Modeling and

Simulation of

MODELING AND
SIMULATION OF
DISCRETE-EVENT
SYSTEMS

MODELING AND
SIMULATION OF
DISCRETE-EVENT
SYSTEMS

Byoung Kyu Choi
Department of Industrial and Systems Engineering, KAIST, South Korea
Department of Computer Science, KAU, Saudi Arabia

Donghun Kang

Department of Industrial and Systems Engineering, KAIST, South Korea

WILEY

Cover image: 08-17-09 © Mark Divers (iStock photo ID: 10295380)
Copyright © 2013 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the Web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created
or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional
where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or
other damages.

For general information on our other products and services or for technical support, please
contact our Customer Care Department within the United States at (800) 762-2974, outside the
United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic formats. For more information about Wiley products,
visit our website at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:
Choi, Byoung Kyu, 1949-
Modeling and simulation of discrete-event systems / Byoung Kyu Choi, Donghun Kang.
pages cm
Includes index.
ISBN 978-1-118-38699-6 (cloth)
1. Discrete-time systems—Simulation methods. 1. Kang, Donghun, 1981- II. Title.
T57.62.C377 2013
003'.83-dc23
2013013970

Printed in the United States of America

10 9 8 7 6 5 4 3 21

http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com

I CONTENTS

PREFACE
ABBREVIATIONS

PARTI BASICS OF SYSTEM MODELING AND SIMULATION

1. Overview of Computer Simulation

1.1
1.2

1.3

1.4

1.5

1.6

1.7
1.8

Introduction

What Is a System?

1.2.1 Definitions of Systems

1.2.2 Three Types of Systems

1.2.3 System Boundaries and Hierarchical Structure
What Is Computer Simulation?

1.3.1 What Is Simulation?

1.3.2 Why Simulate?

1.3.3 Types of Computer Simulation

What Is Discrete-Event Simulation?

141 Description of System Dynamics

1.42 Simulation Model Trajectory

1.43 Collecting Statistics from the Model Trajectory
What Is Continuous Simulation?

1.5.1 Manual Simulation of the Newtonian
Cooling Model

1.5.2 Simulation of the Newtonian Cooling Model
Using a Simulator

What Is Monte Carlo Simulation?

1.6.1 Numerical Integration via Monte Carlo Simulation
1.6.2 Risk Analysis via Monte Carlo Simulation

What Are Simulation Experimentation and Optimization?
Review Questions

xvii

xix

O© 00 3 Lt A b B~ W W p—

=
—_ = O O

12

12
12
12
14
15
16

vi CONTENTS

2. Basics of Discrete-Event System Modeling and Simulation

2.1
22

23

24

2.5

2.6

2.7

Introduction

How Is a Discrete-Event Simulation Carried Out?
2.2.1 Event Routines

222 Simulation Model Trajectory

2.2.3 Manual Simulation Execution

2.2.4 Flow Chart of Manual Simulation Procedure
Framework of Discrete-Event System Modeling

2.3.1 What Are Modeling Components and
Reference Model?

23.2 What Is a Discrete-Event System (DES) Modeling
Formalism?

2.3.3 What Is a Formal Model and How Is It Specified?
2.3.4 Integrated Framework of DES Modeling
Illustrative Examples of DES Modeling and Simulation

241 How to Build and Simulate an Event Graph
Model of a DES

2.4.2 How to Build and Simulate an ACD Model of a DES

243 How to Build and Simulate a State Graph Model
of a DES

Application Frameworks for Discrete-Event System
Modeling and Simulation

2.5.1 How Is the M&S Life Cycle Managed?
2.5.2 Framework for Factory Life-Cycle Support
What to Cover in a Simulation Class

2.6.1 Event-Based M&S and Event-Graph Simulation
with SIGMA®

2.6.2 Activity-Based M&S and Hands-On Modeling
Practice with Arena®

2.6.3 State-Based M&S
Review Questions

PART II FUNDAMENTALS OF DISCRETE-EVENT SYSTEM
MODELING AND SIMULATION

3. Input Modeling for Simulation

3.1
32

Introduction
Empirical Input Modeling
32.1 Nonparametric Modeling

17

17
17
18
19
19
22
23

23

24
26
29
32

33
35

37

38
38
39
40

41

41
41
42

43

45

45
46
46

33

34

3.5

3.6

3.7

CONTENTS

3.2.2 Empirical Modeling of Individual Data

3.2.3 Empirical Modeling of Grouped Data
Overview of Theoretical Distribution Fitting

3.3.1 Data Independence Checking

3.3.2 Distribution Function Selection

3.33 Parameter Estimation

3.3.4 Goodness-of-Fit Test

3.3.5 Overview of Random Variate Generation
Theoretical Modeling of Arrival Processes

34.1 Theoretical Basis for Arrival Process Modeling

3.4.2 Generation of Inter-Arrival Times for a Constant
Arrival Rate

3.43 Generation of Inter-Arrival Times for Varying
Arrival Rates

Theoretical Modeling of Service Times

3.5.1 Generation of Service Time in the Absence of Data
3.5.2 Generation of Service Times from Collected Data
Input Modeling for Special Applications

3.6.1 Interfailure Time Modeling

3.6.2 Inspection Process Modeling

3.6.3 Batch Size Modeling

Review Questions

Appendix 3A: Parameter Estimation

3A.1 Exponential Distribution

3A.2 Erlang Distribution

3A.3 Beta Distribution

3A.4 Weibull Distribution

3A.5 Normal and Lognormal Distributions

Appendix 3B: Random Variate Generation

3B.1 Exponential Random Variate

3B.2 Erlang Random Variate

3B3 Beta Random Variate

3B4 Weibull Random Variate

3B.5 Normal and Lognormal Random Variates
3B.6 Triangular Random Variate

. Introduction to Event-Based Modeling and Simulation

4.1
4.2

Introduction
Modeling and Simulation of a Single Server System

vii

46
47
48
48
49
49
49
49
50
50

51

52
53
53
55
57
57
58
59
59
60
60
60
61
62
64
64
64
65
65
66
67
67

69

69
70

viii

4.3

4.4

4.5

4.6

4.7

4.8

5.1
52

CONTENTS

42.1 Reference Modeling

4.2.2 Formal Modeling

423 Model Execution

Execution Rules and Specifications of Event Graph Models
4.3.1 Event Graph Execution Rules

4.3.2 Tabular Specification of Event Graph Models

4.3.3 Algebraic Specifications of an Event
Graph Model

Event Graph Modeling Templates
441 Single Queue Models
442 Tandem Line Models
Event Graph Modeling Examples

45.1 Flexible Multi-Server System with Fluctuating
Arrival Rates

452 Car Repair Shop

4.5.3 Project Management Modeling

454 Conveyor-Driven Serial Line

455 Inline-Type Manufacturing Cell Modeling
Execution of Event Graph Models with SIGMA

4.6.1 Simulation of a Single Server System with SIGMA

4.6.2 Simulation of a Conveyor-Driven Serial Line with
SIGMA

Developing Your Own Event Graph Simulator

4.7.1 Functions for Handling Events and
Managing Queues

4.7.2 Functions for Generating Random Variates
4.7.3 Event Routines

474 Next Event Methodology of Simulation
Execution

47.5 Single Server System Simulator
Review Questions

. Parameterized Event Graph Modeling and Simulation

Introduction

Parameterized Event Graph Examples

521 Introducing Index Variables to a Repeating
Event-Vertex Pattern

5.2.2 Passing Attribute Values of Each Entity along
Event Vertices

70
71
72

72
73

75
75
76
80
82

82
82
84
85
86
91
92

95
99

99
101
101

102
103
106

107

107
108

108

109

CONTENTS

5.3 Execution Rules and Specifications of the Parameterized
Event Graph

5.3.1 Execution Rules of the PEG Model
5.3.2 Tabular Specifications of the PEG Model
5.3.3 Algebraic Specifications of the PEG Model
5.4 Parameterized Event Graph Modeling of Tandem Lines

541 PEG Modeling of an Unlimited Buffer
Tandem Line

542 PEG Modeling of a Limited Buffer Tandem Line
543 PEG Modeling of a Conveyor-Driven Serial Line
5.5 Parameterized Event Graph Modeling of Job Shops

5.5.1 PEG Modeling of a Simple Job Shop without
Transport

5.5.2 PEG Modeling of a Job Shop with Transport
and Setup Times

5.5.3 PEG Modeling of an Inline Job Shop
554 PEG Modeling of a Mixed Job Shop

5.6 Execution of Parameterized Event Graph Models Using
SIGMA

5.6.1 Collecting Sojourn Time Statistics Using SIGMA
Functions

5.6.2 Simulating a Simple Service Shop with SIGMA

5.6.3 Simulation of a Three-Stage Tandem Line Using
SIGMA

5.6.4 Simulation of the Simple Job Shop with
SIGMA

5.7 Developing Your Own Parameterized Event Graph
Simulator

5.7.1 Tandem Line PEG Simulator
5.7.2 Simple Job Shop PEG Simulator
5.8 Review Questions

. Introduction to Activity-Based Modeling and Simulation

6.1 Introduction

6.2 Definitions and Specifications of an Activity Cycle
Diagram
6.2.1 Definitions of an ACD

6.2.2 Execution Rules and Tabular Specifications
of an ACD

6.2.3 Algebraic Specifications of an ACD

110
110
110
111
112

112
113
114
115

115

117
118
121

122

123
126

128

131

137
137
140
142

143
143

145
146

147
148

X

CONTENTS

6.3

6.4

6.5

6.6

6.7

Activity Cycle Diagram Modeling Templates

6.3.1

6.3.2

6.3.3
6.3.4
6.3.5
6.3.6

6.3.7

ACD Template for Flexible Multi-Server System
Modeling

ACD Template for Limited Buffer Tandem
Line Modeling

ACD Template for Nonstationary Arrival Process
ACD Template for Batched Service Modeling
ACD Template for Joining Operation Modeling

ACD Template for Probabilistic Branching
Modeling

ACD Template for Resource Failure Modeling

Activity-Based Modeling Examples

6.4.1

6.4.2

6.4.3
6.4.4

6.4.5
6.4.6

6.4.7

Activity-Based Modeling of a Worker-Operated
Tandem Line

Activity-Based Modeling of an Inspection-Repair
Line

Activity-Based Modeling of a Restaurant

Activity-Based Modeling of a Simple Service
Station

Activity-Based Modeling of a Car Repair Shop
Activity-Based Modeling of a Project
Management System

Activity-Based Modeling of a Conveyor-Driven
Serial Line

Parameterized Activity Cycle Diagram and Its

Application

6.5.1 Definition and Specifications of Parameterized
ACD

6.5.2 Rules for Executing the P-ACD Model

6.5.3 P-ACD Modeling of Tandem Lines

6.54 P-ACD Modeling of Job Shops

Execution of Activity Cycle Diagram Models with a
Formal Simulator ACE®

6.6.1
6.6.2

6.6.3
6.6.4

Simulation of Single Server Model with ACE

Simulation of Probabilistic Branching Model
with ACE

Simulation of Resource Failure Model with ACE

Simulation of Simple Service Station Model
with ACE

Review Questions

150

151

152
153
153
154

154
155
156

156

157
158

159
160

161

161

163

163
164
165
168

171
171

175
176

180
183

CONTENTS

7. Simulation of ACD Models Using Arena®

7.1 Introduction

7.2 Arena Basics

7.2.1
722

72.3

7.2.4
7.2.5

Arena Modeling Environment

Building a Flowchart Model of a Process-Inspect
Line

Completing a Static Model of a Process-Inspect
Line

Arena Simulation and Output Reports

Arena Modules

7.3 Activity Cycle Diagram-to-Arena Conversion Templates

7.3.1
732
7.3.3

7.3.4
7.3.5

7.3.6
7.3.7

7.3.8

Template for Fixed Multi-Server Modeling
Template for Flexible Multi-Server Modeling

Template for Balking (Conditional Branching)
Modeling

Template for Limited Buffer Tandem Line Modeling

Template for Nonstationary Arrival Process
Modeling

Template for Joining Operation Modeling

Template for Inspection (Probabilistic Branching)
Modeling

Template for Resource Failure Modeling

7.4 Activity Cycle Diagram-Based Arena Modeling Examples

7.4.1

7.4.2
7.4.3

7.4.4

7.4.5
7.4.6

ACD-Based Arena Modeling of a
Worker-Operated Tandem Line

ACD-Based Arena Modeling of Restaurant
ACD-Based Arena Modeling of a Simple Service
Station

ACD-Based Arena Modeling of a Project
Management System

ACD-Based Arena Modeling of a Job Shop

ACD-Based Arena Modeling of a Conveyor-Driven
Serial Line

7.5 Review Questions

8. Output Analysis and Optimization

8.1 Introduction
8.2 Framework of Simulation Output Analyses

8.2.1

Verification and Calibration

Xi

184

184
185
186

187

191
192
194
197
198
201

202
204

205
206

207
208
209

210
211

213

214
216

219
223

224

224
225
225

Xii CONTENTS

822
8.2.3

Simulation Experimentation
Communication and Presentation

8.3 Qualitative Output Analyses
8.4 Statistical Output Analyses

8.4.1

8.4.2

8.4.3

Statistical Output Analyses for Terminating
Simulations

Statistical Output Analyses for Nonterminating
Simulations

Statistical Output Analyses for Comparing
Alternative Systems

8.5 Linear Regression Modeling for Output Analyses

8.5.1 Linear Regression Models

8.5.2 Regression Parameter Estimation

8.5.3 Test for Significance of Regression

8.5.4 Linear Regression Modeling Example

8.5.5 Regression Model Fitting for Qualitative Variables
8.6 Response Surface Methodology for Simulation

Optimization

8.6.1 Overview of RSM for Process Optimization

8.6.2 Searching for Optimum Regions with

the Steepest Ascent
8.6.3 Second-Order Model Fitting for Optimization

8.7 Review Questions
Appendix 8A: Student’s t-Distribution

S8A.1
S8A2
8A3

Definition
Derivation of the ¢-Statistic

Table of Critical ¢-Values with Degrees of
Freedom (df)

Appendix 8B: Student’s ¢-Tests

8B.1
8B.2

One Sample t-Test
Unpaired Two Sample #-Test

PART III ADVANCES IN DISCRETE-EVENT SYSTEM
MODELING AND SIMULATION

9. State-Based Modeling and Simulation

9.1 Introduction
9.2 Finite State Machine

9.2.1

Existing Definitions of Finite State Machines

226
227
228
230

230

231

233
234
234
235
236
238
240

241
241

241
245
247
248
248
248

248
249
249
250

253

255

255
256
256

10.

93

9.4

9.5

9.6

CONTENTS

9.2.2 Finite State Machine Models

9.2.3 Finite State Machine Modeling of Buffer Storage
and Single Server Systems

9.2.4 Execution of Finite State Machine Models
Timed Automata

9.3.1 Language and Automata

9.3.2 Timed Automata

9.3.3 Timed Automata with Guards

9.3.4 Networks of Timed Automata

State Graphs

9.4.1 State Variables and Macro States

9.4.2 Timers and System Variables

9.43 Conventions for Building State Graphs and State
Transition Tables

System Modeling with State Graph

9.5.1 State Graph Modeling of Dining Philosophers
9.52 State Graph Modeling of a Table Tennis Game
9.5.3 State Graph Modeling of a Tandem Line

9.5.4 State Graph Modeling of a Conveyor-Driven
Serial Line

9.5.5 State Graph Modeling of Traffic Intersection
Systems

Simulation of Composite State Graph Models

9.6.1 Framework of a State Graph Simulator
9.6.2 Synchronization Manager

9.6.3 Atomic Simulators

9.6.4 Table Tennis Game Simulator

9.6.5 State Graph Simulator for Reactive Systems
9.6.6 SGS®

Appendix 9A:DEVS

9A.1 Definitions of DEVS
9A.2 DEVS Simulators

Advanced Topics in Activity-Based Modeling and Simulation

10.1 Introduction
10.2 Developing Your Own Activity Cycle Diagram Simulators

10.2.1 Tocher’s Three-Phase Process
10.2.2 Activity Scanning Algorithm
10.2.3 ACD Simulator

xiii

257

258
259
261
261
262
263
266
267
267
268

269
271
271
272
275

275

279
283
283
284
287
290
293
295
295
295
297

299

299
300
300
302
304

Xiv

11.

CONTENTS

10.3

10.4

10.5

10.6

10.2.4 P-ACD Simulator

10.2.5 Collecting Statistics

Modeling with Canceling Arc

10.3.1 ACD Model of Single Server System with Reneging

10.3.2 ACD Model of Resource Failure

10.3.3 ACD Model of Time-Constrained Processing

10.3.4 Execution of Canceling Arc

Cycle Time Analysis of Work Cells via an Activity Cycle

Diagram

10.4.1 Cycle Time Analysis of Single-Armed Robot
Work Cell

10.4.2 Cycle Time Analysis of Single Hoist Plating Line

10.4.3 Cycle Time Analysis of Dual-Armed Robot
Cluster Tool

Activity Cycle Diagram Modeling of a Flexible
Manufacturing System

10.5.1 ACD Modeling of Job Flows in FMS
10.5.2 P-ACD Modeling of Job Routing in FMS

10.5.3 P-ACD Modeling of AGV Dispatching Rules
in FMS

10.5.4 P-ACD Modeling of Refixture Operation and
Heterogeneous FMS

Formal Model Conversion

10.6.1 Conversion of ACD Models to Event Graph
(EG) Models

10.6.2 Conversion of ACD Models to State Graph
(SG) Models

10.6.3 Examples of Formal Model Conversion

Appendix 10A: Petri Nets

10A.1 Definitions of Petri Nets

10A.2 Petri-Net State and Execution
10A.3 Extended Petri Nets and the ACD
10A.4 Restricted Petri Nets

10A.5 Modeling with Petri Nets

Advanced Event Graph Modeling for Integrated Fab Simulation

111
11.2

Introduction

Flat Panel Display Fabrication System
11.2.1 Overview of FPD Fab

11.2.2 FPD Processing Equipment
11.2.3 Material Handling System

306
309
310
311
312
313
313

313

314
316

319

322
323
323

325

327
329

329

330
331
334
334
335
336
337
337

338

338
339
339
340
342

CONTENTS

11.3 Production Simulation of a Flat Panel Display Fab

11.3.1
11.3.2
11.3.3
11.3.4

Modeling of Uni-Inline Job Shop
Modeling of Oven Type Job Shop
Modeling of Heterogeneous Job Shop

Object-Oriented Event Graph Simulator for
Production Simulation

11.4 Integrated Simulation of a Flat Panel Display Fab

11.4.1
11.4.2
11.4.3

11.4.4

11.4.5

11.4.6
11.4.7

Modeling of Job Shop for Integrated Simulation
Modeling of Conveyor Operation

Modeling of the Interface between Conveyor
and Inline Stocker

Modeling of the Interface between Uni-inline
Cells and Inline Stocker

Modeling of the Interface between Oven and
Inline Stocker

Modeling of Inline Stocker Operation
Integrated Fab Simulator

11.5 Automated Material Handling Systems-Embedded
Integrated Simulation of Flat Panel Display Fab

1151
11.5.2

11.5.3

11.5.4

Concept of AMHS-Embedded Fab Simulation

Framework of AMHS-Embedded Fab
Simulation System

Simulator for AMHS-Embedded Integrated
Fab Simulation

IFS®

12. Concepts and Applications of Parallel Simulation

12.1 Introduction
12.2 Parallel Simulation of Workflow Management

System

12.2.1
12.2.2
12.2.3

12.2.4
12.2.5

Enactment Service Mechanism of WfMS
Framework of Parallel Simulation of WEMS

State Graph Modeling of an Enactment Server
and Sync Manager

State Graph Modeling of Participant Simulators
Implementation of a Workflow Simulator

12.3 Overview of High-Level Architecture/Run-Time
Infrastructure

12.3.1
12.3.2
12.3.3

Basics of HLA/RTI
HLA Federation Architecture
Overview of Federation Execution

XV

343
343
345
346

346
350
350
353

355

357

358
358
361

362
363

364

366
368

371
371

372
372
373

375
377
377

378
379
381
382

XVi CONTENTS

12.4 Implementation of a Parallel Simulation with High-Level
Architecture/Run-Time Infrastructure

12.4.1 The Sushi Restaurant Federation
12.4.2 Preparation of an FED File

12.43 Preparation of the Federate Code
(of the Production Federate)

12.4.4 Executing the Restaurant Federation

REFERENCES
INDEX

Online Supplements

383
383
384

386
391

395
400

Numerous supplemental materials including software downloads are provided
on the official website of the book at http://VMS-technology.com/book. The
supplemental materials are grouped into (1) M&S practices with commercial
simulators, (2) developing your own dedicated simulators, and (3) integrated
simulation of electronics Fabs. The commercials simulators covered are an
event-based simulator SIGMA®, an activity-based simulator ACE®, a state-

based simulator SGS®, and an entity-based simulator Arena®.

I PREFACE

This book provides comprehensive, in-depth coverage of modeling and simula-
tion (M&S) of discrete-event systems (DESs). Here, the term M &S refers to
computer simulation, with an emphasis on modeling real-life DESs and exe-
cuting the models. The current state-of-the-art in DES M&S is a result of the
breakthroughs in the following areas: (1) activity-based modeling formalism
pioneered by K.D. Tocher in late 1950s; (2) the advent of process-oriented
simulation languages, such as GPSS and SLAM, in the early 1970s; (3) state-
based modeling formalism, or DEVS, founded by Bernard Zeigler in the mid-
1970s; and (4) event-based modeling formalism as matured by Lee Schruben
since the early 1980s.

There exists at least one classic textbook in each area—a textbook on
activity-based modeling by Carrie, a few books on state-based (DEVS) model-
ing by Zeigler, a textbook on event-based modeling by Schruben, and a few
books on process-oriented languages such as Arena® and ProModel®. In addi-
tion, there are quite a few books focusing on statistical notions of computer
simulation. The researchers in each area advocate their own views as central
to DES M&S. Only a couple of books (e.g., Fishwick) propose an integrated
model engineering framework.

This book presents an integrated M&S framework covering all four DES
MA&S breakthrough areas. It is a product of 30 years of teaching at KAIST, as
well as sponsored research and development projects at the authors’ lab at
KAIST, VMS (virtual manufacturing system) Lab, which has been a
government-endowed National Research Lab since 1999. In particular, the
practice-oriented theme of this book is a result of the authors’ decade-long
experience in developing simulation-based scheduling (SBS) solutions for
Samsung Electronics and other companies in Korea. Virtually all the Sam-
sung’s semiconductor fabrication plants (Fabs) and flat panel display (FPD)
Fabs are run utilizing solutions originated by the authors’ lab, and upgraded
and supported by a spin-off venture company.

This book is divided into three parts: Part I, Basics of System Modeling
and Simulation; Part 11, Fundamentals of Discrete-Event System Modeling and
Simulation; and Part 111, Advances in Discrete-Event System Modeling and
Simulation. Parts I and II are designed as a primary textbook for an under-
graduate level M&S course in Industrial Engineering, Computer Science, and
Management Science. With Part 111, it is designed as a graduate-level course.
This book comprehensively covers the state-of-the art modeling formalisms

xvii

Xviii PREFACE

and execution algorithms in DES M&S thereby serving as a main reference
for M&S researchers in academia. This book provides an easy-to-understand
guide for simulation practitioners in industry using off-the-shelf simulators
such as SIGMA® and Arena®. Finally, this book reveals a number of “secrets”
for developing your own simulators: event graph simulator, ACD simulator,
state graph simulator, and integrated Fab simulator—making it a valuable
resource for M&S solution developers.

The book is largely self-contained, and few prerequisites are needed for
understanding its main contents. However, some prior knowledge will help
readers understand specific sections:

(1) Basic knowledge of statistics and probability (Chapter 3, Input
Modeling);

(2) Basic knowledge of linear algebra (Chapter 8, Output Analysis and
Optimization)

(3) Experience with computer programming (Sections on developing your
own simulators, e.g. Sections 5.7 and 10.2).

Perhaps the most critical prerequisite for mastering this book is enthusiasm
and commitment toward M&S. This book is about the art of M&S, and like
other art forms, can only be mastered through persistent practice.

The authors wish to express their special thanks to Prof. K.H. Han of
Gyeongsang National University for using part of this book in his class and
providing valuable comments that led to its improvement; to Prof. I.K. Moon
of Seoul National University and Prof. S.C. Park of Ajou University for
their input during the early stage of writing this book; and to Prof. Lee Schru-
ben of Berkeley for his encouragement and support. For developing sample
models and exercise problems, and for executing “prototype” simulation
models appearing in the book, we would like to thank our graduate students
in the VMS Lab at KAIST, especially H.S. Kim, T.J. Choi, and E.H. Song.

Finally, Byoung Choi thanks his wife, Yong, and his son and best friend
Samuel, for their support and encouragement. Donghun Kang thanks his
parents for their loving care and support.

Byounc Kyu CHot
DonNGHUN KANG

Daejeon, Korea, June 2013

I ABBREVIATIONS

ACD
AGV
AMHS
AON
AQL
AST
ATM
ATT
AWT
BTO
CAL
DES
EFD
EG
EO
EOS
Fab
FED
FEL
FIFO
FMS
FOM
FPD
FSA
FSM
HLA

activity cycle diagram
automated guided vehicle
automated material handling system
activity-on-node

average queue length
average sojourn time
automatic teller machine
activity transition table
average waiting time
bound-to-occur

candidate activity list
discrete-event system
entity flow diagram

event graph

event object

end of simulation
Fabrication line (or plant)
federation execution data
future event list
first-in-first-out

flexible manufacturing system
federation object model
flat panel display

finite state automata
finite state machine

high level architecture

IFS
LCD
LEL
LP
M&S
MCS
MDP
MEL
MLE
MS
MSR
OOEG
P-ACD
PDM
PEG
RSM
RTD
RTI
SG
SOM
SS
TAG
TAR
VE
WIMS

integrated factory simulator
liquid crystal display

local event list

logical process

modeling and simulation
material control system
message delivery packet
move-type event list
maximum likelihood estimator
mean square

message send request
object-oriented event graph
parameterized ACD
process definition model
parameterized event graph
response surface methodology
real-time dispatcher

run time infrastructure
state graph

simulation object model
sum of square

time advance grant

time advance request
virtual environment
workflow management
system

Xix

I PART |

BASICS OF SYSTEM MODELING AND
SIMULATION

We think by “constructing mental models and then simulating them in order
to draw conclusions or make decisions.” Thus, modeling and simulation (M&S)
constitutes the central part of our thinking process. “I think, therefore I am”
is a philosophical statement used by the French philosopher Descartes, which
became a foundational element of Western philosophy. Therefore, if we
combine the philosophical notion of thinking with the engineering definition
of M&S, we may say that “we are engineers and scientists because we can
model systems and simulate them.” Furthermore, if our brain is not powerful
enough to simulate a given complex system, we rely on computers to perform
a computer simulation.

