erating X∼ Exp(1/λ(t)) is as follows:

1.	 Set: t = ti−1

2.	 Generate: U1 ∼ U(0, 1) and U2 ∼ U(0, 1)
3.	 D = −(1/λ*) ln(U1); //exponential random variable with θ = 1/λ*

4.	 t = t + D
5.	 If U2 ≤ λ(t)/λ*, then return ti = t, else go back to step 2

Shown in Fig. 4.9 is an event graph model of a single server system subject
to fluctuating arrival rates. The next Arrive event is scheduled to occur after
an inter-arrival time ta with a bounding arrival rate λ*, and the Arrive event
will schedule an Enter event only when the thinning test is passed (i.e.,
U < λ(t)/λ*).

4.4.1.5  Batched Service Models  Batched service occurs when a batch of
jobs is processed simultaneously. In general, there is a maximum number (b)
and a minimum number (a) of jobs that can be processed at one time, which
is denoted as a ≤ J ≤ b, where J is the actual number of jobs in a batched

Fig. 4.8.  Event graph model for reneging with balking.

{Q++}

Load

{Q--, M--}

(M>0)

Leave
{Q-- }

tr

~(M 0)

Unload

{M++ }

(Q>0)

ts

(Q>0)

Arrive

ta

Q=0; M=1 Enter
(Q<c)

78    Introduction to Event-Based Modeling and Simulation

service. If a = b, it is a full batched service; if a < b, then it is a partial batched
service.

An event graph model for a full batched service using a single machine is
given in Fig. 4.10. Notice that the baseline model of Fig. 4.1(b) is a special case
of the full batched service model of Fig. 4.10, with b = 1.

Exercise 4.4. Revise the event graph presented in Fig. 4.10 to make it a
partial batched service model.

4.4.1.6  Assembly Operation Model  A type j part for j = 1, 2 arrives at the
system every tj minutes, and a pair of parts, one from each type, are assembled
together using a machine. Let Q denote number of part pairs and Pj denote
number of (unpaired) parts of type j; then, by introducing a Join event, the
assembly operation is modeled as an event graph as shown in Fig. 4.11.

At this point, it is instructive to comment on the edge conditions in Fig.
4.11. Let C1 and C2 denote edge conditions of the Enter1→Join edge and
Enter2→Join edge, respectively. It is specified in Fig. 4.11 that C1 = (P1 ≥ 1) &
(P2 ≥ 1), and C2 = (P1 ≥ 1) & (P2 ≥ 1), which is valid. However, it can be found

Fig. 4.9.  Event graph model for fluctuating arrival rates (nonhomogeneous arrivals).

λ*)

λ(t)/λ*))
Load Unload

{Q++} {M--, Q--} {M++}

(M>0)

(Q 1)

Arrive
tsQ=0; M=1 Enter

{U= Uni(0,1)}

Fig. 4.10.  Full batched service event graph model.

Load Unload

{Q++} {M--, Q= Q b } {M++}

Arrive
ts

ta

Q= 0; M= 1

(Q
(M 0 & Q b)

b)

Fig. 4.11.  Event graph model for an assembly operation.

-- ---- --

Event Graph Modeling Templates   79

that C1 = (P2 ≥ 1) and C2 = (P1 ≥ 1) are also valid. Similarly, the edge condi-
tion for the Join → Load edge is (M > 0) & (Q ≥ 1), but in Fig. 4.11, it is speci-
fied as (M > 0) because (Q ≥ 1) is always true at the Join event.

Exercise 4.5. Modify the event graph Fig. 4.11 to assemble three type 1
parts and four type 2 parts.

4.4.1.7  Resource Priority Model  When there are two servers with differ-
ent priorities, an arriving customer is served by the high priority server (M1)
if it is free. The customer is directed to the low priority server (M2) only when
M1 is busy, which is handled by a Check event. An event graph model for a
“two server system with priority” is given in Fig. 4.12.

The above resource priority model has a common queue for both servers.
There is a situation where each server has its own queue and the arriving
customers join the smaller queue, which is often referred to as a queue length
balanced line.

Exercise 4.6. Modify the event graph Fig. 4.12 to make it a queue length
balanced line.

4.4.1.8  Resource Failure Models  A single server system with resource
failure may be modeled by introducing a Fail event with an interfailure time
tf and a Repair event with a repair time tr. An event graph model of the single
server system with failure is given in Fig. 4.13 (it is the same as Fig. 4.5). The
Fail event will cancel a scheduled Unload event (if there is one) and schedule
a Repair event to occur after tr minutes. The active resources in the resource
failure system are the machine and repairman, while the entities are the jobs
and failures. This model assumes that a server may fail even when it is idle and
that the job whose processing is interrupted by the failure is discarded without
reprocessing.

Exercise 4.7. Modify the event graph of Fig. 4.13 so that the job that was
interrupted by the failure is reprocessed.

Fig. 4.12.  Event graph model of a two-server system with resource priority.

Load1 Unload1

{Q++} {M1--, Q--} {M1++}

(M1>0)

(Q>0)

Arrive
t1

ta

Q= 0; M1=1; M2=1; Check

Load2 Unload2

(M1≡0 & M2>0) (Q>0)

t2

{M2--, Q--} {M2++}

80    Introduction to Event-Based Modeling and Simulation

Now consider the case where the interfailure time is effective only when
the server is busy (i.e., idle periods have no effect on the failure) and the inter-
rupted job is discarded. If all time data are deterministic such that service time
S = 10, repair time R = 50, and interfailure time F = 1000, then the “single
server system with failure” can be modeled without an event cancellation as
shown in Fig. 4.14.

In the event graph model, tf is the remaining time to failure; tu is the actual
time to unload. In general, an event graph model with an event cancellation
can be transformed into a model without an event cancellation [Savage and
Schruben 1995]. Notice in the model that the remaining time to failure (tf) is
also a state variable that is updated every time the machine completes a cycle.
Issues related to modeling resource failures are discussed further in Schruben
and Schruben [2001]. The actual time to unload (tu) is computed in the Get-tu
() function as follows: When the remaining time to failure is larger than the
service time (tf ≥ S), the scheduled Unload event will be performed as sched-
uled. In this case, the actual time to unload equals to the service time (tu = S),
and the tf is decreased by S. Otherwise (tf < S), tu becomes tf + R, and tf is set
to the interfailure time F.

4.4.2  Tandem Line Models

The event graph of the two-stage tandem server defined previously in Chapter
2 (Fig. 2.15) is reproduced in Fig. 4.15, which serves as the baseline tandem
line model in this chapter. The baseline model is obtained by appending a
server model to the single server model of Fig. 4.1(b). From this baseline event
graph model, a number of tandem line models may be generated: (1) limited

Fig. 4.13.  Event graph of single server system with failure.

Load Unload

{Q++} {M=0, Q--} {M= 1}

(M>0)

(Q>0)

Arrive
ts

ta

Initialize box:
Q=0; M=1;

Repair Fail
{M=1}

{M= –1}

(Q>0)

tf

tf

tr

Fig. 4.14.  Modeling of machine failure without an event cancellation.

Load Unload

{Q++} {M++}

(M>0)
(q>0)

Arrive
tu

ta

{ Q--, M--,
tu= Get-tu (tf)}

Q= 0;
M=1;
tf= F;

Function Get-tu (tf)
If (tf u= S; tf = tf – S } // no fail

else { tu = tf+ R; tf = F }; // fail
Return (tu)

Event Graph Modeling Templates   81

buffer tandem line model, (2) buffer-less tandem line model, and (3) time-
constrained processing model.

4.4.2.1  Limited Buffer Tandem Line Model  If the buffer after a machine
has a limited capacity, a finished job may not be unloaded from the machine
when the buffer is full. This situation is referred to as blocking. Figure 4.16 is
an event graph model for a two-stage tandem line with a buffer of capacity
c2. A Finish event and a blocking variable (B1) are introduced to control the
blocking of M1: (1) the Finish event sets the blocking variable to true (B1 = 1)
and schedules an Unload-1 event if the buffer is not full (Q2 < c2); (2) the
Unload-1 event sets the blocking variable to false (B = 0); and (3) the Load-2
event schedules an Unload-1 event if the blocking variable is true (B1 ≡ 1).

4.4.2.2  Buffer-less Tandem Line Model  If the buffer capacity is zero (c = 0)
in the limited buffer tandem line model, the adjacent machines are tightly
coupled such that unloading from machine-j becomes loading to machine-j+1,
which is called an “UjLj+1” event. An event graph model of three-stage buffer-
less tandem line is given in Fig. 4.17.

4.4.2.3  Time-Constrained Processing Tandem Line Model  A processing
situation where a job that had been processed on a machine (M1) must start
the next processing step on the next machine (M2) within a time-out limit (to)
is called a time-constrained processing. Otherwise, the time-out job is discarded

Fig. 4.15.  Baseline event graph model of tandem line system.

Load1 Unload1

{Q1++} {M1=1; Q2++}

(M1>0)

(Q1>0)

Arrive
t1

ta
Q1=0
Q2=0
M1=1
M2=1

Load2 Unload2

{M2=1}

(M2>0) t2

{Q1--, M1=0} {Q2--. M2=0}

(Q2>0)

Start

Fig. 4.16.  Event graph model of a limited buffer tandem line (blocking).

Load
1

Unload
1

{Q1++} {M1++, Q2++, B1--}

(M1>0)

(Q1>0)

Arrive
t1

ta
Q1=0
Q2=0
M1=1
M2=1
B1=0

Load
2

Unload
2

{M2++}

(M2>0) t2

{Q1--, M1--} {Q2--. M2--}

(Q2>0)

Finish
(Q2<c2)

{B1++}

(B1∫1)

Fig. 4.17.  Event graph model of three-stage buffer-less tandem line (blocking).

---- -- --

82    Introduction to Event-Based Modeling and Simulation

(which is the same as the reneging situation of Fig. 4.8) or sent back to M1 for
reprocessing. In Fig. 4.18, a Time-out event is introduced to manage the time
constrained processing under a discarding policy: (1) every Unload-1 event
schedules a Time-out event to occur after to minutes if M2 is 0; (2) every
Unload-2 event cancels the oldest Time-out event that had been scheduled;
(3) a Time-out event decrements Q2 (i.e., discard a time-out job).

Exercise 4.8. Modify the event graph Fig. 4.18 so that the time-out jobs are
reprocessed.

4.5  EVENT GRAPH MODELING EXAMPLES

System modeling is an art that cannot be mastered without practice. In order
for you to become familiar with event graph modeling, some examples of event
graph modeling are provided in this section. The event graph application areas
that will be covered are a simple service shop with fluctuating arrival rates, a
car repair shop, a project management application, a conveyor-driven serial
assembly line, and an inline manufacturing cell.

4.5.1  Flexible Multi-Server System with Fluctuating Arrival Rates

A salient feature of a service system is that the customer arrival rates fluctuate
over time. In a flexible multi-server system, the resource levels change over
time in order to cope with the changes in arrival rates. Let λ(t) and n(t) denote
arrival rates and the number of servers at time t, respectively; then, by combin-
ing the event graph templates in Figs. 4.6 and 4.9, the event graph model of a
flexible multi-server system with fluctuating arrival rates can be constructed
as in Fig. 4.19.

4.5.2  Car Repair Shop

The entities of a car repair shop are the cars brought in for repair and the
resources are the technicians and repairmen. There are three types of activities:

Fig. 4.18.  Event graph model for time-constrained processing with a discarding policy.

Load
1

{Q1++} {Q1--,
M1--}

(M1>0)
Arrive

ta
Q1=0;
Q2=0;
M1=1;
M2=1;

Unload
1

{M1++,
Q2++}

t1

(Q1>0)

Load
2

{Q2--,
M2--}

(M2>0)

Time-
out{Q2-- }

to

~(M2 0)

Unload
2

{M2++ }

(Q2>0)

t2

(Q2>0)

Event Graph Modeling Examples   83

Fasten, Inspect, and Repair, with processing times t1, t2, and t3, respectively. The
fasten operation is performed by a technician; the inspection operation requires
both a technician and a repairman; and the repair operation is handled by a
repairman.

A reference model of a simple car repair shop under a same operator policy
is provided in Fig. 4.20(a) where a car is fastened and inspected by the same
technician and is inspected and repaired by the same repairman. Thus, a tech-
nician stands by after fastening a car until a repairman is available. If the same
operator restriction is removed, the reference model would change to that
shown in Fig. 4.20(b).

Figure 4.21 is an event graph model of the car repair shop under the same
operator policy. There are m free technicians and n free repairmen in the
system. The state variables are the number of waiting cars (Q1, Q2, Q3),
number of free technicians (T), and number of free repairmen (R). All start
points and end points of the activities are regarded as events: car arrival (CA),

Fig. 4.19.  Event graph of flexible multi-server system with fluctuating arrival rates.

λ*)

Q= 0; M= n(0);
Define λ*; λ(t); n(t)

λ (t)/λ*)

{U= Uni(0,1)}

M(t)= M + (n(t) – n(0));

Fig. 4.20.  (a) Reference model of car repair shop under a same operator policy; (b)
reference model of car repair shop without a same operator policy.

Fasten (t1) Inspect (t2) Repair (t3)

Technicians Repairmen

Q1

Arrival (ta)

Q2 Q3

Fasten (t1) Inspect (t2) Repair (t3)

Technicians Repairmen

Q1(∞)

Arrival (ta)

Q2 Q3

(a)

(b)

Fig. 4.21.  Event graph of a car repair shop under the same operator policy.

CA Fs Fe Is Ie

{Q1++} {Q1--, T--} {Q2++} {Q2--, R--} {T++, Q3++}

(T>0)

ta

t1 t2
Rs Re

{R++}

(Q2>0)

t3(R>0)

(Q1>0)
Q1=0
Q2=0
Q3=0
T=m
R=n

{Q3--}

84    Introduction to Event-Based Modeling and Simulation

fastening start (Fs), fastening end (Fe), inspect start (Is), inspect end (Ie), repair
start (Rs), and repair end (Re).

Exercise 4.9. Build an event graph for the reference model of Fig. 4.20(b).

4.5.3  Project Management Modeling

In project management, the precedence relationships among activities are
represented as a directed graph of activities known as a PERT (program evalu-
ation and review technique) diagram [Duncan 1996]. Shown in Fig. 4.22 is an
activity-on-node (AON) PERT diagram involving nine activities (A1–A9) that
serves as a reference model of the project management problem. A node
denotes an activity, and an edge represents the finish–start precedence rela-
tionship between the two nodes (i.e., the first activity must be finished before
starting the second activity). The activity ID (Aj), activity time (tj), and the
critical resource (Rk) required for each activity (noncritical resources are not
explicitly identified) are indicated in each node. For example, the resource R1
manages activities A1, A3, and A7.

Let’s build an event graph model for the AON PERT diagram in Fig. 4.22
disregarding the resources. (This example was adopted from Schruben and
Schruben [2001].) The first step is to identify the state variables of the PERT
diagram. The state variables are {nj for j = 1∼9}, where nj denotes the number
of unfinished precedent activities of activity Aj. Note that the activity Aj may
be started only when nj is 0. The start point and finish point of activity Aj are
defined as the start event Sj and finish event Fj, respectively. An event graph
model of the AON PERT diagram without resource constraints is given in
Fig. 4.23.

Initially, the state variables have the following values: n1 = 0, n2 = 1, n3 = 1,
n4 = 1, n5 = 2, n6 = 1, n7 = 1, n8 = 2, and n9 = 2. The finish event F1 will decrement
its succeeding activity counts (n2−−, n3−−) and schedule the start events (S2
and S3) of its succeeding activities because n2 ≡ 0 and n3 ≡ 0. For example, the
start event S3 may start when n3 = 0, and it will schedule the finish event F3 to
occur after t3 time units. The succeeding activities of A3 are A5 and A6. Thus,
n5 and n6 are decremented by F3, and so on.

In general there are four types of precedence constraints: finish–start,
finish–finish, start–start, and start–finish precedence constraints. For example,

Fig. 4.22.  Activity-on-node PERT diagram with finish–start precedence.

A4 (t4, -)

A1 (t1, R1)

A2 (t2, R2)

A3 (t3, R1)

A5 (t5, -)

A6 (t6, -)

A7 (t7, R1)

A8 (t8, R2)

A9 (t9, R2)

Event Graph Modeling Examples   85

an event graph of a PERT diagram with a start-to-start precedence may be
constructed similarly. However, the event graph of Fig. 4.23 may be simplified
somewhat by eliminating all start events {Sj}. Methods of simplifying event
graph models are elaborated in Schruben [1983].

In general, it is possible to construct an event graph model for a resource
constrained PERT diagram by introducing a resource dispatch event for each
resource together with additional state variables, but it may become quite
complicated when the resource-activity relationships are not simple. Resource
constrained PERT diagrams may be modeled more easily using an activity
cycle diagram, as will be described further in Chapter 6.

Exercise 4.10. Simplify the PERT event graph Fig. 4.23 by removing the
state variables {nj} whose initial value is 1.

4.5.4  Conveyor-Driven Serial Line

Consider a three-stage serial production line shown in Fig. 4.24 consisting of
three workstations (WS) connected by conveyors (CV). The base parts (jobs)
stored in the input buffer (Buffer-I) are moved along the line, and the subparts
are assembled into the base part at each workstation. The assembled base parts
(i.e., products) are stored in the output buffer (Buffer-O). The entities in the
system are the base parts, and the resources are the WS, CV, and Buffer. The
activities are the production operations at the WS and the transport operations
by the conveyors.

Each workstation WSj for j = 1-n is specified by its production operation
time pj, while each conveyer CVj for j = 2-n is specified by its capacity cj
and transport time tj. The capacities of Buffer-I and Buffer-O, respectively

Fig. 4.23.  Event graph of the PERT diagram of Fig. 4.22 without resource
constraints.

n2--
n3--

(n2 0)

(n3

n5--, n6--

n4--

(n4

(n6

(n5

(n7

(n5

n5--
n7--

n8--

n8--

(n8

(n8

n9--

n9--
(n9

(n9
 0) 0)

 0) 0)

 0)

 0)

 0) 0)

 0) 0)

Fig. 4.24.  Reference model of a three-stage conveyor-driven serial production line.

86    Introduction to Event-Based Modeling and Simulation

designated as c1 and cn+1, are assumed to be unlimited. Thus, the characteristics
of the serial production line are defined using the following values:

pj = processing time at WSj;
tj = transport time of the conveyor-j feeding WSj; and
cj = capacity of CVj (c1 = cn+1 = ∞).

The state of each workstation (WSj) is specified by two state variables: Mj
(free or busy) and Bj (blocked or not); that of CVj is specified by Qj (total
number of jobs on a CVj) and Rj (number of “ready” jobs that have been
moved to the WS). Thus, the state variables of the serial production line are
as follows:

Mj = workstation-j status (1: free, 0: busy);
Bj = blocking of workstation-j (1: blocked);
Qj = total number of jobs at CVj; and
Rj = number of jobs ready at CVj (i.e., jobs that have been transported).

Since a conveyor acts as a limited buffer, each workstation in the serial line
is modeled as a machine in the limited buffer tandem line of Fig. 4.16. Thus,
there are three types of events associated with WSj: Load (Lj), Finish (Fj), and
Unload (Uj). Let Tj denote the Transport (to the end of conveyor) event of
CVj. Then, the operation cycle of CVj is defined by Uj−1 (unload from work
station j−1), Tj, and Lj. Thus, the event graph model of the three-stage conveyor-
driven serial line is as shown in Fig. 4.25, where Tj denotes the Transport event
at CVj.

4.5.5  Inline-Type Manufacturing Cell Modeling

An electronics fabrication factory (abbreviated as Fab) is a job shop in which
a job goes through a number of processing steps according to its routing
sequence. In a modern electronics Fab, unlike a mechanical job shop where a
mechanical part is processed individually at table machines, the jobs are pro-
cessed in batches mostly in inline cells.

Depicted in Fig. 4.26 is a photolithography cell commonly found in a modern
TFT–LCD (thin film transistor–liquid crystal display) panel Fab. For brevity,

Fig. 4.25.  Event graph model of a three-stage conveyor-driven serial line.

{M1++
B1=0
Q2++}

{M1- -
R1- -}

(B1>0)

p1 t2 p2 t3

{M3++}

p3

{M2- -
Q2- -
R2- -}

{R2++}{B1=1}

(R2>0)

{R3++}{B2=1}

(R3>0)(B2>0)(R1>0)

{M2++
B2=0
Q3++}

{M3- -
Q3- -
R3- -}

Event Graph Modeling Examples   87

the inline-type manufacturing cell will be simply called an inline cell. This
modeling case is quite significant as it is taken from a real-life simulation
project in which a simulation-based planning and scheduling system was built
for a TFT–LCD Fab [Park et al. 2008], and it considers important issues that
arise in these Fabs. The issues addressed in the case study are the “divide and
conquer” method of building event graph models and model simplification.

In the photolithography cell in Fig. 4.26, the jobs are glasses that go through
photoresist (PR) coating, exposure, and development processes in the cell. The
jobs are handled in batches with each batch (or lot) stored in a cassette. The
arriving cassettes that are stored in the inline stocker are moved into the I/O
port, which is called the cassette loading (CL) operation. The glasses are
loaded inline using a loading robot, with one glass being loaded at every takt
time (τ). It takes a flow time (π) for a loaded glass to reach the end of the cell
where it is unloaded into the unloading cassette located at the I/O port. The
unloading cassette departs when it is filled with finished glasses. In unloading
the glasses, only one unloading cassette is used at a time.

4.5.5.1  Reference Model  Figure 4.27 is the reference model of the cell
given in Fig. 4.26. The physical components of the cell are the Stocker, I/O
port, Robot, and Inline. The state variables in the model are Q (number of
arriving cassettes in the Stocker), B (number of arriving cassettes in the I/O
port), E (number of empty shelves in the I/O port), and R (status of Robot).
The activities in the cell are (1) cassette arrival, (2) cassette loading, (3) glass
loading, (4) glass unloading, and (5) cassette departure.

The capacity of the Stocker is assumed to be unlimited. The I/O port has a
finite number of shelves for storing cassettes (arriving, unloading, and empty
cassettes). Let N be the number of shelves of the I/O port. If all shelves are
empty at the beginning, we have E = N and B = 0. If an arriving cassette is
loaded onto I/O port, the state variables are updated to E = E−1 and B = B+1.
If all glasses in an arriving cassette are loaded into the Inline, the cassette
becomes empty. If the finished glasses are unloaded into an empty cassette, it

Fig. 4.26.  An inline cell for photolithography process.

Inline
Stocker

I/O Port

88    Introduction to Event-Based Modeling and Simulation

becomes an unloading cassette. When the unloading cassette departs from the
I/O port, the number of empty shelves is increased by one (E = E+1).

Only the glasses with the same job type are stored in a cassette, which
becomes the job type of the cassette. The job type of an arriving cassette is
denoted by Ja and the number of glasses in the arriving cassette is ga ≤ λ,
where λ is the cassette capacity. The finished glasses are unloaded into the
empty slots of the unloading cassette whose job type is denoted by Ju. The
number of empty slots in the unloading cassette is denoted by eu ≤ λ. Thus,
the number of glasses in the unloading cassette is equal to λ − eu. The eu
(number of empty slots) and Ju (job type) of the unloading cassette are also
regarded as state variables. Recall that there is only one unloading cassette at
a time.

In general, it is convenient to divide the reference model into regions, build
a submodel for each region, and join the submodels in order to obtain the
entire event graph model of the reference model. Now, we will divide our
reference model into three regions: the Loading region, Processing region, and
Unloading region.

4.5.5.2  Loading Region Modeling  Figure 4.28 is a reference model of the
loading region (Stocker + I/O port + Robot). The time required for processing
all glasses in an arriving cassette is t1 = ga * τ, where τ is the takt time of a

Fig. 4.27.  Reference model of the inline-type manufacturing cell in Fig. 4.26.

Stocker (Q)

Robot(R)

3) Glass
Loading (τ: takt-time/glass)

1) Cassette
Arrival

: Arriving cassette (ga, Ja); : Empty cassette ();

4) Glass
Unloading

5) Cassette Departure

: Unloading cassette (eu, Ju)

ga= # of glasses in Arriving cassette; λ= cassette capacity; eu= # of empty slots in the Unloading cassette

2) Cassette
Loading

I/O port (B, E)

Inline (p: flow-time)

5) Cassette Departrr ure

l

Fig. 4.28.  Reference model of the loading region.

FGL

t
Glass-Loading time

t1 = ga * τ

LGL

CL

CA
If I/O-Port has empty shelves

If I/O Port has arriving cassettes
If Robot is idle (R 1)

Event Graph Modeling Examples   89

glass loading. The events involved in the loading region model are CA (end
of cassette arrival), CL (end of cassette loading), FGL (start of first glass
loading), and LGL (end of last glass loading). The relationships among the
events are as follows: (1) when a cassette arrives, it is loaded if the I/O port
has space; (2) the first glass of the cassette is loaded if the Robot is idle; (3)
the last glass is loaded after t1 time units since the first glass is loaded; and (4)
after the last glass loading, the first glass of the next cassette is loaded if there
is an arriving cassette in the I/O port.

The system dynamics of the loading region described in the reference model
may be formally specified as an event graph model in terms of the state vari-
ables. An event graph model of the loading region is given in Fig. 4.29, where
the state variables are Q (number of arriving cassettes in Stocker), B (number
of arriving cassettes in I/O port), E (number of empty shelves in I/O port),
and R (status of Robot with R = 1 initially).

4.5.5.3  Processing Region Modeling  A reference model of the processing
region and its event graph model are shown in Fig. 4.30(a) and (b), respectively.
The events at the start of the Inline are the FGL and LGL that were defined
in the In-port region (see Fig. 4.29), and the events at the end of the Inline are
FGU (start of the first glass unloading) and LGU (end of the last glass unload-
ing). The FGU event is scheduled by the FGL event to occur after the flow
time (π), and the LGU is scheduled by the LGL after π.

4.5.5.4  Unloading Region Modeling  Figure 4.31 shows the reference
model of the unloading region. The events involved are the FGU, LGU, and

Fig. 4.29.  Event graph of the loading region.

CA CL FGL LGL
t1

{Q++} {Q--, E--, B++}

(E>0)

{R=1} {R=0, B--, t1= *τ

(B>0)

(R≡1)

Fig. 4.30.  (a) Reference model and (b) event graph model of the processing region.

flow time

FGL LGL

FGU LGU

t1
t1

(start of first glass unload)

(a) (b)

90    Introduction to Event-Based Modeling and Simulation

CD (end of cassette departure). An arriving cassette is identified by its job
type (Ja) and its number of glasses (ga), while the unloading cassette is speci-
fied by its job type (Ju) and the number of its empty slots (eu). An important
restriction in glass unloading is that all glasses in the unloading cassette have
the same job type. Namely, the unloading cassette departs either when it is full
or when there is a job type change in the unloaded glasses.

At the time of the first glass unloading (FGU) event, a cassette departure
(CD) event is scheduled based on the attribute values of the arriving cassette
(Ja and ga) and state variables (Ju and eu). Depending on the values of these
attributes and state variables, the following actions are taken at the FGU event
time: (JTC and UCNE are Boolean variables denoting Job Type Change and
Unloading Cassette Not Empty, respectively).

1.	 If there is a job type change (JTC = (Ja ≠ Ju)) or the unloading cassette
is not empty [UCNE = (eu < λ)], then schedule a CD event to occur now
and obtain a new unloading cassette (eu = λ; Ju = Ja).

2.	 If (ga ≥ eu), then schedule a CD event to occur after a time delay of
t2 = τ * eu.

3.	 Update the state variables: Ju = Ja. If ga ≥ eu, then eu = λ − (ga − eu),
else eu = eu − ga.

At the time of the cassette departure (CD) event, a cassette loading (CL)
event is scheduled if there is an arriving cassette in the I/O port. Reflecting
the above state transition relationships, the resulting event graph is as shown
in Fig. 4.32.

In practice, the restriction that all glasses in an unloading cassette must have
the same job type (requiring partially filled unloading cassettes to be removed
when there is a job type change) may be relaxed in order to reduce the model
complexity. Then, the cassettes are fully loaded during handling (ga = λ). The
event graph of the unloading region may be simplified to that shown in
Fig. 4.33.

4.5.5.5  Event Graph Model of Entire Cell  By combining the three event
graphs in Figs. 4.29, 4.30, and 4.33, we can obtain the event graph for the entire

Fig. 4.31.  Reference model of the unloading region.

FGU LGU

Unload

Depart

CDCD

<At the FGU event time>

τ∗

(eu, Ju)

(ga, Ja)

Arriving cassette

Unloading cassette

t2 τ∗
*
<At the CD event time>

EXECUTION OF EVENT GRAPH MODELS WITH SIGMA   91

inline cell as shown in Fig. 4.34 if we assume that the arriving cassettes are
fully loaded (ga ≡ λ). There are six events in the model: CA (cassette arrival),
CL (cassette loading), FGL (first glass loading), LGL (last glass loading), FGU
(first glass unloading), and CD (cassette departure). An event transition table
for the event graph is given in Table 4.4.

The state variables in the inline cell model are Q (number of arriving cas-
settes in Stocker), B (number of arriving cassettes in I/O port), E (number of
empty shelves in I/O port), and R (status of Robot). The design variables of
the system are λ (cassette capacity), τ (takt time), and π (flow time).

Exercise 4.11. Simplify the inline cell event graph model in Fig. 4.34 by
removing the FGU event vertex.

4.6  EXECUTION OF EVENT GRAPH MODELS WITH SIGMA

The purpose of this section is to introduce the SIGMA software. The overall
procedure for building a SIGMA program for simulation is as follows. A brief

Fig. 4.32.  Event graph model of the unloading region.

τ *
- - -

t2
τ *

{E++}

Fig. 4.33.  Simplified event graph model of the unloading region.

t1

{E++}1= λ ∗

Fig. 4.34.  Combined event graph model of the inline cell.

CA CL FGL LGL
t1

{Q++} {Q--, E--, B++}

(E>0)

{R=1} {R=0;
B--;

t1= λ ∗τ

(B>0)

(R>0)

FGU CD
t1

{E++}

92    Introduction to Event-Based Modeling and Simulation

SIGMA tutorial as well as the two SIGMA models discussed in this section
may be found in the official website of this book (http://VMS-technology.com/
Book/Sigma).

1.	 Create a SIGMA-generated event graph consisting of vertices and edges.
2.	 Declare variables: all variables are declared in a dialog box.
3.	 Define the Run vertex: state variables are listed as parameters in the

dialog box.
4.	 Define the Event vertices: the state changes and parameter variables of

each event vertex are described at each Edit vertex dialog box.
5.	 Define the Edges: the time delay, edge condition, and attribute (param-

eter value) of each edge are defined in each Edit edge dialog box.
6.	 Specify Run Options: various run options (end of simulation condition,

trace variables, etc.) are specified and the state variables are initialized
in the Run options dialog box.

4.6.1  Simulation of a Single Server System with SIGMA

The above six-step procedure will be illustrated using the single server system
presented in Fig. 4.1. In order to become familiar with the basic functions of
SIGMA, you are advised to follow the steps one by one.

4.6.1.1  Creating a SIGMA-Generated Event Graph  SIGMA has a well-
defined syntax system. For example, the initialize box of an ordinary event
graph is treated as the #1 event vertex (named Run or Init); an exponential
random variate with a mean of 1 is denoted as ERL{1}; and the operators
++/−− are not allowed. Thus, using the SIGMA syntax, a SIGMA-compatible
event graph may be obtained from the “neutral” event graph of Fig. 4.1(b) as
shown in Fig. 4.35.

In this book, an event graph generated by SIGMA is called a SIGMA-
generated event graph. The first step in building a SIGMA simulation program

TABLE 4.4.  Event Transition Table for the Event Graph of Figure 4.34

No
Originating

Event State Change Edge Condition Delay
Destination

Event

1 CA Q = Q + 1; 1 E > 0 0 CL
2 CL Q = Q − 1; E = E − 1;

B = B + 1;
1 R > 0 0 FGL

3 FGL R = 0; B = B − 1;
t1 = λ * τ

1 True t1 LGL
2 True π FGU

4 LGL R = 1; 1 B > 0 0 FGL
5 FGU 1 True t1 CD
6 CD E = E + 1; 1 Q > 0 0 CL

http://VMS-technology.com/Book/Sigma
http://VMS-technology.com/Book/Sigma

EXECUTION OF EVENT GRAPH MODELS WITH SIGMA   93

is to obtain a SIGMA-generated event graph from the SIGMA-compatible
event graph such as the one presented in Fig. 4.35. A SIGMA-generated event
graph of a single server system is shown in Fig. 4.36 (see the SIGMA tutorial
posted on the official website of this book) for further details. It is a graph
consisting of four vertices and five directed edges. (There are two edges
between the Load vertex and Depart vertex.) The vertices are named Run,
Arrive, Load, and Depart.

4.6.1.2  Declaring State Variables  All user-defined variables must be
declared in the State Variable Editor window of SIGMA. As depicted in Fig.
4.37, the two variables, Q and M, are declared as integer variables. The number
“1” in the row “Q 1 INT queue length” signifies that Q is an integer variable
(or an array of size 1).

4.6.1.3  Defining the Run Vertex  By clicking the first vertex of the SIGMA
event graph (named Run), the dialog box Edit Vertex 1 is created, as shown
in Fig. 4.38. Then, the variables (Q and M) that are initialized at the Run event
vertex of Fig. 4.35 are entered in the parameters field of the Run vertex dialog
box. (Q and M are initialized in the Run Options dialog box, as will be seen
later in Fig. 4.42.)

Fig. 4.35.  SIGMA-compatible event graph of the single server system.

Fig. 4.36.  SIGMA-generated event graph of the single server system.

Fig. 4.37.  Declaring Q and M as state variables.

94    Introduction to Event-Based Modeling and Simulation

4.6.1.4  Defining Event Vertices (Arrive, Load, and Depart)  The vertices
are assigned numbers sequentially as they are created. There are three events
in the single server system: Arrive, Load, and Depart. For example, by clicking
the vertex Arrive of the event graph in Fig. 4.36, a dialog box Edit Vertex 2 is
created as shown in Fig. 4.39. Then, the state change Q = Q+1 is entered in the
State Change field of the dialog box. The state changes at other events are
defined in the same way.

4.6.1.5  Defining Edges  The edges are assigned numbers sequentially as
they are created. For example, by clicking the edge Arrive→Load of the event
graph in Fig. 4.36, a dialog box Edit Edge 2 is created, as shown in Fig. 4.40.
Then, the time delay 0 and edge condition M > 0 are entered in the Delay field
and Condition field of the dialog box, respectively.

For a double edge, each of the sub-edges is defined separately. By clicking
the double edge Load↔Depart and then selecting its sub-edges, the time delay
and edge condition of each sub-edge can be specified, as shown in Fig. 4.41.

Fig. 4.38.  Defining Q and M as parameters of the Run event vertex.

Fig. 4.39.  Defining the state change (Q = Q+1) of the Arrive event.

Fig. 4.40.  Defining the time delay and edge condition of the Arrive→Load edge.

EXECUTION OF EVENT GRAPH MODELS WITH SIGMA   95

4.6.1.6  Describing Run Options  The experimental conditions and simula-
tion output requirements are specified in the Run Options dialog box. The run
options entered in the dialog box of Fig. 4.42 are:

•  seed number for random variate generation: 12345;
•	 simulation run mode: graphic;
•	 EOS (end of simulation) time: 500 minutes;
•	 variables to be traced: Q, M, TAV(Q) // TAV stands for time-average //;
•	 initial values of the state variables Q and M: 0 and 1, respectively; and
•	 “Output Plot”: enabled.

The model default output is shown in Fig. 4.42, and the output plots for the
state variables Q and M are shown in Fig. 4.43.

4.6.2  Simulation of a Conveyor-Driven Serial Line with SIGMA

An event graph model of a two-stage conveyor-driven serial line with R1 = 500
and c2 = 10 is given in Fig. 4.44. The distributions of the processing times and

Fig. 4.41.  Defining the time delay and edge condition of the sub-edges.

Fig. 4.42.  Run Options dialog box and Model Defaults output.

96    Introduction to Event-Based Modeling and Simulation

Fig. 4.43.  Output plots of Q and M.

Fig. 4.44.  Event graph model of a two-stage conveyor-driven serial line.

L1 F1 U1

{M1++; B1=0;
Q2++}

{M1- -; R1- -}

(B1>0)

T2 L2 U2
(Q2<c2)

{M2- -; R2- -;
Q2- -}

{R2++}{B1=1}

(R2>0)

(M2>0)

(R1>0)

{M2++}

At the U1 event vertex: ENT[0] = CLK; Q2 = Q2 + PUT{FIF;1}
At the L2 event vertex: Q2 = Q2 − GET{FST;1}; WT = CLK − ENT[0].

transport time are: p1 ∼ Exp(10), p2 ∼ Exp(15), and t2 ∼ Exp(3). Assume that
we are interested in the mean waiting time and mean queue length of the jobs
in the internal conveyor.

4.6.2.1  Modifying the Event Graph to Collect the Waiting Time Statis-
tics  In this book, the variables introduced primarily for the purpose of
collecting statistics are called statistics variables. The waiting time (WT) of a
job is computed by subtracting the job’s entering time from its leaving time,
for which the queue is defined as a ranked list of job-entering times. In
SIGMA, (1) the current simulation clock time is obtained from the function
CLK, (2) the function PUT{O;L} is used for en-queuing a record into the
ranked list L with option O (=FIF, LIF, INC, or DEC) and GET{O;L} for
de-queuing, and (3) the record for en-queue/de-queue is stored in the built-in
array ENT[]. A successful call to PUT{} or GET{} returns a value of 1. Thus,
in order to collect the waiting time statistics, the following statistics variables
must be specified as shown in Fig. 4.45.

EXECUTION OF EVENT GRAPH MODELS WITH SIGMA   97

In the SIGMA model of Fig. 4.45, the number of jobs in the conveyor is
stored in the integer variable Q2, and the waiting time of each job at the con-
veyor is stored in the real variable WT. The first entry of the ENT array,
ENT[0], is used as a buffer for storing the data record into the built-in ranked
list #1 with the PUT{FIF;1} function. The data stored in the FIFO (first-in,
first-out) queue ranked list #1 is retrieved using the GET{FST;1} function.

4.6.2.2  Simulating the Conveyor-Driven Serial Line with SIGMA  As
described in Section 4.6.1, the procedure for executing an event graph model
consists of six steps. The first step is to draw the event graph (Fig. 4.45) using
the graphical user interface (GUI) functions of the SIGMA software as shown
in Fig. 4.46.

The second step is to open the State Variable Editor dialog box and declare
all variables appearing in the modified event graph of Fig. 4.45 as state vari-
ables. As shown in the left side of Fig. 4.47, M1, M2, Q2, R1, R2, B1, and C2
are integer variables; WT (waiting time) is a real variable; RNK is an integer
array (with a size of 10,000); and ENT is a real array (with a size of 15). The
third step is to bring in the Edit Vertex 1 dialog box and specify all user-defined
variables in the RUN vertex as its parameter variables, as shown in the right
side of Fig. 4.47.

The fourth step is to create an Edit Vertex dialog box for each event vertex
in the SIGMA event graph of Fig. 4.46 and enter the state change expressions
in the State Change field. An example of the Edit Vertex dialog box for the
U1 event is shown in the left side of Fig. 4.48: M1 = M1 + 1, B1 = 0,

Fig. 4.45.  SIGMA-compatible event graph of two-stage conveyor-driven serial line.

L1 F1 U1

(B1>0)

T2 L2 U2

(R2>0)

(M2>0)

(R1>0)

Run
(Q2<c2)

Fig. 4.46.  Event graph of Fig. 4.45 constructed using the SIGMA GUI.

98    Introduction to Event-Based Modeling and Simulation

ENT[0] = CLK, Q2 = Q2 + PUT{FIF;1}. The fifth step is to describe the time
delay and edge condition of each edge of the event graph. Shown in the right
side of Fig. 4.48 is the Edit Edge dialog box for the L1→F1 edge, where the
time delay is given as 10*ERL{1} and the edge condition is TRUE.

The sixth step is to create the Run Options dialog box and specify the
experimental conditions and output requirements as depicted in the left side
of Fig. 4.49, where the run options are specified as follows:

•	 seed number for random variate generation: 12345;
•	 simulation run mode: graphics;
•	 EOS (end of simulation) time: 5000;
•	 variables to be traced: Q2, M1, M2, TAV{Q2}, WT, AVE{WT};
•	 initial values of the state variables: M1 = 1, M2 = 1, Q2 = 0, R1 = 500,

R2 = 0, C2 = 10; and
•	 “Output Plot”: enabled.

Shown in the right side of Fig. 4.49 are the Run Option values (i.e., model
default output) and a listing of the values of the traced variables at each event
time. The output plots of Q2 and WT with respect to CLK are shown in Fig. 4.50.

Fig. 4.47.  Declaration of state variables and specifying parameter variables.

Fig. 4.48.  Entering information for a vertex (U1) and an edge (L1→F1).

Developing Your Own Event Graph Simulator   99

4.7  DEVELOPING YOUR OWN EVENT GRAPH SIMULATOR

This section aims to help you become able to develop your own simulation
program for executing a given event graph model. If you have foundational
skills in computer programming and follow this section carefully, you should be
able to write your own event graph simulator. The event graph simulator for
simulating the single server model will be given in pseudocode form, which is
language-independent and thus may be easier to understand. A complete list of
C# codes for the single server simulator may be found on the official website
of this book (http://VMS-technology.com/Book/EventGraphSimulator).

4.7.1  Functions for Handling Events and Managing Queues

The method of developing a dedicated simulator for a given event graph
model will be described in a bottom-up manner, starting from the primitive
functions for handling events and managing queues.

Fig. 4.49.  Run Options dialog box and Model Defaults output.

Fig. 4.50.  Output plots of Q2 (queue size) and WT (waiting time).

UNTITLED. OUT (Q2 vs. Time) UNTITLED. OUT (WT vs. Time)

0 1000 2000

295

236

177

118

59

0
3000 4000 5000 0 1000 2000 3000 4000 5000

10

8

6

4

2

0

http://VMS-technology.com/Book/EventGraphSimulator

100    Introduction to Event-Based Modeling and Simulation

Figure 4.51 provides a schematic description of the three event-handling
functions: Schedule-event (), Retrieve-event (), and Cancel-event (). Initially,
there are three future events {<E1, 12.1>, <E2, 18.6>, <E3, 34.0>} stored in the
future event list (FEL). The management of these events using these functions
will be explained with examples.

1.	 If the Schedule-event (E4, 22.7) function is invoked, the scheduled event
<E4, 22.7> is inserted immediately after <E2, 18.6> in the FEL, which is
a priority queue of event records, prioritized according to the increasing
values of the event time. Now FEL has four future events: <E1, 12.1>,
<E2, 18.6>, <E4, 22.7>, and <E3, 34.0>.

2.	 If the Retrieve-event (E, T) function is invoked, the next event <E = E1,
T = 12.1> is retrieved (and deleted from the FEL).

3.	 If the Cancel-event (E4) function is invoked, the event node <E4, 22.7>
is deleted from the FEL.

Figure 4.52 provides a schematic description of the basic queue handling
functions for a FIFO (first-in, first-out) queue: (a) the New Q function will
create a queue (as a variable array of records); (b) the en-queue function (j,
x)→Q will append a record <10, 3.2>; (c) the en-queue function will append
another record <20, 5.6>; and (d) the de-queue function Q→(j, p) will remove
the first record and return j = 10 and p = 3.2.

Fig. 4.51.  Schematic descriptions of the event-handling functions.

(b)

(a)

(c)

Fig. 4.52.  Schematic descriptions of the queue-handling functions.

(a)

(b) j=10; x=3.2;

(c) j=20; x=5.6;

(d)

10 3.2

Q

Q

10 3.2Q 20 5.6

20 5.6Q

Developing Your Own Event Graph Simulator   101

4.7.2  Functions for Generating Random Variates

Most programming languages support a built-in function for generating a
standard uniform random number u∼U[0,1]. In Java, the function u = Math.
random() has the same function. Let x ∼ U[a, b], then x is obtained from u as
follows: x = a + (b − a) * u.

An exponential random variate X is generated from a uniform random
number U as follows. Since the distribution function F(X) can be regarded as a
uniform random number U, we have U = F(X) = 1 − e−x/θ, where θ is the mean.
Upon solving this equation for X, we can obtain X = −θ · ln(1 − U), which is
equivalent to X = −θ · ln(U) because (1 − U) is also a uniform random number.
This method of generating a random variable is referred to as the inverse-
transformation method. (See Appendix 3B of Chapter 3 for more details.)

In Java, the natural log ln(U) is implemented as Math.log (u). The random
variable generation functions for the inter-arrival times and service times are
listed below in a Java-like form. More details on this subject are provided in
Chapter 3.

Exp (a):
{ If (a <= 0) then return False; u = Math.random ();
Return (− a * Math.log (u)); }

Uni (a, b):
{ If (a >= b) then return False; u = Math.random ();
Return (a +(b − a) * u); }

4.7.3  Event Routines

Figure 4.53 shows a portion of an event graph for an event vertex that has two
scheduling edges and one canceling edge. The event graph indicates that
“whenever E0 occurs, the state variable s changes to fE0(s). Then, if edge condi-
tion C1 is true, E1 is scheduled to occur after t1; if edge condition C2 is true,
E2 is scheduled to occur after t2; and if edge condition C3 is true, E3 is canceled
immediately.”

Fig. 4.53.  Event vertex with two scheduling edges and a canceling edge.

Originating Event State Change Edge Condition Action Delay Destination Event

E0 s = fE0(s)
1 C1 schedule t1 E1

2 C2 schedule t2 E2

3 C3 cancel 0 E3

E0

{s = fE0(s)}

t1
E1 E3

(C3)(C1)
t2(C2)

102    Introduction to Event-Based Modeling and Simulation

Also shown in Fig. 4.53 is an event transition table for E0. An event routine
is a subprogram describing the changes in state variables and how the
next events are scheduled and/or canceled for an originating event in the
event transition table. One event routine is required for each event in an event
graph. The event routine for the E0 event in Fig. 4.53 can be expressed as
follows:

Execute-E0-event-routine (Now) // Fig. 4.53 //
{ s=fE0(s); // state change
 If (C1) Schedule-event (E1, Now+ t1);
 If (C2) Schedule-event (E2, Now+ t2);
 If (C3) Cancel-event (E3);}.

4.7.4  Next Event Methodology of Simulation Execution

As described earlier in Chapter 2 (Section 2.2.4), the simulation maintains a
simulation clock (CLK) and a future event list (FEL). The FEL is an ordered
list of pairs {Ek, tk}, where tk is the scheduled execution time of the event Ek.
The FEL is also a priority queue, ordered in increasing values of tk. The overall
procedure of the simulation execution, which is called the next event methodol-
ogy, is as follows:

0.	 Reset the simulation clock CLK.
1.	 Initialize state variables and schedule initial events.
2.	 Time flow mechanism: get <E-type, E-time> from the FEL and set CLK

to E-time.
3.	 Execute the event routine for the event E-type.
4.	 If a termination condition is not satisfied, go back to step 2.
5.	 Output statistics and stop.

The above next event methodology of the simulation execution, often called
the next event scheduling algorithm, may be drawn as a flow chart as given in
Fig. 4.54.

A template of an event graph model consisting of a set of event vertices
{Ek: k = 1-n} is depicted in Fig. 4.55. As shown in the figure, the given (pure)
event graph must be augmented with a Statistics box as well as with the sta-
tistics variables.

Notice in Fig. 4.55 that that the simulation is stopped if an EOS (end of
simulation) condition is met. Assuming that the Initialize box and Statistics
box are implemented as an initialize routine and a statistics routine, respec-
tively, the main program of the event graph simulator for executing the tem-
plate event graph model of Fig. 4.55 will have the structure shown in Fig. 4.56.
Listed in the Event-routine list are the event routines for E1∼En.

Developing Your Own Event Graph Simulator   103

Fig. 4.54.  Next event scheduling algorithm.

Event-scheduling

Event-scheduling

Event-retrieval

Fig. 4.55.  Template of an augmented event graph model.

Statistics:(EOS)Initialize:
……

Fig. 4.56.  Main program of the template event graph simulator.

// (1) Initialize

// (2) Time-flow mechanism
// (3) Execute event-routine

// (4) Output statistics

4.7.5  Single Server System Simulator

In this book, an event graph model only concerned with the dynamic behavior
of the system without statistics variables is called a pure event graph. If the
pure event graph is augmented with statistics variables for collecting statistics,
it is called an augmented event graph.

Figure 4.57 presents a pure event graph model of the single server system
introduced earlier in Fig. 4.1. In the figure, Q is the number of jobs in the
buffer, M is the number of idle machines, and te is the EOS (end of simulation)
time.

Shown in Fig. 4.58 is an augmented event graph for collecting the average
queue length (AQL) statistics. Let {Ck} denote the queue length change times,

104    Introduction to Event-Based Modeling and Simulation

then the kth queue length change interval becomes Δk = Ck+1 − Ck. Let Qk be
the queue size during Δk, then the AQL is expressed as AQL = Σ(Qk × Δk)/
Σ(Δk) ≡ SumQ/CLK. An event transition table for this event graph model is
given in Table 4.5.

In the event graph of Fig. 4.58, it is assumed that the inter-arrival times
follow an exponential distribution with a mean of 5 and that the service times
follow a uniform distribution with a range of 4.0–6.0. The initialize routine,
event routines, and statistics routine of the augmented event graph model for
collecting the AQL statistics are as follows:

Fig. 4.57.  Pure event graph model of single server system.

Load Unload

{Q++} {M--, Q--} {M++}

(M>0)
Arrive

ts

ta
Initialize:
Q= 0; M= 1; (Q>0)

Statistics:

Fig. 4.58.  Augmented event graph model for collecting AQL statistics.

Load Unload
(M>0)

Arrive

Initialize:
(Q>0)

- --

Statistics:

TABLE 4.5.  Event Transition Table for the Event Graph Model of Figure 4.58

No
Originating

Event State Change Edge Condition Delay
Destination

Event

0 Initialize Q = 0; M = 1;
Before = 0;
SumQ = 0

1 True — Arrive

1 Arrive SumQ += Q*(CLK–
Before);

Before = CLK;
Q = Q + 1

1 True Exp(5) Arrive
2 M > 0 0 Load

2 Load SumQ += Q*(CLK–
Before);

Before = CLK; M =
M + 1; Q = Q − 1;

1 True Uni(4,6) Unload

3 Unload M = M + 1; 1 Q > 0 0 Load

4 Statistics SumQ += Q*(CLK – Before); AQL = SumQ/CLK

Developing Your Own Event Graph Simulator   105

Execute-Initialize-routine (Now) // Fig. 4.58 //
{ Q = 0; M = 1; Before = 0; SumQ = 0; Schedule-event
(Arrive, Now); }

Execute-Arrive-event-routine (Now) // Fig. 4.58 //
{ SumQ = SumQ + Q*(Now—Before); Before = Now; Q = Q + 1;
 Schedule-event (Arrive, Now+ Exp (5)); If (M > 0)
Schedule-event (Load, Now); }

Execute-statistics-routine (Now) // Fig. 4.58 //
{ SumQ = SumQ + Q*(Now—Before); AQL = SumQ/Now; }.

Then, from the template event graph simulator in Fig. 4.56, a single server
system simulator is obtained as shown in Fig. 4.59.

Exercise 4.12. Write two event routines Execute-Load-event-routine () and
Execute-Unload-event-routine ().

Another statistic that is commonly collected is the average waiting time
(AWT) of the jobs in a queue. The waiting time (WT) of a job is computed by
subtracting the arrival time (AT) from the load time at the Load event. Let N
be the number of jobs loaded during a simulation, then the average waiting
time is expressed as AWT = Σ(WT)/N. An augmented event graph for collect-
ing the AWT statistics is given in Fig. 4.60, where the arrival time clock (CLK)

Fig. 4.59.  Main program of single server system simulator.

Fig. 4.60.  Augmented event graph model for collecting AWT statistics.

Load Unload
(M>0)

Arrive

Initialize:
(|Q|>1)

--
Statistics:

106    Introduction to Event-Based Modeling and Simulation

is stored in the queue (Q) at the Arrive event, and it is retrieved from Q and
assigned to the arrival time variable (AT) at the Load event.

Exercise 4.13. Modify the event graph in Fig. 4.60 to collect both AQL and
AWT statistics.

4.8  REVIEW QUESTIONS

4.1.  What are the three steps of the integrated simulation modeling (USM)
procedure?

4.2.  What are the logical modeling components of the single server system?

4.3.  How are the state variables initialized in SIGMA?

4.4.  How can an exponential random variate with a mean of 5 be generated
in SIGMA?

4.5.  How do you obtain a multi-server event graph model from a single
server model?

4.6.  What is balking? What is blocking?

4.7.  What is the SIGMA function for en-queuing a record into the ranked-list
L?

4.8.  Where is the record for an en-queue/de-queue operation stored in
SIGMA?

4.9.  What does it mean to set RNK[5] = 1 in SIGMA?

4.10.  How do you implement a FIFO queue in SIGMA?

4.11.  What is the takt time of inline-type equipment?

4.12.  What is the flow time of inline-type equipment?

4.13.  How do you compute the average queue length of a time-dependent
variable?

107

CHAPTER 5

Parameterized Event Graph Modeling
and Simulation

Perfection is achieved not when there is nothing more to add, but when
there is nothing left to take away.

—Antoine de Saint-Exupery

5.1  INTRODUCTION

The breakthrough improvement of the ordinary event graph framework is the
parameterization of event vertices in which similar events are represented by
a single vertex with different parameter values [Schruben 1995]. This enhance-
ment enables the construction of a generalized model that represents a class
of systems.

Parameterizing an event vertex is similar to defining an array variable for
a large number of data items. The expression for computing the average of
three data items (A, B, C) is given by:

	 Mean = + +()/ .A B C 3 	

This expression for computing the sample mean can be represented by the
event graph model shown in Fig. 5.1(a).

However, if you are asked to compute the sample mean of, say, 500 data
points, you may define an array variable D[j] and formulate the following
expression:

	 Mean D j=
=∑1

500 1

500
[].

i
	

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

108    Parameterized Event Graph Modeling and Simulation

Let D[j] be an array of data points. Then, the above sample mean expression
can be modeled as a parameterized event graph, as shown in Fig. 5.1(b). In the
figure, the summation operation is represented by a single parameterized
event vertex.

This chapter is organized as follows. Examples of parameterized event
graphs (PEGs) are introduced in Section 5.2, and the execution rules and
specifications of the PEG models are presented in Section 5.3. The two sections
that follow are devoted to the PEG modeling of tandem lines and job shops,
respectively. Section 5.6 demonstrates the execution of PEG models with
SIGMA. Finally, a method of developing your own PEG simulator is covered
in the last section.

5.2  PARAMETERIZED EVENT GRAPH EXAMPLES

This section presents a number of parameterized event graph (PEG) exam-
ples. There are two common cases of parameterizing an ordinary event graph.
The primary case is building a PEG model by introducing indexing variables
to the repeating pattern of event vertices. The second case is defining a PEG
model by passing attribute values of each entity along event vertices.

5.2.1  Introducing Index Variables to a Repeating
Event-Vertex Pattern

Figure 5.2 presents an event graph model of the two-stage tandem line defined
in Chapter 2 (see Fig. 2.15). There are six event vertices in the two-stage
tandem line model. In general, an n-stage tandem line model has 3n event
vertices. Figure 5.3 shows a PEG model of an n-stage tandem line, which is
obtained by introducing an indexing variable (k) to the repeating pattern of
event vertices “Enter-Load-Unload” in the event graph shown in Fig. 5.2.

Fig. 5.1(a).  Event graph model for computing the average of three data points.

Add-1 EndBegin Add-2 Add-3

Fig. 5.1(b).  Parameterized event graph for computing the sample mean.

Add
(k)

End
(N)

(k<500)

Begin 1

k+1

(k 500)
k

Parameterized Event Graph Examples   109

5.2.2  Passing Attribute Values of Each Entity along Event Vertices

Let us assume that we want to collect the sojourn time statistics when simulat-
ing the single server resource failure model introduced in Chapter 4 (see Fig.
4.13). In order to collect the sojourn time statistics, the arrival time of each
job that was generated by the Arrival event must be passed through to the
Unload event.

For this purpose, the original event graph model (see Fig. 4.13) is modified
as shown in Fig. 5.4. Namely, (1) the clock time (CLK) of each job arrival is
stored in a ranked list Q using an enqueue operation ((CLK)→Q) at the
Arrive event; (2) the arrival time is retrieved from Q using a dequeue opera-
tion (Q→(T)) at the Load event; (3) the retrieved time (T) is passed to the
Unload event as a parameter value. Then, the sojourn time (ST) is computed
by subtracting the arrival time (AT) from the simulation clock (CLK) at the
Unload event. In Fig. 5.4, the distributions of inter-arrival times (ta), service
times (ts), interfailure times (tf), and repair times (tr) are given by ta ∼ Exp(9),
ts ∼ Uni(6,8), tf ∼ Exp(500), and tr ∼ Exp(60).

Fig. 5.2.  Event graph model of a two-stage tandem line.

Load
1

Unload
1

{Q1++} {Q2++}

(M1>0)

(Q1>0)

Enter
1

t1

ta
Q1=0
Q2=0
M1=1
M2=1

Load
2

Unload
2

{M2++}

(M2>0) t2

{Q1--, M1--} {Q2--, M2--}

(Q2>0)

Enter
2

{M1++}

Fig. 5.3.  Parameterized event graph model of the n-stage tandem line.

Load
(k)

Unload
(k)

{Q[k]++}

(M[k]>0)Enter
(k)

t[k]

ta

For k=1~n
{Q[k]=0; M[k]=1}

{Q[k]--, M[k]--} {M[k]++}

k

k

k+1

(k 1)

(k<n)

1

k

k

(Q[k]>0)

Fig. 5.4.  Modified event graph model for collecting sojourn time statistics.

Load
Unload

(AT)

→ →

ArriveQ=0; M=1;

Repair Failtf

(|Q|>0)

T

tf

tr

ts

ta

110    Parameterized Event Graph Modeling and Simulation

5.3  EXECUTION RULES AND SPECIFICATIONS OF THE
PARAMETERIZED EVENT GRAPH

A PEG model provides a compact description of a discrete-event system
(DES) to be interpreted by a human. Its execution rules and specifications are
similar to those of an ordinary event graph model described in Chapter 4.

5.3.1  Execution Rules of the PEG Model

In a PEG, a parameter value is a scheduling edge’s attribute value that is
passed to a destination event, whereas a parameter variable is a destination
event’s indexing or state variable whose value is set to the passed parameter
value. The execution rules for a PEG are essentially the same as those for an
ordinary event graph, with some minor differences as explained below.

PEGs are executed vertex by vertex. Figure 5.5 depicts a PEG with an
originating event (E1) and a destination event (E2), where k is the parameter
value associated with the scheduling edge, and j is the parameter variable
associated with the destination event.

The PEG model shown in Fig. 5.5 may be interpreted as follows [Schruben
1995]:

Whenever event E1 occurs, the state of the system changes to fE1(s). Then, if the
edge condition (C) is true, destination event E2(j) is scheduled to occur after a
time delay of t with the value of the parameter variable j equal to the edge
parameter value k.

In general, each of the parameter value k and parameter variable j can be
a vector. The scheduled execution time (τ) of E2 is obtained by adding the
time delay (t) to the current execution time (Clock) of E1. Namely, τ = Clock + t.

5.3.2  Tabular Specifications of the PEG Model

As with an ordinary event graph, the event execution rules for a PEG model can
be specified in an event transition table. A parameterized event transition table
is a table that describes (1) the state changes and outgoing edge numbers of each
event and (2) the edge condition, delay time, parameter value, and destination
event of each edge. It has one more column than an ordinary event transition
table: the Parameter column for specifying the parameter value of each edge.
Table 5.1 is an event transition table of the PEG model given in Fig. 5.3.

Fig. 5.5.  Parameterized event graph with a scheduling edge.

E1
E2
(j)

{s = fE1(s)} {s = fE2[j](s)}

(c)
t

k

Execution Rules and Specifications of the Parameterized Event Graph   111

5.3.3  Algebraic Specifications of the PEG Model

An ordinary event graph (without canceling edges) is a directed graph consist-
ing of a set of event vertices (V), a set of directed edges (E), and a set of state
variables (S). Associated with each vertex (v ∈ V) is a state transition function
(fv ∈ F), and associated with each edge (e ∈ E) are an edge condition (ce ∈ C)
and a time delay (de ∈ D).

In addition to the above-mentioned six elements (V, E, S, F, C, and D), a
PEG has two more elements: a set of parameter value lists (K) associated with
each edge and a set of parameter variable lists (J) associated with each vertex.
Thus, a PEG model (MP) can be defined as an 8-tuple structure [Savage et al.
2005], as follows:

MP = <V, E, S, F, C, D, K, J>, where
V = {v}: set of event vertices
E = {eod = (vo, vd)}: set of edges // vo: originating event; vd: destination event
S = {s}: set of state variables
F = {fv: S→S ∀v ∈ V}: set of state transition functions associated with each

vertex (v)
C = {ce: S→[0,1] ∀e ∈ E}: set of conditions associated with each edge (e)
D d R e Ee= ∈ ∀ ∈∞{ }0 : set of time delays associated with each edge (e)
K = {ke ∀e ∈ E}: set of parameter value lists, if any, associated with each

edge (e)
J = {jv ∀v ∈ V}: set of parameter variable lists, if any, associated with each

vertex (v)
For example, the components of the event graph in Fig. 5.3 (n-stage tandem

line) are as follows:

TABLE 5.1.  Event Transition Table for the Parameterized Event Graph Shown in
Figure 5.3

No Event
State

Change Edge Condition Delay Parameter
Destination

Event

0 Initialize For k = 1∼n
{Q[k] = 0;
M[k] = 1}

1 True 0 1 Enter (k)

1 Enter(k) Q[k] ++; 1 k ≡ 1 ta k Enter (k)
2 M[k] > 0 0 k Load (k)

2 Load(k) Q[k]−−;
M[k]−−;

1 True t[k] k Unload (k)

3 Unload(k) M[k] ++; 1 Q[k] > 0 0 k Load (k)
2 k < n 0 k + 1 Enter (k)

112    Parameterized Event Graph Modeling and Simulation

1.	 V = {v1 = Enter, v2 = Load, v3 = Unload}
2.	 E = {e1 = (v1, v1), e2 = (v1, v2), e3 = (v2, v3), e4 = (v3, v2), e5 = (v3, v1)}
3.	 S = {Q[k], M[k]}
4.	 F = {f1: Q[k]++, f2: Q[k]−−, M[k]−−, f3: M[k]++}
5.	 C = {c1: (k ≡ 1), c2: (M[k] > 0), c3: True, c4: (Q[k] > 0), c5: (k < n)}
6.	 D = {d1 = ta, d2 = 0, d3 = t[k], d4 = 0, d5 = 0}
7.	 K = {k1 = “k”, k2 = “k”, k3 = “k”, k4 = “k”, k5 = “k + 1”}
8.	 J = {j1 = j2 = j3 = “k”}

5.4  PARAMETERIZED EVENT GRAPH MODELING OF
TANDEM LINES

In the previous chapter, a number of tandem line models were introduced: an
unlimited buffer tandem line model (Fig. 4.15), a limited buffer tandem line
model (Fig. 4.16), a buffer-less tandem line model (Fig. 4.17), and a conveyor-
driven serial line model (Fig. 4.25). In this section, methods of building PEG
models for some tandem line event graph models are described.

5.4.1  PEG Modeling of an Unlimited Buffer Tandem Line

An event graph model of a two-stage unlimited buffer tandem line is given in
Fig. 5.6; this model is obtained from the event graph shown in Fig. 5.2 by split-
ting the original Enter-1 event into Arrive and Enter-1 events. The event graph
model shown in Fig. 5.6 has a repeating pattern of Enter(k)-Load(k)-
Unload(k), which is identical for all {k}. Thus, the PEG model for the event
graph model shown in Fig. 5.6 is obtained easily, as shown in Fig. 5.7, where N
is the number of stages in the tandem line.

Fig. 5.6.  Event graph model of a two-stage unlimited buffer tandem line.

Load
1

Unload
1

{Q1++} {Q2++}

(M1>0)

(Q1>0)

Enter
1

t1
Q1=0
Q2=0
M1=1
M2=1

Load
2

Unload
2

{M2++}

(M2>0) t2

{Q1--, M1--} {Q2--, M2--}

(Q2>0)

Enter
2

{M1++}

Arrive

ta

Fig. 5.7.  PEG model of the unlimited buffer tandem line shown in Fig. 5.6.

Load
(k)

Unload
(k)

{Q[k]++} {M[k]++}

(M[k]>0)
(Q[k]>0)

Arrive
t[k]

ta
For k=1~N{
Q[k]=0;

M[k]=1
}

{Q[k]--, M[k]--}

k

1

k+1

Enter
(k)

k k

(k<N)

Parameterized Event Graph Modeling of Tandem Lines   113

In the ordinary event graph model shown in Fig. 5.6, the only operation
performed by the Enter-k event is to increase Qk by one. Thus, this event vertex
may be deleted without loss of modeling power, as shown in Fig. 5.8. The
revised event graph has a repeating pattern of Load(k)-Unload(k).

Exercise 5.1. Construct a PEG model for the event graph model shown in
Fig. 5.8.

The event graph model of the unlimited buffer tandem line may be further
simplified by eliminating the Load-k events. The resulting event graph model
of a three-stage tandem line is given in Fig. 5.9. In this event graph model, the
state variable (Sk) denotes the number of jobs in Stage-k.

5.4.2  PEG Modeling of a Limited Buffer Tandem Line

A limited buffer tandem line model is obtained from the unlimited buffer
model shown in Fig. 5.2 (or Fig. 5.6) by inserting a Finish-k event between a
Load-k event and an Unload-k event. Figure 5.10 shows an event graph model
of the limited buffer tandem line with the repeating pattern of Enter-Load-
Finish-Unload.

In Fig. 5.10, (1) the Finish-k event sets the blocking variable Bk to 1 (Bk++)
and schedules the Unload-k event if the buffer is not full (Qk+1 < ck+1) and (2)
the Load-k+1 event schedules an Unload-k event if the blocking variable is
true (Bk > 0). The PEG model of the limited buffer tandem line is as given in

Fig. 5.8.  Revised event graph of the unlimited buffer tandem line.

Load
1

Unload
1

{Q1++}

(M1>0)

(Q1>0)

t1
Q1=0
Q2=0
M1=1
M2=1

Load
2

Unload
2

{M2++}

(M2>0) t2

{Q1--, M1--} {Q2--, M2--}

(Q2>0)

{M1++, Q2++}

Arrive

ta

Fig. 5.9.  Simplified event graph of the three-stage unlimited buffer tandem line.

Unload
1

{S1++}

(S1>0)

t1S1=0
S2=0
S3=0

Unload
3

{S1--,S2++}

Arrive

ta t1
(S2t2 Unload

2

{S2--,S3++}

t2

{S3--}

(S3>0)

t3

(S2>0)

t3(S1≡1) (S31) 1)

Fig. 5.10.  Revised event graph model of the limited buffer tandem line.

Load
1

Unload
1

Enter
1

t1

ta
Q1=0
Q2=0

…
M1=1
M2=1

…
B1=0
B2=0

Load
2

Unload
2

t2

-- --

Enter
2

Finish
1

Finish
2

Arrive

114    Parameterized Event Graph Modeling and Simulation

Fig. 5.11. It should be noted that the Arrive event schedules the Enter(1) event
and the Unload(k) event schedules an Enter(k + 1) event when k < n.

5.4.3  PEG Modeling of a Conveyor-Driven Serial Line

Reproduced in Fig. 5.12 is the event graph model of the conveyor-driven serial
line given in Fig. 4.25 of Chapter 4. (For a detailed description of the conveyor-
driven serial line, please refer to Section 4.5.4.) In Fig. 5.12, a dummy transport
event (T1) is added to the event graph model of Fig. 4.25 in order to form the
repeating pattern of the Transport-Load-Finish-Unload events.

A PEG model of the conveyor-driven serial line is presented in Fig. 5.13.
Since the input buffer Buffer-I is treated as a conveyor with an unlimited
capacity and zero conveying time, c[1] = ∞ and t[1] = 0. Also, Q[n + 1] = 0 and
c[n + 1] = ∞ need to be set as boundary conditions.

Fig. 5.11.  PEG model of the limited buffer tandem line.

Load
(k)

Finish
(k)

Unload
(k)

Enter
(k)

For k=1~n {
Q[k]=0;
M[k]=1;
B[k]=0};

Q(n+1)=0;

Arrive

Fig. 5.12.  Revised event graph model of the conveyor-driven serial line.

L1 F1 U1
{M1++
B1=0
Q2++}

{M1- -
R1- -}

B1>0

p1
T2

t2
L2 F2 U2

Q2<c2 p2
T3

t3
L3

{M2- -
Q2- -
R2- -}

{R2++}{B1=1}

R2>0

{R3++}{B2=1}

M2>0 M3>0

B2>0

Q3<c3

R1>0M1=1
M2=1
M3=1
Q2=0
Q3=0
R1= ∞
R2=0
R3=0

{M2++
B2=0
Q3++}

{M3- -
Q3- -
R3- -}

T1
M1>0

Fig. 5.13.  PEG model of the conveyor driven serial line.

Load
(k)

Finish
(k)

Unload
(k)

p[k] (Q[k+1]<c[k+1])
Transport

(k)

(M[k]>0)

(R[k]>0)

{B[k]++}{M[k]--,
Q[k]--,
R[k]--}

{M[k]++,
B[k]--,
Q[k+1]++}

{R[k]++}

(k>1 & B[k-1]>0)

(k<n)

For k=1~n{
M[k]=1;
B[k]=0;
Q[k]=0;
R[k]=0};

Q[n+1]=0;

t[k+1]k=k+1

k

k

k k

k=k-1

1

R[1]=Q[1]=∞;

Parameterized Event Graph Modeling of Job Shops   115

5.5  PARAMETERIZED EVENT GRAPH MODELING OF JOB SHOPS

A discrete-event system is called a job shop if (1) it consists of a number of
stations (s) with each station having one or more identical machines, (2) there
are a number of job types (j) with each job type having its own unique
sequence of processing steps (p = 1, 2, . . .), and (3) the station number (s) for
a processing step (p) of a given job type (j) is specified in the routing sequence
of the job type. A job may visit a given station more than once.

A machine that processes one job at a time is referred to as a table machine.
A simple job shop is a job shop consisting of table machines and unlimited
buffers. Figure 5.14 depicts a reference model of such a job shop. It has six
stations with the number of machines given by {m1 = 3, m2 = 5, m3 = 4, m4 = 7,
m5 = 2, m6 = 5}. The routing sequence of a type-1 job is 1-3-2-5-Done:
route[1,1] = 1, route[1,2] = 3, . . . , route[1,5] = Done. The processing time of a
type-j job at processing step (p) is denoted by t [j, p].

Any job shop that is not a simple job shop is called a complex job shop.
Examples of complex job shops are inline job shops and mixed job shops. An
inline job shop is a job shop consisting of the inline cells described in Chapter
4 (Section 4.5.5).

5.5.1  PEG Modeling of a Simple Job Shop without Transport

If we set M[s] = ms in the initialize event box of the unlimited buffer tandem
line PEG model shown in Fig. 5.7, the model becomes a multi-server tandem
line model, as depicted in Fig. 5.15. Another slight change in Fig. 5.15 (from
Fig. 5.7) is that the next station (ns) is updated at the Unload(s) event vertex.

Fig. 5.14.  Reference model of a simple job shop (for job type j = 1).

Assign job-type
(j = 1)

Fig. 5.15.  PEG model of a multi-server tandem line obtained from Fig. 5.7.

Load
(s)

Unload
(s)

{Q[s]++} {M[s]++, ns=s+1}

(M[s]>0)
(Q[s]>0)

Arrive
t[s]

ta
For s=1~N{

Q[s]=0;
M[s]=ms }

{Q[s]--, M[s]--}

s

s

ns

Enter
(s)

s s

(ns<N+1)

{s=1}

116    Parameterized Event Graph Modeling and Simulation

This tandem line is a special case of a simple job shop in which (1) there is
only one job type and (2) the job processing step (p) is the same as the station
number (s; for s = 1, 2, . . . , N). Thus, as depicted in Fig. 5.16, the tandem line
PEG model shown in Fig. 5.15 may be converted to a PEG model describing
the simple job shop shown in Fig. 5.14.

In the job shop PEG model shown in Fig. 5.16, a new job generated by the
Arrive event is passed to the Enter event with parameter values {p = 1 and
s = route [1, p]}. At the Enter (1, s) event, the new job is put into the queue
Q[s], and a Load(s) event is scheduled if M[s] > 0. Since there is only one job
type, a job is represented by its processing step (p). Q[s] is the queue of jobs
identified by the current processing step.

When a Load(s) event is fired in the PEG model of Fig. 5.16, a job is
retrieved from Q[s] for processing and an Unload(p,s) event is scheduled to
occur after t[1, p] minutes. At the Unload(p,s) event, the processing step (p)
is increased by one and the station number (ns) for the next processing step
(p + 1) is determined by evaluating ns = route [1, p + 1]. Here, an Enter(p + 1,
ns) event is scheduled if the next station number is not equal to Done and a
Load(s) event is scheduled if Q[s] is not empty.

The PEG model of Fig. 5.16 may be generalized easily to a PEG model of
a simple job shop by adding j (for j = 1∼J) to the parameter list as shown in
Fig. 5.17, where a job is represented by its job type and processing step. The
state variables in the simple job shop model are:

j = job type;
p = processing step of a job;
s = station number for a job;
M[s] = number of idle machines in station s;
Q[s] = list of jobs {(j, p)} at station s.

Fig. 5.16.  PEG model of a simple job shop for processing a single job type (j = 1).

Load
(s)

Unload
(p, s)

(M[s]>0)

(ns≠ Done)

t[1, p]
Arrive

ta

p, s p, s

{M[s]++; ns= route[1, p+1];}

(|Q[s]|>0)

p+1, ns

Enter
(p, s)

s

{p→ Q[s]} {Q[s]→p; M[s]--;}{p=1; s= route[1, p]}

For s=1~N {
Q[s]= Φ ;
M[s]=ms }

s

Fig. 5.17.  PEG model of a simple job shop for processing multiple job types.

Load
(s)

Unload
(j, p, s)

(M[s]>0) t[j, p]
Arrive

ta

j, 1, s j, p, s

{M[s]++; ns=route[j,p+1];}

(|Q[s]|>0)

j, p+1, ns

Enter
(j, p, s) s

{(j, p)→ Q[s]} {Q[s]→(j, p); M[s]--;}{Assign j; s =route[j,1];}

Exit
(j)

(ns≡ Done)

(ns≠ Done)

For s=1~N {
Q[s]= Φ;
M[s]=ms }

s

j

Parameterized Event Graph Modeling of Job Shops   117

Jobs of type j follow the routing sequence given by the table route [j, p]
with the processing time t[j, p]. If a job finishes the last processing step, then
the station number of the next processing step is set to Done so that the job
exits the job shop. The initialization box shown in Fig. 5.17 is the same as that
shown in Fig. 5.16.

At the Arrive event, a job type (j) is assigned to each new job and the station
number (s) for the first processing step is determined as: s = route [j,1]. At the
Enter (j, p, s) event, the job (j, p) is placed in the queue of station s and a Load(s)
event is scheduled to occur immediately if the station (s) has an idle machine
(M[s] > 0). At the Load(s) event, a job (j, p) is retrieved from the queue and an
Unload(j, p, s) event is scheduled to occur after a time delay of t[j, p] minutes.
At the Unload(j, p, s) event, the processing step is increased by one and the next
station number is determined. Then (1) a Load(s) event is scheduled if the
queue at station s is not empty, (2) an Enter(j, p, s) event is scheduled if the job
needs another processing step, and (3) an Exit(j) event is scheduled if the job is
done. These dynamic behaviors of the simple job shop model can be formally
specified in an event transition table, as shown in Table 5.2.

Exercise 5.2. Revise the PEG model of the simple job shop shown in Fig.
5.17 by adding a new event Select-s (j, p) where the station number (s) for a
job (j, p) is determined.

5.5.2  PEG Modeling of a Job Shop with Transport and Setup Times

In the simple job shop PEG model shown in Fig. 5.17, only the net processing
times (t[j, p]) are reflected. In practice, considerable amounts of setup time
(when the job type is changed) and transport delay (when the job is to be
moved by a transporter) may be incurred in a job shop.

TABLE 5.2.  Event Transition Table for the PEG Model of a Simple Job Shop
(Figure 5.17)

No Event State Change Edge Condition Delay Parameter Next Event

0 Initialize
(Q, M)

For s = 1∼N
{Q[s] = Φ;
M[s] = ms}

1 True 0 — Arrive

1 Arrive Assign j;
s = route[j, 1];

1 True 0 j, 1, s Enter
(j, p, s)

2 True ta — Arrive
2 Enter (j,

p, s)
(j, p) → Q[s]; 1 M[s] > 0 0 s Load (s)

3 Load (s) Q[s]→ (j, p);
M[s]−−;

1 True t[j, p] j, p, s Unload
(j, p, s)

4 Unload
(j, p, s)

M[s]++;
ns = route[j,
p + 1];

1 |Q[s]| > 0 0 s Load (s)
2 ns ≠ Done 0 j, p + 1, ns Enter

(j, p, s)
3 ns ≡ Done 0 j Exit (j)

5 Exit (j) 1

118    Parameterized Event Graph Modeling and Simulation

Figure 5.18 shows a PEG model of a simple job shop in which the setup
times and the transport delay times are reflected. In order to reflect the setup
time (σ) in the PEG model, a state variable denoting the current job type of
each station (JT[s]) is introduced. (However, this is only valid when there is a
single machine at each station.) It is assumed that all stations have identical
setup times. Thus, the following additions are made to the PEG model shown
in Fig. 5.17:

1.	 At initialization, the job type of each station is reset: JT[s] = 0 for s = 1-N.
2.	 At the Load event, a setup time (σ) is selectively added: If (j ≠ JT[s])

{tp = tp + σ}.
3.	 At the Unload event, the current job type of the station is updated:

JT[s] = j.

The next station number (ns) and transport delay time (td) are modeled
explicitly by the two event nodes Depart and Move: (1) ns is obtained from
ns = route [j, p + 1] at the Depart event; (2) td (transport delay from station s
to station ns) is evaluated from td = delay [s, ns] at the Move event.

The PEG model shown in Fig. 5.18 may be regarded as a standard template
for defining a general job shop model from the PEG model of a station that
starts with a Load event and ends at the Depart event. The event transition
table for the PEG model shown in Fig. 5.18 is given in Table 5.3.

5.5.3  PEG Modeling of an Inline Job Shop

A job shop consisting of inline cells is called an inline job shop. Reproduced
in Fig. 5.19 are the reference model (Fig. 4.27) and the event graph model (Fig.
4.34) of the inline-type cell introduced in Chapter 4. This is called a uni-inline
cell because the input (Load) and output (Unload) operations are performed
at the shared I/O-Port. It should be noted that the event graph (Fig. 5.19)
without the redundant event FGU is the same as the one (Fig. 4.34) with FGU.

Fig. 5.18.  Standard PEG model of a job shop reflecting setup time and transport time.

Load
(s)

Unload
(j, p, s)

(M[s]>0) tp
Arrive

ta

j, 1, s, ns

j, p, s

{M[s]++;
JT[s]= j;}

(|Q[s]|>0)
Enter

(j, p, s)

{(j, p)→ Q[s]}

{Assign j; s= 0;
ns= route [j, 1];}

(ns≠ Done)

Depart
(j, p, s)

Exit
(j)

j

(ns Done)

{ ns= route[j, p+1] }

j, p, s

Move
(j, p, s, ns)

j, p+1, s, ns

td

j, p, ns {Q[s] (j, p);
M[s]--;

tp= t[j, p];
If (j≠ JT[s]) tp= tp +σ;}

Station (s)

Initialization:
For s=1~N {

Q[s]= Φ;
M[s]=1;
JT[s]=0; };

Read {
route[j,p];
t[j,p];
delay[s,ns]};

s

s

{ td= delay[s, ns] }

Parameterized Event Graph Modeling of Job Shops   119

TABLE 5.3.  Event Transition Table for the Revised PEG Model Shown in Figure 5.18

No Event State Change Edge Condition Delay Parameter
Next
Event

0 Initialize For s = 1∼N
{Q[s] = Φ;
M[s] = 1;
JT[s] = 0};

Read {route[j,p];
t[j,p]; delay[s,
ns]}

1 True 0 — Arrive

1 Arrive Assign j; s = 0;
ns = route[j, 1];

1 True ta — Arrive
2 True 0 j, 1, s, ns Move (j,

p, s, ns)
2 Move (j,

p, s, ns)
td = delay[s, ns]; 1 True td j, p, ns Enter (j,

p, s)
3 Enter (j,

p, s)
(j, p) → Q[s]; 1 M[s] > 0 0 s Load (s)

4 Load (s) Q[s]→ (j, p);
M[s]−−;
tp = t[j, p]; If
(j ≠ JT[s])
{tp = tp + σ};

1 True tp j, p, s Unload
(j, p, s)

5 Unload
(j, p, s)

M[s]++; JT[s] = j; 1 |Q[s]| > 0 0 s Load (s)
2 True 0 j, p, s Depart

(j, p, s)
6 Depart

(j, p, s)
ns = route[j,

p + 1];
1 ns ≠ Done 0 j, p + 1, s,

ns
Move (j,

p, s, ns)
2 ns ≡ Done 0 j Exit (j)

7 Exit (j) 1

Fig. 5.19.  Reference model and event graph of a uni-inline cell.

CA CL FGL LGL
t1

{Q++} {Q--, E--, B++}

(E>0)

{R=1} {R=0; B--;
t1= λ ∗τ

(B>0)
(R≡1) (Q>0)

CD {E++}

π

Stocker (Q)

Robot(R)

(3) Glass Load (τ: takt-time/glass)
(1) Cassette

Arrival

(4) Glass Unload

(5) Cassette Depart

(2) Cassette
Load

I/O Port (B, E)

Inline (π: flow time)

(5) Cassette Depart

120    Parameterized Event Graph Modeling and Simulation

The event graph model in Fig. 5.19 has five event nodes, four state variables,
and two time delay variables. The state variables are Q (number of arriving
cassettes in the Stocker queue), B (number of arriving cassettes in the I/O-Port
buffer), E (number of empty shelves in the I/O-Port), and R (status of Robot;
1 if Robot is idle, 0 if busy). The time delay variables are t1 (cycle time for
processing a cassette of glasses) and π (flow time). The state variables are
changed by the events as follows:

•	 CA (Cassette Arrival) increases Q by one {Q++}
•	 CL (Cassette Load) decreases Q and E, and increases B by one {Q−−,

E−−, B++}
•	 FGL (First Glass Load) sets Robot to busy and decreases B by one

{R = 0, B−−}
•	 LGL (Last Glass Load) sets Robot to idle {R = 1}
•	 CD (Cassette Departure) increases E by one {E++}

Let u denote the parameter variable for a uni-inline cell; then, all event
vertices and state variables are parameterized in terms of u. In addition, the
job type (j) and processing step (p) of a cassette may also be passed as param-
eter values. With these parameter variables, the state variables are defined as
follows:

•	 Q[u]: Stocker queue of arriving cassettes {(j, p)} in the uni-inline cell (u)
•	 B[u]: I/O-Port queue of arriving cassettes {(j, p)} in the uni-inline cell (u)
•	 E[u]: number of empty ports (shelves) in the I/O-Port of a uni-inline cell (u)
•	 R[u]: status of the track-in Robot of a uni-inline cell (u)

The processing cycle time and flow time are parameterized as t1[j, p] and
π[j, p]. Thus, the event graph model of the uni-inline cell given in Fig. 5.19 may
be parameterized as shown in Fig. 5.20. In the uni-inline cell PEG model shown
in Fig. 5.20, the list handling operations are defined as follows.

•	 {(j, p) → Q[u]}: a job (j, p) is stored in the Stocker queue (Q[u])
•	 {(j, p) → B[u]}: a job (j, p) is stored in the I/O-Port queue (B[u])
•	 {Q[u] → (j, p)}: a job (j, p) is retrieved from the Stocker queue (Q[u])
•	 {B[u] → (j, p)}: a job (j, p) is retrieved from the I/O-Port queue (B[u])

In order to build a uni-inline job shop model, a state variable (JT[u]) denot-
ing the current job type of a cell is introduced for modeling the setup time (σ)
and the Move event is added to model the transport delay time (td) explicitly.
Thus, as shown in Fig. 5.21, a standard PEG model of a uni-inline job shop
may be constructed from the standard PEG model of a simple job shop shown

Parameterized Event Graph Modeling of Job Shops   121

in Fig. 5.18 and the PEG model of the uni-inline cell shown in Fig. 5.20. As
mentioned earlier, the state variables are the Stocker queue (Q[u]), I/O-Port
queue (B[u]), number of empty shelves (E[u]), Robot status (R[u]), and job
type (JT[u]). Assuming that the system is empty and the number of shelves in
the I/O-Port of each cell (u) is 4, the state variables may be initialized as
follows:

	 For u 1 N Q u B u E u R u JT u= = = = = =~ { [] ; [] ; [] ; [] ; [] }.Φ Φ 4 1 0 	

5.5.4  PEG Modeling of a Mixed Job Shop

A mixed job shop may have different types of stations and/or cells. For example,
by merging the two PEG models shown in Figs. 5.18 and 5.21, we can build a
PEG model of a job shop consisting of table stations and uni-inline cells, as
shown in Fig. 5.22. In the PEG model of the mixed job shop given in Fig. 5.22,
TM denotes a set of table-type machines and UC a set of uni-inline cells in
the job shop.

