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PREFACE

This book provides comprehensive, in-depth coverage of modeling and simula-
tion (M&S) of discrete-event systems (DESs). Here, the term M&S refers to 
computer simulation, with an emphasis on modeling real-life DESs and exe-
cuting the models. The current state-of-the-art in DES M&S is a result of the 
breakthroughs in the following areas: (1) activity-based modeling formalism 
pioneered by K.D. Tocher in late 1950s; (2) the advent of process-oriented 
simulation languages, such as GPSS and SLAM, in the early 1970s; (3) state-
based modeling formalism, or DEVS, founded by Bernard Zeigler in the mid-
1970s; and (4) event-based modeling formalism as matured by Lee Schruben 
since the early 1980s.

There exists at least one classic textbook in each area—a textbook on 
activity-based modeling by Carrie, a few books on state-based (DEVS) model-
ing by Zeigler, a textbook on event-based modeling by Schruben, and a few 
books on process-oriented languages such as Arena® and ProModel®. In addi-
tion, there are quite a few books focusing on statistical notions of computer 
simulation. The researchers in each area advocate their own views as central 
to DES M&S. Only a couple of books (e.g., Fishwick) propose an integrated 
model engineering framework.

This book presents an integrated M&S framework covering all four DES 
M&S breakthrough areas. It is a product of 30 years of teaching at KAIST, as 
well as sponsored research and development projects at the authors’ lab at 
KAIST, VMS (virtual manufacturing system) Lab, which has been a 
government-endowed National Research Lab since 1999. In particular, the 
practice-oriented theme of this book is a result of the authors’ decade-long 
experience in developing simulation-based scheduling (SBS) solutions for 
Samsung Electronics and other companies in Korea. Virtually all the Sam-
sung’s semiconductor fabrication plants (Fabs) and flat panel display (FPD) 
Fabs are run utilizing solutions originated by the authors’ lab, and upgraded 
and supported by a spin-off venture company.

This book is divided into three parts: Part I, Basics of System Modeling 
and Simulation; Part II, Fundamentals of Discrete-Event System Modeling and 
Simulation; and Part III, Advances in Discrete-Event System Modeling and 
Simulation. Parts I and II are designed as a primary textbook for an under-
graduate level M&S course in Industrial Engineering, Computer Science, and 
Management Science. With Part III, it is designed as a graduate-level course. 
This book comprehensively covers the state-of-the art modeling formalisms 



xviii    Preface

and execution algorithms in DES M&S thereby serving as a main reference 
for M&S researchers in academia. This book provides an easy-to-understand 
guide for simulation practitioners in industry using off-the-shelf simulators 
such as SIGMA® and Arena®. Finally, this book reveals a number of “secrets” 
for developing your own simulators: event graph simulator, ACD simulator, 
state graph simulator, and integrated Fab simulator—making it a valuable 
resource for M&S solution developers.

The book is largely self-contained, and few prerequisites are needed for 
understanding its main contents. However, some prior knowledge will help 
readers understand specific sections:

(1)	 Basic knowledge of statistics and probability (Chapter 3, Input 
Modeling);

(2)	 Basic knowledge of linear algebra (Chapter 8, Output Analysis and 
Optimization)

(3)	 Experience with computer programming (Sections on developing your 
own simulators, e.g. Sections 5.7 and 10.2).

Perhaps the most critical prerequisite for mastering this book is enthusiasm 
and commitment toward M&S. This book is about the art of M&S, and like 
other art forms, can only be mastered through persistent practice.

The authors wish to express their special thanks to Prof. K.H. Han of 
Gyeongsang National University for using part of this book in his class and 
providing valuable comments that led to its improvement; to Prof. I.K. Moon 
of Seoul National University and Prof. S.C. Park of Ajou University for  
their input during the early stage of writing this book; and to Prof. Lee Schru-
ben of Berkeley for his encouragement and support. For developing sample 
models and exercise problems, and for executing “prototype” simulation 
models appearing in the book, we would like to thank our graduate students 
in the VMS Lab at KAIST, especially H.S. Kim, T.J. Choi, and E.H. Song.

Finally, Byoung Choi thanks his wife, Yong, and his son and best friend 
Samuel, for their support and encouragement. Donghun Kang thanks his 
parents for their loving care and support.

Byoung Kyu Choi
Donghun Kang

Daejeon, Korea, June 2013
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PART I

We think by “constructing mental models and then simulating them in order 
to draw conclusions or make decisions.” Thus, modeling and simulation (M&S) 
constitutes the central part of our thinking process. “I think, therefore I am” 
is a philosophical statement used by the French philosopher Descartes, which 
became a foundational element of Western philosophy. Therefore, if we 
combine the philosophical notion of thinking with the engineering definition 
of M&S, we may say that “we are engineers and scientists because we can 
model systems and simulate them.” Furthermore, if our brain is not powerful 
enough to simulate a given complex system, we rely on computers to perform 
a computer simulation.

A dictionary definition of simulation is the technique of imitating the 
behavior of some situation by means of an analogous situation or apparatus 
to gain information more conveniently or to train personnel, while an aca-
demic definition of computer simulation is the discipline of designing a model 
of a system, simulating the model on a digital computer, and analyzing the 
execution output. In recent years, the term modeling and simulation (M&S) 
seems to be preferred to the term for computer simulation, with an emphasis 
on modeling. Part I of this book has two chapters, and it aims to provide the 
readers with a basic but comprehensive treatment of computer simulation.

Chapter 1, “Overview of Computer Simulation,” will provide answers to the 
following basic questions in computer simulation:

1.	 What is a system?
2.	 What is computer simulation?
3.	 What is discrete-event simulation?
4.	 What is continuous simulation?
5.	 What is Monte Carlo simulation?
6.	 What are simulation experimentation and optimization?
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Chapter 2, “Basics of Discrete-Event System Modeling & Simulation,” aims 
to provide answers to the following basic questions in discrete-event system 
(DES) M&S:

1.	 How is a discrete-event simulation carried out?
2.	 What are modeling components and a reference model?
3.	 What is a discrete-event system modeling formalism?
4.	 What is a formal model and how it is specified?
5.	 What is the integrated framework of discrete-event system modeling?
6.	 How do we build and simulate an event graph or activity cycle diagram 

(ACD) model of a DES?
7.	 How is the M&S life cycle managed?



3

CHAPTER 1

Overview of Computer Simulation

The wise man is one who knows what he does not know.
—Tao Te Ching

1.1  INTRODUCTION

Richmond [2003] defines thinking as “constructing mental models and then 
simulating them in order to draw conclusions or make decisions.” Namely, he 
defines thinking as mental simulation. When the situation is too complex to 
be analyzed by mental simulation alone, we rely on computer simulation. 
According to Schruben [2012], simulation models provide unlimited virtual 
power: “If you can think of something, you can simulate it. Experimenting in 
a simulated world, you can change anything, in any way, at any time—even 
change time itself.”

Fishwick [1995] defines computer simulation as the discipline of designing 
a model of a system, simulating the model on a digital computer, and analyzing 
the execution output. In the military, where computer simulation is extensively 
used in training personnel (e.g., war game simulation) and acquiring weapon 
systems (e.g., simulation-based acquisition), the term modeling and simulation 
(M&S) is used in place of computer simulation. In this book, these two terms 
are used interchangeably.

The purpose of this chapter is to provide the reader with a basic under-
standing of computer simulation. After studying this chapter, you should be 
able to answer the following questions:

1.	 What are the common characteristics that lead to a conceptual definition 
of system?

2.	 What are the three types of systems?
3.	 What are the three subsystems in a feedback control system?
4.	 What are the three types of virtual environment simulation?

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and 
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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5.	 What are the three types of computer simulation?
6.	 What is the simulation model trajectory of a discrete-event system?
7.	 What is Monte Carlo simulation?
8.	 What is sensitivity analysis in simulation experimentation?

This chapter is organized as follows: Definitions and structures of systems 
are given in Section 1.2. Section 1.3 provides definitions and applications of 
simulation. The subsequent three sections introduce the three simulation 
types: discrete-event simulation in Section 1.4, continuous simulation in Section 
1.5, and Monte Carlo simulation in Section 1.6. Finally, a basic framework of 
simulation experimentation is presented in Section 1.7.

1.2  WHAT IS A SYSTEM?

1.2.1  Definitions of Systems

Systems are encountered everywhere in the world. While those systems differ 
in their specifics, they share common characteristics that lead to a conceptual 
definition of a system. In Wu [1992], a system is defined as “a collection of 
components which are interrelated in an organized way and work together 
towards the accomplishment of certain logical and purposeful end.” Thus, any 
portion of the real world may be defined as a system if it has the following 
characteristics: (1) it has a purpose or purposes, (2) its components are con-
nected in an organized manner, and (3) they work together to achieve common 
objectives. A system consisting of people is often called a team. Needless to 
say, a mere crowd of people sharing no common objectives is not a team.

When defining a system, the concept of state variable plays a key role. A 
state variable is a particular measurable property of an object or system. 
Examples of state variables are the number of jobs in a buffer, status of a 
machine, temperature of an oven, etc. A system in which the state variables 
change instantaneously at discrete points in time is called a discrete-event 
system, whereas a system in which state variables change continuously over 
time is called a continuous system.

1.2.2  Three Types of Systems

Our universe, which is full of systems everywhere, may be viewed from the 
five levels of detail (Fig. 1.1): from the subatomic level to cosmological level. 
In the subatomic level, interactions among the components of a system are 
described using quantum mechanics, which is a physical science dealing with 
the behavior of matter and energy on the scale of atoms and subatomic par-
ticles. It is interesting to find that quantum mechanics is also used in modeling 
a system at the cosmological level [Mostafazadeh 2004]. Thus, a system in the 
subatomic level or cosmological level may be called a quantum system.
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A system in the electromechanical level usually has components whose 
physical dynamics are described using differential equations of effort, such as 
force and voltage, and flow, such as velocity and current [Karnopp et al. 2000]. 
The behaviors of ecological systems and socioeconomic systems are usually 
described using differential equations of flow [Hannon and Ruth 2001]. As a 
result, these systems are called a continuous system or a differential equation 
system.

Systems in the middle level are industrial systems which are more conve-
niently described in terms of discrete events, and they are discrete-event 
systems. An event is an instance of changes in state variables. A special type 
of this system is a digital system such as a computer whose states are defined 
by a finite number of 0s and 1s.

1.2.3  System Boundaries and Hierarchical Structure

Everything in our world is connected to everything else in some way, which is 
known as the small world phenomenon [Kleinberg 2000]. Thus, in order to 
define a system, it is first necessary to isolate the components of the system 
from the remaining world and to enclose them within a system boundary.

A set of isolated components of primary interest is called a target system. The 
target system may have a number of subsystems, and it may be a subsystem of a 
higher-level system called a wider system. The wider system is separated from 
the external environment by a boundary [Wu 1992]. In summary, a typical 
system consists of a target system (composed of its subsystems) and a wider 
system (in which the target system is included). The system of interest consisting 
of a target system and its wider system is often referred to as a source system.

Most dynamic systems in engineering and management are feedback 
control systems. Key subsystems in a feedback control system are operational, 
monitoring, and decision-making subsystems. The operational subsystem 
carries out the system’s tasks, and the monitoring subsystem monitors system 
performances and reports to the decision-making subsystem. The decision-
making subsystem is responsible for making decisions and taking corrective 
actions. The relationships among the target feedback control system, its sub-
systems, wider system, and external environment are shown in Fig. 1.2 [Wu 
1992]. For example, if your simulation study is focused on an emergency room 
of a hospital, the emergency room would become the target system and the 
hospital the wider system.

Fig. 1.1.  Five levels of details of system definitions in the universe.
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The wider system influences the target system by setting goals, supporting 
operations, and checking performances. The target system is subject to distur-
bances from the external environment. In addition, the external environment 
provides the wider system with higher-level objectives and other external 
influences.

Exercise 1.1. Give an example of a feedback control system involving 
people and identify all the components of the system.

1.3  WHAT IS COMPUTER SIMULATION?

1.3.1  What Is Simulation?

A dictionary definition of simulation is “the technique of imitating the behav-
ior of some situation by means of an analogous situation or apparatus to gain 
information more conveniently or to train (or entertain) personnel.” “Some 
situation” in the definition corresponds to a source system, and an apparatus 
is a simulator. As elaborated in the definition, there are two types of simulation 
objectives: one is to gain information and the other is to train or entertain 
personnel. The former is often called an analytic simulation and the latter a 
virtual environment simulation [Fujimoto 2000].

The main purpose of an analytic simulation is the quantitative analysis of 
the source system based on “exact” data. Thus, the simulation should be exe-
cuted in an as-fast-as-possible manner and be able to precisely reproduce the 
event sequence of the source system. An analytic simulation is often referred 

Fig. 1.2.  Hierarchical structure of feedback control system.

Disturbances

External InfluencesHigher-level Objectives

EXTERNAL 
ENVIRONMENT
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to as a time-stamp simulation. A virtual environment simulation is executed in 
a scaled real-time while creating virtual environments, and it is often referred 
to as a time-delay simulation. Shown in Fig. 1.3 are scenes from a war-game 
simulation and from a computer game.

An analytic simulation with human interaction is called a constructive simu-
lation, and one without human interaction an autonomous simulation. If 
humans interact with the simulation as a participant, it is referred to as human-
in-the-loop (HIL) simulation; if machines or software agents interact with the 
simulation, it is called a machine-in-the-loop (MIL) simulation. A virtual envi-
ronment simulation without HIL/MIL is often called a virtual simulation; one 
with HIL only a constructive simulation; one with both HIL and MIL a live 
simulation. Figure 1.4 shows the classification of computer simulation.

1.3.2  Why Simulate?

Modeling and simulation is the central part of our thinking process. When the 
situation is too complex to be analyzed by mental simulation alone, we use a 
computer for simulating the situation. Let’s consider the following situations:

Fig. 1.3.  Examples of virtual environment simulation.
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1.	 Finding optimal dispatching rules at a modern 300-mm semiconductor 
Fab

2.	 Evaluating alternative designs for hospitals, post offices, call centers, etc.
3.	 Designing the material handling system of a 3 billion dollar thin film 

transistor–liquid crystal display (TFT-LCD) Fab
4.	 Planning a wireless network for a telecommunication company
5.	 Evaluating high-tech weapons systems for a simulation-based 

acquisition
6.	 Designing or upgrading the urban traffic system of a big city
7.	 Evaluating anti-pollution policies to control pollutions in river systems
8.	 Evaluating risks in project schedules and financial derivatives

For the above real-life situations, simulation may be the only means to 
tackle the problems. In practice, simulation may be needed because experi-
menting with the real-life system is not feasible; your budget does not allow 
you to acquire an expensive prototype; a real test is risky; your customer wants 
it “yesterday”; your team wants to test several solutions and to compare them; 
you would like to keep a way to reproduce its performances later.

The simulation of a discrete-event system is called a discrete-event simula-
tion, and that of a continuous system a continuous simulation. A class of com-
putational schemes that rely on repeated random sampling to compute their 
results is referred to as Monte Carlo simulation. Among the above situations, 
Situations 1–6 are concerned with a discrete-event simulation. Situation 7 is 
concerned with a continuous simulation and Situation 8 with a Monte Carlo 
simulation.

1.3.3  Types of Computer Simulation

As depicted earlier in Fig. 1.1, the dynamic systems in the universe can be 
classified into five levels and three types. The three types of dynamic systems 
are: (1) discrete-event systems, (2) continuous systems, and (3) quantum 
systems. Thus, it is conceivable that there is one type of computer simulation 
for each system type. Discrete-event simulation and continuous simulation are 
widely performed on computers, but the direct simulation of quantum systems 

Fig. 1.4.  Classification of computer simulation.

Computer Simulation

Autonomous Constructive (HIL) Constructive (HIL)Virtual Live (HIL+MIL)
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on classical computers is very difficult because of the huge amount of memory 
required to store the explicit state of the system [Buluta and Nori 2009].

Continuous simulation is a numerical evaluation of a computer model of a 
physical dynamic system that continuously tracks system responses over time 
according to a set of equations typically involving differential equations. Let 
Q(t) and X(t) denote the system state and input trajectory vectors, respec-
tively. Then, a linear continuous simulation is a numerical evaluation of the 
linear state transition function dQ(t)/dt = AQ(t) + BX(t), where A and B are 
coefficient matrices.

Discrete-event simulation is a computer evaluation of a discrete-event 
dynamic system model where the operation of the system is represented as a 
chronological sequence of events. In state-based modeling (see Chapter 9), the 
system dynamics is described by an internal state-transition function (δint: 
Q→Q) and an external state-transition function (δext: Q × X→Q), where Q is 
a set of system states and X is a set of input events. Thus, discrete-event simu-
lation can be regarded as a computer evaluation of the internal and external 
transition functions.

Another type of popular computer simulation is the Monte Carlo simula-
tion, which is not a dynamic system simulation. It is a class of computational 
algorithms that rely on repeated random sampling to compute the numerical 
integration of functions arising in engineering and science that are impossible 
to evaluate with direct analytical methods. In recent years, Monte Carlo simu-
lation has also been used as a technique to understand the impact of risk and 
uncertainty in financial, project management, and other forecasting models.

1.4  WHAT IS DISCRETE-EVENT SIMULATION?

Figure 1.5 depicts a single server system consisting of a machine and a buffer 
in a factory. The dynamics of the system may be described as follows: (1) a job 
arrives at the system with an inter-arrival time of ta, and the job is loaded on 
the machine if it is idle; otherwise, the job is put into the buffer; (2) the loaded 
job is processed for a service time of ts and unloaded; (3) when a job is 
unloaded, the next job is loaded if the buffer is not empty. In Fig. 1.5, the state 
variables of the system are q and m, where q is the number of jobs in the buffer 

Fig. 1.5.  A single server system model.

Arrive Load Unload
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and m denotes the status (Idle or Busy) of the machine, and the events are 
Arrive, Load, and Unload.

1.4.1  Description of System Dynamics

Using the state variables and events, the system dynamics of the single server 
system may be described more rigorously as follows: (1) when an Arrive event 
occurs, q is increased by one, the next Arrive event is scheduled to occur after 
ta time units, and a Load event is scheduled to occur immediately if m ≡ Idle(=0); 
(2) when a Load event occurs, q is decreased by one, m is set to Busy(=1), and 
an Unload event is scheduled to occur after ts time units; (3) when an Unload 
event occurs, m is set to Idle and a Load event is scheduled to occur immedi-
ately if q > 0. The dynamics of the single server system may be described as a 
graph as given in Fig. 1.6, which is called an event graph.

1.4.2  Simulation Model Trajectory

An executable model of a system is called a simulation model, and the trajec-
tory of the state variables of the model is called the simulation model trajec-
tory. Let {ak} and {sk} denote the sequences of inter-arrival times (ta) and 
service times (ts), respectively. Then, the simulation model trajectory of the 
single server system would look like Fig. 1.7, where {ti} are event times, X(t) 
is input trajectory, and Q(t) = {q(t), m(t)} denotes the trajectory of the system 

Fig. 1.6.  Event graph describing the system dynamics of the single server system.

q= 0; m= Idle

Fig. 1.7.  Simulation model trajectory of the single server system.
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state variables. The “time” here means a simulation time, which is a logical 
time used by the simulation model to represent physical time of the target 
system to be simulated.

At time t1 (=a1), a job J1 arrives at an empty system and is loaded on the 
idle machine to be processed for a time period of s1. In the meantime, another 
job J2 arrives at time t2 (=a1 + a2), which will be put into the buffer since the 
machine is busy. Thus, the buffer will have one job during the time period [t2, 
t3], which is denoted as a shaded bar in the buffer graph q(t) of Fig. 1.7. At t3 
(=t1 + s1), the first job J1 is unloaded and the job J2 in the buffer is loaded on 
the machine. At t4 (=t3 + s2), J2 is finished and unloaded, which will make the 
system empty again. Thus, the machine is busy during the time period [t1, t4]. 
At time t5 (=a1 + a2 + a3), another job J3 arrives at the system and is loaded on 
the machine, and so on.

1.4.3  Collecting Statistics from the Model Trajectory

When simulating a service system, one may be interested in such items as (1) 
queue length, (2) waiting time distribution, (3) sojourn time, (4) server utiliza-
tion, etc. In the case of the single server system, the following statistics can be 
collected from the model trajectory.

1.	 Queue length q(t) statistics during t ∈ [t0, t10]: AQL (average queue 
length)
–	 AQL = {(t3 − t2) + (t7 − t6) + 2(t8 − t7) + (t9 − t8) + 2(t10 − t9)}/t10

2.	 Waiting time {Wj} statistics for the first four jobs: AWT (average waiting 
time)
–	 AWT =  {W1 + W2 + W3 + W4}/4 =  {0 +  (t3 −  t2) + 0 +  (t8 −  t6)}/4 =  (t3 

− t2 + t8 − t6)/4
3.	 Sojourn time {Sj} statistics for the first four jobs: AST (average sojourn 

time)
–	 AST = AWT + Average service time = AWT + (s1 + s2 + s3 + s4)/4

4.	 Server utilization during t ∈ [t0, t10]: U (utilization)
–	 U = {(t4 – t1) + (t10 – t5)}/t10

1.5  WHAT IS CONTINUOUS SIMULATION?

As mentioned in Section 1.3.3, continuous simulation is a numerical evaluation 
of a computer model of a physical system that continuously tracks system 
responses over time, Q(t), according to a set of equations typically involving 
differential equations like dQ(t)/dt = f[Q(t), X(t)], where X(t) represents con-
trols or input trajectory.

As an example, consider a Newtonian cooling model [Hannon and Ruth 
2001]. Let σ(t) be the cooling rate, then the temperature T(t) changes as 
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dT(t)/dt = –σ(t). The cooling rate is expressed as σ(t) = κ*[T(t) – Ta], where κ 
is cooling constant and Ta is ambient temperature.

1.5.1  Manual Simulation of the Newtonian Cooling Model

The governing differential equation may be approximated by the following 
difference equation:

	 T t t T t t * t T t * T t T * t for t t t ta( ) ( ) ( ) ( ) [ ( ) ] , , , ,+ = − = − − =∆ ∆ ∆ ∆ ∆ ∆σ κ 0 2 3 	

Let’s assume T(0) = 37°C, Ta = 10°C, κ = 0.06, and Δt = 0.1, then the temperature 
curve T(t) may be evaluated as follows:
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1.5.2  Simulation of the Newtonian Cooling Model Using a Simulator

The cooling model may be simulated by using a commercial simulator such as 
STELLA®, as depicted in Fig. 1.8. In STELLA®, the level of state variable is 
regarded as a stock and the change in state variable as flow. In Fig. 1.8, TEM-
PERATURE is a stock and COOLING-RATE is a flow. COOLING CON-
STANT and AMBIENT TEMPERATURE are parameters. These and other 
data are provided to the simulator via dialog boxes.

1.6  WHAT IS MONTE CARLO SIMULATION?

Monte Carlo simulation methods are a class of computational algorithms that 
rely on repeated random sampling to compute their results. They were devel-
oped for performing numerical integration of functions arising in engineering 
and science that were difficult to evaluate with direct analytical methods. In 
recent years, Monte Carlo simulation has also been used as a technique to 
understand the impact of risk and uncertainty in financial, project manage-
ment, and other forecasting models.

1.6.1  Numerical Integration via Monte Carlo Simulation

As an example of numerical integration, consider the problem of finding  
the value of π via simulation. I am sure you have memorized the value of 
π as 3.14159. .  .: but, for the moment, assume that you do not remember the 
value.
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In order to obtain the value of π via a Monte Carlo simulation, let’s consider 
the circle shown in Fig. 1.9. It is a circle with a unit radius (r = 1) and its center 
is located at (1, 1). Uniform random variables with a range of [0, 2] are gener-
ated in pairs and are used as coordinates of points inside the square. Let 
n = total number of points generated (i.e., inside the square) and m = number 
of points inside the circle, and let Ac and As denote the areas of the circle and 
square, respectively. Then, the value of m/n approaches to the ratio Ac/As for 

Fig. 1.8.  STELLA® block-diagram modeling and output plot of the cooling system.

AMBIENT TEMPERATURECOOLING CONSTANT

COOLING RATE

TEMPERATURE

Fig. 1.9.  A circle of unit radius to compute the value of π via Monte Carlo 
simulation.
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a large n. Since we know that Ac = πr2 = π and As = 4, we can compute π from 
the following relation: m/n = Ac/As = π/4 → π = 4 m/n [Pidd 2004].

For the reader who may be curious about the execution of the simple Monte 
Carlo simulation, Java codes for (1) generating uniform random numbers and 
(2) computing the value of π are given below.

(1)  Java code for generating uniform random number U ∼ Uniform[0, 1]
double U = Math.random(); // Java function //
(2)	 Java code for finding the value of pi:
double m = 0, n = 0;
double max = 10000; // total number of sampling
while (n < max) {
   double u1 = Math.random();
   double u2 = Math.random();
   double x = 2.0 * u1;
   double y = 2.0 * u2;
   if ( ((x - 1) * (x - 1) + (y - 1) * (y - 1)) <= 1) m++;
   n++;
} // end of while
double phi = 4.0*m/n;

Exercise 1.2. Modify the above Monte Carlo simulation program (Java 
code) to compute the shaded area under the piece-wise linear function in  
Fig. 1.10.

1.6.2  Risk Analysis via Monte Carlo Simulation

Consider a project consisting of three tasks1: Task1, Task2, and Task3. Esti-
mates of the time durations for the individual tasks are given in Table 1.1. We 
are interested in estimating the risk (or chance) of failing to meet a given 
project duration, say 15 months.

Fig. 1.10.  Area under a piece-wise linear function.
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1 This example was taken from www.riskamp.com.

http://www.riskamp.com
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It is well accepted that the duration times are assumed to follow beta dis-
tribution (see Chapter 3). In the Monte Carlo simulation, values for the task 
duration times are randomly generated from respective beta distributions. The 
results of 500 simulation runs are summarized in Table 1.2, from which one 
may conclude that the risk of failing to finish the project within 15 months is 
about 20%. In recent years, Monte Carlo methods are quite popular in finan-
cial derivatives and option pricing evaluations.

1.7  WHAT ARE SIMULATION EXPERIMENTATION AND 
OPTIMIZATION?

The rules that govern the behavior of the system are called laws, while the 
rules under our control are called policies. When we experiment to determine 
the effects of changing the parameters of laws, we are doing a sensitivity 
analysis. When we experiment with changes in the control factors of policies, 
we are doing optimization [Schruben and Schruben 2001]. Both the parame-
ters of laws and control factors of policies become handles of simulation 
experimentation. Both the optimization and sensitivity analysis may be per-
formed in a simulation study. A simulation study should be carried out with

1.	 clear objectives of the study together with a set of performance 
measures;

2.	 output variables that can be mapped into the performance measures;
3.	 well-defined handles with which the simulation runs are to be 

controlled.

An experimental frame is a specification of the conditions under which the 
simulator is experimented with [Zeigler et al. 2000], and it is concerned with 
simulation optimization. As shown in Fig. 1.11, an experimental frame for 
simulation optimization consists of five steps: (1) an initial value of each 

TABLE 1.1.  Range Estimates for Individual Tasks

Task Min (most optimistic) Most likely Max (most pessimistic)

Task1 4 months 5 months 7 months
Task2 3 months 4 months 6 months
Task3 4 months 5 months 6 months
Total 11 months 14 months 19 months

TABLE 1.2.  Results of 500 Simulation Runs

Time duration (months) 12 13 14 15 16 17 18
# of on-time finishes 1 31 171 394 482 499 500
% of on-time finishes 0% 6% 34% 79% 96% 100% 100%
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handle is generated; (2) a simulation run is made to compute values of the 
output variables; (3) performance measures are computed from the output 
variables; (4) the performance measures are evaluated to see if the results are 
acceptable; (5) if the results are not acceptable, go back to Step 2 with a revised 
set of handle values. Steps 3, 4, and 5 are often called transducer, acceptor, and 
generator, respectively.

1.8  REVIEW QUESTIONS

1.1.  What are the common characteristics that lead to a conceptual definition 
of system?

1.2.  Give a definition of a team based on the concept of system.

1.3.  What is the difference between a source system and a target system?

1.4.  What are the three key subsystems in a feedback control system?

1.5.  What is an analytic simulation?

1.6.  What is time-stamp simulation?

1.7.  What would be the two popular areas where virtual environment simula-
tion is used?

1.8.  What is constructive simulation?

1.9.  What is the main output from a continuous simulation?

1.10.  In simulation, a rule under our control is called a policy. What is a law?

1.11.  What is sensitivity analysis in simulation experimentation?

1.12.  What is simulation optimization?

1.13.  What is the role of the acceptor in an experimental frame?

Fig. 1.11.  Experimental frame for simulation optimization.

Start

Stop
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CHAPTER 2

Basics of Discrete-Event System 
Modeling and Simulation

All models are wrong, some are useful.
—George E.P. Box

2.1  INTRODUCTION

A discrete-event system (DES) is a discrete-state and event-driven system in 
which the state changes depend entirely on the occurrence of discrete events 
over time. Examples of discrete-event systems include manufacturing systems, 
transportation systems such as urban traffic networks, service systems such as 
hospitals, and communication systems such as wireless networks, etc. This 
chapter aims to cover all the key subjects of and important issues in autono-
mous simulation of such discrete-event systems.

This chapter is organized as follows. Section 2.2 describes a step-by-step 
procedure for performing a discrete-event simulation. Section 2.3 deals with 
the fundamentals of DES modeling and introduces the concepts of reference 
model, modeling formalisms, and integrated framework of DES modeling. 
Illustrative examples are given in Section 2.4. Section 2.5 presents modeling 
and simulation (M&S) applications frameworks, and the last section addresses 
the issue of what to cover in a simulation class.

2.2  HOW IS A DISCRETE-EVENT SIMULATION CARRIED OUT?

Reproduced in Fig. 2.1 are the reference model and event graph of the single 
server system introduced in Chapter 1 (Section 1.4). There are two state vari-
ables (Q and M) and three event types (Arrive, Load, and Unload) in the 
system. Q is the job count, the number of jobs in the buffer; M denotes the 

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and 
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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status (Idle or Busy) of the machine; and ta and ts denote interarrival times 
and service times, respectively.

2.2.1  Event Routines

A set of actions invoked by the occurrence of an originating event is called an 
event routine. Event routines systematically describe the dynamic behavior of 
the single server system. Event routines for the three event nodes in the event 
graph of Fig. 2.1 are listed in Table 2.1 and a brief description for each event 
routine is given below:

1.	 When an Arrive event occurs at time t, (1) the job count in the buffer is 
increased by one, Q  =  Q  +  1; (2) a Load event is scheduled to occur 
immediately if the Machine is idle, M ≡ Idle; (3) a next Arrive event is 
scheduled to occur at time t + ta.

2.	 When a Load event occurs at time t, (1) the job count in the buffer is 
decreased by one, Q = Q − 1; (2) the machine is set to busy (M = Busy); 
(3) an Unload event is scheduled to occur at time t + ts.

Fig. 2.1.  Reference model and event graph of the single server system.

Arrive Load Unload

Process [ts]Generate[ta]

Q= 0; M= Idle

TABLE 2.1.  Event Routines for the Event Nodes of the Event Graph in Fig. 2.1

Event 
Name

Event Node in the 
Event Graph Event Routine

1.  Arrive Q = Q + 1; // increase the job-count by one
If (M ≡ Idle), schedule an event <Load, 

Now>;
Schedule an event <Arrive, Now + ta>

2.  Load Q = Q − 1; //decrease the job-count by one
M = Busy; // set the machine to busy.
Schedule an event <Unload, Now + ts>

3.  Unload M = Idle; // set the machine to idle
If (Q > 0), schedule an event <Load, Now>
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3.	 When an Unload event occurs, (1) the machine is set to idle, M = Idle; 
(2) a Load event is scheduled to occur now if Q > 0.

2.2.2  Simulation Model Trajectory

An executable model of a system is called a simulation model. Shown in Fig. 
2.2 is the simulation model trajectory of the single server system. Jobs have 
inter-arrival times {ai} = {3, 2, 4, 1.5, 1.5, 3.5 .  .  .} and service times {si} = {3, 2, 
4.5, 3 . . .}, where ai and si are the values for the ith job Ji.

Initially, the system is empty and the machine is ready, thus Q  =  0 and 
M = Idle. The event times {tk} are determined as follows:

1.	 At time t1 = 3, J1 arrives at the system and is loaded on the machine.
2.	 At time t2 = 5, J2 arrives at the system and is stored in the buffer.
3.	 At time t3 = 6, J1 is unloaded from the machine, and J2 is loaded on the 

machine.
4.	 At time t4 = 8, J2 is unloaded from the machine.
5.	 . . .

In order to simulate the system dynamics, we need a mechanism for process-
ing future events. A future event is an event that has been scheduled to occur 
in the future, and a future event that has the smallest, i.e., earliest, event time 
is called the next event. The event-processing mechanism consists of event 
cards and the future event list (FEL): the event-name and event time of a future 
event are recorded in an event card and it is stored in the FEL in an ascending 
order of event time.

2.2.3  Manual Simulation Execution

2.2.3.1  Initialization  At the beginning, (1) the simulation time is set to 
zero and the state variables are initialized as Q = 0 and M = Idle, and (2) an 

Fig. 2.2.  Simulation model trajectory of the single server system.
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Arrive event is scheduled to occur at time t1 = 3. The task of the “scheduling 
of an Arrive event to occur at time 3” is carried out by creating an event card 
with “Event-name  =  Arrive & Event-time  =  3” and storing it in the FEL. 
Depicted in Fig. 2.3 are the state variables and FEL after initialization.

2.2.3.2  Next Event Processing  The next event processing step starts with 
retrieving the next event from the FEL. First, the next event <Arrive, 3> is 
retrieved as depicted in Fig. 2.4(a) and the simulation time is set to 3. Then, 
the retrieved event is executed to update the state variables and FEL as 

Fig. 2.3.  State variables and FEL after initialization.

Fig. 2.4.  (a) State variables and FEL after the retrieval of <Arrive, 3>; (b) state vari-
ables and FEL after the execution of <Arrive, 3>; (c) state variables and FEL after the 
execution of <Load, 3>; (d) state variables and FEL after the execution of <Arrive, 5>; 
(e) state variables and FEL after the execution of <Unload, 6>.

(a)

(b)

(c)

(d)

(e)
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follows: (1) the new job J1 is stored in the buffer and its job count is increased 
by one (Q = 0 + 1); (2) since the machine is Idle, a Load event is scheduled to 
occur now, i.e., at time 3, which is carried out by storing the event card <Load, 
3> in the FEL; (3) an Arrive event is scheduled to occur at time 5 (= 
3 + a2 = 3 + 2), which is carried out by storing the event card <Arrive, 5> in 
the FEL. The state variables and FEL after the execution of the next event 
<Arrive, 3> are shown in Fig. 2.4(b).

At the second step, the next event <Load, 3> is retrieved from the FEL of 
Fig. 2.4(b) and it is executed so that: (1) the job J1 is loaded on the machine, 
the job count Q is decreased by 1, and the machine is set to busy (Q = 0 & 
M = Busy); (2) an Unload event is scheduled to occur at time 6 (= 3 + s1 = 3 + 3), 
namely, <Unload, 6> is stored in the FEL. The state variables and FEL after 
the execution of the next event <Load, 3> are shown in Fig. 2.4(c), where 
<Arrive, 5> becomes the next event.

At the third step, <Arrive, 5> is retrieved from the FEL of Fig. 2.4(c) and 
is executed so that: (1) the new job J2 is stored in the buffer and Q is increased 
by 1; (2) an Arrive event is scheduled to occur at time 9 (= 5 + a3 = 5 + 4). The 
state variables and FEL after the execution of <Arrive, 5> are shown in Fig. 
2.4(d), where <Unload, 6> become the next event.

At the fourth step, <Unload, 6> is retrieved and executed to set the machine 
to idle (M = Idle) and to schedule a Load event to occur immediately because 
Q > 0. The state variables and FEL after the execution of <Unload, 6> are as 
shown in Fig. 2.4(e), where the next event is <Load, 6>.

The trajectory of the state variables and FEL during the manual simula
tion up to the event time t3 is given in Table 2.2. The first row contains the 

TABLE 2.2.  Trajectory of the State Variables and FEL during Manual Simulation

Event 
occurrence

Job

State 
update

Time
delay

Scheduled 
event

Future events list 
(FEL)

RemarkTime Name Q M
Next 
event

Future 
event

0 Initialize — 0 Idle a1 = 3 <Arrive, 
a1>

<Arrive, 
3>

— Fig.2.3

t1 = 3 Arrive J1 1 Idle a2 = 2 <Load, 3>, 
<Arrive, 
3 + a2>

<Load, 
3>

<Arrive, 
5>

Fig.2.4(b)

t1 = 3 Load J1 0 Busy s1 = 3 <Unload, 
3 + s1>

<Arrive, 
5>

<Unload, 
6>

Fig.2.4(c)

t2 = 5 Arrive J2 1 Busy a3 = 4 <Arrive, 
5 + a3>

<Unload, 
6>

<Arrive, 
9>

Fig.2.4(d)

t3 = 6 Unload J1 1 Idle 0 <Load, 6> <Load, 
6>

<Arrive, 
9>

Fig.2.4(e)

t3 = 6 Load J2 0 Busy s2 = 2 <Unload, 
6 + s2>

<Unload, 
8>

<Arrive, 
9>
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information given in Fig. 2.3: event time is 0; Q = 0 and M = Idle; the scheduled 
event is <Arrive, a1> with a1 = 3; the next event is <Arrive, 3>. The second row 
contains the information given in Fig. 2.4(b), and so on.

Exercise 2.1. Retrieve the next event <Load, 6> from the FEL of Fig. 2.4(e), 
execute it, and update the state variables and FEL. Continue the manual simu-
lation a few more steps.

2.2.4  Flow Chart of Manual Simulation Procedure

The manual simulation procedure described in Section 2.2.3 can be described 
in the form of flow chart as depicted in Fig. 2.5. The simulation procedure 
consists of three steps: The initialization step, next event retrieval step, and 
event execution step:

1.	 At the initialization step, the state variables are initialized as Q = 0 & 
M = Idle, and the initial event <Arrive, 3> is stored in the FEL as depicted 
in Fig. 2.3.

2.	 At the next event retrieval step, the next event in the FEL is retrieved 
and the clock variable Now is set to the event time of the retrieved next 
event.

3.	 At the event execution step, the event routine (see Table 2.1) of the 
retrieved next event is executed.

4.	 Go back to step 2 (next event retrieval step) if the termination condition 
is not met.

In the flow chart, NOW is the current simulation time.

Fig. 2.5.  Flow chart of the manual simulation procedure.

1. Initialization step:
Q= 0; M= Idle; 
Schedule <Arrive, 3> in FEL

2. Next-event retrieval step:
Retrieve the ‘next-event’ card from FEL;
EVENT Name of the next-event;
NOW Time of the next-event;

Terminate?
No

Future event list 
(FEL)

Name: Arrive
Time: 3

EVENT?Arrive

Name: xxx
Time:   …

Name: xxx
Time:   …

Unload
Load

Yes
End

3. Event execution step:

 Idle),
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2.3  FRAMEWORK OF DISCRETE-EVENT SYSTEM MODELING

In this section, the framework of discrete-event system modeling will be ana-
lyzed in terms of (1) modeling components and reference model, (2) modeling 
formalism and formal model, and (3) formal modeling tools and model 
specification.

2.3.1  What Are Modeling Components and Reference Model?

2.3.1.1  Modeling Components  From a practitioner’s point of view, the aim 
of a discrete-event simulation is to learn about the behavior and performance 
potential of the system, and it is accomplished by the activities in which the 
resources and entities in the DES engage. From a system theoretic point of 
view, a DES can be viewed as a state machine consisting of a set of states, a 
set of events, a partial state transition function, and the initial and final states.

DES modeling components are a set of basis components of a DES used 
for describing the system dynamics. From the above observation, the modeling 
components of DES are resources, entities, activities, events, and states. Among 
them, resources and entities are referred to as physical modeling components, 
while activities, states, and events are logical modeling components. A resource 
such as a machine that is engaged in an activity is called an active resource and 
a resource such as a buffer used in storing entities is called a passive resource.

2.3.1.2  Reference Model  An informal description of system dynamics 
using modeling components is referred to as a reference model of a DES. Let’s 
consider the single server system shown in Fig. 2.1(a). It is an open system 
where entities are created from and disposed to the outside world. For an 
autonomous simulation, it is convenient to make it a closed system by treating 
the outside world as a job creator responsible for creating jobs. Then, the 
closed single server system may look like Fig. 2.6.

Fig. 2.6.  (a) Source systems and (b) reference model of a single server system.
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The modeling components of the single server system of Fig. 2.6 are: (1) 
Entities are jobs; (2) Resources are Machine, Job-creator, and Buffer; (3) 
Activities are job creation and job processing; (4) State variables are the 
Machine status (M = Idle/Busy) and Buffer status (Q = number of jobs); (5) 
Events are Arrive, Load, and Unload. System dynamics is described using the 
modeling components as follows: Job-creator creates a new job at every ta 
minutes; the new job is loaded on the Machine if it is idle, otherwise the job 
is stored in Buffer; the loaded job is processed by the Machine for a time 
period of ts and then unloaded; the freed Machine loads another job from the 
Buffer if it is not empty.

The reference model structure (left-hand side of Fig. 2.7) has three layers: 
(1) At the core of the structure are physical modeling components—Entity 
and Resource—that constitute the static model of a DES; (2) at the next layer 
are logical modeling components—Activity, Event, and State—corresponding 
to the functional model of the DES; and (3) at the outer layer is an informal 
description of the system dynamics that corresponds to the control model of 
the DES. This view of the reference model structure is similar to the classical 
object-oriented modeling paradigm [Rumbaugh et al. 1991].

The roles of a reference model are depicted in the right-hand part of Fig, 
2.7. System modeling needs a team effort involving domain engineers who 
have a working knowledge of the system, simulation experts who are respon-
sible for building simulation models, and other stakeholders. A reference 
model should serve as an official system description for domain engineers and 
at the same time as a systematic model description for simulation experts. In 
addition, it should serve as a mechanism for communication among the stake-
holders of the simulation project.

2.3.2  What Is a Discrete-Event System (DES) Modeling Formalism?

In this book, a DES modeling formalism is defined as a well-defined set of 
graphical conventions for specifying a DES. It has a formal syntax and can be 
executed by a simulation algorithm. There are three types of DES modeling 

Fig. 2.7.  The structure and role of a reference model.
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formalisms, one for each logical modeling component: activity-based, event-
based, and state-based modeling formalisms. The modeling formalisms had 
been developed from different origins: (1) activity-based modeling formalism 
from the flow diagram method of Tocher [Hollocks 2008]; (2) event-based 
modeling formalism from event-scheduling languages such as SIMSCRIPT; 
(3) state-based modeling formalism from the state transition diagram method 
of finite state machine (FSM) modeling [Mealy 1955] and the DEVS (Discrete-
EVent-system Specification) [Zeigler et al. 2000]. More details on FSM and 
DEVS can be found in Chapter 9 of this book.

Each of the modeling formalisms employs a graphical modeling tool: the 
activity cycle diagram (ACD) is used in the activity-based modeling formalism; 
the event graph in the event-based modeling formalism; and the state graph 
in the state-based modeling formalism. Among the three modeling formalisms, 
the first two are often referred to as worldviews: activity-scanning worldview 
and event-scheduling worldview. Summarized in Table 2.3 are the relationships 
among modeling formalisms, modeling tools, and worldviews.

2.3.2.1  Activity-Based Modeling Formalism and Activity Cycle Diagram 
In the activity-based modeling formalism, the dynamics of system is described 
in terms of the activities of the active resources and entities in the system. It 
uses the activity cycle diagram (ACD) that was invented by Tocher [Tocher 
1960]. Tocher’s original work was followed by some further development work. 
An activity-based simulation language named ECSL® was developed [Clem-
entson 1986] and a classical ACD was formally defined [Carrie 1988]. The 
classical ACD had some inherent limitations in handling complex systems 
[Hlupic and Paul 1994], and hierarchical ACD [Kienbaum and Paul 1994] and 
extended ACD [Martinez 2001] were proposed in order to enhance its model-
ing power. More recently, a formal specification of extended ACD was given 
and its generality was established [Kang and Choi 2011].

2.3.2.2  Process-Oriented Simulation Languages and Entity-Flow Diagram 
When only the activity cycles of the entities in the system are considered, the 
activity-based modeling formalism becomes an entity-based modeling formal-
ism or process interaction worldview [Carson 1993]. The sequence of activities 

TABLE 2.3.  Relationships Among Modeling Formalisms, Modeling Tools, and 
Worldviews

Modeling Formalism
Graphical 

Modeling Tools
Related World Views or System 

Specification

Activity-based formalism ACD Activity scanning world view
Event-based formalism Event Graph Event scheduling world view
State-based formalism State Graph DEVS (Discrete event system spec)
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of an entity is often referred to as an entity-flow, and a diagram depicting the 
entity-flow is called an entity-flow diagram (EFD) [Harrell et al. 2012]. A flow 
of entities can be regarded as a time-ordered sequence of events that is often 
referred to as a process. Thus, entity-based modeling is often referred to as 
process-oriented modeling [Pritsker and Pegden 1979]. The process-oriented 
modeling approach (or process interaction worldview) is adopted in many of 
the modern simulation languages including Arena [Kelton et al. 2007] and 
ProModel [Harrell et al. 2012]. These simulation languages are often referred 
to as a process-oriented simulation language.

2.3.2.3  Event-Based Modeling Formalism and Event Graph  In the event-
based modeling formalism, a system is modeled by defining the changes that 
occur at event times and the system dynamics is described using an event 
graph. The event-based modeling concept was realized in the SIMSCRIPT 
language in 1960s [Kiviat et al. 1969] and an event graph is formally defined 
in 1980s [Schruben 1983]. In the event graph, events are represented as vertices 
and the relationships between events are represented as directed arcs. Event 
graph models are very compact. Yet, event graph models are capable of 
describing any system that can be implemented on a modern computer [Savage 
et al. 2005]. An event-based simulation language SIGMA® has been developed 
and widely used for modeling various types of DES [Schruben and Schruben 
2006].

2.3.2.4  State-Based Modeling Formalism and State Graph  In the state-
based modeling formalism, the dynamics of a system is described in terms of 
the states of the resources in the system. The state-based modeling method is 
originated from the classical finite state machine (FSM) that was used for 
modeling the behavior of sequential circuits [Mealy 1955], where the concept 
of the state transition diagram was introduced. In 1970s, the classical FSM 
evolved to the classical DEVS in which internal transitions are also allowed 
[Zeigler 1976]. DEVS can be regarded as a special form of timed automata 
[Alur 1999] or timer-embedded FSM [Lee et al. 2010]. An in-depth treatment 
on the subject of the state-based modeling is provided in Part III (Chapter 9) 
of this book.

2.3.3  What Is a Formal Model and How Is It Specified?

A formalism-based modeling tool is referred to as a formal modeling tool. 
Among the DES modeling tools mentioned in the previous subsection (Section 
2.3.2), ACD, event graph, and state graph are formal modeling tools. The EFD 
[Harrell et al. 2012] is a subset of the ACD, and it is not a formal modeling 
tool (we may call it a semi-formal modeling tool).

A DES model described with a formal modeling tool is referred to as a 
formal model if it provides a complete description of the system in a concise 
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and clear manner. A well-known algorithm is available for each of the formal 
models: the activity-scanning algorithm for ACD models [Carrie 1988]; the 
next event scheduling algorithm for event graph models [Schruben and Schru-
ben 2006]; and the time-synchronization algorithm for state graph models [Lee 
et al. 2010]. In the following, we give an ACD model as a formal model of the 
single server system in Fig. 2.6. An event graph model was presented earlier 
in this chapter (Fig. 2.1), and is briefly reiterated here. The state graph model 
will be discussed in Part III (Chapter 9) of this book.

2.3.3.1  Event Graph Model of the Single Server System  The event graph 
model of the single server system in Fig. 2.1 is a formal model that provides a 
complete and unambiguous description of the system dynamics of the DES 
from the event’s point of view. An Arrive event increases the job count by 1 
(Q++), always schedules the next Arrive event to occur after a time period of 
ta, and triggers a Load event if the machine is idle (M ≡ Idle). The Load event 
sets the machine to busy (M = Busy), decreases the job count by 1 (Q−−), and 
schedules an Unload event to occur after a time period of ts. The Unload event 
resets the machine to idle (M = Idle) and triggers a Load event if the job count 
is positive (Q  >  0). The event graph model can be executed with the next 
scheduling event algorithm (Chapter 4).

2.3.3.2  ACD Model of the Single Server System  ACD consists of indi-
vidual activity cycles. There is one activity cycle for each active resource, and 
one for each entity type. ACD is a bipartite directed graph having activity 
nodes denoted by rectangles and queue nodes by circles. Referring back to 
the single server system in Fig. 2.6, there are (1) two activities called Create 
and Process, (2) two active resources called Job-creator and Machine, and (3) 
one entity-type Job. Shown in Fig. 2.8 is an ACD model of the single server 
system. There is a resource activity cycle for each resource (Job-creator and 
Machine) indicated by dashed lines, and one entity activity cycle (Job cycle) 
indicated by solid lines. The ACD model is a complete and unambiguous 
description of the system dynamics of the single server system, and it provides 
a natural and intuitive view of the system dynamics.

The ACD model in Fig. 2.8 can be directly executed with a formal ACD 
simulator (see Chapter 6) or converted to a Petri-net model to be executed 

Fig. 2.8.  ACD model of the single server system in Fig. 2.6.
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with a Petri-net executor. A Petri-net model corresponding to this ACD model 
is given in Fig. 2.9. A Petri net is a bipartite directed graph consisting of places, 
transitions, and arcs, where an arc runs from a place to a transition or vice 
versa. A place is called an input place if an arc runs from the place to a transi-
tion. Likewise, it is called an output place if an arc from a transition runs into 
the place. Places in a Petri net may contain a number of tokens. Any distribu-
tion of tokens over the places will represent a state of the net called a marking. 
A transition of a Petri net may fire whenever there are sufficient tokens at its 
input places; when it fires, it consumes these tokens, and places the tokens at 
its output places. If time delay is allowed for a transition to fire, it is called a 
timed transition. A Petri net with timed transitions is called a timed Petri net 
(TPN), which is equivalent to an ACD. More details of Petri net are provided 
in Appendix of Chapter 10.

An ACD model may easily be converted to an EFD and executed with a 
process-oriented simulation language. An EFD model of the single server 
system is given in Fig. 2.10 along with its Arena flowchart. The EFD is the 
same as the entity activity cycle of the ACD in Fig. 2.8, and it does not provide 
a complete description of the system: Information about the resource-activity 
cycles of the ACD model has to be provided separately.

2.3.3.3  Specification of a Formal Model  It is always possible to specify a 
formal model in an algebraic form. For example, a classical ACD model that 
is a bipartite directed graph consisting of a set of activity nodes and a set of 
queue nodes can be specified as follows [Kang and Choi 2011]:

Fig. 2.9.  Petri-net model corresponding to the ACD model of Fig. 2.8.

Fig. 2.10.  Entity-flow diagram and Arena flowchart of the single server system.
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MACD = <A, Q, I, O, τ, μ0>, where
A  = {a1, a2 . . . an}: finite set of activities,
Q  = {q1, q2 . . . qm}: finite set of queues,
I   = {ia ⊆ Q | a ∈A}: input function, a mapping from a set of queues to 

an activity,
O   = {oa ⊆ Q | a ∈A}: output function, a mapping from an activity to a 

set of queues,
τ = ∈ ∈+{ | }t a Aa R0 : time delay function,

µ µ0 0= ∈ ∈+{ | }q q QN : finite set of initial token values for each queue.

As an example, the ACD model given in Fig. 2.8 of the single server system 
may be specified as follows:

MACD (Fig. 2.8) = <A, Q, I, O, τ, μ0>, where
A          = {a1: CREATE, a2: PROCESS}
Q          = {q1: Jobs, q2: C, q3: Buffer, q4: M}
I(a1)   = {q1, q2}; I(a2) = {q3, q4}
O(a1) = {q2, q3}, O(a2) = {q4, q1}
τ(a1)   = ta; τ(a2) = ts

μ0(q1) = ∞; μ0(q2) = 1; μ0(q3) = 3; μ0(q4) = 1

A formal model can also be specified in a tabular form. For practical pur-
poses, specifying a formal model as an algebraic form is both tedious and hard 
to read, thus a tabular structure may be preferred for describing a formal 
model. As will be seen in Section 2.4, there is a well-defined tabular represen-
tation scheme for each of the three types of formal model: activity transition 
table for the ACD model; event transition table for the event graph model; 
object interaction table and state transition table for the state graph model.

2.3.4  Integrated Framework of DES Modeling

The current state-of-the-art in DES modeling is a result of major break-
throughs in the four areas mentioned in Section 2.3.2: (1) the activity-based 
modeling formalism; (2) the advent of process-oriented simulation languages; 
(3) the event-based modeling formalism; (4) the state-based modeling formal-
ism. The modeling formalisms have been developed largely independently, and 
each of them was treated more or less as a separate framework of DES model-
ing. Among the four, the state-based modeling formalism is often referred to 
as a system specification and the remaining three as worldviews.

Based on the observations in Sections 2.3.1 through 2.3.3, this section pres-
ents an integrated framework of DES modeling. The proposed integrated 
framework consists of an integrated structure and an integrated procedure for 
DES modeling.
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2.3.4.1  An Integrated Structure of the DES Model  It was shown in Section 
2.3.1 that all discrete-event systems can be described by a reference model 
consisting of physical and logical modeling components. Physical modeling 
components are resources and entities in the system, and logical modeling 
components are activities, events, and states. As there are three kinds of formal 
modeling tools (i.e., ACD, event graph, and state graph), one corresponding 
to each type of logical modeling component (i.e., activity, event, and state) 
three types of formal models can be constructed for a given reference model: 
ACD model, event graph model, and state graph model.

Figure 2.11(a) shows an integrated structure of a DES model consisting of 
three layers: (1) At the core of the integrated structure is the static model layer 
consisting of the physical modeling components—Entity and Resource; (2) at 
the next layer is the functional model layer constituted with the logical model-
ing components—Activity, Event, and State; (3) at the outer layer is the 
dynamic model layer defined by the three types of primary formal models—
ACD model, EG (event graph) model, and SG (state graph) model. Also 
indicated in the integrated structure is that the EFD (entity-flow diagram) or 
Petri-net model can be obtained from an ACD model. Figure 2.11(b) depicts 
the conversion relations among the formal models. As mentioned in Section 
2.3.3, an ACD model can be automatically converted into an EFD model or 
a Petri-net model. As will be seen in Chapter 10, Section 10.6, an ACD model 
can also be converted into an EG model or SG model as well.

2.3.4.2  Integrated Procedure for DES Modeling  There exist various 
means to execute a simulation model of a given source system. Examples 
include: (1) entity-based simulation languages such as Arena [Kelton et al. 
2007] and ProModel [Harrell et al. 2012], (2) Petri-net executors [Camurri and 
Coglio 1997], (3) ACD tool kits [Kang and Choi 2011] and (4) event-based 
simulation languages such as SIGMA [Schruben and Schruben 2006].

Fig. 2.11.  (a) Integrated structure and (b) conversion relations of DES models.
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Regardless of the means used in executing a simulation model, construction 
of an executable simulation model from a given source system should follow 
a well-defined procedure. Figure 2.12 shows an integrated procedure for DES 
modeling consisting of three phases: the reference modeling phase, where a 
reference model of the DES is constructed from the source system; the formal 
modeling phase, where a formal model is obtained from the reference model; 
and the model execution phase, where the formal model is executed using a 
simulator. There exists at least one simulator in each of the five modeling 
formalisms. Moreover, free student-version copies are available as listed at the 
bottom of Fig. 2.12.

The reference modeling phase consists of four steps: (1) identify the physical 
modeling components—Entity, Active Resource, and Passive Resource; (2) 
define the logical modeling components—Activity, Event, and State; (3) 
describe the system dynamics in terms of the identified modeling components; 
(4) qualify the reference model against the source system. The referenced 
model qualification is a rigorous, systematic analysis of model relevance and 
consistency with the source system to ensure the reference model is fit for 
purpose.

The formal modeling phase consists of (1) selecting a modeling tool that is 
most compatible with the reference model; (2) building a formal model; (3) 
converting the formal model into another model if necessary; and (4) validat-
ing the formal model against the reference model. The formal model validation 
is a systematic analysis of model fidelity and sensitivity against the reference 
model to ensure the formal model is an accurate representation of the refer-
ence model. Selecting a best modeling tool for a given reference model is an 
open problem that deserves a further in-depth research. Model conversion 
among the formal models is another research area that deserves further 
investigation.

The model execution phase consists of (1) selecting a simulator suitable for 
executing the formal model; (2) preparing input data for making simulation 
runs; and (3) verifying the correctness of the simulation program against the 
formal model. The simulator verification is the process of making sure that the 

Fig. 2.12.  An integrated procedure for DES modeling.
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written computer program corresponds precisely to the formal model [Fish-
wick 1995].

2.3.4.3  Criteria for Evaluating Models and for Selecting Modeling Tools 
One may look for a model that is correct and perfect, but is it possible to have 
a correct model? George E.P. Box, who was an English chemist and statistician, 
is credited with the quote: “All models are wrong, some are useful.” This quote 
may be an answer to the above question: We should look for a good model, 
not the correct one, and a good model is a useful one that serves its purposes. 
Is it possible to have a perfect model? Perhaps an answer to this question may 
be found from Antoine de Saint Exupery, a French writer and aviator, who is 
credited with the quote: “Perfection is achieved, not when there is nothing 
more to add, but when there is nothing left to take away.” A perfect model is 
the one that contains just enough elements to make it useful.

A DES simulation model may be specified by using one of the formal 
modeling tools or programmed by employing a simulation package. Formal 
modeling tools are event graph, ACD, and state graph. Popular simulation 
packages include Arena®, AutoMod®, EXTEND®, SIGMA®, etc. Guidelines 
for selecting a formal modeling tool or a simulation language that is suitable 
for a given reference model are:

1.	 Choose one that has clear semantics and exact syntax.
(a)  Choose ACD if the system is described in terms of the activities of 

resources
(b)	 Choose state graph if the system is described in terms of interacting 

objects
(c)	 Choose event graph if the system is described in terms of interre-

lated events
(d)	 Choose Arena, etc., if the system is described in terms of flows of 

entities
2.	 Choose one that has high modeling power.
3.	 Choose one that supports easy model building, communication, and 

validation.
4.	 Choose one that is amenable to easy implementation.

2.4  ILLUSTRATIVE EXAMPLES OF DES MODELING AND 
SIMULATION

This section aims to help the readers become acquainted with the modeling 
formalisms and show how to build and simulate formal models of a simple 
DES. For this purpose, a two-stage tandem line shown in Fig. 2.13 will be used 
as an example. The two-stage tandem line is obtained by concatenating two 
single server systems. The modeling components of the two-stage tandem line 
are as follows:
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1.	 Entity: Job
2.	 Resources: Creator; Server1; Server2; Buffer1; Buffer2//unlimited-

capacity buffer
3.	 Activity (time delay): Create (ta); Process1 (t1); Process2 (t2)
4.	 State variables: number of idle servers (s1, s2); number of jobs in Buffer 

(q1, q2)
5.	 Event: Arrive {q1++}; Load1 {q1−−, s1 = 0}; Unload1 {s1 = 1, q2++}; Load2 

{q2−−, s2 = 0}; Unload2 {s2 = 1}

2.4.1  How to Build and Simulate an Event Graph Model of a DES

An event graph model is a network of event nodes describing the events that 
take place in the system and the relationships among these events [Schruben 
1983]. The event types found in the system of Fig. 2.13 are Arrive, Load1, 
Unload1, Load2, and Unload2. At the beginning, an Arrive event is scheduled, 
and then a sequence of events follows the flow of entities in the system.

2.4.1.1  Event Graph Modeling  Shown in Fig. 2.14(a) is the initial state of 
the event graph where an Arrive event is scheduled with s1 = s2 = Idle (=1). 
When an Arrive event occurs, the job count in Buffer1 is increased by 1 (q1++), 
another Arrive event is scheduled to occur after ta minutes, and if Server1 is 
Idle (s1 > 0), a Load1 event is scheduled to occur immediately. The situation 
is depicted in Fig. 2.14(b), which we call an event-routine graph.

Actions taken at an occurrence of a Load1 event are: decrease the job count 
in Buffer1 (q1−−); set Server1 to Busy (s1 = 0); schedule an Unload1 event to 
occur after t1 minutes. They are depicted in Fig. 2.14(c) as an event-routine 

Fig. 2.13.  Reference model of a two-stage tandem line.

Fig. 2.14.  Event routine graphs for (a) Start, (b) Arrive, (c) Load1, and (d) Unload1 
events.
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graph. The occurrence of an Unload1 event will result in the following actions 
as depicted in Fig. 2.14(d): Server1 is set to idle (s1  =  1); the job count in 
Buffer2 is increased (q2++); a Load1 event is scheduled to occur now if q1 > 0; 
a Load2 event is scheduled to occur now if s2  >  0. As mentioned earlier 
(Section 2.2.1), a set of actions taken at an occurrence of an event is called an 
event routine.

If we assemble the individual event-routine graphs of Fig. 2.14 into a “com-
posite” event graph, we obtain the event graph shown in Fig. 2.15. The infor-
mation specified in the event graph model can be summarized in a table called 
an event transition table. Table 2.4 is an event transition table for the event 
graph model shown in Fig. 2.15.

Exercise 2.2. Complete the event graph model of the two-stage tandem 
line by adding the event-routine graphs for Load2 and Unload2 events. Con-
struct an event transition table for the full event graph of the two-stage tandem 
line.

2.4.1.2  Simulation of the Two-Stage Tandem Line Model with SIGMA® 
Figure 2.16 shows a SIGMA event graph model of the two-stage tandem  
line that was generated by clicking and dragging the mouse. As will be  
shown in Chapter 4, it is very straightforward to build an event graph using 
SIGMA®.

If you double click the event vertex Arrive, a vertex dialog box like the one 
in Fig. 2.17(a) will show up where you provide the state change information 
(e.g., Q1 = Q1 + 1). If you double click the self-loop edge of the Arrive event, 

Fig. 2.15.  Partial event graph model of the two-stage tandem line.
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TABLE 2.4.  Event Transition Table for the Event Graph of Two-Stage Tandem Line

Event Name State Change
Edge 

Condition Time Delay Next Event

Start q1 = 2, q2 = 0; s1 = s2 = 1; Always 0 Arrive
Arrive q1++; Always ta ∼ Exp(10) Arrive

s1 > 0 0 Load1
Load1 q1−−; s1−−; Always t1 ∼ Uni(9,11) Unload1
Unload1 s1++; q2++; q1 > 0 0 Load1

s2 > 0 0 Load2
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an edge dialog box of Fig. 2.17(b) will show up where you specify the inter-
arrival time distribution (e.g., 10*ERL{1}).

2.4.2  How to Build and Simulate an ACD Model of a DES

2.4.2.1  ACD Modeling  An activity cycle diagram (ACD) model consists 
of activity cycles, one for each entity and one for each active resource in the 
system. An activity cycle is a closed and alternating sequence of an active state 
(activity) denoted by a rectangle and a passive state (queue) denoted by a 
circle [Carrie 1998].

Referring back to Fig. 2.13, the two-stage tandem line system has three 
active resources: Creator, Server1, and Server2. On a close examination, all 
the resources are in an idle state. Buffer1 has two jobs, and Buffer2 has no 
jobs. Depicted in Fig. 2.18(a) are the activity cycles of the three resources in 
the system. A job created by Creator goes into Buffer1 from which it is loaded 
on Server1 for processing. Then it moves to Buffer2 to be processed by Server2. 
This “job flow” is modeled as an activity cycle of the job as shown in Fig. 
2.18(b).

By combining the activity cycles in Figs. 2.18(a) and 2.18(b) together, an 
ACD model of the two-stage tandem line is obtained as shown in Fig. 2.19. 
Also shown in the ACD are the distribution functions, Exp(10) and Uni(9,11), 
for the inter-arrival times and processing times.

The information specified in an ACD model can be summarized in a table 
called an activity transition table. Table 2.5 is an activity transition table for the 
ACD model shown in Fig. 2.19. For each activity, (1) its firing condition is 

Fig. 2.16.  SIGMA® event graph model.

Fig. 2.17.  SIGMA (a) Vertex dialog box and (b) Edge dialog box.

(a) (b)
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Fig. 2.18.  (a) Activity cycles of the resources in the two-stage tandem line system; 
(b) activity cycle of the job in the two-stage tandem line system.
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Fig. 2.19.  ACD model of the two-stage tandem line.
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TABLE 2.5.  Activity Transition Table for the Event Graph of Two-Stage Tandem 
Line

No
Activity
Name

At Begin BTO Event At End

Condition Action Time Name Action
Influenced 
Activities

1 Create (C ≡ 1) C−− Exp(10) Arrived Q1++, 
C++

Create, 
Process1

2 Process1 (Q1 > 0) & 
(S1 > 0)

Q1−−, 
S1−−

Uni(9,11) Processed1 S1++, 
Q2++

Process1, 
Process2

3 Process2 (Q2 > 0) & 
(S2 > 0)

Q2−−, 
S2−−

Uni(9,11) Processed2 S2++ Process2

Initial State C = 1, S1 = 1, S2 = 1, Q1 = 2, Q2 = 0

specified in the At-begin Condition field and the resulting state changes are 
given in the At-begin Action field; (2) the time-delay and name of the bound-
to-occur event (BTO event) are specified in the BTO-event Time and BTO-
event Name fields, respectively; (3) the state changes at the BTO event are 
specified in the At-end Action field. The ACD model may be simulated by 
using an ACD executor (see Chapter 6) or converted into a process-interaction 
simulation program like Arena (see Chapter 7).

2.4.2.2  Simulating the ACD Model with Arena®  It is fairly straightforward 
to prepare Arena simulation inputs from an ACD model. In order to perform 
simulation with the Arena software, (1) all the resources and entities are 
declared first, (2) a flowchart model denoting the entity flow is generated,  
and (3) the attributes of each block (or module) are entered in its dialog box. 
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Shown in Fig. 2.20 are a resource data model and an entity data model in the 
Basic Process Template of Arena, where the resources (S1 & S2) and entity 
(Job) of the two-stage tandem line are declared.

Shown in Fig. 2.21 is an Arena flowchart model of the two-stage tandem 
line. The Create activity in the ACD model of Fig. 2.19 is mapped to the 
Create1 block in Arena flowchart model of Fig. 2.21, the Disposed queue is 
mapped to Dispose1 block, and the activity nodes are mapped to Process 
blocks.

Shown in Fig. 2.22 are dialog boxes for inputting data needed to define the 
Create block and Process1 block. In the Create block dialog box, the inter-
arrival time distribution is defined as Type = Random (Expo) and Value = 10. 
In the Process block dialog box, the service time distribution is specified as 
Delay Type = Uniform, Minimum = 9, and Maximum = 11.

2.4.3  How to Build and Simulate a State Graph Model of a DES

The first step in state-based modeling is to identify objects in the system and 
construct an object interaction diagram describing interactions among the 
objects in the system. There are five objects (Creator, Buffer1, Server1, Buffer2, 
and Server2) in the two-stage tandem line, and they interact with each other 

Fig. 2.20.  Declarations of Resource (S1 and S2) and Entity (Job).

Resource - Basic Process Entity - Basic Process

Entity Type Initial Picture Holding Cost / Hour

0.0Job Picture. Box

Double-click here to add a new row.

1

2

S1

Name Type Capacity

Fixed Capacity 1 1

1Fixed CapacityS2

Fig. 2.21.  Arena® flowchart model of the two-stage tandem line.

Fig. 2.22.  Arena dialog boxes for defining Create module and Process module.
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via event messages: Creator sends an Arrive message to Buffer1; Buffer1 sends 
a Load1 message to Server1, which sends back an Unload1 message to Buffer1; 
Server1 sends an Unload1 message to Buffer2; Buffer2 sends a Load2 message 
to Server2, which sends back an Unload2 message to Buffer2. By combining 
all the individual interactions, the object interaction diagram of the two-stage 
tandem line system is obtained as shown in Fig. 2.23.

The second step in state-based modeling is to draw a state transition diagram 
for each object in the system. The object interaction diagram and the indi-
vidual state-transition diagrams form a state graph of the system. In order to 
execute the state graph model of the system, the information described in a 
state transition diagram is specified in a state transition table. An extensive 
treatment on the subject is provided in Chapter 9 of this book.

2.5  APPLICATION FRAMEWORKS FOR DISCRETE-EVENT SYSTEM 
MODELING AND SIMULATION

2.5.1  How Is the M&S Life Cycle Managed?

Shown in Fig. 2.24 are various activities and entities involved in a real-life 
M&S project, which we call the M&S life-cycle management framework. The 
life-cycle management framework consists of four phases: problem definition 
phase, modeling phase, simulation phase, and implementation (or application) 
phase:

1.	 Phase 1 is the problem definition phase consisting of (1) diagnosis and 
analysis of a real-life situation from which a source system is identified 
and the objectives of the study are defined, (2) defining experimental 
frames, and (3) collecting data.

2.	 Phase 2 is the modeling phase consisting of (1) the descriptive modeling 
step for building a reference model and (2) the formal modeling step for 
building a formal model from the reference model by employing a mod-
eling formalism. Also carried out in this phase are reference model 
qualification and formal model validation. A model qualification is a 
rigorous, systematic analysis and evaluation of the reference model for 
its relevance and consistency with observed behavioral data to ensure 
that the models are fit for purpose.

3.	 Phase 3 is the simulation phase where (1) a simulator is implemented 
from the formal model using a simulation software tool if necessary, (2) 
a series of experimentation is performed with the simulator according to 

Fig. 2.23.  Object interaction diagram of the two-stage tandem line.
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the specifications of the experimental frame, and (3) the simulator is 
verified against the formal model.

4.	 Phase 4 is the implementation phase, consisting of (1) output analysis, 
(2) simulator calibration, and (3) making decisions and taking actions. A 
simulator calibration is a systematic procedure for fine-tuning the simu-
lator by adjusting model parameters so that the simulation outputs 
conform to actual trajectories of the target system.

Reference model qualification, formal model validation, and simulator veri-
fication and calibration are the key feedback functions in M&S life-cycle 
management.

2.5.2  Framework for Factory Life-Cycle Support

More than a 50 years ago, K.D. Tocher tried to solve the congestion control 
problem at United Steels in the U.K. [Tocher 1960]. He argued that “in more 
complex plants, in which there is a multiplicity of possible routes for the  
steel through the plant, it is possible to minimize congestion and maximize the 
rate of flow by a (simulation-based) scheduling procedure.” It is truly remark-
able that Tocher, who invented the ACD, tried to use simulation as an opera-
tion management tool in the 1960s. Congestion control is also a key issue in 
operation management for a modern electronics Fab (i.e., fabrication plant) 
such as a semiconductor Fab or a flat panel display (FPD) Fab.

Fig. 2.24.  M&S life-cycle management framework.
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The authors have been working with FPD makers to develop simulation-
based Fab scheduling systems [Park et al. 2008] and a Fab simulator for an 
integrated simulation of production and AMHS (automated material handling 
system) [Song et al. 2011]. Shown in Fig. 2.25 are the four phases of Fab life 
cycle together with action items for Fab life-cycle management. The four 
phases are (1) planning phase for a new Fab, (2) the new Fab design phase, 
(3) Fab operation management phase, and (4) Fab upgrading and renovation 
phase. An integrated Fab simulator may be used as a decision-support tool 
covering the entire Fab life cycle. Issues in developing such an integrated Fab 
simulator will be addressed in Chapter 11.

2.6  WHAT TO COVER IN A SIMULATION CLASS

There exists a large volume of knowledge on modeling and simulation of 
discrete-event systems, and choosing the right topics to cover in a simulation 
class is not an easy task in simulation education. Key topics addressed so far 
in this chapter are as follows:

1.	 How to perform a manual simulation for executing an event graph model
2.	 How to develop a reference model of a DES
3.	 How to build an event-graph model and simulate it with a simulation 

package
4.	 How to build an ACD model and convert it to an EFD model
5.	 How to simulate an EFD model with a commercial simulation package
6.	 How to build a state-graph model and simulate it with a simulation 

package

Fig. 2.25.  Framework of simulation-based Fab life-cycle support. SBA, simulation-
based acquisition; AMHS, automated material handling system; RTD, real-time dis-
patcher; MCS, material control system for AMHS.
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2.6.1  Event-Based M&S and Event-Graph Simulation with SIGMA®

At the heart of discrete-event system simulation is the concept of event-based 
modeling and simulation with an event graph. Thus, it is essential for an engi-
neering simulation student to learn how to build and simulate an event-graph 
model of a DES. An event-graph model may be less intuitive than an entity-
flow diagram model, but it is very flexible and powerful for describing complex 
discrete-event systems concisely.

Shown in Fig. 2.26 is an event-graph model of a homogeneous job shop  
that can be used as a template for modeling various types of job shops such 
as machine shops, electronics Fab, restaurants, hospitals, etc.

Basics of event-graph modeling and simulation are presented in Chapter 4. 
How to model a large system as a parameterized event graph with SIGMA® 
is discussed in Chapter 5, where the job shop model of Fig. 2.26 will be exe-
cuted with SIGMA®.

2.6.2  Activity-Based M&S and Hands-On Modeling Practice  
with Arena®

It is essential for an undergraduate simulation class in an engineering school 
to give students hand-on experiences on modeling with a popular simulation 
package. There are quite a few simulation packages based on the entity-flow 
view (also known as the process-oriented or process-interaction view). Exam-
ples include Arena®, AutoMod®, and EXTEND®. Most of those packages are 
quite simple to learn and use, and student copies are readily available free of 
charge.

It would be enough for the students to get exposed to one package. Once 
the students get used to one package, they will be able to learn other packages 
by themselves. For this purpose, we chose to use Arena® in addition to the 
ACD simulator ACE® in this book. An approach to converting an ACD model 
to an Arena simulation program is elaborated in Chapter 7.

2.6.3  State-Based M&S

The subject of state-based modeling and other advanced topics in Part III may 
be skipped in an undergraduate simulation class in an ordinary engineering 

Fig. 2.26.  Event graph model of a homogeneous job shop.
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school. This topic may be covered in a graduate-level class. State-based model-
ing is suitable for modeling a discrete-event system that is naturally described 
in terms of interacting objects in the system. As can be seen in the modeling 
example of the two-stage tandem line, the state graph may not be a suitable 
tool for modeling such a system. On the other hand, a complex urban traffic 
network may be properly modeled by a state graph.

Figure 2.27 shows an object interaction diagram model of a table tennis 
game played by two players—Player-A and Player-B—with their friend watch-
ing the game. The two players interact with each other by sending a Ball event 
message (meaning that the ball is sent to the opponent’s table) or an Out event 
message (when the ball went out of bounds). The friend may send a Stop 
message to the players to interrupt in the middle of game, and the players send 
a Game-over message to the friend when the game is over. When modeling 
this kind of system, state-based modeling would be the choice. Detailed discus-
sions on the subject may be found in Chapter 9 of this book.

2.7  REVIEW QUESTIONS

2.1.  What is an event routine?

2.2.  What is the next event?

2.3.  What are the three logical modeling components?

2.4.  What is a modeling formalism?

2.5.  What are the three worldviews in discrete-event system modeling?

2.6.  What is a reference model of a discrete-event system?

2.7.  What are the requirements of a formal model?

2.8.  What is model qualification?

2.9.  What is simulator calibration?

Fig. 2.27.  Object interaction diagram model of a table tennis game.

Player-A Player-B

Friend

Stop

Game Over Game Over
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EVENT SYSTEM MODELING AND 
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Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and 
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

A practical definition of a discrete-event system (DES) is given as “a system 
designed to process some sort of entities with some kind of resources.” Exam-
ples of DESs are hospital emergency rooms and operating rooms, car repair 
shops, serial assembly lines, semiconductor fabrication lines, restaurants, urban 
traffic systems, etc. Part II, which is the main part of the book, is concerned 
with how to build simulation models of these DESs and perform simulation 
analyses. All the three classical modeling formalisms—event-based, activity-
based, and entity-based formalisms—together with input modeling and output 
analyses are covered in Part II. The three classical modeling formalisms are 
also known as event scheduling, activity scanning, and process-interaction 
worldviews. There are six chapters, Chapters 3 to 8, in Part II.

Chapter 3 and Chapter 8, respectively, cover all the essential input modeling 
and output analyses topics that a simulation practitioner should know. After 
studying these two chapters, you should be able to do the following:

1.	 Generate inter-arrival times and service times from empirical data
2.	 Generate various theoretical random variates
3.	 Generate inter-arrival times for fluctuating arrival rates
4.	 Estimate the parameters of various distribution functions
5.	 Verify and calibrate the simulation logic
6.	 Compute confidence intervals of simulation outputs
7.	 Apply the response surface methodology to simulation optimization

Chapters 4 and 5 are devoted to event-based modeling and simulation (M&S). 
By studying these two chapters, you should be able to do the following:

PART II



44    Fundamentals of Discrete-Event System Modeling and Simulation

1.	 Provide formal specifications of (parameterized) event graph models
2.	 Build event graph models of various types of systems including job shops
3.	 Execute event graph models with the event-based simulator SIGMA®

4.	 Develop your own event graph simulator

Chapters 6 and 7 are devoted to activity-based and entity-based M&S, 
respectively. By studying these two chapters, you should be able to do the 
following:

1.	 Provide formal specifications of activity cycle diagram (ACD) models
2.	 Build ACD models of various types of systems including job shops
3.	 Execute ACD models with the activity-based simulator ACE®

4.	 Use the entity-based simulator Arena®

5.	 Convert ACD models into Arena® models and perform simulation runs.
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CHAPTER 3

Input Modeling for Simulation

As far as the laws of mathematics refer to reality, they are not certain, 
and as far as they are certain, they do not refer to reality.

—Albert Einstein

3.1  INTRODUCTION

Discrete-event dynamic systems have some probabilistic elements, and a close 
match between the simulation input model and the true underlying probabi-
listic mechanism associated with the source system is required for successful 
simulation analyses. Input modeling defines mechanisms for generating random 
inputs of a simulation model. The general question is how to model a proba-
bilistic element such as the arrival process or service times given a data set 
collected on the element of interest [Leemis 2001].

Let’s assume that you have an automatic teller machine (ATM) in your 
building and that you have collected the data in Table 3.1 by observing the 
first 10 customers during a lunch hour. The ATM and the nearby floor space 
can be modeled as a single server system whose reference model and event 
graph model were given in Fig. 2.1 of the previous chapter. Then, how would 
you use the data listed in Table 3.1 to simulate your ATM system?

In general, if the actual data collected are available, there are three ways 
to model input: (1) trace-driven simulation, in which the collected data values 
are directly used in the simulation; (2) empirical input modeling, in which 
random variables for simulation are generated directly from the collected data; 
(3) theoretical input modeling, in which the parameters of a theoretical distri-
bution function are estimated from the actual data and random variables are 
generated from the fitted distribution function.

This chapter is organized as follows. We start with the subject of empirical 
input modeling (for inter-arrival times as well as service times) in Section 3.2, 
and follow with a brief section (Section 3.3) on theoretical distribution fitting. 

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and 
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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Section 3.4 deals with theoretical input modeling of inter-arrival times,  
and Section 3.5 deals with theoretical input modeling of service times. The last 
section (Section 3.6) covers input modeling for special applications.

3.2  EMPIRICAL INPUT MODELING

In empirical input modeling, random variables for simulation are generated 
directly from the collected data. There are three ways to generate random 
inputs from collected data {Xi} without fitting a theoretical distribution func-
tion: the nonparametric modeling method, empirical modeling of individual 
data, and empirical modeling of grouped data.

3.2.1  Nonparametric Modeling

A simple approach to generating random inputs from collected data {Xi} is to 
use a nonparametric model, in which the value of the random variable x is 
repeatedly sampled from collected data {Xk: k = 1 ∼ n} with probability 1/n. 
The nonparametric input modeling method may be implemented as follows:

1.  Generate a uniform random number U ∼ Uni(0,1).
2.	 Set P = n × U and compute the index k = [P] + 1; // [P] is the integer part 

of P.
3.	 Return x = Xk.

Example 3.1, Generate a service time using the nonparametric method 
from the service time data {Xk} given in Table 3.1. Let the value of the gener-
ated uniform random number U ∼ Uni (0, 1) be 0.369881, then the index ‘k’ 
in the nonparametric modeling method is computed as k = [n × U] + 1 = [10 × 
0.369881] + 1 = 4. Thus, x = X4 = 65 is sampled as an empirical service-time to 
be used in a simulation.