A dictionary definition of simulation is the technique of imitating the
behavior of some situation by means of an analogous situation or apparatus
to gain information more conveniently or to train personnel, while an aca-
demic definition of computer simulation is the discipline of designing a model
of a system, simulating the model on a digital computer, and analyzing the
execution output. In recent years, the term modeling and simulation (M&S)
seems to be preferred to the term for computer simulation, with an emphasis
on modeling. Part I of this book has two chapters, and it aims to provide the
readers with a basic but comprehensive treatment of computer simulation.

Chapter 1,“Overview of Computer Simulation,” will provide answers to the
following basic questions in computer simulation:

. What is a system?

. What is computer simulation?

. What is discrete-event simulation?

. What is continuous simulation?

. What is Monte Carlo simulation?

. What are simulation experimentation and optimization?

AN AN

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

2 BASICS OF SYSTEM MODELING AND SIMULATION

Chapter 2, “Basics of Discrete-Event System Modeling & Simulation,” aims
to provide answers to the following basic questions in discrete-event system
(DES) M&S:

. How is a discrete-event simulation carried out?

. What are modeling components and a reference model?

. What is a discrete-event system modeling formalism?

. What is a formal model and how it is specified?

. What is the integrated framework of discrete-event system modeling?

SN AN

. How do we build and simulate an event graph or activity cycle diagram
(ACD) model of a DES?

7. How is the M&S life cycle managed?

I CHAPTER 1

Overview of Computer Simulation

The wise man is one who knows what he does not know.
—Tao Te Ching

1.1 INTRODUCTION

Richmond [2003] defines thinking as “constructing mental models and then
simulating them in order to draw conclusions or make decisions.” Namely, he
defines thinking as mental simulation. When the situation is too complex to
be analyzed by mental simulation alone, we rely on computer simulation.
According to Schruben [2012], simulation models provide unlimited virtual
power: “If you can think of something, you can simulate it. Experimenting in
a simulated world, you can change anything, in any way, at any time—even
change time itself.”

Fishwick [1995] defines computer simulation as the discipline of designing
a model of a system, simulating the model on a digital computer, and analyzing
the execution output. In the military, where computer simulation is extensively
used in training personnel (e.g., war game simulation) and acquiring weapon
systems (e.g., simulation-based acquisition), the term modeling and simulation
(M&S) is used in place of computer simulation. In this book, these two terms
are used interchangeably.

The purpose of this chapter is to provide the reader with a basic under-
standing of computer simulation. After studying this chapter, you should be
able to answer the following questions:

1. What are the common characteristics that lead to a conceptual definition
of system?

2. What are the three types of systems?
. What are the three subsystems in a feedback control system?
4. What are the three types of virtual environment simulation?

(V)

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

4 OVERVIEW OF COMPUTER SIMULATION

5. What are the three types of computer simulation?
6. What is the simulation model trajectory of a discrete-event system?
7. What is Monte Carlo simulation?

8. What is sensitivity analysis in simulation experimentation?

This chapter is organized as follows: Definitions and structures of systems
are given in Section 1.2. Section 1.3 provides definitions and applications of
simulation. The subsequent three sections introduce the three simulation
types: discrete-event simulation in Section 1.4, continuous simulation in Section
1.5, and Monte Carlo simulation in Section 1.6. Finally, a basic framework of
simulation experimentation is presented in Section 1.7.

1.2 WHAT IS A SYSTEM?

1.2.1 Definitions of Systems

Systems are encountered everywhere in the world. While those systems differ
in their specifics, they share common characteristics that lead to a conceptual
definition of a system. In Wu [1992], a system is defined as “a collection of
components which are interrelated in an organized way and work together
towards the accomplishment of certain logical and purposeful end.” Thus, any
portion of the real world may be defined as a system if it has the following
characteristics: (1) it has a purpose or purposes, (2) its components are con-
nected in an organized manner, and (3) they work together to achieve common
objectives. A system consisting of people is often called a team. Needless to
say, a mere crowd of people sharing no common objectives is not a team.

When defining a system, the concept of state variable plays a key role. A
state variable is a particular measurable property of an object or system.
Examples of state variables are the number of jobs in a buffer, status of a
machine, temperature of an oven, etc. A system in which the state variables
change instantaneously at discrete points in time is called a discrete-event
system, whereas a system in which state variables change continuously over
time is called a continuous system.

1.2.2 Three Types of Systems

Our universe, which is full of systems everywhere, may be viewed from the
five levels of detail (Fig. 1.1): from the subatomic level to cosmological level.
In the subatomic level, interactions among the components of a system are
described using quantum mechanics, which is a physical science dealing with
the behavior of matter and energy on the scale of atoms and subatomic par-
ticles. It is interesting to find that quantum mechanics is also used in modeling
a system at the cosmological level [Mostafazadeh 2004]. Thus, a system in the
subatomic level or cosmological level may be called a quantum system.

WHAT IS A SYSTEM? 5

-~ ~

e AN Socio- . RN
/ Y Electro- . . / LN
Subatomic | ; Industrial Systems economic, Cosmological
=p | mechanical | mp) - . !)
\ World ! (Factory, Office) Ecological v Systems
9 7 Systems \
. . Systems S ud

~ _od

~—= ~—a=-

Quantum system Continuous system Discrete-event system Continuous system Quantum system

Fig. 1.1. Five levels of details of system definitions in the universe.

A system in the electromechanical level usually has components whose
physical dynamics are described using differential equations of effort, such as
force and voltage, and flow, such as velocity and current [Karnopp et al. 2000].
The behaviors of ecological systems and socioeconomic systems are usually
described using differential equations of flow [Hannon and Ruth 2001]. As a
result, these systems are called a continuous system or a differential equation
system.

Systems in the middle level are industrial systems which are more conve-
niently described in terms of discrete events, and they are discrete-event
systems. An event is an instance of changes in state variables. A special type
of this system is a digital system such as a computer whose states are defined
by a finite number of 0s and 1s.

1.2.3 System Boundaries and Hierarchical Structure

Everything in our world is connected to everything else in some way, which is
known as the small world phenomenon [Kleinberg 2000]. Thus, in order to
define a system, it is first necessary to isolate the components of the system
from the remaining world and to enclose them within a system boundary.

A set of isolated components of primary interest is called a target system. The
target system may have a number of subsystems, and it may be a subsystem of a
higher-level system called a wider system. The wider system is separated from
the external environment by a boundary [Wu 1992]. In summary, a typical
system consists of a target system (composed of its subsystems) and a wider
system (in which the target system is included). The system of interest consisting
of a target system and its wider system is often referred to as a source system.

Most dynamic systems in engineering and management are feedback
control systems. Key subsystems in a feedback control system are operational,
monitoring, and decision-making subsystems. The operational subsystem
carries out the system’s tasks, and the monitoring subsystem monitors system
performances and reports to the decision-making subsystem. The decision-
making subsystem is responsible for making decisions and taking corrective
actions. The relationships among the target feedback control system, its sub-
systems, wider system, and external environment are shown in Fig. 1.2 [Wu
1992]. For example, if your simulation study is focused on an emergency room
of a hospital, the emergency room would become the target system and the
hospital the wider system.

6 OVERVIEW OF COMPUTER SIMULATION

' Opera
Subsystem
Decision™
making

ring
Goal-setting, gouN

Operation-supporting

Bty
Subsystem — performance y

checking

Fig. 1.2. Hierarchical structure of feedback control system.

The wider system influences the target system by setting goals, supporting
operations, and checking performances. The target system is subject to distur-
bances from the external environment. In addition, the external environment
provides the wider system with higher-level objectives and other external
influences.

Exercise 1.1. Give an example of a feedback control system involving
people and identify all the components of the system.

1.3 WHAT IS COMPUTER SIMULATION?

1.3.1 What Is Simulation?

A dictionary definition of simulation is “the technique of imitating the behav-
ior of some situation by means of an analogous situation or apparatus to gain
information more conveniently or to train (or entertain) personnel.” “Some
situation” in the definition corresponds to a source system, and an apparatus
is a simulator. As elaborated in the definition, there are two types of simulation
objectives: one is to gain information and the other is to train or entertain
personnel. The former is often called an analytic simulation and the latter a
virtual environment simulation [Fujimoto 2000].

The main purpose of an analytic simulation is the quantitative analysis of
the source system based on “exact” data. Thus, the simulation should be exe-
cuted in an as-fast-as-possible manner and be able to precisely reproduce the
event sequence of the source system. An analytic simulation is often referred

WHAT IS COMPUTER SIMULATION? 7

Fig. 1.3. Examples of virtual environment simulation.

to as a time-stamp simulation. A virtual environment simulation is executed in
a scaled real-time while creating virtual environments, and it is often referred
to as a time-delay simulation. Shown in Fig. 1.3 are scenes from a war-game
simulation and from a computer game.

An analytic simulation with human interaction is called a constructive simu-
lation, and one without human interaction an autonomous simulation. If
humans interact with the simulation as a participant, it is referred to as human-
in-the-loop (HIL) simulation; if machines or software agents interact with the
simulation, it is called a machine-in-the-loop (MIL) simulation. A virtual envi-
ronment simulation without HIL/MIL is often called a virtual simulation; one
with HIL only a constructive simulation; one with both HIL and MIL a live
simulation. Figure 1.4 shows the classification of computer simulation.

1.3.2 Why Simulate?

Modeling and simulation is the central part of our thinking process. When the
situation is too complex to be analyzed by mental simulation alone, we use a
computer for simulating the situation. Let’s consider the following situations:

8 OVERVIEW OF COMPUTER SIMULATION

| Computer Simulation

Analytic Simulation VE Simulation
(Time-stamp simulation) (Time-delay simulation)
I

|Autonomous| |Constructive (HIL)| | Virtual ||Constructive (HIL)| |Live (HIL+MIL)

Fig. 1.4. Classification of computer simulation.

1. Finding optimal dispatching rules at a modern 300-mm semiconductor
Fab

2. Evaluating alternative designs for hospitals, post offices, call centers, etc.

3. Designing the material handling system of a 3 billion dollar thin film
transistor-liquid crystal display (TFT-LCD) Fab

4. Planning a wireless network for a telecommunication company

5. Evaluating high-tech weapons systems for a simulation-based
acquisition

6. Designing or upgrading the urban traffic system of a big city

7. Evaluating anti-pollution policies to control pollutions in river systems

8. Evaluating risks in project schedules and financial derivatives

For the above real-life situations, simulation may be the only means to
tackle the problems. In practice, simulation may be needed because experi-
menting with the real-life system is not feasible; your budget does not allow
you to acquire an expensive prototype; a real test is risky; your customer wants
it “yesterday”’; your team wants to test several solutions and to compare them;
you would like to keep a way to reproduce its performances later.

The simulation of a discrete-event system is called a discrete-event simula-
tion, and that of a continuous system a continuous simulation. A class of com-
putational schemes that rely on repeated random sampling to compute their
results is referred to as Monte Carlo simulation. Among the above situations,
Situations 1-6 are concerned with a discrete-event simulation. Situation 7 is
concerned with a continuous simulation and Situation 8 with a Monte Carlo
simulation.

1.3.3 Types of Computer Simulation

As depicted earlier in Fig. 1.1, the dynamic systems in the universe can be
classified into five levels and three types. The three types of dynamic systems
are: (1) discrete-event systems, (2) continuous systems, and (3) quantum
systems. Thus, it is conceivable that there is one type of computer simulation
for each system type. Discrete-event simulation and continuous simulation are
widely performed on computers, but the direct simulation of quantum systems

WHAT IS DISCRETE-EVENT SIMULATION? 9

on classical computers is very difficult because of the huge amount of memory
required to store the explicit state of the system [Buluta and Nori 2009].

Continuous simulation is a numerical evaluation of a computer model of a
physical dynamic system that continuously tracks system responses over time
according to a set of equations typically involving differential equations. Let
Q(t) and X(t) denote the system state and input trajectory vectors, respec-
tively. Then, a linear continuous simulation is a numerical evaluation of the
linear state transition function dQ(t)/dt = AQ(t) + BX(t), where A and B are
coefficient matrices.

Discrete-event simulation is a computer evaluation of a discrete-event
dynamic system model where the operation of the system is represented as a
chronological sequence of events. In state-based modeling (see Chapter 9), the
system dynamics is described by an internal state-transition function (&
Q—Q) and an external state-transition function (., Q x X—Q), where Q is
a set of system states and X is a set of input events. Thus, discrete-event simu-
lation can be regarded as a computer evaluation of the internal and external
transition functions.

Another type of popular computer simulation is the Monte Carlo simula-
tion, which is not a dynamic system simulation. It is a class of computational
algorithms that rely on repeated random sampling to compute the numerical
integration of functions arising in engineering and science that are impossible
to evaluate with direct analytical methods. In recent years, Monte Carlo simu-
lation has also been used as a technique to understand the impact of risk and
uncertainty in financial, project management, and other forecasting models.

1.4 WHAT IS DISCRETE-EVENT SIMULATION?

Figure 1.5 depicts a single server system consisting of a machine and a buffer
in a factory. The dynamics of the system may be described as follows: (1) a job
arrives at the system with an inter-arrival time of t,, and the job is loaded on
the machine if it is idle; otherwise, the job is put into the buffer; (2) the loaded
job is processed for a service time of t; and unloaded; (3) when a job is
unloaded, the next job is loaded if the buffer is not empty. In Fig. 1.5, the state
variables of the system are q and m, where q is the number of jobs in the buffer

Machine (m)

Buffer(q)

Outside

World Generate[t, Process [t,]

Arrive

Fig. 1.5. A single server system model.

10 OVERVIEW OF COMPUTER SIMULATION

and m denotes the status (Idle or Busy) of the machine, and the events are
Arrive, Load, and Unload.

1.4.1 Description of System Dynamics

Using the state variables and events, the system dynamics of the single server
system may be described more rigorously as follows: (1) when an Arrive event
occurs, g is increased by one, the next Arrive event is scheduled to occur after
t, time units,and a Load event is scheduled to occur immediately if m = Idle(=0);
(2) when a Load event occurs, q is decreased by one, m is set to Busy(=1), and
an Unload event is scheduled to occur after t, time units; (3) when an Unload
event occurs, m is set to Idle and a Load event is scheduled to occur immedi-
ately if g > 0. The dynamics of the single server system may be described as a
graph as given in Fig. 1.6, which is called an event graph.

1.4.2 Simulation Model Trajectory

An executable model of a system is called a simulation model, and the trajec-
tory of the state variables of the model is called the simulation model trajec-
tory. Let {a;} and {s,} denote the sequences of inter-arrival times (t,) and
service times (t;), respectively. Then, the simulation model trajectory of the
single server system would look like Fig. 1.7, where {t;} are event times, X(t)
is input trajectory, and Q(t) = {q(t), m(t)} denotes the trajectory of the system

(9>0)

(m = Idle)
e ————
&

{9=q+1} {m=Busy, q=q-1 } {m=Idle}

q=0; m=Idle

Fig. 1.6. Event graph describing the system dynamics of the single server system.

I—» X(t)
Arrival a A f A A i As i A f o
Buffer(q) | I_l | | j:(t)
i P R P Q)= {a(t). m(v)}
Machine(m) | : i T(t)
S—>%—s s
Event Timel

0 4 t, 3 ty ts te t; ty ty tyo

Fig. 1.7. Simulation model trajectory of the single server system.

WHAT IS CONTINUOUS SIMULATION? 11

state variables. The “time” here means a simulation time, which is a logical
time used by the simulation model to represent physical time of the target
system to be simulated.

At time t; (=a,), a job J; arrives at an empty system and is loaded on the
idle machine to be processed for a time period of s;. In the meantime, another
job J, arrives at time t, (=a, + a,), which will be put into the buffer since the
machine is busy. Thus, the buffer will have one job during the time period [t,,
t3], which is denoted as a shaded bar in the buffer graph q(t) of Fig. 1.7. At t;
(=t; + 1), the first job J; is unloaded and the job J, in the buffer is loaded on
the machine. At t, (=t; + s,), J, is finished and unloaded, which will make the
system empty again. Thus, the machine is busy during the time period [t;, t,].
At time t5 (=a, + a, + a3), another job J; arrives at the system and is loaded on
the machine, and so on.

1.4.3 Collecting Statistics from the Model Trajectory

When simulating a service system, one may be interested in such items as (1)
queue length, (2) waiting time distribution, (3) sojourn time, (4) server utiliza-
tion, etc. In the case of the single server system, the following statistics can be
collected from the model trajectory.

1. Queue length q(t) statistics during t € [ty, tio]: AQL (average queue
length)
— AQL ={(t; — t) + (t7 — ts) + 2(ts — t7) + (to — tg) + 2(t1o — to)}/tso

2. Waiting time {W,} statistics for the first four jobs: AWT (average waiting
time)
- AWT = {W; + W, + W3 + W, }4 ={0+ (t — t;) + 0 + (ts — tg)}/4 = (t3

—t +tg— to)/4

3. Sojourn time {S;} statistics for the first four jobs: AST (average sojourn
time)
— AST = AWT + Average service time = AWT + (s; + s, + 83 + 54)/4

4. Server utilization during t € [t, t;o]: U (utilization)

- U = {(t4 - tl) + (tlg - t5)}/t10

1.5 WHAT IS CONTINUOUS SIMULATION?

As mentioned in Section 1.3.3, continuous simulation is a numerical evaluation
of a computer model of a physical system that continuously tracks system
responses over time, Q(t), according to a set of equations typically involving
differential equations like dQ(t)/dt = f[Q(t), X(t)], where X(t) represents con-
trols or input trajectory.

As an example, consider a Newtonian cooling model [Hannon and Ruth
2001]. Let o(t) be the cooling rate, then the temperature T(t) changes as

12 OVERVIEW OF COMPUTER SIMULATION

dT(t)/dt = —o(t). The cooling rate is expressed as o(t) = k*[T(t) — T,], where «
is cooling constant and T, is ambient temperature.

1.5.1 Manual Simulation of the Newtonian Cooling Model

The governing differential equation may be approximated by the following
difference equation:

T(t+ At) = T(t) — o (t)*At = T(t) — T (t) - T, J*At, for t = 0, At, 2At, 3At

Let’s assume T(0) =37°C, T, = 10°C, k=0.06, and At =0.1, then the temperature
curve T(t) may be evaluated as follows:

T(0.1) = T(0)— 0.064T (0)— 10]%0.1 = 37 — 0.06*(37 — 10)*0.1 = 37— 0.162
=36.838

T(0.2) = T(0.1)— 0.064[T(0.1) — 10]*0.1 = 36.838 — 0.06*(36.838 — 10)*0.1
=36.677

1.5.2 Simulation of the Newtonian Cooling Model Using a Simulator

The cooling model may be simulated by using a commercial simulator such as
STELLA®, as depicted in Fig. 1.8. In STELLA®, the level of state variable is
regarded as a stock and the change in state variable as flow. In Fig. 1.8, TEM-
PERATURE is a stock and COOLING-RATE is a flow. COOLING CON-
STANT and AMBIENT TEMPERATURE are parameters. These and other
data are provided to the simulator via dialog boxes.

1.6 WHAT IS MONTE CARLO SIMULATION?

Monte Carlo simulation methods are a class of computational algorithms that
rely on repeated random sampling to compute their results. They were devel-
oped for performing numerical integration of functions arising in engineering
and science that were difficult to evaluate with direct analytical methods. In
recent years, Monte Carlo simulation has also been used as a technique to
understand the impact of risk and uncertainty in financial, project manage-
ment, and other forecasting models.

1.6.1 Numerical Integration via Monte Carlo Simulation

As an example of numerical integration, consider the problem of finding
the value of & via simulation. I am sure you have memorized the value of
7 as 3.14159. . .: but, for the moment, assume that you do not remember the
value.

WHAT IS MONTE CARLO SIMULATION? 13

TEMPERATURE

=

COOLING RATE

COOLING CONSTANT AMBIENT TEMPERATURE
_$ NEWTONIAN COOLING =53]
8 . TewERATURE
. A0 00 e reees e et et ee e e e

1: PUT T TTTTTTTIOTRTOn W

.00 25.00 50.00 75.00 100.0¢
N IEY Graph 1 (NEWTONIAN COOLING) Time 357 2% 20034 19 112 87

Fig. 1.8. STELLA® block-diagram modeling and output plot of the cooling system.

(LD

N

Fig. 1.9. A circle of unit radius to compute the value of m via Monte Carlo
simulation.

2

In order to obtain the value of 7 via a Monte Carlo simulation, let’s consider
the circle shown in Fig. 1.9. It is a circle with a unit radius (r = 1) and its center
is located at (1, 1). Uniform random variables with a range of [0, 2] are gener-
ated in pairs and are used as coordinates of points inside the square. Let
n = total number of points generated (i.e., inside the square) and m = number
of points inside the circle, and let A. and A, denote the areas of the circle and
square, respectively. Then, the value of m/n approaches to the ratio A /A, for

14 OVERVIEW OF COMPUTER SIMULATION

a large n. Since we know that A. = 7r* = w and A, = 4, we can compute 7 from
the following relation: m/n = A JA, = n/4 — =4 m/n [Pidd 2004].

For the reader who may be curious about the execution of the simple Monte
Carlo simulation, Java codes for (1) generating uniform random numbers and
(2) computing the value of & are given below.

(1) Java code for generating uniform random number U ~ Uniform][0, 1]
double U = Math.random(); // Java function //
(2) Java code for finding the value of pi:
double m = 0, n = 0;
double max = 10000; // total number of sampling
while (n < max) {
double ul = Math.random() ;
double u2 = Math.random() ;
double x = 2.0 * ul;
double yv = 2.0 * u2;
if ((((x-1) * (x-1) + (y-1) * (y - 1)) <= 1) mt+;
n++;
} // end of while
double phi = 4.0*m/n;

Exercise 1.2. Modify the above Monte Carlo simulation program (Java
code) to compute the shaded area under the piece-wise linear function in
Fig. 1.10.

1.6.2 Risk Analysis via Monte Carlo Simulation

Consider a project consisting of three tasks': Task1, Task2, and Task3. Esti-
mates of the time durations for the individual tasks are given in Table 1.1. We
are interested in estimating the risk (or chance) of failing to meet a given
project duration, say 15 months.

2 6 8

Fig. 1.10. Area under a piece-wise linear function.

"This example was taken from www.riskamp.com.

http://www.riskamp.com

WHAT ARE SIMULATION EXPERIMENTATION AND OPTIMIZATION? 15

TABLE 1.1. Range Estimates for Individual Tasks

Task Min (most optimistic) Most likely Max (most pessimistic)
Task1 4 months 5 months 7 months
Task2 3 months 4 months 6 months
Task3 4 months 5 months 6 months
Total 11 months 14 months 19 months

TABLE 1.2. Results of 500 Simulation Runs

Time duration (months) 12 13 14 15 16 17 18
of on-time finishes 1 31 171 394 482 499 500
% of on-time finishes 0% 6% 34% 79% 96% 100% 100%

It is well accepted that the duration times are assumed to follow beta dis-
tribution (see Chapter 3). In the Monte Carlo simulation, values for the task
duration times are randomly generated from respective beta distributions. The
results of 500 simulation runs are summarized in Table 1.2, from which one
may conclude that the risk of failing to finish the project within 15 months is
about 20%. In recent years, Monte Carlo methods are quite popular in finan-
cial derivatives and option pricing evaluations.

1.7 WHAT ARE SIMULATION EXPERIMENTATION AND
OPTIMIZATION?

The rules that govern the behavior of the system are called laws, while the
rules under our control are called policies. When we experiment to determine
the effects of changing the parameters of laws, we are doing a sensitivity
analysis. When we experiment with changes in the control factors of policies,
we are doing optimization [Schruben and Schruben 2001]. Both the parame-
ters of laws and control factors of policies become handles of simulation
experimentation. Both the optimization and sensitivity analysis may be per-
formed in a simulation study. A simulation study should be carried out with

1. clear objectives of the study together with a set of performance
measures;

2. output variables that can be mapped into the performance measures;

3. well-defined handles with which the simulation runs are to be
controlled.

An experimental frame is a specification of the conditions under which the
simulator is experimented with [Zeigler et al. 2000], and it is concerned with
simulation optimization. As shown in Fig. 1.11, an experimental frame for
simulation optimization consists of five steps: (1) an initial value of each

16 OVERVIEW OF COMPUTER SIMULATION

| 1. Start with a set of initial handle values |
[
—>| 2. Make a simulation run with the handle values |

[

| 3. Compute performance measures from output variables |

[

| 4, Evaluate the performance measures |

Yes

Satisfied?
No
H 5. Obtain a revised set of handle values |

Fig. 1.11. Experimental frame for simulation optimization.

handle is generated; (2) a simulation run is made to compute values of the
output variables; (3) performance measures are computed from the output
variables; (4) the performance measures are evaluated to see if the results are
acceptable; (5) if the results are not acceptable, go back to Step 2 with a revised
set of handle values. Steps 3, 4, and 5 are often called transducer, acceptor, and
generator, respectively.

1.8 REVIEW QUESTIONS
1.1. What are the common characteristics that lead to a conceptual definition
of system?
1.2. Give a definition of a team based on the concept of system.
1.3. What is the difference between a source system and a target system?
1.4. What are the three key subsystems in a feedback control system?
1.5. What is an analytic simulation?
1.6. What is time-stamp simulation?

1.7. What would be the two popular areas where virtual environment simula-
tion is used?

1.8. What is constructive simulation?

1.9. What is the main output from a continuous simulation?
1.10. In simulation, a rule under our control is called a policy. What is a law?
1.11. What is sensitivity analysis in simulation experimentation?
1.12. What is simulation optimization?

1.13. What is the role of the acceptor in an experimental frame?

I CHAPTER 2

Basics of Discrete-Event System
Modeling and Simulation

All models are wrong, some are useful.
—George E.P. Box

2.1 INTRODUCTION

A discrete-event system (DES) is a discrete-state and event-driven system in
which the state changes depend entirely on the occurrence of discrete events
over time. Examples of discrete-event systems include manufacturing systems,
transportation systems such as urban traffic networks, service systems such as
hospitals, and communication systems such as wireless networks, etc. This
chapter aims to cover all the key subjects of and important issues in autono-
mous simulation of such discrete-event systems.