A job shop with different types of machines is often called a heterogeneous
job shop, and one with one type of machine is called a homogeneous job shop.

Fig. 5.20.  PEG model of the uni-inline cell (u) given in Fig. 5.19.

CA
(j,p,u)

CL
(u)

FGL
(u)

LGL
(j,p,u)

t1[j, p]

CD
(j, p, u)

{E[u]++}

[j, p]

Cell (u)
(|B[u]|>0)

{R[u]=1}{R[u]=0;
B[u]→(j, p)}

{Q[u]→(j, p)→B[u];
E[u]--}

{(j, p)→ Q[u]}

(|Q[u]|>0)

(R[u]≡1)(E[u]>0)
u u

j,p,u
j,p,u

u

Fig. 5.21.  Standard PEG model of a uni-inline job shop.

CA
(j,p,u)

CL
(u)

FGL
(u)

LGL
(j,p,u)

CD
(j, p, u)(|Q[u]|>0)

(R[u]≡1)(E[u]>0)

{(j, p) Q[u]} {Q[u] (j, p);
(j, p) B[u];

E[u]--}
j,p,u

j,p,uu

u

tp

(|B[s]|>0)

{ E[u]++;
nu = route[j, p+1] }

Move
(j, p, u, nu)

(nu≠ Done)
Exit
(j)

(nu Done)

td

j, p+1, u, nu

u

Arrive

ta

j, 1, u, nu

{Assign j; u= 0;
nu = route [j, 1];}

j, p, nu {B[u] (j, p); R[u]=0;
tp= t[j,p,u];

If (j≠ JT[u]) tp= tp + ; }

{R[u]=1;
JT[u]= j;}

[j,p,u]

Uni-inline Cell (u)

{ td= delay[u, nu] }

122    Parameterized Event Graph Modeling and Simulation

In a general job shop model, the material handling equipment may be modeled
explicitly. More detailed discussions of these subjects may be found in Chapter
11 of this book.

5.6  EXECUTION OF PARAMETERIZED EVENT GRAPH MODELS
USING SIGMA

The basic SIGMA functions were covered in the Chapter 4. This section aims
to provide you with more experiences in and confidence with modeling with
PEG and executing the PEG model with SIGMA. More specifically, this
section demonstrates how to use certain advanced SIGMA functions in col-
lecting the sojourn time statistics, reading array data, handling priority queues,
and so on. All the SIGMA models discussed in this section, together with a
brief SIGMA tutorial, may be found in the official website of this book (http://
VMS-technology.com/Book/Sigma).

As mentioned in Chapter 4 (see Section 4.6), in order to execute a given
event graph model using SIGMA, the event graph model is converted to a
SIGMA-compatible event graph model. Figure 5.23 presents a schematic view
of the SIGMA simulation program: all variables that appear in the SIGMA-
compatible event graph model must be declared in the State Variable Editor;
all state variables that are defined as parameters of the Run vertex are initial-

Fig. 5.22.  Standard PEG model of a mixed job shop.

CA-UC
(j,p,u)

CL
(u)

FGL
(u)

LGL
(j,p,u)

CD
(j, p, u)

(|Q[u]|>0)

(R[u]≡1)(E[u]>0)

{R[u]=1;
JT[u]= j;}

{(j, p) Q[u]} {Q[u] (j, p) B[u];
E[u]--}

j,p,u

j,p,uu

u

tp
π[j,p,u]

(|B[u]|>0)

Load
(s)

Unload
(j, p, s)

(M[s]>0) tp
Arrive

ta

j, 1, s, ns

j, p, s

s

{M[s]++;
JT[s]= j;}

(|Q[s]|>0)
CA-TM
(j, p, s) s

{(j, p) Q[s]} {Q[s] (j, p); M[s]--;
tp= t[j, p, s];

If (j≠ JT[s]) tp= tp +σ;}
{Assign j; s= 0;
ns= route [j, 1];}

(ns≠ Done)
Depart
(j, p, s)

Exit
(j)

j

(ns≡ Done)

{ ns= route[j, p+1] }

j, p, s

Move
(j, p, s, ns)

j, p+1, s, ns

j, p, ns

{E[u]++;
nu= route[j, p+1] }

(nu≠ Done)

j

(nu≡ Done)

j, p+1, u, nu

u

j, p, ns

(s TM)

(s UC)

{B[u] (j, p); R[u]=0;
tp= t[j,p,u];

If (j≠ JT[u]) tp= tp + σ;
}

Uni-inline Cell (u)

Station (s)

{ td= delay[s, ns] }

td

td

http://VMS-technology.com/Book/Sigma
http://VMS-technology.com/Book/Sigma

EXECUTION OF PARAMETERIZED EVENT GRAPH MODELS USING SIGMA   123

ized in the Run Options dialog box; the values of the state variables are passed
to the Run vertex as parameter values.

5.6.1  Collecting Sojourn Time Statistics Using SIGMA Functions

Reproduced in Fig. 5.24 is the event graph model shown in Fig. 5.4 in Section
5.2.2. Recall from Section 5.2.2 that, in order to collect the sojourn time sta-
tistics, the arrival time of each job must be stored at the Arrival event and its
sojourn time (ST) is computed by subtracting the arrival time (AT) from the
departure time (CLK) at the Unload event.

5.6.1.1  Constructing a SIGMA-Compatible Event Graph  In order to
execute the event graph model using SIGMA, it must be converted to a
SIGMA-compatible event graph in which (1) a Run event is defined to initial-
ize the state variables and (2) the PUT{} and GET{} functions are used for
storing and retrieving data in and from the built-in ranked list, respectively. A
SIGMA-compatible event graph for collecting the sojourn time statistics is
given in Fig. 5.25.

At the Run vertex shown in Fig. 5.25, RNK[1] = 0 is set so that ranked list
1 is ranked by the data field ENT[0]. At the Arrive vertex, the current arrival
time (CLK) is assigned to ENT[0] and stored in ranked list 1 in an increasing
order by invoking the PUT{INC;1} function. At the Load vertex, the arrival

Fig. 5.23.  Structure of the SIGMA simulation program.

Run
(Q,M)

SIGMA-compatible Event Graph

Fig. 5.24.  Event graph model for collecting sojourn time statistics.

Load
Unload

(AT)

{(CLK)→ Q} {M=0, Q→(T)} {M= 1,
ST= CLK – AT }

(M>0)
(|Q|>0)

Arrive
Initialize Box:

Q=0; M=1;

Repair Fail
{M=1}

{M= –1 }

tf = Exp(500)

(|Q|>0)

T

tf = Exp(500)

tr = Exp(60)

ts = Uni(6,8)

ta = Exp(9)

124    Parameterized Event Graph Modeling and Simulation

time is retrieved and stored in ENT[0] by the GET{FST;1} function; then, it is
passed to the Unload vertex as an edge parameter value.

In Fig. 5.25, the number of jobs in the buffer is denoted by the integer vari-
able (Q) and the sojourn time of a job is stored as the real variable (ST). The
statistics that are collected are the time average queue length (TAV{Q}) and
the average sojourn time (AVE{ST}). In this particular case, ranked list 1 is in
effect a FIFO queue. Thus, we could use PUT{FIF,1} instead of PUT{INC,1}.

5.6.1.2  Building a SIGMA Program for Simulation  As explained in
Chapter 4, the procedure for building a SIGMA program consists of six steps.
Step 1 is to create a graphical model of the SIGMA-compatible event graph
on the main screen of SIGMA. As shown in Fig. 5.26(a), this graph consists of
six vertices and eight edges. Step 2 is to bring in the State Variable Editor
dialog box and declare all variables that appear in the SIGMA-compatible
event graph. As shown in Fig. 5.26(b), the state variables are Q, M, RNK[10000],
ENT[15], ST, and AT.

Step 3 is to define the Run vertex by creating the Edit Vertex 1 dialog box
and specifying the state variables Q and M as its parameter variables. Step 4
is to create Edit Vertex dialog box for each event vertex in the SIGMA-
generated event graph shown in Fig. 5.26(a) and to define its state changes
and parameters where applicable. Figure 5.27(a) presents the Run vertex

Fig. 5.25.  SIGMA-compatible event graph for collecting sojourn time statistics.

Load
Unload

(AT)

{M= 1, ST= CLK – AT }

(M>0)
(Q>0)

Arrive

Repair Fail

{M=1} {M= –1 }

(Q>0)

ENT[0]Run
(Q,M)

{RNK[1]=0} {ENT[0]= CLK, Q= Q + PUT{INC;1}} {M=0, Q= Q – GET{FST;1}}

0, 1

500*ERL{1} 500*ERL{1}

60*ERL{1}

9*ERL{1}

6+2*RND

Fig. 5.26.  (a) SIGMA-generated event graph and (b) declaration of state variables.

(a) (b)

Run Arrive Load

Repair

Fail

Unload

EXECUTION OF PARAMETERIZED EVENT GRAPH MODELS USING SIGMA   125

dialog box in which RNK[1] = 0 is entered in the State Change(s) field, and
Q and M are entered in the Parameter(s) field (Q and M are initialized in the
Run Options dialog box). Figure 5.27(b) shows the Arrive vertex dialog box.

The fifth step is to create an Edit Edge dialog box for each edge in the
SIGMA-generated event graph shown in Fig. 5.26(a) and to specify the time
delay value, edge condition, and parameter value. Figure 5.27(c) shows the
dialog box of the edge Load→Unload whose time delay that is a Uniform(6,8)
random variate is specified in the Delay field as “6+2*RND,” edge condition
TRUE is specified in the Condition field, and parameter value ENT[0] is speci-
fied in the Attributes field.

5.6.1.3  Running the SIGMA Program for Simulation  The last step is to
create the Run Options dialog box and to specify the experimental conditions
and output requirements. Figure 5.28(a) shows the experimental conditions
such as the random number seed (12345), end-of-simulation time (5,000 min),
and the initial values of Q and M. Also specified in Fig. 5.28(a) are the variables

Fig. 5.27.  Defining the (a) Run vertex, (b) Arrive vertex, and (c) Load-Unload edge.

(a) (b) (c)

Fig. 5.28.  (a) Run Options dialog box and (b) Model Defaults output.

(a) (b)

126    Parameterized Event Graph Modeling and Simulation

(Q, M, ST) and statistics (time average of Q and average of ST) to be traced.
Figure 5.28(b) shows the model default values and a list of the traced variable
values at each event time.

Figure 5.29(a) and (b), respectively, present the simulation plots of the
queue sizes (Q) and the time average of Q. The queue sizes fluctuate consider-
ably as a result of the disturbances due to failures, but the time average of Q
appears to converge to 2.

5.6.2  Simulating a Simple Service Shop with SIGMA

Figure 5.30 reproduces the event graph of a simple service shop that was given
in Fig. 4.19 of Chapter 4 (Section 4.5.1). The simple service shop is subject to
time-varying arrival rates (λ(t)). In order to manage the customer fluctuations,
the number of servers (n(t)) is planned to change over time, which is often
referred to as a flexible multi-server system.

Let us assume that customers arrive at the shop with arrival rates (customers
per minute) of 0.0 during 0:00∼5:59, 0.02 during 6:00∼7:59, 0.10 during 8:00∼9:59,
and so on, as summarized in Table 5.4. That is, R[0] = R[1] = R[2] = 0, R[3] = 0.02,
and so on. The maximum arrival rate is 0.5 during 14:00∼15:59 (R[7] = 0.5). The
base number of servers during the day hours (8:00∼17:59) is three, with a peak
of five during 2:00∼3:59 p.m. (N[7] = 5). All servers are identical and their
service times are exponentially distributed with a mean of 9.

Fig. 5.29.  Simulation plots of the (a) queue sizes and (b) time average of the queue
sizes.

(a) (b)

Fig. 5.30.  Simple service shop with fluctuating arrival rates and varying resource levels.

*)

Q= 0; M= n(0);
Define *; (t); n(t)

(t)/

{U= Uni(0,1)}

M(t)= M + (n(t) – n(0));

EXECUTION OF PARAMETERIZED EVENT GRAPH MODELS USING SIGMA   127

5.6.2.1  SIGMA-Compatible Event Graph for the Modified Event Graph 
Figure 5.31 presents a SIGMA-compatible event graph model of the modified
event graph shown in Fig. 5.30. The figure also shows the input text file RN.
DAT. The function DISK {RN.DAT; 0} reads the text file RN.DAT sequentially,
and the for loop is implemented using the parameterized event Read(k). The
simulation clock (CLK) is converted to the index value (h) shown in Fig. 5.31
using the function MOD{CLK/120; 12}. The default time unit of minutes is
converted to 2-hour units by dividing CLK by 120. The RND function returns
a standard uniform random variate.

5.6.2.2  Building a SIGMA Program for Simulation  The first step of
building a SIGMA program for simulation is to create a SIGMA-generated
event graph on the main screen of SIGMA, as shown in Fig. 5.32. The second
step is to bring in the State Variable Editor dialog box and declare all user-
defined variables as state variables: Q, M, RMAX, R[12], N[12], N0, H, RATIO,
and K (dialog box not shown).

The third step is to double click the Run vertex (shown in Fig. 5.32) to create
the Edit Vertex 1 dialog box and enter the information {RMAX = 0.5; N0 = 5;

TABLE 5.4.  Arrival Rates and Number of Servers over a 24-Hour Period

Hours
(120min)

0000-
0159

0200-
0359

0400-
0559

0600-
0759

0800-
0959

1000-
1159

1200-
1359

1400-
1559

1600-
1759

1800-
1959

2000-
2159

2200-
2359

k 0 1 2 3 4 5 6 7 8 9 10 11

R[k] 0.00 0.00 0.00 0.02 0.10 0.30 0.40 0.50 0.40 0.10 0.02 0.00
N[k] 0 0 0 0 3 3 3 5 3 1 1 0

Fig. 5.31.  SIGMA-compatible PEG model for managing fluctuations.

Load DepartEnterArrive
Read

(k)

==Run
(Q,M)

0

Fig. 5.32.  SIGMA-generated event graph.

128    Parameterized Event Graph Modeling and Simulation

Q = 0; M = N0} appearing in the Run vertex (shown in Fig. 5.31). As shown in
Fig. 5.33(a), RMAX = 0.5 and N0 = 5 are entered in the State Change(s) field,
and Q, M are specified in the Parameter(s) field. The fourth step is to create
a dialog box for each event vertex. The dialog box of the Read vertex is shown
in Fig. 5.33(b), in which the parameter value is K.

The fifth step is to create an Edit Edge dialog box for each of the edges in
the SIGMA-generated event graph shown in Fig. 5.32. Figure 5.34 presents the
dialog boxes of the three edges Run→Read (From: Run; To: Read), Read→
Arrive, and Read→Read.

5.6.2.3  Running the SIGMA Program for Simulation  The sixth step is to
create the Run Options dialog box. Shown in Fig. 5.35(a) is the Run Options
dialog box in which the experimental conditions such as the random number
seed (12345), end-of-simulation time (5,000 min), and initial values of Q and
M are specified. The dialog box also specifies the variables and statistics to be
traced. Figure 5.35(b) shows a simulation plot of Q (number of customers in
the queue) over the simulation time.

5.6.3  Simulation of a Three-Stage Tandem Line Using SIGMA

The PEG model introduced earlier in this chapter (Fig. 5.3 in Section 5.2.1)
will be used as a vehicle for demonstrating the simulation of an n-stage tandem

Fig. 5.33.  Defining the (a) Run vertex and (b) Read vertex.

(a) (b)

Fig. 5.34.  Examples of edge dialog boxes.

EXECUTION OF PARAMETERIZED EVENT GRAPH MODELS USING SIGMA   129

Fig. 5.36.  PEG model of an n-stage tandem line (n = 3).

Load
(k)

Unload
(k)

{Q[k]++}

(M[k]>0)

(Q[k]>0)

Enter
(k)

t[k]

ta

Q[1] = Q[2] = Q[3] =0;
M[1] = M[2] = M[3] =1;

{Q[k]--, M[k]--} {M[k]++}

k

k

k+1

(k≡1)

(k<3)

1

k

k

Fig. 5.37.  SIGMA-compatible PEG model of the n-stage tandem line (n = 3).

Run
(Q[1],Q[2],Q[3],

M[1], M[2],
M[3], n)

k k

k

1

k+1

(k<3)

k

Fig. 5.35.  Run Options dialog box and simulation plot of Q.

(a) (b)

line with SIGMA. The PEG model shown in Fig. 5.3 is reproduced in Fig. 5.36
with n = 3, where the distribution functions of the inter-arrival time and service
times at the three stages are also specified.

5.6.3.1  Building a SIGMA-Compatible PEG Model  In general, the first
step in simulation with SIGMA is to modify the given event graph model in
order to manage specific requirements. In this particular case, however, modi-
fications are not required. Thus, the first step is to build a SIGMA-compatible
PEG model from the neutral PEG model given in Fig. 5.36.

Figure 5.37 presents a SIGMA-compatible PEG model of the three-stage
tandem line. Note in Fig. 5.37 that the number of stages “n” defined in the Run

130    Parameterized Event Graph Modeling and Simulation

Fig. 5.38.  (a) SIGMA-generated event graph and (b) declaration of state variables.

(a) (b)

Fig. 5.39.  Defining (a) the Run vertex and (b) the Enter vertex.

(a) (b)

vertex is never used in the model. A convenient feature of SIGMA is the use
of Boolean variables. For example, the service time (t[k]) at stage k is given
by Exp(5) if k ≡ 1, Exp(4) if k ≡ 2, and Exp(3) if k ≡ 3, which is expressed in
SIGMA as follows:

	 t k k ERL k 4 ERL 1 k ERL[] ()* * { } ()* * { } ()* * { }.= == + == + ==1 5 1 2 3 3 1 	

5.6.3.2  Building a SIGMA Program and Running the Simulation  Figure
5.38(a) presents the SIGMA-generated event graph of the three-stage tandem
line; Fig. 5.38(b) shows the State Variable Editor dialog box. The SIGMA-
generated event graph for a PEG model is the same as that for an event graph
model. The variables declared as the state variables are Q, M, TA, T, N, and K.
The sizes of the arrays Q, M, and T are set to 4 in Fig. 5.38(b) because in Fig.
5.37 Q[k] and M[k] are defined for k=1, 2, 3 (Q[0] and M[0] are not used).

The dialog boxes for the Run vertex and the Enter vertex are given in Fig.
5.39(a) and (b), respectively. The variables to be initialized in the Run Options
dialog box are declared as parameters in the Run vertex dialog box shown in
Fig. 5.39(a). The State Change(s) (Q[K] = Q[K] + 1, TA=(K==1)*3*ERL{1})
and the parameter K are defined in the Enter vertex dialog box shown in Fig.
5.39(b). Figure 5.40 shows the dialog boxes defining the Run→Enter edge,
Enter→Load edge, and Enter→Enter edge.

EXECUTION OF PARAMETERIZED EVENT GRAPH MODELS USING SIGMA   131

Finally, the simulation experiment data are provided in the Run Options
dialog box as depicted in Fig. 5.41(a). A simulation plot of Q[1] is given in
Fig. 5.41(b).

5.6.4  Simulation of the Simple Job Shop with SIGMA

The PEG model of the job shop in Fig. 5.18 will be used as an example of a
simulation using SIGMA. The example job shop has four single-machine sta-
tions (s = 0∼3, i.e., M[s] = 1) and three job types (j = 0–2). A job arrives at
every 12 minutes (=ta) with job mix ratios of 26% for j = 0, 48% for j = 1, and
26% for j = 2. The routing sequences ({route(j,k)}) and processing times ({tjk:
j = job type, k = processing step}) are as given in Table 5.5. Note that the pro-
cessing step is denoted by “k” (not “p”) only when the routing sequence data
and processing time data are as defined in Fig. 5.43 and Table 5.5.

Figure 5.42 depicts the routing sequence and processing times of the type-1
jobs. Let the transport delay time from station v to station w be denoted by
dvw; then, the net sojourn time of the type-1 job is expressed as t10 + d01 + t11
+ d13 + t12 + d31 + t13 + d12 + t14 + d24. The transport delay data are summarized
in Table 5.6.

Fig. 5.40.  Defining the edges (a) Run→Enter, (b) Enter→Load, and (c) Enter →Enter.

(a) (b) (c)

Fig. 5.41.  (a) Run Options dialog box and (b) the simulation plot of Q[1].

(a) (b)

132    Parameterized Event Graph Modeling and Simulation

TABLE 5.5.  Routing Sequence and Processing Times of the PEG Model Figure 5.18

Job
(Ratio)

Step-0 (k = 0)
Step-1
(k = 1) Step-2 (k = 2) Step-3 (k = 3) Step-4 (k = 4)

route
(j,0) tj0

route
(j,1) tj1

route
(j,2) tj2

route
(j,3) tj3

route
(j,4) tj4

j = 0
(26%)

0 Exp
(6)

1 Exp
(5)

2 Exp
(15)

3 Exp(8) — —

j = 1
(48%)

0 Exp
(11)

1 Exp
(4)

3 Exp
(15)

1 Exp
(6)

2 Exp
(27)

j = 2
(26%)

1 Exp
(7)

0 Exp
(7)

2 Exp
(18)

— —

Fig. 5.42.  Routing sequence and processing times of the type 1 job (j = 1).

Assign job-type:
{j=0 with 26%;
j=1 with 48%;
j=2 with 26%}

TABLE 5.6.  Transport Delay Data

delay[v, w] = dvw

To Station (w)
Text file format of

INPUTT.DAT0 1 2 3 4

From Station (v) 0 0 d01 = 2 d02 = 4 d03 = 6 d04 = 2 0 2 4 6 2
1 d10 = 6 0 d12 = 2 d13 = 4 d14 = 2 6 0 2 4 2
2 d20 = 4 d21 = 6 0 d23 = 2 d24 = 2 4 6 0 2 2
3 d30 = 2 d31 = 4 d32 = 6 0 d34 = 2 2 4 6 0 2

5.6.4.1  Data Reading and Input Generation with SIGMA  The configura-
tion of a job shop is defined by a master data set. The important master data
of the job shop are as follows:

1.	 Initial state of the queue in each station: Q[0] = 0, Q[1] = 0, Q[2] = 0,
Q[3] = 0

2.	 Number of machines in each station: M[0] = 1, M[1] = 1, M[2] = 1, M[3] = 1
3.	 Initial job type of each station (machine): JT[0] = 0, JT[1] = 0, JT[2] = 0,

JT[3] = 0
4.	 Routing sequence for each job type: route [J, K] as given in Table 5.5
5.	 Mean processing times for each job type: t[J, K] as given in Table 5.5

EXECUTION OF PARAMETERIZED EVENT GRAPH MODELS USING SIGMA   133

6.	 MAXJ = 2, MAXK = 5: maximum numbers of job types (J) and process-
ing steps (K)

7.	 Transport delay times between stations: delay [V, W] as defined in Table
5.6

8.	 MAXN = 3: maximum number of stations (V, W)
9.	 Inter-arrival time and setup time: TA = 12, TS = 30

Figure 5.43 provides a SIGMA-compatible event graph for initializing the
variables and reading the data, where (1) MAXJ = 2, MAXK = 5, MAXN = 3,
TA = 12, and TS = 30 are received as parameter values; (2) Q[s], M[s], and
JT[s] are initialized at the Run event; (3) route[J,K] and t[J,K] are read at the
Read event; and (4) delay[V,W] is read at the ReadT event. The data reading
function DISK {F; 0} is used to read the input data. Table 5.7 shows the input
file (INPUTR.DAT) in which the routing data (route[J,K] = s) and mean pro-
cessing time (t[J,K]) of Table 5.5 are provided. For example, the second line
contains the following data: route[1,0] = 0, t[1,0] = 11, route[1,1] = 1, t[1,1] = 4,
route[1,2] = 3, t[1,2] = 15, route[1,3] = 1, t[1,3] = 6, route[1,4] = 2, t[1,4] = 27,
route[1,5] = 4, and t[1,5] = 0. Notice in Table 5.7 that s = 4 is used as a delimiter
value indicating the end of a job process. The transport delay data of Table 5.6
are stored in the input file (INPUTT.DAT) in the same manner.

5.6.4.2  Building a SIGMA-Compatible PEG Model for a Job Shop Simu-
lation  The main part of the SIGMA-compatible PEG model for simulating
the job shop operation is shown in Fig. 5.44. It is essentially the same as the
PEG model shown in Fig. 5.18, but it has the following differences: (1) at the

Fig. 5.43.  SIGMA-compatible PEG model for data reading and input generation (K:
processing step).

TA

Read
(J,K)

0,0
Arrive

{U=RND,
J= (U>0.26)+(U>0.74),
s= route[J;0]}

(J<=MAXJ)
&(K<MAXK)

J, K+1

{route[J;K]= DISK{INPUTR.DAT;0},
t[J;K] = DISK{INPUTR.DAT;0}}

J+1, 0

(J<MAXJ)
&(K==MAXK)

(J>=MAXJ)
&(K>=MAXK) ReadT

(V,W)
0,0

{delay[V;W] =
DISK{INPUTT.DAT;0}}

(V<=MAXN)
&(W<MAXN+1)

V, W+1 V+1, 0

(V<MAXN)
&(W==MAXN+1)

(V>=MAXN)
&(W>=MAXN+1)

Run
(MAXJ, MAXK,
MAXN, TA, TS)

{Q[0]=Q[1]=Q[2]=Q[3]=0,
M[0]=M[1]=M[2]=M[3]=1,
JT[0]=JT[1]=JT[2]=JT[3]=0}

J, 0, s
2,5,3,12,30

TABLE 5.7.  INPUTR.DAT File of Routing and Mean Processing Time Data in
Table 5.5

0 6 1 5 2 15 3 8 4 0 4 0
0 11 1 4 3 15 1 6 2 27 4 0
1 7 0 7 2 18 4 0 4 0 4 0

134    Parameterized Event Graph Modeling and Simulation

Enter (j,p,s) event, the job type (j) and processing step (p) are assigned to each
job entering the station (s); (2) the transport delay td = delay[s; ns] is defined
at the Depart event; and (3) at the Load(s) event, the job (j, p) is retrieved
and its processing time (tp) is computed as follows:

	 tp t j p ERL 1 j JT s TS= + =[;]* { } (! [])* . 	

The event transition table for the combined PEG model shown in Figs.
5.43 and 5.44 is given in Table 5.8. The constant data MAXJ (maximum
number of job types), MAXK (maximum number of processing steps), MAXN
(maximum number of stations), TA (deterministic inter-arrival time), and
TS (deterministic setup time) are declared as parameters at the Run event.
These values are specified in the Run Options dialog box. The job type (J)
is obtained at the Arrive event using the RND function: U = RND,
J = (U > 0.26) + (U > 0.74).

5.6.4.3  Building a SIGMA Program and Running the Simulation  The
first step of building a SIGMA program is to draw a SIGMA-generated event
graph. Figure 5.45 shows the SIGMA-generated event graph model of the job
shop in which there are 10 event vertices.

The second step is to declare all user-defined variables as state variables in
the State Variable Editor dialog box, as shown in Fig. 5.46(a). There are 22
user-defined variables declared in the dialog box. The dimensions of the system
variables ENT and RNK are also declared here. Among the declared variables
are the three array variables (T, ROUTE, and DELAY) that constitute the
master data of the job shop. Figure 5.46(b) shows the dialog box of the Run
event, in which the job shop is initialized in the State Change(s) field and the
constant variables are declared in the Parameter(s) field.

Finally, the simulation experiment data are provided in the Run Options
dialog box as depicted in Fig. 5.47(a). A simulation plot of Q[2] is also shown
in Fig. 5.47(b).

Fig. 5.44.  SIGMA-compatible PEG model for the job shop operation (p: processing
step).

TA
B

L
E

 5
.8

. 
E

ve
nt

 T
ra

ns
it

io
n

Ta
bl

e
fo

r
th

e
P

E
G

 M
od

el
 S

ho
w

n
in

 F
ig

ur
es

 5
.4

3
an

d
5.

44

N
o

E
ve

nt
St

at
e

C
ha

ng
e

E
dg

e
C

on
di

ti
on

D
el

ay
P

ar
am

et
er

N
ex

t
E

ve
nt

0
R

un

(M
A

X
J

=
2,

M

A
X

K
 =

 5
,

M
A

X
N

 =
 3

,
T

A
 =

 1
2,

T

S
=

30
)

Q
[0

]
=

0,
 Q

[1
]

=
0,

 Q
[2

]
=

0,
 Q

[3
]

=
0,

M

[0
]

=
1,

 M
[1

]
=

1,
 M

[2
]

=
1,

 M
[3

]
=

1,

JT
[0

]
=

0,
 J

T
[1

]
=

0,
 J

T
[2

]
=

0,
 J

T
[3

]
=

0

1
Tr

ue
0

0,
0

R
ea

d(
J,

K
)

1
R

ea
d(

J,
K

)
R

O
U

T
E

[J
;K

]
=

D
IS

K
{I

N
P

U
T

R
.

D
A

T
;0

};
T

[J
;K

]
=

D
IS

K
{I

N
P

U
T

R
.D

A
T

;0
}

1
(J

<=
M

A
X

J)
&

(K
<M

A
X

K
)

0
J,

K
 +

 1
R

ea
d(

J,
K

)
2

(J
<M

A
X

J)
&

(K
==

M
A

X
K

)
0

J
+

1,
0

R
ea

d(
J,

K
)

3
(J

>=
M

A
X

J)
&

(K
>=

M
A

X
K

)
0

0,
0

R
ea

dT
(V

,W
)

2
R

ea
dT

(V
,W

)
D

E
L

A
Y

[V
;W

]
=

D
IS

K
{I

N
P

U
T

T.
D

A
T

;0
}

1
(V

<=
M

A
X

N
)&

(W
<M

A
X

N
+1

)
0

V
,W

 +
 1

R
ea

dT
(V

,W
)

2
(V

<M
A

X
N

)&
(W

==
M

A
X

N
+1

)
0

V
 +

 1
,0

R
ea

dT
(V

,W
)

3
(V

>=
M

A
X

N
)&

(W
>=

M
A

X
N

+1
)

0
A

rr
iv

e
3

A
rr

iv
e

U
 =

 R
N

D
,

J
=

(U
 >

 0
.2

6)
 +

 (
U

 >
 0

.7
4)

,
S

=
R

O
U

T
E

[J
;0

]

1
Tr

ue
T

A
A

rr
iv

e
2

Tr
ue

0
J,

0,
S

M
ov

e(
J,

P,
S)

4
M

ov
e(

J,
P,

S)
1

Tr
ue

0
J,

P,
S

E
nt

er
(J

,P
,S

)
5

E
nt

er
(J

,P
,S

)
E

N
T

[0
]

=
J,

E
N

T
[1

]
=

P,

Q
[S

]
=

Q
[S

]
+

P
U

T
{F

IF
;S

}
1

M
[S

]
>

0
0

S
L

oa
d(

S)

6
L

oa
d(

S)
Q

[S
]

=
Q

[S
]-

G
E

T
{F

ST
;S

},
J

=
E

N
T

[0
],

P
 =

 E
N

T
[1

],
M

[S
]

=
M

[S
]

−
1,

T

P
 =

 T
[J

;P
]*

E
R

L
{1

}
+

(J
!

=
JT

[S
])

*T
S

1
Tr

ue
T

P
J,

P,
S

U
nl

oa
d(

J,
P,

S)

7
U

nl
oa

d(
J,

P,
S)

M
[S

]
=

M
[S

]
+

1,
 J

T
[S

]
=

J
1

Tr
ue

0
J,

P,
S

D
ep

ar
t(

J,
P,

S)
2

Q
[S

]
>

0
0

S
L

oa
d(

S)
8

D
ep

ar
t(

J,
P,

S)
N

S
=

R
O

U
T

E
[J

;P
 +

 1
];

T
D

 =
 D

E
L

A
Y

[S
; N

S]
1

N
S=

=4
T

D
J

E
xi

t
2

N
S!

 =
 4

T
D

J,
P

 +
 1

,N
S

M
ov

e(
J,

P,
S)

135

136    Parameterized Event Graph Modeling and Simulation

Fig. 5.45.  SIGMA-generated event graph model of the job shop.

Fig. 5.46.  (a) Declaration of state variables and (b) defining the Run vertex.

(a) (b)

Fig. 5.47.  (a) Run Options dialog box and (b) simulation plot of Q[2].

(a) (b)

Developing Your Own Parameterized Event Graph Simulator   137

5.7  DEVELOPING YOUR OWN PARAMETERIZED EVENT
GRAPH SIMULATOR

The process of developing your own simulator for a PEG model is the same
as that for developing an (ordinary) event graph model, as described in
Chapter 4. Namely, (1) the (pure) PEG model is converted to an augmented
PEG model by adding the statistics variables and a statistics routine; (2) an
event transition table is constructed from the augmented PEG model; (3) the
initialize routine, event routines, and statistics routine are developed; and (4)
the main program is obtained from the event graph simulator template shown
in Fig. 4.56. The process of developing your own PEG simulator is described
by using the three-stage tandem line model considered in Section 5.6.3
and the simple job shop model covered in Section 5.6.4. A complete list of
C# codes for the tandem line simulator and the job shop simulator may be
found in the official website of this book (http://VMS-technology.com/Book/
EventGraphSimulator).

5.7.1  Tandem Line PEG Simulator

This section describes how to develop a PEG simulator for the tandem line
shown in Fig. 5.36 in Section 5.6.3. Let us assume that we are interested in the
average queue length at each stage of the tandem line.

Figure 5.48 shows an augmented PEG model of a three-stage tandem line
for collecting the average queue length (AQL) statistics. The statistic variables
introduced are the previous event time (Bef[k]) and the area under the queue-
size curve (SumQ[k]) at stage k for k = 1–3. The average queue lengths
(AQL[k]) for k = 1∼3 are computed in the statistics routine. The event transi-
tion table of the PEG model is given in Table 5.9.

As in the case of the ordinary event graph simulator (see Chapter 4, Section
4.7), the initialize routine, event routines, and statistics routine of the aug-
mented PEG model (Fig. 5.48 and Table 5.9) for collecting the AQL statistics
are obtained easily, as follows:

Fig. 5.48.  Augmented PEG model of a three-stage tandem line for collecting AQL
statistics.

Load
(k)

Unload
(k)

(M[k]>0)
(Q[k]>0)

Enter
(k)

t[k]

taInitialize:
For k=1~3 {
Q[k] = 0;
M[k] =1;
Bef[k]= 0;
SumQ[k]= 0;
}

{M[k]++}

k

k

k+1(k≡1) (k<3)
k

k

(C
LK

>5
00

)

{SumQ[k] += Q[k]*(CLK–Bef[k]);
Bef[k] = CLK; Q[k]++;
if (k==1) ta= Exp(3);}

{SumQ[k]+= Q[k]*(CLK–Bef[k]);
Bef[k]= CLK; Q[k]--; M[k]--;
t[k]= (k≡1)*Exp(5)+ (k≡2)*Exp(4)+ (k≡3)*Exp(3);} S

ta
ti

st
ic

s:
Fo

r k
=1

~3
 {

Su
mQ

[k]
 +=

 Q
[k]

*(C
LK

–B
ef[

k])
;

AQ
L[k

]=
 S

um
Q[

k]
/ C

LK
; }

1

http://VMS-technology.com/Book/EventGraphSimulator
http://VMS-technology.com/Book/EventGraphSimulator

138    Parameterized Event Graph Modeling and Simulation

TABLE 5.9.  Event Transition Table for the PEG Model Shown in Figure 5.48

No Event State Change Edge Condition Delay Parameter
Next
Event

0 Initialize For k = 1∼3 {Q[k] =
0; M[k] = 1;
Bef[k] = 0;
SumQ[k] = 0}

1 True — 1 Enter(k)

1 Enter(k) SumQ[k] += Q[k]*
(CLK–Bef[k]);
Bef[k] = CLK;

Q[k] ++;
if (k==1)
ta = Exp(3);

1 k ≡ 1 ta k Enter(k)
2 M[k] > 0 0 k Load(k)

2 Load(k) SumQ[k] += Q[k]*
(CLK–Bef[k]);
Bef[k] = CLK;
Q[k]−−; M[k]−−;

t[k] = (k ≡ 1)*
Exp(5) + (k ≡ 2)*
Exp(4) + (k ≡ 3)*
Exp(3);

1 True t[k] k Unload(k)

3 Unload(k) M[k]++; 1 Q[k] > 0 0 k Load(k)
2 k < 3 0 k + 1 Enter(k)

4 Statistics For k = 1∼3 { SumQ[k] += Q[k]*(CLK–Bef[k]); AQL[k] = SumQ[k]/
CLK; }

Execute-Initialize-routine (Now) // Fig. 5.48 //
{  For k = 1 to 3 {Q[k] = 0; M[k] = 1; Bef[k] = 0; SumQ[k] = 0};
  Schedule-event (Enter, 1, Now);
}.

Execute-Enter-event-routine (k, Now) // Fig. 5.48 //
{  SumQ[k] += Q[k] * (Now – Bef[k]); Bef[k] = Now;
  Q[k] ++;
  If (k==1) Schedule-event (Enter, k, Now + Exp (3));
  If (M[k] > 0) Schedule-event (Load, k, Now);
}.

Execute-Load-event-routine (k, Now) // Fig. 5.48 //
{  SumQ[k] += Q[k] * (Now – Bef[k]); Bef[k] = Now;
  Q[k]−−; M[k]−−;
  t[k] = (k==1) * Exp(5) + (k==2) * Exp(4) + (k==3) * Exp(3);
  Schedule-event (Unload, k, Now + t[k]);
}.

Developing Your Own Parameterized Event Graph Simulator   139

Execute-Unload-event-routine (k, Now) // Fig. 5.48 //
{  M[k] ++;
  If (Q[k] > 0) Schedule-event (Load, k, Now);
  If (k < 3) Schedule-event (Enter, k + 1, Now);
}.

Execute-statistics-routine (Now) // Fig. 5.48 //
{  For k = 1∼3 {SumQ[k] += Q[k] * (Now – Bef[k]); AQL[k]

= SumQ[k] / Now;}
}.

With these event routines and initialize/statistics routines, the next event
methodology algorithm for simulating the three-stage tandem line is realized
as shown in Fig. 5.49.

If we are interested in the average sojourn time (AST) statistics, the aug-
mented PEG model will be as shown in Fig. 5.50. The statistics variables
required to collect the AST statistics are the job arrival time (AT), sum of
sojourn times (SumT), and number of jobs passed through the third station
(N). It should be noted that Q[k] is a list of real numbers (arrival times of jobs
in the kth stage).

Fig. 5.49.  Main program of the three-stage tandem line simulator for computing AQL.

Main-Program // PEG model in Figure 5.48 and Table 5.9 //
Begin
CLK = 0;
Execute-Initialize-routine (CLK); // (1) Initialize
While (CLK < 500) do { // te = 500
Retrieve-event (EVENT, k, TIME); CLK = TIME; // (2) Time-flow mechanism
Case EVENT of { // (3) Execute event-routine

Enter: Execute-Enter-event-routine (k, CLK);
Load: Execute-Load-event-routine (k, CLK);
Unload: Execute-Unload-event-routine (k, CLK);

} // end-of-case
}; // end-of-while
Execute-statistics-routine (CLK); // (4) Output statistics

End

Fig. 5.50.  Augmented event graph model for collecting AST statistics.

Load
(k)

Unload
(k, AT)

(M[k]>0)
(|Q[k]|>0)

Enter
(k, AT)

t[k]

taInitialize:
For k=1~3{
New Q[k];
M[k] = 1;
}
SumT= 0;
N=0;

{M[k]++;
If (k≡3) {N++;

SumT+=(CLK–AT);}

k

k, AT

k+1, AT(k≡1) (k<3)

k

k, AT
(CLK>500)

{If (k≡1) {
AT = CLK; ta= Exp(3)};
AT Q[k];}

{Q[k] AT; M[k]--;
t[k]= (k≡1)*Exp(5)+ (k≡2)*Exp(4)+

(k≡3)*Exp(3);}
Statistics:
AST = SumT / N

1, 0

140    Parameterized Event Graph Modeling and Simulation

5.7.2  Simple Job Shop PEG Simulator

In this section, the simple job shop model covered in Section 5.5.2 (Fig. 5.18)
and in Section 5.6.4 is adopted as a more general example of developing a
PEG simulator. As described in Section 5.6.4, the simple job shop consists of
four single-machine stations (s = 0, 1, 2, 3) and handles three job types (j = 0,
1, 2). The routing sequences and mean processing times are as given in Table
5.5; the transport time delays are as specified in Table 5.6. An augmented PEG
model of this simple job shop is shown in Fig. 5.51, where EOS denotes the
end-of-simulation condition.

In this example, the parameter variables are not equal among the events,
which may cause difficulty in implementing the event routines. A simple
method to avoid this difficulty is to use the same list of parameter variables
for all event routines. In this case, the parameter list (j, p, s) is used for all event
routines. For example, the event routines for the Arrive event and Enter event
can be obtained as follows:

Execute-Arrive-event-routine (j, p, s, Now) // Fig. 5.51 //
{  U = Uni (0, 1); j = (U > 0.26) + (U > 0.74);
  s = route [j, 0];
  Schedule-event (Arrive, 0, 0, 0, Now +12);
  Schedule-event (Move, j, 0, s, Now);
}.

Execute-Enter-event-routine (j, p, s, Now) // Fig. 5.51 //
{  SumQ[s] += |Q[s]| * (Now – Bef[s]); Bef[s] = Now;
  (j, p) → Q[s];
  If (M[s] > 0) Schedule-event (Load, 0, 0, s, Now);
}.

Fig. 5.51.  Augmented PEG model of a simple job shop for collecting AQL statistics.

Load UnloadEnter

--

Arrive

Move Depart

ExitInitialize:

Read

S
ta

ti
st

ic
s:

TA
B

L
E

 5
.1

0.
 E

ve
nt

 T
ra

ns
it

io
n

Ta
bl

e
fo

r
th

e
P

E
G

 M
od

el
 S

ho
w

n
in

 F
ig

ur
e

5.
51

N
o

E
ve

nt
St

at
e

C
ha

ng
e

E
dg

e
C

on
d.

D
el

ay
P

ar
am

et
er

N
ex

t
E

ve
nt

0
In

it
ia

liz
e

Fo
r

s
=

0∼
3

{N
ew

 Q
[s

];
M

[s
]

=
1;

 J
T

[s
]

=
Su

m
Q

[s
]

=
B

ef
[s

]
=

0
};

R
ea

d
{

ro
ut

e[
j,

k]
, t

[j
, k

]}
 f

or
 j

=
0∼

2
an

d
k

=
0∼

5;
 R

ea
d

{d
el

ay
[j

,
k]

}
fo

r
j =

 0
∼3

 a
nd

 k
 =

 0
∼4

; t
s

=
30

;

1
Tr

ue
0

A
rr

iv
e

1
A

rr
iv

e
U

 =
 U

ni
(0

,1
);

j =
 (

U
 >

 0
.2

6)
 +

 (
U

 >
 0

.7
4)

; s
 =

 r
ou

te
[j

,0
];

1
Tr

ue
12

—
A

rr
iv

e
2

Tr
ue

0
j,0

,s
M

ov
e(

j,p
,s

)
2

M
ov

e(
j,p

,s
)

1
Tr

ue
0

j,p
,s

E
nt

er
(j

,p
,s

)
3

E
nt

er
(j

,p
,s

)
Su

m
Q

[s
]

+=
 |Q

[s
]|*

(C
L

K
–B

ef
[s

])
; B

ef
[s

]
=

C
L

K
; (

j,
p)

→
Q

[s
];

1
M

[S
]

>
0

0
s

L
oa

d(
s)

4
L

oa
d(

s)
Su

m
Q

[s
]

+=
 |Q

[s
]|*

(C
L

K
–B

ef
[s

])
; B

ef
[s

]
=

C
L

K
; Q

[s
]→

(j
, p

);
M

[s
]−

−;
 t

p
=

E
xp

(t
[j

, p
])

; I
f

(j
 ≠

 J
T

[s
])

 t
p

+=
 t

s;
1

Tr
ue

tp
j,p

,s
U

nl
oa

d(
j,p

,s
)

5
U

nl
oa

d(
j,p

,s
)

M
[s

]+
+;

 J
T

[s
]

=
j;

1
Tr

ue
0

j,p
,s

D
ep

ar
t(

j,p
,s

)
2

|Q
[s

]|
>

0
0

s
L

oa
d(

s)
6

D
ep

ar
t(

j,p
,s

)
ns

 =
 r

ou
te

[j
, p

 +
 1

];
td

 =
 d

el
ay

[s
, n

s]
;

1
ns

 !
 =

 4
td

j,p
 +

 1
,n

s
M

ov
e(

j,p
,s

)
2

ns
 ≡

 4
0

j
E

xi
t(

j)
7

E
xi

t(
j)

1
8

St
at

is
ti

cs
Fo

r
s

=
0∼

3
{

Su
m

Q
[s

]
+=

 |Q
(s

)|
*(

C
L

K
-B

ef
[s

])
; A

Q
L

[s
]

=
Su

m
Q

[s
]

/ C
L

K
;}

141

142    Parameterized Event Graph Modeling and Simulation

Exercise 5.3. Write a main program (in a pseudocode form) for the PEG
simulator that executes the augmented PEG model shown in Fig. 5.51.

5.8  REVIEW QUESTIONS

5.1.  What are the two common cases for parameterizing an ordinary event
graph?

5.2.  What is the difference between a parameter variable and a parameter
value?

5.3.  What is the difference between a parameterized event transition table and
an ordinary event transition table?

5.4.  Compared to the ordinary event graph model, what are the additional
elements in the algebraic structure of the PEG model?

5.5.  What is the repeating pattern of event nodes in a limited buffer tandem
line model?

5.6.  What is a simple job shop?

5.7.  What are the state variables in the event graph model of a simple job
shop?

5.8.  Where do you declare the state variables in SIGMA? Where do you ini-
tialize them?

143

CHAPTER 6

Introduction to Activity-Based
Modeling and Simulation

In all things there is a law of cycles.
—Publius C. Tacitus

6.1  INTRODUCTION

Our lives are full of activities: It is through activities that something meaning-
ful is achieved. An activity always involves at least one actor. In our definition
of a discrete-event system, it is often the case that the actor is a resource and
the target of an activity is a transient entity to be served or processed by the
resource. In a machine shop, the resource is a machine and the transient entity
is a job. The outcome of one activity may trigger other activities. If we can
identify the relationships among the activities, we can better understand the
present situation and may be able to predict future situations.

Thus, activity-based modeling is a natural way to represent our knowledge
of a system. When we describe a real-life dynamic situation, we naturally
follow a sequence of steps, i.e., activities that are involved in the situation. In
activity-based modeling, the dynamics of the system are represented using an
activity cycle diagram (ACD), which is a network model of the logical relation-
ships between the activities. An ACD is a formal model that can be executed
with a well-defined algorithm.

The single server system introduced in Chapter 2 (Figs. 2.6 and 2.8) is shown
in Fig. 6.1: A job arrives at the system as a result of a Create activity performed
by the Job Creator, and it is served by the Machine through the Process activ-
ity. Each job goes through the system in the following sequence: After being
created for ta minutes, it stays in the passive resource Buffer until it can be
loaded onto the Machine, and then it is processed by the active resource

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

144    Introduction to Activity-Based Modeling and Simulation

Machine for ts minutes. The system state is defined by the states of the resources:
Job Creator (C = 1 if idle, C = 0 if busy), Machine (M = 1 if idle, M = 0 if busy),
and Buffer (Q = number of jobs in the Buffer).

The purpose of this chapter is to explain the essential features of activity-
based modeling and simulation (M&S) using an ACD. The advanced features
and special applications of the activity-based M&S will be covered in Part III
(Chapter 10) of this book. After studying this chapter, you should be able to
do the following:

1.	 Construct an activity transition table for an ACD model
2.	 Build ACD models with various “template systems” such as a flexible

multi-server system, limited buffer tandem line, nonstationary Poisson
process, batched service multi-server line, and inspection-repair line

3.	 Build ACD models for simple service systems such as restaurants, gas
stations, coffee shops, and car repair shops

4.	 Build an ACD model for a PERT (program evaluation and review tech-
nique) system

5.	 Build an ACD model for a conveyor-driven serial line
6.	 Construct parameterized ACD models of n-stage tandem lines and of a

job shop
7.	 Simulate various types of ACD models using the formal ACD simulator

ACE®

The remainder of this chapter is organized as follows. The execution rules
and specifications of ACD are described in Section 6.2, and ACD modeling
templates and examples are given in Section 6.3 and Section 6.4, respectively.
The definition and execution rules of a P-ACD as well as its application to
modeling tandem lines and job shops are given in Section 6.5. How to simulate

Fig. 6.1.  Reference model and ACD model of a single server system.

Buffer (Q)
Machine (M)

Job Creator

3 Jobs

Jobs
∞

C
•

Q
• • • Process <ts>Create <ta>

M
•

C = 1, M = 1, Q = 3

Definitions and Specifications of an Activity Cycle Diagram   145

ACD models using the formal ACD simulator ACE® is explained in detail in
the last section.

6.2  DEFINITIONS AND SPECIFICATIONS OF AN ACTIVITY
CYCLE DIAGRAM

The core idea of activity-based M&S was conceived by Tocher in 1957 [Hol-
locks 2008] when he was investigating the congestion control problem at the
United Steels in the United Kingdom. Tocher argued that “in more complex
plants, in which there is a multiplicity of possible routes for the steel through
the plant, it is possible to minimize congestion and maximize the rate of flow
by a (simulation-based) scheduling procedure” [Tocher 1960, p.50].

Tocher used a flow diagram of activities in modeling the dynamic behavior
of the steel plant (Fig. 6.2). “The plant is regarded as a set of machines, each
with a set of states, progressing as time unfolds through states that change only
at discrete events. At any moment of time, components are grouped together
in activities, which endure for a sampled time, and then become free, after a
possible change of state, to regroup with other components in further activi-
ties” [Tocher 1960, p.59].

The activity flow diagram shown in Fig. 6.2 later evolved into the ACD
where an activity node is denoted by a rectangle and a queue node (or passive
state node) by a circle [Carrie 1988]. This version of the ACD is often referred
to as the classical ACD. However, it has transpired that the classical ACD has
some inherent limitations in handling complex systems [Hlupic and Paul 1994].
In order to enhance the modeling power, concepts of a hierarchical ACD
[Kienbaum and Paul 1994] and an extended ACD [Martinez 2001] have been
proposed. More recently, a formal specification of an extended ACD has been
developed by the authors of this book [Kang and Choi 2011].

Fig. 6.2.  Flow diagram of Acid Bessemer steel-making process [Tocher 1960].

146    Introduction to Activity-Based Modeling and Simulation

6.2.1  Definitions of an ACD

In the classical ACD, an activity typically represents the interaction between
an entity and active resources. (Note that in this book the term entity is used
to denote a transient object that arrives at the system and eventually leaves
the system, while in other ACD literature this term includes resident resources
as well.) An entity or an active resource is either in a passive state called a
queue or in an active state called an activity. Queue nodes and activity nodes
are connected by arcs.

Figure 6.3 presents a classical ACD model for a single server system with
a setup operator. There are two types of entities (Job and Break) and four
types of resources (Job Creator, Machine, Operator, and Break Generator).
The basic conventions for drawing an ACD are as follows:

1.	 Each entity and resource has an activity cycle.
2.	 Each cycle consists of activities and queues.
3.	 Activities and queues alternate in a cycle.
4.	 Activities are depicted by rectangles and queues by circles.
5.	 A cycle is closed.

The dynamics of an ACD model are described in terms of token variables.
The value of a token variable represents either the state of an active resource
or the number of entities in a passive resource like a buffer. In the ACD model
shown in Fig. 6.3, the token (denoted by a dot “•”) in the Machine Cycle
indicates that the machine is in the Hold state, which is specified as Hold ≡ 1.
The numeric value of a token variable in a queue is specified in a pair of
chevrons <>. For example, the number of tokens in the Q queue is specified
as <3>, indicating that there are three jobs in Q. When the value is zero, the
number may be omitted.

For example, the number of tokens in the Ready queue is not specified
because it is zero. A vector representing the numbers of tokens in the queues
is called a marking. For the ACD model shown in Fig. 6.3, the marking M is a
vector of token variables {C, Q, Hold, Ready, Wait, B, G, BG} and the initial
marking, M0 = {1, 3, 1, 0, 1, 0, 1, 1}, defines the initial state of the system.

As can be seen in Fig. 6.3, the duration of an activity is also specified in a
pair of chevrons <>. For example, the duration of the Process activity is speci-

Fig. 6.3.  Classical ACD for a single server system with a setup operator.

Create
<ta>

Setup
<ts>

Job Cycle

Job Creator Cycle

Machine
Cycle

Operator Cycle

•
Break
<tb>

Generate
<tg> •

•

Break Cycle

Jobs Q Process
<tp>

•

Definitions and Specifications of an Activity Cycle Diagram   147

fied as <tp> in the activity node. There are two forms of activity cycles: (1) an
entity activity cycle for an entity that has a definite sequence and (2) a resource
activity cycle for an active resource that may perform one or more different
activity cycles in any sequence. In Fig. 6.3, for example, the Operator Cycle,
which is a resource activity cycle has two cycles to choose. In this case, it is
implicitly assumed that a rule exists for choosing one of the two.

6.2.2  Execution Rules and Tabular Specifications of an ACD

An important extension to the classical ACD is the addition of arc conditions
and arc multiplicities, which is often referred to as an extended ACD. An arc
condition is a Boolean expression that must be true in order for the arc to be
enabled, and an arc multiplicity represents the number of tokens passing
through the arc when the enabled activity is executed. An arc condition and
an arc multiplicity define the arc attributes of the arc. When arc attributes are
not specified, by default, the arc condition is true and the arc multiplicity is 1.

Figure 6.4 shows a portion of an extended ACD in which (1) Q1 is an input
queue, (2) c1 is an input arc condition, (3) m1 is an input arc multiplicity, (4)
c2 is an output arc condition, (5) m2 is an output arc multiplicity, (6) Q2 is an
output queue, and (7) A2 and A3 are influenced activities of activity A1
(because the execution of A1 directly influences the start of A2 and A3).
Queues S1, S2, and S3 represent the numbers of idle resources required to
perform activities A1, A2 and A3, respectively. A2 has a higher priority over
A3 because A3 is only enabled when the A2 resource is busy (S2 ≡ 0).

In the following, the execution rules of an extended ACD are described for
the A1 activity in Fig. 6.4. An activity is confined by two events: an activity-
begin event and an activity-end event. Once an activity-begin event occurs, the
activity-end event is bound to occur after the time delay of the activity dura-
tion. Thus, the activity-end event is called a bound-to-occur event (BTO event).

The At-begin execution rules of activity A1 in Fig. 6.4 are as follows: “If the
input arc condition (c1) is true and the number of tokens in the input queue
Q1 is at least its arc multiplicity (Q1 ≥ m1 > 0 or Q1 > m1 ≡ 0) and if there is
at least one token in the queue S1 (S1 > 0), then (1) the A1 activity will begin
after de-queuing m1 tokens from Q1 (Q1 = Q1 – m1) and one token from
S1 and (2) its BTO event is scheduled to occur after the activity duration
(t1).” Similarly, the At-end execution rules are expressed as “If the output arc

Fig. 6.4.  Illustration of the arc attributes in an extended ACD.

S1
•

Q1 A1
<t1>~

(c1) m1 Q2 A2
<t2>

m2~

(c2)
S2
•

A3
<t3>

S3
•

~

(S2 0)

148    Introduction to Activity-Based Modeling and Simulation

condition (c2) is true, then (1) m2 tokens are created and en-queued into the
output queue Q2 and (2) a token is returned to queue S1. Then, the influenced
activity A2 is examined first for execution, and if A2 is not ready for execution
(i.e. S2 ≡ 0), A3 is considered for execution.”

An activity transition table is a formal specification of an ACD in a tabular
form that defines the properties of the ACD. It specifies At-begin condition,
At-begin action, BTO-event time, and BTO-event name of each activity. Here,
updating state variables is referred to as an action. The table also specifies
At-end condition, At-end action, and Influenced Activity for each output arc
of the activity. Table 6.1 is an activity transition table of the ACD shown in
Fig. 6.4. This table may also be regarded as an execution rules table because
the execution rules are summarized concisely within it. In addition, the initial
marking and enabled activities (i.e., activities whose At-begin conditions are
true) are specified in the Initialize row of the table.

Table 6.2 gives another illustration of an activity transition table for the
single server system ACD shown in Fig. 6.1. The single server system ACD
consists of two activities (Create, Process) and four queues (C, Q, M, Jobs).
Since the Jobs queue denotes the outside world in which there are an infinite
number of jobs (i.e., the number of tokens is ∞), it is disregarded when inter-
preting the ACD.

Exercise 6.1. Construct an activity transition table of the classical ACD in
Fig. 6.3.

6.2.3  Algebraic Specifications of an ACD

As mentioned in Chapter 2 (Section 2.3.3), a classical ACD is essentially a
timed Petri net. A Petri net is a bipartite directed graph, so it is a classical ACD.
An activity node in the ACD corresponds to a (timed) transition in a Petri net,
and a queue node relates directly to a place. A Petri net consists of a finite set
of places and a finite set of transitions, and an arc runs from a place to a transi-
tion, or vice versa. The places from which an arc runs to a transition are called
input places of the transition; the places to which arcs run from a transition are
output places. The places in a Petri net may contain a number of tokens. Any
distribution of tokens over the places will represent a state of the net called a
marking [Peterson 1981]. Due to their common structure, the algebraic specifi-
cation of an ACD is derived from a Petri net. Further discussion on the Petri
net and its relationship to the ACD is presented in Chapter 10.

An ACD is a bipartite directed graph consisting of a set of activity nodes
(A) and a set of queue nodes (Q). The arcs connecting the activities from the
input queues are defined in the input function (I), and those connecting the
output queues from the activities are defined in the output function (O).
Associated with each activity node (a ∈ A) is a time delay (τa ∈ T), and a
number of tokens (μq ∈ μ) is specified for each queue node (q ∈ Q) with their
initial marking μ0. Thus, a classical ACD model M can be defined as 7-tuple
structure, as follows:

TA
B

L
E

 6
.1

. 
A

ct
iv

it
y

Tr
an

si
ti

on
 T

ab
le

 o
f

th
e

A
C

D
 in

 F
ig

ur
e

6.
4

N
o

A
ct

iv
it

y

A
t-

be
gi

n
B

T
O

-e
ve

nt
A

t-
en

d

C
on

di
ti

on
A

ct
io

n
T

im
e

N
am

e
A

rc
C

on
di

ti
on

A
ct

io
n

In
flu

en
ce

d
A

ct
iv

it
y

1
A

1
(c

1)
 &

 (
Q

1
≥

m
1)

&

 (
S1

 >
 0

)
Q

1
=

Q
1

−
m

1;
S1

−−
;

t 1
E

ve
nt

A
1

1
Tr

ue
S1

++
;

A
1

2
(c

2)
Q

2
=

Q
2

+
m

2;
A

2,
 A

3
2

A
2

(Q
2

>
0)

 &

(S
2

>
0)

Q
2−

−;
 S

2−
−;

t 2
E

ve
nt

A
2

1
Tr

ue
S2

++
;

A
2

3
A

3
(S

2
≡

0)
 &

(Q

2
>

0)
 &

(S

3
>

0)

Q
2−

−;
 S

3−
−;

t 3
E

ve
nt

A
3

1
Tr

ue
S3

++
;

A
3

In
it

ia
liz

e
In

iti
al

 M
ar

ki
ng

 =
 {

S1
 =

 S
2

=
S3

 =
 1

, Q
1

=
Q

2
=

0,
 .

. .
};

E
na

bl
ed

 A
ct

iv
iti

es
 =

 {
 }

149

150    Introduction to Activity-Based Modeling and Simulation

TABLE 6.2.  Activity Transition Table of the Single Server System ACD in Figure 6.1

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Influenced

Activity

1 Create (C > 0) C−−; ta Created 1 True C++; Create
2 True Q++; Process

2 Process (Q > 0) &
(M > 0)

Q−−;
M−−;

ts Processed 1 True M++; Process

Initialize Initial Marking = {C = 1, M = 1, Q = 3}; Enabled Activities = {Create}

M = <A, Q, I, O, T, μ, μ0>, where
A = {a1, a2 . . . an} is the finite set of activities;
Q = {q1, q2 . . . qm} is the finite set of queues;
I = {ia ⊆ Q | a ∈ A} is the input function, which is mapped from a set of

queues to an activity;
O = {oa ⊆ Q | a ∈ A} is the output function, which is mapped from an activ-

ity to a set of queues;
T R a Aa= ∈ ∈+{ | }τ 0 is the time delay function;
m = ∈ ∈+{ | }µq N q Q0 is the finite set of the number of tokens for each queue;

and,
μ0 = {μ1, μ2 . . . μm} is the finite set of initial number of tokens for each queue.

As an example, the single server system ACD in Fig. 6.1 may be specified
as follows:

M = (A, Q, I, O, T, μ, μ0), where
A = {a1, a2} = {Create, Process}
Q = {q1, q2, q3, q4} = {Jobs, C, Q, M}
I(a1) = {q1, q2}, I(a2) = {q3, q4}
O(a1) = {q2, q3}, O(a2) = {q1, q4}
T(a1) = ta, T(a2) = ts

μ = {μ1, μ2, μ3, μ4}
μ0 = {μ1 = ∞, μ2 = 1, μ3 = 3, μ4 = 1}

An algebraic structure of an extended ACD is defined similarly [Kang and
Choi 2011].

6.3  ACTIVITY CYCLE DIAGRAM MODELING TEMPLATES

The single server system ACD model shown in Fig. 6.1 is the baseline ACD
model in which a resource processes one entity at a time and the buffer has

Activity Cycle Diagram Modeling Templates   151

an infinite capacity. This baseline model can be embellished to cover more
complex situations. Most ACD modeling templates covered in this section are
taken from the event graph modeling templates introduced in Section 4.4 of
Chapter 4. The templates involving event canceling are covered in Chapter 10.
The ACD modeling templates presented here can be used as building blocks
for modeling large systems.

The single server ACD model of Fig. 6.1 is easily extended to a two-stage
tandem line ACD model by adding one more stage (i.e., Process activity) as
shown in Fig. 6.5. The two-stage tandem line ACD model has two Process activi-
ties (Process1 and Process2) with two time delays (t1 and t2, respectively).

Exercise 6.2. Construct an ACD model of a three-stage tandem line.

6.3.1  ACD Template for Flexible Multi-Server System Modeling

The single server system depicted in Fig. 6.1 consists of a single server and a
buffer with an unlimited capacity. If there are two or more identical servers
in the system, it is a multiple server system. Figure 6.6 shows the ACD model
of a fixed multi-server system with four identical servers. The initial marking
is μ0 = {C = 1, M = 4, Q = 0}.

Consider the case in which the number of servers varies over time, which
is called a flexible multi-server system. Let N(t) denote the number of servers
at time t, then the ACD model of the flexible multi-server system becomes the
one shown in Fig. 6.7. CLK denotes the current simulation clock time.

An activity transition table for the flexible multi-server ACD in Fig. 6.7 is
given in Table 6.3. At every At-begin execution time, the state variable D,
which denotes the change in the number of servers, is updated and the Process
activity is started if its At-begin Condition ((M > D) & (Q > 0)) is true. The

Fig. 6.5.  ACD model of a two-stage tandem line.

Jobs

C
•

Q1 Process1 <t1>Create <ta>

M1
•

Process2 <t2>

M2
•

Q2

C = M1 = M2 = 1, Q1 = Q2 = 0

Fig. 6.6.  ACD model of a fixed multi-server system with four identical servers.

Jobs

C
•

Q Process <ts>Create <ta>

M

C=1, M=4, Q=0

152    Introduction to Activity-Based Modeling and Simulation

initial marking is {C = 1, M = N0, Q = 0}. As a convention, the state variable
updates are specified beneath the activity node in the ACD and are described
in the At-begin Action entry of the activity transition table.

6.3.2  ACD Template for Limited Buffer Tandem Line Modeling

As discussed in Chapter 4 (Section 4.4), balking may occur if the waiting space
for the arriving jobs becomes full, and blocking may occur if the unloading
space of a machine is full. In activity-based modeling, the limited buffer
problem is managed using Kanbans, which is the work-in-progress (WIP)
control mechanism used in just-in-time (JIT) production or lean manufactur-
ing. A Kanban is a kind of entrance ticket that is issued to an incoming entity
and is collected when the entity leaves the system.

Consider the unlimited buffer two-stage tandem line model shown in Fig.
6.5. Let’s assume that the buffer capacity in front of Stage1 is three (K1 = 3)
and the buffer capacity between Stage1 and Stage2 is four (K2 = 4). The capac-
ity of the waiting space or buffer is represented by the number of tokens (or
Kanbans) in queues K1 and K2. The ACD model of the two-stage limited
buffer tandem line is shown in Fig. 6.8. The Enter activity is allowed to start
only when at least one token is available in K1. The Unload1 activity is pro-
hibited (i.e., blocked) when there are no tokens in K2.

Fig. 6.7.  ACD model of a flexible multi-server system.

Jobs

C
•

Q Process <ts>Create <ta>

M
[N0]

{D = N0 – N[CLK]}

(M > D)

C=1, M=N0, Q=0

{D = N0 – N[CLK]}

TABLE 6.3.  Activity Transition Table of the Flexible Multi-Server ACD Given in Figure 6.7

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Influenced

Activity

1 Create (C > 0) C−−;
D = N0 −

N[CLK];

ta Created 1 True C++; Create
2 True Q++; Process

2 Process (M > D) &
(Q > 0)

M−−; Q−−;
D = N0 −

N[CLK]

ts Processed 1 True M++; Process

Initialize Initial Marking = {C = 1, M = N0, Q = 0}; Enabled Activities = {Create}

Activity Cycle Diagram Modeling Templates   153

6.3.3  ACD Template for Nonstationary Arrival Process

The thinning method of generating inter-arrival times under a nonstationary
Poisson process was explained in Chapter 3 (see Fig. 3.4 in Section 3.4.3), and
an event graph model of a single server system subject to fluctuating arrival
rates was given in Chapter 4 (Fig. 4.9 in Section 4.4.1).

Figure 6.9 shows an ACD model of a single server system with fluctuating
inter-arrival times sampled from a nonstationary Poisson process. The time
delay (d) of the next Create activity is computed with the maximum arrival
rate (Rmax), and then the generated job is sent to queue Q only when it passes
the thinning test (i.e., U < Ratio), where CLK is a function returning the
current simulation clock, R() is the arrival rate function, Exp() is an exponen-
tial random variate generation function, and Uni(0,1) is a standard uniform
random number generator.

6.3.4  ACD Template for Batched Service Modeling

An ACD of a batched service multi-server is shown in Fig. 6.10, where the
multiplicity of the (directed) arc from queue Q to activity Process is set to

Fig. 6.8.  Limited buffer tandem line modeling (balking and blocking).

C
•

Create
<ta>

M1
•

K1
•••

C=M1=M2=1, K1=3, K2=4, Q0=Q1=Q2=Q3=Q4=Q5=0

M2
•

Process2
<t2>

K2
••••

Unload1
<0>

Load2
<0>

Balking Blocking(K1 0)Balk
<0>

Jobs Load1
<0>

Enter
<0>

Process1
<t1>

Fig. 6.9.  ACD model of a single server system with nonstationary arrival rates.

C
•

Q Process
<ts>

Create
<d>

M
•

C=1, M=1, Q=0

(U<Ratio)~

{d= Exp(1/Rmax); Ratio=R(CLK+ d)/Rmax; U=Uni(0,1);}

Jobs

Fig. 6.10.  ACD model of a batched service multi-server system.

C
•

Q Process <ts>Create <ta>

M
••

b

C=1, M=2, Q=0
Jobs

154    Introduction to Activity-Based Modeling and Simulation

batch size b. In general, there are a maximum number (b) and a minimum
number (a) of jobs that can be processed at one time, which is denoted as
a ≤ J ≤ b, where J is the actual number of jobs in a batched service. If a = b, it
is a full batched service; if a < b, it is a partial batched service. The activity
transition table of the ACD model for a full batched service system is given
in Table 6.4.

Exercise 6.3. Revise the ACD in Fig. 6.10 to create a partial batched service
model.

6.3.5  ACD Template for Joining Operation Modeling

An ACD model for a production line that joins two parts (Job-1, Job-2) is
shown in Fig. 6.11, where the Job-1 part is treated as the main entity. When m
parts of Job-1 and n parts of Job-2 are joined, they are specified as an arc
multiplicity.

6.3.6  ACD Template for Probabilistic Branching Modeling

Figure 6.12 presents an ACD model for probabilistic branching where 90% of
the jobs pass inspection and go to queue P for the next processing. The remain-
ing jobs are moved to queue S for the scrapping operation. A probabilistic
branching is modeled as an arc condition involving a uniform random number
(U). The activity transition table of this ACD model is given in Table 6.5.

TABLE 6.4.  Activity Transition Table for the ACD in Figure 6.10

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Influenced

Activity

1 Create (C > 0) C−−; ta Created 1 True C++; Create
2 True Q++; Process

2 Process (Q ≥ b) &
(M > 0)

Q = Q–b;
M−−;

ts Processed 1 True M++; Process

Initialize Initial Marking = {C = 1, M = 2, Q = 0}; Enabled Activities = {Create}

Fig. 6.11.  ACD model of a joining operation line.

C1
•

M2
•

C2
•

Create2
<ta2>

M1
•

m

n

C1=C2=1,M1=M2=1, P1=P2=Q=0

Create1
<ta1>

Process1
<ts1>P1

P2

Q Process2
<ts2>

Jobs

Activity Cycle Diagram Modeling Templates   155

Fig. 6.12.  ACD model for probabilistic branching.

{U=Uni(0,1)}

C
•

Inspect <ti>

M1
•

Process <tp>

M2
•

P

Scrap <ts>

M3
•

S

(U)~

(U>0.9)~

C=M1=M2=M3=1, I=P=S=0

ICreate <ta> Jobs0.9

TABLE 6.5.  Activity Transition Table for the ACD in Figure 6.12

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Influenced

Activity

1 Create (C > 0) C−−; ta Created 1 True C++; Create
2 True I++; Inspect

2 Inspect (I > 0) &
(M1 > 0)

I−−; M1−−;
U = Uni(0,

1);

ti Inspected 1 True M1++; Inspect
2 (U ≤ 0.9) P++; Process
3 (U > 0.9) S++; Scrap

3 Process (P > 0) &
(M2 > 0)

P−−;
M2−−;

tp Processed 1 True M2++; Process

4 Scrap (S > 0) &
(M3 > 0)

S−−;
M3−−;

ts Scraped 1 True M3++; Scrap

Initialize Initial Marking = {C = M1 = M2 = M3 = 1, I = P = S = 0}; Enabled
Activities = {Create}

6.3.7  ACD Template for Resource Failure Modeling

In Chapter 4 (Section 4.4.1), two cases of resource failure event graph models
were considered: a failure model where the server may fail even when it is
idle, and a model where a failure is only allowed when the server is busy. In
this section, only the second case of resource failure is modeled using an ACD.
The ACD modeling of the first case will be discussed in Chapter 10 (for which
we need a canceling arc).

Figure 6.13 presents an ACD model of the single server system with machine
failure where a failure is only allowed when the server is busy and the

Fig. 6.13.  ACD for a single server system with machine failure.

Jobs

C
•

Q Process <ts>Create <ta>

M
•

C=1, M=1, Q=0

{ If (ttf<10) {ts= ttf+80; ttf=500;} else {ts=10; ttf–=10;} }

ts = 10, ttf = 500

156    Introduction to Activity-Based Modeling and Simulation

interrupted job is discarded. Its event graph model was given in Fig. 4.14 in
Chapter 4, where the service time was 10 (ts = 10), repair time was 80 (tr = 80),
and the value of remaining time-to-failure (ttf) was initially set to 500. As with
the event graph model, the variable ttf is regarded as a state variable. The
activity transition table of this ACD model is given in Table 6.6.

6.4  ACTIVITY-BASED MODELING EXAMPLES

System modeling is an art that may only be mastered by learning the best
practices and internalizing them through relentless practices. This section pres-
ents basic ACD modeling examples including a worker-operated tandem line,
an inspection-repair line, a restaurant, a simple service station, a car repair
shop, a project management system, and a conveyor-driven serial line. We use
the terms serial and tandem interchangeably. More advanced examples involv-
ing parameterized ACDs will be presented in Section 6.5 and in Chapter 10.

6.4.1  Activity-Based Modeling of a Worker-Operated Tandem Line

Figure 6.14 depicts a reference model of a worker-operated tandem line. The
first operation is performed on machine M1, which is operated by Worker-A

TABLE 6.6.  Activity Transition Table of the ACD Model of Figure 6.13

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Infl.
Act.

1 Create (C > 0) C−−; ta Created 1 True C++; Create
2 True Q++; Process

2 Process (Q > 0) &
(M > 0)

Q−−; M−−; If
(ttf < 10)
{ts = ttf + 80;
ttf = 500;}
else {ts = 10;
ttf –= 10;}

ts Processed 1 True M++; Process

Initialize Initial Marking = {C = 1, M = 1, Q = 0}; Variables = {ts = 10, ttf = 500}; Enabled
Activities = {Create};

Fig. 6.14.  Reference model of a worker-operated two-stage tandem line.

M1

M2

M3

Create DepartQ1 Q2 Q3

Worker-A

Worker-B

Activity-Based Modeling Examples   157

or Worker-B; the second operation is performed on either of the two identical
machines M2 and M3. M2 is operated by Worker-A and M3 by Worker-B.

If the machines are operated unattended, the ACD model of the line would
be that of Fig. 6.5 with M2 = 2 (and the Depart activity is added). One rule
for building an ACD model is that “operations involving different resources
are treated as different activities.” Thus, the process activity for M1 is divided
into two activities: (1) Process1a performed by Worker-A and (2) Process1b
performed by Worker-B. The resulting ACD model is given in Fig. 6.15.
Worker-A is given a higher priority over Worker-B for processing a job on
M1, and M2 has a higher priority over M3 for the second operation. However,
the Worker-A (Worker-B) cycle does not have a specified sequence, and a
dispatching rule may be required in order to choose between Process1a (Pro-
cess1b) and Process2 (Process3).

6.4.2  Activity-Based Modeling of an Inspection-Repair Line

Figure 6.16 is a reference model of an inspection-repair line in which two types
of jobs are inspected on a single inspection machine (I) and are repaired by a
single repair machine (R). Another rule for building an ACD model is that
“jobs that follow separate paths are treated as separate entities.” Thus, by using
this rule and employing the probabilistic branching template (Fig. 6.12), an
ACD of the inspection-repair line is obtained as given in Fig. 6.17. In Fig. 6.17,
note that the arcs from the final activity nodes (i.e., Delivery-1, Delivery-2, and
Scrap) to the source queue nodes (J1 and J2) are omitted for brevity.

Fig. 6.15.  ACD model of the worker-operated tandem line in Fig. 6.14.

C
•

Create M1
•

Process1b

Depart

M2
•

Process2

M3
•

Process3

WA
•

C=WA=WB=M1=M2=M3=1, Q1=Q2=Q3=0

(WA 0)~ (M2 0)~

Jobs Q1

Process1a

Q2

WB
•

Q3

Fig. 6.16.  Reference model of an inspection-repair line.

M1

M2 Scrap

DeliverInspect

Repair

158    Introduction to Activity-Based Modeling and Simulation

Fig. 6.18.  Lifecycle of the entity in a restaurant model.

Create Greeted:
H

Diners

C Seated:
T/H

Order:
T/W

Served:
T/W

Eat:
T

Pay:
H

Fig. 6.19.  Lifecycle of the (a) table, (b) head waiter, and (c) waiters.

H
•

Seat
diner

Accept
payment WTake

order
Serve
meal

Clean
table

Occupied
by diners

Cleaning:
W

Table

(b)(a) (c)

Greet
diner

Fig. 6.17.  ACD model of the inspection-repair line in Fig. 6.16.

C2
•

Q2

I
•

Inspect-1

Inspect-2J2

J1

C1
•

Q1

M1
•

Proc-2

M2
•

Proc-2 Q4

Q3

F2

F1

R
•

Repair-1

Repair-2

{U=Uni(0,1)}

{U=Uni(0,1)}

{U=Uni(0,1)}

{U=Uni(0,1)}

P2

P1

D1
•

Delivery-1

F3

D2
•

Delivery-2

S
•

Scrap

(U>.98)~

(U≤.98)

(U>.95)~

(U≤.95)

(U≤.9)~

(U>.9)

(U>.9)

(U≤.9)

~

C1=C2=1, M1=M2=I=R=D1=D2=S=1, Q1=Q2=Q3=Q4=F1=F2=F3=P1=P2=0

Create-2

Create-1

6.4.3  Activity-Based Modeling of a Restaurant

Consider a restaurant served by a head waiter (H) and two waiters (W) [Activ-
ity cycle diagram 2012]. There are five tables (T) in the restaurant. A batch of
diners coming together is regarded as an entity. The life cycle of an entity
(customer batch) is Arrive → Greeted (by H) → Seated (at T by H) → Order
(at T to W) → Served (at T from W) → Eat (at T) → Pay bill (to H), which
may be represented as the ACD shown in Fig. 6.18.

The life cycle of a table (T) is “occupied by diners” and “cleaned,” which
can be modeled as in the ACD of Fig. 6.19(a). The head waiter (H) greets
diners, seats them on a table, and accepts payment, which is may be modeled
as in the ACD of Fig. 6.19(b). Waiters (W) take orders, serve meals, and clean
the table after the diners leave, which is modeled as the ACD of Fig. 6.19(c).
By combining these individual ACDs, an ACD model of the restaurant system
can be obtained as shown in Fig. 6.20. Note that the two resource cycles, H
and W, have an indefinite sequence.

Activity-Based Modeling Examples   159

6.4.4  Activity-Based Modeling of a Simple Service Station

A simple service station, like a gas station or coffee shop, is a flexible multi-
server system (see Section 6.3.1) with nonstationary arrival rates (see Section
6.3.3). Figure 6.21 presents the table showing the arrival rates and number of
servers over a 24-hour period together with a SIGMA-compatible event graph
model of the flexible multi-server system that is reproduced from Section 5.6.2
in Chapter 5 (Table 5.4 and Fig. 5.31). In the event graph model, CLK is a
built-in function returning the simulation clock (in minutes), and the current
simulation time CLK is converted to the index k using the modulus function
k = MOD (CLK/120, 12).

The customer arrival rates (per minute) are 0.00 for 00:00–05:59, 0.02 for
06:00–07:59, 0.10 for 08:00–09:59, etc. Thus, we have R[0] = R[1] = R[2] = 0,
R[3] = 0.02, R[4] = 0.10, etc. The maximum arrival rate is 0.5 during 14:00∼15:59
(R[7] = 0.5). The number of servers during the day hours (8:00∼17:59) is three,
with a peak level of five during 2:00∼3:59 p.m. (N[7] = 5). All servers are identi-
cal and their service times are exponentially distributed with a mean of 9. A

Fig. 6.20.  ACD model of the entire restaurant.

C
•

Create Greeted Seated Order

H
•

W
••

T
•••••

Receive mealEat meal

Cleaning

Pay bill

Fig. 6.21.  Input data for a flexible multi-server system and its event graph model.

{Q= Q+1}

(M > N0–N[k])
9*ERL{1}

(Q>0) & (M > N0–N[k])(1/RMAX)*ERL{1}

{M= M+1;
k= MOD{CLK/120;12};}

(RND<Ratio)

{ k= MOD{CLK/120;12};
Ratio= R[k]/RMAX;}

{M= M–1;
Q= Q–1}

(Q>0) & (M > N0–N[k])

Rmax = 0.5, N0 = 5,
Q = 0, M = N0,
For k=0~11 {

Read {R[k], N[k]}

Hours (120 min) 0000-
0159

0200-
0359

0400-
0559

0600-
0759

0800-
0959

1000-
1159

1200-
1359

1400-
1559

1600-
1759

1800-
1959

2000-
2159

2200-
2359

Index (k) 0 1 2 3 4 5 6 7 8 9 10 11

Arrival rate/min: R[k] 0.00 0.00 0.00 0.02 0.10 0.30 0.40 0.50 0.40 0.10 0.02 0.00
No. of servers: N[k] 0 0 0 0 3 3 3 5 3 1 1 0

160    Introduction to Activity-Based Modeling and Simulation

formal ACD model of the flexible multi-server system is presented in Fig. 6.22,
and its activity transition table is given in Table 6.7.

6.4.5  Activity-Based Modeling of a Car Repair Shop

Figure 6.23 presents a reference model and an event graph model of a car
repair shop under the same operator policy that was presented in Section 4.5.2
of Chapter 4 (Fig. 4.20 and Fig. 4.21). The fasten operation is performed by a
technician; an inspection operation needs both a technician and a repairman;
a repair operation is handled by a repairman. The same operator policy refers
to a policy where a car is fastened and inspected by the same technician and
is inspected and repaired by the same repairman. Thus, a technician stands by
after fastening a car until a repairman is available. There are three technicians
(T = 3) and two repairmen (R = 2) in the car repair shop.

An ACD model and an activity transition table of the car repair shop are
given in Fig. 6.24 and Table 6.8, respectively. Note that the ACD model is
almost identical to the reference model. The initial state of the system is {C = 1,
T = 3, R = 2, Q1 = Q2 = Q3 = 0}.

Fig. 6.22.  ACD model of the flexible multi-server system given in Fig. 6.21.

C
•

Q Process <Exp(9)>Create <Exp(1/Rmax)>

M
<N0>~(M>N0-N[k])

{ k=(CLK/120)%12; }

C=1, M=N0, Q=0

{ U=Uni(0,1); k=(CLK/120)%12; Ratio=R[k]/Rmax; }

(U<Ratio)~

Rmax = 0.5, N0 = 5, R[12], N[12]

TABLE 6.7.  Activity Transition Table of the ACD Model of Figure 6.22

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Infl.
Act.

1 Create (C > 0) C−−; U =
Uni(0,1);

k = (CLK/
120)%12;
Ratio =
R[k]/Rmax;

Exp(1/
Rmax)

Created 1 True C++; Create
2 (U < Ratio) Q++; Process

2 Process (Q > 0)&
(M > N0 −
N[k])

Q−−; M−−;
k = (CLK/

120)%12;

Exp(9) Processed 1 True M++; Process
2 True — —

Initialize Initial Marking = {C = 1, M = 5, Q = 0}; Variables = {Rmax = 0.5, N0 = 5, Read
{R[k], N[k]} for k = 0∼11};

Enabled Activities = {Create};

Activity-Based Modeling Examples   161

6.4.6  Activity-Based Modeling of a Project Management System

Figure 6.25 presents the program evaluation and review technique (PERT)
diagram introduced in Chapter 4 (Fig. 4.22). There are nine activities (A1∼A9)
and two active resources (R1, R2) involved in the model. Resource R1 is
responsible for A1, A3, and A7, while resource R2 is responsible for A2, A8,
and A9. Again, the non-bottleneck resources performing the remaining activi-
ties are excluded from the model. The PERT diagram is converted to an ACD
by inserting a queue in the middle of each arc of the PERT diagram, as
depicted in Fig. 6.26.

6.4.7  Activity-Based Modeling of a Conveyor-Driven Serial Line

Reproduced in Fig. 6.27 is the reference model of the conveyor-driven serial
line introduced in Chapter 4. There are three work stations connected by

Fig. 6.23.  Reference model of a car repair shop.

Fasten <t1> Inspect <t2> Repair <t3>

 (T=3) (R=2)
Create <ta>

Fig. 6.24.  ACD model of the car repair shop given in Fig. 6.23.

C
•

Create

T
•••

Q1 Inspect RepairQ2Fasten Q3

R
••

TABLE 6.8.  Activity Transition Table of the ACD Model of Figure 6.24

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Influenced

Activity

1 Create (C > 0) C−−; ta Created 1 True C++; Create
2 True Q1++; Fasten

2 Fasten (Q1 > 0) &
(T > 0)

Q1−−;
T−−;

t1 Fastened 1 True Q2++; Inspect

3 Inspect (Q2 > 0) &
(R > 0)

Q2−−;
R−−;

t2 Inspected 1 True Q3++; Repair
2 True T++; Fasten

4 Repair (Q3 > 0) Q3−−; t3 Repaired 1 True R++; Inspect

Initialize Initial Marking = {C = 1, T = 3, R = 2, Q1 = Q2 = Q3 = 0}; Enabled
Activities = {Create}

162    Introduction to Activity-Based Modeling and Simulation

Fig. 6.25.  Reference model of a project schedule (PERT diagram).