3.2.2  Empirical Modeling of Individual Data

Let {X(k): k =  1 ∼ n} be the individual ordered sample data in an increasing 
order, then their empirical distribution F(x) is a piecewise linear function with 
F(X(k)) =  (k − 1) / (n − 1). Now, generate a uniform random number U and 

TABLE 3.1.  Collected Data for the First 10 Customers of an ATM during a  
Lunch Hour

Observation number (k) 1 2 3 4 5 6 7 8 9 10

Inter-arrival time in sec {Ak} 121 13 87 36 7 236 8 33 152 67
Service time in sec {Xk} 56 51 73 65 84 58 62 69 44 66
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then sample the value of a random variable x from F(x) as depicted in Fig. 3.1, 
which is called inverse transformation.

1.	 Generate a uniform random number U ∼ U(0,1).
2.	 Set P = (n − 1) × U and J = [P] + 1; // [P] is the integer part of P.
3.	 Return x = X(J) + (P − J + 1) × (X(J+1) − X(J)).

Example 3.2. Table 3.2 shows the ordered service-time data {X(k)} that were 
obtained by rearranging the collected data in Table 3.1 in an ascending order. 
If the value of U is 0.369881 as before, we have P = (n − 1) × U = 9 × 0.36988
1 = 3.328929 and J = [P] + 1 = 4. Then, an empirical service time is generated 
as:

	
x X P X X= + − + × − = +

× − = +
+( ) ( ) ( )( ) ( ) ( . )

( ) .
4 4 1 44 1 58 0 328929

62 58 58 1 3166 59 316= . .
	

3.2.3  Empirical Modeling of Grouped Data

When the data are grouped into m adjacent intervals {[a0, a1), [a1, a2) . . . [am–1, 
am]} and the jth interval contains nj observations, the grouped data distribution 
function G(x) is also a piecewise linear function with G(a0)  =  0 and 
G a n nj

j
i( ) /= ∑1  for j = 1 ∼ m (with n = Σ nj).

Then, as depicted in Fig. 3.2, the random variable x can be sampled from 
the empirical distribution G(x) using the following inverse transformation 
method:

TABLE 3.2.  Ordered Service-Time Data Obtained from the Collected Data in  
Table 3.1

Ascending order index (J) 1 2 3 4 5 6 7 8 9 10

Ordered service time data {X(J)} 44 51 56 58 62 65 66 69 73 84

X(1) X(2) X(3) X(4) X(5)

0.25

0.50

0.75

1.00

U

x
x

F(x)

F(x)  U x = F–1(U) 

Inverse transformation

Fig. 3.1.  Generation of random variable x from individual data (n = 5).
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1.	 Generate U ∼ U(0,1).
2.	 Find integer J such that G(aJ) ≤ U < G(aJ+1).
3.	 Return x = aJ + [U − G(aJ)] × (aJ+1 − aJ) / [G(aJ+1) − G(aJ)].

Exercise 3.1. Table 3.3 shows the grouped service-time data that were 
obtained by grouping the ordered data of Table 3.2 into five adjacent intervals 
{[40, 50), . . . , [80,90]}. Assuming the value of U is 0.369881 as before, generate 
an empirical service time.

3.3  OVERVIEW OF THEORETICAL DISTRIBUTION FITTING

Distribution fitting is a classical statistical estimation process consisting of data 
independence checking, distribution function selection, parameter estimation, 
and goodness-of-fit testing.

3.3.1  Data Independence Checking

The first step in theoretical input modeling is to check whether the obtained 
data are independent. A simple method of assessing data independence is to 
plot a scatter diagram. For the data X1, X2 .  .  . Xn listed in time-order of col-
lection, pairs (Xi, Xi+1) for i = 1 ∼ n − 1 are plotted on an x-, y-coordinate system 

Fig. 3.2.  Generation of random variable from grouped data (m = 5).

a0 a1

1

U

x

x

G(x)

a2 a3 a4 a5

G(a4) = (n1 + n2 + n3 + n4) / n

G(a3) = (n1 + n2 + n3) / n

G(a2) = (n1 + n2) / n

G(a1) = (n1) / n

0

TABLE 3.3.  Grouped Service-Time Data Obtained from the Ordered Data in Table 3.2

Group index 
( j) 1 2 3 4 5

Intervals of 
service 
times

a0 = 40 − 50 a1 = 50 − 60 a2 = 60 − 70 a3 = 70 − 80 a4 = 80 − 90 = a5

Frequency (nj) 1 3 4 1 1
G(aj) = 

(Σ(nj)/n)
1/10 4/10 8/10 9/10 1.0
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(Xi as x-value and Xi+1 as y-value). If the plotted points are randomly scattered, 
one may conclude that the data are independent.

3.3.2  Distribution Function Selection

The second step is to select a suitable candidate distribution function based 
on some theoretical justification and/or by observing the shape of the histo-
gram. For example, exponential distribution and Erlang distribution are com-
monly selected for inter-arrival times, while Weibull distribution is the choice 
for an interfailure time distribution. Service-time distributions that are widely 
used are beta distribution and lognormal distribution.

3.3.3  Parameter Estimation

The third step is to estimate the parameters of the selected distribution. 
Maximum likelihood estimator (MLE) is the preferred choice for parameter 
estimation, but other methods may be used when the MLE does not have a 
simple form. For example, the MLE is used for exponential, normal, and log-
normal distributions; the method of moment for Erlang and beta distributions; 
the rank regression method for Weibull distribution. More details may be 
found in Appendix 3A of this chapter.

3.3.4  Goodness-of-Fit Test

The fourth step of theoretical distribution fitting assesses the model adequacy 
by using a goodness-of-fit test such as the chi-square test. Here, data are 
grouped into m adjacent intervals {[a0, a1), [a1, a2) . . . [am–1, am]} so that the jth 
interval contains nj observations (with n = Σnj), and a test statistic χ2 is con-
structed using the expected proportion pj computed from the fitted density 
function ˆ( )f x  as follows:

	 χ 2
2

1

( )
, where ( )

1

=
−

=
=∑ ∫

−

n np
np

p f x dxj j

jj

m

j
a

aj

j

ˆ . 	 (3.1)

Then, the test statistic is checked against the chi-square value with (m − 1) 
degrees of freedom. An extensive treatment on the subject may be found in 
Law [2007].

3.3.5  Overview of Random Variate Generation

Having fitted a theoretical distribution for each type of input model, the final 
phase of input modeling generates random variates for simulation. When the 
distribution function has a closed-form inverse function, the inverse-transform 
method is the choice. Otherwise, special methods of generating random vari-
ables may be employed. More details may be found in Appendix 3B.
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Table 3.4 summarizes the distribution functions for different input model 
types, methods of parameter estimation, and methods of random variate gen-
eration. Erlang and exponential distributions are exclusively used in modeling 
inter-arrival times, whereas beta and uniform distributions are commonly used 
in modeling service times. Due to its flexibility, Weibull distribution is mostly 
used in modeling interfailure times.

There are three popular methods for parameter estimation: the maximum 
likelihood method for estimating the parameters of exponential and normal 
distributions; the method of moment for Erlang and beta distributions; and 
the rank regression method for Weibull distribution. The most popular method 
for random variate generation is the inverse-transform method, which is used 
in generating exponential, Erlang, and Weibull random variates. Details on the 
subjects are covered in the appendixes of this chapter.

3.4  THEORETICAL MODELING OF ARRIVAL PROCESSES

3.4.1  Theoretical Basis for Arrival Process Modeling

A Poisson process is a continuous stochastic process in which events occur 
independently of one another. The Poisson process is a collection {N(t): t ≥ 0} 
of random variables, where N(t) is the number of events (arrivals) that have 
occurred up to time t (starting from time 0).

For a homogeneous Poisson process, the number of arrivals between time 
t and time t + s is given as N(t + s) − N(t) and has a Poisson distribution. Let 
λ be the arrival rate (expected number of arrivals in any interval of length 1), 
then the probability of k arrivals during [t, t + s] is given by [Cinlar 1975]:

TABLE 3.4.  Summary of Theoretical Distribution Fitting and Input Modeling

Input Variable 
Types Distributions

Parameter 
Estimation

Generation 
Methods

Inter-arrival 
time

Exponential (θ) Maximum likelihood 
method

Inverse-transform

Erlang (k, θ) Method of moment Convolution of 
exponential

Service time
(Repair time)

Triangular (a, b, c) Composition 
method

Beta (α, β) Method of moment Acceptance–
rejection

Normal (μ, σ) Maximum likelihood 
method

Box & Muller 
method

Lognormal (μ, σ) Maximum likelihood 
method

Conversion of 
normal variate

Interfailure 
time

Weibull (α, β) Rank regression 
method

Inverse-transform
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Consider the waiting time T1 until the first arrival. Clearly T1 is more than 
s if and only if the number of arrivals before time s is 0. Combining this prop-
erty with the above probability distribution for the number of homogeneous 
Poisson process events in a fixed interval gives

P[ ]T s P N s P N s N e s es s
1

00 0 0 0> = = = − = = =− −[ ( ) ] [ ( ) ( ) ] ( ) / ! .λ λλ   (3.2)

Consequently, the waiting time until the first arrival T1, which is equivalent 
to an inter-arrival time, has an exponential distribution with a density function 
given by f(t) = λe−λs and its expected value given by E(T1) = θ = 1/λ.

The waiting times between k occurrences of the event in a homogeneous 
Poisson process follow an Erlang distribution, which was developed by A.K. 
Erlang to examine the number of telephone calls that might be made at the 
same time to the operators of the switching stations.

3.4.2  Generation of Inter-Arrival Times for a Constant Arrival Rate

When the arrival process is stationary with an arrival rate λ, the inter-arrival 
times follow Erlang (k,θ) with θ = 1/λ. It becomes an exponential distribution 
when k = 1. The shape of the density function is dependent on the shape of 
parameter k and scale parameter θ as can be seen in Fig. 3.3, and the density 
function is defined as

	 f x
x e
k

k k x

( )
( )!

.
/

=
−

− − −θ θ1
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Fig. 3.3.  Erlang-k density function.
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3.4.2.1  Parameter Estimation  If a sufficient amount of inter-arrival time 
data {Xi} is available, estimators of the parameters are obtained from the 
sample moments as discussed in Appendix 3A (k is an integer):

	 ˆ ( ) /[ ( ) ]; ˆ [ ( ) ]/ ,k m m m m m m≅ − = −1
2

2 1
2

2 1
2

1θ 	 (3.3)

where the first sample moment m1 and second sample moment m2 are given 
by

	 m x x m xn i
i

n

n i
i

n

1
1

1
2

1 2

1
= = =

= =∑ ∑; . 	

If k = 1, it becomes an exponential distribution and Eq. 3.3 reduces to

	 ˆ .θ = =m x1 	 (3.4)

Example 3.3. The parameters of the Erlang distribution representing the 
inter-arrival distribution of the ATM system introduced in Section 3.1 can be 
estimated from the inter-arrival times data {Ak} in Table 3.1 as follows. The 
first and second sample moments are calculated as m1 = 76 and m2 = 10,816.6. 
From Eq. 3.3, the Erlang parameters k and θ are computed as k = 1.146 and 
θ = 66.3. Since k is close to 1, we have an exponential distribution. Thus, the 
inter-arrival times in the ATM system follow an exponential distribution with 
mean = 66.3.

3.4.2.2  Random Variate Generation  As described in Appendix 3B, an 
exponential random variate x is generated via an inverse transformation as 
follows:

1.	 Generate u ∼ U(0,1).
2.	 Return − ˆ ln( )θ u .

Utilizing the fact that the sum of independent exponential random variables 
is an Erlang random variable, the Erlang-k random variate x is generated as 
follows:

1.	 Generate independent ui ∼ U(0.1) for i = 1 ∼ k.
2.	 Return − ∏( )=

ˆ lnθ i
k

iu1 .

3.4.3  Generation of Inter-Arrival Times for Varying Arrival Rates

Let’s assume the inter-arrival times are exponentially distributed, but the 
arrival rate λ(t) is changing over time. This arrival process is called a nonsta-
tionary Poisson process, which is common in many service systems such as 
banks, cafeterias and barber shops.
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A widely used method called thinning for generating nonstationary inter-
arrival times is shown in Fig. 3.4. It starts with a previous arrival time t = t1 and 
generates an inter-arrival time Δt for the maximum arrival rate λ* by using a 
uniform random number U1. Thus, from the result of Section 3.4.1, we have 
Δt  =  – (1/λ*) ln(U1) and t2  =  t  +  Δt. Now generate another uniform random 
number U2, and if U2 ≤ λ(t2) / λ*, then accept t2 as the next arrival time, else 
set t = t2 and start over. The thinning method of generating arrival times may 
be summarized as follows (start with i = 1):

1.	 Set: t = ti–1.
2.	 Generate: U1 ∼ U(0, 1) and U2 ∼ U(0, 1).
3.	 D = –(1/λ*) ln(U1); //exponential random variable with θ = 1/λ*.
4.	 t = t + D.
5.	 If U2 ≤ λ(t)/λ*, then return ti = t, else go back to step 2.

3.5  THEORETICAL MODELING OF SERVICE TIMES

3.5.1  Generation of Service Time in the Absence of Data

In some simulation studies it may not be possible to collect the service-time 
data, but we have some knowledge or information about the service time 
distribution, such as its range [a, b] and mode c. The lower bound ‘a’ is often 
referred to as the most optimistic estimate of service time, the upper bound ‘b’ 
as the most pessimistic estimate, and the mode ‘c’ as most-probable estimate. 
Figure 3.5 shows the density functions that are commonly used in modeling 

Fig. 3.4.  Generation of exponential inter-arrival times for varying arrival rates.
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Fig. 3.5.  Service-time distributions in the absence of data.
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service times and activity durations in the absence of collected data: uniform, 
triangular, house, and beta distribution.

3.5.1.1  Uniform Random Variate: X∼ Uniform (a, b)  When only the range 
data [a, b] is given, a simple but useful method is to generate the service time 
X from the uniform distribution U(a, b). Namely, let U  ∼  U(0,1) then the 
uniform random variate X∼ U(a, b) is generated by

	 X a b a U= + − ×( ) . 	 (3.5)

3.5.1.2  Triangular Random Variate: X∼ Triangular (a, b, c)  If the mode c 
is also given in addition to the range data [a, b], service times may be sampled 
from a triangular distribution. Service-time random variate X following the 
triangular distribution Triangular (a, b, c) may be generated by using a com-
position method (see Appendix 3B) given below:

1.	 Set p = (c − a)/(b − a).
2.	 GenerateU1 ∼ U(0,1);U2 ∼ U(0,1).
3.	 If U1 ≤ p, then X a c a U= + −( ) 2 , else X c b c U= + − − −( )( )1 1 2 .

3.5.1.3  House Distribution Random Variate: X∼ House (a, b, c, h)  When 
the height (h) the house is also specified (in addition to a, b, and c), service 
time may be sampled from the house distribution (See Fig. 3.5). As depicted 
in Fig. 3.6, a composition method is employed to generate house-distribution 
random variates X.

1.	 Set r = h(b −a); p = (1 − r)(c − a)/(b −a); q = 1 − (p + r).
2.	 Generate U1 ∼ U(0,1) and U2 ∼ U(0,1).
3.	 If (U1 ≤ p), then X a c a U= + −( ) 2  (see Fig. 3B.3 in Appendix 3B), 

else if (U1 ≤ p + q), then X c b c U= + − − −( )( )1 1 2 , 
else X = a + (b − a)(U2).

3.5.1.4  Beta Random Variate: X∼Beta(α,β)  A choice for the service-time 
distribution with a finite range is a beta distribution. The density function f (x) of 
the standard beta distribution Beta(α,β) that has a unit range [0, 1] is given by

Fig. 3.6.  Generation of “house” random variate via the composition method.
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where B z z t t dtz z( , ) ( )1 2 0
1 1 11 21= ∫ −− −  denotes the beta function.

Let c and μ, respectively, denote the mode and mean of the beta distribution 
with a finite range [a, b]. If c ≠ μ, the parameters α, β of the standard beta 
distribution Beta(α,β) may be estimated from the following relations (see 
Appendix 3A):

ˆ ( )
; ˆ ( ) ˆ ; ( )/( )& ( )/( ),α β α µ= −

−
= − = − − = − −u m

m u
u

u
m c a b a u a b a

2 1 1
  (3.6)

where m and u are the mode and mean of the standard beta distribution.
There are quite a few methods for generating beta random variates [Law 

2007, Cheng 1978]. A simple yet effective algorithm by Cheng [1978] for gen-
erating Y Beta∼ ( , )ˆ ˆα β  is given in Appendix 3B. Then the beta random variate 
X with a general range [a, b] can be obtained from Y as follows:

	 X a b a Y= + −( ) . 	

3.5.2  Generation of Service Times from Collected Data

When data {Xi} collected from the target system are available, the first step 
may be to construct the histogram of {Xi} to identify the range and shape of 
the distribution. Popular candidates for service time distribution are beta and 
lognormal as shown in Fig. 3.7.

3.5.2.1  Beta Random Variate: X∼Beta(α,β)  If the service times have a 
finite range [a, b], beta distribution is the choice for generating them. The 
parameters of the standard beta distribution Beta(α,β) can be estimated using 
the following equation (see Appendix 3A):

Fig. 3.7.  Service-time distributions when collected data are available.

Beta (a, b, , )

0
x

a
x

b0

LN ( , 2)



56    Input Modeling for Simulation

	 �α
ν

β
ν

= − −



 = − − −



u

u u
u

u u(1 )
1 ; (1 )

(1 )
1 ,ˆ 	 (3.7)

where the u and v are the mean and variance of the standard beta distribution, 
and they are given by

	 u x a b a s b a= − − = −( )/( ); /( ) ,ν 2 2 	 (3.8)

where the sample mean and sample variance are computed from the collected 
data:

	 x X s X xn i
i

n

n i
i

n
= = −

= − =∑ ∑1

1

2 1
1

2

1
; ( ) . 	

Once the parameters are estimated from Eq. 3.7, the beta random variate 
is generated the same way as discussed in Section 3.5.1.

Example 3.4. The ATM service-time data shown earlier in Table 3.1 have 
a sample mean of 62.8 and sample variance of 129.96. The range of the ATM 
service time is [a = 40, b = 90]. Thus, from Eq. 3.8, the mean and variance of 
the standard beta distribution are obtained as u  =  (62.8  −  40)/50  =  0.456; 
v = 129.96/(50 × 50) = 0.052. Finally, from Eq. 3.7, the parameters of the stan-
dard beta distribution are computed as

	 �α β= − − = =0.456[0.456(1 0.456)/0.052 1] 1.72; 2.05.ˆ 	

3.5.2.2  Lognormal Random Variate: X∼LN(μ,σ2)  Finally, if the service-
time distribution is skewed to the right, they are generated from the lognormal 
distribution LN(μ,σ2) whose parameters can be estimated as

	 ˆ ; ˆ ( ˆ ) .
/

µ σ µ= = −



∑ ∑1 1 2

1 2

n
In X

n
In Xi i 	 (3.9)

For given parameters μ and σ2, the relationship between the lognormal 
random variate X ∼ LN(μ,σ2) and the normal random variate Y ∼N(μ,σ2)are 
as follows:

	 X eY= . 	 (3.10)

Thus, lognormal random variates X  ∼  LN(μ,σ2) can be generated from 
normal random variates as follows:

1.	 Generate Y ∼ N(μ,σ2). (See Appendix 3B.5.)
2.	 Return X = eY.



Input Modeling for Special Applications    57

3.6  INPUT MODELING FOR SPECIAL APPLICATIONS

3.6.1  Interfailure Time Modeling

Interfailure time is modeled by the Weibull distribution Weibull (α,β) mainly 
due to its flexibility as shown in Fig. 3.8. If the failure rate decreases over time, 
then use α < 1; if the failure rate is constant over time, then use α = 1 (i.e., 
exponential distribution); if the failure rate increases over time, then use α > 1.

As presented in Appendix 3A, Weibull parameters can be estimated from 
the collected interfailure time data {Xi} by using a rank regression method. In 
order to estimate the parameters, the collected data {Xi} are rearranged in an 
increasing order to obtain a set of ordered sample data {X(i): i = 1 ∼ n} and the 
median rank Ri of the i-th sample data X(i) is computed using the following 
equation:

	 R i Ni = − +( . )/( . ).0 3 0 4 	 (3.11)

Then, the sequence of ordered rank data pairs {X(i), Ri} are fitted to the 
Weibull distribution as depicted in Fig. 3.9.

Fig. 3.8.  Weibull density function.
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Fig. 3.9.  Estimation of Weibull parameters via rank regression.
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As described in Appendix 3A, the procedure for estimating Weibull  
parameters α, β from the ordered-rank pairs {X(i), Ri} may be summarized as 
follows:

1.  Transform data {X(i), Ri} to form a linear equation (y = a + bx)

	 x X y Ri i i i= = − −ln( ); ln{ ln [ ]}.( ) 1 	 (3.12)

2.	 Compute the least-square estimators of a and b
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 −
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
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


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2 2

1

	

3.	 Obtain the Weibull parameter estimators

	 ˆ ˆ; ˆ ( ˆ / ˆ )α β= = −b e a b .	 (3.13)

Since the Weibull distribution function is easily inverted, Weibull random 
variates are generated employing the inverse-transform method. Namely, 
Weibull (α,β) random variate X is obtained from a uniform random variate U 
as follows:

	 X U= ∗ −β α( ln ) ./1 	 (3.14)

3.6.2  Inspection Process Modeling

A Bernoulli process is a discrete-time stochastic process consisting of a 
sequence of independent random variables {Xi} taking values over two symbols 
(0 or 1) such that P[Xi = 1] = p for all i. Distribution functions associated with 
the Bernoulli process include binomial bin(t,p) and negative binomial negbin 
(s,p) distributions (geometric is a special case of negative binomial).

1.	 bin (t,p): 
t

x
p px t x





− −( )1  for x = 0∼ t.

2.	 negbin (s,p): 
s x

x
p ps x

+ −





−
1

1( )  for x = 0, 1, 2 . . .

In quality control system simulations, input modeling of defective items  
is required. As an inspection process is a Bernoulli process, the number of 
defective items in a batch of size b can be sampled from the binomial distri
bution bin (b,p) and the number of inspections before encountering d 
defective items can be sampled from the negative binomial distribution 
negbin(d,p). Here, p is the probability of an item is defective. What distribution 
is used for the number of inspections before encountering the first defective 
item?
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3.6.3  Batch Size Modeling

In many service systems, customers may arrive in groups or batches. When 
frequency data collected from the source system is available and reliable, a 
simple yet effective method for generating batch sizes is the empirical model-
ing of the original frequency data. Namely, a batch size is sampled from the 
frequency data.

If the frequency data are not available (or unreliable) but the average batch 
size B is given, a theoretical distribution fitting method can be employed. 
When the maximum batch size b is given (1 ≤ B ≤ b), the binomial distribution 
X∼bin (t,p) is a choice. The parameters of binomial distribution are estimated 
as follows:

	 ˆ ; ˆ ( )/ .t b p B t= − = −1 1 	 (3.15)

Then, batch sizes following the binomial distribution bin (t,p) are gener
ated as

1.	 Generate {Ui ∼ U(0,1) for I = 1 ∼ t}.
2.	 For i = 1 ∼ t {If Ui ≤ p then Zi = 1, else Zi = 0}.
3.	 X = ΣZi.
4.	 Return B = X + 1.

3.7  REVIEW QUESTIONS

3.1.  What is trace-driven simulation?

3.2.  What are the three ways to empirically generate random inputs from 
collected data?

3.3.  What is the nonparametric input modeling method?

3.4.  What is the inverse-transformation method of generating a random 
variable?

3.5.  Where is a scatter diagram plotting used?

3.6.  What test is widely used in the goodness-of-fit test?

3.7.  How is the Erlang distribution defined in a homogeneous Poisson 
process?

3.8.  What is a nonstationary Poisson process?

3.9.  What is the thinning method of generating a next arrival time?

3.10.  What is a Bernoulli process?
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APPENDIX 3A: PARAMETER ESTIMATION

In this appendix, how to estimate parameters for the major continuous distri-
butions listed in Table 3.4 will be explained in just enough detail for readers 
to implement their own input modeling functions. Distributions covered are 
exponential, Erlang, Beta, Weibull, normal, and lognormal. For a more com-
prehensive treatment on the subject, the reader is referred to Law [2007].

3A.1  Exponential Distribution

The exponential distribution Expo(θ) is defined by the scale parameter θ, and 
it is widely used in the field of queuing theory mainly due to its simplicity. For 
x > 0, the density function f(x) and distribution function F(x) are given by

	 f x e F x ex x( ) ; ( ) ./ /= = −− −1
1

θ
θ θ 	 (3A.1)

The mean and variance of an exponentially distributed random variable are 
θ and θ2, respectively.

The parameter θ is estimated by using the maximum likelihood method, 
and the resulting estimator is called a maximum likelihood estimator (MLE). 
Let {xi: for i = 1 ∼ n} denote n independent observations, then the likelihood 
function is given by the product of density functions as follows:

	 L x x x f x en i
n x

i

n
i( , | ) ( | ) ( / ) ./

1 2
1

1� θ θ θ θ= = ∑−( )
=∏ 	 (3A.2)

The natural logarithm of the likelihood function is expressed as 
(x x ni

n
i= ∑( )=1 / ):

	 Λ = = − ( ) = − −
=∑ln ln( / ) / ln / .L n x n nxi

i

n
1

1
θ θ θ θ 	 (3A.3)

Differentiating Λ, setting it equal to 0, and solving for θ, the MLE is 
obtained as:

	 ∂ ∂ = − + − = ⇒ =Λ / [1/ ( 1/ )] 0 .2θ θ θ θn x xˆ 	 (3A.4)

3A.2  Erlang Distribution

The Erlang distribution is defined by the shape parameter k and scale param-
eter θ and is widely used in modeling arrival processes. For x > 0 and positive 
integer k, the density function is given by (the distribution function does not 
have a simple form):
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( )!
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f x
x e
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=
−

− − −θ θ1

1
	 (3A.5)

The mean (μ) and variance (σ2) of an Erlang random variable are:

	 µ θ σ θ= =k k; .2 2 	

If k = 1, it becomes an exponential density function. If k is a real number, 
it becomes a gamma density function.

As there are no closed-form solutions for the MLE of the parameters, the 
method of moment is employed in estimating the parameters k and θ. Let {xi: 
for i = 1 ∼ n} denote n independent observations, then the first sample moment 
m1 and second sample moment m2 are:

	 m x x m xn i
i

n

n i
i

n

1
1

1
2

1 2

1
= = =

= =∑ ∑; . 	 (3A.6)

On the other hand, the first and second population moments E(X) and 
E(X2) of the Erlang density function are:

	 E X xf x dx k E X x f x dx k k[ ] ( ) ; [ ] ( ) ( ) .= = = = +∫ ∫θ θ2 2 21 	 (3A.7)

Equating the population moments in Eq. 3A.7 with the sample moments 
in Eq. 3A.6 and solving for the parameters k and θ, we obtain (k is an integer):

	 ˆ ( ) /[ ( ) ]; ˆ [ ( ) ]/ .k m m m m m m≅ − = −1
2

2 1
2

2 1
2

1θ 	 (3A.8)

3A.3  Beta Distribution

The beta distribution Beta(α,β) is defined by the shape parameter α and scale 
parameter β and is widely used in modeling service times, especially, in the 
field of project management. For 0 < x <  1, the density function is given by 
(the distribution function does not have a simple form):

	 Density function: ( )
( )
( , )

,f x
x x

B
= −− −α β

α β

1 11
	 (3A.9)

where the beta function is B z z t t dtz z( , ) ( )1 2 0
1 1 11 21= ∫ −− − . The mean μ and vari-

ance σ2 of a beta random variable are:

	 µ α
α β

σ αβ
α β α β

=
+

=
+ + +

;
( ) ( )

.2
2 1

	 (3A.10)
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Further, if α  >  1 and β  >  1, the mode (m) of the density function is 
given by:

	 m = −
+ −
α

α β
1

2
. 	 (3A.11)

There are no closed-form solutions for the MLE of the parameters. Thus, a 
method of moment is employed in estimating the parameters. Namely, we 
solve Eq. 3A.10 for α and β, and then replace the population mean μ with 
sample mean x  and population variance σ2 with sample variance s2 to have:
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; ˆ ( )
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Alternatively, when m ≠ μ, the parameters may be expressed with respect 
to the mean μ and mode m as follows:

	 ˆ ( )
; ˆ ( ) ˆ .α β α= −

−
= −u m

m u
u

u
2 1 1

	 (3A.13)

3A.4  Weibull Distribution

The Weibull distribution Weibull (α,β) is defined by the shape parameter α 
and scale parameter β and is widely used in the field of life data analysis due 
to its flexibility: If the failure rate decreases over time, then α < 1; if it is con-
stant, then α = 1; if it increases, then α > 1. For x > 0, the density function f (x) 
and distribution function F(x) are given by

Fig. 3A.1.  Beta density function.
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	 f t t e F t et t( ) ; ( ) .( / ) ( / )= = −− − − −αβ α α β βα α1 1 	 (3A.14)

As there are no closed-form solutions to estimating the parameters α and 
β, the estimates of the parameters are commonly obtained by using rank 
regression. A rank regression method for estimating α and β from a set of 
ordered sample data {X(i) for i = 1 ∼ N} will be explained in the following. An 
example of ordered data for a sample size of 6 (N = 6) is given below.

	 X X X X X X( ) ( ) ( ) ( ) ( ) ( ); ; ; ; ; .1 2 3 416 34 53 75 93 120= = = = = =5 6 	 (3A.15)

The median rank Ri of the i-th sample data X(i) of size N can be estimated 
using the following equation:

	 R
i

N
i = −

+
0 3
0 4
.
.

. 	 (3A.16)

For the ordered data given in Eq. 3A.17, their median ranks may be esti-
mated as:

	 R R R R R R1 2 3 4 5 60 11 0 26 0 42 0 58 0 73 0 89= = = = = =. ; . ; . ; . ; . ; . . 	 (3A.17)

In order to apply the rank regression method, the nonlinear distribution 
equation F(t) in Eq. 3A.14 has to be linearized. Namely, rearranging F(t) and 
taking the natural logarithm of both sides of the equation yields:

	 ln[ ( )] ( / ) ln{ ln[ ( )]} ln( ) ln( ).1 1− = − → − − = − +F t t F t tβ α β αα 	 (3A.18)

The above equation is a linear equation of the form y = a + bx, where

	 y F t x t= − − =ln{ ln[ ( )]}; ln( )1 	 (3A.19)

	 a b= − =α β αln( ); . 	 (3A.20)

As given by Eq. 8.16 in Chapter 8, the least-square estimators of the coef-
ficients in the linear regression model (y = a + bx) are expressed as (n = sample 
size):
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	 (3A.21)

where x x n y y ni i= ∑ = ∑/ ; / . From the relations in Eq. 3A.21, xi and yi are 
expressed in terms of ordered sample data and median ranks as follows:

	 x X y Ri i i i= = − −ln( ); ln{ ln[ ]}.( ) 1 	 (3A.22)
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And, from Eq. 3A.22, the estimators of the parameters α and β are 
expressed as

	 ˆ ˆ; ˆ .( ˆ / ˆ )α β= = −b e a b 	 (3A.23)

3A.5  Normal and Lognormal Distributions

Many measurements, ranging from psychological to physical phenomena can 
be approximated, to varying degrees, by the normal distribution N(μ,σ2). If 
ln(X) follows a normal distribution N(μ, σ2), then X follows a lognormal dis-
tribution LN(μ, σ2). While the mechanisms underlying these phenomena are 
often unknown, the use of the normal model can be theoretically justified by 
assuming that many small, independent effects are additively contributing to 
each observation (for a real value of x). The density function is given by (dis-
tribution function has no closed form expression):

	 f x e x( ) .( ) /= − −1

2 2

22 2

πσ
µ σ 	 (3A.24)

The mean and variance are μ and σ2, respectively, and their MLEs are:

	 ˆ ; ˆ ( ) .µ σ= = = −− =∑x s X xn i
i

n
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1
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APPENDIX 3B: RANDOM VARIATE GENERATION

In this appendix, methods of generating random variates for major continuous 
distributions are explained in some detail. Distributions covered are exponen-
tial, Erlang, Beta, Weibull, normal, lognormal, and triangular distributions. 
There are available free libraries at http://www.codeproject.com/KB/recipes/
Random.aspx.

3B.1  Exponential Random Variate

An exponential random variate x∼Expo(θ) is generated by the inverse trans-
form method. This method is based on the observation that “If X ∼ F(x) and 
U∼ U(0,1) then we have U = F−1(X),” as depicted in Fig. 3B.1.

Since the exponential distribution is F(x) = 1 − e−x/θ, the distribution function 
is easily inverted to obtain the following inverse-transform relationship:

	 u e e u x ux x= − ⇒ = − ⇒ = − ∗ −− −1 1 1/ / ( ) ln( ).θ θ θ 	

Utilizing the fact that “(1  −  U)  ∼  U(0,1) if U  ∼  U(0, 1),” an exponential 
random variate X is generated from a standard uniform random variable U 
as follows:

http://www.codeproject.com/KB/recipes/Random.aspx
http://www.codeproject.com/KB/recipes/Random.aspx
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Fig. 3B.1.  Inverse-transform method of random variate generation.

1.00

U = F(X)
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	 X U= − ∗θ ln . 	 (3B.1)

3B.2  Erlang Random Variate

An Erlang-k random variate X∼Erlang (k,θ) with mean θ is defined as X = ΣYi 
for i = 1 ∼ k, where Yi’s are independent, identically distributed (IID) expo-
nential random variables with mean θ / k. Thus, an Erlang-k random variate 
X can be generated as a sum of the k IID exponential random variates, which 
is known as the convolution method of random variate generation. Namely, an 
Erlang-k random variate is generated as a convolution of exponential random 
variates:

	 X Y k U k Ui

i

k

i

i

k

i

i

k

= = − ∗ = − ∗




= = =

∑ ∑ ∏
1 1 1

{ ( / ) ln( )} ( / ) ln .β β 	 (3B.2)

3B.3  Beta Random Variate

As the direct methods (i.e., inverse-transform and convolution methods) are 
not applicable to Beta distribution Beta(α,β), the acceptance–rejection method 
is used in generating a beta random variate. In general, the acceptance–
rejection method makes use of a majoring function g(x) of the density function 
f (x) for which we wish to generate random variates. The majoring function 
g(x) is required to have the following properties: (1) g(x)  ≥  f (x); (2) m  = 
∫ g(x) dx < ∞; (3) random variate Y ∼ g(x) / m is easily generated. Then the 
acceptance–rejection method of generating a random variate X ∼ f (x) may be 
summarized as follows (see Fig. 3B.2):

Fig. 3B.2.  Acceptance–rejection method of random variate generation.
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(1)  Generate Y having density function g(x) / m;
(2)	 Generate U ∼ U(0,1), independent of Y ;
(3)	 If U ≤ f(Y) / g(Y) then return X = Y, else go back to step (1).

Applying the acceptance–rejection idea to generating a beta random variate 
is not a trivial problem, and there are quite a large number of beta random 
variate generation methods available in the literature (see for example, Cheng 
[1978], Schmeiser and Babu [1980]). Given below is the basic method of gen-
erating a standard beta random variate presented in Cheng [1978]. It is an 
acceptance–rejection method where the following functions are used as density 
function f (y) and majorizing function g(y):

Beta density function: f(y) = yα − 1/[B(α,β)(1 + yα + β)] for y > 0
Majorizing function:g(y) = λμ yλ − 1(μ + yλ)−2.

Y ∼ f (y) is known as the beta variate of the second kind Beta2(α,β). The 
following acceptance–rejection algorithm generates Y ∼Beta2(α,β) for α > 0 
and β > 0.

0.	 Initialization:
–  A = α + β;
–	 If then B else B A Amin( , ) max( , ) ( )/( );α β α β αβ≤ = = − −− −1 2 21 1

–	 C = α + B−1;

1.	 Generate: U1 ∼ U(0,1)&U2 ∼ U(0,1).
2.	 Set: V = B log[U1/(1 − U1)]; W = α · ev.
3.	 If { log[ /( )] log } log( )A A W C V U U⋅ + + ⋅ − <β 4 1

2
2  then go to step (1); // 

rejection.
4.	 Return: Y = W/(β + W).

Then, the standard beta variate X  ∼  Beta(α,β) with density function Eq. 
3A.9 can be obtained from the beta random variate Y ∼Beta2(α,β) as follows 
[Cheng 1978]:

	 X Y Y= +/( ).1 	

3B.4  Weibull Random Variate

As with the exponential distribution, the Weibull distribution Weibull(α,β) func-
tion is easily inverted to obtain the following inverse-transform relationship:

	 u e x ut= − ⇒ = ∗ − −−1 1 1( / ) /{ ln( )} .β αα β 	
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Since (1 − U) ∼ U(0,1) if U ∼ U(0,1), a Weibull random variate X is gener-
ated from:

	 X U= ∗ −β α( ln ) ./1 	 (3B.3)

3B.5  Normal and Lognormal Random Variates

Box and Muller [1958] developed a popular method for generating a normal 
random variate. It makes use of the relation that “X1 and X2 given by Eq. 3B.4 
are IID N(0,1) if U1 and U2 are IID U(0,1).” 

	 X U U X U U1 1
1 2

2 2 1
1 2

22 2 2 2= − = −( ln ) cos( ); ( ln ) sin( )./ /π π 	 (3B.4)

Thus, once the parameters μ and σ2 are estimated, normal random variates 
may be generated by using the method of Box and Muller [1958]:

1.	 Generate U1 ∼ U(0,1) & U2 ∼ U(0,1).
2.	 Compute Z1 = (−2 ln U1)1/2 cos(2πU2); Z2 = (−2ln U1)1/2 sin(2πU2).
3.	 Return X Z X Z1 1 2 2= + ⋅ = + ⋅ˆ ˆ ; ˆ ˆµ σ µ σ .

Since the normal random variates are generated in pairs, X1 and X2 are 
computed on each odd-numbered call to the generation function (but only X1 
is returned), and X2 is returned on each subsequent even-numbered call. Let 
X be a normal random variate sampled from N(m,s2), then a lognormal random 
variate Y sampled from LN(m,s2) is obtained from Y = eX.

3B.6  Triangular Random Variate

A double-triangle distribution Triangular(a,b,c)is defined by the lower bound 
value (a), upper bound value (b), and peak value (c). Depicted in Fig. 3B.3 are 
single-triangle density functions and random variates. A random variate of the 
“up-hill” triangle is generated as follows:

	 Y a c a U= + −( ) . 	 (3B-5)

And, the random variate of the “down-hill” triangle is generated as:

	 Y c b c U= + − − −( )( ).1 1 	 (3B.6)

Fig. 3B.3.  Single-triangle density functions and random variates.
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Fig. 3B.4.  Double-triangle density function.
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Then, the random variate of the double-triangle (see Fig. 3B.4) can be  
generated from the two single-triangle random variates by using the composi-
tion method. The composition method [Law 2007] calls for generating 
U1  ∼  U(0,1) and checking whether U1  <  p. If so, generate an independent 
U2 ∼ U(0,1) and return X = a +  (c − a) ×  (U2)1/2; Otherwise, return X = c + 
(b − c) × (1 − (1 − U2)1/2).
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CHAPTER 4

Introduction to Event-Based Modeling 
and Simulation

Little people discuss other people. Average people discuss events. Big 
people discuss ideas.

—R.E. Kalman

4.1  INTRODUCTION

This chapter is about the creative ideas for modeling and simulation of discrete-
event systems using the concept of event. We often hear about events in the 
evening news, on the radio, and, more recently, through social media channels. 
If something that happened results in some meaningful changes, it is called an 
event. If we can identify the logical and temporal relationships between those 
events, we can understand our present situation better and may even be able 
to predict the future. Event-based modeling is a fundamental method of rep-
resenting our knowledge about a discrete-event system, in which the dynamics 
of the system are represented by an event graph. An event graph is a network 
model of the logical and temporal relationships between the events. An event 
graph is a formal model that is easily implemented using the next-event meth-
odology of simulation execution.

The purpose of this chapter is to provide a comprehensive coverage of 
event-based modeling and simulation (M&S) using the “ordinary” (i.e., non-
parameterized) event graph. Event-based M&S involving a parameterized 
event graph is covered in the next chapter. After studying this chapter, you 
should be able to:

1.	 Provide an algebraic specification of an event graph model
2.	 Construct an event transition table for a given event graph model

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and 
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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3.	 Build event graph models for single queue systems that have various 
features such as balking/reneging, batched service, assembly operation, 
and resource failure

4.	 Build event graph models of various types of tandem line systems such 
as time-constrained processing lines and conveyor-driven serial produc-
tion lines

5.	 Build event graph models of special systems such as a flexible service 
shop, a car repair shop, a project management system, and an inline 
manufacturing cell

6.	 Simulate any event graph model using the commercial simulator 
SIGMA®

7.	 Develop your own computer simulation program for any event graph 
model

The remainder of the chapter is organized as follows. Section 4.2 reviews 
the integrated procedure for discrete-event simulation modeling using a single 
server system as an example. Then, the execution rules and formal specifica-
tions of an event graph model are presented in Section 4.3, followed by a 
section on event graph modeling templates. These modeling templates serve 
as building blocks for constructing larger models. Some real examples of event 
graph modeling are presented in Section 4.5, and the method of executing 
event graph models with SIGMA is explained in Section 4.6. Finally, a method 
for developing your own simulator is presented in the last section of this 
chapter.

4.2  MODELING AND SIMULATION OF A SINGLE SERVER SYSTEM

It was emphasized in Chapter 2 that the “integrated procedure for discrete-
event system modeling” should be followed regardless of the modeling formal-
isms used. In this section, a method for applying the integrated procedure to 
the event-based modeling formalism is illustrated using the single server 
model presented in Chapter 2 (see Fig. 2.6). In event-based modeling formal-
ism, a system is modeled by describing the changes that occur at different 
event times and the system dynamics are represented by an event graph.

4.2.1  Reference Modeling

The reference model of the single server system that was described in Chapter 
2 is reproduced in Fig. 4.1(a). An informal description of the system dynamics 
in terms of the physical and logical modeling components is referred to as the 
reference model. The physical modeling components are classified into entities, 
active resources, and passive resources: Jobs are the entities; Job Creator and 
Machine are active resources; and Buffer is a passive resource. Among the 
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logical modeling components, (1) job creation and job processing are activities, 
(2) the machine status (M) and buffer status (Q) are state variables, and (3) 
Arrive, Load, and Unload are events.

The dynamics of the single server system can be described in terms of the 
modeling components (Job Creator, Machine, Buffer, Job, create, process, 
arrive, load, unload) as follows: the Job Creator creates a new Job for a dura-
tion of ta minutes, which makes a new Job arrive every ta minutes; the new Job 
is loaded on the Machine if it is idle, otherwise the Job is stored in the Buffer; 
the loaded Job is processed by the Machine for ts minutes and then unloaded; 
the freed Machine loads another Job from the Buffer if it is not empty.

4.2.2  Formal Modeling

Reproduced in Fig. 4.1(b) is the event graph of the reference model in Fig. 
4.1(a). A discrete-event system model described using a formal modeling tool 
is referred to as a formal model. It provides a complete description of the 
system in a concise and clear manner and can be executed with a well-defined 
simulation algorithm.

The event graph in Fig. 4.1(b) is interpreted as follows: (1) An Arrive event, 
which increases the job count by one (Q++), always schedules an Arrive event 
to occur after ta and schedules a Load event if the machine is idle (M ≡ 1). (2) 
A Load event, which sets the machine to busy (M−−) and decreases the job 
count by one (Q−−), schedules an Unload event to occur after ts. (3) The 
Unload event resets the machine to idle (M++) and schedules a Load event if 
the buffer is not empty (Q > 0).

Fig. 4.1(a).  Reference model of single server system (reproduced from Fig. 2.6).

Buffer: Q

Machine: M

Job Creator

Arrive Load Unload

Process [ts]

3 Jobs

Create [ta]

Fig. 4.1(b).  Event graph of the single server system (reproduced from Fig. 2.1).
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4.2.3  Model Execution

As mentioned in Chapter 2, the systematic method of specifying an event 
graph model is the use of an event transition table. This is a table in which the 
state change, edge condition, action-type (schedule/cancel), time delay, and 
destination events are specified for each event node. Table 4.1 shows an event 
transition table for the event graph in Fig. 4.1(b) with ta  ∼  Exp(5) and 
ts ∼ Exp(2). Then, (as explained in Section 4.7.5), an event routine is obtained 
for each row of the event transition table so that the single server model is 
executed with your own event graph simulator. Alternatively, (as explained in 
Section 4.6.1), the event graph model in Fig. 4.1(b) is converted to a SIGMA-
compatible event graph so that the single server model is executed with 
SIGMA.

4.3  EXECUTION RULES AND SPECIFICATIONS OF EVENT 
GRAPH MODELS

An event graph is a graphical formal model consisting of a set of event nodes 
and a set of directed edges. It provides a complete description of a discrete-
event system (DES) in a concise and clear manner. Since the graphical model 
is to be interpreted by a human, its execution rules have to be described 
unambiguously. A graphical model can be specified in algebraic form (to be 
analyzed by a human logically) as well as in computer-readable form (to be 
executed on a computer).

4.3.1  Event Graph Execution Rules

There are two types of edges in an event graph: scheduling edges and canceling 
edges. In this subsection, the event vertex execution rules for these two types 
of edges are described [Schruben and Schruben 2001].

4.3.1.1  Execution of an Event with a Scheduling Edge  Shown in Fig. 4.2 
is an event vertex with a scheduling edge, which indicates that “whenever the 

TABLE 4.1.  Event Transition Table for the Single Server System

No
Originating 

Event
State 

Change Edge Condition Action Delay
Destination 

Event

0 Initialize Q = 3; 
M = 1;

1 True schedule 0 Arrive

1 Arrive Q++; 1 True schedule ta = Exp(5) Arrive
2 M > 0 schedule 0 Load

2 Load M--; Q--; 1 True schedule ts = Exp(2) Unload
3 Unload M++; 1 Q > 0 schedule 0 Load
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originating event E1 occurs, the state (s) changes according to fE1(s). Then, if 
the edge condition c1 is true, the destination event (E3) is scheduled to occur 
after a time delay of t1.” The scheduled execution time (τ) of E3 is obtained 
by adding the time delay (t1) to the current execution time (Clock) of E1. 
Namely, τ = Clock + t1.

4.3.1.2  Execution of an Event Having a Canceling Edge  Shown in Fig. 4.3 
is an event graph with a canceling edge denoted by the dashed arrow. This 
event graph indicates that “whenever the originating event E2 occurs, the state 
‘s’ changes to fE2(s). Then, if the edge condition c2 is true, the scheduled event 
E3 is canceled immediately.” If there is more than one event scheduled in the 
future event list, only the first one (i.e., the one with the smallest event time) 
may be canceled.

4.3.2  Tabular Specification of Event Graph Models

Let’s consider an event vertex (E1) with a scheduling edge to event vertex E2 
and a canceling edge to event vertex E3 as shown in Fig. 4.4. The event graph 
indicates that “whenever event E1 occurs, the state ‘s’ changes to fE1(s). Then, 
if the edge condition c1 is true, event E2 is scheduled to occur after t1; and if 
the edge condition c2 is true, event E3 is canceled immediately.”

The event execution rules for the event graph of Fig. 4.4 can be specified 
in a tabular form called an event transition table. As shown in Table 4.2, each 
originating event is specified using five data fields: state change, edge condition, 
action type (schedule or cancel), time delay, and destination event.

Fig. 4.2.  Event graph with a scheduling edge.

Fig. 4.3.  Event graph with a canceling edge.

Fig. 4.4.  Event graph with a scheduling edge and a canceling edge.
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Figure 4.5 shows an event graph model with five event vertices. The rectan-
gular box in the event graph denotes the initialize-event, where the state 
variables are initialized (Q = 0 and M = 1) and two events (E1 and E4) are 
scheduled. The first three events (E1–E3) constitute a single server system 
(compare with Fig. 4.1). An event transition table for the event graph model 
of Fig. 4.5 is given in Table 4.3.

TABLE 4.2.  Event Transition Table for the Event Graph of Figure 4.4

Originating 
Event

State 
Change Edge Condition Action Delay

Destination 
Event

E1 s = fE1(s) 1 c1 schedule t1 E2
2 c2 cancel 0 E3

Fig. 4.5.  Event graph model with an initialization box.

E2 E3

{Q++} {M=0; Q--} {M= 1}

(M>0)

(Q>0)

E1
t3

t1

Q=0; M=1;

E5 E4

{M=1} {M= –1 }

t4

t5

t4

(Q>0)

TABLE 4.3.  Event Transition Table for the Event Graph in Figure 4.5

No
Originating 

Event
State 

Change Edge Condition Action Delay
Destination 

Event

0 Initialize Q = 0; 
M = 1;

1 True schedule 0 E1
2 True schedule t4 E4

1 E1 Q++; 1 True schedule t1 E1
2 M > 0 schedule 0 E2

2 E2 M = 0; 
Q−−;

1 True schedule t3 E3

3 E3 M = 1; 1 Q > 0 schedule 0 E2
4 E4 M = − 1; 1 True schedule t5 E5

2 True cancel 0 E3
5 E5 M = 1; 1 Q > 0 schedule 0 E2

2 True schedule t4 E4
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4.3.3  Algebraic Specifications of an Event Graph Model

An event graph is a directed graph consisting of a set of event vertices (V), a 
set of directed edges (E), and a set of state variables (S). The edge set E rep-
resents the temporal and logical relationships between a pair of vertices. 
Associated with each vertex (v  ∈ V) is a state transition function (fv  ∈  F); 
associated with each edge (e ∈ E) are edge conditions (ce ∈ C), time delays 
(de ∈ D), and action types (ae ∈ A; schedule or cancel). Thus, an event graph 
model M can be defined as a 7-tuple structure [Savage et al. 2005]:

M = <V, E, S, F, C, D, A>, where
V = {v}: set of event vertices
E = {eod= (vo, vd)}: set of edges // vo: originating event; vd: destination event
S = {s}: set of state variables
F = {fv: S → S ∀v ∈ V}: set of state transition functions associated with V
C = {ce: S→[0,1] ∀e ∈ E}: set of conditions associated with E
D d e Ee= ∈ ∀ ∈∞{ }R0 : set of time delays associated with E
A = {ae ∈ [scheduling, canceling] ∀e ∈ E}: action type set

For example, the algebraic components of the event graph model in Fig. 4.1 
(single server system) are as follows:

1.	 V = {v1 = Arrive, v2 = Load, v3 = Unload}
2.	 E = {e1 = (v1, v1), e2 = (v1, v2), e3 = (v2, v3), e4 = (v3, v2)}
3.	 S = {Q, M}
4.	 F = {f1: Q++; f2: M−−, Q−−; f3: M++}
5.	 C = (c1: True; c2: (M ≡ 1), c3: True; c4: (Q > 0)}
6.	 D = {d1 = ta; d2 = 0; d3 = ts; t4 = 0}
7.	 A = {a1 = a2 = a3 = a4 = scheduling}

Exercise 4.1. Specify the algebraic components of the event graph in Fig. 4.5.

4.4  EVENT GRAPH MODELING TEMPLATES

The modeling templates introduced here may be used as building blocks for 
modeling large systems. The single server event graph model shown in Fig. 
4.1(b) is the baseline event graph model of a single queue system where a 
“table type” machine processes one job at a time, and the arriving jobs are 
stored in an infinite capacity buffer. This baseline model will be embellished 
and/or extended to cover more realistic and/or complex situations. Many of 
the modeling templates in the following are borrowed from Schruben and 
Schruben [2001].
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4.4.1  Single Queue Models

By embellishing the baseline model of Fig. 4.1(b), a number of single queue 
models may be generated: a multi-server model, a limited waiting space model, 
a reneging queue model, a batched service model, an assembly-operation 
model, a resource priority model, and a resource failure model.

Exercise 4.2. Simplify the baseline model Fig. 4.1(b) by removing the Load 
event.

4.4.1.1  Flexible Multi-Server Model with Varying Number of Servers  If 
a single queue system has more than one server, it is called a multi-server 
system. When the number of servers n is constant, the single server event graph 
model becomes a multi-server model if we set M = n (n > 1) in the initialize 
box.

Now, consider the case where the number of servers n(t) at time t varies 
over time, which we call a flexible multi-server model. Then, the event graph 
model of a flexible multi-server system can be represented as shown in Fig. 
4.6, where M(t) denotes the number of idle machines at time t. It should be 
noted that the self-scheduling edge of the Load event vertex is introduced in 
order to manage the abrupt increase in the number of servers.

4.4.1.2  Limited Waiting Space Model (Balking Model)  If the limited-
capacity waiting space is full, an arriving job may not be able to enter the 
system and leave the system permanently, which is referred to as balking. Let 
c denote the capacity of the waiting space, and then the balking is modeled by 
introducing an Enter event as shown in Fig. 4.7.

4.4.1.3  Impatient Customer Model (Reneging Model)  When customers 
arrive at a system that includes a queue and a server, they will enter the queue 

Fig. 4.6.  Event graph model of a flexible multi-server system.

M(t)= M + (n(t) – n(0)); n(t): number of servers at time t 

Fig. 4.7.  Limited waiting space event graph model.

Load Unload

{Q++} {M--, Q--} {M++}

(M>0)

(Q≥1)

Arrive
ts

ta

Q=0; M=1 Enter
(Q<c)
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if there is room. Once in the queue, they may choose to leave it if they have 
waited too long, which is often called reneging in queuing theory. As depicted 
in Fig. 4.8, a Leave event is introduced to manage the reneging situation: (1) 
every Enter event schedules a Leave event to occur after tr minutes; (2) every 
Unload event cancels the oldest Leave event that has been scheduled, if there 
is one; and (3) every Leave event decreases Q by one (denoting the reneging 
customer).

Exercise 4.3. Construct a single server system event graph for reneging 
without balking.

4.4.1.4  Nonstationary (Fluctuating) Arrival Rates Model  The method of 
generating exponential random variates with fluctuating arrival rates has been 
explained in Chapter 3 (refer to Fig. 3.4 of Section 3.4.3). Let λ(t) denote the 
arrival rate at time t and it is bound by λ*, then the thinning method of gen-
erating X∼ Exp(1/λ(t)) is as follows:

1.	 Set: t = ti−1

2.	 Generate: U1 ∼ U(0, 1) and U2 ∼ U(0, 1)
3.	 D = −(1/λ*) ln(U1); //exponential random variable with θ = 1/λ*

4.	 t = t + D
5.	 If U2 ≤ λ(t)/λ*, then return ti = t, else go back to step 2

Shown in Fig. 4.9 is an event graph model of a single server system subject 
to fluctuating arrival rates. The next Arrive event is scheduled to occur after 
an inter-arrival time ta with a bounding arrival rate λ*, and the Arrive event 
will schedule an Enter event only when the thinning test is passed (i.e., 
U < λ(t)/λ*).

4.4.1.5  Batched Service Models  Batched service occurs when a batch of 
jobs is processed simultaneously. In general, there is a maximum number (b) 
and a minimum number (a) of jobs that can be processed at one time, which 
is denoted as a  ≤  J  ≤  b, where J is the actual number of jobs in a batched 

Fig. 4.8.  Event graph model for reneging with balking.
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service. If a = b, it is a full batched service; if a < b, then it is a partial batched 
service.

An event graph model for a full batched service using a single machine is 
given in Fig. 4.10. Notice that the baseline model of Fig. 4.1(b) is a special case 
of the full batched service model of Fig. 4.10, with b = 1.

Exercise 4.4. Revise the event graph presented in Fig. 4.10 to make it a 
partial batched service model.

4.4.1.6  Assembly Operation Model  A type j part for j = 1, 2 arrives at the 
system every tj minutes, and a pair of parts, one from each type, are assembled 
together using a machine. Let Q denote number of part pairs and Pj denote 
number of (unpaired) parts of type j; then, by introducing a Join event, the 
assembly operation is modeled as an event graph as shown in Fig. 4.11.

At this point, it is instructive to comment on the edge conditions in Fig. 
4.11. Let C1 and C2 denote edge conditions of the Enter1→Join edge and 
Enter2→Join edge, respectively. It is specified in Fig. 4.11 that C1 = (P1 ≥ 1) & 
(P2 ≥ 1), and C2 = (P1 ≥ 1) & (P2 ≥ 1), which is valid. However, it can be found 

Fig. 4.9.  Event graph model for fluctuating arrival rates (nonhomogeneous arrivals).
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Fig. 4.10.  Full batched service event graph model.
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Fig. 4.11.  Event graph model for an assembly operation.
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that C1 = (P2 ≥ 1) and C2 = (P1 ≥ 1) are also valid. Similarly, the edge condi-
tion for the Join → Load edge is (M > 0) & (Q ≥ 1), but in Fig. 4.11, it is speci-
fied as (M > 0) because (Q ≥ 1) is always true at the Join event.

Exercise 4.5. Modify the event graph Fig. 4.11 to assemble three type 1 
parts and four type 2 parts.

4.4.1.7  Resource Priority Model  When there are two servers with differ-
ent priorities, an arriving customer is served by the high priority server (M1) 
if it is free. The customer is directed to the low priority server (M2) only when 
M1 is busy, which is handled by a Check event. An event graph model for a 
“two server system with priority” is given in Fig. 4.12.

The above resource priority model has a common queue for both servers. 
There is a situation where each server has its own queue and the arriving 
customers join the smaller queue, which is often referred to as a queue length 
balanced line.

Exercise 4.6. Modify the event graph Fig. 4.12 to make it a queue length 
balanced line.

4.4.1.8  Resource Failure Models  A single server system with resource 
failure may be modeled by introducing a Fail event with an interfailure time 
tf and a Repair event with a repair time tr. An event graph model of the single 
server system with failure is given in Fig. 4.13 (it is the same as Fig. 4.5). The 
Fail event will cancel a scheduled Unload event (if there is one) and schedule 
a Repair event to occur after tr minutes. The active resources in the resource 
failure system are the machine and repairman, while the entities are the jobs 
and failures. This model assumes that a server may fail even when it is idle and 
that the job whose processing is interrupted by the failure is discarded without 
reprocessing.

Exercise 4.7. Modify the event graph of Fig. 4.13 so that the job that was 
interrupted by the failure is reprocessed.

Fig. 4.12.  Event graph model of a two-server system with resource priority.

Load1 Unload1
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{M2--, Q--} {M2++}
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Now consider the case where the interfailure time is effective only when 
the server is busy (i.e., idle periods have no effect on the failure) and the inter-
rupted job is discarded. If all time data are deterministic such that service time 
S  =  10, repair time R  =  50, and interfailure time F  =  1000, then the “single 
server system with failure” can be modeled without an event cancellation as 
shown in Fig. 4.14.

In the event graph model, tf is the remaining time to failure; tu is the actual 
time to unload. In general, an event graph model with an event cancellation 
can be transformed into a model without an event cancellation [Savage and 
Schruben 1995]. Notice in the model that the remaining time to failure (tf) is 
also a state variable that is updated every time the machine completes a cycle. 
Issues related to modeling resource failures are discussed further in Schruben 
and Schruben [2001]. The actual time to unload (tu) is computed in the Get-tu 
() function as follows: When the remaining time to failure is larger than the 
service time (tf ≥ S), the scheduled Unload event will be performed as sched-
uled. In this case, the actual time to unload equals to the service time (tu = S), 
and the tf is decreased by S. Otherwise (tf < S), tu becomes tf + R, and tf is set 
to the interfailure time F.

4.4.2  Tandem Line Models

The event graph of the two-stage tandem server defined previously in Chapter 
2 (Fig. 2.15) is reproduced in Fig. 4.15, which serves as the baseline tandem 
line model in this chapter. The baseline model is obtained by appending a 
server model to the single server model of Fig. 4.1(b). From this baseline event 
graph model, a number of tandem line models may be generated: (1) limited 

Fig. 4.13.  Event graph of single server system with failure.
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Fig. 4.14.  Modeling of machine failure without an event cancellation.
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buffer tandem line model, (2) buffer-less tandem line model, and (3) time-
constrained processing model.

4.4.2.1  Limited Buffer Tandem Line Model  If the buffer after a machine 
has a limited capacity, a finished job may not be unloaded from the machine 
when the buffer is full. This situation is referred to as blocking. Figure 4.16 is 
an event graph model for a two-stage tandem line with a buffer of capacity 
c2. A Finish event and a blocking variable (B1) are introduced to control the 
blocking of M1: (1) the Finish event sets the blocking variable to true (B1 = 1) 
and schedules an Unload-1 event if the buffer is not full (Q2 <  c2); (2) the 
Unload-1 event sets the blocking variable to false (B = 0); and (3) the Load-2 
event schedules an Unload-1 event if the blocking variable is true (B1 ≡ 1).

4.4.2.2  Buffer-less Tandem Line Model  If the buffer capacity is zero (c = 0) 
in the limited buffer tandem line model, the adjacent machines are tightly 
coupled such that unloading from machine-j becomes loading to machine-j+1, 
which is called an “UjLj+1” event. An event graph model of three-stage buffer-
less tandem line is given in Fig. 4.17.

4.4.2.3  Time-Constrained Processing Tandem Line Model  A processing 
situation where a job that had been processed on a machine (M1) must start 
the next processing step on the next machine (M2) within a time-out limit (to) 
is called a time-constrained processing. Otherwise, the time-out job is discarded 

Fig. 4.15.  Baseline event graph model of tandem line system.
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Fig. 4.16.  Event graph model of a limited buffer tandem line (blocking).
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(which is the same as the reneging situation of Fig. 4.8) or sent back to M1 for 
reprocessing. In Fig. 4.18, a Time-out event is introduced to manage the time 
constrained processing under a discarding policy: (1) every Unload-1 event 
schedules a Time-out event to occur after to minutes if M2 is 0; (2) every 
Unload-2 event cancels the oldest Time-out event that had been scheduled; 
(3) a Time-out event decrements Q2 (i.e., discard a time-out job).

Exercise 4.8. Modify the event graph Fig. 4.18 so that the time-out jobs are 
reprocessed.

4.5  EVENT GRAPH MODELING EXAMPLES

System modeling is an art that cannot be mastered without practice. In order 
for you to become familiar with event graph modeling, some examples of event 
graph modeling are provided in this section. The event graph application areas 
that will be covered are a simple service shop with fluctuating arrival rates, a 
car repair shop, a project management application, a conveyor-driven serial 
assembly line, and an inline manufacturing cell.

4.5.1  Flexible Multi-Server System with Fluctuating Arrival Rates

A salient feature of a service system is that the customer arrival rates fluctuate 
over time. In a flexible multi-server system, the resource levels change over 
time in order to cope with the changes in arrival rates. Let λ(t) and n(t) denote 
arrival rates and the number of servers at time t, respectively; then, by combin-
ing the event graph templates in Figs. 4.6 and 4.9, the event graph model of a 
flexible multi-server system with fluctuating arrival rates can be constructed 
as in Fig. 4.19.

4.5.2  Car Repair Shop

The entities of a car repair shop are the cars brought in for repair and the 
resources are the technicians and repairmen. There are three types of activities: 

Fig. 4.18.  Event graph model for time-constrained processing with a discarding policy.
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Fasten, Inspect, and Repair, with processing times t1, t2, and t3, respectively. The 
fasten operation is performed by a technician; the inspection operation requires 
both a technician and a repairman; and the repair operation is handled by a 
repairman.

A reference model of a simple car repair shop under a same operator policy 
is provided in Fig. 4.20(a) where a car is fastened and inspected by the same 
technician and is inspected and repaired by the same repairman. Thus, a tech-
nician stands by after fastening a car until a repairman is available. If the same 
operator restriction is removed, the reference model would change to that 
shown in Fig. 4.20(b).

Figure 4.21 is an event graph model of the car repair shop under the same 
operator policy. There are m free technicians and n free repairmen in the 
system. The state variables are the number of waiting cars (Q1, Q2, Q3), 
number of free technicians (T), and number of free repairmen (R). All start 
points and end points of the activities are regarded as events: car arrival (CA), 

Fig. 4.19.  Event graph of flexible multi-server system with fluctuating arrival rates.
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Fig. 4.20.  (a) Reference model of car repair shop under a same operator policy; (b) 
reference model of car repair shop without a same operator policy.
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Fig. 4.21.  Event graph of a car repair shop under the same operator policy.
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fastening start (Fs), fastening end (Fe), inspect start (Is), inspect end (Ie), repair 
start (Rs), and repair end (Re).

Exercise 4.9. Build an event graph for the reference model of Fig. 4.20(b).

4.5.3  Project Management Modeling

In project management, the precedence relationships among activities are 
represented as a directed graph of activities known as a PERT (program evalu-
ation and review technique) diagram [Duncan 1996]. Shown in Fig. 4.22 is an 
activity-on-node (AON) PERT diagram involving nine activities (A1–A9) that 
serves as a reference model of the project management problem. A node 
denotes an activity, and an edge represents the finish–start precedence rela-
tionship between the two nodes (i.e., the first activity must be finished before 
starting the second activity). The activity ID (Aj), activity time (tj), and the 
critical resource (Rk) required for each activity (noncritical resources are not 
explicitly identified) are indicated in each node. For example, the resource R1 
manages activities A1, A3, and A7.

Let’s build an event graph model for the AON PERT diagram in Fig. 4.22 
disregarding the resources. (This example was adopted from Schruben and 
Schruben [2001].) The first step is to identify the state variables of the PERT 
diagram. The state variables are {nj for j = 1∼9}, where nj denotes the number 
of unfinished precedent activities of activity Aj. Note that the activity Aj may 
be started only when nj is 0. The start point and finish point of activity Aj are 
defined as the start event Sj and finish event Fj, respectively. An event graph 
model of the AON PERT diagram without resource constraints is given in  
Fig. 4.23.

Initially, the state variables have the following values: n1 = 0, n2 = 1, n3 = 1, 
n4 = 1, n5 = 2, n6 = 1, n7 = 1, n8 = 2, and n9 = 2. The finish event F1 will decrement 
its succeeding activity counts (n2−−, n3−−) and schedule the start events (S2 
and S3) of its succeeding activities because n2 ≡ 0 and n3 ≡ 0. For example, the 
start event S3 may start when n3 = 0, and it will schedule the finish event F3 to 
occur after t3 time units. The succeeding activities of A3 are A5 and A6. Thus, 
n5 and n6 are decremented by F3, and so on.

In general there are four types of precedence constraints: finish–start, 
finish–finish, start–start, and start–finish precedence constraints. For example, 

Fig. 4.22.  Activity-on-node PERT diagram with finish–start precedence.
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an event graph of a PERT diagram with a start-to-start precedence may be 
constructed similarly. However, the event graph of Fig. 4.23 may be simplified 
somewhat by eliminating all start events {Sj}. Methods of simplifying event 
graph models are elaborated in Schruben [1983].

In general, it is possible to construct an event graph model for a resource 
constrained PERT diagram by introducing a resource dispatch event for each 
resource together with additional state variables, but it may become quite 
complicated when the resource-activity relationships are not simple. Resource 
constrained PERT diagrams may be modeled more easily using an activity 
cycle diagram, as will be described further in Chapter 6.

Exercise 4.10. Simplify the PERT event graph Fig. 4.23 by removing the 
state variables {nj} whose initial value is 1.

4.5.4  Conveyor-Driven Serial Line

Consider a three-stage serial production line shown in Fig. 4.24 consisting of 
three workstations (WS) connected by conveyors (CV). The base parts (jobs) 
stored in the input buffer (Buffer-I) are moved along the line, and the subparts 
are assembled into the base part at each workstation. The assembled base parts 
(i.e., products) are stored in the output buffer (Buffer-O). The entities in the 
system are the base parts, and the resources are the WS, CV, and Buffer. The 
activities are the production operations at the WS and the transport operations 
by the conveyors.

Each workstation WSj for j = 1-n is specified by its production operation 
time pj, while each conveyer CVj for j  =  2-n is specified by its capacity cj 
and transport time tj. The capacities of Buffer-I and Buffer-O, respectively 

Fig. 4.23.  Event graph of the PERT diagram of Fig. 4.22 without resource 
constraints.
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Fig. 4.24.  Reference model of a three-stage conveyor-driven serial production line.
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designated as c1 and cn+1, are assumed to be unlimited. Thus, the characteristics 
of the serial production line are defined using the following values:

pj = processing time at WSj;
tj  = transport time of the conveyor-j feeding WSj; and
cj  = capacity of CVj (c1 = cn+1 = ∞).

The state of each workstation (WSj) is specified by two state variables: Mj 
(free or busy) and Bj (blocked or not); that of CVj is specified by Qj (total 
number of jobs on a CVj) and Rj (number of “ready” jobs that have been 
moved to the WS). Thus, the state variables of the serial production line are 
as follows:

Mj = workstation-j status (1: free, 0: busy);
Bj  = blocking of workstation-j (1: blocked);
Qj  = total number of jobs at CVj; and
Rj  = number of jobs ready at CVj (i.e., jobs that have been transported).

Since a conveyor acts as a limited buffer, each workstation in the serial line 
is modeled as a machine in the limited buffer tandem line of Fig. 4.16. Thus, 
there are three types of events associated with WSj: Load (Lj), Finish (Fj), and 
Unload (Uj). Let Tj denote the Transport (to the end of conveyor) event of 
CVj. Then, the operation cycle of CVj is defined by Uj−1 (unload from work 
station j−1), Tj, and Lj. Thus, the event graph model of the three-stage conveyor-
driven serial line is as shown in Fig. 4.25, where Tj denotes the Transport event 
at CVj.

4.5.5  Inline-Type Manufacturing Cell Modeling

An electronics fabrication factory (abbreviated as Fab) is a job shop in which 
a job goes through a number of processing steps according to its routing 
sequence. In a modern electronics Fab, unlike a mechanical job shop where a 
mechanical part is processed individually at table machines, the jobs are pro-
cessed in batches mostly in inline cells.

Depicted in Fig. 4.26 is a photolithography cell commonly found in a modern 
TFT–LCD (thin film transistor–liquid crystal display) panel Fab. For brevity, 

Fig. 4.25.  Event graph model of a three-stage conveyor-driven serial line.
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the inline-type manufacturing cell will be simply called an inline cell. This 
modeling case is quite significant as it is taken from a real-life simulation 
project in which a simulation-based planning and scheduling system was built 
for a TFT–LCD Fab [Park et al. 2008], and it considers important issues that 
arise in these Fabs. The issues addressed in the case study are the “divide and 
conquer” method of building event graph models and model simplification.

In the photolithography cell in Fig. 4.26, the jobs are glasses that go through 
photoresist (PR) coating, exposure, and development processes in the cell. The 
jobs are handled in batches with each batch (or lot) stored in a cassette. The 
arriving cassettes that are stored in the inline stocker are moved into the I/O 
port, which is called the cassette loading (CL) operation. The glasses are 
loaded inline using a loading robot, with one glass being loaded at every takt 
time (τ). It takes a flow time (π) for a loaded glass to reach the end of the cell 
where it is unloaded into the unloading cassette located at the I/O port. The 
unloading cassette departs when it is filled with finished glasses. In unloading 
the glasses, only one unloading cassette is used at a time.

4.5.5.1  Reference Model  Figure 4.27 is the reference model of the cell 
given in Fig. 4.26. The physical components of the cell are the Stocker, I/O 
port, Robot, and Inline. The state variables in the model are Q (number of 
arriving cassettes in the Stocker), B (number of arriving cassettes in the I/O 
port), E (number of empty shelves in the I/O port), and R (status of Robot). 
The activities in the cell are (1) cassette arrival, (2) cassette loading, (3) glass 
loading, (4) glass unloading, and (5) cassette departure.

The capacity of the Stocker is assumed to be unlimited. The I/O port has a 
finite number of shelves for storing cassettes (arriving, unloading, and empty 
cassettes). Let N be the number of shelves of the I/O port. If all shelves are 
empty at the beginning, we have E = N and B = 0. If an arriving cassette is 
loaded onto I/O port, the state variables are updated to E = E−1 and B = B+1. 
If all glasses in an arriving cassette are loaded into the Inline, the cassette 
becomes empty. If the finished glasses are unloaded into an empty cassette, it 

Fig. 4.26.  An inline cell for photolithography process.
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becomes an unloading cassette. When the unloading cassette departs from the 
I/O port, the number of empty shelves is increased by one (E = E+1).

Only the glasses with the same job type are stored in a cassette, which 
becomes the job type of the cassette. The job type of an arriving cassette is 
denoted by Ja and the number of glasses in the arriving cassette is ga  ≤  λ, 
where λ is the cassette capacity. The finished glasses are unloaded into the 
empty slots of the unloading cassette whose job type is denoted by Ju. The 
number of empty slots in the unloading cassette is denoted by eu ≤ λ. Thus, 
the number of glasses in the unloading cassette is equal to λ  −  eu. The eu 
(number of empty slots) and Ju (job type) of the unloading cassette are also 
regarded as state variables. Recall that there is only one unloading cassette at 
a time.

In general, it is convenient to divide the reference model into regions, build 
a submodel for each region, and join the submodels in order to obtain the 
entire event graph model of the reference model. Now, we will divide our 
reference model into three regions: the Loading region, Processing region, and 
Unloading region.

4.5.5.2  Loading Region Modeling  Figure 4.28 is a reference model of the 
loading region (Stocker + I/O port + Robot). The time required for processing 
all glasses in an arriving cassette is t1 = ga * τ, where τ is the takt time of a 

Fig. 4.27.  Reference model of the inline-type manufacturing cell in Fig. 4.26.

Stocker (Q)

Robot(R)

3) Glass
Loading (τ: takt-time/glass)

1) Cassette
Arrival

: Arriving cassette (ga, Ja); : Empty cassette ( );

4) Glass
Unloading 

5) Cassette Departure

: Unloading cassette (eu, Ju)

ga= # of glasses in Arriving cassette; λ= cassette capacity; eu= # of empty slots in the Unloading cassette 

2) Cassette
Loading

I/O port (B, E)

Inline (p: flow-time)

5) Cassette Departrr ure

l

Fig. 4.28.  Reference model of the loading region.

FGL

t
Glass-Loading time

t1 = ga * τ

LGL 

CL

CA
If  I/O-Port has empty shelves

If I/O Port has arriving cassettes
If Robot is idle (R 1)



Event Graph Modeling Examples    89

glass loading. The events involved in the loading region model are CA (end 
of cassette arrival), CL (end of cassette loading), FGL (start of first glass 
loading), and LGL (end of last glass loading). The relationships among the 
events are as follows: (1) when a cassette arrives, it is loaded if the I/O port 
has space; (2) the first glass of the cassette is loaded if the Robot is idle; (3) 
the last glass is loaded after t1 time units since the first glass is loaded; and (4) 
after the last glass loading, the first glass of the next cassette is loaded if there 
is an arriving cassette in the I/O port.

The system dynamics of the loading region described in the reference model 
may be formally specified as an event graph model in terms of the state vari-
ables. An event graph model of the loading region is given in Fig. 4.29, where 
the state variables are Q (number of arriving cassettes in Stocker), B (number 
of arriving cassettes in I/O port), E (number of empty shelves in I/O port), 
and R (status of Robot with R = 1 initially).

4.5.5.3  Processing Region Modeling  A reference model of the processing 
region and its event graph model are shown in Fig. 4.30(a) and (b), respectively. 
The events at the start of the Inline are the FGL and LGL that were defined 
in the In-port region (see Fig. 4.29), and the events at the end of the Inline are 
FGU (start of the first glass unloading) and LGU (end of the last glass unload-
ing). The FGU event is scheduled by the FGL event to occur after the flow 
time (π), and the LGU is scheduled by the LGL after π.

4.5.5.4  Unloading Region Modeling  Figure 4.31 shows the reference 
model of the unloading region. The events involved are the FGU, LGU, and 

Fig. 4.29.  Event graph of the loading region.
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CD (end of cassette departure). An arriving cassette is identified by its job 
type (Ja) and its number of glasses (ga), while the unloading cassette is speci-
fied by its job type (Ju) and the number of its empty slots (eu). An important 
restriction in glass unloading is that all glasses in the unloading cassette have 
the same job type. Namely, the unloading cassette departs either when it is full 
or when there is a job type change in the unloaded glasses.

At the time of the first glass unloading (FGU) event, a cassette departure 
(CD) event is scheduled based on the attribute values of the arriving cassette 
(Ja and ga) and state variables (Ju and eu). Depending on the values of these 
attributes and state variables, the following actions are taken at the FGU event 
time: (JTC and UCNE are Boolean variables denoting Job Type Change and 
Unloading Cassette Not Empty, respectively).

1.	 If there is a job type change (JTC = (Ja ≠ Ju)) or the unloading cassette 
is not empty [UCNE = (eu < λ)], then schedule a CD event to occur now 
and obtain a new unloading cassette (eu = λ; Ju = Ja).

2.	 If (ga  ≥  eu), then schedule a CD event to occur after a time delay of 
t2 = τ * eu.

3.	 Update the state variables: Ju = Ja. If ga ≥ eu, then eu = λ − (ga − eu), 
else eu = eu − ga.

At the time of the cassette departure (CD) event, a cassette loading (CL) 
event is scheduled if there is an arriving cassette in the I/O port. Reflecting 
the above state transition relationships, the resulting event graph is as shown 
in Fig. 4.32.

In practice, the restriction that all glasses in an unloading cassette must have 
the same job type (requiring partially filled unloading cassettes to be removed 
when there is a job type change) may be relaxed in order to reduce the model 
complexity. Then, the cassettes are fully loaded during handling (ga = λ). The 
event graph of the unloading region may be simplified to that shown in  
Fig. 4.33.

4.5.5.5  Event Graph Model of Entire Cell  By combining the three event 
graphs in Figs. 4.29, 4.30, and 4.33, we can obtain the event graph for the entire 

Fig. 4.31.  Reference model of the unloading region.
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inline cell as shown in Fig. 4.34 if we assume that the arriving cassettes are 
fully loaded (ga ≡ λ). There are six events in the model: CA (cassette arrival), 
CL (cassette loading), FGL (first glass loading), LGL (last glass loading), FGU 
(first glass unloading), and CD (cassette departure). An event transition table 
for the event graph is given in Table 4.4.

The state variables in the inline cell model are Q (number of arriving cas-
settes in Stocker), B (number of arriving cassettes in I/O port), E (number of 
empty shelves in I/O port), and R (status of Robot). The design variables of 
the system are λ (cassette capacity), τ (takt time), and π (flow time).

Exercise 4.11. Simplify the inline cell event graph model in Fig. 4.34 by 
removing the FGU event vertex.

4.6  EXECUTION OF EVENT GRAPH MODELS WITH SIGMA

The purpose of this section is to introduce the SIGMA software. The overall 
procedure for building a SIGMA program for simulation is as follows. A brief 

Fig. 4.32.  Event graph model of the unloading region.
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SIGMA tutorial as well as the two SIGMA models discussed in this section 
may be found in the official website of this book (http://VMS-technology.com/
Book/Sigma).

1.	 Create a SIGMA-generated event graph consisting of vertices and edges.
2.	 Declare variables: all variables are declared in a dialog box.
3.	 Define the Run vertex: state variables are listed as parameters in the 

dialog box.
4.	 Define the Event vertices: the state changes and parameter variables of 

each event vertex are described at each Edit vertex dialog box.
5.	 Define the Edges: the time delay, edge condition, and attribute (param-

eter value) of each edge are defined in each Edit edge dialog box.
6.	 Specify Run Options: various run options (end of simulation condition, 

trace variables, etc.) are specified and the state variables are initialized 
in the Run options dialog box.

4.6.1  Simulation of a Single Server System with SIGMA

The above six-step procedure will be illustrated using the single server system 
presented in Fig. 4.1. In order to become familiar with the basic functions of 
SIGMA, you are advised to follow the steps one by one.

4.6.1.1  Creating a SIGMA-Generated Event Graph  SIGMA has a well-
defined syntax system. For example, the initialize box of an ordinary event 
graph is treated as the #1 event vertex (named Run or Init); an exponential 
random variate with a mean of 1 is denoted as ERL{1}; and the operators 
++/−− are not allowed. Thus, using the SIGMA syntax, a SIGMA-compatible 
event graph may be obtained from the “neutral” event graph of Fig. 4.1(b) as 
shown in Fig. 4.35.