This chapter is organized as follows. Section 2.2 describes a step-by-step
procedure for performing a discrete-event simulation. Section 2.3 deals with
the fundamentals of DES modeling and introduces the concepts of reference
model, modeling formalisms, and integrated framework of DES modeling.
Illustrative examples are given in Section 2.4. Section 2.5 presents modeling
and simulation (M&S) applications frameworks, and the last section addresses
the issue of what to cover in a simulation class.

2.2 HOW IS A DISCRETE-EVENT SIMULATION CARRIED OUT?

Reproduced in Fig. 2.1 are the reference model and event graph of the single
server system introduced in Chapter 1 (Section 1.4). There are two state vari-
ables (Q and M) and three event types (Arrive, Load, and Unload) in the
system. Q is the job count, the number of jobs in the buffer; M denotes the

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

17

18 BASICS OF DISCRETE-EVENT SYSTEM MODELING AND SIMULATION

Machine (M)

¥ |
Process [t,]

Buffer(Q)

Outside
eneratel[t,] “ -r-p

{Q=Q+1} {M=Busy, Q=Q-1 } {M=Idle}

Fig. 2.1. Reference model and event graph of the single server system.

TABLE 2.1. Event Routines for the Event Nodes of the Event Graph in Fig. 2.1

Event Event Node in the
Name Event Graph Event Routine
1. Arrive N Q =Q + 1;// increase the job-count by one
M54 o lad > If (M =1dle), schedule an event <Load,
Q=) T Now>;
Schedule an event <Arrive, Now + t,>
2. Load

~. Q=0Q - 1;//decrease the job-count by one
" M = Busy; // set the machine to busy.
Schedule an event <Unload, Now + t>

M = Idle; // set the machine to idle

If (Q > 0), schedule an event <Load, Now>

3. Unload

{M= idie}

status (Idle or Busy) of the machine; and t, and t, denote interarrival times
and service times, respectively.

2.2.1 Event Routines

A set of actions invoked by the occurrence of an originating event is called an
event routine. Event routines systematically describe the dynamic behavior of
the single server system. Event routines for the three event nodes in the event
graph of Fig. 2.1 are listed in Table 2.1 and a brief description for each event
routine is given below:

1. When an Arrive event occurs at time ¢, (1) the job count in the buffer is
increased by one, Q = Q + 1; (2) a Load event is scheduled to occur
immediately if the Machine is idle, M = Idle; (3) a next Arrive event is
scheduled to occur at time ¢ + ..

2. When a Load event occurs at time ¢, (1) the job count in the buffer is
decreased by one, Q = Q — 1; (2) the machine is set to busy (M = Busy);
(3) an Unload event is scheduled to occur at time ¢ + £,.

HOW IS A DISCRETE-EVENT SIMULATION CARRIED OUT? 19

' '
' '
' '

_____________ e ——m———— —————— _————
1 '
' '

Y
Buffer (1) -------- I— ------ '_I --------]‘ ----- l SSSS - > Q(t)

=

Machine BUSY : I ! > M(t)
Idle L ! . . : al
H 3 0 2—> < T 4.5 * 3—
Event Times | : " ; R " ; : - i
lo t,=3 6=5 =6 =8 =9 =105 =12 =135 t t

Fig. 2.2. Simulation model trajectory of the single server system.

3. When an Unload event occurs, (1) the machine is set to idle, M = Idle;
(2) a Load event is scheduled to occur now if Q > 0.

2.2.2 Simulation Model Trajectory

An executable model of a system is called a simulation model. Shown in Fig.
2.2 is the simulation model trajectory of the single server system. Jobs have
inter-arrival times {a;} = {3, 2, 4, 1.5, 1.5, 3.5 .. .} and service times {s;} = {3, 2,
45,3 - .-}, where a; and s; are the values for the i job I,

Initially, the system is empty and the machine is ready, thus Q = 0 and
M = Idle. The event times {t,} are determined as follows:

1. At time t; = 3, J; arrives at the system and is loaded on the machine.
2. At time t, =5, J, arrives at the system and is stored in the buffer.

3. At time t; = 6, J; is unloaded from the machine, and J, is loaded on the
machine.

4. At time t, = 8, J, is unloaded from the machine.

S5....

In order to simulate the system dynamics, we need a mechanism for process-
ing future events. A future event is an event that has been scheduled to occur
in the future, and a future event that has the smallest, i.c., earliest, event time
is called the next event. The event-processing mechanism consists of event
cards and the future event list (FEL): the event-name and event time of a future
event are recorded in an event card and it is stored in the FEL in an ascending
order of event time.

2.2.3 Manual Simulation Execution

2.2.3.1 Initialization At the beginning, (1) the simulation time is set to
zero and the state variables are initialized as Q = 0 and M = Idle, and (2) an

20 BASICS OF DISCRETE-EVENT SYSTEM MODELING AND SIMULATION

Arrive event is scheduled to occur at time t; = 3. The task of the “scheduling
of an Arrive event to occur at time 3” is carried out by creating an event card
with “Event-name = Arrive & Event-time = 3” and storing it in the FEL.
Depicted in Fig. 2.3 are the state variables and FEL after initialization.

2.2.3.2 Next Event Processing The next event processing step starts with
retrieving the next event from the FEL. First, the next event <Arrive, 3> is
retrieved as depicted in Fig. 2.4(a) and the simulation time is set to 3. Then,
the retrieved event is executed to update the state variables and FEL as

Retrieved Event State Variables Future Event List (FEL)

Event-name =- Q=0 I:I M= Idle Arrive, 3 ¢ —Next-event
Event-time =0

Fig. 2.3. State variables and FEL after initialization.

Retrieved Event State Variables Future Event List (FEL)
Event-name = Arrive
Event-time =3 a=0 I:I M=ldle I:I
@
Executed Event State Variable Update Future Event List (FEL) Update
s ea[@p] wee[]| [l] [wrwes
(b)
Executed Event State Variable Update Future Event List (FEL) Update
E::::::i::r;e: I;oad -0 I:I M= Busy| @ | | Arrive, 5 | | Unload, 6 |
(c)

Executed Event State Variable Update Future Event List (FEL) Update
Event-name = Arrive .
Event-time =5 e-1 M= Busy | SOUEEERD | | Arrive, 9 |

(d)
Executed Event State Variable Update Future Event List (FEL) Update

Event-name = Unload | :
= = Load, 6 | | Arrive, 9 |
Event-time =6 Q=1 M=Idle I:I
(e)

Fig. 2.4. (a) State variables and FEL after the retrieval of <Arrive, 3>; (b) state vari-
ables and FEL after the execution of <Arrive, 3>; (c) state variables and FEL after the
execution of <Load, 3>; (d) state variables and FEL after the execution of <Arrive, 5>;
(e) state variables and FEL after the execution of <Unload, 6>.

HOW IS A DISCRETE-EVENT SIMULATION CARRIED OUT? 21

follows: (1) the new job J; is stored in the buffer and its job count is increased
by one (Q =0+ 1); (2) since the machine is Idle, a Load event is scheduled to
occur now, i.e., at time 3, which is carried out by storing the event card <Load,
3> in the FEL; (3) an Arrive event is scheduled to occur at time 5 (=
3 + a, =3 + 2), which is carried out by storing the event card <Arrive, 5> in
the FEL. The state variables and FEL after the execution of the next event
<Arrive, 3> are shown in Fig. 2.4(b).

At the second step, the next event <Load, 3> is retrieved from the FEL of
Fig. 2.4(b) and it is executed so that: (1) the job J; is loaded on the machine,
the job count Q is decreased by 1, and the machine is set to busy (Q =0 &
M =Busy); (2) an Unload event is scheduled to occur at time 6 (=3 +5, =3+ 3),
namely, <Unload, 6> is stored in the FEL. The state variables and FEL after
the execution of the next event <Load, 3> are shown in Fig. 2.4(c), where
<Arrive, 5> becomes the next event.

At the third step, <Arrive, 5> is retrieved from the FEL of Fig. 2.4(c) and
is executed so that: (1) the new job J, is stored in the buffer and Q is increased
by 1; (2) an Arrive event is scheduled to occur at time 9 (=5 +a; =5 +4). The
state variables and FEL after the execution of <Arrive, 5> are shown in Fig.
2.4(d), where <Unload, 6> become the next event.

At the fourth step, <Unload, 6> is retrieved and executed to set the machine
to idle (M = Idle) and to schedule a Load event to occur immediately because
Q > 0. The state variables and FEL after the execution of <Unload, 6> are as
shown in Fig. 2.4(e), where the next event is <LLoad, 6>.

The trajectory of the state variables and FEL during the manual simula-
tion up to the event time t; is given in Table 2.2. The first row contains the

TABLE 2.2. Trajectory of the State Variables and FEL during Manual Simulation

Event State Future events list
occurrence update (FEL)
Time Scheduled Next Future
Time Name Job Q M delay event event event Remark
0 Initialize — 0 Idle a; =3 <Arrive, <Arrive, — Fig.2.3
a;> 3>
t, =3 Arrive J, 1 Idle a,=2 <Load,3> <Load, <Arrive, Fig.2.4(b)
<Arrive, 3> 5>
3+ a>
;=3 Load J; 0 Busy s;,=3 <Unload, <Arrive, <Unload, Fig.2.4(c)
3+ s> 5> 6>
t,=5 Aurrive J, 1 Busy a;=4 <Aurrive, <Unload, <Arrive, Fig.2.4(d)
5+ ay> 6> 9>
t3=6 Unload J; 1 Idle 0 <Load, 6> <Load, <Arrive, Fig.2.4(e)
6> 9>

t;=6 Load I, 0 Busy s,=2 <Unload, <Unload, <Arrive,
6 + s> 8> 9>

22 BASICS OF DISCRETE-EVENT SYSTEM MODELING AND SIMULATION

information given in Fig. 2.3: event time is 0; Q = 0 and M = Idle; the scheduled
event is <Arrive, al> with a; = 3; the next event is <Arrive, 3>. The second row
contains the information given in Fig. 2.4(b), and so on.

Exercise 2.1. Retrieve the next event <Load, 6> from the FEL of Fig. 2.4(e),
execute it, and update the state variables and FEL. Continue the manual simu-
lation a few more steps.

2.2.4 Flow Chart of Manual Simulation Procedure

The manual simulation procedure described in Section 2.2.3 can be described
in the form of flow chart as depicted in Fig. 2.5. The simulation procedure
consists of three steps: The initialization step, next event retrieval step, and
event execution step:

1. At the initialization step, the state variables are initialized as Q = 0 &
M =1Idle, and the initial event <Arrive, 3> is stored in the FEL as depicted
in Fig. 2.3.

2. At the next event retrieval step, the next event in the FEL is retrieved
and the clock variable Now is set to the event time of the retrieved next
event.

3. At the event execution step, the event routine (see Table 2.1) of the
retrieved next event is executed.

4. Go back to step 2 (next event retrieval step) if the termination condition
is not met.

In the flow chart, NOW is the current simulation time.

L I':ig?;\i:ftli;lnftep: Name: Arrive | Schedule future event
Q=0; M= < . Time: 3 (Store event card)
Schedule <Arrive, 3> in FEL
v
2. Next-event retrieval step: -
Retrieve the ‘next-event’ card from FEL; Future event list
EVENT € Name of the next-event; Time: ... (FEL)
NOW < Time of the next-event; Retrieve event card —
Arrive + Unload Name: xxx
Load Time: ...
3. Event execution/step:
Q=Q+; Q=Q-1;
If (M =1dle), schedule <Load, NOW>; | | M = Busy; M=Idle;
Generate an inter-arrival time ta; Generate a service time ts; If (Q>0), schedule <Load, NOW>;| | Schedule future event
Schedule <Arrive, NOW +ta>; Schedule <Unload, NOW +ts>; (Store the event card)
T T
[|
No . - Yes
Terminate? > End

Fig. 2.5. Flow chart of the manual simulation procedure.

FRAMEWORK OF DISCRETE-EVENT SYSTEM MODELING 23
2.3 FRAMEWORK OF DISCRETE-EVENT SYSTEM MODELING

In this section, the framework of discrete-event system modeling will be ana-
lyzed in terms of (1) modeling components and reference model, (2) modeling
formalism and formal model, and (3) formal modeling tools and model
specification.

2.3.1 What Are Modeling Components and Reference Model?

2.3.1.1 Modeling Components From a practitioner’s point of view, the aim
of a discrete-event simulation is to learn about the behavior and performance
potential of the system, and it is accomplished by the activities in which the
resources and entities in the DES engage. From a system theoretic point of
view, a DES can be viewed as a state machine consisting of a set of states, a
set of events, a partial state transition function, and the initial and final states.

DES modeling components are a set of basis components of a DES used
for describing the system dynamics. From the above observation, the modeling
components of DES are resources, entities, activities, events, and states. Among
them, resources and entities are referred to as physical modeling components,
while activities, states, and events are logical modeling components. A resource
such as a machine that is engaged in an activity is called an active resource and
a resource such as a buffer used in storing entities is called a passive resource.

2.3.1.2 Reference Model An informal description of system dynamics
using modeling components is referred to as a reference model of a DES. Let’s
consider the single server system shown in Fig. 2.1(a). It is an open system
where entities are created from and disposed to the outside world. For an
autonomous simulation, it is convenient to make it a closed system by treating
the outside world as a job creator responsible for creating jobs. Then, the
closed single server system may look like Fig. 2.6.

Job Creator Informal Description:
° Job-Creator creates a
Create [t,] new job at every t,
- Entities min.; the new job is

loaded on Machine if it
- Resources is idle, otherwise the
(e job is stored in Buffer;
- Activities the loaded job is
- States Machine (M=Idle) processed for t,
minutes and unloaded;
Events J the freed machine loads
another job from the
buffer if it is not empty.

(a) source Systems (b) Reference Model

Fig. 2.6. (a) Source systems and (b) reference model of a single server system.

24 BASICS OF DISCRETE-EVENT SYSTEM MODELING AND SIMULATION

Operational
- system description
“"~+--_for domain engineers

,/’
Reference Mechanism
Model for communication among
(o]
B

stake holders
) _---=Technical

- model description for
simulation expert,

Fig. 2.7. The structure and role of a reference model.

The modeling components of the single server system of Fig. 2.6 are: (1)
Entities are jobs; (2) Resources are Machine, Job-creator, and Buffer; (3)
Activities are job creation and job processing; (4) State variables are the
Machine status (M = Idle/Busy) and Buffer status (Q = number of jobs); (5)
Events are Arrive, Load, and Unload. System dynamics is described using the
modeling components as follows: Job-creator creates a new job at every t,
minutes; the new job is loaded on the Machine if it is idle, otherwise the job
is stored in Buffer; the loaded job is processed by the Machine for a time
period of t, and then unloaded; the freed Machine loads another job from the
Buffer if it is not empty.

The reference model structure (left-hand side of Fig. 2.7) has three layers:
(1) At the core of the structure are physical modeling components—Entity
and Resource—that constitute the static model of a DES; (2) at the next layer
are logical modeling components—Activity, Event, and State—corresponding
to the functional model of the DES; and (3) at the outer layer is an informal
description of the system dynamics that corresponds to the control model of
the DES. This view of the reference model structure is similar to the classical
object-oriented modeling paradigm [Rumbaugh et al. 1991].

The roles of a reference model are depicted in the right-hand part of Fig,
2.7. System modeling needs a team effort involving domain engineers who
have a working knowledge of the system, simulation experts who are respon-
sible for building simulation models, and other stakeholders. A reference
model should serve as an official system description for domain engineers and
at the same time as a systematic model description for simulation experts. In
addition, it should serve as a mechanism for communication among the stake-
holders of the simulation project.

2.3.2 What Is a Discrete-Event System (DES) Modeling Formalism?

In this book, a DES modeling formalism is defined as a well-defined set of
graphical conventions for specifying a DES. It has a formal syntax and can be
executed by a simulation algorithm. There are three types of DES modeling

FRAMEWORK OF DISCRETE-EVENT SYSTEM MODELING 25

TABLE 2.3. Relationships Among Modeling Formalisms, Modeling Tools, and
Worldviews

Graphical Related World Views or System
Modeling Formalism Modeling Tools Specification
Activity-based formalism ACD Activity scanning world view
Event-based formalism Event Graph Event scheduling world view
State-based formalism State Graph DEVS (Discrete event system spec)

formalisms, one for each logical modeling component: activity-based, event-
based, and state-based modeling formalisms. The modeling formalisms had
been developed from different origins: (1) activity-based modeling formalism
from the flow diagram method of Tocher [Hollocks 2008]; (2) event-based
modeling formalism from event-scheduling languages such as SIMSCRIPT;
(3) state-based modeling formalism from the state transition diagram method
of finite state machine (FSM) modeling [Mealy 1955] and the DEVS (Discrete-
EVent-system Specification) [Zeigler et al. 2000]. More details on FSM and
DEVS can be found in Chapter 9 of this book.

Each of the modeling formalisms employs a graphical modeling tool: the
activity cycle diagram (ACD) is used in the activity-based modeling formalism;
the event graph in the event-based modeling formalism; and the state graph
in the state-based modeling formalism. Among the three modeling formalisms,
the first two are often referred to as worldviews: activity-scanning worldview
and event-scheduling worldview. Summarized in Table 2.3 are the relationships
among modeling formalisms, modeling tools, and worldviews.

2.3.2.1 Activity-Based Modeling Formalism and Activity Cycle Diagram
In the activity-based modeling formalism, the dynamics of system is described
in terms of the activities of the active resources and entities in the system. It
uses the activity cycle diagram (ACD) that was invented by Tocher [Tocher
1960]. Tocher’s original work was followed by some further development work.
An activity-based simulation language named ECSL® was developed [Clem-
entson 1986] and a classical ACD was formally defined [Carrie 1988]. The
classical ACD had some inherent limitations in handling complex systems
[Hlupic and Paul 1994], and hierarchical ACD [Kienbaum and Paul 1994] and
extended ACD [Martinez 2001] were proposed in order to enhance its model-
ing power. More recently, a formal specification of extended ACD was given
and its generality was established [Kang and Choi 2011].

2.3.2.2 Process-Oriented Simulation Languages and Entity-Flow Diagram
When only the activity cycles of the entities in the system are considered, the
activity-based modeling formalism becomes an entity-based modeling formal-
ism or process interaction worldview [Carson 1993]. The sequence of activities

26 BASICS OF DISCRETE-EVENT SYSTEM MODELING AND SIMULATION

of an entity is often referred to as an entity-flow, and a diagram depicting the
entity-flow is called an entity-flow diagram (EFD) [Harrell et al. 2012]. A flow
of entities can be regarded as a time-ordered sequence of events that is often
referred to as a process. Thus, entity-based modeling is often referred to as
process-oriented modeling [Pritsker and Pegden 1979]. The process-oriented
modeling approach (or process interaction worldview) is adopted in many of
the modern simulation languages including Arena [Kelton et al. 2007] and
ProModel [Harrell et al. 2012]. These simulation languages are often referred
to as a process-oriented simulation language.

2.3.2.3 Event-Based Modeling Formalism and Event Graph In the event-
based modeling formalism, a system is modeled by defining the changes that
occur at event times and the system dynamics is described using an event
graph. The event-based modeling concept was realized in the SIMSCRIPT
language in 1960s [Kiviat et al. 1969] and an event graph is formally defined
in 1980s [Schruben 1983]. In the event graph, events are represented as vertices
and the relationships between events are represented as directed arcs. Event
graph models are very compact. Yet, event graph models are capable of
describing any system that can be implemented on a modern computer [Savage
et al. 2005]. An event-based simulation language SIGMA® has been developed
and widely used for modeling various types of DES [Schruben and Schruben
2006].

2.3.2.4 State-Based Modeling Formalism and State Graph In the state-
based modeling formalism, the dynamics of a system is described in terms of
the states of the resources in the system. The state-based modeling method is
originated from the classical finite state machine (FSM) that was used for
modeling the behavior of sequential circuits [Mealy 1955], where the concept
of the state transition diagram was introduced. In 1970s, the classical FSM
evolved to the classical DEVS in which internal transitions are also allowed
[Zeigler 1976]. DEVS can be regarded as a special form of timed automata
[Alur 1999] or timer-embedded FSM [Lee et al. 2010]. An in-depth treatment
on the subject of the state-based modeling is provided in Part IIT (Chapter 9)
of this book.

2.3.3 What Is a Formal Model and How Is It Specified?

A formalism-based modeling tool is referred to as a formal modeling tool.
Among the DES modeling tools mentioned in the previous subsection (Section
2.3.2), ACD, event graph, and state graph are formal modeling tools. The EFD
[Harrell et al. 2012] is a subset of the ACD, and it is not a formal modeling
tool (we may call it a semi-formal modeling tool).

A DES model described with a formal modeling tool is referred to as a
formal model if it provides a complete description of the system in a concise

FRAMEWORK OF DISCRETE-EVENT SYSTEM MODELING 27

and clear manner. A well-known algorithm is available for each of the formal
models: the activity-scanning algorithm for ACD models [Carrie 1988]; the
next event scheduling algorithm for event graph models [Schruben and Schru-
ben 2006]; and the time-synchronization algorithm for state graph models [Lee
et al. 2010]. In the following, we give an ACD model as a formal model of the
single server system in Fig. 2.6. An event graph model was presented earlier
in this chapter (Fig. 2.1), and is briefly reiterated here. The state graph model
will be discussed in Part III (Chapter 9) of this book.

2.3.3.1 Event Graph Model of the Single Server System The event graph
model of the single server system in Fig. 2.1 is a formal model that provides a
complete and unambiguous description of the system dynamics of the DES
from the event’s point of view. An Arrive event increases the job count by 1
(Q++), always schedules the next Arrive event to occur after a time period of
t,, and triggers a Load event if the machine is idle (M = Idle). The Load event
sets the machine to busy (M = Busy), decreases the job count by 1 (Q—), and
schedules an Unload event to occur after a time period of t,. The Unload event
resets the machine to idle (M = Idle) and triggers a Load event if the job count
is positive (Q > 0). The event graph model can be executed with the next
scheduling event algorithm (Chapter 4).

2.3.3.2 ACD Model of the Single Server System ACD consists of indi-
vidual activity cycles. There is one activity cycle for each active resource, and
one for each entity type. ACD is a bipartite directed graph having activity
nodes denoted by rectangles and queue nodes by circles. Referring back to
the single server system in Fig. 2.6, there are (1) two activities called Create
and Process, (2) two active resources called Job-creator and Machine, and (3)
one entity-type Job. Shown in Fig. 2.8 is an ACD model of the single server
system. There is a resource activity cycle for each resource (Job-creator and
Machine) indicated by dashed lines, and one entity activity cycle (Job cycle)
indicated by solid lines. The ACD model is a complete and unambiguous
description of the system dynamics of the single server system, and it provides
a natural and intuitive view of the system dynamics.

The ACD model in Fig. 2.8 can be directly executed with a formal ACD
simulator (see Chapter 6) or converted to a Petri-net model to be executed

4
(Job-creator cycle \} \ Machine cycle }
Y 'l \\ 'I
N L~) . .
Create (t;) —>(_ Buffer(Q) Process (t) —*(_ «Jobs
r Job cycle

Fig. 2.8. ACD model of the single server system in Fig. 2.6.

28 BASICS OF DISCRETE-EVENT SYSTEM MODELING AND SIMULATION

Create (t,) Process (t) —— o
a A R e

Create Il-—- Process W
0 — ()

0

Fig. 2.10. Entity-flow diagram and Arena flowchart of the single server system.

with a Petri-net executor. A Petri-net model corresponding to this ACD model
is given in Fig. 2.9. A Petri net is a bipartite directed graph consisting of places,
transitions, and arcs, where an arc runs from a place to a transition or vice
versa. A place is called an input place if an arc runs from the place to a transi-
tion. Likewise, it is called an output place if an arc from a transition runs into
the place. Places in a Petri net may contain a number of tokens. Any distribu-
tion of tokens over the places will represent a state of the net called a marking.
A transition of a Petri net may fire whenever there are sufficient tokens at its
input places; when it fires, it consumes these tokens, and places the tokens at
its output places. If time delay is allowed for a transition to fire, it is called a
timed transition. A Petri net with timed transitions is called a timed Petri net
(TPN), which is equivalent to an ACD. More details of Petri net are provided
in Appendix of Chapter 10.

An ACD model may easily be converted to an EFD and executed with a
process-oriented simulation language. An EFD model of the single server
system is given in Fig. 2.10 along with its Arena flowchart. The EFD is the
same as the entity activity cycle of the ACD in Fig. 2.8, and it does not provide
a complete description of the system: Information about the resource-activity
cycles of the ACD model has to be provided separately.

2.3.3.3 Specification of a Formal Model 1t is always possible to specify a
formal model in an algebraic form. For example, a classical ACD model that
is a bipartite directed graph consisting of a set of activity nodes and a set of
queue nodes can be specified as follows [Kang and Choi 2011]:

FRAMEWORK OF DISCRETE-EVENT SYSTEM MODELING 29

M,cp =<A, O, I, O, 1, uy>, where

A =lay, a, - - - a,}: finite set of activities,

0 =141, 9> - - q,}: finite set of queues,

I ={i,c O |aeA}: input function, a mapping from a set of queues to
an activity,

O ={o,c Q| aeA}: output function, a mapping from an activity to a
set of queues,

T={t, e Rj lae A}: time delay function,
Lo ={u, e NG 1 g € O} : finite set of initial token values for each queue.

As an example, the ACD model given in Fig. 2.8 of the single server system
may be specified as follows:

M cp Fig.28) = <A, O, 1, O, 7, uy>, where
A = {a;: CREATE, a,: PROCESS}
0 = {q.: Jobs, q.: C, g5: Buffer, g,: M}
(a1) ={q1, ¢o}; I(a2) = {q3, q4}
O(a)) = {q», 43}, O(a2) = {q4, q1}
way) =ty Wa) =t
Ho(q1) = =0 to(q2) = 1 po(qs) = 3; to(qa) = 1

A formal model can also be specified in a tabular form. For practical pur-
poses, specifying a formal model as an algebraic form is both tedious and hard
to read, thus a tabular structure may be preferred for describing a formal
model. As will be seen in Section 2.4, there is a well-defined tabular represen-
tation scheme for each of the three types of formal model: activity transition
table for the ACD model; event transition table for the event graph model;
object interaction table and state transition table for the state graph model.