A4 [t4, -]

A1 [t1,]

A2 [t2,]

A3 [t3,]

A5 [t5, -]

A6 [t6, -]

A7 [t7,]

A8 [t8,]

A9 [t9,]

Fig. 6.26.  ACD model of the PERT diagram in Fig. 6.25.

A1

Q2

R1
•

A2

A3Q3

Q4 A4 Q7 A7

Q5 A5

A6Q6

Q11 A8

Q8

Q12

A9

Q9

R2
•

Q10

Fig. 6.27.  Reference model a three-stage conveyor-driven serial line.

Fig. 6.28.  ACD model of the three-stage conveyor driven serial line.

•••

accumulating conveyors in serial. Entities are jobs that are stored in the input
buffer (Buffer-I) and are moved along the line. Resources are the Stations and
Conveyors. Activities are the production operations of the Stations and the
transport operations of the Conveyors.

Each station-j for j = 1∼3 is specified by its production operation time (pj).
Each accumulating conveyer-j for j = 2, 3 is specified by its transport time (tj)
and capacity (cj). The activity cycle of a job at each station is Load (L) →
Process (P) → Unload (U). Since an accumulating conveyor acts as a finite
capacity buffer with a Transport (T), each station is modeled using the block-
ing template introduced in Section 6.3.2. The resulting ACD model is pre-
sented in Fig. 6.28.

Parameterized Activity Cycle Diagram and Its Application   163

6.5  PARAMETERIZED ACTIVITY CYCLE DIAGRAM AND
ITS APPLICATION

In Chapter 5, we showed that a complex system with some repeating patterns
could be concisely represented using a parameterized event graph, in which
an event node is allowed to have parameter variables. The classical ACD can
also be parameterized in the same way. Namely, the parameter values are
passed along an arc as its attribute values so that the parameter variables of
the destination node are set to the arc attribute values. Parameterization does
not increase the modeling power, but it significantly reduces the modeling
complexity, which is critical in the art of modeling and simulation.

6.5.1  Definition and Specifications of Parameterized ACD

Both the classical ACD and parameterized ACD (P-ACD) are bipartite
directed graphs that consist of a set of activity nodes, a set of queue nodes,
and a set of directed arcs. However, in a P-ACD, each node is allowed to have
parameter variables, and the parameter values are assigned to the parameter
variables through an arc. The role of a parameter variable of a node is the
same as that of an index variable of an array. Thus, the P-ACD may be defined
as a bipartite directed graph consisting of a set of activity array nodes, a set
of queue array nodes, and a set of directed arcs with parameter values.

Figure 6.29 is a classical ACD model of a three-stage unlimited buffer
tandem line: the activity nodes are Create and Process(k) for k = 1∼3; the
queue nodes are C, Jobs, and B(k) and M(k) for k = 1∼3. On close examination,
it can be seen that the three nodes B(k)-Process(k)-M(k) form a pattern; there
is a directed arc from the Process(k) node to the B(k + 1) node if k < 3; and
the Process(3) node is connected to the Jobs node. The activity times are
defined as an array (t(k)).

Shown in Fig. 6.30 is a P-ACD model of the same three-stage tandem line,
where the three nodes B(k)-Process(k)-M(k) form a pattern; there is a directed
arc from the Process(k) node to the B(k + 1) node if k < 3; and the Process(3)
node is connected to the Jobs node. Thus, the two ACD models in Figs. 6.29
and 6.30 are equivalent. As a convention, a parameter variable is enclosed
using a pair of parentheses and a parameter value is put in a small rectangle
on an arc. As in the classical ACD, the P-ACD can be formally specified using
an activity transition table.

Fig. 6.29.  Classical ACD model of a three-stage unlimited buffer tandem line.

B(1)

C
•

M(1)
•

Create Process(1) B(2)

M(2)
•

Process(2) B(3)

M(3)
•

Process(3)

164    Introduction to Activity-Based Modeling and Simulation

Table 6.9 presents the activity transition table of the P-ACD model of Fig.
6.30. The activity transition table contains all information from the P-ACD
model in a structured way. As in the activity transition table of a classical ACD
model, the initial values of the marking and a list of the enabled activities are
defined at the bottom of the table. Specified for each activity are the At-begin
Condition and Action, the BTO-event Time and Name, and the At-end arc
Condition, Parameter, Action, and Influenced Activity. The activity transition
table for the P-ACD is the same as that for a classical ACD except that it has
one more column (the Parameter column).

6.5.2  Rules for Executing the P-ACD Model

In the P-ACD, the parameter values are associated with each arc, and the
parameter variables are associated with each of the queues or activities. The
execution rules for the P-ACD are essentially the same as those for the clas-
sical ACD.

Now consider the segment of a P-ACD shown in Fig. 6.31(a). The rule for
executing activity A(j) is as follows: “If the input queue Q1 has at least one
token and the input arc condition c1 is true, then the parameter variable (j)
of activity A is set to the parameter value (k), a token is removed from the
input queue Q1, and the BTO event is scheduled to occur at t time units later.”
Referring to Fig. 6.31(b), the rule for executing the BTO event is “If the output

TABLE 6.9.  Activity Transition Table of the P-ACD Model Given in Figure 6.30

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Parameter Action
Influenced

Activity

1 Create (C > 0) C−−; ta Created 1 True — C++; Create
2 True 1 B(k)++; Process(k)

2 Process(k) (B(k) > 0) &
(M(k) > 0)

B(k)−−;
M(k)−−;

t(k) Processed 1 True k M(k)++; Process(k)
2 (k < 3) k + 1 B(k)++; Process(k)
3 (k ≡ 3) — — —

Initialize Initial Marking = {C = 1, B(k) = 0 for k = 1∼3, M(k) = 1 for k = 1∼3}; Enabled
Activities = {Create}

Fig. 6.30.  P-ACD model of the three-stage tandem line of Fig. 6.29.

B(k)

C
•

M(k)
•

Create Process (k)

kk

k1

k+1

~

~

Parameterized Activity Cycle Diagram and Its Application   165

arc condition c2 is true, then a token will be en-queued into output queue Q2
with parameter variable (j), equal to parameter value (k). The value of the
output arc attribute (k) is computed when activity A is executed.”

6.5.3  P-ACD Modeling of Tandem Lines

The unlimited buffer tandem line model given in Section 6.5.1 may easily be
extended to cover limited buffer tandem lines and conveyor-driven tandem
(or serial) lines.

6.5.3.1  P-ACD Modeling of a Limited Buffer Tandem Line  Figure 6.32(a)
is the reference model of an n-stage limited buffer tandem line, where ta is the
inter-arrival time, pk is the processing time at Station-k, and ck is the capacity
of Buffer-k (with c1 = ∞). Figure 6.32(b) is a classical ACD model of a two-
stage limited buffer tandem line, where S(k) is the number of idle machines
at Station-k and B(k) is the number of empty slots at Buffer-k.

As indicated in Fig. 6.32(b) by the shaded rectangle, the major repeating
pattern of activities is Load(k) → Process(k) → Unload(k) → Load(k), and
there are minor patterns of activities: Unload(k) → Load(k + 1) when k < n
and Load(k) → Unload(k − 1) when k > 1. Thus, all (activity/queue) nodes
covered by the repeating patterns are parameterized as shown in Fig. 6.33. The
activity transition table for the P-ACD model of Fig. 6.33 is given in Table 6.10.

Fig. 6.31.  Rules for executing (a) an activity and (b) its BTO event.

~

(c1)Q1
<q1>

A (j)
< t >

k
A

< t >
Q2(j)~

(c2) Influenced
activityk

(b)(a)

Fig. 6.32.  (a) Reference model of an n-stage limited buffer tandem line and (b) ACD
model of two-stage limited buffer tandem line.

C S(1) S(2)

B(2)

Station-1Buffer-1 Station-2Buffer-2 Station-nBuffer-n

(a)

Create
<ta>

(b)

166    Introduction to Activity-Based Modeling and Simulation

6.5.3.2  P-ACD Modeling of a Conveyor-Driven Serial Line  Figure 6.34
presents the reference model of an n-stage conveyor-driven serial line, where
pk is the processing time at Station-k and tk and ck, respectively, are the trans-
port time and capacity of Conveyor-k (with c1 = ∞). This system is a slight
modification of the limited buffer tandem line given in Fig. 6.32(a): The Create
activity of the limited buffer tandem line has been removed and a Transport
activity has been added between a pair of adjacent Stations, replacing the
buffer queue nodes QLk.

A classical ACD model of a three-stage conveyor-driven serial (i.e., tandem)
line was given earlier in Section 6.4.7 (Fig. 6.28). In Fig. 6.28, you can see that
the major repeating pattern of activities is Transport(k) → Load(k) →
Process(k) → Unload(k) → Transport(k + 1). The minor patterns of activities
are Unload(k) → Transport(k + 1) when k < n, Unload(k) → Load(k), and
Load(k) → Unload(k − 1) if k > 1. Reflecting these repeating patterns, a
P-ACD model of an n-stage conveyor-driven serial line is obtained as shown
in Fig. 6.35.

In the P-ACD of Fig. 6.35, all entity queues are initially empty except QT(1)
and QL(1). QT(1) is set to one because the first activity to be executed is
Transport(1), and it requires a begin condition of QT(1) ≡ 1; QL(1) is set to
infinity because the activity Transport(1) is executed only once [increasing
QL(1) by one] and the activity Load(1) is executed numerous times [decreas-
ing QL(1) by one]. That is, QP(k) = QU(k) = 0 for k = 1 − n, and
QT(k) = QL(k) = 0 for k = 2 − n, QT(1) = 1 and QL(1) = ∞. The capacities
(ck) and transport times (tk) of the accumulating conveyors are given for
k = 2 − n; for k=1, we set t1 = 0 and c1 = ∞ (or any value). The queue C(n + 1)
is set to infinity [i.e., C(n + 1) = ∞] so that the final unloading activity Unload(n)
is always executed if a job is available (i.e., QU(n) > 0). Thus, the initial
marking (M0) of the P-ACD is given by:

	

M0 1 0 1= = = = =
= = =
{ () , () () ,

() , () ()

S k QP k QU k for k to n

C k c QT k QL kk 00 2

1 1 1 1 1

 for k to n

QT QL C C n

=
= = = + = ∞

,

() , () () () }
	

Fig. 6.33.  P-ACD model of the limited buffer tandem line of Fig. 6.32(a).

QL(k)

B(k)

k1

S(k)
•

QP(k) QU(k)k k k k

k k

k k-1

k+1

~C
•

TA
B

L
E

 6
.1

0.
 A

ct
iv

it
y

Tr
an

si
ti

on
 T

ab
le

 o
f

th
e

P
-A

C
D

 M
od

el
 G

iv
en

 in
 F

ig
ur

e
6.

33

N
o

A
ct

iv
it

y

A
t-

be
gi

n
B

T
O

-e
ve

nt
A

t-
en

d

C
on

di
ti

on
A

ct
io

n
T

im
e

N
am

e
A

rc
C

on
di

ti
on

P
ar

am
et

er
A

ct
io

n
In

flu
en

ce
d

A
ct

iv
it

y

1
C

re
at

e
(C

 >
 0

)
C

−−
;

t a
C

re
at

ed
1

Tr
ue

—
C

++
;

C
re

at
e

2
Tr

ue
1

Q
L

(k
)+

+;
L

oa
d(

k)
2

L
oa

d(
k)

(Q
L

(k
)

>
0)

 &

(S
(k

)
>

0)
Q

L
(k

)−
−;

S(
k)

−−
;

0
L

oa
de

d
1

Tr
ue

k
Q

P
(k

)+
+;

P
ro

ce
ss

(k
)

2
(k

 >
 1

)
k

B
(k

)+
+;

U
nl

oa
d(

k-
1)

3
P

ro
ce

ss
(k

)
(Q

P
(k

)
>

0)
Q

P
(k

)−
−;

p(
k)

P
ro

ce
ss

ed
1

Tr
ue

k
Q

U
(k

)+
+;

U
nl

oa
d(

k)
4

U
nl

oa
d(

k)
(Q

U
(k

)
>

0)
 &

(B
(k

 +
 1

)
>

0)
Q

U
(k

)−
−;

B
(k

 +
 1

)−
−;

0
U

nl
oa

de
d

1
Tr

ue
k

S(
k)

++
;

L
oa

d(
k)

2
(k

 <
 n

)
k

+
1

Q
L

(k
)+

+;
L

oa
d(

k)
3

(k
 ≡

 n
)

—
—

—

In
it

ia
liz

e
In

iti
al

 M
ar

ki
ng

 =
 {

C
 =

 1
, B

(k
)

=
c k

, S
(k

)
=

1,
 Q

L
(k

)
=

Q
P

(k
)

=
Q

U
(k

)
=

0
fo

r
k

=
1∼

n}
; E

na
bl

ed

A
ct

iv
iti

es
 =

 {
C

re
at

e}

167

168    Introduction to Activity-Based Modeling and Simulation

The activity transition table for the P-ACD model in Fig. 6.35 is given in
Table 6.11.

6.5.4  P-ACD Modeling of Job Shops

As discussed in the previous chapter (Section 5.5), a simple job shop is char-
acterized by a number of stations (s) with each station having one or more
identical machines and multiple job types (j) with each job type having a
unique routing sequence. The station number (s) for a processing step (p) of
a given job type (j) is specified in the routing sequence of the job type. Each
station has an unlimited buffer space, and job (j) may visit a given station more
than once. Thus, an unlimited buffer tandem line may be regarded as a special
case of a simple job shop where there is only one job type (j = 1) and the
processing step is equal to the station number (i.e., p = s).

Reproduced in Fig. 6.36 is the reference model of a simple job shop described
in the previous chapter (see Fig. 5.14). It has six stations with the number of
machines given by {m1 = 3, m2 = 5, m3 = 4, m4 = 7, m5 = 2, m6 = 5}. The routing
sequence of a type-1 job is 1→3→2→5→Done: sn(1,1) = 1, sn(1,2) = 3,
sn(1,3) = 2, sn(1,4) = 5, sn(1,5) = Done. The processing time of type-j job at
the p-th step is denoted by t (j, p).

Figure 6.37(a) presents a classical ACD model of the simple job shop for a
single job type, where M(k) denotes the number of idle machines in Station-k,
and Q(k) is the buffer of Station-k. There are four processing activities: Process
(1, 1), Process (2, 3), Process (3, 2), and Process (4, 5), where Process (p, s) is
the p-th processing operation of the job of type-1 at Station-s. The routing
sequence is given by {sn(1,1) = 1, sn(1,2) = 3, sn(1,3) = 2, sn(1,4) = 5}. A P-ACD
model for the reference model of Fig. 6.36 is shown in Fig. 6.37(b).

Fig. 6.34.  Reference model of n-stage conveyor-driven serial line.

Station-1 Conveyor-2 Station-2 Station-nConveyor-n

Fig. 6.35.  P-ACD model of the conveyor-driven serial line of Fig. 6.34.

) QL(k) QP(k) QU(k)

QT(k)

<0>

S(k)

C(k) k-1

k+1

~ (k<n)

k k k

k

k k

(k>1)

k

~ (k n)

k k k <0>

TA
B

L
E

 6
.1

1.
 A

ct
iv

it
y

Tr
an

si
ti

on
 T

ab
le

 o
f

th
e

P
-A

C
D

 M
od

el
 G

iv
en

 in
 F

ig
ur

e
6.

35

N
o

A
ct

iv
it

y

A
t-

be
gi

n
B

T
O

-e
ve

nt
A

t-
en

d

C
on

di
ti

on
A

ct
io

n
T

im
e

N
am

e
A

rc
C

on
di

ti
on

P
ar

am
et

er
A

ct
io

n
In

flu
en

ce
d

A
ct

iv
it

y

1
Tr

an
sp

or
t(

k)
Q

T
(k

)
>

0
Q

T
(k

)−
−;

t(
k)

Tr
an

sp
or

te
d

1
Tr

ue
k

Q
L

(k
)+

+;
L

oa
d(

k)
2

L
oa

d(
k)

Q
L

(k
)

>
0

&

S(
k)

 >
 0

Q
L

(k
)−

−;
S(

k)
−−

;
0

L
oa

de
d

1
Tr

ue
k

Q
P

(k
)+

+;
P

ro
ce

ss
(k

)
2

(k
 >

 1
)

k
C

(k
)+

+;
U

nl
oa

d(
k-

1)
3

P
ro

ce
ss

(k
)

Q
P

(k
)

>
0

Q
P

(k
)−

−;
p(

k)
P

ro
ce

ss
ed

1
Tr

ue
k

Q
U

(k
)+

+;
U

nl
oa

d(
k)

4
U

nl
oa

d(
k)

Q
U

(k
)

>
0

&
C

(k
 +

 1
)

>
0

Q
U

(k
)−

−;
C

(k
 +

 1
)−

−;
0

U
nl

oa
de

d
1

Tr
ue

k
S(

k)
++

;
L

oa
d(

k)
2

(k
 <

 n
)

k
+

1
Q

T
(k

)+
+;

Tr
an

sp
or

t(
k)

3
(k

 ≡
 n

)
—

—
—

In
it

ia
liz

e
In

iti
al

 M
ar

ki
ng

 =
 {

S(
k)

 =
 1

, Q
P

(k
)

=
Q

U
(k

)
=

0
fo

r
k

=
1

−
n,

 C
(k

)
=

c k
, Q

T
(k

)
=

Q
L

(k
)

=
0

fo
r

k
=

2
−

n,

Q
T

(1
)

=
1,

 Q
L

(1
)

=
C

(1
)

=
C

(n
 +

 1
)

=
∞

};
E

na
bl

ed
 A

ct
iv

iti
es

 =
 {

Tr
an

sp
or

t(
1)

}

169

170    Introduction to Activity-Based Modeling and Simulation

In Fig. 6.37(b), decision-making activity Route is introduced where the
station number for the next processing step is determined and the job is sent
to the Exit if the station number is Done. Both the Route activity and the
Process activity are parameterized by processing step p and the station
number s = sn(1,p).

Given in Fig. 6.38 is a P-ACD model of the simple job shop with a number
of job types (j ∈ J). The activities Route and Process are parameterized using
the three index variables of job type (j), processing step (p), and station

Fig. 6.36.  Reference model of a simple job shop with one job type.

sn(j, p) = station-number of type-j job at step ‘p’; sn(1,1)= 1, …, sn(1,4)=5, sn(1,5)=Done
t(j, p) = processing-time of type-j job at step ‘p’; ms = number of machines at station ‘s’.

Station-1
m1= 3

Station-2
m2= 5

Station-3
m3= 4

Station-4
m4= 7

Station-5
m5= 2

Station-6
m6= 5

Create Exit

Routing sequence of Type-1 Jobs

ta

t(1,1) t(1,2)t(1,3)

t(1,4)

Assign job-type
(j = 1)

Fig. 6.37.  (a) Classical ACD and (b) P-ACD model of the job shop in Fig. 6.36.

C
•

M(1) M(3)
<

M(2)
<

M(5)
<

Create Q Q QQ

C
•

M(s)

ss

p,s1

p+1

~

p p,s~

(a)

(b)

Fig. 6.38.  P-ACD model of the simple job shop with multiple job types.

C
•

M(s)

ss

j,p,sj,1

j, p+1

~

j,p j,p,s~

∈J

EXECUTION OF ACTIVITY CYCLE DIAGRAM MODELS WITH A FORMAL SIMULATOR ACE®   171

number (s). An activity transition table of the P-ACD model in Fig. 6.38 is
given in Table 6.12.

6.6  EXECUTION OF ACTIVITY CYCLE DIAGRAM MODELS WITH A
FORMAL SIMULATOR ACE®

There are three approaches to executing an ACD model: using a formal ACD
simulator; using a process oriented simulation language such as Arena®; and
developing a dedicated ACD simulator. The purpose of this section is to intro-
duce a formal ACD model simulator ACE® and make you learn how to
execute ACD models with ACE. The next chapter is devoted to the subject of
executing ACD models using Arena®. How to develop your own dedicated
ACD simulators are described in Chapter 10.

ACE, which stands for activity cycle executor, is a formal ACD model simu-
lator developed by the authors of this book. It is a formal simulator in the
sense that its input is a formal ACD model specified in the form of activity
transition table. Figure 6.39 shows the main window of ACE that has three
main regions: main menu, Activity Transition Table (ATT) window, and
Spreadsheet window. Also provided in the main window are ATT tool bar and
Queue tool bar. A brief ACE tutorial, as well as the four ACE models dis-
cussed in this section, may be found in the official website of this book (http://
VMS-technology.com/Book/ACE).

The ACE main menu contains a few menus including File, Run, and Help.
The ATT window is where the activity transition table of the ACD model is
constructed. The Spreadsheet window is used for declaring queues and vari-
ables appearing in the ACD model. The procedure for executing an ACD
model is as follows:

1.	 Queues and variables are declared in the Spreadsheet window by select-
ing the Queue spreadsheet and Variable spreadsheet, respectively.

2.	 All the activity transition data are described in the ATT window by click-
ing the subsequent menus of Model menu in the main menu.

3.	 The initially enabled activities are set at the ATT window by clicking the
Set Enabled Activity button in the ATT tool bar.

4.	 Simulation run options are specified in the Run Options dialog box by
clicking the Run > Run Options menu in the main menu.

6.6.1  Simulation of Single Server Model with ACE

The above four-step procedure will be illustrated using the single server
system specified in Table 6.13, which was reproduced from Table 6.2 with inter-
arrival times (ta) and service times (ts) specified as Exp(15) and Uni(10, 12),
respectively.

http://VMS-technology.com/Book/ACE
http://VMS-technology.com/Book/ACE

TA
B

L
E

 6
.1

2.
 A

ct
iv

it
y

Tr
an

si
ti

on
 T

ab
le

 o
f

th
e

Jo
b

Sh
op

 P
-A

C
D

 M
od

el
 in

 F
ig

ur
e

6.
38

N
o

A
ct

iv
it

y

A
t-

be
gi

n
B

T
O

-e
ve

nt
A

t-
en

d

C
on

di
ti

on
A

ct
io

n
T

im
e

N
am

e
A

rc
C

on
di

ti
on

P
ar

am
et

er
A

ct
io

n
In

flu
en

ce
d

A
ct

iv
it

y

1
C

re
at

e
(C

 >
 0

)
C

−−
;

A
ss

ig
n

j;
t a

C
re

at
ed

1
Tr

ue
—

C
++

;
C

re
at

e
2

Tr
ue

j,1
R

(j
,p

)+
+;

R
ou

te
(j

,p
)

2
R

ou
te

(j
,p

)
(R

(j
,p

)
>

0)
R

(j
,p

)−
−;

s
=

sn
(j

,p
);

0
R

ou
te

d
1

(s
 ≠

 D
on

e)
j,p

,s
Q

(j
,p

,s
)+

+;
P

ro
ce

ss
(j

,p
,s

)
2

(s
 ≡

 D
on

e)
—

—
—

3
P

ro
ce

ss
(j

,p
,s

)
(M

(s
)

>
0)

 &

(Q
(j

,p
,s

)
>

0)
M

(s
)−

−;
Q

(j
,p

,s
)−

−;
t(

j,p
)

P
ro

ce
ss

ed
1

Tr
ue

s
M

(s
)+

+;
P

ro
ce

ss
(j

,p
,s

)
2

Tr
ue

j,
p

+
1

R
(j

,p
)+

+;
R

ou
te

(j
,p

)

In
it

ia
liz

e
In

iti
al

 M
ar

ki
ng

 =
 {

C
 =

 1
; M

(s
)

=
m

s f
or

 a
ll

s,
R

(j
,p

)
=

0
fo

r
al

l j
, p

, Q
(j

,p
,s

)
=

0
fo

r
al

l j
,p

,s
};

E
na

bl
ed

A

ct
iv

iti
es

 =
 {

C
re

at
e}

172

EXECUTION OF ACTIVITY CYCLE DIAGRAM MODELS WITH A FORMAL SIMULATOR ACE®   173

Fig. 6.39.  The main window of ACE.

TABLE 6.13.  Activity Transition Table of a Single Server System (from Table 6.2)

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Infl.

Activity

1 Create (C > 0) C−−; Exp(15) Created 1 True C++; Create
2 True Q++; Process

2 Process (M > 0) &
(Q > 0)

M−−;
Q−−;

Uni(10,
12)

Processed 1 True M++; Process

Initialize Initial Marking = {C = 1, M = 1, Q = 3}; Enabled Activities = {Create}

6.6.1.1  Declaring Queues and Variables in the Single Server Model  The
ACD model of the single server system has three queues (C, M and Q), but it
has no variables. A queue is Creator Type, Resource Type, or Entity Type.
Figure 6.40 shows the Queue spreadsheet window in which the three queues
C, M, and Q are declared. The type of C is declared as Creator, those of M
and Q as Resource and Entity, respectively. The initial values of C, M, and Q
are declared as 1, 1, and 3, respectively. The declared queues are reflected in
the ATT window as depicted in Fig. 6.41.

6.6.1.2  Defining Activity Transitions in the Single Server Model  Figure
6.42 shows the graphical user interface (GUI) of the ATT window in which
each entry of the activity transition table of the single server system (Table
6.13) is described “as it is” one by one: (1) the row numbers in the No column

174    Introduction to Activity-Based Modeling and Simulation

are automatically assigned in sequence; (2) AND operator “&&” and OR
operator “||” are used in the Condition columns; (3) each statement in the
Action columns should be ended with a semicolon; (4) a time in the Time
column is either a constant or a random variate specified, for example, as Exp()
or Uni().

6.6.1.3  Specifying the Enabled Activities in the Single Server Model  As
depicted in Fig. 6.43, the Create activity is specified as an enabled activity by

Fig. 6.40.  Declaring queues in the Queue spreadsheet window.

Fig. 6.41.  The declared queues reflected in the ATT window.

Fig. 6.42.  The activity transition table of the single server system.

Fig. 6.43.  Choosing Create as an enabled activity.

EXECUTION OF ACTIVITY CYCLE DIAGRAM MODELS WITH A FORMAL SIMULATOR ACE®   175

(1) selecting Create in the ATT window and (2) clicking the Set Enabled
Activity () button at the ATT tool bar. Now, the ATT is completely defined.

6.6.1.4  Running the Simulation  In order to run the simulation, (1) the
Run Options dialog box is opened by clicking the Run > Run Options menu
at the main menu and (2) run options such as the EOS (end-of-simulation)
time and the random number seed are provided in the dialog box. Figure 6.44
shows an example of Run Options (EOS time = 500; random number
seed = 12345) and the resulting output report. Output plots may also be gener-
ated as shown in Fig. 6.45.

6.6.2  Simulation of Probabilistic Branching Model with ACE

Figure 6.46 is the ACD model for probabilistic branching reproduced from
Fig. 6.12 in Section 6.3.6. In Fig. 6.46, however, counter variables (NumberIn,
NumberOut, and NumberScrap) for collecting statistics are added to the origi-
nal ACD model of Fig. 6.12. An activity transition table of the ACD model is
given in Table 6.14.

Fig. 6.44.  (a) Run Options dialog box and (b) Output Report sheet.

(a) (b)

Fig. 6.45.  Output plot for Q.

0 100

8

6

4

2

0
200 300 400 500

176    Introduction to Activity-Based Modeling and Simulation

6.6.2.1  Declaring Queues and Variables in the Probabilistic Branching
Model  The probabilistic branching ACD model of Fig. 6.46 has three entity
queues (I, P, and S), three resource queues (M1, M2, and M3), and four vari-
ables (U, NumberIn, NumberOut, and NumberScrap). The queues and vari-
ables are declared in the Spreadsheet window of ACE as shown in Figs. 6.47
and 6.48, respectively.

6.6.2.2  Defining Activity Transitions and Specifying the Enabled Activi-
ties  Figure 6.49 shows the ATT window in which each entry of the activity
transition table (Table 6.14) is described “as it is” one by one and the selected
enabled activity is denoted at the bottom right of the table.

6.6.2.3  Running the Simulation  Having defined all the entries in the activ-
ity transition table of Fig. 6.49, a simulation run is made by providing run
options such as the EOS time and the random number seed (any integer value
is acceptable) at the Run Options dialog box. Figure 6.50 shows an example
of output plot (machine utilization plot).

6.6.3  Simulation of Resource Failure Model with ACE

Figure 6.51 shows the ACD model of the “single server system with machine
failure” introduced in Section 6.3.7, together with its activity transition table.
In this particular example, the inter-arrival times are sampled from Exp(10),
the service time is 10 (ts = 10), repair time is 80, and the initial remaining
time-to-failure is 500 (ttf = 500).

6.6.3.1  Declaring Queues and Variables in the Resource Failure Model 
Figure 6.52(a) shows the Queue spreadsheet window where the three queues
in the resource failure model are declared: C is a Creator-type queue with
an initial value of 1; M is a Resource-type queue with an initial value of 1;
Q is an Entity-type queue with an initial value of 0. Figure 6.52(b) shows

Fig. 6.46.  ACD model for probabilistic branching with counter variables added to the
ACD model of Fig. 6.12.

C
•

Inspect 5Create 10

M1
•

Process 10

M2 •

P

Scrap <5>

M3 •

S

~
~

C=M1=M2=M3=1, I=P=S=0

I

TA
B

L
E

 6
.1

4.
 A

ct
iv

it
y

Tr
an

si
ti

on
 T

ab
le

 f
or

 t
he

 P
ro

ba
bi

lis
ti

c
B

ra
nc

hi
ng

 M
od

el
 o

f
F

ig
ur

e
6.

46

N
o

A
ct

iv
it

y

A
t-

be
gi

n
B

T
O

-e
ve

nt
A

t-
en

d

C
on

di
ti

on
A

ct
io

n
T

im
e

N
am

e
A

rc
C

on
di

ti
on

A
ct

io
n

In
fl.

A

ct
.

1
C

re
at

e
(C

 >
 0

)
C

−−
; N

um
be

rI
n+

+;
10

C
re

at
ed

1
Tr

ue
C

++
;

C
re

at
e

2
Tr

ue
I+

+;
In

sp
ec

t
2

In
sp

ec
t

(I
 >

 0
)

&
 (

M
1

>
0)

I−
−;

 M
1−

−;
U

 =
 U

ni
(0

, 1
);

5
In

sp
ec

te
d

1
Tr

ue
M

1+
+;

In
sp

ec
t

2
(U

 ≤
 0

.9
)

P
++

;
P

ro
ce

ss
3

(U
 >

 0
.9

)
S+

+;
Sc

ra
p

3
P

ro
ce

ss
(P

 >
 0

)
&

 (
M

2
>

0)
P

−−
; M

2−
−;

 N
um

be
rO

ut
++

;
10

P
ro

ce
ss

ed
1

Tr
ue

M
2+

+;
P

ro
ce

ss
4

Sc
ra

p
(S

 >
 0

)
&

 (
M

3
>

0)
S−

−;
 M

3−
−;

 N
um

be
rS

cr
ap

++
;

5
Sc

ra
pe

d
1

Tr
ue

M
3+

+;
Sc

ra
p

In
it

ia
liz

e
In

iti
al

 M
ar

ki
ng

 =
 {

C
 =

 M
1

=
M

2
=

M
3

=
1,

 I
 =

 P
 =

 S
 =

 0
};

V
ar

ia
bl

es
 =

 {
N

um
be

rI
n

=
N

um
be

rO
ut

 =
 N

um
be

rS
cr

ap

=
U

 =
 0

};
E

na
bl

ed
 A

ct
iv

iti
es

 =
 {

C
re

at
e}

177

178    Introduction to Activity-Based Modeling and Simulation

Fig. 6.47.  Declaring queues in the Queue spreadsheet window.

Fig. 6.48.  Declaring variables in the Variable spreadsheet window.

Fig. 6.49.  Description of activity transitions and selection of enabled activities.

Fig. 6.50.  (a) Run option and (b) resources utilization plot.

(a) (b)

EXECUTION OF ACTIVITY CYCLE DIAGRAM MODELS WITH A FORMAL SIMULATOR ACE®   179

how the two variables ts and ttf are declared in the Variable spreadsheet
window.

6.6.3.2  Defining Activity Transitions and Specifying the Enabled Activi-
ties  Figure 6.53 shows the ATT window in which each entry of the activity
transition table (at the bottom of Fig. 6.51) is described “as it is” one by

Fig. 6.51.  ACD model and activity transition table for the single server system with
machine failure (from Fig. 6.13 and Table 6.6).

C
•

Q ProcessCreate

M
•

No Activity
At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action Infl. Act.

1 Create (C>0) C--; Created 1 True C++; Create

2 True Q++; Process

2 Process (Q>0) & (M>0) Q--; M--; ts Processed 1 True M++; Process

Initialize Initial Marking = {C= 1, M= 1, Q= 0}; Variables = {ts= 10, ttf= 500}; Enabled Activities = {Create};

Fig. 6.52.  Declaring (a) queues and (b) variables in the Spreadsheet window of ACE.

(a)

(b)

Fig. 6.53.  Descriptions of activity transitions and enabled activities.

180    Introduction to Activity-Based Modeling and Simulation

one and the selected enabled activity is denoted at the bottom right of
the table.

6.6.3.3  Running the Simulation  Having defined all the entries in the activ-
ity transition table, a simulation run is made by providing run options at the
Run Options dialog box. Figure 6.54 shows an example of output plot (queue
trajectory plot).

6.6.4  Simulation of Simple Service Station Model with ACE

Reproduced in Fig. 6.55 are the input data of the simple service station and
its ACD model from Section 6.4.4 (Fig. 6.21 and Fig. 6.22). The ACD model
correctly reflects the changes in the arrival rates, but it does not exactly accom-
modate the changes in the resource levels.

In the ACD model of Fig. 6.55, the changes in the number of servers may
not be promptly taken into account in the Process activity. For example, the
number of servers is increased to 3 from 0 at time 0800 so that the customers
waiting in Q could be served right away, but the system detects this change
only at the next event time after 0800 (i.e., the arrival time of the first after
0800). As shown in Fig. 6.56, the problem is easily fixed by introducing the

Fig. 6.54.  Queue trajectory plot (for the entity queue Q).

0

20
15
10
5
0

300 600 900 1200 1500

Fig. 6.55.  Input data (Fig. 6.21) and ACD model (Fig. 6.22) of the simple service station.

C
•

Q ProcessCreate

M

~

~

Hours (120 min) 0000-
0159

0200-
0359

0400-
0559

0600-
0759

0800-
0959

1000-
1159

1200-
1359

1400-
1559

1600-
1759

1800-
1959

2000-
2159

2200-
2359

Index (k) 0 1 2 3 4 5 6 7 8 9 10 11

Arrival rate/min: R[k] 0.00 0.00 0.00 0.02 0.10 0.30 0.40 0.50 0.40 0.10 0.02 0.00
No. of servers: N[k] 0 0 0 0 3 3 3 5 3 2 2 0

EXECUTION OF ACTIVITY CYCLE DIAGRAM MODELS WITH A FORMAL SIMULATOR ACE®   181

Trigger activity whose role is to trigger the Process activity every 2 hours.
Observe that the arc multiplicity of the arc from queue B to activity Process
is 0, which means that Process is an influenced activity of Trigger but no token
flows between the two activities, as can be seen in the activity transition table
of Table 6.15. Another observation to make is that among the two influenced
activities of the Trigger activity, Trigger should be executed before Process.
Thus, in the activity transition table of Table 6.15, Trigger is listed first in the
Influenced Activity column of the Trigger activity.

6.6.4.1  Declaring Queues and Variables in the Simple Service Station
Model  Figure 6.57(a) shows the Queue spreadsheet window of ACE
where the queues in the simple service station model are declared: C and
B are Creator-type queues with an initial value of 1; M is a Resource-type
queue with an initial value of 5; Q is an Entity-type queue with an initial value
of 0. Fig. 6.57(b) shows all the variables declared in the Variable spreadsheet
window (a step-by-step procedure for declaring variables is given in ACE
tutorial that can be found on authors’ website: http://VMS-technology.com/
Book/ACE).

6.6.4.2  Defining Activity Transitions and Specifying the Enabled Activi-
ties  Figure 6.58 shows the ATT window in which each entry of the activity
transition table (Table 6.15) is described “as it is” one by one, except the
integer assignment expression k = (int)((Clock/120)%12), where (int) is
inserted for an explicit type casting. The enabled activities are denoted at the
bottom right of the window. A step-by-step procedure for defining the activity
transitions is presented in ACE tutorial that can be found on authors’ web site
(http:// VMS-technology.com/Book/ACE).

6.6.4.3  Running the Simulation  Having defined all the entries in the activ-
ity transition table, a simulation run is made by providing run options at the
Run Options dialog box. Figure 6.59 shows an example of output plot (queue
trajectory plot for queue Q).

Fig. 6.56.  Corrected ACD model of the simple service station.

C
•

Q ProcessCreate

M Trigger

B
•

~

~

http://VMS-technology.com/Book/ACE
http://VMS-technology.com/Book/ACE

TA
B

L
E

 6
.1

5.
 A

ct
iv

it
y

Tr
an

si
ti

on
 T

ab
le

 o
f

th
e

C
or

re
ct

ed
 A

C
D

 M
od

el
 o

f
F

ig
ur

e
6.

56

N
o

A
ct

iv
it

y

A
t-

be
gi

n
B

T
O

-e
ve

nt
A

t-
en

d

C
on

di
ti

on
A

ct
io

n
T

im
e

N
am

e
A

rc
C

on
di

ti
on

A
ct

io
n

In
flu

en
ce

d
A

ct
iv

it
y

1
C

re
at

e
(C

 >
 0

)
C

−−
; U

 =
 U

ni
(0

,1
);

R
at

io
 =

 R
[k

]/
R

m
ax

;
E

xp
(1

/
R

m
ax

)
C

re
at

ed
1

Tr
ue

C
++

;
C

re
at

e
2

(U
 <

 R
at

io
)

Q
++

;
P

ro
ce

ss
2

P
ro

ce
ss

(Q
 >

 0
)

&

(M
 >

 N
0

−
N

[k
])

Q
−−

; M
−−

;
E

xp
(9

)
P

ro
ce

ss
ed

1
Tr

ue
M

++
;

P
ro

ce
ss

2
Tr

ue
—

—
3

Tr
ig

ge
r

(B
 >

 0
)

B
−−

; k
 =

 (
C

lo
ck

/1
20

)%
12

;
12

0
Tr

ig
ge

re
d

1
Tr

ue
B

++
;

Tr
ig

ge
r,

P
ro

ce
ss

In
it

ia
liz

e
In

iti
al

 M
ar

ki
ng

 =
 {

C
 =

 B
 =

 1
, M

 =
 5

, Q
 =

 0
};

V
ar

ia
bl

es
 =

 {
k

=
0,

 N
[1

2]
, N

0
=

5,
 R

[1
2]

, R
at

io
 =

 0
, R

m
ax

 =
 0

.5
, U

 =
 0

};
E

na
bl

ed
 A

ct
iv

iti
es

 =
 {

C
re

at
e,

 T
ri

gg
er

};

182

Review Questions   183

Fig. 6.57.  Declaring (a) queues and (b) variables in the Spreadsheet window of ACE.

(a)

(b)

Fig. 6.58.  Descriptions of activity transitions and enabled activities.

Fig. 6.59.  Queue trajectory plot (for the entity queue Q).

0

30
25
20
15
10
5
0

288 576 864 1152 1440

6.7  REVIEW QUESTIONS

6.1.  What are the basic conventions for drawing a classical ACD?

6.2.  What is the initial marking of an ACD model?

6.3.  What is an extended ACD?

6.4.  What is a BTO event?

6.5.  What is an activity transition table?

6.6.  What is a flexible multi-server system?

184

CHAPTER 7

Simulation of ACD Models
Using Arena®

Knowledge is a treasure, but practice is the key to it.
—English proverb

7.1  INTRODUCTION

This chapter introduces a systematic framework for executing activity cycle
diagram (ACD) models using the process-oriented simulation language,
Arena®. Process-oriented modeling is often referred to as entity-based model-
ing or process interaction worldview. Arena is one of the most popular simula-
tion languages in academia. There are a few Arena-based simulation text
books available for more detailed discussions on modeling with Arena, e.g.,
Altiok and Melamed [2007], Kelton et al. [2007], and Rossetti [2010]. Here we
focus on how we use Arena for executing models developed with ACD.

In discrete-event system modeling, a process is defined as a time-ordered
sequence of events that may encompass several activities [Pritsker and Pegden
1979]. When an entity, e.g., a customer, is involved in a process, the process
may be described in terms of the flow of the entity being processed. In this
respect, the terms process and entity-flow are often used interchangeably.
Figure 7.1 depicts the relationships between the concepts of events, activities,
and processes. The Arena model in Fig. 7.1 shows that it describes the entire
experience of an entity as it flows through the system while interacting with
the resources R1 and R2. An Arena model is thus basically an entity-flow
diagram (EFD) for the system being modeled.

The purpose of this chapter is twofold: (1) introduce the basics of the simu-
lation language Arena, and (2) present a structured guide to executing ACD
models with Arena. After studying this chapter, the readers should be able to
do the following:

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

Arena Basics   185

1.	 Understand Arena models (i.e., flowchart models and static models)
built by others

2.	 Build Arena models of various discrete-event systems
3.	 Convert various types of ACD models to Arena models
4.	 Run Arena simulations and analyze the outputs

The remainder of the chapter is organized as follows: Basic elements of
Arena are described in Section 7.2. Those who are already familiar with Arena
may skip this section and directly proceed to Section 7.3. Section 7.3 presents
key Arena model templates for converting ACD models to Arena models. The
last section introduces ACD-based Arena modeling examples in various appli-
cation areas.

7.2  ARENA BASICS

Arena is a simulation environment consisting of module templates built on
SIMAN® language constructs, and it is augmented by a visual front end [Altiok
and Melamed 2007]. SIMAN [Pegden 1989], from which Arena has evolved,
consists of two classes of objects: blocks and elements. Blocks are basic logic
constructs representing operations (or a process), and elements represent
facilities such as resources and queues and other components.

The fundamental building blocks of Arena models are modules. A module
is a high-level construct composed of SIMAN blocks and/or elements. For
example, a Process module models the processing of an entity, and internally
the module consists of a few SIMAN blocks such as ASSIGN, QUEUE,
SEIZE, DELAY, and RELEASE. When constructing an Arena flowchart
model, modules are selected from template panels, e.g., Basic Process and
Advanced Process panels, and placed on the model window. This section pro-
vides a brief overview of Arena. More details on modeling with Arena can be
found in Arena User’s Guide [Rockwell Automation 2010] and Kelton et al.
[2007]. How to obtain a free copy of Arena is explained in http://VMS-
technology.com/Book/Arena.

Fig. 7.1.  Relationships between the activity orientation and process orientation.

Event Orientation
(Event Graph)

Process Orientation
(Arena Model)

Activity Orientation
(ACD)

Delay
[t1] Queue Create

<ta> Dispose

Arrive
Event

Start1
Event

End1
Event

End2
Event

Start2
Event

Depart
Event

Delay
[t2]

Wait
[Q2]

Seize
[R1]

Release
[R1]

Seize
[R2]

 Release
[R2]

Time

186   SIMULATION OF ACD MODELS USING ARENA®

7.2.1  Arena Modeling Environment

The Arena modeling environment will open with a main window (see Fig. 7.2).
There are three main regions in the main window: Menu Bar, Project Bar, and
Model Windows (flowchart model window and spreadsheet model window).

7.2.1.1  Menu Bar  The Arena Menu Bar consists of a number of general
purpose menus (File, Edit, View, Window, and Help) and Arena-specific menus
(Tools, Arrange, Object, and Run). The functions of the Arena-specific menus
are as follows: (1) The Tools menu provides access to Arena parameters and
tools; (2) the Arrange menu is used for drawing and constructing flowchart
models; (3) the Object menu is for creating submodels and connecting modules;
(4) the Run menu allows controlling simulation runs.

7.2.1.2  Project Bar  The Project Bar provides access to various Arena
modules in Arena template panels. The core template panels that are essential
for building an Arena model are the Basic Process panel, the Advanced
Process panel, and the Advanced Transfer panel.

1.	 The Basic Process panel provides (1) a set of high-level flowchart modules
such as Create, Assign, Batch, Process, and Decide modules; (2) a set of
data modules for defining objects in the spreadsheet model such as
Entity, Queue, Resource, and Schedule modules; and (3) calendar sched-
ule information.

Fig. 7.2.  The Arena main window.

Project Bar

Menu Bar

Flowchart model window

Spreadsheet model window

Arena Basics   187

2.	 The Advanced Process panel provides (1) a set of low-level flowchart
modules such as Pickup, Match, Seize, Delay, Release, Hold, Dropoff, and
Signal modules; and (2) a set of advanced data modules such as Advanced
Set, Failure, Expression, and File modules.

3.	 The Advanced Transfer panel provides (1) a set of general flowchart
modules such as Enter, Route, Leave, and Station modules; (2) a set of
conveyor flowchart modules such as Access, Convey, and Exit modules;
(3) a set of transporter flowchart modules such as Activate, Allocate,
Request, Move, and Free modules; (4) a set of data modules such as
Sequence, Conveyor, Transporter, Network, and Segment modules.

7.2.1.3  Model Window  Arena model window is divided into two sections:
flowchart section and spreadsheet section. The Flowchart Model window is
where the graphical representation of your model is presented, including the
process flowchart, animation, and other drawing elements. The Spreadsheet
Model window displays model data, such as times, costs, and other parameters.

A flowchart model is built progressively by selecting necessary modules one
at a time from the Project Bar and dragging-and-dropping them into the
Flowchart Model window. When you select a module in the flowchart model,
a spreadsheet containing relevant information on the module will be displayed
in the Spreadsheet Model window so that you can edit the associated data.

7.2.2  Building a Flowchart Model of a Process-Inspect Line

Figure 7.3(a) shows a reference model of a simple process-inspect line. The
time between arrivals (TBA) of jobs follows an exponential distribution with
mean 5. Jobs are processed by a Machine whose delay time (i.e., processing
time) is uniformly distributed with a range between 5 and 7. They are then
inspected by an Inspector whose delay time is uniformly distributed with a
range of between 2 and 4. It is expected that 98% of the processed jobs would
pass the inspection. As a font convention, Arial Narrow is used for Arena
module names.

A flowchart model and static model of the above process-inspect line are
shown in Fig. 7.3(b). The flowchart model consists of (1) a Create module by
module name Arrive, (2) two Process modules Process and Inspect, (3) a Decide
module Pass?, and (4) two Dispose modules Delivered and Scrapped. The static

Fig. 7.3(a).  Reference model of a process-inspect line.

(a)

Process InspectJ1

Scrap

Deliver
Pass (98%)

Fail (2%)

Jobs arrive
Machine, Uni(5,7) Inspector, Uni(2,4)

TBA ~ Exp(5) Jobs disposed

188   SIMULATION OF ACD MODELS USING ARENA®

model specifies the resources and queues in the system. In the following, a
step-by-step procedure for building the Arena flowchart model of Fig. 7.3(b)
is explained.

7.2.2.1  Build a Create Module Arrive  We’ll start building the flowchart
model with Create module in the Basic Process panel. A Create module is the
starting point for the flow of entities through the model.

1.	 Figure 7.4: Drag the Create module in the Basic Process panel into the
flowchart model window. A default name, Create 1, is given to the module
when it is placed in the flowchart model window.

2.	 Figure 7.5(b): Edit the spreadsheet to define the Create module1: (1) Set
Name to Arrive; (2) set Entity type to Job; (3) set Value to 5; and (4) set
Unit to Minutes.

Fig. 7.3(b).  Arena flowchart model and static model of the process-inspect line.

{98%}

{Job; Exp(5)} {Machine; Uni(5,7)} {Inspector; Uni(2,4)}

(b)

Arena static modelArena flowchart model

Fig. 7.4.  Drag a Create module into the flowchart model window.

1 In Arena, the attribute values for flowchart modules can also be entered in a dialog box by
doubling-clicking the module in the flowchart model window.

Arena Basics   189

7.2.2.2  Build Process Modules Process and Inspect  The next step is to build
two Process modules Process and Inspect to model job processing and job
inspection, respectively.

1.	 Be sure that the Create module Arrive is selected (so that Arena automati-
cally connects the Process module to the Create module).

2.	 Drag the Process module in the Basic Process panel into the flowchart
model window. A default name, Process1, is given to the module when it
is placed.

3.	 Be sure that the Process module Process1 is selected, and drag the Process
module once more from the Basic Process panel into the flowchart
model window. A default name, Process2, is given to the module when it
is placed.

4.	 Edit the spreadsheet to define the two Process modules (see Fig. 7.6): (1)
Set Names to Process and Inspect; (2) set Action to Seize Delay Release;
(3) define Resources as Machine and Inspector; (4) set Delay Type to

Fig. 7.5.  (a) Flowchart model and (b) spreadsheet definition of the Arrive module.

(a)

(b)

Fig. 7.6.  (a) Flowchart model and (b) spreadsheet for the Process and Inspect modules.

(a)

(b)

190   SIMULATION OF ACD MODELS USING ARENA®

Uniform, (5) set Units to Minutes, (6) set Minimum to 5 and 2, and (7)
set Maximum to 7 and 4.

7.2.2.3  Build Decide Module Pass?  The third step is to build the Decide
module Pass? to model the probabilistic branching.

1.	 Be sure that Process module Inspect is selected.
2.	 Drag the Decide module from the Basic Process panel into the flowchart

model window. A default name, Decide1, is given to the module when it
is placed.

3.	 Edit the spreadsheet to define the Decide module (see Fig. 7.7) as: Set
Name to Pass? and set Percent True to 98.

7.2.2.4  Build Dispose Modules Delivered and Scrapped  The last step is to
build two Dispose modules, Delivered and Scrapped.

1.	 Be sure that the Decide module Pass? is selected.
2.	 Drag the Dispose module into the model window (Name Dispose1 is

given).
3.	 Drag the Dispose module into the model window (Name Dispose2 is

given).
4.	 Edit the spreadsheet (see Fig. 7.8): Set Names to Delivered and Scrapped.

7.2.2.5  How to Manually Connect One Module to Another?  If no connec-
tion is automatically made between a selected “from” module and a newly
added “to” module, you can connect the two modules manually. Click the
Object > Connect menu in the menu bar to draw a connection. Your cursor
will change to a cross hair. Start the connection by clicking the exit point (▶)
of the “from” module, then click the entry point (■) of the “to” module to

Fig. 7.7.  (a) Flowchart model and (b) spreadsheet for the Decide module Pass?

(a)

(b)

Arena Basics   191

complete the connection. If you need to make multiple connections, simply
select Object > Connect twice (the Connect button will remain active, and it
is in multi-connect mode). Then draw as many connections as desired. A valid
connection target (e.g., entry point, exit point, or operand object) will be high-
lighted when the pointer hovers over the target. To end the multi-connection
session, click again on the Connect option or press Esc.

7.2.3  Completing a Static Model of a Process-Inspect Line

As shown earlier in Fig. 7.3(b), the static model provides detailed descriptions of
the resources and queues in the system. Figure 7.9 shows the default static model
of a process-inspect line that is generated when the Arena flowchart model is
constructed. The Queue data modules, Process.Queue and Inspect.Queue, are
automatically generated when the Process modules are defined as in Fig. 7.6(b).

The static model consists of a Resource data module and a Queue data
module from the Basic Process panel. Information in the initial default static
model is provided automatically by the Arena system, and additional details
can be entered by the user in the spreadsheets (or dialog boxes). In this

Fig. 7.8.  (a) Flowchart model and (b) spreadsheet for Delivered and Scrapped modules.

(a)

(b)

Fig. 7.9.  Initial default static model of the process-inspect line.

192   SIMULATION OF ACD MODELS USING ARENA®

example, the default static model is sufficient for the reference model of our
process-inspect line [see Fig. 7.3(a)].

If the intended static model requires more information than the default
static model, data modules for the resources and queues are brought in to the
Spreadsheet Model window where the required information can be entered.
Figure 7.10 shows an example where (1) the capacity of the resources is
increased to two in the Resource data module and (2) the queue discipline of
the Inspect queue is changed to Last-In-First-Out (in the Queue data module).
Now we have a process-inspect line with two machines and two inspectors,
and jobs are selected for inspection on a last-in-first-out basis.

7.2.4  Arena Simulation and Output Reports

7.2.4.1  Prepare for the Simulation of the Process-Repair Line  Before
executing a simulation run for the Arena model, we need to specify general
project information including the duration of the simulation run. Here, we will
perform a short, 24-hour run.

1.	 Figure 7.11(a): Open the Run Setup dialog box by using the Run > Setup
menu and clicking the Project Parameters tab. In the Project Title field,
type “Process-Inspect Line Analysis”; we will use the default values for
the Statistics Collection check boxes, with Entities, Queues, Resources,
and Processes checked.

2.	 Figure 7.11(b): Click the Replication Parameters tab. In the Replication
Length field, type “24”; and set its Time Units to Hours from the drop-
down list. Click OK to close the dialog box.

7.2.4.2  Save the Simulation Model  The simulation model is now ready for
a simulation run, and it is a good time to save the model. Select the File > Save
menu item in the menu bar. Arena will prompt you for a destination folder
and file name. Browse to the target folder in which you want to save the model
and type a name in the File Name field.

Fig. 7.10.  Final static model of the process-inspect line.

Arena Basics   193

Arena’s model files store all of the model definition, including the flowchart,
other graphics you have drawn, and the module data you entered into the
spreadsheets. When you perform a simulation run, the results are stored in a
database using the same name as the model file.

7.2.4.3  Run the Simulation  Start a simulation run by clicking Run > Go
menu item in the menu bar. Arena first will check validity of your model, and
then launch the simulation. As the simulation progresses, you will see small
entity pictures (resembling a document) moving along the flowchart. Also,
several variables appear in the flowchart and change their values as entities
are created and processed, as shown in Fig. 7.12.

If Arena displays an error message, you can use the Find button in the error
window to locate the source of the error. You can change between the error
window and model windows using the window menu in the menu bar.

Fig. 7.11.  Run Setup dialog box: (a) Project Parameters; (b) Replication Parameters.

(a) (b)

Fig. 7.12.  Automatic flowchart animation during the simulation run.

Create: Number
of jobs created Process: Number

of jobs currently in
process

Decide: Number
of jobs out each

branch Dispose: Number of
jobs disposed

194   SIMULATION OF ACD MODELS USING ARENA®

If the animation is too fast, you can slow it down by adjusting the animation
scale factor. Use the less-than (<) key during the run to decrease the scale
factor by 20%. Pressing the “<” key repeatedly is an easy way to fine tune the
animation speed. The greater-than (>) key speeds up animation by 20%. Be
sure that the model window is active, not the Navigate panel, or the “>” and
“<” keys will not take effect.

To pause the simulation run, press the Esc key. As shown in Fig. 7.12, you
can see how many entities (jobs) have been created, are currently in the
Process modules Process and Inspect, have left each branch of the Decide
module Pass?, and have left the model at each of the terminating Dispose
modules Delivered and Scrapped. These variables can be helpful in verifying the
model.

7.2.4.4  View Simulation Reports  You may skip the animation and run
right to the end of the simulation to view the reports. Pause the simulation
(i.e., flowchart animation), then click the Fast Forward button to run the simu-
lation without updating the animation. At the end of the run, Arena will
ask whether you want to view reports. Click Yes, and the default report (the
Category Overview Report) will be displayed in a report window, as shown in
Fig. 7.13

7.2.5  Arena Modules

Arena provides two types of modules—flowchart modules and data modules—
and they define the process to be simulated. All information required to simu-
late a process is stored in modules. Flowchart modules—those that are placed

Fig. 7.13.  Arena reports of the process-inspect line simulation run.

Arena Basics   195

in the flowchart model window—describe the dynamics of the system. Data
modules—those that are used in declaring objects (entities, resources, and
queues) in the spreadsheet model—define the static model of the system.
Arena modules are grouped into three panels: Basic Process, Advanced
Process, and Advanced Transfer panels.

7.2.5.1  Flowchart Modules in the Basic Process Panel  The flowchart
modules in the Basic Process panel are high-level modules that are used in
modeling a system at a higher level (i.e., at a lower resolution). There are eight
flowchart modules in this group, as listed below.

1.	 The Create () module is a starting point of a process flow. Entities
enter the simulation and their type is specified.

2.	 The Dispose () module is the end of a process flow. Entities are
removed from the simulation.

3.	 The Process () module defines an activity, usually performed by one
or more resources; processing activity requires some time to complete,
i.e., processing time.

4.	 The Decide () module defines branching in a process flow. Only one
branch is taken according to a decision rule.

5.	 The Batch () module collects a number of entities before they can
continue in a process flow.

6.	 The Separate () module duplicates entities for concurrent or parallel
processing, or separates a previously established batch of entities.

7.	 The Assign () module changes the value of the entity’s attribute or
model variable during simulation.

8.	 The Record () module collects statistics, such as an entity count or
cycle time.

7.2.5.2  Flowchart Modules in the Advanced Process Panel  The flowchart
modules in the Advanced Process panel are used in modeling a system at a
lower level (i.e., at a high resolution). There are 14 modules in this group, and
six frequently used modules are listed below.

1.	 The Seize () module allocates units of one or more resources to an
entity.

2.	 The Delay () module delays an entity by a specified amount of
time.

3.	 The Release () module releases the specified units of a resource that
an entity previously has seized.

4.	 The Hold () module holds an entity in a queue to either wait for
a signal, wait for a specified condition to become true, or be held
indefinitely.

196   SIMULATION OF ACD MODELS USING ARENA®

5.	 The Match () module brings together a specified number of entities
waiting in different queues.

6.	 The Search () module searches a queue or a group (batch) to find the
rank of an entity or the value of the global variable J that satisfies the
specified search condition.

7.2.5.3  Flowchart Modules in the Advanced Transfer Panel  The flowchart
modules in the Advanced Transfer panel are materials-handling modules that
are used in modeling the movements of entities in the system. There are 17
modules in this group, and nine of them are listed below.

1.	 The Station () module defines a station (or a set of stations) corre-
sponding to a physical or logical location where processing occurs.

2.	 The Route () module transfers an entity to a specified station, or the
next station in the station visit sequence defined for the entity.

3.	 The Access () module allocates one or more cells of a conveyor to an
entity for movement from one station to another.

4.	 The Convey () module moves an entity on a conveyor from its current
station to a specified destination station.

5.	 The Exit () module releases the cells on the specified conveyor that
have been allocated to an entity.

6.	 The Allocate () module assigns a transporter (i.e., vehicle) to an entity
without moving it to the entity’s station location.

7.	 The Move () module advances a transporter from one location
to another without moving the controlling entity to the destination
station.

8.	 The Transport () module transfers the entity to a destination station.
After the transport time delay, the entity reappears in the model at the
destination station module.

9.	 The Free () module releases the entity’s most recently allocated trans-
porter unit.

7.2.5.4  Data Modules  Data modules are used for defining the static Arena
model. Major components are the Resource module and the Queue module
(see Fig. 7.10). Data modules are grouped into Basic Process, Advanced
Process, and Advanced Transfer types. There are seven data modules in the
Basic Process panel as listed below:

1.	 The Entity data module defines entity types in a simulation.
2.	 The Resource data module defines the resources including resource

availability.
3.	 The Queue data module defines the queues in the system.

Activity Cycle Diagram-to-Arena Conversion Templates   197

4.	 The Schedule data module defines (1) an operating schedule of a resource
(with the Resource module), or (2) defines an arrival schedule with the
Create module.

5.	 The Set data module defines various types of sets, including resource,
counter, tally, and entity type and entity picture.

6.	 The Attribute data module defines the entity’s attributes, which consist
of type, dimensions, and initial value.

7.	 The Variable data module defines the variables used across the modules
in the model.

There are eight data modules in the Advanced Transfer panel, and six of
them are listed below: (1) the first one is used for a transfer without a trans-
porter, (2) the next two modules for conveyors, and (3) the remaining three
for guided transporters.

1.	 The Sequence data module is used to define a sequence for entity flow
through the model. A sequence consists of an ordered list of stations that
an entity will visit.

2.	 The Conveyor data module allows the definition of a conveyor for entity
movement between stations.

3.	 The Segment data module defines the distance between two stations in
the segment set of a conveyor.

4.	 The Transporter data module allows the definition of a free-path for
guided transporters traveling on a network defined in the Network and
Network Link modules.

5.	 The Network data module defines a network that guided transporters
will follow. A network encompasses a set of links specified in its Network
Links repeat group.

6.	 The Network Link data module defines the characteristics of a guided
transporter path. The Network module then references a set of network
links to define a network that guides transporters follow.

7.3  ACTIVITY CYCLE DIAGRAM-TO-ARENA
CONVERSION TEMPLATES

This section aims to establish a systematic procedure for converting an ACD
model to an Arena model. We show you how to build Arena models for the
ACD models of various “template systems” developed in Chapter 6, Section
6.3. The resulting Arena model templates can be used as building blocks for
modeling larger systems with Arena. A complete list of the Arena model
templates can be found in the official website of this book (http://VMS-
technology.com/Book/Arena).

http://VMS-technology.com/Book/Arena
http://VMS-technology.com/Book/Arena

198   SIMULATION OF ACD MODELS USING ARENA®

As before, our baseline system is a single server system with unlimited
waiting space. Figure 7.14 is an ACD-Arena mapping diagram that shows (1) the
ACD model of a single server system, (2) an Arena flowchart model, (3) an
Arena static model, and (4) the mapping relationships from the ACD model
components to the Arena model components. The ACD model has two activities
{Arrive, Process} and four queues {A, B, M1, Job}. The Process activity denotes
an actual processing operation with a time delay (i.e., a nonzero processing
time). Among the queues, B denotes the number of entities in the buffer, M1
denotes the number of available resources, and Job is a source queue. The Arena
flowchart model for this ACD model has three flowchart modules as follows:

1.	 The Create module is a starting point of process flow where entities enter
the simulation and their type is specified.

2.	 The Dispose module is an end point of process flow where entities are
removed from the simulation.

3.	 The Process module represents an activity, usually performed by one or
more resources and requiring some time to complete. Uniform random
variate is denoted by Uni(a,b) or U(a,b).

In an ACD model, an activity with a nonzero time duration is called a timed
activity. A queue that represents the number of jobs in a buffer is called a
buffer queue, and that which denotes the number of available resources is
called a resource queue.

There are five ACD-to-Arena mapping relationships for this single server
system example, which are indicated by the curved arrows in the figure. They are:

•	 The job creator cycle in the ACD model maps to a Create module (Arrive).
•	 The timed activity Process maps to a Process module (Process).
•	 The arc back to the source queue Job maps to the Dispose module

(Dispose).
•	 The resource queue M1 maps to the Resource data module of the static

model.
•	 The buffer queue B maps to the Queue data module of the static model.

The resulting Arena model in Fig. 7.14 has three flowchart modules (Create,
Process, and Dispose) and two data modules (Resource and Queue). With an
Arena model obtained, the Arena simulation program for the model is con-
structed by following the steps previously described in Sections 7.2.2 and 7.2.3.
In the following, examples of building Arena models from ACD models for
various template systems are presented.

7.3.1  Template for Fixed Multi-Server Modeling

A single server system is a single station system in which the station has only
one server. A multi-server system is a single station system with multiple

Activity Cycle Diagram-to-Arena Conversion Templates   199

servers. If the number of servers in the station is fixed, we have a fixed multi-
server system; if it varies over time, we have a flexible multi-server system.

Figure 7.15 shows an ACD-Arena mapping diagram for a fixed multi-server
system. The Arena flowchart model and static model of the fixed multi-server
system are exactly the same as those of the single server system except the
Capacity field of the Resource data module in the Arena static model. The
resource capacity in the fixed multi-server model is set to 4. In the following,
a step-by-step procedure for building an Arena simulation program will be
explained.

The first step of preparing an Arena program for simulating the fixed multi-
server model is to (1) generate a flowchart model consisting of three flowcharts
modules (Create, Process, and a Dispose) and (2) assign their names as Arrive,
Process, and Dispose, as shown in the flowchart model window of Fig. 7.16.

The second step is to provide attribute values of each flowchart module.
Shown in the spreadsheet model window (inside the dashed-line rectangle) of
Fig. 7.16 is the spreadsheet for the Arrive flowchart module. In the spreadsheet,
the inter-arrival time distribution is specified as Value = 5, and Units = Minutes.

Fig. 7.14.  ACD-Arena mapping diagram for a single server system.

Job
∞A

•

B Process <U(10,15)>Arrive <Exp(5)>

M1
•

Create module Process module Dispose module

Resource data module

Name M1

Capacity 1

Queue data module

Name Process.Queue

Arena static modelArena flowchart model

Arrive Process

0 0

Dispose

{Job; Exp(5)} {M1; Uni(10,15)}

ACD model (Figure 6.1)

Job Creator Cycle

1

M1

m

Process.Queue

Fig. 7.15.  ACD-Arena mapping diagram for a fixed multi-server system.

A

Process <U(10,15)>

M1
••••

Fixed multi-server ACD (Figure 6.6)

Resource data module

Name M1

Capacity 4

Queue data module

Name Process.Queue

Arena static model

 {Job; Exp(5)} {M1; Uni(10,15)}

Arrive <Exp(5)>

Job
∞

Arrive Process

0 0

Dispose

Arena flowchart model

200   SIMULATION OF ACD MODELS USING ARENA®

Likewise, the attribute value Process for module is specified. Figure 7.17 shows
the spreadsheet for the flowchart module Process in which the service time
distribution is specified as Delay Type = Uniform, Minimum = 10, and
Maximum = 15. Also defined in the spreadsheet (in the popped up window
Resources) are Resource Name = M1 and Quantity = 1.

The third and last step for building the Arena simulation program is to
complete the Arena static model by providing additional information to the
data modules. In this example, the number of servers needs to be provided.
Figure 7.18 shows that the number of servers (=4) is specified in the Capacity
field of the Resource data module.

Fig. 7.16.  Generation of the flowchart model of the fixed multi-server system.

Fig. 7.17.  Spreadsheet for providing attribute values of the Process module.

Fig. 7.18.  Completed static model of the fixed multi-server system.

Activity Cycle Diagram-to-Arena Conversion Templates   201

7.3.2  Template for Flexible Multi-Server Modeling

When the number of servers in a multi-server system changes over time, it is
called a flexible multi-server system. The number of servers in a flexible multi-
server system changes according a resource schedule. Table 7.1 shows a daily
resource schedule (from Fig. 6.21) in which the number of servers changes
every 2 hours.

Figure 7.19 shows the ACD model of a flexible multi-server system (Fig. 6.7
in Section 6.3.1), an Arena flowchart model, an Arena static model, and the
mapping relationships from the ACD model components to the Arena model
components. The Arena model of the flexible multi-server system is obtained
by modifying the fixed multi-server system in the Capacity field of the Resource
data module in the Arena static model. The resource capacity is now deter-
mined according the daily resource schedule given in Table 7.1. In the ACD
model of Fig. 7.19, N0 denotes the initial number of resources, and N[k] is the
number of resources at the k-th time interval as defined in Table 7.1.

The procedure for constructing an Arena simulation program for the flex-
ible multi-server system is similar to the fixed multi-server case described in
Section 7.3.1. The only difference is the Capacity of the Resource M1 in the
static model. Figure 7.20 shows how to define the resource schedule using the
Arena data modules: (1) The Resource data module is selected from the Basic
Process panel, and then its Type field is set to Based on Schedule and the
Schedule Name field to MachineSchedule; (2) the Schedule data module is

TABLE 7.1.  A Daily Resource Schedule with 2-Hour Intervals

Hours
(120
min)

0000-
0159

0200-
0359

0400-
0559

0600-
0759

0800-
0959

1000-
1159

1200-
1359

1400-
1559

1600-
1759

1800-
1959

2000-
2159

2200-
2359

k 0 1 2 3 4 5 6 7 8 9 10 11
N[k] 0 0 0 0 3 3 3 5 3 1 1 0

Fig. 7.19.  ACD-Arena mapping diagram for a flexible multi-server system.

Job
∞

A
•

Process <U(10,15)> Arrive <Exp(5)>

M1
<N0>

Flexible multi-server ACD (Figure 6.7)

Resource data module

Name M1

Capacity Schedule

Queue data module

Name Process.Queue

Arena static model

 {Job; Exp(5)} {M1(Schedule); U(10,15)}

~ (Schedule: N[k])

Arena flowchart model

Arrive Process

0 0

Dispose

202   SIMULATION OF ACD MODELS USING ARENA®

selected, and then its Name field and Type field are set to MachineSchedule
and Capacity, respectively; (3) the Durations field of the Schedule data module
is set to 12 rows to bring up a Schedule window having 12 rows; and (4) the
resource schedule is defined as Value-Duration pairs as depicted in the Sched-
ule window.

7.3.3  Template for Balking (Conditional Branching) Modeling

In section Chapter 6, Section 6.3.2, a single server system with balking was
presented. As discussed in Chapter 4 (Section 4.4), balking occurs when the
waiting space in front of a server station is full. Figure 7.21 shows an ACD-
Arena mapping diagram for a limited waiting space system. In the ACD model
in Fig. 7.21, (1) K1 denotes the number of the empty slots in the waiting space;
(2) M1 denotes the number of idle machines; (3) Q0 denotes a virtual waiting
space for the arriving jobs; and (4) Q1 denotes the real waiting space for the
jobs that entered in the system. K1 and M1 are resource queues (K1 can be
regarded as a capacity queue as well), and Q0 and Q1 are buffer queues.

Fig. 7.20.  Method of defining the resource schedule of a flexible multi-server system.

Resource

Name M1

Capacity Schedule

Schedule data module

Resource data module

Schedule window

Arena static model

Fig. 7.21.  ACD-Arena mapping diagram for a limited waiting space system (balking).

Limited Waiting Space ACD (from Fig.6.8)

Resource data module

Name K1, M1

Capacity 3, 1

Queue data module

Name Q0, Q1

Arena static model

Job
∞

A
•

Q1 Process
<Uni(10,15)>

Arrive
<Exp(5)>

M1
•

K1
•••

L1 E Q0

(K1 ≡ 0) ~ Balk

 {Job; Exp(5)} {Uni(10,15)}
(K1 ≡ 0)

 {Q0, K1} {Q1, M1}

Arrive

False

Balk? Balk Delay_M1 Release_M1

Release_K1Seize_M1Seize_K1

Dispose
True

0

0

0

0

Arena flowchart model

Activity Cycle Diagram-to-Arena Conversion Templates   203

In an ACD model, an activity that requires no time delays is called an instant
activity. The ACD model in Fig. 7.21 has three instant activities {Balk, E, L1},
in addition to the timed activity Process and the create activity Arrive. An
instant activity is used for modeling the state change (i.e., event) of an entity,
such as entering or exiting a buffer, loaded on a machine, or accessing a con-
veyor. An instant activity may represent enter activity by which an entity
enters a buffer, exit activity by which an entity exits a buffer, load activity by
which an entity is loaded on a machine, etc. In the ACD model in Fig. 7.21, E
is an enter activity and L1 is a load/exit activity.

The Arena flowchart model in Fig. 7.21 has four types of newly introduced
modules: one Decide module {Balk?}, two Seize modules {Seize_K1, Seize_M1},
two Release modules {Release_K1, Release_M1}, and a Delay module {Delay_M1}.

•	 A Decide module is a branching point in process flow. Only one branch
is taken according to a decision rule.

•	 A Seize module allocates units of one or more resources to an entity.
•	 A Delay module delays an entity by a specified amount of time.
•	 A Release module releases units of a resource that an entity previously

has seized.

As indicated in Fig. 7.21 by the curved arrows, there are five newly intro-
duced mapping relationships from the ACD model to the Arena model:

•	 The conditional branching at Q0 maps to a Decide module (Balk?).
•	 The enter activity E maps to a Seize module (Seize_K1).
•	 The load/exit activity L1 maps to a Seize-Release module pair.
•	 The timed activity Process connected to a load activity (L1) maps to a

Delay-Release module pair {Delay_M1, Release_M1}.
•	 The buffer queues {Q0, Q1} map to the Queue data module in the static

model.
•	 The resource queues {M1, K1} map to the Resource data module.

Having generated the Arena flowchart model shown in Fig. 7.21, the next
step is to provide the attribute values of the flowchart modules. Figure 7.22(a)
shows the spreadsheet of the “by condition” Decide module where the
attribute values are provided as Name = Balk? and Value = NR(K1) == 3.
The remaining fields are filled with default values by Arena. NR(K1) is a
built-in Arena function: NR(K1) = the number of K1 resources currently
being used.

Thus, NR(K1) == 3 means that all three units of K1 resources are being
used (i.e., no room in Q1). Figure 7.22(b) shows the Seize module spreadsheet
where the attribute values of the Seize modules are provided.

204   SIMULATION OF ACD MODELS USING ARENA®

7.3.4  Template for Limited Buffer Tandem Line Modeling

As discussed in Chapter 4 (Section 4.4.2.1), blocking may occur if the unload-
ing space of a machine is full. Figure 7.23 shows an ACD-Arena mapping
diagram for a limited buffer tandem line. The ACD model, which is a part of
the limited buffer tandem line ACD model introduced in Chapter 6 Section
6.3.2 (Fig. 6.8), consists of five activity nodes and nine queue nodes. Among
the nine queues in the ACD model, (1) M1 and M2 are resource queues; (2)
Q1, B1, and Q2 are buffer queues; and (3) C2 is a capacity queue. This model
has two instant activities {U1, L2} and two timed activities {Process1, Process2}.
The instant activity U1 is an unload activity, and L2 is a load activity.

Fig. 7.22.  Decide and Seize spreadsheets for providing the attribute values.

Decide - Basic Process

Seize - Advanced Process

Seize_K11

1 1K1

2 Seize_M1

Allocation Priority
Medium(2)

Resourcesess p Resources

Resources

Resources

Resources1 1M1

Resources Name Resources NameResource State Resource State

1 rows

Queue Type Queue Name

Quantity Quantity

Q0

Q1

Queue

Queue

1 rows

Medium(2)

Other

Other

1

Name

Name

Balk?

Type

Type Type

If

Expression2-way by Condition
Value

NR(K1)==3

(a)

(b)

Fig. 7.23.  ACD-Arena mapping diagram for a limited buffer tandem line (blocking).

ACD Model of Limited Buffer Tandem Line (Figure 6.8)

Resource data module

Name M1, M2

Capacity 1, 1

Queue data module

Name Q1, B1,Q2

Arena static model

Job
∞

A
•

M1
•

Q1

M2
•

Process2
<U(12,17)>

C2
••••

Arena
flowchart model

 {Job; Exp(5)} {Uni(10,15)} {Uni(12,17)}

 {(C2 > 0)}

Process1
<U(10,15)>

B1 U1
Arrive

<Exp(5)>
L2 Q2

Arrive Delay_M2Delay_M1 Release_M2

Release_M1

Seize_M1

Seize_M2Hold_Q2

Dispose

00

Activity Cycle Diagram-to-Arena Conversion Templates   205

The Arena flowchart model in Fig. 7.23 has two Seize modules {Seize_M1,
Seize_M2}, two Delay modules {Delay_M1, Delay_M2}, two Release modules
{Release_M1, Release_M2}, and a Hold module Hold_Q2. A brief description of
the newly introduced Hold module: The Hold module holds an entity in a
queue until a specified condition becomes true.

Curved arrows in Fig. 7.23 indicate key ACD-to-Arena mapping relation-
ships as follows:

•	 The timed activity Process1 followed by an unload activity (U1) maps to
the Seize-Delay module pair (Seize_M1 & Delay_M1).

•	 The capacity queue C2 maps to a Hold module (Hold_Q2).
•	 The unload activity U1 maps to a Release module (Release_M1).
•	 The timed activity Process2 following a load activity (L2) maps to the

Delay-Release module pair {Delay_M2, Release_M2}.

Now, the next step is to provide the attribute values of each and every of the
flowchart modules. Figure 7.24 shows the spreadsheet for the newly introduced
Hold module where its attribute values are provided as Name = Hold_Q2,
Condition = NQ (Q2) < 4, and Queue Name = B1. NQ(Q2) is a built-in Arena
function returning: NQ(Q2) = the current number of entities in the buffer
queue Q2.

Exercise 7.1. Revise the Arena model in Fig. 7.23 by treating C2 in the ACD
model as a resource queue (instead of a capacity queue).

7.3.5  Template for Nonstationary Arrival Process Modeling

In Chapter 6, Section 6.3.3 (see Fig. 6.9), we presented the ACD model of a
single server system having inter-arrival times sampled from a nonstationary
Poisson process. In the ACD model, the thinning method (see Chapter 3,
Section 3.4.3) was explicitly implemented to generate nonstationery inter-
arrival times. The same thinning method is used in Arena.

Let’s assume that the mean arrival rates over a 24-hour period are as given
in Table 7.2. Figure 7.25 shows a Create module spreadsheet in which the job
creation Type is set to Schedule, and the mean arrival rates of the nonhomo-
geneous arrival process in Table 7.2 are provided in the Durations window of
the Schedule data module. For example, POIS (0.3) indicates that the mean
of the Poisson distribution is 0.3.

Fig. 7.24.  Spreadsheet for inputting the attribute values of the Hold module.

206   SIMULATION OF ACD MODELS USING ARENA®

TABLE 7.2.  Mean Arrival Rates (Arrivals per Minute) over a 24-Hour Period

Hours
(120
min)

0000-
0159

0200-
0359

0400-
0559

0600-
0759

0800-
0959

1000-
1159

1200-
1359

1400-
1559

1600-
1759

1800-
1959

2000-
2159

2200-
2359

k 0 1 2 3 4 5 6 7 8 9 10 11
R[k] 0.00 0.00 0.00 0.02 0.10 0.30 0.40 0.50 0.40 0.10 0.02 0.00

Fig. 7.25.  Spreadsheet for inputting the nonstationery arrival rate data.

Fig. 7.26.  ACD-Arena mapping diagram for a joining operation line.

Job

• •

Arrive1 <Exp(5)> Process2 <U(12,17>

•

B1

B2

Process1 <U(10,15)>

Joining Operation Line ACD (Figure 6.11)
A2
•

{M2Ui(1217)}{}{2}

Arena flowchart model

{M1; Uni(10,15)}{2}
{Job2; Exp(7)}

{2}

M2M1A1

Arrive2<Exp(7)>Arrive2 B2

{M1; Uni(12,17)}

{Job1; Exp(5)}
Arrive1

Arrive2

0 Match Batch Process 1 Process 2 Dispose

0

0

7.3.6  Template for Joining Operation Modeling

Figure 7.26 shows an ACD-Arena mapping diagram for a joining operation
line (Chapter 6, Section 6.3.5, Fig. 6.11). The ACD model has two job creator
cycles and two timed activities {Process1, Process2}, together with a merge
junction. The Arena model has a Match-Batch module pair, in addition to the

Activity Cycle Diagram-to-Arena Conversion Templates   207

two Create modules and two Process modules. Brief descriptions of the newly
introduced Match module and Batch module is given below:

•	 The Match module brings together a number of entities waiting in dif-
ferent queues.

•	 The Batch module collects a number of entities before they can continue
processing.

In the ACD model of Fig. 7.26, one Type-1 job in the buffer queue B1 and
one Type-2 job in the buffer queue B2 are matched together to form a batch
of size 2, and then assembled by M1. In Arena, this matching operation is
handled by the Match-Batch module pair. Thus, the ACD-to-Arena mapping
relationship here can be expressed as the merging of arcs having no arc-
multiplicity maps to the Match-Batch module pair in the Arena flowchart
model. Figure 7.27 shows a Match module spreadsheet where the Number
to Match is set to 2 and a Batch module spreadsheet where the Batch Size is
set to 2.

Exercise 7.2. Revise the Arena flowchart model in Fig. 7.26 so as to
model the case where two Type-1 jobs and four Type-2 jobs are assembled in
the line.

7.3.7  Template for Inspection (Probabilistic Branching) Modeling

Figure 7.28 shows an ACD-Arena mapping diagram for an inspection line
(Chapter 6, Section 6.3.6, Fig. 6.12). The ACD model has three timed activities
{Inspect, Process, Scrap}, three resource queues {M1–M3}, and three buffer
queues {B1–B3}, as well as a probabilistic branching junction. The Arena flow-
chart model has three Process modules {Inspect, Process, Scrap} and a “by
chance” Decide module Decide.

In the ACD model, a conditional branching is made right after the Inspect
activity to choose either the Process activity or the Scrap activity. In Arena,
this probabilistic branching operation is handled by the “by chance” Decide
module. Thus, the ACD-to-Arena mapping relationship here can be expressed
as the probabilistic branching at an activity (Inspect) maps to a “by chance”
Decide module Decide. Figure 7.29 shows the spreadsheet for inputting the
attribute values of the “by chance” Decide module where the Percent True is
set to 90.

Fig. 7.27.  Spreadsheets for defining the Match module and Batch module.

208   SIMULATION OF ACD MODELS USING ARENA®

7.3.8  Template for Resource Failure Modeling

Figure 7.30 shows an ACD-Arena mapping diagram for a single server system
with resource failure (Chapter 6, Section 6.3.7, Fig. 6.13). The ACD model
assumes that a failure is allowed only when the server is busy (i.e., in use) and
the interrupted job is discarded. The service time is 10 (ts = 10), repair time is
50 (tr = 50), and the value of remaining time-to-failure (ttf) is initially set to
1000. The ACD model consists of two activities (Arrive and Process), but its
Arena model consists of eight modules: a Create modules, a Seize module, a
Decide module, two Assign modules, a Delay module, a Release module, and
a Dispose module. This is a brief description of the newly introduced Assign
module: the Assign module changes the value of the entity’s attribute or model
variable during simulation.

At the beginning of the Process activity in the ACD model, the state
variables ttf and ts are updated: If (ttf<10) {update-1} else {update-2}. In
Arena, the operation “If () {} else {}” is handled by a Decide module, and the
operation {update variables} is handled by an Assign module. The Process
activity in which an update operation is performed is divided into three Arena

Fig. 7.29.  Spreadsheet for inputting the attribute values of the Decide module.

Fig. 7.28.  ACD-Arena mapping diagram for probabilistic branching (inspection line).

(U≤0 9)

{U=Uni(0,1)}

Job
∞B1 Inspect <U(5,10)>Arrive <Exp(5)> Process <U(10,15)>B2

(U≤0.9)~

(U 0 9)

Inspection Line ACD (Figure 6.12)
Scrap <U(2,4)>B3

(U>0.9)~

{Job; Exp(5)}

{M2; U(10,15)}(90%)

{ ; p()}

{M3; U(2,4)}
Arena flowchart model

M2
•

M1
•

A
•

M3
•

)}(M1; Uni 5,10

Arrive

0
0

0

0
0

0

Inspect Decide Process

False

True

Scrap

Dispose

Activity Cycle Diagram-Based Arena Modeling Examples   209

modules: Seize, Delay, and Release modules in the Advanced Process panel,
instead of simply using the Process module in the Basic Process panel. In addi-
tion, the state variables and their initial values have to be declared in the
Variable data module of the Arena static model. Namely:

•	 A conditional update expression in an activity (Process) of an ACD
maps to a Decide-Assign module structure in the Arena flowchart model
[Fig. 7.30].
(1)  “If () {} else {}” becomes a “2-way by condition” Decide module [Fig.

7.31(a)].
(2)	 “{Variable update expressions}” becomes an Assign module [Fig.

7.31(b)].
•	 State variables and their initial values are declared in the Variable data

module of the Arena static model [Fig. 7.31(c)].

7.4  ACTIVITY CYCLE DIAGRAM-BASED ARENA
MODELING EXAMPLES

In this section, we will show you how to build Arena models from the ACD
models of the “example systems.” The example systems covered in this section
include: a worker-operated tandem line, a restaurant, a simple service station
involving flexible multi-servers and nonstationary customer arrivals, a project
management system, a simple job shop, and a conveyor-driven serial line. ACD
models for the example systems were presented in Chapter 6, Sections 6.4 and
6.5. System modeling is an art that can only be mastered by learning the best

Fig. 7.30.  ACD-Arena mapping diagram for a resource failure.

Resource Failure System ACD (Figure 6.13)

Resource data module

Name M1

Capacity 1

Queue data module

Name Process.Queue

Arena static model

Variable data module

Name ttf, ts

Initial Value 1000, 10

Job
∞

A
•

B1 Process <ts> Arrive <Exp(5)>

M1
•

 Initial Value: {ttf = 1000; ts = 10;}

{ If (ttf<10) {ts= ttf+50; ttf=1000;} else {ts=10; ttf–=10;} }

Arena flowchart model

 {Job; Exp(5)} {M1; ts}
(ttf<10)

{ts=10; ttf=ttf–10}

{ts= ttf+50; ttf=1000}

Arrive Delay_M1Assign 1Decide

Assign 2

False

True
Release_M1Seize_M1 Dispose

0

0

0

0

210   SIMULATION OF ACD MODELS USING ARENA®

practices and internalizing them by relentless practices. If you study the exam-
ples carefully and practice with the ACD-based Arena modeling examples
provided in the official website of this book (http://VMS-technology.com/
Book/Arena), you will gain confidence on modeling real-life systems.