In this book, an event graph generated by SIGMA is called a SIGMA-
generated event graph. The first step in building a SIGMA simulation program 

TABLE 4.4.  Event Transition Table for the Event Graph of Figure 4.34

No
Originating 

Event State Change Edge Condition Delay
Destination 

Event

1 CA Q = Q + 1; 1 E > 0 0 CL
2 CL Q = Q − 1; E = E − 1; 

B = B + 1;
1 R > 0 0 FGL

3 FGL R = 0; B = B − 1; 
t1 = λ * τ

1 True t1 LGL
2 True π FGU

4 LGL R = 1; 1 B > 0 0 FGL
5 FGU 1 True t1 CD
6 CD E = E + 1; 1 Q > 0 0 CL

http://VMS-technology.com/Book/Sigma
http://VMS-technology.com/Book/Sigma
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is to obtain a SIGMA-generated event graph from the SIGMA-compatible 
event graph such as the one presented in Fig. 4.35. A SIGMA-generated event 
graph of a single server system is shown in Fig. 4.36 (see the SIGMA tutorial 
posted on the official website of this book) for further details. It is a graph 
consisting of four vertices and five directed edges. (There are two edges 
between the Load vertex and Depart vertex.) The vertices are named Run, 
Arrive, Load, and Depart.

4.6.1.2  Declaring State Variables  All user-defined variables must be 
declared in the State Variable Editor window of SIGMA. As depicted in Fig. 
4.37, the two variables, Q and M, are declared as integer variables. The number 
“1” in the row “Q 1 INT queue length” signifies that Q is an integer variable 
(or an array of size 1).

4.6.1.3  Defining the Run Vertex  By clicking the first vertex of the SIGMA 
event graph (named Run), the dialog box Edit Vertex 1 is created, as shown 
in Fig. 4.38. Then, the variables (Q and M) that are initialized at the Run event 
vertex of Fig. 4.35 are entered in the parameters field of the Run vertex dialog 
box. (Q and M are initialized in the Run Options dialog box, as will be seen 
later in Fig. 4.42.)

Fig. 4.35.  SIGMA-compatible event graph of the single server system.

Fig. 4.36.  SIGMA-generated event graph of the single server system.

Fig. 4.37.  Declaring Q and M as state variables.
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4.6.1.4  Defining Event Vertices (Arrive, Load, and Depart)  The vertices 
are assigned numbers sequentially as they are created. There are three events 
in the single server system: Arrive, Load, and Depart. For example, by clicking 
the vertex Arrive of the event graph in Fig. 4.36, a dialog box Edit Vertex 2 is 
created as shown in Fig. 4.39. Then, the state change Q = Q+1 is entered in the 
State Change field of the dialog box. The state changes at other events are 
defined in the same way.

4.6.1.5  Defining Edges  The edges are assigned numbers sequentially as 
they are created. For example, by clicking the edge Arrive→Load of the event 
graph in Fig. 4.36, a dialog box Edit Edge 2 is created, as shown in Fig. 4.40. 
Then, the time delay 0 and edge condition M > 0 are entered in the Delay field 
and Condition field of the dialog box, respectively.

For a double edge, each of the sub-edges is defined separately. By clicking 
the double edge Load↔Depart and then selecting its sub-edges, the time delay 
and edge condition of each sub-edge can be specified, as shown in Fig. 4.41.

Fig. 4.38.  Defining Q and M as parameters of the Run event vertex.

Fig. 4.39.  Defining the state change (Q = Q+1) of the Arrive event.

Fig. 4.40.  Defining the time delay and edge condition of the Arrive→Load edge.
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4.6.1.6  Describing Run Options  The experimental conditions and simula-
tion output requirements are specified in the Run Options dialog box. The run 
options entered in the dialog box of Fig. 4.42 are:

•  seed number for random variate generation: 12345;
•	 simulation run mode: graphic;
•	 EOS (end of simulation) time: 500 minutes;
•	 variables to be traced: Q, M, TAV(Q) // TAV stands for time-average //;
•	 initial values of the state variables Q and M: 0 and 1, respectively; and
•	 “Output Plot”: enabled.

The model default output is shown in Fig. 4.42, and the output plots for the 
state variables Q and M are shown in Fig. 4.43.

4.6.2  Simulation of a Conveyor-Driven Serial Line with SIGMA

An event graph model of a two-stage conveyor-driven serial line with R1 = 500 
and c2 = 10 is given in Fig. 4.44. The distributions of the processing times and 

Fig. 4.41.  Defining the time delay and edge condition of the sub-edges.

Fig. 4.42.  Run Options dialog box and Model Defaults output.
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Fig. 4.43.  Output plots of Q and M.

Fig. 4.44.  Event graph model of a two-stage conveyor-driven serial line.

L1 F1 U1

{M1++; B1=0;
Q2++}

{M1- -; R1- -}

(B1>0)

T2 L2 U2
(Q2<c2)

{M2- -; R2- -;
Q2- -}

{R2++}{B1=1}

(R2>0)

(M2>0)

(R1>0)

{M2++}

At the U1 event vertex: ENT[0] = CLK; Q2 = Q2 + PUT{FIF;1}
At the L2 event vertex: Q2 = Q2 − GET{FST;1}; WT = CLK − ENT[0].

transport time are: p1 ∼ Exp(10), p2 ∼ Exp(15), and t2 ∼ Exp(3). Assume that 
we are interested in the mean waiting time and mean queue length of the jobs 
in the internal conveyor.

4.6.2.1  Modifying the Event Graph to Collect the Waiting Time Statis-
tics  In this book, the variables introduced primarily for the purpose of 
collecting statistics are called statistics variables. The waiting time (WT) of a 
job is computed by subtracting the job’s entering time from its leaving time, 
for which the queue is defined as a ranked list of job-entering times. In 
SIGMA, (1) the current simulation clock time is obtained from the function 
CLK, (2) the function PUT{O;L} is used for en-queuing a record into the 
ranked list L with option O (=FIF, LIF, INC, or DEC) and GET{O;L} for 
de-queuing, and (3) the record for en-queue/de-queue is stored in the built-in 
array ENT[]. A successful call to PUT{} or GET{} returns a value of 1. Thus, 
in order to collect the waiting time statistics, the following statistics variables 
must be specified as shown in Fig. 4.45.
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In the SIGMA model of Fig. 4.45, the number of jobs in the conveyor is 
stored in the integer variable Q2, and the waiting time of each job at the con-
veyor is stored in the real variable WT. The first entry of the ENT array, 
ENT[0], is used as a buffer for storing the data record into the built-in ranked 
list #1 with the PUT{FIF;1} function. The data stored in the FIFO (first-in, 
first-out) queue ranked list #1 is retrieved using the GET{FST;1} function.

4.6.2.2  Simulating the Conveyor-Driven Serial Line with SIGMA  As 
described in Section 4.6.1, the procedure for executing an event graph model 
consists of six steps. The first step is to draw the event graph (Fig. 4.45) using 
the graphical user interface (GUI) functions of the SIGMA software as shown 
in Fig. 4.46.

The second step is to open the State Variable Editor dialog box and declare 
all variables appearing in the modified event graph of Fig. 4.45 as state vari-
ables. As shown in the left side of Fig. 4.47, M1, M2, Q2, R1, R2, B1, and C2 
are integer variables; WT (waiting time) is a real variable; RNK is an integer 
array (with a size of 10,000); and ENT is a real array (with a size of 15). The 
third step is to bring in the Edit Vertex 1 dialog box and specify all user-defined 
variables in the RUN vertex as its parameter variables, as shown in the right 
side of Fig. 4.47.

The fourth step is to create an Edit Vertex dialog box for each event vertex 
in the SIGMA event graph of Fig. 4.46 and enter the state change expressions 
in the State Change field. An example of the Edit Vertex dialog box for the 
U1 event is shown in the left side of Fig. 4.48: M1  =  M1  +  1, B1  =  0, 

Fig. 4.45.  SIGMA-compatible event graph of two-stage conveyor-driven serial line.

L1 F1 U1

(B1>0) 

T2 L2 U2

(R2>0)

(M2>0)

(R1>0)

Run
(Q2<c2)

Fig. 4.46.  Event graph of Fig. 4.45 constructed using the SIGMA GUI.
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ENT[0] = CLK, Q2 = Q2 + PUT{FIF;1}. The fifth step is to describe the time 
delay and edge condition of each edge of the event graph. Shown in the right 
side of Fig. 4.48 is the Edit Edge dialog box for the L1→F1 edge, where the 
time delay is given as 10*ERL{1} and the edge condition is TRUE.

The sixth step is to create the Run Options dialog box and specify the 
experimental conditions and output requirements as depicted in the left side 
of Fig. 4.49, where the run options are specified as follows:

•	 seed number for random variate generation: 12345;
•	 simulation run mode: graphics;
•	 EOS (end of simulation) time: 5000;
•	 variables to be traced: Q2, M1, M2, TAV{Q2}, WT, AVE{WT};
•	 initial values of the state variables: M1 =  1, M2 =  1, Q2 =  0, R1 =  500, 

R2 = 0, C2 = 10; and
•	 “Output Plot”: enabled.

Shown in the right side of Fig. 4.49 are the Run Option values (i.e., model 
default output) and a listing of the values of the traced variables at each event 
time. The output plots of Q2 and WT with respect to CLK are shown in Fig. 4.50.

Fig. 4.47.  Declaration of state variables and specifying parameter variables.

Fig. 4.48.  Entering information for a vertex (U1) and an edge (L1→F1).
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4.7  DEVELOPING YOUR OWN EVENT GRAPH SIMULATOR

This section aims to help you become able to develop your own simulation 
program for executing a given event graph model. If you have foundational 
skills in computer programming and follow this section carefully, you should be 
able to write your own event graph simulator. The event graph simulator for 
simulating the single server model will be given in pseudocode form, which is 
language-independent and thus may be easier to understand. A complete list of 
C# codes for the single server simulator may be found on the official website  
of this book (http://VMS-technology.com/Book/EventGraphSimulator).

4.7.1  Functions for Handling Events and Managing Queues

The method of developing a dedicated simulator for a given event graph 
model will be described in a bottom-up manner, starting from the primitive 
functions for handling events and managing queues.

Fig. 4.49.  Run Options dialog box and Model Defaults output.

Fig. 4.50.  Output plots of Q2 (queue size) and WT (waiting time).
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Figure 4.51 provides a schematic description of the three event-handling 
functions: Schedule-event (), Retrieve-event (), and Cancel-event (). Initially, 
there are three future events {<E1, 12.1>, <E2, 18.6>, <E3, 34.0>} stored in the 
future event list (FEL). The management of these events using these functions 
will be explained with examples.

1.	 If the Schedule-event (E4, 22.7) function is invoked, the scheduled event 
<E4, 22.7> is inserted immediately after <E2, 18.6> in the FEL, which is 
a priority queue of event records, prioritized according to the increasing 
values of the event time. Now FEL has four future events: <E1, 12.1>, 
<E2, 18.6>, <E4, 22.7>, and <E3, 34.0>.

2.	 If the Retrieve-event (E, T) function is invoked, the next event <E = E1, 
T = 12.1> is retrieved (and deleted from the FEL).

3.	 If the Cancel-event (E4) function is invoked, the event node <E4, 22.7> 
is deleted from the FEL.

Figure 4.52 provides a schematic description of the basic queue handling 
functions for a FIFO (first-in, first-out) queue: (a) the New Q function will 
create a queue (as a variable array of records); (b) the en-queue function (j, 
x)→Q will append a record <10, 3.2>; (c) the en-queue function will append 
another record <20, 5.6>; and (d) the de-queue function Q→(j, p) will remove 
the first record and return j = 10 and p = 3.2.

Fig. 4.51.  Schematic descriptions of the event-handling functions.

(b)

(a)

(c)

Fig. 4.52.  Schematic descriptions of the queue-handling functions.

(a) 

(b) j=10; x=3.2; 

(c) j=20; x=5.6; 

(d)

10 3.2

Q

Q

10 3.2Q 20 5.6

20 5.6Q



Developing Your Own Event Graph Simulator    101

4.7.2  Functions for Generating Random Variates

Most programming languages support a built-in function for generating a 
standard uniform random number u∼U[0,1]. In Java, the function u = Math.
random() has the same function. Let x ∼ U[a, b], then x is obtained from u as 
follows: x = a + (b − a) * u.

An exponential random variate X is generated from a uniform random 
number U as follows. Since the distribution function F(X) can be regarded as a 
uniform random number U, we have U = F(X) = 1 − e−x/θ, where θ is the mean. 
Upon solving this equation for X, we can obtain X = −θ · ln(1 − U), which is 
equivalent to X = −θ · ln(U) because (1 − U) is also a uniform random number. 
This method of generating a random variable is referred to as the inverse-
transformation method. (See Appendix 3B of Chapter 3 for more details.)

In Java, the natural log ln(U) is implemented as Math.log (u). The random 
variable generation functions for the inter-arrival times and service times are 
listed below in a Java-like form. More details on this subject are provided in 
Chapter 3.

Exp (a):
{  If (a <= 0) then return False; u = Math.random (); 
Return (− a * Math.log (u)); }

Uni (a, b):
{  If (a >= b) then return False; u = Math.random (); 
Return (a +(b − a) * u); }

4.7.3  Event Routines

Figure 4.53 shows a portion of an event graph for an event vertex that has two 
scheduling edges and one canceling edge. The event graph indicates that 
“whenever E0 occurs, the state variable s changes to fE0(s). Then, if edge condi-
tion C1 is true, E1 is scheduled to occur after t1; if edge condition C2 is true, 
E2 is scheduled to occur after t2; and if edge condition C3 is true, E3 is canceled 
immediately.”

Fig. 4.53.  Event vertex with two scheduling edges and a canceling edge.

Originating Event State Change Edge Condition Action Delay Destination Event

E0 s = fE0(s)
1 C1 schedule t1 E1

2 C2 schedule t2 E2

3 C3 cancel 0 E3

E0

{s = fE0(s)}

t1
E1 E3

(C3)(C1)
t2(C2)
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Also shown in Fig. 4.53 is an event transition table for E0. An event routine 
is a subprogram describing the changes in state variables and how the  
next events are scheduled and/or canceled for an originating event in the  
event transition table. One event routine is required for each event in an event 
graph. The event routine for the E0 event in Fig. 4.53 can be expressed as 
follows:

Execute-E0-event-routine (Now) // Fig. 4.53 //
{ s=fE0(s); // state change
  If (C1) Schedule-event (E1, Now+ t1);
  If (C2) Schedule-event (E2, Now+ t2);
  If (C3) Cancel-event (E3);}.

4.7.4  Next Event Methodology of Simulation Execution

As described earlier in Chapter 2 (Section 2.2.4), the simulation maintains a 
simulation clock (CLK) and a future event list (FEL). The FEL is an ordered 
list of pairs {Ek, tk}, where tk is the scheduled execution time of the event Ek. 
The FEL is also a priority queue, ordered in increasing values of tk. The overall 
procedure of the simulation execution, which is called the next event methodol-
ogy, is as follows:

0.	 Reset the simulation clock CLK.
1.	 Initialize state variables and schedule initial events.
2.	 Time flow mechanism: get <E-type, E-time> from the FEL and set CLK 

to E-time.
3.	 Execute the event routine for the event E-type.
4.	 If a termination condition is not satisfied, go back to step 2.
5.	 Output statistics and stop.

The above next event methodology of the simulation execution, often called 
the next event scheduling algorithm, may be drawn as a flow chart as given in 
Fig. 4.54.

A template of an event graph model consisting of a set of event vertices 
{Ek: k = 1-n} is depicted in Fig. 4.55. As shown in the figure, the given (pure) 
event graph must be augmented with a Statistics box as well as with the sta-
tistics variables.

Notice in Fig. 4.55 that that the simulation is stopped if an EOS (end of 
simulation) condition is met. Assuming that the Initialize box and Statistics 
box are implemented as an initialize routine and a statistics routine, respec-
tively, the main program of the event graph simulator for executing the tem-
plate event graph model of Fig. 4.55 will have the structure shown in Fig. 4.56. 
Listed in the Event-routine list are the event routines for E1∼En.
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Fig. 4.54.  Next event scheduling algorithm.

Event-scheduling

Event-scheduling

Event-retrieval

Fig. 4.55.  Template of an augmented event graph model.

Statistics:(EOS)Initialize:
……

Fig. 4.56.  Main program of the template event graph simulator.

// (1) Initialize

// (2) Time-flow mechanism
// (3) Execute event-routine

// (4) Output statistics

4.7.5  Single Server System Simulator

In this book, an event graph model only concerned with the dynamic behavior 
of the system without statistics variables is called a pure event graph. If the 
pure event graph is augmented with statistics variables for collecting statistics, 
it is called an augmented event graph.

Figure 4.57 presents a pure event graph model of the single server system 
introduced earlier in Fig. 4.1. In the figure, Q is the number of jobs in the 
buffer, M is the number of idle machines, and te is the EOS (end of simulation) 
time.

Shown in Fig. 4.58 is an augmented event graph for collecting the average 
queue length (AQL) statistics. Let {Ck} denote the queue length change times, 
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then the kth queue length change interval becomes Δk = Ck+1 − Ck. Let Qk be 
the queue size during Δk, then the AQL is expressed as AQL = Σ(Qk × Δk)/
Σ(Δk) ≡ SumQ/CLK. An event transition table for this event graph model is 
given in Table 4.5.

In the event graph of Fig. 4.58, it is assumed that the inter-arrival times 
follow an exponential distribution with a mean of 5 and that the service times 
follow a uniform distribution with a range of 4.0–6.0. The initialize routine, 
event routines, and statistics routine of the augmented event graph model for 
collecting the AQL statistics are as follows:

Fig. 4.57.  Pure event graph model of single server system.

Load Unload

{Q++} {M--, Q--} {M++}

(M>0)
Arrive

ts

ta
Initialize:
Q= 0; M= 1; (Q>0)

Statistics:

Fig. 4.58.  Augmented event graph model for collecting AQL statistics.

Load Unload
(M>0)

Arrive

Initialize:
(Q>0)

- --

Statistics:

TABLE 4.5.  Event Transition Table for the Event Graph Model of Figure 4.58

No
Originating 

Event State Change Edge Condition Delay
Destination 

Event

0 Initialize Q = 0; M = 1; 
Before = 0; 
SumQ = 0

1 True — Arrive

1 Arrive SumQ += Q*(CLK–
Before);

Before = CLK; 
Q = Q + 1

1 True Exp(5) Arrive
2 M > 0 0 Load

2 Load SumQ += Q*(CLK–
Before);

Before = CLK; M = 
M + 1; Q = Q − 1;

1 True Uni(4,6) Unload

3 Unload M = M + 1; 1 Q > 0 0 Load

4 Statistics SumQ += Q*(CLK – Before); AQL = SumQ/CLK
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Execute-Initialize-routine (Now) // Fig. 4.58 //
{ Q  =  0; M  =  1; Before  =  0; SumQ  =  0; Schedule-event 
(Arrive, Now); }

Execute-Arrive-event-routine (Now) // Fig. 4.58 //
{ SumQ = SumQ + Q*(Now—Before); Before = Now; Q = Q + 1;
  Schedule-event (Arrive, Now+ Exp (5)); If (M  > 0) 
Schedule-event (Load, Now); }

Execute-statistics-routine (Now) // Fig. 4.58 //
{ SumQ = SumQ + Q*(Now—Before); AQL = SumQ/Now; }.

Then, from the template event graph simulator in Fig. 4.56, a single server 
system simulator is obtained as shown in Fig. 4.59.

Exercise 4.12. Write two event routines Execute-Load-event-routine () and 
Execute-Unload-event-routine ().

Another statistic that is commonly collected is the average waiting time 
(AWT) of the jobs in a queue. The waiting time (WT) of a job is computed by 
subtracting the arrival time (AT) from the load time at the Load event. Let N 
be the number of jobs loaded during a simulation, then the average waiting 
time is expressed as AWT = Σ(WT)/N. An augmented event graph for collect-
ing the AWT statistics is given in Fig. 4.60, where the arrival time clock (CLK) 

Fig. 4.59.  Main program of single server system simulator.

Fig. 4.60.  Augmented event graph model for collecting AWT statistics.

Load Unload
(M>0)

Arrive

Initialize:
(|Q|>1)

--
Statistics:
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is stored in the queue (Q) at the Arrive event, and it is retrieved from Q and 
assigned to the arrival time variable (AT) at the Load event.

Exercise 4.13. Modify the event graph in Fig. 4.60 to collect both AQL and 
AWT statistics.

4.8  REVIEW QUESTIONS

4.1.  What are the three steps of the integrated simulation modeling (USM) 
procedure?

4.2.  What are the logical modeling components of the single server system?

4.3.  How are the state variables initialized in SIGMA?

4.4.  How can an exponential random variate with a mean of 5 be generated 
in SIGMA?

4.5.  How do you obtain a multi-server event graph model from a single 
server model?

4.6.  What is balking? What is blocking?

4.7.  What is the SIGMA function for en-queuing a record into the ranked-list 
L?

4.8.  Where is the record for an en-queue/de-queue operation stored in 
SIGMA?

4.9.  What does it mean to set RNK[5] = 1 in SIGMA?

4.10.  How do you implement a FIFO queue in SIGMA?

4.11.  What is the takt time of inline-type equipment?

4.12.  What is the flow time of inline-type equipment?

4.13.  How do you compute the average queue length of a time-dependent 
variable?
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CHAPTER 5

Parameterized Event Graph Modeling 
and Simulation

Perfection is achieved not when there is nothing more to add, but when 
there is nothing left to take away.

—Antoine de Saint-Exupery

5.1  INTRODUCTION

The breakthrough improvement of the ordinary event graph framework is the 
parameterization of event vertices in which similar events are represented by 
a single vertex with different parameter values [Schruben 1995]. This enhance-
ment enables the construction of a generalized model that represents a class 
of systems.

Parameterizing an event vertex is similar to defining an array variable for 
a large number of data items. The expression for computing the average of 
three data items (A, B, C) is given by:

	 Mean = + +( )/ .A B C 3 	

This expression for computing the sample mean can be represented by the 
event graph model shown in Fig. 5.1(a).

However, if you are asked to compute the sample mean of, say, 500 data 
points, you may define an array variable D[j] and formulate the following 
expression:

	 Mean D j=
=∑1

500 1

500
[ ].

i
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Let D[j] be an array of data points. Then, the above sample mean expression 
can be modeled as a parameterized event graph, as shown in Fig. 5.1(b). In the 
figure, the summation operation is represented by a single parameterized 
event vertex.

This chapter is organized as follows. Examples of parameterized event 
graphs (PEGs) are introduced in Section 5.2, and the execution rules and 
specifications of the PEG models are presented in Section 5.3. The two sections 
that follow are devoted to the PEG modeling of tandem lines and job shops, 
respectively. Section 5.6 demonstrates the execution of PEG models with 
SIGMA. Finally, a method of developing your own PEG simulator is covered 
in the last section.

5.2  PARAMETERIZED EVENT GRAPH EXAMPLES

This section presents a number of parameterized event graph (PEG) exam-
ples. There are two common cases of parameterizing an ordinary event graph. 
The primary case is building a PEG model by introducing indexing variables 
to the repeating pattern of event vertices. The second case is defining a PEG 
model by passing attribute values of each entity along event vertices.

5.2.1  Introducing Index Variables to a Repeating  
Event-Vertex Pattern

Figure 5.2 presents an event graph model of the two-stage tandem line defined 
in Chapter 2 (see Fig. 2.15). There are six event vertices in the two-stage 
tandem line model. In general, an n-stage tandem line model has 3n event 
vertices. Figure 5.3 shows a PEG model of an n-stage tandem line, which is 
obtained by introducing an indexing variable (k) to the repeating pattern of 
event vertices “Enter-Load-Unload” in the event graph shown in Fig. 5.2.

Fig. 5.1(a).  Event graph model for computing the average of three data points.

Add-1 EndBegin Add-2 Add-3

Fig. 5.1(b).  Parameterized event graph for computing the sample mean.

Add
(k)

End
(N)

(k<500)

Begin 1

k+1

(k 500)
k
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5.2.2  Passing Attribute Values of Each Entity along Event Vertices

Let us assume that we want to collect the sojourn time statistics when simulat-
ing the single server resource failure model introduced in Chapter 4 (see Fig. 
4.13). In order to collect the sojourn time statistics, the arrival time of each 
job that was generated by the Arrival event must be passed through to the 
Unload event.

For this purpose, the original event graph model (see Fig. 4.13) is modified 
as shown in Fig. 5.4. Namely, (1) the clock time (CLK) of each job arrival is 
stored in a ranked list Q using an enqueue operation ((CLK)→Q) at the 
Arrive event; (2) the arrival time is retrieved from Q using a dequeue opera-
tion (Q→(T)) at the Load event; (3) the retrieved time (T) is passed to the 
Unload event as a parameter value. Then, the sojourn time (ST) is computed 
by subtracting the arrival time (AT) from the simulation clock (CLK) at the 
Unload event. In Fig. 5.4, the distributions of inter-arrival times (ta), service 
times (ts), interfailure times (tf), and repair times (tr) are given by ta ∼ Exp(9), 
ts ∼ Uni(6,8), tf ∼ Exp(500), and tr ∼ Exp(60).

Fig. 5.2.  Event graph model of a two-stage tandem line.
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Fig. 5.3.  Parameterized event graph model of the n-stage tandem line.
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5.3  EXECUTION RULES AND SPECIFICATIONS OF THE 
PARAMETERIZED EVENT GRAPH

A PEG model provides a compact description of a discrete-event system 
(DES) to be interpreted by a human. Its execution rules and specifications are 
similar to those of an ordinary event graph model described in Chapter 4.

5.3.1  Execution Rules of the PEG Model

In a PEG, a parameter value is a scheduling edge’s attribute value that is 
passed to a destination event, whereas a parameter variable is a destination 
event’s indexing or state variable whose value is set to the passed parameter 
value. The execution rules for a PEG are essentially the same as those for an 
ordinary event graph, with some minor differences as explained below.

PEGs are executed vertex by vertex. Figure 5.5 depicts a PEG with an 
originating event (E1) and a destination event (E2), where k is the parameter 
value associated with the scheduling edge, and j is the parameter variable 
associated with the destination event.

The PEG model shown in Fig. 5.5 may be interpreted as follows [Schruben 
1995]:

Whenever event E1 occurs, the state of the system changes to fE1(s). Then, if the 
edge condition (C) is true, destination event E2(j) is scheduled to occur after a 
time delay of t with the value of the parameter variable j equal to the edge 
parameter value k.

In general, each of the parameter value k and parameter variable j can be 
a vector. The scheduled execution time (τ) of E2 is obtained by adding the 
time delay (t) to the current execution time (Clock) of E1. Namely, τ = Clock + t.

5.3.2  Tabular Specifications of the PEG Model

As with an ordinary event graph, the event execution rules for a PEG model can 
be specified in an event transition table. A parameterized event transition table 
is a table that describes (1) the state changes and outgoing edge numbers of each 
event and (2) the edge condition, delay time, parameter value, and destination 
event of each edge. It has one more column than an ordinary event transition 
table: the Parameter column for specifying the parameter value of each edge. 
Table 5.1 is an event transition table of the PEG model given in Fig. 5.3.

Fig. 5.5.  Parameterized event graph with a scheduling edge.
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5.3.3  Algebraic Specifications of the PEG Model

An ordinary event graph (without canceling edges) is a directed graph consist-
ing of a set of event vertices (V), a set of directed edges (E), and a set of state 
variables (S). Associated with each vertex (v ∈ V) is a state transition function 
(fv ∈ F), and associated with each edge (e ∈ E) are an edge condition (ce ∈ C) 
and a time delay (de ∈ D).

In addition to the above-mentioned six elements (V, E, S, F, C, and D), a 
PEG has two more elements: a set of parameter value lists (K) associated with 
each edge and a set of parameter variable lists (J) associated with each vertex. 
Thus, a PEG model (MP) can be defined as an 8-tuple structure [Savage et al. 
2005], as follows:

MP = <V, E, S, F, C, D, K, J>, where
V = {v}: set of event vertices
E = {eod = (vo, vd)}: set of edges // vo: originating event; vd: destination event
S = {s}: set of state variables
F = {fv: S→S ∀v ∈ V}: set of state transition functions associated with each 

vertex (v)
C = {ce: S→[0,1] ∀e ∈ E}: set of conditions associated with each edge (e)
D d R e Ee= ∈ ∀ ∈∞{ }0 : set of time delays associated with each edge (e)
K = {ke ∀e ∈ E}: set of parameter value lists, if any, associated with each 

edge (e)
J = {jv ∀v ∈ V}: set of parameter variable lists, if any, associated with each 

vertex (v)
For example, the components of the event graph in Fig. 5.3 (n-stage tandem 

line) are as follows:

TABLE 5.1.  Event Transition Table for the Parameterized Event Graph Shown in 
Figure 5.3

No Event
State 

Change Edge Condition Delay Parameter
Destination 

Event

0 Initialize For k = 1∼n 
{Q[k] = 0; 
M[k] = 1}

1 True 0 1 Enter (k)

1 Enter(k) Q[k] ++; 1 k ≡ 1 ta k Enter (k)
2 M[k] > 0 0 k Load (k)

2 Load(k) Q[k]−−; 
M[k]−−;

1 True t[k] k Unload (k)

3 Unload(k) M[k] ++; 1 Q[k] > 0 0 k Load (k)
2 k < n 0 k + 1 Enter (k)
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1.	 V = {v1 = Enter, v2 = Load, v3 = Unload}
2.	 E = {e1 = (v1, v1), e2 = (v1, v2), e3 = (v2, v3), e4 = (v3, v2), e5 = (v3, v1)}
3.	 S  = {Q[k], M[k]}
4.	 F  = {f1: Q[k]++, f2: Q[k]−−, M[k]−−, f3: M[k]++}
5.	 C = {c1: (k ≡ 1), c2: (M[k] > 0), c3: True, c4: (Q[k] > 0), c5: (k < n)}
6.	 D = {d1 = ta, d2 = 0, d3 = t[k], d4 = 0, d5 = 0}
7.	 K = {k1 = “k”, k2 = “k”, k3 = “k”, k4 = “k”, k5 = “k + 1”}
8.	 J  = {j1 = j2 = j3 = “k”}

5.4  PARAMETERIZED EVENT GRAPH MODELING OF 
TANDEM LINES

In the previous chapter, a number of tandem line models were introduced: an 
unlimited buffer tandem line model (Fig. 4.15), a limited buffer tandem line 
model (Fig. 4.16), a buffer-less tandem line model (Fig. 4.17), and a conveyor-
driven serial line model (Fig. 4.25). In this section, methods of building PEG 
models for some tandem line event graph models are described.

5.4.1  PEG Modeling of an Unlimited Buffer Tandem Line

An event graph model of a two-stage unlimited buffer tandem line is given in 
Fig. 5.6; this model is obtained from the event graph shown in Fig. 5.2 by split-
ting the original Enter-1 event into Arrive and Enter-1 events. The event graph 
model shown in Fig. 5.6 has a repeating pattern of Enter(k)-Load(k)-
Unload(k), which is identical for all {k}. Thus, the PEG model for the event 
graph model shown in Fig. 5.6 is obtained easily, as shown in Fig. 5.7, where N 
is the number of stages in the tandem line.

Fig. 5.6.  Event graph model of a two-stage unlimited buffer tandem line.
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Fig. 5.7.  PEG model of the unlimited buffer tandem line shown in Fig. 5.6.
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In the ordinary event graph model shown in Fig. 5.6, the only operation 
performed by the Enter-k event is to increase Qk by one. Thus, this event vertex 
may be deleted without loss of modeling power, as shown in Fig. 5.8. The 
revised event graph has a repeating pattern of Load(k)-Unload(k).

Exercise 5.1. Construct a PEG model for the event graph model shown in 
Fig. 5.8.

The event graph model of the unlimited buffer tandem line may be further 
simplified by eliminating the Load-k events. The resulting event graph model 
of a three-stage tandem line is given in Fig. 5.9. In this event graph model, the 
state variable (Sk) denotes the number of jobs in Stage-k.

5.4.2  PEG Modeling of a Limited Buffer Tandem Line

A limited buffer tandem line model is obtained from the unlimited buffer 
model shown in Fig. 5.2 (or Fig. 5.6) by inserting a Finish-k event between a 
Load-k event and an Unload-k event. Figure 5.10 shows an event graph model 
of the limited buffer tandem line with the repeating pattern of Enter-Load- 
Finish-Unload.

In Fig. 5.10, (1) the Finish-k event sets the blocking variable Bk to 1 (Bk++) 
and schedules the Unload-k event if the buffer is not full (Qk+1 < ck+1) and (2) 
the Load-k+1 event schedules an Unload-k event if the blocking variable is 
true (Bk > 0). The PEG model of the limited buffer tandem line is as given in 

Fig. 5.8.  Revised event graph of the unlimited buffer tandem line.
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Fig. 5.9.  Simplified event graph of the three-stage unlimited buffer tandem line.
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Fig. 5.11. It should be noted that the Arrive event schedules the Enter(1) event 
and the Unload(k) event schedules an Enter(k + 1) event when k < n.

5.4.3  PEG Modeling of a Conveyor-Driven Serial Line

Reproduced in Fig. 5.12 is the event graph model of the conveyor-driven serial 
line given in Fig. 4.25 of Chapter 4. (For a detailed description of the conveyor-
driven serial line, please refer to Section 4.5.4.) In Fig. 5.12, a dummy transport 
event (T1) is added to the event graph model of Fig. 4.25 in order to form the 
repeating pattern of the Transport-Load-Finish-Unload events.

A PEG model of the conveyor-driven serial line is presented in Fig. 5.13. 
Since the input buffer Buffer-I is treated as a conveyor with an unlimited 
capacity and zero conveying time, c[1] = ∞ and t[1] = 0. Also, Q[n + 1] = 0 and 
c[n + 1] = ∞ need to be set as boundary conditions.

Fig. 5.11.  PEG model of the limited buffer tandem line.

Load
(k)

Finish
(k)

Unload
(k)

Enter
(k)

For k=1~n {
Q[k]=0; 
M[k]=1;
B[k]=0};

Q(n+1)=0;

Arrive

Fig. 5.12.  Revised event graph model of the conveyor-driven serial line.
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Fig. 5.13.  PEG model of the conveyor driven serial line.
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5.5  PARAMETERIZED EVENT GRAPH MODELING OF JOB SHOPS

A discrete-event system is called a job shop if (1) it consists of a number of 
stations (s) with each station having one or more identical machines, (2) there 
are a number of job types (j) with each job type having its own unique 
sequence of processing steps (p = 1, 2, . . .), and (3) the station number (s) for 
a processing step (p) of a given job type (j) is specified in the routing sequence 
of the job type. A job may visit a given station more than once.

A machine that processes one job at a time is referred to as a table machine. 
A simple job shop is a job shop consisting of table machines and unlimited 
buffers. Figure 5.14 depicts a reference model of such a job shop. It has six 
stations with the number of machines given by {m1 = 3, m2 = 5, m3 = 4, m4 = 7, 
m5  =  2, m6  =  5}. The routing sequence of a type-1 job is 1-3-2-5-Done: 
route[1,1] = 1, route[1,2] = 3, . . . , route[1,5] = Done. The processing time of a 
type-j job at processing step (p) is denoted by t [j, p].

Any job shop that is not a simple job shop is called a complex job shop. 
Examples of complex job shops are inline job shops and mixed job shops. An 
inline job shop is a job shop consisting of the inline cells described in Chapter 
4 (Section 4.5.5).

5.5.1  PEG Modeling of a Simple Job Shop without Transport

If we set M[s] = ms in the initialize event box of the unlimited buffer tandem 
line PEG model shown in Fig. 5.7, the model becomes a multi-server tandem 
line model, as depicted in Fig. 5.15. Another slight change in Fig. 5.15 (from 
Fig. 5.7) is that the next station (ns) is updated at the Unload(s) event vertex.

Fig. 5.14.  Reference model of a simple job shop (for job type j = 1).

Assign job-type
(j = 1)

Fig. 5.15.  PEG model of a multi-server tandem line obtained from Fig. 5.7.
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This tandem line is a special case of a simple job shop in which (1) there is 
only one job type and (2) the job processing step (p) is the same as the station 
number (s; for s = 1, 2, . . . , N). Thus, as depicted in Fig. 5.16, the tandem line 
PEG model shown in Fig. 5.15 may be converted to a PEG model describing 
the simple job shop shown in Fig. 5.14.

In the job shop PEG model shown in Fig. 5.16, a new job generated by the 
Arrive event is passed to the Enter event with parameter values {p = 1 and 
s = route [1, p]}. At the Enter (1, s) event, the new job is put into the queue 
Q[s], and a Load(s) event is scheduled if M[s] > 0. Since there is only one job 
type, a job is represented by its processing step (p). Q[s] is the queue of jobs 
identified by the current processing step.

When a Load(s) event is fired in the PEG model of Fig. 5.16, a job is 
retrieved from Q[s] for processing and an Unload(p,s) event is scheduled to 
occur after t[1, p] minutes. At the Unload(p,s) event, the processing step (p) 
is increased by one and the station number (ns) for the next processing step 
(p + 1) is determined by evaluating ns = route [1, p + 1]. Here, an Enter(p + 1, 
ns) event is scheduled if the next station number is not equal to Done and a 
Load(s) event is scheduled if Q[s] is not empty.

The PEG model of Fig. 5.16 may be generalized easily to a PEG model of 
a simple job shop by adding j (for j = 1∼J) to the parameter list as shown in 
Fig. 5.17, where a job is represented by its job type and processing step. The 
state variables in the simple job shop model are:

j = job type;
p = processing step of a job;
s = station number for a job;
M[s] = number of idle machines in station s;
Q[s] = list of jobs {(j, p)} at station s.

Fig. 5.16.  PEG model of a simple job shop for processing a single job type (j = 1).
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Fig. 5.17.  PEG model of a simple job shop for processing multiple job types.
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Jobs of type j follow the routing sequence given by the table route [j, p] 
with the processing time t[j, p]. If a job finishes the last processing step, then 
the station number of the next processing step is set to Done so that the job 
exits the job shop. The initialization box shown in Fig. 5.17 is the same as that 
shown in Fig. 5.16.

At the Arrive event, a job type (j) is assigned to each new job and the station 
number (s) for the first processing step is determined as: s = route [j,1]. At the 
Enter (j, p, s) event, the job (j, p) is placed in the queue of station s and a Load(s) 
event is scheduled to occur immediately if the station (s) has an idle machine 
(M[s] > 0). At the Load(s) event, a job (j, p) is retrieved from the queue and an 
Unload(j, p, s) event is scheduled to occur after a time delay of t[j, p] minutes. 
At the Unload(j, p, s) event, the processing step is increased by one and the next 
station number is determined. Then (1) a Load(s) event is scheduled if the 
queue at station s is not empty, (2) an Enter(j, p, s) event is scheduled if the job 
needs another processing step, and (3) an Exit(j) event is scheduled if the job is 
done. These dynamic behaviors of the simple job shop model can be formally 
specified in an event transition table, as shown in Table 5.2.

Exercise 5.2. Revise the PEG model of the simple job shop shown in Fig. 
5.17 by adding a new event Select-s (j, p) where the station number (s) for a 
job (j, p) is determined.

5.5.2  PEG Modeling of a Job Shop with Transport and Setup Times

In the simple job shop PEG model shown in Fig. 5.17, only the net processing 
times (t[j, p]) are reflected. In practice, considerable amounts of setup time 
(when the job type is changed) and transport delay (when the job is to be 
moved by a transporter) may be incurred in a job shop.

TABLE 5.2.  Event Transition Table for the PEG Model of a Simple Job Shop  
(Figure 5.17)

No Event State Change Edge Condition Delay Parameter Next Event

0 Initialize 
(Q, M)

For s = 1∼N 
{Q[s] = Φ; 
M[s] = ms}

1 True 0 — Arrive

1 Arrive Assign j; 
s = route[j, 1];

1 True 0 j, 1, s Enter  
(j, p, s)

2 True ta — Arrive
2 Enter (j, 

p, s)
(j, p) → Q[s]; 1 M[s] > 0 0 s Load (s)

3 Load (s) Q[s]→ (j, p); 
M[s]−−;

1 True t[j, p] j, p, s Unload  
(j, p, s)

4 Unload 
(j, p, s)

M[s]++; 
ns = route[j, 
p + 1];

1 |Q[s]| > 0 0 s Load (s)
2 ns ≠ Done 0 j, p + 1, ns Enter  

(j, p, s)
3 ns ≡ Done 0 j Exit (j)

5 Exit (j) 1
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Figure 5.18 shows a PEG model of a simple job shop in which the setup 
times and the transport delay times are reflected. In order to reflect the setup 
time (σ) in the PEG model, a state variable denoting the current job type of 
each station (JT[s]) is introduced. (However, this is only valid when there is a 
single machine at each station.) It is assumed that all stations have identical 
setup times. Thus, the following additions are made to the PEG model shown 
in Fig. 5.17:

1.	 At initialization, the job type of each station is reset: JT[s] = 0 for s = 1-N.
2.	 At the Load event, a setup time (σ) is selectively added: If (j ≠ JT[s]) 

{tp = tp + σ}.
3.	 At the Unload event, the current job type of the station is updated: 

JT[s] = j.

The next station number (ns) and transport delay time (td) are modeled 
explicitly by the two event nodes Depart and Move: (1) ns is obtained from 
ns = route [j, p + 1] at the Depart event; (2) td (transport delay from station s 
to station ns) is evaluated from td = delay [s, ns] at the Move event.

The PEG model shown in Fig. 5.18 may be regarded as a standard template 
for defining a general job shop model from the PEG model of a station that 
starts with a Load event and ends at the Depart event. The event transition 
table for the PEG model shown in Fig. 5.18 is given in Table 5.3.

5.5.3  PEG Modeling of an Inline Job Shop

A job shop consisting of inline cells is called an inline job shop. Reproduced 
in Fig. 5.19 are the reference model (Fig. 4.27) and the event graph model (Fig. 
4.34) of the inline-type cell introduced in Chapter 4. This is called a uni-inline 
cell because the input (Load) and output (Unload) operations are performed 
at the shared I/O-Port. It should be noted that the event graph (Fig. 5.19) 
without the redundant event FGU is the same as the one (Fig. 4.34) with FGU. 

Fig. 5.18.  Standard PEG model of a job shop reflecting setup time and transport time.
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{ ns= route[j, p+1] }

j, p, s

Move
(j, p, s, ns)

j, p+1, s, ns

td

j, p, ns {Q[s] (j, p);
M[s]--;

tp= t[j, p];
If (j≠ JT[s]) tp= tp +σ;}

Station (s)

Initialization:
For s=1~N {

Q[s]= Φ; 
M[s]=1;
JT[s]=0; };

Read {
route[j,p];
t[j,p]; 
delay[s,ns]};

s

s

{ td= delay[s, ns] }
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TABLE 5.3.  Event Transition Table for the Revised PEG Model Shown in Figure 5.18

No Event State Change Edge Condition Delay Parameter
Next 
Event

0 Initialize For s = 1∼N 
{Q[s] = Φ; 
M[s] = 1; 
JT[s] = 0};

Read {route[j,p]; 
t[j,p]; delay[s, 
ns]}

1 True 0 — Arrive

1 Arrive Assign j; s = 0; 
ns = route[j, 1];

1 True ta — Arrive
2 True 0 j, 1, s, ns Move (j, 

p, s, ns)
2 Move (j, 

p, s, ns)
td = delay[s, ns]; 1 True td j, p, ns Enter (j, 

p, s)
3 Enter (j, 

p, s)
(j, p) → Q[s]; 1 M[s] > 0 0 s Load (s)

4 Load (s) Q[s]→ (j, p); 
M[s]−−; 
tp = t[j, p]; If 
(j ≠ JT[s]) 
{tp = tp + σ};

1 True tp j, p, s Unload 
(j, p, s)

5 Unload 
(j, p, s)

M[s]++; JT[s] = j; 1 |Q[s]| > 0 0 s Load (s)
2 True 0 j, p, s Depart 

(j, p, s)
6 Depart 

(j, p, s)
ns = route[j, 

p + 1];
1 ns ≠ Done 0 j, p + 1, s, 

ns
Move (j, 

p, s, ns)
2 ns ≡ Done 0 j Exit (j)

7 Exit (j) 1

Fig. 5.19.  Reference model and event graph of a uni-inline cell.
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The event graph model in Fig. 5.19 has five event nodes, four state variables, 
and two time delay variables. The state variables are Q (number of arriving 
cassettes in the Stocker queue), B (number of arriving cassettes in the I/O-Port 
buffer), E (number of empty shelves in the I/O-Port), and R (status of Robot; 
1 if Robot is idle, 0 if busy). The time delay variables are t1 (cycle time for 
processing a cassette of glasses) and π (flow time). The state variables are 
changed by the events as follows:

•	 CA (Cassette Arrival) increases Q by one {Q++}
•	 CL (Cassette Load) decreases Q and E, and increases B by one {Q−−, 

E−−, B++}
•	 FGL (First Glass Load) sets Robot to busy and decreases B by one 

{R = 0, B−−}
•	 LGL (Last Glass Load) sets Robot to idle {R = 1}
•	 CD (Cassette Departure) increases E by one {E++}

Let u denote the parameter variable for a uni-inline cell; then, all event 
vertices and state variables are parameterized in terms of u. In addition, the 
job type (j) and processing step (p) of a cassette may also be passed as param-
eter values. With these parameter variables, the state variables are defined as 
follows:

•	 Q[u]: Stocker queue of arriving cassettes {(j, p)} in the uni-inline cell (u)
•	 B[u]: I/O-Port queue of arriving cassettes {(j, p)} in the uni-inline cell (u)
•	 E[u]: number of empty ports (shelves) in the I/O-Port of a uni-inline cell (u)
•	 R[u]: status of the track-in Robot of a uni-inline cell (u)

The processing cycle time and flow time are parameterized as t1[j, p] and 
π[j, p]. Thus, the event graph model of the uni-inline cell given in Fig. 5.19 may 
be parameterized as shown in Fig. 5.20. In the uni-inline cell PEG model shown 
in Fig. 5.20, the list handling operations are defined as follows.

•	 {(j, p) → Q[u]}: a job (j, p) is stored in the Stocker queue (Q[u])
•	 {(j, p) → B[u]}: a job (j, p) is stored in the I/O-Port queue (B[u])
•	 {Q[u] → (j, p)}: a job (j, p) is retrieved from the Stocker queue (Q[u])
•	 {B[u] → (j, p)}: a job (j, p) is retrieved from the I/O-Port queue (B[u])

In order to build a uni-inline job shop model, a state variable (JT[u]) denot-
ing the current job type of a cell is introduced for modeling the setup time (σ) 
and the Move event is added to model the transport delay time (td) explicitly. 
Thus, as shown in Fig. 5.21, a standard PEG model of a uni-inline job shop 
may be constructed from the standard PEG model of a simple job shop shown 
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in Fig. 5.18 and the PEG model of the uni-inline cell shown in Fig. 5.20. As 
mentioned earlier, the state variables are the Stocker queue (Q[u]), I/O-Port 
queue (B[u]), number of empty shelves (E[u]), Robot status (R[u]), and job 
type (JT[u]). Assuming that the system is empty and the number of shelves in 
the I/O-Port of each cell (u) is 4, the state variables may be initialized as 
follows:

	 For u 1 N Q u B u E u R u JT u= = = = = =~ { [ ] ; [ ] ; [ ] ; [ ] ; [ ] }.Φ Φ 4 1 0 	

5.5.4  PEG Modeling of a Mixed Job Shop

A mixed job shop may have different types of stations and/or cells. For example, 
by merging the two PEG models shown in Figs. 5.18 and 5.21, we can build a 
PEG model of a job shop consisting of table stations and uni-inline cells, as 
shown in Fig. 5.22. In the PEG model of the mixed job shop given in Fig. 5.22, 
TM denotes a set of table-type machines and UC a set of uni-inline cells in 
the job shop.

A job shop with different types of machines is often called a heterogeneous 
job shop, and one with one type of machine is called a homogeneous job shop. 

Fig. 5.20.  PEG model of the uni-inline cell (u) given in Fig. 5.19.

CA
(j,p,u)

CL
(u)

FGL
(u)

LGL
(j,p,u)

t1[j, p]

CD
(j, p, u)

{E[u]++}

[j, p]

Cell (u)
(|B[u]|>0)

{R[u]=1}{R[u]=0;
B[u]→(j, p)}

{Q[u]→(j, p)→B[u];
E[u]--}

{(j, p)→ Q[u]}

(|Q[u]|>0)

(R[u]≡1)(E[u]>0)
u u

j,p,u
j,p,u

u

Fig. 5.21.  Standard PEG model of a uni-inline job shop.
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FGL
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LGL
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(j, p, u)(|Q[u]|>0)

(R[u]≡1)(E[u]>0)

{(j, p) Q[u]} {Q[u] (j, p);
(j, p) B[u];

E[u]--}
j,p,u

j,p,uu

u

tp

(|B[s]|>0)

{ E[u]++;
nu = route[j, p+1] }

Move
(j, p, u, nu)

(nu≠ Done)
Exit
(j)

(nu Done)

td

j, p+1, u, nu

u

Arrive

ta

j, 1, u, nu

{Assign j; u= 0;
nu = route [j, 1];}

j, p, nu {B[u] (j, p); R[u]=0;
tp= t[j,p,u];

If (j≠ JT[u]) tp= tp + ; }

{R[u]=1;
JT[u]= j;}

[j,p,u]

Uni-inline Cell (u)

{ td= delay[u, nu] }
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In a general job shop model, the material handling equipment may be modeled 
explicitly. More detailed discussions of these subjects may be found in Chapter 
11 of this book.

5.6  EXECUTION OF PARAMETERIZED EVENT GRAPH MODELS 
USING SIGMA

The basic SIGMA functions were covered in the Chapter 4. This section aims 
to provide you with more experiences in and confidence with modeling with 
PEG and executing the PEG model with SIGMA. More specifically, this 
section demonstrates how to use certain advanced SIGMA functions in col-
lecting the sojourn time statistics, reading array data, handling priority queues, 
and so on. All the SIGMA models discussed in this section, together with a 
brief SIGMA tutorial, may be found in the official website of this book (http://
VMS-technology.com/Book/Sigma).

As mentioned in Chapter 4 (see Section 4.6), in order to execute a given 
event graph model using SIGMA, the event graph model is converted to a 
SIGMA-compatible event graph model. Figure 5.23 presents a schematic view 
of the SIGMA simulation program: all variables that appear in the SIGMA-
compatible event graph model must be declared in the State Variable Editor; 
all state variables that are defined as parameters of the Run vertex are initial-

Fig. 5.22.  Standard PEG model of a mixed job shop.
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ized in the Run Options dialog box; the values of the state variables are passed 
to the Run vertex as parameter values.

5.6.1  Collecting Sojourn Time Statistics Using SIGMA Functions

Reproduced in Fig. 5.24 is the event graph model shown in Fig. 5.4 in Section 
5.2.2. Recall from Section 5.2.2 that, in order to collect the sojourn time sta-
tistics, the arrival time of each job must be stored at the Arrival event and its 
sojourn time (ST) is computed by subtracting the arrival time (AT) from the 
departure time (CLK) at the Unload event.

5.6.1.1  Constructing a SIGMA-Compatible Event Graph  In order to 
execute the event graph model using SIGMA, it must be converted to a 
SIGMA-compatible event graph in which (1) a Run event is defined to initial-
ize the state variables and (2) the PUT{} and GET{} functions are used for 
storing and retrieving data in and from the built-in ranked list, respectively. A 
SIGMA-compatible event graph for collecting the sojourn time statistics is 
given in Fig. 5.25.

At the Run vertex shown in Fig. 5.25, RNK[1] = 0 is set so that ranked list 
1 is ranked by the data field ENT[0]. At the Arrive vertex, the current arrival 
time (CLK) is assigned to ENT[0] and stored in ranked list 1 in an increasing 
order by invoking the PUT{INC;1} function. At the Load vertex, the arrival 

Fig. 5.23.  Structure of the SIGMA simulation program.

Run
(Q,M)

SIGMA-compatible Event Graph

Fig. 5.24.  Event graph model for collecting sojourn time statistics.
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ta = Exp(9)
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time is retrieved and stored in ENT[0] by the GET{FST;1} function; then, it is 
passed to the Unload vertex as an edge parameter value.

In Fig. 5.25, the number of jobs in the buffer is denoted by the integer vari-
able (Q) and the sojourn time of a job is stored as the real variable (ST). The 
statistics that are collected are the time average queue length (TAV{Q}) and 
the average sojourn time (AVE{ST}). In this particular case, ranked list 1 is in 
effect a FIFO queue. Thus, we could use PUT{FIF,1} instead of PUT{INC,1}.

5.6.1.2  Building a SIGMA Program for Simulation  As explained in 
Chapter 4, the procedure for building a SIGMA program consists of six steps. 
Step 1 is to create a graphical model of the SIGMA-compatible event graph 
on the main screen of SIGMA. As shown in Fig. 5.26(a), this graph consists of 
six vertices and eight edges. Step 2 is to bring in the State Variable Editor 
dialog box and declare all variables that appear in the SIGMA-compatible 
event graph. As shown in Fig. 5.26(b), the state variables are Q, M, RNK[10000], 
ENT[15], ST, and AT.

Step 3 is to define the Run vertex by creating the Edit Vertex 1 dialog box 
and specifying the state variables Q and M as its parameter variables. Step 4 
is to create Edit Vertex dialog box for each event vertex in the SIGMA-
generated event graph shown in Fig. 5.26(a) and to define its state changes 
and parameters where applicable. Figure 5.27(a) presents the Run vertex 

Fig. 5.25.  SIGMA-compatible event graph for collecting sojourn time statistics.
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Fig. 5.26.  (a) SIGMA-generated event graph and (b) declaration of state variables.
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dialog box in which RNK[1] = 0 is entered in the State Change(s) field, and 
Q and M are entered in the Parameter(s) field (Q and M are initialized in the 
Run Options dialog box). Figure 5.27(b) shows the Arrive vertex dialog box.

The fifth step is to create an Edit Edge dialog box for each edge in the 
SIGMA-generated event graph shown in Fig. 5.26(a) and to specify the time 
delay value, edge condition, and parameter value. Figure 5.27(c) shows the 
dialog box of the edge Load→Unload whose time delay that is a Uniform(6,8) 
random variate is specified in the Delay field as “6+2*RND,” edge condition 
TRUE is specified in the Condition field, and parameter value ENT[0] is speci-
fied in the Attributes field.

5.6.1.3  Running the SIGMA Program for Simulation  The last step is to 
create the Run Options dialog box and to specify the experimental conditions 
and output requirements. Figure 5.28(a) shows the experimental conditions 
such as the random number seed (12345), end-of-simulation time (5,000 min), 
and the initial values of Q and M. Also specified in Fig. 5.28(a) are the variables 

Fig. 5.27.  Defining the (a) Run vertex, (b) Arrive vertex, and (c) Load-Unload edge.

(a) (b) (c)

Fig. 5.28.  (a) Run Options dialog box and (b) Model Defaults output.

(a) (b)
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(Q, M, ST) and statistics (time average of Q and average of ST) to be traced. 
Figure 5.28(b) shows the model default values and a list of the traced variable 
values at each event time.

Figure 5.29(a) and (b), respectively, present the simulation plots of the 
queue sizes (Q) and the time average of Q. The queue sizes fluctuate consider-
ably as a result of the disturbances due to failures, but the time average of Q 
appears to converge to 2.

5.6.2  Simulating a Simple Service Shop with SIGMA

Figure 5.30 reproduces the event graph of a simple service shop that was given 
in Fig. 4.19 of Chapter 4 (Section 4.5.1). The simple service shop is subject to 
time-varying arrival rates (λ(t)). In order to manage the customer fluctuations, 
the number of servers (n(t)) is planned to change over time, which is often 
referred to as a flexible multi-server system.

Let us assume that customers arrive at the shop with arrival rates (customers 
per minute) of 0.0 during 0:00∼5:59, 0.02 during 6:00∼7:59, 0.10 during 8:00∼9:59, 
and so on, as summarized in Table 5.4. That is, R[0] = R[1] = R[2] = 0, R[3] = 0.02, 
and so on. The maximum arrival rate is 0.5 during 14:00∼15:59 (R[7] = 0.5). The 
base number of servers during the day hours (8:00∼17:59) is three, with a peak 
of five during 2:00∼3:59 p.m. (N[7]  =  5). All servers are identical and their 
service times are exponentially distributed with a mean of 9.

Fig. 5.29.  Simulation plots of the (a) queue sizes and (b) time average of the queue 
sizes.

(a) (b)

Fig. 5.30.  Simple service shop with fluctuating arrival rates and varying resource levels.
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5.6.2.1  SIGMA-Compatible Event Graph for the Modified Event Graph 
Figure 5.31 presents a SIGMA-compatible event graph model of the modified 
event graph shown in Fig. 5.30. The figure also shows the input text file RN.
DAT. The function DISK {RN.DAT; 0} reads the text file RN.DAT sequentially, 
and the for loop is implemented using the parameterized event Read(k). The 
simulation clock (CLK) is converted to the index value (h) shown in Fig. 5.31 
using the function MOD{CLK/120; 12}. The default time unit of minutes is 
converted to 2-hour units by dividing CLK by 120. The RND function returns 
a standard uniform random variate.

5.6.2.2  Building a SIGMA Program for Simulation  The first step of 
building a SIGMA program for simulation is to create a SIGMA-generated 
event graph on the main screen of SIGMA, as shown in Fig. 5.32. The second 
step is to bring in the State Variable Editor dialog box and declare all user-
defined variables as state variables: Q, M, RMAX, R[12], N[12], N0, H, RATIO, 
and K (dialog box not shown).

The third step is to double click the Run vertex (shown in Fig. 5.32) to create 
the Edit Vertex 1 dialog box and enter the information {RMAX = 0.5; N0 = 5; 

TABLE 5.4.  Arrival Rates and Number of Servers over a 24-Hour Period

Hours
(120min)

0000-
0159

0200-
0359

0400-
0559

0600-
0759

0800-
0959

1000-
1159

1200-
1359

1400-
1559

1600-
1759

1800-
1959

2000-
2159

2200-
2359

k 0 1 2 3 4 5 6 7 8 9 10 11

R[k] 0.00 0.00 0.00 0.02 0.10 0.30 0.40 0.50 0.40 0.10 0.02 0.00
N[k] 0 0 0 0 3 3 3 5 3 1 1 0

Fig. 5.31.  SIGMA-compatible PEG model for managing fluctuations.

Load DepartEnterArrive
Read

(k)

==Run
(Q,M)

0

Fig. 5.32.  SIGMA-generated event graph.
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Q = 0; M = N0} appearing in the Run vertex (shown in Fig. 5.31). As shown in 
Fig. 5.33(a), RMAX = 0.5 and N0 = 5 are entered in the State Change(s) field, 
and Q, M are specified in the Parameter(s) field. The fourth step is to create 
a dialog box for each event vertex. The dialog box of the Read vertex is shown 
in Fig. 5.33(b), in which the parameter value is K.

The fifth step is to create an Edit Edge dialog box for each of the edges in 
the SIGMA-generated event graph shown in Fig. 5.32. Figure 5.34 presents the 
dialog boxes of the three edges Run→Read (From: Run; To: Read), Read→
Arrive, and Read→Read.

5.6.2.3  Running the SIGMA Program for Simulation  The sixth step is to 
create the Run Options dialog box. Shown in Fig. 5.35(a) is the Run Options 
dialog box in which the experimental conditions such as the random number 
seed (12345), end-of-simulation time (5,000 min), and initial values of Q and 
M are specified. The dialog box also specifies the variables and statistics to be 
traced. Figure 5.35(b) shows a simulation plot of Q (number of customers in 
the queue) over the simulation time.

5.6.3  Simulation of a Three-Stage Tandem Line Using SIGMA

The PEG model introduced earlier in this chapter (Fig. 5.3 in Section 5.2.1) 
will be used as a vehicle for demonstrating the simulation of an n-stage tandem 

Fig. 5.33.  Defining the (a) Run vertex and (b) Read vertex.

(a) (b)

Fig. 5.34.  Examples of edge dialog boxes.
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Fig. 5.36.  PEG model of an n-stage tandem line (n = 3).
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Fig. 5.37.  SIGMA-compatible PEG model of the n-stage tandem line (n = 3).
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Fig. 5.35.  Run Options dialog box and simulation plot of Q.

(a) (b)

line with SIGMA. The PEG model shown in Fig. 5.3 is reproduced in Fig. 5.36 
with n = 3, where the distribution functions of the inter-arrival time and service 
times at the three stages are also specified.

5.6.3.1  Building a SIGMA-Compatible PEG Model  In general, the first 
step in simulation with SIGMA is to modify the given event graph model in 
order to manage specific requirements. In this particular case, however, modi-
fications are not required. Thus, the first step is to build a SIGMA-compatible 
PEG model from the neutral PEG model given in Fig. 5.36.

Figure 5.37 presents a SIGMA-compatible PEG model of the three-stage 
tandem line. Note in Fig. 5.37 that the number of stages “n” defined in the Run 
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Fig. 5.38.  (a) SIGMA-generated event graph and (b) declaration of state variables.

(a) (b)

Fig. 5.39.  Defining (a) the Run vertex and (b) the Enter vertex.

(a) (b)

vertex is never used in the model. A convenient feature of SIGMA is the use 
of Boolean variables. For example, the service time (t[k]) at stage k is given 
by Exp(5) if k ≡ 1, Exp(4) if k ≡ 2, and Exp(3) if k ≡ 3, which is expressed in 
SIGMA as follows:

	 t k k ERL k 4 ERL 1 k ERL[ ] ( )* * { } ( )* * { } ( )* * { }.= == + == + ==1 5 1 2 3 3 1 	

5.6.3.2  Building a SIGMA Program and Running the Simulation  Figure 
5.38(a) presents the SIGMA-generated event graph of the three-stage tandem 
line; Fig. 5.38(b) shows the State Variable Editor dialog box. The SIGMA-
generated event graph for a PEG model is the same as that for an event graph 
model. The variables declared as the state variables are Q, M, TA, T, N, and K. 
The sizes of the arrays Q, M, and T are set to 4 in Fig. 5.38(b) because in Fig. 
5.37 Q[k] and M[k] are defined for k=1, 2, 3 (Q[0] and M[0] are not used). 

The dialog boxes for the Run vertex and the Enter vertex are given in Fig. 
5.39(a) and (b), respectively. The variables to be initialized in the Run Options 
dialog box are declared as parameters in the Run vertex dialog box shown in 
Fig. 5.39(a). The State Change(s) (Q[K] = Q[K] + 1, TA=(K==1)*3*ERL{1}) 
and the parameter K are defined in the Enter vertex dialog box shown in Fig. 
5.39(b). Figure 5.40 shows the dialog boxes defining the Run→Enter edge, 
Enter→Load edge, and Enter→Enter edge.
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Finally, the simulation experiment data are provided in the Run Options 
dialog box as depicted in Fig. 5.41(a). A simulation plot of Q[1] is given in  
Fig. 5.41(b).

5.6.4  Simulation of the Simple Job Shop with SIGMA

The PEG model of the job shop in Fig. 5.18 will be used as an example of a 
simulation using SIGMA. The example job shop has four single-machine sta-
tions (s =  0∼3, i.e., M[s] =  1) and three job types (j  =  0–2). A job arrives at 
every 12 minutes (=ta) with job mix ratios of 26% for j = 0, 48% for j = 1, and 
26% for j = 2. The routing sequences ({route(j,k)}) and processing times ({tjk: 
j = job type, k = processing step}) are as given in Table 5.5. Note that the pro-
cessing step is denoted by “k” (not “p”) only when the routing sequence data 
and processing time data are as defined in Fig. 5.43 and Table 5.5.

Figure 5.42 depicts the routing sequence and processing times of the type-1 
jobs. Let the transport delay time from station v to station w be denoted by 
dvw; then, the net sojourn time of the type-1 job is expressed as t10 + d01 + t11 
+ d13 + t12 + d31 + t13 + d12 + t14 + d24. The transport delay data are summarized 
in Table 5.6.

Fig. 5.40.  Defining the edges (a) Run→Enter, (b) Enter→Load, and (c) Enter →Enter.

(a) (b) (c)

Fig. 5.41.  (a) Run Options dialog box and (b) the simulation plot of Q[1].

(a) (b)
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TABLE 5.5.  Routing Sequence and Processing Times of the PEG Model Figure 5.18

Job 
(Ratio)

Step-0 (k = 0)
Step-1 
(k = 1) Step-2 (k = 2) Step-3 (k = 3) Step-4 (k = 4)

route 
(j,0) tj0

route 
(j,1) tj1

route 
(j,2) tj2

route 
(j,3) tj3

route 
(j,4) tj4

j = 0 
(26%)

0 Exp 
(6)

1 Exp 
(5)

2 Exp 
(15)

3 Exp(8) — —

j = 1 
(48%)

0 Exp 
(11)

1 Exp 
(4)

3 Exp 
(15)

1 Exp 
(6)

2 Exp 
(27)

j = 2 
(26%)

1 Exp 
(7)

0 Exp 
(7)

2 Exp 
(18)

— —

Fig. 5.42.  Routing sequence and processing times of the type 1 job (j = 1).

Assign job-type:
{j=0 with 26%;
j=1 with 48%;
j=2 with 26%}

TABLE 5.6.  Transport Delay Data

delay[v, w] = dvw

To Station (w)
Text file format of 

INPUTT.DAT0 1 2 3 4

From Station (v) 0 0 d01 = 2 d02 = 4 d03 = 6 d04 = 2 0 2 4 6 2
1 d10 = 6 0 d12 = 2 d13 = 4 d14 = 2 6 0 2 4 2
2 d20 = 4 d21 = 6 0 d23 = 2 d24 = 2 4 6 0 2 2
3 d30 = 2 d31 = 4 d32 = 6 0 d34 = 2 2 4 6 0 2

5.6.4.1  Data Reading and Input Generation with SIGMA  The configura-
tion of a job shop is defined by a master data set. The important master data 
of the job shop are as follows:

1.	 Initial state of the queue in each station: Q[0] =  0, Q[1] =  0, Q[2] =  0, 
Q[3] = 0

2.	 Number of machines in each station: M[0] = 1, M[1] = 1, M[2] = 1, M[3] = 1
3.	 Initial job type of each station (machine): JT[0] = 0, JT[1] = 0, JT[2] = 0, 

JT[3] = 0
4.	 Routing sequence for each job type: route [J, K] as given in Table 5.5
5.	 Mean processing times for each job type: t[J, K] as given in Table 5.5
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6.	 MAXJ = 2, MAXK = 5: maximum numbers of job types (J) and process-
ing steps (K)

7.	 Transport delay times between stations: delay [V, W] as defined in Table 
5.6

8.	 MAXN = 3: maximum number of stations (V, W)
9.	 Inter-arrival time and setup time: TA = 12, TS = 30

Figure 5.43 provides a SIGMA-compatible event graph for initializing the 
variables and reading the data, where (1) MAXJ = 2, MAXK = 5, MAXN = 3, 
TA =  12, and TS =  30 are received as parameter values; (2) Q[s], M[s], and 
JT[s] are initialized at the Run event; (3) route[J,K] and t[J,K] are read at the 
Read event; and (4) delay[V,W] is read at the ReadT event. The data reading 
function DISK {F; 0} is used to read the input data. Table 5.7 shows the input 
file (INPUTR.DAT) in which the routing data (route[J,K] = s) and mean pro-
cessing time (t[J,K]) of Table 5.5 are provided. For example, the second line 
contains the following data: route[1,0] = 0, t[1,0] = 11, route[1,1] = 1, t[1,1] = 4, 
route[1,2] = 3, t[1,2] = 15, route[1,3] = 1, t[1,3] = 6, route[1,4] = 2, t[1,4] = 27, 
route[1,5] = 4, and t[1,5] = 0. Notice in Table 5.7 that s = 4 is used as a delimiter 
value indicating the end of a job process. The transport delay data of Table 5.6 
are stored in the input file (INPUTT.DAT) in the same manner.

5.6.4.2  Building a SIGMA-Compatible PEG Model for a Job Shop Simu-
lation  The main part of the SIGMA-compatible PEG model for simulating 
the job shop operation is shown in Fig. 5.44. It is essentially the same as the 
PEG model shown in Fig. 5.18, but it has the following differences: (1) at the 

Fig. 5.43.  SIGMA-compatible PEG model for data reading and input generation (K: 
processing step).

TA

Read
(J,K)

0,0
Arrive

{U=RND,
J= (U>0.26)+(U>0.74),
s= route[J;0]}

(J<=MAXJ)
&(K<MAXK)

J, K+1

{route[J;K]= DISK{INPUTR.DAT;0},
t[J;K] =  DISK{INPUTR.DAT;0}}

J+1, 0

(J<MAXJ)
&(K==MAXK)

(J>=MAXJ)
&(K>=MAXK) ReadT

(V,W)
0,0

{delay[V;W] =
DISK{INPUTT.DAT;0}}

(V<=MAXN)
&(W<MAXN+1)

V, W+1 V+1, 0

(V<MAXN)
&(W==MAXN+1)

(V>=MAXN)
&(W>=MAXN+1)

Run
(MAXJ, MAXK,
MAXN, TA, TS)

{Q[0]=Q[1]=Q[2]=Q[3]=0,
M[0]=M[1]=M[2]=M[3]=1,
JT[0]=JT[1]=JT[2]=JT[3]=0}

J, 0, s
2,5,3,12,30

TABLE 5.7.  INPUTR.DAT File of Routing and Mean Processing Time Data in 
Table 5.5

0 6 1 5 2 15 3 8 4 0 4 0
0 11 1 4 3 15 1 6 2 27 4 0
1 7 0 7 2 18 4 0 4 0 4 0
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Enter (j,p,s) event, the job type (j) and processing step (p) are assigned to each 
job entering the station (s); (2) the transport delay td = delay[s; ns] is defined 
at the Depart event; and (3) at the Load(s) event, the job (j, p) is retrieved 
and its processing time (tp) is computed as follows:

	 tp t j p ERL 1 j JT s TS= + =[ ; ]* { } ( ! [ ])* . 	

The event transition table for the combined PEG model shown in Figs.  
5.43 and 5.44 is given in Table 5.8. The constant data MAXJ (maximum 
number of job types), MAXK (maximum number of processing steps), MAXN 
(maximum number of stations), TA (deterministic inter-arrival time), and  
TS (deterministic setup time) are declared as parameters at the Run event. 
These values are specified in the Run Options dialog box. The job type (J)  
is obtained at the Arrive event using the RND function: U  =  RND, 
J = (U > 0.26) + (U > 0.74).

5.6.4.3  Building a SIGMA Program and Running the Simulation  The 
first step of building a SIGMA program is to draw a SIGMA-generated event 
graph. Figure 5.45 shows the SIGMA-generated event graph model of the job 
shop in which there are 10 event vertices.

The second step is to declare all user-defined variables as state variables in 
the State Variable Editor dialog box, as shown in Fig. 5.46(a). There are 22 
user-defined variables declared in the dialog box. The dimensions of the system 
variables ENT and RNK are also declared here. Among the declared variables 
are the three array variables (T, ROUTE, and DELAY) that constitute the 
master data of the job shop. Figure 5.46(b) shows the dialog box of the Run 
event, in which the job shop is initialized in the State Change(s) field and the 
constant variables are declared in the Parameter(s) field.

Finally, the simulation experiment data are provided in the Run Options 
dialog box as depicted in Fig. 5.47(a). A simulation plot of Q[2] is also shown 
in Fig. 5.47(b).

Fig. 5.44.  SIGMA-compatible PEG model for the job shop operation (p: processing 
step).
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Fig. 5.45.  SIGMA-generated event graph model of the job shop.

Fig. 5.46.  (a) Declaration of state variables and (b) defining the Run vertex.

(a) (b)

Fig. 5.47.  (a) Run Options dialog box and (b) simulation plot of Q[2].

(a) (b)
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5.7  DEVELOPING YOUR OWN PARAMETERIZED EVENT 
GRAPH SIMULATOR

The process of developing your own simulator for a PEG model is the same 
as that for developing an (ordinary) event graph model, as described in 
Chapter 4. Namely, (1) the (pure) PEG model is converted to an augmented 
PEG model by adding the statistics variables and a statistics routine; (2) an 
event transition table is constructed from the augmented PEG model; (3) the 
initialize routine, event routines, and statistics routine are developed; and (4) 
the main program is obtained from the event graph simulator template shown 
in Fig. 4.56. The process of developing your own PEG simulator is described 
by using the three-stage tandem line model considered in Section 5.6.3  
and the simple job shop model covered in Section 5.6.4. A complete list of  
C# codes for the tandem line simulator and the job shop simulator may be 
found in the official website of this book (http://VMS-technology.com/Book/
EventGraphSimulator).

5.7.1  Tandem Line PEG Simulator

This section describes how to develop a PEG simulator for the tandem line 
shown in Fig. 5.36 in Section 5.6.3. Let us assume that we are interested in the 
average queue length at each stage of the tandem line.

Figure 5.48 shows an augmented PEG model of a three-stage tandem line 
for collecting the average queue length (AQL) statistics. The statistic variables 
introduced are the previous event time (Bef[k]) and the area under the queue-
size curve (SumQ[k]) at stage k for k  =  1–3. The average queue lengths 
(AQL[k]) for k = 1∼3 are computed in the statistics routine. The event transi-
tion table of the PEG model is given in Table 5.9.

As in the case of the ordinary event graph simulator (see Chapter 4, Section 
4.7), the initialize routine, event routines, and statistics routine of the aug-
mented PEG model (Fig. 5.48 and Table 5.9) for collecting the AQL statistics 
are obtained easily, as follows:

Fig. 5.48.  Augmented PEG model of a three-stage tandem line for collecting AQL 
statistics.

Load
(k)

Unload
(k)

(M[k]>0)
(Q[k]>0)

Enter
(k)

t[k]

taInitialize:
For k=1~3 {
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M[k] =1;
Bef[k]= 0;
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}

{M[k]++}

k
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00

)
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TABLE 5.9.  Event Transition Table for the PEG Model Shown in Figure 5.48

No Event State Change Edge Condition Delay Parameter
Next 
Event

0 Initialize For k = 1∼3 {Q[k] = 
0; M[k] = 1; 
Bef[k] = 0; 
SumQ[k] = 0}

1 True — 1 Enter(k)

1 Enter(k) SumQ[k] += Q[k]*
(CLK–Bef[k]);  
Bef[k] = CLK;

Q[k] ++; 
if (k==1) 
ta = Exp(3);

1 k ≡ 1 ta k Enter(k)
2 M[k] > 0 0 k Load(k)

2 Load(k) SumQ[k] += Q[k]*
(CLK–Bef[k]);  
Bef[k] = CLK; 
Q[k]−−; M[k]−−; 

t[k] = (k ≡ 1)*
Exp(5) + (k ≡ 2)*
Exp(4) + (k ≡ 3)*
Exp(3);

1 True t[k] k Unload(k)

3 Unload(k) M[k]++; 1 Q[k] > 0 0 k Load(k)
2 k < 3 0 k + 1 Enter(k)

4 Statistics For k = 1∼3 { SumQ[k] += Q[k]*(CLK–Bef[k]); AQL[k] = SumQ[k]/
CLK; }

Execute-Initialize-routine (Now) // Fig. 5.48 //
{  For k = 1 to 3 {Q[k] = 0; M[k] = 1; Bef[k] = 0; SumQ[k] = 0};
  Schedule-event (Enter, 1, Now);
}.

Execute-Enter-event-routine (k, Now) // Fig. 5.48 //
{  SumQ[k] += Q[k] * (Now – Bef[k]); Bef[k] = Now;
  Q[k] ++;
  If (k==1) Schedule-event (Enter, k, Now + Exp (3));
  If (M[k] > 0) Schedule-event (Load, k, Now);
}.

Execute-Load-event-routine (k, Now) // Fig. 5.48 //
{  SumQ[k] += Q[k] * (Now – Bef[k]); Bef[k] = Now;
   Q[k]−−; M[k]−−;
   t[k] = (k==1) * Exp(5) + (k==2) * Exp(4) + (k==3) * Exp(3);
  Schedule-event (Unload, k, Now + t[k]);
}.
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Execute-Unload-event-routine (k, Now) // Fig. 5.48 //
{  M[k] ++;
   If (Q[k] > 0) Schedule-event (Load, k, Now);
   If (k < 3) Schedule-event (Enter, k + 1, Now);
}.

Execute-statistics-routine (Now) // Fig. 5.48 //
{  For k = 1∼3 {SumQ[k] += Q[k] * (Now – Bef[k]); AQL[k] 

= SumQ[k] / Now;}
}.

With these event routines and initialize/statistics routines, the next event 
methodology algorithm for simulating the three-stage tandem line is realized 
as shown in Fig. 5.49.

If we are interested in the average sojourn time (AST) statistics, the aug-
mented PEG model will be as shown in Fig. 5.50. The statistics variables 
required to collect the AST statistics are the job arrival time (AT), sum of 
sojourn times (SumT), and number of jobs passed through the third station 
(N). It should be noted that Q[k] is a list of real numbers (arrival times of jobs 
in the kth stage).

Fig. 5.49.  Main program of the three-stage tandem line simulator for computing AQL.

Main-Program // PEG model in Figure 5.48 and Table 5.9 //
Begin
CLK = 0;
Execute-Initialize-routine (CLK); // (1) Initialize
While (CLK < 500) do { // te = 500
Retrieve-event (EVENT, k, TIME); CLK = TIME; // (2) Time-flow mechanism
Case EVENT of { // (3) Execute event-routine

Enter: Execute-Enter-event-routine (k, CLK);
Load: Execute-Load-event-routine (k, CLK);
Unload: Execute-Unload-event-routine (k, CLK);

} // end-of-case
}; // end-of-while
Execute-statistics-routine (CLK); // (4) Output statistics

End

Fig. 5.50.  Augmented event graph model for collecting AST statistics.

Load
(k)

Unload
(k, AT)

(M[k]>0)
(|Q[k]|>0)

Enter
(k, AT)

t[k]

taInitialize:
For k=1~3{
New Q[k];
M[k] = 1;
}
SumT= 0; 
N=0;

{M[k]++; 
If (k≡3) {N++;

SumT+=(CLK–AT);}

k

k, AT

k+1, AT(k≡1) (k<3)

k

k, AT 
(CLK>500)

{If (k≡1) {
AT = CLK; ta= Exp(3)}; 
AT Q[k];}

{Q[k] AT; M[k]--; 
t[k]= (k≡1)*Exp(5)+ (k≡2)*Exp(4)+ 

(k≡3)*Exp(3);}
Statistics:
AST = SumT / N

1, 0
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5.7.2  Simple Job Shop PEG Simulator

In this section, the simple job shop model covered in Section 5.5.2 (Fig. 5.18) 
and in Section 5.6.4 is adopted as a more general example of developing a 
PEG simulator. As described in Section 5.6.4, the simple job shop consists of 
four single-machine stations (s = 0, 1, 2, 3) and handles three job types (j = 0, 
1, 2). The routing sequences and mean processing times are as given in Table 
5.5; the transport time delays are as specified in Table 5.6. An augmented PEG 
model of this simple job shop is shown in Fig. 5.51, where EOS denotes the 
end-of-simulation condition.

In this example, the parameter variables are not equal among the events, 
which may cause difficulty in implementing the event routines. A simple 
method to avoid this difficulty is to use the same list of parameter variables 
for all event routines. In this case, the parameter list (j, p, s) is used for all event 
routines. For example, the event routines for the Arrive event and Enter event 
can be obtained as follows:

Execute-Arrive-event-routine (j, p, s, Now) // Fig. 5.51 //
{  U = Uni (0, 1); j = (U > 0.26) + (U > 0.74);
   s = route [j, 0];
   Schedule-event (Arrive, 0, 0, 0, Now +12);
   Schedule-event (Move, j, 0, s, Now);
}.

Execute-Enter-event-routine (j, p, s, Now) // Fig. 5.51 //
{  SumQ[s] += |Q[s]| * (Now – Bef[s]); Bef[s] = Now;
   (j, p) → Q[s];
   If (M[s] > 0) Schedule-event (Load, 0, 0, s, Now);
}.

Fig. 5.51.  Augmented PEG model of a simple job shop for collecting AQL statistics.
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Exercise 5.3. Write a main program (in a pseudocode form) for the PEG 
simulator that executes the augmented PEG model shown in Fig. 5.51.

5.8  REVIEW QUESTIONS

5.1.  What are the two common cases for parameterizing an ordinary event 
graph?

5.2.  What is the difference between a parameter variable and a parameter 
value?

5.3.  What is the difference between a parameterized event transition table and 
an ordinary event transition table?

5.4.  Compared to the ordinary event graph model, what are the additional 
elements in the algebraic structure of the PEG model?