2.3.4 Integrated Framework of DES Modeling

The current state-of-the-art in DES modeling is a result of major break-
throughs in the four areas mentioned in Section 2.3.2: (1) the activity-based
modeling formalism; (2) the advent of process-oriented simulation languages;
(3) the event-based modeling formalism; (4) the state-based modeling formal-
ism. The modeling formalisms have been developed largely independently, and
each of them was treated more or less as a separate framework of DES model-
ing. Among the four, the state-based modeling formalism is often referred to
as a system specification and the remaining three as worldviews.

Based on the observations in Sections 2.3.1 through 2.3.3, this section pres-
ents an integrated framework of DES modeling. The proposed integrated
framework consists of an integrated structure and an integrated procedure for
DES modeling.

30 BASICS OF DISCRETE-EVENT SYSTEM MODELING AND SIMULATION

2.3.4.1 An Integrated Structure of the DES Model 1t was shown in Section
2.3.1 that all discrete-event systems can be described by a reference model
consisting of physical and logical modeling components. Physical modeling
components are resources and entities in the system, and logical modeling
components are activities, events, and states. As there are three kinds of formal
modeling tools (i.e., ACD, event graph, and state graph), one corresponding
to each type of logical modeling component (i.e., activity, event, and state)
three types of formal models can be constructed for a given reference model:
ACD model, event graph model, and state graph model.

Figure 2.11(a) shows an integrated structure of a DES model consisting of
three layers: (1) At the core of the integrated structure is the static model layer
consisting of the physical modeling components—Entity and Resource; (2) at
the next layer is the functional model layer constituted with the logical model-
ing components—Activity, Event, and State; (3) at the outer layer is the
dynamic model layer defined by the three types of primary formal models—
ACD model, EG (event graph) model, and SG (state graph) model. Also
indicated in the integrated structure is that the EFD (entity-flow diagram) or
Petri-net model can be obtained from an ACD model. Figure 2.11(b) depicts
the conversion relations among the formal models. As mentioned in Section
2.3.3, an ACD model can be automatically converted into an EFD model or
a Petri-net model. As will be seen in Chapter 10, Section 10.6, an ACD model
can also be converted into an EG model or SG model as well.

2.3.4.2 Integrated Procedure for DES Modeling There exist various
means to execute a simulation model of a given source system. Examples
include: (1) entity-based simulation languages such as Arena [Kelton et al.
2007] and ProModel [Harrell et al. 2012], (2) Petri-net executors [Camurri and
Coglio 1997], (3) ACD tool kits [Kang and Choi 2011] and (4) event-based
simulation languages such as SIGMA [Schruben and Schruben 2006].

=) Automatic Conversion
=) Systematic ConversionJ

=—>p Ad hoc Conversion

(b)

Fig. 2.11. (a) Integrated structure and (b) conversion relations of DES models.

FRAMEWORK OF DISCRETE-EVENT SYSTEM MODELING 31

——— Reference
1

phase : Formal modeling phase : Execution phase —>
1 H H

- Entity
- Active Resource
- Passive Resource

ACD Model

- Activity
- State (Variable)
- Event

State Graph Model

Free student-version copies : *1) http:/sigmawiki.com/sigma/index.php?title=Download ; *2) http://arenasimulation.com/downloadarena ;
*3) http://vms-technology.com/book/ACE; *4) http://cpntools.org/ ; *5) http://vms-technology.com/book/SGS;

Fig. 2.12. An integrated procedure for DES modeling.

Regardless of the means used in executing a simulation model, construction
of an executable simulation model from a given source system should follow
a well-defined procedure. Figure 2.12 shows an integrated procedure for DES
modeling consisting of three phases: the reference modeling phase, where a
reference model of the DES is constructed from the source system; the formal
modeling phase, where a formal model is obtained from the reference model;
and the model execution phase, where the formal model is executed using a
simulator. There exists at least one simulator in each of the five modeling
formalisms. Moreover, free student-version copies are available as listed at the
bottom of Fig. 2.12.

The reference modeling phase consists of four steps: (1) identify the physical
modeling components—Entity, Active Resource, and Passive Resource; (2)
define the logical modeling components—Activity, Event, and State; (3)
describe the system dynamics in terms of the identified modeling components;
(4) qualify the reference model against the source system. The referenced
model qualification is a rigorous, systematic analysis of model relevance and
consistency with the source system to ensure the reference model is fit for
purpose.

The formal modeling phase consists of (1) selecting a modeling tool that is
most compatible with the reference model; (2) building a formal model; (3)
converting the formal model into another model if necessary; and (4) validat-
ing the formal model against the reference model. The formal model validation
is a systematic analysis of model fidelity and sensitivity against the reference
model to ensure the formal model is an accurate representation of the refer-
ence model. Selecting a best modeling tool for a given reference model is an
open problem that deserves a further in-depth research. Model conversion
among the formal models is another research area that deserves further
investigation.

The model execution phase consists of (1) selecting a simulator suitable for
executing the formal model; (2) preparing input data for making simulation
runs; and (3) verifying the correctness of the simulation program against the
formal model. The simulator verification is the process of making sure that the

32 BASICS OF DISCRETE-EVENT SYSTEM MODELING AND SIMULATION

written computer program corresponds precisely to the formal model [Fish-
wick 1995].

2.3.4.3 Criteria for Evaluating Models and for Selecting Modeling Tools
One may look for a model that is correct and perfect, but is it possible to have
a correct model? George E.P. Box, who was an English chemist and statistician,
is credited with the quote: “All models are wrong, some are useful.” This quote
may be an answer to the above question: We should look for a good model,
not the correct one, and a good model is a useful one that serves its purposes.
Is it possible to have a perfect model? Perhaps an answer to this question may
be found from Antoine de Saint Exupery, a French writer and aviator, who is
credited with the quote: “Perfection is achieved, not when there is nothing
more to add, but when there is nothing left to take away.” A perfect model is
the one that contains just enough elements to make it useful.

A DES simulation model may be specified by using one of the formal
modeling tools or programmed by employing a simulation package. Formal
modeling tools are event graph, ACD, and state graph. Popular simulation
packages include Arena®, AutoMod®, EXTEND®, SIGMA®, etc. Guidelines
for selecting a formal modeling tool or a simulation language that is suitable
for a given reference model are:

1. Choose one that has clear semantics and exact syntax.
(a) Choose ACD if the system is described in terms of the activities of
resources
(b) Choose state graph if the system is described in terms of interacting
objects
(c) Choose event graph if the system is described in terms of interre-
lated events
(d) Choose Arena, etc., if the system is described in terms of flows of
entities
2. Choose one that has high modeling power.
3. Choose one that supports easy model building, communication, and
validation.

4. Choose one that is amenable to easy implementation.

2.4 ILLUSTRATIVE EXAMPLES OF DES MODELING AND
SIMULATION

This section aims to help the readers become acquainted with the modeling
formalisms and show how to build and simulate formal models of a simple
DES. For this purpose, a two-stage tandem line shown in Fig. 2.13 will be used
as an example. The two-stage tandem line is obtained by concatenating two
single server systems. The modeling components of the two-stage tandem line
are as follows:

ILLUSTRATIVE EXAMPLES OF DES MODELING AND SIMULATION 33

Server 2 (s2)

Server 1 (s1)

Job Creator

Yy *_ - Buffer2 (q2) £
-/ Unlimited S et Te] Process1 [t,] H pProcess2 [t,] Jr--

Source /i

t,~ Exp (10); t; ~Uni(9,11); t, ~ Uni(9,11);

Fig. 2.13. Reference model of a two-stage tandem line.

ta (910
S@_n:’ .\\‘ [\ s150 TN ¢ 77T TN Sl
N\\Arnve,ln () \Load1l'n ! {Unload1; 1 oad1: ().Load2\,'
{q1++} o {q1-- $1=0} o 7 s1=1, q2e)
(@ (b) (c) (d)

Fig. 2.14. Event routine graphs for (a) Start, (b) Arrive, (c) Loadl, and (d) Unloadl
events.

1. Entity: Job

2. Resources: Creator; Serverl; Server2; Bufferl; Buffer2//unlimited-
capacity buffer

3. Activity (time delay): Create (t,); Processl (t,); Process2 (t,)

4. State variables: number of idle servers (s1, s2); number of jobs in Buffer
(ql. q2)

5. Event: Arrive {q1++}; Loadl {q1—,s1 = 0}; Unload1 {s1 =1, q2++}; Load2
{q2—, s2 = 0}; Unload2 {s2 = 1}

2.4.1 How to Build and Simulate an Event Graph Model of a DES

An event graph model is a network of event nodes describing the events that
take place in the system and the relationships among these events [Schruben
1983]. The event types found in the system of Fig. 2.13 are Arrive, Loadl,
Unloadl, Load2, and Unload2. At the beginning, an Arrive event is scheduled,
and then a sequence of events follows the flow of entities in the system.

2.4.1.1 Event Graph Modeling Shown in Fig. 2.14(a) is the initial state of
the event graph where an Arrive event is scheduled with s1 =s2 = Idle (=1).
When an Arrive event occurs, the job count in Buffer1 is increased by 1 (q1++),
another Arrive event is scheduled to occur after t, minutes, and if Serverl is
Idle (s1 > 0), a Loadl event is scheduled to occur immediately. The situation
is depicted in Fig. 2.14(b), which we call an event-routine graph.

Actions taken at an occurrence of a Loadl event are: decrease the job count
in Bufferl (q1—); set Serverl to Busy (s1 = 0); schedule an Unloadl event to
occur after t; minutes. They are depicted in Fig. 2.14(c) as an event-routine

34 BASICS OF DISCRETE-EVENT SYSTEM MODELING AND SIMULATION

q1=2
q2=0
s1=1
s2=1

{q1++)} {g1--, s1--} {s1++, q2++}

Fig. 2.15. Partial event graph model of the two-stage tandem line.

TABLE 2.4. Event Transition Table for the Event Graph of Two-Stage Tandem Line

Edge
Event Name State Change Condition Time Delay = Next Event
Start ql=2,2=0;s1=s2=1; Always 0 Arrive
Arrive ql++ Always t, ~ Exp(10) Arrive
s1>0 0 Loadl
Loadl ql—; sl—; Always t; ~ Uni(9,11) Unloadl
Unload1 sl++; q2++; ql>0 0 Loadl
s2>0 0 Load2

graph. The occurrence of an Unload1 event will result in the following actions
as depicted in Fig. 2.14(d): Serverl is set to idle (sl = 1); the job count in
Buffer2 is increased (q2++); a Loadl event is scheduled to occur now if q1 > 0;
a Load2 event is scheduled to occur now if s2 > 0. As mentioned earlier
(Section 2.2.1), a set of actions taken at an occurrence of an event is called an
event routine.

If we assemble the individual event-routine graphs of Fig. 2.14 into a “com-
posite” event graph, we obtain the event graph shown in Fig. 2.15. The infor-
mation specified in the event graph model can be summarized in a table called
an event transition table. Table 2.4 is an event transition table for the event
graph model shown in Fig. 2.15.

Exercise 2.2. Complete the event graph model of the two-stage tandem
line by adding the event-routine graphs for Load2 and Unload2 events. Con-
struct an event transition table for the full event graph of the two-stage tandem
line.

2.4.1.2 Simulation of the Two-Stage Tandem Line Model with SIGMA®
Figure 2.16 shows a SIGMA event graph model of the two-stage tandem
line that was generated by clicking and dragging the mouse. As will be
shown in Chapter 4, it is very straightforward to build an event graph using
SIGMA®.

If you double click the event vertex Arrive, a vertex dialog box like the one
in Fig. 2.17(a) will show up where you provide the state change information
(e.g., Q1 = Q1 +1). If you double click the self-loop edge of the Arrive event,

ILLUSTRATIVE EXAMPLES OF DES MODELING AND SIMULATION 35

B2 Event Graph - Two_Step_Tandem_Server.mod — [Simulation Graph]

[&] File Edit Run Variables Zoom Window Help il
R

:

-8 -0-6-6-
O ®

®

=

Fig. 2.16. SIGMA® event graph model.

Genetal | Display) From: Autive To: Asive

[perang @
Name: | urive [Trace Event Descrption: |
Descipbon: [L
L Dely: [10rERLOY
Siate [G101+1 i
Changels} Cordii: (TRUE

(a) (b)
Fig. 2.17. SIGMA (a) Vertex dialog box and (b) Edge dialog box.

an edge dialog box of Fig. 2.17(b) will show up where you specify the inter-
arrival time distribution (e.g., I0*ERL{1}).

2.4.2 How to Build and Simulate an ACD Model of a DES

2.4.2.1 ACD Modeling An activity cycle diagram (ACD) model consists
of activity cycles, one for each entity and one for each active resource in the
system. An activity cycle is a closed and alternating sequence of an active state
(activity) denoted by a rectangle and a passive state (queue) denoted by a
circle [Carrie 1998].

Referring back to Fig. 2.13, the two-stage tandem line system has three
active resources: Creator, Serverl, and Server2. On a close examination, all
the resources are in an idle state. Bufferl has two jobs, and Buffer2 has no
jobs. Depicted in Fig. 2.18(a) are the activity cycles of the three resources in
the system. A job created by Creator goes into Bufferl from which it is loaded
on Serverl for processing. Then it moves to Buffer2 to be processed by Server?2.
This “job flow” is modeled as an activity cycle of the job as shown in Fig.
2.18(b).

By combining the activity cycles in Figs. 2.18(a) and 2.18(b) together, an
ACD model of the two-stage tandem line is obtained as shown in Fig. 2.19.
Also shown in the ACD are the distribution functions, Exp(10) and Uni(9,11),
for the inter-arrival times and processing times.

The information specified in an ACD model can be summarized in a table
called an activity transition table. Table 2.5 is an activity transition table for the
ACD model shown in Fig. 2.19. For each activity, (1) its firing condition is

36 BASICS OF DISCRETE-EVENT SYSTEM MODELING AND SIMULATION

- Creator cycle \,' - Serverl cycle \,' - Server2 cycle \,’
(a)
Creat (@1 L processt <t (a2 —s|Process2 <t { Disposed (=)
reate <t>1—>{ gq) rocess1 <t;>—(Q2) rocess2 <t,> { Disposed (=))
Job cycle

(b)

Fig. 2.18. (a) Activity cycles of the resources in the two-stage tandem line system;
(b) activity cycle of the job in the two-stage tandem line system.

Job cycle

Fig. 2.19. ACD model of the two-stage tandem line.

TABLE 2.5. Activity Transition Table for the Event Graph of Two-Stage Tandem
Line

At Begin BTO Event At End
Activity Influenced
No Name Condition Action Time Name Action Activities
1 Create (C=1) C— Exp(10) Arrived Ql++, Create,
C++ Process1
2 Processl (Q1>0)& Ql—, Uni(9,11) Processedl S1++, Processl,
(S1>0) S1— Q2++ Process2

3 Process2 (Q2>0)& Q2—
(S2>0) S2—

Initial State C=1,81=1,82=1,01=2,Q02=0

Uni(9,11) Processed2 S2++ Process2

specified in the At-begin Condition field and the resulting state changes are
given in the At-begin Action field; (2) the time-delay and name of the bound-
to-occur event (BTO event) are specified in the BTO-event Time and BTO-
event Name fields, respectively; (3) the state changes at the BTO event are
specified in the At-end Action field. The ACD model may be simulated by
using an ACD executor (see Chapter 6) or converted into a process-interaction
simulation program like Arena (see Chapter 7).

2.4.2.2 Simulating the ACD Model with Arena® 1t is fairly straightforward
to prepare Arena simulation inputs from an ACD model. In order to perform
simulation with the Arena software, (1) all the resources and entities are
declared first, (2) a flowchart model denoting the entity flow is generated,
and (3) the attributes of each block (or module) are entered in its dialog box.

ILLUSTRATIVE EXAMPLES OF DES MODELING AND SIMULATION

37

Resource - Basic Process

Entity - Basic Process

Name Type Capacity g Entity Type | Initial Picture Holding Cost / Hour|
1 S1 Fixed Capacity 1 1 Job Picture. Box 0.0
2 p |82 Fixed Capacity 1 Double-click here to add a new row.

Fig. 2.20. Declarations of Resource (S1 and S2) and Entity (Job).

Create 1 }-—- »——-é Dispose 1
0 0

Fig. 2.21. Arena® flowchart model of the two-stage tandem line.

Process 1 Process 2

0 0

[create o] [Proces 19 i
Enlity Type: _f-f_ﬂm Type:
“idoo - ™ (Etandad -
Wit | =:'<E’n'mﬁm-""' —
— [F==)

Entities per Armival: Max Arrivals: First Creation; Delay Type: Units:

1 Infirite 0o = | [Value Added v

][Cancel][

[Urifom

[ok Help]

Fig. 2.22. Arena dialog boxes for defining Create module and Process module.

Shown in Fig. 2.20 are a resource data model and an entity data model in the
Basic Process Template of Arena, where the resources (S1 & S2) and entity
(Job) of the two-stage tandem line are declared.

Shown in Fig. 2.21 is an Arena flowchart model of the two-stage tandem
line. The Create activity in the ACD model of Fig. 2.19 is mapped to the
Createl block in Arena flowchart model of Fig. 2.21, the Disposed queue is
mapped to Disposel block, and the activity nodes are mapped to Process
blocks.

Shown in Fig. 2.22 are dialog boxes for inputting data needed to define the
Create block and Processl block. In the Create block dialog box, the inter-
arrival time distribution is defined as Type = Random (Expo) and Value = 10.
In the Process block dialog box, the service time distribution is specified as
Delay Type = Uniform, Minimum = 9, and Maximum = 11.

2.4.3 How to Build and Simulate a State Graph Model of a DES

The first step in state-based modeling is to identify objects in the system and
construct an object interaction diagram describing interactions among the
objects in the system. There are five objects (Creator, Buffer1, Server1, Buffer2,
and Server2) in the two-stage tandem line, and they interact with each other

38 BASICS OF DISCRETE-EVENT SYSTEM MODELING AND SIMULATION

Creator M Bufferl M Serverl —UM» Buffer2 Ldz» Server2 —‘

T T Unload?2

Fig. 2.23. Object interaction diagram of the two-stage tandem line.

via event messages: Creator sends an Arrive message to Bufferl; Buffer1 sends
a Load1 message to Server1, which sends back an Unload1 message to Bufferl;
Serverl sends an Unload1 message to Buffer2; Buffer2 sends a Load2 message
to Server2, which sends back an Unload2 message to Buffer2. By combining
all the individual interactions, the object interaction diagram of the two-stage
tandem line system is obtained as shown in Fig. 2.23.

The second step in state-based modeling is to draw a state transition diagram
for each object in the system. The object interaction diagram and the indi-
vidual state-transition diagrams form a state graph of the system. In order to
execute the state graph model of the system, the information described in a
state transition diagram is specified in a state transition table. An extensive
treatment on the subject is provided in Chapter 9 of this book.

2.5 APPLICATION FRAMEWORKS FOR DISCRETE-EVENT SYSTEM
MODELING AND SIMULATION

2.5.1 How Is the M&S Life Cycle Managed?

Shown in Fig. 2.24 are various activities and entities involved in a real-life
M&S project, which we call the M&S life-cycle management framework. The
life-cycle management framework consists of four phases: problem definition
phase, modeling phase, simulation phase, and implementation (or application)
phase:

1. Phase 1 is the problem definition phase consisting of (1) diagnosis and
analysis of a real-life situation from which a source system is identified
and the objectives of the study are defined, (2) defining experimental
frames, and (3) collecting data.

2. Phase 2 is the modeling phase consisting of (1) the descriptive modeling
step for building a reference model and (2) the formal modeling step for
building a formal model from the reference model by employing a mod-
eling formalism. Also carried out in this phase are reference model
qualification and formal model validation. A model qualification is a
rigorous, systematic analysis and evaluation of the reference model for
its relevance and consistency with observed behavioral data to ensure
that the models are fit for purpose.

3. Phase 3 is the simulation phase where (1) a simulator is implemented
from the formal model using a simulation software tool if necessary, (2)
a series of experimentation is performed with the simulator according to

DISCRETE-EVENT SYSTEM MODELING AND SIMULATION 39

1 1. Dlagn05|s & Analysis

Ob]ectlves *%
1-3. Data 1 l

2-1. Descrlptlve modeling = a4 2-2. Qualification

2 3. FormaI modeling pas &=4 2-4. Validation

1-2. Expenmental Formal —T

coIIectlon

fra mes

e _ =
3-1. Implementahon SS'“V“V”{?)E',%”
4 3-3. Verification
4-2. Calibration

3-2. Experlmentatlon
Output

4-1. Output analysis pmemmd 4-3. Decision & action

Fig. 2.24. M&S life-cycle management framework.

the specifications of the experimental frame, and (3) the simulator is
verified against the formal model.

4. Phase 4 is the implementation phase, consisting of (1) output analysis,
(2) simulator calibration, and (3) making decisions and taking actions. A
simulator calibration is a systematic procedure for fine-tuning the simu-
lator by adjusting model parameters so that the simulation outputs
conform to actual trajectories of the target system.

Reference model qualification, formal model validation, and simulator veri-
fication and calibration are the key feedback functions in M&S life-cycle
management.

2.5.2 Framework for Factory Life-Cycle Support

More than a 50 years ago, K.D. Tocher tried to solve the congestion control
problem at United Steels in the U.K. [Tocher 1960]. He argued that “in more
complex plants, in which there is a multiplicity of possible routes for the
steel through the plant, it is possible to minimize congestion and maximize the
rate of flow by a (simulation-based) scheduling procedure.” It is truly remark-
able that Tocher, who invented the ACD, tried to use simulation as an opera-
tion management tool in the 1960s. Congestion control is also a key issue in
operation management for a modern electronics Fab (i.e., fabrication plant)
such as a semiconductor Fab or a flat panel display (FPD) Fab.

40 BASICS OF DISCRETE-EVENT SYSTEM MODELING AND SIMULATION

New Fab New Fab Fab Operation
Planning Design Management

7> ae o

* Risk/Investment| | + Fab L/O Design
« EQP Arrange

* AMHS* Design
* Op. Rules

« Fab In/Out Plan
* Real-time Scheduling
* RTD Rules
* MCS Rules

* Fab L/O Change
* EQP Replace

* AMHS Change

* New EQP

» Fab Capacity
+ SBA
* Project Mngt

Integrated Fab Simulator

Fig. 2.25. Framework of simulation-based Fab life-cycle support. SBA, simulation-
based acquisition; AMHS, automated material handling system; RTD, real-time dis-
patcher; MCS, material control system for AMHS.

The authors have been working with FPD makers to develop simulation-
based Fab scheduling systems [Park et al. 2008] and a Fab simulator for an
integrated simulation of production and AMHS (automated material handling
system) [Song et al. 2011]. Shown in Fig. 2.25 are the four phases of Fab life
cycle together with action items for Fab life-cycle management. The four
phases are (1) planning phase for a new Fab, (2) the new Fab design phase,
(3) Fab operation management phase, and (4) Fab upgrading and renovation
phase. An integrated Fab simulator may be used as a decision-support tool
covering the entire Fab life cycle. Issues in developing such an integrated Fab
simulator will be addressed in Chapter 11.

2.6 WHAT TO COVER IN A SIMULATION CLASS

There exists a large volume of knowledge on modeling and simulation of
discrete-event systems, and choosing the right topics to cover in a simulation
class is not an easy task in simulation education. Key topics addressed so far
in this chapter are as follows:

1. How to perform a manual simulation for executing an event graph model

2. How to develop a reference model of a DES

3. How to build an event-graph model and simulate it with a simulation
package

4. How to build an ACD model and convert it to an EFD model

. How to simulate an EFD model with a commercial simulation package

N

6. How to build a state-graph model and simulate it with a simulation
package

WHAT TO COVER IN A SIMULATION CLASS a4

(s'# Done)

(1Q(s)>0)

m(2)
m()=4 ----- W) s (ool Done)
Fori=1-8 | ion; i Qs> (. o) {mis)+

{9@=Null § {sAst'%me(m)} (b.pr> 6 {m‘(i)).-}“ P s'= Route (j, p)}

Fig. 2.26. Event graph model of a homogeneous job shop.

2.6.1 Event-Based M&S and Event-Graph Simulation with SIGMA®

At the heart of discrete-event system simulation is the concept of event-based
modeling and simulation with an event graph. Thus, it is essential for an engi-
neering simulation student to learn how to build and simulate an event-graph
model of a DES. An event-graph model may be less intuitive than an entity-
flow diagram model, but it is very flexible and powerful for describing complex
discrete-event systems concisely.

Shown in Fig. 2.26 is an event-graph model of a homogeneous job shop
that can be used as a template for modeling various types of job shops such
as machine shops, electronics Fab, restaurants, hospitals, etc.

Basics of event-graph modeling and simulation are presented in Chapter 4.
How to model a large system as a parameterized event graph with SIGMA®
is discussed in Chapter 5, where the job shop model of Fig. 2.26 will be exe-
cuted with SIGMA®.

2.6.2 Activity-Based M&S and Hands-On Modeling Practice
with Arena®

It is essential for an undergraduate simulation class in an engineering school
to give students hand-on experiences on modeling with a popular simulation
package. There are quite a few simulation packages based on the entity-flow
view (also known as the process-oriented or process-interaction view). Exam-
ples include Arena®, AutoMod®, and EXTEND®. Most of those packages are
quite simple to learn and use, and student copies are readily available free of
charge.

It would be enough for the students to get exposed to one package. Once
the students get used to one package, they will be able to learn other packages
by themselves. For this purpose, we chose to use Arena® in addition to the
ACD simulator ACE® in this book. An approach to converting an ACD model
to an Arena simulation program is elaborated in Chapter 7.

2.6.3 State-Based M&S

The subject of state-based modeling and other advanced topics in Part I1I may
be skipped in an undergraduate simulation class in an ordinary engineering

42 BASICS OF DISCRETE-EVENT SYSTEM MODELING AND SIMULATION

Game Over - Game Over
Friend

Stop
Ball-A
Out-A
Player-A Ball-B Player-B
Out-B

Fig. 2.27. Object interaction diagram model of a table tennis game.

school. This topic may be covered in a graduate-level class. State-based model-
ing is suitable for modeling a discrete-event system that is naturally described
in terms of interacting objects in the system. As can be seen in the modeling
example of the two-stage tandem line, the state graph may not be a suitable
tool for modeling such a system. On the other hand, a complex urban traffic
network may be properly modeled by a state graph.