7.4.1  ACD-Based Arena Modeling of a Worker-Operated
Tandem Line

Figure 7.32 shows an ACD-Arena mapping diagram for a worker-operated
tandem line (the ACD model was reproduced from Fig. 6.15). The ACD model
has five resource queues {M1, M2, M3, WA, WB}, three buffer queues {Q1–Q3},
and four timed activities. The fact that the priority of Worker-A is higher than
that of Worker-B is denoted by the condition WA ≡ 0 on the arc from the Q1
queue to the Process1b activity. Similarly, the condition M2 ≡ 0 on the arc from
the Q2 queue to the Process3 activity denotes that the priority of Machine-2
is higher than that of Machine-3. The Arena flowchart model has two Hold
modules, two Decide modules, and four Process modules.

A conditional branching in which the probability of selecting one of the
branches is less than one is called an incomplete conditional branching. In the
ACD model of Fig. 7.32, the conditional branching at Q1 is incomplete
and maps to a Hold-Decide module pair {Hold1, Decide1} in the Arena model.
Similarly, the conditional branching at Q2 maps to the Hold2 and Decide2
modules. Recall from Section 7.3.3 that a complete conditional branching
maps to a Decide module. Thus, the mapping relationship found in this

Fig. 7.31.  Spreadsheet for defining (a) Decide, (b) Assign, and (c) Variable modules.

(a)

(c)

(b)

http://VMS-technology.com/Book/Arena
http://VMS-technology.com/Book/Arena

Activity Cycle Diagram-Based Arena Modeling Examples   211

particular example may be expressed as the incomplete conditional branching
in an ACD model becomes a Hold-Decide module pair in the Arena model.

The condition of the Hold1 module is Machine-1 is available and at least one
of Worker-A or Worker-B is available, which is expressed as: (M1 > 0) &
(WA > 0 || WB > 0). Similarly, the condition of Hold2 is expressed as ((M2 > 0)
& (WA > 0)) || ((M3 > 0) & (WB > 0)). As mentioned in Section 7.3.3, the
above Boolean expressions are handled in Arena by using a built-in function
NR(resource) that returns the number of busy units for the resource. For
example, the Boolean expression M1 ≡ 1 is denoted as NR(M1) ≡ 0.

Having generated the Arena flowchart model, the next step is to provide
attribute values of each flowchart module in Fig. 7.32. For example, Fig. 7.33
shows a Hold module spreadsheet where the conditions of the Hold1 and Hold2
modules are defined.

7.4.2  ACD-Based Arena Modeling of Restaurant

Figure 7.34 shows an ACD-Arena mapping diagram for the restaurant system
introduced in Chapter 6, Section 6.4.3. The ACD model has three resource

Fig. 7.32.  ACD-Arena mapping diagram for a worker-operated tandem line.

A
•

Arrive
<Exp(5)>

Q1 Jobs
∞

M1
•

Process1a
<U(10,15)>

Process1b
<U(12,17)>

Q2 Q3 Depart

M2
•

Process2
<U(10,15)>

M3
•

Process3
<U(12,14)>

WA
•

WB
•

 {Job; Exp(5)} {(M1 > 0) &
 (WA > 0 || WB > 0)}

 (WA≡1)
 {M1,WA; U(10,15)}

 {M1,WB; U(12,17)}

 {(M2 > 0)&(WA > 0) ||
 (M3 > 0)&(WB > 0) }

 (M2≡1)
 {M2,WA; U(10,15)}

 {M3,WB; U(12,14)}

~

~

(WA≡0) (M2 ≡0)

ACD model (Figure 6.15)

Arena flowchart model

Arrive Decide 1 Decide 2Process1a

Process1b

False False

True True
Process2

Process3

Hold 1 Hold 2

Dispose

0

0

00

0
0

Fig. 7.33.  Spreadsheet for defining the Hold modules in Fig. 7.32.

212   SIMULATION OF ACD MODELS USING ARENA®

queues {H, T, W}; seven buffer queues {P1–P7}; and seven timed activities
{Greet, Seat . . . Pay bill}. There are five tables (T = 5), two waiters (W = 2),
and one head waiter (H = 1) in the system. The Arena flowchart model has
five Process modules {_H_Greet, _W_Order, _W_Receive meal, _H_Pay bills, _W_
Clear}; a Seize module {_H_T_Seat}, two Delay modules {_H_T_Seat, _T_Eat meal},
two Release modules {_H_Seat, _T_Clear}, and a Separate module {Separate}. A
brief description of the newly introduced Separate module is that the Separate
module duplicates entities for concurrent or parallel processing, or separating
a previously established batch of entities.

The ACD-to-Arena mapping relationships for the restaurant model are
fairly straightforward except the Seat activity and the Eat meal activity in the
ACD model. Starting the Seat activity requires a table T as well as the head
waiter H, but only the head waiter is released at the end of the activity. Thus,
it maps to a sequence of three modules {Seize_H_T_Seat, Delay_H_T_Seat, and
Release_H_Seat}.

The Eat meal activity requires neither a waiter nor a head waiter. At the
end of this activity, the diner moves to the Pay bills activity and the table goes
through the Clear activity. Thus, assuming that a copy of the diner entity goes
with the table, the Eat meal activity maps to a Delay-Separate module pair.

For the Arena flowchart model in Fig. 7.34, we now need to specify attri
bute values of each flowchart module. As an example, Fig. 7.35 shows the

Fig. 7.34.  ACD-Arena mapping diagram for a restaurant.

A
•

Arrive
<Exp(5)>

Diner
∞ P1 Greet

<U(0.5,1> P2 Seat
<U(10,15)> P3 Order

<U(4,7)>

P4

H
•

W
••

T
•••••

Receive meal
<U(3,5)>

Eat meal
<U(15,25)>

Clear
<U(1,3)>

Pay bill
<U(1,3)> P5

P7

 {Diner; Exp(5)} {H; U(0.5,1)} {U(10,15)} {W; U(4,7)}

 {W; U(3,5)} {U(15,25)}

 {H,T} {H}

 {H; U(1,3)}

 {W; U(1,3)} {T}

P6
ACD model (Figure 6.20)

Arena flowchart model

Activity Cycle Diagram-Based Arena Modeling Examples   213

spreadsheet for defining the Separate module Separate, and the Resource data
module spreadsheet for defining the resource capacity values: T = 5, W = 2,
and H = 1.

7.4.3  ACD-Based Arena Modeling of a Simple Service Station

As discussed in Chapter 6, Section 6.4.4, a simple service station like a gas
station is a flexible multi-server system subject to nonstationery arrival rates.
Table 7.3 shows a mean arrival rate schedule and a resource schedule over a
24-hour period.

Combining the results presented in Section 7.3.2 (see Fig. 7.19) and in
Section 7.3.5 (see Fig. 7.25), we can easily obtain an Arena simulation model
of a simple service station from its ACD model as depicted in Fig. 7.36. The
Arena flowchart model consists of a Creator module Arrive, a Process module
Process_M1, and a Dispose module Dispose. The Creator module generates jobs
with inter-arrival times sampled from a nonstationery Poisson process whose
mean arrival rates are given as the Arrival-schedule in Table 7.3. The Process
module processes the jobs with varying number of machines as specified in
the Machine-schedule.

Figure 7.37 shows attribute values for Create module and Process module.
The Schedule Name entry of Create module Arrive is set to ArrivalSchedule,
and in Process module Process_M1, the Resource Name entry is set to M1.

Fig. 7.35.  Spreadsheets for defining (a) Separate and (b) Resource data modules.

(a)

(b)

TABLE 7.3.  Schedules for the Number of Resources and Mean Arrival Rates

Hours
(120
min)

0000-
0159

0200-
0359

0400-
0559

0600-
0759

0800-
0959

1000-
1159

1200-
1359

1400-
1559

1600-
1759

1800-
1959

2000-
2159

2200-
2359

k 0 1 2 3 4 5 6 7 8 9 10 11
R[k] 0.00 0.00 0.00 0.02 0.10 0.30 0.40 0.50 0.40 0.10 0.02 0.00
N[k] 0 0 0 0 3 3 3 5 3 1 1 0

214   SIMULATION OF ACD MODELS USING ARENA®

The Arena modeling is completed by specifying the schedule of arrival rates
and available machines, shown in Table 7.3, using the Resource and Schedule
data modules. Recall that these data modules are available in the Basic Process
panel. The upper part of Fig. 7.38 shows the spreadsheet for defining the
Resource data module in which the Schedule Name entry is set to Machine-
Schedule, and the lower part for defining the Schedule data module where
the ArrivalSchedule and MachineSchedule are provided in their Durations
windows.

7.4.4  ACD-Based Arena Modeling of a Project Management System

Figure 7.39 shows an ACD-Arena mapping diagram for the project manage-
ment system introduced in Chapter 6, Section 6.4.6. The ACD model consists
of nine activities {A1–A9} and 14 queues. Among the queues, 11 are buffer

Fig. 7.36.  ACD-Arena mapping diagram for a simple service station.

Job
∞

A
•

B Process <U(10,15)> Arrive <ta>

M1
<N0>

~ (Machine-schedule)

{ta ~ Exp(Arrival-schedule)}

 {Job; Exp(Arrival-schedule)} {M1(Machine-schedule); U(10,15)}

ACD model (Figure 6.22)

Arena flowchart model

Fig. 7.37.  Spreadsheets for defining the Create and Process modules in Fig. 7.36.

(a)

(b)

(a)

(b)

Activity Cycle Diagram-Based Arena Modeling Examples   215

queues {Q2–Q12}, two are resource queues {R1–R2}, and one is a source queue
{Job}. The Arena flowchart model consists of six Process modules {Process_A1,
A2, A3, A7, A8, A9}, three Delay modules {A4, A5, and A6}, three Separate
modules {A1, A3, A4}, three Match modules {A5, A8, A9}, three Batch modules
{A5, A8, A9}, a Create module, and a Dispose module.

An activity that requires a positive time delay but not executed by a resource
is called a delay activity. The ACD model in Fig. 7.39 has six timed activities
{A1–A3, A7–A9} and three delay activities {A4–A6}. The source queue Job in
the ACD model maps to the Create module Arrive in which a single entity Job
is created at time zero. A timed activity maps to a Process module, whereas a
delay activity maps to a Delay module. The ACD model has three activities
with a split point {A1, A3, A4} and three activities with a merge point {A5, A8,
A9}, and the mapping relationships for the split/merge points are as follows:

Fig. 7.38.  Spreadsheets for defining the Resource and Schedule data modules.

(a)

(b)

Fig. 7.39.  ACD-Arena mapping diagram for a project management system.

A1 <t1>Job
•

Q2

R1
•

A2 <t2>

A3 <t3>Q3

Q4 A4 <t4> Q7 A7 <t7>

Q5 A5 <t5>

A6 <t6>Q6

Q11 A8 <t8>

Q8

Q12

A9 <t9>

Q9

R2
•Q10

{Job; 0; 1} {R1; t1}

{R2; t2} {t4} {R1; t7}

{R1; t3}

{t6}

{t5}

{R2; t9}

{R2; t8}

ACD model (Figure 6.26)

Arena flowchart model

{2}

{2}

{2}Arrive Process_A1 Separate_A1

Process_A3

Process_A2 Delay_A4 Separate_A4 Process_A7

Match_A5 Batch_A5 Delay_A5

Delay_A6

Match_A9 Batch_A9 Process_A9 Dispose

Process_A8Batch_A8Match_A8

Separate_A3

216   SIMULATION OF ACD MODELS USING ARENA®

•	 A split point maps to a Separate module in the Arena flowchart model:
–	 The timed activity A1 → Process_A1 – Separate_A1 modules
–	 The delay activity A4 → Delay_A4 – Separate_A4 modules

•	 A merge point maps to a Match-Batch module pair in the flowchart
model:
–	 The delay activity A5 → Match_A5 – Batch_A5 – Delay_A5 modules
–	 The timed activity A8 → Match_A8 – Batch_A8 – Process_A8 modules

Figure 7.40 shows spreadsheets for inputting the attribute values of the Match
modules and Batch modules.

7.4.5  ACD-Based Arena Modeling of a Job Shop

As discussed in the previous chapter (see Section 6.5.4), a simple job shop is
characterized by a number of stations {s} with each station having one or more
identical machines. There are multiple job types {j} to be processed in a job
shop, and each job type has a unique routing sequence. Table 7.4 shows a
typical example of station numbers sn(j,p) and processing times pt(j,p) for
three types of jobs processed in the job shop. For example, Type-2 jobs go
through Station-1, Station-2, Station-4, Station-2, Station-3, and Exit (=Station-
0). The product mixes are (1) 26% of the jobs are of Type-1, (2) 48% are Type-2
jobs, and (3) 26% Type-3 jobs.

7.4.5.1  Building the Arena Flowchart Model of the Job Shop  Figure 7.41
shows an ACD-Arena mapping diagram for the simple job shop. The parame-

Fig. 7.40.  Spreadsheets for defining the (a) Match modules and (b) Batch modules.

(a) (b)

TABLE 7.4.  Station Numbers and Processing Times for Jobs Processed in a Job Shop

Job (Ratio)

Processing
Step-1
(p = 1)

Processing
Step-2
(p = 2)

Processing
Step-3
(p = 3)

Processing
Step-4
(p = 4)

Processing
Step-5
(p = 5)

sn(j,1) pt(j,1) sn(j,2) pt(j,2) sn(j,3) pt(j,3) sn(j,4) pt(j,4) sn(j,5) pt(j,5)

j = 1 (26%) 1 Exp(6) 2 Exp(5) 3 Exp(15) 4 Exp(8) — —
j = 2 (48%) 1 Exp(11) 2 Exp(4) 4 Exp(15) 2 Exp(6) 3 Exp(27)
j = 3 (26%) 2 Exp(7) 1 Exp(7) 3 Exp(18) — —

Activity Cycle Diagram-Based Arena Modeling Examples   217

terized ACD (P-ACD) model consists of three activity nodes and five queue
nodes. The three activity nodes are a create activity Arrive, an instant activity
Route (j,p), and a timed activity Process (j,p,s). Among the five queue nodes are
a resource queue M and two buffer queues R(j,p) and Q(j,p,s). The Arena
flowchart model has one Process module Process_M, three Assign modules, and
one Decide module. The ACD-to-Arena mapping relationships are: (1) Each
assignment (or state update) operation in the ACD model maps to an Assign
module in the Arena model, (2) the complete conditional branching point maps
to the Decide module, and (3) the timed activity maps to the Process module.

7.4.5.2  Specifying the Arena Static Model of the Job Shop  Basic compo-
nents of Arena static model are resources, entities, and attributes of an entity.
Figure 7.42 shows the spreadsheets for the Resource data module, Entity data
module, and Attribute data module for the simple job shop example.

For this model, the resources {M1–M4} and the entity types {J1–J3} are
defined as sets in the Set data module shown in Fig. 7.43. The resource set and
the entity set are named as MS and ET, respectively, such that MS(1) = M1,
MS(2) = M2 . . . ET(3) = J3.

Fig. 7.41.  ACD-Arena mapping diagram for the simple job shop.

{Job; ta} {Assign JT, PS=1}; {NS = SN(JT,PS)}

NS>0

{PS = PS + 1}

Job
∞ Q(j,p,s)

A
•

M(s)

Arrive
< ta>

Process (j,p,s)
<pt(j,p) >

s s

j,p,s j,p

j, p+1

~

Route (j,p) R(j,p) j,p j,p,s

{ s= sn(j,p) }

~

(s≡ 0)

(s≠ 0)

{ Assign j; p=1}

Arena flowchart model

P-ACD model (Figure 6.38)

JT = Job Type; PS = Processing Step; NS = NextStation

{MS(NS); PT(JT,PS)}

Fig. 7.42.  Spreadsheets specifying the Resource, Entity, and Attribute data modules.

218   SIMULATION OF ACD MODELS USING ARENA®

The station numbers and processing times for each job type, listed in Table
7.4, are declared in the Variable data module of the Arena static model. Figure
7.43 (bottom) shows the spreadsheets for the array variables SN (station
number) and PT (processing time).

7.4.5.3  Inputting the Attribute Values of Flowchart Modules  There are
five types of modules—Create, Assign, Decide, Process, and Dispose—in the
Arena flowchart model in Fig. 7.41. Attribute values for Create and Dispose
modules were discussed in Section 7.2.2 (see Sections 7.2.2.1 and 7.2.2.4). In
this section, we will describe the attribute values for the Assign, Decide, and
Process modules.

Figure 7.44 shows a spreadsheet for specifying the attribute values for the
three Assign modules in the Arena flowchart model of the simple job shop. In
the Assign_J_S module, it is specified that JT = DISC (0.26, 1, 0.74, 2, 1.0, 3) and
Entity.Type = ET (JT), which will return the value of Entity.Type as J1, J2, or
J3 with probabilities 26%, 48%, and 26%, respectively. Assignments for finding
the next processing step is done at the Assign_P plus 1 as PS = PS + 1. The next
station number is assigned at the Assign_Route module as NextStation = SN (JT,
PS).

Figure 7.45 shows spreadsheets defining the Decide module and the Process
module. Note that these modules use the global variables, JT, NextStation, and

Fig. 7.43.  Spreadsheets specifying the Set and Variable data modules .

Fig. 7.44.  Spreadsheet for inputting the attribute values of the Assign modules.

Activity Cycle Diagram-Based Arena Modeling Examples   219

PS. Recall that the values of the global variables, declared in the Attribute data
module (see Fig. 7.42), are updated at the Assign modules (see Fig. 7.44). As
depicted in Fig. 7.45, (1) the branching condition of the Decided module is
specified as NextStation > 0; and (2) the resource ID of the Process module is
obtained as MS(NextStation) and the processing time is determined from the
expression Expo(PT(JT,PS)).

7.4.6  ACD-Based Arena Modeling of a Conveyor-Driven Serial Line

Figure 7.46 shows a schematic layout of the conveyor-driven serial line
described in the Chapter 6, Section 6.4.7. There are three machines {M1–M3}
and two conveyor segments {C2–C3} in the line. In Arena, the start and end
points of a conveyor segment are designated by a pair of stations. Jobs arrive
with an inter-arrival time of ta and move along the line in the following
sequence: Q1→ M1 → QU1 → C2 → Q2→ M2 → QU2 → C3 → Q3 → M3.

In Arena, a conveyor segment is specified in terms of its physical attributes
such as length, velocity, and cell size, whereas in an ACD, a conveyor is speci-
fied in terms of its logical attributes. A cell size is defined as the sum of the
job length and the gap between jobs on the conveyor. For example, the physi-
cal attributes of the conveyor segment C2 in Fig. 7.46 are defined as Veloc-
ity = 60 m/min, Length = 10 m, and Cell size = 1 m. The logical attributes of a
conveyor model in ACD are Conveying-time (t) and Capacity (C). Figure 7.47
shows the conversion relationships between the physical attributes and logical
attributes of a conveyor segment.

Fig. 7.45.  Spreadsheet for the Decide module and the Process module.

Fig. 7.46.  Schematic layout of a conveyor driven serial line.

M1
<p1>

M2
<p2>

C2, C3 Velocity=60m/min S1, S2, 10m S3, S4, 14m S1, S2, S3, S4

M3
<p3>

Q1

S1 S2 S3 S4

QU1 Q2 QU2 Q3

220   SIMULATION OF ACD MODELS USING ARENA®

7.4.6.1  Building the Arena Flowchart Model of the Conveyor-Driven Serial
Line  Figure 7.48 shows an ACD-Arena mapping diagram for the conveyor-
driven serial line depicted in Fig. 7.46. The ACD model has three timed activi-
ties {P1–P3}, two transport activities {T2–T3}, six instant activities, three
resource queues {M1–M3}, two conveyor queues {C2–C3}, and five buffer
queues {Q1–Q3, QU1–QU2}. The six instant activities are a load activity {L1}
and an unload activity {U3}, two unload/access activities {U1/A2, U2/A3}, and
two exit/load activities {E2/L2, E3/L3}. The Arena flowchart model contains
three Seize modules {M1–M3}, three Delay modules {M1–M3}, three Release
modules {M1–M3}, four Station modules (Station 1-4), two Access modules
{C2–C3}, two Convey modules {C2–C3}, and two Exit modules {C2–C3}. Brief
descriptions of the newly introduced Arena modules are given below:

•	 The Station module defines a station for a location where processing
occurs.

•	 The Access module allocates a conveyor cell(s) to an entity for
movement.

•	 The Convey module moves an entity on a conveyor from a station to
another.

•	 The Exit module releases the cells on the conveyor that have been allo-
cated to an entity.

Depicted in Fig. 7.48 are six cases of mapping relationships from the ACD-
to-Arena flowchart. Among the six cases, four are simple mapping cases:

1.	 Load activity L1 maps to the Seize module Seize_M1.
2.	 Unload activity U3 maps to the Release module Release_M3.
3.	 Each of the timed activities P1–P3 maps to a Delay module.
4.	 Each of the transport activities T2–T3 maps to a Convey module.

And, there are two cases of composite mapping:

•	 An unload/access activity maps to a Station-Access-Release module
triplet:
–	 The U1/A2 Activity → Station1 – Access_C2 – Release_M1 modules

Fig. 7.47.  Relationships between the physical and logical attributes of a conveyor.

F
ig

. 7
.4

8.
 A

C
D

-A
re

na
 m

ap
pi

ng
 d

ia
gr

am
 f

or
 t

he
 c

on
ve

yo
r-

dr
iv

en
 s

er
ia

l l
in

e
of

 F
ig

. 7
.4

6.

Q
U

1
Q

2
Q

U
2

Q
3

M
1 •

M

2
M

3

C
3

<1
4>

C

2
<1

0>

Jo
b

∞

P1

<p
1>

T2

<t

2>

U
1

/A
2

P2

<p
2>

E2

/L

2
T3

<t

3>

U
2

/A
3

P3

<p
3>

E3

/L

3
L1

L=
 L

oa
d;

 P
=

Pr
oc

es
si

ng
; U

=
U

nl
oa

d;
 A

=
Ac

ce
ss

; T
=

Tr
an

sp
or

t;
E=

 E
xi

t

Ar
riv

e
<t

a>

A
 •

Q
1

 {J
ob

; t
a}

 {Q

1,
 M

1}

 {p
1}

 {Q

U
1,

 C
2}

 {M

1}

 {C
2;

 t2
}

 {Q
2,

 M
2}

 {C

2}

 {p
2}

 {Q

U
2,

 C
3}

 {M

2}

 {C
3;

 t3
}

 {Q
3,

 M
3}

 {C

3}

 {p
3}

 {M

3}

A
C

D
 m

od
el

 (
F

ig
ur

e
6.

28
)

A
re

n
a

fl
o

w
ch

ar
t

m
o

d
el

U
3

•
•

A
rr

iv
e

E
xi

t_
C

2

E
xi

t_
C

3

D
el

ay
_M

1

D
el

ay
_M

2

D
el

ay
_M

3

R
el

ea
se

_M
1

R
el

ea
se

_M
2

R
el

ea
se

_M
3

D
is

po
se

S
ei

ze
_M

1

S
ei

ze
_M

2

S
ei

ze
_M

3

S
ta

tio
n

1

S
ta

tio
n

3
S

ta
tio

n
2

0

S
ta

tio
n

4

A
cc

es
s_

C
2

A
cc

es
s_

C
3

C
on

ve
y_

C
2

C
on

ve
y_

C
3

221

222   SIMULATION OF ACD MODELS USING ARENA®

•	 An exit/load activity maps to a Station-Seize-Exit module triplet:
–	 The E2/L2 Activity → Station2 – Seize_M2 – Exit_C2 modules

7.4.6.2  Specifying the Arena Static Model of the Conveyor-Driven Serial
Line  Figure 7.49 shows spreadsheets specifying the contents of the Arena
static model of the conveyor-driven serial line. The resource queues {M1, M2,
M3} in the ACD model are specified in the Resource data module and buffer
queues are specified in the Queue data module. The conveyor queues {C2, C3}
are specified in the Conveyor data modules as well as in the Segment data
modules where the physical attributes (see Fig. 7.47) of each conveyor are
provided.

7.4.6.3  Inputting the Attribute Values of Flowchart Modules  This section
discusses attribute values for the newly introduced conveyor-related modules
{Station, Access, Convey, Exit}. Figure 7.50 shows spreadsheets for specifying

Fig. 7.49.  Spreadsheets specifying the Arena static model of the conveyor-driven serial
line.

Fig. 7.50.  Spreadsheets for inputting attribute values of conveyor-related modules.

Review Questions   223

the attribute values of the conveyor-related modules: (1) Station Name of each
Station module is provided (top left); (2) Conveyor Name, # of Cells per access,
and Queue Name of each Access module are provided (top right); (3) Con-
veyor Name and the destination Station Name of each Convey module are
provided (bottom left); (4) Conveyor Name and # of Cells per exit of each
Exit module are provided (bottom right).

7.5  REVIEW QUESTIONS

7.1.  How is a process defined in discrete-event system modeling?

7.2.  What does an entity flow diagram describe in discrete-event system
modeling?

7.3.  What are the names of the four Arena-specific menus?

7.4.  What is the difference between a timed activity and a delay activity?

7.5.  What is a resource queue in an ACD?

7.6.  How is the resource schedule defined in Arena?

7.7.  What is an instant activity in ACD?

7.8.  What is the meaning of the Boolean expression NR(K1) == 3?

7.9.  How is a nonhomogeneous arrival process modeled (or specified) in
Arena?

7.10.  What is the incomplete conditional branching?

7.11.  How is the cell size of a conveyor defined in Arena?

224

CHAPTER 8

Output Analysis and Optimization

When you can measure what you are speaking about and express it in
numbers, you know something about it. But when you cannot measure
it, when you cannot express it in numbers, your knowledge is of the
meager and unsatisfactory kind; you have scarcely in your thoughts
advanced to the state of science whatever the matter may be.

—Lord Kelvin

8.1  INTRODUCTION

In a real-life simulation project, it is exciting to watch as your simulation
program begins to generate some outputs. However, you may easily become
overwhelmed by the large amount of data produced by the simulation program.
The goal of output analysis and optimization is to draw conclusions and make
decisions correctly and efficiently from the simulation outputs.

The purpose of this chapter is to provide basic coverage of simulation
output analysis and optimization. The topics that are covered in this chapter
are the framework of simulation output analyses, qualitative output analyses,
statistical output analyses, linear regression analyses, and response surface
methodology for simulation optimization. Also, after studying this chapter, you
should be able to answer the following questions:

1.	 What is a simulator calibration? How does it differ from simulator
verification?

2.	 What is a simulation sensitivity analysis? How does it differ from a simu-
lation optimization?

3.	 Why is simulation optimization different to analytic optimization?
4.	 What are the commonly used output plots?

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

Framework of Simulation Output Analyses   225

5.	 What are R2 statistics?
6.	 How are the design points spaced in a two-variable central composite

design?

The remainder of the chapter is organized as follows. The overall frame-
work of the simulation output analysis is given in Section 8.2, and guidelines
for qualitative output analyses are presented in Section 8.3. Statistical output
analysis methods for terminating simulations, nonterminating simulations, and
comparing alternative systems are presented in Section 8.4, and linear regres-
sion modeling for output analyses is presented in Section 8.5. The last section
is devoted to the response surface methodology for simulation optimization.
Student’s t-distribution and t-tests are reviewed in the Appendix.

8.2  FRAMEWORK OF SIMULATION OUTPUT ANALYSES

In order to draw conclusions and make decisions correctly and efficiently from
the simulation outputs, we need to (1) verify the correctness of the simulation
program and calibrate the simulation outputs against the actual data collected,
(2) design simulation experiments carefully, (3) perform statistical analyses on
the output values in order to draw conclusions with confidence, and (4) employ
optimization techniques to find the optimal solutions. In addition, the simula-
tion team should be able to sell the simulation results to the customers and
users of the simulation.

Shown in Fig. 8.1 is the scope of simulation output analyses for discrete-
event simulations. As depicted in the figure, the key activities related to the
output analyses are verification and calibration, experimentation, drawing
conclusions with confidence, and communication and presentation.

8.2.1  Verification and Calibration

Verification is defined as ensuring that the simulation program is correct with
respect to the formal model, while calibration, which is often referred to as

Fig. 8.1.  Framework of a simulation output analysis in discrete-event simulation.

Simulation
Program

2. Experimentation

Output

1-1. Verification

Collected

Data

1-2. Calibration

3. Draw Conclusions 4. Communication & Presentation

Formal Model

Master Data

& Parameters

226   Output Analysis and Optimization

the operational validation [Sargent 2004], is defined as rendering the simula-
tor’s output behavior sufficiently accurate over the domain of its intended
applicability by adjusting the values of the master data and the parameters of
the target system model. Verification and calibration are undertaken during
the initial development and testing; careful experimentation is required because
a simulator may be valid for one set of experimental conditions and invalid in
another.

In a real-life project, verification can be undertaken internally within the
simulation team, whereas calibration must be performed jointly with the
project stakeholders or users. Calibration is undertaken by defining and adjust-
ing the handles in order to reduce the gap between the simulator output and
the source system output. Sargent [2004] recommends the following calibra-
tion steps:

1.	 At the beginning, an agreement is made between the simulation team
and the sponsor (or user) that specifies the basic calibration approach as
well as the techniques to be used.

2.	 The amount of accuracy required is specified for the simulator’s output
variables of interest for their intended applications.

3.	 In each of the iterations, comparisons are made between the simulation
output and the data collected from the source system.

4.	 Calibration documentation is developed for inclusion in the overall
project documentation.

8.2.2  Simulation Experimentation

The main purpose of the experimentation in Fig. 8.1 is to optimize the simula-
tion. This may have various forms, such as selecting the best alternative or
finding the optimal parameter values. According to Schruben and Schruben
[2001], the rules or factors that govern the interaction of entities in a system
that can be controlled are called parameters, while those that cannot be con-
trolled are called laws. A simulation experiment that determines the optimal
values of the parameters is called a simulation optimization and that which
determines the effects of the changes in the laws is called a sensitivity analysis.
The controllable parameters are referred to as handles or decision variables.

A framework for the simulation optimization is called an experimental
frame. As shown in Fig. 8.2, an experimental frame consists of a transducer
that analyzes the output, an acceptor that evaluates the performance measures,
and a generator that adjusts the handles. Optimization is usually undertaken
iteratively: (1) perform a set of simulation runs, (2) analyze outputs, (3) evalu-
ate key performances, (4) adjust the handles, and (5) perform another set of
simulation runs. However, in some cases, sufficient numbers of simulation runs
may be performed according to a predesigned plan and then optimization is
undertaken. The handles can be quantitative variables such as the number of
resources or qualitative variables such as dispatching rules.

Framework of Simulation Output Analyses   227

Simulation optimization is quite different from analytic optimization
because (1) an analytic expression of the objective function does not exist, (2)
the objective function is a stochastic function of deterministic decision vari-
ables, (3) the simulation executions are much more expensive than evaluating
the analytic functions, and (4) interfacing simulators with generic optimization
routines are not always a simple task [Azadivar 1999]. The most common form
for a simulation optimization is to minimize an expected value as given by the
following equation [Fu et al. 2005]:

	 min [(,)],
θ

θ ω
∈Θ

E L 	

where θ represents the vector of the decision variables, Θ is the constraint set,
L is the sample performance measure, and ω represents a sample path (simula-
tion replication).

In the literature, it has been proposed that the above optimization problem
can be solved by employing methods such as the stochastic approximation,
sample average approximation, and heuristic search methods [Azadivar 1999,
Fu et al. 2005, Kim 2006]. Some simulation optimization software packages
that primarily employ heuristic search methods are also available [Fu et al.
2005]. However, the above-mentioned optimization methods may be too theo-
retical for simulation practitioners.

Thus, a more practical, perhaps more promising, approach is to use process
improvement techniques in designed experiments, such as the response surface
methodology and Taguchi methods [Dellino et al. 2008]. The response surface
methodology for simulation optimization will be covered in Section 8.6.

8.2.3  Communication and Presentation

Communication with the stakeholders and presentation to the customers are
crucial for a successful modeling and simulation (M&S) project. Remember
that “all models are wrong, but some are useful.” In practice, it is the author’s
experience that M&S is a consensus-building process. Building a consensus
among the stakeholders and acquiring model credibility via qualification and
sensitivity analyses are prerequisites for a successful simulation project.

Fig. 8.2.  Experimental frame for simulation optimization.

Experimental Frame

Simulator
(Simulation Run)

Generator
(Adjust Handles)

Acceptor
(Evaluate KPI)

Transducer
(Analyze Output)

228   Output Analysis and Optimization

8.3  QUALITATIVE OUTPUT ANALYSES

Simulation output analyses may be classified into qualitative analyses and
statistical analyses. Since discrete-event system simulations include some ran-
domness, rigorous output analyses should be supported with statistical methods.
However, in practice, the various output analyses activities in Fig. 8.1 are per-
formed with qualitative simulation outputs.

Simulation outputs may be grouped into graphical and alphanumeric
outputs. Graphical outputs are in the form of animations and output plots. An
animation may be physical or logical: physical animations animate the physical
behavior of the source system at a high fidelity employing computer graphics,
whereas logical animations show the behavior of the logical elements in the
system, such as entities, events, and state (token) changes. Figure 8.3 shows
two examples of physical animation outputs: an automated manufacturing
system and an urban traffic intersection. Figure 8.4 presents the logical anima-
tion screen of Arena® where it is shown that six jobs are waiting in the buffer
(waiting to use the resource), one job is being processed, one job is about to
be disposed, and 112 jobs have been disposed out of the 121 jobs created.

Commonly used output plots include scatter plots, line plots, and histo-
grams. Figure 8.5 shows a scatter plot of the waiting time of each entity and
the queue size when each entity departs (unloaded from the single server
system shown in Fig. 4.1 in Chapter 4), and a behavior graph that compares
the simulation model and the real system from Sargent [2004]. Line plots are
used for time-dependent statistics such as queue sizes and work-in-process
(WIP) levels over time, while histograms are used for sample statistics such as

Fig. 8.3.  Examples of physical animation outputs.

Create Seize Delay Release Dispose

112121

Fig. 8.4.  Logical animation screen of Arena®.

Qualitative Output Analyses   229

sojourn times. Figure 8.6 presents a line plot of the queue size and a histogram
of the sojourn times in the single server system given in Fig. 4.1.

Common types of alphanumeric outputs are traces and output statistics.
Traces of events and/or state changes are essential for simulator verification.
Output statistics are also useful in verification, but they are primarily used for
simulator calibration. Table 8.1 shows the initial part of an event trace of a
single server system simulation using SIGMA®.

Fig. 8.5.  Scatter plot of waiting time vs queue size, and a behavior graph.

Scatter Plot (WT vs. Q) REAL SYSTEM
SIMULATION MODEL

AVERAE VALUE OF REACTION TIME (SECONDS)
0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

WT

S
T

D
. D

E
V.

 O
F

 R
E

A
C

T
IO

N
 T

IM
E

0 2 4 6
Q

90

72

54

36

18

0

Fig. 8.6.  Line plot of queue size and a histogram of sojourn times.

Line Plot (Q vs. Time) Histogram (Sojourn time)

–1 3 7 11 15 19 23 27

Q Count

0 500 1000 1500 2000

Time

2500 3000

14

12

10

8

6

4

2

0

730

584

438

292

146

0

TABLE 8.1.  Event Traces from a SIGMA® Simulation of a Single Server System
with Failure

Time Event Count Q M ST TAV{Q} AVE{ST}

0 Run 1 0 1 0 0 0
0 Arrive 1 1 1 0 0 0
0 Load 1 0 0 0 0 0
1.633 Arrive 2 1 0 0 0 0
7.895 Unload 1 1 1 7.895 0 0
7.895 Load 2 0 0 7.895 0.793 1.579

13.918 Unload 2 0 1 12.918 0.793 2.631
31.582 Arrive 3 1 1 12.918 0.449 4.101

230   Output Analysis and Optimization

In summary, Schruben and Schruben [2001] provide the following addi-
tional tips regarding the use of simulation outputs:

1.	 During the initial development/testing, logical animation is the most
valuable simulation output.

2.	 For locating gross logic errors, physical animations are the most useful
simulation outputs.

3.	 When evaluating alternative system designs at a high level, output plots
are the most useful output.

4.	 Output statistics are the most appropriate for sensitivity analyses and
optimizations.

5.	 In analyzing the overall performance/dynamics of a system, output plots
are the most useful outputs.

6.	 In selling the simulation to prospective users, physical animations are the
most useful simulation outputs.

8.4  STATISTICAL OUTPUT ANALYSES

Many simulation studies are concerned with estimating the performance mea-
sures of the source system. Because discrete-event system simulations include
some randomness, simulation output data is effectively a random variable.
Thus, in principle, the data analysis methods found in statistics books may be
used in the simulation data analyses. However, in general, the simulation data
are not independent, and extra efforts may be required in order to accom-
modate the dependency in the simulation output data.

Simulations may be terminating or nonterminating, depending on whether
there is an obvious method for determining a simulation run. A terminating
simulation is one for which there is a “natural” event that specifies the length
of the simulation time of interest for the source system [Nakayama 2002].
Otherwise, it is a nonterminating simulation, which is often referred to as a
steady state simulation.

8.4.1  Statistical Output Analyses for Terminating Simulations

The simulation of most service systems is a terminating simulation, because
they have an obvious terminating event (i.e., closing time). Suppose X repre-
sents a performance measure of the system and suppose that we are interested
in computing the mean (μ) and variance (σ2) of X, as defined below:

	 µ σ µ= = − ≡E X E X Var X[]; [()] ().2 2 	 (8.1)

Let Xj be output data obtained from the jth replication for j = 1∼r. Then, the
point estimates of μ and σ2 are computed from the sample mean and sample
variance, as follows:

Statistical Output ANALYSES   231

	 ˆ () ˆ () (()) .µ σ= = = =
−

−∑ ∑X r
r

X S r
r

X X ri i
1 1

1
2 2 2and 	 (8.2)

Further, the 100(1–α)% confidence interval for the mean μ is given by (see
Appendix):

	 X r t S r rr() () / ., /± − −1 1 2
2

α 	 (8.3)

The second term in Eq. 8.3 is called a confidence interval half-length (β).
For example, suppose that we have obtained a sample mean of 20 and a sample
variance of 4 out of 9 replications. Then, a 90% confidence interval half-length
is computed as follows (r = 9, α = 0.1):

	 β = = × =t8 0 95 4 9 1 860 2 3 1 24, . / . / . . 	

Furthermore, the 90% confidence interval for the mean (μ) is 20 ± 1.24. How
many additional replications are required if we want the value of β to be less
than 1.0?

In theory, we can reduce the number of replications required for a given
value of β using a random number (Uk) for a particular purpose (e.g., an inter-
arrival time) in generating Xj, and using its complement (1 − Uk) for the same
purpose in generating Xj+1. This technique of variance reduction is known as
the use of antithetic variates.

8.4.2  Statistical Output Analyses for Nonterminating Simulations

A nonterminating simulation is primarily concerned with the steady state
performance measures of the system. Let Y = {Y1, Y2, Y3 . . .} be an output
sequence for a performance measure, where Yj is the sojourn time of the jth
customer in a nonterminating system. Let’s define the distribution of Yj as
follows:

	 F y C Y y C jj j(Prob for|) (|) , , ,= ≤ = 1 2 3… 	

where C denotes the initial conditions of the system at time 0. If the relation
given in Eq. 8.4 holds for all y and for any initial condition C, then F(y) is
called the steady state distribution of the output sequence Y [Nakayama 2002]:

	 F y C F y jj (|) () .→ → ∞as 	 (8.4)

The above expression is read as “Yj converges in distribution to Y.” Further,
the expected value of the E(Y) of Y is called the steady state performance
measure and the density function (Fj(y)) of Yj is called a transient density
function. Figure 8.7 depicts the transient behavior of a nonterminating
simulation.

232   Output Analysis and Optimization

Suppose that we want to estimate the steady state mean, μ = E(Y). In
practice, μ is estimated from the sample mean of the steady state observations
{Yj: j = s + 1 ∼ n} after deleting the warm-up period data (Yj: j = 1 ∼ s), as
follows:

	 ˆ (,) ().µ = =








 −

= +
∑Y n s Y n sj

j s

n

1

	 (8.5)

Now, the question is how to determine s (warm-up period length). A popular
technique for determining s is a graphical procedure known as Welch’s proce-
dure [Law 2007, p. 509] in which the moving averages of {Yj} are plotted in
order to visually detect the start point (Ys) of the steady state.

Thus, how do we estimate the variance (σ2) of Y? The sample variance of
{Yj: j = s + 1 ∼ n} cannot be used as an estimator of σ2 because {Yj} is not inde-
pendent. A practical method is the method of batch means, which is summa-
rized as follows [Nakayama 2002]:

1.	 Choose a number (m) of batches so that the size (b) of each batch
becomes b = (n − s)/m. (It has been suggested to choose 10 ≤ m ≤ 30.)

2.	 Run a simulation to generate (n − s) steady state observations: Yj for
j = s + 1 ∼ n.

3.	 Group the (n − s) observations into m batches of size b each, and calcu-
late the kth batch mean as follows:

	 Y b Y bk j

j s k b

s kb

() .
()

=










= + − +

+

∑
1 1

	 (8.6)

4.	 Calculate the sample variance of the batch means using the results in
Eqs. 8.5 and 8.6, as follows:

	 S m b
m

Y b Y n sk

k

m
2 2

1

1
1

(,) [() (,)] .=
−

−
=

∑ 	 (8.7)

Fig. 8.7.  Transient behavior of a nonterminating simulation [Nakayama 2002].

Transient Densities ƒj

E [Y]

E [Yj]

1 2 3 4 5 6 7 8 j

Statistical Output ANALYSES   233

5.	 Finally, the 100(1 − α) % confidence interval for the mean μ is computed
as follows:

	 Y n s t S m b mm(,) (,) / ., /± − −1 1 2
2

α 	 (8.8)

The above batch mean method is based on the observation that when m is
large, and Yj and Yj+m are almost independent. Alternatively, we may use the
method of multiple replications in which nonterminating simulations are per-
formed r times. In this case, Eq. 8.3 is used to compute the confidence
interval.

8.4.3  Statistical Output Analyses for Comparing Alternative Systems

Let Xj and Yj denote the output data obtained at the jth replication from
System A and System B, respectively. Define Zj = Xj − Yj for j = 1 ∼ r, where
r is the number of replications. Then, the point estimates of μ = E[Z] and
σ2 = Var[Z] are computed from the sample mean and sample variance, as
follows:

	 ˆ () ˆ () (()) .µ σ= = = =
−

−
= =

∑ ∑Z r
r

Z S r
r

Z Z rj

j

r

j

j

r1 1
11

2 2 2

1

and 	 (8.9)

Then, the 100(1 − α) % confidence interval for the mean (μ) is obtained using
Eq. 8.3.

In a practical simulation study, the confidence interval may be used to
decide whether or not to accept a proposed (improved) system that may
require addition investments. Let System A be the proposed system and
System B be the existing system. Suppose the stakeholders want to know if
the proposed system will improve the performance measure by an amount of
δ with a confidence level of 90%. Then, you can recommend the proposed
system if the following holds:

	 (() () /) ., .Z r t S r rr− >−1 0 95
2 δ 	 (8.10)

The above procedure for comparing two systems may be used to compare
more than two systems as well via a number of pairwise comparisons. In the
literature, a number of ranking and selection methods have been proposed for
the comparison of multiple alternatives [Fu et al. 2005], but these theoretical
schemes may be too complicated to be useful in real-life industrial simulation
projects.

A useful and effective method of increasing the statistical efficiency of
comparing alternative systems is to use common random numbers (CRN). The
fundamental concept is based on reducing the variance of Zj = Xj − Yj by
inducing a positive covariance between Xj and Yj. More precisely, the variance
of the sample mean Z r() is expressed as follows:

234   Output Analysis and Optimization

Var Z r Var Z r Var X Var Y Cov X Y rj j j j j[()] () / { () () (,)} / .= = + − 2   (8.11)

Thus, if we can induce a positive correlation between Xj and Yj, the covariance
term in Eq. 8.11 will become a positive number, resulting in a decrease in the
variance of Z. In order for this to be effective, however, it is essential to syn-
chronize the random numbers across the different systems on a particular
replication. Namely, a specific random number used for a specific purpose in
one configuration must be used for exactly the same purpose in the other
configurations.

8.5  LINEAR REGRESSION MODELING FOR OUTPUT ANALYSES

Simulation (output) analyses are primarily performed in order to obtain
behavioral knowledge of a system from its structural knowledge. By combin-
ing linear regression modeling with simulation analyses, we can also obtain
some generative knowledge of the system. Namely, linear regression modeling
enables us to obtain generative knowledge from simulation experiments. In
addition, linear regression modeling is a key prerequisite for simulation opti-
mization, as discussed in Section 8.6.

8.5.1  Linear Regression Models

Consider a second-order polynomial model with two variables of x1 and x2 as
given below:

	 y x x x x x x= + + + + + +β β β β β β ε0 1 1 2 2 11 1
2

22 2
2

12 1 2 , 	

where y is the response variable and ε is an error or residual. Define x x3 1
2= ,

x x4 2
2= , x5 = x1x2, β3 = β11, β4 = β22, and β5 = β12, and then the above equation

can be expressed as follows:

	 y xj j

j

= + +
=

∑β β ε0

1

5

, 	

where βj are parameters and xj is a regressor variable. In general, a linear
regression model with k regressor variables is given by:

	 y xj j

j

k

= + +
=

∑β β ε0

1

. 	 (8.12)

Product form models such as stadβfγ = C can also be converted into a linear
regression model using logarithms and substituting variables.

Linear Regression Modeling for Output Analyses   235

8.5.2  Regression Parameter Estimation

Suppose we have data obtained from n simulation experiments as shown in
Table 8.2, where yi is the response (e.g., performance measure) obtained from
experiment i for i = 1 to n, and xij is the value (or level) of the regressor vari-
able xj for j = 1 to k used at experiment i. Then, the model equation (Eq. 8.12)
may be written in terms of the data in Table 8.2, as follows:

	 y x x x for i ni i i k ik i= + + + + + =β β β β ε0 1 1 2 2 1 2� …, , . 	 (8.13)

In order to estimate the parameters in the observation equation (Eq. 8.13), we
need to have n > k.

The observation equation (Eq. 8.13) may be expressed in a matrix form as
follows:

	 y X= +b e, 	 (8.14)

where

	 y X=



















=










y

y

y

x x

x x

x xn

k

k

n nk

1

2

11 1

21 2

1

1

1

1

�

�
�

� � �
�

;








=



















=



















; ; .b e

β
β

β

ε
ε

ε

0

1

1

2

� �

k n

and 	

Note that X is a (n × p) matrix, where p = k + 1. In order to obtain the least
square estimators (b) of the parameters, the sum-of-squares of the residuals
is defined as follows:

	 L = ′ = − ′ − = ′ − ′ ′ + ′ ′e e b b b b b() () () .y X y X y y X y X X2 	

The least square estimator vector b must satisfy the following:

	 ∂ ∂ = − ′ + ′ =L/ b b X y X X b 02 2() . 	

Thus, the least square estimator b for β is obtained as follows:

	 b = ′ ′ =−() (, ,).X X X y1
0 1 2b b b bk… 	 (8.15)

TABLE 8.2.  Data Arrangement for a Linear Regression

Variable y x1 x2 ··· xk

Data y1 x11 x12 ··· x1k

· · · ·
· · · ·
yn xn1 xn2 ··· xnk

236   Output Analysis and Optimization

Furthermore, the fitted regression model is expressed as:

	 ˆ ,y b b x b x b xk k= + + + +0 1 1 2 2 � 	

whose matrix form is given by ŷ = Xb. The predicted response for the ith obser-
vation (i.e., simulation run) is expressed as:

	 ˆ , , , , .y b b x b x b x i ni i i k ik= + + + + =0 1 1 2 2 1 2� … 	

Now consider a linear regression model having one regressor variable,
y = a + bx + ε, which is a special case of Eq. 8.12 with k = 1 (a = β0, b = β1,
and x = x1). The sum-of-squares of the residuals for this special case is
expressed as:

	 L a bx yi i

i

n

= ′ = + −
=
∑ε ε () .2

1

	

Then, the least square estimators of a and b must satisfy:

	 ∂ ∂ = + − = ∂ ∂ = + − =
= =
∑ ∑L a a bx y L b a bx y xi i

i

n

i i i

i

n

/ () ; / () .2 0 2 0
1 1

	

Solving the above equations simultaneously yields the following:

	 ˆ ˆ ; ˆ ,a y bx b x y nxy x nxi i

i

n

i

i

n

= − = −








 −











= =
∑ ∑

1

2 2

1

	 (8.16)

where x x n y y ni i= =∑ ∑/ ; / .

8.5.3  Test for Significance of Regression

With the fitted regression model in Eq. 8.16 obtained from the experiment
data of Table 8.2, a question arises: “Can we trust the model?” The statistical
procedure to answer this question is called an analysis of variance (ANOVA).
In an ANOVA, the total sum-of-squares (SST) and error sum-of-square (SSE)
are computed as follows:

	 SS y y y n y y nT i

i

n

i

i

n

i= − = − = ′ − ()
= =
∑ ∑ ∑() () ,2

1

2

1

2
2

y y 	 (8.17)

	 SSE i

i

n

= = ′ = − ′ − = ′ − ′ ′
=
∑ε 2

1

e e () () ,y Xb y Xb y y b X y 	 (8.18)

Linear Regression Modeling for Output Analyses   237

where the column vector X′y is expressed in terms of the data as:

′ = [] =
= = =
∑ ∑ ∑X y c c c c y x y x y x yk

T
i

i

n

i i

i

n

i i

i

n

ik i0 1 2

1

1

1

2

1

, , , , , , , ,… …
ii

n T

=
∑









1

. 	 (8.19)

The quantity b′X′y is expressed as:

	 ′ ′ = = +
= = ==

∑ ∑ ∑∑b X y b c b y b x yj j

j

k

i

i

n

j ij i

i

n

j

k

0

0

1 11

. 	 (8.20)

The regression sum-of-squares (SSR) is obtained by subtracting SSE from SST,
as follows:

	 SS SS SSR T E= − . 	 (8.21)

The degree of freedom (d.f.) of the total sum-of-squares is n − 1 and that of
the regression sum-of-square is k. Thus, the degree of freedom of SSE becomes
n − k − 1. A mean square is obtained by dividing the sum-of-square by its
degree of freedom. Thus, the regression mean square (MSR) and error mean
square (MSE) are computed as follows:

	 MS SS k MS SS n kR R E E= = − −/ ; / ().1 	 (8.22)

The total mean square (MST) is computed similarly.
Finally, F0 is defined as the ratio of MSR and MSE. The statistics obtained

so far are summarized in an ANOVA as shown in Table 8.3. When εi in the
model equation (Eq. 8.13) are independent and normally distributed with a
mean of 0 and a variance of σ2, we reject the null hypothesis β1 = β2 = . . . = βk = 0
if F0 > Fa,k,n−k−1.

The coefficient of multiple determination, commonly called the R2 statistic,
is defined as:

	 R SS SS SS SSR T E T
2 1= = −/ (/). 	 (8.23)

R2 is a measure of the amount of response variability explained by the fitted
model. However, R2 always increases as more terms are added to the regres-
sion model. Thus, the adjusted R2 defined below may be a better measure:

TABLE 8.3.  ANOVA Table

Source of
Variation Sum-of-Square d. f. Mean Square F0

Regression SSR k MSR MSR / MSE

Error SSE n – k – 1 MSE

Total SST n – 1 MST

238   Output Analysis and Optimization

	
R MS MS

n
n k

SS SS
n

n k
adj E T E T
2 1 1

1
1

1
1

1
= − = −

−
− −





 = −

−
− −




(/) (/)  −().1 2R
	

(8.24)

The adjusted R2 will often decrease if unnecessary terms are added.

8.5.4  Linear Regression Modeling Example1

Data obtained from 14 experiments involving two decision variables (v1 and
v2) are summarized in Table 8.4. The decision variables are transformed into
coded variables (x1 and x2) as follows: x1 = (v1 − 225)/30 and x2 = (v2 − 4.36) /
0.36. In general, let μ and ρ, respectively, denote the mean and range of a deci-
sion variable (v). Then, its coded variable (x) is expressed as:

	 x v= −2()/ .µ ρ 	

Now, consider a first-order regression model containing the main effects of the
decision variables.

	 y x x= + + +β β β ε0 1 1 2 2 . 	

TABLE 8.4.  Collected Data with Decision Variables and Coded Variables

Run y

Decision Variable Coded Variable

v1 v2 x1 x2

1 1004 195 4.00 −1 −1
2 1636 255 4.00 1 −1
3 852 195 4.60 −1 0.6667
4 1506 255 4.60 1 0.6667
5 1272 225 4.20 0 −0.4444
6 1270 225 4.10 0 −0.7222
7 1269 225 4.60 0 0.6667
8 903 195 4.30 −1 −0.1667
9 1555 255 4.30 1 −0.1667

10 1260 225 4.00 0 −1
11 1146 225 4.70 0 0.9444
12 1276 225 4.30 0 −0.1667
13 1225 225 4.72 0 1
14 1321 230 4.30 0.1667 −0.1667

1 Myers and Montgomery 1995, Chapter 2.

Linear Regression Modeling for Output Analyses   239

Then, the y-vector and X-matrix are as follows:

	 y =





1004

1636

852

1506

1272

1270

1269

903

1555

1260

1146

1276

1225

1321















































=

− −
−

−

; X

1 1 1

1 1 1

1 1 00 6667

1 1 0 6667

1 0 0 4444

1 0 0 7222

1 0 0 667

1 1 0 1667

1 1 0 166

.

.

.

.

.

.

.

−
−

− −
− 77

1 0 1

1 0 0 9444

1 0 0 1667

1 0 1

1 0 1667 0 1667

−

−

−




















 .

.

. .































. 	

From the above data, the least square estimator b of β is obtained as follows:

	 b = ′ ′ = − ′−() [. , . , .] .X X X y1 1242 3 323 4 54 8 	

Thus, the fitted model in the coded variables x1 and x2 is:

	 ˆy x x= + −1242 3 323 4 54 81 2 	

Then, the fitted model in the natural decision variables v1 and v2 becomes:

	 ˆy v v= − + −520 1 10 8 152 21 2 	

From the expressions given by Eqs. 8.17, 8.18, and 8.21, the sum-of-squares
SST, SSE, and SSR are computed as follows:

	
SS y n

SS
T i

E

= ′ − ∑() = − =
= ′ − ′

y y

y y b

2 222 527 889 17 495 14 665 387, , (,) , ;/

′′ = − =
= − = −

X y 22 527 889 22 514 468 13 421

665 387 13 4

, , , , , ;

, ,SS SS SSR T E 221 651 996= , .

	

Then, the mean squares and F-statistic are obtained as (n = 14, k = 2):

	

MS SS n k

MS SS k
E E

R R

= − − = =
= = =

/ () , , ;

/ , ,

1 13 421 11 1 220

651 996 2 325 98

/

/ 33

267 20

;

/ . .F MS MSR E= =
	

240   Output Analysis and Optimization

The above statistics are summarized in Table 8.5 (the ANOVA table).
At a significance level of 5% (i.e., α = 0.05), the null hypothesis “β1 = β2 = 0”

is rejected because F0 = 267.2 >> F0.05,2,11 = 3.98 (from the F-distribution table),
which means that the regression model is significant. Alternatively, the signifi-
cance test may be performed using the p-value, which is the probability of
obtaining a test statistic at least as extreme as the one that was actually
observed, assuming that the null hypothesis is true. (There are a number of
websites providing p-value calculators.) The R2 and adjusted R2 are computed
as follows:

	 R SS SSR T
2 651 996 665 387 0 9798= = =/ , / , . ; 	

	 R
n

n k
Radj

2 21
1

1
1 1 13 11 1 0 9798 0 9762= −

−
− −





 − = − − =() ()(.) . ./ 	

8.5.5  Regression Model Fitting for Qualitative Variables

When some regressor variables are qualitative, the different levels (e.g.,
machine types) of a qualitative variable are represented as indicator variables
taking on values of 0 or 1. If the qualitative variable has two levels, an indica-
tor variable, e.g., x2, is employed as follows:

x2 = 0 if the observation is from level 1;
x2 = 1 if the observation is from level 2.

Consider the case where y is the dependent variable, x1 is a quantitative
variable, x2 is a qualitative variable taking on values of 0 or 1, and x1x2 is the
interaction. The model takes the following form:

	 y x x x x= + + + +β β β β ε0 1 1 2 2 3 1 2 . 	

If it has three levels, we use two indicator variables (x2 and x3) such that

x2 = 0, x3 = 0 if the observation is from level 1;
x2 = 1, x3 = 0 if the observation is from level 2;
x2 = 0, x3 = 1 if the observation is from level 3.

TABLE 8.5.  ANOVA Table of Linear Regression Modeling Example

Source of
Variation Sum-of-Square d.f. Mean Square F0 p-value

Regression 651,996 2 325,983 267.2 4.74 × 10−10

Error 13,421 11 1,220
Total 665,387 13

Response Surface Methodology for Simulation Optimization   241

The remainder of the regression modeling and analysis may be undertaken
in the same manner. More details on this subject may be found at this site:
http://v8doc.sas.com/sashtml/stat/chap55/sect52.htm, as well as in Myers and
Montgomery [1995, pp. 421–444].

8.6  RESPONSE SURFACE METHODOLOGY FOR
SIMULATION OPTIMIZATION

As mentioned earlier, the simulation experimentation used to determine the
best values of decision variables that provide optimum performance measures
is called simulation optimization. Even though the cost of computer simulation
experiments is much cheaper than that of the designed experiments in real life,
the same response surface methodology (RSM) that was developed for real-life
experiments can be used in the simulation optimization. Most subjects covered
in this section are from the seminal text by Myers and Montgomery [1995].

8.6.1  Overview of RSM for Process Optimization

Response surface methodology (RSM) for process optimization via designed
experiments is a sequential process consisting of three phases: a screening
phase, a search phase, and an optimization phase. In the screening phase, a set
of screening experiments is performed in order to identify the important vari-
ables by eliminating the unimportant ones from the initial candidates.

With the important decision variables identified, the search phase is begun
in order to determine if the current levels of decision variables would result
in a value of response that is near the optimum. If the current levels of deci-
sion variables are far from the optimum, a systematic search is undertaken to
move the decision variables toward the optimum. In this phase, first-order
models are fitted and the method of steepest ascent is employed for the sys-
tematic search. When the levels of the decision variables are near the optimum,
the optimization phase is executed by fitting second-order models from the
data in the near optimum region.

A decision variable used for the process optimization is often referred to
as a control variable. If there are uncontrollable variables, which are often
referred to as noise variables, they may also be considered in the RSM. An
experimental design to locate the optimal values of the control variables con-
sidering the noise variables is called a robust parameter design.

8.6.2  Searching for Optimum Regions with the Steepest Ascent

The design of the experiment, regression model building, and sequential
experimentation for locating a region of improved response comprise the
method of steepest ascent. The search phase of the method of steepest ascent
consists of the following six steps:

http://v8doc.sas.com/sashtml/stat/chap55/sect52.htm

242   Output Analysis and Optimization

1.	 Fit a first-order model using a two-level design (with some center runs).
2.	 Compute a path of steepest ascent if a maximizing response is required.

If minimizing, compute the path of steepest descent.
3.	 Conduct experimental runs along the path.
4.	 At a location where an approximation of the optimum response is

detected, plan the next experiment.
5.	 Conduct the experiment and fit a first-order model. Then, create a lack-

of-fit test.
6.	 If the lack-of-fit is not significant, compute a second path based on the

new model and return to Step 3. Otherwise, terminate the search phase.

8.6.2.1  First-Order Model Fitting  Depicted in Fig. 8.8 is a two-level design
with center runs. The original values of the decision variables (v1, v2) may be
transformed into coded variables (x1, x2) so that the design levels become +1
and −1 and the center run point is (0, 0). Let m and r, respectively, denote the
mean and range of a decision variable (v); then, it’s coded variable x is obtained
from:

	 x v m r= −2() / . 	 (8.25)

The data obtained from the two-level design are fitted to a first-order
regression model. Let’s assume that we obtained the following fitted model:

	 ˆ .y b b x b x x x= + + = + +0 1 1 2 2 1 23 4 2 	 (8.26)

8.6.2.2  Computation of the Steepest Ascent Path  When there are k deci-
sion variables, the first-order regression equation will be expressed as:

	 ˆ .y b b xj j

j

k

= +
=

∑0

1

	 (8.27)

The movement in xj along the path of steepest ascent is proportional to the
magnitude of bj with the direction being the sign of bj. The movement direction

Fig. 8.8.  Two-level designs for two-decision variables.

v1

v2

x1

x2

(1, 1)

(1, –1) (–1, –1)

(–1, 1)

(0, 0) Center-run point

Corner design point

Natural decision variables Coded decision variables

Response Surface Methodology for Simulation Optimization   243

of the steepest descent is the opposite of the sign of the coefficient. For the
fitted model in Eq. 8.26, the path p is expressed as a parametric equation of
line and is given by:

	 p() ((), ()) (,).ρ ρ ρ ρ ρ= =x x1 2 4 2 	

The path of steepest ascent is depicted in Fig. 8.9.
In general, for the regression equation (Eq. 8.27), the coordinates of the

decision variables along the steepest ascent path are expressed as follows:

	 p = =(, ,) (, , ,).x x x b b bk k1 2 1 2� …ρ ρ ρ 	 (8.28)

8.6.2.3  Conduct Experimental Runs along the Path  A series of path
points along the steepest ascent path can be defined for different values of ρ,
and a number of experiments can be performed at each path point. A simple
method of defining the path points is to obtain an increment value (Δ), as
follows:

	 ∆ = 1 / max().bj 	 (8.29)

If this rule is applied to the path shown in Fig. 8.9, we obtain Δ = 1/4 and
the path points may be defined as:

	 ρ = =2 3 4 2 4 3 4 4 4 5 4∆ ∆ ∆, , , , , ,� �/ / / / 	 (8.30)

For the coded variables, the path points are obtained as follows and as
depicted in Fig. 8.10:

	 (,) (,) (,), (,), (,)x x1 2 4 2 2 1 3 3 2 4 2= =ρ ρ / � 	

The values of the natural (decision) variables (v1, v2) at the path points are
obtained from those of the coded variables (x1, x2) using the relation in Eq.
8.25. The hypothetical results of the experimental runs are presented in Table
8.6 in the yp-column, and the response values of the fitted model in Eq. 8.26
are given at the ŷ-column. Because the deviation becomes quite large at 4Δ,

Fig. 8.9.  Path of steepest ascent.

x1

x2

(1, 1)

(1, –1) (–1, –1)

(–1, 1)

(0, 0)
21 243ˆ xxy ++=

)2,4())(),(()(21 ρρρxρxρ ==p

244   Output Analysis and Optimization

the experimental run is stopped at this point even though the response value
is increasing.

8.6.2.4  Plan for the Next Experiment  At the last path point where the
experimental run was stopped, a two-level design with some center runs is
planned such that the last path point becomes the center.

8.6.2.5  Conduct Experiment and Fit a First-Order Model  This step is
essentially the same as Step 1, but replicated experiments are performed in
order to create a lack-of-fit test.

8.6.2.6  Testing for Lack-of-Fit  A lack-of-fit test (as described below) is
created, and if the lack-of-fit is not significant, a second path based on the new
model is computed; the process then returns to Step 3. Otherwise, the search
phase is terminated and the optimization phase is started. In the following, a
procedure for a lack-of-fit (LOF) test is described briefly.

In general, a LOF test is performed when we want to determine if there is
systematic curvature present in a first-order model of the form in Eq. 8.12,
which is reproduced below:

	 y x xk k= + + + +β β β ε0 1 1 � . 	

An experiment is planned such that ni replicate experiments are performed at
the ith regressor level for i = 1 ∼ m. Then, for the data from a total of

Fig. 8.10.  Path points along the steepest ascent path.

x1

x2

(1, 1)

(0, 0)

(2, 1)

(4, 2)

(3, 3/2)

Path points

TABLE 8.6.  Results of the Experimental Runs along the Steepest Ascent Path

x1 x2 ŷ yp Deviation

0 Base 0 0
1 Base + 2Δ 2 1 13 12.5 0.5
2 Base + 3Δ 3 1.5 18 16.4 1.6
3 Base + 4Δ 4 2 25 17.2 5.8
4 Base + 5Δ 5 2.5 28 —

Response Surface Methodology for Simulation Optimization   245

n ni
m

i= ∑ =1 experiments, the least square estimator is computed using Eq. 8.15
and the predicted response at the ith level is expressed as:

	 ˆ .y b b x b x b xi i i k ik= + + + +0 1 1 2 2 � 	

Let yij denote the jth response at the ith regressor level; then, the total sample
mean and the ith level sample mean is computed as follows:

	 y
n

y y
n

yij

j

n

i

m

i
i

ij

j

ni i

= =
== =

∑∑ ∑1 1

11 1

; . 	

Now, the total sum-of-square and error sum-of-square are computed as
follows:

	

SS y y

SS y y

T ij

j

n

i

m

E i

i

n

ij i

j

n

i

m

i

i

= −

= = −

==

= ==

∑∑

∑ ∑∑

() ;

()

2

2 2

11

1 11

ε ˆ ..

	 (8.31)

The above error sum-of-square (SSE) consists of an SS due to a LOF and an
SS due to the pure error (PE), namely, SSE = SSLOF + SSPE. The pure error
sum-of-square is computed as follows:

	 SS y yPE ij i

j

n

i

m i

= −
==

∑∑ () .
1

2

1

	 (8.32)

Note that the degrees of freedoms of SSE and SSPE are n − k − 1 and n − m,
respectively, which indicates that the degree of freedom of SSLOF is m − k − 1.
Thus, the mean squares of the LOF and PE are computed as:

	 MS SS n m MS SS SS m kPE PE LOF E PE= − = − − −/ (); () / ().1 	 (8.33)

Finally, the F-statistic (F0) is computed from the mean squares and is compared
against the F-value. Namely, the hypothesis that the regression model does not
contain systematic curvature is rejected if the following condition holds
(p = k + 1):

	 F MS MS FLOF PE m p n m0 = > − −/ ., ,α 	 (8.34)

8.6.3  Second-Order Model Fitting for Optimization

The last phase of RSM for simulation optimization is the optimization phase
where a second-order regression model is fitted. Central composite designs
are used widely for fitting second-order models. A central composite design

246   Output Analysis and Optimization

involves the use of a two-level design combined with a set of axial points and
a number of center runs. Recall that we already have experiment results for a
replicate two-level design with center runs at the end of the searching phase.
Thus, it is sufficient to perform additional experiments with the added axial
points. The optimization phase consists of the following four steps:

1.	 Prepare a central composite design.
2.	 Perform experiments at the axial points and fit second-order models.
3.	 Perform significance tests and refine the fitted regression model if

necessary.
4.	 Evaluate the fitted model to determine the optimal values of the decision

variables.

8.6.3.1  Central Composite Design for Second-Order Model Fitting  A
central composite design for two decision variables (k = 2) is depicted in
Fig. 8.11(a), where the corner points and axial points are spaced equally on
a circle with a radius of 2. As we already have the experiment data for
the corner points of the two-level design and the center point (as a result of
the search phase), only the axial points need to be determined. In general, we
need 2k axial points as shown in Fig. 8.11(b), where the value of the axial
distance (α) varies from 1.0 to k . The choice of 1.0 places all axial points on
the face of the hypercube, while the choice of k places them on a common
sphere. Unless there are constraints imposed on the decision variables, we use
α = k .

8.6.3.2  Experiments at Axial Points and Second-Order Model Fitting 
Recall that a coded variable (x) was obtained from a natural variable (v) using

Fig. 8.11.  (a) Central composite design for k = 2 and (b) 2k axial points.

(1, 1)

(1, –1) (–1, –1)

(–1, 1)

(0, 0)

)2,0(

)2,0(–

)0,2(–)0,2(
x1

x2

(a)

Corner point

Center point

Axial point

x1 x2 ··· xk

-α 0 ··· 0

 α 0 ··· 0

 0 -α ··· 0

 0 α ··· 0

 · · ·

 · · ·

 0 0 ··· -α

 0 0 ··· α

(b)

Review Questions   247

the relation given in Eq. 8.25, namely x = 2(v − m) / r, where m and r, respec-
tively, denote the mean and range of the natural variable. The value of the
natural variable (v) for each coded variable (x) is obtained from:

	 v m r x= + (/) .2 	 (8.35)

Now, experiments are performed for the axial points and a second-order
model is fitted using all data in the central composite design. A full second-
order model has the following form:

	 y x x x x x x x xk k kk k k k k k= + + + + + + + + + +− −β β β β β β β ε0 1 1 11 1
2 2

12 1 2 1 1� � � , . 	
(8.36)

By applying the linear regression modeling method described in Section 8.5.2,
the least square estimators of the regression coefficients are computed in order
to obtain the following fitted response surface model:

	 ˆ .,y b b x b x b x b x b x x b x xk k kk k k k k k= + + + + + + + + + − −0 1 1 11 1
2 2

12 1 2 1 1� � � 	
(8.37)

8.6.3.3  Significance Test and Model Refinement  The significance of the
fitted response surface in Eq. 8.37 is tested using the procedure given in
Section 8.5.3. If the fitted response surface does not appear highly significant,
we may perform tests on the individual regression coefficients or groups of
coefficients [Myer and Montgomery 1995, pp. 31–36] in order to refine the
fitted model.

8.6.3.4  Evaluation of the Fitted Regression Model  The resulting response
surface is a quadratic polynomial function that is easily evaluated. The evalu-
ated values may be represented as a three-dimensional surface or a contour
plot when the number of decision variables is two.

8.7  REVIEW QUESTIONS

8.1.  What is a simulator calibration? How does it differ from a simulator
verification?

8.2.  What is a sensitivity analysis? How does it differ from a simulation
optimization?

8.3.  Why is simulation optimization different from analytic optimization?

8.4.  What are the commonly used output plots?

248   Output Analysis and Optimization

8.5.  What is the use of common random numbers in output analyses?

8.6.  What are R2 statistics?

8.7.  How are the design points spaced in a two-variable central composite
design?

APPENDIX 8A: STUDENT’S t-DISTRIBUTION

Student’s t-distribution (published by William S. Gosset in 1908 under the
pseudonym “Student”) arises in the problem of estimating the mean of a
normally distributed population when the sample size is small and the unknown
standard deviation must be estimated from the data.

8A.1  Definition

Let Z ∼ N (0,1) and V k~ χ 2 (chi-square distribution) be independent of each
other, then the statistic T Z V k= / / follows the t-distribution with k degrees
of freedom.

8A.2  Derivation of the t-Statistic

Suppose {Xi} are independent random variables that are normally distributed
with an expected value of μ. Compute the sample mean and sample variance
as follows:

	 X n
n

X S n
n

X X ni i() ; () (()) .= =
−

−∑ ∑1 1
1

2 2 	

Then, it can be shown that the statistic T follows the t-distribution with n − 1
degrees of freedom:

	 T X n S n n= −(()) / (() /).µ 	

8A.3  Table of Critical t-Values with Degrees of Freedom (df)

0 tdf, 1–β

β

APPENDIX 8B: STUDENT’S t-TESTS   249

df β = 0.4 β = 0.25 β = 0.1 β = 0.05 β = 0.025 β = 0.01 β = 0.005 β = 0.0005

  1 0.3249 1.0000 3.0777 6.3138 12.7062 31.8205 63.6567 636.6192
  2 0.2887 0.8165 1.8856 2.9200 4.3027 6.9646 9.9248 31.5991
  3 0.2767 0.7649 1.6377 2.3534 3.1824 4.5407 5.8409 12.9240
  4 0.2707 0.7407 1.5332 2.1318 2.7764 3.7469 4.6041 8.6103
  5 0.2672 0.7267 1.4759 2.0150 2.5706 3.3649 4.0321 6.8688
  6 0.2648 0.7176 1.4398 1.9432 2.4469 3.1427 3.7074 5.9588
  7 0.2632 0.7111 1.4149 1.8946 2.3646 2.9980 3.4995 5.4079
  8 0.2619 0.7064 1.3968 1.8595 2.3060 2.8965 3.3554 5.0413
  9 0.2610 0.7027 1.3830 1.8331 2.2622 2.8214 3.2498 4.7809
10 0.2602 0.6998 1.3722 1.8125 2.2281 2.7638 3.1693 4.5869
11 0.2596 0.6974 1.3634 1.7959 2.2010 2.7181 3.1058 4.4370
12 0.2590 0.6955 1.3562 1.7823 2.1788 2.6810 3.0545 4.3178
13 0.2586 0.6938 1.3502 1.7709 2.1604 2.6503 3.0123 4.2208
14 0.2582 0.6924 1.3450 1.7613 2.1448 2.6245 2.9768 4.1405
15 0.2579 0.6912 1.3406 1.7531 2.1314 2.6025 2.9467 4.0728
16 0.2576 0.6901 1.3368 1.7459 2.1199 2.5835 2.9208 4.0150
17 0.2573 0.6892 1.3334 1.7396 2.1098 2.5669 2.8982 3.9651
18 0.2571 0.6884 1.3304 1.7341 2.1009 2.5524 2.8784 3.9216
19 0.2569 0.6876 1.3277 1.7291 2.0930 2.5395 2.8609 3.8834
20 0.2567 0.6870 1.3253 1.7247 2.0860 2.5280 2.8453 3.8495
21 0.2566 0.6864 1.3232 1.7207 2.0796 2.5176 2.8314 3.8193
22 0.2564 0.6858 1.3212 1.7171 2.0739 2.5083 2.8188 3.7921
23 0.2563 0.6853 1.3195 1.7139 2.0687 2.4999 2.8073 3.7676
24 0.2562 0.6848 1.3178 1.7109 2.0639 2.4922 2.7969 3.7454
25 0.2561 0.6844 1.3163 1.7081 2.0595 2.4851 2.7874 3.7251
26 0.2560 0.6840 1.3150 1.7056 2.0555 2.4786 2.7787 3.7066
27 0.2559 0.6837 1.3137 1.7033 2.0518 2.4727 2.7707 3.6896
28 0.2558 0.6834 1.3125 1.7011 2.0484 2.4671 2.7633 3.6739
29 0.2557 0.6830 1.3114 1.6991 2.0452 2.4620 2.7564 3.6594
30 0.2556 0.6828 1.3104 1.6973 2.0423 2.4573 2.7500 3.6460
40 0.2550 0.6807 1.3031 1.6839 2.0211 2.4233 2.7045 3.5510
60 0.2545 0.6786 1.2958 1.6706 2.0003 2.3901 2.6603 3.4602

120 0.2539 0.6765 1.2886 1.6577 1.9799 2.3578 2.6174 3.3735
∞ 0.2533 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 3.2905

APPENDIX 8B: STUDENT’S t-TESTS

8B.1  One Sample t-Test

The t-test statistic has the form of T = Z/s with Z nX= /σ and s = S/σ, where
σ2 is the population variance. The sample mean (X) and sample standard
deviation (S) are given by:

	 X
n

X S
n

X Xi

i

n

i

i

n

= =
−

−
= =
∑ ∑1 1

1
1

2

1

and () . 	 (8B.1)

250   Output Analysis and Optimization

The assumptions underlying a one-sample t-test are that Z follows a
standard normal distribution and (n − 1)s2 follows a χ2 distribution with (n − 1)
degrees of freedom under the null hypothesis, and that Z and s are
independent.

8B.2  Unpaired Two Sample t-Test

The assumptions in the t-test that compares the means of two samples are that
each of the two populations being compared should follow a normal distribu-
tion and that the data used to undertake the test are sampled independently.

8B.2.1  Equal Variance Case  Let X j and Sj, respectively, denote the sample
mean and sample standard deviation of group (j) with sample size nj for j = 1,
2. Then, when the variances of the two groups are equal, the t-statistic (T) to
test whether the group means are different is given by (degree of freedom:
d = n1 + n2 − 1):

	 T
X X

S n n
S

n S n S
n n

= −
+

= − + −
+ −

1 2

12 1 2
12

1 1
2

2 2
2

1 21 1

1 1
2

,
() ()

.where 	 (8B.2)

8B.2.2  Unequal Variance Case  When the variances of the two groups are
not equal, the t-statistic (T) and degree of freedom (d) are given by:

	 T
X X

S
S S n S n= − = +1 2

12
12 1

2
1 2

2
2, ;where 	 (8B.3)

	 d
S n S n

S n n S n n
=

+()
() − + () −

1
2

1 2
2

2
2

1
2

1
2

1 2
2

2
2

21 1() ()
. 	 (8B.4)

8B.2.3  Examples  Let A1 denote a set obtained by taking six random
samples from a larger set (n1 = 6):

	 A1 30 02 29 99 30 11 29 97 30 01 29 99= { . , . , . , . , . , . }. 	

Let A2 denote a second set obtained similarly (n2 = 6):

	 A2 29 89 29 93 29 72 29 98 30 02 29 98= { . , . , . , . , . , . }. 	

These could be, for example, the weights of screws that were chosen from a
bucket of screws. We will perform tests of the null hypothesis that the means
of the populations from which the two samples were taken are equal.

The difference between the two sample means is X X1 2 0 095− = . , and the
sample standard deviations for the two samples are S1 = 0.05 and S2 = 0.11.
For such small samples, a test of equality between the two population

APPENDIX 8B: STUDENT’S t-TESTS   251

variances would not be very powerful. Because the sample sizes are equal, the
two forms of the two sample t-tests will perform similarly in this example.

If the approach for unequal variances (discussed above) is followed, the
results are:

	 S S n S n T
X X

S
12 1

2
1 2

2
2

1 2

12

0 0485 1 959= + = = − =. . ;and 	

	 d
S n S n

S n n S n n
=

+()
() − + () −

=1
2

1 2
2

2
2

1
2

1
2

1 2
2

2
2

21 1
7 03

() ()
. . 	

The two-tailed test p-value2 is approximately 0.091 and the one-tailed
p-value is 0.045. For a case of equal variance, we have S12 = 0.084, T = 1.959,
and d = 10. Here, the two-tailed p-value is approximately 0.078, and the one-
tailed p-value is approximately 0.039. Thus, if there is good reason to believe
that the population variances are equal, the results become somewhat more
suggestive of a difference in the mean weights for the two populations.

2 The p-value is the probability of obtaining a test statistic at least as extreme as the one that was
actually observed, assuming that the null hypothesis is true.

253

ADVANCES IN DISCRETE-EVENT
SYSTEM MODELING AND
SIMULATION

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

Part III is design to be used in a graduate-level simulation course in industrial
engineering, computer science, and management science. However, research-
ers and industrial practitioners may find the materials quite useful for embark-
ing upon new modeling and simulation (M&S) researches and implementing
new simulation-based solutions. The subject areas covered in Part III are (1)
state-based M&S; (2) advanced activity-based M&S; (3) object-oriented event
graph modeling for integrated Fab simulation; and (4) parallel simulation. One
chapter is devoted to each subject area.

Chapter 9 covers fundamental topics in state-based modeling and simula-
tion. After studying this chapter, you should be able to answer the following
questions:

1.	 What are finite state machines?
2.	 What are timed automata? What is a state graph?
3.	 How do you build state graph models of various systems?
4.	 How do you execute state graph models?

Chapter 10 is devoted to advanced topics in activity-based modeling. By
studying this chapter, you should be able to:

1.	 Develop your own ACD simulators
2.	 Make cycle time analyses of various types of work cells
3.	 Build ACD models of complex systems such as flexible manufacturing

systems
4.	 Convert ACD models to event graph models and state graph models

PART III

254    Advances in Discrete-Event System Modeling and Simulation

Chapter 11 is devoted to an advanced event graph modeling for integrated
Fab simulation. By studying this chapter, you should be able to:

1.	 Understand electronics fabrication systems
2.	 Build object-oriented event graph models for integrated simulation of

Fab operation
3.	 Execute object-oriented event graph models
4.	 Perform automated material handling system (AMHS)-embedded inte-

grated simulation of electronics Fab

Chapter 12 is devoted to parallel simulation and high-level architecture
(HLA)/ run-time infrastructure (RTI). By studying this chapter, you should
be able to answer the following questions:

1.	 What is parallel simulation?
2.	 How do you apply the parallel simulation concept to workflow

simulation?
3.	 What is HLA/RTI?
4.	 How do you perform a parallel simulation with HLA/RTI?

255

CHAPTER 9

State-Based Modeling and Simulation

Everything has its wonders, even darkness and silence, and I learn,
whatever state I may be in, therein to be content.

—Helen Keller

As mentioned in Chapter 1, a comprehensive description of a discrete-event
system can be given in terms of the two types of physical modeling compo-
nents (Entity and Resource) and three types of logical modeling components
(Activity, Event, and State). The existing methods of discrete-event system
modeling and simulation (M&S) have been developed around the logical
modeling components. Depending on the modeling component to be focused
on, we can use (1) event-based M&S methods as covered in Chapters 4 and
5, (2) activity-based M&S methods as covered in Chapter 6, and (3) state-
based M&S methods. This chapter is devoted to the state-based M&S of
discrete-event systems (DESs).

9.1  INTRODUCTION

A finite state machine (FSM) is the oldest known formal model for modeling
the sequential behavior of a DES [Wagner et al. 2006]. The FSM does not
consider time, and it is a state-based M&S tool that is widely used in the design
analysis of automated systems and embedded software systems. The term finite
state automata (FSA) is preferred to FSM in computer science, where it is
primarily used in language processing and text scanning applications.

In order to describe the dynamic behavior of a DES over time, the FSM
(or FSA) formalism has been extended to timed automata [Alur and Dill 1994]
and DEVS [Zeigler 1976]. The classic DEVS (Discrete-EVent system Specifi-
cation) is essentially a restricted type of timed automaton, and it has been the
de facto choice for the state-based M&S of DES. However, the classic DEVS
method has some drawbacks: DEVS models are not easy to build, and DEVS

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

256    State-Based Modeling and Simulation

simulators are not efficient to execute. Thus, this book introduces a new state-
based M&S formalism, called the state graph formalism. A state graph is a
special type of timed automata with which some of the difficulties in the clas-
sical DEVS are overcome.

The remainder of this chapter is organized as follows. The definitions and
models of FSM are presented in Section 9.2, and the definitions and mecha-
nisms of timed automata are given in Section 9.3. The structure and modeling
examples of the state graph are given in Sections 9.4 and 9.5, respectively. A
comprehensive description of simulation executions of state graph models is
provided in the last section of this chapter. A brief description of classic DEVS
is given in the Appendix of this chapter.

9.2  FINITE STATE MACHINE

If the present inputs in a system are sufficient to determine its outputs, it is
called a combinatorial system. If the system needs additional information
about the sequence of the previous inputs in order to determine the outputs,
the system is a sequential system, which requires a mechanism to memorize
the previous inputs. The mechanism to store the input history is the state, and
a finite state machine is a sequential system.

9.2.1  Existing Definitions of Finite State Machines

A finite state machine (FSM) is a formal model for modeling the sequential
behavior of a discrete-event system. An FSM is also called a finite state automa-
ton (FSA), finite state transducer, state machine, and more. It is a computation
model that consists of a set of states, a start state, an input alphabet, and a
transition function that maps the inputs and current states to a next state. The
computation begins in the start state with an input string and changes to new
states depending on the transition function.

A number of algebraic definitions of FSM exist in the literature. In the
classical definition [Peterson 1981], an FSM is defined as a quintuple structure
(S, X, Y, δ, λ), where:

1.	 S is a finite nonempty set of states
2.	 X is a finite input alphabet
3.	 Y is a finite output alphabet
4.	 δ is the next state function (δ: S × X → S)
5.	 λ is the output function (λ: S × X → Y)

In computer science, where the term FSA is used instead of FSM, an FSM
is defined as a quintuple structure (S, X, δ, s0, F), where [Hopcroft et al. 2006]:

Finite State Machine   257

1.	 S is a finite set of states
2.	 X is a finite set of symbols (or events)
3.	 δ is the transition function
4.	 s0 is the start state (or initial state)
5.	 F is the set of final states (a subset of S)

In this definition, the final states (F) are referred to as accepting states
because once the FSM moves into a state in F, it accepts every sequence of
further inputs.

An FSM is called deterministic if the transition function (δ) returns a
member of S, and it is called nondeterministic if δ returns a subset of S. In
engineering, a deterministic FSM that generates outputs is referred to as a
finite state transducer, which is a sextuple structure (S, X, Y, δ, s0, λ) where:

1.	 S is a finite nonempty set of states
2.	 X is the input alphabet (a finite nonempty set of symbols)
3.	 Y is the output alphabet (a finite nonempty set of symbols)
4.	 δ is the state transition function (δ: S × X → S)
5.	 s0 is the start state (an element of S)
6.	 λ is the output function (λ: S × X → Y)

In the above definitions, the terms alphabet and symbol have the same
meaning, event and message are used interchangeably, input alphabet and input
event are used interchangeably, and output alphabet and output message are
used interchangeably. It is worthwhile to compare the last two definitions. In
computer science, where FSA is mostly used in language processing and text
scanning applications, the concept of final states (F) has a specific function.
Thus, F is included in the definition. In contrast, in engineering, where FSMs
are commonly used in designing embedded software for reactive systems such
as traffic systems and telecommunication systems, the concept of outputs (Y)
is critical. An FSM with transition probabilities assigned to the transition func-
tion (δ) is referred to as a probabilistic FSM.