5.5.  What is the repeating pattern of event nodes in a limited buffer tandem 
line model?

5.6.  What is a simple job shop?

5.7.  What are the state variables in the event graph model of a simple job 
shop?

5.8.  Where do you declare the state variables in SIGMA? Where do you ini-
tialize them?
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CHAPTER 6

Introduction to Activity-Based 
Modeling and Simulation

In all things there is a law of cycles.
—Publius C. Tacitus

6.1  INTRODUCTION

Our lives are full of activities: It is through activities that something meaning-
ful is achieved. An activity always involves at least one actor. In our definition 
of a discrete-event system, it is often the case that the actor is a resource and 
the target of an activity is a transient entity to be served or processed by the 
resource. In a machine shop, the resource is a machine and the transient entity 
is a job. The outcome of one activity may trigger other activities. If we can 
identify the relationships among the activities, we can better understand the 
present situation and may be able to predict future situations.

Thus, activity-based modeling is a natural way to represent our knowledge 
of a system. When we describe a real-life dynamic situation, we naturally 
follow a sequence of steps, i.e., activities that are involved in the situation. In 
activity-based modeling, the dynamics of the system are represented using an 
activity cycle diagram (ACD), which is a network model of the logical relation-
ships between the activities. An ACD is a formal model that can be executed 
with a well-defined algorithm.

The single server system introduced in Chapter 2 (Figs. 2.6 and 2.8) is shown 
in Fig. 6.1: A job arrives at the system as a result of a Create activity performed 
by the Job Creator, and it is served by the Machine through the Process activ-
ity. Each job goes through the system in the following sequence: After being 
created for ta minutes, it stays in the passive resource Buffer until it can be 
loaded onto the Machine, and then it is processed by the active resource 

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and 
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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Machine for ts minutes. The system state is defined by the states of the resources: 
Job Creator (C = 1 if idle, C = 0 if busy), Machine (M = 1 if idle, M = 0 if busy), 
and Buffer (Q = number of jobs in the Buffer).

The purpose of this chapter is to explain the essential features of activity-
based modeling and simulation (M&S) using an ACD. The advanced features 
and special applications of the activity-based M&S will be covered in Part III 
(Chapter 10) of this book. After studying this chapter, you should be able to 
do the following:

1.	 Construct an activity transition table for an ACD model
2.	 Build ACD models with various “template systems” such as a flexible 

multi-server system, limited buffer tandem line, nonstationary Poisson 
process, batched service multi-server line, and inspection-repair line

3.	 Build ACD models for simple service systems such as restaurants, gas 
stations, coffee shops, and car repair shops

4.	 Build an ACD model for a PERT (program evaluation and review tech-
nique) system

5.	 Build an ACD model for a conveyor-driven serial line
6.	 Construct parameterized ACD models of n-stage tandem lines and of a 

job shop
7.	 Simulate various types of ACD models using the formal ACD simulator 

ACE®

The remainder of this chapter is organized as follows. The execution rules 
and specifications of ACD are described in Section 6.2, and ACD modeling 
templates and examples are given in Section 6.3 and Section 6.4, respectively. 
The definition and execution rules of a P-ACD as well as its application to 
modeling tandem lines and job shops are given in Section 6.5. How to simulate 

Fig. 6.1.  Reference model and ACD model of a single server system.
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ACD models using the formal ACD simulator ACE® is explained in detail in 
the last section.

6.2  DEFINITIONS AND SPECIFICATIONS OF AN ACTIVITY 
CYCLE DIAGRAM

The core idea of activity-based M&S was conceived by Tocher in 1957 [Hol-
locks 2008] when he was investigating the congestion control problem at the 
United Steels in the United Kingdom. Tocher argued that “in more complex 
plants, in which there is a multiplicity of possible routes for the steel through 
the plant, it is possible to minimize congestion and maximize the rate of flow 
by a (simulation-based) scheduling procedure” [Tocher 1960, p.50].

Tocher used a flow diagram of activities in modeling the dynamic behavior 
of the steel plant (Fig. 6.2). “The plant is regarded as a set of machines, each 
with a set of states, progressing as time unfolds through states that change only 
at discrete events. At any moment of time, components are grouped together 
in activities, which endure for a sampled time, and then become free, after a 
possible change of state, to regroup with other components in further activi-
ties” [Tocher 1960, p.59].

The activity flow diagram shown in Fig. 6.2 later evolved into the ACD 
where an activity node is denoted by a rectangle and a queue node (or passive 
state node) by a circle [Carrie 1988]. This version of the ACD is often referred 
to as the classical ACD. However, it has transpired that the classical ACD has 
some inherent limitations in handling complex systems [Hlupic and Paul 1994]. 
In order to enhance the modeling power, concepts of a hierarchical ACD 
[Kienbaum and Paul 1994] and an extended ACD [Martinez 2001] have been 
proposed. More recently, a formal specification of an extended ACD has been 
developed by the authors of this book [Kang and Choi 2011].

Fig. 6.2.  Flow diagram of Acid Bessemer steel-making process [Tocher 1960].
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6.2.1  Definitions of an ACD

In the classical ACD, an activity typically represents the interaction between 
an entity and active resources. (Note that in this book the term entity is used 
to denote a transient object that arrives at the system and eventually leaves 
the system, while in other ACD literature this term includes resident resources 
as well.) An entity or an active resource is either in a passive state called a 
queue or in an active state called an activity. Queue nodes and activity nodes 
are connected by arcs.

Figure 6.3 presents a classical ACD model for a single server system with 
a setup operator. There are two types of entities (Job and Break) and four 
types of resources (Job Creator, Machine, Operator, and Break Generator). 
The basic conventions for drawing an ACD are as follows:

1.	 Each entity and resource has an activity cycle.
2.	 Each cycle consists of activities and queues.
3.	 Activities and queues alternate in a cycle.
4.	 Activities are depicted by rectangles and queues by circles.
5.	 A cycle is closed.

The dynamics of an ACD model are described in terms of token variables. 
The value of a token variable represents either the state of an active resource 
or the number of entities in a passive resource like a buffer. In the ACD model 
shown in Fig. 6.3, the token (denoted by a dot “•”) in the Machine Cycle 
indicates that the machine is in the Hold state, which is specified as Hold ≡ 1. 
The numeric value of a token variable in a queue is specified in a pair of 
chevrons <>. For example, the number of tokens in the Q queue is specified 
as <3>, indicating that there are three jobs in Q. When the value is zero, the 
number may be omitted.

For example, the number of tokens in the Ready queue is not specified 
because it is zero. A vector representing the numbers of tokens in the queues 
is called a marking. For the ACD model shown in Fig. 6.3, the marking M is a 
vector of token variables {C, Q, Hold, Ready, Wait, B, G, BG} and the initial 
marking, M0 = {1, 3, 1, 0, 1, 0, 1, 1}, defines the initial state of the system.

As can be seen in Fig. 6.3, the duration of an activity is also specified in a 
pair of chevrons <>. For example, the duration of the Process activity is speci-

Fig. 6.3.  Classical ACD for a single server system with a setup operator.
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fied as <tp> in the activity node. There are two forms of activity cycles: (1) an 
entity activity cycle for an entity that has a definite sequence and (2) a resource 
activity cycle for an active resource that may perform one or more different 
activity cycles in any sequence. In Fig. 6.3, for example, the Operator Cycle, 
which is a resource activity cycle has two cycles to choose. In this case, it is 
implicitly assumed that a rule exists for choosing one of the two.

6.2.2  Execution Rules and Tabular Specifications of an ACD

An important extension to the classical ACD is the addition of arc conditions 
and arc multiplicities, which is often referred to as an extended ACD. An arc 
condition is a Boolean expression that must be true in order for the arc to be 
enabled, and an arc multiplicity represents the number of tokens passing 
through the arc when the enabled activity is executed. An arc condition and 
an arc multiplicity define the arc attributes of the arc. When arc attributes are 
not specified, by default, the arc condition is true and the arc multiplicity is 1.

Figure 6.4 shows a portion of an extended ACD in which (1) Q1 is an input 
queue, (2) c1 is an input arc condition, (3) m1 is an input arc multiplicity, (4) 
c2 is an output arc condition, (5) m2 is an output arc multiplicity, (6) Q2 is an 
output queue, and (7) A2 and A3 are influenced activities of activity A1 
(because the execution of A1 directly influences the start of A2 and A3). 
Queues S1, S2, and S3 represent the numbers of idle resources required to 
perform activities A1, A2 and A3, respectively. A2 has a higher priority over 
A3 because A3 is only enabled when the A2 resource is busy (S2 ≡ 0).

In the following, the execution rules of an extended ACD are described for 
the A1 activity in Fig. 6.4. An activity is confined by two events: an activity-
begin event and an activity-end event. Once an activity-begin event occurs, the 
activity-end event is bound to occur after the time delay of the activity dura-
tion. Thus, the activity-end event is called a bound-to-occur event (BTO event).

The At-begin execution rules of activity A1 in Fig. 6.4 are as follows: “If the 
input arc condition (c1) is true and the number of tokens in the input queue 
Q1 is at least its arc multiplicity (Q1 ≥ m1 > 0 or Q1 > m1 ≡ 0) and if there is 
at least one token in the queue S1 (S1 > 0), then (1) the A1 activity will begin 
after de-queuing m1 tokens from Q1 (Q1 = Q1 – m1) and one token from  
S1 and (2) its BTO event is scheduled to occur after the activity duration  
(t1).” Similarly, the At-end execution rules are expressed as “If the output arc 

Fig. 6.4.  Illustration of the arc attributes in an extended ACD.
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condition (c2) is true, then (1) m2 tokens are created and en-queued into the 
output queue Q2 and (2) a token is returned to queue S1. Then, the influenced 
activity A2 is examined first for execution, and if A2 is not ready for execution 
(i.e. S2 ≡ 0), A3 is considered for execution.”

An activity transition table is a formal specification of an ACD in a tabular 
form that defines the properties of the ACD. It specifies At-begin condition, 
At-begin action, BTO-event time, and BTO-event name of each activity. Here, 
updating state variables is referred to as an action. The table also specifies 
At-end condition, At-end action, and Influenced Activity for each output arc 
of the activity. Table 6.1 is an activity transition table of the ACD shown in 
Fig. 6.4. This table may also be regarded as an execution rules table because 
the execution rules are summarized concisely within it. In addition, the initial 
marking and enabled activities (i.e., activities whose At-begin conditions are 
true) are specified in the Initialize row of the table.

Table 6.2 gives another illustration of an activity transition table for the 
single server system ACD shown in Fig. 6.1. The single server system ACD 
consists of two activities (Create, Process) and four queues (C, Q, M, Jobs). 
Since the Jobs queue denotes the outside world in which there are an infinite 
number of jobs (i.e., the number of tokens is ∞), it is disregarded when inter-
preting the ACD.

Exercise 6.1. Construct an activity transition table of the classical ACD in 
Fig. 6.3.

6.2.3  Algebraic Specifications of an ACD

As mentioned in Chapter 2 (Section 2.3.3), a classical ACD is essentially a 
timed Petri net. A Petri net is a bipartite directed graph, so it is a classical ACD. 
An activity node in the ACD corresponds to a (timed) transition in a Petri net, 
and a queue node relates directly to a place. A Petri net consists of a finite set 
of places and a finite set of transitions, and an arc runs from a place to a transi-
tion, or vice versa. The places from which an arc runs to a transition are called 
input places of the transition; the places to which arcs run from a transition are 
output places. The places in a Petri net may contain a number of tokens. Any 
distribution of tokens over the places will represent a state of the net called a 
marking [Peterson 1981]. Due to their common structure, the algebraic specifi-
cation of an ACD is derived from a Petri net. Further discussion on the Petri 
net and its relationship to the ACD is presented in Chapter 10.

An ACD is a bipartite directed graph consisting of a set of activity nodes 
(A) and a set of queue nodes (Q). The arcs connecting the activities from the 
input queues are defined in the input function (I), and those connecting the 
output queues from the activities are defined in the output function (O). 
Associated with each activity node (a  ∈  A) is a time delay (τa  ∈ T), and a 
number of tokens (μq ∈ μ) is specified for each queue node (q ∈ Q) with their 
initial marking μ0. Thus, a classical ACD model M can be defined as 7-tuple 
structure, as follows:
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TABLE 6.2.  Activity Transition Table of the Single Server System ACD in Figure 6.1

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Influenced 

Activity

1 Create (C > 0) C−−; ta Created 1 True C++; Create
2 True Q++; Process

2 Process (Q > 0) & 
(M > 0)

Q−−; 
M−−;

ts Processed 1 True M++; Process

Initialize Initial Marking = {C = 1, M = 1, Q = 3}; Enabled Activities = {Create}

M = <A, Q, I, O, T, μ, μ0>, where
A = {a1, a2 . . . an} is the finite set of activities;
Q = {q1, q2 . . . qm} is the finite set of queues;
I =  {ia ⊆ Q | a ∈ A} is the input function, which is mapped from a set of 

queues to an activity;
O = {oa ⊆ Q | a ∈ A} is the output function, which is mapped from an activ-

ity to a set of queues;
T R a Aa= ∈ ∈+{ | }τ 0  is the time delay function;
m = ∈ ∈+{ | }µq N q Q0  is the finite set of the number of tokens for each queue; 

and,
μ0 = {μ1, μ2 . . . μm} is the finite set of initial number of tokens for each queue.

As an example, the single server system ACD in Fig. 6.1 may be specified 
as follows:

M = (A, Q, I, O, T, μ, μ0), where
A = {a1, a2} = {Create, Process}
Q = {q1, q2, q3, q4} = {Jobs, C, Q, M}
I(a1) = {q1, q2}, I(a2) = {q3, q4}
O(a1) = {q2, q3}, O(a2) = {q1, q4}
T(a1) = ta, T(a2) = ts

μ = {μ1, μ2, μ3, μ4}
μ0 = {μ1 = ∞, μ2 = 1, μ3 = 3, μ4 = 1}

An algebraic structure of an extended ACD is defined similarly [Kang and 
Choi 2011].

6.3  ACTIVITY CYCLE DIAGRAM MODELING TEMPLATES

The single server system ACD model shown in Fig. 6.1 is the baseline ACD 
model in which a resource processes one entity at a time and the buffer has 
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an infinite capacity. This baseline model can be embellished to cover more 
complex situations. Most ACD modeling templates covered in this section are 
taken from the event graph modeling templates introduced in Section 4.4 of 
Chapter 4. The templates involving event canceling are covered in Chapter 10. 
The ACD modeling templates presented here can be used as building blocks 
for modeling large systems.

The single server ACD model of Fig. 6.1 is easily extended to a two-stage 
tandem line ACD model by adding one more stage (i.e., Process activity) as 
shown in Fig. 6.5. The two-stage tandem line ACD model has two Process activi-
ties (Process1 and Process2) with two time delays (t1 and t2, respectively).

Exercise 6.2. Construct an ACD model of a three-stage tandem line.

6.3.1  ACD Template for Flexible Multi-Server System Modeling

The single server system depicted in Fig. 6.1 consists of a single server and a 
buffer with an unlimited capacity. If there are two or more identical servers 
in the system, it is a multiple server system. Figure 6.6 shows the ACD model 
of a fixed multi-server system with four identical servers. The initial marking 
is μ0 = {C = 1, M = 4, Q = 0}.

Consider the case in which the number of servers varies over time, which 
is called a flexible multi-server system. Let N(t) denote the number of servers 
at time t, then the ACD model of the flexible multi-server system becomes the 
one shown in Fig. 6.7. CLK denotes the current simulation clock time.

An activity transition table for the flexible multi-server ACD in Fig. 6.7 is 
given in Table 6.3. At every At-begin execution time, the state variable D, 
which denotes the change in the number of servers, is updated and the Process 
activity is started if its At-begin Condition ((M > D) & (Q > 0)) is true. The 

Fig. 6.5.  ACD model of a two-stage tandem line.
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•
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•
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Fig. 6.6.  ACD model of a fixed multi-server system with four identical servers.

Jobs

C
•

Q Process <ts>Create <ta>

M

C=1, M=4, Q=0



152    Introduction to Activity-Based Modeling and Simulation

initial marking is {C = 1, M = N0, Q = 0}. As a convention, the state variable 
updates are specified beneath the activity node in the ACD and are described 
in the At-begin Action entry of the activity transition table.

6.3.2  ACD Template for Limited Buffer Tandem Line Modeling

As discussed in Chapter 4 (Section 4.4), balking may occur if the waiting space 
for the arriving jobs becomes full, and blocking may occur if the unloading 
space of a machine is full. In activity-based modeling, the limited buffer 
problem is managed using Kanbans, which is the work-in-progress (WIP) 
control mechanism used in just-in-time (JIT) production or lean manufactur-
ing. A Kanban is a kind of entrance ticket that is issued to an incoming entity 
and is collected when the entity leaves the system.

Consider the unlimited buffer two-stage tandem line model shown in Fig. 
6.5. Let’s assume that the buffer capacity in front of Stage1 is three (K1 = 3) 
and the buffer capacity between Stage1 and Stage2 is four (K2 = 4). The capac-
ity of the waiting space or buffer is represented by the number of tokens (or 
Kanbans) in queues K1 and K2. The ACD model of the two-stage limited 
buffer tandem line is shown in Fig. 6.8. The Enter activity is allowed to start 
only when at least one token is available in K1. The Unload1 activity is pro-
hibited (i.e., blocked) when there are no tokens in K2.

Fig. 6.7.  ACD model of a flexible multi-server system.

Jobs

C
•

Q Process <ts>Create <ta>

M
[N0]

{D = N0 – N[CLK]}

(M > D)

C=1, M=N0, Q=0 

{D = N0 – N[CLK]}

TABLE 6.3.  Activity Transition Table of the Flexible Multi-Server ACD Given in Figure 6.7

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Influenced 

Activity

1 Create (C > 0) C−−;
D = N0 − 

N[CLK];

ta Created 1 True C++; Create
2 True Q++; Process

2 Process (M > D) & 
(Q > 0)

M−−; Q−−; 
D = N0 − 

N[CLK]

ts Processed 1 True M++; Process

Initialize Initial Marking = {C = 1, M = N0, Q = 0}; Enabled Activities = {Create}
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6.3.3  ACD Template for Nonstationary Arrival Process

The thinning method of generating inter-arrival times under a nonstationary 
Poisson process was explained in Chapter 3 (see Fig. 3.4 in Section 3.4.3), and 
an event graph model of a single server system subject to fluctuating arrival 
rates was given in Chapter 4 (Fig. 4.9 in Section 4.4.1).

Figure 6.9 shows an ACD model of a single server system with fluctuating 
inter-arrival times sampled from a nonstationary Poisson process. The time 
delay (d) of the next Create activity is computed with the maximum arrival 
rate (Rmax), and then the generated job is sent to queue Q only when it passes 
the thinning test (i.e., U  <  Ratio), where CLK is a function returning the 
current simulation clock, R() is the arrival rate function, Exp() is an exponen-
tial random variate generation function, and Uni(0,1) is a standard uniform 
random number generator.

6.3.4  ACD Template for Batched Service Modeling

An ACD of a batched service multi-server is shown in Fig. 6.10, where the 
multiplicity of the (directed) arc from queue Q to activity Process is set to 

Fig. 6.8.  Limited buffer tandem line modeling (balking and blocking).
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Fig. 6.9.  ACD model of a single server system with nonstationary arrival rates.
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Fig. 6.10.  ACD model of a batched service multi-server system.
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batch size b. In general, there are a maximum number (b) and a minimum 
number (a) of jobs that can be processed at one time, which is denoted as 
a ≤ J ≤ b, where J is the actual number of jobs in a batched service. If a = b, it 
is a full batched service; if a <  b, it is a partial batched service. The activity 
transition table of the ACD model for a full batched service system is given 
in Table 6.4.

Exercise 6.3. Revise the ACD in Fig. 6.10 to create a partial batched service 
model.

6.3.5  ACD Template for Joining Operation Modeling

An ACD model for a production line that joins two parts (Job-1, Job-2) is 
shown in Fig. 6.11, where the Job-1 part is treated as the main entity. When m 
parts of Job-1 and n parts of Job-2 are joined, they are specified as an arc 
multiplicity.

6.3.6  ACD Template for Probabilistic Branching Modeling

Figure 6.12 presents an ACD model for probabilistic branching where 90% of 
the jobs pass inspection and go to queue P for the next processing. The remain-
ing jobs are moved to queue S for the scrapping operation. A probabilistic 
branching is modeled as an arc condition involving a uniform random number 
(U). The activity transition table of this ACD model is given in Table 6.5.

TABLE 6.4.  Activity Transition Table for the ACD in Figure 6.10

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Influenced 

Activity

1 Create (C > 0) C−−; ta Created 1 True C++; Create
2 True Q++; Process

2 Process (Q ≥ b) & 
(M > 0)

Q = Q–b; 
M−−;

ts Processed 1 True M++; Process

Initialize Initial Marking = {C = 1, M = 2, Q = 0}; Enabled Activities = {Create}

Fig. 6.11.  ACD model of a joining operation line.
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Fig. 6.12.  ACD model for probabilistic branching.

{U=Uni(0,1)}
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•
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TABLE 6.5.  Activity Transition Table for the ACD in Figure 6.12

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Influenced 

Activity

1 Create (C > 0) C−−; ta Created 1 True C++; Create
2 True I++; Inspect

2 Inspect (I > 0) & 
(M1 > 0)

I−−; M1−−;
U = Uni(0, 

1);

ti Inspected 1 True M1++; Inspect
2 (U ≤ 0.9) P++; Process
3 (U > 0.9) S++; Scrap

3 Process (P > 0) & 
(M2 > 0)

P−−; 
M2−−;

tp Processed 1 True M2++; Process

4 Scrap (S > 0) & 
(M3 > 0)

S−−; 
M3−−;

ts Scraped 1 True M3++; Scrap

Initialize Initial Marking = {C = M1 = M2 = M3 = 1, I = P = S = 0}; Enabled 
Activities = {Create}

6.3.7  ACD Template for Resource Failure Modeling

In Chapter 4 (Section 4.4.1), two cases of resource failure event graph models 
were considered: a failure model where the server may fail even when it is 
idle, and a model where a failure is only allowed when the server is busy. In 
this section, only the second case of resource failure is modeled using an ACD. 
The ACD modeling of the first case will be discussed in Chapter 10 (for which 
we need a canceling arc).

Figure 6.13 presents an ACD model of the single server system with machine 
failure where a failure is only allowed when the server is busy and the  

Fig. 6.13.  ACD for a single server system with machine failure.
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interrupted job is discarded. Its event graph model was given in Fig. 4.14 in 
Chapter 4, where the service time was 10 (ts = 10), repair time was 80 (tr = 80), 
and the value of remaining time-to-failure (ttf) was initially set to 500. As with 
the event graph model, the variable ttf is regarded as a state variable. The 
activity transition table of this ACD model is given in Table 6.6.

6.4  ACTIVITY-BASED MODELING EXAMPLES

System modeling is an art that may only be mastered by learning the best 
practices and internalizing them through relentless practices. This section pres-
ents basic ACD modeling examples including a worker-operated tandem line, 
an inspection-repair line, a restaurant, a simple service station, a car repair 
shop, a project management system, and a conveyor-driven serial line. We use 
the terms serial and tandem interchangeably. More advanced examples involv-
ing parameterized ACDs will be presented in Section 6.5 and in Chapter 10.

6.4.1  Activity-Based Modeling of a Worker-Operated Tandem Line

Figure 6.14 depicts a reference model of a worker-operated tandem line. The 
first operation is performed on machine M1, which is operated by Worker-A 

TABLE 6.6.  Activity Transition Table of the ACD Model of Figure 6.13

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Infl. 
Act.

1 Create (C > 0) C−−; ta Created 1 True C++; Create
2 True Q++; Process

2 Process (Q > 0) & 
(M > 0)

Q−−; M−−; If 
(ttf < 10) 
{ts = ttf + 80; 
ttf = 500;} 
else {ts = 10; 
ttf –= 10;}

ts Processed 1 True M++; Process

Initialize Initial Marking = {C = 1, M = 1, Q = 0}; Variables = {ts = 10, ttf = 500}; Enabled 
Activities = {Create};

Fig. 6.14.  Reference model of a worker-operated two-stage tandem line.
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or Worker-B; the second operation is performed on either of the two identical 
machines M2 and M3. M2 is operated by Worker-A and M3 by Worker-B.

If the machines are operated unattended, the ACD model of the line would 
be that of Fig. 6.5 with M2 = 2 (and the Depart activity is added). One rule 
for building an ACD model is that “operations involving different resources 
are treated as different activities.” Thus, the process activity for M1 is divided 
into two activities: (1) Process1a performed by Worker-A and (2) Process1b 
performed by Worker-B. The resulting ACD model is given in Fig. 6.15. 
Worker-A is given a higher priority over Worker-B for processing a job on 
M1, and M2 has a higher priority over M3 for the second operation. However, 
the Worker-A (Worker-B) cycle does not have a specified sequence, and a 
dispatching rule may be required in order to choose between Process1a (Pro-
cess1b) and Process2 (Process3).

6.4.2  Activity-Based Modeling of an Inspection-Repair Line

Figure 6.16 is a reference model of an inspection-repair line in which two types 
of jobs are inspected on a single inspection machine (I) and are repaired by a 
single repair machine (R). Another rule for building an ACD model is that 
“jobs that follow separate paths are treated as separate entities.” Thus, by using 
this rule and employing the probabilistic branching template (Fig. 6.12), an 
ACD of the inspection-repair line is obtained as given in Fig. 6.17. In Fig. 6.17, 
note that the arcs from the final activity nodes (i.e., Delivery-1, Delivery-2, and 
Scrap) to the source queue nodes (J1 and J2) are omitted for brevity.

Fig. 6.15.  ACD model of the worker-operated tandem line in Fig. 6.14.
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Fig. 6.16.  Reference model of an inspection-repair line.
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Fig. 6.18.  Lifecycle of the entity in a restaurant model.
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Fig. 6.19.  Lifecycle of the (a) table, (b) head waiter, and (c) waiters.
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Fig. 6.17.  ACD model of the inspection-repair line in Fig. 6.16.
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6.4.3  Activity-Based Modeling of a Restaurant

Consider a restaurant served by a head waiter (H) and two waiters (W) [Activ-
ity cycle diagram 2012]. There are five tables (T) in the restaurant. A batch of 
diners coming together is regarded as an entity. The life cycle of an entity 
(customer batch) is Arrive → Greeted (by H) → Seated (at T by H) → Order 
(at T to W) → Served (at T from W) → Eat (at T) → Pay bill (to H), which 
may be represented as the ACD shown in Fig. 6.18.

The life cycle of a table (T) is “occupied by diners” and “cleaned,” which 
can be modeled as in the ACD of Fig. 6.19(a). The head waiter (H) greets 
diners, seats them on a table, and accepts payment, which is may be modeled 
as in the ACD of Fig. 6.19(b). Waiters (W) take orders, serve meals, and clean 
the table after the diners leave, which is modeled as the ACD of Fig. 6.19(c). 
By combining these individual ACDs, an ACD model of the restaurant system 
can be obtained as shown in Fig. 6.20. Note that the two resource cycles, H 
and W, have an indefinite sequence.
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6.4.4  Activity-Based Modeling of a Simple Service Station

A simple service station, like a gas station or coffee shop, is a flexible multi-
server system (see Section 6.3.1) with nonstationary arrival rates (see Section 
6.3.3). Figure 6.21 presents the table showing the arrival rates and number of 
servers over a 24-hour period together with a SIGMA-compatible event graph 
model of the flexible multi-server system that is reproduced from Section 5.6.2 
in Chapter 5 (Table 5.4 and Fig. 5.31). In the event graph model, CLK is a 
built-in function returning the simulation clock (in minutes), and the current 
simulation time CLK is converted to the index k using the modulus function 
k = MOD (CLK/120, 12).

The customer arrival rates (per minute) are 0.00 for 00:00–05:59, 0.02 for 
06:00–07:59, 0.10 for 08:00–09:59, etc. Thus, we have R[0] = R[1] = R[2] = 0, 
R[3] = 0.02, R[4] = 0.10, etc. The maximum arrival rate is 0.5 during 14:00∼15:59 
(R[7] = 0.5). The number of servers during the day hours (8:00∼17:59) is three, 
with a peak level of five during 2:00∼3:59 p.m. (N[7] = 5). All servers are identi-
cal and their service times are exponentially distributed with a mean of 9. A 

Fig. 6.20.  ACD model of the entire restaurant.
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Fig. 6.21.  Input data for a flexible multi-server system and its event graph model.

{Q= Q+1}

(M > N0–N[k])
9*ERL{1}

(Q>0) & (M > N0–N[k])(1/RMAX)*ERL{1}

{M= M+1; 
k= MOD{CLK/120;12};}

(RND<Ratio)

{ k= MOD{CLK/120;12};
Ratio= R[k]/RMAX;}

{M= M–1; 
Q= Q–1}

(Q>0) & (M > N0–N[k])

Rmax = 0.5, N0 = 5,
Q = 0, M = N0,
For  k=0~11 {

Read {R[k], N[k]}

Hours (120 min) 0000-
0159

0200-
0359

0400-
0559

0600-
0759

0800-
0959

1000-
1159

1200-
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1400-
1559

1600-
1759
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2000-
2159

2200-
2359

Index (k) 0 1 2 3 4 5 6 7 8 9 10 11

Arrival rate/min: R[k] 0.00 0.00 0.00 0.02 0.10 0.30 0.40 0.50 0.40 0.10 0.02 0.00
No. of servers: N[k] 0 0 0 0 3 3 3 5 3 1 1 0
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formal ACD model of the flexible multi-server system is presented in Fig. 6.22, 
and its activity transition table is given in Table 6.7.

6.4.5  Activity-Based Modeling of a Car Repair Shop

Figure 6.23 presents a reference model and an event graph model of a car 
repair shop under the same operator policy that was presented in Section 4.5.2 
of Chapter 4 (Fig. 4.20 and Fig. 4.21). The fasten operation is performed by a 
technician; an inspection operation needs both a technician and a repairman; 
a repair operation is handled by a repairman. The same operator policy refers 
to a policy where a car is fastened and inspected by the same technician and 
is inspected and repaired by the same repairman. Thus, a technician stands by 
after fastening a car until a repairman is available. There are three technicians 
(T = 3) and two repairmen (R = 2) in the car repair shop.

An ACD model and an activity transition table of the car repair shop are 
given in Fig. 6.24 and Table 6.8, respectively. Note that the ACD model is 
almost identical to the reference model. The initial state of the system is {C = 1, 
T = 3, R = 2, Q1 = Q2 = Q3 = 0}.

Fig. 6.22.  ACD model of the flexible multi-server system given in Fig. 6.21.
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•

Q Process <Exp(9)>Create <Exp(1/Rmax)>

M
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TABLE 6.7.  Activity Transition Table of the ACD Model of Figure 6.22

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Infl. 
Act.

1 Create (C > 0) C−−; U = 
Uni(0,1);

k = (CLK/
120)%12;  
Ratio = 
R[k]/Rmax;

Exp(1/
Rmax)

Created 1 True C++; Create
2 (U < Ratio) Q++; Process

2 Process (Q > 0)&
(M > N0 − 
N[k])

Q−−; M−−; 
k = (CLK/

120)%12;

Exp(9) Processed 1 True M++; Process
2 True — —

Initialize Initial Marking = {C = 1, M = 5, Q = 0}; Variables = {Rmax = 0.5, N0 = 5, Read 
{R[k], N[k]} for k = 0∼11}; 

Enabled Activities = {Create}; 
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6.4.6  Activity-Based Modeling of a Project Management System

Figure 6.25 presents the program evaluation and review technique (PERT) 
diagram introduced in Chapter 4 (Fig. 4.22). There are nine activities (A1∼A9) 
and two active resources (R1, R2) involved in the model. Resource R1 is 
responsible for A1, A3, and A7, while resource R2 is responsible for A2, A8, 
and A9. Again, the non-bottleneck resources performing the remaining activi-
ties are excluded from the model. The PERT diagram is converted to an ACD 
by inserting a queue in the middle of each arc of the PERT diagram, as 
depicted in Fig. 6.26.

6.4.7  Activity-Based Modeling of a Conveyor-Driven Serial Line

Reproduced in Fig. 6.27 is the reference model of the conveyor-driven serial 
line introduced in Chapter 4. There are three work stations connected by 

Fig. 6.23.  Reference model of a car repair shop.

Fasten <t1> Inspect <t2> Repair <t3> 

 (T=3)  (R=2) 
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Fig. 6.24.  ACD model of the car repair shop given in Fig. 6.23.
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TABLE 6.8.  Activity Transition Table of the ACD Model of Figure 6.24

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Influenced 

Activity

1 Create (C > 0) C−−; ta Created 1 True C++; Create
2 True Q1++; Fasten

2 Fasten (Q1 > 0) & 
(T > 0)

Q1−−; 
T−−;

t1 Fastened 1 True Q2++; Inspect

3 Inspect (Q2 > 0) & 
(R > 0)

Q2−−; 
R−−;

t2 Inspected 1 True Q3++; Repair
2 True T++; Fasten

4 Repair (Q3 > 0) Q3−−; t3 Repaired 1 True R++; Inspect

Initialize Initial Marking = {C = 1, T = 3, R = 2, Q1 = Q2 = Q3 = 0}; Enabled 
Activities = {Create}
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Fig. 6.25.  Reference model of a project schedule (PERT diagram).
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Fig. 6.26.  ACD model of the PERT diagram in Fig. 6.25.
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Fig. 6.27.  Reference model a three-stage conveyor-driven serial line.

Fig. 6.28.  ACD model of the three-stage conveyor driven serial line.

•••

accumulating conveyors in serial. Entities are jobs that are stored in the input 
buffer (Buffer-I) and are moved along the line. Resources are the Stations and 
Conveyors. Activities are the production operations of the Stations and the 
transport operations of the Conveyors.

Each station-j for j = 1∼3 is specified by its production operation time (pj). 
Each accumulating conveyer-j for j = 2, 3 is specified by its transport time (tj) 
and capacity (cj). The activity cycle of a job at each station is Load (L) → 
Process (P) → Unload (U). Since an accumulating conveyor acts as a finite 
capacity buffer with a Transport (T), each station is modeled using the block-
ing template introduced in Section 6.3.2. The resulting ACD model is pre-
sented in Fig. 6.28.
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6.5  PARAMETERIZED ACTIVITY CYCLE DIAGRAM AND 
ITS APPLICATION

In Chapter 5, we showed that a complex system with some repeating patterns 
could be concisely represented using a parameterized event graph, in which 
an event node is allowed to have parameter variables. The classical ACD can 
also be parameterized in the same way. Namely, the parameter values are 
passed along an arc as its attribute values so that the parameter variables of 
the destination node are set to the arc attribute values. Parameterization does 
not increase the modeling power, but it significantly reduces the modeling 
complexity, which is critical in the art of modeling and simulation.

6.5.1  Definition and Specifications of Parameterized ACD

Both the classical ACD and parameterized ACD (P-ACD) are bipartite 
directed graphs that consist of a set of activity nodes, a set of queue nodes, 
and a set of directed arcs. However, in a P-ACD, each node is allowed to have 
parameter variables, and the parameter values are assigned to the parameter 
variables through an arc. The role of a parameter variable of a node is the 
same as that of an index variable of an array. Thus, the P-ACD may be defined 
as a bipartite directed graph consisting of a set of activity array nodes, a set 
of queue array nodes, and a set of directed arcs with parameter values.

Figure 6.29 is a classical ACD model of a three-stage unlimited buffer 
tandem line: the activity nodes are Create and Process(k) for k  =  1∼3; the 
queue nodes are C, Jobs, and B(k) and M(k) for k = 1∼3. On close examination, 
it can be seen that the three nodes B(k)-Process(k)-M(k) form a pattern; there 
is a directed arc from the Process(k) node to the B(k + 1) node if k < 3; and 
the Process(3) node is connected to the Jobs node. The activity times are 
defined as an array (t(k)).

Shown in Fig. 6.30 is a P-ACD model of the same three-stage tandem line, 
where the three nodes B(k)-Process(k)-M(k) form a pattern; there is a directed 
arc from the Process(k) node to the B(k + 1) node if k < 3; and the Process(3) 
node is connected to the Jobs node. Thus, the two ACD models in Figs. 6.29 
and 6.30 are equivalent. As a convention, a parameter variable is enclosed 
using a pair of parentheses and a parameter value is put in a small rectangle 
on an arc. As in the classical ACD, the P-ACD can be formally specified using 
an activity transition table.

Fig. 6.29.  Classical ACD model of a three-stage unlimited buffer tandem line.

B(1) 

C 
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M(1) 
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Create Process(1) B(2) 
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Table 6.9 presents the activity transition table of the P-ACD model of Fig. 
6.30. The activity transition table contains all information from the P-ACD 
model in a structured way. As in the activity transition table of a classical ACD 
model, the initial values of the marking and a list of the enabled activities are 
defined at the bottom of the table. Specified for each activity are the At-begin 
Condition and Action, the BTO-event Time and Name, and the At-end arc 
Condition, Parameter, Action, and Influenced Activity. The activity transition 
table for the P-ACD is the same as that for a classical ACD except that it has 
one more column (the Parameter column).

6.5.2  Rules for Executing the P-ACD Model

In the P-ACD, the parameter values are associated with each arc, and the 
parameter variables are associated with each of the queues or activities. The 
execution rules for the P-ACD are essentially the same as those for the clas-
sical ACD.

Now consider the segment of a P-ACD shown in Fig. 6.31(a). The rule for 
executing activity A(j) is as follows: “If the input queue Q1 has at least one 
token and the input arc condition c1 is true, then the parameter variable (j) 
of activity A is set to the parameter value (k), a token is removed from the 
input queue Q1, and the BTO event is scheduled to occur at t time units later.” 
Referring to Fig. 6.31(b), the rule for executing the BTO event is “If the output 

TABLE 6.9.  Activity Transition Table of the P-ACD Model Given in Figure 6.30

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Parameter Action
Influenced 

Activity

1 Create (C > 0) C−−; ta Created 1 True — C++; Create
2 True 1 B(k)++; Process(k)

2 Process(k) (B(k) > 0) & 
(M(k) > 0)

B(k)−−;
M(k)−−;

t(k) Processed 1 True k M(k)++; Process(k)
2 (k < 3) k + 1 B(k)++; Process(k)
3 (k ≡ 3) — — —

Initialize Initial Marking = {C = 1, B(k) = 0 for k = 1∼3, M(k) = 1 for k = 1∼3}; Enabled 
Activities = {Create}

Fig. 6.30.  P-ACD model of the three-stage tandem line of Fig. 6.29.
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C
•

M(k)
•

Create Process (k)

kk
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arc condition c2 is true, then a token will be en-queued into output queue Q2 
with parameter variable (j), equal to parameter value (k). The value of the 
output arc attribute (k) is computed when activity A is executed.”

6.5.3  P-ACD Modeling of Tandem Lines

The unlimited buffer tandem line model given in Section 6.5.1 may easily be 
extended to cover limited buffer tandem lines and conveyor-driven tandem 
(or serial) lines.

6.5.3.1  P-ACD Modeling of a Limited Buffer Tandem Line  Figure 6.32(a) 
is the reference model of an n-stage limited buffer tandem line, where ta is the 
inter-arrival time, pk is the processing time at Station-k, and ck is the capacity 
of Buffer-k (with c1 = ∞). Figure 6.32(b) is a classical ACD model of a two-
stage limited buffer tandem line, where S(k) is the number of idle machines 
at Station-k and B(k) is the number of empty slots at Buffer-k.

As indicated in Fig. 6.32(b) by the shaded rectangle, the major repeating 
pattern of activities is Load(k) → Process(k) → Unload(k) → Load(k), and 
there are minor patterns of activities: Unload(k) → Load(k + 1) when k < n 
and Load(k) → Unload(k  −  1) when k  >  1. Thus, all (activity/queue) nodes 
covered by the repeating patterns are parameterized as shown in Fig. 6.33. The 
activity transition table for the P-ACD model of Fig. 6.33 is given in Table 6.10.

Fig. 6.31.  Rules for executing (a) an activity and (b) its BTO event.

~

(c1)Q1
<q1>

A (j)
< t >

k
A 

< t >
Q2(j)~

(c2) Influenced
activityk

(b)(a)

Fig. 6.32.  (a) Reference model of an n-stage limited buffer tandem line and (b) ACD 
model of two-stage limited buffer tandem line.
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6.5.3.2  P-ACD Modeling of a Conveyor-Driven Serial Line  Figure 6.34 
presents the reference model of an n-stage conveyor-driven serial line, where 
pk is the processing time at Station-k and tk and ck, respectively, are the trans-
port time and capacity of Conveyor-k (with c1  =  ∞). This system is a slight 
modification of the limited buffer tandem line given in Fig. 6.32(a): The Create 
activity of the limited buffer tandem line has been removed and a Transport 
activity has been added between a pair of adjacent Stations, replacing the 
buffer queue nodes QLk.

A classical ACD model of a three-stage conveyor-driven serial (i.e., tandem) 
line was given earlier in Section 6.4.7 (Fig. 6.28). In Fig. 6.28, you can see that  
the major repeating pattern of activities is Transport(k) → Load(k) → 
Process(k) → Unload(k) → Transport(k + 1). The minor patterns of activities 
are Unload(k) → Transport(k +  1) when k <  n, Unload(k) → Load(k), and 
Load(k) → Unload(k  −  1) if k  >  1. Reflecting these repeating patterns, a 
P-ACD model of an n-stage conveyor-driven serial line is obtained as shown 
in Fig. 6.35.

In the P-ACD of Fig. 6.35, all entity queues are initially empty except QT(1) 
and QL(1). QT(1) is set to one because the first activity to be executed is 
Transport(1), and it requires a begin condition of QT(1) ≡ 1; QL(1) is set to 
infinity because the activity Transport(1) is executed only once [increasing 
QL(1) by one] and the activity Load(1) is executed numerous times [decreas-
ing QL(1) by one]. That is, QP(k)  =  QU(k)  =  0 for k  =  1  −  n, and 
QT(k) = QL(k) = 0 for k = 2 − n, QT(1) = 1 and QL(1) = ∞. The capacities 
(ck) and transport times (tk) of the accumulating conveyors are given for 
k = 2 − n; for k=1, we set t1 = 0 and c1 = ∞ (or any value). The queue C(n + 1) 
is set to infinity [i.e., C(n + 1) = ∞] so that the final unloading activity Unload(n) 
is always executed if a job is available (i.e., QU(n)  >  0). Thus, the initial 
marking (M0) of the P-ACD is given by:

	

M0 1 0 1= = = = =
= = =
{ ( ) , ( ) ( ) ,

( ) , ( ) ( )

S k QP k QU k  for k  to n

C k c QT k QL kk 00 2

1 1 1 1 1

 for k to n

QT QL C C n

=
= = = + = ∞

,

( ) , ( ) ( ) ( ) }
	

Fig. 6.33.  P-ACD model of the limited buffer tandem line of Fig. 6.32(a).
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The activity transition table for the P-ACD model in Fig. 6.35 is given in 
Table 6.11.

6.5.4  P-ACD Modeling of Job Shops

As discussed in the previous chapter (Section 5.5), a simple job shop is char-
acterized by a number of stations (s) with each station having one or more 
identical machines and multiple job types (j) with each job type having a 
unique routing sequence. The station number (s) for a processing step (p) of 
a given job type (j) is specified in the routing sequence of the job type. Each 
station has an unlimited buffer space, and job (j) may visit a given station more 
than once. Thus, an unlimited buffer tandem line may be regarded as a special 
case of a simple job shop where there is only one job type (j  =  1) and the 
processing step is equal to the station number (i.e., p = s).

Reproduced in Fig. 6.36 is the reference model of a simple job shop described 
in the previous chapter (see Fig. 5.14). It has six stations with the number of 
machines given by {m1 = 3, m2 = 5, m3 = 4, m4 = 7, m5 = 2, m6 = 5}. The routing 
sequence of a type-1 job is 1→3→2→5→Done: sn(1,1)  =  1, sn(1,2)  =  3, 
sn(1,3) = 2, sn(1,4) = 5, sn(1,5) = Done. The processing time of type-j job at 
the p-th step is denoted by t (j, p).

Figure 6.37(a) presents a classical ACD model of the simple job shop for a 
single job type, where M(k) denotes the number of idle machines in Station-k, 
and Q(k) is the buffer of Station-k. There are four processing activities: Process 
(1, 1), Process (2, 3), Process (3, 2), and Process (4, 5), where Process (p, s) is 
the p-th processing operation of the job of type-1 at Station-s. The routing 
sequence is given by {sn(1,1) = 1, sn(1,2) = 3, sn(1,3) = 2, sn(1,4) = 5}. A P-ACD 
model for the reference model of Fig. 6.36 is shown in Fig. 6.37(b).

Fig. 6.34.  Reference model of n-stage conveyor-driven serial line.

Station-1 Conveyor-2 Station-2 Station-nConveyor-n

Fig. 6.35.  P-ACD model of the conveyor-driven serial line of Fig. 6.34.
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In Fig. 6.37(b), decision-making activity Route is introduced where the 
station number for the next processing step is determined and the job is sent 
to the Exit if the station number is Done. Both the Route activity and the 
Process activity are parameterized by processing step p and the station  
number s = sn(1,p).

Given in Fig. 6.38 is a P-ACD model of the simple job shop with a number 
of job types (j ∈ J). The activities Route and Process are parameterized using 
the three index variables of job type (j), processing step (p), and station 

Fig. 6.36.  Reference model of a simple job shop with one job type.

sn(j, p) = station-number of type-j job at step ‘p’; sn(1,1)= 1, …, sn(1,4)=5, sn(1,5)=Done
t(j, p) = processing-time of type-j job at step ‘p’;  ms = number of machines at station ‘s’.

Station-1
m1= 3

Station-2
m2= 5

Station-3
m3= 4

Station-4
m4= 7

Station-5
m5= 2

Station-6
m6= 5

Create Exit

Routing sequence of Type-1 Jobs

ta

t(1,1) t(1,2)t(1,3)

t(1,4)

Assign job-type
(j = 1)

Fig. 6.37.  (a) Classical ACD and (b) P-ACD model of the job shop in Fig. 6.36.
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Fig. 6.38.  P-ACD model of the simple job shop with multiple job types.
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number (s). An activity transition table of the P-ACD model in Fig. 6.38 is 
given in Table 6.12.

6.6  EXECUTION OF ACTIVITY CYCLE DIAGRAM MODELS WITH A 
FORMAL SIMULATOR ACE®

There are three approaches to executing an ACD model: using a formal ACD 
simulator; using a process oriented simulation language such as Arena®; and 
developing a dedicated ACD simulator. The purpose of this section is to intro-
duce a formal ACD model simulator ACE® and make you learn how to 
execute ACD models with ACE. The next chapter is devoted to the subject of 
executing ACD models using Arena®. How to develop your own dedicated 
ACD simulators are described in Chapter 10.

ACE, which stands for activity cycle executor, is a formal ACD model simu-
lator developed by the authors of this book. It is a formal simulator in the 
sense that its input is a formal ACD model specified in the form of activity 
transition table. Figure 6.39 shows the main window of ACE that has three 
main regions: main menu, Activity Transition Table (ATT) window, and 
Spreadsheet window. Also provided in the main window are ATT tool bar and 
Queue tool bar. A brief ACE tutorial, as well as the four ACE models dis-
cussed in this section, may be found in the official website of this book (http://
VMS-technology.com/Book/ACE).

The ACE main menu contains a few menus including File, Run, and Help. 
The ATT window is where the activity transition table of the ACD model is 
constructed. The Spreadsheet window is used for declaring queues and vari-
ables appearing in the ACD model. The procedure for executing an ACD 
model is as follows:

1.	 Queues and variables are declared in the Spreadsheet window by select-
ing the Queue spreadsheet and Variable spreadsheet, respectively.

2.	 All the activity transition data are described in the ATT window by click-
ing the subsequent menus of Model menu in the main menu.

3.	 The initially enabled activities are set at the ATT window by clicking the 
Set Enabled Activity button in the ATT tool bar.

4.	 Simulation run options are specified in the Run Options dialog box by 
clicking the Run > Run Options menu in the main menu.

6.6.1  Simulation of Single Server Model with ACE

The above four-step procedure will be illustrated using the single server  
system specified in Table 6.13, which was reproduced from Table 6.2 with inter-
arrival times (ta) and service times (ts) specified as Exp(15) and Uni(10, 12), 
respectively.

http://VMS-technology.com/Book/ACE
http://VMS-technology.com/Book/ACE
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Fig. 6.39.  The main window of ACE.

TABLE 6.13.  Activity Transition Table of a Single Server System (from Table 6.2)

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Infl. 

Activity

1 Create (C > 0) C−−; Exp(15) Created 1 True C++; Create
2 True Q++; Process

2 Process (M > 0) & 
(Q > 0)

M−−; 
Q−−;

Uni(10, 
12)

Processed 1 True M++; Process

Initialize Initial Marking = {C = 1, M = 1, Q = 3}; Enabled Activities = {Create}

6.6.1.1  Declaring Queues and Variables in the Single Server Model  The 
ACD model of the single server system has three queues (C, M and Q), but it 
has no variables. A queue is Creator Type, Resource Type, or Entity Type. 
Figure 6.40 shows the Queue spreadsheet window in which the three queues 
C, M, and Q are declared. The type of C is declared as Creator, those of M 
and Q as Resource and Entity, respectively. The initial values of C, M, and Q 
are declared as 1, 1, and 3, respectively. The declared queues are reflected in 
the ATT window as depicted in Fig. 6.41.

6.6.1.2  Defining Activity Transitions in the Single Server Model  Figure 
6.42 shows the graphical user interface (GUI) of the ATT window in which 
each entry of the activity transition table of the single server system (Table 
6.13) is described “as it is” one by one: (1) the row numbers in the No column 
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are automatically assigned in sequence; (2) AND operator “&&” and OR 
operator “||” are used in the Condition columns; (3) each statement in the 
Action columns should be ended with a semicolon; (4) a time in the Time 
column is either a constant or a random variate specified, for example, as Exp() 
or Uni().

6.6.1.3  Specifying the Enabled Activities in the Single Server Model  As 
depicted in Fig. 6.43, the Create activity is specified as an enabled activity by 

Fig. 6.40.  Declaring queues in the Queue spreadsheet window.

Fig. 6.41.  The declared queues reflected in the ATT window.

Fig. 6.42.  The activity transition table of the single server system.

Fig. 6.43.  Choosing Create as an enabled activity.
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(1) selecting Create in the ATT window and (2) clicking the Set Enabled 
Activity ( ) button at the ATT tool bar. Now, the ATT is completely defined.

6.6.1.4  Running the Simulation  In order to run the simulation, (1) the 
Run Options dialog box is opened by clicking the Run > Run Options menu 
at the main menu and (2) run options such as the EOS (end-of-simulation) 
time and the random number seed are provided in the dialog box. Figure 6.44 
shows an example of Run Options (EOS time  =  500; random number 
seed = 12345) and the resulting output report. Output plots may also be gener-
ated as shown in Fig. 6.45.

6.6.2  Simulation of Probabilistic Branching Model with ACE

Figure 6.46 is the ACD model for probabilistic branching reproduced from 
Fig. 6.12 in Section 6.3.6. In Fig. 6.46, however, counter variables (NumberIn, 
NumberOut, and NumberScrap) for collecting statistics are added to the origi-
nal ACD model of Fig. 6.12. An activity transition table of the ACD model is 
given in Table 6.14.

Fig. 6.44.  (a) Run Options dialog box and (b) Output Report sheet.

(a) (b)

Fig. 6.45.  Output plot for Q.
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6.6.2.1  Declaring Queues and Variables in the Probabilistic Branching 
Model  The probabilistic branching ACD model of Fig. 6.46 has three entity 
queues (I, P, and S), three resource queues (M1, M2, and M3), and four vari-
ables (U, NumberIn, NumberOut, and NumberScrap). The queues and vari-
ables are declared in the Spreadsheet window of ACE as shown in Figs. 6.47 
and 6.48, respectively.

6.6.2.2  Defining Activity Transitions and Specifying the Enabled Activi-
ties  Figure 6.49 shows the ATT window in which each entry of the activity 
transition table (Table 6.14) is described “as it is” one by one and the selected 
enabled activity is denoted at the bottom right of the table.

6.6.2.3  Running the Simulation  Having defined all the entries in the activ-
ity transition table of Fig. 6.49, a simulation run is made by providing run 
options such as the EOS time and the random number seed (any integer value 
is acceptable) at the Run Options dialog box. Figure 6.50 shows an example 
of output plot (machine utilization plot).

6.6.3  Simulation of Resource Failure Model with ACE

Figure 6.51 shows the ACD model of the “single server system with machine 
failure” introduced in Section 6.3.7, together with its activity transition table. 
In this particular example, the inter-arrival times are sampled from Exp(10), 
the service time is 10 (ts  =  10), repair time is 80, and the initial remaining 
time-to-failure is 500 (ttf = 500).

6.6.3.1  Declaring Queues and Variables in the Resource Failure Model 
Figure 6.52(a) shows the Queue spreadsheet window where the three queues 
in the resource failure model are declared: C is a Creator-type queue with  
an initial value of 1; M is a Resource-type queue with an initial value of 1;  
Q is an Entity-type queue with an initial value of 0. Figure 6.52(b) shows  

Fig. 6.46.  ACD model for probabilistic branching with counter variables added to the 
ACD model of Fig. 6.12.
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Fig. 6.47.  Declaring queues in the Queue spreadsheet window.

Fig. 6.48.  Declaring variables in the Variable spreadsheet window.

Fig. 6.49.  Description of activity transitions and selection of enabled activities.

Fig. 6.50.  (a) Run option and (b) resources utilization plot.

(a) (b)
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how the two variables ts and ttf are declared in the Variable spreadsheet 
window.

6.6.3.2  Defining Activity Transitions and Specifying the Enabled Activi-
ties  Figure 6.53 shows the ATT window in which each entry of the activity 
transition table (at the bottom of Fig. 6.51) is described “as it is” one by  

Fig. 6.51.  ACD model and activity transition table for the single server system with 
machine failure (from Fig. 6.13 and Table 6.6).

C
•

Q ProcessCreate 

M
•

No Activity
At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action Infl. Act.

1 Create (C>0) C--; Created 1 True C++; Create

2 True Q++; Process

2 Process (Q>0) & (M>0) Q--; M--; ts Processed 1 True M++; Process

Initialize Initial Marking = {C= 1, M= 1, Q= 0}; Variables = {ts= 10, ttf= 500}; Enabled Activities = {Create}; 

Fig. 6.52.  Declaring (a) queues and (b) variables in the Spreadsheet window of ACE.

(a)

(b)

Fig. 6.53.  Descriptions of activity transitions and enabled activities.
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one and the selected enabled activity is denoted at the bottom right of  
the table.

6.6.3.3  Running the Simulation  Having defined all the entries in the activ-
ity transition table, a simulation run is made by providing run options at the 
Run Options dialog box. Figure 6.54 shows an example of output plot (queue 
trajectory plot).

6.6.4  Simulation of Simple Service Station Model with ACE

Reproduced in Fig. 6.55 are the input data of the simple service station and 
its ACD model from Section 6.4.4 (Fig. 6.21 and Fig. 6.22). The ACD model 
correctly reflects the changes in the arrival rates, but it does not exactly accom-
modate the changes in the resource levels.

In the ACD model of Fig. 6.55, the changes in the number of servers may 
not be promptly taken into account in the Process activity. For example, the 
number of servers is increased to 3 from 0 at time 0800 so that the customers 
waiting in Q could be served right away, but the system detects this change 
only at the next event time after 0800 (i.e., the arrival time of the first after 
0800). As shown in Fig. 6.56, the problem is easily fixed by introducing the 

Fig. 6.54.  Queue trajectory plot (for the entity queue Q).
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Fig. 6.55.  Input data (Fig. 6.21) and ACD model (Fig. 6.22) of the simple service station.
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No. of servers: N[k] 0 0 0 0 3 3 3 5 3 2 2 0



EXECUTION OF ACTIVITY CYCLE DIAGRAM MODELS WITH A FORMAL SIMULATOR ACE®    181

Trigger activity whose role is to trigger the Process activity every 2 hours. 
Observe that the arc multiplicity of the arc from queue B to activity Process 
is 0, which means that Process is an influenced activity of Trigger but no token 
flows between the two activities, as can be seen in the activity transition table 
of Table 6.15. Another observation to make is that among the two influenced 
activities of the Trigger activity, Trigger should be executed before Process. 
Thus, in the activity transition table of Table 6.15, Trigger is listed first in the 
Influenced Activity column of the Trigger activity.

6.6.4.1  Declaring Queues and Variables in the Simple Service Station 
Model  Figure 6.57(a) shows the Queue spreadsheet window of ACE 
where the queues in the simple service station model are declared: C and  
B are Creator-type queues with an initial value of 1; M is a Resource-type 
queue with an initial value of 5; Q is an Entity-type queue with an initial value 
of 0. Fig. 6.57(b) shows all the variables declared in the Variable spreadsheet 
window (a step-by-step procedure for declaring variables is given in ACE 
tutorial that can be found on authors’ website: http://VMS-technology.com/
Book/ACE).

6.6.4.2  Defining Activity Transitions and Specifying the Enabled Activi-
ties  Figure 6.58 shows the ATT window in which each entry of the activity 
transition table (Table 6.15) is described “as it is” one by one, except the 
integer assignment expression k  =  (int)((Clock/120)%12), where (int) is 
inserted for an explicit type casting. The enabled activities are denoted at the 
bottom right of the window. A step-by-step procedure for defining the activity 
transitions is presented in ACE tutorial that can be found on authors’ web site 
(http:// VMS-technology.com/Book/ACE).

6.6.4.3  Running the Simulation  Having defined all the entries in the activ-
ity transition table, a simulation run is made by providing run options at the 
Run Options dialog box. Figure 6.59 shows an example of output plot (queue 
trajectory plot for queue Q).

Fig. 6.56.  Corrected ACD model of the simple service station.
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Fig. 6.57.  Declaring (a) queues and (b) variables in the Spreadsheet window of ACE.

(a)

(b)

Fig. 6.58.  Descriptions of activity transitions and enabled activities.

Fig. 6.59.  Queue trajectory plot (for the entity queue Q).
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6.7  REVIEW QUESTIONS

6.1.  What are the basic conventions for drawing a classical ACD?

6.2.  What is the initial marking of an ACD model?

6.3.  What is an extended ACD?

6.4.  What is a BTO event?

6.5.  What is an activity transition table?

6.6.  What is a flexible multi-server system?
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CHAPTER 7

Simulation of ACD Models 
Using Arena®

Knowledge is a treasure, but practice is the key to it.
—English proverb

7.1  INTRODUCTION

This chapter introduces a systematic framework for executing activity cycle 
diagram (ACD) models using the process-oriented simulation language, 
Arena®. Process-oriented modeling is often referred to as entity-based model-
ing or process interaction worldview. Arena is one of the most popular simula-
tion languages in academia. There are a few Arena-based simulation text 
books available for more detailed discussions on modeling with Arena, e.g., 
Altiok and Melamed [2007], Kelton et al. [2007], and Rossetti [2010]. Here we 
focus on how we use Arena for executing models developed with ACD.

In discrete-event system modeling, a process is defined as a time-ordered 
sequence of events that may encompass several activities [Pritsker and Pegden 
1979]. When an entity, e.g., a customer, is involved in a process, the process 
may be described in terms of the flow of the entity being processed. In this 
respect, the terms process and entity-flow are often used interchangeably. 
Figure 7.1 depicts the relationships between the concepts of events, activities, 
and processes. The Arena model in Fig. 7.1 shows that it describes the entire 
experience of an entity as it flows through the system while interacting with 
the resources R1 and R2. An Arena model is thus basically an entity-flow 
diagram (EFD) for the system being modeled.

The purpose of this chapter is twofold: (1) introduce the basics of the simu-
lation language Arena, and (2) present a structured guide to executing ACD 
models with Arena. After studying this chapter, the readers should be able to 
do the following:

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and 
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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1.	 Understand Arena models (i.e., flowchart models and static models) 
built by others

2.	 Build Arena models of various discrete-event systems
3.	 Convert various types of ACD models to Arena models
4.	 Run Arena simulations and analyze the outputs

The remainder of the chapter is organized as follows: Basic elements of 
Arena are described in Section 7.2. Those who are already familiar with Arena 
may skip this section and directly proceed to Section 7.3. Section 7.3 presents 
key Arena model templates for converting ACD models to Arena models. The 
last section introduces ACD-based Arena modeling examples in various appli-
cation areas.

7.2  ARENA BASICS

Arena is a simulation environment consisting of module templates built on 
SIMAN® language constructs, and it is augmented by a visual front end [Altiok 
and Melamed 2007]. SIMAN [Pegden 1989], from which Arena has evolved, 
consists of two classes of objects: blocks and elements. Blocks are basic logic 
constructs representing operations (or a process), and elements represent 
facilities such as resources and queues and other components.

The fundamental building blocks of Arena models are modules. A module 
is a high-level construct composed of SIMAN blocks and/or elements. For 
example, a Process module models the processing of an entity, and internally 
the module consists of a few SIMAN blocks such as ASSIGN, QUEUE, 
SEIZE, DELAY, and RELEASE. When constructing an Arena flowchart 
model, modules are selected from template panels, e.g., Basic Process and 
Advanced Process panels, and placed on the model window. This section pro-
vides a brief overview of Arena. More details on modeling with Arena can be 
found in Arena User’s Guide [Rockwell Automation 2010] and Kelton et al. 
[2007]. How to obtain a free copy of Arena is explained in http://VMS- 
technology.com/Book/Arena.

Fig. 7.1.  Relationships between the activity orientation and process orientation.
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7.2.1  Arena Modeling Environment

The Arena modeling environment will open with a main window (see Fig. 7.2). 
There are three main regions in the main window: Menu Bar, Project Bar, and 
Model Windows (flowchart model window and spreadsheet model window).

7.2.1.1  Menu Bar  The Arena Menu Bar consists of a number of general 
purpose menus (File, Edit, View, Window, and Help) and Arena-specific menus 
(Tools, Arrange, Object, and Run). The functions of the Arena-specific menus 
are as follows: (1) The Tools menu provides access to Arena parameters and 
tools; (2) the Arrange menu is used for drawing and constructing flowchart 
models; (3) the Object menu is for creating submodels and connecting modules; 
(4) the Run menu allows controlling simulation runs.

7.2.1.2  Project Bar  The Project Bar provides access to various Arena 
modules in Arena template panels. The core template panels that are essential 
for building an Arena model are the Basic Process panel, the Advanced 
Process panel, and the Advanced Transfer panel.

1.	 The Basic Process panel provides (1) a set of high-level flowchart modules 
such as Create, Assign, Batch, Process, and Decide modules; (2) a set of 
data modules for defining objects in the spreadsheet model such as 
Entity, Queue, Resource, and Schedule modules; and (3) calendar sched-
ule information.

Fig. 7.2.  The Arena main window.

Project Bar

Menu Bar

Flowchart model window

Spreadsheet model window
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2.	 The Advanced Process panel provides (1) a set of low-level flowchart 
modules such as Pickup, Match, Seize, Delay, Release, Hold, Dropoff, and 
Signal modules; and (2) a set of advanced data modules such as Advanced 
Set, Failure, Expression, and File modules.

3.	 The Advanced Transfer panel provides (1) a set of general flowchart 
modules such as Enter, Route, Leave, and Station modules; (2) a set of 
conveyor flowchart modules such as Access, Convey, and Exit modules; 
(3) a set of transporter flowchart modules such as Activate, Allocate, 
Request, Move, and Free modules; (4) a set of data modules such as 
Sequence, Conveyor, Transporter, Network, and Segment modules.

7.2.1.3  Model Window  Arena model window is divided into two sections: 
flowchart section and spreadsheet section. The Flowchart Model window is 
where the graphical representation of your model is presented, including the 
process flowchart, animation, and other drawing elements. The Spreadsheet 
Model window displays model data, such as times, costs, and other parameters.

A flowchart model is built progressively by selecting necessary modules one 
at a time from the Project Bar and dragging-and-dropping them into the 
Flowchart Model window. When you select a module in the flowchart model, 
a spreadsheet containing relevant information on the module will be displayed 
in the Spreadsheet Model window so that you can edit the associated data.

7.2.2  Building a Flowchart Model of a Process-Inspect Line

Figure 7.3(a) shows a reference model of a simple process-inspect line. The 
time between arrivals (TBA) of jobs follows an exponential distribution with 
mean 5. Jobs are processed by a Machine whose delay time (i.e., processing 
time) is uniformly distributed with a range between 5 and 7. They are then 
inspected by an Inspector whose delay time is uniformly distributed with a 
range of between 2 and 4. It is expected that 98% of the processed jobs would 
pass the inspection. As a font convention, Arial Narrow is used for Arena 
module names.

A flowchart model and static model of the above process-inspect line are 
shown in Fig. 7.3(b). The flowchart model consists of (1) a Create module by 
module name Arrive, (2) two Process modules Process and Inspect, (3) a Decide 
module Pass?, and (4) two Dispose modules Delivered and Scrapped. The static 

Fig. 7.3(a).  Reference model of a process-inspect line.

(a)

Process InspectJ1

Scrap
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Pass (98%)
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model specifies the resources and queues in the system. In the following, a 
step-by-step procedure for building the Arena flowchart model of Fig. 7.3(b) 
is explained.

7.2.2.1  Build a Create Module Arrive  We’ll start building the flowchart 
model with Create module in the Basic Process panel. A Create module is the 
starting point for the flow of entities through the model.

1.	 Figure 7.4: Drag the Create module in the Basic Process panel into the 
flowchart model window. A default name, Create 1, is given to the module 
when it is placed in the flowchart model window.

2.	 Figure 7.5(b): Edit the spreadsheet to define the Create module1: (1) Set 
Name to Arrive; (2) set Entity type to Job; (3) set Value to 5; and (4) set 
Unit to Minutes.

Fig. 7.3(b).  Arena flowchart model and static model of the process-inspect line.

{98%}

{Job; Exp(5)} {Machine; Uni(5,7)} {Inspector; Uni(2,4)}

(b)

Arena static modelArena flowchart model

Fig. 7.4.  Drag a Create module into the flowchart model window.

1 In Arena, the attribute values for flowchart modules can also be entered in a dialog box by 
doubling-clicking the module in the flowchart model window.
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7.2.2.2  Build Process Modules Process and Inspect  The next step is to build 
two Process modules Process and Inspect to model job processing and job 
inspection, respectively.

1.	 Be sure that the Create module Arrive is selected (so that Arena automati-
cally connects the Process module to the Create module).

2.	 Drag the Process module in the Basic Process panel into the flowchart 
model window. A default name, Process1, is given to the module when it 
is placed.

3.	 Be sure that the Process module Process1 is selected, and drag the Process 
module once more from the Basic Process panel into the flowchart 
model window. A default name, Process2, is given to the module when it 
is placed.

4.	 Edit the spreadsheet to define the two Process modules (see Fig. 7.6): (1) 
Set Names to Process and Inspect; (2) set Action to Seize Delay Release; 
(3) define Resources as Machine and Inspector; (4) set Delay Type to 

Fig. 7.5.  (a) Flowchart model and (b) spreadsheet definition of the Arrive module.

(a)
 

(b)
 

Fig. 7.6.  (a) Flowchart model and (b) spreadsheet for the Process and Inspect modules.

(a)
 

(b)
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Uniform, (5) set Units to Minutes, (6) set Minimum to 5 and 2, and (7) 
set Maximum to 7 and 4.

7.2.2.3  Build Decide Module Pass?  The third step is to build the Decide 
module Pass? to model the probabilistic branching.

1.	 Be sure that Process module Inspect is selected.
2.	 Drag the Decide module from the Basic Process panel into the flowchart 

model window. A default name, Decide1, is given to the module when it 
is placed.

3.	 Edit the spreadsheet to define the Decide module (see Fig. 7.7) as: Set 
Name to Pass? and set Percent True to 98.

7.2.2.4  Build Dispose Modules Delivered and Scrapped  The last step is to 
build two Dispose modules, Delivered and Scrapped.

1.	 Be sure that the Decide module Pass? is selected.
2.	 Drag the Dispose module into the model window (Name Dispose1 is 

given).
3.	 Drag the Dispose module into the model window (Name Dispose2 is 

given).
4.	 Edit the spreadsheet (see Fig. 7.8): Set Names to Delivered and Scrapped.

7.2.2.5  How to Manually Connect One Module to Another?  If no connec-
tion is automatically made between a selected “from” module and a newly 
added “to” module, you can connect the two modules manually. Click the 
Object > Connect menu in the menu bar to draw a connection. Your cursor 
will change to a cross hair. Start the connection by clicking the exit point (▶) 
of the “from” module, then click the entry point (■) of the “to” module to 

Fig. 7.7.  (a) Flowchart model and (b) spreadsheet for the Decide module Pass?

(a)
 

(b)
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complete the connection. If you need to make multiple connections, simply 
select Object > Connect twice (the Connect button will remain active, and it 
is in multi-connect mode). Then draw as many connections as desired. A valid 
connection target (e.g., entry point, exit point, or operand object) will be high-
lighted when the pointer hovers over the target. To end the multi-connection 
session, click again on the Connect option or press Esc.

7.2.3  Completing a Static Model of a Process-Inspect Line

As shown earlier in Fig. 7.3(b), the static model provides detailed descriptions of 
the resources and queues in the system. Figure 7.9 shows the default static model 
of a process-inspect line that is generated when the Arena flowchart model is 
constructed. The Queue data modules, Process.Queue and Inspect.Queue, are 
automatically generated when the Process modules are defined as in Fig. 7.6(b).

The static model consists of a Resource data module and a Queue data 
module from the Basic Process panel. Information in the initial default static 
model is provided automatically by the Arena system, and additional details 
can be entered by the user in the spreadsheets (or dialog boxes). In this 

Fig. 7.8.  (a) Flowchart model and (b) spreadsheet for Delivered and Scrapped modules.

(a)
 

(b)
 

Fig. 7.9.  Initial default static model of the process-inspect line.



192    SIMULATION OF ACD MODELS USING ARENA®

example, the default static model is sufficient for the reference model of our 
process-inspect line [see Fig. 7.3(a)].

If the intended static model requires more information than the default 
static model, data modules for the resources and queues are brought in to the 
Spreadsheet Model window where the required information can be entered. 
Figure 7.10 shows an example where (1) the capacity of the resources is 
increased to two in the Resource data module and (2) the queue discipline of 
the Inspect queue is changed to Last-In-First-Out (in the Queue data module). 
Now we have a process-inspect line with two machines and two inspectors, 
and jobs are selected for inspection on a last-in-first-out basis.

7.2.4  Arena Simulation and Output Reports

7.2.4.1  Prepare for the Simulation of the Process-Repair Line  Before 
executing a simulation run for the Arena model, we need to specify general 
project information including the duration of the simulation run. Here, we will 
perform a short, 24-hour run.

1.	 Figure 7.11(a): Open the Run Setup dialog box by using the Run > Setup 
menu and clicking the Project Parameters tab. In the Project Title field, 
type “Process-Inspect Line Analysis”; we will use the default values for 
the Statistics Collection check boxes, with Entities, Queues, Resources, 
and Processes checked.

2.	 Figure 7.11(b): Click the Replication Parameters tab. In the Replication 
Length field, type “24”; and set its Time Units to Hours from the drop-
down list. Click OK to close the dialog box.

7.2.4.2  Save the Simulation Model  The simulation model is now ready for 
a simulation run, and it is a good time to save the model. Select the File > Save 
menu item in the menu bar. Arena will prompt you for a destination folder 
and file name. Browse to the target folder in which you want to save the model 
and type a name in the File Name field.

Fig. 7.10.  Final static model of the process-inspect line.
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Arena’s model files store all of the model definition, including the flowchart, 
other graphics you have drawn, and the module data you entered into the 
spreadsheets. When you perform a simulation run, the results are stored in a 
database using the same name as the model file.

7.2.4.3  Run the Simulation  Start a simulation run by clicking Run > Go 
menu item in the menu bar. Arena first will check validity of your model, and 
then launch the simulation. As the simulation progresses, you will see small 
entity pictures (resembling a document) moving along the flowchart. Also, 
several variables appear in the flowchart and change their values as entities 
are created and processed, as shown in Fig. 7.12.

If Arena displays an error message, you can use the Find button in the error 
window to locate the source of the error. You can change between the error 
window and model windows using the window menu in the menu bar.

Fig. 7.11.  Run Setup dialog box: (a) Project Parameters; (b) Replication Parameters.

(a) (b)

Fig. 7.12.  Automatic flowchart animation during the simulation run.

Create: Number 
of jobs created Process: Number 

of jobs currently in 
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of jobs out each 

branch Dispose: Number of 
jobs disposed 
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If the animation is too fast, you can slow it down by adjusting the animation 
scale factor. Use the less-than (<) key during the run to decrease the scale 
factor by 20%. Pressing the “<” key repeatedly is an easy way to fine tune the 
animation speed. The greater-than (>) key speeds up animation by 20%. Be 
sure that the model window is active, not the Navigate panel, or the “>” and 
“<” keys will not take effect.

To pause the simulation run, press the Esc key. As shown in Fig. 7.12, you 
can see how many entities (jobs) have been created, are currently in the 
Process modules Process and Inspect, have left each branch of the Decide 
module Pass?, and have left the model at each of the terminating Dispose 
modules Delivered and Scrapped. These variables can be helpful in verifying the 
model.

7.2.4.4  View Simulation Reports  You may skip the animation and run 
right to the end of the simulation to view the reports. Pause the simulation 
(i.e., flowchart animation), then click the Fast Forward button to run the simu-
lation without updating the animation. At the end of the run, Arena will  
ask whether you want to view reports. Click Yes, and the default report (the 
Category Overview Report) will be displayed in a report window, as shown in 
Fig. 7.13

7.2.5  Arena Modules

Arena provides two types of modules—flowchart modules and data modules—
and they define the process to be simulated. All information required to simu-
late a process is stored in modules. Flowchart modules—those that are placed 

Fig. 7.13.  Arena reports of the process-inspect line simulation run.
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in the flowchart model window—describe the dynamics of the system. Data 
modules—those that are used in declaring objects (entities, resources, and 
queues) in the spreadsheet model—define the static model of the system. 
Arena modules are grouped into three panels: Basic Process, Advanced 
Process, and Advanced Transfer panels.

7.2.5.1  Flowchart Modules in the Basic Process Panel  The flowchart 
modules in the Basic Process panel are high-level modules that are used in 
modeling a system at a higher level (i.e., at a lower resolution). There are eight 
flowchart modules in this group, as listed below.

1.	 The Create ( ) module is a starting point of a process flow. Entities 
enter the simulation and their type is specified.

2.	 The Dispose ( ) module is the end of a process flow. Entities are 
removed from the simulation.

3.	 The Process ( ) module defines an activity, usually performed by one 
or more resources; processing activity requires some time to complete, 
i.e., processing time.

4.	 The Decide ( ) module defines branching in a process flow. Only one 
branch is taken according to a decision rule.

5.	 The Batch ( ) module collects a number of entities before they can 
continue in a process flow.

6.	 The Separate ( ) module duplicates entities for concurrent or parallel 
processing, or separates a previously established batch of entities.

7.	 The Assign ( ) module changes the value of the entity’s attribute or 
model variable during simulation.

8.	 The Record ( ) module collects statistics, such as an entity count or 
cycle time.

7.2.5.2  Flowchart Modules in the Advanced Process Panel  The flowchart 
modules in the Advanced Process panel are used in modeling a system at a 
lower level (i.e., at a high resolution). There are 14 modules in this group, and 
six frequently used modules are listed below.

1.	 The Seize ( ) module allocates units of one or more resources to an 
entity.

2.	 The Delay ( ) module delays an entity by a specified amount of 
time.

3.	 The Release ( ) module releases the specified units of a resource that 
an entity previously has seized.

4.	 The Hold ( ) module holds an entity in a queue to either wait for 
a signal, wait for a specified condition to become true, or be held 
indefinitely.
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5.	 The Match ( ) module brings together a specified number of entities 
waiting in different queues.

6.	 The Search ( ) module searches a queue or a group (batch) to find the 
rank of an entity or the value of the global variable J that satisfies the 
specified search condition.

7.2.5.3  Flowchart Modules in the Advanced Transfer Panel  The flowchart 
modules in the Advanced Transfer panel are materials-handling modules that 
are used in modeling the movements of entities in the system. There are 17 
modules in this group, and nine of them are listed below.

1.	 The Station ( ) module defines a station (or a set of stations) corre-
sponding to a physical or logical location where processing occurs.

2.	 The Route ( ) module transfers an entity to a specified station, or the 
next station in the station visit sequence defined for the entity.

3.	 The Access ( ) module allocates one or more cells of a conveyor to an 
entity for movement from one station to another.

4.	 The Convey ( ) module moves an entity on a conveyor from its current 
station to a specified destination station.

5.	 The Exit ( ) module releases the cells on the specified conveyor that 
have been allocated to an entity.

6.	 The Allocate ( ) module assigns a transporter (i.e., vehicle) to an entity 
without moving it to the entity’s station location.

7.	 The Move ( ) module advances a transporter from one location 
to another without moving the controlling entity to the destination 
station.

8.	 The Transport ( ) module transfers the entity to a destination station. 
After the transport time delay, the entity reappears in the model at the 
destination station module.

9.	 The Free ( ) module releases the entity’s most recently allocated trans-
porter unit.

7.2.5.4  Data Modules  Data modules are used for defining the static Arena 
model. Major components are the Resource module and the Queue module 
(see Fig. 7.10). Data modules are grouped into Basic Process, Advanced 
Process, and Advanced Transfer types. There are seven data modules in the 
Basic Process panel as listed below:

1.	 The Entity data module defines entity types in a simulation.
2.	 The Resource data module defines the resources including resource 

availability.
3.	 The Queue data module defines the queues in the system.
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4.	 The Schedule data module defines (1) an operating schedule of a resource 
(with the Resource module), or (2) defines an arrival schedule with the 
Create module.

5.	 The Set data module defines various types of sets, including resource, 
counter, tally, and entity type and entity picture.

6.	 The Attribute data module defines the entity’s attributes, which consist 
of type, dimensions, and initial value.

7.	 The Variable data module defines the variables used across the modules 
in the model.

There are eight data modules in the Advanced Transfer panel, and six of 
them are listed below: (1) the first one is used for a transfer without a trans-
porter, (2) the next two modules for conveyors, and (3) the remaining three 
for guided transporters.

1.	 The Sequence data module is used to define a sequence for entity flow 
through the model. A sequence consists of an ordered list of stations that 
an entity will visit.

2.	 The Conveyor data module allows the definition of a conveyor for entity 
movement between stations.

3.	 The Segment data module defines the distance between two stations in 
the segment set of a conveyor.

4.	 The Transporter data module allows the definition of a free-path for 
guided transporters traveling on a network defined in the Network and 
Network Link modules.

5.	 The Network data module defines a network that guided transporters 
will follow. A network encompasses a set of links specified in its Network 
Links repeat group.

6.	 The Network Link data module defines the characteristics of a guided 
transporter path. The Network module then references a set of network 
links to define a network that guides transporters follow.

7.3  ACTIVITY CYCLE DIAGRAM-TO-ARENA 
CONVERSION TEMPLATES

This section aims to establish a systematic procedure for converting an ACD 
model to an Arena model. We show you how to build Arena models for the 
ACD models of various “template systems” developed in Chapter 6, Section 
6.3. The resulting Arena model templates can be used as building blocks for 
modeling larger systems with Arena. A complete list of the Arena model 
templates can be found in the official website of this book (http://VMS-
technology.com/Book/Arena).

http://VMS-technology.com/Book/Arena
http://VMS-technology.com/Book/Arena
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As before, our baseline system is a single server system with unlimited 
waiting space. Figure 7.14 is an ACD-Arena mapping diagram that shows (1) the 
ACD model of a single server system, (2) an Arena flowchart model, (3) an 
Arena static model, and (4) the mapping relationships from the ACD model 
components to the Arena model components. The ACD model has two activities 
{Arrive, Process} and four queues {A, B, M1, Job}. The Process activity denotes 
an actual processing operation with a time delay (i.e., a nonzero processing 
time). Among the queues, B denotes the number of entities in the buffer, M1 
denotes the number of available resources, and Job is a source queue. The Arena 
flowchart model for this ACD model has three flowchart modules as follows:

1.	 The Create module is a starting point of process flow where entities enter 
the simulation and their type is specified.

2.	 The Dispose module is an end point of process flow where entities are 
removed from the simulation.

3.	 The Process module represents an activity, usually performed by one or 
more resources and requiring some time to complete. Uniform random 
variate is denoted by Uni(a,b) or U(a,b).