Figure 2.27 shows an object interaction diagram model of a table tennis
game played by two players—Player-A and Player-B—with their friend watch-
ing the game. The two players interact with each other by sending a Ball event
message (meaning that the ball is sent to the opponent’s table) or an Out event
message (when the ball went out of bounds). The friend may send a Stop
message to the players to interrupt in the middle of game, and the players send
a Game-over message to the friend when the game is over. When modeling
this kind of system, state-based modeling would be the choice. Detailed discus-
sions on the subject may be found in Chapter 9 of this book.

2.7 REVIEW QUESTIONS

2.1. What is an event routine?

2.2. What is the next event?

2.3. What are the three logical modeling components?

2.4. What is a modeling formalism?

2.5. What are the three worldviews in discrete-event system modeling?
2.6. What is a reference model of a discrete-event system?

2.7. What are the requirements of a formal model?

2.8. What is model qualification?

2.9. What is simulator calibration?

I PART II

FUNDAMENTALS OF DISCRETE-
EVENT SYSTEM MODELING AND
SIMULATION

A practical definition of a discrete-event system (DES) is given as “a system
designed to process some sort of entities with some kind of resources.” Exam-
ples of DESs are hospital emergency rooms and operating rooms, car repair
shops, serial assembly lines, semiconductor fabrication lines, restaurants, urban
traffic systems, etc. Part II, which is the main part of the book, is concerned
with how to build simulation models of these DESs and perform simulation
analyses. All the three classical modeling formalisms—event-based, activity-
based, and entity-based formalisms—together with input modeling and output
analyses are covered in Part II. The three classical modeling formalisms are
also known as event scheduling, activity scanning, and process-interaction
worldviews. There are six chapters, Chapters 3 to 8, in Part II.

Chapter 3 and Chapter 8, respectively, cover all the essential input modeling
and output analyses topics that a simulation practitioner should know. After
studying these two chapters, you should be able to do the following:

. Generate inter-arrival times and service times from empirical data
. Generate various theoretical random variates

. Generate inter-arrival times for fluctuating arrival rates

. Estimate the parameters of various distribution functions

. Verify and calibrate the simulation logic

. Compute confidence intervals of simulation outputs

~N O AW

. Apply the response surface methodology to simulation optimization

Chapters 4 and 5 are devoted to event-based modeling and simulation (M&S).
By studying these two chapters, you should be able to do the following:

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

43

44 FUNDAMENTALS OF DISCRETE-EVENT SYSTEM MODELING AND SIMULATION

1. Provide formal specifications of (parameterized) event graph models

2. Build event graph models of various types of systems including job shops
3. Execute event graph models with the event-based simulator SIGMA®
4. Develop your own event graph simulator

Chapters 6 and 7 are devoted to activity-based and entity-based M&S,
respectively. By studying these two chapters, you should be able to do the
following:

1. Provide formal specifications of activity cycle diagram (ACD) models
2. Build ACD models of various types of systems including job shops

3. Execute ACD models with the activity-based simulator ACE®

4. Use the entity-based simulator Arena®

5. Convert ACD models into Arena® models and perform simulation runs.

I CHAPTER 3

Input Modeling for Simulation

As far as the laws of mathematics refer to reality, they are not certain,
and as far as they are certain, they do not refer to reality.
—Albert Einstein

3.1 INTRODUCTION

Discrete-event dynamic systems have some probabilistic elements, and a close
match between the simulation input model and the true underlying probabi-
listic mechanism associated with the source system is required for successful
simulation analyses. Input modeling defines mechanisms for generating random
inputs of a simulation model. The general question is how to model a proba-
bilistic element such as the arrival process or service times given a data set
collected on the element of interest [Leemis 2001].

Let’s assume that you have an automatic teller machine (ATM) in your
building and that you have collected the data in Table 3.1 by observing the
first 10 customers during a lunch hour. The ATM and the nearby floor space
can be modeled as a single server system whose reference model and event
graph model were given in Fig. 2.1 of the previous chapter. Then, how would
you use the data listed in Table 3.1 to simulate your ATM system?

In general, if the actual data collected are available, there are three ways
to model input: (1) trace-driven simulation, in which the collected data values
are directly used in the simulation; (2) empirical input modeling, in which
random variables for simulation are generated directly from the collected data;
(3) theoretical input modeling, in which the parameters of a theoretical distri-
bution function are estimated from the actual data and random variables are
generated from the fitted distribution function.

This chapter is organized as follows. We start with the subject of empirical
input modeling (for inter-arrival times as well as service times) in Section 3.2,
and follow with a brief section (Section 3.3) on theoretical distribution fitting.

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

45

46 INPUT MODELING FOR SIMULATION

TABLE 3.1. Collected Data for the First 10 Customers of an ATM during a
Lunch Hour

Observation number (k) 1 2 3 4 5 6 7 8 9 10
Inter-arrival time in sec {A;} 121 13 87 36 7 236 8 33 152 67
Service time in sec {X;} 56 51 73 65 84 58 62 69 44 66

Section 3.4 deals with theoretical input modeling of inter-arrival times,
and Section 3.5 deals with theoretical input modeling of service times. The last
section (Section 3.6) covers input modeling for special applications.

3.2 EMPIRICAL INPUT MODELING

In empirical input modeling, random variables for simulation are generated
directly from the collected data. There are three ways to generate random
inputs from collected data {X;} without fitting a theoretical distribution func-
tion: the nonparametric modeling method, empirical modeling of individual
data, and empirical modeling of grouped data.

3.2.1 Nonparametric Modeling

A simple approach to generating random inputs from collected data {X} is to
use a nonparametric model, in which the value of the random variable x is
repeatedly sampled from collected data {X;: kK = 1 ~ n} with probability 1/n.
The nonparametric input modeling method may be implemented as follows:

1. Generate a uniform random number U ~ Uni(0,1).

2. Set P=n x U and compute the index k = [P] + 1;// [P] is the integer part
of P.

3. Return x = X,.

Example 3.1, Generate a service time using the nonparametric method
from the service time data {X,} given in Table 3.1. Let the value of the gener-
ated uniform random number U ~ Uni (0, 1) be 0.369881, then the index ‘k’
in the nonparametric modeling method is computed as k = [n x U] + 1 =[10 x
0.369881] + 1 = 4. Thus, x = X, = 65 is sampled as an empirical service-time to
be used in a simulation.

3.2.2 Empirical Modeling of Individual Data

Let {Xu: k =1 ~ n} be the individual ordered sample data in an increasing
order, then their empirical distribution F(x) is a piecewise linear function with
F(Xy) = (k—1)/ (n — 1). Now, generate a uniform random number U and

EMPIRICAL INPUT MODELING 47

A
1.00
0.75 F(x)
0.50 Fx)=U > x=F(U)
U
0.25 Inverse transformation
> X

X(U X<2) X(3) X(4) ‘X(S)

A
X

Fig. 3.1. Generation of random variable x from individual data (n = 5).

TABLE 3.2. Ordered Service-Time Data Obtained from the Collected Data in
Table 3.1

Ascending order index (J) 1 2 3 4 5 6 7 8 9 10
Ordered service time data {X;} 44 51 56 58 62 65 66 69 73 &4

then sample the value of a random variable x from F(x) as depicted in Fig. 3.1,
which is called inverse transformation.

1. Generate a uniform random number U ~ U(0,1).
2. Set P=(n—1)x UandJ=[P]+1;// [P] is the integer part of P,
3. Return x = X(J) + (P -J+ 1) X (X(J+l) - X(j))

Example 3.2. Table 3.2 shows the ordered service-time data { X} that were
obtained by rearranging the collected data in Table 3.1 in an ascending order.
If the value of U is 0.369881 as before, we have P = (n —1) x U =9 x 0.36988
1=3.328929 and J = [P] + 1 = 4. Then, an empirical service time is generated
as:

X = X(4) + (P -4+ 1) X (X(4+]) - X(4)) =58+ (0328929)
x (62— 58) = 58+1.316 = 59.316.

3.2.3 Empirical Modeling of Grouped Data

When the data are grouped into m adjacent intervals {[ay, a1), [a1, @2) - . . [@p1,
a,,]} and the j" interval contains n; observations, the grouped data distribution
function G(x) is also a piecewise linear function with G(ay) = 0 and
G(a;)=X{m/n for j=1~m (with n = £ n)).

Then, as depicted in Fig. 3.2, the random variable x can be sampled from
the empirical distribution G(x) using the following inverse transformation
method:

48 INPUT MODELING FOR SIMULATION

A
! o
Glay)=(n+ny+ny+ny)/n

Glas) = (n;+nytn3)/ n " G(x)
g /

G(a,)=(ny+ny)/n

G(a))=(n)/n

0 b : : i \ > X
ag a; ay az ay as
X

Fig. 3.2. Generation of random variable from grouped data (m =5).

TABLE 3.3. Grouped Service-Time Data Obtained from the Ordered Data in Table 3.2

Group index
() 1 2 3 4 5

Intervals of ay=40-50 a;=50-60 a,=60-70 a;=70-80 a,=80-90=as
service

times
Frequency (n) 1 3 4 1 1
G(a) = 1/10 4/10 8/10 9/10 1.0
(Z(n))/n)

1. Generate U ~ U(0,1).
2. Find integer J such that G(a;) < U < G(ay).
3. Return x = ay+ [U— G(aj)] X (a1+1 - a]) / [G(a]+1) - G(a])]

Exercise 3.1. Table 3.3 shows the grouped service-time data that were
obtained by grouping the ordered data of Table 3.2 into five adjacent intervals
{[40, 50), .. .,[80,90]}. Assuming the value of U is 0.369881 as before, generate
an empirical service time.

3.3 OVERVIEW OF THEORETICAL DISTRIBUTION FITTING

Distribution fitting is a classical statistical estimation process consisting of data
independence checking, distribution function selection, parameter estimation,
and goodness-of-fit testing.

3.3.1 Data Independence Checking

The first step in theoretical input modeling is to check whether the obtained
data are independent. A simple method of assessing data independence is to
plot a scatter diagram. For the data X, X, ... X, listed in time-order of col-
lection, pairs (X;, X;,,) fori=1~n—1 are plotted on an x-, y-coordinate system

OVERVIEW OF THEORETICAL DISTRIBUTION FITTING 49

(X; as x-value and X}, as y-value). If the plotted points are randomly scattered,
one may conclude that the data are independent.

3.3.2 Distribution Function Selection

The second step is to select a suitable candidate distribution function based
on some theoretical justification and/or by observing the shape of the histo-
gram. For example, exponential distribution and Erlang distribution are com-
monly selected for inter-arrival times, while Weibull distribution is the choice
for an interfailure time distribution. Service-time distributions that are widely
used are beta distribution and lognormal distribution.

3.3.3 Parameter Estimation

The third step is to estimate the parameters of the selected distribution.
Maximum likelihood estimator (MLE) is the preferred choice for parameter
estimation, but other methods may be used when the MLE does not have a
simple form. For example, the MLE is used for exponential, normal, and log-
normal distributions; the method of moment for Erlang and beta distributions;
the rank regression method for Weibull distribution. More details may be
found in Appendix 3A of this chapter.

3.3.4 Goodness-of-Fit Test

The fourth step of theoretical distribution fitting assesses the model adequacy
by using a goodness-of-fit test such as the chi-square test. Here, data are
grouped into m adjacent intervals {[ao, 1), [a1, @) . . . [a@,1,]} sO that the ™
interval contains n; observations (with n = Zn;), and a test statistic * is con-
structed using the expected proportion p; computed from the fitted density
function f(x) as follows:

» N\ (m—np;)’ A
X’ = ijl . , where p; _Lj_l f(x)dx. (3.1)

Then, the test statistic is checked against the chi-square value with (m — 1)
degrees of freedom. An extensive treatment on the subject may be found in
Law [2007].

3.3.5 Overview of Random Variate Generation

Having fitted a theoretical distribution for each type of input model, the final
phase of input modeling generates random variates for simulation. When the
distribution function has a closed-form inverse function, the inverse-transform
method is the choice. Otherwise, special methods of generating random vari-
ables may be employed. More details may be found in Appendix 3B.

50 INPUT MODELING FOR SIMULATION

TABLE 3.4. Summary of Theoretical Distribution Fitting and Input Modeling

Input Variable Parameter Generation
Types Distributions Estimation Methods
Inter-arrival Exponential (6) Maximum likelihood Inverse-transform
time method
Erlang (k, 6) Method of moment Convolution of
exponential
Service time Triangular (a, b, ¢) Composition
(Repair time) method
Beta (o,) Method of moment Acceptance—
rejection
Normal (i, o) Maximum likelihood Box & Muller
method method
Lognormal (u, o) Maximum likelihood Conversion of
method normal variate
Interfailure Weibull (e, B) Rank regression Inverse-transform
time method

Table 3.4 summarizes the distribution functions for different input model
types, methods of parameter estimation, and methods of random variate gen-
eration. Erlang and exponential distributions are exclusively used in modeling
inter-arrival times, whereas beta and uniform distributions are commonly used
in modeling service times. Due to its flexibility, Weibull distribution is mostly
used in modeling interfailure times.

There are three popular methods for parameter estimation: the maximum
likelihood method for estimating the parameters of exponential and normal
distributions; the method of moment for Erlang and beta distributions; and
the rank regression method for Weibull distribution. The most popular method
for random variate generation is the inverse-transform method, which is used
in generating exponential, Erlang, and Weibull random variates. Details on the
subjects are covered in the appendixes of this chapter.

3.4 THEORETICAL MODELING OF ARRIVAL PROCESSES

3.4.1 Theoretical Basis for Arrival Process Modeling

A Poisson process is a continuous stochastic process in which events occur
independently of one another. The Poisson process is a collection {N(z): t = 0}
of random variables, where N(¢) is the number of events (arrivals) that have
occurred up to time ¢ (starting from time 0).

For a homogeneous Poisson process, the number of arrivals between time
t and time ¢ + s is given as N(¢ + s) — N(f) and has a Poisson distribution. Let
A be the arrival rate (expected number of arrivals in any interval of length 1),
then the probability of k arrivals during [¢, ¢ + s] is given by [Cinlar 1975]:

THEORETICAL MODELING OF ARRIVAL PROCESSES 51

P[N(t+5)- N(t)=k]=e* (As) [k for k=0,1,2, ..

Consider the waiting time 7 until the first arrival. Clearly 7} is more than
s if and only if the number of arrivals before time s is 0. Combining this prop-
erty with the above probability distribution for the number of homogeneous
Poisson process events in a fixed interval gives

P[T;>s]=P[N(s)=0]=P[N(s)- N(0)=0]=e*(1s)"/0!=e™. (3.2)

Consequently, the waiting time until the first arrival 7}, which is equivalent
to an inter-arrival time, has an exponential distribution with a density function
given by f(t) = Ae* and its expected value given by E(T}) = 6= 1/A.

The waiting times between k occurrences of the event in a homogeneous
Poisson process follow an Erlang distribution, which was developed by A.K.
Erlang to examine the number of telephone calls that might be made at the
same time to the operators of the switching stations.

3.4.2 Generation of Inter-Arrival Times for a Constant Arrival Rate

When the arrival process is stationary with an arrival rate A, the inter-arrival
times follow Erlang (k,6) with 6= 1/A. It becomes an exponential distribution
when k = 1. The shape of the density function is dependent on the shape of
parameter k and scale parameter 6 as can be seen in Fig. 3.3, and the density
function is defined as

O—kxk—le—x/e
f)=—7—-—
(k—1)!
0.5
k=1,0=2
0.4
031 /k:9,9:().5
k=5,0=1
0.2
k=3,0=2
0.14 k=2,0=2
0

0 2 4 6 8 10 12 14 16 18 20
Fig. 3.3. Erlang-k density function.

52 INPUT MODELING FOR SIMULATION

3.4.2.1 Parameter Estimation If a sufficient amount of inter-arrival time
data {X}} is available, estimators of the parameters are obtained from the
sample moments as discussed in Appendix 3A (k is an integer):

k= (my) [ims —(mi)], 6 =[m, —(my)*), (3.3)

where the first sample moment m, and second sample moment m, are given
by

i=1

If k =1, it becomes an exponential distribution and Eq. 3.3 reduces to

Example 3.3. The parameters of the Erlang distribution representing the
inter-arrival distribution of the ATM system introduced in Section 3.1 can be
estimated from the inter-arrival times data {A,} in Table 3.1 as follows. The
first and second sample moments are calculated as n; = 76 and m, = 10,816.6.
From Eq. 3.3, the Erlang parameters k and 6 are computed as k = 1.146 and
0 = 66.3. Since k is close to 1, we have an exponential distribution. Thus, the
inter-arrival times in the ATM system follow an exponential distribution with
mean = 66.3.

3.4.2.2 Random Variate Generation As described in Appendix 3B, an
exponential random variate x is generated via an inverse transformation as
follows:

1. Generate u ~ U(0,1).
2. Return —@1n(x).

Utilizing the fact that the sum of independent exponential random variables
is an Erlang random variable, the Erlang-k random variate x is generated as
follows:

1. Generate independent u; ~ U(0.1) fori=1 ~ k.
2. Return —61In(IT%, ;).

3.4.3 Generation of Inter-Arrival Times for Varying Arrival Rates

Let’s assume the inter-arrival times are exponentially distributed, but the
arrival rate A(¢) is changing over time. This arrival process is called a nonsta-
tionary Poisson process, which is common in many service systems such as
banks, cafeterias and barber shops.

THEORETICAL MODELING OF SERVICE TIMES 53

1)

M)

<—At—>
t=t t,

>t

Fig. 3.4. Generation of exponential inter-arrival times for varying arrival rates.

Uniform (a, b) Triangular (a, b, c) House (a, b, c, h) Beta (a, b, c, p)
heot
> X : > X 3 L x “p X
a b a c b a c b a c b

Fig. 3.5. Service-time distributions in the absence of data.

A widely used method called thinning for generating nonstationary inter-
arrival times is shown in Fig. 3.4. It starts with a previous arrival time =t and
generates an inter-arrival time A for the maximum arrival rate 1° by using a
uniform random number U,. Thus, from the result of Section 3.4.1, we have
At =— (1/2) In(U,) and t, = t + Ar. Now generate another uniform random
number U,, and if U, < A(t,) / A", then accept t, as the next arrival time, else
set t = t, and start over. The thinning method of generating arrival times may
be summarized as follows (start with i = 1):

. Set:t=1t,.

. Generate: U, ~ U(0, 1) and U, ~ U(0, 1).

. D =—(1/X") In(U,); /lexponential random variable with 6= 1/1".
t=t+D.

. If U, < A¢)/X, then return ; = ¢, else go back to step 2.

3.5 THEORETICAL MODELING OF SERVICE TIMES

3.5.1 Generation of Service Time in the Absence of Data

In some simulation studies it may not be possible to collect the service-time
data, but we have some knowledge or information about the service time
distribution, such as its range [a, b] and mode c. The lower bound ‘@’ is often
referred to as the most optimistic estimate of service time, the upper bound ‘b’
as the most pessimistic estimate, and the mode ‘c’ as most-probable estimate.
Figure 3.5 shows the density functions that are commonly used in modeling

54 INPUT MODELING FOR SIMULATION

service times and activity durations in the absence of collected data: uniform,
triangular, house, and beta distribution.

3.5.1.1 Uniform Random Variate: X~ Uniform (a,b) When only the range
data [a, b] is given, a simple but useful method is to generate the service time
X from the uniform distribution U(a, b). Namely, let U ~ U(0,1) then the
uniform random variate X~ U(a, b) is generated by

X=a+(b-a)xU. (3.5)

3.5.1.2 Triangular Random Variate: X~ Triangular (a, b, ¢) If the mode ¢
is also given in addition to the range data [a, b], service times may be sampled
from a triangular distribution. Service-time random variate X following the
triangular distribution Triangular (a, b, c) may be generated by using a com-
position method (see Appendix 3B) given below:

1. Set p = (c — a)/(b - a).
2. GenerateU, ~ U(0,1);U, ~ U(0,1).
3. If Uy <p,then X =a+(c—a)JyU,,else X =c+(b-c)(1-y1-U,).

3.5.1.3 House Distribution Random Variate: X~ House (a, b, ¢,h) When
the height (4) the house is also specified (in addition to a, b, and c¢), service
time may be sampled from the house distribution (See Fig. 3.5). As depicted
in Fig. 3.6, a composition method is employed to generate house-distribution
random variates X.

1. Setr=h(b-a);p=1-r)(c—a)(b-a);qg=1—-(p+7).

2. Generate U, ~ U(0,1) and U, ~ U(0,1).

3. If (U <p),then X = a+(c—a)\/U_2 (see Fig. 3B.3 in Appendix 3B),
else if (U <p+q),then X =c+(b—c)(1-+1-U,),
else X=a+ (b -a)(U,).

3.5.1.4 Beta Random Variate: X~Beta(o,f8) A choice for the service-time
distribution with a finite range is a beta distribution. The density function f(x) of
the standard beta distribution Beta(¢,) that has a unit range [0, 1] is given by

A

ptgt+tr=1

Area=pi Area=gq

Area=r

> X
a c b

Fig. 3.6. Generation of “house” random variate via the composition method.

THEORETICAL MODELING OF SERVICE TIMES 55

_x ' (1=-x)!

f =g

where B(z;,2,) = [} 77 (1-1)2"'dt denotes the beta function.

Let ¢ and u, respectively, denote the mode and mean of the beta distribution
with a finite range [a, b]. If ¢ # u, the parameters «, f of the standard beta
distribution Beta(o,) may be estimated from the following relations (see
Appendix 3A):

o= u(2m—l);B= (1;14) a;m=(c—-a)/(b-a)&u=(u-a)/(b—a), (3.6)

m-u

where m and u are the mode and mean of the standard beta distribution.

There are quite a few methods for generating beta random variates [Law
2007, Cheng 1978]. A simple yet effective algorithm by Cheng [1978] for gen-
erating Y ~ Beta(a, B) is given in Appendix 3B. Then the beta random variate
X with a general range [a, b] can be obtained from Y as follows:

X=a+(b-a)Y.

3.5.2 Generation of Service Times from Collected Data

When data {X;} collected from the target system are available, the first step
may be to construct the histogram of {X;} to identify the range and shape of
the distribution. Popular candidates for service time distribution are beta and
lognormal as shown in Fig. 3.7.

3.5.2.1 Beta Random Variate: X~Beta(o,f8) If the service times have a
finite range [a, b], beta distribution is the choice for generating them. The
parameters of the standard beta distribution Beta(o, 8) can be estimated using
the following equation (see Appendix 3A):

Beta (a, b, a,) LN (1, 0?)

] » x —
0 a b 0

Fig. 3.7. Service-time distributions when collected data are available.

56 INPUT MODELING FOR SIMULATION

&:u(@q} B:(l-u)(@q), (3.7)

where the u and v are the mean and variance of the standard beta distribution,
and they are given by

u=((x-a)/(b-a); v=s*/(b-a) (3.8)

where the sample mean and sample variance are computed from the collected
data:

n n
=1 . 2 _ 1)2
x=1 E X st =0 E H(Xi—x).

Once the parameters are estimated from Eq. 3.7, the beta random variate
is generated the same way as discussed in Section 3.5.1.

Example 3.4. The ATM service-time data shown earlier in Table 3.1 have
a sample mean of 62.8 and sample variance of 129.96. The range of the ATM
service time is [a = 40, b = 90]. Thus, from Eq. 3.8, the mean and variance of
the standard beta distribution are obtained as u = (62.8 — 40)/50 = 0.456;
v =129.96/(50 x 50) = 0.052. Finally, from Eq. 3.7, the parameters of the stan-
dard beta distribution are computed as

@ = 0.456[0.456(1—0.456)/0.052 — 1] = 1.72; B = 2.05.

3.5.2.2 Lognormal Random Variate: X~LN(W,0°) Finally, if the service-
time distribution is skewed to the right, they are generated from the lognormal
distribution LN(u,0%) whose parameters can be estimated as

1 . T1 o
1N mxi6=[LY (nx, - 2}. 3.9
=1 Y X6 [n§<n) (3.9)

For given parameters u and o, the relationship between the lognormal
random variate X ~ LN(u,0°) and the normal random variate Y ~N(u,o%)are
as follows:

X=e". (3.10)

Thus, lognormal random variates X ~ LN(u,6°) can be generated from
normal random variates as follows:

1. Generate Y ~ N(u,0%). (See Appendix 3B.5.)
2. Return X =e¢”.

INPUT MODELING FOR SPECIAL APPLICATIONS 57
3.6 INPUT MODELING FOR SPECIAL APPLICATIONS

3.6.1 Interfailure Time Modeling

Interfailure time is modeled by the Weibull distribution Weibull (o, 3) mainly
due to its flexibility as shown in Fig. 3.8. If the failure rate decreases over time,
then use « < 1; if the failure rate is constant over time, then use o =1 (i.e.,
exponential distribution); if the failure rate increases over time, then use o> 1.

As presented in Appendix 3A, Weibull parameters can be estimated from
the collected interfailure time data {X;} by using a rank regression method. In
order to estimate the parameters, the collected data {X}} are rearranged in an
increasing order to obtain a set of ordered sample data {X(,:i=1 ~ n} and the
median rank R; of the i-th sample data X{; is computed using the following
equation:

R =(i—03)/(N +0.4). (3.11)

Then, the sequence of ordered rank data pairs {X;,, R;} are fitted to the
Weibull distribution as depicted in Fig. 3.9.

2
a=05,5=1
1.5
e a=508=1
a=10,4=1

0.5 /

0.0 0.5 10 1.5 20 25
Fig. 3.8. Weibull density function.

1.00—1
. R, o=
R4
R, F(x)=1- & @"
3 S —
) 3y —)
: Xy Xo Xy X Xs)

Fig. 3.9. Estimation of Weibull parameters via rank regression.