9.2.2  Finite State Machine Models

Specifying an FSM as an algebraic structure with a detailed description of the
transition function (δ) is both tedious and difficult; thus, there are two pre-
ferred notations for describing FSM: state transition diagram and state transi-
tion table [Hopcroft et al. 2006]. A state transition diagram of an FSM, which
is a graphical model of the FSM structure, is constructed as follows.

a.  There is a node for each state in S.
b.	 Let δ(p, x) = q, where p, q ∈ S and x ∈ X. Then, there is an arc from

node p to node q, which is labeled x. If there are several input symbols

258    State-Based Modeling and Simulation

that cause transitions from p to q, the arc is labeled by listing these
symbols.

c.	 The start state node is marked using a dashed circle with shading.
d.	 Nodes corresponding to the final states F are marked using a double

circle.

A state transition table is a tabular specification of the transition function.
Figure 9.1 presents a state transition diagram (often called an FSM diagram)
and state transition table. Note in the figure that the start state (s0) is marked
using a dashed circle with shading and the final state (s2) using a double circle.

In engineering applications, the basic models of FSM are the Mealy and
Moore models [Wagner et al. 2006]. A Mealy model is an FSM that produces
an output for each transition, which means that the FSM diagram will include
both input and output signals for each transition arc. Thus, the finite state
transducer (the third definition) in the previous section is a Mealy model. A
Moore model is an FSM that produces an output for each state. The selected
models will influence the design, but general indications as to which model is
better do not exist yet. In practice, mixed models are often used with several
output types [Wagner 2005]. Note that there may be no final states in the FSM
of a reactive system. Figure 9.2 presents the FSM diagrams for the Mealy and
Moore models where the start state is s1.

9.2.3  Finite State Machine Modeling of Buffer Storage and Single
Server Systems

Buffer storage is a passive resource whose state is defined by the number of
jobs stored in the buffer. Figure 9.3(a) shows an unlimited capacity buffer in

Fig. 9.1.  State transition diagram and state transition table of an FSM.

s0

x1 s1 s2

x2 x1

x2

x1, x2
No State Input Output Next State

1 s0 x1 - s1

x2 - s0

2 s1 x1 - s1

x2 - s2

3 s2 x1, x2 - s2
s0: start state; s2: final state

Fig. 9.2.  State transition diagrams for the (a) Mealy model and (b) Moore model.

s1 s2

Input-1 Input-2/ output-1

Input-3

s1
Output-1

s2

Input-1 Input-2

Input-3

(a) (b)

Finite State Machine   259

a single server system. Let J denote the number of jobs in the buffer, then
J = {. . . 2, 1, 0, −1. . .} defines the state space of the buffer. A negative J value
denotes the number of backlogs. Figure 9.3(b) shows the Mealy model of the
Buffer in Fig. 9.3(a) where a (arrive) and r (request) are input events, and s
(send) is an output message. However, because the state is not finite, it is an
infinite state machine with a countable state set.

Figure 9.4(b) shows the Mealy model of a finite capacity queuing system
where the buffer storage and the machine are merged. The queuing system
depicted in Fig. 9.4(a) receives arrive event messages {a} and depart event
messages {d} from outside. The number of jobs (J) in the queuing system
defines the finite state space {n . . . 2, 1, 0}.

9.2.4  Execution of Finite State Machine Models

The outputs of an FSM are generated by actions. The action types associated
with a state are (1) an entry action performed when entering the state, (2) an
exit action performed when exiting the state, (3) an input action performed
upon receiving an input event, and (4) a transition action associated with a
transition [Wagner and Wolstenholme 2003].

Figure 9.5 shows the execution flow of an FSM. The FSM waits for an input
in the current state; when an input is received, the input action condition is
tested. If the condition is met, the input action is executed and the transition
condition is verified. If the transition condition is met, the FSM exits from the
current state after executing an exit action, moves to the next state while
executing a transition action, and enters into the next state while executing an
entry action.

Fig. 9.3.  Mealy model of an unlimited capacity buffer.

Unlimited
Capacity

Buffer

arrive
request

send
1 0

a a

a
s

r

–1 Machine

(a)

(b)

 r / s r / s

 a / s

 r

 1

 r

 a / s

Fig. 9.4.  State machine model of a finite capacity queuing system.

Queuing
System

(n = capacity)

 arrive
 event

 depart
 event

a a a

d d

a

(a)

(b)

d
n 1 0

a

d

260    State-Based Modeling and Simulation

An FSM may be regarded as the control system of an application system.
Figure 9.6 depicts a DES where the FSM acts as the control system of the
application system. The FSM diagram is a mixed model. It is initially in the
Off state and it moves to the Wait state upon receiving Power. Immediately
after the transition, the entry action (Start-timer) is executed to start the timer.
Then, the FSM moves to the Idle state if a Timeout is received or to the Playing
state if Play is received before Timeout. In either case, the system executes the
exit action Stop-timer before exiting the Wait state. A state transition table for
the FSM in Fig. 9.6 is given in Table 9.1.

An FSM executor program may be written easily from the state transition
table of the FSM. Let’s assume that the communications between the FSM
and its application system are made through two I/O functions: Get-Input
(INPUT) and Send-Output (OUTPUT). A state transition routine is devel-
oped for each state. The execution starts from the start state OFF, and the
program control is routed to a next state while executing the exit/entry actions
if an input is received. Figure 9.7 shows an FSM executor program written in
pseudocode form for the state transition table of Table 9.1.

Fig. 9.5.  Execution flow of an FSM with actions.

Input action
condition?

Transition
condition?

Enter the next state:
execute

Entry Action

Execute
Input Action

Exit the state:
execute

Exit Action

Change to next state:
execute

Transition Action

Yes

No

Yes

No

Input Wait for
input

Fig. 9.6.  FSM (control system) and its application system.

Power, Play, Timeout

Start-timer(to), Stop-timer,
Lamp-on

Application
System

(HW
including
timers)

Wait
E: Start-timer (to)

X: Stop-timer

Timeout Idle

Playing

Play/Lamp-on

Off

Power

FSM (Embedded Software)

TABLE 9.1.  State Transition Table of the FSM in Figure 9.6

No State Entry Action
Exit

Action Input
Transition

Action
Next
State

1 Off — — Power — Wait
2 Wait Start-timer (to) Stop-timer Timeout — Idle

Play Lamp-on Playing
3 Idle Stop() — — — —
4 Playing Stop() — — — —

Timed Automata   261

9.3  TIMED AUTOMATA

A timed automaton is essentially a finite automaton (or finite state machine)
extended with real valued variables modeling the logical clocks in the system
[Bengtsson and Yi 2004]. This section briefly describes the concepts of timed
automata. The discussions that follow are primarily from Cassandras and
Lafortune [2010]. We begin with the definitions of language and deterministic
automaton.

9.3.1  Language and Automata

The event set (E) of a DES is viewed as an alphabet. A sequence of events
taken from this alphabet forms a string. An empty string is denoted by ε. A
language in a DES is defined over an event set as follows: language (L) defined
over an event set (E) is a set of finite length strings formed from the events
in E. For example, let E = {a, b} then the language may be defined as L = {ε,
a, b, abb}.

An automaton is a device that is capable of representing a language accord-
ing to well-defined rules, and it is classified into a deterministic, nondetermin-
istic, or timed automaton. The automaton notion is best presented using a
directed graph representation called a state transition diagram (which is the

Fig. 9.7.  FSM executor in pseudocode form for the FSM in Fig. 9.6.

FSM-Executor () {
 State-Off(); } // start state

State-OFF () {
 STATE = OFF; // state update;
 Repeat { Get-Input (INPUT); }
 Until (INPUT ≡ “Power”); // wait for input “Power”
 State-WAIT (); } // move to next state WAIT

State-WAIT () {
 STATE = WAIT; // state update
 Send-Output (“Start-timer(to)”); // entry action
 Repeat { Get-Input (INPUT); }
 Until ((INPUT ≡ “Timeout”) || (INPUT ≡ “Play”)); // wait for input
 Send-Output (“Stop-timer”); // exit action
 if (INPUT ≡ “Timeout”) { State-IDLE (); }
 else {
 Send-Output (“Lamp-on”); // transition action
 State-PLAYING (); } }

State-PLAYING () {
 STATE = PLAYING;
 Stop (); }

State-IDLE () {
 STATE = IDLE;
 Stop (); }

262    State-Based Modeling and Simulation

same as that of an FSM). A deterministic automaton is defined as a quintuple
Gd = (S, E, f, Γ, s0), where

1.	 S is a set of states (or state nodes)
2.	 E is a finite set of events
3.	 f: S × E → S is the transition function with f(s, e) ∈ S
4.	 Γ: S → 2E is the active event function
5.	 s0 ∈ S is the initial state

If S is a finite set, Gd is called a deterministic FSA or FSM. The functions f
and Γ are specified in the state transition diagram. For example, in the state
transition diagram of Fig. 9.1, f(s0, x1) = s1 and Γ(s1) = {x1, x2}. The transition
function f(s0, x1) = s1 indicates that there is a transition labeled by event x1
from state s0 to state s1. The active event set Γ(s) is a set of all events (e) for
which f(s, e) is defined.

9.3.2  Timed Automata

The concepts of the clock structure of an event set and the score of an event
have key functions in timed automata.

•	 The clock structure (V) associated with an event set (E) is a set V = {vi:
i ∈ E} of clock sequences vi = {vi,1, vi,2 . . .} with vi,k ∈ R+ for i = 1, 2 . . . m
(m = |E|) and k = 1, 2

•	 The score (Ni,k) of event i ∈ E after the kth state transition on a given
sample path is the number of times that event i has been activated in the
interval [t0, tk] where tk is the kth state transition time.

The score (Ni,k) serves as a pointer to vi, which specifies the next lifetime
to be assigned to its clock when event i is activated. The clock structure (V)
is the input to the DES, and this information is translated into an actual event
sequence ({e1, e2 . . .}). Conceptually, the next event (e′) is determined from the
current state (s) and the clock structure (V) as follows:

	 e h s′ = (,).V 	

Now, we are ready to define a timed automaton.

•	 A timed automaton (Gt) is a sextuple Gt = (Gd, V) where Gd = (S, E, f, Γ,
s0) is a deterministic automaton and V = {vi: i ∈ E} with vi = {vi,1, vi,2 . . .}
is a clock structure.

Gt is by definition a deterministic timed automaton. A nondeterministic
timed automaton may be defined similarly as Gnt = (Gnd, V). Starting from
s = s0 and t = t0, the timed automaton (Gt) is evaluated as follows:

Timed Automata   263

0.	 Set the initial clock values and initial scores to {yi = vi,1 and Ni = 1 for i
∈ Γ(s)}.

1.	 Evaluate the feasible event set (or active event set) Γ(s).
2.	 Determine the smallest clock value (y*) among the feasible event clock

values {yi}:

	 y y
i s

i
*

()
min{ }.=
∈Γ 	 (9.1)

3.	 Determine the triggering event (e′) that defines y* in Eq. 9.1:

	 e y
i s

i′ =
∈

arg min{ }.
()Γ 	 (9.2)

4.	 Determine the next state (s′) and next event time (t′): s′ = f (s, e′); and
t′ = t + y*.

5.	 Determine the new clock values and new scores:

	 ′ =
− ≠ ′ ∈

= ′ ∉




∈ ′
+

y
y y i e i s

v i e i s
i si

i

i Ni

*

,

()

()
().

if and

if or

Γ
Γ

Γ
1

	 (9.3)

	 ′ =
+ = ′ ∉




∈ ′N
N i e i s

N
i si

i

i

1 if or

otherwise

Γ
Γ

()
(). 	 (9.4)

6.	 Iterates: set t = t′, y yi i= ′, and s = s′, and return to step 1.

Example 9.1. (Timed Automaton). The queuing system model depicted in
Fig. 9.4 is a timed automaton Gt = (S, E, f, Γ, s0, V), where

1.	 S = {0, 1, 2 . . . n}
2.	 E = {a, d}
3.	 f(s, a) = s + 1, f(s, d) = s – 1 for s > 0
4.	 Γ(0) = {a}, Γ(s) = {a, d} for integer s > 0, s0 = 0

The clock structure is V = {va, vd}, where va = {va,1, va,2, va,3 . . .} is a sequence
of inter-arrival times and vd = {vd,1, vd,2, vd,3 . . .} is a sequence of service times.
A sample clock structure and state trajectory of the queuing system are
depicted in Fig. 9.8.

9.3.3  Timed Automata with Guards

If clock constraints, called guards, are used on transitions in a timed automaton
to restrict its behavior, it becomes a timed automaton with guards. In this for-
malism, each transition has a clock constraint attached to it that specifies when
the transition can occur. There is a single clock in timed automata, and the
clock is reset to zero each time an event occurs. In a timed automaton with

264    State-Based Modeling and Simulation

guards, a clock constraint may also be placed into a state node (often referred
to as a location). A clock constraint in a state node is referred to as an invari-
ant condition of the state node. Then, the automaton may remain in that state
node as long as its clock value satisfies the invariant condition.

Figure 9.9(a) shows the timed automaton with guards introduced in Bengts-
son and Yi [2004]. The system is initially at the Start node and it transitions to
the Loop node if an enter event occurs when the value of clock y is between
10 and 20. During the transition, the two clocks x and y are set to zero. Then,
the system transitions to the End node if a leave event occurs when the value
of clock y is between 40 and 50, and so on. Figure 9.9(b) shows another timed
automaton with guards and invariants.

A transition edge (te) in a timed automaton with guards is specified as a set
of the triples of the form:

	 t guard event resete = (; ; ; ;).from node to node 	 (9.5a)

Fig. 9.8.  Clock structure and state trajectory of the queuing system in Fig. 9.4.

va va,1

State

 vd

va,2 va,3 va,4 va,5 va,6

vd,1 vd,2 vd,3 vd,4

Fig. 9.9.  Timed automata with (a) guards and (b) guards and invariants [Bengtsson
and Yi 2004].

Start

10 ≤ y; enter; x= 0, y= 0 Loop
y ≤ 50y ≤ 20

End

40 ≤ y; leave; y= 0

x 1; work; x=0

10 ≤ y; - ; y=0

Start
10 ≤ y ≤20; enter; x= 0, y= 0 Loop End

40 ≤ y ≤ 50; leave; y= 0

x 1; work; x=0

10 ≤ y ≤ 20; - ; y=0

(a)

(b)

y ≤ 20

Timed Automata   265

Then, a formal specification of the timed automaton with guards (Gtg) is as
given below [Cassandras and Lafortune 2010].

•	 A timed automaton with guards is a sextuple Gtg = (S, E, C, Tra, Inv, s0)
where:
1.  S is a set of states
2.	 E is a finite set of events
3.	 C = {c1 . . . cn} is the finite set of clocks with ci(t) ∈ R+, t ∈ R+

4.	 Tra ⊆ S × Ψ(C) × E × 2C × S is the set of timed transition where Ψ(C)
is the set of admissible constraints for the clocks in C

5.	 Inv: S → Ψ(C) is the set of state invariants
6.	 s0 ∈ S is the initial state

Referring to the timed automaton with guards in Fig. 9.9(b), it is not clear
how the system might leave a state when its invariant condition is about to be
violated (e.g., when the clock y reaches to 20 in the Start node). According to
Alur [1999], as a requirement for the executability of the timed automaton,
some outgoing edges must be enabled when the invariant of the state node is
violated. For this purpose, we use the ε-transition edge denoting an edge with
an empty input string. An ε-transition edge, which is denoted by a dashed
(dotted) edge, is automatically enabled when the invariant condition reaches
its boundary.

Figure 9.10 depicts a timed automaton with an ε-transition edge that ensures
the executability of the timed automaton in Fig. 9.9(b). The system initially
residing in the Start state moves to the Loop state via a regular transition
(solid arrow) when an enter event occurs during the clock time interval of
10 ≤ y < 20 or via an ε-transition (dashed arrow) when the value of the clock
y reaches 20. As depicted in the figure, the ε-transition edge is specified as
te = (Start; y ≡ 20; ε; x = 0 & y = 0; Loop), which is interpreted as “when clock
y reaches 20, the system moves from the Start state to the Loop state after
resetting x and y to zero” The system moves from the Loop state to the End
state in the same way, and so on.

Fig. 9.10.  A timed automaton with guards, invariants, and ε transitions.

Start
y ≤ 20

10 ≤ y; enter; x = 0 & y = 0 Loop
y ≤ 50

End
y ≤ 20

40 ≤ y; leave; y = 0

x 1; work; x= 0

 y ≡ 20; ; x = 0 & y = 0 y ≡ 50; ; y = 0

10 ≤ y; - ; y=0

 y ≡ 20; ; y = 0

266    State-Based Modeling and Simulation

9.3.4  Networks of Timed Automata

According to Bengtsson and Yi [2004], a network of timed automata is a paral-
lel composition of a set of timed automata called processes. Synchronous
communication between the processes is via handshake synchronization using
input and output actions (i.e., events): the alphabet “a” is assumed to consist
of symbols for an input event denoted by “a?” and an output event denoted
by “a!”.

Figure 9.11 shows an example system composed of two timed automata: (a)
a timed automaton for a time-dependent light switch and (b) another for its
user. The user and the switch communicate using the message press. The user
presses the switch (press!) and the light switch waits to be pressed (press?).

In general, each automaton in a timed automata network may need to be
provided with a set of output messages. With the output message sets, the
deterministic automaton in Section 9.3.1 and the timed automaton with guards
in Section 9.3.3 are defined as follows.

•	 A deterministic automaton with an output message set O is defined a
sextuple Gdo = (S, E, f, Γ, s0, O), where (1) S is a state set; (2) E is an event
set; (3) f is a transition function; (4) Γ is active event function; (5) s0 is
the initial state; and (6) O is an output message set.

•	 A timed automaton with guards and an output message set O is defined
a septuple Gtgo = (S, E, C, Tra, Inv, s0, O), where (1) S is a state set; (2) E
is an event set; (3) C is a finite set of clocks; (4) Tra is a set of timed
transitions; (5) Inv is a set of state invariants; (6) s0 is the initial state; and
(7) O is an output message set.

Furthermore, a transition edge (te) in a timed automaton with guards and
an output message set is specified as:

Fig. 9.11.  Network of timed automata [Bengtsson and Yi 2004].

Off
-; press?; x= 0 Dim Bright

x ≤ 10; press?; -

 -; press?; -

T
 y ≤ 5

Idle Relax

User

Switch
 x > 10; press?

 -; press!; y = 0

Study

 y > 10; press!; -

 -; press!; y = 0 -; press!; -

 -; press!; -

 p
re

ss

(a)

(b)

State Graphs   267

	 t guard event actione = (; ; ; ;).from-node to-node 	 (9.5b)

Figure 9.12 presents a network of timed automata representing the single
server system in Fig. 9.3(a). The arrival of a job at the Buffer is signified by
the input message arrive (a?) delivered from outside. If a request (r) message
is received from the Machine, the Buffer returns a send (s) message to the
Machine. In the Buffer model of Fig. 9.12, the input message (a? or r?) is
regarded as an event. The Buffer model in the figure is a deterministic automa-
ton with an output message set: Gdo = (S, E, f, Γ, s0, O), where (1) S = {. . . 1, 0,
−1 . . .}; (2) E = {a, r}; (3) f(k, a) = k + 1 and f(k, r) = k − 1; (4) Γ(k) = {a, r} for
k ∈ S; (5) s0 = −1; and (6) O = {s}.

The Machine model in Fig. 9.12 has two output messages: job request
message (r) and job departure message (d). The invariant boundary condition
(x ≡ ts) is regarded as an event of the e-transition edge. The Machine model is
a timed automaton with guards with output messages: Gtgo = (S, E, C, Tra, Inv,
s0, O), where (1) S = {Idle, Run}; (2) E = {s}; (3) C = {x}; (4) Tra = {(Idle; −; s;
x = 0; Run), (Run; x ≡ ts; ε; r! d!; Idle)}; (5) Inv(Run) = x ≤ ts; (6) s0 = Idle; and
(7) O = {r, d}.

9.4  STATE GRAPHS

This section presents an extended version of timed automata in which the
concepts of state variables, system variables, and timers are incorporated. In
this book, the resulting network of timed automata with state variables, timers,
and system variables is called a state graph. To be more precise, a timed
automaton is referred to as an atomic state graph and a network of timed
automata as a composite state graph. An atomic state graph model is specified
using a state transition table, and the interactions among the atomic models
in a composite state graph are specified in an object interaction table.

9.4.1  State Variables and Macro States

The buffer model in Fig. 9.12 has an infinite number of states, which could be
problematic in some situations such as when constructing its state transition

Fig. 9.12.  Network of timed automata: (a) Buffer and (b) Machine.

Run
 x ≤ ts

Idle a s

r

 x ≡ ts; ε; r! d!

 -; s?; x = 0

1 0

 -; a?; -

–1

 -; r?; s!

d

Machine Buffer

 -; a?; -

 -; r?; - -; r?; - -; r?; s!

 -; a?; s! -; a?; s!

(a) (b)

268    State-Based Modeling and Simulation

table. In general, an infinite state automaton can be developed into an FSA
by introducing state variables and macro states.

Figure 9.13 presents a state graph for the buffer model in Fig. 9.12(a). The
state graph model is obtained from the automaton model by treating J (number
of jobs) as a state variable and by dividing the original state space into the
three macro states: Stock = {J > 0}, Empty = {J ≡ 0}, and Backlog = {J < 0}. The
state variable J is initially set to −1 and the start state is Backlog. As shown in
Fig. 9.13, the graphical model is completely and concisely specified in the state
transition table where (1) the input events (a? and r?) are listed in the Input
Event column; (2) the state variable updates and message outputs are specified
in the Input Action column; and (3) the branching conditions are specified in
the Transition Condition column.

Exercise 9.1. Construct a state graph model from the infinite capacity buffer
model in Fig. 9.12 using the two macro states: Stock = {J > 0} and Empty =
{J ≤ 0}.

Exercise 9.2. Construct a state graph model of a finite capacity (n) buffer
using three macro states: Full = {J ≡ n}, Stock = {n > J > 0} and Empty =
{J ≤ 0}.

9.4.2  Timers and System Variables

Reproduced in Fig. 9.14(a) is the timed automaton with guards of the Machine
in Fig. 9.12 with a clock variable (x), two timed transitions [(Idle; −; s?; x = 0;
Run) and (Run; x≡ ts; ε; −; Idle)], and an invariant (x ≤ ts). We obtain the state
graph model shown in Fig. 9.14(b) by replacing the invariant x ≤ ts with a timer
[Δ(ts)], eliminating the clock variable (x) and guards, and removing the ε event.

The ε-transition is now called an internal transition. The resulting atomic
state graph model is concisely specified in the state transition table of Fig.
9.14(c).

Figure 9.15 shows an adventure game state graph model [Fishwick 1995]. At
the Check state, a conditional branching is created based on the value of the
standard uniform random variable (U), which is generated by a function call
to RND. Variables such as U are called system variables. An internal transition

Fig. 9.13.  State graph model of the buffer and its state transition table.

r?
J--

Empty Stock Backlog
a?
J++

a? J++

a?
J+

+
; s!

(J ≡ 0) (J< 0)

r?
J--; s!

(J > 0) (J ≡ 0)

J = –1

r? J--

State

Name

Input Transition

Condition

Next

State Event Action

Backlog r? J-- - Backlog
 a? J++; s! J < 0 Backlog

J ≡ 0 Empty
Empty a? J++ - Stock

 r? J-- - Backlog
Stock a? J++ - Stock

 r? J--; s! J > 0 Stock
J ≡ 0 Empty

State variable: J = –1

State Graphs   269

is made into the Pit state if U is less than or equal to 0.3 or to the Gold state
otherwise. A state transition triggered by an internal condition check is called
an internal transition for which a dashed line arc is used. We adopt the conven-
tion that a function call for conditional branching is regarded as an entry action.

9.4.3  Conventions for Building State Graphs and State
Transition Tables

An atomic state graph is an extended timed automaton in which (1) state
variables and system variables are incorporated, (2) transition conditions are
used instead of guards to restrict the transitions, (3) timers are used instead
of the invariants and clocks, and (4) three types of actions (entry, input, and
transition actions) are allowed. An atomic state graph without inputs and
conditions becomes a p-time Petri net [Khansa et al. 1996] if the state nodes
are treated as timed places of the Petri net.

Table 9.2 summarizes the conventions for constructing an atomic state
graph. An external transition edge, which is denoted by the solid line arrow,
may be specified by an input event followed by zero or more input actions and
a transition condition followed by zero or more transition actions. An action
may be an output message, a state variable update, or a function call for a
system variable; a condition is a Boolean expression of the state variables or
system variables. An internal transition edge (the dashed line arrow) may be
specified by transition conditions and transition actions.

A number of symbols are introduced in order to increase readability: “?”
denotes an input event, “!” denotes an output message, and “∼” notes a condi-
tion. A state node must have a name and may be specified by an entry action

Fig. 9.14.  (a) Timed automaton, (b) state graph, and (c) state transition table of the
machine in Fig. 9.12.

Run
 x ≤ ts

Idle

-; s?; x= 0

Run
 (ts)

Idle

 s? State Input

Event

Transition

 Action

Next

State Name Timer

Idle s? Run

Run ∆(ts) r! d! Idle

 State variables: -
 r! d!

 x ≡ ts; ε; r! d!

(a) (b) (c)

Fig. 9.15.  State graph model of an adventure game.

In-Boat River

River-S

House Forest Forest-E

Pit Gold

W?

E? S? N?

W? E? E?

S?
(N&E)?

S?

Check:
U= RND; ∆(0)

(U ≤ 0.3) (U > 0.3)

Lost
E?

270    State-Based Modeling and Simulation

and a timer [Δ(to)]. A start state node is denoted using a dashed circle and a
final state node using a double circle. In Table 9.2, Action0 is an input action;
Action1 followed by Condition1 is a transition action; Action2 with Condi-
tion2 is a transition action and without a condition is regarded as an input
action; and Action3 is an entry action. All conditions and actions are optional.

Table 9.3 presents a template for a state transition table for an atomic stage
graph. There are up to eight columns in the table: State Name, State Action
(i.e., entry action), State Timer, Input Event, Input Action, Transition Condi-
tion, Transition Action, and Next State. The initial state is listed first, and then
the remaining (noninitial) states are listed in an arbitrary order. The initial
values of the state variables are specified in the bottom row of the table.

A composite state graph is a network of atomic state graphs. Figure 9.16
presents an example of a composite state graph for a single server station. This
composite state graph model is obtained by joining the Buffer state graph
model in Fig. 9.13 and the Machine state graph model in Fig. 9.14. However,
the Buffer model in Fig. 9.16 differs from that of Fig. 9.13. If the Buffer model
of Fig. 9.13 (which can have an unlimited number of backlogs) is restricted to
only one backlog, it can be reduced to the Buffer model given in Fig. 9.16. All
actions in the Buffer model are input actions. The two models communicate
with each other via send (s) and request (r) messages. Table 9.4 shows the state
transition tables for the Buffer and Machine models of Fig. 9.16.

The message passing structure of the composite state graph is represented
as an object interaction diagram. Figure 9.17 shows the object interaction
diagram and object interaction table of the composite state graph in Fig. 9.16.

TABLE 9.3.  Template for a State Transition Table for an Atomic State Graph Model

State Input Transition
Next
StateName Action Timer Event Action Condition Action

Initial State
State
. . .

Initial values of state variables:

TABLE 9.2.  Conventions for Constructing Atomic State Graphs

Components Conventions

External Transition
Edge

Input Event? Action0 Condition1 Action1

Internal Transition
Edge

Condition2 Action2

State Nodes
Name

Action3; Δ(t0)
Initial
State

Final
State

System Modeling With State Graphs   271

Fig. 9.16.  Composite state graph model of a single server station.

Run
∆(ts)

Idle

r!; d!

s?
r?

EmptyStock Backlog
a?
J++

a? J++

a?r?
J--;s!

(J > 0) (J ≡ 0)J = 0

a
s

r

d

Buffer Machine

s!

TABLE 9.4.  State Transition Tables for the Buffer and Machine Models in
Figure 9.16

Buffer State Input Transition

Next StateName Action Timer Event Action Condition Action

Backlog — — a? s! True — Empty
Empty — — a? J++ True — Stock

r? — True — Backlog
Stock — — a? J++ True — Stock

r? J--; s! J ≡ 0 — Empty
J > 0 — Stock

Initial values of state variables: J = 0

Machine State Input Transition

Next StateName Action Timer Event Action Condition Action

Idle — — s? — True — Run
Run — Δ(ts) Timeout r!; d! True — Idle

Initial values of state variables: —

9.5  SYSTEM MODELING WITH STATE GRAPHS

This section presents examples of building state graph models for various
discrete-event systems. The examples include a dining philosopher system, a
table tennis game, a tandem line, a conveyor-driven serial line, and a traffic
intersection system. More details on state graph modeling may be found on
the website http://VMS-technology.com/Book/SGS.

9.5.1  State Graph Modeling of Dining Philosophers

Consider a dining philosopher system in which five philosophers sit at a round
table where five chopsticks and five dishes have been placed [Fishwick 1995].

272    State-Based Modeling and Simulation

For dining, each philosopher picks up two chopsticks, eats the food, and places
the chopsticks back on the table. At most, two philosophers may be eating at
the same time.

Let’s assume the philosophers sit around the table and are numbered from
1 to 5 in a clockwise direction, as depicted in the reference model of Fig.
9.18(a). Let Sjk denote the situation where philosopher j and philosopher k
dine simultaneously; then, the combinations for two philosophers eating at the
same time are S13, S24, S35, S41, and S52. Thus, the state set (S) is given by S = {S13,
S24, S35, S41, S52}. Figure 9.18(b) shows a state graph model of the dining phi-
losopher system where te is the time needed for a philosopher to complete an
eating cycle. It is assumed that the philosophers 1 and 3 are eating in the initial
state.

9.5.2  State Graph Modeling of a Table Tennis Game

A good example for explaining the concept of state-based modeling is a simple
table tennis game [Kim 1995]. In the simple table tennis game, each player
serves twice before changing serves, and a game is over without a deuce if a
player scores 11 points. We want to model one player (Player-A) of a single
table tennis game with the proposed state graph.

Figure 9.19 presents the atomic state graph of a player (Player-A) in the
single table tennis game. During a rally, the player is in either an Attack or
Defense state. Upon moving into an Attack state, Player-A attacks its oppo-
nent with the ball. The time duration of Player-A in the Attack state is aA.
Then, Player-A switches to the Defense state if the ball has landed on the
opponent’s table (denoted by the Ball-A message and with a probability of

Fig. 9.17.  Object interaction diagram and object interaction table for the composite
state graph in Fig. 9.16.

Buffer a

s

r

d
Machine

Atomic
model

Input
event

Output
message

Buffer a, r s
Machine s r, d

Fig. 9.18.  Dining philosophers: (a) reference model and (b) state graph model.

S24
 ∆(te)

S13
∆(te)

S35
 ∆(te)

S52
 ∆(te)

S41
 ∆(te)

1

2

5 4

3

Philosopher Dish

Chopstick

(a) (b)

 te = eating cycle time

System Modeling With State Graphs   273

PA) or to the Wait state if the ball is out (denoted by the Out-A message and
with a probability of 1 – PA). From the current state of Wait, Player-A switches
to the Attack state to serve or to the Defense state to receive. The time delay
in the Wait state is wA. The scores are updated every time the ball is out, and
the Gameover state occurs when the score of either player reaches 11. Table
9.5 shows the state transition table for the state graph model in Fig. 9.19.

The state set of the state graph model is S = {Attack, Defense, Wait,
Gameover}, and the input event set and output message set are E = {Ball-B,
Out-B} and O = {Ball-A, Out-A}. A number of state variables are required in
order to manage the state graph model: MyScr (player’s score), UrScr (oppo-
nent’s score), Rally (number of rallies), Srv (serve count), and Rcv (receive
count). In the atomic state graph, all state variables are set to zero, except Rcv
which is set to 2, meaning that Player-A will serve first. The transition condi-
tions associated with the Wait state are defined as follows:

Fig. 9.19.  Atomic state graph of Player-A in a single table tennis game.

Attack
Rally++; U= RND

∆(aA)
Defense

Wait
∆(wA)

Ball-B?

Ball-A!

~

(U > PA)

Out-A!; UrScr++

Cd

~

Ca

(U ≤ PA)

Out-B? MyScr++

Gameover

Cg

~

~

MyScr = UrScr = Rally = Srv =0, Rcv =2

 Ca = (MyScr < 11) & (UrScr< 11) & (Rcv ≡ 2); Cd = (MyScr < 11) & (UrScr< 11) & (Srv ≡ 2); Cg = (MyScr ≡ 11) || (UrScr ≡ 11)
 IncS(Srv, Rcv): {Srv += 1; if (Srv≡2) Rcv= 0;}; IncR(Rcv, Srv): Rcv += 1; if (Rcv≡2) Srv= 0;}; U= RND // uniform random variable

Player-A

IncS(Srv, Rcv) IncR(Rcv, Srv)

TABLE 9.5.  State Transition Table for the Atomic State Graph in Figure 9.19

State Input Transition

Next StateName Action Timer Event Action Condition Action

Wait — Δ(wA) Timeout — Ca IncS(Srv,
Rcv)

Attack

— Cd IncR(Rcv,
Srv)

Defense

— Cg — Gameover
Attack Rally++;

U = RND
Δ(aA) Timeout — U ≤ PA Ball-A! Defense

— U > PA Out-A!;
UrScr++

Wait

Defense — — Ball-B? — True — Attack
Out-B? MyScr++ True — Wait

State variables: Clock = MyScr = UrScr = Rally = Srv = 0, Rcv = 2

274    State-Based Modeling and Simulation

Cg = (MyScr ≡ 11) || (UrScr ≡ 11) // Gameover condition (without deuce);
Cd = (MyScr < 11) & (UrScr < 11) & (Srv ≡ 2) // Receive (Defense)

condition;
Ca = (MyScr < 11) & (UrScr < 11) & (Rcv ≡ 2) // Serve (Attack)

condition.

The transition conditions associated with the Attack state are given by the
probabilities of PA and 1 – PA. The ++ symbol denotes an increment operation
and the functions IncS () and IncR () are defined as follows:

	 IncS If then(,): { ; () ;},Srv Rcv Srv Srv Srv Rcv= + ≡ =1 2 0 	 (9.6a)

	 IncR If then(,): { ; () ;}.Rcv Srv Rcv Rcv Rcv Srv= + ≡ =1 2 0 	 (9.6b)

Consider a table tennis game involving two players and a friend. The game
rules are the same as before, but the friend watches the game and may ask the
players to quit at any time while the game is in progress. Figure 9.20 shows a
composite state graph involving the Friend, where tq denotes the quit time.
Observe that the state graph model for Player-A has an additional Quit state,
as well as a new input event (Quit) and an output message (Over). Figure 9.21
shows the object interaction diagram involving the two players and the friend.

Fig. 9.20.  Composite state graph model involving the Player-A model from Fig. 9.19
and the Friend.

Attack
Rally++; U= RND

∆(aA)
Defense

Wait
∆(wA)

Ball-B?

Ball-A!

~

(U > PA)

Out-A!; UrScr++

Cd

~

Ca

(U ≤ PA)

Out-B? MyScr++

Game-
over

Cg

~

~

Clock = MyScr = UrScr = Rally = Srv =0, Rcv =2

Player-A

IncS(Srv, Rcv) IncR(Rcv, Srv)

Quit Quit? Quit?

Quit?

End

Watch
(tq)

Clock=0

Over? Quit !

Over!

Friend

Over

Quit

Fig. 9.21.  Composite state graph model (object interaction diagram) of the table tennis
game.

Friend

Player-A
Ball-A, Out-A

Ball-B, Out-B

Quit Quit

Over Over

Player-B

System Modeling With State Graphs   275

9.5.3  State Graph Modeling of a Tandem Line

Figure 9.22(a) shows the reference model of a single server system composed
of a machine with service time (ts), an unlimited capacity buffer, and a job
generator with an inter-arrival time (ta). Figure 9.22(b) shows a composite state
graph model of the single server system. The generator model is a single state
timed automaton that sends arrive message “a” to the buffer model every time
a job is generated. The composite state graph model of the single server station
in Fig. 9.22(b) is the same as that shown in Fig. 9.16.

By concatenating single server station models (of the form given in Fig.
9.16) to the single server system model in Fig. 9.22(b), a composite state graph
model of a tandem line is constructed as depicted in Fig. 9.23. The messages
passed between the atomic state graph models are as follows:

a = arrive; e = enter; s = start; r = request; u = unload; w = withdraw.

9.5.4  State Graph Modeling of a Conveyor-Driven Serial Line

The conveyor-driven serial line was modeled using an event graph in Chapter
4 and was modeled using an activity cycle diagram (ACD) in Chapter 6. This
section presents a procedure for modeling the same serial line using a state
graph. The tandem line in Fig. 9.23 becomes a conveyor-driven serial line if
each buffer in the line, except Buffer-1, is replaced by an accumulating
conveyor.

Figure 9.24(a) shows the reference model of a conveyor specified by its
buffering capacity (b) and convey time (tc). Let J denote the number of jobs
accumulated (or stored) at the end of the conveyor segment; then, the avail-
able conveying capacity (A) is expressed as:

Fig. 9.22.  (a) Reference model and (b) state graph model of a single server system.

Buffer Machine Job
Generator

Buffer a

 s

r Gen
(ta)

a!

Generator

(a) (b)

ta
ts

d
Machine

Figure 9.16

Fig. 9.23.  Composite state graph model of a tandem line.

a = e1

Generator

Buffer-1 Machine-1

w1 = s1

r1

u2 u1 = e2
Buffer-2 Machine-2

r2

Gen
(ta)

a!
w2 = s2

Figure 9.16 Figure 9.16

276    State-Based Modeling and Simulation

	 A b J= − . 	 (9.7)

Let τ denote the current simulation clock value at the time job j enters the
conveyor; then, the end-of-convey (EOC) time cj of the job is expressed as:

	 c tj c= +τ . 	 (9.8)

The input events in the conveyor system are enter (e) and request (r), while
the output message is withdraw (w). As depicted in the reference model, each
job is regarded as being conveyed to the end point of the conveyor where it
is accumulated vertically. Thus, as shown in Fig. 9.24(b), the conveyor system
has two parts: a Convey part and a Store part. The Convey part is specified
using a set of EOC times C = {cj} and the available conveying capacity (A);
the Store part is specified by the number of accumulated jobs (J). The Convey
part and Store part interact with each other via job move (m) and job withdraw
(w) messages.

Figure 9.25 presents a composite state graph model of the conveyor. The
state space of the Convey part can be partitioned into three macro states, as
follows:

1.	 The Store-Full state (the store part is full): |C| ≡ A ≡ 0
2.	 The Convey-Full state: |C| ≡ A > 0
3.	 The Not-Full state: |C| < A

Fig. 9.24.  (a) Reference model and (b) object interaction diagram of the conveyor.

enter

request

withdraw
Convey (b, tc)

< {cj}, A >
Store
< J >

move
 w

Store Convey

c1 c2 c3

A
J

(b, tc)

 r

e

w

(a) (b)

Fig. 9.25.  Composite state graph model of the conveyor in Fig. 9.24.

Stock

 m?
J++

r? J--

(J > 0)

(J ≡ 0)

J = –1

r

Empty
 m?
J++

w!

r? J--

(J > 0)

(J ≤ 0)

Not-Full
∆(µ)

w?
A++

(|C| < A)

(A ≡ 0)

A = b; C = null

e

Convey-
Full
∆(µ) (|C| ≡ A)

Store-
Full

C--; m!; A--

e?
C++(|tc)

w?
A++

w? A++

C
--; m

!; A
--

(A > 0)

w

w!

w!

Convey-part Store-part

m w

(a) (b)

System Modeling With State Graphs   277

The state space of the Store part, which is a finite capacity buffer, can be
partitioned into two macro states: (1) the Empty state: J ≤ 0; and (2) the Stock
state: J > 0.

The Convey part has a timer value (μ) denoting the time duration from the
current simulation clock time (τ) to the next EOC time (c1). The timer value
(μ) is given by:

	 µ τ= −c1 . 	 (9.9)

If C is null, we set μ = ∞. The en-queue and de-queue operations for manipu-
lating C = {cj} are defined as follows:

C C C++ = + =+(|): ,τ τt add a new element into where nc c tn c1 	 (9.10)
C−−: remove the first element c1 from C.

A state transition table for the Convey part of the composite state graph
model of the conveyor in Fig. 9.25 is given in Table 9.6.

Exercise 9.3. Construct a state transition table for the store part of the
composite state graph model of the conveyor presented in Fig. 9.25(b).

Figure 9.26 shows the object interaction diagram of a conveyor-driven serial
line of Buffer-1 → Machine 1 → Conveyor 2 → Machine 2 → The mes-
sages passed between the objects of the conveyor are move and withdraw, and
the messages passed between the machines and conveyors are request,
withdraw/start, finish, grant, and unload/enter. The interactions among the
objects in Fig. 9.26 are as follows.

TABLE 9.6.  State Transition Table for the Convey Part of the Composite State
Graph Model of the Conveyor in Figure 9.25(a)

State Input Transition
Next
StateName Action Timer Event Action Condition Action

Not-Full — Δ(μ) w? A++ True — Not-Full
e? C++(τ|tc) |C| < A — Not-Full

|C| ≡ A — Convey-
Full

Timeout C−−; m!;
A−−

True — Not-Full

Convey-
Full

— Δ(μ) w? A++ True — Not-Full
Timeout C−−; m!;

A−−
A ≡ 0 — Store-Full
A > 0 — Convey-

Full
Store-Full — — w? A++ True — Not-Full

State variables: A = b, C = Null

278    State-Based Modeling and Simulation

1.	 Machine 1 sends a job request message (r1) to the infinite capacity buffer
Buffer-1, which in turn sends back a machine start message (s1).

2.	 Machine 1 sends a job finish message (f1) to Convey-part 2, which in turn
sends a grant message (g2) back if Conveyor 2 is not full. Upon receiving
g2, Machine 1 sends a job unload message (u1) to Convey-part 2 in which
u1 is regarded as a job enter message (e2).

3.	 Convey-part 2 sends a job move message (m2) to Store-part 2 when a job
reaches the end of the conveyor.

4.	 Store-part 2 sends a job withdraw message (w2) to Machine 2 (and to
Convey-part 2) upon receiving a job request message (r2) from Machine
2 in which w2 is regarded as a machine start message (s2).

Figure 9.27 shows a composite state graph model for the front region of the
conveyor-driven serial line (i.e. Buffer 1, Machine 1, and Convey-part 2). The
atomic state graph model for the Store-part is the same as that in Fig. 9.25(b).
The Buffer 1 atomic model is a simple automaton generating an output
message (s1) every time it receives an input event message (r1). The Machine
1 model, which is initially in the Run state, sends out an output message (f1)
and goes into the Block state after a time delay of ts1. Upon receiving g2, the
Machine 1 model sends r1 (to Buffer-1) and u1 (to Convey-part 2) messages,
and then moves into the Idle state. The structure of the Convey-part 2 model
in Fig. 9.27 is the same as that of the Convey-part in Fig. 9.25(a), except the
additional function for handling the finish (f1) and grant (g2) messages. A state
transition table for the atomic state graph model Convey-part 2 is presented
in Table 9.7.

Fig. 9.26.  Object interaction diagram of a conveyor-driven serial line.

Buffer-1
()

 Machine 2
(ts2)

r1

 u1 = e2

r2

 s1 w2 = s2

 f1

 g2
Convey
-part 2
(b2, tc2)

Store-
part 2

m2

w2

 Machine 1
(ts1)

 g3

 f2

 u2

Conveyor 2 Conveyor 3

Fig. 9.27.  Composite state graph model of the conveyor-driven serial line.

Stock

r1? s1!
Not-Full

(µ)
w2?

g2!; A++

(|C| < A)

(A ≡ 0)

A=b2; C= null

Convey-Full
(µ) (|C| ≡ A)

Store
-Full

C--; m2!; A--

e2?
C++(|tc2)

w2?
g2!; A++

w2?

A++

C
--; m

2 !; A
--

(A > 0)

f1?
g2!

g2

u1=e2

f1

 s1?

g2?

r1!; u1!

Run
(ts1)

Idle Block

 f1!

r1

s1

Convey-part 2 Machine 1

w2

m2

St
or

e-
pa

rt
 2

F
ig

ur
e

9.
25

(b
)

Buffer 1

System Modeling With State Graphs   279

9.5.5  State Graph Modeling of Traffic Intersection Systems

Figure 9.28 shows the reference model of a traffic control system at a simple
junction [Fishwick 1995]. The current state is designated as green-red (GR)
because the traffic lights in the east-west (EW) direction are green and those
in the north-south (NS) direction are red. There is a car detection sensor at
each road near the junction as indicated in the figure. A detection signal
coming from the east or west road is designated as DEW and that from the
north or south road as DNS. The traffic light changes its state from GR to RG
as follows: the state is changed from GR to AR t1 seconds after sensing a DNS
signal, and then it is automatically changed to RG after t2 seconds.

Figure 9.29 shows the state graph model and its state transition table of
the traffic signal system depicted in Fig. 9.28 assuming that the system is ini-
tially in the GR state. When a DNS signal is sensed, the traffic lights in the EW

TABLE 9.7.  State Transition Table for the Convey-Part 2 Model in Figure 9.27

State Input Transition
Next
StateName Action Timer Event Action Condition Action

Not-Full — Δ(μ) w2? A++ True — Not-Full
f1? g2! True — Not-Full
e2? C++(τ|tc2) |C| < A — Not-Full

|C| ≡ A — Convey-
Full

Timeout C−−; m2!;
A−−

True — Not-Full

Convey-
Full

— Δ(μ) w2? g2!; A++ True — Not-Full
Timeout C−−; m2!;

A−−
A ≡ 0 — Store-Full
A > 0 — Convey-

Full
Store-Full — — w2? g2!; A++ True — Not-Full

State variables: A = b2, C = Null

Fig. 9.28.  Reference model of a traffic intersection system.

R

R

G G GR West East

North

South

DEW
DNS

DNS
DEW

Car detection sensor in East-West direction

Current state of traffic signal: GR
 - Green in East-West direction
 - Red in North-South direction

Signal change rule (GR RG)
 1) Change to AR t1 seconds after sensing DNS
 2) Change to RG after t2 seconds

W2E Rd-1

E2W Rd-1 E2W Rd-2

W2E Rd-2

N
2S R

d-1

S2N
 R

d-2

N
2S R

d-2

S2N
 R

d-1

280    State-Based Modeling and Simulation

direction are changed to amber after t1 (while the lights in the NS direction
stay red), which is designated as AR. Then, after t2 seconds, the traffic lights
in the EW direction change to red and those in the NS direction change to
green, which is designated as RG. The GR state is divided into GR0 (GR
before a DNS is detected) and GR1 (GR after a signal detection). Because the
system is symmetric, the RG state is divided into RG0 and RG1 in the same
way. Thus, the state set is given by S = {GR0, GR1, AR, RG0, RG1, RA}. Then,
the input event set is given by E = {DNS, DEW}.

Figure 9.30 presents the overall structure of a composite state graph model
for the traffic intersection system in Fig. 9.28. Located at the center of the
composite model is the traffic signal model of Fig. 9.29, which interacts with
the junction (JC) models and car detection (CD) models. There are four JC
models and four CD models: one for each of the four traffic directions of E2W
(east-to-west), W2E (west-to-east), N2S (north-to-south), and S2N (south-to-
north). The traffic signal model receives a car detection input (D) from the
CD models and sends out traffic light outputs G (green), A (Amber), and R
(Red).

Let’s assume that in Fig. 9.30 the traffic signal model is at the RG0 state
(red lights in east-west direction and green in north-south direction) and has
just received an input message DEW (i.e., a car is detected in the E2W or W2E

Fig. 9.29.  State graph model and state transition table of the traffic signal system.

GR0 RG0

GR1
∆(t1)

AR
∆(t2)

RA
∆(t2)

RG1
∆(t1)

DNS?

DEW?

State Input

Event

Next

State Name Timer

GR0 - DNS? GR1

GR1 ∆(t1) - AR

AR ∆(t2) - RG0

RG0 - DEW? RG1

RG1 ∆(t1) - RA

RA ∆(t2) - GR0

DNS

DEW

Fig. 9.30.  Composite state graph model of the traffic intersection system in Fig. 9.28.

GR0 RG0

GR1
∆(t1)

AR
∆(t2)

RA
∆(t2)

RG1
∆(t1)

DNS?

DEW?

AEW!

ANS !

REW!; GNS!

GEW!; RNS!

S2N JC N2S JC

W2E JC

DNS

DNS

GNS, ANS,

DEW
GEW, AEW

Traffic Signal Model

E2W JC

DEW
GEW, AEW

GNS, ANS,

W2E Rd-2

E2W Rd-1

W2E Rd-1

E2W Rd-2

S2N Rd-2 N2S Rd-1

S2N Rd-1 N2S Rd-2

N2S CD

D

E2W CD

S
S2N CD

EW

W2E CD

RNS

RNS

REW

REW

System Modeling With State Graphs   281

direction). Then, the traffic signal model performs the following sequence of
transitions: (1) the state is changed to RG1 immediately and stays there for t1
seconds; (2) the state is changed to RA after sending an output message (ANS)
to the S2N JC and N2S JC and remains there for t2 seconds; (3) finally, the
state is changed to GR0 after sending output messages RNS (to the S2N CD
and N2S CD) and GEW (to E2W JC and W2E JC).

Figure 9.31 shows the object interaction diagram for the E2W direction
traffic subsystem together with the state graph models of the Traffic Generator
and Traffic Sink. The atomic state graph models in the object interaction
diagram include the E2W Rd-1 (a road segment leading to the junction), E2W
JC (the junction in the E2W direction), E2W CD (car detection sensor in the
E2W direction), E2W Rd-2 (a road segment leaving the junction), and the
traffic signal model. There are a number of messages that are passed among
the atomic models, as follows:

c = cancel; e = enter; f = finish; g = grant;
m = move; r = request; u = unload; w = withdraw;
GEW, AEW, REW = green, amber, and red lights in east-west direction;
DEW = car detection signal in east-west direction.

The Traffic Generator, which generates a car every ta seconds in the Gen
state, sends f1 to E2W Rd-1 when a car is generated and waits in the Block
state for a grant message (g1). Upon receiving a g1, it returns to the Gen state
after sending an unload message (u1) back to E2W Rd-1 [where u1 is regarded
as an enter message e1]. The Traffic Sink, which accepts unlimited number of
cars from E2W Rd-2, sends a request message (r2) to E2W Rd-2 every time it
receives a car withdraw message (w2).

Figure 9.32 shows the detailed state graph models for E2W Rd-1, which is
modeled as an accumulating conveyor (refer to Fig. 9.25). On top of the base-
line conveyor model Fig. 9.27, the canceling of a job request is introduced as
follows: In the Empty state, a cancel message (c1) from E2W JC would decrease
the backlog (J++). This cancellation prevents the illegal withdrawal of cars
from E2W Rd-1 (i.e., prevents cars from moving into E2W JC when the traffic
light is not green). Assume that E2W Rd-1 remains in the Empty state and
E2W JC sends a request message (r1) to E2W Rd-1. If E2W JC receives the

Fig. 9.31.  Object interaction diagram for the east-west direction traffic subsystem.

DEW

GEW, AEW

E2W JC E2W Rd-1 E2W Rd-2

EW, EW

Traffic Signal Model

f1

g1

 e1 u1 w1

r1 f2

g2

 e2 u2

E2W CD
(Car Detector)

REW

m1, w1

w2

r2

Sink

Traffic Sink

w2?
r2!

Gen
∆(ta)

f1!

Traffic Generator

Block

g1?
u1!

c1

282    State-Based Modeling and Simulation

amber signal (AEW) prior to a withdraw message (w1), the withdraw message
that will arrive later cannot be accepted, which results in an illegal withdrawal
(the withdrawn car is lost from the traffic intersection system).

The atomic model of E2W Rd-2 in Fig. 9.31 has the same structure as that
of E2W Rd-1. Recall from the previous section that b1 and tc1 denote the
capacity (maximum number of cars) and convey time of the road segment
Rd-1, respectively.

Figure 9.33 shows the remaining two models (E2W JC and E2W CD) in
Fig. 9.31. The junction model E2W JC in Fig. 9.33 is essentially a Machine
model (see Fig. 9.27) augmented with a Disabled state. The E2W JC model
goes into the Disabled state every time an AEW is received (i.e., the traffic light
becomes amber) while sending a cancel message (c1) to E2W Rd-1 if it was in
the Idle state or an unload message (u2) to E2W Rd-2 if it was in the Run
state, and it moves into the Block state (i.e., enabled) if a GEW is received.
Unlike the Machine 1 model in Fig. 9.27 (where the machine accepts a job for
processing and then tries to unload the finished job), the E2W JC model
accepts a job for processing only when the finished job is guaranteed to be
unloaded. The car detect model E2W CD in Fig. 9.33 is essentially a buffer
model where the state variable K denotes the number of cars stored at the
end of the road segment E2W Rd-1.

Fig. 9.32.  State graph models for the road segment E2W Rd-1 (refer to Fig. 9.25).

E2W Rd-1

∆(µ)

C

∆(µ)C

C--; A--

C τ|tc1

C
--;

;
--

--

--

tc1

Convey-partStore-part

++

Fig. 9.33.  State graph models for the junction E2W JC and the car detector E2W CD.

E2W JC

Disabled

GEW?

Block
f2!

Run
∆(ts)

g2?
r1!

Idle
w1?

u2!

AEW?
c1!

AEW?

AEW? u2!

Empty

E2W CD

Stock

K--

K = 0

m1?

K++, DEW!

m1?
K++, DEW!

w1?

(K ≡ 0) (K > 0)

REW?

DEW!

w1

r1

DEW

REW

GEW, AEW

f2

g2

 e2 u2

E2W Rd-1

m1, w1

EW, EW

Traffic Signal Model

E2W Rd-2

c1

Simulation of Composite State Graph Models   283

9.6  SIMULATION OF COMPOSITE STATE GRAPH MODELS

This section presents a structured method of constructing a state graph simula-
tor for executing composite state graph models. Recall that a composite state
graph is a network of atomic state graph models and that an atomic state graph
model is a timed automaton augmented with state variables and system
variables.

9.6.1  Framework of a State Graph Simulator

Figure 9.34 shows the overall framework for constructing a state graph simula-
tor of a composite state graph model. As depicted in the figure, a state graph
simulator consists of a synchronization manager (sync manager for short) and
a number of atomic simulators, one for each atomic model in the composite
state graph model. Each atomic simulator is an FSM, and the sync manager,
which is responsible for synchronizing the local simulation clocks of the atomic
simulators, is represented as an atomic state graph with an instantaneous timer
[Δ(0)]. The synchronization method used here is based on the concept of the
sync manager presented in Lee et al. [2010b] and its earlier version is pre-
sented in Lee et al. [2010a].

The message types passed between the sync manager and the individual
atomic simulators are the time advance request (TAR), time advance grant
(TAG), message send request (MSR), and message delivery packet (MDP).

TAR = (Time, IMS, ID); // IMS = input message set; ID = atomic simulator
ID

TAG = (Time, ID); // Time = current simulation time
MSR = (Msg, ID); // Msg = input/output message
MDP = (Msg, Time, ID);

Figure 9.35 shows the overall structure of the state graph simulator for the
table tennis game model given in Fig. 9.21. There are three atomic simulators
(Player-A, Player-B, and Friend) that are connected to the sync manager. The
time advance request table (TART), the message send request queue (MSRQ),

Fig. 9.34.  Building a state graph simulator from a composite state graph model.

Atomic
Simulator-1

(FSM)

T
A

R

T
A

G

M
S

R

M
D

P

Synchronization Manager
(Atomic State Graph with ∆(0))

T
A

R

T
A

G

M
S

R

M
D

P

T
A

R

T
A

G

M
S

R

M
D

P

Atomic
Simulator-2

(FSM)

Atomic
Simulator-3

(FSM)

Atomic
State Graph

Model-1

Atomic
State Graph

Model-2

Atomic
State Graph

Model-3

Composite State Graph Model State Graph Simulator

284    State-Based Modeling and Simulation

and the message delivery packet queue (MDPQ) are stored in the sync
manager.

9.6.2  Synchronization Manager

In the state graph simulator, all interactions among the atomic simulators are
made through the sync manager. At the beginning, each atomic simulator
sends a TAR message to the sync manager. Then, the sync manager builds a
TART and sends back a TAG message to the atomic simulator that has the
smallest TAR time value. An instance of a TART is depicted in Fig. 9.35.

Upon receiving the TAG message, the atomic simulator advances its simula-
tion clock and moves into the next state. Immediately after this state transition,
the atomic simulator may send an MSR message to the sync manager, which
will store the received MSR message in a queue called the message send
request queue (MSRQ). Because the Msg in the MSR could be an “input” to
more than one atomic simulator, it is temporally stored in another queue
named MDPQ.

Figure 9.36(a) shows the state graph model of the sync manager. At the
beginning of the execution, each atomic simulator sends a TAR message to
the sync manager, which then constructs the TART while remaining in the
start state Start. When the counter (n) reaches NS (number of atomic simula-
tors), the sync manager moves to the FindTAG state where the function Find
(TAG, Found) is invoked to find a valid TAG record from the TART. A
pseudocode form of the function Find (TAG, Found) is given in Fig. 9.36(b).
If a TAG record is found, the sync manager moves to the Receive state after
setting the simulation clock to the TAG time (Now = TAG.Time), sending out
the TAG message (TAG!), and setting the TAR counter to 1 (m = 1).

In the Receive state, the sync manager accepts MSR messages from the
atomic simulator that has just received a TAG. The atomic simulator will send
MSR messages first if any exist and send a TAR message. All MSR messages
received are stored in the MSRQ using the en-queue function MSR→MSRQ,
and each of the received TAR messages is stored in the TART using the table
update function TAR→TART. When all input TAR messages are processed
(m ≡ 0), the sync manager moves to the BuildMDPQ state.

Fig. 9.35.  State graph simulator for composite state graph model in Fig. 9.21.

T
A

R

T
A

G

M
S

R

M
D

P

T
A

R

T
A

G

M
S

R

M
D

P

T
A

R

T
A

G

M
S

R

M
D

P

TART MSRQ MDPQ No Time IMS ID

1 tA {Quit} A

2 tB {Quit} B

3 tF {Over} F

TART (time-advance request table)

Atomic
 Simulator-A

Atomic
 Simulator-F

Atomic
 Simulator-B

M
D

P
M

D
PPPPPPPPP

MSRQ (message-send request queue)
 = { (Msg1, ID1) …}
MDPQ (message-delivery packet queue)
 = { (Msg1, Time1, ID1) …}

Sync Manager

Player-A Player-B Friend

Simulation of Composite State Graph Models   285

In the BuildMDPQ state, the function Build (MDPQ, m) is invoked to build
a MDPQ with an MSR record retrieved from the MSRQ for all matched
atomic simulator IDs. A pseudocode form of the function Build (MDPQ, m)
is given in Fig. 9.36(c). If m is positive, which means MDPQ is not empty, all
MDP records in MDPQ are retrieved individually and sent to the respective
atomic simulators; then, the state is changed to Receive. If a MDPQ is not
built (m ≡ 0), the sync manager moves again to the FindTAG state.

In the FindTAG state, the function Find (TAG, Found) is invoked to find a
valid TAG record from the TART. If a TAG record is found, the sync manager
moves again to the Receive state; if a message is not found, the sync manager
moves to its final state Stop after sending the MDP message Stop to all atomic
simulators (ASs).

Table 9.8 is a state transition table for the sync manager model presented
in Fig. 9.36. It is a general purpose sync manager that can be used for any
composite state graph model. The time synchronization procedure may be
summarized as follows:

1.	 In the Start state, put the TAR messages received from the atomic simu-
lators into the TART. If finished, move to the FindTAG state.

2.	 In the FindTAG state, invoke the function Find (TAG, Found) to choose
an atomic simulator with the smallest next event time. If found, move to
the Receive state after updating the simulation time (Now = TAG.Time)
and sending a TAG message to the chosen simulator. If not found
(because every atomic simulator is in its final state), send a Stop message
to every atomic simulator and move to the STOP state.

Fig. 9.36.  State graph model of the sync manager presented in Fig. 9.35.

FindTAG
Find (TAG, Found);

∆(0)
Start

Now = 0; n = 0; TART = Empty; MSRQ = MDPQ = Null

Receive
BuildMDPQ

Build (MDPQ, m);
∆(0)

Sync Manager

STOP

TAR?
n++;

TAR TART
n++;

TAR?
n++;

(n < NS)

(n ≡ NS)

TAR?
m--;

TAR TART

MSR?

MSR MSRQ

(Found)

Now=TAG.Time;
TAG!; m = 1

~ (Not Found)

MDP.Msg= Stop; {MDP! to all ASs} Q For i =1~m {MDP MDPQ; MDP!}

~ (m > 0)

(m ≡ 0) ~

(m ≡ 0)

~

(m > 0)

~

Find (TAG, Found):
 If (TART[k].Time = ∞ for all k) {
 Found = False;
 }
 Else {
 Found = True;
 Find k* whose Time is smallest;
 TAG.ID = TART[k*].ID;
 TAG.Time = TART[k*].Time;
 }

Build (MDPQ, m):
 m = 0;
 While (|MSRQ|>0} & (m≡0) {
 MSR MSRQ; // retrieve a message MSR from MSRQ
 For k=1~NS { // build MDPQ with the MSR for all atomic simulator IDs
 If MSR.Msg TART[k].IMS {
 MDP.Msg= MSR.Msg ; MDP.Time= Now ; MDP.ID = TART[k].ID ;
 MDP MDPQ ; // store a message in the MDP-queue.
 m += 1; } // m = |MDPQ|
 } // For
 } // While

(b)

(c)

(a)

286    State-Based Modeling and Simulation

3.	 In the Receive state, receive MSR/TAR messages from the atomic simu-
lator that has just received a TAG. (The atomic simulator will send MSRs
first, if any, and then send a TAR.) Store the MSRs in the MSRQ, store
the TARs in the TART, and move to the BuildMDPQ state.

4.	 In the BuildMDPQ state, invoke the function Build (MDPQ, m) to build
an MDPQ for an MSR record retrieved from the MSRQ. If the MDPQ
is not empty (m > 0), all MDPs are retrieved individually and sent to
their respective atomic simulators. Then, the state is changed to Receive.
If m = 0, the state is changed to FindTAG.

As discussed in Section 9.2.4 (Fig. 9.7), writing a simulation module for an
FSM model from its state transition table is straightforward. Figure 9.37 shows
the sync manager simulation module written in pseudocode form. It consists
of a main program Sync-Manager () in which the state variables are initialized
and four state transition routines {State-Start (Ns), State-FindTAG (), State-
Receive (m), and State-BuildMDPQ ()} are created, which is one for each
state. It is assumed that the communication between the main program and
state transition routines are made using the two I/O functions:

TABLE 9.8.  State Transition Table for the Sync Manager Model of Figure 9.36

State Input Transition

Next StateName Action Timer Event Action Condition Action

Start — — TAR? n++;
TAR→

TART

(n < NS) — Start
(n ≡ NS) — FindTAG

FindTAG Find
(TAG,
Found)

Δ(0) — — (Found) Now = TAG.
Time;

TAG!; m = 1

Receive

(Not
Found)

MDP.Msg =
Stop;

MDP! to all
ASs

STOP

Receive — — MSR? MSR→
MSRQ

True — Receive

TAR? m−−;
TAR→

TART

(m > 0) — Receive
(m ≡ 0) — BuildMDPQ

BuildMDPQ Build
(MDPQ,
m)

Δ(0) — — (m > 0) For i = 1∼m {
MDP←MDPQ;

MDP!}

Receive

(m ≡ 0) — FindTAG

State variables: Now = 0; n = 0; TART = Empty; MSRQ = Null; MDPQ = Null

Simulation of Composite State Graph Models   287

Get-Input (INPUT), where INPUT = (Type, Record); // receive data; and
Send-Output (OUTPUT), where OUTPUT = (“Data”, Data) and Data =

TAR, TAG, MSR, or MDP; // send data.

9.6.3  Atomic Simulators

Figure 9.38(a) and (b) show the Friend atomic model and its atomic simulator,
respectively, from the table tennis game state graph in Fig. 9.20. The atomic
model consists of an initial state (Watch) and a final state (End), and the state
transition occurs either (1) when the input event Over occurs or (2) when the
timer [Δ(tq)] goes off at time tq. The former transition is called an external
transition and the latter an internal transition (with a transition action Quit!).

Fig. 9.37.  Sync manager simulation module.

Sync-Manager (NS) { // main program of Sync manager (NS = number of atomic simulators)
 Now = 0; n = 0; TART = Empty; MSRQ = Null; MDPQ = Null; // initialize simulation clock & state variables
 State-Start (NS); // start with “start state”
}
State-Start (NS) { // state-transition routine for start-state “START”
 STATE = START; // state update
 Repeat { Get-Input(INPUT); // input
 If (INPUT.Type ≡ “TAR”) { n++; TART[n] = INPUT.Record; } // transition action
 } Until (n ≡ NS);
 State-FindTAG(); // move to next state
}
State-FindTAG () {
 STATE = FINDTAG;
 Find (TAG, Found); // find an atomic simulator that has the smallest local simulation time
 If Found { Now = TAG.Time; Send-Output(“TAG”, TAG); m = 1; State-Receive(m); }
 Else { For each ID ASs { MDP = (Stop, Now, ID); Send-Output(“MDP”, MDP); } State-STOP(); }
}
State-Receive (m) {
 STATE = RECEIVE;
 Repeat { Get-Input(INPUT); } Until ((INPUT.Type ≡ “MSR”) || (INPUT.Type ≡ “TAR”)); // read a MSR or TAR message
 If (INPUT.Type ≡ “MSR”) { Enqueue(INPUT.Record, MSRQ); State-Receive(m); }
 If (INPUT.Type ≡ “TAR”) { m--; Store(INPUT.Record, TART); If (m > 0) State-Receive(m) Else State-BuildMDPQ(); }
}
State-BuildMDPQ() {
 STATE = BUILDMDPQ
 Build (MDPQ, m); // build the message delivery packet queue
 If (m > 0) { do { MDP = Dequeue(MDPQ); Send-Output (“MDP”, MDP); } while (|MDPQ|>0); State-Receive (m); }
 Else { State-FindTAG(); }
}

Fig. 9.38.  Conversion of (a) an atomic state graph model to (b) an atomic simulator.

Clock=Now;
TAR[∞, IME]!

Clock=Now;
TAR[tq, IMW]!

MSR[Quit]!

Clock=0

MDP[Over]?

TAG?

MDP[Stop]?
Δ(tq)

Quit!

Over?

IMW = {TAG, MDP[Over]};

IME = {MDP[Stop]};

(b)(a)

288    State-Based Modeling and Simulation

In this chapter, a state node with a timer is called a timed state and one
without a timer is called a timeless state. In order to simulate the behavior of
the Friend model in Fig. 9.38(a) using the sync manager of Fig. 9.36, the atomic
simulator in Fig. 9.38(b) is constructed with the following transformations: (1)
the timer [Δ(tq)] in the timed state Watch is replaced with two entry actions
Clock = Now; TAR[tq, {TAG, MDP[Over]}]!; (2) the internal transition edge
with the output message Quit is replaced with an external transition edge with
an input message TAG and an output message MSR[Quit]; (3) the input Over
at the external transition edge is replaced with an input MDP[Over]; (4) the
final state End is replaced with a nonfinal state with two entry actions
Clock = Now; TAR[∞, {MDP[Stop]}]!; (5) a final state STOP is added; and (6)
an external transition edge with an input MDP[Stop] is added from End to
STOP.

Table 9.9 shows the state transition table of the atomic simulator Friend
shown in Fig. 9.38(b). The Friend module consists of a main program Friend
() and three state transition routines: State-Watch (), State-End (), and State-
STOP (). A pseudocode program listing of the Friend atomic simulator module
is given in Fig. 9.39. Communications between the main program and the state
transition routines are made using two I/O functions: Get-Input (INPUT),
where INPUT = (Type, Record) and Send-Output (OUTPUT), where
OUTPUT = (“Data”, Data) and Data = TAR, TAG, MSR, or MDP.

In general, the rules for converting an atomic state graph model with final
states to an atomic simulator are as follows:

1.	 A new final state STOP is added.
2.	 Every final state except the STOP state in the atomic model is converted

to a nonfinal state, and an external transition edge with an input
MDP[Stop]? is defined from each converted nonfinal state to the STOP
state.

3.	 An entry action Clock = Now is added to all states except the STOP
state.

TABLE 9.9.  State Transition Table of Atomic Simulator Friend in Figure 9.38(b)

State Input Transition
Next
StateName Action Timer Event Action Condition Action

Watch Clock = Now;
TAR[tq, {TAG,
MDP[Over]}]!

— TAG? MSR
[Quit]!

True — End

MDP
[Over]?

— True — End

End Clock = Now;
TAR[∞,
{MDP[Stop]}]!

— MDP
[Stop]?

— True — STOP

State variables: Clock = 0;

Simulation of Composite State Graph Models   289

Fig. 9.39.  Atomic simulator module for the Friend in the table tennis game.

Friend (tq) { // Atomic simulator module for the Friend in the Ping-Pong game (tq = time to quit)
 Clock = 0; Now = 0; // Clock is the local clock in Friend; Now is the global simulation clock
 State-Watch (Now); // start with “start state”
}
State-Watch (Now) { // state-transition routine for start-state “Watch”
 STATE = WATCH; // state update
 Clock = Now; TAR = (Clock+ tq, {TAG, MDP[Over]}, Friend); Send-Output (“TAR”, TAR); // state entry actions
 Repeat { Get-Input (INPUT); } Until ((INPUT.Type ≡ “TAG”) || (INPUT.Type ≡ “MDP”)); // input event
 If (INPUT.Type ≡ “TAG”) { TAG = INPUT.Record; // transition action and move to the END state
 MSR= (Quit, Friend); Send-Output (“MSR”, MSR); State-End (TAG.Time); }
 If (INPUT.Type ≡ “MDP”) { MDP = INPUT.Record; // transition action and move to the END state
 If (MDP.Msg ≡ Over) { State-End (MDP.Time); } Else { Stop (Error); } }
}
State-End (Now) { // state-transition routine for the “End” state
 STATE = END; // state update
 Clock= Now; TAR = (∞, {MDP[Stop]}, Friend); Send-Output (“TAR”, TAR); // state entry actions
 Repeat { Get-Input (INPUT); } Until (INPUT.Type ≡ “MDP”); // input event
 If (INPUT.Type ≡ “MDP”) { MDP = INPUT.Record;
 If (MDP.Msg ≡ Stop) { State-STOP (MDP.Time); } Else { Stop (Error); } }
}
State-STOP (Now) {
 STATE = STOP; Stop ();
}

4.	 The timer [Δ(to)] in a timed state is replaced with an entry action TAR[to,
IMS]! where IMS denotes an input message set of the state.

5.	 Each internal transition edge is converted to an external transition edge
with an input TAG?.

6.	 An entry action TAR [∞, IMS]! is added to each timeless state.
7.	 Each output Out! is replaced with MSR[Out]! and each input In? is

replaced with MDP[In]?.

Reproduced in Fig. 9.40(a) is the Player-A atomic state graph model in Fig.
9.20, and Fig. 9.40(b) shows its atomic simulator obtained by applying the
conversion rules. We can verify that all conversion rules are reflected in the
atomic simulator: (1) a new final state STOP is added; (2) the final states Quit
and Gameover in the atomic model have become nonfinal states, and there is
an external transition edge with an input MDP [Stop] from Quit to STOP and
another one from Gameover to STOP; (3) all nonfinal states have an entry
action Clock = Now; (4) the timer Δ(aA) in the Attack state is replaced with
an entry action TAR[aA, {TAG, MDP[Quit]}]! and Δ(wA) in Wait is replaced
with TAR[wA, {TAG, MDP[Quit]}]!; (5) each of the five internal transition
edges (Attack→Defense, Attack→Wait, Wait→Attack, Wait→Defense, and
Wait→Gameover) are converted to an external transition edge with an input
TAG?; and so on.

Table 9.10 shows the state transition table of the atomic simulator Player-A
given in Fig. 9.38(b). The initial values of the state variables (Clock = 0,
MyScr = 0, UrScr = 0, Rally = 0, Srv = 0, Rcv = 2), system parameters (wA = 4.0,
aA = 0.8, PA = 0.9), transition conditions (Ca, Cd, Cg), and algebraic functions
(IncS, IncR) are described at the bottom entry of the table. The system param-
eter wA denotes the waiting time delay, aA is the attack time delay, and PA is

290    State-Based Modeling and Simulation

Fig. 9.40.  The (a) atomic model and (b) its atomic simulator for Player-A.

Player-A (AS)

Attack
Clock=Now;

Rally++; U= RND;
TAR[aA, IMA]!

Defense
Clock=Now;
TAR[∞,IMD]!

Wait
Clock=Now;

TAR[wA, IMW]!

MDP[Ball-B]?

MyScr++MSR[Out-A]!; UrScr++

Cd

~

Ca

(U ≤PA)

MDP[Out-B]?

Gameover:
Clock=Now;
TAR[∞,IMG]!

Cg

~

~

Quit
Clock=Now;
TAR[∞,IMQ]!

MDP[Quit]?

MDP[Quit]?

MSR[Over]!TAG?

TAG?

MDP[Quit]?

TAG?

TAG?

STOP

MDP[Stop]?

MDP[Stop]?

IncR(Rcv, Srv)

Player-A IMA = {TAG, MDP[Quit]};
IMD = {MDP[Ball-B| Out-B| Quit]};
IMQ = {MDP[Stop]};
IMW = {TAG, MDP[Quit]};
IMG = {MDP[Stop]};

(U > PA)

MSR[Ball-A]!

~

IncS(Srv, Rcv)

TAG?

Attack
Rally++, U= RND

∆(aA)
Defense

Wait
∆(wA)

Ball-B?

Ball-A!

~

(U > PA)

Out-A!; UrScr++

Cd

~

Ca

(U ≤ PA)

Out-B?
MyScr++ Game-

over

Cg

~

~

Player-A

IncS(Srv, Rcv)
IncR(Rcv, Srv)

Quit Quit?Quit?

Quit?

Over !

(a)

(b)
Clock= MyScr= UrScr= Rally= Srv= 0, Rcv= 2

MyScr= UrScr= Rally= Srv= 0, Rcv= 2

the probability of an attack success. RND denotes a uniform random variate
generating function.

As in the case of the Friend simulator module (see Table 9.9 and Fig. 9.39),
an atomic simulator module for Player-A is obtained easily from the state
transition table given in Table 9.10. As before, it is assumed that communica-
tion between the main program and the state transition routines are made
through the I/O functions Get-Input (INPUT) and Send-Output (OUTPUT).
The atomic simulator module for Player-A consists of a main program Player-A
() and its state transition routines. A pseudocode program listing of the atomic
simulator module for Player-A is given in Fig. 9.41(a) and (b).

9.6.4  Table Tennis Game Simulator

Reproduced in Fig. 9.42(a) and (b), respectively, are the composite state graph
model (Fig. 9.21) and the state graph simulator (in Fig. 9.34) of the table tennis
game.

Thus far, we have written the Sync Manager Simulation Module listed in
Fig. 9.37, the Friend Atomic Simulator listed in Fig. 9.39, and the Player-A
Atomic Simulator listed in Fig. 9.41 in pseudocode form. The atomic simulator

TA
B

L
E

 9
.1

0.
 S

ta
te

 T
ra

ns
it

io
n

Ta
bl

e
of

 A
to

m
ic

 S
im

ul
at

or
 P

la
ye

r-
A

 f
ro

m
 F

ig
. 9

.4
0(

b)

St
at

e
In

pu
t

Tr
an

si
ti

on

N
ex

t
St

at
e

N
am

e
A

ct
io

n
T

im
er

E
ve

nt
A

ct
io

n
C

on
di

ti
on

A
ct

io
n

W
ai

t
C

lo
ck

 =
 N

ow
;

T
A

R
[w

A
, {

T
A

G
, M

D
P

[Q
ui

t]
}]

!
—

T
A

G
?

—
C

a
In

cS
(

Sr
v,

 R
cv

)
A

tt
ac

k
C

d
In

cR
(

R
cv

, S
rv

)
D

ef
en

se
C

g
M

SR
[O

ve
r]

!
G

am
eo

ve
r

M
D

P
[Q

ui
t]

?
—

Tr
ue

—
Q

ui
t

A
tt

ac
k

C
lo

ck
 =

 N
ow

;
R

al
ly

++
; U

 =
 R

N
D

T
A

R
[a

A
, {

T
A

G
, M

D
P

[Q
ui

t]
}]

!

—
T

A
G

?
—

U
 ≤

 P
A

M
SR

[B
al

l-
A

]!
D

ef
en

se
U

 >
 P

A
M

SR
[O

ut
-A

]!
;

U
rS

cr
++

W
ai

t

M
D

P
[Q

ui
t]

?
—

Tr
ue

—
Q

ui
t

D
ef

en
se

C
lo

ck
 =

 N
ow

;
T

A
R

[∞
, {

M
D

P
[B

al
l-

B
],

M
D

P
[O

ut
-B

],
M

D
P

[Q
ui

t]
}]

!

—
M

D
P

[B
al

l-
B

]?
—

Tr
ue

—
A

tt
ac

k
M

D
P

[O
ut

-B
]?

—
Tr

ue
M

yS
cr

++
W

ai
t

M
D

P
[Q

ui
t]

?
—

Tr
ue

—
Q

ui
t

G
am

eo
ve

r
C

lo
ck

 =
 N

ow
; T

A
R

[∞
, {

M
D

P
[S

to
p]

}]
!

—
M

D
P

[S
to

p]
?

—
Tr

ue
—

ST
O

P
Q

ui
t

C
lo

ck
 =

 N
ow

; T
A

R
[∞

, {
M

D
P

[S
to

p]
}]

!
—

M
D

P
[S

to
p]

?
—

Tr
ue

—
ST

O
P

St
at

e
va

ri
ab

le
s:

C
lo

ck
 =

 0
, M

yS
cr

 =
 0

, U
rS

cr
 =

 0
, R

al
ly

 =
 0

, S
rv

 =
 0

, R
cv

 =
 2

; S
ys

te
m

 p
ar

am
et

er
s:

w
A

 =
 4

.0
, a

A
 =

 0
.8

, P
A

 =
 0

.9
C

a
=

(M
yS

cr
 <

 1
1)

 &
 (

U
rS

cr
 <

 1
1)

 &
 (

R
cv

 ≡
 2

);
C

d
=

(M
yS

cr
 <

 1
1)

 &
 (

U
rS

cr
 <

 1
1)

 &
 (

Sr
v

≡
2)

; C
g

=
(M

yS
cr

 ≡
 1

1)
 ||

 (
U

rS
cr

 ≡
 1

1)
In

cS
(

Sr
v,

 R
cv

):
{S

rv
+

=
1;

 if
 (

Sr
v≡

2)
 R

cv
 =

 0
;}

In
cR

(
R

cv
, S

rv
):

R
cv

+
=

1
; i

f
(R

cv
≡2

)
Sr

v
=

0;
};

U
 =

 R
N

D
 //

un
if

or
m

 r
an

do
m

 v
ar

ia
bl

e

291

Fig. 9.41.  Atomic simulator module for Player-A (Fig. 9.40(b)).

Player-A (wA, aA, PA) { // Atomic simulator module for Player-A
 // aA= attack time-delay of Player-A; wA = wait time-delay; PA = prob. of an attack-success of Player-A
 Clock= 0; Now = 0; MyScr = UrScr = Rally = Srv =0; Rcv= 2; // initialize state variables
 State-Wait (Now); // start with “start state”
}
State-Wait (Now) { // state-transition routine for the start-state “Wait”
 STATE = WAIT; // state update
 Clock = Now; TAR = (Clock + wA, {TAG, MDP[Quit]}, Player-A); Send-Output(“TAR”, TAR); // state entry actions
 Repeat { Get-Input (INPUT); } Until ((INPUT.Type ≡ “TAG”) || (INPUT.Type ≡ “MDP”)); // input event
 If (INPUT.Type ≡ “TAG”) { TAG = INPUT.Record;
 If (Ca) { IncS (Srv, Rcv); State-Attack(TAG.Time); }
 If (Cd) { IncR (Rcv, Srv); State-Defense(TAG.Time); }
 If (Cg) { MSR= (Over, Player-A); Send-Output(“MSR”, MSR); State-Gameover(TAG.Time); } }
 If (INPUT.Type ≡ “MDP”) { MDP = INPUT.Record;
 If (MDP.Msg ≡ Quit) { State-Quit (MDP.Time); } Else “error” }
}

State-Attack(Now) { // state-transition routine for the “Attack” state
 STATE = ATTACK; Clock= Now; Rally++; U = RND; TAR = (Clock+ aA, {TAG, MDP[Quit]}, Player-A); Send-Output(“TAR”, TAR);
 Repeat { Get-Input (INPUT); } Until ((INPUT.Type ≡ “TAG”) || (INPUT.Type ≡ “MDP”));
 If (INPUT.Type ≡ “TAG”) { TAG = INPUT.Record;
 If (U ≤ PA) { MSR= (Ball-A, Player-A); Send-Output(“MSR”, MSR); State-Defense(TAG.Time); }
 If (U > PA) { MSR= (Out-A, Player-A); Send-Output(“MSR”, MSR); UrScr++; State-Wait(TAG.Time); } }
 If (INPUT.Type ≡ “MDP”) { MDP = INPUT.Record; If (MDP.Msg ≡ Quit) { State-Quit(MDP.Time); } }
}
State-Defense(Now) {
 STATE = DEFENSE; Clock= Now; TAR = (∞, {MDP[Ball-B], MDP[Out-B], MDP[Quit]}, Player-A); Send-Output(“TAR”, TAR);
 Repeat { Get-Input (INPUT); } Until (INPUT.Type ≡ “MDP”);
 MDP = INPUT.Record;
 If (MDP.Msg ≡ Ball-B) { State-Attack(MDP.Time); }
 If (MDP.Msg ≡ Out-B) { MyScr++; State-Wait (MDP.Time); }
 If (MDP.Msg ≡ Quit) { State-Quit (MDP.Time); }
}
State-Gameover(Now) {
 STATE = GAMEOVER; Clock= Now; TAR = (∞, {MDP[Stop]}, Player-A); Send-Output(“TAR”, TAR);
 Repeat { Get-Input (INPUT); } Until (INPUT.Type ≡ “MDP”);
 MDP = INPUT.Record;
 If (MDP.Msg ≡ Stop) { State-STOP (MDP.Time); }
}
State-Quit (Now) {
 STATE = QUIT; Clock= Now; TAR = (∞, {MDP[Stop]}, Player-A); Send-Output(“TAR”, TAR);
 Repeat { Get-Input (INPUT); } Until (INPUT.Type ≡ “MDP”);
 MDP = INPUT.Record;
 If (MDP.Msg ≡ Stop) { State-STOP (MDP.Time); }
}
State-STOP (Now) {
 STATE = STOP; Stop ();
}

Fig. 9.42.  (a) Composite state graph model and (b) state graph simulator of the table
tennis game.

Friend
Atomic

Simulator
(Fig. 9.38(b))

Sync Manager Simulation Module
(Fig. 9.36)

Friend
Atomic Model

(Fig. 9.20)

Player-A
Atomic Model

(Fig. 9.20)

Ball-A, Out-A

Ball-B, Out-B

Quit

Over

Player-B
Atomic Model

Over

Quit

T
A

R

T
A

G

M
S

R

M
D

P

T
A

R

T
A

G

M
S

R

M
D

P

Player-A
Atomic

Simulator
(Fig. 9.40(b))

Player-B
Atomic

Simulator

T
A

R

T
A

G

M
S

R

M
D

P

(a) (b)

292

Simulation of Composite State Graph Models   293

module for Player-B may be written in the same way. Then, the sync manager
simulation module [Sync-Manager (NS)] is joined with the atomic simulator
modules [Player-A (wA, aA, PA), Player-B (wB, aB, PB), and Friend (tq)] to build
a table tennis game simulator, as follows. (A complete list of C# codes for the
table tennis game simulator may be found in the official website of this book:
http://VMS-technology.com/Book/StateGraphSimulator)

Program Table Tennis-Game ()
{
NS = 3; // number of atomic simulators
aA = aB = 0.8; // attack-time delays of Player-A and
Player-B are 0.8 seconds.

wA = wB = 4; // wait-time delays of both players are 4
seconds.

PA = PB = 0.9; // probability of an attack success for both
players are 0.9.

tq = 600; // quit time (the friend can wait for 600 seconds)
Sync-Manager (NS); // Fig. 9.37
Player-A (wA, aA, PA); // Fig. 9.41
Player-B (wB, aB, PB);
Friend (tq); // Fig. 9.39
};

9.6.5  State Graph Simulator for Reactive Systems

A reactive system that continuously reacts to inputs from the environment by
generating corresponding outputs does not have explicit final states. The single
server system introduced in Fig. 9.22(b) is an example of a reactive system.
Reproduced in Fig. 9.43 is the composite state graph model of the single server
system consisting of three atomic state graph models. The interactions among
the three atomic models are made via three types of messages: arrive (a) mes-
sages from GEN to Buffer, request (r) messages from Machine to Buffer, and
send (s) messages from Buffer to Machine.