In an ACD model, an activity with a nonzero time duration is called a timed 
activity. A queue that represents the number of jobs in a buffer is called a 
buffer queue, and that which denotes the number of available resources is 
called a resource queue.

There are five ACD-to-Arena mapping relationships for this single server 
system example, which are indicated by the curved arrows in the figure. They are:

•	 The job creator cycle in the ACD model maps to a Create module (Arrive).
•	 The timed activity Process maps to a Process module (Process).
•	 The arc back to the source queue Job maps to the Dispose module 

(Dispose).
•	 The resource queue M1 maps to the Resource data module of the static 

model.
•	 The buffer queue B maps to the Queue data module of the static model.

The resulting Arena model in Fig. 7.14 has three flowchart modules (Create, 
Process, and Dispose) and two data modules (Resource and Queue). With an 
Arena model obtained, the Arena simulation program for the model is con-
structed by following the steps previously described in Sections 7.2.2 and 7.2.3. 
In the following, examples of building Arena models from ACD models for 
various template systems are presented.

7.3.1  Template for Fixed Multi-Server Modeling

A single server system is a single station system in which the station has only 
one server. A multi-server system is a single station system with multiple 



Activity Cycle Diagram-to-Arena Conversion Templates    199

servers. If the number of servers in the station is fixed, we have a fixed multi-
server system; if it varies over time, we have a flexible multi-server system.

Figure 7.15 shows an ACD-Arena mapping diagram for a fixed multi-server 
system. The Arena flowchart model and static model of the fixed multi-server 
system are exactly the same as those of the single server system except the 
Capacity field of the Resource data module in the Arena static model. The 
resource capacity in the fixed multi-server model is set to 4. In the following, 
a step-by-step procedure for building an Arena simulation program will be 
explained.

The first step of preparing an Arena program for simulating the fixed multi-
server model is to (1) generate a flowchart model consisting of three flowcharts 
modules (Create, Process, and a Dispose) and (2) assign their names as Arrive, 
Process, and Dispose, as shown in the flowchart model window of Fig. 7.16.

The second step is to provide attribute values of each flowchart module. 
Shown in the spreadsheet model window (inside the dashed-line rectangle) of 
Fig. 7.16 is the spreadsheet for the Arrive flowchart module. In the spreadsheet, 
the inter-arrival time distribution is specified as Value = 5, and Units = Minutes. 

Fig. 7.14.  ACD-Arena mapping diagram for a single server system.
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Fig. 7.15.  ACD-Arena mapping diagram for a fixed multi-server system.
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Likewise, the attribute value Process for module is specified. Figure 7.17 shows 
the spreadsheet for the flowchart module Process in which the service time 
distribution is specified as Delay Type  =  Uniform, Minimum  =  10, and 
Maximum =  15. Also defined in the spreadsheet (in the popped up window 
Resources) are Resource Name = M1 and Quantity = 1.

The third and last step for building the Arena simulation program is to 
complete the Arena static model by providing additional information to the 
data modules. In this example, the number of servers needs to be provided. 
Figure 7.18 shows that the number of servers (=4) is specified in the Capacity 
field of the Resource data module.

Fig. 7.16.  Generation of the flowchart model of the fixed multi-server system.

Fig. 7.17.  Spreadsheet for providing attribute values of the Process module.

Fig. 7.18.  Completed static model of the fixed multi-server system.
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7.3.2  Template for Flexible Multi-Server Modeling

When the number of servers in a multi-server system changes over time, it is 
called a flexible multi-server system. The number of servers in a flexible multi-
server system changes according a resource schedule. Table 7.1 shows a daily 
resource schedule (from Fig. 6.21) in which the number of servers changes 
every 2 hours.

Figure 7.19 shows the ACD model of a flexible multi-server system (Fig. 6.7 
in Section 6.3.1), an Arena flowchart model, an Arena static model, and the 
mapping relationships from the ACD model components to the Arena model 
components. The Arena model of the flexible multi-server system is obtained 
by modifying the fixed multi-server system in the Capacity field of the Resource 
data module in the Arena static model. The resource capacity is now deter-
mined according the daily resource schedule given in Table 7.1. In the ACD 
model of Fig. 7.19, N0 denotes the initial number of resources, and N[k] is the 
number of resources at the k-th time interval as defined in Table 7.1.

The procedure for constructing an Arena simulation program for the flex-
ible multi-server system is similar to the fixed multi-server case described in 
Section 7.3.1. The only difference is the Capacity of the Resource M1 in the 
static model. Figure 7.20 shows how to define the resource schedule using the 
Arena data modules: (1) The Resource data module is selected from the Basic 
Process panel, and then its Type field is set to Based on Schedule and the 
Schedule Name field to MachineSchedule; (2) the Schedule data module is 

TABLE 7.1.  A Daily Resource Schedule with 2-Hour Intervals

Hours
(120 
min)

0000-
0159

0200-
0359

0400-
0559

0600-
0759

0800-
0959

1000-
1159

1200-
1359

1400-
1559

1600-
1759

1800-
1959

2000-
2159

2200-
2359

k 0 1 2 3 4 5 6 7 8 9 10 11
N[k] 0 0 0 0 3 3 3 5 3 1 1 0

Fig. 7.19.  ACD-Arena mapping diagram for a flexible multi-server system.
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selected, and then its Name field and Type field are set to MachineSchedule 
and Capacity, respectively; (3) the Durations field of the Schedule data module 
is set to 12 rows to bring up a Schedule window having 12 rows; and (4) the 
resource schedule is defined as Value-Duration pairs as depicted in the Sched-
ule window.

7.3.3  Template for Balking (Conditional Branching) Modeling

In section Chapter 6, Section 6.3.2, a single server system with balking was 
presented. As discussed in Chapter 4 (Section 4.4), balking occurs when the 
waiting space in front of a server station is full. Figure 7.21 shows an ACD-
Arena mapping diagram for a limited waiting space system. In the ACD model 
in Fig. 7.21, (1) K1 denotes the number of the empty slots in the waiting space; 
(2) M1 denotes the number of idle machines; (3) Q0 denotes a virtual waiting 
space for the arriving jobs; and (4) Q1 denotes the real waiting space for the 
jobs that entered in the system. K1 and M1 are resource queues (K1 can be 
regarded as a capacity queue as well), and Q0 and Q1 are buffer queues.

Fig. 7.20.  Method of defining the resource schedule of a flexible multi-server system.
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Fig. 7.21.  ACD-Arena mapping diagram for a limited waiting space system (balking).
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In an ACD model, an activity that requires no time delays is called an instant 
activity. The ACD model in Fig. 7.21 has three instant activities {Balk, E, L1}, 
in addition to the timed activity Process and the create activity Arrive. An 
instant activity is used for modeling the state change (i.e., event) of an entity, 
such as entering or exiting a buffer, loaded on a machine, or accessing a con-
veyor. An instant activity may represent enter activity by which an entity 
enters a buffer, exit activity by which an entity exits a buffer, load activity by 
which an entity is loaded on a machine, etc. In the ACD model in Fig. 7.21, E 
is an enter activity and L1 is a load/exit activity.

The Arena flowchart model in Fig. 7.21 has four types of newly introduced 
modules: one Decide module {Balk?}, two Seize modules {Seize_K1, Seize_M1}, 
two Release modules {Release_K1, Release_M1}, and a Delay module {Delay_M1}.

•	 A Decide module is a branching point in process flow. Only one branch 
is taken according to a decision rule.

•	 A Seize module allocates units of one or more resources to an entity.
•	 A Delay module delays an entity by a specified amount of time.
•	 A Release module releases units of a resource that an entity previously 

has seized.

As indicated in Fig. 7.21 by the curved arrows, there are five newly intro-
duced mapping relationships from the ACD model to the Arena model:

•	 The conditional branching at Q0 maps to a Decide module (Balk?).
•	 The enter activity E maps to a Seize module (Seize_K1).
•	 The load/exit activity L1 maps to a Seize-Release module pair.
•	 The timed activity Process connected to a load activity (L1) maps to a 

Delay-Release module pair {Delay_M1, Release_M1}.
•	 The buffer queues {Q0, Q1} map to the Queue data module in the static 

model.
•	 The resource queues {M1, K1} map to the Resource data module.

Having generated the Arena flowchart model shown in Fig. 7.21, the next 
step is to provide the attribute values of the flowchart modules. Figure 7.22(a) 
shows the spreadsheet of the “by condition” Decide module where the  
attribute values are provided as Name  =  Balk? and Value  =  NR(K1) == 3. 
The remaining fields are filled with default values by Arena. NR(K1) is a 
built-in Arena function: NR(K1)  =  the number of K1 resources currently 
being used.

Thus, NR(K1) == 3 means that all three units of K1 resources are being 
used (i.e., no room in Q1). Figure 7.22(b) shows the Seize module spreadsheet 
where the attribute values of the Seize modules are provided.
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7.3.4  Template for Limited Buffer Tandem Line Modeling

As discussed in Chapter 4 (Section 4.4.2.1), blocking may occur if the unload-
ing space of a machine is full. Figure 7.23 shows an ACD-Arena mapping 
diagram for a limited buffer tandem line. The ACD model, which is a part of 
the limited buffer tandem line ACD model introduced in Chapter 6 Section 
6.3.2 (Fig. 6.8), consists of five activity nodes and nine queue nodes. Among 
the nine queues in the ACD model, (1) M1 and M2 are resource queues; (2) 
Q1, B1, and Q2 are buffer queues; and (3) C2 is a capacity queue. This model 
has two instant activities {U1, L2} and two timed activities {Process1, Process2}. 
The instant activity U1 is an unload activity, and L2 is a load activity.

Fig. 7.22.  Decide and Seize spreadsheets for providing the attribute values.
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Fig. 7.23.  ACD-Arena mapping diagram for a limited buffer tandem line (blocking).
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The Arena flowchart model in Fig. 7.23 has two Seize modules {Seize_M1, 
Seize_M2}, two Delay modules {Delay_M1, Delay_M2}, two Release modules 
{Release_M1, Release_M2}, and a Hold module Hold_Q2. A brief description of 
the newly introduced Hold module: The Hold module holds an entity in a 
queue until a specified condition becomes true.

Curved arrows in Fig. 7.23 indicate key ACD-to-Arena mapping relation-
ships as follows:

•	 The timed activity Process1 followed by an unload activity (U1) maps to 
the Seize-Delay module pair (Seize_M1 & Delay_M1).

•	 The capacity queue C2 maps to a Hold module (Hold_Q2).
•	 The unload activity U1 maps to a Release module (Release_M1).
•	 The timed activity Process2 following a load activity (L2) maps to the 

Delay-Release module pair {Delay_M2, Release_M2}.

Now, the next step is to provide the attribute values of each and every of the 
flowchart modules. Figure 7.24 shows the spreadsheet for the newly introduced 
Hold module where its attribute values are provided as Name  =  Hold_Q2, 
Condition = NQ (Q2) < 4, and Queue Name = B1. NQ(Q2) is a built-in Arena 
function returning: NQ(Q2)  =  the current number of entities in the buffer 
queue Q2.

Exercise 7.1. Revise the Arena model in Fig. 7.23 by treating C2 in the ACD 
model as a resource queue (instead of a capacity queue).

7.3.5  Template for Nonstationary Arrival Process Modeling

In Chapter 6, Section 6.3.3 (see Fig. 6.9), we presented the ACD model of a 
single server system having inter-arrival times sampled from a nonstationary 
Poisson process. In the ACD model, the thinning method (see Chapter 3, 
Section 3.4.3) was explicitly implemented to generate nonstationery inter-
arrival times. The same thinning method is used in Arena.

Let’s assume that the mean arrival rates over a 24-hour period are as given 
in Table 7.2. Figure 7.25 shows a Create module spreadsheet in which the job 
creation Type is set to Schedule, and the mean arrival rates of the nonhomo-
geneous arrival process in Table 7.2 are provided in the Durations window of 
the Schedule data module. For example, POIS (0.3) indicates that the mean 
of the Poisson distribution is 0.3.

Fig. 7.24.  Spreadsheet for inputting the attribute values of the Hold module.
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TABLE 7.2.  Mean Arrival Rates (Arrivals per Minute) over a 24-Hour Period

Hours
(120 
min)

0000-
0159

0200-
0359

0400-
0559

0600-
0759

0800-
0959

1000-
1159

1200-
1359

1400-
1559

1600-
1759

1800-
1959

2000-
2159

2200-
2359

k 0 1 2 3 4 5 6 7 8 9 10 11
R[k] 0.00 0.00 0.00 0.02 0.10 0.30 0.40 0.50 0.40 0.10 0.02 0.00

Fig. 7.25.  Spreadsheet for inputting the nonstationery arrival rate data.

Fig. 7.26.  ACD-Arena mapping diagram for a joining operation line.
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7.3.6  Template for Joining Operation Modeling

Figure 7.26 shows an ACD-Arena mapping diagram for a joining operation 
line (Chapter 6, Section 6.3.5, Fig. 6.11). The ACD model has two job creator 
cycles and two timed activities {Process1, Process2}, together with a merge 
junction. The Arena model has a Match-Batch module pair, in addition to the 
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two Create modules and two Process modules. Brief descriptions of the newly 
introduced Match module and Batch module is given below:

•	 The Match module brings together a number of entities waiting in dif-
ferent queues.

•	 The Batch module collects a number of entities before they can continue 
processing.

In the ACD model of Fig. 7.26, one Type-1 job in the buffer queue B1 and 
one Type-2 job in the buffer queue B2 are matched together to form a batch 
of size 2, and then assembled by M1. In Arena, this matching operation is 
handled by the Match-Batch module pair. Thus, the ACD-to-Arena mapping 
relationship here can be expressed as the merging of arcs having no arc-
multiplicity maps to the Match-Batch module pair in the Arena flowchart 
model. Figure 7.27 shows a Match module spreadsheet where the Number  
to Match is set to 2 and a Batch module spreadsheet where the Batch Size is 
set to 2.

Exercise 7.2. Revise the Arena flowchart model in Fig. 7.26 so as to 
model the case where two Type-1 jobs and four Type-2 jobs are assembled in 
the line.

7.3.7  Template for Inspection (Probabilistic Branching) Modeling

Figure 7.28 shows an ACD-Arena mapping diagram for an inspection line 
(Chapter 6, Section 6.3.6, Fig. 6.12). The ACD model has three timed activities 
{Inspect, Process, Scrap}, three resource queues {M1–M3}, and three buffer 
queues {B1–B3}, as well as a probabilistic branching junction. The Arena flow-
chart model has three Process modules {Inspect, Process, Scrap} and a “by 
chance” Decide module Decide.

In the ACD model, a conditional branching is made right after the Inspect 
activity to choose either the Process activity or the Scrap activity. In Arena, 
this probabilistic branching operation is handled by the “by chance” Decide 
module. Thus, the ACD-to-Arena mapping relationship here can be expressed 
as the probabilistic branching at an activity (Inspect) maps to a “by chance” 
Decide module Decide. Figure 7.29 shows the spreadsheet for inputting the 
attribute values of the “by chance” Decide module where the Percent True is 
set to 90.

Fig. 7.27.  Spreadsheets for defining the Match module and Batch module.
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7.3.8  Template for Resource Failure Modeling

Figure 7.30 shows an ACD-Arena mapping diagram for a single server system 
with resource failure (Chapter 6, Section 6.3.7, Fig. 6.13). The ACD model 
assumes that a failure is allowed only when the server is busy (i.e., in use) and 
the interrupted job is discarded. The service time is 10 (ts = 10), repair time is 
50 (tr = 50), and the value of remaining time-to-failure (ttf) is initially set to 
1000. The ACD model consists of two activities (Arrive and Process), but its 
Arena model consists of eight modules: a Create modules, a Seize module, a 
Decide module, two Assign modules, a Delay module, a Release module, and 
a Dispose module. This is a brief description of the newly introduced Assign 
module: the Assign module changes the value of the entity’s attribute or model 
variable during simulation.

At the beginning of the Process activity in the ACD model, the state  
variables ttf and ts are updated: If (ttf<10) {update-1} else {update-2}. In 
Arena, the operation “If () {} else {}” is handled by a Decide module, and the 
operation {update variables} is handled by an Assign module. The Process 
activity in which an update operation is performed is divided into three Arena 

Fig. 7.29.  Spreadsheet for inputting the attribute values of the Decide module.

Fig. 7.28.  ACD-Arena mapping diagram for probabilistic branching (inspection line).

(U≤0 9)

{U=Uni(0,1)}

Job
∞B1 Inspect <U(5,10)>Arrive <Exp(5)> Process <U(10,15)>B2

(U≤0.9)~

(U 0 9)

Inspection Line ACD (Figure 6.12)
Scrap <U(2,4)>B3

(U>0.9)~

{Job; Exp(5)}

{M2; U(10,15)}(90%)

{ ; p( )}

{M3; U(2,4)}
Arena flowchart model

M2
•

M1
•

A
•

M3
•

)}(M1; Uni 5,10

Arrive

0
0

0

0
0

0

Inspect Decide Process

False

True

Scrap

Dispose



Activity Cycle Diagram-Based Arena Modeling Examples    209

modules: Seize, Delay, and Release modules in the Advanced Process panel, 
instead of simply using the Process module in the Basic Process panel. In addi-
tion, the state variables and their initial values have to be declared in the 
Variable data module of the Arena static model. Namely:

•	 A conditional update expression in an activity (Process) of an ACD  
maps to a Decide-Assign module structure in the Arena flowchart model 
[Fig. 7.30].
(1)  “If () {} else {}” becomes a “2-way by condition” Decide module [Fig. 

7.31(a)].
(2)	 “{Variable update expressions}” becomes an Assign module [Fig. 

7.31(b)].
•	 State variables and their initial values are declared in the Variable data 

module of the Arena static model [Fig. 7.31(c)].

7.4  ACTIVITY CYCLE DIAGRAM-BASED ARENA 
MODELING EXAMPLES

In this section, we will show you how to build Arena models from the ACD 
models of the “example systems.” The example systems covered in this section 
include: a worker-operated tandem line, a restaurant, a simple service station 
involving flexible multi-servers and nonstationary customer arrivals, a project 
management system, a simple job shop, and a conveyor-driven serial line. ACD 
models for the example systems were presented in Chapter 6, Sections 6.4 and 
6.5. System modeling is an art that can only be mastered by learning the best 

Fig. 7.30.  ACD-Arena mapping diagram for a resource failure.
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practices and internalizing them by relentless practices. If you study the exam-
ples carefully and practice with the ACD-based Arena modeling examples 
provided in the official website of this book (http://VMS-technology.com/
Book/Arena), you will gain confidence on modeling real-life systems.

7.4.1  ACD-Based Arena Modeling of a Worker-Operated  
Tandem Line

Figure 7.32 shows an ACD-Arena mapping diagram for a worker-operated 
tandem line (the ACD model was reproduced from Fig. 6.15). The ACD model 
has five resource queues {M1, M2, M3, WA, WB}, three buffer queues {Q1–Q3}, 
and four timed activities. The fact that the priority of Worker-A is higher than 
that of Worker-B is denoted by the condition WA ≡ 0 on the arc from the Q1 
queue to the Process1b activity. Similarly, the condition M2 ≡ 0 on the arc from 
the Q2 queue to the Process3 activity denotes that the priority of Machine-2 
is higher than that of Machine-3. The Arena flowchart model has two Hold 
modules, two Decide modules, and four Process modules.

A conditional branching in which the probability of selecting one of the 
branches is less than one is called an incomplete conditional branching. In the 
ACD model of Fig. 7.32, the conditional branching at Q1 is incomplete  
and maps to a Hold-Decide module pair {Hold1, Decide1} in the Arena model. 
Similarly, the conditional branching at Q2 maps to the Hold2 and Decide2 
modules. Recall from Section 7.3.3 that a complete conditional branching 
maps to a Decide module. Thus, the mapping relationship found in this  

Fig. 7.31.  Spreadsheet for defining (a) Decide, (b) Assign, and (c) Variable modules.

(a)

(c)

(b)

http://VMS-technology.com/Book/Arena
http://VMS-technology.com/Book/Arena
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particular example may be expressed as the incomplete conditional branching 
in an ACD model becomes a Hold-Decide module pair in the Arena model.

The condition of the Hold1 module is Machine-1 is available and at least one 
of Worker-A or Worker-B is available, which is expressed as: (M1  >  0) & 
(WA > 0 || WB > 0). Similarly, the condition of Hold2 is expressed as ((M2 > 0) 
& (WA >  0)) || ((M3 >  0) & (WB >  0)). As mentioned in Section 7.3.3, the 
above Boolean expressions are handled in Arena by using a built-in function 
NR(resource) that returns the number of busy units for the resource. For 
example, the Boolean expression M1 ≡ 1 is denoted as NR(M1) ≡ 0.

Having generated the Arena flowchart model, the next step is to provide 
attribute values of each flowchart module in Fig. 7.32. For example, Fig. 7.33 
shows a Hold module spreadsheet where the conditions of the Hold1 and Hold2 
modules are defined.

7.4.2  ACD-Based Arena Modeling of Restaurant

Figure 7.34 shows an ACD-Arena mapping diagram for the restaurant system 
introduced in Chapter 6, Section 6.4.3. The ACD model has three resource 

Fig. 7.32.  ACD-Arena mapping diagram for a worker-operated tandem line.
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Fig. 7.33.  Spreadsheet for defining the Hold modules in Fig. 7.32.
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queues {H, T, W}; seven buffer queues {P1–P7}; and seven timed activities 
{Greet, Seat .  .  . Pay bill}. There are five tables (T = 5), two waiters (W = 2), 
and one head waiter (H = 1) in the system. The Arena flowchart model has 
five Process modules {_H_Greet, _W_Order, _W_Receive meal, _H_Pay bills, _W_
Clear}; a Seize module {_H_T_Seat}, two Delay modules {_H_T_Seat, _T_Eat meal}, 
two Release modules {_H_Seat, _T_Clear}, and a Separate module {Separate}. A 
brief description of the newly introduced Separate module is that the Separate 
module duplicates entities for concurrent or parallel processing, or separating 
a previously established batch of entities.

The ACD-to-Arena mapping relationships for the restaurant model are 
fairly straightforward except the Seat activity and the Eat meal activity in the 
ACD model. Starting the Seat activity requires a table T as well as the head 
waiter H, but only the head waiter is released at the end of the activity. Thus, 
it maps to a sequence of three modules {Seize_H_T_Seat, Delay_H_T_Seat, and 
Release_H_Seat}.

The Eat meal activity requires neither a waiter nor a head waiter. At the 
end of this activity, the diner moves to the Pay bills activity and the table goes 
through the Clear activity. Thus, assuming that a copy of the diner entity goes 
with the table, the Eat meal activity maps to a Delay-Separate module pair.

For the Arena flowchart model in Fig. 7.34, we now need to specify attri
bute values of each flowchart module. As an example, Fig. 7.35 shows the 

Fig. 7.34.  ACD-Arena mapping diagram for a restaurant.
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spreadsheet for defining the Separate module Separate, and the Resource data 
module spreadsheet for defining the resource capacity values: T =  5, W =  2, 
and H = 1.

7.4.3  ACD-Based Arena Modeling of a Simple Service Station

As discussed in Chapter 6, Section 6.4.4, a simple service station like a gas 
station is a flexible multi-server system subject to nonstationery arrival rates. 
Table 7.3 shows a mean arrival rate schedule and a resource schedule over a 
24-hour period.

Combining the results presented in Section 7.3.2 (see Fig. 7.19) and in 
Section 7.3.5 (see Fig. 7.25), we can easily obtain an Arena simulation model 
of a simple service station from its ACD model as depicted in Fig. 7.36. The 
Arena flowchart model consists of a Creator module Arrive, a Process module 
Process_M1, and a Dispose module Dispose. The Creator module generates jobs 
with inter-arrival times sampled from a nonstationery Poisson process whose 
mean arrival rates are given as the Arrival-schedule in Table 7.3. The Process 
module processes the jobs with varying number of machines as specified in 
the Machine-schedule.

Figure 7.37 shows attribute values for Create module and Process module. 
The Schedule Name entry of Create module Arrive is set to ArrivalSchedule, 
and in Process module Process_M1, the Resource Name entry is set to M1.

Fig. 7.35.  Spreadsheets for defining (a) Separate and (b) Resource data modules.

(a)

(b)

TABLE 7.3.  Schedules for the Number of Resources and Mean Arrival Rates

Hours
(120 
min)

0000-
0159

0200-
0359

0400-
0559

0600-
0759

0800-
0959

1000-
1159

1200-
1359

1400-
1559

1600-
1759

1800-
1959

2000-
2159

2200-
2359

k 0 1 2 3 4 5 6 7 8 9 10 11
R[k] 0.00 0.00 0.00 0.02 0.10 0.30 0.40 0.50 0.40 0.10 0.02 0.00
N[k] 0 0 0 0 3 3 3 5 3 1 1 0
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The Arena modeling is completed by specifying the schedule of arrival rates 
and available machines, shown in Table 7.3, using the Resource and Schedule 
data modules. Recall that these data modules are available in the Basic Process 
panel. The upper part of Fig. 7.38 shows the spreadsheet for defining the 
Resource data module in which the Schedule Name entry is set to Machine-
Schedule, and the lower part for defining the Schedule data module where  
the ArrivalSchedule and MachineSchedule are provided in their Durations 
windows.

7.4.4  ACD-Based Arena Modeling of a Project Management System

Figure 7.39 shows an ACD-Arena mapping diagram for the project manage-
ment system introduced in Chapter 6, Section 6.4.6. The ACD model consists 
of nine activities {A1–A9} and 14 queues. Among the queues, 11 are buffer 

Fig. 7.36.  ACD-Arena mapping diagram for a simple service station.
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queues {Q2–Q12}, two are resource queues {R1–R2}, and one is a source queue 
{Job}. The Arena flowchart model consists of six Process modules {Process_A1, 
A2, A3, A7, A8, A9}, three Delay modules {A4, A5, and A6}, three Separate 
modules {A1, A3, A4}, three Match modules {A5, A8, A9}, three Batch modules 
{A5, A8, A9}, a Create module, and a Dispose module.

An activity that requires a positive time delay but not executed by a resource 
is called a delay activity. The ACD model in Fig. 7.39 has six timed activities 
{A1–A3, A7–A9} and three delay activities {A4–A6}. The source queue Job in 
the ACD model maps to the Create module Arrive in which a single entity Job 
is created at time zero. A timed activity maps to a Process module, whereas a 
delay activity maps to a Delay module. The ACD model has three activities 
with a split point {A1, A3, A4} and three activities with a merge point {A5, A8, 
A9}, and the mapping relationships for the split/merge points are as follows:

Fig. 7.38.  Spreadsheets for defining the Resource and Schedule data modules.

(a)

(b)

Fig. 7.39.  ACD-Arena mapping diagram for a project management system.
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•	 A split point maps to a Separate module in the Arena flowchart model:
–	 The timed activity A1 → Process_A1 – Separate_A1 modules
–	 The delay activity A4 → Delay_A4 – Separate_A4 modules

•	 A merge point maps to a Match-Batch module pair in the flowchart 
model:
–	 The delay activity A5 → Match_A5 – Batch_A5 – Delay_A5 modules
–	 The timed activity A8 → Match_A8 – Batch_A8 – Process_A8 modules

Figure 7.40 shows spreadsheets for inputting the attribute values of the Match 
modules and Batch modules.

7.4.5  ACD-Based Arena Modeling of a Job Shop

As discussed in the previous chapter (see Section 6.5.4), a simple job shop is 
characterized by a number of stations {s} with each station having one or more 
identical machines. There are multiple job types {j} to be processed in a job 
shop, and each job type has a unique routing sequence. Table 7.4 shows a 
typical example of station numbers sn(j,p) and processing times pt(j,p) for 
three types of jobs processed in the job shop. For example, Type-2 jobs go 
through Station-1, Station-2, Station-4, Station-2, Station-3, and Exit (=Station-
0). The product mixes are (1) 26% of the jobs are of Type-1, (2) 48% are Type-2 
jobs, and (3) 26% Type-3 jobs.

7.4.5.1  Building the Arena Flowchart Model of the Job Shop  Figure 7.41 
shows an ACD-Arena mapping diagram for the simple job shop. The parame-

Fig. 7.40.  Spreadsheets for defining the (a) Match modules and (b) Batch modules.

(a) (b)

TABLE 7.4.  Station Numbers and Processing Times for Jobs Processed in a Job Shop

Job (Ratio)

Processing 
Step-1
(p = 1)

Processing 
Step-2
(p = 2)

Processing 
Step-3
(p = 3)

Processing 
Step-4
(p = 4)

Processing 
Step-5
(p = 5)

sn(j,1) pt(j,1) sn(j,2) pt(j,2) sn(j,3) pt(j,3) sn(j,4) pt(j,4) sn(j,5) pt(j,5)

j = 1 (26%) 1 Exp(6) 2 Exp(5) 3 Exp(15) 4 Exp(8) — —
j = 2 (48%) 1 Exp(11) 2 Exp(4) 4 Exp(15) 2 Exp(6) 3 Exp(27)
j = 3 (26%) 2 Exp(7) 1 Exp(7) 3 Exp(18) — —
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terized ACD (P-ACD) model consists of three activity nodes and five queue 
nodes. The three activity nodes are a create activity Arrive, an instant activity 
Route (j,p), and a timed activity Process (j,p,s). Among the five queue nodes are  
a resource queue M and two buffer queues R(j,p) and Q(j,p,s). The Arena  
flowchart model has one Process module Process_M, three Assign modules, and 
one Decide module. The ACD-to-Arena mapping relationships are: (1) Each 
assignment (or state update) operation in the ACD model maps to an Assign 
module in the Arena model, (2) the complete conditional branching point maps 
to the Decide module, and (3) the timed activity maps to the Process module.

7.4.5.2  Specifying the Arena Static Model of the Job Shop  Basic compo-
nents of Arena static model are resources, entities, and attributes of an entity. 
Figure 7.42 shows the spreadsheets for the Resource data module, Entity data 
module, and Attribute data module for the simple job shop example.

For this model, the resources {M1–M4} and the entity types {J1–J3} are 
defined as sets in the Set data module shown in Fig. 7.43. The resource set and 
the entity set are named as MS and ET, respectively, such that MS(1) = M1, 
MS(2) = M2 . . . ET(3) = J3.

Fig. 7.41.  ACD-Arena mapping diagram for the simple job shop.
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Fig. 7.42.  Spreadsheets specifying the Resource, Entity, and Attribute data modules.
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The station numbers and processing times for each job type, listed in Table 
7.4, are declared in the Variable data module of the Arena static model. Figure 
7.43 (bottom) shows the spreadsheets for the array variables SN (station 
number) and PT (processing time).

7.4.5.3  Inputting the Attribute Values of Flowchart Modules  There are 
five types of modules—Create, Assign, Decide, Process, and Dispose—in the 
Arena flowchart model in Fig. 7.41. Attribute values for Create and Dispose 
modules were discussed in Section 7.2.2 (see Sections 7.2.2.1 and 7.2.2.4). In 
this section, we will describe the attribute values for the Assign, Decide, and 
Process modules.

Figure 7.44 shows a spreadsheet for specifying the attribute values for the 
three Assign modules in the Arena flowchart model of the simple job shop. In 
the Assign_J_S module, it is specified that JT = DISC (0.26, 1, 0.74, 2, 1.0, 3) and 
Entity.Type = ET (JT), which will return the value of Entity.Type as J1, J2, or 
J3 with probabilities 26%, 48%, and 26%, respectively. Assignments for finding 
the next processing step is done at the Assign_P plus 1 as PS = PS + 1. The next 
station number is assigned at the Assign_Route module as NextStation = SN (JT, 
PS).

Figure 7.45 shows spreadsheets defining the Decide module and the Process 
module. Note that these modules use the global variables, JT, NextStation, and 

Fig. 7.43.  Spreadsheets specifying the Set and Variable data modules .

Fig. 7.44.  Spreadsheet for inputting the attribute values of the Assign modules.
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PS. Recall that the values of the global variables, declared in the Attribute data 
module (see Fig. 7.42), are updated at the Assign modules (see Fig. 7.44). As 
depicted in Fig. 7.45, (1) the branching condition of the Decided module is 
specified as NextStation > 0; and (2) the resource ID of the Process module is 
obtained as MS(NextStation) and the processing time is determined from the 
expression Expo(PT(JT,PS)).

7.4.6  ACD-Based Arena Modeling of a Conveyor-Driven Serial Line

Figure 7.46 shows a schematic layout of the conveyor-driven serial line 
described in the Chapter 6, Section 6.4.7. There are three machines {M1–M3} 
and two conveyor segments {C2–C3} in the line. In Arena, the start and end 
points of a conveyor segment are designated by a pair of stations. Jobs arrive 
with an inter-arrival time of ta and move along the line in the following 
sequence: Q1→ M1 → QU1 → C2 → Q2→ M2 → QU2 → C3 → Q3 → M3.

In Arena, a conveyor segment is specified in terms of its physical attributes 
such as length, velocity, and cell size, whereas in an ACD, a conveyor is speci-
fied in terms of its logical attributes. A cell size is defined as the sum of the 
job length and the gap between jobs on the conveyor. For example, the physi-
cal attributes of the conveyor segment C2 in Fig. 7.46 are defined as Veloc-
ity = 60 m/min, Length = 10 m, and Cell size = 1 m. The logical attributes of a 
conveyor model in ACD are Conveying-time (t) and Capacity (C). Figure 7.47 
shows the conversion relationships between the physical attributes and logical 
attributes of a conveyor segment.

Fig. 7.45.  Spreadsheet for the Decide module and the Process module.

Fig. 7.46.  Schematic layout of a conveyor driven serial line.
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7.4.6.1  Building the Arena Flowchart Model of the Conveyor-Driven Serial 
Line  Figure 7.48 shows an ACD-Arena mapping diagram for the conveyor-
driven serial line depicted in Fig. 7.46. The ACD model has three timed activi-
ties {P1–P3}, two transport activities {T2–T3}, six instant activities, three 
resource queues {M1–M3}, two conveyor queues {C2–C3}, and five buffer 
queues {Q1–Q3, QU1–QU2}. The six instant activities are a load activity {L1} 
and an unload activity {U3}, two unload/access activities {U1/A2, U2/A3}, and 
two exit/load activities {E2/L2, E3/L3}. The Arena flowchart model contains 
three Seize modules {M1–M3}, three Delay modules {M1–M3}, three Release 
modules {M1–M3}, four Station modules (Station 1-4), two Access modules 
{C2–C3}, two Convey modules {C2–C3}, and two Exit modules {C2–C3}. Brief 
descriptions of the newly introduced Arena modules are given below:

•	 The Station module defines a station for a location where processing 
occurs.

•	 The Access module allocates a conveyor cell(s) to an entity for 
movement.

•	 The Convey module moves an entity on a conveyor from a station to 
another.

•	 The Exit module releases the cells on the conveyor that have been allo-
cated to an entity.

Depicted in Fig. 7.48 are six cases of mapping relationships from the ACD-
to-Arena flowchart. Among the six cases, four are simple mapping cases:

1.	 Load activity L1 maps to the Seize module Seize_M1.
2.	 Unload activity U3 maps to the Release module Release_M3.
3.	 Each of the timed activities P1–P3 maps to a Delay module.
4.	 Each of the transport activities T2–T3 maps to a Convey module.

And, there are two cases of composite mapping:

•	 An unload/access activity maps to a Station-Access-Release module 
triplet:
–	 The U1/A2 Activity → Station1 – Access_C2 – Release_M1 modules

Fig. 7.47.  Relationships between the physical and logical attributes of a conveyor.
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•	 An exit/load activity maps to a Station-Seize-Exit module triplet:
–	 The E2/L2 Activity → Station2 – Seize_M2 – Exit_C2 modules

7.4.6.2  Specifying the Arena Static Model of the Conveyor-Driven Serial 
Line  Figure 7.49 shows spreadsheets specifying the contents of the Arena 
static model of the conveyor-driven serial line. The resource queues {M1, M2, 
M3} in the ACD model are specified in the Resource data module and buffer 
queues are specified in the Queue data module. The conveyor queues {C2, C3} 
are specified in the Conveyor data modules as well as in the Segment data 
modules where the physical attributes (see Fig. 7.47) of each conveyor are 
provided.

7.4.6.3  Inputting the Attribute Values of Flowchart Modules  This section 
discusses attribute values for the newly introduced conveyor-related modules 
{Station, Access, Convey, Exit}. Figure 7.50 shows spreadsheets for specifying 

Fig. 7.49.  Spreadsheets specifying the Arena static model of the conveyor-driven serial 
line.

Fig. 7.50.  Spreadsheets for inputting attribute values of conveyor-related modules.



Review Questions    223

the attribute values of the conveyor-related modules: (1) Station Name of each 
Station module is provided (top left); (2) Conveyor Name, # of Cells per access, 
and Queue Name of each Access module are provided (top right ); (3) Con-
veyor Name and the destination Station Name of each Convey module are 
provided (bottom left); (4) Conveyor Name and # of Cells per exit of each 
Exit module are provided (bottom right).

7.5  REVIEW QUESTIONS

7.1.  How is a process defined in discrete-event system modeling?

7.2.  What does an entity flow diagram describe in discrete-event system 
modeling?

7.3.  What are the names of the four Arena-specific menus?

7.4.  What is the difference between a timed activity and a delay activity?

7.5.  What is a resource queue in an ACD?

7.6.  How is the resource schedule defined in Arena?

7.7.  What is an instant activity in ACD?

7.8.  What is the meaning of the Boolean expression NR(K1) == 3?

7.9.  How is a nonhomogeneous arrival process modeled (or specified) in 
Arena?

7.10.  What is the incomplete conditional branching?

7.11.  How is the cell size of a conveyor defined in Arena?
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CHAPTER 8

Output Analysis and Optimization

When you can measure what you are speaking about and express it in 
numbers, you know something about it. But when you cannot measure 
it, when you cannot express it in numbers, your knowledge is of the 
meager and unsatisfactory kind; you have scarcely in your thoughts 
advanced to the state of science whatever the matter may be.

—Lord Kelvin

8.1  INTRODUCTION

In a real-life simulation project, it is exciting to watch as your simulation 
program begins to generate some outputs. However, you may easily become 
overwhelmed by the large amount of data produced by the simulation program. 
The goal of output analysis and optimization is to draw conclusions and make 
decisions correctly and efficiently from the simulation outputs.

The purpose of this chapter is to provide basic coverage of simulation 
output analysis and optimization. The topics that are covered in this chapter 
are the framework of simulation output analyses, qualitative output analyses, 
statistical output analyses, linear regression analyses, and response surface 
methodology for simulation optimization. Also, after studying this chapter, you 
should be able to answer the following questions:

1.	 What is a simulator calibration? How does it differ from simulator 
verification?

2.	 What is a simulation sensitivity analysis? How does it differ from a simu-
lation optimization?

3.	 Why is simulation optimization different to analytic optimization?
4.	 What are the commonly used output plots?

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and 
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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5.	 What are R2 statistics?
6.	 How are the design points spaced in a two-variable central composite 

design?

The remainder of the chapter is organized as follows. The overall frame-
work of the simulation output analysis is given in Section 8.2, and guidelines 
for qualitative output analyses are presented in Section 8.3. Statistical output 
analysis methods for terminating simulations, nonterminating simulations, and 
comparing alternative systems are presented in Section 8.4, and linear regres-
sion modeling for output analyses is presented in Section 8.5. The last section 
is devoted to the response surface methodology for simulation optimization. 
Student’s t-distribution and t-tests are reviewed in the Appendix.

8.2  FRAMEWORK OF SIMULATION OUTPUT ANALYSES

In order to draw conclusions and make decisions correctly and efficiently from 
the simulation outputs, we need to (1) verify the correctness of the simulation 
program and calibrate the simulation outputs against the actual data collected, 
(2) design simulation experiments carefully, (3) perform statistical analyses on 
the output values in order to draw conclusions with confidence, and (4) employ 
optimization techniques to find the optimal solutions. In addition, the simula-
tion team should be able to sell the simulation results to the customers and 
users of the simulation.

Shown in Fig. 8.1 is the scope of simulation output analyses for discrete-
event simulations. As depicted in the figure, the key activities related to the 
output analyses are verification and calibration, experimentation, drawing 
conclusions with confidence, and communication and presentation.

8.2.1  Verification and Calibration

Verification is defined as ensuring that the simulation program is correct with 
respect to the formal model, while calibration, which is often referred to as 

Fig. 8.1.  Framework of a simulation output analysis in discrete-event simulation.
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the operational validation [Sargent 2004], is defined as rendering the simula-
tor’s output behavior sufficiently accurate over the domain of its intended 
applicability by adjusting the values of the master data and the parameters of 
the target system model. Verification and calibration are undertaken during 
the initial development and testing; careful experimentation is required because 
a simulator may be valid for one set of experimental conditions and invalid in 
another.

In a real-life project, verification can be undertaken internally within the 
simulation team, whereas calibration must be performed jointly with the 
project stakeholders or users. Calibration is undertaken by defining and adjust-
ing the handles in order to reduce the gap between the simulator output and 
the source system output. Sargent [2004] recommends the following calibra-
tion steps:

1.	 At the beginning, an agreement is made between the simulation team 
and the sponsor (or user) that specifies the basic calibration approach as 
well as the techniques to be used.

2.	 The amount of accuracy required is specified for the simulator’s output 
variables of interest for their intended applications.

3.	 In each of the iterations, comparisons are made between the simulation 
output and the data collected from the source system.

4.	 Calibration documentation is developed for inclusion in the overall 
project documentation.

8.2.2  Simulation Experimentation

The main purpose of the experimentation in Fig. 8.1 is to optimize the simula-
tion. This may have various forms, such as selecting the best alternative or 
finding the optimal parameter values. According to Schruben and Schruben 
[2001], the rules or factors that govern the interaction of entities in a system 
that can be controlled are called parameters, while those that cannot be con-
trolled are called laws. A simulation experiment that determines the optimal 
values of the parameters is called a simulation optimization and that which 
determines the effects of the changes in the laws is called a sensitivity analysis. 
The controllable parameters are referred to as handles or decision variables.

A framework for the simulation optimization is called an experimental 
frame. As shown in Fig. 8.2, an experimental frame consists of a transducer 
that analyzes the output, an acceptor that evaluates the performance measures, 
and a generator that adjusts the handles. Optimization is usually undertaken 
iteratively: (1) perform a set of simulation runs, (2) analyze outputs, (3) evalu-
ate key performances, (4) adjust the handles, and (5) perform another set of 
simulation runs. However, in some cases, sufficient numbers of simulation runs 
may be performed according to a predesigned plan and then optimization is 
undertaken. The handles can be quantitative variables such as the number of 
resources or qualitative variables such as dispatching rules.
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Simulation optimization is quite different from analytic optimization 
because (1) an analytic expression of the objective function does not exist, (2) 
the objective function is a stochastic function of deterministic decision vari-
ables, (3) the simulation executions are much more expensive than evaluating 
the analytic functions, and (4) interfacing simulators with generic optimization 
routines are not always a simple task [Azadivar 1999]. The most common form 
for a simulation optimization is to minimize an expected value as given by the 
following equation [Fu et al. 2005]:

	 min [ ( , )],
θ

θ ω
∈Θ

E L 	

where θ represents the vector of the decision variables, Θ is the constraint set, 
L is the sample performance measure, and ω represents a sample path (simula-
tion replication).

In the literature, it has been proposed that the above optimization problem 
can be solved by employing methods such as the stochastic approximation, 
sample average approximation, and heuristic search methods [Azadivar 1999, 
Fu et al. 2005, Kim 2006]. Some simulation optimization software packages 
that primarily employ heuristic search methods are also available [Fu et al. 
2005]. However, the above-mentioned optimization methods may be too theo-
retical for simulation practitioners.

Thus, a more practical, perhaps more promising, approach is to use process 
improvement techniques in designed experiments, such as the response surface 
methodology and Taguchi methods [Dellino et al. 2008]. The response surface 
methodology for simulation optimization will be covered in Section 8.6.

8.2.3  Communication and Presentation

Communication with the stakeholders and presentation to the customers are 
crucial for a successful modeling and simulation (M&S) project. Remember 
that “all models are wrong, but some are useful.” In practice, it is the author’s 
experience that M&S is a consensus-building process. Building a consensus 
among the stakeholders and acquiring model credibility via qualification and 
sensitivity analyses are prerequisites for a successful simulation project.

Fig. 8.2.  Experimental frame for simulation optimization.
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8.3  QUALITATIVE OUTPUT ANALYSES

Simulation output analyses may be classified into qualitative analyses and 
statistical analyses. Since discrete-event system simulations include some ran-
domness, rigorous output analyses should be supported with statistical methods. 
However, in practice, the various output analyses activities in Fig. 8.1 are per-
formed with qualitative simulation outputs.

Simulation outputs may be grouped into graphical and alphanumeric 
outputs. Graphical outputs are in the form of animations and output plots. An 
animation may be physical or logical: physical animations animate the physical 
behavior of the source system at a high fidelity employing computer graphics, 
whereas logical animations show the behavior of the logical elements in the 
system, such as entities, events, and state (token) changes. Figure 8.3 shows 
two examples of physical animation outputs: an automated manufacturing 
system and an urban traffic intersection. Figure 8.4 presents the logical anima-
tion screen of Arena® where it is shown that six jobs are waiting in the buffer 
(waiting to use the resource), one job is being processed, one job is about to 
be disposed, and 112 jobs have been disposed out of the 121 jobs created.

Commonly used output plots include scatter plots, line plots, and histo-
grams. Figure 8.5 shows a scatter plot of the waiting time of each entity and 
the queue size when each entity departs (unloaded from the single server 
system shown in Fig. 4.1 in Chapter 4), and a behavior graph that compares 
the simulation model and the real system from Sargent [2004]. Line plots are 
used for time-dependent statistics such as queue sizes and work-in-process 
(WIP) levels over time, while histograms are used for sample statistics such as 

Fig. 8.3.  Examples of physical animation outputs.

Create Seize Delay Release Dispose

112121

Fig. 8.4.  Logical animation screen of Arena®.



Qualitative Output Analyses    229

sojourn times. Figure 8.6 presents a line plot of the queue size and a histogram 
of the sojourn times in the single server system given in Fig. 4.1.

Common types of alphanumeric outputs are traces and output statistics. 
Traces of events and/or state changes are essential for simulator verification. 
Output statistics are also useful in verification, but they are primarily used for 
simulator calibration. Table 8.1 shows the initial part of an event trace of a 
single server system simulation using SIGMA®.

Fig. 8.5.  Scatter plot of waiting time vs queue size, and a behavior graph.
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Fig. 8.6.  Line plot of queue size and a histogram of sojourn times.
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TABLE 8.1.  Event Traces from a SIGMA® Simulation of a Single Server System 
with Failure

Time Event Count Q M ST TAV{Q} AVE{ST}

0 Run 1 0 1 0 0 0
0 Arrive 1 1 1 0 0 0
0 Load 1 0 0 0 0 0
1.633 Arrive 2 1 0 0 0 0
7.895 Unload 1 1 1 7.895 0 0
7.895 Load 2 0 0 7.895 0.793 1.579

13.918 Unload 2 0 1 12.918 0.793 2.631
31.582 Arrive 3 1 1 12.918 0.449 4.101
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In summary, Schruben and Schruben [2001] provide the following addi-
tional tips regarding the use of simulation outputs:

1.	 During the initial development/testing, logical animation is the most 
valuable simulation output.

2.	 For locating gross logic errors, physical animations are the most useful 
simulation outputs.

3.	 When evaluating alternative system designs at a high level, output plots 
are the most useful output.

4.	 Output statistics are the most appropriate for sensitivity analyses and 
optimizations.

5.	 In analyzing the overall performance/dynamics of a system, output plots 
are the most useful outputs.

6.	 In selling the simulation to prospective users, physical animations are the 
most useful simulation outputs.

8.4  STATISTICAL OUTPUT ANALYSES

Many simulation studies are concerned with estimating the performance mea-
sures of the source system. Because discrete-event system simulations include 
some randomness, simulation output data is effectively a random variable. 
Thus, in principle, the data analysis methods found in statistics books may be 
used in the simulation data analyses. However, in general, the simulation data 
are not independent, and extra efforts may be required in order to accom-
modate the dependency in the simulation output data.

Simulations may be terminating or nonterminating, depending on whether 
there is an obvious method for determining a simulation run. A terminating 
simulation is one for which there is a “natural” event that specifies the length 
of the simulation time of interest for the source system [Nakayama 2002]. 
Otherwise, it is a nonterminating simulation, which is often referred to as a 
steady state simulation.

8.4.1  Statistical Output Analyses for Terminating Simulations

The simulation of most service systems is a terminating simulation, because 
they have an obvious terminating event (i.e., closing time). Suppose X repre-
sents a performance measure of the system and suppose that we are interested 
in computing the mean (μ) and variance (σ2) of X, as defined below:

	 µ σ µ= = − ≡E X E X Var X[ ]; [( ) ] ( ).2 2 	 (8.1)

Let Xj be output data obtained from the jth replication for j = 1∼r. Then, the 
point estimates of μ and σ2 are computed from the sample mean and sample 
variance, as follows:
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	 ˆ ( ) ˆ ( ) ( ( )) .µ σ= = = =
−

−∑ ∑X r
r

X S r
r

X X ri i
1 1

1
2 2 2and 	 (8.2)

Further, the 100(1–α)% confidence interval for the mean μ is given by (see 
Appendix):

	 X r t S r rr( ) ( ) / ., /± − −1 1 2
2

α 	 (8.3)

The second term in Eq. 8.3 is called a confidence interval half-length (β). 
For example, suppose that we have obtained a sample mean of 20 and a sample 
variance of 4 out of 9 replications. Then, a 90% confidence interval half-length 
is computed as follows (r = 9, α = 0.1):

	 β = = × =t8 0 95 4 9 1 860 2 3 1 24, . / . / . . 	

Furthermore, the 90% confidence interval for the mean (μ) is 20 ± 1.24. How 
many additional replications are required if we want the value of β to be less 
than 1.0?

In theory, we can reduce the number of replications required for a given 
value of β using a random number (Uk) for a particular purpose (e.g., an inter-
arrival time) in generating Xj, and using its complement (1 − Uk) for the same 
purpose in generating Xj+1. This technique of variance reduction is known as 
the use of antithetic variates.

8.4.2  Statistical Output Analyses for Nonterminating Simulations

A nonterminating simulation is primarily concerned with the steady state 
performance measures of the system. Let Y  =  {Y1, Y2, Y3 .  .  .} be an output 
sequence for a performance measure, where Yj is the sojourn time of the jth 
customer in a nonterminating system. Let’s define the distribution of Yj as 
follows:

	 F y C Y y C jj j( Prob for| ) ( | ) , , ,= ≤ = 1 2 3… 	

where C denotes the initial conditions of the system at time 0. If the relation 
given in Eq. 8.4 holds for all y and for any initial condition C, then F(y) is 
called the steady state distribution of the output sequence Y [Nakayama 2002]:

	 F y C F y jj ( | ) ( ) .→ → ∞as 	 (8.4)

The above expression is read as “Yj converges in distribution to Y.” Further, 
the expected value of the E(Y) of Y is called the steady state performance 
measure and the density function (Fj(y)) of Yj is called a transient density 
function. Figure 8.7 depicts the transient behavior of a nonterminating 
simulation.
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Suppose that we want to estimate the steady state mean, μ  =  E(Y). In 
practice, μ is estimated from the sample mean of the steady state observations 
{Yj: j  =  s  +  1 ∼ n} after deleting the warm-up period data (Yj: j  =  1 ∼ s), as 
follows:

	 ˆ ( , ) ( ).µ = =








 −

= +
∑Y n s Y n sj

j s

n

1

	 (8.5)

Now, the question is how to determine s (warm-up period length). A popular 
technique for determining s is a graphical procedure known as Welch’s proce-
dure [Law 2007, p. 509] in which the moving averages of {Yj} are plotted in 
order to visually detect the start point (Ys) of the steady state.

Thus, how do we estimate the variance (σ2) of Y? The sample variance of 
{Yj: j = s + 1 ∼ n} cannot be used as an estimator of σ2 because {Yj} is not inde-
pendent. A practical method is the method of batch means, which is summa-
rized as follows [Nakayama 2002]:

1.	 Choose a number (m) of batches so that the size (b) of each batch 
becomes b = (n − s)/m. (It has been suggested to choose 10 ≤ m ≤ 30.)

2.	 Run a simulation to generate (n  −  s) steady state observations: Yj for 
j = s + 1 ∼ n.

3.	 Group the (n − s) observations into m batches of size b each, and calcu-
late the kth batch mean as follows:

	 Y b Y bk j

j s k b

s kb

( ) .
( )

=










= + − +

+

∑
1 1

	 (8.6)

4.	 Calculate the sample variance of the batch means using the results in 
Eqs. 8.5 and 8.6, as follows:

	 S m b
m

Y b Y n sk

k

m
2 2

1

1
1

( , ) [ ( ) ( , )] .=
−

−
=

∑ 	 (8.7)

Fig. 8.7.  Transient behavior of a nonterminating simulation [Nakayama 2002].
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5.	 Finally, the 100(1 − α) % confidence interval for the mean μ is computed 
as follows:

	 Y n s t S m b mm( , ) ( , ) / ., /± − −1 1 2
2

α 	 (8.8)

The above batch mean method is based on the observation that when m is 
large, and Yj and Yj+m are almost independent. Alternatively, we may use the 
method of multiple replications in which nonterminating simulations are per-
formed r times. In this case, Eq. 8.3 is used to compute the confidence 
interval.

8.4.3  Statistical Output Analyses for Comparing Alternative Systems

Let Xj and Yj denote the output data obtained at the jth replication from 
System A and System B, respectively. Define Zj = Xj − Yj for j = 1 ∼ r, where 
r is the number of replications. Then, the point estimates of μ  =  E[Z] and 
σ2  =  Var[Z] are computed from the sample mean and sample variance, as 
follows:

	 ˆ ( ) ˆ ( ) ( ( )) .µ σ= = = =
−

−
= =

∑ ∑Z r
r

Z S r
r

Z Z rj

j

r

j

j

r1 1
11

2 2 2

1

and 	 (8.9)

Then, the 100(1 − α) % confidence interval for the mean (μ) is obtained using 
Eq. 8.3.

In a practical simulation study, the confidence interval may be used to 
decide whether or not to accept a proposed (improved) system that may 
require addition investments. Let System A be the proposed system and 
System B be the existing system. Suppose the stakeholders want to know if 
the proposed system will improve the performance measure by an amount of 
δ with a confidence level of 90%. Then, you can recommend the proposed 
system if the following holds:

	 ( ( ) ( ) / ) ., .Z r t S r rr− >−1 0 95
2 δ 	 (8.10)

The above procedure for comparing two systems may be used to compare 
more than two systems as well via a number of pairwise comparisons. In the 
literature, a number of ranking and selection methods have been proposed for 
the comparison of multiple alternatives [Fu et al. 2005], but these theoretical 
schemes may be too complicated to be useful in real-life industrial simulation 
projects.

A useful and effective method of increasing the statistical efficiency of 
comparing alternative systems is to use common random numbers (CRN). The 
fundamental concept is based on reducing the variance of Zj  =  Xj  −  Yj by 
inducing a positive covariance between Xj and Yj. More precisely, the variance 
of the sample mean Z r( ) is expressed as follows:
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Var Z r Var Z r Var X Var Y Cov X Y rj j j j j[ ( )] ( ) / { ( ) ( ) ( , )} / .= = + − 2   (8.11)

Thus, if we can induce a positive correlation between Xj and Yj, the covariance 
term in Eq. 8.11 will become a positive number, resulting in a decrease in the 
variance of Z. In order for this to be effective, however, it is essential to syn-
chronize the random numbers across the different systems on a particular 
replication. Namely, a specific random number used for a specific purpose in 
one configuration must be used for exactly the same purpose in the other 
configurations.

8.5  LINEAR REGRESSION MODELING FOR OUTPUT ANALYSES

Simulation (output) analyses are primarily performed in order to obtain 
behavioral knowledge of a system from its structural knowledge. By combin-
ing linear regression modeling with simulation analyses, we can also obtain 
some generative knowledge of the system. Namely, linear regression modeling 
enables us to obtain generative knowledge from simulation experiments. In 
addition, linear regression modeling is a key prerequisite for simulation opti-
mization, as discussed in Section 8.6.

8.5.1  Linear Regression Models

Consider a second-order polynomial model with two variables of x1 and x2 as 
given below:

	 y x x x x x x= + + + + + +β β β β β β ε0 1 1 2 2 11 1
2

22 2
2

12 1 2 , 	

where y is the response variable and ε is an error or residual. Define x x3 1
2= , 

x x4 2
2= , x5 = x1x2, β3 = β11, β4 = β22, and β5 = β12, and then the above equation 

can be expressed as follows:

	 y xj j

j

= + +
=

∑β β ε0

1

5

, 	

where βj are parameters and xj is a regressor variable. In general, a linear 
regression model with k regressor variables is given by:

	 y xj j

j

k

= + +
=

∑β β ε0

1

. 	 (8.12)

Product form models such as stadβfγ = C can also be converted into a linear 
regression model using logarithms and substituting variables.
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8.5.2  Regression Parameter Estimation

Suppose we have data obtained from n simulation experiments as shown in 
Table 8.2, where yi is the response (e.g., performance measure) obtained from 
experiment i for i = 1 to n, and xij is the value (or level) of the regressor vari-
able xj for j = 1 to k used at experiment i. Then, the model equation (Eq. 8.12) 
may be written in terms of the data in Table 8.2, as follows:

	 y x x x for i ni i i k ik i= + + + + + =β β β β ε0 1 1 2 2 1 2� …, , . 	 (8.13)

In order to estimate the parameters in the observation equation (Eq. 8.13), we 
need to have n > k.

The observation equation (Eq. 8.13) may be expressed in a matrix form as 
follows:

	 y X= +b e, 	 (8.14)

where
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and 	

Note that X is a (n × p) matrix, where p = k + 1. In order to obtain the least 
square estimators (b) of the parameters, the sum-of-squares of the residuals 
is defined as follows:

	 L = ′ = − ′ − = ′ − ′ ′ + ′ ′e e b b b b b( ) ( ) ( ) .y X y X y y X y X X2 	

The least square estimator vector b must satisfy the following:

	 ∂ ∂ = − ′ + ′ =L/ b b X y X X b 02 2( ) . 	

Thus, the least square estimator b for β is obtained as follows:

	 b = ′ ′ =−( ) ( , , ).X X X y1
0 1 2b b b bk… 	 (8.15)

TABLE 8.2.  Data Arrangement for a Linear Regression

Variable y x1 x2 ··· xk

Data y1 x11 x12 ··· x1k

· · · ·
· · · ·
yn xn1 xn2 ··· xnk
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Furthermore, the fitted regression model is expressed as:

	 ˆ ,y b b x b x b xk k= + + + +0 1 1 2 2 � 	

whose matrix form is given by ŷ = Xb. The predicted response for the ith obser-
vation (i.e., simulation run) is expressed as:

	 ˆ , , , , .y b b x b x b x i ni i i k ik= + + + + =0 1 1 2 2 1 2� … 	

Now consider a linear regression model having one regressor variable, 
y = a + bx + ε, which is a special case of Eq. 8.12 with k = 1 (a = β0, b = β1, 
and x  =  x1). The sum-of-squares of the residuals for this special case is 
expressed as:

	 L a bx yi i

i

n

= ′ = + −
=
∑ε ε ( ) .2

1

	

Then, the least square estimators of a and b must satisfy:

	 ∂ ∂ = + − = ∂ ∂ = + − =
= =
∑ ∑L a a bx y L b a bx y xi i

i

n

i i i

i

n

/ ( ) ; / ( ) .2 0 2 0
1 1

	

Solving the above equations simultaneously yields the following:

	 ˆ ˆ ; ˆ ,a y bx b x y nxy x nxi i

i
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i

i
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= − = −
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
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
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 −











= =
∑ ∑

1

2 2

1

	 (8.16)

where x x n y y ni i= =∑ ∑/ ; / .

8.5.3  Test for Significance of Regression

With the fitted regression model in Eq. 8.16 obtained from the experiment 
data of Table 8.2, a question arises: “Can we trust the model?” The statistical 
procedure to answer this question is called an analysis of variance (ANOVA). 
In an ANOVA, the total sum-of-squares (SST) and error sum-of-square (SSE) 
are computed as follows:

	 SS y y y n y y nT i

i

n

i

i

n

i= − = − = ′ − ( )
= =
∑ ∑ ∑( ) ( ) ,2

1

2

1

2
2

y y 	 (8.17)

	 SSE i

i

n

= = ′ = − ′ − = ′ − ′ ′
=
∑ε 2

1

e e ( ) ( ) ,y Xb y Xb y y b X y 	 (8.18)
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where the column vector X′y is expressed in terms of the data as:

′ = [ ] =
= = =
∑ ∑ ∑X y c c c c y x y x y x yk
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. 	 (8.19)

The quantity b′X′y is expressed as:

	 ′ ′ = = +
= = ==

∑ ∑ ∑∑b X y b c b y b x yj j
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i

i
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j ij i

i
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1 11

. 	 (8.20)

The regression sum-of-squares (SSR) is obtained by subtracting SSE from SST, 
as follows:

	 SS SS SSR T E= − . 	 (8.21)

The degree of freedom (d.f.) of the total sum-of-squares is n − 1 and that of 
the regression sum-of-square is k. Thus, the degree of freedom of SSE becomes 
n  −  k  −  1. A mean square is obtained by dividing the sum-of-square by its 
degree of freedom. Thus, the regression mean square (MSR) and error mean 
square (MSE) are computed as follows:

	 MS SS k MS SS n kR R E E= = − −/ ; / ( ).1 	 (8.22)

The total mean square (MST) is computed similarly.
Finally, F0 is defined as the ratio of MSR and MSE. The statistics obtained 

so far are summarized in an ANOVA as shown in Table 8.3. When εi in the 
model equation (Eq. 8.13) are independent and normally distributed with a 
mean of 0 and a variance of σ2, we reject the null hypothesis β1 = β2 = . . . = βk = 0 
if F0 > Fa,k,n−k−1.

The coefficient of multiple determination, commonly called the R2 statistic, 
is defined as:

	 R SS SS SS SSR T E T
2 1= = −/ ( / ). 	 (8.23)

R2 is a measure of the amount of response variability explained by the fitted 
model. However, R2 always increases as more terms are added to the regres-
sion model. Thus, the adjusted R2 defined below may be a better measure:

TABLE 8.3.  ANOVA Table

Source of 
Variation Sum-of-Square d. f. Mean Square F0

Regression SSR k MSR MSR / MSE

Error SSE n – k – 1 MSE

Total SST n – 1 MST
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n k
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
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− −
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( / ) ( / )  −( ).1 2R
	

(8.24)

The adjusted R2 will often decrease if unnecessary terms are added.

8.5.4  Linear Regression Modeling Example1

Data obtained from 14 experiments involving two decision variables (v1 and 
v2) are summarized in Table 8.4. The decision variables are transformed into 
coded variables (x1 and x2) as follows: x1 = (v1 − 225)/30 and x2 = (v2 − 4.36) / 
0.36. In general, let μ and ρ, respectively, denote the mean and range of a deci-
sion variable (v). Then, its coded variable (x) is expressed as:

	 x v= −2( )/ .µ ρ 	

Now, consider a first-order regression model containing the main effects of the 
decision variables.

	 y x x= + + +β β β ε0 1 1 2 2 . 	

TABLE 8.4.  Collected Data with Decision Variables and Coded Variables

Run y

Decision Variable Coded Variable

v1 v2 x1 x2

1 1004 195 4.00 −1 −1
2 1636 255 4.00 1 −1
3 852 195 4.60 −1 0.6667
4 1506 255 4.60 1 0.6667
5 1272 225 4.20 0 −0.4444
6 1270 225 4.10 0 −0.7222
7 1269 225 4.60 0 0.6667
8 903 195 4.30 −1 −0.1667
9 1555 255 4.30 1 −0.1667

10 1260 225 4.00 0 −1
11 1146 225 4.70 0 0.9444
12 1276 225 4.30 0 −0.1667
13 1225 225 4.72 0 1
14 1321 230 4.30 0.1667 −0.1667

1 Myers and Montgomery 1995, Chapter 2.
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Then, the y-vector and X-matrix are as follows:

	 y =
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From the above data, the least square estimator b of β is obtained as follows:

	 b = ′ ′ = − ′−( ) [ . , . , . ] .X X X y1 1242 3 323 4 54 8 	

Thus, the fitted model in the coded variables x1 and x2 is:

	 ˆ . . . .y x x= + −1242 3 323 4 54 81 2 	

Then, the fitted model in the natural decision variables v1 and v2 becomes:

	 ˆ . . . .y v v= − + −520 1 10 8 152 21 2 	

From the expressions given by Eqs. 8.17, 8.18, and 8.21, the sum-of-squares 
SST, SSE, and SSR are computed as follows:

	
SS y n

SS
T i

E

= ′ − ∑( ) = − =
= ′ − ′

y y

y y b

2 222 527 889 17 495 14 665 387, , ( , ) , ;/
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= − = −

X y 22 527 889 22 514 468 13 421

665 387 13 4

, , , , , ;

, ,SS SS SSR T E 221 651 996= , .

	

Then, the mean squares and F-statistic are obtained as (n = 14, k = 2):
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E E

R R

= − − = =
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The above statistics are summarized in Table 8.5 (the ANOVA table).
At a significance level of 5% (i.e., α = 0.05), the null hypothesis “β1 = β2 = 0” 

is rejected because F0 = 267.2 >> F0.05,2,11 = 3.98 (from the F-distribution table), 
which means that the regression model is significant. Alternatively, the signifi-
cance test may be performed using the p-value, which is the probability of 
obtaining a test statistic at least as extreme as the one that was actually 
observed, assuming that the null hypothesis is true. (There are a number of 
websites providing p-value calculators.) The R2 and adjusted R2 are computed 
as follows:

	 R SS SSR T
2 651 996 665 387 0 9798= = =/ , / , . ; 	

	 R
n

n k
Radj

2 21
1

1
1 1 13 11 1 0 9798 0 9762= −

−
− −





 − = − − =( ) ( )( . ) . ./ 	

8.5.5  Regression Model Fitting for Qualitative Variables

When some regressor variables are qualitative, the different levels (e.g., 
machine types) of a qualitative variable are represented as indicator variables 
taking on values of 0 or 1. If the qualitative variable has two levels, an indica-
tor variable, e.g., x2, is employed as follows:

x2 = 0 if the observation is from level 1;
x2 = 1 if the observation is from level 2.

Consider the case where y is the dependent variable, x1 is a quantitative 
variable, x2 is a qualitative variable taking on values of 0 or 1, and x1x2 is the 
interaction. The model takes the following form:

	 y x x x x= + + + +β β β β ε0 1 1 2 2 3 1 2 . 	

If it has three levels, we use two indicator variables (x2 and x3) such that

x2 = 0, x3 = 0 if the observation is from level 1;
x2 = 1, x3 = 0 if the observation is from level 2;
x2 = 0, x3 = 1 if the observation is from level 3.

TABLE 8.5.  ANOVA Table of Linear Regression Modeling Example

Source of 
Variation Sum-of-Square d.f. Mean Square F0 p-value

Regression 651,996 2 325,983 267.2 4.74 × 10−10

Error 13,421 11 1,220
Total 665,387 13
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The remainder of the regression modeling and analysis may be undertaken 
in the same manner. More details on this subject may be found at this site: 
http://v8doc.sas.com/sashtml/stat/chap55/sect52.htm, as well as in Myers and 
Montgomery [1995, pp. 421–444].

8.6  RESPONSE SURFACE METHODOLOGY FOR 
SIMULATION OPTIMIZATION

As mentioned earlier, the simulation experimentation used to determine the 
best values of decision variables that provide optimum performance measures 
is called simulation optimization. Even though the cost of computer simulation 
experiments is much cheaper than that of the designed experiments in real life, 
the same response surface methodology (RSM) that was developed for real-life 
experiments can be used in the simulation optimization. Most subjects covered 
in this section are from the seminal text by Myers and Montgomery [1995].

8.6.1  Overview of RSM for Process Optimization

Response surface methodology (RSM) for process optimization via designed 
experiments is a sequential process consisting of three phases: a screening 
phase, a search phase, and an optimization phase. In the screening phase, a set 
of screening experiments is performed in order to identify the important vari-
ables by eliminating the unimportant ones from the initial candidates.

With the important decision variables identified, the search phase is begun 
in order to determine if the current levels of decision variables would result 
in a value of response that is near the optimum. If the current levels of deci-
sion variables are far from the optimum, a systematic search is undertaken to 
move the decision variables toward the optimum. In this phase, first-order 
models are fitted and the method of steepest ascent is employed for the sys-
tematic search. When the levels of the decision variables are near the optimum, 
the optimization phase is executed by fitting second-order models from the 
data in the near optimum region.

A decision variable used for the process optimization is often referred to 
as a control variable. If there are uncontrollable variables, which are often 
referred to as noise variables, they may also be considered in the RSM. An 
experimental design to locate the optimal values of the control variables con-
sidering the noise variables is called a robust parameter design.

8.6.2  Searching for Optimum Regions with the Steepest Ascent

The design of the experiment, regression model building, and sequential 
experimentation for locating a region of improved response comprise the 
method of steepest ascent. The search phase of the method of steepest ascent 
consists of the following six steps:

http://v8doc.sas.com/sashtml/stat/chap55/sect52.htm
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1.	 Fit a first-order model using a two-level design (with some center runs).
2.	 Compute a path of steepest ascent if a maximizing response is required. 

If minimizing, compute the path of steepest descent.
3.	 Conduct experimental runs along the path.
4.	 At a location where an approximation of the optimum response is 

detected, plan the next experiment.
5.	 Conduct the experiment and fit a first-order model. Then, create a lack-

of-fit test.
6.	 If the lack-of-fit is not significant, compute a second path based on the 

new model and return to Step 3. Otherwise, terminate the search phase.

8.6.2.1  First-Order Model Fitting  Depicted in Fig. 8.8 is a two-level design 
with center runs. The original values of the decision variables (v1, v2) may be 
transformed into coded variables (x1, x2) so that the design levels become +1 
and −1 and the center run point is (0, 0). Let m and r, respectively, denote the 
mean and range of a decision variable (v); then, it’s coded variable x is obtained 
from:

	 x v m r= −2( ) / . 	 (8.25)

The data obtained from the two-level design are fitted to a first-order 
regression model. Let’s assume that we obtained the following fitted model:

	 ˆ .y b b x b x x x= + + = + +0 1 1 2 2 1 23 4 2 	 (8.26)

8.6.2.2  Computation of the Steepest Ascent Path  When there are k deci-
sion variables, the first-order regression equation will be expressed as:

	 ˆ .y b b xj j

j

k

= +
=

∑0

1

	 (8.27)

The movement in xj along the path of steepest ascent is proportional to the 
magnitude of bj with the direction being the sign of bj. The movement direction 

Fig. 8.8.  Two-level designs for two-decision variables.
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of the steepest descent is the opposite of the sign of the coefficient. For the 
fitted model in Eq. 8.26, the path p is expressed as a parametric equation of 
line and is given by:

	 p( ) ( ( ), ( )) ( , ).ρ ρ ρ ρ ρ= =x x1 2 4 2 	

The path of steepest ascent is depicted in Fig. 8.9.
In general, for the regression equation (Eq. 8.27), the coordinates of the 

decision variables along the steepest ascent path are expressed as follows:

	 p = =( , , ) ( , , , ).x x x b b bk k1 2 1 2� …ρ ρ ρ 	 (8.28)

8.6.2.3  Conduct Experimental Runs along the Path  A series of path 
points along the steepest ascent path can be defined for different values of ρ, 
and a number of experiments can be performed at each path point. A simple 
method of defining the path points is to obtain an increment value (Δ), as 
follows:

	 ∆ = 1 / max( ).bj 	 (8.29)

If this rule is applied to the path shown in Fig. 8.9, we obtain Δ = 1/4 and 
the path points may be defined as:

	 ρ = =2 3 4 2 4 3 4 4 4 5 4∆ ∆ ∆, , , , , ,� �/ / / / 	 (8.30)

For the coded variables, the path points are obtained as follows and as 
depicted in Fig. 8.10:

	 ( , ) ( , ) ( , ), ( , ), ( , )x x1 2 4 2 2 1 3 3 2 4 2= =ρ ρ / � 	

The values of the natural (decision) variables (v1, v2) at the path points are 
obtained from those of the coded variables (x1, x2) using the relation in Eq. 
8.25. The hypothetical results of the experimental runs are presented in Table 
8.6 in the yp-column, and the response values of the fitted model in Eq. 8.26 
are given at the ŷ-column. Because the deviation becomes quite large at 4Δ, 

Fig. 8.9.  Path of steepest ascent.
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the experimental run is stopped at this point even though the response value 
is increasing.

8.6.2.4  Plan for the Next Experiment  At the last path point where the 
experimental run was stopped, a two-level design with some center runs is 
planned such that the last path point becomes the center.

8.6.2.5  Conduct Experiment and Fit a First-Order Model  This step is 
essentially the same as Step 1, but replicated experiments are performed in 
order to create a lack-of-fit test.

8.6.2.6  Testing for Lack-of-Fit  A lack-of-fit test (as described below) is 
created, and if the lack-of-fit is not significant, a second path based on the new 
model is computed; the process then returns to Step 3. Otherwise, the search 
phase is terminated and the optimization phase is started. In the following, a 
procedure for a lack-of-fit (LOF) test is described briefly.

In general, a LOF test is performed when we want to determine if there is 
systematic curvature present in a first-order model of the form in Eq. 8.12, 
which is reproduced below:

	 y x xk k= + + + +β β β ε0 1 1 � . 	

An experiment is planned such that ni replicate experiments are performed at 
the ith regressor level for i  =  1 ∼ m. Then, for the data from a total of 

Fig. 8.10.  Path points along the steepest ascent path.
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TABLE 8.6.  Results of the Experimental Runs along the Steepest Ascent Path

x1 x2 ŷ yp Deviation

0 Base 0 0
1 Base + 2Δ 2 1 13 12.5 0.5
2 Base + 3Δ 3 1.5 18 16.4 1.6
3 Base + 4Δ 4 2 25 17.2 5.8
4 Base + 5Δ 5 2.5 28 —
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n ni
m

i= ∑ =1  experiments, the least square estimator is computed using Eq. 8.15 
and the predicted response at the ith level is expressed as:

	 ˆ .y b b x b x b xi i i k ik= + + + +0 1 1 2 2 � 	

Let yij denote the jth response at the ith regressor level; then, the total sample 
mean and the ith level sample mean is computed as follows:

	 y
n

y y
n

yij

j

n

i

m

i
i

ij

j

ni i

= =
== =

∑∑ ∑1 1

11 1

; . 	

Now, the total sum-of-square and error sum-of-square are computed as  
follows:
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	 (8.31)

The above error sum-of-square (SSE) consists of an SS due to a LOF and an 
SS due to the pure error (PE), namely, SSE  =  SSLOF  +  SSPE. The pure error 
sum-of-square is computed as follows:

	 SS y yPE ij i

j

n

i

m i

= −
==

∑∑ ( ) .
1

2

1

	 (8.32)

Note that the degrees of freedoms of SSE and SSPE are n − k − 1 and n − m, 
respectively, which indicates that the degree of freedom of SSLOF is m − k − 1. 
Thus, the mean squares of the LOF and PE are computed as:

	 MS SS n m MS SS SS m kPE PE LOF E PE= − = − − −/ ( ); ( ) / ( ).1 	 (8.33)

Finally, the F-statistic (F0) is computed from the mean squares and is compared 
against the F-value. Namely, the hypothesis that the regression model does not 
contain systematic curvature is rejected if the following condition holds 
(p = k + 1):

	 F MS MS FLOF PE m p n m0 = > − −/ ., ,α 	 (8.34)

8.6.3  Second-Order Model Fitting for Optimization

The last phase of RSM for simulation optimization is the optimization phase 
where a second-order regression model is fitted. Central composite designs 
are used widely for fitting second-order models. A central composite design 
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involves the use of a two-level design combined with a set of axial points and 
a number of center runs. Recall that we already have experiment results for a 
replicate two-level design with center runs at the end of the searching phase. 
Thus, it is sufficient to perform additional experiments with the added axial 
points. The optimization phase consists of the following four steps:

1.	 Prepare a central composite design.
2.	 Perform experiments at the axial points and fit second-order models.
3.	 Perform significance tests and refine the fitted regression model if 

necessary.
4.	 Evaluate the fitted model to determine the optimal values of the decision 

variables.

8.6.3.1  Central Composite Design for Second-Order Model Fitting  A 
central composite design for two decision variables (k  =  2) is depicted in 
Fig. 8.11(a), where the corner points and axial points are spaced equally on  
a circle with a radius of 2. As we already have the experiment data for 
the corner points of the two-level design and the center point (as a result of 
the search phase), only the axial points need to be determined. In general, we 
need 2k axial points as shown in Fig. 8.11(b), where the value of the axial 
distance (α) varies from 1.0 to k . The choice of 1.0 places all axial points on 
the face of the hypercube, while the choice of k  places them on a common 
sphere. Unless there are constraints imposed on the decision variables, we use 
α = k .

8.6.3.2  Experiments at Axial Points and Second-Order Model Fitting 
Recall that a coded variable (x) was obtained from a natural variable (v) using 

Fig. 8.11.  (a) Central composite design for k = 2 and (b) 2k axial points.
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the relation given in Eq. 8.25, namely x = 2(v − m) / r, where m and r, respec-
tively, denote the mean and range of the natural variable. The value of the 
natural variable (v) for each coded variable (x) is obtained from:

	 v m r x= + ( / ) .2 	 (8.35)

Now, experiments are performed for the axial points and a second-order 
model is fitted using all data in the central composite design. A full second-
order model has the following form:

	 y x x x x x x x xk k kk k k k k k= + + + + + + + + + +− −β β β β β β β ε0 1 1 11 1
2 2

12 1 2 1 1� � � , . 	
(8.36)

By applying the linear regression modeling method described in Section 8.5.2, 
the least square estimators of the regression coefficients are computed in order 
to obtain the following fitted response surface model:

	 ˆ .,y b b x b x b x b x b x x b x xk k kk k k k k k= + + + + + + + + + − −0 1 1 11 1
2 2

12 1 2 1 1� � � 	
(8.37)

8.6.3.3  Significance Test and Model Refinement  The significance of the 
fitted response surface in Eq. 8.37 is tested using the procedure given in 
Section 8.5.3. If the fitted response surface does not appear highly significant, 
we may perform tests on the individual regression coefficients or groups of 
coefficients [Myer and Montgomery 1995, pp. 31–36] in order to refine the 
fitted model.

8.6.3.4  Evaluation of the Fitted Regression Model  The resulting response 
surface is a quadratic polynomial function that is easily evaluated. The evalu-
ated values may be represented as a three-dimensional surface or a contour 
plot when the number of decision variables is two.

8.7  REVIEW QUESTIONS

8.1.  What is a simulator calibration? How does it differ from a simulator 
verification?

8.2.  What is a sensitivity analysis? How does it differ from a simulation 
optimization?

8.3.  Why is simulation optimization different from analytic optimization?

8.4.  What are the commonly used output plots?
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8.5.  What is the use of common random numbers in output analyses?

8.6.  What are R2 statistics?

8.7.  How are the design points spaced in a two-variable central composite 
design?

APPENDIX 8A: STUDENT’S t-DISTRIBUTION

Student’s t-distribution (published by William S. Gosset in 1908 under the 
pseudonym “Student”) arises in the problem of estimating the mean of a 
normally distributed population when the sample size is small and the unknown 
standard deviation must be estimated from the data.

8A.1  Definition

Let Z ∼ N (0,1) and V k~ χ 2 (chi-square distribution) be independent of each 
other, then the statistic T Z V k= / /  follows the t-distribution with k degrees 
of freedom.