58 INPUT MODELING FOR SIMULATION

As described in Appendix 3A, the procedure for estimating Weibull
parameters o, § from the ordered-rank pairs {X|;, R;} may be summarized as
follows:

1. Transform data {X;, R;} to form a linear equation (y = a + bx)
x;=In(Xy); yi=In{~-In[1-R]}. (3.12)

2. Compute the least-square estimators of a and b

5={2xiy,~ —n)?y}/{z‘x? —nfz} a=y-bx.
i=1 1

3. Obtain the Weibull parameter estimators
G=b;, B=e @, (3.13)

Since the Weibull distribution function is easily inverted, Weibull random
variates are generated employing the inverse-transform method. Namely,
Weibull (o,) random variate X is obtained from a uniform random variate U
as follows:

X = B#(~InU)". (3.14)

3.6.2 Inspection Process Modeling

A Bernoulli process is a discrete-time stochastic process consisting of a
sequence of independent random variables { X} taking values over two symbols
(0 or 1) such that P[X;= 1] = p for all i. Distribution functions associated with
the Bernoulli process include binomial bin(t,p) and negative binomial negbin
(s,p) distributions (geometric is a special case of negative binomial).

t
1. bin (t,p): ()p*(l—p)f‘x for x =0~ t.
X

. s+x—-1Y)
2. negbin (s,p): p'(l-p)yforx=0,1,2---
X

In quality control system simulations, input modeling of defective items
is required. As an inspection process is a Bernoulli process, the number of
defective items in a batch of size b can be sampled from the binomial distri-
bution bin (bp) and the number of inspections before encountering d
defective items can be sampled from the negative binomial distribution
negbin(d,p). Here, p is the probability of an item is defective. What distribution
is used for the number of inspections before encountering the first defective
item?

REVIEW QUESTIONS 59

3.6.3 Batch Size Modeling

In many service systems, customers may arrive in groups or batches. When
frequency data collected from the source system is available and reliable, a
simple yet effective method for generating batch sizes is the empirical model-
ing of the original frequency data. Namely, a batch size is sampled from the
frequency data.

If the frequency data are not available (or unreliable) but the average batch
size B is given, a theoretical distribution fitting method can be employed.
When the maximum batch size b is given (1 < B < b), the binomial distribution
X~bin (t,p) is a choice. The parameters of binomial distribution are estimated
as follows:

t=b-1; p=(B-1t. (3.15)

Then, batch sizes following the binomial distribution bin (t,p) are gener-
ated as

. Generate {U; ~ U(0,1) for I =1 ~ ¢}.
.Fori=1~t{If U;<pthen Z;=1,else Z,=0}.
X=XxZ.

. Return B =X + 1.

3.7 REVIEW QUESTIONS

3.1. What is trace-driven simulation?

3.2. What are the three ways to empirically generate random inputs from
collected data?

3.3. What is the nonparametric input modeling method?

3.4. What is the inverse-transformation method of generating a random
variable?

3.5. Where is a scatter diagram plotting used?
3.6. What test is widely used in the goodness-of-fit test?

3.7. How is the Erlang distribution defined in a homogeneous Poisson
process?

3.8. What is a nonstationary Poisson process?
3.9. What is the thinning method of generating a next arrival time?

3.10. What is a Bernoulli process?

60 INPUT MODELING FOR SIMULATION
APPENDIX 3A: PARAMETER ESTIMATION

In this appendix, how to estimate parameters for the major continuous distri-
butions listed in Table 3.4 will be explained in just enough detail for readers
to implement their own input modeling functions. Distributions covered are
exponential, Erlang, Beta, Weibull, normal, and lognormal. For a more com-
prehensive treatment on the subject, the reader is referred to Law [2007].

3A.1 Exponential Distribution

The exponential distribution Expo(6) is defined by the scale parameter 6, and
it is widely used in the field of queuing theory mainly due to its simplicity. For
x > 0, the density function f(x) and distribution function F(x) are given by

f(x):%e”‘"’; F(x)=1-e™". (3A.1)

The mean and variance of an exponentially distributed random variable are
6 and &, respectively.

The parameter 6 is estimated by using the maximum likelihood method,
and the resulting estimator is called a maximum likelihood estimator (MLE).
Let {x;: for i = 1 ~ n} denote n independent observations, then the likelihood
function is given by the product of density functions as follows:

L(x, %%, 10)= [|, f(xi10) = (/@) e E0°, (3A.2)

The natural logarithm of the likelihood function is expressed as

(x =21 x)/n):
A=InL=nln(1/6) —(Zfl_lx,«)/e =-nln6-nx/6. (3A.3)

Differentiating A, setting it equal to 0, and solving for 6, the MLE is
obtained as:

OA/90=—n[1/60+X(-1/6*)]=0= 6 =X. (3A.4)

3A.2 Erlang Distribution

The Erlang distribution is defined by the shape parameter k and scale param-
eter 0 and is widely used in modeling arrival processes. For x > 0 and positive
integer k, the density function is given by (the distribution function does not
have a simple form):

APPENDIX 3A: PARAMETER ESTIMATION 61

e—kxk—le—xle
Density function: f(x) = W (3A.5)

The mean (1) and variance (0%) of an Erlang random variable are:
u=k@;, o’=k6

If k =1, it becomes an exponential density function. If k is a real number,
it becomes a gamma density function.

As there are no closed-form solutions for the MLE of the parameters, the
method of moment is employed in estimating the parameters k and 6. Let {x;
for i=1 ~ n} denote n independent observations, then the first sample moment
m; and second sample moment m, are:

n n
— 1 —_ — 1 2
m =+ E =X my =g E i (3A.6)

On the other hand, the first and second population moments E(X) and
E(X?) of the Erlang density function are:

E[X]= J' xf(x)dx=k6; E[X?]= sz F(x)dx = k(k +1)62. (A7)

Equating the population moments in Eq. 3A.7 with the sample moments
in Eq. 3A.6 and solving for the parameters k and 6, we obtain (k is an integer):

k= (my)2 [my = (), 6=[my —(my)?]/, (3A8)

3A.3 Beta Distribution

The beta distribution Beta(co,p) is defined by the shape parameter o and scale
parameter § and is widely used in modeling service times, especially, in the
field of project management. For 0 < x < 1, the density function is given by
(the distribution function does not have a simple form):

xa—l (1 _ x),B—l

B(a.p)

Density function: f(x) = (3A.9)

.o 1 .
where the beta function is B(z;, z,) = Jo t77'(1-£)?"'dt. The mean u and vari-
ance o> of a beta random variable are:

__ o o2 = op
Ca+B (a+B)(a+B+1)

I (3A.10)

62 INPUT MODELING FOR SIMULATION

26
2.4/
22]

N e
184 / a=2,5=2
1.6 a=1,8=3 /

1.4
1.2+
14 a=B=05
0.8+
0.6
0.4
0.2

0

0 01 02 03 04 05 06 07 08 09 1

Fig. 3A.1. Beta density function.

Further, if o« > 1 and B > 1, the mode (m) of the density function is
given by:

a-1

There are no closed-form solutions for the MLE of the parameters. Thus, a
method of moment is employed in estimating the parameters. Namely, we

solve Eq. 3A.10 for o and f, and then replace the population mean u with
sample mean ¥ and population variance ¢® with sample variance s° to have:

&:x(m‘f)—1);13:(1—)7)(’7(1"7)—1j, (3A.12)

s? s2

A N , 1 n —u
where x —;zizlx,« and s —Ezizl(-xi -X)°.

Alternatively, when m # p, the parameters may be expressed with respect
to the mean u and mode m as follows:

u(2m—1);[3= (1—u)d
m—u u

b= (3A.13)

3A.4 Weibull Distribution

The Weibull distribution Weibull (¢, f) is defined by the shape parameter o
and scale parameter f and is widely used in the field of life data analysis due
to its flexibility: If the failure rate decreases over time, then o < 1;if it is con-
stant, then o= 1;if it increases, then o > 1. For x >0, the density function f (x)
and distribution function F(x) are given by

APPENDIX 3A: PARAMETER ESTIMATION 63

F(6) = oB 2t e " F(f) = 1— e P, (3A.14)

As there are no closed-form solutions to estimating the parameters o and
B, the estimates of the parameters are commonly obtained by using rank
regression. A rank regression method for estimating o and 8 from a set of
ordered sample data {X; for i =1 ~ N} will be explained in the following. An
example of ordered data for a sample size of 6 (N = 6) is given below.

X(]) = 16, X(z) = 34, X(3) = 53, X(4) = 75, X(s) = 93, X(6) =120. (3A15)

The median rank R; of the i-th sample data X|; of size N can be estimated
using the following equation:

_i-03
N+04

(3A.16)

i

For the ordered data given in Eq. 3A.17, their median ranks may be esti-
mated as:

R, =0.11; R, =0.26; R; =0.42; R, = 0.58; Rs =0.73; Rs = 0.89. (3A.17)

In order to apply the rank regression method, the nonlinear distribution
equation F(¢) in Eq. 3A.14 has to be linearized. Namely, rearranging F(¢) and
taking the natural logarithm of both sides of the equation yields:

In[1-F(t)]=—(¢t/B)* = In{-In[1- F(¢)]} = —aIn(B) + aIn(?). (3A.18)
The above equation is a linear equation of the form y = a + bx, where

y=In{-In[1-F(#)]}; x=In(?) (3A.19)
a=-aln(B); b=c. (3A.20)
As given by Eqg. 8.16 in Chapter 8, the least-square estimators of the coef-

ficients in the linear regression model (y = a + bx) are expressed as (n = sample
size):

a=y-bx; B:{inyi—nfy}/{z“xf—nfz}, (3A.21)
i=1 i=1

where X =X x;/n;y =2 y;/n. From the relations in Eq. 3A.21, x; and y, are
expressed in terms of ordered sample data and median ranks as follows:

x; =In(X); yi=In{-In[1-R]}. (3A.22)

64 INPUT MODELING FOR SIMULATION

And, from Eq. 3A.22, the estimators of the parameters o and f are
expressed as

~

G=b; B=e@h, (3A.23)

3A.5 Normal and Lognormal Distributions

Many measurements, ranging from psychological to physical phenomena can
be approximated, to varying degrees, by the normal distribution N(u, o). If
In(X) follows a normal distribution N(u, 0°), then X follows a lognormal dis-
tribution LN(u, 6°). While the mechanisms underlying these phenomena are
often unknown, the use of the normal model can be theoretically justified by
assuming that many small, independent effects are additively contributing to
each observation (for a real value of x). The density function is given by (dis-
tribution function has no closed form expression):
1

2

oL (3A.24)

fx)=

The mean and variance are u and o7, respectively, and their MLEs are:

f=x 6=vs= \/Lz;(x,. ~X). (3A.25)

n-1

APPENDIX 3B: RANDOM VARIATE GENERATION

In this appendix, methods of generating random variates for major continuous
distributions are explained in some detail. Distributions covered are exponen-
tial, Erlang, Beta, Weibull, normal, lognormal, and triangular distributions.
There are available free libraries at http://www.codeproject.com/KB/recipes/
Random.aspx.

3B.1 Exponential Random Variate

An exponential random variate x~Expo(0) is generated by the inverse trans-
form method. This method is based on the observation that “If X ~ F(x) and
U~ U(0,1) then we have U = F'(X),” as depicted in Fig. 3B.1.

Since the exponential distribution is F(x) =1 — ¢, the distribution function
is easily inverted to obtain the following inverse-transform relationship:

u=l-e"= e =(1-u)= x=-0*In(1-u).
Utilizing the fact that “(1 — U) ~ U(0,1) if U ~ U(0, 1),” an exponential

random variate X is generated from a standard uniform random variable U
as follows:

http://www.codeproject.com/KB/recipes/Random.aspx
http://www.codeproject.com/KB/recipes/Random.aspx

APPENDIX 3B: RANDOM VARIATE GENERATION 65

100 Ao m o

U=FX)

X=F(U) o

Fig. 3B.1. Inverse-transform method of random variate generation.
A

g(Y)
gx)
A1)

Six)

> X

Y

Fig. 3B.2. Acceptance-rejection method of random variate generation.

X =-6+InU. (3B.1)

3B.2 Erlang Random Variate

An Erlang-k random variate X~Erlang (k,6) with mean 6is defined as X =XY;
for i =1 ~ k, where Y;’s are independent, identically distributed (IID) expo-
nential random variables with mean 6/ k. Thus, an Erlang-k random variate
X can be generated as a sum of the k IID exponential random variates, which
is known as the convolution method of random variate generation. Namely, an
Erlang-k random variate is generated as a convolution of exponential random
variates:

k k k

X =YY= Y (k) *InU)} = ~(BIk) *ln(]‘[ui]. (3B2)
i=1 i=1 i=1

1 1

3B.3 Beta Random Variate

As the direct methods (i.e., inverse-transform and convolution methods) are
not applicable to Beta distribution Beta(c,f3), the acceptance-rejection method
is used in generating a beta random variate. In general, the acceptance-
rejection method makes use of a majoring function g(x) of the density function
f (x) for which we wish to generate random variates. The majoring function
g(x) is required to have the following properties: (1) g(x) = f (x); (2) m =
J g(x) dx < o (3) random variate Y ~ g(x) / m is easily generated. Then the
acceptance-rejection method of generating a random variate X ~ f (x) may be
summarized as follows (see Fig. 3B.2):

66 INPUT MODELING FOR SIMULATION

(1) Generate Y having density function g(x) / m;
(2) Generate U ~ U(0,1), independent of Y ;
(3) f UL AY)/g(Y) then return X =Y, else go back to step (1).

Applying the acceptance-rejection idea to generating a beta random variate
is not a trivial problem, and there are quite a large number of beta random
variate generation methods available in the literature (see for example, Cheng
[1978], Schmeiser and Babu [1980]). Given below is the basic method of gen-
erating a standard beta random variate presented in Cheng [1978]. It is an
acceptance-rejection method where the following functions are used as density
function f (y) and majorizing function g(y):

Beta density function: f(y) = y*~Y/[B(e,B)(1 + y**P)] for y > 0
Majorizing function:g(y) = Au y*~'(u + y*)™>

Y ~ f (y) is known as the beta variate of the second kind Beta2(c.,f3). The
following acceptance-rejection algorithm generates Y ~Beta2(o.,f) for o >0
and > 0.

0. Initialization:

- A=a+f;
— Ifmin(a, B) <1then B=max(o!, B") else B=+(A-2)/ap - A);
- C=a+B*"

1. Generate: U, - U(0,1)&U, - U(0,1).

2. Set: V=Blog[U/(1-U)|;W=a-e"

3. If {A-log[A/(B+W)]+C-V —logd}<log(UU,) then go to step (1); //
rejection.

4. Return: Y = W/(B+ W).

Then, the standard beta variate X ~ Beta(o,8) with density function Eq.
3A.9 can be obtained from the beta random variate Y ~Beta2(,) as follows
[Cheng 1978]:

X =Y/(1+Y).

3B.4 Weibull Random Variate

As with the exponential distribution, the Weibull distribution Weibull(¢, B) func-
tion is easily inverted to obtain the following inverse-transform relationship:

u=1-e"P" = x=pBx{-In(1-u)}’

APPENDIX 3B: RANDOM VARIATE GENERATION 67

Since (1 - U) ~ U(0,1) if U ~ U(0,1), a Weibull random variate X is gener-
ated from:

X =B#(~InU)". (3B.3)

3B.5 Normal and Lognormal Random Variates

Box and Muller [1958] developed a popular method for generating a normal
random variate. It makes use of the relation that “X; and X, given by Eq.3B.4
are IID N(0,1) if U; and U, are 11D U(0,1).”

X, =(=2InU,)"? cos(2rU,); X, =(=2InU,)"*sin(27U,). (3B.4)

Thus, once the parameters y and o” are estimated, normal random variates
may be generated by using the method of Box and Muller [1958]:

1. Generate U, ~ U(0,1) & U, ~ U(0,1).
2. Compute Z, = (-2 In U,)"? cos(2nU,); Z, = (2In U,)"?* sin(2zU,).
3. Return X, = [1+6-Z;; X,=[0+6-2,.

Since the normal random variates are generated in pairs, X; and X, are
computed on each odd-numbered call to the generation function (but only X
is returned), and X, is returned on each subsequent even-numbered call. Let
X be anormal random variate sampled from N(m,s?), then a lognormal random
variate Y sampled from LN(m,s?) is obtained from Y = e*.

3B.6 Triangular Random Variate

A double-triangle distribution Triangular(a,b,c)is defined by the lower bound
value (a), upper bound value (b), and peak value (¢). Depicted in Fig. 3B.3 are
single-triangle density functions and random variates. A random variate of the
“up-hill” triangle is generated as follows:

Y =a+(c—a)VU. (3B-5)

And, the random variate of the “down-hill” triangle is generated as:

Y=c+(b-c)(1-v1-U). (3B.6)
4 ve - 0 \)
2/(c—a) at(e-au 2 (-0 Y=c+(b—o1-I-0)
a c vy - 5 >)

Fig. 3B.3. Single-triangle density functions and random variates.

68 INPUT MODELING FOR SIMULATION

2/(b-a)
p=(c-a)l(b-a)
p=(c-a)/(b-a) if (U, < p) X=a+(c-a)x(U,)"
else X =c+(b-c)x[1-(1-U,)"*]
Area=p i Area=(1-p)

f ¥ > X
a c b

Fig. 3B.4. Double-triangle density function.

Then, the random variate of the double-triangle (see Fig. 3B.4) can be
generated from the two single-triangle random variates by using the composi-
tion method. The composition method [Law 2007] calls for generating
U, ~ U(0,1) and checking whether U, < p. If so, generate an independent
U, ~ U(0,1) and return X = a + (¢ — a) x (U,)"%; Otherwise, return X = ¢ +
(b-c)x(1-(1-Uy)"™).

I CHAPTER 4

Introduction to Event-Based Modeling
and Simulation

Lirtle people discuss other people. Average people discuss events. Big
people discuss ideas.
—R.E. Kalman

4.1 INTRODUCTION

This chapter is about the creative ideas for modeling and simulation of discrete-
event systems using the concept of event. We often hear about events in the
evening news, on the radio, and, more recently, through social media channels.
If something that happened results in some meaningful changes, it is called an
event. If we can identify the logical and temporal relationships between those
events, we can understand our present situation better and may even be able
to predict the future. Event-based modeling is a fundamental method of rep-
resenting our knowledge about a discrete-event system, in which the dynamics
of the system are represented by an event graph. An event graph is a network
model of the logical and temporal relationships between the events. An event
graph is a formal model that is easily implemented using the next-event meth-
odology of simulation execution.

The purpose of this chapter is to provide a comprehensive coverage of
event-based modeling and simulation (M&S) using the “ordinary” (i.e., non-
parameterized) event graph. Event-based M&S involving a parameterized
event graph is covered in the next chapter. After studying this chapter, you
should be able to:

1. Provide an algebraic specification of an event graph model
2. Construct an event transition table for a given event graph model

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

69

70 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

3. Build event graph models for single queue systems that have various
features such as balking/reneging, batched service, assembly operation,
and resource failure

4. Build event graph models of various types of tandem line systems such
as time-constrained processing lines and conveyor-driven serial produc-
tion lines

5. Build event graph models of special systems such as a flexible service
shop, a car repair shop, a project management system, and an inline
manufacturing cell

6. Simulate any event graph model using the commercial simulator
SIGMA®

7. Develop your own computer simulation program for any event graph
model

The remainder of the chapter is organized as follows. Section 4.2 reviews
the integrated procedure for discrete-event simulation modeling using a single
server system as an example. Then, the execution rules and formal specifica-
tions of an event graph model are presented in Section 4.3, followed by a
section on event graph modeling templates. These modeling templates serve
as building blocks for constructing larger models. Some real examples of event
graph modeling are presented in Section 4.5, and the method of executing
event graph models with SIGMA is explained in Section 4.6. Finally, a method
for developing your own simulator is presented in the last section of this
chapter.

4.2 MODELING AND SIMULATION OF A SINGLE SERVER SYSTEM

It was emphasized in Chapter 2 that the “integrated procedure for discrete-
event system modeling” should be followed regardless of the modeling formal-
isms used. In this section, a method for applying the integrated procedure to
the event-based modeling formalism is illustrated using the single server
model presented in Chapter 2 (see Fig. 2.6). In event-based modeling formal-
ism, a system is modeled by describing the changes that occur at different
event times and the system dynamics are represented by an event graph.

4.2.1 Reference Modeling

The reference model of the single server system that was described in Chapter
2 is reproduced in Fig. 4.1(a). An informal description of the system dynamics
in terms of the physical and logical modeling components is referred to as the
reference model. The physical modeling components are classified into entities,
active resources, and passive resources: Jobs are the entities; Job Creator and
Machine are active resources; and Buffer is a passive resource. Among the

MODELING AND SIMULATION OF A SINGLE SERVER SYSTEM 71

imi JOb Creator BUffer:Q m
Unlimited
1o Source e it (P
3 Jobs &

G

Fig. 4.1(a). Reference model of single server system (reproduced from Fig. 2.6).

{Q++} {M--, Q-} {M++}
Fig. 4.1(b). Event graph of the single server system (reproduced from Fig. 2.1).

logical modeling components, (1) job creation and job processing are activities,
(2) the machine status (M) and buffer status (Q) are state variables, and (3)
Arrive, Load, and Unload are events.

The dynamics of the single server system can be described in terms of the
modeling components (Job Creator, Machine, Buffer, Job, create, process,
arrive, load, unload) as follows: the Job Creator creates a new Job for a dura-
tion of t, minutes, which makes a new Job arrive every t, minutes; the new Job
is loaded on the Machine if it is idle, otherwise the Job is stored in the Buffer;
the loaded Job is processed by the Machine for t, minutes and then unloaded;
the freed Machine loads another Job from the Buffer if it is not empty.

4.2.2 Formal Modeling

Reproduced in Fig. 4.1(b) is the event graph of the reference model in Fig.
4.1(a). A discrete-event system model described using a formal modeling tool
is referred to as a formal model. 1t provides a complete description of the
system in a concise and clear manner and can be executed with a well-defined
simulation algorithm.

The event graph in Fig. 4.1(b) is interpreted as follows: (1) An Arrive event,
which increases the job count by one (Q++), always schedules an Arrive event
to occur after t, and schedules a Load event if the machine is idle (M = 1). (2)
A Load event, which sets the machine to busy (M—) and decreases the job
count by one (Q—), schedules an Unload event to occur after t. (3) The
Unload event resets the machine to idle (M++) and schedules a Load event if
the buffer is not empty (Q > 0).

72 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

TABLE 4.1. Event Transition Table for the Single Server System

Originating State Destination
No Event Change Edge Condition Action Delay Event
0 Initialize Q= 3; 1 True schedule 0 Arrive
M=1;
1 Arrive Q++; 1 True schedule ta = Exp(5) Arrive
2 M>0 schedule 0 Load
2 Load M--;Q--; 1 True schedule ts =Exp(2) Unload
3 Unload M++; 1 Q>0 schedule 0 Load

4.2.3 Model Execution

As mentioned in Chapter 2, the systematic method of specifying an event
graph model is the use of an event transition table. This is a table in which the
state change, edge condition, action-type (schedule/cancel), time delay, and
destination events are specified for each event node. Table 4.1 shows an event
transition table for the event graph in Fig. 4.1(b) with t, ~ Exp(5) and
t, ~ Exp(2). Then, (as explained in Section 4.7.5), an event routine is obtained
for each row of the event transition table so that the single server model is
executed with your own event graph simulator. Alternatively, (as explained in
Section 4.6.1), the event graph model in Fig. 4.1(b) is converted to a SIGMA-
compatible event graph so that the single server model is executed with
SIGMA.

4.3 EXECUTION RULES AND SPECIFICATIONS OF EVENT
GRAPH MODELS

An event graph is a graphical formal model consisting of a set of event nodes
and a set of directed edges. It provides a complete description of a discrete-
event system (DES) in a concise and clear manner. Since the graphical model
is to be interpreted by a human, its execution rules have to be described
unambiguously. A graphical model can be specified in algebraic form (to be
analyzed by a human logically) as well as in computer-readable form (to be
executed on a computer).

4.3.1 Event Graph Execution Rules

There are two types of edges in an event graph: scheduling edges and canceling
edges. In this subsection, the event vertex execution rules for these two types
of edges are described [Schruben and Schruben 2001].

4.3.1.1 Execution of an Event with a Scheduling Edge Shown in Fig. 4.2
is an event vertex with a scheduling edge, which indicates that “whenever the

EXECUTION RULES AND SPECIFICATIONS OF EVENT GRAPH MODELS 73

ty (c1)
’

El » E3

{s = fes(s)} {s = fes(s)}
Fig. 4.2. Event graph with a scheduling edge.

{s = fex(s)} {s = fes(s)}
Fig. 4.3. Event graph with a canceling edge.

(c1) (c2)
(%) (a)

{s = fe,(s)} {s = fe:(s)} {s = fes(s)}
Fig. 4.4. Event graph with a scheduling edge and a canceling edge.

originating event E1 occurs, the state (s) changes according to fg;(s). Then, if
the edge condition cl is true, the destination event (E3) is scheduled to occur
after a time delay of t;.” The scheduled execution time (7) of E3 is obtained
by adding the time delay (t,) to the current execution time (Clock) of El.
Namely, 7= Clock + t,.

4.3.1.2 Execution of an Event Having a Canceling Edge Shown in Fig. 4.3
is an event graph with a canceling edge denoted by the dashed arrow. This
event graph indicates that “whenever the originating event E2 occurs, the state
‘s’ changes to fg,(s). Then, if the edge condition c2 is true, the scheduled event
E3 is canceled immediately.” If there is more than one event scheduled in the
future event list, only the first one (i.e., the one with the smallest event time)
may be canceled.

4.3.2 Tabular Specification of Event Graph Models

Let’s consider an event vertex (E1) with a scheduling edge to event vertex E2
and a canceling edge to event vertex E3 as shown in Fig. 4.4. The event graph
indicates that “whenever event E1 occurs, the state ‘s’ changes to fg;(s). Then,
if the edge condition cl is true, event E2 is scheduled to occur after t;; and if
the edge condition c2 is true, event E3 is canceled immediately.”

The event execution rules for the event graph of Fig. 4.4 can be specified
in a tabular form called an event transition table. As shown in Table 4.2, each
originating event is specified using five data fields: state change, edge condition,
action type (schedule or cancel), time delay, and destination event.

74 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

TABLE 4.2. Event Transition Table for the Event Graph of Figure 4.4

Originating State Destination
Event Change Edge Condition Action Delay Event
El s = fr(s) 1 cl schedule 4 E2

2 c2 cancel 0 E3

Fig. 4.5. Event graph model with an initialization box.

TABLE 4.3. Event Transition Table for the Event Graph in Figure 4.5

Originating State Destination
No Event Change Edge Condition Action Delay Event
0 Initialize Q=0 1 True schedule 0 E1l
M=1; 2 True schedule ty E4
1 E1l Q++; 1 True schedule t El
2 M>0 schedule 0 E2
2 E2 M=0; 1 True schedule t3 E3
Q—;
3 E3 M=1; 1 Q>0 schedule 0 E2
4 E4 M=-1; 1 True schedule ts E5
2 True cancel 0 E3
5 E5 M=1; 1 Q>0 schedule 0 E2
2 True schedule ty E4

Figure 4.5 shows an event graph model with five event vertices. The rectan-
gular box in the event graph denotes the initialize-event, where the state
variables are initialized (Q = 0 and M = 1) and two events (E1 and E4) are
scheduled. The first three events (E1-E3) constitute a single server system
(compare with Fig. 4.1). An event transition table for the event graph model
of Fig. 4.5 is given in Table 4.3.