The single server system of Fig. 9.43 will continue to run until its operation
is terminated externally. Figure 9.44 shows a composite state graph model of
the single server system augmented with a terminator model whose role is to
send an end message (e) to the remaining atomic models in the system. For
this purpose, the terminator atomic model is provided with a timer Δ(te) that
will go off at the end time te, and the existing atomic models are provided with
a final state END.

Now, the conversion rules introduced in Section 9.6.3 are applied to the
composite state graph model of Fig. 9.44. Figure 9.45 shows the resulting state
graph simulator for the single server system. The atomic simulator Terminator

http://VMS-technology.com/Book/StateGraphSimulator

294    State-Based Modeling and Simulation

Fig. 9.43.  Composite state graph model of a single server system.

Stock Empty

J++

J++

 J--, s!
s?

r!
~

(J > 1)

~

(J ≡ 1)

a?

r?

a?
Backlog

r?

a?
s!

Gen
∆(ta)

a!

s a

GEN Buffer Machine

r

Run:
∆(ts)

Idle

J=0

Fig. 9.44.  Composite state graph model of the single server system with a terminator.

Stock Empty

J++

J++

 J--, s! s?

r!

~

(J > 1) ~

(J ≡ 1)

a?

r?

a?
Backlog

r?

a?
s!

Gen
∆(ta)

a!

s a

GEN Buffer Machine

r

Run:
∆(ts)

Idle

J=0

END
Watch
∆(te)

Terminator
end!

END END END

end end

 end? end?

 end?
 end?

 end? end?

end

Fig. 9.45.  State graph simulator for the single server model in Fig. 9.44.

Gen
Clock= Now;
TAR[ta, e]!

MSR[a]!

GEN

Stock
Clock= Now;

TAR[∞,{a,r,e}]!

Empty
Clock= Now;

TAR[∞,{a,r,e}]!

J++

J- -, MSR[s]! ~

(J > 1) ~

(J ≡ 1)

MDP[a]?

MDP[r]?

J=0

Backlog
Clock= Now;
TAR[∞,{a,e}]!

Buffer

MDP[r]?

J++

MSR[r]!

Run
Clock= Now;
TAR[ts, e]!

Idle
Clock= Now;
TAR[,{s,e}]!

TAG?
MDP[s]?

MDP[a]?

MDP[a]?

MSR[s]!

Machine

TAG?

AR[∞ {a r e}]! TAR[∞,{a,eeeeeeeee}}}}}}}}R[∞],{a,r,e}]!]!]! TAR[,{a,eeee

MDP[a]?[]

MSR[s]!

MDP[e]?

STOP
STOP

END
Clock=Now;

TAR[∞, Stop]!

MDP [Stop]?

END:
Clock=Now;

TAR[∞, Stop]!

MDP[Stop]?
STOP

END:
Clock=Now;

TAR[∞, Stop]!TAR[∞, Stop]!TTARTTT [, Stop]!]

MDP[Stop]?

END
Clock=Now;

TAR[∞, Stop]!

Watch
Clock=Now;

TAR[te,-]!

MSR[e]!

STOP

TAG?

MDP[Stop]?

Terminator

MDP[e]?

MDP[e]?

MDP[e]? MDP[e]?

MDP[e]?

Synchronization Manager (Figure 9.36)

T
A

R

T
A

G

M
S

R

M
D

P

T
A

R

T
A

G

M
S

R

M
D

P

T
A

R

T
A

G

M
S

R

M
D

P

T
A

R

T
A

G

M
S

R

M
D

P

Sync Manager

sends a TAR message to the Sync Manager at the start of the simulation. When
the simulation clock reaches the end time (te), the following sequence of
actions are taken in order to end the simulation: (1) the Sync Manager will
send a TAG message to the Terminator; (2) upon receiving the TAG message,
the Terminator moves to the END state after sending back an MSR[e] message
to the Sync Manager; (3) upon receiving the MSR[e] message, the Sync

Appendix 9A: DEVS   295

Manager sends the MDP[e] message to all atomic simulators except the Ter-
minator; (4) upon receiving the MDP[e] message, all the atomic simulators
move to the END state; (5) the atomic simulators send the TAR[∞, Stop]
message to the Sync Manager; and (6) the Sync Manager sends the MDP[Stop]
message to all atomic simulators to terminate the simulation.

9.6.6  SGS®

A state graph model executor toolkit called SGS was developed by the authors.
A free copy of SGS together with a number of modeling examples may be
found in the official website of this book (http://VMS-technology.com/
Book/SGS).

APPENDIX 9A: DEVS

The concept of DEVS (Discrete EVent system Specification) was proposed
by Zeigler and has become the de facto choice for state-based M&S tools since
his first book on the subject was published [Zeigler 1976]. There has been a
considerable amount of progress in the DEVS theory leading to different
types of DEVSs [Zeigler et al. 2000]. In this section, the classic DEVS will be
briefly introduced to demonstrate how the DEVS theory may be used in state-
based modeling of discrete-event systems.

9A.1  Definitions of DEVS

As with the definitions of FSM given in Section 9.2.1, DEVS is defined as an
algebraic structure. An atomic DEVS model (M) is a septuple structure
[Zeigler et al. 2000]:

	 M S X Y taint ext= (, , , , , ,),δ δ λ 	 (9A.1)

where

(1)  S is a set of states (not necessarily finite)
(2)	 X is a set of input values
(3)	 Y is a set of output values
(4)	 δint: S → S is an internal transition function
(5)	 δext: Q × X → S is an external transition function, where Q = {(s, e)| s ∈

S, 0 ≤e ≤ ta(s)} is the total state set, and e is the time elapsed since last
transition

(6)	 λ: S × X → Y is the output function (transition action)
(7)	 ta: S → R+ is the time-advance function

If the above definition, which is often referred to as a classic DEVS, is
compared with that of the engineering definition of the FSM in Section 9.2.1,

http://VMS-technology.com/Book/SGS
http://VMS-technology.com/Book/SGS

296    State-Based Modeling and Simulation

TABLE 9A.1.  Template of State Transition Table for a DEVS Model

State Input Transition

Next StateName Action Timer Event Action Condition Action

Initial State
State
. . .
Initial values of state variables:

it is seen that DEVS is also a timed automaton in which time is included in
terms of δint, Q, and ta.

A DEVS model can also be specified using a state transition table. Repro-
duced in Table 9A.1 is the template of the state transition table for the state
graph model in Table 9.3. Table 9A.1 can be used as a template of a state
transition table for a DEVS model if the columns State-Action, Transition-
Condition, and Transition-Action are deleted and the state variable row at the
bottom is removed.

Reproduced in Fig. 9A.1 is the composite state graph (or coupled DEVS)
model of a single server system from Fig. 9.16. Observe in Fig. 9A.1 that the
Buffer model (M2) is modeled as an infinite state machine because DEVS
does not allow state variables. The Machine model (M3) is specified as an
atomic DEVS model, as follows:

	 M S X Y taint ext3 = (, , , , , ,),δ δ λ 	

where

(1)	 S = {Idle, Run}
(2)	 X = {s}
(3)	 Y = {r, d}
(4)	 δint(Run) = Idle
(5)	 δext(Idle, s) = Run
(6)	 λ(Run, −) = {r, d}; and (7) ta(Run) = ts; and ta(Idle) = ∞

Fig. 9A.1.  Composite state graph model of a single server system.

M1

Run
 ∆(ts)

Idle

 r! d!

 s?

a

s

r
d

M2 M3

1 0

a?

–1

 r?, s!

a?

 r?, s!

a?, s!

 r?

∞ Gen
∆(ta)

a?

Appendix 9A: DEVS   297

A DEVS model for a system consisting of a number of objects is referred
to as coupled DEVS model. A classic DEVS coupled model (CM) is a septuple
structure [Zeigler et al. 2000]:

	 CM X Y M EIC EOC IC Select= (, , { }, , , ,), 	 (9A.2)

where

(1)	 X is an input events set
(2)	 Y is an output events set
(3)	 {M} is a set of all component models
(4)	 EIC is an external input coupling relation
(5)	 EOC is an external output coupling relation
(6)	 IC is an internal coupling relation
(7)	 Select is a tie-breaking selector

In general, a coupled DEVS model can be structured to have a hierarchical
form as depicted in Fig. 9A.2, which is referred to as a modular hierarchical
DEVS. Shown in Fig. 9A.2(a) is the coupled FSM model of Fig. 9A.1, and Fig.
9A.2(b) is a modular hierarchical DEVS model for the coupled FSM model.

9A.2  DEVS Simulators

The steps for building a hierarchical DEVS simulator are as follows: (1) a
simulator is built for each atomic model; (2) a coordinator is built for each
coupled model; (3) a root coordinator is constructed; and (4) the simulators
and coordinators are connected to form a hierarchical structure called an
abstract simulation model, as depicted in Fig. 9A.3(a). The abstract simulation
model linked with the hierarchical DEVS model is referred to as a hierarchical
DEVS simulator. Depicted in Fig. 9A.3(b) are the messages passed between
a parent coordinator and its children in the abstract simulation model.

In essence, the abstract simulation model consisting of coordinators and
simulators functions as the sync manager in the state graph simulator (see Fig.

Fig. 9A.2.  (a) Coupled FSM model and (b) hierarchical DEVS model.

M1
(Generator)

M2
(Buffer)

M3
(Machine)

Send Enter

Done
Atomic model M2 Atomic model M3

Coupled model
{M2, M3} Atomic model M1

Coupled model
{M1, M2, M3}

(a) (b)

298    State-Based Modeling and Simulation

9.36) and manages the simulation times. The user defines each atomic model
as specified by model (Eq. 9A,1) and each coupled model as specified by
model (Eq. 9A.2). For simulation, an atomic model contains information about
its state (S) and time advance function (ta); a simulator maintains information
about last simulation time (tL), next simulation time (tN), and elapsed time (e)
of its atomic model; and the coordinator has information about the tL and tN
of its coupled model. A parent coordinator sends the input event message (x,
t) and internal transition message (*, t) to its child coordinator and simulator,
and receives the output message (y, t) from its children. For further details,
you may refer to seminal text of Zeigler et al. [2000]. Recently, a parallel simu-
lation technique based on the concept of flat coordinator for executing coupled
DEVS models has been proposed [Glinsky and Wainer 2006]. Observe that
the synchronization manager introduced in Section 9.6 is a kind of flat
coordinator.

Fig. 9A.3.  (a) Hierarchical DEVS simulator and (b) message passing protocol.

Atomic model M2
(S, ta)

Atomic model M3
(S, ta)

Coupled model
{M2, M3}

Atomic model M1
(S, ta)

M2 Simulator
(tN, tL, e)

M3 Simulator
(tN, tL, e)

Coordinator
(tN, tL)

M1 Simulator
(tN, tL, e)

Coordinator
(tN, tL)

Root coordinator
(tN, tL)

Coupled model
{M1, M2, M3}

child
Coordinator

or
Simulator

parent
Coordinator

(x, t) (*, t) (y, t)

(a) (b)

299

CHAPTER 10

Advanced Topics in Activity-Based
Modeling and Simulation

To everything, there is a season and a time to every purpose under the
heavens.

—Ecclesiastes 3:1

10.1  INTRODUCTION

This chapter, combined with Chapter 6, aims to provide a comprehensive
treatment of activity-based modeling and simulation (M&S). The activity cycle
diagram (ACD) topics covered in Chapter 6 are: (1) the execution rules and
specifications; (2) basic modeling templates; (3) representative modeling
examples; (4) parameterized ACD and its application to the modeling of
tandem lines and job shops; and (5) ACD model execution using the formal
ACD simulator ACE®.

The topics to be covered in this chapter are: (1) methods of developing
dedicated ACD simulators; (2) the canceling arc and its applications; (3) work-
cell cycle time analyses using ACD; (4) ACD modeling of automated manu-
facturing systems; and (5) formal model conversion. After studying this
chapter, you should be able to do the following:

1.	 Build a dedicated ACD simulator for any parameterized ACD model
2.	 Develop a general ACD simulation engine
3.	 Construct ACD models involving canceling arcs for modeling time-

constrained processing and resource failure
4.	 Perform cycle-time analysis for robot work-cells, hoist plating lines, etc.
5.	 ACD modeling and simulation of flexible manufacturing systems
6.	 Convert ACD models to event graph models

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

300    Advanced Topics in Activity-Based Modeling and Simulation

7.	 Convert ACD models to state graph or Discrete-EVent system Specifica-
tion (DEVS) models

The remainder of this chapter is organized as follows: How to develop your
own ACD simulators is explained in Section 10.2, and methods of modeling
with canceling arcs are given in Section 10.3. Activity-based modeling methods
applied to robotic work-cells and flexible manufacturing systems (FMSs) are
presented in Sections 10.4 and 10.5, respectively. The last section is devoted to
the issue of formal model conversion. A brief description of Petri nets is given
in the Appendix.

10.2  DEVELOPING YOUR OWN ACTIVITY CYCLE
DIAGRAM SIMULATORS

As mentioned in Chapter 6, there are three ways of executing an ACD model:
use of the formal ACD simulator ACE®; use of a process-oriented simulation
language such as Arena®; or developing a dedicated ACD simulator. This
section describes how to develop a dedicated ACD simulator. If you have a
working knowledge of a programming language such as Java or C#, you should
be able to develop your own ACD simulator.

10.2.1  Tocher’s Three-Phase Process

It is described in Hollocks [2008, p. 5] that the core idea of the Tocher’s three-
phase process came to him at Christmas 1957, evidently while in his bath! The
notion started from the concept of a system consisting of individual compo-
nents progressing as time unfolds through states that change only at discrete
events. The three-phase process is:

Phase A: Advance the clock to the time of the next bound-to-occur (BTO)
event.

Phase B: Execute the BTO event.
Phase C: Initiate “conditioned” activities that the conditions in the model

now permit.

As depicted in Fig. 10.1, the three-phase process is a cyclic process. Tocher
argued that the B and C phases represent the event phase and activity phase,
respectively. In the following, the three-phase process will be applied to the
execution of a single server (system) ACD model.

The ACD model and activity transition table of a single server system given
in Chapter 6 are reproduced in Fig. 10.2. In developing an ACD simulator
based on the three-phase process, we make use of the data structure future
event list (FEL) and the two event-handling functions Schedule-event () and
Retrieve-event () that were introduced in Chapter 4 (Section 4.7.1). Figure

Developing Your Own Activity Cycle Diagram Simulators   301

10.3 shows a three-phase execution program (pseudocode) for the single
server ACD model. In this pseudocode program, the three-phase process is
implemented with the sequence of Phase-C→ Phase-A→ Phase-B, and the
inter-arrival time ta and service time ts are set to 8 and 10, respectively.

The Initialization phase of the pseudocode program in Fig. 10.3 performs
the following: resets the simulation clock (Clock = 0); initializes the queues
(C = 1, M = 1, Q = 0); and sets the end-of-simulation time (EOS = 200). Then,
the simulation execution is undertaken in three phases: (1) The scanning phase,
where the BTO event of each enabled activity is scheduled in the FEL; (2) the
timing phase, where the next event is retrieved from the FEL, and the simula-
tion clock is advanced; and (3) the executing phase, where the retrieved event
is executed.

It may be instructional to go through the program statements one by one
in Fig. 10.3 to verify that the simulation is carried out correctly. The Scanning
phase starts with Clock = 0, C = 1, M = 1, and Q = 0. Thus, the At-begin condi-
tion of the Create activity (C > 0) is true, which in turn leads to the execution
of {C−−; Schedule-event (Created, 8)}. Now, we have the next event Created(8)
stored in the future event list (FEL) and C = 0. The Timing phase retrieves the

Fig. 10.2.  ACD model and activity transition table of a single server system.

Jobs

C
•

Q Process <ts> Create <ta>

M
•

C = 1, M = 1, Q = 0

1 Create (C>0) C--; ta Created 1 True C++; Create

2 True Q++; Process

2 Process (M>0) & (Q>0) M--; Q--; ts Processed 1 True M++; Process

Initialize Initial Marking = {C=1, M=1, Q=0}; Enabled Activities = {Create}

BTO event: Created Processed

Fig. 10.1.  The three-phase process [Hollocks 2008].

Advance time to
next event

A

B C
Initiate

‘conditioned’ activities Process BTO-event

302    Advanced Topics in Activity-Based Modeling and Simulation

Fig. 10.3.  Three-phase execution program of the single server ACD model.

// Initialization
 Clock = 0; // Set simulation clock to zero
 C = 1; M = 1; Q = 0; // Initialize queues
 EOS = 200; // Set the end-of-simulation (EOS) time to 200
// Simulation Execution (while the simulation clock is less than the EOS time)
 Do {
 // 1. Scanning the activities (Phase C) schedule BTO-events into
 If (C > 0) { C--; Schedule-event (Created, Clock + 8)};
 If (M > 0) & (Q > 0) {M--; Q--; Schedule-event (Processed, Clock + 10)};
 // 2. Timing (Phase A) retrieve the next BTO-event from
 Retrieve-event (EVENT, TIME); // Retrieve 1st event from
 Clock = TIME; // Advance simulation clock
 // 3. Executing the retrieved event routine (Phase B)
 Case EVENT of {
 Created: If (True) C++; If (True) Q++;
 Processed: If (True) M++;
 }
 } while (Clock < EOS);

FEL

FEL

FEL

Created(8) event from the FEL and advances the simulation clock to 8. The
Executing phase executes the Created event to execute {C++, Q++}. Then, the
next cycle of the three-phase process begins with Clock = 8, C = 1, M = 1, and
Q = 1, and so on. The results of executing the three-phase execution program
for a few cycles are summarized in Table 10.1.

10.2.2  Activity Scanning Algorithm

The logic behind the three-phase execution program shown in Fig. 10.3 can be
expressed as a general algorithm. The Scanning phase may be expressed as:

For each Activity in the activity transition table
(see Fig. 10.2) do {
If (At-begin Condition for the Activity is True)
then {
 (a) Execute At-begin Action; (b) Schedule the BTO-
event into FEL; }
}

The Timing phase may be described as:

Retrieve the next Event from FEL and advance Time;

The Executing phase may be described as:

If (At-end Condition for the retrieved Event is True)
then {

Execute At-end Action;
}

TA
B

L
E

 1
0.

1.
 R

es
ul

ts
 o

f
E

xe
cu

ti
ng

 t
he

 T
hr

ee
-P

ha
se

 E
xe

cu
ti

on
 P

ro
gr

am

P
ha

se
C

lo
ck

C
ur

re
nt

A
ct

io
n

N
ew

ly

sc
he

du
le

d
ev

en
t

U
pd

at
ed

“T
ru

e”
 c

on
di

ti
on

E
na

bl
ed

ac

ti
vi

ty
Se

le
ct

ed

ev
en

t
C

lo
ck

C
M

Q
E

ve
nt

s
in

 F
E

L

0
0

—
—

—
—

—
0

1
1

0
1

0
(C

 >
 0

)
C

re
at

e
—

C
−−

C
re

at
ed

 (
8)

0
0

1
0

C
re

at
ed

 (
8)

2
0

—
—

C
re

at
ed

 (
8)

C
lo

ck
 =

 8
—

8
0

1
0

—
3

8
—

—
C

re
at

ed
C

++
; Q

++
—

8
1

1
1

1
8

(C
 >

 0
)

C
re

at
e

—
C

−−
C

re
at

ed
 (

16
)

8
0

1
1

C
re

at
ed

 (
16

)
(M

 >
 0

)&
(Q

 >
 0

)
P

ro
ce

ss
—

M
−−

; Q
−−

P
ro

ce
ss

ed
 (

18
)

8
0

0
0

C
re

at
ed

 (
16

),
P

ro
ce

ss
ed

 (
18

)
2

8
—

—
C

re
at

ed

(1
6)

C
lo

ck
 =

 1
6

—
16

0
0

0
P

ro
ce

ss
ed

 (
18

)

3
16

—
—

C
re

at
ed

C
++

; Q
++

—
16

1
0

1
P

ro
ce

ss
ed

 (
18

)
1

16
(C

 >
 0

)
C

re
at

e
—

C
−−

C
re

at
ed

 (
24

)
16

0
0

1
P

ro
ce

ss
ed

 (
18

),
C

re
at

ed
 (

24
)

2
16

—
—

P
ro

ce
ss

ed

(1
8)

C
lo

ck
 =

 1
8

—
18

0
0

1
C

re
at

ed
 (

24
)

3
18

—
—

P
ro

ce
ss

ed
M

++
—

18
0

1
1

C
re

at
ed

 (
24

)

303

304    Advanced Topics in Activity-Based Modeling and Simulation

Figure 10.4 shows a schematic description of the Tocher’s three-phase
process.

The schematic description given in Fig. 10.4 is a valid algorithm for execut-
ing an ACD model. However, it is not an efficient algorithm when the number
of activities in the ACD model becomes large because “each and every activity
in the model is scanned during the Scanning phase while the number of
enabled activities is very small.” When a current activity is executed at the
Executing phase, the enabled activities at the Scanning phase in the next cycle
are among the influenced activities of the current activity. Thus, we introduce
a FIFO (first-in-first-out) queue called CAL (candidate activity list) for storing
the influenced activities, and modify the execution algorithm in Fig. 10.4. A
modified version of the three-phase execution algorithm called the activity
scanning algorithm is given in Fig. 10.5.

Another, perhaps more critical, benefit of introducing CAL is that it allows
to handle tie-breaking among the concurrent activities. For example, in the
simple service station model described in Chapter 6 (see Table 6.15 in Section
6.6.4), the Trigger activity has to be executed before the Process activity in
order to obtain a valid result. This is ensured by listing Trigger before Process
in the Influenced Activity entry in Table 6.15.

10.2.3  ACD Simulator

If we apply the activity scanning algorithm, the three-phase execution pro
gram given in Fig. 10.3 would become the ACD simulator shown in Fig. 10.6.
It is a template that can be used for any ACD model if the three shaded regions
in Fig. 10.6 are modified according to the activity transition table: (1) the

Fig. 10.4.  Schematic description of the three-phase execution program.

0. Initialize States

1. For each Activity in the activity transition table do {
 If (At-begin Condition for the Activity is True) then {
 (a) Execute At-begin Action;
 (b) Schedule the BTO-event into
 }

EOS?

FEL

FEL}

No
4. Collect statistics & Stop

Yes

Scanning Phase

Timing Phase

Executing Phase

gg

2. Retrieve the next Event from FEL and advance Time

g

3. If (At-end Condition for the retrieved BTO-Event is True) then {
 Execute At-end Action; }

Developing Your Own Activity Cycle Diagram Simulators   305

initialization region reflecting the Initialize row of the activity transition table;
(2) the activity routine region; and (3) the event routine region.

At the Initialization phase, the initially enabled activity Create is stored in
CAL by invoking Store-activity (Create), and then it is retrieved at the Scan-
ning phase via Get-activity(). The retrieved activity Create is executed at the
activity routine region by invoking Execute-Create-activity-routine () to

Fig. 10.5.  Activity scanning algorithm.

0. Initialize States & store Enabled Activities into

1. While CAL is not empty {
 Get an Activity from

 If (At-begin Condition for the Activity is True) then {
 (a) Execute the At-begin Action;
 (b) Schedule the BTO-event into
 }

3. If (At-end Condition for the Event is True) then {
 (a) Execute the At-end Action;
 (b) Store Influenced Activities into

EOS?

CAL

FEL

CAL;

CAL}

FEL}

CAL

No 4. Collect statistics & Stop
Yes

Scanning Phase

Timing Phase

Executing Phase

Activity routine

Event routine

If (At-begin Condition for the Actitt vivv tyt is True) then {
 (a) Execute the At-begin Action;
 (b) Schedule the BTO-event into F E L}

If (At-end Condition for the Event is True) then {
(a) Execute the At-end Action;
(b) Store Inflff uenced Actitt vivv titt es into CAL}}

gg

2. Retrieve the next Event from FEL and advance Time

Fig. 10.6.  ACD simulator for the single server system.

// Initialization
 Clock = 0; // Set simulation clock to zero
 C = 1; M = 1; Q = 0; // Initialize queues
 Store-activity(Create); // Store enabled activities in
 EOS = 200; // Set the end-of-simulation (EOS) time to 200

// Simulation Execution (while the simulation clock is less than the EOS time)
 Do {
 // 1. Scanning the activities in CAL
 While (CAL is not empty) {
 Get-activity (ACTIVITY)
 Case ACTIVITY of {
 Create: Execute-Create-activity-routine (Clock);
 Process: Execute-Process-activity-routine (Clock);
 }
 }
 // 2. Timing
 Retrieve-event (EVENT, TIME); // Retrieve 1st event from
 Clock = TIME; // Advance simulation clock
 // 3. Executing the retrieved event
 Case EVENT of {
 Created: Execute-Created-event-routine ();
 Processed: Execute-Processed-event-routine ();
 }
 } while (Clock < EOS);

{
 Create: Execute-Create-activity-routine (Clock);

Process: Execute-Process-activity-routine (Clock);

 Created: Execute-Created-event-routine ();
 Processed: Execute-Processed-event-routine ();

C = 1; M = 1; Q = 0; // Initialize queues
Store-activity(Create); // Store enaba led activities in

CAL

FEL

CAL

FEL

306    Advanced Topics in Activity-Based Modeling and Simulation

schedule the BTO-event Created into the FEL. At the Timing phase, the BTO-
event is retrieved from FEL and the simulation clock is advanced. Lastly, at
the Executing phase, the retrieved event Created is executed by invoking
Execute-Created-event-routine () to store the newly enabled activities Create
and Process into CAL. The cycle is repeated until the end-of-simulation.

Figure 10.7 shows how to build the Create activity routine and Created
event routine from the information provided in the activity transition table.
In general, an activity routine is built from the data (At-begin Condition,
At-begin Action, Time, and Event Name) of the activity transition table as
follows:

If (At-begin Condition) {
At-begin Action;
Schedule-event (Event Name, Clock + Time); }

Similarly, an event routine is built from the data (At-end Condition, At-end
Action, and Influenced Activity) of the activity transition table as follows:

If (At-end Condition) {
At-end Action;
Store-activity (Influenced Activity); }

The above statement is repeated for each At-end arc.
Exercise 10.1. Write an ACD simulator program for the car repair shop

model specified in Table 6.8 of Chapter 6.

10.2.4  P-ACD Simulator

An ACD simulator for a parameterized ACD (P-ACD) model, which we call
a P-ACD simulator, can be built exactly the same procedure as that used for
building an ordinary ACD simulator. In this section, how to build a P-ACD
simulator will be explained by employing a simple P-ACD model.

Fig. 10.7.  Building activity routine and event routine from the activity transition table.

Execute-Create-activity-routine (Clock)
 If (C > 0) {
 C--; // At-begin Action
 Schedule-event (Created, Clock + 8);
 }

Execute-Created-event-routine ()
 If (True) { C++; // At-end Action
 Store-activity (Create); }
 If (True) { Q++; // At-end Action
 Store-activity (Process); }

No Activity
At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action Influenced Activity

1 Create (C>0) C--; 8 Created
1 True C++; Create

2 True Q++; Process

Developing Your Own Activity Cycle Diagram Simulators   307

Figure 10.8 shows a P-ACD model and its activity transition table for an
N-stage unlimited-buffer tandem line (with N = 3) discussed in Chapter 6 (see
Section 6.5.1). Recall that, as a convention, a parameter variable is enclosed
by a pair of parentheses and a parameter value is put in a small rectangle on
an arc. In order to build a P-ACD simulator, we have to upgrade our list-
handling functions to handle parameter k:

(1)  Store-activity (ACTIVITY, k) for storing an activity in the FIFO queue
CAL;

(2)	 Get-activity (ACTIVITY, k) for retrieving an activity from the CAL;
(3)	 Schedule-event (EVENT, TIME, k) for scheduling an event in the pri-

ority queue the FEL;
(4)	 Retrieve-event (EVENT, TIME, k) for retrieving an event from the

FEL.

Observe in Fig. 10.8 that the parameterized queue nodes B(k) and M(k) in
the P-ACD are represented as arrays B[k] and M[k] in the activity transition
table.

Figure 10.9 shows the main program of our P-ACD simulator for the three-
stage tandem line specified in Fig. 10.8. The structure of the P-ACD simulator
is exactly the same as that of the ACD simulator given in Fig. 10.6. At the
Initialization phase, the queues (C, B[k], M[k]) are initialized and the initially
enabled activity CREATE is stored into the CAL.

Figure 10.10 shows how to build the SERVE activity routine and the
SERVED event routine used in the P-ACD simulator. As in the case of
the ordinary ACD simulator, a parameterized activity routine is built from the
data (At-begin Condition, At-begin Action, Time, and Event Name) of the
activity transition table as follows:

Fig. 10.8.  P-ACD model and activity transition table of a three-stage tandem line.

Jobs
∞ B(k)

C
•

M(k) •

CREATE <ta> SERVE (k) <t[k]>

k k

k 1

k+1

(k<3)

(k ≡ 3)

~

~

No Activity
At-begin BTO-event At-end

Condition Action Time Name Arc Condition Parameter Action Infl. Act.

Initialize Initial Marking = {C=1, B[k]=0 for k=1~3, M[k]=1 for k=1~3}; Enabled Activities = {CREATE}

308    Advanced Topics in Activity-Based Modeling and Simulation

If (At-begin Condition) {
At-begin Action;
Schedule-event (Event Name, Clock + Time, Parameter); }

Similarly, a parameterized event routine is built from the data (At-end
Condition, At-end Action, Parameter, and Influenced Activity) of the activity
transition table as follows:

If (At-end Condition) {
At-end Action;
Store-activity (Influenced Activity, Parameter); }

The above statement is repeated for each At-end arc.
Activity and event routines for the CREATE activity are also listed below:

Fig. 10.10.  Building activity and event routines in the P-ACD simulator.

No Activity
At-begin BTO-event At-end

Condition Action Time Name Arc Condition Parameter Action Influenced Activity

Execute-SERVE-activity-routine (Clock, k)
 If (B[k]>0 & M[k]>0) {
 B[k]--; M[k]--; // At-begin Action
 Schedule-event (SERVED, Clock + t[k], k);
 }

Execute-SERVED-event-routine (k)
 If (True) { M[k]++; // At-end Action
 Store-activity (SERVE, k); }
 If (k < 3) { B[k+1]++; // At-end Action
 Store-activity (SERVE, k+1); }

Fig. 10.9.  P-ACD simulator for the three-stage tandem line.

CAL

FEL

Developing Your Own Activity Cycle Diagram Simulators   309

Execute-CREATE-activity-routine (Clock)
If (C > 0) { // Check the at-begin condition

C−−; // Execute the At-begin action
Schedule-event (CREATED, Clock + ta, −); } // Schedule the BTO-

event
Execute-CREATED-event-routine ()

If (True) { C++; Store-activity (CREATE, −); } // At-end-action &
Influenced-activity of Arc-1

If (True) { B[1]++; Store-activity (SERVE, 1); } // At-end-action &
Influenced-activity of Arc-2

A complete list of C# codes for the three-stage tandem line ACD simulator
may be found in the official website of this book (http://VMS-technology.com/
Book/ACDSimulator).

Exercise 10.2. Write a P-ACD simulator program (in pseudocode) for the
conveyor-driven serial line model specified in Table 6.11 of Chapter 6.

10.2.5  Collecting Statistics

As discussed in Chapter 4 (see Section 4.7.5), the average queue length (AQL)
statistics can be collected as follows. Let {Tj} denote the queue length change
times, then the jth queue length change interval becomes Δj = Tj+1 − Tj. Let Qj
be the queue size during Δj, then we have SumQ = Σ(Qj × Δj) and AQL = SumQ
/ Σ(Δj) ≡ SumQ / CLK.

Figure 10.11 shows additional statements that are added in the main
program to collect statistics on the AQL. We want to compute the AQL of
each buffer B[k]. The previous queue length change time of B[k] is denoted
by Before[k]. At the very beginning of the main program, SumQ[k] and
Before[k] are reset. Then, at the start of the statistics phase, SumQ[k] are
updated and AQL[k] are computed. As can be seen in Fig. 10.12, the interme-
diate values of SumQ[k] are collected at the CREATED event routine,
SERVE activity routine, and SERVED event routine.

Fig. 10.11.  Statements added at the main program for computing AQL.

http://VMS-technology.com/Book/ACDSimulator
http://VMS-technology.com/Book/ACDSimulator

310    Advanced Topics in Activity-Based Modeling and Simulation

Fig. 10.12.  Statements for collecting AQL statistics at individual routines.

Collecting sample statistics of individual entities is more involved. In order
to collect sojourn time statistics, each entity is provided with a record contain-
ing its attribute values such as the arrival time, departure time, and entity type.
It is an important issue in designing a simulator but will not be elaborated
further in this book.

10.3  MODELING WITH CANCELING ARC

In Chapter 4, it was shown that the use of a canceling edge in an event graph
proved to be quite convenient when modeling reneging, resource failure, and
time-constrained processing. In this section, we will show that the role of a
canceling arc in an ACD model is the same as that of a canceling edge in an
event graph model.

Figure 10.13(a) shows an event graph with a canceling edge denoted by
the dashed arrow. As described in Chapter 4 (Section 4.3.1), the event
graph indicates that “whenever the originating event E1 occurs, the state
changes to fE1(s). Then, if the edge condition c1 is true, the scheduled event
E2 is canceled immediately.” Shown in Fig. 10.13(b) is an ACD with a canceling
arc denoted by a circle-tailed arrow. This ACD indicates that “whenever the
originating activity A2 is completed, the target activity A1 is canceled if it is
active.”

Fig. 10.13.  (a) Canceling edge in event graph and (b) canceling arc in ACD.

A2
<t2>

Q1 A1
<t1> E1 E2

(b) (a)

Modeling with Canceling Arc   311

10.3.1  ACD Model of Single Server System with Reneging

As discussed in Chapter 4 (Section 4.4.1), customers waiting for a service in a
line may choose to leave the line if they have waited too long, which is called
reneging in queuing theory. Figure 10.14 shows an event graph model and an
ACD model of a single server system with reneging, where the customer would
not wait in line more than tw minutes.

In the ACD model, Q denotes the number of customers waiting in the
queue. Customers are created with an inter-arrival time of ta and are processed
by the server with a service time of ts. An arriving customer is put into the
queue Q, and at the same time, a clone of the customer is put into the queue
W if no servers are idle (i.e., M ≡ 0). The clone arrived at the queue W is
immediately put into the Wait activity where it is processed for tw minutes.
Observe that Q is equal to the number of clones residing in the Wait activity.
At the end of the Process activity, the oldest clone residing in the Wait activity
is deleted if there exists any (Q > 0). The ACD model of Fig. 10.14(b) is speci-
fied in the activity transition table of Table 10.2.

TABLE 10.2.  Activity Transition Table of the Reneging ACD Model in Figure 10.14(b)

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Influenced

Activity

1 Create (C > 0) C−−; ta Created 1 true Q++; Process
2 true C++; Create
3 (M≡0) W++; Wait

2 Process (Q > 0) &
(M > 0)

Q−−;
M−−;

ts Processed 1 true M++; Process
2 (Q > 0) cancel; Wait
3 true — —

3 Wait (W > 0) W−−; tw Waited 1 true R++; Renege
4 Renege (R > 0) &

(Q > 0)
R−−;

Q−−;
0 Reneged 1 true — —

Initialize Initial Marking = {C = 1, M = 1, Q = 0, W = 0, R = 0}; Enabled
Activities = {Create}

Fig. 10.14.  (a) Event graph and (b) ACD of a single server system with reneging.

{Q++}

Load

{Q , M }

(M>0)

Renege

{Q }

tw

(M 0)

Unload

{M++ }

(Q>0)

ts

(Q>0)

Q=0
M=1 Arrive

ta

Jobs

C
•

Q Process
<ts>

Create
<ta>

M
•

W Wait
<tw>

(M≡0)

R Renege

(b) (a)

(Q>0)

312    Advanced Topics in Activity-Based Modeling and Simulation

10.3.2  ACD Model of Resource Failure

Figure 10.15 shows an ACD model of the single server system with resource
failure whose event graph model was presented in Chapter 4 (see Fig. 4.13 in
Section 4.4.1). It is a single server system (ta = inter-arrival time; ts = service
time) augmented with resource failures (tf = interfailure time) and repairs
(tr = repair time). The completion of a Fail activity will cancel a Process activity
(if it is active) in addition to triggering a Repair activity to start. Observe that
the arc multiplicity from queue R to activity Process is zero. This model assumes
that a resource may fail even when it is idle and that the interrupted job due to
failure is discarded without reprocessing. The activity transition table of the
failure-repair ACD model is given in Table 10.3. Observe in the table that the
resource is set to idle (M++) after canceling an active Process activity.

Fig. 10.15.  ACD of a single server system with resource failure.

Jobs
∞

C
•

Q Process <ts> Create <ta>

M
•

Repair <tr> Fail <tf>

F
•

E

R •
0 (M≡0)

TABLE 10.3.  Activity Transition Table of the Resource Failure ACD Model

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Influenced

Activity

1 Create (C > 0) C−−; ta Created 1 true C++; Create
2 true Q++; Process

2 Process (Q > 0) &
(M > 0)
& (R > 0)

Q−−;
M−−;

ts Processed 1 true M++; Process
2 true — —

3 Repair (R > 0) &
(E > 0)

R−−;
E−−;

tr Repaired 1 true R++; Repair,
Process

2 true F++; Fail
4 Fail (F > 0) F−−; tf Failed 1 true E++; Repair

2 (M≡0) M++;
cancel;

Process

Initialize Initial Marking = {C = 1, M = 1, Q = 0, R = 1, F = 1, E = 0}; Enabled
Activities = {Create, Fail}

Cycle Time Analysis of Work Cells via an Activity Cycle Diagram   313

Fig. 10.16.  ACD model of two-stage line with time-constrained processing.

Jobs

Q1

C
•

M1
•

Create
<ta>

Process1
<t1> Q2

M2
•

Process2
<t2>

D Decay
<td>

(M2≡0)

R Return

(Q2>0)

10.3.3  ACD Model of Time-Constrained Processing

Figure 10.16 shows an ACD model of a time-constrained processing system
whose event graph model was presented in Chapter 4 (see Fig. 4.18 in Section
4.4.2). It is a two-stage tandem line where a job that had been processed on
the first machine (M1) must be processed on the second machine (M2) within
td minutes. Otherwise, the job is discarded.

Referring to Fig. 10.16, a job that has completed its processing at M1 is put
into the queue Q2, and at the same time, a clone of the job is put into the
queue D if the second machine is busy (i.e., M2 ≡ 0). The clone in the queue
D is immediately put into the Decay activity where it is processed for td
minutes. At the end of the Process2 activity, the oldest clone residing in the
Decay activity is deleted if Q2 > 0 (Q2 is equal to the number of clones resid-
ing in the Decay activity). The ACD model of Fig. 10.16 is specified in the
activity transition table of Table 10.4.

10.3.4  Execution of Canceling Arc

Figure 10.17 shows how to build an event routine for the Fail activity appear-
ing in Table 10.3. The At-end Action Cancel in the activity transition table is
implemented with the event-handling function Cancel-event () that was intro-
duced in Chapter 4 (Section 4.7.1). Other activity routines and event routines
are implemented the same way as described in Section 10.2.

Exercise 10.3. Write an activity routine and an event routine for the
Process2 activity appearing in Table 10.4.

10.4  CYCLE TIME ANALYSIS OF WORK CELLS VIA AN ACTIVITY
CYCLE DIAGRAM

Work cells play a key role in lean manufacturing that is widely accepted in
industries. The physical configuration of a lean manufacturing system is a
linked work-cell system [Black and Hunter 2003]. Popular types of work cells

314    Advanced Topics in Activity-Based Modeling and Simulation

include robot work cells in the mechanical industry, hoist plating lines used in
the PCB (printed circuit board) industry, and cluster tools in semiconductor
industry. A key issue in work-cell design is to estimate or reduce its cycle time.
This section shows how ACD-based modeling can be used in the performance
analysis of work cells.

10.4.1  Cycle Time Analysis of Single-Armed Robot Work Cell

Figure 10.18 shows a robot work cell [Asfahl 1992] in which a single-armed
robot performs loading and unloading operations for three machines. Each
machine unloads its finished job before loading a new job. The in-port and
out-port are designated as S0 and S4, and the machines as S1, S2, and S3. A
job is introduced at the in-port S0, goes through the machines, and is dropped
at the out-port S4.

TABLE 10.4.  Activity Transition Table of the ACD Model in Figure 10.16

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Influenced

Activity

1 Create (C > 0) C−−; ta Created 1 true C++; Create
2 true Q1++; Process1

2 Process1 (Q1 > 0) &
(M1 > 0)

Q1−−;
M1−−;

t1 Processed1 1 true M1++; Process1
2 true Q2++; Process2
3 (M2≡0) D++; Decay

3 Process2 (Q2 > 0) &
(M2 > 0)

Q2−−;
M2−−;

t2 Processed2 1 true M2++; Process2
2 (Q2>0) Cancel; Decay
3 true — —

4 Decay (D > 0) D−−; td Decayed 1 true R++; Return
5 Return (R > 0) &

(Q2 > 0)
R−−;

Q2−−;
0 Returned 1 true — —

Initialize Initial Marking = {C = 1, M1 = 1, M2 = 1, Q1 = Q2 = D = R = 0}; Enabled
Activities = {Create}

Fig. 10.17.  Event routine for the Fail activity in the resource failure model.

No Activity
At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action Influenced Activity

4 Fail (F>0) F--; tf Failed 1 true E++; Repair

2 (M≡0) M++; Cancel; Process

Initialize Initial Marking = {C=1, M=1, Q=0, R=1, F=1, E=0}; Enabled Activities = {Create, Fail}

Execute-Failed-event-routine ()
 If (true) {E++; Store-activity (Repair)};
 If (M≡0) {M++; Cancel-event (Processed)};

Cycle Time Analysis of Work Cells via an Activity Cycle Diagram   315

When all machines are full (i.e., loaded with jobs), the robot has to start its
activity cycle by unloading (U3) the finished job from the last machine S3.
Then, it carries (c4) the finished job to the out-port S4 to drop (L4) the finished
job there, moves (m42) to machine S2 to unload (U2) the job, carries (c3) the
unloaded job to machine S3 to load (L3) the job, and so on. The activity cycle
of the robot is depicted in the operation sequence diagram of Fig. 10.19.

If you follow the operation sequence of the robot starting from S0, you will
easily construct its ACD. Namely, the robot activity cycle is: U0(Pick) → c1 →
L1 → m13 → U3 → c4 → L4(Drop) → m42 → U2 → c3 → L3 → m31 → U1 → c2
→ L2 → m20. On the other hand, each machine is involved in loading (L) a
new job, processing (P) the job, and unloading (U) the finished job. For
example, S1 machine activity cycle is: L1 → P1 → U1. By adding the machine
activity cycles to the robot activity cycle, we obtain an ACD of the robot work
cell as shown in Fig. 10.20. The job activity cycle starts from Pick, and then it

Fig. 10.18.  Robot work cell [Asfahl 1992].

S3

Oper. 50C
ear hole drill

S4

Belt
conveyor

outgoing parts

S0
Index

conveyor
incoming parts

S1

Oper. 50A
cross pin drill

Oper. 50B
bore pinion holes

 S2

Prab Robot
model FA

Fig. 10.19.  Operation sequence diagram of the robot in a three-stage work cell.

U0 L4

c3 c2

c1

m13
m20m42

m31

c4

S1

S0

S2

S3

S4 Drop Pick

316    Advanced Topics in Activity-Based Modeling and Simulation

goes to machines S1, S2, S3 and ends at Drop (i.e., U0 → c1 → L1 → P1 → U1
→ c2 → . . . → U3 → c4 → L4 as indicated with the sequence of thick arrows in
the figure).

There are four active resources in the work cell: robot (R) and three
machines (S1, S2, and S3). Let Lk, Uk and Pk denote the loading, unloading
and processing times at Sk (for k = 1, 2, 3), respectively, and mij and cj denote
the move time (without carrying a job) and carry time of the robot from Si to
Sj, respectively. Then, the work-cell cycle time (CT) is expressed as:

	 CT(Robot-cell) max{CT(R) CT(S) CT(S) CT(S)}= , , , ,1 2 3 	 (10.1)

where

	
CT(R) U U U U L L L L

c c c c m m m

= + + + + + + +
+ + + + + + +
{ } { }

{ } {
0 1 2 3 1 2 3 4

1 2 3 4 20 31 442 13+ m };
	

	 CT(S) U U L L c c m P1 0 1 1 2 1 2 20 1= + + + + + + +{ } { } { } { } ; 	

	 CT(S) U U L L c c m P2 1 2 2 3 2 3 31 2= + + + + + + +{ } { } { } { } ;	

	 CT(S) U U L L c c m P3 2 3 3 4 3 4 42 3= + + + + + + +{ } { } { } { } , 	

where CT(R) is the robot cycle time and CT(Sk) denotes the cycle time of
machine Sk.

10.4.2  Cycle Time Analysis of Single Hoist Plating Line

Shown in Fig. 10.21 is a hoist plating line [Chen et al. 1998] in which an auto-
mated hoist performs all the loading and unloading operations for a sequence
of tanks. Tank0 (S0) is designated as the loading station and TankN+1 (SN+1) as
the unloading station.

Let’s assume that N = 3. Then, when all the operation tanks (S1–S3) are
loaded with jobs, the hoist has to start its activity cycle by unloading (U3) the
finished job from S3. Then, it carries (c4) the finished job to the unloading
station S4 to drop (L4) the finished job there, makes a move m42 to tank S2 to

Fig. 10.20.  ACD of the robot work cell.

c2

S0
••••

U1

S1 •

L1

P2

U2

S2 •

L2

c1 U0

c3 L3

c4 L4

S4 m42

m31

m20

m13 U3

P1 S3 • P3

R •

Drop Pick

Jobs

Cycle Time Analysis of Work Cells via an Activity Cycle Diagram   317

unload (U2) the job, carries (c3) the job to tank S3 to load (L3) the job, and so
on. The operation sequence diagram is as shown in Fig. 10.22.

In fact, the behavior of the hoist line is exactly the same as that of the robot
work cell, and the hoist operation sequence diagram in Fig. 10.22 is identical
to the robot operation sequence diagram of Fig. 10.19. Thus, its ACD is the
one given in Fig. 10.20. However, a hoist plating line has a time-constraint issue
due to the nature of chemical treatments: the time a job spends in a tank is
upper and lower bounded, which imposes time constraints on the hoist moves
[Chen et al. 1998].

One type of time-constraints is immediate removal constraints, requiring
that a processed job should be removed from the tank immediately. Namely,
the hoist that had loaded (Lk) a job at Sk has to come back to be unloaded
(Uk) no later than the actual processing time pk. Referring back to the ACD
in Fig. 10.20, the immediate removal constraints for k = 1 ∼ 3 are expressed as:

	

m U c L m U c L m p

m U c L m U c L
13 3 4 4 42 2 3 3 31 1

20 0 1 1 13 3 4 4

+ + + + + + + + ≤
+ + + + + + + + mm p

m U c L m U c L m p
42 2

31 1 2 2 20 0 1 1 13 3

≤
+ + + + + + + + ≤ .

	 (10.2)

In order to reduce the expressional complexity, let’s assume that:

1.	 All the carry times are no less than a fixed value (γ);
2.	 Each processing time pk is bounded by its min value (αk) and max value

(βk);
3.	 All the load/drop times are equal to a fixed value δ;
4.	 All the unload/pick times are equal to π;
5.	 All the move times are equal to μ.

Fig. 10.21.  Hoist plating line [Chen et al. 1998].

loading
station

S0

Tank1

S1

TankN-1

SN-1

TankN

SN

TankN+1

SN+1

unloading
station

Track

PCB

Hoist

Tank2

S2

Tank0

Fig. 10.22.  Operation sequence diagram of the hoist in a three-stage line.

U0

L1

U1

L2

U2

L3

U3

L4

c2 c1 c4 c3

m42 m31 m20

m13

Drop Pick

S1 S0 S2 S3 S4

318    Advanced Topics in Activity-Based Modeling and Simulation

Then, the hoist scheduling problem can be formulated as a minimization
problem as follows [Chen et al. 1998]:

	 Minimize(max CT(Hoist) CT(S) CT(S) CT(S)){ , , , }1 2 3 	 (10.3)

	 CT(Hoist) c c c c= + + + + + +{ } { }4 4 4 1 2 3 4π δ µ 	

	 CT(S) c c p1 2 2 1 2 1= + + + + +{ } { }π δ µ 	

	 CT(S) c c p2 2 2 2 3 2= + + + + +{ } { }π δ µ 	

	 CT(S) c c p3 2 2 3 4 3= + + + + +{ } { }π δ µ 	

Decision variables: p1, p2, p3, c1, c2, c3, c4

Subject to:

(1)	 Time window constraints: αk ≤ pk ≤ βk for k = 1 to 3
(2)	 Carry time constraints: γ ≤ ck for k = 1 to 4
(3)	 Immediate removal constraints:

	 { } { }2 2 3 3 4 1π δ µ+ + + ≤+c c p 	

	 { } { }2 2 3 1 4 2π δ µ+ + + + ≤c c p 	

	 { } { }2 2 3 1 2 3π δ µ+ + + + ≤c c p 	

If the hoist scheduling problem (Eq. 10.3) does not produce a feasible solu-
tion, another scheduling may be generated with a reduced load factor and the
resulting hoist scheduling problem is formulated and solved. The load factor
of the operation sequence in Fig. 10.22 is 3/3 (or 100%) because three tanks
out of three tanks are occupied by the job initially. Figure 10.23 shows an
operation sequence diagram with a reduced load factor (=2/3) where the
second tank S2 is not occupied initially.

If you follow the operation sequence diagram in Fig. 10.23 starting from S1,
you will easily construct the hoist activity cycle: U1 → c2 → L2 → m23 → U3
→ c4 → L4(Drop) → m40 → U0(Pick) → c1 → L1 → m12 → U2 → c3 → L3 →
m31. As before, each tank (Sk) is involved in loading (Lk), processing (Pk), and
unloading (Uk). From these individual activity cycles, an ACD like the one
given in Fig. 10.20 may be obtained. Hoist scheduling problems have been
widely studied and a comprehensive survey is available in the literature
[Manier and Bloch 2003].

Fig. 10.23.  Operation sequence diagram of the hoist with a reduced load factor.

U0

L1

U1

L2

U2

L3

U3

L4

c2 c1 c4

m40

m23

S1 S0 S2 S3 S4

Drop Pick

 c3

m12

m31

Cycle Time Analysis of Work Cells via an Activity Cycle Diagram   319

Exercise 10.4. Build an ACD for the operation sequence diagram given in
Fig. 10.23.

10.4.3  Cycle Time Analysis of Dual-Armed Robot Cluster Tool

Figure 10.24 shows a cluster tool in which a dual-armed robot performs swap-
ping operations [Kim et al. 2003]. The cluster tool consists of several processing
chambers, an aligner and cooler, two load-locks, and a dual-armed robot. A
serial wafer flow is depicted in Fig. 10.24(a) and a serial-parallel wafer flow in
Fig. 10.24(b). Shown in Fig. 10.24(c) is the physical image of the cluster tool.

In the 3-step 3-chamber serial flow of Fig. 10.24(a), the robot picks up a job
at the load-lock A, and it carries the job to chamber C1 to swap the new job
with a finished one. Then, it goes to C2 to make another swapping, and so on.
It completes its activity cycle by dropping the completed job at the load-lock
B. The robot’s move (m) from B to A may be neglected as its time duration
is negligible.

Figure 10.25(a) shows an operation sequence diagram for the serial flow
case where each job is processed in C1, C2, and C3 in series. Figure 10.25(b)

Fig. 10.24.  Cluster tool with dual-armed robot [Kim et al. 2003].

A
Loadlock

B
Loadlock

CoolerAligner

C1

C3

C4

From LLA
From LLB

C2

A
Loadlock

B
Loadlock

CoolerAligner

C1

C3

C4

C2

(a) (b) (c)

Fig. 10.25.  Operation sequence diagram: (a) serial flow, (b) serial/parallel flow.

C3

C2

C1

B A Drop

Sw
ap2

Swap3

Pick

(a) (b)

Swap1

c4

c3 c2

c1

m

C3

C2

C1

B A Drop

Sw
ap2

Swap3

Pick

Swap1

c4

c3

c2

c1

c5

c6

odd-number jobs

m

even-number jobs

320    Advanced Topics in Activity-Based Modeling and Simulation

shows an operation sequence diagram for a 2-step 3-chamber serial-parallel
flow case where the first processing step is handled by two chambers (C1 and
C2) and the second step is covered by one chamber (C3). The serial-parallel
flow is used when the processing time of the first step operation is much larger
than that of the second step. The flow of odd-number jobs (Pick-c1-c2-c6-Drop)
is denoted by a thin arrow and that of even-number jobs by a thick arrow.

Figures 10.26 and 10.27, respectively, show ACDs for the 3-chamber serial
flow of Fig. 10.25(a) and the 3-chamber serial-parallel flow of Fig. 10.25(b).
The activity names and durations are: c1 − c6 = carry; Sk = swap at chamber k;
Pk = process at chamber k; σ = swapping time; δ = dropping time; π = picking-up
time; μ = moving time. In both ACDs, there are four resource activity cycles.
The cycle time of the cluster tool is determined by the maximum of the four
activity cycles.

There are four resources in the ACD of Fig. 10.27: Robot (R), chamber-1
(C1), chamber-2 (C2), and chamber-3 (C3). The activity cycle of the robot is
the outer loop of the ACD and the activity cycles of C1 and C2 are simple
loops as indicated in the ACD of Fig. 10.27. Thus, their cycle times are easily
identified as:

	 CT(Robot) c c c c c c per two job= + + + + + + + + +{ } { }; / /2 4 2 2 1 2 3 4 5 6π σ δ µ 	
(10.4)

	 CT(C) p per one job1 1= +σ ; / / 	

	 CT(C) p per one job2 2= +σ ; / / 	

Fig. 10.26.  ACD for the serial flow operation of Fig. 10.25(a).

c1

S1 c2 S2 c3 S3

c4 Drop Pick m R •

C1 •

P1

C2 •

P2

C3 •

P3

Fig. 10.27.  ACD for the serial/parallel flow operation of Fig. 10.25(b).

c1
S1

<σ>
c2

S3a
<σ>

c3
Drop-b

<δ>

Pick-a <π>
C3•

P3a

mb
<µ>

Drop-a
<δ> c4

S2
<σ>

c5
S3b
<σ>

c6

P3b

P2

C2•

C1•

P1

Chamber-1

Chamber-2

Chamber-3

Pick-b
<π>

ma
<µ>

R•

odd-number jobs

even-number jobs

Cycle Time Analysis of Work Cells via an Activity Cycle Diagram   321

However, as depicted in Fig. 10.28, the cycle time of chamber-3 (C3) are
constrained by three loops: The inner loop (S3a → P3a → S3b → P3b), A-loop
(S3a → P3a → S3b → c6 → . . . → c2), and B-loop (S3a → c3 → Drop-b→ . . . →
c5 → S3b → P3b). Thus, the cycle time of C3 can be expressed as:

	 CT(C) max{CT(A-loop) CT(B-loop) CT(Inner-loop)} per two3 = , , ; / / jobs 	
(10.5)

	 CT A-loop 3 c c c p a() { } { }= + + + + + + +π σ δ µ 1 2 6 3 	

	 CT(B-loop) c c c p b= + + + + + + +{ } { }π σ δ µ3 3 4 5 3 	

	 CT Inner-loop p pa b() = + +2 3 3σ 	

As in the case of the hoist plating line, wafers in the cluster tool are subject
to the same processing-time constraints. Thus, utilizing the results given in Eqs.
10.4 and 10.5, the cluster tool scheduling problem may be formulated as an
LP problem as follows [Kim et al. 2003]:

Minimize(max CT(Robot) CT(C) CT(C) CT(A) CT(B) CT(Inner-{ , , , , ,1 2 lloop))} 	
(10.6)

	 CT(Robot) c c c c c c= + + + + + + + + +{ } { };2 4 2 2 1 2 3 4 5 6π σ δ µ 	

	 CT(C) p1 2 1= +();σ 	

	 CT(C) p2 2 2= +();σ 	

	 CT(A) c c c p a= + + + + + + +{ } { } ;π σ δ µ3 1 2 6 3 	

	 CT(B) c c c p b= + + + + + + +{ } { } ;π σ δ µ3 3 4 5 3 	

	 CT(Inner-loop) p pa b= + +2 3 3σ ; 	

Decision variables: p1, p2, p3a, p3b, c1, c2, c3, c4, c5, c6

Fig. 10.28.  Loops involved in the cycle time of chamber-3 (C3).

c1
S1

<σ>
c2

S3a
<σ>

c3
Drop-b

<δ>

Pick-a <π>
C3•

P3a

mb
<µ>

Drop-a
<δ> c4

S2
<σ>

c5
S3b
<σ>

c6

P3b

Inner loop

Pick-b
<π>

ma
<µ>

R• B-loop (even# job) A-loop (odd# job)

322    Advanced Topics in Activity-Based Modeling and Simulation

Subject to:

1.	 Time window constraints: αk ≤ pk ≤ βk for k = 1, 2, 3a, 3b
2.	 Carry time constraints: γ ≤ ck for k = 1 ∼ 6
3.	 Immediate removal constraints:

	 { } { }2 3 2 21 2 3 4 5 6 1π σ δ µ+ + + + + + + + + ≤c c c c c c p 	

	 { } { }2 3 2 21 2 3 4 5 6 2π σ δ µ+ + + + + + + + + ≤c c c c c c p 	

	 { } { }π σ δ µ+ + + + + + ≤c c c p a3 4 5 3 	

	 { } { }π σ δ µ+ + + + + + ≤c c c p b1 2 6 3 	

Exercise 10.5. Formulate a cluster tool scheduling problem for the ACD in
Fig. 10.26.

10.5  ACTIVITY CYCLE DIAGRAM MODELING OF A FLEXIBLE
MANUFACTURING SYSTEM

Figure 10.29 shows a linear-type FMS consisting of four machining centers
(MCT), a washing machine (WM), a coordinate measuring machine (CMM),
three load/unload stations (LU), a stacker crane or automated guided vehicle
(AGV), and a central buffer (CB). This FMS is a Mazatrol FMS, which is one
of the most popular FMSs globally [Choi et al. 1996]. Each processing machine
(MCT, WM, or CMM) is equipped with an input buffer (IB) and an output
buffer (OB). In this section, we present a step-by-step procedure for building
a P-ACD model of the FMS line in Fig. 10.29: ACD modeling of job flows,
P-ACD modeling of job routing, P-ACD modeling of AGV dispatching, and
P-ACD modeling of refixture operations.

Fig. 10.29.  Layout of the Mazatrol FMS.

Activity Cycle Diagram Modeling of a Flexible Manufacturing System   323

10.5.1  ACD Modeling of Job Flows in FMS

As depicted in the classical ACD model in Fig. 10.30, the flow of the jobs in
the FMS is divided into entering, processing, and exiting phases. In the Enter-
ing phase, a job that has been loaded (Load) at an LU station is picked up by
the AGV (Pick-LU), moved to the central buffer CB (LU2CB), and stored in
the CB (Store0). The Processing phase begins with retrieving a job from the
CB (Retrieve1), and then the job is moved to the IB of a machine (CB2IB),
dropped on the IB (Drop-IB), fed into the machine (Feed), and processed by
the machine (Process). The processed job is removed from the machine
(Remove), picked up at the OB (Pick-OB), moved to the CB (OB2CB), and
stored back in the CB (Store1).

A done job stored in the CB is sent out of the FMS line during the Exiting
phase, which consists of retrieving the job from the CB (Retrieve0), bringing
it to a LU station (CB2LU), dropping it in a LU station (Drop-LU), and
unloading it (Unload). Also depicted in Fig. 10.30 are the activity cycles of the
load/unload station (LU), central buffer (CB), and each machine’s input buffer
(IB), output buffer (OB), and machine table (M). In Fig. 10.30, the number of
active LU stations is assumed to be 2.

10.5.2  P-ACD Modeling of Job Routing in FMS

In an FMS, each job type has its own routing sequence, and attached to a job
are its job-type (j) and current processing-step number (p). When a new job
is stored in the central buffer, p is set to 1. Then, p is incremented by one every
time the job completes a processing step.

Figure 10.31 shows a P-ACD model of job routes in the FMS. By comparing
the P-ACD model in Fig. 10.31 with the classical ACD model in Fig. 10.30, we
can see that (1) the activity nodes in the entering and exiting phases (which
are now combined into the Handling phase) are parameterized with job type

Fig. 10.30.  ACD modeling of job flows in the FMS of Fig. 10.29.

IB •

OB •

E10

E9

E8

E11

E7

E12 E2 Remove Pick-OB LU2CB OB2CB Pick-LU E1

E17

Load

Unload

E0

Store1 E13

Check

E4

E6 Drop-IB Drop-LU CB2IB CB2LU E16 E15

Process

Store0 E3

Retrieve0 Retrieve1

E5 E14

M •

Feed

LU ••

(Done) (Not Done)

CB••• CB•••

324    Advanced Topics in Activity-Based Modeling and Simulation

j, (2) the Check activity node is parameterized by j and p, and (3) the activity
nodes in the Processing phase are parameterized by j, p, and m.

For each job, its type j is assigned at the Load activity, and it is passed along
up to the Store0 activity where the processing-step p is set to 1 and its param-
eters {j, p = 1} are passed to the buffer queue B (j, p). Then, the machine
number (m) for the p-th processing operation of a type j job is obtained at the
Check activity by invoking the route function Route(j, p). The route function
will return 0 (m = 0) if the job is done, otherwise it will return m > 0. When
m > 0, the job with parameters {j, p, m} is stored in the new job queue N (j, p,
m), and it is passed all the way to the activity node Store1 where the param-
eters {j, p+1} are passed to Check. If the job is done (i.e., m ≡ 0), it is stored in
the finished job queue F (j) and passed along up to the activity node Unload.

Descriptions of major activity nodes of the P-ACD model in Fig. 10.31 are
given in the following:

•	 Load (j): load a job and assign its job type j
•	 Pick-LU (j): pick up a job at an LU station
•	 LU2CB (j): move the job from an LU station to the CB
•	 Store0 (j): store the job at the CB
•	 Check (j, p): get m (machine number) and check
•	 Retrieve1 (j, p, m): retrieve a new job from the CB
•	 CB2IB (j, p, m): move the job from the CB to the IB (input buffer)
•	 Drop-IB (j, p, m): drop the job at the IB of machine m
•	 Store1 (j, p, m): store the processed job at the CB
•	 Retrieve0 (j): retrieve a finished job from the CB

Descriptions of queue nodes of the P-ACD model in Fig. 10.31 are also
given in the following:

Fig. 10.31.  P-ACD modeling of job routing in the FMS.

IB•(m)

OB•(m)

E10

E9

E8

E11

E7

E12 E2
Remove
(j, p, m)

Pick-OB
(j, p, m)

LU2CB
(j)

OB2CB
(j, p, m)

Pick-LU
(j) E1

E17

Load
(j)

Unload
(j)

E0

Store1
(j, p, m) E13

Check (j, p)

B (j,p)

E6
Drop-IB
(j,p, m)

Drop-LU
(j)

CB2IB
(j, p, m)

CB2LU
(j) E16 E15

Process
(j, p, m)

Store0
(j) E3

Retrieve0
(j)

Retrieve1
(j, p, m)

N (j,p,m) F (j)

M•
(m)

Feed
(j, p, m)

LU••

m

m

m

 j, p+1 j,1

{ m = Route (j,p) }

(m ≡ 0) (m > 0)

j j, p, m

j

CB••• CB•••

Activity Cycle Diagram Modeling of a Flexible Manufacturing System   325

•	 E0: jobs to be released
•	 E1 (j): loaded jobs at the LU station
•	 B (j,p): buffered jobs at the CB
•	 F (j): finished jobs stored at the CB
•	 N (j, p ,m): new (unfinished) jobs stored at the CB
•	 CB: available slots in the CB
•	 IB (m): input buffer of machine m
•	 OB (m): output buffer of machine m
•	 M (m): machine table of machine m
•	 LU: available slots of load/unload stations

10.5.3  P-ACD Modeling of AGV Dispatching Rules in FMS

In the FMS, all job movements are handled by AGVs. As shown in Fig. 10.32,
there exist four types of requests for AGV in an FMS: Request R1 to bring in
a new job to a machine; request R2 to take out a processed job from a machine;
request R3 to bring in a newly loaded job from the load/unload station to the
central buffer; request F (tokens in the finished job queue) to take out a fin-
ished job from the central buffer. In general, request R1 has the highest prior-
ity because preventing machines from starving is most critical, request R2 has
the next priority because preventing machines from blocking is also important,
and request F has the lowest priority.

Descriptions of the activity nodes that are newly introduced for AGV dis-
patching in Fig. 10.32 are given in the following:

•	 Move2CB1 (j, p, m): AGV moves to CB to pick up a new job of type j at
processing step p to bring it to IB(m).

•	 Move2OB (m): AGV moves to OB(m) to pick up a job that was pro-
cessed at m.

Fig. 10.32.  P-ACD modeling of AGV dispatching in the FMS.

Remove
(j, p, m)

Pick-OB
(j, p, m)

Pick-LU
(j)

Load
(j)

Retrieve0
(j)

Retrieve1
(j, p, m)

N (j,p,m)

Feed
(j, p, m)

LU••

Move2LU

AGV•

Move2CB0
(j)

R3 Move2OB(m) R2
(m)

R1
(m)

CB•••
m

m

Move2CB1
(j,p,m) j, p, m j

1

2

4

3

F (j)

326    Advanced Topics in Activity-Based Modeling and Simulation

•	 Move2LU: AGV moves to LU station to pick up a new job.
•	 Move2CB0(j): AGV moves to CB to pick up a finished job of type j to

bring it to LU station for unloading.

Descriptions of the queue nodes that are newly introduced for AGV dis-
patching in Fig. 10.32 are given in the following:

•	 R1 (m): request for AGV to bring in a new job to IB(m)
•	 R2 (m): request for AGV to take out a job from OB(m)
•	 R3: request for AGV to bring in a newly loaded job from LU station to

CB
•	 F (j): finished job count acts as a request for AGV to take out a finished

job from CB

Upon receiving R1(m), which is a request for AGV to bring in a new job
(i.e., a job that is not finished) to machine m, the AGV performs the following
actions: (1) moves to the central buffer after reserving a new job that is bound
to machine m (Move2CB1) and (2) retrieves the reserved job (Retrieve1).
Other types of requests are handled similarly.

By merging the AGV dispatching model in Fig. 10.32 into the job routing
model in Fig. 10.31, a P-ACD model of the entire FMS operation is obtained
as shown in Fig. 10.33. Note in Fig. 10.33 that there are four AGV activity
cycles, one for each type of AGV requests. For example, the AGV activity cycle
for request R1 is Move2CB1 → Retrieve1 → CB2IB → Drop-IB →. It should
be also noted that the job activity cycle has been changed slightly: in Fig. 10.33,
activity node Move2CB1 is inserted in the job activity cycle right after the
queue node N, and Move2CB0 is inserted right after F.

Conceptually, the components of the P-ACD model in Fig. 10.33 can be
aggregated into two handling and processing boxes as depicted in Fig. 10.34.

Fig. 10.33.  P-ACD modeling of the entire FMS operation.

IB•(m)

OB•(m)

E10

E9

E8

E11

E7

E12 E2
Remove
(j, p, m)

Pick-OB
(j, p, m)

LU2CB
(j)

OB2CB
(j, p, m)

Pick-LU
(j) E1

E17

Load
(j)

Unload
(j)

Store1
(j, p, m) E13

Check
(j, p)

B (j,p)

E6
Drop-IB
(j,p, m)

Drop-LU
(j)

CB2IB
(j, p, m)

CB2LU
(j) E16 E15

Process
(j, p, m)

Store0
(j) E3

Retrieve0
(j)

Retrieve1
(j, p, m)

N (j,p,m) F (j)

M•
(m)

Feed
(j, p, m)

LU••

m

m

m

 j, p+1 j,1

{m= Route(j,p)}

(m ≡ 0) (m > 0)

j j, p, m

j

Move2LU

AGV•

Move2CB0
(j)

R3 Move2OB(m)

AGV•

R2
(m)

R1
(m)

1

2

4

3
E0

CB••• CB•••
m

m

Move2CB1
(j,p,m)

 j, p, m j

Activity Cycle Diagram Modeling of a Flexible Manufacturing System   327

10.5.4  P-ACD Modeling of Refixture Operation and
Heterogeneous FMS

In the FMS model in Fig. 10.34, there are three types of processing operations
(machining, wash, and measuring). Machine numbers for machining are
m = 1–4, for wash it is m = 5, and for measuring it is m = 6. A job that does
not require a refixture operation goes through the routing sequence Load →
Machining → Wash → Measuring → Unload. The P-ACD model in Fig. 10.33
assumes that the activity cycle of the job does not contain a refixture operation.
In this case, the FMS is a homogeneous FMS in which all the processing opera-
tions follow the same activity sequence given by:

	
Retrieve CB IB Drop-IB Feed

Remove Pick-OB OB CB S

→ → → →
→ → → →

2

2

Process

ttore.
	 (10.7)

In practice, jobs that require a refixture operation may go through the
routing sequence Load→Machining1→Wash→Refixture→Machining2→Mea
suring→Unload. The refixture operation is performed at a LU station
(m = 7–9), and its activity sequence is given by:

	 Retrieve CB LU Drop-LU Pick-LU LU CB Store→ → → → → →2 2Refix . 	
(10.8)

Figure 10.35 shows an aggregate P-ACD model of the Mazatrol FMS opera-
tions involving the refixture operation where individual components are
aggregated into three boxes: handling box, processing box, and refixture box.
Observe in Fig. 10.35 that the new job queue N in Fig. 10.34 has been divided
into NP (the new job queue for processing) and NR (the new job queue for
refixture). The machine-number set for processing machines is denoted by P
and that for refixture machines by R, where P = {1, 2 . . . 6} and R = {7, 8, 9}.

The P-ACD model in Fig. 10.35 is in effect a heterogeneous FMS model
supporting two different classes of processing operations: one class of process-
ing operations follows the activity sequence given by Eq. 10.7 and the other
class follows Eq. 10.8. In this book, we use the term (processing) operation
class for a set of (processing) operation types having the same activity sequence.

Fig. 10.34.  Aggregate P-ACD model of the Mazatrol FMS without refixture.

Handling
(j)

Processing
(j, p, m)

Check (j, p)

B (j,p)

 j,1 j, p+1

(m ≡ 0) (m > 0)

j j, p, m

{ m = Route(j, p)}

N (j,p,m) F (j)

328    Advanced Topics in Activity-Based Modeling and Simulation

Here, the refixture operation is regarded as a class of processing operation.
The aggregate P-ACD model in Fig. 10.35 provides a framework for building
a generalized P-ACD model of heterogeneous FMSs.

Figure 10.36 shows the P-ACD model of the Refixture part in the aggregate
P-ACD model in Fig. 10.35. Descriptions of the major activity nodes and queue
nodes that are newly introduced in Fig. 10.36 are given in the following:

•	 Move2CB2 (j ,p, m): AGV moves to CB to pick up a new job of type j at
processing step p to bring it to LU station m

•	 Retrieve2 (j, p, m): retrieve a new job from CB for refixture
•	 CB2LU2 (j, p, m): move the job from CB to LU station m
•	 Move2LU2: AGV moves to LU to pick up a refixed job
•	 R4: request for AGV to bring in a refixed job from LU

Handling (j) Processing (j, p, m)
Check (j, p)

B (j,p)
 j, 1 j, p+1

(m ≡ 0)

j
{ m = Route(j, p) }

Refixture (j, p, m)

(m P)

(m R)

 j, p+1
 NP (j,p,m) F (j)

 j, p, m

 NR (j,p,m)

Fig. 10.35.  Aggregate P-ACD model of the Mazatrol FMS with refixture operation.

Fig. 10.36.  P-ACD model of the refixture part in Fig. 10.35.

Pick-LU2
(j, p, m)

LU2CB2
(j, p, m)

Store2
(j, p, m)

B (j,p)

Drop-LU2
(j,p, m)

CB2LU2
(j, p, m)

Refix
(j, p, m)

Retrieve2
(j, p, m)

 NR(j,p,m)

 j, p+1

Move2LU2

AGV•

Move2CB2(j,p,m)

R4

1

2

CB •••

LU ••

Formal Model Conversion   329

A complete list of C# codes for the FMS simulator may be found in the offi-
cial website of this book (http://VMS-technology.com/Book/ACDSimulator).

10.6  FORMAL MODEL CONVERSION

This section presents methods of formal model conversion from ACD to EG
(event graph) and SG (state graph) together with examples of converting ACD
models into EG models and SG models.

10.6.1  Conversion of ACD Models to Event Graph (EG) Models

Methods of mapping timed Petri net (TPN) models into event graph models
were investigated by Schruben and Yucesan [1994]. Recall that a classical ACD
is a TPN. In principle, any ACD model may be converted into an EG model.
The basic rules for a formal model conversion are:

1.	 An arc in the ACD model becomes an event node in the event graph
(EG)

2.	 A token variable of ACD becomes a state variable of EG
3.	 A queue node K of ACD becomes a conditional edge of EG with (K > 0),

preceded by an event node with K++ and succeeded by a event node
with K−−

4.	 An activity node with duration td becomes a time-delay edge of EG with
a time delay td

Figure 10.37 shows the basic conversion relations: (1) Arcs β, γ, δ are con-
verted to event nodes; (2) token variable J becomes a state variable; (3) queue
node J, preceded by arc β and followed by arc γ, is converted to the conditional
edge (J > 0), preceded by event β with {J++} and followed by event γ with {J−−};
(4) activity node Process <tp> is converted to the time-delay edge with tp.

Figure 10.38(a) shows an ACD-to-EG conversion template for the Job
Creator model where the basic ACD-to-EG conversion rules are applied as
follows:

1.	 ACD arcs (α and β) became event nodes (α and β) in the EG
2.	 Token variables C, S, and J became state variables

Fig. 10.37.  Basic relations for converting an ACD model into an event graph model.

J Process
<tp> γ δ β γ δ

{J- -}

 β

{J++}
(J>0)

 γ δ

{J- -}

 β

{J++}

ACD Converted Event Graph Simplified Event Graph

http://VMS-technology.com/Book/ACDSimulator

330    Advanced Topics in Activity-Based Modeling and Simulation

3.	 Queue node C became the edge β→α, having a condition (C > 0) &
(S > 0), with state update at node-α {C--, S--} and state update at node-β
{C++, J++}

4.	 The Create activity with duration ta became the edge α→β having a time
delay ta

Figure 10.38(b) represents an ACD-to-EG conversion template for the
Machine model, which was also obtained by applying the basic ACD-to-EG
conversion rules.

10.6.2  Conversion of ACD Models to State Graph (SG) Models

As mentioned earlier, an arc in an ACD model denotes an event; an entity
queue (i.e., a queue node in an entity activity cycle) represents a passive
resource; and a resource activity cycle represents an active resource. Thus, the
basic ACD-to-SG conversion rules are:

1.	 An arc in the ACD model becomes an event message in the state graph
2.	 A token variable maps into a set of state nodes
3.	 An entity queue node is a passive resource and it becomes an object
4.	 A resource queue node becomes an external transition state node
5.	 An activity node becomes an internal transition state node
6.	 A resource cycle becomes an object (one object for each active resource)

Figure 10.39 shows an ACD-to-SG conversion template for the Job Creator
model. The job creator model consists of the Source object and Creator object

Fig. 10.38.  ACD to event graph conversion templates for (a) the Job Creator and (b)
Buffer-Machine models.

M

J Process
<tp> γ

Buffer
Machine δ γ

β
γ δ

{J- -; M- -} {M++}

(M > 0)
β

(J>0)

Create
<ta>

C

 α

β Job Creator

β

 α S=∞

{C++, J++}

β

{C--,S--}

α

(C>0)&(S>0)

β α

{J++}

β

δ

ACD Event Graph

ACD Event Graph

{J++}

J {C--} {C++, J++}

(b)

(a)

Formal Model Conversion   331

that are interacting with each other via the event messages α and β as depicted
in Fig. 10.39(b). The Source object is a single state machine, which, upon receiv-
ing an input message β, decreases the value of S by one and sends out an
output message α. However, since the value of S is infinite, an input message
β always generates an output message α. Thus, the redundant Source object
in Fig. 10.39(b) can be removed and the Job Creator model reduces to the
single state atomic state graph model of Fig. 10.39(c).

Figure 10.40 shows an ACD-to-SG conversion template for the Buffer-
Machine model: the Buffer queue becomes an infinite state atomic state graph
model “Buffer”; the Machine activity cycle becomes a two-state atomic state
graph model “Machine”; the events β, γ, δ are used as messages in the state
graph model. The initial states of the two atomic models in the state graph are
Backlog (J = −1) and Idle (M = 1), respectively.

10.6.3  Examples of Formal Model Conversion

10.6.3.1  Examples of ACD-to-EG conversion  Figure 10.41 shows an
ACD-to-EG (event graph) conversion example for a two-server model. The
two-server model conversion of Fig. 10.41 is obtained by concatenating the
two conversion templates in Fig. 10.38. It becomes a single server model con-
version case if M = 1, and a general multi-server model if M = n > 1.

Reproduced in Fig. 10.42(a) is the ACD model of the car repair shop given
in Fig. 6.24 with an event name given to each arc of the ACD. If we apply the
basic ACD-to-EG conversion rules given in Section 10.6.1 to the ACD model,
a converted event graph is obtained as shown in Fig. 10.42(b).

Fig. 10.39.  ACD to state graph conversion template for the Job Creator model.

0:
(ta)

 β!
Creator

C=1 S =

 β?
Source

β

 α

 S--, α!

0:
(ta)

 β!

Creator

β

Create
<ta>

 α

β
Creator

β

 α S=

Source

ACD

 α?

State graph

β

(a)

~ (S>0)

(b)

(c)

Fig. 10.40.  ACD to state graph conversion template for the Buffer-Machine model.

M=1

J Process
<tp> γ δ

 δ!

Machine

Busy:
∆(tp)

Idle
(M= 1) 0 J= –1 1

Buffer

Buffer

Machine

δ

γ! γ?

δ γ

β
 β? β? β?

γ

 δ? δ? δ?
γ! γ!

β

ACD State Graph δ

332    Advanced Topics in Activity-Based Modeling and Simulation

Fig. 10.41.  Converting a multi-server ACD model into an event graph model.

Create
<ta>

 M = 2

J

S=

Process
<tp> γ δ

{J++} {J- -; M- -} {M++}

(M > 0)
 β

 α

(J>0)

ACD Event Graph

β

γ
δ

 α

β

γ δ

M = 2, J = 0

(a)

(b)

Buffer Machine Creator

Fig. 10.42.  Converting the car repair shop ACD model into an event graph model.

Cars
∞

•

Create
<ta>

T
•••

Q1 Inspect
<t2>

Repair
<t3>

Q2 Fasten
<t1>

Q3

R
••

Technician cycle Repairman cycle

β γ δ ε ζ

{Q1++} {Q1--, T--} {Q2++} {Q2--, R--} {T++, Q3++}

(T>0)&(Q1>0)

ta

t1 t2 η θ

{R++}

t3

{Q3--}

β

γ δ β

γ

ε ζ η

θ ε ζ

θ

T = 3, R = 2, Q1 = Q2 = Q3 = 0

ACD

Event Graph

(T>0)&(Q1>0)

(R>0)&(Q2>0)

(R>0)&(Q2>0)

(Q3>0)

(a)

(b)

10.6.3.2  Examples of ACD-to-SG conversion  As mentioned earlier, con-
verting an ACD model into a state graph (SG) model is not that simple. The
basic ACD-to-SG conversion rules say that (1) an individual resource in the
ACD becomes one object (i.e., an atomic model) in the state graph model, and
(2) an entity queue node becomes one object. Thus, the ACD model in Fig.
10.42(a) would result in a state graph model having seven objects (i.e., atomic
models). In order to simplify the discussion somewhat, it is assumed that there
are one technician and one repairman in the car repair shop.

Figure 10.43(a) shows the ACD model of the reduced car repair shop where
it is highlighted that (1) Q1 is an entity queue node but Q2 and Q3 are resource
queue nodes and (2) the in/out arcs of the shared activity (Inspect) are indi-
vidually identified (e.g., εR and εT). If we apply the basic ACD-to-SG conver-
sion rules given in Section 10.6.2 (as well as an additional rule) to the ACD
model Fig. 10.43(a), a converted state graph may be obtained as shown in Fig.
10.43(b).

Reproduced in Fig. 10.44(a) is the ACD model of a two-server system
given in Fig. 10.41(a). Figure 10.44(b) shows an alternative representation of

Formal Model Conversion   333

Fig. 10.43.  (a) ACD model and (b) converted state graph model of the car repair shop.

 δ!

Technician

T=1
1 J=0 2

γ? β? β?

β

–1

 β?
γ!

γ!

0:
(ta)

 β!

Creator
Q1

F:
∆(t1)

Q2

I:
∆(t2)

 ζR!

Repairman

R=1

δ? εR!
I:

∆(t2)

Q3

R:
∆(t3) ζT! θ? εT! θ! η!

γ!
 ζT?

θ

εT?

εR?

Cars
∞ <ta> <t2> <t3> <t1>

Technician cycle Repairman cycle β

γ δ β

γ

ζR η

θ
 εR ζT

θ

ACD

(a)

 εT

 ζT? ζT? δ

εT

εR
γ

 ζT

State Graph

(b)

Fig. 10.44.  Two ACD models for the same two-server system given in Fig. 10.41(a).

Create
<ta>

 M = 2

J

S=∞

Process
<tp>

 α

ACD

β

γ
δ

 α

β

γ δ

Buffer Machine Creator

Create
<ta>

M1=1

J

S=∞

Process
<tp>

 α

ACD

β

γ
δ

 α

β

γ1 δ1

Buffer Creator

M2=1
γ2 δ2

(b)(a)

Fig. 10.45.  State graph model of a two-server system converted from the ACD model
given in Fig. 10.44(b).

 δ1!

Machine1

0:
∆(tp)

M=1 J=0 –1 1

δ1

γ1! γ2!

γ1? β? β? β?

 δ1?
γ1!

β

Machine2

0:
∆(tp)

M=1

 δ2!

γ2?

δ2

γ1! γ2!

–2

 β?
γ1!

 δ1?
γ1!

 δ1? δ2?

 δ2?
γ2!

 δ2?
γ2!

 δ1? δ2?

0:
(ta)

 β!

Creator

State Graph

Buffer

multiple (identical) resources in which a separate queue is defined for each
resource. Figure 10.45 shows a multi-server system state graph model corre-
sponding to the two-server (M = 2) ACD model given in Fig. 10.44(b). When
M = 1, a single server system state graph model is obtained by concatenating
the Creator model in Fig. 10.39 and the Buffer-Machine model in Fig. 10.40.

334    Advanced Topics in Activity-Based Modeling and Simulation

Fig. 10A.1.  Petri-net graph.

p1
p2 p4

p3

t1 t2

t3

If the number of machines becomes large, say M = 20, the state graph model
would become quite complicated. In general, compared to the ACD-to-EG
conversion, the ACD-to-SG conversion is harder to define. A conversion
approach to developing a complex DEVS model is proposed in the literature
[Choi et al. 2003].

APPENDIX 10A: PETRI NETS

Petri nets, which have been developed from the Carl Adam Petri’s doctoral
dissertation Communication with Automata in 1962, were designed to model
systems with interacting concurrent components [Peterson 1981]. Basics of the
Petri net, together with its relationship to the ACD, will be described.