8A.2  Derivation of the t-Statistic

Suppose {Xi} are independent random variables that are normally distributed 
with an expected value of μ. Compute the sample mean and sample variance 
as follows:

	 X n
n

X S n
n

X X ni i( ) ; ( ) ( ( )) .= =
−

−∑ ∑1 1
1

2 2 	

Then, it can be shown that the statistic T follows the t-distribution with n − 1 
degrees of freedom:

	 T X n S n n= −( ( ) ) / ( ( ) / ).µ 	

8A.3  Table of Critical t-Values with Degrees of Freedom (df)

0 tdf, 1–β

β
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df β = 0.4 β = 0.25 β = 0.1 β = 0.05 β = 0.025 β = 0.01 β = 0.005 β = 0.0005

  1 0.3249 1.0000 3.0777 6.3138 12.7062 31.8205 63.6567 636.6192
  2 0.2887 0.8165 1.8856 2.9200 4.3027 6.9646 9.9248 31.5991
  3 0.2767 0.7649 1.6377 2.3534 3.1824 4.5407 5.8409 12.9240
  4 0.2707 0.7407 1.5332 2.1318 2.7764 3.7469 4.6041 8.6103
  5 0.2672 0.7267 1.4759 2.0150 2.5706 3.3649 4.0321 6.8688
  6 0.2648 0.7176 1.4398 1.9432 2.4469 3.1427 3.7074 5.9588
  7 0.2632 0.7111 1.4149 1.8946 2.3646 2.9980 3.4995 5.4079
  8 0.2619 0.7064 1.3968 1.8595 2.3060 2.8965 3.3554 5.0413
  9 0.2610 0.7027 1.3830 1.8331 2.2622 2.8214 3.2498 4.7809
10 0.2602 0.6998 1.3722 1.8125 2.2281 2.7638 3.1693 4.5869
11 0.2596 0.6974 1.3634 1.7959 2.2010 2.7181 3.1058 4.4370
12 0.2590 0.6955 1.3562 1.7823 2.1788 2.6810 3.0545 4.3178
13 0.2586 0.6938 1.3502 1.7709 2.1604 2.6503 3.0123 4.2208
14 0.2582 0.6924 1.3450 1.7613 2.1448 2.6245 2.9768 4.1405
15 0.2579 0.6912 1.3406 1.7531 2.1314 2.6025 2.9467 4.0728
16 0.2576 0.6901 1.3368 1.7459 2.1199 2.5835 2.9208 4.0150
17 0.2573 0.6892 1.3334 1.7396 2.1098 2.5669 2.8982 3.9651
18 0.2571 0.6884 1.3304 1.7341 2.1009 2.5524 2.8784 3.9216
19 0.2569 0.6876 1.3277 1.7291 2.0930 2.5395 2.8609 3.8834
20 0.2567 0.6870 1.3253 1.7247 2.0860 2.5280 2.8453 3.8495
21 0.2566 0.6864 1.3232 1.7207 2.0796 2.5176 2.8314 3.8193
22 0.2564 0.6858 1.3212 1.7171 2.0739 2.5083 2.8188 3.7921
23 0.2563 0.6853 1.3195 1.7139 2.0687 2.4999 2.8073 3.7676
24 0.2562 0.6848 1.3178 1.7109 2.0639 2.4922 2.7969 3.7454
25 0.2561 0.6844 1.3163 1.7081 2.0595 2.4851 2.7874 3.7251
26 0.2560 0.6840 1.3150 1.7056 2.0555 2.4786 2.7787 3.7066
27 0.2559 0.6837 1.3137 1.7033 2.0518 2.4727 2.7707 3.6896
28 0.2558 0.6834 1.3125 1.7011 2.0484 2.4671 2.7633 3.6739
29 0.2557 0.6830 1.3114 1.6991 2.0452 2.4620 2.7564 3.6594
30 0.2556 0.6828 1.3104 1.6973 2.0423 2.4573 2.7500 3.6460
40 0.2550 0.6807 1.3031 1.6839 2.0211 2.4233 2.7045 3.5510
60 0.2545 0.6786 1.2958 1.6706 2.0003 2.3901 2.6603 3.4602

120 0.2539 0.6765 1.2886 1.6577 1.9799 2.3578 2.6174 3.3735
∞ 0.2533 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 3.2905

APPENDIX 8B: STUDENT’S t-TESTS

8B.1  One Sample t-Test

The t-test statistic has the form of T = Z/s with Z nX= /σ  and s = S/σ, where 
σ2 is the population variance. The sample mean (X) and sample standard 
deviation (S) are given by:
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The assumptions underlying a one-sample t-test are that Z follows a 
standard normal distribution and (n − 1)s2 follows a χ2 distribution with (n − 1) 
degrees of freedom under the null hypothesis, and that Z and s are 
independent.

8B.2  Unpaired Two Sample t-Test

The assumptions in the t-test that compares the means of two samples are that 
each of the two populations being compared should follow a normal distribu-
tion and that the data used to undertake the test are sampled independently.

8B.2.1  Equal Variance Case  Let X j and Sj, respectively, denote the sample 
mean and sample standard deviation of group (j) with sample size nj for j = 1, 
2. Then, when the variances of the two groups are equal, the t-statistic (T) to 
test whether the group means are different is given by (degree of freedom: 
d = n1 + n2 − 1):
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8B.2.2  Unequal Variance Case  When the variances of the two groups are 
not equal, the t-statistic (T) and degree of freedom (d) are given by:
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8B.2.3  Examples  Let A1 denote a set obtained by taking six random 
samples from a larger set (n1 = 6):

	 A1 30 02 29 99 30 11 29 97 30 01 29 99= { . , . , . , . , . , . }. 	

Let A2 denote a second set obtained similarly (n2 = 6):

	 A2 29 89 29 93 29 72 29 98 30 02 29 98= { . , . , . , . , . , . }. 	

These could be, for example, the weights of screws that were chosen from a 
bucket of screws. We will perform tests of the null hypothesis that the means 
of the populations from which the two samples were taken are equal.

The difference between the two sample means is X X1 2 0 095− = . , and the 
sample standard deviations for the two samples are S1 =  0.05 and S2 =  0.11. 
For such small samples, a test of equality between the two population  
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variances would not be very powerful. Because the sample sizes are equal, the 
two forms of the two sample t-tests will perform similarly in this example.

If the approach for unequal variances (discussed above) is followed, the 
results are:
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The two-tailed test p-value2 is approximately 0.091 and the one-tailed 
p-value is 0.045. For a case of equal variance, we have S12 = 0.084, T = 1.959, 
and d = 10. Here, the two-tailed p-value is approximately 0.078, and the one-
tailed p-value is approximately 0.039. Thus, if there is good reason to believe 
that the population variances are equal, the results become somewhat more 
suggestive of a difference in the mean weights for the two populations.

2 The p-value is the probability of obtaining a test statistic at least as extreme as the one that was 
actually observed, assuming that the null hypothesis is true.
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ADVANCES IN DISCRETE-EVENT 
SYSTEM MODELING AND 
SIMULATION

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and 
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

Part III is design to be used in a graduate-level simulation course in industrial 
engineering, computer science, and management science. However, research-
ers and industrial practitioners may find the materials quite useful for embark-
ing upon new modeling and simulation (M&S) researches and implementing 
new simulation-based solutions. The subject areas covered in Part III are (1) 
state-based M&S; (2) advanced activity-based M&S; (3) object-oriented event 
graph modeling for integrated Fab simulation; and (4) parallel simulation. One 
chapter is devoted to each subject area.

Chapter 9 covers fundamental topics in state-based modeling and simula-
tion. After studying this chapter, you should be able to answer the following 
questions:

1.	 What are finite state machines?
2.	 What are timed automata? What is a state graph?
3.	 How do you build state graph models of various systems?
4.	 How do you execute state graph models?

Chapter 10 is devoted to advanced topics in activity-based modeling. By 
studying this chapter, you should be able to:

1.	 Develop your own ACD simulators
2.	 Make cycle time analyses of various types of work cells
3.	 Build ACD models of complex systems such as flexible manufacturing 

systems
4.	 Convert ACD models to event graph models and state graph models

PART III
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Chapter 11 is devoted to an advanced event graph modeling for integrated 
Fab simulation. By studying this chapter, you should be able to:

1.	 Understand electronics fabrication systems
2.	 Build object-oriented event graph models for integrated simulation of 

Fab operation
3.	 Execute object-oriented event graph models
4.	 Perform automated material handling system (AMHS)-embedded inte-

grated simulation of electronics Fab

Chapter 12 is devoted to parallel simulation and high-level architecture 
(HLA)/ run-time infrastructure (RTI). By studying this chapter, you should 
be able to answer the following questions:

1.	 What is parallel simulation?
2.	 How do you apply the parallel simulation concept to workflow 

simulation?
3.	 What is HLA/RTI?
4.	 How do you perform a parallel simulation with HLA/RTI?
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CHAPTER 9

State-Based Modeling and Simulation

Everything has its wonders, even darkness and silence, and I learn, 
whatever state I may be in, therein to be content.

—Helen Keller

As mentioned in Chapter 1, a comprehensive description of a discrete-event 
system can be given in terms of the two types of physical modeling compo-
nents (Entity and Resource) and three types of logical modeling components 
(Activity, Event, and State). The existing methods of discrete-event system 
modeling and simulation (M&S) have been developed around the logical 
modeling components. Depending on the modeling component to be focused 
on, we can use (1) event-based M&S methods as covered in Chapters 4 and 
5, (2) activity-based M&S methods as covered in Chapter 6, and (3) state-
based M&S methods. This chapter is devoted to the state-based M&S of 
discrete-event systems (DESs).

9.1  INTRODUCTION

A finite state machine (FSM) is the oldest known formal model for modeling 
the sequential behavior of a DES [Wagner et al. 2006]. The FSM does not 
consider time, and it is a state-based M&S tool that is widely used in the design 
analysis of automated systems and embedded software systems. The term finite 
state automata (FSA) is preferred to FSM in computer science, where it is 
primarily used in language processing and text scanning applications.

In order to describe the dynamic behavior of a DES over time, the FSM 
(or FSA) formalism has been extended to timed automata [Alur and Dill 1994] 
and DEVS [Zeigler 1976]. The classic DEVS (Discrete-EVent system Specifi-
cation) is essentially a restricted type of timed automaton, and it has been the 
de facto choice for the state-based M&S of DES. However, the classic DEVS 
method has some drawbacks: DEVS models are not easy to build, and DEVS 

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and 
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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simulators are not efficient to execute. Thus, this book introduces a new state-
based M&S formalism, called the state graph formalism. A state graph is a 
special type of timed automata with which some of the difficulties in the clas-
sical DEVS are overcome.

The remainder of this chapter is organized as follows. The definitions and 
models of FSM are presented in Section 9.2, and the definitions and mecha-
nisms of timed automata are given in Section 9.3. The structure and modeling 
examples of the state graph are given in Sections 9.4 and 9.5, respectively. A 
comprehensive description of simulation executions of state graph models is 
provided in the last section of this chapter. A brief description of classic DEVS 
is given in the Appendix of this chapter.

9.2  FINITE STATE MACHINE

If the present inputs in a system are sufficient to determine its outputs, it is 
called a combinatorial system. If the system needs additional information 
about the sequence of the previous inputs in order to determine the outputs, 
the system is a sequential system, which requires a mechanism to memorize 
the previous inputs. The mechanism to store the input history is the state, and 
a finite state machine is a sequential system.

9.2.1  Existing Definitions of Finite State Machines

A finite state machine (FSM) is a formal model for modeling the sequential 
behavior of a discrete-event system. An FSM is also called a finite state automa-
ton (FSA), finite state transducer, state machine, and more. It is a computation 
model that consists of a set of states, a start state, an input alphabet, and a 
transition function that maps the inputs and current states to a next state. The 
computation begins in the start state with an input string and changes to new 
states depending on the transition function.

A number of algebraic definitions of FSM exist in the literature. In the 
classical definition [Peterson 1981], an FSM is defined as a quintuple structure 
(S, X, Y, δ, λ), where:

1.	 S is a finite nonempty set of states
2.	 X is a finite input alphabet
3.	 Y is a finite output alphabet
4.	 δ is the next state function (δ: S × X → S)
5.	 λ is the output function (λ: S × X → Y)

In computer science, where the term FSA is used instead of FSM, an FSM 
is defined as a quintuple structure (S, X, δ, s0, F), where [Hopcroft et al. 2006]:
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1.	 S is a finite set of states
2.	 X is a finite set of symbols (or events)
3.	 δ is the transition function
4.	 s0 is the start state (or initial state)
5.	 F is the set of final states (a subset of S)

In this definition, the final states (F) are referred to as accepting states 
because once the FSM moves into a state in F, it accepts every sequence of 
further inputs.

An FSM is called deterministic if the transition function (δ) returns a 
member of S, and it is called nondeterministic if δ returns a subset of S. In 
engineering, a deterministic FSM that generates outputs is referred to as a 
finite state transducer, which is a sextuple structure (S, X, Y, δ, s0, λ) where:

1.	 S is a finite nonempty set of states
2.	 X is the input alphabet (a finite nonempty set of symbols)
3.	 Y is the output alphabet (a finite nonempty set of symbols)
4.	 δ is the state transition function (δ: S × X → S)
5.	 s0 is the start state (an element of S)
6.	 λ is the output function (λ: S × X → Y)

In the above definitions, the terms alphabet and symbol have the same 
meaning, event and message are used interchangeably, input alphabet and input 
event are used interchangeably, and output alphabet and output message are 
used interchangeably. It is worthwhile to compare the last two definitions. In 
computer science, where FSA is mostly used in language processing and text 
scanning applications, the concept of final states (F) has a specific function. 
Thus, F is included in the definition. In contrast, in engineering, where FSMs 
are commonly used in designing embedded software for reactive systems such 
as traffic systems and telecommunication systems, the concept of outputs (Y) 
is critical. An FSM with transition probabilities assigned to the transition func-
tion (δ) is referred to as a probabilistic FSM.

9.2.2  Finite State Machine Models

Specifying an FSM as an algebraic structure with a detailed description of the 
transition function (δ) is both tedious and difficult; thus, there are two pre-
ferred notations for describing FSM: state transition diagram and state transi-
tion table [Hopcroft et al. 2006]. A state transition diagram of an FSM, which 
is a graphical model of the FSM structure, is constructed as follows.

a.  There is a node for each state in S.
b.	 Let δ(p, x) = q, where p, q ∈ S and x ∈ X. Then, there is an arc from 

node p to node q, which is labeled x. If there are several input symbols 
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that cause transitions from p to q, the arc is labeled by listing these 
symbols.

c.	 The start state node is marked using a dashed circle with shading.
d.	 Nodes corresponding to the final states F are marked using a double 

circle.

A state transition table is a tabular specification of the transition function. 
Figure 9.1 presents a state transition diagram (often called an FSM diagram) 
and state transition table. Note in the figure that the start state (s0) is marked 
using a dashed circle with shading and the final state (s2) using a double circle.

In engineering applications, the basic models of FSM are the Mealy and 
Moore models [Wagner et al. 2006]. A Mealy model is an FSM that produces 
an output for each transition, which means that the FSM diagram will include 
both input and output signals for each transition arc. Thus, the finite state 
transducer (the third definition) in the previous section is a Mealy model. A 
Moore model is an FSM that produces an output for each state. The selected 
models will influence the design, but general indications as to which model is 
better do not exist yet. In practice, mixed models are often used with several 
output types [Wagner 2005]. Note that there may be no final states in the FSM 
of a reactive system. Figure 9.2 presents the FSM diagrams for the Mealy and 
Moore models where the start state is s1.

9.2.3  Finite State Machine Modeling of Buffer Storage and Single 
Server Systems

Buffer storage is a passive resource whose state is defined by the number of 
jobs stored in the buffer. Figure 9.3(a) shows an unlimited capacity buffer in 

Fig. 9.1.  State transition diagram and state transition table of an FSM.
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Fig. 9.2.  State transition diagrams for the (a) Mealy model and (b) Moore model.
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a single server system. Let J denote the number of jobs in the buffer, then 
J = {. . . 2, 1, 0, −1. . .} defines the state space of the buffer. A negative J value 
denotes the number of backlogs. Figure 9.3(b) shows the Mealy model of the 
Buffer in Fig. 9.3(a) where a (arrive) and r (request) are input events, and s 
(send) is an output message. However, because the state is not finite, it is an 
infinite state machine with a countable state set.

Figure 9.4(b) shows the Mealy model of a finite capacity queuing system 
where the buffer storage and the machine are merged. The queuing system 
depicted in Fig. 9.4(a) receives arrive event messages {a} and depart event 
messages {d} from outside. The number of jobs (J) in the queuing system 
defines the finite state space {n . . . 2, 1, 0}.

9.2.4  Execution of Finite State Machine Models

The outputs of an FSM are generated by actions. The action types associated 
with a state are (1) an entry action performed when entering the state, (2) an 
exit action performed when exiting the state, (3) an input action performed 
upon receiving an input event, and (4) a transition action associated with a 
transition [Wagner and Wolstenholme 2003].

Figure 9.5 shows the execution flow of an FSM. The FSM waits for an input 
in the current state; when an input is received, the input action condition is 
tested. If the condition is met, the input action is executed and the transition 
condition is verified. If the transition condition is met, the FSM exits from the 
current state after executing an exit action, moves to the next state while 
executing a transition action, and enters into the next state while executing an 
entry action.

Fig. 9.3.  Mealy model of an unlimited capacity buffer.
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Fig. 9.4.  State machine model of a finite capacity queuing system.
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An FSM may be regarded as the control system of an application system. 
Figure 9.6 depicts a DES where the FSM acts as the control system of the 
application system. The FSM diagram is a mixed model. It is initially in the 
Off state and it moves to the Wait state upon receiving Power. Immediately 
after the transition, the entry action (Start-timer) is executed to start the timer. 
Then, the FSM moves to the Idle state if a Timeout is received or to the Playing 
state if Play is received before Timeout. In either case, the system executes the 
exit action Stop-timer before exiting the Wait state. A state transition table for 
the FSM in Fig. 9.6 is given in Table 9.1.

An FSM executor program may be written easily from the state transition 
table of the FSM. Let’s assume that the communications between the FSM 
and its application system are made through two I/O functions: Get-Input 
(INPUT) and Send-Output (OUTPUT). A state transition routine is devel-
oped for each state. The execution starts from the start state OFF, and the 
program control is routed to a next state while executing the exit/entry actions 
if an input is received. Figure 9.7 shows an FSM executor program written in 
pseudocode form for the state transition table of Table 9.1.

Fig. 9.5.  Execution flow of an FSM with actions.
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Fig. 9.6.  FSM (control system) and its application system.
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TABLE 9.1.  State Transition Table of the FSM in Figure 9.6

No State Entry Action
Exit 

Action Input
Transition 

Action
Next 
State

1 Off — — Power — Wait
2 Wait Start-timer (to) Stop-timer Timeout — Idle

Play Lamp-on Playing
3 Idle Stop() — — — —
4 Playing Stop() — — — —
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9.3  TIMED AUTOMATA

A timed automaton is essentially a finite automaton (or finite state machine) 
extended with real valued variables modeling the logical clocks in the system 
[Bengtsson and Yi 2004]. This section briefly describes the concepts of timed 
automata. The discussions that follow are primarily from Cassandras and 
Lafortune [2010]. We begin with the definitions of language and deterministic 
automaton.

9.3.1  Language and Automata

The event set (E) of a DES is viewed as an alphabet. A sequence of events 
taken from this alphabet forms a string. An empty string is denoted by ε. A 
language in a DES is defined over an event set as follows: language (L) defined 
over an event set (E) is a set of finite length strings formed from the events 
in E. For example, let E = {a, b} then the language may be defined as L = {ε, 
a, b, abb}.

An automaton is a device that is capable of representing a language accord-
ing to well-defined rules, and it is classified into a deterministic, nondetermin-
istic, or timed automaton. The automaton notion is best presented using a 
directed graph representation called a state transition diagram (which is the 

Fig. 9.7.  FSM executor in pseudocode form for the FSM in Fig. 9.6.

FSM-Executor ( ) { 
   State-Off(); } // start state 
 
State-OFF ( ) { 
   STATE = OFF;                           // state update; 
   Repeat { Get-Input (INPUT); } 
         Until (INPUT ≡ “Power”);      // wait for input “Power” 
    State-WAIT ( ); }                          // move to next state WAIT 
 
State-WAIT ( ) { 
   STATE = WAIT;                          // state update 
   Send-Output (“Start-timer(to)”);  // entry action 
   Repeat { Get-Input (INPUT); } 
        Until ((INPUT ≡ “Timeout”) || (INPUT ≡ “Play”));  // wait for input 
   Send-Output (“Stop-timer”);        // exit action 
   if (INPUT ≡ “Timeout”) { State-IDLE (); } 
   else {  
      Send-Output (“Lamp-on”);    // transition action  
      State-PLAYING ( ); } } 
 
State-PLAYING ( ) { 
   STATE = PLAYING; 
   Stop (); } 
 
State-IDLE () {   
   STATE = IDLE;  
   Stop (); } 
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same as that of an FSM). A deterministic automaton is defined as a quintuple 
Gd = (S, E, f, Γ, s0), where

1.	 S is a set of states (or state nodes)
2.	 E is a finite set of events
3.	 f: S × E → S is the transition function with f(s, e) ∈ S
4.	 Γ: S → 2E is the active event function
5.	 s0 ∈ S is the initial state

If S is a finite set, Gd is called a deterministic FSA or FSM. The functions f 
and Γ are specified in the state transition diagram. For example, in the state 
transition diagram of Fig. 9.1, f(s0, x1) = s1 and Γ(s1) =  {x1, x2}. The transition 
function f(s0, x1)  =  s1 indicates that there is a transition labeled by event x1 
from state s0 to state s1. The active event set Γ(s) is a set of all events (e) for 
which f(s, e) is defined.

9.3.2  Timed Automata

The concepts of the clock structure of an event set and the score of an event 
have key functions in timed automata.

•	 The clock structure (V) associated with an event set (E) is a set V = {vi: 
i ∈ E} of clock sequences vi = {vi,1, vi,2 . . .} with vi,k ∈ R+ for i = 1, 2 . . . m 
(m = |E|) and k = 1, 2 . . ..

•	 The score (Ni,k) of event i ∈ E after the kth state transition on a given 
sample path is the number of times that event i has been activated in the 
interval [t0, tk] where tk is the kth state transition time.

The score (Ni,k) serves as a pointer to vi, which specifies the next lifetime 
to be assigned to its clock when event i is activated. The clock structure (V) 
is the input to the DES, and this information is translated into an actual event 
sequence ({e1, e2 . . .}). Conceptually, the next event (e′ ) is determined from the 
current state (s) and the clock structure (V) as follows:

	 e h s′ = ( , ).V 	

Now, we are ready to define a timed automaton.

•	 A timed automaton (Gt) is a sextuple Gt = (Gd, V) where Gd = (S, E, f, Γ, 
s0) is a deterministic automaton and V = {vi: i ∈ E} with vi = {vi,1, vi,2 . . .} 
is a clock structure.

Gt is by definition a deterministic timed automaton. A nondeterministic 
timed automaton may be defined similarly as Gnt  =  (Gnd, V). Starting from 
s = s0 and t = t0, the timed automaton (Gt) is evaluated as follows:
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0.	 Set the initial clock values and initial scores to {yi = vi,1 and Ni = 1 for i 
∈ Γ(s)}.

1.	 Evaluate the feasible event set (or active event set) Γ(s).
2.	 Determine the smallest clock value (y*) among the feasible event clock 

values {yi}:

	 y y
i s

i
*

( )
min{ }.=
∈Γ 	 (9.1)

3.	 Determine the triggering event (e′ ) that defines y* in Eq. 9.1:

	 e y
i s

i′ =
∈

arg min{ }.
( )Γ 	 (9.2)

4.	 Determine the next state (s′ ) and next event time (t′ ): s′ = f (s, e′ ); and 
t′ = t + y*.

5.	 Determine the new clock values and new scores:
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6.	 Iterates: set t = t′, y yi i= ′, and s = s′, and return to step 1.

Example 9.1. (Timed Automaton). The queuing system model depicted in 
Fig. 9.4 is a timed automaton Gt = (S, E, f, Γ, s0, V), where

1.	 S = {0, 1, 2 . . . n}
2.	 E = {a, d}
3.	 f(s, a) = s + 1, f(s, d) = s – 1 for s > 0
4.	 Γ(0) = {a}, Γ(s) = {a, d} for integer s > 0, s0 = 0

The clock structure is V = {va, vd}, where va = {va,1, va,2, va,3 . . .} is a sequence 
of inter-arrival times and vd = {vd,1, vd,2, vd,3 . . .} is a sequence of service times. 
A sample clock structure and state trajectory of the queuing system are 
depicted in Fig. 9.8.

9.3.3  Timed Automata with Guards

If clock constraints, called guards, are used on transitions in a timed automaton 
to restrict its behavior, it becomes a timed automaton with guards. In this for-
malism, each transition has a clock constraint attached to it that specifies when 
the transition can occur. There is a single clock in timed automata, and the 
clock is reset to zero each time an event occurs. In a timed automaton with 



264    State-Based Modeling and Simulation

guards, a clock constraint may also be placed into a state node (often referred 
to as a location). A clock constraint in a state node is referred to as an invari-
ant condition of the state node. Then, the automaton may remain in that state 
node as long as its clock value satisfies the invariant condition.

Figure 9.9(a) shows the timed automaton with guards introduced in Bengts-
son and Yi [2004]. The system is initially at the Start node and it transitions to 
the Loop node if an enter event occurs when the value of clock y is between 
10 and 20. During the transition, the two clocks x and y are set to zero. Then, 
the system transitions to the End node if a leave event occurs when the value 
of clock y is between 40 and 50, and so on. Figure 9.9(b) shows another timed 
automaton with guards and invariants.

A transition edge (te) in a timed automaton with guards is specified as a set 
of the triples of the form:

	 t guard event resete = ( ; ; ; ; ).from node to node 	 (9.5a)

Fig. 9.8.  Clock structure and state trajectory of the queuing system in Fig. 9.4.

va va,1 

State 

 vd 
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Fig. 9.9.  Timed automata with (a) guards and (b) guards and invariants [Bengtsson 
and Yi 2004].
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Then, a formal specification of the timed automaton with guards (Gtg) is as 
given below [Cassandras and Lafortune 2010].

•	 A timed automaton with guards is a sextuple Gtg = (S, E, C, Tra, Inv, s0) 
where:
1.  S is a set of states
2.	 E is a finite set of events
3.	 C = {c1 . . . cn} is the finite set of clocks with ci(t) ∈ R+, t ∈ R+

4.	 Tra ⊆ S × Ψ(C) × E × 2C × S is the set of timed transition where Ψ(C) 
is the set of admissible constraints for the clocks in C

5.	 Inv: S → Ψ(C) is the set of state invariants
6.	 s0 ∈ S is the initial state

Referring to the timed automaton with guards in Fig. 9.9(b), it is not clear 
how the system might leave a state when its invariant condition is about to be 
violated (e.g., when the clock y reaches to 20 in the Start node). According to 
Alur [1999], as a requirement for the executability of the timed automaton, 
some outgoing edges must be enabled when the invariant of the state node is 
violated. For this purpose, we use the ε-transition edge denoting an edge with 
an empty input string. An ε-transition edge, which is denoted by a dashed 
(dotted) edge, is automatically enabled when the invariant condition reaches 
its boundary.

Figure 9.10 depicts a timed automaton with an ε-transition edge that ensures 
the executability of the timed automaton in Fig. 9.9(b). The system initially 
residing in the Start state moves to the Loop state via a regular transition 
(solid arrow) when an enter event occurs during the clock time interval of 
10 ≤ y < 20 or via an ε-transition (dashed arrow) when the value of the clock 
y reaches 20. As depicted in the figure, the ε-transition edge is specified as 
te = (Start; y ≡ 20; ε; x = 0 & y = 0; Loop), which is interpreted as “when clock 
y reaches 20, the system moves from the Start state to the Loop state after 
resetting x and y to zero” The system moves from the Loop state to the End 
state in the same way, and so on.

Fig. 9.10.  A timed automaton with guards, invariants, and ε transitions.
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9.3.4  Networks of Timed Automata

According to Bengtsson and Yi [2004], a network of timed automata is a paral-
lel composition of a set of timed automata called processes. Synchronous 
communication between the processes is via handshake synchronization using 
input and output actions (i.e., events): the alphabet “a” is assumed to consist 
of symbols for an input event denoted by “a?” and an output event denoted 
by “a!”.

Figure 9.11 shows an example system composed of two timed automata: (a) 
a timed automaton for a time-dependent light switch and (b) another for its 
user. The user and the switch communicate using the message press. The user 
presses the switch (press!) and the light switch waits to be pressed (press?).

In general, each automaton in a timed automata network may need to be 
provided with a set of output messages. With the output message sets, the 
deterministic automaton in Section 9.3.1 and the timed automaton with guards 
in Section 9.3.3 are defined as follows.

•	 A deterministic automaton with an output message set O is defined a 
sextuple Gdo = (S, E, f, Γ, s0, O), where (1) S is a state set; (2) E is an event 
set; (3) f is a transition function; (4) Γ is active event function; (5) s0 is 
the initial state; and (6) O is an output message set.

•	 A timed automaton with guards and an output message set O is defined 
a septuple Gtgo = (S, E, C, Tra, Inv, s0, O), where (1) S is a state set; (2) E 
is an event set; (3) C is a finite set of clocks; (4) Tra is a set of timed 
transitions; (5) Inv is a set of state invariants; (6) s0 is the initial state; and 
(7) O is an output message set.

Furthermore, a transition edge (te) in a timed automaton with guards and 
an output message set is specified as:

Fig. 9.11.  Network of timed automata [Bengtsson and Yi 2004].
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	 t guard event actione = ( ; ; ; ; ).from-node to-node 	 (9.5b)

Figure 9.12 presents a network of timed automata representing the single 
server system in Fig. 9.3(a). The arrival of a job at the Buffer is signified by 
the input message arrive (a?) delivered from outside. If a request (r) message 
is received from the Machine, the Buffer returns a send (s) message to the 
Machine. In the Buffer model of Fig. 9.12, the input message (a? or r?) is 
regarded as an event. The Buffer model in the figure is a deterministic automa-
ton with an output message set: Gdo = (S, E, f, Γ, s0, O), where (1) S = {. . . 1, 0, 
−1 . . .}; (2) E = {a, r}; (3) f(k, a) = k + 1 and f(k, r) = k − 1; (4) Γ(k) = {a, r} for 
k ∈ S; (5) s0 = −1; and (6) O = {s}.

The Machine model in Fig. 9.12 has two output messages: job request 
message (r) and job departure message (d). The invariant boundary condition 
(x ≡ ts) is regarded as an event of the e-transition edge. The Machine model is 
a timed automaton with guards with output messages: Gtgo = (S, E, C, Tra, Inv, 
s0, O), where (1) S = {Idle, Run}; (2) E = {s}; (3) C = {x}; (4) Tra = {(Idle; −; s; 
x = 0; Run), (Run; x ≡ ts; ε; r! d!; Idle)}; (5) Inv(Run) = x ≤ ts; (6) s0 = Idle; and 
(7) O = {r, d}.

9.4  STATE GRAPHS

This section presents an extended version of timed automata in which the 
concepts of state variables, system variables, and timers are incorporated. In 
this book, the resulting network of timed automata with state variables, timers, 
and system variables is called a state graph. To be more precise, a timed 
automaton is referred to as an atomic state graph and a network of timed 
automata as a composite state graph. An atomic state graph model is specified 
using a state transition table, and the interactions among the atomic models 
in a composite state graph are specified in an object interaction table.

9.4.1  State Variables and Macro States

The buffer model in Fig. 9.12 has an infinite number of states, which could be 
problematic in some situations such as when constructing its state transition 

Fig. 9.12.  Network of timed automata: (a) Buffer and (b) Machine.
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table. In general, an infinite state automaton can be developed into an FSA 
by introducing state variables and macro states.

Figure 9.13 presents a state graph for the buffer model in Fig. 9.12(a). The 
state graph model is obtained from the automaton model by treating J (number 
of jobs) as a state variable and by dividing the original state space into the 
three macro states: Stock = {J > 0}, Empty = {J ≡ 0}, and Backlog = {J < 0}. The 
state variable J is initially set to −1 and the start state is Backlog. As shown in 
Fig. 9.13, the graphical model is completely and concisely specified in the state 
transition table where (1) the input events (a? and r?) are listed in the Input 
Event column; (2) the state variable updates and message outputs are specified 
in the Input Action column; and (3) the branching conditions are specified in 
the Transition Condition column.

Exercise 9.1. Construct a state graph model from the infinite capacity buffer 
model in Fig. 9.12 using the two macro states: Stock =  {J >  0} and Empty = 
{J ≤ 0}.

Exercise 9.2. Construct a state graph model of a finite capacity (n) buffer 
using three macro states: Full  =  {J ≡ n}, Stock  =  {n  >  J  >  0} and Empty  = 
{J ≤ 0}.

9.4.2  Timers and System Variables

Reproduced in Fig. 9.14(a) is the timed automaton with guards of the Machine 
in Fig. 9.12 with a clock variable (x), two timed transitions [(Idle; −; s?; x = 0; 
Run) and (Run; x≡ ts; ε; −; Idle)], and an invariant (x ≤ ts). We obtain the state 
graph model shown in Fig. 9.14(b) by replacing the invariant x ≤ ts with a timer 
[Δ(ts)], eliminating the clock variable (x) and guards, and removing the ε event.

The ε-transition is now called an internal transition. The resulting atomic 
state graph model is concisely specified in the state transition table of Fig. 
9.14(c).

Figure 9.15 shows an adventure game state graph model [Fishwick 1995]. At 
the Check state, a conditional branching is created based on the value of the 
standard uniform random variable (U), which is generated by a function call 
to RND. Variables such as U are called system variables. An internal transition 

Fig. 9.13.  State graph model of the buffer and its state transition table.
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is made into the Pit state if U is less than or equal to 0.3 or to the Gold state 
otherwise. A state transition triggered by an internal condition check is called 
an internal transition for which a dashed line arc is used. We adopt the conven-
tion that a function call for conditional branching is regarded as an entry action.

9.4.3  Conventions for Building State Graphs and State  
Transition Tables

An atomic state graph is an extended timed automaton in which (1) state 
variables and system variables are incorporated, (2) transition conditions are 
used instead of guards to restrict the transitions, (3) timers are used instead 
of the invariants and clocks, and (4) three types of actions (entry, input, and 
transition actions) are allowed. An atomic state graph without inputs and 
conditions becomes a p-time Petri net [Khansa et al. 1996] if the state nodes 
are treated as timed places of the Petri net.

Table 9.2 summarizes the conventions for constructing an atomic state 
graph. An external transition edge, which is denoted by the solid line arrow, 
may be specified by an input event followed by zero or more input actions and 
a transition condition followed by zero or more transition actions. An action 
may be an output message, a state variable update, or a function call for a 
system variable; a condition is a Boolean expression of the state variables or 
system variables. An internal transition edge (the dashed line arrow) may be 
specified by transition conditions and transition actions.

A number of symbols are introduced in order to increase readability: “?” 
denotes an input event, “!” denotes an output message, and “∼” notes a condi-
tion. A state node must have a name and may be specified by an entry action 

Fig. 9.14.  (a) Timed automaton, (b) state graph, and (c) state transition table of the 
machine in Fig. 9.12.
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and a timer [Δ(to)]. A start state node is denoted using a dashed circle and a 
final state node using a double circle. In Table 9.2, Action0 is an input action; 
Action1 followed by Condition1 is a transition action; Action2 with Condi-
tion2 is a transition action and without a condition is regarded as an input 
action; and Action3 is an entry action. All conditions and actions are optional.

Table 9.3 presents a template for a state transition table for an atomic stage 
graph. There are up to eight columns in the table: State Name, State Action 
(i.e., entry action), State Timer, Input Event, Input Action, Transition Condi-
tion, Transition Action, and Next State. The initial state is listed first, and then 
the remaining (noninitial) states are listed in an arbitrary order. The initial 
values of the state variables are specified in the bottom row of the table.

A composite state graph is a network of atomic state graphs. Figure 9.16 
presents an example of a composite state graph for a single server station. This 
composite state graph model is obtained by joining the Buffer state graph 
model in Fig. 9.13 and the Machine state graph model in Fig. 9.14. However, 
the Buffer model in Fig. 9.16 differs from that of Fig. 9.13. If the Buffer model 
of Fig. 9.13 (which can have an unlimited number of backlogs) is restricted to 
only one backlog, it can be reduced to the Buffer model given in Fig. 9.16. All 
actions in the Buffer model are input actions. The two models communicate 
with each other via send (s) and request (r) messages. Table 9.4 shows the state 
transition tables for the Buffer and Machine models of Fig. 9.16.

The message passing structure of the composite state graph is represented 
as an object interaction diagram. Figure 9.17 shows the object interaction 
diagram and object interaction table of the composite state graph in Fig. 9.16.

TABLE 9.3.  Template for a State Transition Table for an Atomic State Graph Model

State Input Transition
Next 
StateName Action Timer Event Action Condition Action

Initial State
State
. . .

Initial values of state variables:

TABLE 9.2.  Conventions for Constructing Atomic State Graphs

Components Conventions

External Transition  
Edge

Input Event? Action0 Condition1 Action1

Internal Transition  
Edge

Condition2 Action2

State Nodes
Name

Action3; Δ(t0)
Initial
State

Final
State
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Fig. 9.16.  Composite state graph model of a single server station.
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TABLE 9.4.  State Transition Tables for the Buffer and Machine Models in  
Figure 9.16

Buffer State Input Transition

Next StateName Action Timer Event Action Condition Action

Backlog — — a? s! True — Empty
Empty — — a? J++ True — Stock

r? — True — Backlog
Stock — — a? J++ True — Stock

r? J--; s! J ≡ 0 — Empty
J > 0 — Stock

Initial values of state variables: J = 0

Machine State Input Transition

Next StateName Action Timer Event Action Condition Action

Idle — — s? — True — Run
Run — Δ(ts) Timeout r!; d! True — Idle

Initial values of state variables: —

9.5  SYSTEM MODELING WITH STATE GRAPHS

This section presents examples of building state graph models for various 
discrete-event systems. The examples include a dining philosopher system, a 
table tennis game, a tandem line, a conveyor-driven serial line, and a traffic 
intersection system. More details on state graph modeling may be found on 
the website http://VMS-technology.com/Book/SGS.

9.5.1  State Graph Modeling of Dining Philosophers

Consider a dining philosopher system in which five philosophers sit at a round 
table where five chopsticks and five dishes have been placed [Fishwick 1995]. 
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For dining, each philosopher picks up two chopsticks, eats the food, and places 
the chopsticks back on the table. At most, two philosophers may be eating at 
the same time.

Let’s assume the philosophers sit around the table and are numbered from 
1 to 5 in a clockwise direction, as depicted in the reference model of Fig. 
9.18(a). Let Sjk denote the situation where philosopher j and philosopher k 
dine simultaneously; then, the combinations for two philosophers eating at the 
same time are S13, S24, S35, S41, and S52. Thus, the state set (S) is given by S = {S13, 
S24, S35, S41, S52}. Figure 9.18(b) shows a state graph model of the dining phi-
losopher system where te is the time needed for a philosopher to complete an 
eating cycle. It is assumed that the philosophers 1 and 3 are eating in the initial 
state.

9.5.2  State Graph Modeling of a Table Tennis Game

A good example for explaining the concept of state-based modeling is a simple 
table tennis game [Kim 1995]. In the simple table tennis game, each player 
serves twice before changing serves, and a game is over without a deuce if a 
player scores 11 points. We want to model one player (Player-A) of a single 
table tennis game with the proposed state graph.

Figure 9.19 presents the atomic state graph of a player (Player-A) in the 
single table tennis game. During a rally, the player is in either an Attack or 
Defense state. Upon moving into an Attack state, Player-A attacks its oppo-
nent with the ball. The time duration of Player-A in the Attack state is aA. 
Then, Player-A switches to the Defense state if the ball has landed on the 
opponent’s table (denoted by the Ball-A message and with a probability of 

Fig. 9.17.  Object interaction diagram and object interaction table for the composite 
state graph in Fig. 9.16.
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PA) or to the Wait state if the ball is out (denoted by the Out-A message and 
with a probability of 1 – PA). From the current state of Wait, Player-A switches 
to the Attack state to serve or to the Defense state to receive. The time delay 
in the Wait state is wA. The scores are updated every time the ball is out, and 
the Gameover state occurs when the score of either player reaches 11. Table 
9.5 shows the state transition table for the state graph model in Fig. 9.19.

The state set of the state graph model is S  =  {Attack, Defense, Wait, 
Gameover}, and the input event set and output message set are E = {Ball-B, 
Out-B} and O = {Ball-A, Out-A}. A number of state variables are required in 
order to manage the state graph model: MyScr (player’s score), UrScr (oppo-
nent’s score), Rally (number of rallies), Srv (serve count), and Rcv (receive 
count). In the atomic state graph, all state variables are set to zero, except Rcv 
which is set to 2, meaning that Player-A will serve first. The transition condi-
tions associated with the Wait state are defined as follows:

Fig. 9.19.  Atomic state graph of Player-A in a single table tennis game.
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TABLE 9.5.  State Transition Table for the Atomic State Graph in Figure 9.19

State Input Transition

Next StateName Action Timer Event Action Condition Action

Wait — Δ(wA) Timeout — Ca IncS(Srv, 
Rcv)

Attack

— Cd IncR(Rcv, 
Srv)

Defense

— Cg — Gameover
Attack Rally++;

U = RND
Δ(aA) Timeout — U ≤ PA Ball-A! Defense

— U > PA Out-A!; 
UrScr++

Wait

Defense — — Ball-B? — True — Attack
Out-B? MyScr++ True — Wait

State variables: Clock = MyScr = UrScr = Rally = Srv = 0, Rcv = 2
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Cg = (MyScr ≡ 11) || (UrScr ≡ 11) // Gameover condition (without deuce);
Cd  =  (MyScr  <  11) & (UrScr  <  11) & (Srv ≡ 2) // Receive (Defense) 

condition;
Ca  =  (MyScr  <  11) & (UrScr  <  11) & (Rcv ≡ 2) // Serve (Attack) 

condition.

The transition conditions associated with the Attack state are given by the 
probabilities of PA and 1 – PA. The ++ symbol denotes an increment operation 
and the functions IncS ( ) and IncR ( ) are defined as follows:

	 IncS If then( , ): { ; ( ) ;},Srv Rcv Srv Srv Srv Rcv= + ≡ =1 2 0 	 (9.6a)

	 IncR If then( , ): { ; ( ) ;}.Rcv Srv Rcv Rcv Rcv Srv= + ≡ =1 2 0 	 (9.6b)

Consider a table tennis game involving two players and a friend. The game 
rules are the same as before, but the friend watches the game and may ask the 
players to quit at any time while the game is in progress. Figure 9.20 shows a 
composite state graph involving the Friend, where tq denotes the quit time. 
Observe that the state graph model for Player-A has an additional Quit state, 
as well as a new input event (Quit) and an output message (Over). Figure 9.21 
shows the object interaction diagram involving the two players and the friend.

Fig. 9.20.  Composite state graph model involving the Player-A model from Fig. 9.19 
and the Friend.
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9.5.3  State Graph Modeling of a Tandem Line

Figure 9.22(a) shows the reference model of a single server system composed 
of a machine with service time (ts), an unlimited capacity buffer, and a job 
generator with an inter-arrival time (ta). Figure 9.22(b) shows a composite state 
graph model of the single server system. The generator model is a single state 
timed automaton that sends arrive message “a” to the buffer model every time 
a job is generated. The composite state graph model of the single server station 
in Fig. 9.22(b) is the same as that shown in Fig. 9.16.

By concatenating single server station models (of the form given in Fig. 
9.16) to the single server system model in Fig. 9.22(b), a composite state graph 
model of a tandem line is constructed as depicted in Fig. 9.23. The messages 
passed between the atomic state graph models are as follows:

a = arrive; e = enter; s = start; r = request; u = unload; w = withdraw.

9.5.4  State Graph Modeling of a Conveyor-Driven Serial Line

The conveyor-driven serial line was modeled using an event graph in Chapter 
4 and was modeled using an activity cycle diagram (ACD) in Chapter 6. This 
section presents a procedure for modeling the same serial line using a state 
graph. The tandem line in Fig. 9.23 becomes a conveyor-driven serial line if 
each buffer in the line, except Buffer-1, is replaced by an accumulating 
conveyor.

Figure 9.24(a) shows the reference model of a conveyor specified by its 
buffering capacity (b) and convey time (tc). Let J denote the number of jobs 
accumulated (or stored) at the end of the conveyor segment; then, the avail-
able conveying capacity (A) is expressed as:

Fig. 9.22.  (a) Reference model and (b) state graph model of a single server system.
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	 A b J= − . 	 (9.7)

Let τ denote the current simulation clock value at the time job j enters the 
conveyor; then, the end-of-convey (EOC) time cj of the job is expressed as:

	 c tj c= +τ . 	 (9.8)

The input events in the conveyor system are enter (e) and request (r), while 
the output message is withdraw (w). As depicted in the reference model, each 
job is regarded as being conveyed to the end point of the conveyor where it 
is accumulated vertically. Thus, as shown in Fig. 9.24(b), the conveyor system 
has two parts: a Convey part and a Store part. The Convey part is specified 
using a set of EOC times C =  {cj} and the available conveying capacity (A); 
the Store part is specified by the number of accumulated jobs (J). The Convey 
part and Store part interact with each other via job move (m) and job withdraw 
(w) messages.

Figure 9.25 presents a composite state graph model of the conveyor. The 
state space of the Convey part can be partitioned into three macro states, as 
follows:

1.	 The Store-Full state (the store part is full): |C| ≡ A ≡ 0
2.	 The Convey-Full state: |C| ≡ A > 0
3.	 The Not-Full state: |C| < A

Fig. 9.24.  (a) Reference model and (b) object interaction diagram of the conveyor.
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The state space of the Store part, which is a finite capacity buffer, can be 
partitioned into two macro states: (1) the Empty state: J ≤ 0; and (2) the Stock 
state: J > 0.

The Convey part has a timer value (μ) denoting the time duration from the 
current simulation clock time (τ) to the next EOC time (c1). The timer value 
(μ) is given by:

	 µ τ= −c1 . 	 (9.9)

If C is null, we set μ = ∞. The en-queue and de-queue operations for manipu-
lating C = {cj} are defined as follows:

C C C++ = + =+( | ): ,τ τt add a new element into where nc c tn c1 	 (9.10)
C−−: remove the first element c1 from C.

A state transition table for the Convey part of the composite state graph 
model of the conveyor in Fig. 9.25 is given in Table 9.6.

Exercise 9.3. Construct a state transition table for the store part of the 
composite state graph model of the conveyor presented in Fig. 9.25(b).

Figure 9.26 shows the object interaction diagram of a conveyor-driven serial 
line of Buffer-1 → Machine 1 → Conveyor 2 → Machine 2 → . . . . The mes-
sages passed between the objects of the conveyor are move and withdraw, and 
the messages passed between the machines and conveyors are request, 
withdraw/start, finish, grant, and unload/enter. The interactions among the 
objects in Fig. 9.26 are as follows.

TABLE 9.6.  State Transition Table for the Convey Part of the Composite State 
Graph Model of the Conveyor in Figure 9.25(a)

State Input Transition
Next 
StateName Action Timer Event Action Condition Action

Not-Full — Δ(μ) w? A++ True — Not-Full
e? C++(τ|tc) |C| < A — Not-Full

|C| ≡ A — Convey-
Full

Timeout C−−; m!; 
A−−

True — Not-Full

Convey-
Full

— Δ(μ) w? A++ True — Not-Full
Timeout C−−; m!; 

A−−
A ≡ 0 — Store-Full
A > 0 — Convey-

Full
Store-Full — — w? A++ True — Not-Full

State variables: A = b, C = Null
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1.	 Machine 1 sends a job request message (r1) to the infinite capacity buffer 
Buffer-1, which in turn sends back a machine start message (s1).

2.	 Machine 1 sends a job finish message (f1) to Convey-part 2, which in turn 
sends a grant message (g2) back if Conveyor 2 is not full. Upon receiving 
g2, Machine 1 sends a job unload message (u1) to Convey-part 2 in which 
u1 is regarded as a job enter message (e2).

3.	 Convey-part 2 sends a job move message (m2) to Store-part 2 when a job 
reaches the end of the conveyor.

4.	 Store-part 2 sends a job withdraw message (w2) to Machine 2 (and to 
Convey-part 2) upon receiving a job request message (r2) from Machine 
2 in which w2 is regarded as a machine start message (s2).

Figure 9.27 shows a composite state graph model for the front region of the 
conveyor-driven serial line (i.e. Buffer 1, Machine 1, and Convey-part 2). The 
atomic state graph model for the Store-part is the same as that in Fig. 9.25(b). 
The Buffer 1 atomic model is a simple automaton generating an output 
message (s1) every time it receives an input event message (r1). The Machine 
1 model, which is initially in the Run state, sends out an output message (f1) 
and goes into the Block state after a time delay of ts1. Upon receiving g2, the 
Machine 1 model sends r1 (to Buffer-1) and u1 (to Convey-part 2) messages, 
and then moves into the Idle state. The structure of the Convey-part 2 model 
in Fig. 9.27 is the same as that of the Convey-part in Fig. 9.25(a), except the 
additional function for handling the finish (f1) and grant (g2) messages. A state 
transition table for the atomic state graph model Convey-part 2 is presented 
in Table 9.7.

Fig. 9.26.  Object interaction diagram of a conveyor-driven serial line.
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9.5.5  State Graph Modeling of Traffic Intersection Systems

Figure 9.28 shows the reference model of a traffic control system at a simple 
junction [Fishwick 1995]. The current state is designated as green-red (GR) 
because the traffic lights in the east-west (EW) direction are green and those 
in the north-south (NS) direction are red. There is a car detection sensor at 
each road near the junction as indicated in the figure. A detection signal 
coming from the east or west road is designated as DEW and that from the 
north or south road as DNS. The traffic light changes its state from GR to RG 
as follows: the state is changed from GR to AR t1 seconds after sensing a DNS 
signal, and then it is automatically changed to RG after t2 seconds.

Figure 9.29 shows the state graph model and its state transition table of  
the traffic signal system depicted in Fig. 9.28 assuming that the system is ini-
tially in the GR state. When a DNS signal is sensed, the traffic lights in the EW 

TABLE 9.7.  State Transition Table for the Convey-Part 2 Model in Figure 9.27

State Input Transition
Next 
StateName Action Timer Event Action Condition Action

Not-Full — Δ(μ) w2? A++ True — Not-Full
f1? g2! True — Not-Full
e2? C++(τ|tc2) |C| < A — Not-Full

|C| ≡ A — Convey-
Full

Timeout C−−; m2!; 
A−−

True — Not-Full

Convey-
Full

— Δ(μ) w2? g2!; A++ True — Not-Full
Timeout C−−; m2!; 

A−−
A ≡ 0 — Store-Full
A > 0 — Convey-

Full
Store-Full — — w2? g2!; A++ True — Not-Full

State variables: A = b2, C = Null

Fig. 9.28.  Reference model of a traffic intersection system.
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direction are changed to amber after t1 (while the lights in the NS direction 
stay red), which is designated as AR. Then, after t2 seconds, the traffic lights 
in the EW direction change to red and those in the NS direction change to 
green, which is designated as RG. The GR state is divided into GR0 (GR 
before a DNS is detected) and GR1 (GR after a signal detection). Because the 
system is symmetric, the RG state is divided into RG0 and RG1 in the same 
way. Thus, the state set is given by S = {GR0, GR1, AR, RG0, RG1, RA}. Then, 
the input event set is given by E = {DNS, DEW}.

Figure 9.30 presents the overall structure of a composite state graph model 
for the traffic intersection system in Fig. 9.28. Located at the center of the 
composite model is the traffic signal model of Fig. 9.29, which interacts with 
the junction (JC) models and car detection (CD) models. There are four JC 
models and four CD models: one for each of the four traffic directions of E2W 
(east-to-west), W2E (west-to-east), N2S (north-to-south), and S2N (south-to-
north). The traffic signal model receives a car detection input (D) from the 
CD models and sends out traffic light outputs G (green), A (Amber), and R 
(Red).

Let’s assume that in Fig. 9.30 the traffic signal model is at the RG0 state 
(red lights in east-west direction and green in north-south direction) and has 
just received an input message DEW (i.e., a car is detected in the E2W or W2E 

Fig. 9.29.  State graph model and state transition table of the traffic signal system.
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direction). Then, the traffic signal model performs the following sequence of 
transitions: (1) the state is changed to RG1 immediately and stays there for t1 
seconds; (2) the state is changed to RA after sending an output message (ANS) 
to the S2N JC and N2S JC and remains there for t2 seconds; (3) finally, the 
state is changed to GR0 after sending output messages RNS (to the S2N CD 
and N2S CD) and GEW (to E2W JC and W2E JC).

Figure 9.31 shows the object interaction diagram for the E2W direction 
traffic subsystem together with the state graph models of the Traffic Generator 
and Traffic Sink. The atomic state graph models in the object interaction 
diagram include the E2W Rd-1 (a road segment leading to the junction), E2W 
JC (the junction in the E2W direction), E2W CD (car detection sensor in the 
E2W direction), E2W Rd-2 (a road segment leaving the junction), and the 
traffic signal model. There are a number of messages that are passed among 
the atomic models, as follows:

c = cancel; e = enter; f = finish; g = grant;
m = move; r = request; u = unload; w = withdraw;
GEW, AEW, REW = green, amber, and red lights in east-west direction;
DEW = car detection signal in east-west direction.

The Traffic Generator, which generates a car every ta seconds in the Gen 
state, sends f1 to E2W Rd-1 when a car is generated and waits in the Block 
state for a grant message (g1). Upon receiving a g1, it returns to the Gen state 
after sending an unload message (u1) back to E2W Rd-1 [where u1 is regarded 
as an enter message e1]. The Traffic Sink, which accepts unlimited number of 
cars from E2W Rd-2, sends a request message (r2) to E2W Rd-2 every time it 
receives a car withdraw message (w2).

Figure 9.32 shows the detailed state graph models for E2W Rd-1, which is 
modeled as an accumulating conveyor (refer to Fig. 9.25). On top of the base-
line conveyor model Fig. 9.27, the canceling of a job request is introduced as 
follows: In the Empty state, a cancel message (c1) from E2W JC would decrease 
the backlog (J++). This cancellation prevents the illegal withdrawal of cars 
from E2W Rd-1 (i.e., prevents cars from moving into E2W JC when the traffic 
light is not green). Assume that E2W Rd-1 remains in the Empty state and 
E2W JC sends a request message (r1) to E2W Rd-1. If E2W JC receives the 

Fig. 9.31.  Object interaction diagram for the east-west direction traffic subsystem.
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amber signal (AEW) prior to a withdraw message (w1), the withdraw message 
that will arrive later cannot be accepted, which results in an illegal withdrawal 
(the withdrawn car is lost from the traffic intersection system).

The atomic model of E2W Rd-2 in Fig. 9.31 has the same structure as that 
of E2W Rd-1. Recall from the previous section that b1 and tc1 denote the 
capacity (maximum number of cars) and convey time of the road segment 
Rd-1, respectively.

Figure 9.33 shows the remaining two models (E2W JC and E2W CD) in 
Fig. 9.31. The junction model E2W JC in Fig. 9.33 is essentially a Machine 
model (see Fig. 9.27) augmented with a Disabled state. The E2W JC model 
goes into the Disabled state every time an AEW is received (i.e., the traffic light 
becomes amber) while sending a cancel message (c1) to E2W Rd-1 if it was in 
the Idle state or an unload message (u2) to E2W Rd-2 if it was in the Run 
state, and it moves into the Block state (i.e., enabled) if a GEW is received. 
Unlike the Machine 1 model in Fig. 9.27 (where the machine accepts a job for 
processing and then tries to unload the finished job), the E2W JC model 
accepts a job for processing only when the finished job is guaranteed to be 
unloaded. The car detect model E2W CD in Fig. 9.33 is essentially a buffer 
model where the state variable K denotes the number of cars stored at the 
end of the road segment E2W Rd-1.

Fig. 9.32.  State graph models for the road segment E2W Rd-1 (refer to Fig. 9.25).
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Fig. 9.33.  State graph models for the junction E2W JC and the car detector E2W CD.

E2W JC 

Disabled 

GEW? 

Block 
f2! 

Run 
∆(ts) 

g2? 
r1! 

Idle 
w1? 

u2! 

AEW? 
c1! 

AEW? 

AEW? u2! 

Empty 

E2W CD 

Stock 

K-- 

K = 0 

m1? 

K++, DEW! 

m1? 
K++, DEW! 

w1? 

(K ≡ 0) (K > 0) 

REW? 

DEW! 

w1 

r1 

DEW 

REW 

GEW,  AEW 

f2 

g2 

 e2        u2 

E2W Rd-1 

m1, w1 

EW, EW

Traffic Signal Model 

E2W Rd-2 

c1 



Simulation of Composite State Graph Models    283

9.6  SIMULATION OF COMPOSITE STATE GRAPH MODELS

This section presents a structured method of constructing a state graph simula-
tor for executing composite state graph models. Recall that a composite state 
graph is a network of atomic state graph models and that an atomic state graph 
model is a timed automaton augmented with state variables and system 
variables.

9.6.1  Framework of a State Graph Simulator

Figure 9.34 shows the overall framework for constructing a state graph simula-
tor of a composite state graph model. As depicted in the figure, a state graph 
simulator consists of a synchronization manager (sync manager for short) and 
a number of atomic simulators, one for each atomic model in the composite 
state graph model. Each atomic simulator is an FSM, and the sync manager, 
which is responsible for synchronizing the local simulation clocks of the atomic 
simulators, is represented as an atomic state graph with an instantaneous timer 
[Δ(0)]. The synchronization method used here is based on the concept of the 
sync manager presented in Lee et al. [2010b] and its earlier version is pre-
sented in Lee et al. [2010a].

The message types passed between the sync manager and the individual 
atomic simulators are the time advance request (TAR), time advance grant 
(TAG), message send request (MSR), and message delivery packet (MDP).

TAR = (Time, IMS, ID); // IMS = input message set; ID = atomic simulator 
ID

TAG = (Time, ID); // Time = current simulation time
MSR = (Msg, ID); // Msg = input/output message
MDP = (Msg, Time, ID);

Figure 9.35 shows the overall structure of the state graph simulator for the 
table tennis game model given in Fig. 9.21. There are three atomic simulators 
(Player-A, Player-B, and Friend) that are connected to the sync manager. The 
time advance request table (TART), the message send request queue (MSRQ), 

Fig. 9.34.  Building a state graph simulator from a composite state graph model.
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and the message delivery packet queue (MDPQ) are stored in the sync 
manager.

9.6.2  Synchronization Manager

In the state graph simulator, all interactions among the atomic simulators are 
made through the sync manager. At the beginning, each atomic simulator 
sends a TAR message to the sync manager. Then, the sync manager builds a 
TART and sends back a TAG message to the atomic simulator that has the 
smallest TAR time value. An instance of a TART is depicted in Fig. 9.35.

Upon receiving the TAG message, the atomic simulator advances its simula-
tion clock and moves into the next state. Immediately after this state transition, 
the atomic simulator may send an MSR message to the sync manager, which 
will store the received MSR message in a queue called the message send 
request queue (MSRQ). Because the Msg in the MSR could be an “input” to 
more than one atomic simulator, it is temporally stored in another queue 
named MDPQ.

Figure 9.36(a) shows the state graph model of the sync manager. At the 
beginning of the execution, each atomic simulator sends a TAR message to 
the sync manager, which then constructs the TART while remaining in the 
start state Start. When the counter (n) reaches NS (number of atomic simula-
tors), the sync manager moves to the FindTAG state where the function Find 
(TAG, Found) is invoked to find a valid TAG record from the TART. A 
pseudocode form of the function Find (TAG, Found) is given in Fig. 9.36(b). 
If a TAG record is found, the sync manager moves to the Receive state after 
setting the simulation clock to the TAG time (Now = TAG.Time), sending out 
the TAG message (TAG!), and setting the TAR counter to 1 (m = 1).

In the Receive state, the sync manager accepts MSR messages from the 
atomic simulator that has just received a TAG. The atomic simulator will send 
MSR messages first if any exist and send a TAR message. All MSR messages 
received are stored in the MSRQ using the en-queue function MSR→MSRQ, 
and each of the received TAR messages is stored in the TART using the table 
update function TAR→TART. When all input TAR messages are processed 
(m ≡ 0), the sync manager moves to the BuildMDPQ state.

Fig. 9.35.  State graph simulator for composite state graph model in Fig. 9.21.
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In the BuildMDPQ state, the function Build (MDPQ, m) is invoked to build 
a MDPQ with an MSR record retrieved from the MSRQ for all matched 
atomic simulator IDs. A pseudocode form of the function Build (MDPQ, m) 
is given in Fig. 9.36(c). If m is positive, which means MDPQ is not empty, all 
MDP records in MDPQ are retrieved individually and sent to the respective 
atomic simulators; then, the state is changed to Receive. If a MDPQ is not 
built (m ≡ 0), the sync manager moves again to the FindTAG state.

In the FindTAG state, the function Find (TAG, Found) is invoked to find a 
valid TAG record from the TART. If a TAG record is found, the sync manager 
moves again to the Receive state; if a message is not found, the sync manager 
moves to its final state Stop after sending the MDP message Stop to all atomic 
simulators (ASs).

Table 9.8 is a state transition table for the sync manager model presented 
in Fig. 9.36. It is a general purpose sync manager that can be used for any 
composite state graph model. The time synchronization procedure may be 
summarized as follows:

1.	 In the Start state, put the TAR messages received from the atomic simu-
lators into the TART. If finished, move to the FindTAG state.

2.	 In the FindTAG state, invoke the function Find (TAG, Found) to choose 
an atomic simulator with the smallest next event time. If found, move to 
the Receive state after updating the simulation time (Now = TAG.Time) 
and sending a TAG message to the chosen simulator. If not found 
(because every atomic simulator is in its final state), send a Stop message 
to every atomic simulator and move to the STOP state.

Fig. 9.36.  State graph model of the sync manager presented in Fig. 9.35.
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3.	 In the Receive state, receive MSR/TAR messages from the atomic simu-
lator that has just received a TAG. (The atomic simulator will send MSRs 
first, if any, and then send a TAR.) Store the MSRs in the MSRQ, store 
the TARs in the TART, and move to the BuildMDPQ state.

4.	 In the BuildMDPQ state, invoke the function Build (MDPQ, m) to build 
an MDPQ for an MSR record retrieved from the MSRQ. If the MDPQ 
is not empty (m  >  0), all MDPs are retrieved individually and sent to 
their respective atomic simulators. Then, the state is changed to Receive. 
If m = 0, the state is changed to FindTAG.

As discussed in Section 9.2.4 (Fig. 9.7), writing a simulation module for an 
FSM model from its state transition table is straightforward. Figure 9.37 shows 
the sync manager simulation module written in pseudocode form. It consists 
of a main program Sync-Manager () in which the state variables are initialized 
and four state transition routines {State-Start (Ns), State-FindTAG (), State-
Receive (m), and State-BuildMDPQ ()} are created, which is one for each 
state. It is assumed that the communication between the main program and 
state transition routines are made using the two I/O functions:

TABLE 9.8.  State Transition Table for the Sync Manager Model of Figure 9.36

State Input Transition

Next StateName Action Timer Event Action Condition Action

Start — — TAR? n++;
TAR→ 

TART

(n < NS) — Start
(n ≡ NS) — FindTAG

FindTAG Find 
(TAG, 
Found)

Δ(0) — — (Found) Now = TAG.
Time;

TAG!; m = 1

Receive

(Not 
Found)

MDP.Msg = 
Stop;

MDP! to all 
ASs

STOP

Receive — — MSR? MSR→ 
MSRQ

True — Receive

TAR? m−−;
TAR→

TART

(m > 0) — Receive
(m ≡ 0) — BuildMDPQ

BuildMDPQ Build 
(MDPQ, 
m)

Δ(0) — — (m > 0) For i = 1∼m {
MDP←MDPQ; 

MDP!}

Receive

(m ≡ 0) — FindTAG

State variables: Now = 0; n = 0; TART = Empty; MSRQ = Null; MDPQ = Null
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Get-Input (INPUT), where INPUT = (Type, Record); // receive data; and
Send-Output (OUTPUT), where OUTPUT = (“Data”, Data) and Data = 

TAR, TAG, MSR, or MDP; // send data.

9.6.3  Atomic Simulators

Figure 9.38(a) and (b) show the Friend atomic model and its atomic simulator, 
respectively, from the table tennis game state graph in Fig. 9.20. The atomic 
model consists of an initial state (Watch) and a final state (End), and the state 
transition occurs either (1) when the input event Over occurs or (2) when the 
timer [Δ(tq)] goes off at time tq. The former transition is called an external 
transition and the latter an internal transition (with a transition action Quit!).

Fig. 9.37.  Sync manager simulation module.

Sync-Manager (NS)  { // main program of Sync manager (NS = number of atomic simulators)    
    Now = 0; n = 0; TART = Empty; MSRQ = Null; MDPQ = Null;                 // initialize simulation clock & state variables 
    State-Start (NS);                               // start with “start state” 
}  
State-Start (NS) { // state-transition routine for start-state “START” 
    STATE = START;                                          // state update 
    Repeat { Get-Input( INPUT);                                                                    // input 
                   If (INPUT.Type ≡ “TAR”) { n++; TART[n] = INPUT.Record; }     // transition action  
     } Until (n ≡ NS);             
     State-FindTAG( );                                                                                    // move to next state  
} 
State-FindTAG () { 
    STATE = FINDTAG;  
    Find (TAG, Found);   // find an atomic simulator that has the smallest local simulation time 
    If Found { Now = TAG.Time;  Send-Output( “TAG”, TAG); m = 1;  State-Receive(m); } 
    Else { For each ID  ASs { MDP = (Stop, Now, ID); Send-Output( “MDP”, MDP); } State-STOP(); } 
} 
State-Receive (m) { 
    STATE = RECEIVE;  
    Repeat { Get-Input( INPUT); } Until ((INPUT.Type ≡ “MSR”) || (INPUT.Type ≡ “TAR”)); // read a MSR or TAR message    
    If (INPUT.Type ≡ “MSR”) { Enqueue(INPUT.Record, MSRQ); State-Receive(m); } 
    If (INPUT.Type ≡ “TAR”) { m--; Store(INPUT.Record, TART);  If (m > 0) State-Receive(m) Else State-BuildMDPQ(); } 
} 
State-BuildMDPQ() { 
    STATE = BUILDMDPQ 
    Build (MDPQ, m);  // build the message delivery packet queue 
    If (m > 0) { do { MDP = Dequeue( MDPQ); Send-Output ( “MDP”, MDP); } while (|MDPQ|>0); State-Receive (m); }   
    Else { State-FindTAG( ); } 
} 

Fig. 9.38.  Conversion of (a) an atomic state graph model to (b) an atomic simulator.
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In this chapter, a state node with a timer is called a timed state and one 
without a timer is called a timeless state. In order to simulate the behavior of 
the Friend model in Fig. 9.38(a) using the sync manager of Fig. 9.36, the atomic 
simulator in Fig. 9.38(b) is constructed with the following transformations: (1) 
the timer [Δ(tq)] in the timed state Watch is replaced with two entry actions 
Clock = Now; TAR[tq, {TAG, MDP[Over]}]!; (2) the internal transition edge 
with the output message Quit is replaced with an external transition edge with 
an input message TAG and an output message MSR[Quit]; (3) the input Over 
at the external transition edge is replaced with an input MDP[Over]; (4) the 
final state End is replaced with a nonfinal state with two entry actions 
Clock = Now; TAR[∞, {MDP[Stop]} ]!; (5) a final state STOP is added; and (6) 
an external transition edge with an input MDP[Stop] is added from End to 
STOP.

Table 9.9 shows the state transition table of the atomic simulator Friend 
shown in Fig. 9.38(b). The Friend module consists of a main program Friend 
() and three state transition routines: State-Watch (), State-End (), and State-
STOP (). A pseudocode program listing of the Friend atomic simulator module 
is given in Fig. 9.39. Communications between the main program and the state 
transition routines are made using two I/O functions: Get-Input (INPUT), 
where INPUT  =  (Type, Record) and Send-Output (OUTPUT), where 
OUTPUT = (“Data”, Data) and Data = TAR, TAG, MSR, or MDP.

In general, the rules for converting an atomic state graph model with final 
states to an atomic simulator are as follows:

1.	 A new final state STOP is added.
2.	 Every final state except the STOP state in the atomic model is converted 

to a nonfinal state, and an external transition edge with an input 
MDP[Stop]? is defined from each converted nonfinal state to the STOP 
state.

3.	 An entry action Clock  =  Now is added to all states except the STOP 
state.

TABLE 9.9.  State Transition Table of Atomic Simulator Friend in Figure 9.38(b)

State Input Transition
Next 
StateName Action Timer Event Action Condition Action

Watch Clock = Now; 
TAR[tq, {TAG, 
MDP[Over]} ]!

— TAG? MSR 
[Quit]!

True — End

MDP 
[Over]?

— True — End

End Clock = Now; 
TAR[∞, 
{MDP[Stop]} ]!

— MDP 
[Stop]?

— True — STOP

State variables: Clock = 0;
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Fig. 9.39.  Atomic simulator module for the Friend in the table tennis game.

Friend (tq) {  // Atomic simulator module for the Friend in the Ping-Pong game (tq = time to quit) 
    Clock = 0; Now = 0; // Clock is the local clock in Friend; Now is the global simulation clock 
    State-Watch (Now);                                                            // start with “start state” 
}  
State-Watch (Now) {  // state-transition routine for start-state “Watch” 
    STATE = WATCH;                                                                         // state update 
    Clock = Now; TAR = (Clock+ tq, {TAG, MDP[Over]}, Friend); Send-Output (“TAR”, TAR);   // state entry actions 
    Repeat { Get-Input (INPUT); } Until ((INPUT.Type ≡ “TAG”) || (INPUT.Type ≡ “MDP”));       // input event 
    If (INPUT.Type ≡ “TAG”) { TAG = INPUT.Record;                                                           // transition action and move to the END state 
        MSR= (Quit, Friend); Send-Output (“MSR”, MSR); State-End (TAG.Time); } 
    If (INPUT.Type ≡ “MDP”) { MDP = INPUT.Record;                                                         // transition action and move to the END state 
        If (MDP.Msg ≡ Over) { State-End (MDP.Time); } Else { Stop (Error); } } 
} 
State-End (Now)  { // state-transition routine for the “End” state 
    STATE = END;                                                                  // state update 
    Clock= Now; TAR = (∞, {MDP[Stop]}, Friend); Send-Output (“TAR”, TAR);                  // state entry actions 
    Repeat { Get-Input (INPUT); } Until (INPUT.Type ≡ “MDP”);                                         // input event 
    If (INPUT.Type ≡ “MDP”) { MDP = INPUT.Record;  
        If (MDP.Msg ≡ Stop) { State-STOP (MDP.Time); } Else { Stop (Error); } } 
} 
State-STOP (Now) { 
    STATE = STOP;  Stop (); 
} 

4.	 The timer [Δ(to)] in a timed state is replaced with an entry action TAR[to, 
IMS]! where IMS denotes an input message set of the state.

5.	 Each internal transition edge is converted to an external transition edge 
with an input TAG?.

6.	 An entry action TAR [∞, IMS]! is added to each timeless state.
7.	 Each output Out! is replaced with MSR[Out]! and each input In? is 

replaced with MDP[In]?.

Reproduced in Fig. 9.40(a) is the Player-A atomic state graph model in Fig. 
9.20, and Fig. 9.40(b) shows its atomic simulator obtained by applying the 
conversion rules. We can verify that all conversion rules are reflected in the 
atomic simulator: (1) a new final state STOP is added; (2) the final states Quit 
and Gameover in the atomic model have become nonfinal states, and there is 
an external transition edge with an input MDP [Stop] from Quit to STOP and 
another one from Gameover to STOP; (3) all nonfinal states have an entry 
action Clock = Now; (4) the timer Δ(aA) in the Attack state is replaced with 
an entry action TAR[aA, {TAG, MDP[Quit]}]! and Δ(wA) in Wait is replaced 
with TAR[wA, {TAG, MDP[Quit]}]!; (5) each of the five internal transition 
edges (Attack→Defense, Attack→Wait, Wait→Attack, Wait→Defense, and 
Wait→Gameover) are converted to an external transition edge with an input 
TAG?; and so on.

Table 9.10 shows the state transition table of the atomic simulator Player-A 
given in Fig. 9.38(b). The initial values of the state variables (Clock  =  0, 
MyScr = 0, UrScr = 0, Rally = 0, Srv = 0, Rcv = 2), system parameters (wA = 4.0, 
aA = 0.8, PA = 0.9), transition conditions (Ca, Cd, Cg), and algebraic functions 
(IncS, IncR) are described at the bottom entry of the table. The system param-
eter wA denotes the waiting time delay, aA is the attack time delay, and PA is 
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Fig. 9.40.  The (a) atomic model and (b) its atomic simulator for Player-A.
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the probability of an attack success. RND denotes a uniform random variate 
generating function.

As in the case of the Friend simulator module (see Table 9.9 and Fig. 9.39), 
an atomic simulator module for Player-A is obtained easily from the state 
transition table given in Table 9.10. As before, it is assumed that communica-
tion between the main program and the state transition routines are made 
through the I/O functions Get-Input (INPUT) and Send-Output (OUTPUT). 
The atomic simulator module for Player-A consists of a main program Player-A 
() and its state transition routines. A pseudocode program listing of the atomic 
simulator module for Player-A is given in Fig. 9.41(a) and (b).

9.6.4  Table Tennis Game Simulator

Reproduced in Fig. 9.42(a) and (b), respectively, are the composite state graph 
model (Fig. 9.21) and the state graph simulator (in Fig. 9.34) of the table tennis 
game.

Thus far, we have written the Sync Manager Simulation Module listed in 
Fig. 9.37, the Friend Atomic Simulator listed in Fig. 9.39, and the Player-A 
Atomic Simulator listed in Fig. 9.41 in pseudocode form. The atomic simulator 
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Fig. 9.41.  Atomic simulator module for Player-A (Fig. 9.40(b)).

Player-A (wA, aA, PA) { // Atomic simulator module for Player-A 
    // aA= attack time-delay of Player-A; wA = wait time-delay; PA = prob. of an attack-success of Player-A  
    Clock= 0; Now = 0; MyScr = UrScr = Rally = Srv =0; Rcv= 2;       // initialize state variables 
    State-Wait (Now);                     // start with “start state” 
}  
State-Wait (Now) {   // state-transition routine for the start-state “Wait” 
    STATE = WAIT;                                                                               // state update 
    Clock = Now; TAR = (Clock + wA, {TAG, MDP[Quit]}, Player-A); Send-Output(“TAR”, TAR);     // state entry actions 
    Repeat { Get-Input (INPUT); } Until ((INPUT.Type ≡ “TAG”) || (INPUT.Type ≡ “MDP”));                // input event 
    If (INPUT.Type ≡ “TAG”) { TAG = INPUT.Record; 
        If (Ca) { IncS (Srv, Rcv); State-Attack(TAG.Time); } 
        If (Cd) { IncR (Rcv, Srv); State-Defense(TAG.Time); } 
        If (Cg) { MSR= (Over, Player-A); Send-Output(“MSR”, MSR); State-Gameover(TAG.Time); } } 
    If (INPUT.Type ≡ “MDP”) { MDP = INPUT.Record;   
        If (MDP.Msg ≡ Quit) { State-Quit (MDP.Time); } Else “error” } 
} 

State-Attack(Now) { // state-transition routine for the “Attack” state 
   STATE = ATTACK;  Clock= Now; Rally++; U = RND; TAR = (Clock+ aA, {TAG, MDP[Quit]}, Player-A); Send-Output(“TAR”, TAR); 
    Repeat { Get-Input (INPUT); } Until ((INPUT.Type ≡ “TAG”) || (INPUT.Type ≡ “MDP”));  
    If (INPUT.Type ≡ “TAG”) { TAG = INPUT.Record;  
        If (U ≤ PA) { MSR= (Ball-A, Player-A); Send-Output(“MSR”, MSR); State-Defense(TAG.Time); }  
        If (U > PA) { MSR= (Out-A, Player-A); Send-Output(“MSR”, MSR); UrScr++; State-Wait(TAG.Time); } } 
    If (INPUT.Type ≡ “MDP”) { MDP = INPUT.Record; If (MDP.Msg ≡ Quit) { State-Quit(MDP.Time); } } 
} 
State-Defense(Now) { 
   STATE = DEFENSE;  Clock= Now; TAR = (∞, {MDP[Ball-B], MDP[Out-B], MDP[Quit]}, Player-A); Send-Output(“TAR”, TAR); 
   Repeat { Get-Input (INPUT); } Until (INPUT.Type ≡ “MDP”);  
   MDP = INPUT.Record; 
   If (MDP.Msg ≡ Ball-B) { State-Attack(MDP.Time); } 
   If (MDP.Msg ≡ Out-B) { MyScr++; State-Wait (MDP.Time); } 
   If (MDP.Msg ≡ Quit) { State-Quit (MDP.Time); }   
} 
State-Gameover(Now) { 
   STATE = GAMEOVER;  Clock= Now; TAR = (∞, {MDP[Stop]}, Player-A); Send-Output(“TAR”, TAR); 
   Repeat { Get-Input (INPUT); } Until (INPUT.Type ≡ “MDP”);  
   MDP = INPUT.Record; 
   If (MDP.Msg ≡ Stop) { State-STOP (MDP.Time); } 
} 
State-Quit (Now) { 
   STATE = QUIT;  Clock= Now; TAR = (∞, {MDP[Stop]}, Player-A); Send-Output(“TAR”, TAR); 
   Repeat { Get-Input (INPUT); } Until (INPUT.Type ≡ “MDP”);  
   MDP = INPUT.Record;  
   If (MDP.Msg ≡ Stop) { State-STOP (MDP.Time); }   
} 
State-STOP (Now) { 
   STATE = STOP;  Stop (); 
} 

Fig. 9.42.  (a) Composite state graph model and (b) state graph simulator of the table 
tennis game.
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module for Player-B may be written in the same way. Then, the sync manager 
simulation module [Sync-Manager (NS)] is joined with the atomic simulator 
modules [Player-A (wA, aA, PA), Player-B (wB, aB, PB), and Friend (tq)] to build 
a table tennis game simulator, as follows. (A complete list of C# codes for the 
table tennis game simulator may be found in the official website of this book: 
http://VMS-technology.com/Book/StateGraphSimulator)

Program Table Tennis-Game ()
{
NS = 3; // number of atomic simulators
aA  =  aB  =  0.8; // attack-time delays of Player-A and 
Player-B are 0.8 seconds.

wA = wB = 4; // wait-time delays of both players are 4 
seconds.

PA = PB = 0.9; // probability of an attack success for both 
players are 0.9.

tq = 600; // quit time (the friend can wait for 600 seconds)
Sync-Manager (NS); // Fig. 9.37
Player-A (wA, aA, PA); // Fig. 9.41
Player-B (wB, aB, PB);
Friend (tq); // Fig. 9.39
};

9.6.5  State Graph Simulator for Reactive Systems

A reactive system that continuously reacts to inputs from the environment by 
generating corresponding outputs does not have explicit final states. The single 
server system introduced in Fig. 9.22(b) is an example of a reactive system. 
Reproduced in Fig. 9.43 is the composite state graph model of the single server 
system consisting of three atomic state graph models. The interactions among 
the three atomic models are made via three types of messages: arrive (a) mes-
sages from GEN to Buffer, request (r) messages from Machine to Buffer, and 
send (s) messages from Buffer to Machine.

The single server system of Fig. 9.43 will continue to run until its operation 
is terminated externally. Figure 9.44 shows a composite state graph model of 
the single server system augmented with a terminator model whose role is to 
send an end message (e) to the remaining atomic models in the system. For 
this purpose, the terminator atomic model is provided with a timer Δ(te) that 
will go off at the end time te, and the existing atomic models are provided with 
a final state END.

Now, the conversion rules introduced in Section 9.6.3 are applied to the 
composite state graph model of Fig. 9.44. Figure 9.45 shows the resulting state 
graph simulator for the single server system. The atomic simulator Terminator 

http://VMS-technology.com/Book/StateGraphSimulator
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Fig. 9.43.  Composite state graph model of a single server system.
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Fig. 9.44.  Composite state graph model of the single server system with a terminator.
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Fig. 9.45.  State graph simulator for the single server model in Fig. 9.44.
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sends a TAR message to the Sync Manager at the start of the simulation. When 
the simulation clock reaches the end time (te), the following sequence of 
actions are taken in order to end the simulation: (1) the Sync Manager will 
send a TAG message to the Terminator; (2) upon receiving the TAG message, 
the Terminator moves to the END state after sending back an MSR[e] message 
to the Sync Manager; (3) upon receiving the MSR[e] message, the Sync 
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Manager sends the MDP[e] message to all atomic simulators except the Ter-
minator; (4) upon receiving the MDP[e] message, all the atomic simulators 
move to the END state; (5) the atomic simulators send the TAR[∞, Stop] 
message to the Sync Manager; and (6) the Sync Manager sends the MDP[Stop] 
message to all atomic simulators to terminate the simulation.