EVENT GRAPH MODELING TEMPLATES 75

4.3.3 Algebraic Specifications of an Event Graph Model

An event graph is a directed graph consisting of a set of event vertices (V), a
set of directed edges (E), and a set of state variables (S). The edge set E rep-
resents the temporal and logical relationships between a pair of vertices.
Associated with each vertex (v € V) is a state transition function (f, € F);
associated with each edge (e € E) are edge conditions (c. € C), time delays
(d. € D), and action types (a. € A;schedule or cancel). Thus, an event graph
model M can be defined as a 7-tuple structure [Savage et al. 2005]:

M=<V,E, S, F C, D, A>, where
V = {v}: set of event vertices
E ={e.= (vo, V4)}: set of edges // v,: originating event; v4: destination event
S = {s}: set of state variables
F={f,:S — S Vv e V}:set of state transition functions associated with V
C ={c.: S—>[0,1] Ve € E}: set of conditions associated with E
D={d. € Ry Ve € E}: set of time delays associated with E
A = {a. € [scheduling, canceling] Ve € E}: action type set

For example, the algebraic components of the event graph model in Fig. 4.1
(single server system) are as follows:

. V ={v, = Arrive, v, = Load, v; = Unload}

. E={e; = (v, Vi), €= (V1, V2), €3 = (V2, V3), €4 = (V3, V1)}
. S={Q, M}

F = {f;: Q++; £ M—, Q—; f5: M++}

C = (c;: True; ¢;: (M = 1), ¢3: True; ¢t (Q > 0)}
.D={d;=t;d,=0;d;=t;t, =0}

A ={a, = a, = a3 = a4 = scheduling}

N v A L

Exercise 4.1. Specify the algebraic components of the event graph in Fig. 4.5.

4.4 EVENT GRAPH MODELING TEMPLATES

The modeling templates introduced here may be used as building blocks for
modeling large systems. The single server event graph model shown in Fig.
4.1(b) is the baseline event graph model of a single queue system where a
“table type” machine processes one job at a time, and the arriving jobs are
stored in an infinite capacity buffer. This baseline model will be embellished
and/or extended to cover more realistic and/or complex situations. Many of
the modeling templates in the following are borrowed from Schruben and
Schruben [2001].

76 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

4.4.1 Single Queue Models

By embellishing the baseline model of Fig. 4.1(b), a number of single queue
models may be generated: a multi-server model, a limited waiting space model,
a reneging queue model, a batched service model, an assembly-operation
model, a resource priority model, and a resource failure model.

Exercise 4.2. Simplify the baseline model Fig. 4.1(b) by removing the Load
event.

4.4.1.1 Flexible Multi-Server Model with Varying Number of Servers If
a single queue system has more than one server, it is called a multi-server
system. When the number of servers n is constant, the single server event graph
model becomes a multi-server model if we set M =n (n > 1) in the inifialize
box.

Now, consider the case where the number of servers n(t) at time t varies
over time, which we call a flexible multi-server model. Then, the event graph
model of a flexible multi-server system can be represented as shown in Fig.
4.6, where M(t) denotes the number of idle machines at time t. It should be
noted that the self-scheduling edge of the Load event vertex is introduced in
order to manage the abrupt increase in the number of servers.

4.4.1.2 Limited Waiting Space Model (Balking Model) 1f the limited-
capacity waiting space is full, an arriving job may not be able to enter the
system and leave the system permanently, which is referred to as balking. Let
c denote the capacity of the waiting space, and then the balking is modeled by
introducing an Enter event as shown in Fig. 4.7.

4.4.1.3 Impatient Customer Model (Reneging Model) When customers
arrive at a system that includes a queue and a server, they will enter the queue

‘ M(t)= M + (n(t)— n(0)); n(t): number of servers at time t ‘

@0)& MEp0) (Q0) & (M()>0)

{Q++} {M--, Q--} {M++}

Fig. 4.6. Event graph model of a flexible multi-server system.

ta
{Q++} {M--, Q-} {M++}

Fig. 4.7. Limited waiting space event graph model.

EVENT GRAPH MODELING TEMPLATES 77

Fig. 4.8. Event graph model for reneging with balking.

if there is room. Once in the queue, they may choose to leave it if they have
waited too long, which is often called reneging in queuing theory. As depicted
in Fig. 4.8, a Leave event is introduced to manage the reneging situation: (1)
every Enter event schedules a Leave event to occur after t, minutes; (2) every
Unload event cancels the oldest Leave event that has been scheduled, if there
is one; and (3) every Leave event decreases Q by one (denoting the reneging
customer).

Exercise 4.3. Construct a single server system event graph for reneging
without balking.

4.4.1.4 Nonstationary (Fluctuating) Arrival Rates Model The method of
generating exponential random variates with fluctuating arrival rates has been
explained in Chapter 3 (refer to Fig. 3.4 of Section 3.4.3). Let A(t) denote the
arrival rate at time t and it is bound by A%, then the thinning method of gen-
erating X~ Exp(1/A(t)) is as follows:

. Set:t =t

. Generate: U; ~ U(0, 1) and U, ~ U(0, 1)

. D =—(1/1") In(U,); //lexponential random variable with 6= 1/1°
t=t+D

. If U, < A(t)/A’, then return t; = t, else go back to step 2

noA W

Shown in Fig. 4.9 is an event graph model of a single server system subject
to fluctuating arrival rates. The next Arrive event is scheduled to occur after
an inter-arrival time t, with a bounding arrival rate A*, and the Arrive event
will schedule an Enter event only when the thinning test is passed (i.e.,
U < A(t)/A*).

4.4.1.5 Batched Service Models Batched service occurs when a batch of
jobs is processed simultaneously. In general, there is a maximum number (b)
and a minimum number (a) of jobs that can be processed at one time, which
is denoted as a < J < b, where J is the actual number of jobs in a batched

78 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

= Exp(1/%)
U<(M(t)/A*))
{U=Uni(0,1)} {Q++} {M--, Q--} {M++}

Fig. 4.9. Event graph model for fluctuating arrival rates (nonhomogeneous arrivals).

{Q++} {M--,Q=Q-b} {M++}

{Py-- P, Qt+} {M--, Q--}

Fig. 4.11. Event graph model for an assembly operation.

service. If a = b, it is a full batched service; if a < b, then it is a partial batched
service.

An event graph model for a full batched service using a single machine is
given in Fig. 4.10. Notice that the baseline model of Fig. 4.1(b) is a special case
of the full batched service model of Fig. 4.10, with b = 1.

Exercise 4.4. Revise the event graph presented in Fig. 4.10 to make it a
partial batched service model.

4.4.1.6 Assembly Operation Model A type j part for j = 1,2 arrives at the
system every t; minutes, and a pair of parts, one from each type, are assembled
together using a machine. Let Q denote number of part pairs and P; denote
number of (unpaired) parts of type j; then, by introducing a Join event, the
assembly operation is modeled as an event graph as shown in Fig. 4.11.

At this point, it is instructive to comment on the edge conditions in Fig.
4.11. Let C1 and C2 denote edge conditions of the Enterl—Join edge and
Enter2—Join edge, respectively. It is specified in Fig. 4.11 that C1 = (P, 2 1) &
(P,21),and C2= (P, 21) & (P, 2 1), which is valid. However, it can be found

EVENT GRAPH MODELING TEMPLATES 79

{M2--, Q--} {M2++}

Fig. 4.12. Event graph model of a two-server system with resource priority.

that C1 = (P2 > 1) and C2 = (P1 > 1) are also valid. Similarly, the edge condi-
tion for the Join — Load edge is (M > 0) & (Q > 1), but in Fig. 4.11, it is speci-
fied as (M > 0) because (Q > 1) is always true at the Join event.

Exercise 4.5. Modify the event graph Fig. 4.11 to assemble three type 1
parts and four type 2 parts.

4.4.1.7 Resource Priority Model When there are two servers with differ-
ent priorities, an arriving customer is served by the high priority server (M1)
if it is free. The customer is directed to the low priority server (M2) only when
M1 is busy, which is handled by a Check event. An event graph model for a
“two server system with priority” is given in Fig. 4.12.

The above resource priority model has a common queue for both servers.
There is a situation where each server has its own queue and the arriving
customers join the smaller queue, which is often referred to as a queue length
balanced line.

Exercise 4.6. Modify the event graph Fig. 4.12 to make it a queue length
balanced line.

4.4.1.8 Resource Failure Models A single server system with resource
failure may be modeled by introducing a Fail event with an interfailure time
t; and a Repair event with a repair time t,. An event graph model of the single
server system with failure is given in Fig. 4.13 (it is the same as Fig. 4.5). The
Fail event will cancel a scheduled Unload event (if there is one) and schedule
a Repair event to occur after t, minutes. The active resources in the resource
failure system are the machine and repairman, while the entities are the jobs
and failures. This model assumes that a server may fail even when it is idle and
that the job whose processing is interrupted by the failure is discarded without
reprocessing.

Exercise 4.7. Modify the event graph of Fig. 4.13 so that the job that was
interrupted by the failure is reprocessed.

80 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

Initialize box:
Q=0; M=1;

-------------------------------------- {M=1)

Fig. 4.13. Event graph of single server system with failure.

ta
Q=0: A (M>0) ﬂ Function Get-tu (t;) / S=10, R=50, F= 1000
M=1: e If (4> S) { ,=S; t;=t,— S } //no fail
t=F; else { t,=te R; t,=F };// fail

{Q++) {Q-, M--, (M++} Return (t,)
t,= Get-tu (t)}

Fig. 4.14. Modeling of machine failure without an event cancellation.

Now consider the case where the interfailure time is effective only when
the server is busy (i.e., idle periods have no effect on the failure) and the inter-
rupted job is discarded. If all time data are deterministic such that service time
S =10, repair time R = 50, and interfailure time F = 1000, then the “single
server system with failure” can be modeled without an event cancellation as
shown in Fig. 4.14.

In the event graph model, t; is the remaining time to failure; t, is the actual
time to unload. In general, an event graph model with an event cancellation
can be transformed into a model without an event cancellation [Savage and
Schruben 1995]. Notice in the model that the remaining time to failure (t;) is
also a state variable that is updated every time the machine completes a cycle.
Issues related to modeling resource failures are discussed further in Schruben
and Schruben [2001]. The actual time to unload (t,) is computed in the Get-tu
() function as follows: When the remaining time to failure is larger than the
service time (t; > S), the scheduled Unload event will be performed as sched-
uled. In this case, the actual time to unload equals to the service time (t, = S),
and the t; is decreased by S. Otherwise (t; < S), t, becomes t; + R, and t; is set
to the interfailure time F.

4.4.2 Tandem Line Models

The event graph of the two-stage tandem server defined previously in Chapter
2 (Fig. 2.15) is reproduced in Fig. 4.15, which serves as the baseline tandem
line model in this chapter. The baseline model is obtained by appending a
server model to the single server model of Fig. 4.1(b). From this baseline event
graph model, a number of tandem line models may be generated: (1) limited

EVENT GRAPH MODELING TEMPLATES 81

Q1=0
Q2=0
M1=1
M2=1 (Q1++) {Q1--, M1=0} {M1=1; Q2++} {Q2--. M2=0} {M2=1}
Fig. 4.15. Baseline event graph model of tandem line system.
(Q1>0) (B1=1) (Q2>0)
Q1=0
Q2=0
M1=1 o
M2=1
B1Z0] (q1+4) Q1= M1} {B1+4) (M1++, Q2++ B1-} {Q2- M2~} {M2+4}
Fig. 4.16. Event graph model of a limited buffer tandem line (blocking).
Q1=0

M1=1 | .
M2=1
M3=1

Q1+ Q1 M-} (B1=1} {M1++, M2~ B1=0} {B2=1) {M2++ M3— B2=0} {M3++}

Fig. 4.17. Event graph model of three-stage buffer-less tandem line (blocking).

buffer tandem line model, (2) buffer-less tandem line model, and (3) time-
constrained processing model.

4.4.2.1 Limited Buffer Tandem Line Model 1f the buffer after a machine
has a limited capacity, a finished job may not be unloaded from the machine
when the buffer is full. This situation is referred to as blocking. Figure 4.16 is
an event graph model for a two-stage tandem line with a buffer of capacity
c2. A Finish event and a blocking variable (B1) are introduced to control the
blocking of M1: (1) the Finish event sets the blocking variable to true (B1=1)
and schedules an Unload-1 event if the buffer is not full (Q2 < c2); (2) the
Unload-1 event sets the blocking variable to false (B = 0); and (3) the Load-2
event schedules an Unload-1 event if the blocking variable is true (B1 = 1).

4.4.2.2 Buffer-less Tandem Line Model 1f the buffer capacity is zero (c =0)
in the limited buffer tandem line model, the adjacent machines are tightly
coupled such that unloading from machine-j becomes loading to machine-j+1,
which is called an “UL;,;” event. An event graph model of three-stage buffer-
less tandem line is given in Fig. 4.17.

4.4.2.3 Time-Constrained Processing Tandem Line Model A processing
situation where a job that had been processed on a machine (M1) must start
the next processing step on the next machine (M2) within a time-out limit (t,)
is called a time-constrained processing. Otherwise, the time-out job is discarded

82 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

(Q1>0) (Q2>0)
Q2=0;| Arrive —M1>0) (Load) ti _/Unload\ _(M2>0)
M1=1; N U :
M2=1; = {M1++, Q2
@t P Q2++) S M2+
Q250) ="
(Q2>0)

Fig. 4.18. Event graph model for time-constrained processing with a discarding policy.

(which is the same as the reneging situation of Fig. 4.8) or sent back to M1 for
reprocessing. In Fig. 4.18, a Time-out event is introduced to manage the time
constrained processing under a discarding policy: (1) every Unload-1 event
schedules a Time-out event to occur after t, minutes if M2 is 0; (2) every
Unload-2 event cancels the oldest Time-out event that had been scheduled;
(3) a Time-out event decrements Q2 (i.e., discard a time-out job).

Exercise 4.8. Modify the event graph Fig. 4.18 so that the time-out jobs are
reprocessed.

4.5 EVENT GRAPH MODELING EXAMPLES

System modeling is an art that cannot be mastered without practice. In order
for you to become familiar with event graph modeling, some examples of event
graph modeling are provided in this section. The event graph application areas
that will be covered are a simple service shop with fluctuating arrival rates, a
car repair shop, a project management application, a conveyor-driven serial
assembly line, and an inline manufacturing cell.

4.5.1 Flexible Multi-Server System with Fluctuating Arrival Rates

A salient feature of a service system is that the customer arrival rates fluctuate
over time. In a flexible multi-server system, the resource levels change over
time in order to cope with the changes in arrival rates. Let A(t) and n(t) denote
arrival rates and the number of servers at time t, respectively; then, by combin-
ing the event graph templates in Figs. 4.6 and 4.9, the event graph model of a
flexible multi-server system with fluctuating arrival rates can be constructed
as in Fig. 4.19.

4.5.2 Car Repair Shop

The entities of a car repair shop are the cars brought in for repair and the
resources are the technicians and repairmen. There are three types of activities:

EVENT GRAPH MODELING EXAMPLES 83

t,= Exp(1/A%) (@0) & (M(t)>0) (Q>0) & (M(t)>0)
Q= 0; M= n(0); N (U <r(tyr)
Define A*; A(t); n(t) @ e
{U= Uni(0,1)} {Q++} {M--, Q--} {M++}

Fig. 4.19. Event graph of flexible multi-server system with fluctuating arrival rates.

Fasten (t;) (o9 ’ Inspect (t,) o3 Repair (t3) |—>

(b)

Fig. 4.20. (a) Reference model of car repair shop under a same operator policy; (b)
reference model of car repair shop without a same operator policy.

{Ql++} {Ql--, T--} {Q2H++} 1Q2--, R} {T++, Q3++} {Q3--} {R++}

Fig. 4.21. Event graph of a car repair shop under the same operator policy.

Fasten, Inspect, and Repair, with processing times t,, t,, and t;, respectively. The
fasten operation is performed by a technician; the inspection operation requires
both a technician and a repairman; and the repair operation is handled by a
repairman.

A reference model of a simple car repair shop under a same operator policy
is provided in Fig. 4.20(a) where a car is fastened and inspected by the same
technician and is inspected and repaired by the same repairman. Thus, a tech-
nician stands by after fastening a car until a repairman is available. If the same
operator restriction is removed, the reference model would change to that
shown in Fig. 4.20(Db).

Figure 4.21 is an event graph model of the car repair shop under the same
operator policy. There are m free technicians and n free repairmen in the
system. The state variables are the number of waiting cars (Q1, Q2, Q3),
number of free technicians (T), and number of free repairmen (R). All start
points and end points of the activities are regarded as events: car arrival (CA),

84 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

A9 (t9, R2)

(A8 (18, R2)

Fig. 4.22. Activity-on-node PERT diagram with finish-start precedence.

fastening start (F,), fastening end (F.), inspect start (L), inspect end (I.), repair
start (R;), and repair end (R,).
Exercise 4.9. Build an event graph for the reference model of Fig. 4.20(b).

4.5.3 Project Management Modeling

In project management, the precedence relationships among activities are
represented as a directed graph of activities known as a PERT (program evalu-
ation and review technique) diagram [Duncan 1996]. Shown in Fig. 422 is an
activity-on-node (AON) PERT diagram involving nine activities (A1-A9) that
serves as a reference model of the project management problem. A node
denotes an activity, and an edge represents the finish—start precedence rela-
tionship between the two nodes (i.e., the first activity must be finished before
starting the second activity). The activity ID (A)), activity time (t;), and the
critical resource (Ry) required for each activity (noncritical resources are not
explicitly identified) are indicated in each node. For example, the resource R,
manages activities Al, A3, and A7.

Let’s build an event graph model for the AON PERT diagram in Fig. 4.22
disregarding the resources. (This example was adopted from Schruben and
Schruben [2001].) The first step is to identify the state variables of the PERT
diagram. The state variables are {n; for j = 1~9}, where n; denotes the number
of unfinished precedent activities of activity A;. Note that the activity A; may
be started only when n; is 0. The start point and finish point of activity A; are
defined as the start event S; and finish event F;, respectively. An event graph
model of the AON PERT diagram without resource constraints is given in
Fig. 4.23.

Initially, the state variables have the following values:n; =0,n, =1,n; =1,
n,=1,n5=2,n=1,n,=1,ng=2, and ny = 2. The finish event F,; will decrement
its succeeding activity counts (n,—, n;—) and schedule the start events (S,
and S;) of its succeeding activities because n, = 0 and n; = 0. For example, the
start event S; may start when n; = 0, and it will schedule the finish event F; to
occur after t; time units. The succeeding activities of A3 are AS and A6. Thus,
ns and ng are decremented by F;, and so on.

In general there are four types of precedence constraints: finish—start,
finish—finish, start-start, and start-finish precedence constraints. For example,

EVENT GRAPH MODELING EXAMPLES 85

33 33
AWN =
(L T (|
N~ RFRO

53333
N U
o
N = =

n9 =2

n5--, N6-- ng-- n9--

Fig. 4.23. Event graph of the PERT diagram of Fig. 4.22 without resource
constraints.

Buffer-1 WS-1 CV-2 WS-2 cv-3 WS-3 ‘Buffer-o
@=2) o) ol ®) Pl e] G] ey b @
(Rl=) (M1, B1) (Q2, R2) (M2, B2) (Q3, R3) (M3,B3)

Fig. 4.24. Reference model of a three-stage conveyor-driven serial production line.

an event graph of a PERT diagram with a start-to-start precedence may be
constructed similarly. However, the event graph of Fig. 4.23 may be simplified
somewhat by eliminating all start events {S;}. Methods of simplifying event
graph models are elaborated in Schruben [1983].

In general, it is possible to construct an event graph model for a resource
constrained PERT diagram by introducing a resource dispatch event for each
resource together with additional state variables, but it may become quite
complicated when the resource-activity relationships are not simple. Resource
constrained PERT diagrams may be modeled more easily using an activity
cycle diagram, as will be described further in Chapter 6.

Exercise 4.10. Simplify the PERT event graph Fig. 4.23 by removing the
state variables {n;} whose initial value is 1.

4.5.4 Conveyor-Driven Serial Line

Consider a three-stage serial production line shown in Fig. 4.24 consisting of
three workstations (WS) connected by conveyors (CV). The base parts (jobs)
stored in the input buffer (Buffer-I) are moved along the line, and the subparts
are assembled into the base part at each workstation. The assembled base parts
(i.e., products) are stored in the output buffer (Buffer-O). The entities in the
system are the base parts, and the resources are the WS, CV, and Buffer. The
activities are the production operations at the WS and the transport operations
by the conveyors.

Each workstation WS; for j = 1-n is specified by its production operation
time p;, while each conveyer CV; for j = 2-n is specified by its capacity c;
and transport time t;. The capacities of Buffer-I and Buffer-O, respectively

86 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

designated as ¢, and c,.;, are assumed to be unlimited. Thus, the characteristics
of the serial production line are defined using the following values:

p; = processing time at WS;;
t; = transport time of the conveyor-j feeding WS;; and
¢; = capacity of CV; (¢; = Cpyy = o).

The state of each workstation (WS)) is specified by two state variables: M;
(free or busy) and B; (blocked or not); that of CV; is specified by Q; (total
number of jobs on a CV;) and R; (number of “ready” jobs that have been
moved to the WS). Thus, the state variables of the serial production line are
as follows:

M; = workstation-j status (1: free, 0: busy);

B; = blocking of workstation-j (1: blocked);

Q; = total number of jobs at CV;; and

R; = number of jobs ready at CV; (i.e., jobs that have been transported).

Since a conveyor acts as a limited buffer, each workstation in the serial line
is modeled as a machine in the limited buffer tandem line of Fig. 4.16. Thus,
there are three types of events associated with WS;: Load (L), Finish (F;), and
Unload (U;). Let T; denote the Transport (to the end of conveyor) event of
CV;. Then, the operation cycle of CV;is defined by U;; (unload from work
station j—1), T}, and L;. Thus, the event graph model of the three-stage conveyor-
driven serial line is as shown in Fig. 4.25, where T; denotes the Transport event

4.5.5 Inline-Type Manufacturing Cell Modeling

An electronics fabrication factory (abbreviated as Fab) is a job shop in which
a job goes through a number of processing steps according to its routing
sequence. In a modern electronics Fab, unlike a mechanical job shop where a
mechanical part is processed individually at table machines, the jobs are pro-
cessed in batches mostly in inline cells.

Depicted in Fig. 4.26 is a photolithography cell commonly found in a modern
TFT-LCD (thin film transistor-liquid crystal display) panel Fab. For brevity,

M1=1 (R1>0) (B1>0) (R2>0) (B2>0) (R3>0)
M3-1
M3=
| o) e S o e B N
850 [~(w (up) () © (B)E(u3)
Rl=co | (m1-- <B1 T M {R2++) - {Bz 1 M2e+ {R3++} v (M3 ++)
R2=0 | Rq 4 B1=0 B2=0
R3=0

Q2++} R2 } Q3++} R3 }

Fig. 4.25. Event graph model of a three-stage conveyor-driven serial line.

EVENT GRAPH MODELING EXAMPLES 87

Cassette pCassette
Arrival Depart
com—

Photolithography Cell

Glade ﬂ—ﬁwr—’-’lllllllll

Loading

assette

Loading
Inline
Stocker

@ I/O Port Development
1 lass
@ — Unloadmg
g Exposure

PR Coating

Fig. 4.26. An inline cell for photolithography process.

the inline-type manufacturing cell will be simply called an inline cell. This
modeling case is quite significant as it is taken from a real-life simulation
project in which a simulation-based planning and scheduling system was built
for a TFT-LCD Fab [Park et al. 2008], and it considers important issues that
arise in these Fabs. The issues addressed in the case study are the “divide and
conquer” method of building event graph models and model simplification.

In the photolithography cell in Fig. 4.26, the jobs are glasses that go through
photoresist (PR) coating, exposure, and development processes in the cell. The
jobs are handled in batches with each batch (or lot) stored in a cassette. The
arriving cassettes that are stored in the inline stocker are moved into the I/O
port, which is called the cassette loading (CL) operation. The glasses are
loaded inline using a loading robot, with one glass being loaded at every takt
time (7). It takes a flow time () for a loaded glass to reach the end of the cell
where it is unloaded into the unloading cassette located at the I/O port. The
unloading cassette departs when it is filled with finished glasses. In unloading
the glasses, only one unloading cassette is used at a time.

4.5.5.1 Reference Model Figure 4.27 is the reference model of the cell
given in Fig. 4.26. The physical components of the cell are the Stocker, I/O
port, Robot, and Inline. The state variables in the model are Q (number of
arriving cassettes in the Stocker), B (number of arriving cassettes in the I/O
port), E (number of empty shelves in the I/O port), and R (status of Robot).
The activities in the cell are (1) cassette arrival, (2) cassette loading, (3) glass
loading, (4) glass unloading, and (5) cassette departure.

The capacity of the Stocker is assumed to be unlimited. The I/O port has a
finite number of shelves for storing cassettes (arriving, unloading, and empty
cassettes). Let N be the number of shelves of the I/O port. If all shelves are
empty at the beginning, we have E = N and B = 0. If an arriving cassette is
loaded onto I/O port, the state variables are updated to E = E-1 and B = B+1.
If all glasses in an arriving cassette are loaded into the Inline, the cassette
becomes empty. If the finished glasses are unloaded into an empty cassette, it

88 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

5) Cassette Departure

ﬂ 4) Glass

1) Cassette 2) Cassette Unloading
E—-\;Arrival Loadin,

------------ g Rifz;)

3) Glass
Stocker (Q) 1/O port (B, E) ~ Loading (t: takt-time/glass)

@ Arriving cassette (ga, Ja); @: Empty cassette (A); @ : Unloading cassette (eu, Ju)

ga= # of glasses in Arriving cassette; A= cassette capacity; eu= # of empty slots in the Unloading cassette

Inline (r: flow-time)

Fig. 4.27. Reference model of the inline-type manufacturing cell in Fig. 4.26.