10A.1  Definitions of Petri Nets

A Petri net is defined either as a graph or as a structure. A Petri-net graph is
a graphical representation of Petri net where a circle node represents a place,
and a bar node represents a transition. Directed arcs connect the places and
transitions. Figure 10A.1 is a Petri-net graph with four circle nodes and three
bar nodes. Multiple arcs are allowed from one node to another. Thus, a Petri-
net graph is a bipartite directed multi-graph. Petri-net graph G is formally
defined as:

Petri-net graph G V A= (,)

1.	 V = 〈v1, v2 . . . vn〉 is a set of vertices
2.	 A = {a1, a2 . . . am} is a bag of directed arcs with ai = (vj, vk)
3.	 V = P∪T, where P is the set of places and T is the set of transitions
4.	 For each arc ai = (vj, vk), we need (vj∈P & vk∈T) or (vj∈T & vk∈P)

A Petri-net structure is a set theoretic representation of Petri net composed
of a set of places (P), a set of transitions (T), an input function (I), and an
output function (O). The input function I(tj) is a mapping from a transition tj
to the input places of the transition, and the output function O(tj) maps a

Appendix 10A: Petri NetS   335

transition tj to the output places of the transition. Petri-net structure S is for-
mally defined as:

	 Petri-net Structure S P T I O= , , , 	

1.	 P = {p1, p2 . . . pn}: a finite set of places
2.	 T = {t1, t2 . . . tm}: a finite set of transitions
3.	 I: T→P∞: input function (from transitions to bags of places)
4.	 O: T→P∞: output function (from transitions to bags of places)

For the Petri net of Fig. 10A.1, the components of the Petri-net structure
are given by:

1.	 P = 〈p1, p2, p3, p4〉
2.	 T = 〈t1, t2, t3〉
3.	 I(t1) = {p1, p2, p3}, I(t2) = {p4}, I(t3) = {p3}
4.	 O(t1) = {p1}, O(t2) = {p2, p2, p3}, O(t3) = {p4}

10A.2  Petri-Net State and Execution

The state of a Petri net is defined by its marking μ, which is an assignment of
tokens to the places of a Petri net. Tokens are assigned to the places and can
be thought to reside in the places. A Petri net with marking is called a marked
Petri net which is formally defined as:

A marked Petri-net M = (P, T, I, O, μ) is defined by a Petri-net structure S and a
marking μ.

Shown in Fig. 10A.2 is a marked Petri-net graph with a marking μ = (1, 0,
1, 0). The state space of a Petri-net with n places is the set of all markings Nn.
The state change of Petri net is defined by a change function (δ), called the
next-state function, which is defined as [where #(e, B) denotes number of occur-
rences of “e” in the bag B]:

The next-state function (δ: Nn × T → Nn) for a marked Petri-net M and transition
tj is defined iff μ(pi) ≥ #(pi, I(tj)) for all pi ∈ P. If δ(μ, tj) is defined δ(μ, tj) = μ′,
where μ′(pi) = μ(pi) + #(pi, O(tj)) − #(pi, I(tj))

In the marked Petri net of Fig. 10A.2, the transition t3 is enabled with the
current marking μ = (1, 0, 1, 0). After firing t3, the new marking μ′ = (1, 0, 0,
1). The execution of a Petri net is controlled by tokens: It executes by firing
transitions; a transition fires by removing tokens from its input places and
creating new tokens that are distributed to its output places. A transition may
fire if it is enabled. A transition is enabled if each of its input places has at

336    Advanced Topics in Activity-Based Modeling and Simulation

Fig. 10A.3.  (a) ACD and (b) its Petri net.

Create
(ta)

Process
(ts)

Jobs

C

Q

M

Machine Creator

(a)

ta
ts

p1

p2

p3

t1 t2

(b)

least as many tokens as arcs from the place to the transition, which may be
formally stated as:

A transition tj∈T in a marked Petri-net M = 〈P, T, I, O, μ〉 is enabled if for all pi ∈
P, μ(pi) ≥ #(pi, I(tj)).

10A.3  Extended Petri Nets and the ACD

The modeling power of the “standard” Petri net is not enough for modeling
“real-life” systems. Thus, extended Petri nets have been proposed such that

1.	 The firing of transitions takes time (timed Petri net)
2.	 Tokens have different attributes (colored Petri net)
3.	 Firing is based on zero-testing (Inhibitor arc)
4.	 A token may branch based on condition (Test arc), etc.

The original ACD having no arc attributes is by definition a timed Petri net
without multiple arcs. Figure 10A.3 shows the single server system ACD (Fig.
10.2) together with its Petri-net graph.

An extended ACD with arc conditions (see Section 6.2.2 of Chapter 6) is
a timed Petri net with zero testing. Zero testing decreases the decision power
of Petri nets such as deadlock detection, but it increases the modeling power
of Petri nets. In fact, a Petri net with zero testing produces a modeling scheme
capable of modeling a Turing machine [Peterson 1981]. Thus, a Petri net with
zero testing can model any discrete-event system that can be represented in a
digital computer; so can the extended ACD with arc conditions.

Fig. 10A.2.  Marked Petri net.

•

p1
p2 p4

p3

t1 t2

t3

•

Appendix 10A: Petri NetS   337

10A.4  Restricted Petri Nets

There are special types of Petri nets that have some restrictions in terms of
number of tokens in a place or number of arcs associated with a place. A Petri
net in which a place is not allowed to have multiple tokens and has times
associated with it is called a p-time Petri net [Khansa et al. 1996]. Thus, an ACD
without queues having multiple tokens is easily converted to a p-time Petri
net by converting each activity of ACD to a place of Petri net and each queue
to a transition as depicted in Fig. 10A.4. A Petri net in which each place has
exactly one input and output arc is called an event graph, and an event graph
with timed transitions is referred to as a timed event graph. The Petri net shown
in Fig. 10A.3(b) is a timed event graph. These restricted Petri nets are mostly
used in scheduling of cyclic systems such as cluster tools [Kim et al. 2003] and
cyclic flow shop [Ren et al. 2005].

10A.5  Modeling with Petri Nets

Modeling with Petri nets by itself is a huge area, and it is one of the most
intensively investigated subjects. An excellent treatment of the subject is given
in Peterson [1981], and there are a number of books such as Dicesare et al.
[1993] dealing with Petri-net modeling. There have been annual conferences
on the applications and theory of Petri nets since 1980. However, as far as the
art of M&S of industrial systems is concerned, modeling with Petri nets in
most cases does not seem to be “natural” compared to modeling with one of
the “world-view” formalisms (i.e., event graph, ACD, and finite state machine)
even though there are certain cases where modeling with Petri nets is more
natural [Peterson 1981].

An alternative approach to modeling with Petri nets may be to construct a
formal model in other forms such as event graph, ACD, or finite state machine
and convert it into a Petri-net model. A Petri-net model may be constructed
from an event graph model by using the event-condition method of Petri-net
modeling [Peterson 1981]. Also, a method of building a Petri-net model from
a finite state machine is given in Peterson [1981]. An ACD model, perhaps
except a parameterized ACD, is trivially converted into a timed Petri-net
model.

Fig. 10A.4.  (a) ACD and (b) p-time Petri net.

Enter

Proc
<ts>

Load

Arrive
<ta>

 B
•••

G M

ta 0 ts 0

p1
p2 p3 p4

t1 t2 t3

t4

(a) (b)

338

CHAPTER 11

Advanced Event Graph Modeling for
Integrated Fab Simulation

In the practice of tolerance, one’s enemy is the best teacher.
—Dalai Lama

11.1  INTRODUCTION

Production simulation, often referred to as simulation-based scheduling, is
widely accepted in the high-tech industry, which covers the semiconductor and
flat panel display (FPD) industries. Detailed simulation of automated material
handling systems (AMHS) is also widely adopted in the high-tech industry
[Wang and Lin 2004]. Among the commercial simulation packages, AutoSched
AP® (ASAP) seems to be the most popular tool for production simulation
[Gan et al. 2007], while AutoMod® is reported to be most popular in material
handling simulation [Kim et al. 2009].

On the other hand, there has been a growing need for an integrated simula-
tion where production simulation is carried out together with detailed material
handling simulation. To meet this need, a software module called MCM®
(Model Communication Module) has been developed, which provides socket-
based communication between ASAP and AutoMod. With MCM®, IBM had
developed the AMHS-embedded integrated simulation system depicted in Fig.
11.1(a) in which ASAP’s fabrication process models for production simulation
can communicate with AutoMod’s material handling models for AMHS simu-
lation [Norman et al. 1999]. INTEL also developed a similar system as depicted
in Fig. 11.1(b), which was reported to have been applied successfully [Pillai
et al. 2004].

This chapter presents a detailed procedure for developing an AMHS-
embedded integrated Fab (fabrication line) simulation software system similar

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

Flat Panel Display Fabrication System   339

to the INTEL’s system depicted in Fig. 11.1(b). The authors’ team had a chance
to develop IFS®, an AMHS-embedded integrated Fab simulation software
system, with a couple of FPD manufacturers in Korea.

The rest of the chapter is organized as follows. A brief description of FPD
fabrication systems is provided in Section 11.2. An object-oriented event graph
modeling framework for a production simulation of FPD Fab is given in
Section 11.3, followed by Section 11.4 on the framework for integrated simula-
tion of production and material handling in a FPD Fab. A comprehensive pro-
cedure for developing an AMHS-embedded integrated simulator is described
in Section 11.5 where a prototype system named IFS® is introduced.

11.2  FLAT PANEL DISPLAY FABRICATION SYSTEM

In this section, a brief description of the FPD fabrication system is provided.
First, an overview of FPD Fab is given followed by a schematic description of
processing equipment in a typical FPD Fab. Configurations of material han-
dling system hardware and software are also briefly described.

11.2.1  Overview of FPD Fab

In a typical thin-film transistor liquid crystal display (TFT-LCD) fabrication
line (called Fab for short), a large number of product types are produced
concurrently, 24 hours a day, 365 days a year. The fabrication process of
TFT-LCD is similar to that of semiconductor wafer: It basically is a series of
layer patterning operations. In a modern TFT-LCD Fab, glasses go through
approximately four to five patterning cycles to form TFTs on the surface of
each glass. Each patterning cycle usually consists of deposition, cleaning, pho-
tolithography, etching, stripping, and inspection. Fabrication of a typical TFT

Fig. 11.1.  AMHS-embedded integrated simulation by (a) IBM and (b) INTEL.

Message via Ethernet

Production model
(AutoSched AP)

Initialization
Data

Move delay

(a) (b)

data

Move rate
data Validate against real fab data

Full factory simulation
model configurator

Database

3D AMHS model
(AutoMod)

340   Advanced Event Graph Modeling for Integrated Fab Simulation

requires approximately 30 to 40 steps and its turn-around time (i.e., sojourn
time) is about 48 hours.

Figure 11.2(a) shows a schematic view of a modern TFT-LCD Fab layout
where processing equipment cells are attached to inline stockers (there are 14
of them in the figure) that are connected via conveyors. Figure 11.2(b) is an
animation picture of a TFT-LCD Fab.

11.2.2  FPD Processing Equipment

As described in Chapter 4 (see Section 4.5.5), the jobs in a TFT-LCD Fab are
glasses that go through the processing equipment in batches with each batch
(or lot) stored in a cassette. According to their material handling characteris-
tics, the processing equipment in a FPD Fab can be classified into four types:
uni-inline cell, bi-inline cell, oven type equipment, and chamber type
equipment.

Figure 11.3 shows a schematic view of a uni-inline type processing equip-
ment cell called a uni-inline cell. A cassette with new glasses that is stored in
the stocker queue (Q) is loaded on a slot (or port) in the I/O port queue (B),
which is called Cassette Loading. The glasses are then loaded into the inline

Fig. 11.2.  (a) Layout and (b) animation screen of TFT-LCD Fab.

Inline Stockers

Eqp cells

Conveyors

(a)

(b)

Fig. 11.3.  Schematic view of a uni-inline cell.

Stocker
Queue (Q)

…

…

Glass Loading (= takt time)

Glass Unloading

New Cassette
Arriving at Queue

Cassette
Loading on
an I/O Port

Finished Cassette
Depart Track-in

Robot

Inline Cell (= flow time)

I/O Port
Queue (B)

Flat Panel Display Fabrication System   341

cell using the track-in robot, with one glass being loaded at every takt time
(τ), which is called Glass Loading. It takes a flow time (π) for a glass to reach
the end of the cell where it is unloaded into the unloading cassette located at
the I/O port queue. The unloading cassette departs when it is filled with fin-
ished glasses.

Figure 11.4 shows a schematic view of a bi-inline cell. The bi-inline cell can
be divided into the cassette-loading section and cassette-unloading section.
The behavior of a bi-inline cell is the same as that of a uni-inline cell, except
the in-port is located in one inline stocker and the out-port is located in
another inline stocker. As a result, a mechanism for handling empty cassettes
has to be provided. (If no empty cassettes are available at the out-port, the
finished glasses cannot be unloaded.)

Figure 11.5 shows a schematic view of oven type equipment. The cassette
loading and cassette departure in the oven type equipment are the same as
those in the uni-inline cell. However, in the oven type case, all the glasses in
a cassette are loaded together to process the batch (of size b) for a given
processing time (π), and then the oven is cleared. The last type is the chamber
type equipment consisting of parallel processing chambers, input buffer, output
buffer, I/O port, and a track-in robot. At the I/O port, glasses in a cassette are
moved into the input buffer from which the glasses are loaded into and
unloaded from the processing chambers. The finished glasses are unloaded
from the chambers into the output buffer and then moved into the cassettes
in the I/O port.

Fig. 11.4.  Schematic view of a bi-inline cell.

Cassette Loading Glass Unloading

In-Ports (PI) Out-Ports (PO)

Track-in
robot(TI)

Track-out
robot(TO)

Finished
Cassette
Depart

Glass Loading ()

Removing
Empty Cassettes

Cassette Loading Section Cassette Unloading Section

Supplying

Empty
Cassettes

Inline Cell (= flow time)
Stocker

Queue (Q)

New
Cassette
Arriving

at Queue

Fig. 11.5.  Schematic view of oven type equipment.

Oven type
EQP

Glasses Unloading (b*)

Glasses Loading (b*)

Processing ()

Robot
(R)

Cassette
Loading on
an I/O Port

Finished Cassette
Depart

 b = oven batch-size

Stocker
Queue (Q)

I/O Port
Queue (B)

New Cassette
Arriving at Queue

342   Advanced Event Graph Modeling for Integrated Fab Simulation

11.2.3  Material Handling System

Figure 11.6 shows a schematic view of the material handling hardware in an
FPD Fab. The AMHS (automated material handling system) in an FPD Fab
is a network of inline stockers connected via conveyors (as well as via bi-inline
cells). An inline stocker has a number of shelves that are used as stocker
buffers (for temporarily storing cassettes), stocker in-ports (for receiving a
cassette from an incoming conveyor), stocker out-ports (for sending a cassette
to an outgoing conveyor), equipment (EQP) I/O ports, etc. Material handling
in an inline stocker is performed by one or two stacker cranes.

A schematic view of a material handling control software system in a
modern Fab is given in Fig. 11.7. Decisions regarding where-next (destination
equipment) selection and what-next (input jobs) selection are made by the
RTD (real-time dispatcher), while route planning and handling equipment
scheduling are performed by the MCS (material control system) in the Fab.
These decisions are made based on the current states of the Fab, and they have

Fig. 11.6.  Schematic view of material handling hardware in an FPD Fab.

Crane

EQP I/O-port

Stocker in-port

Stocker out-port

Conveyer

EQP in-port

EQP out-port

Stocker buffer

Crane

Uni-inline cell

Bi-inline cell

Stocker out-port Uni-inline cell

Inline
Stocker

Conveyer

Fig. 11.7.  Schematic view of material handling software in an FPD Fab.

(Real-time Dispatcher) (Material Control System)

Production Simulation of a Flat Panel Display Fab   343

to be made in real time. The software system that provides the real time Fab
data is called an MES (manufacturing execution system).

11.3  PRODUCTION SIMULATION OF A FLAT PANEL DISPLAY FAB

A flat panel display (FPD) Fab is a job shop consisting of different types of
processing equipment. Such a job shop is often referred to as a heterogeneous
job shop or a mixed job shop. As described in the previous section, the four
types of processing equipment are widely found in a FPD Fab: uni-inline cell,
bi-inline cell, chamber type equipment, and oven type equipment. In this
section, we present an object-oriented event graph modeling approach to
developing a production simulator for a FPD Fab consisting of uni-inline cells
and oven type equipment. (The integrated Fab simulator IFS® covers all the
four equipment types, but the remaining types are excluded to simplify the
explanation.)

11.3.1  Modeling of Uni-Inline Job Shop

A job shop consisting of uni-inline cells is called a uni-inline job shop. Figure
11.8 shows a parameterized event graph model of a job shop consisting of
uni-inline cells whose reference model is depicted in Fig. 11.3. It is a simplified
version of the uni-inline job shop model introduced in Chapter 5 (see Fig. 5.21
in Section 5.5.3) obtained by removing the Arrive and Exit event nodes and
the job-type variable JT[u] from the original model in Fig. 5.21. As described
in Section 5.5.3 of Chapter 5, the state variables in the model are as follows:

•	 Q[u]: Stocker queue of cassettes {(j, p)} in the uni-inline cell (u)
•	 B[u]: I/O-Port queue of cassettes {(j, p)} in the uni-inline cell (u)
•	 E[u]: number of empty ports (shelves) in the I/O Port of a uni-inline

cell (u)
•	 R[u]: status of the track-in robot of a uni-inline cell (u)

Fig. 11.8.  Event graph model of a uni-inline job shop (from Fig. 5.21).

CA
(j,p,u)

CL
(u)

FGL
(u)

LGL
(j,p,u)

CD
(j, p, u) (|Q[u]|>0)

(R[u]≡1) (E[u]>0)

{(j, p) Q[u]} {Q[u] (j, p);
 (j, p) B[u];

E[u]--}
j,p,u

j,p,u u

u

 t1[j,p,u]

(|B[u]|>0)

{ E[u]++; uN= route[j, p+1] }

Move
(j, p, u, uN)

(uN≠ Done)

td

j, p+1, u, uN

u

j, p, uN

{B[u] (j, p);
R[u]=0 }

{R[u]=1 }
 [j,p,u]

Uni-inline Cells (u)

{ td= delay[u, uN] }

u

344   Advanced Event Graph Modeling for Integrated Fab Simulation

In Fig. 11.8, the array variables t1[j, p, u] and π[j, p, u] denote the cycle time
for a cassette of glasses and the flow time of the cell, respectively. The en-queue
operation is expressed as (j, p) → Q[u] and de-queue operation as Q[u] →
(j, p). The arrays delay[] and route[] are used for obtaining the move time-
delay (td) and the next route (un).

In order to provide a more compact model description, the cassette object
and the port object in a uni-inline cell (u) are declared as record variables cst
and P[u] as summarized in Table 11.1. The admissible states of a port in the
I/O Port are: occupied by a full cassette (f); occupied by an empty cassette (e);
not occupied but reserved (rx); not occupied nor reserved (x); depart-reserved
(dr). An empty cassette may contain processed glasses (but no unprocessed
ones). The following port-state update functions are used in updating the state
of a port (e.g., P[u](f →e): If (P[u].f>0){ P[u].f−−; P[u].e++})

•	 P[u](rx →f): change the state of a port from reserved to full-cassette
•	 P[u](f →e): change the state of a port from full-cassette to empty-cassette
•	 P[u](e →x): change the state of a port from empty-cassette to no-cassettes
•	 P[u](x →rx): change the state of a port from no-cassette to reserved

Figure 11.9 shows an encapsulated event graph model of the uni-inline job
shop obtained from the event graph of Fig. 11.8. In order to encapsulate a
group of events into an event object, a mirror event is created for each bound-
ary event at the receiving side. In Fig. 11.8, CL and Move are receiving side
boundary events. Thus, their mirror events CL* and Move* are introduced in
the encapsulated event graph.

Figure 11.9 employs en-queue functions (e.g., cst→ Q[u]), de-queue func-
tions (e.g., Q[u]→ cst), and port-state update functions (e.g., P[u](f→e)). Also
used in the event graph are two job-routing functions:

TABLE 11.1.  Record Variables Declared for Use in Event Graph Models of Job
Shops

Variable Type/Value Description

cst j int Job type of the glasses in the cassette
p int Processing step of the glasses in the cassette
d string ID of the equipment for the next processing step of

the cassette
n int Number of glasses in the cassette

P[u] x 0 ∼ port capacity Number of empty ports at the I/O Port of uni-
inline cell u or oven v

rx 0 ∼ port capacity Number of reserved empty ports at the I/O Port
f 0 ∼ port capacity Number of full-cassette ports at the I/O Port
e 0 ∼ port capacity Number of empty-cassette ports at the I/O Port
dr 0 ∼ port capacity Number of depart-reserved-cassette ports at the

I/O Port

Production Simulation of a Flat Panel Display Fab   345

•	 NextStep (cst) returns the next processing-step ID of a job with job-type
cst.j and current processing-step cst.p.

•	 NextEQP (cst) returns the next equipment ID that will process a cassette
having job-type cst.j and processing step cst.p.

11.3.2  Modeling of Oven Type Job Shop

A job shop consisting of oven type equipment is called an oven type job shop.
Figure 11.10 shows a reference model (reproduced from Fig. 11.5) and event
graph model of oven type equipment. As mentioned in Section 11.2.2, the
characteristics of oven type equipment are the same as those of the uni-inline
cell, except all the glasses in a cassette are loaded together to process all the

Fig. 11.9.  Encapsulated event graph model of the uni-inline job shop in Fig. 11.8.

CA
(u, cst)

CL
(u)

FGL
(u)

LGL
(u, cst)

CD
(u, cst)

(|Q[u]|>0)

(R[u]≡1) (RSV)

{ cst Q[u];
if (P[u].x>0)

{P[u](x rx); RSV=true} }

{ Q[u] cst;
 cst B[u];
P[u](rx f); }

u, cst

u, cst u

u

 t1[u, cst]

(|B[u]|>0)

{ if (|Q[u]|>0) {P[u](e rx)} else {P[u](e x)};
 cst.p= NextStep(cst); cst.d= NextEQP(cst); }

Move
(u, cst)

(cst.d≠ Done) td u, cst

cst.d, cst

{ B[u] cst; R[u]=0 } { R[u]=1;
P[u](f e) }

 π[u, cst]

Uni-inline Cells (u)

{ td= delay[u, cst.d] }

Move*
(u, cst) u, cst

CL*
(u)

u u

u
Material Handling

Fig. 11.10.  Reference model and event graph model of oven type equipment.

Oven type
EQP

Glasses Unloading

Glasses Loading

Processing ()

I/O Ports
(P)

Robot
(R)

: Cassette
Loading on
an I/O Port

: Cassette
Depart

Stocker
Queue (Q)

Port
Queue (B)

: Cassette
Arriving at Queue

CL
(v)

FGL
(v)

LGL
(v, cst)

CD
(v, cst)

(|Q[v]|>0)

(R[v]≡1)

{Q[v] cst;
 cst B[v];
P[v](rx f)} v, cst

v, cst v

v

 t1[v, cst]

(|B[v]|>0)

{R[v]=1;
 if (|Q[v]|>0) {P[v](e rx)} else {P[v](e x)} }

{R[v]=0;
B[v] cst }

{P[v](f e) }

 [v, cst]
+ t1[v, cst]

CA
(v, cst)

(RSV)

{cst Q[v];
if (P[v].x>0)

{P[v](x

v

v

Reference Model

Event Graph Model
Oven type EQP

rx); RSV=true}}

346   Advanced Event Graph Modeling for Integrated Fab Simulation

glasses in the cassette at the same time. Thus, in the event graph of oven type
equipment, the first glass loading (FGL) event is scheduled by the CD event
if the port queue is not empty (as well as by the CL event if the Robot is idle).

Figure 11.11 shows an encapsulated event graph model of a job shop with
oven type equipment presented in Fig. 11.10. As with the uni-inline case, two
mirror evented CL*(v) and Move*() are introduced in order to encapsulate
the event objects. Brief descriptions for the key events in Fig. 11.11 are pro-
vided below:

•	 CA (v, cst): (1) En-queue an arriving cassette cst into Q[v], (2) reserve
an empty port if there is one, and (3) schedule a CL event if possible.

•	 CL (v): (1) De-queue a cassette from Q[v], (2) en-queue cst into B[v], (3)
make the reserved port a full port, and (4) schedule an FGL event if
Robot is free.

•	 FGL (v): (1) Set the Robot to busy, (2) de-queue a cassette cst from B[v],
and (3) schedule an LGL event to occur after t1[v,cst].

11.3.3  Modeling of Heterogeneous Job Shop

Figure 11.12 shows an encapsulated event graph model of a heterogeneous
job shop consisting of three event object (EO) models: Material Handling
EO model, Uni-inline EO model and Oven EO model. In general, an encap-
sulated event graph is a network of EO models. The heterogeneous job shop
model in Fig. 11.12 is constructed by joining the two models in Fig. 11.9 and
Fig. 11.11 together. All the events used in the heterogeneous job shop model
are listed in Table 11.2.

11.3.4  Object-Oriented Event Graph Simulator for
Production Simulation

Figure 11.13 shows an encapsulated event graph model of our heterogeneous
job shop and its object-oriented event graph (OOEG) simulator. The OOEG
simulator consists of a simulation coordinator and three event object (EO)

Fig. 11.11.  Encapsulated event graph model of a job shop with oven type equipment.

CL
(v)

FGL
(v)

LGL
(v, cst)

CD
(v, cst)

(|Q[v]|>0)

(R[v]≡1)

{Q[v] cst;
 cst B[v];
P[v](rx f)}

v, cst

v, cst v

v

 t1[v, cst]

(|B[v]|>0)

{R[v]=1;
 if (|Q[v]|>0) {P[v](e rx)} else {P[v](e x)};
 cst.p= NextStep(cst); cst.d= NextEQP(cst);}

{R[v]=0;
B[v] cst }

{P[v](f e) }

 [v, cst]
+ t1[v, cst]

CA
(v, cst)

(RSV)

{ cst Q[v];
if (P[v].x>0)

{P[v](x

v

v

CL*
(v) v

Move
(v, cst) (cst.d≠ Done)

td
v, cst

cst.d, cst

{ td= delay[v, cst.d] }

Move*
(v, cst) v, cst

Ovens (v) Material Handling

rx); RSV=true}}

Production Simulation of a Flat Panel Display Fab   347

Fig. 11.12.  Encapsulated event graph model of a heterogeneous job shop.

CL
(v)

FGL
(v)

LGL
(v, cst)

CD
(v, cst)

(|Q[v]|>0)

(R[v]≡1)

{Q[v] cst;
 cst B[v];
P[v](rx f)}

v, cst

v, cst v

v

 t1[v, cst]

(|B[v]|>0)

{R[v]=1;
 if (|Q[v]|>0) {P[v](e rx)} else {P[v](e x)};
 cst.p= NextStep(cst); cst.d= NextEQP(cst);}

{R[v]=0;
B[v] cst }

{P[v](f e) }

 [v, cst]
+ t1[v, cst]

v

(cst.d≠ Done)
v, cst Move*

(v, cst)

Oven Model (v)

Move
(m, cst)

{cst Q[m];
if (P[m].x>0)
{P[m](x rx);
RSV=true}}

CL*
(m)

CL*
(m)

CA
(m, cst)

Material Handling Model (m) Uni-inline Model (u)

CL
(u)

FGL
(u)

LGL
(u, cst)

CD
(u, cst)

(|Q[u]|>0)

(R[u]≡1)

{Q[u] cst;
 cst B[u];
P[u](rx f)}

u, cst

u, cst u

u

 t1[u, cst]

(|B[u]|>0)

{ if (|Q[u]|>0) {P[u](e rx)} else {P[u](e x)};
 cst.p= NextStep(cst); cst.d= NextEQP(cst); }

(cst.d≠ Done)
u, cst

{B[u] cst; R[u]=0 } {R[u]=1;
P[u](f e) }

 [u, cst] Move*
(u, cst)

u

m

v, cst

(RSV && m U)

td

{ td= delay[m, cst.d] }

cst.d, cst

m

m

m

(RSV && m V)

u, cst

TABLE 11.2.  Events Used in the Event Graph Model of the Job Shop in
Figure 11.12

Type Name Full Name Description

Processing
equipment

CL Cassette
Loading

A cassette is loaded (deposited) at a
port of a processing equipment

FGL First Glass
Loading

Track-in robot starts to load the first
glass of a cassette

LGL Last Glass
Loaded

Track-in robot finishes loading a
cassette

CD Cassette
Departure

A cassette departs after the last
glass is unloaded

Handling
system

Move — A cassette starts to move to the
destination

CA Cassette Arrival A cassette arrives at the material
handling queue

simulators, one EO simulator for each EO model in the encapsulated event
graph model. An EO simulator does not schedule the local events by itself.
Instead, it sends the enabled local event e to the Coordinator via the public
function ScheduleLocalEvent (e). Then, the Coordinator (1) stores the local
events in the LEL (local event list), (2) selects a next local event from the
LEL, and (3) sends it back to the respective EO simulator via the ExecuteLo-
calEvent (e) function.

348   Advanced Event Graph Modeling for Integrated Fab Simulation

11.3.4.1  Simulation Coordinator  Figure 11.14 shows an event graph
model of the simulation coordinator (SC or Coordinator). It is a kind of single
server system model consisting of a buffer LEL and four event nodes: (1)
ScheduleLE, which is generated by the EO simulators, acts as the Arrival event
in a single server system; (2) GetNextLE gets a local event e from the priority
queue LEL (LEL→ e) and loads it on the Coordinator (SC = 0) to schedule
an Unload event ExecuteLE if the simulation time does not exceed the EOS
(end-of-simulation) time; (3) ExecuteLE unloads the job (local event e) from
the Coordinator to send it to its EO simulator via the public function Execu-
teLocalEvent (e) and schedules a GetNextLE event if necessary. The FEL
(future event list) stores event records consisting of event-time, event-name,
and local event information.

Listed in Fig. 11.15 are the main program and event routines (in a pseudo-
code form) of our simulation coordinator. The main program in Fig. 11.15(a) is
a standard implementation of the next-event methodology described in Chapter
4 (Section 4.7.4), except that it has the two public functions: ScheduleLocalEv-
ent (e) and ExecuteLocalEvent (e). The ScheduleLocalEvent function is
invoked from EO simulators to schedule a ScheduleLE event into the FEL (see
Fig. 11.15). The ExecuteLocalEvent function is invoked from the event routine
Execute-ExecuteLE-Routine to make the respective EO simulator execute its
next event (Fig. 11.17 provides more details).

Fig. 11.13.  (a) An encapsulated event graph model and (b) its object-oriented event
graph production simulator.

Encapsulated Event Graph Model

Sc
he

du
le

Lo

ca
lE

ve
nt

 Execute
LocalEvent Sc

he
du

le

Lo
ca

lE
ve

nt
 Execute

LocalEvent Sc
he

du
le

Lo

ca
lE

ve
nt

 Execute
LocalEvent

Object-oriented Event Graph Simulator

Simulation Coordinator (SC) LEL

(a) (b)

Fig. 11.14.  Event graph model of the simulation coordinator.

{ e LEL;
If (SC

{SC = –1; RSV = true;}
else {RSV = false;} }

{ SC = 0;
LEL e;

 ts = e.Time – Clock; }

{ ExecuteLocalEvent (e);
If (|LEL| > 0)

{SC = –1; RSV = true;}
else {SC = 1;RSV = false;} }

(RSV)

Terminate

(e.Time ≤ tEOS)

(RSV)

ScheduleLE
(e) GetNextLE ExecuteLE

(e)
ts e

Simulation Coordinator (SC = 1; LEL = null;)

(e.Time > tEOS)
LEL= {e}

FEL

Time E-Name e (local event)

t0 ScheduleLE e2 (u,CL,t0)

t0 GetNextLE -

 SC= 1(idle), 0(busy), –1(reserved)

Production Simulation of a Flat Panel Display Fab   349

Fig. 11.15.  Simulation coordinator: (a) main program and (b) event routines.

Main Program of Coordinator

ScheduleLocalEvent (e) {

ScheduleLE }

ExecuteLocalEvent (e) {

ObjectList [e.ObjectID].ExecuteLocalEvent (e); }

Execute-Initialize-Routine (Now) {

 }

Execute-ScheduleLE-Routine (e, Now) {

 }

Execute-GetNextLE-Routine (Now) {

}

Execute-ExecuteLE-Routine (e, Now) {

ExecuteLocalEvent (e);

}

Execute-Terminate-Routine (Now) { LEL = null; }

(a)

(b)

Fig. 11.16.  Uni-inline EO simulator for the uni-inline EO model in Fig. 11.12.

Uni-inline EO Model

CL
(u)

FGL
(u)

LGL
(u, cst)

CD
(u, cst)

(|Q[u]|>0)

(R[u]≡1)

{Q[u] cst;
 cst B[u];
P[u](rx f)}

u, cst

u, cst u

u

 t1[u, cst]

(|B[u]|>0)

{ if (|Q[u]|>0) {P[u](e rx)} else {P[u](e x)};
 cst.p= NextStep(cst); cst.d= NextEQP(cst); }

(cst.d≠ Done)
u, cst

{B[u] cst; R[u]=0 } {R[u]=1;
P[u](f e) }

[u, cst]
Move*
(u, cst)

u Uni-inline EO Simulator:

 Execute-CL-Routine (u, Now) {…}
 Execute-FGL-Routine (u, Now) {

}
 …

 ExecuteLocalEvent (e) {

}

Fig. 11.17.  Interactions between the Coordinator and EO simulators.

Uni-inline EO Simulator:

 Execute-CL-Routine (u, Now) {…}
 Execute-FGL-Routine (u, Now) {

}
 …

 ExecuteLocalEvent (e) {

}

Main Program of Coordinator

ScheduleLocalEvent (e) {

ScheduleLE }

ExecuteLocalEvent (e) {

ObjectList [e.ObjectID].ExecuteLocalEvent (e); }

350   Advanced Event Graph Modeling for Integrated Fab Simulation

11.3.4.2  Event Object Simulator  Figure 11.16 shows how the uni-inline
EO simulator is constructed from the uni-inline EO model of Fig. 11.12. An
event routine is defined for each event node in the uni-inline EO model. In
the case of the FGL event, for example, (1) the state variables are updated as
B[u]→ cst; R[u] = 0; and (2) the next event LGL is scheduled by invoking the
Coordinator.ScheduleLocalEvent function. The main routine of the EO simu-
lator is defined as the ExecuteLocalEvent function, which is invoked from the
Coordinator. Other EO simulators are implemented the same way.

11.3.4.3  Interaction between Simulation Coordinator and EO Simula-
tors  Figure 11.17 shows the interactions between the Coordinator and EO
simulators. The event routine Execute-FGL-Routine of the uni-inline EO
simulator sends a local event e to the Coordinator by calling the function
Coordinator.ScheduleLocalEvent, which will store the local event into the
LEL of the Coordinator. On the other hand, the Coordinator will invoke the
function ObjectList [e.ObjectID].ExecuteLocalEvent to send the next local
event e to the EO simulator that has an ID equal to e.ObjectID.

11.4  INTEGRATED SIMULATION OF A FLAT PANEL DISPLAY FAB

This section presents an object-oriented approach to developing a Fab simula-
tor for integrated simulation of production and material handling in FPD Fab.

11.4.1  Modeling of Job Shop for Integrated Simulation

Figure 11.18 shows a logical structure of a job shop equipped with an auto-
mated material handling system (AMHS). Now the job shop consists of (1) a
production system having uni-inline cells and oven type equipment and (2) an
AMHS composed of a number of inline stockers connected by conveyor seg-
ments. An example layout of an AMHS-equipped job shop was presented in
Section 11.2 (see Fig. 11.2). The job shop denotes a FPD (flat panel display)

Fig. 11.18.  Logical structure of AMHS-equipped job shop.

Integrated Simulation of a Flat Panel Display Fab   351

TABLE 11.3.  Attributes of the Cassette Data Object “cst”

Variable Type/Value Description

cst j int Job type of the glasses in the cassette
p int Processing step of the glasses in the cassette
n int Number of glasses in the cassette
d ID (string) ID of the equipment for the next processing step

of the cassette
a ID ID of the equipment where the cassette is

scheduled to enter after the current equipment
b ID ID of the equipment where the cassette stayed

before entering this equipment
c ID ID of the equipment where the cassette stays

currently
dp {B, PU, PV, SO} type of drop point if it requests a crane for a

movement
pp {B, PU, PV,SI} type of pick-up point if it request a crane for a

movement
r List of IDs route information of the cassette in the form of

array which contains equipment IDs

Fab and the entities in the system are cassettes containing glasses. In a typical
TFT-LCD (thin-film transistor liquid crystal display) Fab, 15 or 24 glasses are
stored in a cassette. In order to support the new functionalities of the cassette
object, a number of new attributes are added to the data object cst (of Table
11.1) as listed in Table 11.3.

Figure 11.19 shows an encapsulated event graph model of an AMHS-
equipped job shop consisting of uni-inline cells. It is an enhanced version of
the encapsulated event graph model of the uni-inline job shop presented in
Section 11.3.1 (see Fig. 11.9) with the following changes: (1) the name of the
cassette-load event is changed to X2PU(u, cst) from CL(u); (2) a function
cst.UpdatePlace(u) replaces the de-queue operation Q[u]→ cst at the state

Fig. 11.19.  Encapsulated event graph model of AMHS-equipped uni-inline job shop.

Uni-inline Cells (u)

X2PU
(u, cst)

FGL
(u)

LGL
(u, cst)

CD
(u, cst)

(R[u]≡1)

{ cst.UpdatePlace(u);
cst B[u];
P[u](rx f)}

u, cst

u, cst u
 t1[u, cst]

(|B[u]|>0)

{ cst.p = NextStep(cst); cst.d = NextEQP(cst);
Route(cst); cst.ShiftRoute(); }

u, cst

{R[u]=0; B[u] cst } { R[u]=1;
P[u](f e)}

 [u, cst] Move*
(u, cst)

u
AMHS

X2PU*
(s, u, cst)

Move
(s, u, cst)

u, cst

cst.a, u, cst

Inline Stocker (s)

352   Advanced Event Graph Modeling for Integrated Fab Simulation

update of the X2PU event node; (3) two functions Route(cst) and cst.Shift-
Route() are introduced at the state update of the CD event node; (4) the
scheduling arc from CD to CL (i.e., X2PU) is removed; and (5) the arc condi-
tion uN ≠ Done on the scheduling arc from CD to Move is deleted.

As depicted previously in Fig. 11.7 (Section 11.2.3), the AMHS in a Fab is
controlled by MCS (material control systems) and equipment dispatching is
handled by RTD (real-time dispatching) systems. In Fig. 11.19, NextStep() and
NextEQP() are RTD functions; Route(), ShiftRoute(), and UpdatePlace() are
MCS functions.

•	 Route (cst) finds the route of a cassette from the current location cst.c to
the destination location cst.d. The route which is a sequence of equipment
IDs is stored in the list cst.r. Note that cst.r [0] = cst.c by definition.

•	 cst.ShiftRoute () shifts the cst.r by one: cst.r[i] = cst.r[i+1] for i = 0, 1 . . .

•	 cst.UpdatePlace (m) updates the current (c), before (b), and after (a)
places of the cassette: {cst.b = cst.c; cst.c = m; cst.a = cst.r [1]}.

An encapsulated event graph model of an AMHS-equipped job shop con-
sisting of oven type equipment is given in Fig. 11.20. As with the uni-inline job
shop case, it is also an enhanced version of the encapsulated event graph model
of the oven type job shop presented in Section 11.3.2 (see Fig. 11.11) with the
following changes: (1) the name of the cassette-load event is changed to
X2PV(v, cst) from CL(v); (2) a function cst.UpdatePlace(v) replaces the
de-queue queue operation Q[v]→ cst at the state update of the X2PV event
node; (3) two functions Route(cst) and cst.ShiftRoute() are introduced at the
state update of the CD event node; (4) the scheduling arc from CD to CL (i.e.,
X2PV) is removed; and (5) the arc condition “uN ≠ Done” on the scheduling
arc from CD to Move is deleted.

Table 11.4 gives all the events introduced in Section 11.4 to describe the
integrated simulation models (in addition to the events listed in Table 11.2 in

Fig. 11.20.  Encapsulated event graph model of AMHS-equipped oven type job shop.

AMHS

Inline Stocker (s)

X2PV
(v, cst)

FGL
(v)

LGL
(v, cst)

CD
(v, cst)

(R[v]≡1)

cst.UpdatePlace(v);
 cst B[v];
P[v](rx f) }

v, cst

v, cst v
 t1[v, cst]

(|B[v]|>0)

{ R[v]=1;
cst.p = NextStep(cst); cst.d = NextEQP(cst);
Route(cst); cst.ShiftRoute(); }

{ R[v]=0;
B[v] cst }

{ P[v](f e) }

[v, cst]
+ t1[v, cst]

v

v, cst Move*
(v, cst)

Ovens (v)

X2PV*
(s, v, cst)

Move
(s, v, cst)

v, cst

cst.a, v, cst

Integrated Simulation of a Flat Panel Display Fab   353

Section 11.3.3). There are 17 events grouped into five types: (1) conveyor
operation events; (2) cassette drop events; (3) cassette pick-up events; (4)
crane-ready events, and (5) crane-free events.

11.4.2  Modeling of Conveyor Operation

Figure 11.21 shows a reference model of conveyor operation. A cassette placed
at the out-port of a stocker (SO) is moved by the conveyor to its end (CQ:

TABLE 11.4.  Events Introduced in the Integrated Fab Simulation Model

Type Name Full Name Description

Conveyor
operation

SOC Start of Convey Cassette starts moving on the
conveyor

EOC End of Convey Cassette arrives at the end of
the conveyor

C2SI Conveyor to
Stocker In-port

Cassette moves into the stocker
in-port and reserves a crane

Cassette
deposition

X2SO X to Stocker
Out-port

A cassette is deposited
(dropped) at a Stocker
Out-port

X2PU X to Uni-inline
Port

A cassette is deposited
(dropped) at a Uni-inline Port

X2PV X to Oven Port A cassette is deposited
(dropped) at a Oven Port

X2B X to Buffer of
stocker

A cassette is deposited
(dropped) at a stocker Buffer

Cassette pick
up by crane

SI2X Stocker In-port
to X

Crane starts picking up a
cassette from a Stocker
In-port.

PU2X Uni-inline Port to
X

Crane starts picking up a
cassette from a Uni-inline
Port.

PV2X Oven Port to X Crane starts picking up a
cassette from a Oven Port.

B2X stocker Buffer to
X

Crane starts picking up a
cassette from a stocker Buffer.

Crane ready SI2Xr SI2X ready Crane becomes ready for SI2X.
PU2Xr PU2X ready Crane becomes ready for PU2X.
PV2Xr PV2X ready Crane becomes ready for PV2X.
B2Xr B2X ready Crane becomes ready for B2X.

Crane free CU Crane Unloaded Crane finishes unloading
(dropping) a cassette at a
destination point.

CI Crane Idle Crane becomes idle and ready
for a next crane Request.

354   Advanced Event Graph Modeling for Integrated Fab Simulation

conveyor queue) where the cassettes are accumulated. The cassette at the very
end of the conveyor is transferred to the in-port of another stocker (SI). There
are four events related to the conveyor operation: X2SO (transfer from some-
where to SO), SOC (start of convey), EOC (end of convey), and C2SI (from
conveyor to SI). The state variables related to conveyor operation are sum-
marized in Table 11.5.

Figure 11.22 shows an encapsulated event graph model of conveyor opera-
tion. Since the operation of conveyor c starts from the out-port of stocker si,
the stocker out-port SO[si,c] is treated as a part of the conveyor. When enter-
ing the conveyor model, the values of the parameter cst are {cst.c ≡ si; cst.a ≡
c; cst.r [0] ≡ c; cst.r [1] ≡ sj; etc.}.

The first conveyor event is X2SO where (1) the places of the cassette are
updated as {cst.b = cst.c ≡ si; cst.c = c; cst.a = cst.r [1] ≡ sj} by the function cst.
UpdatePlace(c); and (2) out-port of Stocker “si” is set to “busy (occupied)”
(SO [si, c] = 0). The second event is “start of convey” SOC where (1) out-port

Fig. 11.21.  Reference model of conveyor operation.

Conveyor (c)

(SOC) (EOC)

(X2SO) (C2SI)

Inline
Stocker

(sj)

Stocker In-port
(SI) Stocker Out-port

(SO)

Inline
Stocker

(si)

TABLE 11.5.  State Variables Related to Conveyor Operation

Variable Value Description

SO[s, c] −1: reserved, 0:
occupied, 1: empty

Status of an output port of the inline stocker s
connected to conveyor c

SI[s, c] −1: reserved, 0:
occupied, 1: empty

Status of an input port of the inline stocker s
connected to conveyor c

CQ[c] List of cassettes {cst} list of conveyed cassettes waiting at the end of
the conveyor

Fig. 11.22.  Encapsulated event graph model of conveyor operation.

(RSV)

{ cst CQ[c];
RSV = RsvSI(cst.a, c);

cst.ShiftRoute(); }

{ cst.UpdatePlace(c);
SO[cst.b, c]=0; }

C2SI*
(sj,c)

C2SI
(sj,c) sj,c X2SO

(c, cst)
EOC
(c,cst)

SOC
(c,cst) c, cst cst.a, c

tc
c,cst

{ SO[cst.b, c]=1;]

X2SO*
(si, c, cst) c, cst

Inline
Stocker (sj)

Conveyor (c)

{ CQ[c] cst;
 SI[sj, c]=0;
 … }

{ cst.ShiftRoute();}

Inline
Stocker (si)

Integrated Simulation of a Flat Panel Display Fab   355

of Stocker “si” is set to “idle (empty)” (SO [si, c] = 1); and (2) the EOC event
is scheduled to occur after the convey time (tc). The third event is “end of
convey” EOC where (1) the record cst is stored in the conveyor queue (cst→
CQ[c]); (2) an in-port of Stocker sj is reserved by the function RSV = RsvSI
(cst.a, c); and (3) the cassette’s route is updated as {cst.r [0] = cst.r [1] ≡ sj; cst.r
[1] = cst.r [2]; etc.} by the function cst.ShiftRoute (). The function RsvSI () is
defined as follows:

•  RSV = RsvSI (s, c) {
  If (SI[s, c] > 0) {SI[s, c] = −1; RSV = True}
  else {RSV = False}

11.4.3  Modeling of the Interface between Conveyor and
Inline Stocker

Figure 11.23(a) is a reference model of conveyor-in interface between an
incoming conveyor ci and an inline stocker s at the stocker in-port SI[s, ci]. The
conveyed cassettes are accumulated in the conveyed queue CQ[ci]. Events
involved in the convey-in operation are EOC, C2SI (conveyor to stocker
in-port transfer), SI2Xr (the crane is ready for a pick-up), and SI2X (the crane
picks up a cassette from the stocker in-port). Figure 11.23(b) is a reference
model of conveyor-out interface between an outgoing conveyor cj and the
inline stocker s at the stocker out-port SO[s, cj]. The events involved in
the convey-out operation are CU (crane unload), X2SO (cassette deposit at
the stocker out-port), and SOC (start of convey).

Figure 11.24 shows an encapsulated event graph model of the convey-in
interface operation depicted in Fig. 11.23(a). The event object model conveyor
(ci) is the same the one given in Fig. 11.22. At the C2SI event, the following state
updates are made: (1) a cassette is retrieved from the conveyed queue {CQ[ci]→
cst}; (2) the stocker in-port is set to busy {SI[s, ci] = 0}; (3) make s the current
place (or location) of the cassette and update other places {cst.UpdatePlace(s)};

Fig. 11.23.  Reference models of (a) conveyor-in interface and (b) convey-out
interface.

Incoming Conveyor
(ci)

Uni-Inline
Cell (ui)

Crane: cr

Stocker In-port:
SI[s, ci]

SI2X

SI2Xr

Inline Stocker (s)

EOC C2SI

Conveyed Queue:
CQ[ci]

Crane: cr

X2SO

Outgoing Conveyor
(cj)

Stocker Out-port:
SO[s, cj]

Oven-type
Eqp. (vi)

SOC

Inline Stocker (s)

CU

(a) (b)

356   Advanced Event Graph Modeling for Integrated Fab Simulation

(4) reserve the crane {RSV= RsvC(SI, cst)}; and (5) an SI2Xr event is scheduled
to occur immediately if the crane was successfully reserved. At the SI2Xr event,
(1) the crane becomes “ready” by setting its state to “busy” {cr[s] = 0} and (2)
an SI2X event is scheduled to occur after tr (time taken to make a retrieve move
to pick-up point SI). At the SI2X event, (1) the stocker in-port is reserved if
there are cassettes in the conveyed queue {If (|CQ[ci]| > 0) {SI[s, ci] = −1}}; (2)
the stocker in-port is set to “idle” otherwise {else {SI[s, ci] = 1}}; and (3) a C2SI
event is scheduled if the stocker in-port is in “reserved” state {{SI[s, ci] = −1}}.
A pseudocode of the function RsvC () is listed in Fig. 11.25.

Figure 11.26 shows an encapsulated event graph model of the convey-out
interface operation depicted in Fig. 11.23(b). At the “crane-unload” event CU,
a check is made if the cassette drop-point is the stocker out-port (cst.dp ≡ SO).
If so, an X2SO event is scheduled to occur immediately. The event object
model Conveyor (cj) is the same the one given in Fig. 11.22.

Fig. 11.24.  Encapsulated event graph model of convey-in interface.

{ CQ[ci]→cst; SI[s, ci]=0;
 cst.UpdatePlace(s);
 RSV= RsvC(SI, cst); }

C2SI
(s,ci)

(RSV)

{ cr[s]=0; } { If(|CQ[ci]|>0) {SI[s, ci]= –1;}
 else {SI[s, ci]=1;} }

tr

(SI[s, ci] ≡ –1)

(RSV)

{ cst CQ[ci];
 RSV=RsvSI(s);
 cst.ShiftRoute(); }

C2SI*
(s,ci)

EOC
(ci,cst)

Conveyor (ci) Inline Stocker (s)

cst.a, ci s, ci s,ci,cst s,ci,cst

s,ci

SI2Xr
(s,ci,cst)

SI2X
(s, ci, cst)

<Figure 11.22>

Fig. 11.25.  Pseudocode of the crane reserve function RsvC ().

Integrated Simulation of a Flat Panel Display Fab   357

Fig. 11.26.  Encapsulated event graph model of convey-out interface.

CU
(s, cst)

X2SO*
(s, cj, cst)

(cst.dp ≡ SO)

{ cst.UpdatePlace(cj);
SO[cst.b, cj]= 0; }

X2SO
(cj,cst)

SOC
(cj,cst)

{ SO[cst.b, cj]= 1; }

Conveyor (cj) Inline Stocker (s)

s, cst.a, cst cj,cst cj, cst

{ cst.ShiftRoute();}

<Figure 11.22>

11.4.4  Modeling of the Interface between Uni-inline Cells and
Inline Stocker

Figure 11.27(a) is a reference model of pick-up interface between a uni-inline
cell ui and an inline stocker s. A cassette at a uni-inline I/O port P[ui] is to be
picked up by the crane and moved to its destination. Events involved in this
pick up operation are Move (start moving to leave the uni-inline cell), PU2Xr
(crane is ready for a pick-up), PU2X (crane picks up a cassette from a uni-
inline I/O port), and CU (crane unload). Figure 11.27(b) is a reference model
of drop interface between a uni-inline cell uj and the inline stocker s. The
events involved in this operation are CU (crane unload), X2PU (cassette
deposit at the uni-inline I/O-port), and FGL (first glass loading).

Figure 11.28 shows an encapsulated event graph model of the pick-up
interface in Fig. 11.27(a). The event object model Uni-inline Cell (ui) is the

Fig. 11.27.  Reference models of (a) pick-up interface and (b) drop interface.

Uni-Inline
Cell (ui)

Uni-inline
I/O Port:

 P[ui]

PU2X

Move

PU2Xr

 Crane: cr
CU

Inline Stocker (s)

Uni-Inline
Cell (uj)

CU

X2PU

FGL

 Crane: cr

U

X2XX

Inline Stocker (s)

Uni-inline
I/O Port:

 P[uj]

Port
Queue:

B

Track-in
Robot: R

(a) (b)

Fig. 11.28.  Encapsulated event graph model of pick-up interface with uni-inline cell.

(RSV)

{ P[ui](dr { P[ui](e
 cst.UpdatePlace(s);
 RSV= RsvC(PU, cst); }

CU
(s, cst) s, ui, cst s, cst td tr

{ cr[s]=0; }

Move*
(ui, cst) cst.a, ui, cst s, ui, cst

Inline Stocker (s) Uni-inline Cell (ui)

PU2Xr
(s, ui, cst)

PU2X
(s, ui, cst)

Move
(s, ui, cst)

<Figure 11.19>

 x); } dr);

358   Advanced Event Graph Modeling for Integrated Fab Simulation

same the one given in Fig. 11.19. At the Move event, (1) the port state is
changed from “empty-cassette” to “depart-reserved” {P[ui](e→ dr)}; (2) the
cassette places are updated {cst.UpdatePlace(s)}; (3) the crane is reserved
{RSV= RsvC(PU, cst)}; and (4) PU2Xr is scheduled to occur immediately if
the crane was reserved. At the PU2Xr event, (1) the crane is set to “busy”
{cr[s] = 0}; and (2) PU2X is scheduled to occur after tr time units. At the PU2X
event, (1) the “depart-reserved” port is changed to “no-cassette” {P[ui](dr→
x)}; and (2) CU is scheduled to occur after a time delay of td (time to move
to the drop point).

Figure 11.29 shows an encapsulated event graph model of the drop interface
depicted in Fig. 11.27(b). At the “crane-unload” event CU, a check is made if
the cassette drop point is a uni-inline port (cst.dp ≡ PU). If so, X2PU is sched-
uled to occur immediately.

11.4.5  Modeling of the Interface between an Oven and Inline Stocker

The interface mechanism between oven type equipment and an inline stocker
is exactly the same as that between uni-inline cells and an inline stocker.
Figure 11.30(a) and (b) shows encapsulated event graph models of pick-up
interface and deposition interface between oven type equipment and an inline
stocker, respectively.

11.4.6  Modeling of Inline Stocker Operation

Figure 11.31 shows a reference model of the crane operation in an inline
stocker s (and the next inline stocker sk). The slots (or shelves) where a cas-
sette is located in the inline stocker are a stocker buffer (B), uni-inline I/O
port (PU), oven I/O port (PV), stocker in-port (SI), and stocker out-port (SO).
A cassette at a pick point (SI, PU, PV, B) is to be moved to a drop point (SO,
PU, PV, B) by the crane. The cassette transport operation is executed in three
phases: (1) making the crane ready for picking up a cassette; (2) the crane
travels to a pick-up point and picks up a cassette; and (3) the crane transports
the cassette to a drop point and drops it. If a cassette is to be transported from
the stocker in-port (SI) to an oven I/O port (PV), for example, the stocker
operation is executed by: (1) the idle crane gets ready for picking up a cassette
at SI (SI2Xr); (2) the crane travels to SI and picks up the cassette (SI2X);

Fig. 11.29.  Encapsulated event graph model of drop interface with uni-inline cell.

X2PU*
(s, uj, cst)

X2PU
(uj, cst)

uj, cst

Inline Stocker (s) Uni-inline Cell (uj)

{ cst.ShiftRoute();} { cst.UpdatePlace(uj);
cst B[uj]; P[uj](rx f) }

CU
(s, cst)

(cst.dp PU)
s, cst.a, cst FGL

(uj)

(R[uj]≡1)
uj

{ R[uj] = 0;
B[uj] cst }

<Figure 11.19>

Integrated Simulation of a Flat Panel Display Fab   359

Fig. 11.30.  Encapsulated event graph models of (a) pick-up interface and (b) deposi-
tion interface with an oven type Eqp.

X2PV*
(s, vj, cst)

X2PV
(vj,cst)

vj, cst

{ cst.ShiftRoute();} { cst.UpdatePlace(vj);
cst B[vj];P[vj](rx f) }

CU
(s, cst)

(cst.dp≡PV)
s, cst.a, cst FGL

(vj)

(R[vj]≡1)
vj

{ R[vj]=0;
B[vj] cst }

{ P[vi](dr

CU
(s, cst)

s, vi, cst s, cst td tr

{ cr[s]=0; } Move*
(vi, cst)

cst.a, vi, cst
s, vi, cst

(RSV) PV2Xr
(s ,vi, cst)

PV2X
(s, vi, cst)

{ P[vi](e
 cst.UpdatePlace(s);
 RSV=RsvC(PV, cst); }

Move
(s,vi,cst)

<Fig.11.20>

<Fig.11.20>

(a)

(b)

dr);

Fig. 11.31.  Reference model of inline stocker crane operation.

Incoming
Conveyor (ci)

Uni-Inline
Cell (ui)

 Crane

Stocker In-port:
SI[s, ci]

SI2X

Uni-inline
I/O Port: PU Stocker Buffer

(B)
Uni-Inline

Cell (uj)

X2SO

PU2X X2PU B2X

X2B

Oven type
EQP.
(vi)

(vj)

Oven
I/O Port : PV

PV2X X2PV

Pick-point (pp):
{ SI, PU, PV, B }

Drop-point (dp):
{ SO, PU, PV, B }

Crane picks
up a cassette
at a Pick-point

A cassette
is dropped
at a Drop-point

Outgoing
Conveyor (cj)

Stocker Out-port:
SO[s, cj]

Inline
Stocker

(s)

SI2Xr

Crane gets
ready for
a pick-up

1 2 3

4

Inline
Stocker

(sk)

Uni-Inline
Cell (uk)

Conveyed Queue:
CQ[ci]

P[uj]

Oven type
EQP.

and (3) the crane moves the cassette to PV and drops it (X2PV) to become
idle again. The operation cycles of the crane are captured in the event graph
model of crane operation given in Fig. 11.32.

In Fig. 11.32, an operation cycle of the crane starts from the crane idle event
CI(s) where the crane state is set to “idle” {cr[s] = 1} and a cassette is selected
for transportation {cst = SelectCraneRequest(s)}. The crane operation will be
described using the state variables listed in Tables 11.6: (1) the state of the

360   Advanced Event Graph Modeling for Integrated Fab Simulation

Fig. 11.32.  Event graph model of crane operation in an inline stocker.

{ cr[s]=1; cst= SelectCraneRequest(s); }

(cst.pp≡ PU)

{ P[ui](dr→ x); }

CU
(s,cst)

X2PU
(s,uj,cst)

s, cst.a, cst

PU2X
(s,ui,cst)

PU2Xr
(s, ui, cst)

s, cst

td

 tr
s, ui, cst

{ cr[s]=0; }
s

s, cst.b, cst

(cst.dp≡ PU)

SI2Xr
(s,ci,cst)

{ cr[s]=0; }

SI2X
(s,ci,cst) s, ci, cst

{ if(|CQ[ci]|>0) { SI[s, ci]=-1; }
else { SI[s, ci]=1;} }

 tr td
s, cst X2SO

(s,cj,cst)
 s, cst.a, cst

(cst.dp≡ SO)

X2B
(s,cst)

{ cst.pp=B; WIP[s]++;
cst→ CRL[s];}

s, cst

(cst.dp≡ B)

CI
(s)

(cst.pp≡ SI)

s, cst.b, cst

B2Xr
(s,cst)

(cst.pp≡ B)

B2X
(s,cst) s, cst

tr

{ cr[s]=0; } { WIP[s]--; }

td

s, cst

{ cst.ShiftRoute(); }

s, cst

td

{ P[vi](dr→ x); }

PV2X
(s,vi,cst)

PV2Xr
(s,vi,cst)

tr
s, vi, cst

{ cr[s]=0; }

X2PV
(s,vj,cst)

s, cst.a, cst

(cst.dp≡ PV)

s, cst

{ cst.ShiftRoute(); }

{ cst.ShiftRoute(); }

(cst.pp≡ PV)

s, cst.b, cst

Inline Stocker (s)

TABLE 11.6.  State Variables Related to Crane Operation

Variable Type/Value Description

cr[s] 1, 0, −1 cr[s] = 1 if crane is idle; = 0 if crane is busy; = −1 if crane
is reserved

WIP[s] int Number of cassettes waiting (stored) in the buffers of the
inline stocker s

CRL[s] {cst} List of cassettes requested (waiting) for the service of
crane at the inline stocker s

crane in the inline stocker is denoted by cr[s]; (2) number of cassettes stored
in the stocker buffers is denoted by WIP[s]; and (3) the list of cassettes waiting
for transport is denoted by CRL[s]. The function SelectCraneRequest () is
defined as follows:

•	 cst = SelectCraneRequest (s) selects the “best” cassette from CRL[s].

Referring back to Fig. 11.31, four cassettes (cst1∼cst4) are waiting for the
crane. Let’s assume that: (1) cst1 is heading for the uni-inline cell uj located in
the inline stocker s; (2) cst2 is also heading for uj; (3) cst3 is heading for
the oven type equipment vj located in the inline stocker s; and (4) cst4 is
heading for a uni-inline cell uk located in the next inline stocker sk. Thus, the
values of the state variables are as summarized in Table 11.7. Assuming that
cst1 has the highest priority, the event graph model in Fig. 11.32 is executed
as follows:

Integrated Simulation of a Flat Panel Display Fab   361

TABLE 11.7.  Values of State Variables in the Reference Model of Figure 11.31

Cassette/
Variables

After
(.a)

Before
(.b)

Current
(.c)

Destination
(.d)

Pick-
point
type
(.pp)

Drop-
point
type
(.dp)

Route
(.r) Remark

cst1 uj ci s uj SI PU (s, uj) Heading
for uj

cst2 uj ci s uj B PU (s, uj) Waiting
for uj

cst3 vj ui s vj PU PV (s, vj) Heading
for vj

cst4 cj vi s uk PV SO (s, cj, sk,
uk)

uk belongs
to sk.

State
variable

CRL[s] = {cst1, cst2, cst3, cst4}; CQ[ci] = 2; WIP[s] = 1

1.	 At the CI event, the state variables are updated as {cr[s] = 1; cst = cst1}
and SI2Xr is scheduled with parameter <s, ci, cst> since cst.pp ≡ SI.

2.	 At the SI2Xr event, the state variable is updated as {cr[s] = 0} and SI2X
is scheduled to occur after tr (time to reach SI).

3.	 At the SI2X event, the state variable is updated as {SI[s, ci] = −1} since
|CQ| > 0 and CU is scheduled to occur after td (time for a delivery move
to P[uj]).

4.	 At the CU event, X2PU is scheduled with parameter <s, uj, cst> since
cst.dp ≡ PU and CI is scheduled with parameter s.

In the previous sections, the inline stocker interfaces with other equipment
were modeled as encapsulated event graph models: (1) convey-in interface
model in Fig. 11.24; (2) convey-out interface model in Fig. 11.26; (3) uni-inline
pick-up interface model in Fig. 11.28; (4) uni-inline drop interface model in
Fig. 11.29; (5) oven type equipment interface models in Fig. 11.30. By assem-
bling these interface models into the crane operation model in Fig. 11.32,
a completed event graph model of an inline stocker is obtained as shown in
Fig. 11.33.

11.4.7  Integrated Fab Simulator

Figure 11.34(a) shows an encapsulated event graph model of our FPD Fab
consisting of uni-inline cells, oven type equipment, inline stockers, and con-
veyors. As described previously (see Section 11.3.4), the encapsulated event
graph model can be converted to an OOEG simulator as shown in Fig. 11.34(b)
and then eventually implemented into an integrated Fab simulator.

362   Advanced Event Graph Modeling for Integrated Fab Simulation

11.5  AUTOMATED MATERIAL HANDLING SYSTEMS-EMBEDDED
INTEGRATED SIMULATION OF FLAT PANEL DISPLAY FAB

As mentioned earlier, there is a growing need in the FPD industry for an
automated material handling systems-embedded integrated simulation where
production simulation is carried out together with detailed simulation of
AMHS. This section presents a generic framework for an AMHS-embedded
integrated Fab simulator where AutoMod models of AMHS are embedded
into the integrated Fab simulator of Section 11.4.7. An earlier version of the
AMHS-embedded integrated Fab simulator was presented elsewhere [Song
et al. 2011].

Fig. 11.34.  (a) Encapsulated event graph model and (b) OOEG integrated Fab
simulator.

 Objec-oriented Event Graph Simulator

Sc
he

du
le

Lo

ca
lE

ve
nt

 Execute
LocalEvent Sc

he
du

le

Lo
ca

lE
ve

nt
 Execute

LocalEvent

Simulation Coordinator LEL

Sc
he

du
le

Lo

ca
lE

ve
nt

 Execute
LocalEvent Sc

he
du

le

Lo
ca

lE
ve

nt
 Execute

LocalEvent

Encapsulated Event Graph Model

(a) (b)

Fig. 11.33.  Encapsulated event graph model of inline stocker operation.

{ cr[s]=1;
cst=SelectCraneRequest(s); }

(cst.pp≡PU)

(RSV)

{ P[ui](dr→x); } { P[ui](e→dr);
 cst.UpdatePlace(s);

 RSV=RsvC(PU,cst); }

CU
(s,cst)

CI
(s)

X2PU*
(s,uj,cst)

s,cst.a,cst

Move
(s,ui,cst) s,ui,cst

td

tr
s,ui,cst

{ cr[s]=0; }

s

s,cst.b,cst

(cst.dp≡ PU)

Move*
(ui, cst)

X2PU
(uj,cst)

C2SI
(s,ci)

C2SI*
(s,ci)

(RSV)
s,ci,cst

{ cr[s]=0; }

s,ci,cst

{ if(|CQ[ci]|>0) { SI[s, ci]=-1; }
Else { SI[s, ci]=1; } }

tr td X2SO*
(s,cj,cst)

X2SO
(cj,cst)

cj,cst s,cst.a,cst
(cst.dp≡SO)

X2B
(s,cst)

{cst.pp=B;WIP[s]++;
cst→CRL[s]; }

s,cst

(cst.dp≡B)

CI
(s)

(cst.pp≡SI)

s,cst.b,cst

CI
(s)

B2Xr
(s,cst) s,cst

(cst.pp≡B) B2X
(s,cst) s,cst

tr

{ cr[s]=0; } { WIP[s]--; }

td
(SI[s,ci]≡-1)

s,ci

uj,cst cst.a,ui,cst

s,ci

Move*
(vi,cst)

cst.a,vi,cst X2PV
(vj,cst)

vj,cst Move
(s,vi,cst)

(RSV)

{ P[vi](dr→ x); }

s,vi,cst tr s,vi,cst

{ cr[s]=0; }

td

X2PV*
(s,vj,cst)

s,cst.a,cst

(cst.dp≡ PV)

s,cst.b,cst
(cst.pp≡PV)

s,cst

s,cst

s,cst

s,cst

Oven (vi)

Inline Stocker (s)

Oven (vj)

Conveyor
(ci)

Conveyor
(cj)

Uni-inline
Cell (uj)

{CQ[ci]→cst; SI[s,ci]=0;
 cst.UpdatePlace(s);
RSV=RsvC(SI,cst);}

PV2Xr
(s,vi,cst)

PV2X
(s,vi,cst)

PU2Xr
(s,ui,cst)

PU2X
(s,ui,cst)

SI2Xr
(s,ci,cst)

SI2X
(s,ci,cst)

{ P[vi](e→ dr);
cst.UpdatePlace(s);

RSV=RsvC(PV, cst); }

{ cst.ShiftRoute();}

{ cst.ShiftRoute();}

{ cst.ShiftRoute();}

Uni-inline
Cell (ui)

(Fig.11.19) (Fig.11.19)

(Fig.11.22) (Fig.11.22)

(Fig.11.20) (Fig.11.20)

Automated Material Handling Systems-Embedded Integrated Simulation   363

11.5.1  Concept of AMHS-Embedded Fab Simulation

As depicted in Fig. 11.35, there are four MCM functions that can be used for
socket-based communication between our Fab simulator and AutoMod® in
which the virtual AMHS is stored. The four AutoMod MCM functions are:

•	 Send_Msg (msg) is used in Fab Simulator to send a record msg to
AutoMod.

•	 msg= Read_Msg () is used in the Fab Simulator to read msg (sent by
AutoMod).

•	 SendSocketString (msg) is used in AutoMod to send msg to the Fab
Simulator.

•	 msg= ReadSocketString () is used in AutoMod to read msg.

Figure 11.36 shows the concept of AMHS-embedded integrated Fab simu-
lation. In the simulation scheme discussed in the previous section, the SOC
(start of convey) event of the Conveyor EO model (Fig. 11.22 in Section 11.4)
schedules an EOC (end of convey) event to occur after tc time units for a
given value of tc. In the AMHS-embedded simulation scheme consisting of (a)
Fab Simulator Conveyor EO model and (b) AutoMod Conveyor model;
however, the convey time (tc) has to be determined by AutoMod. Thus, at the
SOC event, the Fab Simulator asks AutoMod to perform a virtual conveyor
operation. Then, at the end of the virtual convey operation, AutoMod sends
the “actual” convey time (tc) back to the Fab Simulator so that the latter
schedules an EOC event to occur after tc time units.

Fig. 11.35.  Socket-based communications between a Fab Simulator and AutoMod.

AutoMod ® (Virtual AMHS) Fab Simulator

Send_Msg(msg)

 msg = Read_Msg()

msg = ReadSocketString()

SendSocketString(msg)

(a) (b)

Fig. 11.36.  Concept of AMHS-embedded Fab simulation.

(RSV)

{ cst CQ[c];
RSV = RsvSI(cst.a, c);

cst.ShiftRoute(); }

{ cst.UpdatePlace(c);
SO[cst.b, c]=0; } C2SI*

(sj,c)

X2SO
(c, cst)

EOC
(c,cst)

SOC
(c,cst) c, cst cst.a, c

tc
c,cst

{ SO[cst.b, c]= 1;]

Fab Simulator Conveyor EO Model

(Fig.11.22)

 AutoMod Conveyor Model

EOC

SOC

(a) (b)

364   Advanced Event Graph Modeling for Integrated Fab Simulation

11.5.2  Framework of AMHS-Embedded Fab Simulation System

Figure 11.37 shows a framework of AMHS-embedded integrated Fab simula-
tion system realizing the AMHS-embedded simulation concept given in Fig.
11.36. In order for the Convey event SOC to schedule the EOC event with
the “actual” convey time (tc) provided by AutoMod, the following steps of
actions are taken:

1.	 At the SOC event of the Conveyor EO Model, the SOC event is stored
in the move-type event list (MEL) and a convey message Cmsg is sent to
AutoMod.

2.	 At the ExecuteLE event of Coordinator, a time-advance message Tmsg
(containing tta) is built with LEL[0] and sent to AutoMod, and wait until
a message msg (containing tc) is received from AutoMod.

3.	 Upon receiving a message (with type = ‘Convey’), the Coordinator
invokes the function FireSchedulingArc (msg) so that the Conveyor EO
Model is allowed to schedule an event.

4.	 The Conveyor Model asks Coordinator to schedule its destination event.

In Fig. 11.37, the MEL of Conveyor EO Model contains a list of move-type
events that have been sent to AutoMod at step 1. Later, when the function
FireSchedulingArc(msg) is called at step 3, a matching move-type event is
retrieved from the MEL. The data record msg has the following fields:
Type = {Time-advance, Retrieve, Deliver or Convey}, EventName, ObjectID
(ID of the sending simulator object), CassetteID, EventTime, Source (current
location of the cassette), and Destination (to-be location of the cassette).

Fig. 11.37.  Framework of an AMHS-embedded Fab simulation system.

{ e LEL;
If (SC ≡ 1)

{SC = –1; RSV = true;}
else {RSV = false;} }

{ SC = 0;
LEL e;

 ts = e.Time – Clock; }

(RSV) (e.Time ≤ tEOS)
(RSV)

ScheduleLE
(e) GetNextLE ts e

 Coordinator (from Fig.11.14) SC= 1; LEL = null;

ExecuteLE
(e)

{ ExecuteLocalEvent (e)!;
If (|LEL| > 0) {SC = –1; RSV = true;}

else {SC = 1; RSV = false;}

≡ }

Terminate

(e.Time > tEOS)

LEL= {e}

(RSV)

{ cst CQ[c];
RSV = RsvSI(cst.a);

cst.ShiftRoute(); }

{ cst.UpdatePlace(c);
SO[cst.b, c]=0; }

C2SI*
(sj,c)

X2SO
(c, cst)

EOC
(c,cst)

SOC
(c,cst) c, cst cst.a,c c, cst

{ SO[cst.b, c]=1;

MEL={e} Conveyor EO Model (Fig.11.22)
AutoMod

Schedule
LocalEvent (e)

1

3’

4

3

2

 tc tc

tta

(a)

(b) (c)

Automated Material Handling Systems-Embedded Integrated Simulation   365

“#” is used as a delimiter. Among the functions enclosed in dashed-line boxes
in the figure, Send_Msg () and Read_Msg () are AutoMod MCM functions
introduced in Section 11.5.1. The functions for building a time-advance message
Tmsg and convey-move message Cmsg are defined as follows:

MakeTmsg (e) { // LEL[0] denotes the first local event
stored in LEL

msg = “Time-advance#” + e.EventName +”#” + e.ObjectID
+ “# #” + e.EventTime + # #”;

return msg;}
MakeCmsg (c, cst, Now) {
msg = “Convey# SOC#” + c + “#” + cst.ID + “#” + Now

+ # #”;
return msg;};

The time-advance message Tmsg is constructed with LEL[0], the first event
in the LEL, at step 2. Tmsg contains the time-advance time tta, which is the
event time of LEL[0]. AutoMod is allowed to advance its clock up to the time-
advance time tta. Figure 11.38 shows how the message is processed in AutoMod.
In the figure, the retrieve-move message Rmsg and deliver-move message
Dmsg are coming from the Inline Stocker model to be explained shortly. For
details about AutoMod programming, the reader is referred to AutoMod
manuals [Brooks Automation 2003a, 2003b].

An originating event related to the movement of a material handling device,
like SOC, is called a move-type event. Among the four component models in
the integrated Fab simulation system shown in Fig. 11.34, the Inline Stocker
model also has move-type events whose delay times have to be determined
by AutoMod. The move-type events are: Retrieve events (B2Xr, PV2Xr, SI2Xr,

Fig. 11.38.  Message processing in AutoMod.

Cmsg/ Rmsg/ Dmsg

Tmsg (tta)

msg (tc/tr/td)

366   Advanced Event Graph Modeling for Integrated Fab Simulation

and PU2Xr) and Deliver events (B2X, PV2X, SI2X, and PU2X). Figure 11.39
shows the Inline Stocker model (given in Fig. 11.33) modified for AMHS-
embedded simulation.

At each move-type event of the Inline Stocker model, instead of scheduling
the destination event to occur after a delay-time (tr or td), the move-type event
ID is stored in the MEL and a move-type message (retrieve move or deliver-
move message) is constructed and sent to AutoMod. Then, AutoMod returns
the delay-time to the Coordinator that in turn pass the delay-time by invoking
the FireSchedulingArc () function.

11.5.3  Simulator for AMHS-Embedded Integrated Fab Simulation

Figure 11.40 shows the structure of our AMHS-embedded integrated Fab
simulator. Recall that the structure of the integrated Fab simulator was pre-
sented in Fig. 11.34 (the structure of the production simulator was given in
Fig. 11.13). The processing-type simulators (Uni-inline Simulator and Oven
Simulator) in Fig. 11.40 are the same as those in Fig. 11.34 but the handling-
type simulators (Conveyor Simulator and Inline Stocker Simulator) in Fig.
11.40 are enhanced to handle communications with AutoMod. In the follow-
ing, how to implement the AMHS-embedded integrated Fab simulator will be
explained.

Fig. 11.39.  Inline Stocker model modified for AMHS-embedded simulation.

{ cr[s]=1;
cst=SelectCraneRequest(s); }

(cst.pp≡PU)

(RSV)

{ P[ui](dr→x); MEL PU2X
= PU2X

{ P[ui](e→dr);
 cst.UpdatePlace(s);

 RSV=RsvC(PU,cst); }

CU
(s,cst)

CI
(s)

X2PU*
(s,uj,cst)

s,cst.a,cst

Move
(s,ui,cst)

s,ui,cst s,ui,cst

{ cr[s]=0 MEL PU2Xr
= PU2Xr

s

s,cst.b,cst

(cst.dp≡ PU)

C2SI
(s,ci)

(RSV)
s,ci,cst

{ cr[s]=0 MEL SI2Xr
= SI2Xr

s,ci,cst

{ if(|CQ[ci]|>0) { SI[s, ci]=-1; }
else { SI[s,ci]=1; }; MEL SI2X

= SI2X

X2SO*
(s,cj,cst)

s,cst.a,cst
(cst.dp≡SO)

X2B
(s,cst)

{cst.pp=B;WIP[s]++;
cst→CRL[s]; }

s,cst

(cst.dp≡B)

CI
(s)

(cst.pp≡SI)

s,cst.b,cst

CI
(s)

B2Xr
(s,cst)

s,cst
(cst.pp≡B)

B2X
(s,cst)

s,cst

cr[s]=0 MEL B2Xr
= B2Xr

WIP[s] MEL B2X
= B2X

(SI[s,ci]≡-1)
s,ci

Move
(s,vi,cst)

(RSV)

P[vi](dr→x); MEL PV2X
= PV2X

s,vi,cst s,vi,cst

cr[s]=0 MEL PV2Xr
= PV2Xr

X2PV*
(s,vj,cst)

s,cst.a,cst

(cst.dp≡ PV)

s,cst.b,cst

(cst.pp≡PV)

s,cst

s,cst

s,cst

s,cst

Inline Stocker Model (Fig.11.33)

{CQ[ci]→cst; SI[s,ci]=0;
 cst.UpdatePlace(s);
RSV=RsvC(SI,cst);}

PV2Xr
(s,vi,cst)

PV2X
(s,vi,cst)

PU2Xr
(s,ui,cst)

PU2X
(s,ui,cst)

SI2Xr
(s,ci,cst)

SI2X
(s,ci,cst)

{ P[vi](e→dr);
cst.UpdatePlace(s);

RSV=RsvC(PV,cst); }

{ cst.ShiftRoute();}

{ cst.ShiftRoute();}

{ cst.ShiftRoute();}

()?

Automated Material Handling Systems-Embedded Integrated Simulation   367

11.5.3.1  Simulation Coordinator of the AMHS-Embedded Simula-
tor  Figure 11.41 shows the event graph model, the main program, and event
routine Execute-ExecuteLE-Routine () of the Simulation Coordinator of the
AMHS-embedded integrated Fab simulator. The coordinator main program
in Fig. 11.41(b) is obtained by appending the FireSchedulingArc function at
the end of the coordinator main program of the production simulator in Fig.
11.15(a). The event routine Execute-ExecuteLE-Routine () in Fig. 11.41(c) is
obtained similarly by appending the statements inside the dashed-line box to
that of the production simulator in Fig. 11.15(b). The rest of the event routines
are the same as those in Fig. 11.15(b).

11.5.3.2  Conveyor EO Simulator Module of the AMHS-Embedded Simu-
lator  Figure 11.42 shows a pseudocode of the Conveyor EO Simulator

Fig. 11.40.  Structure of the AMHS-embedded integrated Fab simulator.

Sc
he

du
le

Lo

ca
lE

ve
nt

 Execute
LocalEvent Sc

he
du

le

Lo
ca

lE
ve

nt
 Execute

LocalEvent

Simulation Coordinator LEL

Sc
he

du
le

Lo

ca
lE

ve
nt

 Execute
LocalEvent Sc

he
du

le

Lo
ca

lE
ve

nt
 Execute

LocalEvent

MEL MEL

AutoMod Fire
Scheduling Arc

Fire
Scheduling Arc

Rmsg/ Dmsg
Cmsg

Tmsg (tta)

msg (tc/tr/td)

Same as 11.3.4.2

Fig. 11.41.  (a) Coordinator model, (b) main program, and (c) ExecuteLE event-
routine.

≡

Tmsg = MakeTmsg (LEL[0]); Send_Msg (Tmsg)!;
msg = Read_Msg()?;

If (msg.type ≡ ‘Convey’) {FireSchedulingArc(msg)!;}

Main Program of Coordinator

FireSchedulingArc (msg) {
ObjectList[msg.ObjectID].FireSchedulingArc (msg); }

Execute-ExecuteLE-Routine (e, Now) {

 Tmsg = MakeTmsg(LEL[0]); Send_Msg (Tmsg);
 msg = Read_Msg();
 if (msg.Type ≡ Convey|| Retrieve|| Deliver)
 FireSchedulingArc (msg);
}

Figure 11.15(a)

(a)

(b)

(c)

368   Advanced Event Graph Modeling for Integrated Fab Simulation

module for the Conveyor EO model in Fig. 11.37(b). The statements enclosed
by the dashed-line box in the event routine Execute-SOC-Routine () are
responsible for preparing a convey-type message and sending it to AutoMod.
At the end of the module, the FireSchedulingArc function is added to handle
the Coordinator’s instruction to “fire the scheduling-arc from SOC to EOC”
so that the EOC event is scheduled with the time-delay value provided by
AutoMod.

11.5.3.3  Inline Stocker EO Simulator Module of the AMHS-Embedded
Simulator  Figure 11.43 shows a pseudocode of the Inline Stocker EO Simu-
lator module for the Inline Stocker EO model in Fig. 11.39. The event routines
and the function FireSchedulingArc are defined the same way as in the case
the conveyor model in Fig. 11.42. In the FireSchedulingArc function, the
matching move-type event is retrieved from MEL and the scheduling-arc is
fired so that the destination move-event is scheduled with the time-delay value
provided by AutoMod.

11.5.4  IFS®

The authors and their students have developed a prototype software system
called IFS® for an AMHS-embedded integrated Fab simulation. Figure 11.44
shows the structure of the software system IFS® consisting of three modules:
(1) an Integrated Fab Simulation module, which is the main part of IFS®; (2)
a virtual AMHS module (AutoMod®) responsible for graphical simulation of
the AMHS; and (3) a layout generation module.

The internal workings of the Integrated Fab Simulation (IFS) module
are as described in Section 11.4 and the technical details of AutoMod® are

Fig. 11.42.  Conveyor EO Simulator module of the AMHS-embedded simulator.

Conveyor Event Object Simulator: // Pseudo code for the Conveyor EO Model in Fig.11.37(b)
 Execute-X2SO-Routine (c, cst, Now) {

}
 Execute-SOC-Routine (c, cst, Now) {

}
 Execute-EOC-Routine (c, cst, Now) {

}
 Execute-C2SI-Routine (sj, c, Now) {

}

 ExecuteLocalEvent (e) { // execute the selected event

}
 FireSchedulingArc (msg) { // ask the Coordinator to schedule the destination move-event

Event routines

Execute the selected event routine

ExecuteLocalEvent (e) { // execute the selected event

}

Automated Material Handling Systems-Embedded Integrated Simulation   369

available in the literature [Brooks Automation 2003a, 2003b]. The user has to
provide the IFS module with (1) master data regarding the equipment and
processes specifications in the Fab; (2) release plans for each day’s production;
and (3) various operation rules for RTD (real-time dispatching) and MCS
(material control system).

The three-dimentional (3D) geometric and kinematic models of the equip-
ment and facilities in the Fab layout are constructed in the layout generation
module. In practice, the original 3D Fab layout data generated by using a CAD
(computer-aided design) system, called CAD Data, are not suitable to be used

Fig. 11.43.  Inline Stocker EO Simulator module of the AMHS-embedded simulator.

Inline Stocker Event Object Simulator: // Pseudo code for the Inline Stocker EO Model in Fig.11.39
 Execute-B2Xr-Routine (s, cst, Now) {// event routines

}

 Execute-B2X-Routine (s, cst, Now) {….}
 ….
 ExecuteLocalEvent (e) {

 FireSchedulingArc (msg) { // fire the move-event whose delay-time was provided by AutoMod

}

ExecuteLocalEvent (e) {

Event routines

Execute the selected event routine

Fig. 11.44.  Structure of the AMHS-embedded integrated Fab simulator.

PM
scheduling

Release Plan &
Master Data

Excel
Layout file

Operation rules

AutoMod Model
Generation

CAD Data

Machine
selection

Processing-type
Simulators

Handling-type
Simulators

Route
selection

Job
selection

370   Advanced Event Graph Modeling for Integrated Fab Simulation

as an AutoMod model file. In the layout generation module, the user manually
defines a 2D layout model using Excel from the 3D CAD data.

At the same time, a library of 3D models of the equipment and devices is
built employing CAD systems as depicted in Fig. 11.45. The left image in the
figure is a 3D model of a uni-inline cell and the right image is a stacker crane
in the inline stockers. The AutoMod model generation program will merge the
2D layout model (Excel file) and the 3D models (CAD data) to build an
AutoMod model file. Examples of 3D layout of a hypothetical LCD Fab are
shown in Fig. 11.46. A free copy of IFS® may be found in the official website
of this book (http://VMS-technology.com/Book/IFS).

Fig. 11.45.  Building a library of 3D models (uni-inline call and stacker crane).

Fig. 11.46.  Examples of 3D layout in IFS®.

http://VMS-technology.com/Book/IFS

371

CHAPTER 12

Concepts and Applications of
Parallel Simulation

Knowledge is a process of piling up facts; wisdom lies in their
simplification.

—M. Fischer

12.1  INTRODUCTION

The terminologies used in this section are mostly from Fujimoto [2000], but
the term parallel simulation is used somewhat differently. In Fujimoto, a simu-
lation that executes on a set of computers confined to a single room is called
a parallel simulation, whereas a distributed simulation executes on machines
that are geographically distributed. In this book, a parallel simulation is defined
as a simulation composed of a “collection of sequential simulations that
exchange messages with each other” regardless of whether the computers are
confined to a room or geographically distributed. In Fujimoto, a sequential
simulation in the definition is referred to as a logical process (LP). A logical
process has its own simulation clock. The key issue in parallel simulation is
time synchronization to ensure that events are processed in a timestamp order
when the logical processes are executed.