9.6.6  SGS®

A state graph model executor toolkit called SGS was developed by the authors. 
A free copy of SGS together with a number of modeling examples may be 
found in the official website of this book (http://VMS-technology.com/
Book/SGS).

APPENDIX 9A: DEVS

The concept of DEVS (Discrete EVent system Specification) was proposed 
by Zeigler and has become the de facto choice for state-based M&S tools since 
his first book on the subject was published [Zeigler 1976]. There has been a 
considerable amount of progress in the DEVS theory leading to different 
types of DEVSs [Zeigler et al. 2000]. In this section, the classic DEVS will be 
briefly introduced to demonstrate how the DEVS theory may be used in state-
based modeling of discrete-event systems.

9A.1  Definitions of DEVS

As with the definitions of FSM given in Section 9.2.1, DEVS is defined as an 
algebraic structure. An atomic DEVS model (M) is a septuple structure 
[Zeigler et al. 2000]:

	 M S X Y taint ext= ( , , , , , , ),δ δ λ 	 (9A.1)

where

(1)  S is a set of states (not necessarily finite)
(2)	 X is a set of input values
(3)	 Y is a set of output values
(4)	 δint: S → S is an internal transition function
(5)	 δext: Q × X → S is an external transition function, where Q = {(s, e)| s ∈ 

S, 0 ≤e ≤ ta(s)} is the total state set, and e is the time elapsed since last 
transition

(6)	 λ: S × X → Y is the output function (transition action)
(7)	 ta: S → R+ is the time-advance function

If the above definition, which is often referred to as a classic DEVS, is 
compared with that of the engineering definition of the FSM in Section 9.2.1, 

http://VMS-technology.com/Book/SGS
http://VMS-technology.com/Book/SGS
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TABLE 9A.1.  Template of State Transition Table for a DEVS Model

State Input Transition

Next StateName Action Timer Event Action Condition Action

Initial State
State
. . .
Initial values of state variables:

it is seen that DEVS is also a timed automaton in which time is included in 
terms of δint, Q, and ta.

A DEVS model can also be specified using a state transition table. Repro-
duced in Table 9A.1 is the template of the state transition table for the state 
graph model in Table 9.3. Table 9A.1 can be used as a template of a state 
transition table for a DEVS model if the columns State-Action, Transition-
Condition, and Transition-Action are deleted and the state variable row at the 
bottom is removed.

Reproduced in Fig. 9A.1 is the composite state graph (or coupled DEVS) 
model of a single server system from Fig. 9.16. Observe in Fig. 9A.1 that the 
Buffer model (M2) is modeled as an infinite state machine because DEVS 
does not allow state variables. The Machine model (M3) is specified as an 
atomic DEVS model, as follows:

	 M S X Y taint ext3 = ( , , , , , , ),δ δ λ 	

where

(1)	 S = {Idle, Run}
(2)	 X = {s}
(3)	 Y = {r, d}
(4)	 δint(Run) = Idle
(5)	 δext(Idle, s) = Run
(6)	 λ(Run, −) = {r, d}; and (7) ta(Run) = ts; and ta(Idle) = ∞

Fig. 9A.1.  Composite state graph model of a single server system.
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A DEVS model for a system consisting of a number of objects is referred 
to as coupled DEVS model. A classic DEVS coupled model (CM) is a septuple 
structure [Zeigler et al. 2000]:

	 CM X Y M EIC EOC IC Select= ( , , { }, , , , ), 	 (9A.2)

where

(1)	 X is an input events set
(2)	 Y is an output events set
(3)	 {M} is a set of all component models
(4)	 EIC is an external input coupling relation
(5)	 EOC is an external output coupling relation
(6)	 IC is an internal coupling relation
(7)	 Select is a tie-breaking selector

In general, a coupled DEVS model can be structured to have a hierarchical 
form as depicted in Fig. 9A.2, which is referred to as a modular hierarchical 
DEVS. Shown in Fig. 9A.2(a) is the coupled FSM model of Fig. 9A.1, and Fig. 
9A.2(b) is a modular hierarchical DEVS model for the coupled FSM model.

9A.2  DEVS Simulators

The steps for building a hierarchical DEVS simulator are as follows: (1) a 
simulator is built for each atomic model; (2) a coordinator is built for each 
coupled model; (3) a root coordinator is constructed; and (4) the simulators 
and coordinators are connected to form a hierarchical structure called an 
abstract simulation model, as depicted in Fig. 9A.3(a). The abstract simulation 
model linked with the hierarchical DEVS model is referred to as a hierarchical 
DEVS simulator. Depicted in Fig. 9A.3(b) are the messages passed between 
a parent coordinator and its children in the abstract simulation model.

In essence, the abstract simulation model consisting of coordinators and 
simulators functions as the sync manager in the state graph simulator (see Fig. 

Fig. 9A.2.  (a) Coupled FSM model and (b) hierarchical DEVS model.

M1 
(Generator) 

M2 
(Buffer) 

M3 
(Machine) 

Send Enter 

Done 
Atomic model M2 Atomic model M3 

Coupled model 
{M2, M3} Atomic model M1 

Coupled model 
{M1, M2, M3} 

(a) (b) 
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9.36) and manages the simulation times. The user defines each atomic model 
as specified by model (Eq. 9A,1) and each coupled model as specified by 
model (Eq. 9A.2). For simulation, an atomic model contains information about 
its state (S) and time advance function (ta); a simulator maintains information 
about last simulation time (tL), next simulation time (tN), and elapsed time (e) 
of its atomic model; and the coordinator has information about the tL and tN 
of its coupled model. A parent coordinator sends the input event message (x, 
t) and internal transition message (*, t) to its child coordinator and simulator, 
and receives the output message (y, t) from its children. For further details, 
you may refer to seminal text of Zeigler et al. [2000]. Recently, a parallel simu-
lation technique based on the concept of flat coordinator for executing coupled 
DEVS models has been proposed [Glinsky and Wainer 2006]. Observe that 
the synchronization manager introduced in Section 9.6 is a kind of flat 
coordinator.

Fig. 9A.3.  (a) Hierarchical DEVS simulator and (b) message passing protocol.
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CHAPTER 10

Advanced Topics in Activity-Based 
Modeling and Simulation

To everything, there is a season and a time to every purpose under the 
heavens.

—Ecclesiastes 3:1

10.1  INTRODUCTION

This chapter, combined with Chapter 6, aims to provide a comprehensive 
treatment of activity-based modeling and simulation (M&S). The activity cycle 
diagram (ACD) topics covered in Chapter 6 are: (1) the execution rules and 
specifications; (2) basic modeling templates; (3) representative modeling 
examples; (4) parameterized ACD and its application to the modeling of 
tandem lines and job shops; and (5) ACD model execution using the formal 
ACD simulator ACE®.

The topics to be covered in this chapter are: (1) methods of developing 
dedicated ACD simulators; (2) the canceling arc and its applications; (3) work-
cell cycle time analyses using ACD; (4) ACD modeling of automated manu-
facturing systems; and (5) formal model conversion. After studying this  
chapter, you should be able to do the following:

1.	 Build a dedicated ACD simulator for any parameterized ACD model
2.	 Develop a general ACD simulation engine
3.	 Construct ACD models involving canceling arcs for modeling time-

constrained processing and resource failure
4.	 Perform cycle-time analysis for robot work-cells, hoist plating lines, etc.
5.	 ACD modeling and simulation of flexible manufacturing systems
6.	 Convert ACD models to event graph models

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and 
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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7.	 Convert ACD models to state graph or Discrete-EVent system Specifica-
tion (DEVS) models

The remainder of this chapter is organized as follows: How to develop your 
own ACD simulators is explained in Section 10.2, and methods of modeling 
with canceling arcs are given in Section 10.3. Activity-based modeling methods 
applied to robotic work-cells and flexible manufacturing systems (FMSs) are 
presented in Sections 10.4 and 10.5, respectively. The last section is devoted to 
the issue of formal model conversion. A brief description of Petri nets is given 
in the Appendix.

10.2  DEVELOPING YOUR OWN ACTIVITY CYCLE 
DIAGRAM SIMULATORS

As mentioned in Chapter 6, there are three ways of executing an ACD model: 
use of the formal ACD simulator ACE®; use of a process-oriented simulation 
language such as Arena®; or developing a dedicated ACD simulator. This 
section describes how to develop a dedicated ACD simulator. If you have a 
working knowledge of a programming language such as Java or C#, you should 
be able to develop your own ACD simulator.

10.2.1  Tocher’s Three-Phase Process

It is described in Hollocks [2008, p. 5] that the core idea of the Tocher’s three-
phase process came to him at Christmas 1957, evidently while in his bath! The 
notion started from the concept of a system consisting of individual compo-
nents progressing as time unfolds through states that change only at discrete 
events. The three-phase process is:

Phase A: Advance the clock to the time of the next bound-to-occur (BTO) 
event.

Phase B: Execute the BTO event.
Phase C: Initiate “conditioned” activities that the conditions in the model 

now permit.

As depicted in Fig. 10.1, the three-phase process is a cyclic process. Tocher 
argued that the B and C phases represent the event phase and activity phase, 
respectively. In the following, the three-phase process will be applied to the 
execution of a single server (system) ACD model.

The ACD model and activity transition table of a single server system given 
in Chapter 6 are reproduced in Fig. 10.2. In developing an ACD simulator 
based on the three-phase process, we make use of the data structure future 
event list (FEL) and the two event-handling functions Schedule-event () and 
Retrieve-event () that were introduced in Chapter 4 (Section 4.7.1). Figure 
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10.3 shows a three-phase execution program (pseudocode) for the single 
server ACD model. In this pseudocode program, the three-phase process is 
implemented with the sequence of Phase-C→ Phase-A→ Phase-B, and the 
inter-arrival time ta and service time ts are set to 8 and 10, respectively.

The Initialization phase of the pseudocode program in Fig. 10.3 performs 
the following: resets the simulation clock (Clock =  0); initializes the queues 
(C = 1, M = 1, Q = 0); and sets the end-of-simulation time (EOS = 200). Then, 
the simulation execution is undertaken in three phases: (1) The scanning phase, 
where the BTO event of each enabled activity is scheduled in the FEL; (2) the 
timing phase, where the next event is retrieved from the FEL, and the simula-
tion clock is advanced; and (3) the executing phase, where the retrieved event 
is executed.

It may be instructional to go through the program statements one by one 
in Fig. 10.3 to verify that the simulation is carried out correctly. The Scanning 
phase starts with Clock = 0, C = 1, M = 1, and Q = 0. Thus, the At-begin condi-
tion of the Create activity (C > 0) is true, which in turn leads to the execution 
of {C−−; Schedule-event (Created, 8)}. Now, we have the next event Created(8) 
stored in the future event list (FEL) and C = 0. The Timing phase retrieves the 

Fig. 10.2.  ACD model and activity transition table of a single server system.
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Fig. 10.1.  The three-phase process [Hollocks 2008].
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Fig. 10.3.  Three-phase execution program of the single server ACD model.

//  Initialization 
     Clock = 0;                     // Set simulation clock to zero 
     C = 1; M = 1; Q = 0;     // Initialize queues 
     EOS = 200;                  // Set the end-of-simulation (EOS) time to 200 
//  Simulation Execution (while the simulation clock is less than the EOS time) 
    Do { 
    //  1. Scanning the activities (Phase C)  schedule BTO-events into  
              If (C > 0) { C--; Schedule-event (Created, Clock + 8)};                               
              If (M > 0) & (Q > 0) {M--; Q--; Schedule-event (Processed, Clock + 10)};   
    //  2. Timing (Phase A)  retrieve the next BTO-event from 
              Retrieve-event (EVENT, TIME);  // Retrieve 1st event from  
              Clock = TIME;                             // Advance simulation clock 
    //  3. Executing the retrieved event routine (Phase B) 
             Case EVENT of { 
                      Created: If (True) C++; If (True) Q++; 
                      Processed:  If (True) M++;  
             } 
      } while (Clock < EOS); 

FEL 

FEL 

FEL 

Created(8) event from the FEL and advances the simulation clock to 8. The 
Executing phase executes the Created event to execute {C++, Q++}. Then, the 
next cycle of the three-phase process begins with Clock = 8, C = 1, M = 1, and 
Q = 1, and so on. The results of executing the three-phase execution program 
for a few cycles are summarized in Table 10.1.

10.2.2  Activity Scanning Algorithm

The logic behind the three-phase execution program shown in Fig. 10.3 can be 
expressed as a general algorithm. The Scanning phase may be expressed as:

For each Activity in the activity transition table 
(see Fig. 10.2) do {
If (At-begin Condition for the Activity is True) 
then {
 (a) Execute At-begin Action; (b) Schedule the BTO-
event into FEL; }
}

The Timing phase may be described as:

Retrieve the next Event from FEL and advance Time;

The Executing phase may be described as:

If (At-end Condition for the retrieved Event is True) 
then {

Execute At-end Action;
}
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Figure 10.4 shows a schematic description of the Tocher’s three-phase 
process.

The schematic description given in Fig. 10.4 is a valid algorithm for execut-
ing an ACD model. However, it is not an efficient algorithm when the number 
of activities in the ACD model becomes large because “each and every activity 
in the model is scanned during the Scanning phase while the number of 
enabled activities is very small.” When a current activity is executed at the 
Executing phase, the enabled activities at the Scanning phase in the next cycle 
are among the influenced activities of the current activity. Thus, we introduce 
a FIFO (first-in-first-out) queue called CAL (candidate activity list) for storing 
the influenced activities, and modify the execution algorithm in Fig. 10.4. A 
modified version of the three-phase execution algorithm called the activity 
scanning algorithm is given in Fig. 10.5.

Another, perhaps more critical, benefit of introducing CAL is that it allows 
to handle tie-breaking among the concurrent activities. For example, in the 
simple service station model described in Chapter 6 (see Table 6.15 in Section 
6.6.4), the Trigger activity has to be executed before the Process activity in 
order to obtain a valid result. This is ensured by listing Trigger before Process 
in the Influenced Activity entry in Table 6.15.

10.2.3  ACD Simulator

If we apply the activity scanning algorithm, the three-phase execution pro
gram given in Fig. 10.3 would become the ACD simulator shown in Fig. 10.6. 
It is a template that can be used for any ACD model if the three shaded regions 
in Fig. 10.6 are modified according to the activity transition table: (1) the  

Fig. 10.4.  Schematic description of the three-phase execution program.

0. Initialize States 

1. For each Activity in the activity transition table do { 
      If (At-begin Condition for the Activity is True) then {  
           (a) Execute At-begin Action; 
           (b) Schedule the BTO-event into 
    }     

EOS? 

FEL 

FEL} 

No 
4. Collect statistics & Stop  

Yes 

Scanning Phase 

Timing Phase 

Executing Phase 

gg

2. Retrieve the next Event from FEL and advance Time 

g

3. If (At-end Condition for the retrieved BTO-Event is True) then {  
       Execute At-end Action; }  
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initialization region reflecting the Initialize row of the activity transition table; 
(2) the activity routine region; and (3) the event routine region.

At the Initialization phase, the initially enabled activity Create is stored in 
CAL by invoking Store-activity (Create), and then it is retrieved at the Scan-
ning phase via Get-activity(). The retrieved activity Create is executed at the 
activity routine region by invoking Execute-Create-activity-routine () to 

Fig. 10.5.  Activity scanning algorithm.

0. Initialize States & store Enabled Activities into  

1. While CAL is not empty { 
    Get an Activity from 

          If (At-begin Condition for the Activity is True) then {  
             (a) Execute the At-begin Action; 
             (b) Schedule the BTO-event into         
     }     

3. If (At-end Condition for the Event is True) then { 
      (a) Execute the At-end Action; 
      (b) Store Influenced Activities into  

EOS? 

CAL 

FEL 

CAL; 

CAL} 

FEL} 

CAL 

No 4. Collect statistics & Stop  
Yes 

Scanning Phase 

Timing Phase 

Executing Phase 

Activity routine 

Event routine 

If (At-begin Condition for the Actitt vivv tyt is True) then {
   (a) Execute the At-begin Action;
   (b) Schedule the BTO-event into  F  E  L}

If (At-end Condition for the Event is True) then {
(a) Execute the At-end Action;
(b) Store Inflff uenced Actitt vivv titt es into CAL}}

gg

2. Retrieve the next Event from FEL and advance Time 

Fig. 10.6.  ACD simulator for the single server system.

//  Initialization 
    Clock = 0;                             // Set simulation clock to zero 
    C = 1; M = 1; Q = 0;           // Initialize queues 
    Store-activity(Create); // Store enabled activities in  
    EOS = 200;                       // Set the end-of-simulation (EOS) time to 200 

//  Simulation Execution (while the simulation clock is less than the EOS time) 
   Do { 
   //  1. Scanning the activities in CAL 
             While (CAL is not empty) { 
                       Get-activity (ACTIVITY)  
                       Case ACTIVITY of { 
                                 Create:    Execute-Create-activity-routine (Clock); 
                                  Process: Execute-Process-activity-routine (Clock); 
                        } 
              } 
   //  2. Timing 
             Retrieve-event (EVENT, TIME);   // Retrieve 1st event from  
             Clock = TIME;                              // Advance simulation clock 
   //  3. Executing the retrieved event 
            Case EVENT of { 
                     Created:      Execute-Created-event-routine (); 
                     Processed:  Execute-Processed-event-routine ();  
            }  
     } while (Clock < EOS); 

{
                     Create:  Execute-Create-activity-routine (Clock);

Process: Execute-Process-activity-routine (Clock);

            Created:   Execute-Created-event-routine ();
            Processed: Execute-Processed-event-routine ();

C = 1; M = 1; Q = 0; // Initialize queues
Store-activity(Create); // Store enaba led activities in

CAL 

FEL 

CAL 

FEL 
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schedule the BTO-event Created into the FEL. At the Timing phase, the BTO-
event is retrieved from FEL and the simulation clock is advanced. Lastly, at 
the Executing phase, the retrieved event Created is executed by invoking 
Execute-Created-event-routine () to store the newly enabled activities Create 
and Process into CAL. The cycle is repeated until the end-of-simulation.

Figure 10.7 shows how to build the Create activity routine and Created 
event routine from the information provided in the activity transition table. 
In general, an activity routine is built from the data (At-begin Condition, 
At-begin Action, Time, and Event Name) of the activity transition table as 
follows:

If (At-begin Condition) {
At-begin Action;
Schedule-event (Event Name, Clock + Time); }

Similarly, an event routine is built from the data (At-end Condition, At-end 
Action, and Influenced Activity) of the activity transition table as follows:

If (At-end Condition) {
At-end Action;
Store-activity (Influenced Activity); }

The above statement is repeated for each At-end arc.
Exercise 10.1. Write an ACD simulator program for the car repair shop 

model specified in Table 6.8 of Chapter 6.

10.2.4  P-ACD Simulator

An ACD simulator for a parameterized ACD (P-ACD) model, which we call 
a P-ACD simulator, can be built exactly the same procedure as that used for 
building an ordinary ACD simulator. In this section, how to build a P-ACD 
simulator will be explained by employing a simple P-ACD model.

Fig. 10.7.  Building activity routine and event routine from the activity transition table.

Execute-Create-activity-routine (Clock) 
   If (C > 0) { 
      C--;  // At-begin Action 
      Schedule-event (Created, Clock + 8);  
   } 

Execute-Created-event-routine () 
   If (True) { C++; // At-end Action 
                   Store-activity (Create); } 
   If (True) { Q++; // At-end Action  
                  Store-activity (Process); } 

No Activity 
At-begin BTO-event At-end 

Condition Action Time Name Arc Condition Action Influenced Activity 

1 Create  (C>0) C--; 8 Created 
1 True C++; Create 

2 True Q++; Process 
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Figure 10.8 shows a P-ACD model and its activity transition table for an 
N-stage unlimited-buffer tandem line (with N = 3) discussed in Chapter 6 (see 
Section 6.5.1). Recall that, as a convention, a parameter variable is enclosed 
by a pair of parentheses and a parameter value is put in a small rectangle on 
an arc. In order to build a P-ACD simulator, we have to upgrade our list-
handling functions to handle parameter k:

(1)  Store-activity (ACTIVITY, k) for storing an activity in the FIFO queue 
CAL;

(2)	 Get-activity (ACTIVITY, k) for retrieving an activity from the CAL;
(3)	 Schedule-event (EVENT, TIME, k) for scheduling an event in the pri-

ority queue the FEL;
(4)	 Retrieve-event (EVENT, TIME, k) for retrieving an event from the 

FEL.

Observe in Fig. 10.8 that the parameterized queue nodes B(k) and M(k) in 
the P-ACD are represented as arrays B[k] and M[k] in the activity transition 
table.

Figure 10.9 shows the main program of our P-ACD simulator for the three-
stage tandem line specified in Fig. 10.8. The structure of the P-ACD simulator 
is exactly the same as that of the ACD simulator given in Fig. 10.6. At the 
Initialization phase, the queues (C, B[k], M[k]) are initialized and the initially 
enabled activity CREATE is stored into the CAL.

Figure 10.10 shows how to build the SERVE activity routine and the 
SERVED event routine used in the P-ACD simulator. As in the case of  
the ordinary ACD simulator, a parameterized activity routine is built from the 
data (At-begin Condition, At-begin Action, Time, and Event Name) of the 
activity transition table as follows:

Fig. 10.8.  P-ACD model and activity transition table of a three-stage tandem line.

Jobs 
∞ B(k) 

C 
• 

 
M(k) • 

 

CREATE <ta> SERVE (k) <t[k]> 

k k 

k 1 

k+1 

(k<3) 

(k ≡ 3) 

~ 

~ 

No Activity
At-begin BTO-event At-end 

Condition Action Time Name Arc Condition Parameter Action Infl. Act. 

Initialize Initial Marking = {C=1, B[k]=0 for k=1~3, M[k]=1 for k=1~3};  Enabled Activities = {CREATE} 
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If (At-begin Condition) {
At-begin Action;
Schedule-event (Event Name, Clock + Time, Parameter); }

Similarly, a parameterized event routine is built from the data (At-end 
Condition, At-end Action, Parameter, and Influenced Activity) of the activity 
transition table as follows:

If (At-end Condition) {
At-end Action;
Store-activity (Influenced Activity, Parameter); }

The above statement is repeated for each At-end arc.
Activity and event routines for the CREATE activity are also listed below:

Fig. 10.10.  Building activity and event routines in the P-ACD simulator.

No Activity
At-begin BTO-event At-end 

Condition Action Time Name Arc Condition Parameter Action Influenced Activity 

Execute-SERVE-activity-routine (Clock, k) 
   If (B[k]>0 & M[k]>0) { 
       B[k]--; M[k]--;  // At-begin Action 
       Schedule-event (SERVED, Clock + t[k], k);  
   } 

Execute-SERVED-event-routine (k) 
   If (True) { M[k]++; // At-end Action 
                   Store-activity (SERVE, k); } 
   If (k < 3) { B[k+1]++; // At-end Action 
                    Store-activity (SERVE, k+1); } 

Fig. 10.9.  P-ACD simulator for the three-stage tandem line.

CAL 

FEL 
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Execute-CREATE-activity-routine (Clock)
If (C > 0) { // Check the at-begin condition

C−−; // Execute the At-begin action
Schedule-event (CREATED, Clock  +  ta, −); } // Schedule the BTO-

event
Execute-CREATED-event-routine ()

If (True) { C++; Store-activity (CREATE, −); } // At-end-action & 
Influenced-activity of Arc-1

If (True) { B[1]++; Store-activity (SERVE, 1); } // At-end-action & 
Influenced-activity of Arc-2

A complete list of C# codes for the three-stage tandem line ACD simulator 
may be found in the official website of this book (http://VMS-technology.com/
Book/ACDSimulator).

Exercise 10.2. Write a P-ACD simulator program (in pseudocode) for the 
conveyor-driven serial line model specified in Table 6.11 of Chapter 6.

10.2.5  Collecting Statistics

As discussed in Chapter 4 (see Section 4.7.5), the average queue length (AQL) 
statistics can be collected as follows. Let {Tj} denote the queue length change 
times, then the jth queue length change interval becomes Δj = Tj+1 − Tj. Let Qj 
be the queue size during Δj, then we have SumQ = Σ(Qj × Δj) and AQL = SumQ 
/ Σ(Δj) ≡ SumQ / CLK.

Figure 10.11 shows additional statements that are added in the main 
program to collect statistics on the AQL. We want to compute the AQL of 
each buffer B[k]. The previous queue length change time of B[k] is denoted 
by Before[k]. At the very beginning of the main program, SumQ[k] and 
Before[k] are reset. Then, at the start of the statistics phase, SumQ[k] are 
updated and AQL[k] are computed. As can be seen in Fig. 10.12, the interme-
diate values of SumQ[k] are collected at the CREATED event routine, 
SERVE activity routine, and SERVED event routine.

Fig. 10.11.  Statements added at the main program for computing AQL.

http://VMS-technology.com/Book/ACDSimulator
http://VMS-technology.com/Book/ACDSimulator
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Fig. 10.12.  Statements for collecting AQL statistics at individual routines.

Collecting sample statistics of individual entities is more involved. In order 
to collect sojourn time statistics, each entity is provided with a record contain-
ing its attribute values such as the arrival time, departure time, and entity type. 
It is an important issue in designing a simulator but will not be elaborated 
further in this book.

10.3  MODELING WITH CANCELING ARC

In Chapter 4, it was shown that the use of a canceling edge in an event graph 
proved to be quite convenient when modeling reneging, resource failure, and 
time-constrained processing. In this section, we will show that the role of a 
canceling arc in an ACD model is the same as that of a canceling edge in an 
event graph model.

Figure 10.13(a) shows an event graph with a canceling edge denoted by  
the dashed arrow. As described in Chapter 4 (Section 4.3.1), the event  
graph indicates that “whenever the originating event E1 occurs, the state 
changes to fE1(s). Then, if the edge condition c1 is true, the scheduled event 
E2 is canceled immediately.” Shown in Fig. 10.13(b) is an ACD with a canceling 
arc denoted by a circle-tailed arrow. This ACD indicates that “whenever the 
originating activity A2 is completed, the target activity A1 is canceled if it is 
active.”

Fig. 10.13.  (a) Canceling edge in event graph and (b) canceling arc in ACD.

A2 
<t2> 

Q1 A1 
<t1> E1 E2 

(b) (a) 
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10.3.1  ACD Model of Single Server System with Reneging

As discussed in Chapter 4 (Section 4.4.1), customers waiting for a service in a 
line may choose to leave the line if they have waited too long, which is called 
reneging in queuing theory. Figure 10.14 shows an event graph model and an 
ACD model of a single server system with reneging, where the customer would 
not wait in line more than tw minutes.

In the ACD model, Q denotes the number of customers waiting in the 
queue. Customers are created with an inter-arrival time of ta and are processed 
by the server with a service time of ts. An arriving customer is put into the 
queue Q, and at the same time, a clone of the customer is put into the queue 
W if no servers are idle (i.e., M ≡ 0). The clone arrived at the queue W is 
immediately put into the Wait activity where it is processed for tw minutes. 
Observe that Q is equal to the number of clones residing in the Wait activity. 
At the end of the Process activity, the oldest clone residing in the Wait activity 
is deleted if there exists any (Q > 0). The ACD model of Fig. 10.14(b) is speci-
fied in the activity transition table of Table 10.2.

TABLE 10.2.  Activity Transition Table of the Reneging ACD Model in Figure 10.14(b)

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Influenced 

Activity

1 Create (C > 0) C−−; ta Created 1 true Q++; Process
2 true C++; Create
3 (M≡0) W++; Wait

2 Process (Q > 0) & 
(M > 0)

Q−−; 
M−−;

ts Processed 1 true M++; Process
2 (Q > 0) cancel; Wait
3 true — —

3 Wait (W > 0) W−−; tw Waited 1 true R++; Renege
4 Renege (R > 0) & 

(Q > 0)
R−−; 

Q−−;
0 Reneged 1 true — —

Initialize Initial Marking = {C = 1, M = 1, Q = 0, W = 0, R = 0}; Enabled 
Activities = {Create}

Fig. 10.14.  (a) Event graph and (b) ACD of a single server system with reneging.
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10.3.2  ACD Model of Resource Failure

Figure 10.15 shows an ACD model of the single server system with resource 
failure whose event graph model was presented in Chapter 4 (see Fig. 4.13 in 
Section 4.4.1). It is a single server system (ta =  inter-arrival time; ts = service 
time) augmented with resource failures (tf  =  interfailure time) and repairs 
(tr = repair time). The completion of a Fail activity will cancel a Process activity 
(if it is active) in addition to triggering a Repair activity to start. Observe that 
the arc multiplicity from queue R to activity Process is zero. This model assumes 
that a resource may fail even when it is idle and that the interrupted job due to 
failure is discarded without reprocessing. The activity transition table of the 
failure-repair ACD model is given in Table 10.3. Observe in the table that the 
resource is set to idle (M++) after canceling an active Process activity.

Fig. 10.15.  ACD of a single server system with resource failure.

Jobs 
∞ 

C 
• 

Q Process <ts> Create <ta> 

M 
• 

Repair <tr> Fail <tf> 
 

F 
• 

E 

R • 
0 (M≡0) 

TABLE 10.3.  Activity Transition Table of the Resource Failure ACD Model

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Influenced 

Activity

1 Create (C > 0) C−−; ta Created 1 true C++; Create
2 true Q++; Process

2 Process (Q > 0) & 
(M > 0) 
& (R > 0)

Q−−; 
M−−;

ts Processed 1 true M++; Process
2 true — —

3 Repair (R > 0) & 
(E > 0)

R−−; 
E−−;

tr Repaired 1 true R++; Repair, 
Process

2 true F++; Fail
4 Fail (F > 0) F−−; tf Failed 1 true E++; Repair

2 (M≡0) M++; 
cancel;

Process

Initialize Initial Marking = {C = 1, M = 1, Q = 0, R = 1, F = 1, E = 0}; Enabled 
Activities = {Create, Fail}
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Fig. 10.16.  ACD model of two-stage line with time-constrained processing.
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10.3.3  ACD Model of Time-Constrained Processing

Figure 10.16 shows an ACD model of a time-constrained processing system 
whose event graph model was presented in Chapter 4 (see Fig. 4.18 in Section 
4.4.2). It is a two-stage tandem line where a job that had been processed on 
the first machine (M1) must be processed on the second machine (M2) within 
td minutes. Otherwise, the job is discarded.

Referring to Fig. 10.16, a job that has completed its processing at M1 is put 
into the queue Q2, and at the same time, a clone of the job is put into the 
queue D if the second machine is busy (i.e., M2 ≡ 0). The clone in the queue 
D is immediately put into the Decay activity where it is processed for td 
minutes. At the end of the Process2 activity, the oldest clone residing in the 
Decay activity is deleted if Q2 > 0 (Q2 is equal to the number of clones resid-
ing in the Decay activity). The ACD model of Fig. 10.16 is specified in the 
activity transition table of Table 10.4.

10.3.4  Execution of Canceling Arc

Figure 10.17 shows how to build an event routine for the Fail activity appear-
ing in Table 10.3. The At-end Action Cancel in the activity transition table is 
implemented with the event-handling function Cancel-event () that was intro-
duced in Chapter 4 (Section 4.7.1). Other activity routines and event routines 
are implemented the same way as described in Section 10.2.

Exercise 10.3. Write an activity routine and an event routine for the 
Process2 activity appearing in Table 10.4.

10.4  CYCLE TIME ANALYSIS OF WORK CELLS VIA AN ACTIVITY 
CYCLE DIAGRAM

Work cells play a key role in lean manufacturing that is widely accepted in 
industries. The physical configuration of a lean manufacturing system is a 
linked work-cell system [Black and Hunter 2003]. Popular types of work cells 
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include robot work cells in the mechanical industry, hoist plating lines used in 
the PCB (printed circuit board) industry, and cluster tools in semiconductor 
industry. A key issue in work-cell design is to estimate or reduce its cycle time. 
This section shows how ACD-based modeling can be used in the performance 
analysis of work cells.

10.4.1  Cycle Time Analysis of Single-Armed Robot Work Cell

Figure 10.18 shows a robot work cell [Asfahl 1992] in which a single-armed 
robot performs loading and unloading operations for three machines. Each 
machine unloads its finished job before loading a new job. The in-port and 
out-port are designated as S0 and S4, and the machines as S1, S2, and S3. A 
job is introduced at the in-port S0, goes through the machines, and is dropped 
at the out-port S4.

TABLE 10.4.  Activity Transition Table of the ACD Model in Figure 10.16

No Activity

At-begin BTO-event At-end

Condition Action Time Name Arc Condition Action
Influenced 

Activity

1 Create (C > 0) C−−; ta Created 1 true C++; Create
2 true Q1++; Process1

2 Process1 (Q1 > 0) & 
(M1 > 0)

Q1−−; 
M1−−;

t1 Processed1 1 true M1++; Process1
2 true Q2++; Process2
3 (M2≡0) D++; Decay

3 Process2 (Q2 > 0) & 
(M2 > 0)

Q2−−; 
M2−−;

t2 Processed2 1 true M2++; Process2
2 (Q2>0) Cancel; Decay
3 true — —

4 Decay (D > 0) D−−; td Decayed 1 true R++; Return
5 Return (R > 0) & 

(Q2 > 0)
R−−; 

Q2−−;
0 Returned 1 true — —

Initialize Initial Marking = {C = 1, M1 = 1, M2 = 1, Q1 = Q2 = D = R = 0}; Enabled 
Activities = {Create}

Fig. 10.17.  Event routine for the Fail activity in the resource failure model.

No Activity 
At-begin BTO-event At-end 

Condition Action Time Name Arc Condition Action Influenced Activity 

4 Fail (F>0) F--; tf Failed 1 true E++; Repair 

2 (M≡0) M++; Cancel;  Process 

Initialize Initial Marking = {C=1, M=1, Q=0, R=1, F=1, E=0}; Enabled Activities = {Create, Fail} 

Execute-Failed-event-routine () 
   If (true) {E++; Store-activity (Repair)};  
   If (M≡0) {M++; Cancel-event (Processed)};  
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When all machines are full (i.e., loaded with jobs), the robot has to start its 
activity cycle by unloading (U3) the finished job from the last machine S3. 
Then, it carries (c4) the finished job to the out-port S4 to drop (L4) the finished 
job there, moves (m42) to machine S2 to unload (U2) the job, carries (c3) the 
unloaded job to machine S3 to load (L3) the job, and so on. The activity cycle 
of the robot is depicted in the operation sequence diagram of Fig. 10.19.

If you follow the operation sequence of the robot starting from S0, you will 
easily construct its ACD. Namely, the robot activity cycle is: U0(Pick) → c1 → 
L1 → m13 → U3 → c4 → L4(Drop) → m42 → U2 → c3 → L3 → m31 → U1 → c2 
→ L2 → m20. On the other hand, each machine is involved in loading (L) a 
new job, processing (P) the job, and unloading (U) the finished job. For 
example, S1 machine activity cycle is: L1 → P1 → U1. By adding the machine 
activity cycles to the robot activity cycle, we obtain an ACD of the robot work 
cell as shown in Fig. 10.20. The job activity cycle starts from Pick, and then it 

Fig. 10.18.  Robot work cell [Asfahl 1992].
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Fig. 10.19.  Operation sequence diagram of the robot in a three-stage work cell.
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goes to machines S1, S2, S3 and ends at Drop (i.e., U0 → c1 → L1 → P1 → U1 
→ c2 → . . . → U3 → c4 → L4 as indicated with the sequence of thick arrows in 
the figure).

There are four active resources in the work cell: robot (R) and three 
machines (S1, S2, and S3). Let Lk, Uk and Pk denote the loading, unloading 
and processing times at Sk (for k = 1, 2, 3), respectively, and mij and cj denote 
the move time (without carrying a job) and carry time of the robot from Si to 
Sj, respectively. Then, the work-cell cycle time (CT) is expressed as:

	 CT(Robot-cell) max{CT(R) CT(S ) CT(S ) CT(S )}= , , , ,1 2 3 	 (10.1)

where

	
CT(R) U U U U L L L L

c c c c m m m

= + + + + + + +
+ + + + + + +
{ } { }

{ } {
0 1 2 3 1 2 3 4

1 2 3 4 20 31 442 13+ m };
	

	 CT(S ) U U L L c c m P1 0 1 1 2 1 2 20 1= + + + + + + +{ } { } { } { } ; 	

	 CT(S ) U U L L c c m P2 1 2 2 3 2 3 31 2= + + + + + + +{ } { } { } { } ;	

	 CT(S ) U U L L c c m P3 2 3 3 4 3 4 42 3= + + + + + + +{ } { } { } { } , 	

where CT(R) is the robot cycle time and CT(Sk) denotes the cycle time of 
machine Sk.

10.4.2  Cycle Time Analysis of Single Hoist Plating Line

Shown in Fig. 10.21 is a hoist plating line [Chen et al. 1998] in which an auto-
mated hoist performs all the loading and unloading operations for a sequence 
of tanks. Tank0 (S0) is designated as the loading station and TankN+1 (SN+1) as 
the unloading station.

Let’s assume that N  =  3. Then, when all the operation tanks (S1–S3) are 
loaded with jobs, the hoist has to start its activity cycle by unloading (U3) the 
finished job from S3. Then, it carries (c4) the finished job to the unloading 
station S4 to drop (L4) the finished job there, makes a move m42 to tank S2 to 

Fig. 10.20.  ACD of the robot work cell.
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unload (U2) the job, carries (c3) the job to tank S3 to load (L3) the job, and so 
on. The operation sequence diagram is as shown in Fig. 10.22.

In fact, the behavior of the hoist line is exactly the same as that of the robot 
work cell, and the hoist operation sequence diagram in Fig. 10.22 is identical 
to the robot operation sequence diagram of Fig. 10.19. Thus, its ACD is the 
one given in Fig. 10.20. However, a hoist plating line has a time-constraint issue 
due to the nature of chemical treatments: the time a job spends in a tank is 
upper and lower bounded, which imposes time constraints on the hoist moves 
[Chen et al. 1998].

One type of time-constraints is immediate removal constraints, requiring 
that a processed job should be removed from the tank immediately. Namely, 
the hoist that had loaded (Lk) a job at Sk has to come back to be unloaded 
(Uk) no later than the actual processing time pk. Referring back to the ACD 
in Fig. 10.20, the immediate removal constraints for k = 1 ∼ 3 are expressed as:

	

m U c L m U c L m p

m U c L m U c L
13 3 4 4 42 2 3 3 31 1

20 0 1 1 13 3 4 4

+ + + + + + + + ≤
+ + + + + + + + mm p

m U c L m U c L m p
42 2

31 1 2 2 20 0 1 1 13 3

≤
+ + + + + + + + ≤ .

	 (10.2)

In order to reduce the expressional complexity, let’s assume that:

1.	 All the carry times are no less than a fixed value (γ);
2.	 Each processing time pk is bounded by its min value (αk) and max value 

(βk);
3.	 All the load/drop times are equal to a fixed value δ;
4.	 All the unload/pick times are equal to π;
5.	 All the move times are equal to μ.

Fig. 10.21.  Hoist plating line [Chen et al. 1998].
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Fig. 10.22.  Operation sequence diagram of the hoist in a three-stage line.
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Then, the hoist scheduling problem can be formulated as a minimization 
problem as follows [Chen et al. 1998]:

	 Minimize(max CT(Hoist) CT(S ) CT(S ) CT(S ) ){ , , , }1 2 3 	 (10.3)

	 CT(Hoist) c c c c= + + + + + +{ } { }4 4 4 1 2 3 4π δ µ 	

	 CT(S ) c c p1 2 2 1 2 1= + + + + +{ } { }π δ µ 	

	 CT(S ) c c p2 2 2 2 3 2= + + + + +{ } { }π δ µ 	

	 CT(S ) c c p3 2 2 3 4 3= + + + + +{ } { }π δ µ 	

Decision variables: p1, p2, p3, c1, c2, c3, c4

Subject to:

(1)	 Time window constraints: αk ≤ pk ≤ βk for k = 1 to 3
(2)	 Carry time constraints: γ ≤ ck for k = 1 to 4
(3)	 Immediate removal constraints:

	 { } { }2 2 3 3 4 1π δ µ+ + + ≤+c c p 	

	 { } { }2 2 3 1 4 2π δ µ+ + + + ≤c c p 	

	 { } { }2 2 3 1 2 3π δ µ+ + + + ≤c c p 	

If the hoist scheduling problem (Eq. 10.3) does not produce a feasible solu-
tion, another scheduling may be generated with a reduced load factor and the 
resulting hoist scheduling problem is formulated and solved. The load factor 
of the operation sequence in Fig. 10.22 is 3/3 (or 100%) because three tanks 
out of three tanks are occupied by the job initially. Figure 10.23 shows an 
operation sequence diagram with a reduced load factor (=2/3) where the 
second tank S2 is not occupied initially.

If you follow the operation sequence diagram in Fig. 10.23 starting from S1, 
you will easily construct the hoist activity cycle: U1 → c2 → L2 → m23 → U3 
→ c4 → L4(Drop) → m40 → U0(Pick) → c1 → L1 → m12 → U2 → c3 → L3 → 
m31. As before, each tank (Sk) is involved in loading (Lk), processing (Pk), and 
unloading (Uk). From these individual activity cycles, an ACD like the one 
given in Fig. 10.20 may be obtained. Hoist scheduling problems have been 
widely studied and a comprehensive survey is available in the literature 
[Manier and Bloch 2003].

Fig. 10.23.  Operation sequence diagram of the hoist with a reduced load factor.
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Exercise 10.4. Build an ACD for the operation sequence diagram given in 
Fig. 10.23.

10.4.3  Cycle Time Analysis of Dual-Armed Robot Cluster Tool

Figure 10.24 shows a cluster tool in which a dual-armed robot performs swap-
ping operations [Kim et al. 2003]. The cluster tool consists of several processing 
chambers, an aligner and cooler, two load-locks, and a dual-armed robot. A 
serial wafer flow is depicted in Fig. 10.24(a) and a serial-parallel wafer flow in 
Fig. 10.24(b). Shown in Fig. 10.24(c) is the physical image of the cluster tool.

In the 3-step 3-chamber serial flow of Fig. 10.24(a), the robot picks up a job 
at the load-lock A, and it carries the job to chamber C1 to swap the new job 
with a finished one. Then, it goes to C2 to make another swapping, and so on. 
It completes its activity cycle by dropping the completed job at the load-lock 
B. The robot’s move (m) from B to A may be neglected as its time duration 
is negligible.

Figure 10.25(a) shows an operation sequence diagram for the serial flow 
case where each job is processed in C1, C2, and C3 in series. Figure 10.25(b) 

Fig. 10.24.  Cluster tool with dual-armed robot [Kim et al. 2003].
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Fig. 10.25.  Operation sequence diagram: (a) serial flow, (b) serial/parallel flow.
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shows an operation sequence diagram for a 2-step 3-chamber serial-parallel 
flow case where the first processing step is handled by two chambers (C1 and 
C2) and the second step is covered by one chamber (C3). The serial-parallel 
flow is used when the processing time of the first step operation is much larger 
than that of the second step. The flow of odd-number jobs (Pick-c1-c2-c6-Drop) 
is denoted by a thin arrow and that of even-number jobs by a thick arrow.

Figures 10.26 and 10.27, respectively, show ACDs for the 3-chamber serial 
flow of Fig. 10.25(a) and the 3-chamber serial-parallel flow of Fig. 10.25(b). 
The activity names and durations are: c1 − c6 = carry; Sk = swap at chamber k; 
Pk = process at chamber k; σ = swapping time; δ = dropping time; π = picking-up 
time; μ = moving time. In both ACDs, there are four resource activity cycles. 
The cycle time of the cluster tool is determined by the maximum of the four 
activity cycles.

There are four resources in the ACD of Fig. 10.27: Robot (R), chamber-1 
(C1), chamber-2 (C2), and chamber-3 (C3). The activity cycle of the robot is 
the outer loop of the ACD and the activity cycles of C1 and C2 are simple 
loops as indicated in the ACD of Fig. 10.27. Thus, their cycle times are easily 
identified as:

	 CT(Robot) c c c c c c per two job= + + + + + + + + +{ } { }; / /2 4 2 2 1 2 3 4 5 6π σ δ µ 	
(10.4)

	 CT(C ) p per one job1 1= +σ ; / / 	

	 CT(C ) p per one job2 2= +σ ; / / 	

Fig. 10.26.  ACD for the serial flow operation of Fig. 10.25(a).
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Fig. 10.27.  ACD for the serial/parallel flow operation of Fig. 10.25(b).
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However, as depicted in Fig. 10.28, the cycle time of chamber-3 (C3) are 
constrained by three loops: The inner loop (S3a → P3a → S3b → P3b), A-loop 
(S3a → P3a → S3b → c6 → . . . → c2), and B-loop (S3a → c3 → Drop-b→ . . . → 
c5 → S3b → P3b). Thus, the cycle time of C3 can be expressed as:

	 CT(C ) max{CT(A-loop) CT(B-loop) CT(Inner-loop)} per two3 = , , ; / /   jobs 	
(10.5)

	 CT A-loop 3 c c c p a( ) { } { }= + + + + + + +π σ δ µ 1 2 6 3 	

	 CT(B-loop) c c c p b= + + + + + + +{ } { }π σ δ µ3 3 4 5 3 	

	 CT Inner-loop p pa b( ) = + +2 3 3σ 	

As in the case of the hoist plating line, wafers in the cluster tool are subject 
to the same processing-time constraints. Thus, utilizing the results given in Eqs. 
10.4 and 10.5, the cluster tool scheduling problem may be formulated as an 
LP problem as follows [Kim et al. 2003]:

Minimize(max CT(Robot) CT(C ) CT(C ) CT(A) CT(B) CT(Inner-{ , , , , ,1 2 lloop) )} 	
(10.6)

	 CT(Robot) c c c c c c= + + + + + + + + +{ } { };2 4 2 2 1 2 3 4 5 6π σ δ µ 	

	 CT(C ) p1 2 1= +( );σ 	

	 CT(C ) p2 2 2= +( );σ 	

	 CT(A) c c c p a= + + + + + + +{ } { } ;π σ δ µ3 1 2 6 3 	

	 CT(B) c c c p b= + + + + + + +{ } { } ;π σ δ µ3 3 4 5 3 	

	 CT(Inner-loop) p pa b= + +2 3 3σ ; 	

Decision variables: p1, p2, p3a, p3b, c1, c2, c3, c4, c5, c6

Fig. 10.28.  Loops involved in the cycle time of chamber-3 (C3).
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Subject to:

1.	 Time window constraints: αk ≤ pk ≤ βk for k = 1, 2, 3a, 3b
2.	 Carry time constraints: γ ≤ ck for k = 1 ∼ 6
3.	 Immediate removal constraints:

	 { } { }2 3 2 21 2 3 4 5 6 1π σ δ µ+ + + + + + + + + ≤c c c c c c p 	

	 { } { }2 3 2 21 2 3 4 5 6 2π σ δ µ+ + + + + + + + + ≤c c c c c c p 	

	 { } { }π σ δ µ+ + + + + + ≤c c c p a3 4 5 3 	

	 { } { }π σ δ µ+ + + + + + ≤c c c p b1 2 6 3 	

Exercise 10.5. Formulate a cluster tool scheduling problem for the ACD in 
Fig. 10.26.

10.5  ACTIVITY CYCLE DIAGRAM MODELING OF A FLEXIBLE 
MANUFACTURING SYSTEM

Figure 10.29 shows a linear-type FMS consisting of four machining centers 
(MCT), a washing machine (WM), a coordinate measuring machine (CMM), 
three load/unload stations (LU), a stacker crane or automated guided vehicle 
(AGV), and a central buffer (CB). This FMS is a Mazatrol FMS, which is one 
of the most popular FMSs globally [Choi et al. 1996]. Each processing machine 
(MCT, WM, or CMM) is equipped with an input buffer (IB) and an output 
buffer (OB). In this section, we present a step-by-step procedure for building 
a P-ACD model of the FMS line in Fig. 10.29: ACD modeling of job flows, 
P-ACD modeling of job routing, P-ACD modeling of AGV dispatching, and 
P-ACD modeling of refixture operations.

Fig. 10.29.  Layout of the Mazatrol FMS.
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10.5.1  ACD Modeling of Job Flows in FMS

As depicted in the classical ACD model in Fig. 10.30, the flow of the jobs in 
the FMS is divided into entering, processing, and exiting phases. In the Enter-
ing phase, a job that has been loaded (Load) at an LU station is picked up by 
the AGV (Pick-LU), moved to the central buffer CB (LU2CB), and stored in 
the CB (Store0). The Processing phase begins with retrieving a job from the 
CB (Retrieve1), and then the job is moved to the IB of a machine (CB2IB), 
dropped on the IB (Drop-IB), fed into the machine (Feed), and processed by 
the machine (Process). The processed job is removed from the machine 
(Remove), picked up at the OB (Pick-OB), moved to the CB (OB2CB), and 
stored back in the CB (Store1).

A done job stored in the CB is sent out of the FMS line during the Exiting 
phase, which consists of retrieving the job from the CB (Retrieve0), bringing 
it to a LU station (CB2LU), dropping it in a LU station (Drop-LU), and 
unloading it (Unload). Also depicted in Fig. 10.30 are the activity cycles of the 
load/unload station (LU), central buffer (CB), and each machine’s input buffer 
(IB), output buffer (OB), and machine table (M). In Fig. 10.30, the number of 
active LU stations is assumed to be 2.

10.5.2  P-ACD Modeling of Job Routing in FMS

In an FMS, each job type has its own routing sequence, and attached to a job 
are its job-type (j) and current processing-step number (p). When a new job 
is stored in the central buffer, p is set to 1. Then, p is incremented by one every 
time the job completes a processing step.

Figure 10.31 shows a P-ACD model of job routes in the FMS. By comparing 
the P-ACD model in Fig. 10.31 with the classical ACD model in Fig. 10.30, we 
can see that (1) the activity nodes in the entering and exiting phases (which 
are now combined into the Handling phase) are parameterized with job type 

Fig. 10.30.  ACD modeling of job flows in the FMS of Fig. 10.29.
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j, (2) the Check activity node is parameterized by j and p, and (3) the activity 
nodes in the Processing phase are parameterized by j, p, and m.

For each job, its type j is assigned at the Load activity, and it is passed along 
up to the Store0 activity where the processing-step p is set to 1 and its param-
eters {j, p  =  1} are passed to the buffer queue B (j, p). Then, the machine 
number (m) for the p-th processing operation of a type j job is obtained at the 
Check activity by invoking the route function Route(j, p). The route function 
will return 0 (m = 0) if the job is done, otherwise it will return m > 0. When 
m > 0, the job with parameters {j, p, m} is stored in the new job queue N (j, p, 
m), and it is passed all the way to the activity node Store1 where the param-
eters {j, p+1} are passed to Check. If the job is done (i.e., m ≡ 0), it is stored in 
the finished job queue F (j) and passed along up to the activity node Unload.

Descriptions of major activity nodes of the P-ACD model in Fig. 10.31 are 
given in the following:

•	 Load (j): load a job and assign its job type j
•	 Pick-LU (j): pick up a job at an LU station
•	 LU2CB (j): move the job from an LU station to the CB
•	 Store0 (j): store the job at the CB
•	 Check (j, p): get m (machine number) and check
•	 Retrieve1 (j, p, m): retrieve a new job from the CB
•	 CB2IB (j, p, m): move the job from the CB to the IB (input buffer)
•	 Drop-IB (j, p, m): drop the job at the IB of machine m
•	 Store1 (j, p, m): store the processed job at the CB
•	 Retrieve0 (j): retrieve a finished job from the CB

Descriptions of queue nodes of the P-ACD model in Fig. 10.31 are also 
given in the following:

Fig. 10.31.  P-ACD modeling of job routing in the FMS.
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•	 E0: jobs to be released
•	 E1 (j): loaded jobs at the LU station
•	 B (j,p): buffered jobs at the CB
•	 F (j): finished jobs stored at the CB
•	 N (j, p ,m): new (unfinished) jobs stored at the CB
•	 CB: available slots in the CB
•	 IB (m): input buffer of machine m
•	 OB (m): output buffer of machine m
•	 M (m): machine table of machine m
•	 LU: available slots of load/unload stations

10.5.3  P-ACD Modeling of AGV Dispatching Rules in FMS

In the FMS, all job movements are handled by AGVs. As shown in Fig. 10.32, 
there exist four types of requests for AGV in an FMS: Request R1 to bring in 
a new job to a machine; request R2 to take out a processed job from a machine; 
request R3 to bring in a newly loaded job from the load/unload station to the 
central buffer; request F (tokens in the finished job queue) to take out a fin-
ished job from the central buffer. In general, request R1 has the highest prior-
ity because preventing machines from starving is most critical, request R2 has 
the next priority because preventing machines from blocking is also important, 
and request F has the lowest priority.

Descriptions of the activity nodes that are newly introduced for AGV dis-
patching in Fig. 10.32 are given in the following:

•	 Move2CB1 (j, p, m): AGV moves to CB to pick up a new job of type j at 
processing step p to bring it to IB(m).

•	 Move2OB (m): AGV moves to OB(m) to pick up a job that was pro-
cessed at m.

Fig. 10.32.  P-ACD modeling of AGV dispatching in the FMS.
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•	 Move2LU: AGV moves to LU station to pick up a new job.
•	 Move2CB0(j): AGV moves to CB to pick up a finished job of type j to 

bring it to LU station for unloading.

Descriptions of the queue nodes that are newly introduced for AGV dis-
patching in Fig. 10.32 are given in the following:

•	 R1 (m): request for AGV to bring in a new job to IB(m)
•	 R2 (m): request for AGV to take out a job from OB(m)
•	 R3: request for AGV to bring in a newly loaded job from LU station to 

CB
•	 F (j): finished job count acts as a request for AGV to take out a finished 

job from CB

Upon receiving R1(m), which is a request for AGV to bring in a new job 
(i.e., a job that is not finished) to machine m, the AGV performs the following 
actions: (1) moves to the central buffer after reserving a new job that is bound 
to machine m (Move2CB1) and (2) retrieves the reserved job (Retrieve1). 
Other types of requests are handled similarly.

By merging the AGV dispatching model in Fig. 10.32 into the job routing 
model in Fig. 10.31, a P-ACD model of the entire FMS operation is obtained 
as shown in Fig. 10.33. Note in Fig. 10.33 that there are four AGV activity 
cycles, one for each type of AGV requests. For example, the AGV activity cycle 
for request R1 is Move2CB1 → Retrieve1 → CB2IB → Drop-IB →. It should 
be also noted that the job activity cycle has been changed slightly: in Fig. 10.33, 
activity node Move2CB1 is inserted in the job activity cycle right after the 
queue node N, and Move2CB0 is inserted right after F.

Conceptually, the components of the P-ACD model in Fig. 10.33 can be 
aggregated into two handling and processing boxes as depicted in Fig. 10.34.

Fig. 10.33.  P-ACD modeling of the entire FMS operation.
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10.5.4  P-ACD Modeling of Refixture Operation and  
Heterogeneous FMS

In the FMS model in Fig. 10.34, there are three types of processing operations 
(machining, wash, and measuring). Machine numbers for machining are 
m = 1–4, for wash it is m = 5, and for measuring it is m = 6. A job that does 
not require a refixture operation goes through the routing sequence Load → 
Machining → Wash → Measuring → Unload. The P-ACD model in Fig. 10.33 
assumes that the activity cycle of the job does not contain a refixture operation. 
In this case, the FMS is a homogeneous FMS in which all the processing opera-
tions follow the same activity sequence given by:

	
Retrieve CB IB Drop-IB Feed

Remove Pick-OB OB CB S

→ → → →
→ → → →

2

2

Process

ttore.
	 (10.7)

In practice, jobs that require a refixture operation may go through the 
routing sequence Load→Machining1→Wash→Refixture→Machining2→Mea
suring→Unload. The refixture operation is performed at a LU station 
(m = 7–9), and its activity sequence is given by:

	 Retrieve CB LU Drop-LU Pick-LU LU CB Store→ → → → → →2 2Refix . 	
(10.8)

Figure 10.35 shows an aggregate P-ACD model of the Mazatrol FMS opera-
tions involving the refixture operation where individual components are 
aggregated into three boxes: handling box, processing box, and refixture box. 
Observe in Fig. 10.35 that the new job queue N in Fig. 10.34 has been divided 
into NP (the new job queue for processing) and NR (the new job queue for 
refixture). The machine-number set for processing machines is denoted by P 
and that for refixture machines by R, where P = {1, 2 . . . 6} and R = {7, 8, 9}.

The P-ACD model in Fig. 10.35 is in effect a heterogeneous FMS model 
supporting two different classes of processing operations: one class of process-
ing operations follows the activity sequence given by Eq. 10.7 and the other 
class follows Eq. 10.8. In this book, we use the term (processing) operation 
class for a set of (processing) operation types having the same activity sequence. 

Fig. 10.34.  Aggregate P-ACD model of the Mazatrol FMS without refixture.
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Here, the refixture operation is regarded as a class of processing operation. 
The aggregate P-ACD model in Fig. 10.35 provides a framework for building 
a generalized P-ACD model of heterogeneous FMSs.

Figure 10.36 shows the P-ACD model of the Refixture part in the aggregate 
P-ACD model in Fig. 10.35. Descriptions of the major activity nodes and queue 
nodes that are newly introduced in Fig. 10.36 are given in the following:

•	 Move2CB2 (j ,p, m): AGV moves to CB to pick up a new job of type j at 
processing step p to bring it to LU station m

•	 Retrieve2 (j, p, m): retrieve a new job from CB for refixture
•	 CB2LU2 (j, p, m): move the job from CB to LU station m
•	 Move2LU2: AGV moves to LU to pick up a refixed job
•	 R4: request for AGV to bring in a refixed job from LU

Handling (j) Processing (j, p, m) 
Check (j, p) 

B (j,p) 
 j, 1  j, p+1 

(m ≡ 0) 

j 
{ m = Route(j, p) } 

Refixture (j, p, m)  

(m  P) 

(m  R) 

 j, p+1 
 NP (j,p,m) F (j) 

 j, p, m  

 NR (j,p,m) 

Fig. 10.35.  Aggregate P-ACD model of the Mazatrol FMS with refixture operation.

Fig. 10.36.  P-ACD model of the refixture part in Fig. 10.35.
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A complete list of C# codes for the FMS simulator may be found in the offi-
cial website of this book (http://VMS-technology.com/Book/ACDSimulator).

10.6  FORMAL MODEL CONVERSION

This section presents methods of formal model conversion from ACD to EG 
(event graph) and SG (state graph) together with examples of converting ACD 
models into EG models and SG models.

10.6.1  Conversion of ACD Models to Event Graph (EG) Models

Methods of mapping timed Petri net (TPN) models into event graph models 
were investigated by Schruben and Yucesan [1994]. Recall that a classical ACD 
is a TPN. In principle, any ACD model may be converted into an EG model. 
The basic rules for a formal model conversion are:

1.	 An arc in the ACD model becomes an event node in the event graph 
(EG)

2.	 A token variable of ACD becomes a state variable of EG
3.	 A queue node K of ACD becomes a conditional edge of EG with (K > 0), 

preceded by an event node with K++ and succeeded by a event node 
with K−−

4.	 An activity node with duration td becomes a time-delay edge of EG with 
a time delay td

Figure 10.37 shows the basic conversion relations: (1) Arcs β, γ, δ are con-
verted to event nodes; (2) token variable J becomes a state variable; (3) queue 
node J, preceded by arc β and followed by arc γ, is converted to the conditional 
edge (J > 0), preceded by event β with {J++} and followed by event γ with {J−−}; 
(4) activity node Process <tp> is converted to the time-delay edge with tp.

Figure 10.38(a) shows an ACD-to-EG conversion template for the Job 
Creator model where the basic ACD-to-EG conversion rules are applied as 
follows:

1.	 ACD arcs (α and β) became event nodes (α and β) in the EG
2.	 Token variables C, S, and J became state variables

Fig. 10.37.  Basic relations for converting an ACD model into an event graph model.
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3.	 Queue node C became the edge β→α, having a condition (C  >  0) & 
(S > 0), with state update at node-α {C--, S--} and state update at node-β 
{C++, J++}

4.	 The Create activity with duration ta became the edge α→β having a time 
delay ta

Figure 10.38(b) represents an ACD-to-EG conversion template for the 
Machine model, which was also obtained by applying the basic ACD-to-EG 
conversion rules.

10.6.2  Conversion of ACD Models to State Graph (SG) Models

As mentioned earlier, an arc in an ACD model denotes an event; an entity 
queue (i.e., a queue node in an entity activity cycle) represents a passive 
resource; and a resource activity cycle represents an active resource. Thus, the 
basic ACD-to-SG conversion rules are:

1.	 An arc in the ACD model becomes an event message in the state graph
2.	 A token variable maps into a set of state nodes
3.	 An entity queue node is a passive resource and it becomes an object
4.	 A resource queue node becomes an external transition state node
5.	 An activity node becomes an internal transition state node
6.	 A resource cycle becomes an object (one object for each active resource)

Figure 10.39 shows an ACD-to-SG conversion template for the Job Creator 
model. The job creator model consists of the Source object and Creator object 

Fig. 10.38.  ACD to event graph conversion templates for (a) the Job Creator and (b) 
Buffer-Machine models.
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that are interacting with each other via the event messages α and β as depicted 
in Fig. 10.39(b). The Source object is a single state machine, which, upon receiv-
ing an input message β, decreases the value of S by one and sends out an 
output message α. However, since the value of S is infinite, an input message 
β always generates an output message α. Thus, the redundant Source object 
in Fig. 10.39(b) can be removed and the Job Creator model reduces to the 
single state atomic state graph model of Fig. 10.39(c).

Figure 10.40 shows an ACD-to-SG conversion template for the Buffer-
Machine model: the Buffer queue becomes an infinite state atomic state graph 
model “Buffer”; the Machine activity cycle becomes a two-state atomic state 
graph model “Machine”; the events β, γ, δ are used as messages in the state 
graph model. The initial states of the two atomic models in the state graph are 
Backlog (J = −1) and Idle (M = 1), respectively.

10.6.3  Examples of Formal Model Conversion

10.6.3.1  Examples of ACD-to-EG conversion  Figure 10.41 shows an 
ACD-to-EG (event graph) conversion example for a two-server model. The 
two-server model conversion of Fig. 10.41 is obtained by concatenating the 
two conversion templates in Fig. 10.38. It becomes a single server model con-
version case if M = 1, and a general multi-server model if M = n > 1.

Reproduced in Fig. 10.42(a) is the ACD model of the car repair shop given 
in Fig. 6.24 with an event name given to each arc of the ACD. If we apply the 
basic ACD-to-EG conversion rules given in Section 10.6.1 to the ACD model, 
a converted event graph is obtained as shown in Fig. 10.42(b).

Fig. 10.39.  ACD to state graph conversion template for the Job Creator model.
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Fig. 10.40.  ACD to state graph conversion template for the Buffer-Machine model.

M=1 

J Process 
<tp> γ δ 

 δ!

Machine 

Busy: 
∆(tp) 

Idle 
(M= 1) 0 J= –1 1 

Buffer 

Buffer 

Machine 

δ 

γ! γ? 

δ γ 

β 
 β?  β?  β? 

γ 

 δ?  δ?  δ? 
γ! γ! 

β 

ACD State Graph δ 



332    Advanced Topics in Activity-Based Modeling and Simulation

Fig. 10.41.  Converting a multi-server ACD model into an event graph model.
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Fig. 10.42.  Converting the car repair shop ACD model into an event graph model.
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10.6.3.2  Examples of ACD-to-SG conversion  As mentioned earlier, con-
verting an ACD model into a state graph (SG) model is not that simple. The 
basic ACD-to-SG conversion rules say that (1) an individual resource in the 
ACD becomes one object (i.e., an atomic model) in the state graph model, and 
(2) an entity queue node becomes one object. Thus, the ACD model in Fig. 
10.42(a) would result in a state graph model having seven objects (i.e., atomic 
models). In order to simplify the discussion somewhat, it is assumed that there 
are one technician and one repairman in the car repair shop.

Figure 10.43(a) shows the ACD model of the reduced car repair shop where 
it is highlighted that (1) Q1 is an entity queue node but Q2 and Q3 are resource 
queue nodes and (2) the in/out arcs of the shared activity (Inspect) are indi-
vidually identified (e.g., εR and εT). If we apply the basic ACD-to-SG conver-
sion rules given in Section 10.6.2 (as well as an additional rule) to the ACD 
model Fig. 10.43(a), a converted state graph may be obtained as shown in Fig. 
10.43(b).

Reproduced in Fig. 10.44(a) is the ACD model of a two-server system  
given in Fig. 10.41(a). Figure 10.44(b) shows an alternative representation of 
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Fig. 10.43.  (a) ACD model and (b) converted state graph model of the car repair shop.
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Fig. 10.44.  Two ACD models for the same two-server system given in Fig. 10.41(a).

Create 
<ta> 

 M = 2 

J 

S=∞ 

Process 
<tp> 

 α 

ACD 

β 

γ 
δ 

 α 

β 

γ δ 

  

Buffer Machine Creator 

Create 
<ta> 

 

M1=1 

J 

S=∞ 

Process 
<tp> 

 α 

ACD 

β 

γ 
δ 

 α 

β 

γ1 δ1 

  

Buffer Creator 

M2=1 
γ2 δ2 

(b)(a)

Fig. 10.45.  State graph model of a two-server system converted from the ACD model 
given in Fig. 10.44(b).
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multiple (identical) resources in which a separate queue is defined for each 
resource. Figure 10.45 shows a multi-server system state graph model corre-
sponding to the two-server (M = 2) ACD model given in Fig. 10.44(b). When 
M = 1, a single server system state graph model is obtained by concatenating 
the Creator model in Fig. 10.39 and the Buffer-Machine model in Fig. 10.40. 
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Fig. 10A.1.  Petri-net graph.
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If the number of machines becomes large, say M = 20, the state graph model 
would become quite complicated. In general, compared to the ACD-to-EG 
conversion, the ACD-to-SG conversion is harder to define. A conversion 
approach to developing a complex DEVS model is proposed in the literature 
[Choi et al. 2003].

APPENDIX 10A: PETRI NETS

Petri nets, which have been developed from the Carl Adam Petri’s doctoral 
dissertation Communication with Automata in 1962, were designed to model 
systems with interacting concurrent components [Peterson 1981]. Basics of the 
Petri net, together with its relationship to the ACD, will be described.

10A.1  Definitions of Petri Nets

A Petri net is defined either as a graph or as a structure. A Petri-net graph is 
a graphical representation of Petri net where a circle node represents a place, 
and a bar node represents a transition. Directed arcs connect the places and 
transitions. Figure 10A.1 is a Petri-net graph with four circle nodes and three 
bar nodes. Multiple arcs are allowed from one node to another. Thus, a Petri-
net graph is a bipartite directed multi-graph. Petri-net graph G is formally 
defined as:

Petri-net graph G V A= ( , )

1.	 V = 〈v1, v2 . . . vn〉 is a set of vertices
2.	 A = {a1, a2 . . . am} is a bag of directed arcs with ai = (vj, vk)
3.	 V = P∪T, where P is the set of places and T is the set of transitions
4.	 For each arc ai = (vj, vk), we need (vj∈P & vk∈T) or (vj∈T & vk∈P)

A Petri-net structure is a set theoretic representation of Petri net composed 
of a set of places (P), a set of transitions (T), an input function (I), and an 
output function (O). The input function I(tj) is a mapping from a transition tj 
to the input places of the transition, and the output function O(tj) maps a 
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transition tj to the output places of the transition. Petri-net structure S is for-
mally defined as:

	 Petri-net Structure S P T I O= , , , 	

1.	 P = {p1, p2 . . . pn}: a finite set of places
2.	 T = {t1, t2 . . . tm}: a finite set of transitions
3.	 I: T→P∞: input function (from transitions to bags of places)
4.	 O: T→P∞: output function (from transitions to bags of places)

For the Petri net of Fig. 10A.1, the components of the Petri-net structure 
are given by:

1.	 P = 〈p1, p2, p3, p4〉
2.	 T = 〈t1, t2, t3〉
3.	 I(t1) = {p1, p2, p3}, I(t2) = {p4}, I(t3) = {p3}
4.	 O(t1) = {p1}, O(t2) = {p2, p2, p3}, O(t3) = {p4}

10A.2  Petri-Net State and Execution

The state of a Petri net is defined by its marking μ, which is an assignment of 
tokens to the places of a Petri net. Tokens are assigned to the places and can 
be thought to reside in the places. A Petri net with marking is called a marked 
Petri net which is formally defined as:

A marked Petri-net M = (P, T, I, O, μ) is defined by a Petri-net structure S and a 
marking μ.

Shown in Fig. 10A.2 is a marked Petri-net graph with a marking μ = (1, 0, 
1, 0). The state space of a Petri-net with n places is the set of all markings Nn. 
The state change of Petri net is defined by a change function (δ), called the 
next-state function, which is defined as [where #(e, B) denotes number of occur-
rences of “e” in the bag B]:

The next-state function (δ: Nn × T → Nn) for a marked Petri-net M and transition 
tj is defined iff μ(pi) ≥ #(pi, I(tj)) for all pi ∈ P. If δ(μ, tj) is defined δ(μ, tj) = μ′, 
where μ′(pi) = μ(pi) + #(pi, O(tj)) − #(pi, I(tj))

In the marked Petri net of Fig. 10A.2, the transition t3 is enabled with the 
current marking μ = (1, 0, 1, 0). After firing t3, the new marking μ′ = (1, 0, 0, 
1). The execution of a Petri net is controlled by tokens: It executes by firing 
transitions; a transition fires by removing tokens from its input places and 
creating new tokens that are distributed to its output places. A transition may 
fire if it is enabled. A transition is enabled if each of its input places has at 
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Fig. 10A.3.  (a) ACD and (b) its Petri net.
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least as many tokens as arcs from the place to the transition, which may be 
formally stated as:

A transition tj∈T in a marked Petri-net M = 〈P, T, I, O, μ〉 is enabled if for all pi ∈ 
P, μ(pi) ≥ #(pi, I(tj)).

10A.3  Extended Petri Nets and the ACD

The modeling power of the “standard” Petri net is not enough for modeling 
“real-life” systems. Thus, extended Petri nets have been proposed such that

1.	 The firing of transitions takes time (timed Petri net)
2.	 Tokens have different attributes (colored Petri net)
3.	 Firing is based on zero-testing (Inhibitor arc)
4.	 A token may branch based on condition (Test arc), etc.

The original ACD having no arc attributes is by definition a timed Petri net 
without multiple arcs. Figure 10A.3 shows the single server system ACD (Fig. 
10.2) together with its Petri-net graph.

An extended ACD with arc conditions (see Section 6.2.2 of Chapter 6) is 
a timed Petri net with zero testing. Zero testing decreases the decision power 
of Petri nets such as deadlock detection, but it increases the modeling power 
of Petri nets. In fact, a Petri net with zero testing produces a modeling scheme 
capable of modeling a Turing machine [Peterson 1981]. Thus, a Petri net with 
zero testing can model any discrete-event system that can be represented in a 
digital computer; so can the extended ACD with arc conditions.

Fig. 10A.2.  Marked Petri net.
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10A.4  Restricted Petri Nets

There are special types of Petri nets that have some restrictions in terms of 
number of tokens in a place or number of arcs associated with a place. A Petri 
net in which a place is not allowed to have multiple tokens and has times 
associated with it is called a p-time Petri net [Khansa et al. 1996]. Thus, an ACD 
without queues having multiple tokens is easily converted to a p-time Petri 
net by converting each activity of ACD to a place of Petri net and each queue 
to a transition as depicted in Fig. 10A.4. A Petri net in which each place has 
exactly one input and output arc is called an event graph, and an event graph 
with timed transitions is referred to as a timed event graph. The Petri net shown 
in Fig. 10A.3(b) is a timed event graph. These restricted Petri nets are mostly 
used in scheduling of cyclic systems such as cluster tools [Kim et al. 2003] and 
cyclic flow shop [Ren et al. 2005].

10A.5  Modeling with Petri Nets

Modeling with Petri nets by itself is a huge area, and it is one of the most 
intensively investigated subjects. An excellent treatment of the subject is given 
in Peterson [1981], and there are a number of books such as Dicesare et al. 
[1993] dealing with Petri-net modeling. There have been annual conferences 
on the applications and theory of Petri nets since 1980. However, as far as the 
art of M&S of industrial systems is concerned, modeling with Petri nets in 
most cases does not seem to be “natural” compared to modeling with one of 
the “world-view” formalisms (i.e., event graph, ACD, and finite state machine) 
even though there are certain cases where modeling with Petri nets is more 
natural [Peterson 1981].

An alternative approach to modeling with Petri nets may be to construct a 
formal model in other forms such as event graph, ACD, or finite state machine 
and convert it into a Petri-net model. A Petri-net model may be constructed 
from an event graph model by using the event-condition method of Petri-net 
modeling [Peterson 1981]. Also, a method of building a Petri-net model from 
a finite state machine is given in Peterson [1981]. An ACD model, perhaps 
except a parameterized ACD, is trivially converted into a timed Petri-net 
model.

Fig. 10A.4.  (a) ACD and (b) p-time Petri net.
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CHAPTER 11

Advanced Event Graph Modeling for 
Integrated Fab Simulation

In the practice of tolerance, one’s enemy is the best teacher.
—Dalai Lama

11.1  INTRODUCTION

Production simulation, often referred to as simulation-based scheduling, is 
widely accepted in the high-tech industry, which covers the semiconductor and 
flat panel display (FPD) industries. Detailed simulation of automated material 
handling systems (AMHS) is also widely adopted in the high-tech industry 
[Wang and Lin 2004]. Among the commercial simulation packages, AutoSched 
AP® (ASAP) seems to be the most popular tool for production simulation 
[Gan et al. 2007], while AutoMod® is reported to be most popular in material 
handling simulation [Kim et al. 2009].

On the other hand, there has been a growing need for an integrated simula-
tion where production simulation is carried out together with detailed material 
handling simulation. To meet this need, a software module called MCM® 
(Model Communication Module) has been developed, which provides socket-
based communication between ASAP and AutoMod. With MCM®, IBM had 
developed the AMHS-embedded integrated simulation system depicted in Fig. 
11.1(a) in which ASAP’s fabrication process models for production simulation 
can communicate with AutoMod’s material handling models for AMHS simu-
lation [Norman et al. 1999]. INTEL also developed a similar system as depicted 
in Fig. 11.1(b), which was reported to have been applied successfully [Pillai  
et al. 2004].

This chapter presents a detailed procedure for developing an AMHS-
embedded integrated Fab (fabrication line) simulation software system similar 

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and 
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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to the INTEL’s system depicted in Fig. 11.1(b). The authors’ team had a chance 
to develop IFS®, an AMHS-embedded integrated Fab simulation software 
system, with a couple of FPD manufacturers in Korea.

The rest of the chapter is organized as follows. A brief description of FPD 
fabrication systems is provided in Section 11.2. An object-oriented event graph 
modeling framework for a production simulation of FPD Fab is given in 
Section 11.3, followed by Section 11.4 on the framework for integrated simula-
tion of production and material handling in a FPD Fab. A comprehensive pro-
cedure for developing an AMHS-embedded integrated simulator is described 
in Section 11.5 where a prototype system named IFS® is introduced.

11.2  FLAT PANEL DISPLAY FABRICATION SYSTEM

In this section, a brief description of the FPD fabrication system is provided. 
First, an overview of FPD Fab is given followed by a schematic description of 
processing equipment in a typical FPD Fab. Configurations of material han-
dling system hardware and software are also briefly described.

11.2.1  Overview of FPD Fab

In a typical thin-film transistor liquid crystal display (TFT-LCD) fabrication 
line (called Fab for short), a large number of product types are produced 
concurrently, 24 hours a day, 365 days a year. The fabrication process of 
TFT-LCD is similar to that of semiconductor wafer: It basically is a series of 
layer patterning operations. In a modern TFT-LCD Fab, glasses go through 
approximately four to five patterning cycles to form TFTs on the surface of 
each glass. Each patterning cycle usually consists of deposition, cleaning, pho-
tolithography, etching, stripping, and inspection. Fabrication of a typical TFT 

Fig. 11.1.  AMHS-embedded integrated simulation by (a) IBM and (b) INTEL.
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requires approximately 30 to 40 steps and its turn-around time (i.e., sojourn 
time) is about 48 hours.

Figure 11.2(a) shows a schematic view of a modern TFT-LCD Fab layout 
where processing equipment cells are attached to inline stockers (there are 14 
of them in the figure) that are connected via conveyors. Figure 11.2(b) is an 
animation picture of a TFT-LCD Fab.

11.2.2  FPD Processing Equipment

As described in Chapter 4 (see Section 4.5.5), the jobs in a TFT-LCD Fab are 
glasses that go through the processing equipment in batches with each batch 
(or lot) stored in a cassette. According to their material handling characteris-
tics, the processing equipment in a FPD Fab can be classified into four types: 
uni-inline cell, bi-inline cell, oven type equipment, and chamber type 
equipment.

Figure 11.3 shows a schematic view of a uni-inline type processing equip-
ment cell called a uni-inline cell. A cassette with new glasses that is stored in 
the stocker queue (Q) is loaded on a slot (or port) in the I/O port queue (B), 
which is called Cassette Loading. The glasses are then loaded into the inline 

Fig. 11.2.  (a) Layout and (b) animation screen of TFT-LCD Fab.
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cell using the track-in robot, with one glass being loaded at every takt time 
(τ), which is called Glass Loading. It takes a flow time (π) for a glass to reach 
the end of the cell where it is unloaded into the unloading cassette located at 
the I/O port queue. The unloading cassette departs when it is filled with fin-
ished glasses.

Figure 11.4 shows a schematic view of a bi-inline cell. The bi-inline cell can 
be divided into the cassette-loading section and cassette-unloading section. 
The behavior of a bi-inline cell is the same as that of a uni-inline cell, except 
the in-port is located in one inline stocker and the out-port is located in 
another inline stocker. As a result, a mechanism for handling empty cassettes 
has to be provided. (If no empty cassettes are available at the out-port, the 
finished glasses cannot be unloaded.)

Figure 11.5 shows a schematic view of oven type equipment. The cassette 
loading and cassette departure in the oven type equipment are the same as 
those in the uni-inline cell. However, in the oven type case, all the glasses in 
a cassette are loaded together to process the batch (of size b) for a given 
processing time (π), and then the oven is cleared. The last type is the chamber 
type equipment consisting of parallel processing chambers, input buffer, output 
buffer, I/O port, and a track-in robot. At the I/O port, glasses in a cassette are 
moved into the input buffer from which the glasses are loaded into and 
unloaded from the processing chambers. The finished glasses are unloaded 
from the chambers into the output buffer and then moved into the cassettes 
in the I/O port.

Fig. 11.4.  Schematic view of a bi-inline cell.
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11.2.3  Material Handling System

Figure 11.6 shows a schematic view of the material handling hardware in an 
FPD Fab. The AMHS (automated material handling system) in an FPD Fab 
is a network of inline stockers connected via conveyors (as well as via bi-inline 
cells). An inline stocker has a number of shelves that are used as stocker 
buffers (for temporarily storing cassettes), stocker in-ports (for receiving a 
cassette from an incoming conveyor), stocker out-ports (for sending a cassette 
to an outgoing conveyor), equipment (EQP) I/O ports, etc. Material handling 
in an inline stocker is performed by one or two stacker cranes.

A schematic view of a material handling control software system in a 
modern Fab is given in Fig. 11.7. Decisions regarding where-next (destination 
equipment) selection and what-next (input jobs) selection are made by the 
RTD (real-time dispatcher), while route planning and handling equipment 
scheduling are performed by the MCS (material control system) in the Fab. 
These decisions are made based on the current states of the Fab, and they have 

Fig. 11.6.  Schematic view of material handling hardware in an FPD Fab.
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to be made in real time. The software system that provides the real time Fab 
data is called an MES (manufacturing execution system).

11.3  PRODUCTION SIMULATION OF A FLAT PANEL DISPLAY FAB

A flat panel display (FPD) Fab is a job shop consisting of different types of 
processing equipment. Such a job shop is often referred to as a heterogeneous 
job shop or a mixed job shop. As described in the previous section, the four 
types of processing equipment are widely found in a FPD Fab: uni-inline cell, 
bi-inline cell, chamber type equipment, and oven type equipment. In this 
section, we present an object-oriented event graph modeling approach to 
developing a production simulator for a FPD Fab consisting of uni-inline cells 
and oven type equipment. (The integrated Fab simulator IFS® covers all the 
four equipment types, but the remaining types are excluded to simplify the 
explanation.)