According to Fujimoto [2000], there exist two synchronization approaches:
(1) one is conservative synchronization, which enforces all events be processed
in timestamp order all the time; (2) the other is optimistic synchronization in
which an out-of-order processing is allowed but the errors are recovered.
Among the popular conservative synchronization methods are the centralized
barrier method and the (distributed) null message method. The centralized
barrier method, in which a controller LP is employed to implement the barrier
for the simulator LPs, is as follows:

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

372    Concepts and Applications of Parallel Simulation

1.	 The controller LP: determines when a barrier is reached and waits for
messages from the simulator LPs. When a message is received from each
simulator LP, it sends a “grant” message to the selected simulation LPs
to release the barrier.

2.	 Simulator LPs: send a message to the controller LP and wait for a reply.
When a “grant” message is received from the controller LP, safe events
are executed.

In fact, the parallel simulation method with a centralized barrier has already
been utilized quite extensively in this book. The state graph simulator intro-
duced in Chapter 9 (Fig. 9.34 in Section 9.6.1) is a parallel simulation system
where the Sync Manager plays the role of the controller LP. The object-
oriented event graph simulator in Chapter 11 (Fig. 11.34 in Section 11.4.7) is
also a parallel simulation system with the Simulation Coordinator playing the
role of the controller LP.

A high-level architecture (HLA) is a general-purpose architecture for par-
allel simulation systems. Using HLA, computer simulations can interact with
other computer simulations regardless of the computing platforms. The inter-
action between simulations is managed by a run-time infrastructure (RTI).

This chapter is organized as follows. A framework for direct workflow simu-
lation based on parallel simulation is presented in Section 12.2. A brief descrip-
tion of HLA/RTI is provided in Section 12.3, and an implementation example
of parallel simulation HLA/RTI is introduced in Section 12.4.

12.2  PARALLEL SIMULATION OF WORKFLOW
MANAGEMENT SYSTEM

This section presents a parallel simulation method with which the enactment
service processes of a workflow management system (WfMS) can be simulated
directly, i.e., without converting to a simulation model such as Petri nets.

12.2.1  Enactment Service Mechanism of WfMS

The basics of enactment service are briefly described using Fig. 12.1. For each
instance of workflow, a process instance is created from its process definition
model (PDM). Figure 12.1 shows a Process Instance consisting of seven activi-
ties including Start and End activities. The completion of activity W1 will
enable the two succeeding activities W2 and W3. At this point, the enactment
server would provide the following sequence of enactment services:

1.	 Generates new workitems for the newly enabled activities W2 and W3.
2.	 Sends out the new workitems W2 and W3 to their respective work-list

handlers to be processed by the participant.

Parallel Simulation of Workflow Management System   373

3.	 Receives the completed workitem W2 from the work-list handler.
4.	 Updates the state of the PI such that W2 becomes a completed activity.

Upon receiving the new workitem W2, (a) the work-list handler notifies it
to its participant, and the participant (b) works on the workitem W2 for a time
period of t2 and (c) reflects the results at the work-list handler so that the
completed workitem is returned back to the enactment server. The communi-
cations (i.e., sending new workitems and receiving completed workitems)
between the enactment server and work-list handlers (or application handlers)
are made based on the interface standards provided by a workflow manage-
ment coalition (WfMC). For this purpose, the enactment server has a type of
internal data called workflow relevant data that can be manipulated by work-
list handlers and other applications via a set of standard API (application
program interface) functions [WfMC 1995, 1998].

12.2.2  Framework of Parallel Simulation of WfMS

Shown in Fig. 12.2 are interactions among the software modules in the parallel
simulation system. In this framework, data exchanges between the enactment
server (Server) and participant simulators (Simulators) are made through the
synchronization manager (Sync Manager). Thus, the role of the Sync Manager
is to mediate the communications between the Server and Simulators while

Fig. 12.1.  Enactment service mechanism of workflow management system (WfMS).

 Send-out new workitems W2, W3 Receive completed workitem W2

[a] Notifies workitem (W2) arrival [c] Reflects “W2 completion”

[b] Processes W2 for a time period of t2 (processing time of W2)

Work-list Handler (Client)

Participants

W1 W3

W2

W4 Start W5 End

Completed
Activity

Enactment
Server

Process Instances (PI)

Enabled
Activity

Enabled
Activity

(0) Create process instances

Process Designer (PDM)

W2

 Update state of PI

W3 W2

 Generate new workitems

[[[b[[[

374    Concepts and Applications of Parallel Simulation

managing time synchronization. Here, the Sync Manager has all connection
information of the Simulators that handle all new and completed workitems,
and thus it handles all the “standard” enactment services provided by the
Server.

At the beginning of an enactment service cycle, the Server generates new
workitems {WN} and starts sending them one by one to the Sync Manager. In
the meantime, the Sync Manager “looks into” the Server to get the number
(μ) of newly generated workitems by using the API function ListWorkitems
() specified in the WfMC standard [WfMC 1998]. Then, the following sequence
of actions is taken by the software modules involved:

1.	 The Sync Manager passes each new workitem (WN) received from the
Server to a pertinent Simulator while counting the number (m) of new
workitems it has passed.

2.	 When m (number of passed workitems) becomes equal to μ (number of
newly generated workitems), the Sync Manager broadcasts a message to
every Simulator requesting to send its local next-event time (τL).

3.	 Each Simulator j reports τL (its local next-event time) to the Sync
Manager.

4.	 The Sync Manager selects a Simulator j* that has the smallest next-event
time (τG = Min {τL for all j}), and broadcasts the global next-event time
(τG) and the selected Simulator ID (j*) to all Simulators.

5.	 The selected Simulator j* completes its workitem and advances its next-
event time, and then returns the completed workitem (WC) back to the
Sync Manager.

6.	 The Sync Manager passes the completed workitem (WC) to the Server,
which in turn updates the pertinent process instance to initiate the next
cycle of enactment service.

The above parallel simulation process employs a centralized barrier method
of time synchronization with the Sync Manager playing the role of a controller
LP. In the following sections, state graph models of the workflow simulation

Fig. 12.2.  Interactions among the workflow simulation modules.

WN WC
(L, j)

Enactment
Server {PI*}

Sync Manager

(G, j*)

R
equest

L

WN

WC

Participant Simulator j

Message unicasting

Data exchange

Message broadcast

Parallel Simulation of Workflow Management System   375

modules in Fig. 12.2 will be presented. Parameters and variables used in the
state graph models are summarized in Table 12.1.

12.2.3  State Graph Modeling of an Enactment Server and
Sync Manager

In this section, the behaviors of the enactment server and the Sync Manager
are specified using the state graph modeling formalism presented in Chapter
9. A state graph model of the participant simulator will be presented in the
next subsection. The materials presented in this section (Section 12.2) are
mostly from the paper by Lee et al. [2010] where the term DEVS model was
used in place of state graph model.

Shown in Fig. 12.3 is a simplified version of state graph model of the
enactment server, which is a simple finite state machine having three states.
It is initially in the Wait state and moves to the Processing state (Update
PI & Generate {WN}) if the Start input is received. Once it has generated
all the new workitems (for the enabled activities), it sends out the new
workitems {WN} to the Sync Manager and moves to the Ready state. Then,
it waits in the Ready state until it receives a completed workitem WC, and
then moves back to the processing state. It should be noticed that the process-
ing state may not generate a new workitem WN, in which case {WN} is a null

TABLE 12.1.  Parameters and Variables Used in the State Graph Models

Name Description Name Description

a arrival time of workitem N total number of participant
simulators

c completion time of workitem q number of workitems in
queue

clock local simulation time of
participant simulator

td time delay

G group size (number of people in
the group)

WN new workitem

j ID number of a participant
simulator

WC completed workitem

j* ID number of the selected
participant simulator

π processing time of workitem

LLT list of local next-event times (τL) τL local next-event time of
each participant simulator

m number of new workitems
received

τG global next-event time

n number of participant simulators
replied

μ total number of newly
generated workitems

376    Concepts and Applications of Parallel Simulation

set, meaning that the state is changed to Ready without sending out any
workitem.

Figure 12.4 shows a state graph model of our Sync Manager together with
its interactions with the enactment Server and participant Simulators. In the
figure, the operation sequence is numbered from (0) to (6). At the beginning
of an enactment service cycle, the Sync Manager stays in the Wait for first WN
state with m (the number of new workitems received) equal to zero. Then, (0)
if a new workitem WN(π, j) is received from Server, (1) it moves to the Get μ
state after sending WN(π) to Simulator j and setting m to one; otherwise, it
moves to the Get μ state after a time delay of td. At the Get μ state, the Sync
Manager obtains the value of μ = GetMu() (See Lee et al. 2010), and moves
to the D1 state after setting μ = μ + m. Then, at the D1 state, (2) it goes to the
Wait for next WN state and comes back until m is equal to μ. At this point (m
≡ μ), it moves to the Wait for τL state after sending the Request τL message to
all Simulators and setting n (number of Simulators replied) to zero.

The Sync Manager waits in the Wait for τL state until (3) it receives the local
next-event times (τL) from all Simulators (i.e., n ≡ N) while storing the value
of each τL in the list of local next-event time LLT[j]. Then, (4) it selects a Simu-
lator j* whose τL is the smallest, designating it as the global next-event time

Fig. 12.3.  State graph model of the enactment server.

Ready
{WN}!

Processing
(Update PI &

Generate {WN})

WC?

Start?
Wait

Enactment Server
External transition

Internal transition

Msg? Input Msg

Msg! Output Msg

Fig. 12.4.  State graph model of the Sync Manager.

(1) WN()

Sync Manager

(3) (L, j) (4) (G, j*) (5) WC(a, , c)

a=arrival time, =processing time, c=completion time

(L, j)?

WC?
WC!; m=0

Wait for
WC

Wait
for L

(n<N)

(n ≡ N)

(2) Req. L

Get µ
(0)

(m<µ)
(m≡µ)

(Req. L)! n=0

LLT[j] = L; n++

LLT=list of local next-event times(L)

(0) WN(, j) (6) WC(a, , c)

Participant Simulators {j} Enactment Server

Wait for first WN

(td)

D2
(0)

Wait for
next WN WN()!; m=1

µ = GetMu() + m

WN(, j)?

WN()!; m++

WN(, j)?

d=Time delay, N=# of participant simulators, µ=# of new workitems

j*=arg Min{LLT(j)}; G= LLT(j*); G!

D1
(0)

Parallel Simulation of Workflow Management System   377

(τG), and moves to the Wait for WC state after broadcasting τG and j* to all
Simulators. Finally, (5) if a completed workitem WC(a, π, c) is received from
the selected Simulator j*, (6) the Sync Manager sends the WC to the Server
and moves to the Wait for first WN state to start a next cycle of enactment
service.

12.2.4  State Graph Modeling of Participant Simulators

Each single participant in the workflow management system is modeled as a
single server system processing new workitems {WN (π)} received from the
Sync Manager. Shown in Fig. 12.5 is a composite state graph model of the
single server system consisting of three atomic models: Coordinator, Queue
and Processor. Each Simulator communicates with the Sync Manager as
follows: (1) new workitems WN (π) received are stored in the Queue and a
selected workitem is processed by the Processor; (2) upon receiving a Req. τL
message, (3) its local next-event time τL is returned back to the Sync Manager;
(4) if global next-event time τG is granted to this Simulator, (5) the completed
workitem Wc (a, π, c) is returned back to the Sync Manager.

12.2.5  Implementation of a Workflow Simulator

An existing workflow management system equipped with a Sync Manager and
participant simulators can be used as a workflow simulator. Figure 12.6 shows
the software structure of the workflow simulator: (1) a Workflow Engine

Fig. 12.5.  State graph model of “single participant” simulator.

Simulator j

Idle

Queue
WN (a, π)?

c= clock+π; WC (a, π, c); τL=c

Idle Wait for
ask comp.

Processor

WN (a, π)

(ask comp.)?

WC!; done!; clock=τL; τL=∞

(1) WN(π)

Sync Manager

(3) (τL, j) (4) (τG, j*) (5) WC(a, π, c)

Coordinator

Wait
for τG

WN?

WN!

WN(π)

(Req. τL)?

(ask τL)!

return τL

WC?

WC!

ask comp.

done

WC(a, π, c)

Processor
busy WN? a=τG;

Enqueue(WN)
(q≡0)

WN?

a=clock=τG; WN(a, π)!

(WN=Dequeue())!

(j≡ j*)

(2) Req. τL

Wait
for τL

Wait
for WC

(return τL)?

 (τL, j)!

(τG, j*)?

(j≠ j*)

(ask comp.)!

ask τL

(ask τL)?,
(return τL)!

(q>0)

q=# of workitems in queue, a=arrival time

(ask τL)?
(return τL)!

done?

D1
∆(0)

D2
∆(0)

τL=local next-event time, c=completion time

clock=local simulation time

Wait for
WN or Req. τL

 : processing time; L/ G: local/global next-event time; a: arrival time; c: completed time

378    Concepts and Applications of Parallel Simulation

Connector is used to connect the components of the simulation system; (2) a
Process Instance Generator is added to the simulation system to be used in
generating process instances {PI*} from the process definition models (PDMs)
defined at the Process Designer of the workflow management system; (3) a
Process Monitor is also added to visualize the simulation process.

The Enactment Server provides enactment services to Participant Simula-
tors through the Sync Manager. The workflow simulator was implemented as
a prototype workflow simulator using a commercial workflow management
system and an academic workflow management system, both of which are in
compliance with the WfMC standards [WfMC 1995]. The Sync Manager and
single and group participant simulators have been developed under a Micro-
soft .NET Framework 3.5 environment using the C# programming language,
and they are plugged into the workflow management systems via a workflow
engine connector module [Lee et al. 2010].

12.3  OVERVIEW OF HIGH-LEVEL ARCHITECTURE/RUN-TIME
INFRASTRUCTURE

As mentioned in the introduction, a high-level architecture (HLA) is a general-
purpose architecture for parallel simulation systems, and the interactions
between simulations are managed by a run-time infrastructure (RTI). HLA
was mandated in September 1996 as the standard architecture for all modeling
and simulation activities in the Department of Defense in the United States
[Fujimoto 2000]. In HLA, a parallel simulation is referred to as a federation,
and each individual sequential simulator as a federate. This section is based on
the materials presented in the book by Kuhl et al. [2000] and in the lecture
notes by Crosbie and Zenor [2006].

Fig. 12.6.  Software structure of the workflow simulator.

Workflow Management System

Participant
Simulators

Enactment Server {PI*}

Progress
Monitor

(Animator)

Update
Signal

Process Instance (PI)
Generator

Sync Manager

Workflow Engine Connector
Ask PI Create {PI*}

WN
Send PI WC

WC

Session List
(connections of participant simulators to enactment server)

WN

Process Instances {PI*} Process
Designer

Participant
Simulators

PDM

Overview of High-Level Architecture/Run-Time Infrastructure   379

12.3.1  Basics of HLA/RTI

The objectives of HLA are to combine computer simulators into a larger
simulation, or federation, to extend the simulation later by adding additional
simulators, or federates, and to support component-based simulation develop-
ment. In other words, it aims to enhance the reusability and interoperability
of simulation models. Key components of HLA are HLA Rules, Interface
Specification, and Object Model Template.

12.3.1.1  HLA Rules  HLA Rules are to ensure proper interaction of feder-
ates in a federation and to describe the responsibilities of federates and fed-
erations. The ten HLA Rules are:

1.	 Federations shall have a federation object model (FOM), documented
in accordance with the HLA object model template (OMT).

2.	 All representation of objects in the FOM shall be in the federate, not
in the RTI.

3.	 During a federation execution, all exchange of FOM data among feder-
ates shall occur via the RTI.

4.	 During a federation execution, federates shall interact with the RTI in
accordance with the HLA interface specification.

5.	 During a federation execution, an instance attribute shall be owned by
at most one federate at any given time.

6.	 Federates shall have a simulation object model (SOM), documented in
accordance with the HLA OMT.

7.	 Federates shall be able to update and/or reflect any instance attributes,
and send and/or receive interactions, as specified in their SOMs.

8.	 Federates shall be able to transfer and/or accept ownership of attributes
dynamically during a federation execution, as specified in their SOMs.

9.	 Federates shall be able to vary the conditions under which they provide
updates of instance attributes, as specified in their SOMs.

10.  Federates shall be able to manage local time in a way that will allow
them to coordinate data exchange with other members of a federation.

Rules 1 to 5 are known as federation rules and rules 6 to 10 are federate
rules.

12.3.1.2  Interface Specification  The interface specification defines the
functional interfaces between federates and the RTI. The RTI is software that
provides HLA services to federates. As depicted in Fig. 12.7, the interface
service mechanisms are implemented as ambassadors: Federate Ambassador
for RTI-initiated services and RTI Ambassador for federate-initiated
services.

380    Concepts and Applications of Parallel Simulation

The interface specification (the set of APIs) for HLA services is divided
into six management areas or RTI module groups. The six management
areas are:

1.	 Federation management for creating federation execution and permitting
a federate to join or to resign from the execution

2.	 Declaration management to allow federates to declare their intent to
publish or subscribe to data

3.	 Object management to send and receive interactions; register a new
object instance and update its attributes; and discover new instances and
reflect updated attributes

4.	 Ownership management to grant/transfer of ownership of an
instance-attribute

5.	 Data distribution management to control the producer-consumer rela-
tionships among federates

6.	 Time management to allow federates to advance its logical time and
control the delivery of timestamped events

12.3.1.3  Object Model Template (OMT)  The OMT provides a standard
for documenting HLA object model information. It defines the federation
object model (FOM), the simulation or federate object model (SOM) and the
management object model (MOM).

1.	 FOM introduces all shared data among federates: objects and
interactions.

2.	 SOM describes salient characteristics (internal operations) of a
federate.

3.	 MOM identifies objects and interactions used to manage a federation.

There are two types of shared data: interaction and object. An interaction
is a collection of data (usually events) sent through the RTI to other federates.
One federate sends an interaction; another receives it (and does not reside
in the federation). Each interaction class has a set of named data called

Fig. 12.7.  Interface service mechanisms of the RTI.

Run Time Infrastructure (RTI)
RTI Ambassador RTI Ambassador

Federate-1

Federate Ambassador

Federate-n

Federate Ambassador Fede
Service

Federate-Initiated
Service

Overview of High-Level Architecture/Run-Time Infrastructure   381

parameters. An object is a simulation entity (usually a state variable) that is
of interest to more than one federate and persists for some interval of simula-
tion time. Each object class has a set of named data called attributes. Figures
12.8(a) and (b) show examples of an interaction class and of an object class,
respectively.

In the class hierarchy diagrams of Fig. 12.8, the shaded boxes (Interaction-
Root, RTIprivate, Manger, and ObjectRoot) are built-in classes provided by
the RTI system. The fully qualified name of B-Event, for example, is
InteractionRoot.Event.B-Event, and its available parameters are P1 and P3.
The fully qualified name of the object CivilAircraft is ObjectRoot.Aircraft.
CivilAircraft, and its available attributes are privilegeToDeleteObject, posi-
tion, and drinkCarts.

12.3.2  HLA Federation Architecture

Figure 12.9 shows the system architecture of HLA federation. An HLA fed-
eration consists of a set of RTI-provided software modules—RID file, RtiExec,
FedExec, libRTI—and user-defined modules—Federate codes and Federation.
FED. The roles of the software modules are:

Fig. 12.8.  Examples of (a) an interaction class and (b) an object class.

InteractionRoot

P1: parameter

Event

RTIprivate

Manager

P2: parameter

A-Event

P3: parameter

B-Event

privilegeToDeleteObject:

ObjectRoot

position:

Aircraft

drinkCarts:

CivilAircraft

missiles:

MilitaryAircraft

(a) (b)

Fig. 12.9.  Systems architecture (or software module structure) of an HLA
federation.

RID file

Federation.FED

FedExec

RtiExec

Federate code

Federate code
HLA Federation

libRTI (RTI Library)

libRTI (RTI Library)
RTI provided

382    Concepts and Applications of Parallel Simulation

1.	 The RTI initialization data (RID) file contains information needed to
run the RTI.

2.	 The RtiExec (RTI executive) manages the creation and destruction of
FedExec.

3.	 The FedExec (federation executive) allows federates to join and resign
from the federation, and facilitates data exchanges among them.

4.	 The libRTI (RTI library) is used by federates to invoke various HLA
services.

5.	 The Federation.FED (federation execution data) contains information
derived from the FOM in the form of FDD (FOM document data) file.

6.	 A Federate.exe consists of federate code and libRTI. Federate code
contains various local simulation objects including SOM.

In a physical configuration of a federation, a copy of each Federation.
FED and RID file is bundled with each Fedreate.exe file in a local computer
running the federate, and RtiExec and FedExec files reside in the “console”
computer.

12.3.3  Overview of Federation Execution

Figure 12.10 shows the steps in the process of starting a federation execution.
The initial step is to prepare the federate code for each federate and the Fed-
eration.FED file. Then, the execution process is as follows:

1.	 When a federation is run, the RtiExec is started first.
2.	 Then a federate, acting as a manager, creates a federation execution

by invoking the RTI method createFederationExecution on its
RTIambassador.

Fig. 12.10.  Federation execution process.

Implementation of a Parallel Simulation   383

3.	 The RTIambassador then reserves a name with RtiExec, and spawns a
FedExec process, and that FedExec registers its communication address
with RtiExec. The federation execution is underway.

4.	 Once a federation execution exists, other federates can join it. That
RTIambassador consults RtiExec to get the address of FedExec, and
invokes joinFederationExecution () on FedExec. Additional federates
can join via the same process.

12.4  IMPLEMENTATION OF A PARALLEL SIMULATION WITH
HIGH-LEVEL ARCHITECTURE/RUN-TIME INFRASTRUCTURE

This section aims to provide a beginner’s guide to the implementation example
given in a book, which we call the HLA Book, by Kuhl et al. [2000]. The HLA
Book provides an excellent coverage of the subject, and it may be easier for
a beginner to understand the contents of the book after reading this section.
This section begins with an overall description of the “sushi boat” restaurant
system presented in Chapter 4 of the HLA Book.

12.4.1  The Sushi Restaurant Federation

Figure 12.11(a) shows a “sushi boat” restaurant where the chefs work on an
island surrounded by a circular canal on which boats are floating with the
current (flow) of the water. The diners sit at a bar that surrounds the canal.

Fig. 12.11.  (a) A sushi restaurant system and (b) its HLA federation.

Canal

Production
(Chefs)

Transport
(Boats)

Consumption
(Diners)

 Run Time Infrastructure (RTI)

Manager
federate

Production
Federate
(Chefs)

Transport
Federate
(Boats)

Consumption
Federate
(Diners)

Viewer
federate

FED
(FOM)

Serving

Bar

(a) (b)

384    Concepts and Applications of Parallel Simulation

As the chefs prepare servings, they place them on rectangular plates; when
they have finished a batch of servings, which may fill several plates, the chefs
place the plates on empty boats as they float by. Diners remove the plate of
their choice as the boat comes by and enjoy it. The chefs are called a produc-
tion subsystem, the boats a transport subsystem, and the diners a consumption
subsystem.

Figure 12.11(b) shows the HLA federation of the sushi restaurant system
consisting of five federates and the RTI including a FED file. The three feder-
ates corresponding to the three subsystems of the restaurant are called sub-
system federates: Production federate, Transport federate, and Consumption
federate. The Manager federate is used in managing the federation execution,
and the Viewer federate acts as a passive recipient; its role is to display of
simulation data from the rest of the federation. The FED (also called Federa-
tion.FED) file contains the federation object model (FOM). As mentioned in
Section 12.3.2 (Fig. 12.9), an HLA federation consists of a number of files in
addition to the federates and FED file. However, only the federates and FED
file need to be prepared by the federation designer.

12.4.2  Preparation of an FED File

As was shown in Fig. 12.11(a), there are four types of objects in the restaurant
system: Servings, Boats, Chefs, and Diners. Figure 12.12(a) shows an object
class tree specifying the restaurant objects. The root of the object class tree is

Fig. 12.12.  (a) Object class tree and (b) interaction class tree.

ObjectRoot

privilegeToDeleteObject : String

Restaurant

position: Position

Serving

type : sushiTypeEnumeration

Boat

spaceAvailable : boolean
cargo : String

Actor

servingName : String

Chef
chefState :
chefStateEnumeration

Diner
dinerState :
dinerStateEnumeration

InteractionRoot

Manager SimulationEnds TransferAccepted

servingName : String

(a)

(b)

Implementation of a Parallel Simulation   385

called ObjectRoot. At the leaf level of the hierarchy are the four object classes:
Serving, Boat, Chef, and Diner. The Actor class serves as a place to define the
attribute servingName that is in common for Chef and Diner. The attributes
chefState and dinerState are conceptually enumerations and will both be
represented in Java as int.

Figure 12.12(b) shows a class tree for interactions. An interaction is a simu-
lated occurrence (or event) that occurs at a point in time and does not persist.
All interaction classes are subclasses of InteractionRoot. The TransferAc-
cepted interaction has a parameter of servingName. It is a message sent from
the Transport federate to the Production federate to signal a Boat’s acceptance
of a Serving. SimulationEnds is a message sent from the Consumption federate
to other federates signaling the end of simulation. It is a subclass of Manager
because it is a user-extension of the management object model (MOM).

Figure 12.13 shows a FED file containing the object class tree and interac-
tion class tree given in Fig. 12.12. Observe in the FED file that each class
attribute and each interaction class are appended by modifiers reliable time-
stamp or reliable receive. The choices of the communication network over
which the messages (class attributes and interaction classes) are sent are either
reliable or best-effort. A reliable communication guarantees that the data will
be delivered or an exception will be indicated. The choices of message-delivery
ordering are either timestamp or receive. In a timestamp order (TSO), the
arrival of timestamped messages is sequenced in accordance with logical time;

Fig. 12.13.  FED file for the object and interaction class trees in Fig. 12.12.

(FED ;; Defining object classes and interaction classes
 (Federation restaurant_1) ;; we choose this tag
 (FEDversion v1.3) ;; required; specifies RTI spec version
 (spaces ;; we define no routing spaces
)
 (objects
 (class ObjectRoot ;; required
 (attribute privilegeToDeleteObject reliable timestamp)
 (class RTIprivate)
 (class Restaurant (attribute position reliable timestamp)
 (class Serving (attribute type reliable timestamp))
 (class Boat (attribute spaceAvailable reliable timestamp) (attribute cargo reliable timestamp))
 (class Actor (attribute servingName reliable timestamp)
 (class Chef (attribute chefState reliable timestamp))
 (class Diner (attribute dinerState reliable timestamp)))) ;; end of Restaurant
 (class Manager …)
) ;; end ObjectRoot
) ;; end Objects
 (interactions
 (class InteractionRoot reliable timestamp
 (class TransferAccepted reliable timestamp (parameter servingName))
 (class RTIprivate reliable timestamp)
 (class Manager reliable receive
 (class SimulationEnds reliable receive) …) ;; end InteractionRoot
) ;; end interactions
) ;; end FED

386    Concepts and Applications of Parallel Simulation

in a receive order, the messages are delivered as they arrive without regard to
logical time. In the FED file, both ObjectRoot and InteractionRoot have a
required subclass called RTIprivate (not shown in Fig. 12.12) to be used by
RTI implementers. It must be present but cannot be extended (subclasses) by
a federation designer. ObjectRoot has another required subclass called
Manager. It is the root of a further tree that defines the object portion of the
Management Object Model (MOM). All the subclasses of Manager that you
see in the sample FED files are required to be there.

12.4.3  Preparation of the Federate Code
(of the Production Federate)

Table 12.2 lists the names of the nine Java files constituting the Production
federate. The federation designer has to prepare a federate code for each of
the five federates in Fig. 12.11(b). The first six files in Table 12.2 have the same
fixed structure for all the federates. Thus, you as a beginner do not need to
worry about them. The last two files (ChefTable and ProductionFrame) are
concerned about the graphical user interface (GUI) for the federate. The main
file of the Production federate code is Production.java that has to be prepared
by you as a federation designer.

Table 12.3 the program (Java code) structure of Production federate. The
Transport federate and the Consumption federate have the similar structure.

TABLE 12.2.  Files in the Federate-Code of Production Federate

No File Name Description

1 Barrier.java Define Barrier class that is used to coordinate
the activities between threads.

2 CallbackQueue.java Define Callback Queue class that is used to store
the callbacks initiated by the RTI

3 InternalQueue.java Define Internal Queue class that stores the
internal events of Chef model.

4 ProductionInternalError.
java

Define an exception raised within the Production
federate

5 ProductionNames.java Define the default “federate type” string of the
Production federate

6 FedAmbImpl.java Define FedAmbImpl class that represents the
Production federate ambassador.

7 Production.java Define Production federate code to execute the
Production federate.

8 ChefTable.java Define Chef Table View of the user interface of
the Production federate.

9 ProductionFrame.java Define the user interface (main window) of the
Production federate.

Implementation of a Parallel Simulation   387

The program structure follows the phases of the federate lifecycle: Prepare
phase, Populate phase, Run phase, and Resign phase. In this section, only the
Prepare phase will be explained in some detail. Detailed description of the
federate program structure is out of scope of this book, and interested readers
are referred to the HLA Book [Kuhl et al. 2000].

12.4.3.1  Declare Objects and Variables  Figure 12.14 shows two object
classes in the Production federate: ProductionFrame and FedAmbImpl. The
Production instance creates an instance of ProductionFrame that contains all
the user interface code. It also creates an instance of FedAmbImpl that is an
implementation of hla.rti.FederateAmbassador, which is passed to the RTI

TABLE 12.3.  Program Structure of the Production Federate

Phase Service group (Mngt Area) Descriptions

1. Prepare Declare Object and Variables (1) ProductionFrame,
(2) FedAmbImpl, etc.

Join Federation (Fed Mngt-1) (1) Obtain Ref., (2) Create Fed
Execution, (3) Join Fed Execution

Set Time Switches (Time
Mngt-1)

(1) Enable Time Constrained,
(2) Enable Time Regulation

Publish/Subscribe (Decl.
Mngt)

(1) Publish/Subscribe Objects,
(2) Publish/Subscribe Interactions

2. Populate Define Objects (Obj. Mngt-1) (1) Register Object Instance,
(2) Update Attribute Values

3. Run Time Advance (Time Mngt-2) (1) Next Event Request, (2) Time
Advance Grant

Produce data (Obj. Mngt-2) (1) Register/Discover, (2) Update/
Reflect (3) Receive Interaction

Ownership (Ownership
Mngt)

Ownership Divestiture/Release.

4. Resign Resign Federation (Fed
Mngt-2)

Resign Federation Execution

Fig. 12.14.  Main objects in Production federate.

FedAmbImpl

Member Variables
_fed: Production

Production

Member Variables:
_userInterface: ProductionFrame
_fedAmb: FedAmbImpl
_rti: RTIambassador

…

hla.rti.FederateAmbassador Methods:
mainThread ()

1

1

ProductionFrame

Member Variables
_Impl: Production
…

1

1

388    Concepts and Applications of Parallel Simulation

when the federate joins. Callbacks from the RTI are invoked on FedAmbImpl,
which in turn calls methods in the Production instance. The Production class
contains the mainThread () method that contains the rest of the federate code.
The mainThread () holds the references to other data structures and objects,
and all the calls to RTIambassador occur in its code.

12.4.3.2  Join Federation  Before a federation execution (FE) exists, it must
be defined to the RTI. The federation execution must be created and associ-
ated with a FOM and the federation must join the FE.

Figure 12.15 shows a Production federate code for obtaining a reference to
RTI ambassador. The RTI ambassador provides access to the RTI services.
The hostname and portNumber indicates where the RTI executive runs. The
hostname can be numerical IP address (e.g., 127.0.0.1) or string address (e.g.,
www.kaist.ac.kr). The portNumber is a positive integer (e.g. 8989—this is
default value of Pitch Portal RTI used in this book)

Figure 12.16 shows a federate-code code for creating the FE. The FE can
be created by letting each federate attempt to create the FE at the start. If the
federate receives an exception reporting that the FE already exists, it is ignored.
The following shows the partial Java code of creating the FE at the Production
federate. Also, we assume that the federation execution data (FED) file is
named “restaurant_1.fed” and located in the directory of the Production
federate

Figure 12.17 shows a federate-code code for joining the FE. Each federate
joins the FE by invoking rti.joinFederationExecution with three arguments:
the name of the FE, a federate type (or federate name), and a federate ambas-
sador (fedAmb). Then the RTI returns a handle, called federate handle, consist-
ing of a small positive integer. We assume that the federate has constructed
an instance of some implementation of the Java interface hla.rti.FederateAm-
bassador, a federate ambassador receiving messages originated by RTI, called
fedAmb.

Fig. 12.15.  Federate code for obtaining a reference to RTI ambassador.

Fig. 12.16.  Federate code for creating the federation execution (FE).

“Federation” + + “already exists

http://www.kaist.ac.kr

Implementation of a Parallel Simulation   389

Fig. 12.17.  Federate code for joining the federation execution (FE).

//implementation of Federate ambassador
//designator for Production federate

//for the production federate

“Exception on join”

TABLE 12.4.  Attribute Publications and Subscriptions

Object Attributes Production Transport Consumption Viewer

Serving position
type

publish
publish

publish publish
subscribe

passive subscribe
passive subscribe

Boat position
spaceAvailable
cargo

subscribe
subscribe
subscribe

publish
publish
publish

subscribe
subscribe
subscribe

passive subscribe
passive subscribe
passive subscribe

Chef position
chefState
servingName

publish
publish
publish

passive subscribe
passive subscribe
passive subscribe

Diner position
dinerState
servingName

publish
publish
publish

passive subscribe
passive subscribe
passive subscribe

TABLE 12.5.  Interaction Publications and Subscriptions

Interaction Manager Production Transport Consumption Viewer

SimulationEnds subscribe subscribe subscribe publish subscribe
TransferAccepted subscribe publish

12.4.3.3  Publications and Subscriptions  Table 12.4 shows attribute publi-
cations and subscriptions for the object class tree in Fig. 12.12(a). For example,
attribute Serving.position is published by the subsystem federates and is sub-
scribed by the Viewer federate, and Serving.type is published by the Produc-
tion federate and is subscribed by the Consumption and Viewer federates.
Each object class inherits the attribute privilegeToDeleteObject from the class
ObjectRoot whose publication is set to “default publish.” Thus, this “root
attribute” does not need to be declared explicitly.

Table 12.5 shows interaction publications and subscriptions for the interac-
tion class tree in Fig. 12.12(b). The simulation is to be ended if the number
of servings exceeds certain value at the consumption subsystem. Thus,

390    Concepts and Applications of Parallel Simulation

SimulationEnds is published by the Consumption federate and subscribed by
other federates. As another example, TransferAccepted is published by the
Transport federate and subscribed by the Production federate.

Figure 12.18(a) shows the object class tree reproduced from Fig. 12.12
for the Serving object and Boat object. Figure 12.18(b) is a portion of the pub/
sub table (Table 12.4) for the Serving and Boat objects at the Production
federate. Figure 12.19 is a sample Java code declaring the publication of the
Serving and the subscription of the Boat attributes shown in Fig. 12.18. Dec-
larations are made as follows: (1) Get an object class handle by invoking the

Fig. 12.19.  Sample implementation of pub/sub of Serving and Boat object attributes.

//Get an object-class-handle for the Boat and Serving objects
int RestaurantClassHandle = _rti.getObjectClassHandle(“ObjectRoot.Restaurant”);
int BoatClassHandle = _rti.getObjectClassHandle(“ObjectRoot.Restaurant.Boat”);
int ServingClassHandle = _rti.getObjectClassHandle(“ObjectRoot.Restaurant.Serving”);

//Get an attribute-handle for each attribute of the Boat and Serving object classes
int positionAttributeHandle = _rti.getAttributeHandle(“position”, RestaurantClassHandle);
int spaceAvailableAttributeHandle = _rti.getAttributeHandle(“spaceAvailable”, BoatClassHandle);
int cargoAttributeHandle = _rti.getAttributeHandle(“cargo”, BoatClassHandle);
int typeAttributeHandle = _rti.getAttributeHandle(“type”, ServingClassHandle);

//Create an empty set by using the factory reference and store the attribute handles in the created sets
hla.rti.AttributeHandleSetFactory ahFactgory = RTI.attributeHandleSetFactory();
hla.rti.AttributeHandleSet boatAttributeHandles = ahFactory.create();
boatAttributeHandles.add(positionAttributeHandle);
boatAttributeHandles.add(spaceAvailableAttributeHandle);
boatAttributeHandles.add(cargoAttributeHandle);
hla.rti.AttributeHandleSet servingAttributeHandles = ahFactory.create();
servingAttributeHandles.add(positionAttributeHandle);
servingAttributeHandles.add(typeAttributeHandle);

//Declare publications
try { //publish the object class attributes
 _rti.publishObjectClass (ServingClassHandle, servingAttributeHandles);
 //subscribe the object class attributes
 _rti.subscribeObjectClassAttributes (BoatClassHandle, boatAttributeHandles);
} catch (hla.rti.RTIexception e) { … }

Fig. 12.18.  (a) Object class tree and (b) pub/sub table for Serving and Boat objects.

Object Attributes Production

Boat

position
spaceAvailable
cargo

subscribe
subscribe
subscribe

Serving position
type

publish
publish

ObjectRoot

privilegeToDeleteObject : String

Restaurant

position: position

Boat

(b)(a)

spaceAvailable: boolean
cargo : String

Serving

type:
sushiTypeEnumeration

Implementation of a Parallel Simulation   391

getObjectClassHandle () function; (2) get attribute handles by invoking the
getAttributeHandle () method; (3) the attribute handles to be subscribed are
stored in separate sets; and (4) the to-be-published or to-be-subscribed attri-
butes are published or subscribed by invoking publishObjectClass () or sub-
scribeObjectClassAttributes ().

12.4.4  Executing the Restaurant Federation

The overall procedure for preparing and executing your own federation was
described earlier in Section 12.3.3 (See Fig. 12.10). In this section, we will show
you how to download a sample implementation of the restaurant federation
and run the program. More details may be found in the HLA Book [Kuhl et
al. 2000]. Even if you do not sufficiently understand the internal workings of
the sushi restaurant federation, you are advised to follow the steps explained
below to get familiar with it.

12.4.4.1  Download and Installation  Steps for downloading and installing
the Sushi Restaurant Federation together with HLA/RTI software are as
follows:

1.	 Download the restaurant federation sample code and HLA/RTI soft-
ware from the following website: http://authors.phptr.com/kuhl.

2.	 Unzip the downloaded file into a directory named <kuhl>. The top-level
directories in the directory <kuhl> are
•	<kuhl>\bin: class files for the implementation of restaurant

federation
•	<kuhl>\config: configuration data needed to run the restaurant

federation
•	<kuhl>\doc: all documents
•	<kuhl>\lib: Java archives needed to run RTI and the restaurant

federation
•	<kuhl>\src: Java source for the implementation of restaurant

federation
3.	 Install a Java run-time environment by running jre-1_2_2_005-win.exe

located in the <kuhl> directory.

12.4.4.2  Executing the RTI Executive  The RTI executive (RtiExec in Fig.
12.10) can be executed by running the batch file <kuhl>\rti.bat. If executed
successfully, the GUI shown in Fig. 12.20 will be presented to you. Then, (1)
check the Federates field to have the list of joined federates displayed, and (2)
check the RTI activity field to monitor the activities processed in the RTI
executive.

http://authors.phptr.com/kuhl

392    Concepts and Applications of Parallel Simulation

12.4.4.3  Running the Restaurant Federation  The Restaurant Federation
is started by running the batch file <kuhl>\rest&view.bat. The batch file
starts all federates one at a time in the following sequence: Manager, Pro
duction, Transport, Consumption, and Viewer. After running the batch file,
the GUI of Fig. 12.21 will show up on your computer screen. Shown in the
left side are user interfaces (UI) for Manager, Production, Transport,
and Consumption federates, and the right side is the GUI for the Viewer
federate.

If you have a problem with running the batch files, you may try the follow-
ing: (1) Check if a Java run-time environment (JRE) is installed in the <kuhl>
directory on your computer; (2) if you have the JRE installed already, check
its version. If the JRE version is higher than 1.2.2 or was installed JRE from
the http://www.java.com, you need to modify the batch files as shown in
Fig. 12.22.

Figure 12.23 shows the UI of the Production federate. Transport and Con-
sumption federates have the same structure. The main window is split into a
chef table and a log area. The chef table contains a tabular display of the status
of the chefs, and the log area displays messages written by the federate. The
statuses of the chefs are specified as:

•	 Position: angular position of the chef along the canal
•	 State: chef’s state {Making Sushi, Looking for Boat, Waiting to

Transfer}
•	 Serving: the object instance handle of the Serving the chef has

prepared
•	 Boat to Xfer to: the handle of the Boat instance the chef is trying to load

Fig. 12.20.  RTI executive GUI.

http://www.java.com

F
ig

. 1
2.

21
. 

R
es

ta
ur

an
t

fe
de

ra
ti

on
 e

xe
cu

ti
on

s
G

U
I.

393

394    Concepts and Applications of Parallel Simulation

Fig. 12.22.  Modifying the batch files.

Fig. 12.23.  User interface of Production federate.

395

REFERENCES

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

Activity cycle diagram. Available at http://minitorn.tlu.ee/∼jaagup/uk/ds/chp3/CHAP3P∼
1.HTM, accessed 2012.

Altiok, T. and Melamed, B. 2007. Simulation Modeling and Analysis with Arena. Amster-
dam: Elsevier.

Alur, R. Timed automata. 1999. In Proceedings of the 11th International Conference on
Computer Aided Verification (CAV’99), Lecture Notes in Computer Science, Vol.
1633. New York: Springer-Verlag, pp. 8–22.

Alur, R. and Dill, D.L. 1994. A theory of timed automata. Theoretical Computer Science
126(2): 183–235.

Asfahl, J.T. 1992. Robots and Manufacturing Automation. New York: John Wiley & Sons.
Azadivar, F. 1999. Simulation optimization methodologies. In Proceedings of the 1999

Winter Simulation Conference, pp. 93–100.
Bengtsson, J. and Yi, W. 2004. Timed automata: Semantics, algorithms and tools. In

Lectures on Concurrency and Petri Nets. Lecture Notes in Computer Science, Vol.
3098. Berlin: Springer. pp. 87–124.

Black, J.T. and Hunter, S.L. 2003. Lean Manufacturing Systems and Cell Design. Dear-
born, MI: Society of Manufacturing Engineers.

Box, G.E.P. and Muller, M.E. 1958. A note on the generation of random normal devi-
ates. Annals of Mathematical Statistics 29(2): 610–611.

Brooks Automation. 2003a. AutoMod User’s Guide.
Brooks Automation. 2003b. Model Communications User’s Guide.
Buluta, I. and Nori, F. 2009. Quantum simulators. Science 326(5949): 108–111.
Camurri, A. and Coglio, A. 1997. A Petri net-based architecture for plant simulation.

In Proceedings of the 6th IEEE Conference on Emerging Technologies and Factory
Automation, pp. 397–402.

Carrie, A. 1988. Simulation of Manufacturing Systems. New York: John Wiley & Sons.
Carson, J.S. 1993. Modeling and simulation worldviews. In Proceedings of the 1993

Winter Simulation Conference, pp. 18–23.
Cassandras, C.G. and Lafortune, S. 2010. Introduction to Discrete Event Systems, 2nd

Ed. New York: Springer.
Chen, H., Chu, C., and Proth, J.M. 1998. Cyclic scheduling of a hoist with time window

constraints. IEEE Transactions on Robotics and Automation 14(1): 144–152.

http://minitorn.tlu.ee/<223C>jaagup/uk/ds/chp3/CHAP3P<223C>1.HTM
http://minitorn.tlu.ee/<223C>jaagup/uk/ds/chp3/CHAP3P<223C>1.HTM

396    References

Cheng, R.C.H. 1978. Generating beta variates with non-integral shape parameters,
Communications of the ACM 21: 317–322.

Choi, B.K., Park, J.H. and Lee, T.E. 1996. Event graph modelling of automated sorting
and buffering system. International Journal of Computer Integrated Manufacturing
9(5): 369–380.

Choi, B.K., Park, B.C., and Park, J.H. 2003. A formal model conversion approach to
developing a DEVS-based factory simulator. Simulation 79(8): 440–461.

Cinlar, E. 1975. Introduction to Stochastic Process. Upper Saddle River, NJ: Prentice
Hall.

Clementson, A.T. 1986. Simulating with activities using C.A.P.S./E.C.S.L. In Proceed-
ings of the 1986 Winter Simulation Conference, pp. 113–122.

Crosbie, R. and Zenor, J. High Level Architecture Modules (Lecture Notes). California
State University, Chico. Available at http://www.ecst.csuchico.edu/∼hla/courses.html,
accessed 2013.

Dellino, G., Kleijnen, P.C., and Meloni, C. 2008. Robust optimization in simulation:
Taguchi and response surface methodology. Discussion Paper 2008-69. Tilburg Uni-
versity, Center for Economic Research.

Dicesare, F., Harhalakis, G., Proth, J.M., Silva, M., and Vernadat, F.B. 1993. Practice of
Petri-nets in Manufacturing. London: Chapman & Hall.

Duncan W.R. 1996. A Guide to the Project Management Body of Knowledge. Upper
Darby, PA: Project Management Institute.

Fishwick, P.A. 1995. Simulation Model Design and Execution. Upper Saddle River, NJ:
Prentice Hall.

Fu, M.C., Glover, F.W., and April, J. 2005. Simulation optimization: A review, new
development, and applications. In Proceedings of the 2005 Winter Simulation Confer-
ence, pp. 83–95.

Fujimoto, R.M. 2000. Parallel and Distributed Simulation Systems. New York: John
Wiley & Sons.

Gan, B.P., Liow, L.F., Gupta, A.K., Lendermann, P., Turner, S.J., and Wang, X. 2007.
Analysis of a borderless fab using interoperating AutoSched AP models. Interna-
tional Journal of Production Research 45(3): 675–697.

Glinsky, E. and Wainer, G. 2006. New parallel simulation techniques of DEVS and
Cell-DEVS in CD++. In Proceedings of the 39th Annual Simulation Symposium,
pp. 244–251.

Hannon, B. and Ruth, M. 2001. Dynamic Modeling, 2nd Ed. New York: Springer.
Harrell, C., Ghosh, B.K., and Bowden, R.O. 2012. Simulation Using ProModel®. New

York: McGraw Hill.
Hlupic, V., and Paul, R.J. 1994. Simulation modelling of flexible manufacturing systems

using activity cycle diagrams. Journal of the Operational Research Society 45(9):
1011–1023.

Hollocks, B.W. 2008. Intelligence, innovation and integrity: KD Tocher and the dawn
of simulation. Journal of Simulation 2(3): 128–137.

Hopcroft, J.E., Motwani, R., Ullman, J.D. 2006. Introduction to Automata Theory, Lan-
guages, and Computation, 3rd Ed. Boston: Addison Wesley.

Kang, D. and Choi, B.K. 2011. The extended activity cycle diagram and its generality.
Simulation Modelling Practice and Theory 19(2): 785–800.

http://www.ecst.csuchico.edu/<223C>hla/courses.html

REFERENCES   397

Karnopp, D.C., Margolis, D.L., and Rosenberg, R.C. 2000. System Dynamics: Modeling
and Simulation of Mechatronic Systems, 3rd Ed. New York: John Wiley & Sons.

Kelton, W.D., Sadowski, R.P., and Sturrock, D.T. 2007. Simulation with ARENA, 4th Ed.
New York: McGraw Hill.

Khansa, W., Aygalinc, P., and Denat, J.P. 1996. Structural analysis of p-time Petri Nets.
In Proceedings of IEEE Computational Engineering in Systems Applications
(CESA’96), pp. 127–136.

Kienbaum, G. and Paul, R.J. 1994. H-ACD: Hierarchical activity cycle diagrams for
object-oriented simulation modelling. In Proceedings of the 1994 Winter Simulation
Conference, pp. 600–610.

Kim, B.I., Jeong, S., Shin, J., Koo, J., Chae, J., and Lee, S. 2009. A Layout- and data-driven
generic simulation model for semiconductor fab. IEEE Transactions on Semicon-
ductor Manufacturing 22(2): 225–231.

Kim, J.H., Lee, T.E., Lee, H.Y., Park, D.B. 2003. Scheduling analysis of time-constrained
dual-armed cluster tools. IEEE Transactions on Semiconductor Manufacturing
16(3): 521–534.

Kim, S. 2006. Gradient-based simulation optimization. In Proceedings of the 2006
Winter Simulation Conference, pp. 159–167.

Kim, T.G. 1995. DEVS framework in discrete event systems modeling simulation.
In Proceedings of the 1995 KSS Fall Conference. The Korea Society for Simulation,
pp. 3–28.

Kiviat, P.J., Villanueva, R., and Markowitz, H. 1969. The SIMSCRIPT II Programming
Languages. Upper Saddle River, NJ: Prentice Hall.

Kleinberg, J.M. 2000. Navigation in a small world. Nature 406: 845.
Kuhl, F., Weatherly, R., and Damann, J. 2000. Creating Computer Simulation Systems:

An Introduction to the High Level Architecture. Upper Saddle River, NJ: Prentice
Hall.

Law, A.M. 2007. Simulation Modeling & Analysis, 4th Ed. New York: McGraw-Hill.
Lee, D., Choi, B.K., and Kong, J. 2010a. Timer embedded finite state machine modeling

and its application. In Proceedings of the 24th European Conference on Modeling
and Simulation, pp. 153–159.

Lee, D., Shin, H., and Choi, B.K. 2010b. Mediator approach to direct workflow simula-
tion. Simulation Modelling Practice and Theory 18(5): 650–662.

Leemis, L. 2001. Input modeling techniques for discrete-event simulations. In Proceed-
ings of the 2001 Winter Simulation Conference, pp. 600–610.

Manier, M.A. and Bloch, C. 2003. A classification for hoist scheduling problems. The
International Journal of Flexible Manufacturing Systems 15(1): 37–55.

Martinez, J.C. 2001. EZStrobe: General-purpose simulation system based on activ
ity cycle diagrams. In Proceedings of the 2001 Winter Simulation Conference,
pp. 1556–1564.

Mealy, G.H., 1955. A method for synthesizing sequential circuits, Bell Systems Technical
Journal 34(5): 1045–1079.

Mostafazadeh, A. 2004. Quantum mechanics of Klein-Gordon-type fields and quantum
cosmology. Annals of Physics 309(1): pp.1–48.

Myers, R.H. and Montgomery, D.C. 1995. Response Surface Methodology. New York:
John Wiley & Sons.

398    References

Nakayama, M.K. 2002. Simulation output analysis. In Proceedings of the 2002 Winter
Simulation Conference, pp. 23–34.

Norman, M., Tinsley, D., Barksdale, J., Wiersholm, O., Campbell, P., and MacNair, E.
1999. Process and material handling models integration. In Proceedings of the 1999
Winter Simulation Conference, pp. 1262–1267.

Park, B.C., Park, E.S., Choi, B.K., Kim, B.H., and Lee, J.H. 2008. Simulation-based plan-
ning and scheduling system for TFT-LCD fab. In Proceedings of the 2008 Winter
Simulation Conference, pp. 2271–2276.

Pegden, C.D. 1989. Introduction to SIMAN. State College, PA: System Modeling Corp.
Peterson, J.L. 1981. Petri Net Theory and the Modeling of Systems. Upper Saddle River,

NJ: Prentice Hall.
Pidd, M. 2004. Computer Simulation in Management Science. 5th Ed. John Wiley &

Sons.
Pillai, D.D., Cass, E.L., Dempsey, J.C., and Yellig, E.J. 2004. 300-mm full-factory simula-

tions for 90- and 65-nm IC manufacturing. IEEE Transactions on Semiconductor
Manufacturing 17(3): 292–298.

Pritsker, A.B. and Pegden, C.D. 1979. Introduction to Simulation and SLAM.
West Lafayette, IN: Systems Pub. Corp.

Ren, S.C., Xu, D., Wang, F., and Tan, M. 2005. Timed event graph-based scheduling for
cyclic permutation flow shop. International Journal of Information Technology 11(5):
10–17.

Richmond, B. 2003. An Introduction to Systems Thinking. High Performance Systems
Inc.

Rockwell Automation. 2010. Arena® User’s Guide, Version 13.50.
Rossetti, M.D. 2010. Simulation Modeling and Arena. New York: John Wiley & Sons.
Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. 1991. Object-

Oriented Modeling and Design. Upper Saddle River, NJ: Prentice Hall.
Sargent, R.G. 2004. Validation and verification of simulation models. In Proceedings of

the 2004 Winter Simulation Conference, pp. 17–28.
Savage, E.L. and Schruben, L.W. 1995. Eliminating event cancellation in discrete event

simulation. In Proceedings of the 1995 Winter Simulation Conference, pp. 744–750.
Savage, E.L., Schruben, L.W., and Yücesan, E. 2005. On the generality of event-graph

model. INFORMS Journal on Computing 17(1): 3–9.
Schmeiser, B.W. and Babu, A.J.G. 1980. Beta variate generation via exponential majoriz-

ing functions. Operations Research 28(4): 917–926.
Schruben, D.L. and Schruben, L.W. 2001. Event Graph Modeling with SIGMA, 4th Ed.

Custom Simulations.
Schruben, D.L. and Schruben, L.W. 2006. Event Graph Modeling Using SIGMA, 5th

Ed. Custom Simulations.
Schruben, D.L. and Yücesan, E. 1994. Transforming Petri nets into event graph models.

In Proceedings of the 1994 Winter Simulation Conference, pp. 560–565.
Schruben, L.W. 1983. Simulation modeling with event graph models. Communications

of the Association of Computing Machinery 26(11): 957–963.
Schruben, L.W. 1995. Graphical Simulation Modeling and Analysis using SIGMA for

Windows. Danvers, MA: Boyd and Fraser Publishing Company.

REFERENCES   399

Schruben, L.W. Lecture in the Pritsker Scholars Distinguished Lecture Series, School
of Industrial Engineering, Purdue University, April 13, 2012.

Song, E., Choi, T., Choi, B.K., and Gu, S. 2011. A framework for integrated simulation
of production and material handling systems of TFT-LCD fab. In Proceedings of the
IEEE 2011 Summer Computer Simulation Conference, Hague, pp. 48–54.

Tocher, K.D. 1960. An integrated project for the design and appraisal of mechanized
decision-making control systems. Operational Research 11(1/2): 50–65.

Wagner, F. 2005. Moore or Mealy model? Available at http://www.stateworks.com/
active/download/TN10-Moore-Or-Mealy-Model.pdf.

Wagner, F. and Wolstenholme, P. 2003. Modeling and building reliable, re-useable soft-
ware. In Proceedings of the 10th IEEE International Conference and Workshop on
the Engineering of Computer-Based Systems (ECBS’03), pp. 277–286.

Wagner, F., Schmuki, R., Wagner, T., and Wolstenholme, P. 2006. Modeling Software
with Finite State Machines: A Practical Approach. Boca Raton, FL: Auerbach
Publications.

Wang, F.K. and Lin, J.T. 2004. Performance evaluation of an automated material
handling system for a wafer fab. Robotics and Computer-Integrated Manufacturing
20(2): 91–100.

WfMC (Workflow Management Coalition). 1995. The Workflow Reference Model,
WfMC-TC-00-1003, Workflow Management Coalition, http://www.wfmc.org.

WfMC. 1998. Workflow Management Application Programming Interface Spec, WfMC-
TC-1009, Workflow Management Coalition, http://www.wfmc.org.

Wu, B. 1992. Manufacturing Systems Design and Analysis. London: Chapman & Hall.
Zeigler, B.P. 1976. Theory of Modelling and Simulation. New York: John Wiley & Sons.
Zeigler, B.P., Praehofer H., and Kim, T.G. 2000. Theory of Modeling and Simulation,

2nd Ed. San Diego, CA: Academic Press.

http://www.stateworks.com/active/download/TN10-Moore-Or-Mealy-Model.pdf
http://www.stateworks.com/active/download/TN10-Moore-Or-Mealy-Model.pdf
http://www.wfmc.org
http://www.wfmc.org

400

INDEX

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

Abstract simulation model  297
Acceptance-rejection method  65
Access module  220
ACD-Arena mapping diagram  198
ACD simulator  304
ACD-to-EG conversion rule  329, 331
ACD-to-SG conversion rule  330, 332
ACD-to-SG conversion template  330
Action  269
Active event set  262
Active resource  23, 143
Active state  35, 146
Activity  143
Activity-based modeling formalism 

25
Activity cycle  35, 146

diagram (ACD)  25, 35, 143
Activity node  27, 145, 324
Activity scanning algorithm  27, 304
Activity-scanning worldview  25
Activity transition table  35, 148, 164
Adjusted R2  237
AGV dispatching  325
Allocate module  196
AMHS-embedded integrated

simulation  338
Analysis of variance  236
Analytic optimization  227
Antithetic variate  231
Arc

attribute  147
condition  147
multiplicity  147

Arena  184

Assembly operation  78
Assign module  195, 208
Atomic simulator  283
Atomic state graph  267, 269
Attribute data module  197, 217
Augmented event graph  103
Automaton  261
AutoMod MCM functions  363
Average queue length  11, 103, 309
Average waiting time  11, 105

Balking  76, 152
Batched service  77, 153
Batch module  195, 207
Bernoulli process  58
Beta distribution  54, 55, 61
Beta random variate  65
Bi-inline cell  341
Bipartite directed graph  148, 163
Blocking  81, 152, 204
Blocking variable  81, 113
Bound-to-occur (BTO) event  36, 147
Buffer queue  198, 324

Calibration  39, 225
Canceling arc  310, 313
Canceling edge  73, 310
Cell size  219
Central composite design  246
Centralized barrier method  371, 374
Chamber type equipment  341
Chi-square test  49
Circle-tailed arrow  310
Classic DEVS  295

INDEX   401

Classical ACD  145
Clock constraints  263
Clock structure  262
Cluster tool scheduling problem  321
Coded variable  238
Combinatorial system  256
Common random number  233
Composite state graph  267, 270
Composition method  54, 68
Computer simulation  3, 6, 8
Confidence interval  231
Conservative synchronization  371
Controller LP (logical process)  371
Convey event  364
Convey-in interface  355
Convey module  196, 220
Convey-move message  365
Convey-out interface  356
Conveyor data module  197, 222
Conveyor-driven serial line  85, 95, 114,

161, 166, 219, 275
Convolution method  65
Coupled DEVS model  296
Create module  188, 195, 198

Data module  196
Decide module  190, 195, 203, 207
Decision variable  226
Declaration management  380
Delay module  195, 203
Deliver event  366
Deliver-move message  365
Delivery move  361
Deterministic automaton  262

with an output message set  266
Dispose module  190, 195, 198
Drop interface  357, 358
Dual-armed robot  319

Embedded software  257
Empirical input modeling  45
Empty string  261
Enabled  335
Enactment service  372
Encapsulated event graph  344, 352
Entity  143
Entity activity cycle  27, 147
Entity-based modeling formalism  25
Entity data module  196, 217

Entity-flow diagram  25
Entry action  259
Erlang distribution  51, 60
Erlang k random variate  52, 65
Estimating the mean  248
Event  5, 69
Event-based modeling formalism  25,

26, 70
Event graph  10, 26, 33, 69
Event-handling functions  100, 300
Event node  33, 72
Event object (EO)  344, 346

models  346
simulators  347, 350

Event routine  18, 102
Event-scheduling worldview  25
Event transition table  72, 73, 110
Executability  265
Exit action  259
Exit module  196, 220
Experimental frame  15, 226
Exponential distribution  51, 60
Exponential random variate  52, 64,

101
Extended ACD  145
External transition edge  269

Failure-repair  312
Federate code  381
Federate rules  379
Federation management  380

join  380
resign  380

Federation rules  379
Final state  257

node  270
Finite state machine  255, 256
Finite state transducer  257
Fitted regression model  247
Flexible multi-server  76, 82, 151, 201
Flow diagram  145
Flow time  87, 89, 341
Flowchart model  37, 187
Flowchart module  194
Fluctuating arrival  77, 82
Formal model  26, 71

conversion  330
Free module  196
Future event list (FEL)  19, 300

402    Index

Generative knowledge  234
Goodness-of-fit test  49
Grouped data distribution function 

47

Handling-type simulator  366
Handshake synchronization  266
Heterogeneous FMS  327
Hierarchical DEVS simulator  297
High-level architecture (HLA)  372
High-tech industry  338
Histogram  228
HLA rules  379
Hoist activity cycle  318
Hold module  195, 205
Homogeneous FMS  327
Homogeneous Poisson process  50
House distribution  54

Indicator variables  240
Influenced activities  147, 304
Initial marking  146, 148
Initial state  270
Inline cell  86, 91
Inline job shop  115, 118
Inline stocker  342
Input action  259
Input alphabet  256
Input arc condition  147, 164
Input modeling  45
Input queue  147, 164
Integrated procedure for DES

modeling  31
Integrated simulation  338
Integrated structure  30
Interaction  380, 385

parameter  381, 385
receive  380
send  380

Interaction class  381
Internal transition  268
Invariant condition  264
Inverse transformation  47, 64,

101

Job activity cycle  315
Job queue  324
Job-routing functions  344
Job shop  115

Lack-of-fit test  244
Language  261
Law(s)  15, 226
Least square estimator  235
Linear regression model  234
Line plot  228
List-handling function  307
Local events  347
Logical animation  228
Logical process (LP)  371

Machine activity cycle  315
Macro states  268
Main effect  238
Majoring function  65
Marking  28, 146
Match module  196, 207
Material control system (MCS)  342
Material handling simulation  338
Maximum likelihood

estimator  49, 60
method  60

Mazatrol FMS  322
Mealy model  258
Mean square  237
Message delivery packet  283

queue  284
Message send request  283

queue  283
Method of batch means  232
Method of moment  49, 61
Method of multiple replications 

233
Method of steepest ascent  241
Mirror event  344
Mixed model  258
Mode  55
Model equation  235
Modeling component  23, 70

logical  23
physical  23

Modeling formalism  24
Modeling tool  25
Modular hierarchical DEVS  297
Moore model  258
Move module  196
Move-type event  365
Move-type event list (MEL)  364
Msg  364

INDEX   403

Network data module  197
Network link data module  197
Next event  19, 262

scheduling algorithm  27, 102
Noise variables  241
Nonparametric model  46
Nonstationary Poisson process  52
Normal distribution  64
Normally distributed population  248
Normal random variate  67

Object  381
attribute  381, 385

Object class  381
Object interaction diagram  271
Object interaction table  267, 271
Object management  380
Object-oriented event graph

(OOEG)  346
Observation equation  235
Operation class  327
Operation sequence diagram  315,

317
Optimistic synchronization  371
Optimization  15
Ordered sample data  46
Ordinary event graph  110
Output arc  165
Output plot  228
Output queue  165
Output report  192
Output statistic  229
Oven type equipment  341
Ownership management  380

p-time Petri net  337
p-value  240
Parallel simulation  371
Parameter  226
Parameterization  107
Parameterized ACD  163
Parameterized activity routine  307
Parameterized event graph  108
Parameterized event routine  308
Parameterized event vertex  108
Parameter value  110, 163
Parameter variable  110, 163
Participant simulator  373
Passive resource  23, 143

Passive state  35
PERT  84, 161
Petri net  28, 334, 337
Physical animation  228
Pick-up interface  357
Poisson distribution  50
Poisson process  50
Policy  15
Predicted response  236
Probabilistic branching  154, 157, 175
Probabilistic FSM  257
Process  184
Process definition model (PDM)  372
Processing-type simulator  366
Process instance  372
Process interaction worldview  25, 184
Process module  185, 189, 195, 198
Process-oriented modeling  26, 184
Process-oriented simulation

language  26
Production simulation  338

Qualification  31, 38
Queue data module  191, 196
Queue handling functions  100
Queue node  27, 145, 324
Queuing system  259

R2 statistic  237
Range data  54
Rank regression method  49, 57, 63
Reactive system  257, 293
Real-time dispatcher (RTD)  342
Receive order  386
Record module  195
Reference model  23
Regressor variable  234
Release module  195, 203
Reliable communication  385
Reneging  77, 311
Residual  234
Resource  143
Resource activity cycle  27, 147
Resource data module  191, 196
Resource failure  79, 155, 176, 208, 312
Resource priority  79
Resource queue  198
Response variable  234
Retrieve event  365

404    Index

Retrieve move  356
Retrieve-move message  365
Robust parameter design  241
Route module  196
Routing sequence  115
Run setup  193
Run-time infrastructure (RTI)  378, 379

Sample mean  230, 248
Sample moment  52, 61
Sample variance  230, 248
Scale parameter  51, 60, 61, 62
Scatter diagram  48
Schedule data module  197, 201, 205
Scheduling edge  72
Score  262
Screening experiment  241
Search module  196
Segment data module  197, 222
Seize module  195, 203
Sensitivity analysis  15, 226
Separate module  195, 212
Sequence data module  197
Sequential system  256
Serial flow  319
Serial-parallel flow  320
Set data module  197, 217
Shape parameter  60, 61, 62
SIMAN  185
Simple job shop  115, 131, 140, 168, 216
Simple service shop  126
Simple service station  159, 180, 213.

See also Flexible multi-server
Simulation  6

analytic  6
constructive  7
continuous  9
Monte Carlo  9
virtual environment  6

Simulation coordinator  346
Simulation optimization  15, 226, 241
Simulation time  11
Single-armed robot  314
Sojourn time  109
Start state  256

node  258, 270
State-based modeling formalism  25, 26
State graph  267
State graph formalism  256

State graph simulator  283
State space  259
State transition diagram  26, 257, 261
State transition routine  260
State transition table  258, 260, 268, 270
State variable  4, 268
Static model  188
Station  219
Station module  196, 220
Steady state simulation  230
Sum-of-square  236
Synchronization (sync) manager  283,

373
simulation module  286

System  4
continuous  4
differential equation  5
discrete-event  4
feedback control  5
quantum  4
source  5
target  5
wider  5

System variable  268

Takt time  87
Tandem line  80, 108, 112, 165
Terminating simulation  230
Theoretical input modeling  45
Thinning method  53, 77, 153
Three-phase execution program  301,

302
Three-phase process  300
Tie-breaking  304
Time advance grant  283
Time-advance message  365
Time advance request  283

table  283
Time-advance time  365
Time-constrained processing  81, 313
Time management  380
Timestamp order  371, 385
Time-synchronization algorithm  27
Timed activity  198
Timed automaton/automata  26, 255,

261, 262
with guards  263, 265
with guards and output message

set  266

INDEX   405

Timed event graph  337
Timed Petri-net  28, 337
Timed state  288
Timeless state  288
Timer  268
Token  28
Trace  229
Trace-driven simulation  45
Traffic control system  279
Transition action  259
Transition edge  264
Transition function  256
Transport module  196
Transporter data module  197
Triangular distribution  54
Two-stage tandem line  32

Uni-inline cell  118, 340
Uni-inline job shop  120, 343

Validation  31, 38
Variable data module  197, 209
Variance reduction  231
Verification  31, 225

Warm-up period  232
Weibull distribution  57, 62
Weibull random variate  67
Workflow management system

(WfMS)  372
Work-list handler  373

ε-transition edge  265

	Cover
	Title page
	Copyright page
	Contents
	Preface
	Abbreviations
	Part I: Basics of System Modeling and Simulation
	Chapter 1: Overview of Computer Simulation
	1.1 Introduction
	1.2 What Is a System?
	1.2.1 Definitions of Systems
	1.2.2 Three Types of Systems
	1.2.3 System Boundaries and Hierarchical Structure

	1.3 What Is Computer Simulation?
	1.3.1 What Is Simulation?
	1.3.2 Why Simulate?
	1.3.3 Types of Computer Simulation

	1.4 What Is Discrete-Event Simulation?
	1.4.1 Description of System Dynamics
	1.4.2 Simulation Model Trajectory
	1.4.3 Collecting Statistics from the Model Trajectory

	1.5 What Is Continuous Simulation?
	1.5.1 Manual Simulation of the Newtonian Cooling Model
	1.5.2 Simulation of the Newtonian Cooling Model Using a Simulator

	1.6 What Is Monte Carlo Simulation?
	1.6.1 Numerical Integration via Monte Carlo Simulation
	1.6.2 Risk Analysis via Monte Carlo Simulation

	1.7 What Are Simulation Experimentation and Optimization?
	1.8 Review Questions

	Chapter 2: Basics of Discrete-Event System Modeling and Simulation
	2.1 Introduction
	2.2 How Is a Discrete-Event Simulation Carried Out?
	2.2.1 Event Routines
	2.2.2 Simulation Model Trajectory
	2.2.3 Manual Simulation Execution
	2.2.4 Flow Chart of Manual Simulation Procedure

	2.3 Framework of Discrete-Event System Modeling
	2.3.1 What Are Modeling Components and Reference Model?
	2.3.2 What Is a Discrete-Event System (DES) Modeling Formalism?
	2.3.3 What Is a Formal Model and How Is It Specified?
	2.3.4 Integrated Framework of DES Modeling

	2.4 Illustrative Examples of DES Modeling and Simulation
	2.4.1 How to Build and Simulate an Event Graph Model of a DES
	2.4.2 How to Build and Simulate an ACD Model of a DES
	2.4.3 How to Build and Simulate a State Graph Model of a DES

	2.5 Application Frameworks for Discrete-Event System Modeling and Simulation
	2.5.1 How Is the M&S Life Cycle Managed?
	2.5.2 Framework for Factory Life-Cycle Support

	2.6 What to Cover in a Simulation Class
	2.6.1 Event-Based M&S and Event-Graph Simulation with SIGMA®
	2.6.2 Activity-Based M&S and Hands-On Modeling Practice with Arena®
	2.6.3 State-Based M&S

	2.7 Review Questions

	Part II: Fundamentals of Discrete-Event System Modeling and Simulation
	Chapter 3: Input Modeling for Simulation
	3.1 Introduction
	3.2 Empirical Input Modeling
	3.2.1 Nonparametric Modeling
	3.2.2 Empirical Modeling of Individual Data
	3.2.3 Empirical Modeling of Grouped Data

	3.3 Overview of Theoretical Distribution Fitting
	3.3.1 Data Independence Checking
	3.3.2 Distribution Function Selection
	3.3.3 Parameter Estimation
	3.3.4 Goodness-of-Fit Test
	3.3.5 Overview of Random Variate Generation

	3.4 Theoretical Modeling of Arrival Processes
	3.4.1 Theoretical Basis for Arrival Process Modeling
	3.4.2 Generation of Inter-Arrival Times for a Constant Arrival Rate
	3.4.3 Generation of Inter-Arrival Times for Varying Arrival Rates

	3.5 Theoretical Modeling of Service Times
	3.5.1 Generation of Service Time in the Absence of Data
	3.5.2 Generation of Service Times from Collected Data

	3.6 Input Modeling for Special Applications
	3.6.1 Interfailure Time Modeling
	3.6.2 Inspection Process Modeling
	3.6.3 Batch Size Modeling

	3.7 Review Questions
	Appendix 3A: Parameter Estimation
	3A.1 Exponential Distribution
	3A.2 Erlang Distribution
	3A.3 Beta Distribution
	3A.4 Weibull Distribution
	3A.5 Normal and Lognormal Distributions

	Appendix 3B: Random Variate Generation
	3B.1 Exponential Random Variate
	3B.2 Erlang Random Variate
	3B.3 Beta Random Variate
	3B.4 Weibull Random Variate
	3B.5 Normal and Lognormal Random Variates
	3B.6 Triangular Random Variate

	Chapter 4: Introduction to Event-Based Modeling and Simulation
	4.1 Introduction
	4.2 Modeling and Simulation of a Single Server System
	4.2.1 Reference Modeling
	4.2.2 Formal Modeling
	4.2.3 Model Execution

	4.3 Execution Rules and Specifications of Event Graph Models
	4.3.1 Event Graph Execution Rules
	4.3.2 Tabular Specification of Event Graph Models
	4.3.3 Algebraic Specifications of an Event Graph Model

	4.4 Event Graph Modeling Templates
	4.4.1 Single Queue Models
	4.4.2 Tandem Line Models

	4.5 Event Graph Modeling Examples
	4.5.1 Flexible Multi-Server System with Fluctuating Arrival Rates
	4.5.2 Car Repair Shop
	4.5.3 Project Management Modeling
	4.5.4 Conveyor-Driven Serial Line
	4.5.5 Inline-Type Manufacturing Cell Modeling

	4.6 Execution of Event Graph Models with SIGMA
	4.6.1 Simulation of a Single Server System with SIGMA
	4.6.2 Simulation of a Conveyor-Driven Serial Line with SIGMA

	4.7 Developing Your Own Event Graph Simulator
	4.7.1 Functions for Handling Events and Managing Queues
	4.7.2 Functions for Generating Random Variates
	4.7.3 Event Routines
	4.7.4 Next Event Methodology of Simulation Execution
	4.7.5 Single Server System Simulator

	4.8 Review Questions

	Chapter 5: Parameterized Event Graph Modeling and Simulation
	5.1 Introduction
	5.2 Parameterized Event Graph Examples
	5.2.1 Introducing Index Variables to a Repeating Event-Vertex Pattern
	5.2.2 Passing Attribute Values of Each Entity along Event Vertices

	5.3 Execution Rules and Specifications of the Parameterized Event Graph
	5.3.1 Execution Rules of the PEG Model
	5.3.2 Tabular Specifications of the PEG Model
	5.3.3 Algebraic Specifications of the PEG Model

	5.4 Parameterized Event Graph Modeling of Tandem Lines
	5.4.1 PEG Modeling of an Unlimited Buffer Tandem Line
	5.4.2 PEG Modeling of a Limited Buffer Tandem Line
	5.4.3 PEG Modeling of a Conveyor-Driven Serial Line

	5.5 Parameterized Event Graph Modeling of Job Shops
	5.5.1 PEG Modeling of a Simple Job Shop without Transport
	5.5.2 PEG Modeling of a Job Shop with Transport and Setup Times
	5.5.3 PEG Modeling of an Inline Job Shop
	5.5.4 PEG Modeling of a Mixed Job Shop

	5.6 Execution of Parameterized Event Graph Models using SIGMA
	5.6.1 Collecting Sojourn Time Statistics Using SIGMA Functions
	5.6.2 Simulating a Simple Service Shop with SIGMA
	5.6.3 Simulation of a Three-Stage Tandem Line Using SIGMA
	5.6.4 Simulation of the Simple Job Shop with SIGMA

	5.7 Developing Your Own Parameterized Event Graph Simulator
	5.7.1 Tandem Line PEG Simulator
	5.7.2 Simple Job Shop PEG Simulator

	5.8 Review Questions

	Chapter 6: Introduction to Activity-Based Modeling and Simulation
	6.1 Introduction
	6.2 Definitions and Specifications of an Activity Cycle Diagram
	6.2.1 Definitions of an ACD
	6.2.2 Execution Rules and Tabular Specifications of an ACD
	6.2.3 Algebraic Specifications of an ACD

	6.3 Activity Cycle Diagram Modeling Templates
	6.3.1 ACD Template for Flexible Multi-Server System Modeling
	6.3.2 ACD Template for Limited Buffer Tandem Line Modeling
	6.3.3 ACD Template for Nonstationary Arrival Process
	6.3.4 ACD Template for Batched Service Modeling
	6.3.5 ACD Template for Joining Operation Modeling
	6.3.6 ACD Template for Probabilistic Branching Modeling
	6.3.7 ACD Template for Resource Failure Modeling

	6.4 Activity-Based Modeling Examples
	6.4.1 Activity-Based Modeling of a Worker-Operated Tandem Line
	6.4.2 Activity-Based Modeling of an Inspection-Repair Line
	6.4.3 Activity-Based Modeling of a Restaurant
	6.4.4 Activity-Based Modeling of a Simple Service Station
	6.4.5 Activity-Based Modeling of a Car Repair Shop
	6.4.6 Activity-Based Modeling of a Project Management System
	6.4.7 Activity-Based Modeling of a Conveyor-Driven Serial Line

	6.5 Parameterized Activity Cycle Diagram and Its Application
	6.5.1 Definition and Specifications of Parameterized ACD
	6.5.2 Rules for Executing the P-ACD Model
	6.5.3 P-ACD Modeling of Tandem Lines
	6.5.4 P-ACD Modeling of Job Shops

	6.6 Execution of Activity Cycle Diagram Models with a Formal Simulator ACE®
	6.6.1 Simulation of Single Server Model with ACE
	6.6.2 Simulation of Probabilistic Branching Model with ACE
	6.6.3 Simulation of Resource Failure Model with ACE
	6.6.4 Simulation of Simple Service Station Model with ACE

	6.7 Review Questions

	Chapter 7: Simulation of ACD Models Using Arena®
	7.1 Introduction
	7.2 Arena Basics
	7.2.1 Arena Modeling Environment
	7.2.2 Building a Flowchart Model of a Process-Inspect Line
	7.2.3 Completing a Static Model of a Process-Inspect Line
	7.2.4 Arena Simulation and Output Reports
	7.2.5 Arena Modules

	7.3 Activity Cycle Diagram-to-Arena Conversion Templates
	7.3.1 Template for Fixed Multi-Server Modeling
	7.3.2 Template for Flexible Multi-Server Modeling
	7.3.3 Template for Balking (Conditional Branching) Modeling
	7.3.4 Template for Limited Buffer Tandem Line Modeling
	7.3.5 Template for Nonstationary Arrival Process Modeling
	7.3.6 Template for Joining Operation Modeling
	7.3.7 Template for Inspection (Probabilistic Branching) Modeling
	7.3.8 Template for Resource Failure Modeling

	7.4 Activity Cycle Diagram-Based Arena Modeling Examples
	7.4.1 ACD-Based Arena Modeling of a Worker-Operated Tandem Line
	7.4.2 ACD-Based Arena Modeling of Restaurant
	7.4.3 ACD-Based Arena Modeling of a Simple Service Station
	7.4.4 ACD-Based Arena Modeling of a Project Management System
	7.4.5 ACD-Based Arena Modeling of a Job Shop
	7.4.6 ACD-Based Arena Modeling of a Conveyor-Driven Serial Line

	7.5 Review Questions

	Chapter 8: Output Analysis and Optimization
	8.1 Introduction
	8.2 Framework of Simulation Output Analyses
	8.2.1 Verification and Calibration
	8.2.2 Simulation Experimentation
	8.2.3 Communication and Presentation

	8.3 Qualitative Output Analyses
	8.4 Statistical Output ANALYSES
	8.4.1 Statistical Output Analyses for Terminating Simulations
	8.4.2 Statistical Output Analyses for Nonterminating Simulations
	8.4.3 Statistical Output Analyses for Comparing Alternative Systems

	8.5 Linear Regression Modeling for Output Analyses
	8.5.1 Linear Regression Models
	8.5.2 Regression Parameter Estimation
	8.5.3 Test for Significance of Regression
	8.5.4 Linear Regression Modeling Example1
	8.5.5 Regression Model Fitting for Qualitative Variables

	8.6 Response Surface Methodology for Simulation Optimization
	8.6.1 Overview of RSM for Process Optimization
	8.6.2 Searching for Optimum Regions with the Steepest Ascent
	8.6.3 Second-Order Model Fitting for Optimization

	8.7 Review Questions
	Appendix 8A: Student’s t-Distribution
	8A.1 Definition
	8A.2 Derivation of the t-Statistic
	8A.3 Table of Critical t-Values with Degrees of Freedom (df)

	Appendix 8B: Student’s t-Tests
	8B.1 One Sample t-Test
	8B.2 Unpaired Two Sample t-Test

	Part III: Advances in Discrete-Event System Modeling and Simulation
	Chapter 9: State-Based Modeling and Simulation
	9.1 Introduction
	9.2 Finite State Machine
	9.2.1 Existing Definitions of Finite State Machines
	9.2.2 Finite State Machine Models
	9.2.3 Finite State Machine Modeling of Buffer Storage and Single Server Systems
	9.2.4 Execution of Finite State Machine Models

	9.3 Timed Automata
	9.3.1 Language and Automata
	9.3.2 Timed Automata
	9.3.3 Timed Automata with Guards
	9.3.4 Networks of Timed Automata

	9.4 State Graphs
	9.4.1 State Variables and Macro States
	9.4.2 Timers and System Variables
	9.4.3 Conventions for Building State Graphs and State Transition Tables

	9.5 System Modeling With State Graphs
	9.5.1 State Graph Modeling of Dining Philosophers
	9.5.2 State Graph Modeling of a Table Tennis Game
	9.5.3 State Graph Modeling of a Tandem Line
	9.5.4 State Graph Modeling of a Conveyor-Driven Serial Line
	9.5.5 State Graph Modeling of Traffic Intersection Systems

	9.6 Simulation of Composite State Graph Models
	9.6.1 Framework of a State Graph Simulator
	9.6.2 Synchronization Manager
	9.6.3 Atomic Simulators
	9.6.4 Table Tennis Game Simulator
	9.6.5 State Graph Simulator for Reactive Systems
	9.6.6 SGS®

	Appendix 9A: DEVS
	9A.1 Definitions of DEVS
	9A.2 DEVS Simulators

	Chapter 10: Advanced Topics in Activity-Based Modeling and Simulation
	10.1 Introduction
	10.2 Developing Your Own Activity Cycle Diagram Simulators
	10.2.1 Tocher’s Three-Phase Process
	10.2.2 Activity Scanning Algorithm
	10.2.3 ACD Simulator
	10.2.4 P-ACD Simulator
	10.2.5 Collecting Statistics

	10.3 Modeling with Canceling Arc
	10.3.1 ACD Model of Single Server System with Reneging
	10.3.2 ACD Model of Resource Failure
	10.3.3 ACD Model of Time-Constrained Processing
	10.3.4 Execution of Canceling Arc

	10.4 Cycle Time Analysis of Work Cells via an Activity Cycle Diagram
	10.4.1 Cycle Time Analysis of Single-Armed Robot Work Cell
	10.4.2 Cycle Time Analysis of Single Hoist Plating Line
	10.4.3 Cycle Time Analysis of Dual-Armed Robot Cluster Tool

	10.5 Activity Cycle Diagram Modeling of a Flexible Manufacturing System
	10.5.1 ACD Modeling of Job Flows in FMS
	10.5.2 P-ACD Modeling of Job Routing in FMS
	10.5.3 P-ACD Modeling of AGV Dispatching Rules in FMS
	10.5.4 P-ACD Modeling of Refixture Operation and Heterogeneous FMS

	10.6 Formal Model Conversion
	10.6.1 Conversion of ACD Models to Event Graph (EG) Models
	10.6.2 Conversion of ACD Models to State Graph (SG) Models
	10.6.3 Examples of Formal Model Conversion

	Appendix 10A: Petri Nets
	10A.1 Definitions of Petri Nets
	10A.2 Petri-Net State and Execution
	10A.3 Extended Petri Nets and the ACD
	10A.4 Restricted Petri Nets
	10A.5 Modeling with Petri Nets

	Chapter 11: Advanced Event Graph Modeling for Integrated Fab Simulation
	11.1 Introduction
	11.2 Flat Panel Display Fabrication System
	11.2.1 Overview of FPD Fab
	11.2.2 FPD Processing Equipment
	11.2.3 Material Handling System

	11.3 Production Simulation of a Flat Panel Display Fab
	11.3.1 Modeling of Uni-Inline Job Shop
	11.3.2 Modeling of Oven Type Job Shop
	11.3.3 Modeling of Heterogeneous Job Shop
	11.3.4 Object-Oriented Event Graph Simulator for Production Simulation

	11.4 Integrated Simulation of a Flat Panel Display Fab
	11.4.1 Modeling of Job Shop for Integrated Simulation
	11.4.2 Modeling of Conveyor Operation
	11.4.3 Modeling of the Interface between Conveyor and Inline Stocker
	11.4.4 Modeling of the Interface between Uni-inline Cells and Inline Stocker
	11.4.5 Modeling of the Interface between an Oven and Inline Stocker
	11.4.6 Modeling of Inline Stocker Operation
	11.4.7 Integrated Fab Simulator

	11.5 Automated Material Handling Systems-Embedded Integrated Simulation of Flat Panel Display Fab
	11.5.1 Concept of AMHS-Embedded Fab Simulation
	11.5.2 Framework of AMHS-Embedded Fab Simulation System
	11.5.3 Simulator for AMHS-Embedded Integrated Fab Simulation
	11.5.4 IFS®

	Chapter 12: Concepts and Applications of Parallel Simulation
	12.1 Introduction
	12.2 Parallel Simulation of Workflow Management System
	12.2.1 Enactment Service Mechanism of WfMS
	12.2.2 Framework of Parallel Simulation of WfMS
	12.2.3 State Graph Modeling of an Enactment Server and Sync Manager
	12.2.4 State Graph Modeling of Participant Simulators
	12.2.5 Implementation of a Workflow Simulator

	12.3 Overview of High-Level Architecture/Run-Time Infrastructure
	12.3.1 Basics of HLA/RTI
	12.3.2 HLA Federation Architecture
	12.3.3 Overview of Federation Execution

	12.4 Implementation of a Parallel Simulation with High-Level Architecture/Run-Time Infrastructure
	12.4.1 The Sushi Restaurant Federation
	12.4.2 Preparation of an FED File
	12.4.3 Preparation of the Federate Code (of the Production Federate)
	12.4.4 Executing the Restaurant Federation

	References
	Index