11.3.1  Modeling of Uni-Inline Job Shop

A job shop consisting of uni-inline cells is called a uni-inline job shop. Figure 
11.8 shows a parameterized event graph model of a job shop consisting of 
uni-inline cells whose reference model is depicted in Fig. 11.3. It is a simplified 
version of the uni-inline job shop model introduced in Chapter 5 (see Fig. 5.21 
in Section 5.5.3) obtained by removing the Arrive and Exit event nodes and 
the job-type variable JT[u] from the original model in Fig. 5.21. As described 
in Section 5.5.3 of Chapter 5, the state variables in the model are as follows:

•	 Q[u]: Stocker queue of cassettes {(j, p)} in the uni-inline cell (u)
•	 B[u]: I/O-Port queue of cassettes {(j, p)} in the uni-inline cell (u)
•	 E[u]: number of empty ports (shelves) in the I/O Port of a uni-inline  

cell (u)
•	 R[u]: status of the track-in robot of a uni-inline cell (u)

Fig. 11.8.  Event graph model of a uni-inline job shop (from Fig. 5.21).
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In Fig. 11.8, the array variables t1[j, p, u] and π[j, p, u] denote the cycle time 
for a cassette of glasses and the flow time of the cell, respectively. The en-queue 
operation is expressed as (j, p) → Q[u] and de-queue operation as Q[u] → 
(j, p). The arrays delay[] and route[] are used for obtaining the move time-
delay (td) and the next route (un).

In order to provide a more compact model description, the cassette object 
and the port object in a uni-inline cell (u) are declared as record variables cst 
and P[u] as summarized in Table 11.1. The admissible states of a port in the 
I/O Port are: occupied by a full cassette (f); occupied by an empty cassette (e); 
not occupied but reserved (rx); not occupied nor reserved (x); depart-reserved 
(dr). An empty cassette may contain processed glasses (but no unprocessed 
ones). The following port-state update functions are used in updating the state 
of a port (e.g., P[u](f →e): If (P[u].f>0){ P[u].f−−; P[u].e++})

•	 P[u](rx →f): change the state of a port from reserved to full-cassette
•	 P[u](f →e): change the state of a port from full-cassette to empty-cassette
•	 P[u](e →x): change the state of a port from empty-cassette to no-cassettes
•	 P[u](x →rx): change the state of a port from no-cassette to reserved

Figure 11.9 shows an encapsulated event graph model of the uni-inline job 
shop obtained from the event graph of Fig. 11.8. In order to encapsulate a 
group of events into an event object, a mirror event is created for each bound-
ary event at the receiving side. In Fig. 11.8, CL and Move are receiving side 
boundary events. Thus, their mirror events CL* and Move* are introduced in 
the encapsulated event graph.

Figure 11.9 employs en-queue functions (e.g., cst→ Q[u]), de-queue func-
tions (e.g., Q[u]→ cst), and port-state update functions (e.g., P[u](f→e)). Also 
used in the event graph are two job-routing functions:

TABLE 11.1.  Record Variables Declared for Use in Event Graph Models of Job 
Shops

Variable Type/Value Description

cst j int Job type of the glasses in the cassette
p int Processing step of the glasses in the cassette
d string ID of the equipment for the next processing step of 

the cassette
n int Number of glasses in the cassette

P[u] x 0 ∼ port capacity Number of empty ports at the I/O Port of uni-
inline cell u or oven v

rx 0 ∼ port capacity Number of reserved empty ports at the I/O Port
f 0 ∼ port capacity Number of full-cassette ports at the I/O Port
e 0 ∼ port capacity Number of empty-cassette ports at the I/O Port
dr 0 ∼ port capacity Number of depart-reserved-cassette ports at the 

I/O Port
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•	 NextStep (cst) returns the next processing-step ID of a job with job-type 
cst.j and current processing-step cst.p.

•	 NextEQP (cst) returns the next equipment ID that will process a cassette 
having job-type cst.j and processing step cst.p.

11.3.2  Modeling of Oven Type Job Shop

A job shop consisting of oven type equipment is called an oven type job shop. 
Figure 11.10 shows a reference model (reproduced from Fig. 11.5) and event 
graph model of oven type equipment. As mentioned in Section 11.2.2, the 
characteristics of oven type equipment are the same as those of the uni-inline 
cell, except all the glasses in a cassette are loaded together to process all the 

Fig. 11.9.  Encapsulated event graph model of the uni-inline job shop in Fig. 11.8.
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Fig. 11.10.  Reference model and event graph model of oven type equipment.

Oven type  
EQP 

Glasses Unloading 
 

Glasses Loading  

Processing ( ) 

I/O Ports 
(P) 

Robot 
(R) 

: Cassette 
Loading on  
an I/O Port 

: Cassette 
Depart 

Stocker  
Queue (Q) 

Port  
Queue (B) 

: Cassette  
Arriving at Queue 

CL 
(v) 

FGL 
(v) 

LGL 
(v, cst) 

CD 
(v, cst) 

(|Q[v]|>0) 

(R[v]≡1) 

{Q[v] cst; 
 cst B[v]; 
P[v](rx f)} v, cst 

v, cst v 

v 

 t1[v, cst] 

(|B[v]|>0) 

{R[v]=1; 
 if (|Q[v]|>0) {P[v](e rx)} else {P[v](e x)} } 

{R[v]=0; 
B[v] cst } 

{P[v](f e) } 

 [v, cst] 
+ t1[v, cst] 

CA 
(v, cst) 

(RSV)  

{cst  Q[v]; 
if (P[v].x>0)  

{P[v](x  

v 

v 

Reference Model 

Event Graph Model 
Oven type EQP 

rx); RSV=true}}



346    Advanced Event Graph Modeling for Integrated Fab Simulation

glasses in the cassette at the same time. Thus, in the event graph of oven type 
equipment, the first glass loading (FGL) event is scheduled by the CD event 
if the port queue is not empty (as well as by the CL event if the Robot is idle).

Figure 11.11 shows an encapsulated event graph model of a job shop with 
oven type equipment presented in Fig. 11.10. As with the uni-inline case, two 
mirror evented CL*(v) and Move*() are introduced in order to encapsulate 
the event objects. Brief descriptions for the key events in Fig. 11.11 are pro-
vided below:

•	 CA (v, cst): (1) En-queue an arriving cassette cst into Q[v], (2) reserve 
an empty port if there is one, and (3) schedule a CL event if possible.

•	 CL (v): (1) De-queue a cassette from Q[v], (2) en-queue cst into B[v], (3) 
make the reserved port a full port, and (4) schedule an FGL event if 
Robot is free.

•	 FGL (v): (1) Set the Robot to busy, (2) de-queue a cassette cst from B[v], 
and (3) schedule an LGL event to occur after t1[v,cst].

11.3.3  Modeling of Heterogeneous Job Shop

Figure 11.12 shows an encapsulated event graph model of a heterogeneous 
job shop consisting of three event object (EO) models: Material Handling 
EO model, Uni-inline EO model and Oven EO model. In general, an encap-
sulated event graph is a network of EO models. The heterogeneous job shop 
model in Fig. 11.12 is constructed by joining the two models in Fig. 11.9 and 
Fig. 11.11 together. All the events used in the heterogeneous job shop model 
are listed in Table 11.2.

11.3.4  Object-Oriented Event Graph Simulator for  
Production Simulation

Figure 11.13 shows an encapsulated event graph model of our heterogeneous 
job shop and its object-oriented event graph (OOEG) simulator. The OOEG 
simulator consists of a simulation coordinator and three event object (EO) 

Fig. 11.11.  Encapsulated event graph model of a job shop with oven type equipment.
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Fig. 11.12.  Encapsulated event graph model of a heterogeneous job shop.
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TABLE 11.2.  Events Used in the Event Graph Model of the Job Shop in  
Figure 11.12

Type Name Full Name Description

Processing 
equipment

CL Cassette 
Loading

A cassette is loaded (deposited) at a 
port of a processing equipment

FGL First Glass 
Loading

Track-in robot starts to load the first 
glass of a cassette

LGL Last Glass 
Loaded

Track-in robot finishes loading a 
cassette

CD Cassette 
Departure

A cassette departs after the last 
glass is unloaded

Handling 
system

Move — A cassette starts to move to the 
destination

CA Cassette Arrival A cassette arrives at the material 
handling queue

simulators, one EO simulator for each EO model in the encapsulated event 
graph model. An EO simulator does not schedule the local events by itself. 
Instead, it sends the enabled local event e to the Coordinator via the public 
function ScheduleLocalEvent (e). Then, the Coordinator (1) stores the local 
events in the LEL (local event list), (2) selects a next local event from the 
LEL, and (3) sends it back to the respective EO simulator via the ExecuteLo-
calEvent (e) function.
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11.3.4.1  Simulation Coordinator  Figure 11.14 shows an event graph 
model of the simulation coordinator (SC or Coordinator). It is a kind of single 
server system model consisting of a buffer LEL and four event nodes: (1) 
ScheduleLE, which is generated by the EO simulators, acts as the Arrival event 
in a single server system; (2) GetNextLE gets a local event e from the priority 
queue LEL (LEL→ e) and loads it on the Coordinator (SC = 0) to schedule 
an Unload event ExecuteLE if the simulation time does not exceed the EOS 
(end-of-simulation) time; (3) ExecuteLE unloads the job (local event e) from 
the Coordinator to send it to its EO simulator via the public function Execu-
teLocalEvent (e) and schedules a GetNextLE event if necessary. The FEL 
(future event list) stores event records consisting of event-time, event-name, 
and local event information.

Listed in Fig. 11.15 are the main program and event routines (in a pseudo-
code form) of our simulation coordinator. The main program in Fig. 11.15(a) is 
a standard implementation of the next-event methodology described in Chapter 
4 (Section 4.7.4), except that it has the two public functions: ScheduleLocalEv-
ent (e) and ExecuteLocalEvent (e). The ScheduleLocalEvent function is 
invoked from EO simulators to schedule a ScheduleLE event into the FEL (see 
Fig. 11.15). The ExecuteLocalEvent function is invoked from the event routine 
Execute-ExecuteLE-Routine to make the respective EO simulator execute its 
next event (Fig. 11.17 provides more details).

Fig. 11.13.  (a) An encapsulated event graph model and (b) its object-oriented event 
graph production simulator.
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Fig. 11.14.  Event graph model of the simulation coordinator.
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Fig. 11.15.  Simulation coordinator: (a) main program and (b) event routines.
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Fig. 11.16.  Uni-inline EO simulator for the uni-inline EO model in Fig. 11.12.
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11.3.4.2  Event Object Simulator  Figure 11.16 shows how the uni-inline 
EO simulator is constructed from the uni-inline EO model of Fig. 11.12. An 
event routine is defined for each event node in the uni-inline EO model. In 
the case of the FGL event, for example, (1) the state variables are updated as 
B[u]→ cst; R[u] = 0; and (2) the next event LGL is scheduled by invoking the 
Coordinator.ScheduleLocalEvent function. The main routine of the EO simu-
lator is defined as the ExecuteLocalEvent function, which is invoked from the 
Coordinator. Other EO simulators are implemented the same way.

11.3.4.3  Interaction between Simulation Coordinator and EO Simula-
tors  Figure 11.17 shows the interactions between the Coordinator and EO 
simulators. The event routine Execute-FGL-Routine of the uni-inline EO 
simulator sends a local event e to the Coordinator by calling the function 
Coordinator.ScheduleLocalEvent, which will store the local event into the 
LEL of the Coordinator. On the other hand, the Coordinator will invoke the 
function ObjectList [e.ObjectID].ExecuteLocalEvent to send the next local 
event e to the EO simulator that has an ID equal to e.ObjectID.

11.4  INTEGRATED SIMULATION OF A FLAT PANEL DISPLAY FAB

This section presents an object-oriented approach to developing a Fab simula-
tor for integrated simulation of production and material handling in FPD Fab.

11.4.1  Modeling of Job Shop for Integrated Simulation

Figure 11.18 shows a logical structure of a job shop equipped with an auto-
mated material handling system (AMHS). Now the job shop consists of (1) a 
production system having uni-inline cells and oven type equipment and (2) an 
AMHS composed of a number of inline stockers connected by conveyor seg-
ments. An example layout of an AMHS-equipped job shop was presented in 
Section 11.2 (see Fig. 11.2). The job shop denotes a FPD (flat panel display) 

Fig. 11.18.  Logical structure of AMHS-equipped job shop.
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TABLE 11.3.  Attributes of the Cassette Data Object “cst”

Variable Type/Value Description

cst j int Job type of the glasses in the cassette
p int Processing step of the glasses in the cassette
n int Number of glasses in the cassette
d ID (string) ID of the equipment for the next processing step 

of the cassette
a ID ID of the equipment where the cassette is 

scheduled to enter after the current equipment
b ID ID of the equipment where the cassette stayed 

before entering this equipment
c ID ID of the equipment where the cassette stays 

currently
dp {B, PU, PV, SO} type of drop point if it requests a crane for a 

movement
pp {B, PU, PV,SI} type of pick-up point if it request a crane for a 

movement
r List of IDs route information of the cassette in the form of 

array which contains equipment IDs

Fab and the entities in the system are cassettes containing glasses. In a typical 
TFT-LCD (thin-film transistor liquid crystal display) Fab, 15 or 24 glasses are 
stored in a cassette. In order to support the new functionalities of the cassette 
object, a number of new attributes are added to the data object cst (of Table 
11.1) as listed in Table 11.3.

Figure 11.19 shows an encapsulated event graph model of an AMHS-
equipped job shop consisting of uni-inline cells. It is an enhanced version of 
the encapsulated event graph model of the uni-inline job shop presented in 
Section 11.3.1 (see Fig. 11.9) with the following changes: (1) the name of the 
cassette-load event is changed to X2PU(u, cst) from CL(u); (2) a function  
cst.UpdatePlace(u) replaces the de-queue operation Q[u]→ cst at the state 

Fig. 11.19.  Encapsulated event graph model of AMHS-equipped uni-inline job shop.
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{R[u]=0; B[u] cst } { R[u]=1; 
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update of the X2PU event node; (3) two functions Route(cst) and cst.Shift-
Route() are introduced at the state update of the CD event node; (4) the 
scheduling arc from CD to CL (i.e., X2PU) is removed; and (5) the arc condi-
tion uN ≠ Done on the scheduling arc from CD to Move is deleted.

As depicted previously in Fig. 11.7 (Section 11.2.3), the AMHS in a Fab is 
controlled by MCS (material control systems) and equipment dispatching is 
handled by RTD (real-time dispatching) systems. In Fig. 11.19, NextStep() and 
NextEQP() are RTD functions; Route(), ShiftRoute(), and UpdatePlace() are 
MCS functions.

•	 Route (cst) finds the route of a cassette from the current location cst.c to 
the destination location cst.d. The route which is a sequence of equipment 
IDs is stored in the list cst.r. Note that cst.r [0] = cst.c by definition.

•	 cst.ShiftRoute () shifts the cst.r by one: cst.r[i] = cst.r[i+1] for i = 0, 1 . . .

•	 cst.UpdatePlace (m) updates the current (c), before (b), and after (a) 
places of the cassette: {cst.b = cst.c; cst.c = m; cst.a = cst.r [1]}.

An encapsulated event graph model of an AMHS-equipped job shop con-
sisting of oven type equipment is given in Fig. 11.20. As with the uni-inline job 
shop case, it is also an enhanced version of the encapsulated event graph model 
of the oven type job shop presented in Section 11.3.2 (see Fig. 11.11) with the 
following changes: (1) the name of the cassette-load event is changed to 
X2PV(v, cst) from CL(v); (2) a function cst.UpdatePlace(v) replaces the 
de-queue queue operation Q[v]→ cst at the state update of the X2PV event 
node; (3) two functions Route(cst) and cst.ShiftRoute() are introduced at the 
state update of the CD event node; (4) the scheduling arc from CD to CL (i.e., 
X2PV) is removed; and (5) the arc condition “uN ≠ Done” on the scheduling 
arc from CD to Move is deleted.

Table 11.4 gives all the events introduced in Section 11.4 to describe the 
integrated simulation models (in addition to the events listed in Table 11.2 in 

Fig. 11.20.  Encapsulated event graph model of AMHS-equipped oven type job shop.
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Section 11.3.3). There are 17 events grouped into five types: (1) conveyor 
operation events; (2) cassette drop events; (3) cassette pick-up events; (4) 
crane-ready events, and (5) crane-free events.

11.4.2  Modeling of Conveyor Operation

Figure 11.21 shows a reference model of conveyor operation. A cassette placed 
at the out-port of a stocker (SO) is moved by the conveyor to its end (CQ: 

TABLE 11.4.  Events Introduced in the Integrated Fab Simulation Model

Type Name Full Name Description

Conveyor 
operation

SOC Start of Convey Cassette starts moving on the 
conveyor

EOC End of Convey Cassette arrives at the end of 
the conveyor

C2SI Conveyor to 
Stocker In-port

Cassette moves into the stocker 
in-port and reserves a crane

Cassette 
deposition

X2SO X to Stocker 
Out-port

A cassette is deposited 
(dropped) at a Stocker 
Out-port

X2PU X to Uni-inline 
Port

A cassette is deposited 
(dropped) at a Uni-inline Port

X2PV X to Oven Port A cassette is deposited 
(dropped) at a Oven Port

X2B X to Buffer of 
stocker

A cassette is deposited 
(dropped) at a stocker Buffer

Cassette pick 
up by crane

SI2X Stocker In-port 
to X

Crane starts picking up a 
cassette from a Stocker 
In-port.

PU2X Uni-inline Port to 
X

Crane starts picking up a 
cassette from a Uni-inline 
Port.

PV2X Oven Port to X Crane starts picking up a 
cassette from a Oven Port.

B2X stocker Buffer to 
X

Crane starts picking up a 
cassette from a stocker Buffer.

Crane ready SI2Xr SI2X ready Crane becomes ready for SI2X.
PU2Xr PU2X ready Crane becomes ready for PU2X.
PV2Xr PV2X ready Crane becomes ready for PV2X.
B2Xr B2X ready Crane becomes ready for B2X.

Crane free CU Crane Unloaded Crane finishes unloading 
(dropping) a cassette at a 
destination point.

CI Crane Idle Crane becomes idle and ready 
for a next crane Request.
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conveyor queue) where the cassettes are accumulated. The cassette at the very 
end of the conveyor is transferred to the in-port of another stocker (SI). There 
are four events related to the conveyor operation: X2SO (transfer from some-
where to SO), SOC (start of convey), EOC (end of convey), and C2SI (from 
conveyor to SI). The state variables related to conveyor operation are sum-
marized in Table 11.5.

Figure 11.22 shows an encapsulated event graph model of conveyor opera-
tion. Since the operation of conveyor c starts from the out-port of stocker si, 
the stocker out-port SO[si,c] is treated as a part of the conveyor. When enter-
ing the conveyor model, the values of the parameter cst are {cst.c ≡ si; cst.a ≡ 
c; cst.r [0] ≡ c; cst.r [1] ≡ sj; etc.}.

The first conveyor event is X2SO where (1) the places of the cassette are 
updated as {cst.b = cst.c ≡ si; cst.c = c; cst.a = cst.r [1] ≡ sj} by the function cst.
UpdatePlace(c); and (2) out-port of Stocker “si” is set to “busy (occupied)” 
(SO [si, c] = 0). The second event is “start of convey” SOC where (1) out-port 

Fig. 11.21.  Reference model of conveyor operation.
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TABLE 11.5.  State Variables Related to Conveyor Operation

Variable Value Description

SO[s, c] −1: reserved, 0: 
occupied, 1: empty

Status of an output port of the inline stocker s 
connected to conveyor c

SI[s, c] −1: reserved, 0: 
occupied, 1: empty

Status of an input port of the inline stocker s 
connected to conveyor c

CQ[c] List of cassettes {cst} list of conveyed cassettes waiting at the end of 
the conveyor

Fig. 11.22.  Encapsulated event graph model of conveyor operation.
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   SI[sj, c]=0; 
   … } 
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of Stocker “si” is set to “idle (empty)” (SO [si, c] = 1); and (2) the EOC event 
is scheduled to occur after the convey time (tc). The third event is “end of 
convey” EOC where (1) the record cst is stored in the conveyor queue (cst→ 
CQ[c]); (2) an in-port of Stocker sj is reserved by the function RSV = RsvSI 
(cst.a, c); and (3) the cassette’s route is updated as {cst.r [0] = cst.r [1] ≡ sj; cst.r 
[1] = cst.r [2]; etc.} by the function cst.ShiftRoute (). The function RsvSI () is 
defined as follows:

•  RSV = RsvSI (s, c) {
  If (SI[s, c] > 0) {SI[s, c] = −1; RSV = True}
  else {RSV = False}

11.4.3  Modeling of the Interface between Conveyor and  
Inline Stocker

Figure 11.23(a) is a reference model of conveyor-in interface between an 
incoming conveyor ci and an inline stocker s at the stocker in-port SI[s, ci]. The 
conveyed cassettes are accumulated in the conveyed queue CQ[ci]. Events 
involved in the convey-in operation are EOC, C2SI (conveyor to stocker 
in-port transfer), SI2Xr (the crane is ready for a pick-up), and SI2X (the crane 
picks up a cassette from the stocker in-port). Figure 11.23(b) is a reference 
model of conveyor-out interface between an outgoing conveyor cj and the 
inline stocker s at the stocker out-port SO[s, cj]. The events involved in 
the convey-out operation are CU (crane unload), X2SO (cassette deposit at 
the stocker out-port), and SOC (start of convey).

Figure 11.24 shows an encapsulated event graph model of the convey-in 
interface operation depicted in Fig. 11.23(a). The event object model conveyor 
(ci) is the same the one given in Fig. 11.22. At the C2SI event, the following state 
updates are made: (1) a cassette is retrieved from the conveyed queue {CQ[ci]→ 
cst}; (2) the stocker in-port is set to busy {SI[s, ci] = 0}; (3) make s the current 
place (or location) of the cassette and update other places {cst.UpdatePlace(s)}; 

Fig. 11.23.  Reference models of (a) conveyor-in interface and (b) convey-out 
interface.
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(4) reserve the crane {RSV= RsvC(SI, cst)}; and (5) an SI2Xr event is scheduled 
to occur immediately if the crane was successfully reserved. At the SI2Xr event, 
(1) the crane becomes “ready” by setting its state to “busy” {cr[s] = 0} and (2) 
an SI2X event is scheduled to occur after tr (time taken to make a retrieve move 
to pick-up point SI). At the SI2X event, (1) the stocker in-port is reserved if 
there are cassettes in the conveyed queue {If (|CQ[ci]| > 0) {SI[s, ci] = −1}}; (2) 
the stocker in-port is set to “idle” otherwise {else {SI[s, ci] = 1}}; and (3) a C2SI 
event is scheduled if the stocker in-port is in “reserved” state {{SI[s, ci] = −1}}. 
A pseudocode of the function RsvC () is listed in Fig. 11.25.

Figure 11.26 shows an encapsulated event graph model of the convey-out 
interface operation depicted in Fig. 11.23(b). At the “crane-unload” event CU, 
a check is made if the cassette drop-point is the stocker out-port (cst.dp ≡ SO). 
If so, an X2SO event is scheduled to occur immediately. The event object 
model Conveyor (cj) is the same the one given in Fig. 11.22.

Fig. 11.24.  Encapsulated event graph model of convey-in interface.

{ CQ[ci]→cst; SI[s, ci]=0;  
  cst.UpdatePlace(s);  
  RSV= RsvC(SI, cst); } 

C2SI 
(s,ci) 

(RSV) 

{ cr[s]=0; } { If(|CQ[ci]|>0) {SI[s, ci]= –1;} 
   else {SI[s, ci]=1;} } 

tr 

(SI[s, ci] ≡ –1) 

(RSV) 

{ cst  CQ[ci]; 
  RSV=RsvSI(s); 
  cst.ShiftRoute(); } 

C2SI* 
(s,ci) 

EOC 
(ci,cst) 

Conveyor (ci)  Inline Stocker (s) 

cst.a, ci s, ci s,ci,cst s,ci,cst 

s,ci 

SI2Xr 
(s,ci,cst) 

SI2X 
(s, ci, cst) 

<Figure 11.22> 

Fig. 11.25.  Pseudocode of the crane reserve function RsvC ().
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Fig. 11.26.  Encapsulated event graph model of convey-out interface.

CU 
(s, cst) 

X2SO* 
(s, cj, cst) 

(cst.dp ≡ SO) 

{ cst.UpdatePlace(cj); 
SO[cst.b, cj]= 0; } 

X2SO 
(cj,cst) 

SOC 
(cj,cst) 

{ SO[cst.b, cj]= 1; } 

Conveyor (cj) Inline Stocker (s) 

s, cst.a, cst cj,cst cj, cst 

{ cst.ShiftRoute();} 

<Figure 11.22> 

11.4.4  Modeling of the Interface between Uni-inline Cells and  
Inline Stocker

Figure 11.27(a) is a reference model of pick-up interface between a uni-inline 
cell ui and an inline stocker s. A cassette at a uni-inline I/O port P[ui] is to be 
picked up by the crane and moved to its destination. Events involved in this 
pick up operation are Move (start moving to leave the uni-inline cell), PU2Xr 
(crane is ready for a pick-up), PU2X (crane picks up a cassette from a uni-
inline I/O port), and CU (crane unload). Figure 11.27(b) is a reference model 
of drop interface between a uni-inline cell uj and the inline stocker s. The 
events involved in this operation are CU (crane unload), X2PU (cassette 
deposit at the uni-inline I/O-port), and FGL (first glass loading).

Figure 11.28 shows an encapsulated event graph model of the pick-up 
interface in Fig. 11.27(a). The event object model Uni-inline Cell (ui) is the 

Fig. 11.27.  Reference models of (a) pick-up interface and (b) drop interface.
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Fig. 11.28.  Encapsulated event graph model of pick-up interface with uni-inline cell.

(RSV) 

{ P[ui](dr  { P[ui](e  
   cst.UpdatePlace(s);  
   RSV= RsvC(PU, cst); } 

CU 
(s, cst) s, ui, cst s, cst td tr 

{ cr[s]=0; } 

Move* 
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(s, ui, cst) 

PU2X 
(s, ui, cst) 

Move 
(s, ui, cst) 

<Figure 11.19> 

 x); } dr);
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same the one given in Fig. 11.19. At the Move event, (1) the port state is 
changed from “empty-cassette” to “depart-reserved” {P[ui](e→ dr)}; (2) the 
cassette places are updated {cst.UpdatePlace(s)}; (3) the crane is reserved 
{RSV= RsvC(PU, cst)}; and (4) PU2Xr is scheduled to occur immediately if 
the crane was reserved. At the PU2Xr event, (1) the crane is set to “busy” 
{cr[s] = 0}; and (2) PU2X is scheduled to occur after tr time units. At the PU2X 
event, (1) the “depart-reserved” port is changed to “no-cassette” {P[ui](dr→ 
x)}; and (2) CU is scheduled to occur after a time delay of td (time to move 
to the drop point).

Figure 11.29 shows an encapsulated event graph model of the drop interface 
depicted in Fig. 11.27(b). At the “crane-unload” event CU, a check is made if 
the cassette drop point is a uni-inline port (cst.dp ≡ PU). If so, X2PU is sched-
uled to occur immediately.

11.4.5  Modeling of the Interface between an Oven and Inline Stocker

The interface mechanism between oven type equipment and an inline stocker 
is exactly the same as that between uni-inline cells and an inline stocker.  
Figure 11.30(a) and (b) shows encapsulated event graph models of pick-up 
interface and deposition interface between oven type equipment and an inline 
stocker, respectively.

11.4.6  Modeling of Inline Stocker Operation

Figure 11.31 shows a reference model of the crane operation in an inline 
stocker s (and the next inline stocker sk). The slots (or shelves) where a cas-
sette is located in the inline stocker are a stocker buffer (B), uni-inline I/O 
port (PU), oven I/O port (PV), stocker in-port (SI), and stocker out-port (SO). 
A cassette at a pick point (SI, PU, PV, B) is to be moved to a drop point (SO, 
PU, PV, B) by the crane. The cassette transport operation is executed in three 
phases: (1) making the crane ready for picking up a cassette; (2) the crane 
travels to a pick-up point and picks up a cassette; and (3) the crane transports 
the cassette to a drop point and drops it. If a cassette is to be transported from 
the stocker in-port (SI) to an oven I/O port (PV), for example, the stocker 
operation is executed by: (1) the idle crane gets ready for picking up a cassette 
at SI (SI2Xr); (2) the crane travels to SI and picks up the cassette (SI2X);  

Fig. 11.29.  Encapsulated event graph model of drop interface with uni-inline cell.
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Fig. 11.30.  Encapsulated event graph models of (a) pick-up interface and (b) deposi-
tion interface with an oven type Eqp.
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<Fig.11.20> 
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dr);

Fig. 11.31.  Reference model of inline stocker crane operation.
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and (3) the crane moves the cassette to PV and drops it (X2PV) to become 
idle again. The operation cycles of the crane are captured in the event graph 
model of crane operation given in Fig. 11.32.

In Fig. 11.32, an operation cycle of the crane starts from the crane idle event 
CI(s) where the crane state is set to “idle” {cr[s] = 1} and a cassette is selected 
for transportation {cst = SelectCraneRequest(s)}. The crane operation will be 
described using the state variables listed in Tables 11.6: (1) the state of the 
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Fig. 11.32.  Event graph model of crane operation in an inline stocker.
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TABLE 11.6.  State Variables Related to Crane Operation

Variable Type/Value Description

cr[s] 1, 0, −1 cr[s] = 1 if crane is idle; = 0 if crane is busy; = −1 if crane 
is reserved

WIP[s] int Number of cassettes waiting (stored) in the buffers of the 
inline stocker s

CRL[s] {cst} List of cassettes requested (waiting) for the service of 
crane at the inline stocker s

crane in the inline stocker is denoted by cr[s]; (2) number of cassettes stored 
in the stocker buffers is denoted by WIP[s]; and (3) the list of cassettes waiting 
for transport is denoted by CRL[s]. The function SelectCraneRequest () is 
defined as follows:

•	 cst = SelectCraneRequest (s) selects the “best” cassette from CRL[s].

Referring back to Fig. 11.31, four cassettes (cst1∼cst4) are waiting for the 
crane. Let’s assume that: (1) cst1 is heading for the uni-inline cell uj located in 
the inline stocker s; (2) cst2 is also heading for uj; (3) cst3 is heading for 
the oven type equipment vj located in the inline stocker s; and (4) cst4 is 
heading for a uni-inline cell uk located in the next inline stocker sk. Thus, the 
values of the state variables are as summarized in Table 11.7. Assuming that 
cst1 has the highest priority, the event graph model in Fig. 11.32 is executed 
as follows:
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TABLE 11.7.  Values of State Variables in the Reference Model of Figure 11.31

Cassette/
Variables

After 
(.a)

Before 
(.b)

Current 
(.c)

Destination 
(.d)

Pick-
point 
type 
(.pp)

Drop-
point 
type 
(.dp)

Route 
(.r) Remark

cst1 uj ci s uj SI PU (s, uj) Heading 
for uj

cst2 uj ci s uj B PU (s, uj) Waiting 
for uj

cst3 vj ui s vj PU PV (s, vj) Heading 
for vj

cst4 cj vi s uk PV SO (s, cj, sk, 
uk)

uk belongs 
to sk.

State 
variable

CRL[s] = {cst1, cst2, cst3, cst4}; CQ[ci] = 2; WIP[s] = 1

1.	 At the CI event, the state variables are updated as {cr[s] = 1; cst = cst1} 
and SI2Xr is scheduled with parameter <s, ci, cst> since cst.pp ≡ SI.

2.	 At the SI2Xr event, the state variable is updated as {cr[s] = 0} and SI2X 
is scheduled to occur after tr (time to reach SI).

3.	 At the SI2X event, the state variable is updated as {SI[s, ci] = −1} since 
|CQ| > 0 and CU is scheduled to occur after td (time for a delivery move 
to P[uj]).

4.	 At the CU event, X2PU is scheduled with parameter <s, uj, cst> since 
cst.dp ≡ PU and CI is scheduled with parameter s.

In the previous sections, the inline stocker interfaces with other equipment 
were modeled as encapsulated event graph models: (1) convey-in interface 
model in Fig. 11.24; (2) convey-out interface model in Fig. 11.26; (3) uni-inline 
pick-up interface model in Fig. 11.28; (4) uni-inline drop interface model in 
Fig. 11.29; (5) oven type equipment interface models in Fig. 11.30. By assem-
bling these interface models into the crane operation model in Fig. 11.32,  
a completed event graph model of an inline stocker is obtained as shown in 
Fig. 11.33.

11.4.7  Integrated Fab Simulator

Figure 11.34(a) shows an encapsulated event graph model of our FPD Fab 
consisting of uni-inline cells, oven type equipment, inline stockers, and con-
veyors. As described previously (see Section 11.3.4), the encapsulated event 
graph model can be converted to an OOEG simulator as shown in Fig. 11.34(b) 
and then eventually implemented into an integrated Fab simulator.
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11.5  AUTOMATED MATERIAL HANDLING SYSTEMS-EMBEDDED 
INTEGRATED SIMULATION OF FLAT PANEL DISPLAY FAB

As mentioned earlier, there is a growing need in the FPD industry for an 
automated material handling systems-embedded integrated simulation where 
production simulation is carried out together with detailed simulation of 
AMHS. This section presents a generic framework for an AMHS-embedded 
integrated Fab simulator where AutoMod models of AMHS are embedded 
into the integrated Fab simulator of Section 11.4.7. An earlier version of the 
AMHS-embedded integrated Fab simulator was presented elsewhere [Song 
et al. 2011].

Fig. 11.34.  (a) Encapsulated event graph model and (b) OOEG integrated Fab 
simulator.
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Fig. 11.33.  Encapsulated event graph model of inline stocker operation.
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11.5.1  Concept of AMHS-Embedded Fab Simulation

As depicted in Fig. 11.35, there are four MCM functions that can be used for 
socket-based communication between our Fab simulator and AutoMod® in 
which the virtual AMHS is stored. The four AutoMod MCM functions are:

•	 Send_Msg (msg) is used in Fab Simulator to send a record msg to 
AutoMod.

•	 msg= Read_Msg () is used in the Fab Simulator to read msg (sent by 
AutoMod).

•	 SendSocketString (msg) is used in AutoMod to send msg to the Fab 
Simulator.

•	 msg= ReadSocketString () is used in AutoMod to read msg.

Figure 11.36 shows the concept of AMHS-embedded integrated Fab simu-
lation. In the simulation scheme discussed in the previous section, the SOC 
(start of convey) event of the Conveyor EO model (Fig. 11.22 in Section 11.4) 
schedules an EOC (end of convey) event to occur after tc time units for a 
given value of tc. In the AMHS-embedded simulation scheme consisting of (a) 
Fab Simulator Conveyor EO model and (b) AutoMod Conveyor model; 
however, the convey time (tc) has to be determined by AutoMod. Thus, at the 
SOC event, the Fab Simulator asks AutoMod to perform a virtual conveyor 
operation. Then, at the end of the virtual convey operation, AutoMod sends 
the “actual” convey time (tc) back to the Fab Simulator so that the latter 
schedules an EOC event to occur after tc time units.

Fig. 11.35.  Socket-based communications between a Fab Simulator and AutoMod.

AutoMod ® (Virtual AMHS) Fab Simulator  

Send_Msg(msg)  

 msg = Read_Msg()  

msg = ReadSocketString()  
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Fig. 11.36.  Concept of AMHS-embedded Fab simulation.
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11.5.2  Framework of AMHS-Embedded Fab Simulation System

Figure 11.37 shows a framework of AMHS-embedded integrated Fab simula-
tion system realizing the AMHS-embedded simulation concept given in Fig. 
11.36. In order for the Convey event SOC to schedule the EOC event with 
the “actual” convey time (tc) provided by AutoMod, the following steps of 
actions are taken:

1.	 At the SOC event of the Conveyor EO Model, the SOC event is stored 
in the move-type event list (MEL) and a convey message Cmsg is sent to 
AutoMod.

2.	 At the ExecuteLE event of Coordinator, a time-advance message Tmsg 
(containing tta) is built with LEL[0] and sent to AutoMod, and wait until 
a message msg (containing tc) is received from AutoMod.

3.	 Upon receiving a message (with type  =  ‘Convey’), the Coordinator 
invokes the function FireSchedulingArc (msg) so that the Conveyor EO 
Model is allowed to schedule an event.

4.	 The Conveyor Model asks Coordinator to schedule its destination event.

In Fig. 11.37, the MEL of Conveyor EO Model contains a list of move-type 
events that have been sent to AutoMod at step 1. Later, when the function 
FireSchedulingArc(msg) is called at step 3, a matching move-type event is 
retrieved from the MEL. The data record msg has the following fields: 
Type =  {Time-advance, Retrieve, Deliver or Convey}, EventName, ObjectID 
(ID of the sending simulator object), CassetteID, EventTime, Source (current 
location of the cassette), and Destination (to-be location of the cassette).  

Fig. 11.37.  Framework of an AMHS-embedded Fab simulation system.
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“#” is used as a delimiter. Among the functions enclosed in dashed-line boxes 
in the figure, Send_Msg () and Read_Msg () are AutoMod MCM functions 
introduced in Section 11.5.1. The functions for building a time-advance message 
Tmsg and convey-move message Cmsg are defined as follows:

MakeTmsg (e) { // LEL[0] denotes the first local event 
stored in LEL

msg = “Time-advance#” + e.EventName +”#” + e.ObjectID 
+ “# #” + e.EventTime + # #”;

return msg;}
MakeCmsg (c, cst, Now) {
msg = “Convey# SOC#” + c + “#” + cst.ID + “#” + Now 

+ # #”;
return msg;};

The time-advance message Tmsg is constructed with LEL[0], the first event 
in the LEL, at step 2. Tmsg contains the time-advance time tta, which is the 
event time of LEL[0]. AutoMod is allowed to advance its clock up to the time-
advance time tta. Figure 11.38 shows how the message is processed in AutoMod. 
In the figure, the retrieve-move message Rmsg and deliver-move message 
Dmsg are coming from the Inline Stocker model to be explained shortly. For 
details about AutoMod programming, the reader is referred to AutoMod 
manuals [Brooks Automation 2003a, 2003b].

An originating event related to the movement of a material handling device, 
like SOC, is called a move-type event. Among the four component models in 
the integrated Fab simulation system shown in Fig. 11.34, the Inline Stocker 
model also has move-type events whose delay times have to be determined 
by AutoMod. The move-type events are: Retrieve events (B2Xr, PV2Xr, SI2Xr, 

Fig. 11.38.  Message processing in AutoMod.
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and PU2Xr) and Deliver events (B2X, PV2X, SI2X, and PU2X). Figure 11.39 
shows the Inline Stocker model (given in Fig. 11.33) modified for AMHS-
embedded simulation.

At each move-type event of the Inline Stocker model, instead of scheduling 
the destination event to occur after a delay-time (tr or td), the move-type event 
ID is stored in the MEL and a move-type message (retrieve move or deliver-
move message) is constructed and sent to AutoMod. Then, AutoMod returns 
the delay-time to the Coordinator that in turn pass the delay-time by invoking 
the FireSchedulingArc () function.

11.5.3  Simulator for AMHS-Embedded Integrated Fab Simulation

Figure 11.40 shows the structure of our AMHS-embedded integrated Fab 
simulator. Recall that the structure of the integrated Fab simulator was pre-
sented in Fig. 11.34 (the structure of the production simulator was given in  
Fig. 11.13). The processing-type simulators (Uni-inline Simulator and Oven 
Simulator) in Fig. 11.40 are the same as those in Fig. 11.34 but the handling-
type simulators (Conveyor Simulator and Inline Stocker Simulator) in Fig. 
11.40 are enhanced to handle communications with AutoMod. In the follow-
ing, how to implement the AMHS-embedded integrated Fab simulator will be 
explained.

Fig. 11.39.  Inline Stocker model modified for AMHS-embedded simulation.
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11.5.3.1  Simulation Coordinator of the AMHS-Embedded Simula-
tor  Figure 11.41 shows the event graph model, the main program, and event 
routine Execute-ExecuteLE-Routine () of the Simulation Coordinator of the 
AMHS-embedded integrated Fab simulator. The coordinator main program 
in Fig. 11.41(b) is obtained by appending the FireSchedulingArc function at 
the end of the coordinator main program of the production simulator in Fig. 
11.15(a). The event routine Execute-ExecuteLE-Routine () in Fig. 11.41(c) is 
obtained similarly by appending the statements inside the dashed-line box to 
that of the production simulator in Fig. 11.15(b). The rest of the event routines 
are the same as those in Fig. 11.15(b).

11.5.3.2  Conveyor EO Simulator Module of the AMHS-Embedded Simu-
lator  Figure 11.42 shows a pseudocode of the Conveyor EO Simulator 

Fig. 11.40.  Structure of the AMHS-embedded integrated Fab simulator.
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module for the Conveyor EO model in Fig. 11.37(b). The statements enclosed 
by the dashed-line box in the event routine Execute-SOC-Routine () are 
responsible for preparing a convey-type message and sending it to AutoMod. 
At the end of the module, the FireSchedulingArc function is added to handle 
the Coordinator’s instruction to “fire the scheduling-arc from SOC to EOC” 
so that the EOC event is scheduled with the time-delay value provided by 
AutoMod.

11.5.3.3  Inline Stocker EO Simulator Module of the AMHS-Embedded 
Simulator  Figure 11.43 shows a pseudocode of the Inline Stocker EO Simu-
lator module for the Inline Stocker EO model in Fig. 11.39. The event routines 
and the function FireSchedulingArc are defined the same way as in the case 
the conveyor model in Fig. 11.42. In the FireSchedulingArc function, the 
matching move-type event is retrieved from MEL and the scheduling-arc is 
fired so that the destination move-event is scheduled with the time-delay value 
provided by AutoMod.

11.5.4  IFS®

The authors and their students have developed a prototype software system 
called IFS® for an AMHS-embedded integrated Fab simulation. Figure 11.44 
shows the structure of the software system IFS® consisting of three modules: 
(1) an Integrated Fab Simulation module, which is the main part of IFS®; (2) 
a virtual AMHS module (AutoMod®) responsible for graphical simulation of 
the AMHS; and (3) a layout generation module.

The internal workings of the Integrated Fab Simulation (IFS) module  
are as described in Section 11.4 and the technical details of AutoMod® are 

Fig. 11.42.  Conveyor EO Simulator module of the AMHS-embedded simulator.
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available in the literature [Brooks Automation 2003a, 2003b]. The user has to 
provide the IFS module with (1) master data regarding the equipment and 
processes specifications in the Fab; (2) release plans for each day’s production; 
and (3) various operation rules for RTD (real-time dispatching) and MCS 
(material control system).

The three-dimentional (3D) geometric and kinematic models of the equip-
ment and facilities in the Fab layout are constructed in the layout generation 
module. In practice, the original 3D Fab layout data generated by using a CAD 
(computer-aided design) system, called CAD Data, are not suitable to be used 

Fig. 11.43.  Inline Stocker EO Simulator module of the AMHS-embedded simulator.
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Fig. 11.44.  Structure of the AMHS-embedded integrated Fab simulator.
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as an AutoMod model file. In the layout generation module, the user manually 
defines a 2D layout model using Excel from the 3D CAD data.

At the same time, a library of 3D models of the equipment and devices is 
built employing CAD systems as depicted in Fig. 11.45. The left image in the 
figure is a 3D model of a uni-inline cell and the right image is a stacker crane 
in the inline stockers. The AutoMod model generation program will merge the 
2D layout model (Excel file) and the 3D models (CAD data) to build an 
AutoMod model file. Examples of 3D layout of a hypothetical LCD Fab are 
shown in Fig. 11.46. A free copy of IFS® may be found in the official website 
of this book (http://VMS-technology.com/Book/IFS).

Fig. 11.45.  Building a library of 3D models (uni-inline call and stacker crane).

Fig. 11.46.  Examples of 3D layout in IFS®.

http://VMS-technology.com/Book/IFS
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CHAPTER 12

Concepts and Applications of 
Parallel Simulation

Knowledge is a process of piling up facts; wisdom lies in their 
simplification.

—M. Fischer

12.1  INTRODUCTION

The terminologies used in this section are mostly from Fujimoto [2000], but 
the term parallel simulation is used somewhat differently. In Fujimoto, a simu-
lation that executes on a set of computers confined to a single room is called 
a parallel simulation, whereas a distributed simulation executes on machines 
that are geographically distributed. In this book, a parallel simulation is defined 
as a simulation composed of a “collection of sequential simulations that 
exchange messages with each other” regardless of whether the computers are 
confined to a room or geographically distributed. In Fujimoto, a sequential 
simulation in the definition is referred to as a logical process (LP). A logical 
process has its own simulation clock. The key issue in parallel simulation is 
time synchronization to ensure that events are processed in a timestamp order 
when the logical processes are executed.

According to Fujimoto [2000], there exist two synchronization approaches: 
(1) one is conservative synchronization, which enforces all events be processed 
in timestamp order all the time; (2) the other is optimistic synchronization in 
which an out-of-order processing is allowed but the errors are recovered. 
Among the popular conservative synchronization methods are the centralized 
barrier method and the (distributed) null message method. The centralized 
barrier method, in which a controller LP is employed to implement the barrier 
for the simulator LPs, is as follows:

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and 
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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1.	 The controller LP: determines when a barrier is reached and waits for 
messages from the simulator LPs. When a message is received from each 
simulator LP, it sends a “grant” message to the selected simulation LPs 
to release the barrier.

2.	 Simulator LPs: send a message to the controller LP and wait for a reply. 
When a “grant” message is received from the controller LP, safe events 
are executed. 

In fact, the parallel simulation method with a centralized barrier has already 
been utilized quite extensively in this book. The state graph simulator intro-
duced in Chapter 9 (Fig. 9.34 in Section 9.6.1) is a parallel simulation system 
where the Sync Manager plays the role of the controller LP. The object-
oriented event graph simulator in Chapter 11 (Fig. 11.34 in Section 11.4.7) is 
also a parallel simulation system with the Simulation Coordinator playing the 
role of the controller LP.

A high-level architecture (HLA) is a general-purpose architecture for par-
allel simulation systems. Using HLA, computer simulations can interact with 
other computer simulations regardless of the computing platforms. The inter-
action between simulations is managed by a run-time infrastructure (RTI).

This chapter is organized as follows. A framework for direct workflow simu-
lation based on parallel simulation is presented in Section 12.2. A brief descrip-
tion of HLA/RTI is provided in Section 12.3, and an implementation example 
of parallel simulation HLA/RTI is introduced in Section 12.4.

12.2  PARALLEL SIMULATION OF WORKFLOW 
MANAGEMENT SYSTEM

This section presents a parallel simulation method with which the enactment 
service processes of a workflow management system (WfMS) can be simulated 
directly, i.e., without converting to a simulation model such as Petri nets.

12.2.1  Enactment Service Mechanism of WfMS

The basics of enactment service are briefly described using Fig. 12.1. For each 
instance of workflow, a process instance is created from its process definition 
model (PDM). Figure 12.1 shows a Process Instance consisting of seven activi-
ties including Start and End activities. The completion of activity W1 will 
enable the two succeeding activities W2 and W3. At this point, the enactment 
server would provide the following sequence of enactment services:

1.	 Generates new workitems for the newly enabled activities W2 and W3.
2.	 Sends out the new workitems W2 and W3 to their respective work-list 

handlers to be processed by the participant.
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3.	 Receives the completed workitem W2 from the work-list handler.
4.	 Updates the state of the PI such that W2 becomes a completed activity.

Upon receiving the new workitem W2, (a) the work-list handler notifies it 
to its participant, and the participant (b) works on the workitem W2 for a time 
period of t2 and (c) reflects the results at the work-list handler so that the 
completed workitem is returned back to the enactment server. The communi-
cations (i.e., sending new workitems and receiving completed workitems) 
between the enactment server and work-list handlers (or application handlers) 
are made based on the interface standards provided by a workflow manage-
ment coalition (WfMC). For this purpose, the enactment server has a type of 
internal data called workflow relevant data that can be manipulated by work-
list handlers and other applications via a set of standard API (application 
program interface) functions [WfMC 1995, 1998].

12.2.2  Framework of Parallel Simulation of WfMS

Shown in Fig. 12.2 are interactions among the software modules in the parallel 
simulation system. In this framework, data exchanges between the enactment 
server (Server) and participant simulators (Simulators) are made through the 
synchronization manager (Sync Manager). Thus, the role of the Sync Manager 
is to mediate the communications between the Server and Simulators while 

Fig. 12.1.  Enactment service mechanism of workflow management system (WfMS).
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managing time synchronization. Here, the Sync Manager has all connection 
information of the Simulators that handle all new and completed workitems, 
and thus it handles all the “standard” enactment services provided by the 
Server.

At the beginning of an enactment service cycle, the Server generates new 
workitems {WN} and starts sending them one by one to the Sync Manager. In 
the meantime, the Sync Manager “looks into” the Server to get the number 
(μ) of newly generated workitems by using the API function ListWorkitems 
() specified in the WfMC standard [WfMC 1998]. Then, the following sequence 
of actions is taken by the software modules involved:

1.	 The Sync Manager passes each new workitem (WN) received from the 
Server to a pertinent Simulator while counting the number (m) of new 
workitems it has passed.

2.	 When m (number of passed workitems) becomes equal to μ (number of 
newly generated workitems), the Sync Manager broadcasts a message to 
every Simulator requesting to send its local next-event time (τL).

3.	 Each Simulator j reports τL (its local next-event time) to the Sync 
Manager.

4.	 The Sync Manager selects a Simulator j* that has the smallest next-event 
time (τG = Min {τL for all j}), and broadcasts the global next-event time 
(τG) and the selected Simulator ID (j*) to all Simulators.

5.	 The selected Simulator j* completes its workitem and advances its next-
event time, and then returns the completed workitem (WC) back to the 
Sync Manager.

6.	 The Sync Manager passes the completed workitem (WC) to the Server, 
which in turn updates the pertinent process instance to initiate the next 
cycle of enactment service.

The above parallel simulation process employs a centralized barrier method 
of time synchronization with the Sync Manager playing the role of a controller 
LP. In the following sections, state graph models of the workflow simulation 

Fig. 12.2.  Interactions among the workflow simulation modules.
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modules in Fig. 12.2 will be presented. Parameters and variables used in the 
state graph models are summarized in Table 12.1.

12.2.3  State Graph Modeling of an Enactment Server and  
Sync Manager

In this section, the behaviors of the enactment server and the Sync Manager 
are specified using the state graph modeling formalism presented in Chapter 
9. A state graph model of the participant simulator will be presented in the 
next subsection. The materials presented in this section (Section 12.2) are 
mostly from the paper by Lee et al. [2010] where the term DEVS model was 
used in place of state graph model.

Shown in Fig. 12.3 is a simplified version of state graph model of the  
enactment server, which is a simple finite state machine having three states.  
It is initially in the Wait state and moves to the Processing state (Update  
PI & Generate {WN}) if the Start input is received. Once it has generated 
all the new workitems (for the enabled activities), it sends out the new 
workitems {WN} to the Sync Manager and moves to the Ready state. Then, 
it waits in the Ready state until it receives a completed workitem WC, and 
then moves back to the processing state. It should be noticed that the process-
ing state may not generate a new workitem WN, in which case {WN} is a null 

TABLE 12.1.  Parameters and Variables Used in the State Graph Models

Name Description Name Description

a arrival time of workitem N total number of participant 
simulators

c completion time of workitem q number of workitems in 
queue

clock local simulation time of 
participant simulator

td time delay

G group size (number of people in 
the group)

WN new workitem

j ID number of a participant 
simulator

WC completed workitem

j* ID number of the selected 
participant simulator

π processing time of workitem

LLT list of local next-event times (τL) τL local next-event time of 
each participant simulator

m number of new workitems 
received

τG global next-event time

n number of participant simulators 
replied

μ total number of newly 
generated workitems
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set, meaning that the state is changed to Ready without sending out any 
workitem.

Figure 12.4 shows a state graph model of our Sync Manager together with 
its interactions with the enactment Server and participant Simulators. In the 
figure, the operation sequence is numbered from (0) to (6). At the beginning 
of an enactment service cycle, the Sync Manager stays in the Wait for first WN 
state with m (the number of new workitems received) equal to zero. Then, (0) 
if a new workitem WN(π, j) is received from Server, (1) it moves to the Get μ 
state after sending WN(π) to Simulator j and setting m to one; otherwise, it 
moves to the Get μ state after a time delay of td. At the Get μ state, the Sync 
Manager obtains the value of μ = GetMu() (See Lee et al. 2010), and moves 
to the D1 state after setting μ = μ + m. Then, at the D1 state, (2) it goes to the 
Wait for next WN state and comes back until m is equal to μ. At this point (m 
≡ μ), it moves to the Wait for τL state after sending the Request τL message to 
all Simulators and setting n (number of Simulators replied) to zero.

The Sync Manager waits in the Wait for τL state until (3) it receives the local 
next-event times (τL) from all Simulators (i.e., n ≡ N) while storing the value 
of each τL in the list of local next-event time LLT[j]. Then, (4) it selects a Simu-
lator j* whose τL is the smallest, designating it as the global next-event time 

Fig. 12.3.  State graph model of the enactment server.
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(τG), and moves to the Wait for WC state after broadcasting τG and j* to all 
Simulators. Finally, (5) if a completed workitem WC(a, π, c) is received from 
the selected Simulator j*, (6) the Sync Manager sends the WC to the Server 
and moves to the Wait for first WN state to start a next cycle of enactment 
service.

12.2.4  State Graph Modeling of Participant Simulators

Each single participant in the workflow management system is modeled as a 
single server system processing new workitems {WN (π)} received from the 
Sync Manager. Shown in Fig. 12.5 is a composite state graph model of the 
single server system consisting of three atomic models: Coordinator, Queue 
and Processor. Each Simulator communicates with the Sync Manager as 
follows: (1) new workitems WN (π) received are stored in the Queue and a 
selected workitem is processed by the Processor; (2) upon receiving a Req. τL 
message, (3) its local next-event time τL is returned back to the Sync Manager; 
(4) if global next-event time τG is granted to this Simulator, (5) the completed 
workitem Wc (a, π, c) is returned back to the Sync Manager.

12.2.5  Implementation of a Workflow Simulator

An existing workflow management system equipped with a Sync Manager and 
participant simulators can be used as a workflow simulator. Figure 12.6 shows 
the software structure of the workflow simulator: (1) a Workflow Engine  

Fig. 12.5.  State graph model of “single participant” simulator.
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Connector is used to connect the components of the simulation system; (2) a 
Process Instance Generator is added to the simulation system to be used in 
generating process instances {PI*} from the process definition models (PDMs) 
defined at the Process Designer of the workflow management system; (3) a 
Process Monitor is also added to visualize the simulation process.

The Enactment Server provides enactment services to Participant Simula-
tors through the Sync Manager. The workflow simulator was implemented as 
a prototype workflow simulator using a commercial workflow management 
system and an academic workflow management system, both of which are in 
compliance with the WfMC standards [WfMC 1995]. The Sync Manager and 
single and group participant simulators have been developed under a Micro-
soft .NET Framework 3.5 environment using the C# programming language, 
and they are plugged into the workflow management systems via a workflow 
engine connector module [Lee et al. 2010].

12.3  OVERVIEW OF HIGH-LEVEL ARCHITECTURE/RUN-TIME 
INFRASTRUCTURE

As mentioned in the introduction, a high-level architecture (HLA) is a general-
purpose architecture for parallel simulation systems, and the interactions 
between simulations are managed by a run-time infrastructure (RTI). HLA 
was mandated in September 1996 as the standard architecture for all modeling 
and simulation activities in the Department of Defense in the United States 
[Fujimoto 2000]. In HLA, a parallel simulation is referred to as a federation, 
and each individual sequential simulator as a federate. This section is based on 
the materials presented in the book by Kuhl et al. [2000] and in the lecture 
notes by Crosbie and Zenor [2006].

Fig. 12.6.  Software structure of the workflow simulator.
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12.3.1  Basics of HLA/RTI

The objectives of HLA are to combine computer simulators into a larger 
simulation, or federation, to extend the simulation later by adding additional 
simulators, or federates, and to support component-based simulation develop-
ment. In other words, it aims to enhance the reusability and interoperability 
of simulation models. Key components of HLA are HLA Rules, Interface 
Specification, and Object Model Template.

12.3.1.1  HLA Rules  HLA Rules are to ensure proper interaction of feder-
ates in a federation and to describe the responsibilities of federates and fed-
erations. The ten HLA Rules are:

1.	 Federations shall have a federation object model (FOM), documented 
in accordance with the HLA object model template (OMT).

2.	 All representation of objects in the FOM shall be in the federate, not 
in the RTI.

3.	 During a federation execution, all exchange of FOM data among feder-
ates shall occur via the RTI.

4.	 During a federation execution, federates shall interact with the RTI in 
accordance with the HLA interface specification.

5.	 During a federation execution, an instance attribute shall be owned by 
at most one federate at any given time.

6.	 Federates shall have a simulation object model (SOM), documented in 
accordance with the HLA OMT.

7.	 Federates shall be able to update and/or reflect any instance attributes, 
and send and/or receive interactions, as specified in their SOMs.

8.	 Federates shall be able to transfer and/or accept ownership of attributes 
dynamically during a federation execution, as specified in their SOMs.

9.	 Federates shall be able to vary the conditions under which they provide 
updates of instance attributes, as specified in their SOMs.

10.  Federates shall be able to manage local time in a way that will allow 
them to coordinate data exchange with other members of a federation.

Rules 1 to 5 are known as federation rules and rules 6 to 10 are federate 
rules.

12.3.1.2  Interface Specification  The interface specification defines the 
functional interfaces between federates and the RTI. The RTI is software that 
provides HLA services to federates. As depicted in Fig. 12.7, the interface 
service mechanisms are implemented as ambassadors: Federate Ambassador 
for RTI-initiated services and RTI Ambassador for federate-initiated 
services.
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The interface specification (the set of APIs) for HLA services is divided 
into six management areas or RTI module groups. The six management  
areas are:

1.	 Federation management for creating federation execution and permitting 
a federate to join or to resign from the execution

2.	 Declaration management to allow federates to declare their intent to 
publish or subscribe to data

3.	 Object management to send and receive interactions; register a new 
object instance and update its attributes; and discover new instances and 
reflect updated attributes

4.	 Ownership management to grant/transfer of ownership of an 
instance-attribute

5.	 Data distribution management to control the producer-consumer rela-
tionships among federates

6.	 Time management to allow federates to advance its logical time and 
control the delivery of timestamped events

12.3.1.3  Object Model Template (OMT)  The OMT provides a standard 
for documenting HLA object model information. It defines the federation 
object model (FOM), the simulation or federate object model (SOM) and the 
management object model (MOM).

1.	 FOM introduces all shared data among federates: objects and 
interactions.

2.	 SOM describes salient characteristics (internal operations) of a 
federate.

3.	 MOM identifies objects and interactions used to manage a federation.

There are two types of shared data: interaction and object. An interaction 
is a collection of data (usually events) sent through the RTI to other federates. 
One federate sends an interaction; another receives it (and does not reside  
in the federation). Each interaction class has a set of named data called  

Fig. 12.7.  Interface service mechanisms of the RTI.
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parameters. An object is a simulation entity (usually a state variable) that is 
of interest to more than one federate and persists for some interval of simula-
tion time. Each object class has a set of named data called attributes. Figures 
12.8(a) and (b) show examples of an interaction class and of an object class, 
respectively.

In the class hierarchy diagrams of Fig. 12.8, the shaded boxes (Interaction-
Root, RTIprivate, Manger, and ObjectRoot) are built-in classes provided by 
the RTI system. The fully qualified name of B-Event, for example, is 
InteractionRoot.Event.B-Event, and its available parameters are P1 and P3. 
The fully qualified name of the object CivilAircraft is ObjectRoot.Aircraft.
CivilAircraft, and its available attributes are privilegeToDeleteObject, posi-
tion, and drinkCarts.

12.3.2  HLA Federation Architecture

Figure 12.9 shows the system architecture of HLA federation. An HLA fed-
eration consists of a set of RTI-provided software modules—RID file, RtiExec, 
FedExec, libRTI—and user-defined modules—Federate codes and Federation.
FED. The roles of the software modules are:

Fig. 12.8.  Examples of (a) an interaction class and (b) an object class.
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1.	 The RTI initialization data (RID) file contains information needed to 
run the RTI.

2.	 The RtiExec (RTI executive) manages the creation and destruction of 
FedExec.

3.	 The FedExec (federation executive) allows federates to join and resign 
from the federation, and facilitates data exchanges among them.

4.	 The libRTI (RTI library) is used by federates to invoke various HLA 
services.

5.	 The Federation.FED (federation execution data) contains information 
derived from the FOM in the form of FDD (FOM document data) file.

6.	 A Federate.exe consists of federate code and libRTI. Federate code 
contains various local simulation objects including SOM.

In a physical configuration of a federation, a copy of each Federation.  
FED and RID file is bundled with each Fedreate.exe file in a local computer 
running the federate, and RtiExec and FedExec files reside in the “console” 
computer.

12.3.3  Overview of Federation Execution

Figure 12.10 shows the steps in the process of starting a federation execution. 
The initial step is to prepare the federate code for each federate and the Fed-
eration.FED file. Then, the execution process is as follows:

1.	 When a federation is run, the RtiExec is started first.
2.	 Then a federate, acting as a manager, creates a federation execution  

by invoking the RTI method createFederationExecution on its 
RTIambassador.

Fig. 12.10.  Federation execution process.
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3.	 The RTIambassador then reserves a name with RtiExec, and spawns a 
FedExec process, and that FedExec registers its communication address 
with RtiExec. The federation execution is underway.

4.	 Once a federation execution exists, other federates can join it. That 
RTIambassador consults RtiExec to get the address of FedExec, and 
invokes joinFederationExecution () on FedExec. Additional federates 
can join via the same process.

12.4  IMPLEMENTATION OF A PARALLEL SIMULATION WITH 
HIGH-LEVEL ARCHITECTURE/RUN-TIME INFRASTRUCTURE

This section aims to provide a beginner’s guide to the implementation example 
given in a book, which we call the HLA Book, by Kuhl et al. [2000]. The HLA 
Book provides an excellent coverage of the subject, and it may be easier for 
a beginner to understand the contents of the book after reading this section. 
This section begins with an overall description of the “sushi boat” restaurant 
system presented in Chapter 4 of the HLA Book.

12.4.1  The Sushi Restaurant Federation

Figure 12.11(a) shows a “sushi boat” restaurant where the chefs work on an 
island surrounded by a circular canal on which boats are floating with the 
current (flow) of the water. The diners sit at a bar that surrounds the canal. 

Fig. 12.11.  (a) A sushi restaurant system and (b) its HLA federation.
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As the chefs prepare servings, they place them on rectangular plates; when 
they have finished a batch of servings, which may fill several plates, the chefs 
place the plates on empty boats as they float by. Diners remove the plate of 
their choice as the boat comes by and enjoy it. The chefs are called a produc-
tion subsystem, the boats a transport subsystem, and the diners a consumption 
subsystem.

Figure 12.11(b) shows the HLA federation of the sushi restaurant system 
consisting of five federates and the RTI including a FED file. The three feder-
ates corresponding to the three subsystems of the restaurant are called sub-
system federates: Production federate, Transport federate, and Consumption 
federate. The Manager federate is used in managing the federation execution, 
and the Viewer federate acts as a passive recipient; its role is to display of 
simulation data from the rest of the federation. The FED (also called Federa-
tion.FED) file contains the federation object model (FOM). As mentioned in 
Section 12.3.2 (Fig. 12.9), an HLA federation consists of a number of files in 
addition to the federates and FED file. However, only the federates and FED 
file need to be prepared by the federation designer.

12.4.2  Preparation of an FED File

As was shown in Fig. 12.11(a), there are four types of objects in the restaurant 
system: Servings, Boats, Chefs, and Diners. Figure 12.12(a) shows an object 
class tree specifying the restaurant objects. The root of the object class tree is 

Fig. 12.12.  (a) Object class tree and (b) interaction class tree.

ObjectRoot 

privilegeToDeleteObject : String 

Restaurant 

position: Position 

Serving 

type : sushiTypeEnumeration 

Boat 

spaceAvailable : boolean 
cargo : String 

Actor 

servingName : String 

Chef 
chefState :  
chefStateEnumeration 

Diner 
dinerState :  
dinerStateEnumeration 

InteractionRoot 

Manager SimulationEnds TransferAccepted 

servingName : String 

 

(a)

(b)
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called ObjectRoot. At the leaf level of the hierarchy are the four object classes: 
Serving, Boat, Chef, and Diner. The Actor class serves as a place to define the 
attribute servingName that is in common for Chef and Diner. The attributes 
chefState and dinerState are conceptually enumerations and will both be 
represented in Java as int.

Figure 12.12(b) shows a class tree for interactions. An interaction is a simu-
lated occurrence (or event) that occurs at a point in time and does not persist. 
All interaction classes are subclasses of InteractionRoot. The TransferAc-
cepted interaction has a parameter of servingName. It is a message sent from 
the Transport federate to the Production federate to signal a Boat’s acceptance 
of a Serving. SimulationEnds is a message sent from the Consumption federate 
to other federates signaling the end of simulation. It is a subclass of Manager 
because it is a user-extension of the management object model (MOM).

Figure 12.13 shows a FED file containing the object class tree and interac-
tion class tree given in Fig. 12.12. Observe in the FED file that each class 
attribute and each interaction class are appended by modifiers reliable time-
stamp or reliable receive. The choices of the communication network over 
which the messages (class attributes and interaction classes) are sent are either 
reliable or best-effort. A reliable communication guarantees that the data will 
be delivered or an exception will be indicated. The choices of message-delivery 
ordering are either timestamp or receive. In a timestamp order (TSO), the 
arrival of timestamped messages is sequenced in accordance with logical time; 

Fig. 12.13.  FED file for the object and interaction class trees in Fig. 12.12.

(FED  ;; Defining object classes and interaction classes 
    (Federation restaurant_1)  ;; we choose this tag 
    (FEDversion v1.3)              ;; required; specifies RTI spec version 
    (spaces                              ;; we define no routing spaces 
    ) 
    ( objects 
        (class ObjectRoot          ;; required 
             (attribute privilegeToDeleteObject reliable timestamp) 
             (class RTIprivate) 
             (class Restaurant (attribute position reliable timestamp) 
                  (class Serving (attribute type reliable timestamp) ) 
                  (class Boat (attribute spaceAvailable reliable timestamp) (attribute cargo reliable timestamp) ) 
                  (class Actor (attribute servingName reliable timestamp) 
                        (class Chef (attribute chefState reliable timestamp) ) 
                        (class Diner (attribute dinerState reliable timestamp) ) ) ) ;; end of Restaurant  
             (class Manager …) 
      ) ;; end ObjectRoot 
  )  ;; end Objects 
    ( interactions 
        (class InteractionRoot reliable timestamp 
              (class TransferAccepted reliable timestamp (parameter servingName) )  
              (class RTIprivate reliable timestamp) 
              (class Manager reliable receive 
                     (class SimulationEnds reliable receive) …)   ;; end InteractionRoot 
    ) ;; end interactions 
) ;; end FED 
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in a receive order, the messages are delivered as they arrive without regard to 
logical time. In the FED file, both ObjectRoot and InteractionRoot have a 
required subclass called RTIprivate (not shown in Fig. 12.12) to be used by 
RTI implementers. It must be present but cannot be extended (subclasses) by 
a federation designer. ObjectRoot has another required subclass called 
Manager. It is the root of a further tree that defines the object portion of the 
Management Object Model (MOM). All the subclasses of Manager that you 
see in the sample FED files are required to be there.

12.4.3  Preparation of the Federate Code  
(of the Production Federate)

Table 12.2 lists the names of the nine Java files constituting the Production 
federate. The federation designer has to prepare a federate code for each of 
the five federates in Fig. 12.11(b). The first six files in Table 12.2 have the same 
fixed structure for all the federates. Thus, you as a beginner do not need to 
worry about them. The last two files (ChefTable and ProductionFrame) are 
concerned about the graphical user interface (GUI) for the federate. The main 
file of the Production federate code is Production.java that has to be prepared 
by you as a federation designer.

Table 12.3 the program (Java code) structure of Production federate. The 
Transport federate and the Consumption federate have the similar structure. 

TABLE 12.2.  Files in the Federate-Code of Production Federate

No File Name Description

1 Barrier.java Define Barrier class that is used to coordinate 
the activities between threads.

2 CallbackQueue.java Define Callback Queue class that is used to store 
the callbacks initiated by the RTI

3 InternalQueue.java Define Internal Queue class that stores the 
internal events of Chef model.

4 ProductionInternalError.
java

Define an exception raised within the Production 
federate

5 ProductionNames.java Define the default “federate type” string of the 
Production federate

6 FedAmbImpl.java Define FedAmbImpl class that represents the 
Production federate ambassador.

7 Production.java Define Production federate code to execute the 
Production federate.

8 ChefTable.java Define Chef Table View of the user interface of 
the Production federate.

9 ProductionFrame.java Define the user interface (main window) of the 
Production federate.
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The program structure follows the phases of the federate lifecycle: Prepare 
phase, Populate phase, Run phase, and Resign phase. In this section, only the 
Prepare phase will be explained in some detail. Detailed description of the 
federate program structure is out of scope of this book, and interested readers 
are referred to the HLA Book [Kuhl et al. 2000].

12.4.3.1  Declare Objects and Variables  Figure 12.14 shows two object 
classes in the Production federate: ProductionFrame and FedAmbImpl. The 
Production instance creates an instance of ProductionFrame that contains all 
the user interface code. It also creates an instance of FedAmbImpl that is an 
implementation of hla.rti.FederateAmbassador, which is passed to the RTI 

TABLE 12.3.  Program Structure of the Production Federate

Phase Service group (Mngt Area) Descriptions

1. Prepare Declare Object and Variables (1) ProductionFrame,  
(2) FedAmbImpl, etc.

Join Federation (Fed Mngt-1) (1) Obtain Ref., (2) Create Fed 
Execution, (3) Join Fed Execution

Set Time Switches (Time 
Mngt-1)

(1) Enable Time Constrained,  
(2) Enable Time Regulation

Publish/Subscribe (Decl. 
Mngt)

(1) Publish/Subscribe Objects,  
(2) Publish/Subscribe Interactions

2. Populate Define Objects (Obj. Mngt-1) (1) Register Object Instance,  
(2) Update Attribute Values

3. Run Time Advance (Time Mngt-2) (1) Next Event Request, (2) Time 
Advance Grant

Produce data (Obj. Mngt-2) (1) Register/Discover, (2) Update/
Reflect (3) Receive Interaction

Ownership (Ownership 
Mngt)

Ownership Divestiture/Release.

4. Resign Resign Federation (Fed 
Mngt-2)

Resign Federation Execution

Fig. 12.14.  Main objects in Production federate.
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when the federate joins. Callbacks from the RTI are invoked on FedAmbImpl, 
which in turn calls methods in the Production instance. The Production class 
contains the mainThread () method that contains the rest of the federate code. 
The mainThread () holds the references to other data structures and objects, 
and all the calls to RTIambassador occur in its code.

12.4.3.2  Join Federation  Before a federation execution (FE) exists, it must 
be defined to the RTI. The federation execution must be created and associ-
ated with a FOM and the federation must join the FE.

Figure 12.15 shows a Production federate code for obtaining a reference to 
RTI ambassador. The RTI ambassador provides access to the RTI services. 
The hostname and portNumber indicates where the RTI executive runs. The 
hostname can be numerical IP address (e.g., 127.0.0.1) or string address (e.g., 
www.kaist.ac.kr). The portNumber is a positive integer (e.g. 8989—this is 
default value of Pitch Portal RTI used in this book)

Figure 12.16 shows a federate-code code for creating the FE. The FE can 
be created by letting each federate attempt to create the FE at the start. If the 
federate receives an exception reporting that the FE already exists, it is ignored. 
The following shows the partial Java code of creating the FE at the Production 
federate. Also, we assume that the federation execution data (FED) file is 
named “restaurant_1.fed” and located in the directory of the Production 
federate

Figure 12.17 shows a federate-code code for joining the FE. Each federate 
joins the FE by invoking rti.joinFederationExecution with three arguments: 
the name of the FE, a federate type (or federate name), and a federate ambas-
sador (fedAmb). Then the RTI returns a handle, called federate handle, consist-
ing of a small positive integer. We assume that the federate has constructed 
an instance of some implementation of the Java interface hla.rti.FederateAm-
bassador, a federate ambassador receiving messages originated by RTI, called 
fedAmb.

Fig. 12.15.  Federate code for obtaining a reference to RTI ambassador.

Fig. 12.16.  Federate code for creating the federation execution (FE).

“Federation” +  + “already exists

http://www.kaist.ac.kr
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Fig. 12.17.  Federate code for joining the federation execution (FE).

//implementation of Federate ambassador  
//designator for Production federate 

//for the production federate 

“Exception on join” 

TABLE 12.4.  Attribute Publications and Subscriptions

Object Attributes Production Transport Consumption Viewer

Serving position
type

publish
publish

publish publish
subscribe

passive subscribe
passive subscribe

Boat position
spaceAvailable
cargo

subscribe
subscribe
subscribe

publish
publish
publish

subscribe
subscribe
subscribe

passive subscribe
passive subscribe
passive subscribe

Chef position
chefState
servingName

publish
publish
publish

passive subscribe
passive subscribe
passive subscribe

Diner position
dinerState
servingName

publish
publish
publish

passive subscribe
passive subscribe
passive subscribe

TABLE 12.5.  Interaction Publications and Subscriptions

Interaction Manager Production Transport Consumption Viewer

SimulationEnds subscribe subscribe subscribe publish subscribe
TransferAccepted subscribe publish

12.4.3.3  Publications and Subscriptions  Table 12.4 shows attribute publi-
cations and subscriptions for the object class tree in Fig. 12.12(a). For example, 
attribute Serving.position is published by the subsystem federates and is sub-
scribed by the Viewer federate, and Serving.type is published by the Produc-
tion federate and is subscribed by the Consumption and Viewer federates. 
Each object class inherits the attribute privilegeToDeleteObject from the class 
ObjectRoot whose publication is set to “default publish.” Thus, this “root 
attribute” does not need to be declared explicitly.

Table 12.5 shows interaction publications and subscriptions for the interac-
tion class tree in Fig. 12.12(b). The simulation is to be ended if the number  
of servings exceeds certain value at the consumption subsystem. Thus,  
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SimulationEnds is published by the Consumption federate and subscribed by 
other federates. As another example, TransferAccepted is published by the 
Transport federate and subscribed by the Production federate.

Figure 12.18(a) shows the object class tree reproduced from Fig. 12.12  
for the Serving object and Boat object. Figure 12.18(b) is a portion of the pub/
sub table (Table 12.4) for the Serving and Boat objects at the Production 
federate. Figure 12.19 is a sample Java code declaring the publication of the 
Serving and the subscription of the Boat attributes shown in Fig. 12.18. Dec-
larations are made as follows: (1) Get an object class handle by invoking the 

Fig. 12.19.  Sample implementation of pub/sub of Serving and Boat object attributes.

//Get an object-class-handle for the Boat and Serving objects 
int RestaurantClassHandle = _rti.getObjectClassHandle(“ObjectRoot.Restaurant”); 
int BoatClassHandle = _rti.getObjectClassHandle(“ObjectRoot.Restaurant.Boat”); 
int ServingClassHandle = _rti.getObjectClassHandle(“ObjectRoot.Restaurant.Serving”); 

//Get an attribute-handle for each attribute of the Boat and Serving object classes 
int positionAttributeHandle = _rti.getAttributeHandle(“position”, RestaurantClassHandle); 
int spaceAvailableAttributeHandle = _rti.getAttributeHandle(“spaceAvailable”, BoatClassHandle); 
int cargoAttributeHandle = _rti.getAttributeHandle(“cargo”, BoatClassHandle); 
int typeAttributeHandle = _rti.getAttributeHandle(“type”, ServingClassHandle); 

//Create an empty set by using the factory reference and store the attribute handles in the created sets 
hla.rti.AttributeHandleSetFactory ahFactgory = RTI.attributeHandleSetFactory(); 
hla.rti.AttributeHandleSet boatAttributeHandles = ahFactory.create(); 
boatAttributeHandles.add(positionAttributeHandle); 
boatAttributeHandles.add(spaceAvailableAttributeHandle); 
boatAttributeHandles.add(cargoAttributeHandle); 
hla.rti.AttributeHandleSet servingAttributeHandles = ahFactory.create(); 
servingAttributeHandles.add(positionAttributeHandle); 
servingAttributeHandles.add(typeAttributeHandle); 

//Declare publications 
try {   //publish the object class attributes 
         _rti.publishObjectClass (ServingClassHandle, servingAttributeHandles); 
          //subscribe the object class attributes 
         _rti.subscribeObjectClassAttributes (BoatClassHandle, boatAttributeHandles); 
} catch (hla.rti.RTIexception e) { … } 

Fig. 12.18.  (a) Object class tree and (b) pub/sub table for Serving and Boat objects.
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getObjectClassHandle () function; (2) get attribute handles by invoking the 
getAttributeHandle () method; (3) the attribute handles to be subscribed are 
stored in separate sets; and (4) the to-be-published or to-be-subscribed attri-
butes are published or subscribed by invoking publishObjectClass () or sub-
scribeObjectClassAttributes ().

12.4.4  Executing the Restaurant Federation

The overall procedure for preparing and executing your own federation was 
described earlier in Section 12.3.3 (See Fig. 12.10). In this section, we will show 
you how to download a sample implementation of the restaurant federation 
and run the program. More details may be found in the HLA Book [Kuhl et 
al. 2000]. Even if you do not sufficiently understand the internal workings of 
the sushi restaurant federation, you are advised to follow the steps explained 
below to get familiar with it.

12.4.4.1  Download and Installation  Steps for downloading and installing 
the Sushi Restaurant Federation together with HLA/RTI software are as 
follows:

1.	 Download the restaurant federation sample code and HLA/RTI soft-
ware from the following website: http://authors.phptr.com/kuhl.

2.	 Unzip the downloaded file into a directory named <kuhl>. The top-level 
directories in the directory <kuhl> are
•	<kuhl>\bin: class files for the implementation of restaurant 

federation
•	<kuhl>\config: configuration data needed to run the restaurant 

federation
•	<kuhl>\doc: all documents
•	<kuhl>\lib: Java archives needed to run RTI and the restaurant 

federation
•	<kuhl>\src: Java source for the implementation of restaurant 

federation
3.	 Install a Java run-time environment by running jre-1_2_2_005-win.exe 

located in the <kuhl> directory.

12.4.4.2  Executing the RTI Executive  The RTI executive (RtiExec in Fig. 
12.10) can be executed by running the batch file <kuhl>\rti.bat. If executed 
successfully, the GUI shown in Fig. 12.20 will be presented to you. Then, (1) 
check the Federates field to have the list of joined federates displayed, and (2) 
check the RTI activity field to monitor the activities processed in the RTI 
executive.

http://authors.phptr.com/kuhl
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12.4.4.3  Running the Restaurant Federation  The Restaurant Federation 
is started by running the batch file <kuhl>\rest&view.bat. The batch file 
starts all federates one at a time in the following sequence: Manager, Pro
duction, Transport, Consumption, and Viewer. After running the batch file,  
the GUI of Fig. 12.21 will show up on your computer screen. Shown in the  
left side are user interfaces (UI) for Manager, Production, Transport,  
and Consumption federates, and the right side is the GUI for the Viewer 
federate.

If you have a problem with running the batch files, you may try the follow-
ing: (1) Check if a Java run-time environment (JRE) is installed in the <kuhl> 
directory on your computer; (2) if you have the JRE installed already, check 
its version. If the JRE version is higher than 1.2.2 or was installed JRE from 
the http://www.java.com, you need to modify the batch files as shown in  
Fig. 12.22.

Figure 12.23 shows the UI of the Production federate. Transport and Con-
sumption federates have the same structure. The main window is split into a 
chef table and a log area. The chef table contains a tabular display of the status 
of the chefs, and the log area displays messages written by the federate. The 
statuses of the chefs are specified as:

•	 Position: angular position of the chef along the canal
•	 State: chef’s state {Making Sushi, Looking for Boat, Waiting to 

Transfer}
•	 Serving: the object instance handle of the Serving the chef has 

prepared
•	 Boat to Xfer to: the handle of the Boat instance the chef is trying to load

Fig. 12.20.  RTI executive GUI.

http://www.java.com
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Fig. 12.22.  Modifying the batch files.

Fig. 12.23.  User interface of Production federate.
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