@ If 1/O-Port has empty shelves - CA: Cassette Arrival event
s - CL: Cassette Loading event
@ - FGL: start of First Glass Loading
- LGL: end of Last Glass Loading

If Robot is idle (R=1)¥ -
@L « If I/O Port has arriving cassettes @
v

GIass-Loadingj D D|°°° “:”l:”l:l“:l

> time

Fig. 4.28. Reference model of the loading region.

becomes an unloading cassette. When the unloading cassette departs from the
I/0O port, the number of empty shelves is increased by one (E = E+1).

Only the glasses with the same job type are stored in a cassette, which
becomes the job type of the cassette. The job type of an arriving cassette is
denoted by Ja and the number of glasses in the arriving cassette is ga < A,
where A is the cassette capacity. The finished glasses are unloaded into the
empty slots of the unloading cassette whose job type is denoted by Ju. The
number of empty slots in the unloading cassette is denoted by eu < A. Thus,
the number of glasses in the unloading cassette is equal to A — eu. The eu
(number of empty slots) and Ju (job type) of the unloading cassette are also
regarded as state variables. Recall that there is only one unloading cassette at
a time.

In general, it is convenient to divide the reference model into regions, build
a submodel for each region, and join the submodels in order to obtain the
entire event graph model of the reference model. Now, we will divide our
reference model into three regions: the Loading region, Processing region, and
Unloading region.

4.5.5.2 Loading Region Modeling Figure 4.28 is a reference model of the
loading region (Stocker + I/O port + Robot). The time required for processing
all glasses in an arriving cassette is t; = ga = 7, where 7 is the takt time of a

EVENT GRAPH MODELING EXAMPLES 89

(B20)
OO
{Q++} {Q--, E--, B++} {R=0, B--, ;= gax1} {R=1}

Q= # of arriving cassettes in Stocker; B= # of arriving cassettes in 1/0-Port; E= # of empty shelves in I/0-Port;

Fig. 4.29. Event graph of the loading region.

D il D OF
I:l Cleee [CCIED f/‘GIass—Loading ‘H’

~~._m= flow time ST

- -O0-0000 @ @
Glass-Unloading f
(b)

(start of first glass unload)@
(a)
Fig. 4.30. (a) Reference model and (b) event graph model of the processing region.

glass loading. The events involved in the loading region model are CA (end
of cassette arrival), CL (end of cassette loading), FGL (start of first glass
loading), and LGL (end of last glass loading). The relationships among the
events are as follows: (1) when a cassette arrives, it is loaded if the I/O port
has space; (2) the first glass of the cassette is loaded if the Robot is idle; (3)
the last glass is loaded after t; time units since the first glass is loaded; and (4)
after the last glass loading, the first glass of the next cassette is loaded if there
is an arriving cassette in the I/O port.

The system dynamics of the loading region described in the reference model
may be formally specified as an event graph model in terms of the state vari-
ables. An event graph model of the loading region is given in Fig. 4.29, where
the state variables are Q (number of arriving cassettes in Stocker), B (number
of arriving cassettes in I/O port), E (number of empty shelves in I/O port),
and R (status of Robot with R =1 initially).

4.5.5.3 Processing Region Modeling A reference model of the processing
region and its event graph model are shown in Fig. 4.30(a) and (b), respectively.
The events at the start of the Inline are the FGL and LGL that were defined
in the In-port region (see Fig. 4.29), and the events at the end of the Inline are
FGU (start of the first glass unloading) and LGU (end of the last glass unload-
ing). The FGU event is scheduled by the FGL event to occur after the flow
time (7), and the LGU is scheduled by the LGL after .

4.5.5.4 Unloading Region Modeling Figure 4.31 shows the reference
model of the unloading region. The events involved are the FGU, LGU, and

920 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

iArriving cassette <At the FGU event time>

' LGU If ((Job-type change) || (U-cassette non-
| (ga Ja) ' empg)) {® Cassette depart
LI S A en {(D Cassette departs now;
Unload II:“I:' °0° I:Ill:“l:“l:“ Get a new U-cassette; };
: ,,,,,,,,,,,,,,,,,,,,, If (# of arriving glasses = # of empty slots)
: N Unloadlng cassette then {@ Cassette departs after t,= t+eu; };

Update the number of empty slots ;
<At the CD event time>

1 J
Depart — eudu) If (O-Port has an arriving cassette)
t2 Teu : time to fill the empty slots then {load a new arriving cassette}

Fig. 4.31. Reference model of the unloading region.

CD (end of cassette departure). An arriving cassette is identified by its job
type (Ja) and its number of glasses (ga), while the unloading cassette is speci-
fied by its job type (Ju) and the number of its empty slots (eu). An important
restriction in glass unloading is that all glasses in the unloading cassette have
the same job type. Namely, the unloading cassette departs either when it is full
or when there is a job type change in the unloaded glasses.

At the time of the first glass unloading (FGU) event, a cassette departure
(CD) event is scheduled based on the attribute values of the arriving cassette
(Ja and ga) and state variables (Ju and eu). Depending on the values of these
attributes and state variables, the following actions are taken at the FGU event
time: (JTC and UCNE are Boolean variables denoting Job Type Change and
Unloading Cassette Not Empty, respectively).

1. If there is a job type change (JTC = (Ja # Ju)) or the unloading cassette
is not empty [UCNE = (eu < 4)], then schedule a CD event to occur now
and obtain a new unloading cassette (eu = A; Ju = Ja).

2. If (ga = eu), then schedule a CD event to occur after a time delay of
tL=1T=xeu.

3. Update the state variables: Ju = Ja. If ga > eu, then eu = 1 — (ga — eu),
else eu = eu — ga.

At the time of the cassette departure (CD) event, a cassette loading (CL)
event is scheduled if there is an arriving cassette in the I/O port. Reflecting
the above state transition relationships, the resulting event graph is as shown
in Fig. 4.32.

In practice, the restriction that all glasses in an unloading cassette must have
the same job type (requiring partially filled unloading cassettes to be removed
when there is a job type change) may be relaxed in order to reduce the model
complexity. Then, the cassettes are fully loaded during handling (ga = 1). The
event graph of the unloading region may be simplified to that shown in
Fig. 4.33.

4.5.5.5 Event Graph Model of Entire Cell By combining the three event
graphs in Figs. 4.29,4.30, and 4.33, we can obtain the event graph for the entire

EXECUTION OF EVENT GRAPH MODELS WITH SIGMA 91

(JTC & UCNE) - JTC: Job-Type Change in the cassettes

- UCNE: Unloading Cassette Not Empty
-G=(ga=eu); t,= 1 * eu;

- ga: number of Glasses in Arriving cassette

- eu: number of Empty slots in Unloading cassette

{JTC = (Ja# Ju); UCNE = (eu< A); G =(gaz eu); {E++}
If (JTC) & (UCNE)) then (eu= A; Ju= Ja);
t,= T * eu; Ju= Ja;
If (G) then eu= A{ga-eu) else eu= eu-ga;}

Fig. 4.32. Event graph model of the unloading region.

Q>0
@ b =@ (')) =@ E: number of empty shelves in 1/0 Port

Q: number of arriving cassettes in Stocker

{t,;= L =1} {E++)
Fig. 4.33. Simplified event graph model of the unloading region.

. (E>0) <) (R>0)
cL S

{Q++} {Q-, B B++}

Event Names:

CA= cassette arrival
CL= cassette loaded
FGL= first glass load
LGL= last glass load
FGU= first glass unload
CD= cassette depart

Q: number of arriving cassettes in Stocker
E: number of empty shelves in 1/0 Port

B: number of arriving cassettes in 1/0 Port
R: Robot status (0: busy, 1: idle)

Fig. 4.34. Combined event graph model of the inline cell.

inline cell as shown in Fig. 4.34 if we assume that the arriving cassettes are
fully loaded (ga = A). There are six events in the model: CA (cassette arrival),
CL (cassette loading), FGL (first glass loading), LGL (last glass loading), FGU
(first glass unloading), and CD (cassette departure). An event transition table
for the event graph is given in Table 4.4.

The state variables in the inline cell model are Q (number of arriving cas-
settes in Stocker), B (number of arriving cassettes in I/O port), E (number of
empty shelves in I/O port), and R (status of Robot). The design variables of
the system are A (cassette capacity), 7 (takt time), and 7 (flow time).

Exercise 4.11. Simplify the inline cell event graph model in Fig. 4.34 by
removing the FGU event vertex.

4.6 EXECUTION OF EVENT GRAPH MODELS WITH SIGMA

The purpose of this section is to introduce the SIGMA software. The overall
procedure for building a SIGMA program for simulation is as follows. A brief

92 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

TABLE 4.4. Event Transition Table for the Event Graph of Figure 4.34

Originating Destination

No Event State Change Edge Condition Delay Event

1 CA Q=Q+1; 1 E>0 0 CL

2 CL Q=Q-LE=E-1; 1 R>0 0 FGL
B=B+1;

3 FGL R=0;B=B-1; 1 True t LGL
tL=A%T 2 True T FGU

4 LGL R=1; 1 B>0 0 FGL

5 FGU 1 True t CD

6 CD E=E+1; 1 Q>0 0 CL

SIGMA tutorial as well as the two SIGMA models discussed in this section
may be found in the official website of this book (http://VMS-technology.com/
Book/Sigma).

1. Create a SIGMA-generated event graph consisting of vertices and edges.
2. Declare variables: all variables are declared in a dialog box.

3. Define the Run vertex: state variables are listed as parameters in the
dialog box.

4. Define the Event vertices: the state changes and parameter variables of
each event vertex are described at each Edit vertex dialog box.

5. Define the Edges: the time delay, edge condition, and attribute (param-
eter value) of each edge are defined in each Edit edge dialog box.

6. Specify Run Options: various run options (end of simulation condition,
trace variables, etc.) are specified and the state variables are initialized
in the Run options dialog box.

4.6.1 Simulation of a Single Server System with SIGMA

The above six-step procedure will be illustrated using the single server system
presented in Fig. 4.1. In order to become familiar with the basic functions of
SIGMA, you are advised to follow the steps one by one.

4.6.1.1 Creating a SIGMA-Generated Event Graph SIGMA has a well-
defined syntax system. For example, the initialize box of an ordinary event
graph is treated as the #1 event vertex (named Run or Init); an exponential
random variate with a mean of 1 is denoted as ERL{1}; and the operators
++/— are not allowed. Thus, using the SIGMA syntax, a SIGMA-compatible
event graph may be obtained from the “neutral” event graph of Fig. 4.1(b) as
shown in Fig. 4.35.

In this book, an event graph generated by SIGMA is called a SIGMA-
generated event graph. The first step in building a SIGMA simulation program

http://VMS-technology.com/Book/Sigma
http://VMS-technology.com/Book/Sigma

EXECUTION OF EVENT GRAPH MODELS WITH SIGMA 93

*ERL{1}

{Q=0, M=1} {Q= Q+1} {M=M-1;Q=Q-1} (M= M+1}

Fig. 4.35. SIGMA-compatible event graph of the single server system.

[&] Event Graph - (Untitled) - [Simulation Graph] c=orey
[& File Edit Run Variables Zoom Window Help HER

O I

Fig. 4.36. SIGMA-generated event graph of the single server system.

State Variable Editor ﬂ
Name: | Sizer 1 Type:
Description: [use commas for multi dim anays)
a 1 NI queuslengh [aas]
M 1 INT machine status ‘

Fig. 4.37. Declaring Q and M as state variables.

is to obtain a SIGMA-generated event graph from the SIGMA-compatible
event graph such as the one presented in Fig. 4.35. A SIGMA-generated event
graph of a single server system is shown in Fig. 4.36 (see the SIGMA tutorial
posted on the official website of this book) for further details. It is a graph
consisting of four vertices and five directed edges. (There are two edges
between the Load vertex and Depart vertex.) The vertices are named Run,
Arrive, Load, and Depart.

4.6.1.2 Declaring State Variables All user-defined variables must be
declared in the State Variable Editor window of SIGMA. As depicted in Fig.
4.37, the two variables, Q and M, are declared as integer variables. The number
“1” in the row “Q 1 INT queue length” signifies that Q is an integer variable
(or an array of size 1).

4.6.1.3 Defining the Run Vertex By clicking the first vertex of the SIGMA
event graph (named Run), the dialog box Edit Vertex 1 is created, as shown
in Fig. 4.38. Then, the variables (Q and M) that are initialized at the Run event
vertex of Fig. 4.35 are entered in the parameters field of the Run vertex dialog
box. (Q and M are initialized in the Run Options dialog box, as will be seen
later in Fig. 4.42.)

94 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

[Edit Vertex 1 g
Mame: Run Trace Event
Description:
Parameter(s) G, M

Fig. 4.38. Defining Q and M as parameters of the Run event vertex.

Edit Vertex 2 [
Name: Arive [¥] Trace Event
State [0=0+1 -
Changels): s

Fig. 4.39. Defining the state change (Q = Q+1) of the Arrive event.

Edit Edge Number 2 E
From: Amive To Load

Delay:
Condition: Mol

Fig. 4.40. Defining the time delay and edge condition of the Arrive—Load edge.

4.6.1.4 Defining Event Vertices (Arrive, Load, and Depart) The vertices
are assigned numbers sequentially as they are created. There are three events
in the single server system: Arrive, Load, and Depart. For example, by clicking
the vertex Arrive of the event graph in Fig. 4.36, a dialog box Edit Vertex 2 is
created as shown in Fig. 4.39. Then, the state change Q = Q+1 is entered in the
State Change field of the dialog box. The state changes at other events are
defined in the same way.

4.6.1.5 Defining Edges The edges are assigned numbers sequentially as
they are created. For example, by clicking the edge Arrive—Load of the event
graph in Fig. 4.36, a dialog box Edit Edge 2 is created, as shown in Fig. 4.40.
Then, the time delay 0 and edge condition M > 0 are entered in the Delay field
and Condition field of the dialog box, respectively.

For a double edge, each of the sub-edges is defined separately. By clicking
the double edge Load<»Depart and then selecting its sub-edges, the time delay
and edge condition of each sub-edge can be specified, as shown in Fig. 4.41.

EXECUTION OF EVENT GRAPH MODELS WITH SIGMA 95

Edit Edge Number 3 (subedge 3) Edit Edge Number 3 (subedge 5) g
From: Load To: Depart pending From: Depart To: Load
Description: Desciiption:

Delay: 2ERL{1} Delyy: o
Condition: 'TRUE| Candition: (g,

Fig. 4.41. Defining the time delay and edge condition of the sub-edges.

Run Options === ﬁ“s;iour
I
Descriptiorn:
MODEL DEFAULTS
Output Fle: 555, 0UT — 1
Rendo Seat(123m | Rlsbloce Hadel Name: 555.mod
Model Description:
Stop Dn Output File: £88.00T
@ Time Stoptime: 500000 Output Plet Style: NOAUTO_FIT
By Run Mode: HI_SPEED
Trace Uars: a.n.TAV<Q
Randon Munbor Sood: 12345
HCE SR 0 TAYE) Initial Ualues: 0.1
Ending Condition: STOP_ON_TIME
Ending Time: 560.000
Trace Events: ALL EVENTS TRACED
Intel QM) Hide Edges:
Values:
o
Time Event Count L] H TAUCQ>
9.000 Fun 1 [1 8.008
7] Dukput Pt Iniial Plot Delauls 9.980 Arrive i 1 i 9.908
0.080 Load 1 e a 8.808
C 8.363 Depart 1 a 1 8.868
[D55 Run] [K] | I 11.685 Arrive 2 1 : 8 a.868
11.685 Load 2 a a A.88a

Fig. 4.42. Run Options dialog box and Model Defaults output.

4.6.1.6 Describing Run Options The experimental conditions and simula-
tion output requirements are specified in the Run Options dialog box. The run
options entered in the dialog box of Fig. 4.42 are:

¢ seed number for random variate generation: 12345;

e simulation run mode: graphic;

e EOS (end of simulation) time: 500 minutes;

e variables to be traced: Q, M, TAV(Q) // TAV stands for time-average //
e initial values of the state variables Q and M: 0 and 1, respectively; and
e “Output Plot”: enabled.

The model default output is shown in Fig. 4.42, and the output plots for the
state variables Q and M are shown in Fig. 4.43.

4.6.2 Simulation of a Conveyor-Driven Serial Line with SIGMA

An event graph model of a two-stage conveyor-driven serial line with R1 =500
and c2 =10 is given in Fig. 4.44. The distributions of the processing times and

96 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

e - el ey ==
5 S55.0UT (Qvs. Time) 2 SSS.0UT (M vs. Time)

1 N e - o
|
|
ol
° 01 202 203 404
Tme

3
=

Fig. 4.43. Output plots of Q and M.

o F1 VR LEEE! '/T) (M2>0) |
ey _/ O/ 2/
1++; B1=0;
4+

c2=10 - R2- -
LM1-sR1-) 1=y fg {R2++) V2 R {m2++}

Fig. 4.44. Event graph model of a two-stage conveyor-driven serial line.

transport time are: pl ~ Exp(10), p2 ~ Exp(15), and t2 ~ Exp(3). Assume that
we are interested in the mean waiting time and mean queue length of the jobs
in the internal conveyor.

4.6.2.1 Modifying the Event Graph to Collect the Waiting Time Statis-
tics In this book, the variables introduced primarily for the purpose of
collecting statistics are called statistics variables. The waiting time (WT) of a
job is computed by subtracting the job’s entering time from its leaving time,
for which the queue is defined as a ranked list of job-entering times. In
SIGMA, (1) the current simulation clock time is obtained from the function
CLK, (2) the function PUT{O;L} is used for en-queuing a record into the
ranked list L with option O (=FIF, LIF, INC, or DEC) and GET{O;L} for
de-queuing, and (3) the record for en-queue/de-queue is stored in the built-in
array ENTJ]. A successful call to PUT{} or GET{} returns a value of 1. Thus,
in order to collect the waiting time statistics, the following statistics variables
must be specified as shown in Fig. 4.45.

At the Ul event vertex: ENTJ[0] = CLK; Q2 = Q2 + PUT{FIF;1}
At the L2 event vertex: Q2 =Q2 - GET{FST:1}; WT = CLK - ENTJ0].

EXECUTION OF EVENT GRAPH MODELS WITH SIGMA 97

(R120) (B1>0) (R2>0)
iz acr; (=it B1=1) (MI=M1+1;B1=0; {R2=R2+1} {M2=M2-1;R2=R2-1; {M2=M2+1}
ooty =R ENT[0]= CLK; Q2= Q2 - GET{FST:1};
C2=10) Q2= Q2 + PUT{FIF;1}) WT= CLK - ENT0]}

Fig. 4.45. SIGMA-compatible event graph of two-stage conveyor-driven serial line.

2z] Event Graph - TL-ACC - [Simulaticn Graph]
(%] File Edit Run Varisbles Zoom Window Help [x]

-0 ®~——®
o e

Fig. 4.46. Event graph of Fig. 4.45 constructed using the SIGMA GUIL

]
x

™R

|/]5]~]

In the SIGMA model of Fig. 4.45, the number of jobs in the conveyor is
stored in the integer variable Q2, and the waiting time of each job at the con-
veyor is stored in the real variable WT. The first entry of the ENT array,
ENT]J0], is used as a buffer for storing the data record into the built-in ranked
list #1 with the PUT{FIF;1} function. The data stored in the FIFO (first-in,
first-out) queue ranked list #1 is retrieved using the GET{FST;1} function.

4.6.2.2 Simulating the Conveyor-Driven Serial Line with SIGMA As
described in Section 4.6.1, the procedure for executing an event graph model
consists of six steps. The first step is to draw the event graph (Fig. 4.45) using
the graphical user interface (GUI) functions of the SIGMA software as shown
in Fig. 4.46.

The second step is to open the State Variable Editor dialog box and declare
all variables appearing in the modified event graph of Fig. 4.45 as state vari-
ables. As shown in the left side of Fig. 4.47, M1, M2, Q2, R1, R2, B1, and C2
are integer variables; WT (waiting time) is a real variable; RNK is an integer
array (with a size of 10,000); and ENT is a real array (with a size of 15). The
third step is to bring in the Edit Vertex 1 dialog box and specify all user-defined
variables in the RUN vertex as its parameter variables, as shown in the right
side of Fig. 4.47.

The fourth step is to create an Edit Vertex dialog box for each event vertex
in the SIGMA event graph of Fig. 4.46 and enter the state change expressions
in the State Change field. An example of the Edit Vertex dialog box for the
Ul event is shown in the left side of Fig. 448: M1 = M1 + 1, B1 = 0,

98 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

['state Variable Editor (edtverexz |
Name: | Size: 1 General | D
Description: [use commeas for multi dim arays ’
Name: RUN
M1 1 INT state of machine 1
M2 1 INT state of machine 2 Description:
Q2 1 INT list of job enter time for conveying
R1 1 INT temaining job of machine 1
R2 1 INT remaining job of machine 2
B1 1 INT blocking state Parameter(s) M1.M2,02.R1,R2,C2
c2 1 INT capacity of accumulating conveyor
WwT 1 REAL conveying time
RANK 10000 INT
ENT 15 REAL

Fig. 4.47. Declaration of state variables and specifying parameter variables.

R leatedge Numoer2 |

General | Display From: L1 Te: F1 (pendng |
Name: U1 Description: |
Description:

Delay: 10°ERL{1}
State 'M1=M1+1, B1=0, ENT[0]=CLK. Q2=02+PUT{FIF:1)
Change(s} Condition: TRUE

Fig. 4.48. Entering information for a vertex (U1l) and an edge (L1—F1).

ENT[0] = CLK, Q2 = Q2 + PUT{FIF;1}. The fifth step is to describe the time
delay and edge condition of each edge of the event graph. Shown in the right
side of Fig. 4.48 is the Edit Edge dialog box for the L1—F1 edge, where the
time delay is given as 10*ERL{1} and the edge condition is TRUE.

The sixth step is to create the Run Options dialog box and specify the
experimental conditions and output requirements as depicted in the left side
of Fig. 4.49, where the run options are specified as follows:

¢ seed number for random variate generation: 12345;

e simulation run mode: graphics;

e EOS (end of simulation) time: 5000;

e variables to be traced: Q2, M1, M2, TAV{Q2}, WT, AVE{WT};

e initial values of the state variables: M1 =1, M2 = 1, Q2 = 0, R1 = 500,
R2=0,C2 =10; and

e “Output Plot”: enabled.

Shown in the right side of Fig. 4.49 are the Run Option values (i.e., model
default output) and a listing of the values of the traced variables at each event
time. The output plots of Q2 and WT with respect to CLK are shown in Fig. 4.50.

DEVELOPING YOUR OWN EVENT GRAPH SIMULATOR 99

Run Ogtians = ilﬂummm.our
pesawten b —
Output File: |NTITLED.OUT Model Hame: TL-ACC
Random Sged: 12345 RunMode: | Giaphics = :.:;:g';:::“mg UNTITLED.OUT
Output Plot Scyle: MNOAUTO_FIT
Stop On Fode s GRAPHICS
@ Time Slop time: 5000.000 Trace Vars: Q2,M1, M2, TAUCQZ) VT, AVECHT
= Randan Munber Seed: 12345
2 Event Initial Values: 1,1,0,500,0,18
Ending Condition: STOP_ON_TIME
Trace Q2M1 M2 TAVQ2EWT AVEAWT} :..'::.‘::“ ::.E:;m TRACED
Variables: Wide Edges:
Tine Event Count G2 ML M2 TAUKG2Y T AUECWTY
et {M1.M202R1R2C2} B.000 N1 a 1 1 e.000 B.0ee 0_pee
B.808 o1 8 @ i @88 0.908 ©_BGR
23.378 Fi 1 a a i 0000 LR A5
1.1,0500,0.10 23.370 i i 1 i i 0.008 0.000 ©.900
23.378 L 2 1 a i L) LR . 888
23.907 P2 1 @ 1 8.008 0.908 ©.990
23,967 v 2 2 1 1 6.z 0.008 @.A0R
23,967 uo 3 2 @ 1 e.22 0.e08 ©.600
] Dutput Pt 2a4 iz 1 1 8 o ems oo oo
33,890 ” 2 i 8 @ 8.8 B.914 D891
(osbn] [(o) e om0 L3 B U
68521 P 3 e 8 @ @5 45.587 371
Fig. 4.49. Run Options dialog box and Model Defaults output.
UNTITLED. OUT (Q2 vs. Time) UNTITLED. OUT (WT vs. Time)
10 295
8 236
6 177
4 118
2 59
0 0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Fig. 4.50. Output plots of Q2 (queue size) and WT (waiting time).

4.7 DEVELOPING YOUR OWN EVENT GRAPH SIMULATOR

This section aims to help you become able to develop your own simulation
program for executing a given event graph model. If you have foundational
skills in computer programming and follow this section carefully, you should be
able to write your own event graph simulator. The event graph simulator for
simulating the single server model will be given in pseudocode form, which is
language-independent and thus may be easier to understand. A complete list of
C# codes for the single server simulator may be found on the official website
of this book (http://VMS-technology.com/Book/EventGraphSimulator).

4.7.1 Functions for Handling Events and Managing Queues

The method of developing a dedicated simulator for a given event graph
model will be described in a bottom-up manner, starting from the primitive
functions for handling events and managing queues.

http://VMS-technology.com/Book/EventGraphSimulator

100 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

Figure 4.51 provides a schematic description of the three event-handling
functions: Schedule-event (), Retrieve-event (), and Cancel-event (). Initially,
there are three future events {<E1, 12.1>, <E2, 18.6>, <E3, 34.0>} stored in the
future event list (FEL). The management of these events using these functions
will be explained with examples.

1. If the Schedule-event (E4,22.7) function is invoked, the scheduled event
<E4,22.7> is inserted immediately after <E2, 18.6> in the FEL, which is
a priority queue of event records, prioritized according to the increasing
values of the event time. Now FEL has four future events: <E1, 12.1>,
<E2, 18.6>, <E4, 22.7>, and <E3, 34.0>.

2. If the Retrieve-event (E, T) function is invoked, the next event <E = E1,
T =12.1> is retrieved (and deleted from the FEL).

3. If the Cancel-event (E4) function is invoked, the event node <E4, 22.7>
is deleted from the FEL.

Figure 4.52 provides a schematic description of the basic queue handling
functions for a FIFO (first-in, first-out) queue: (a) the New Q function will
create a queue (as a variable array of records); (b) the en-queue function (j,
x)—Q will append a record <10, 3.2>; (¢) the en-queue function will append
another record <20, 5.6>; and (d) the de-queue function Q—(j, p) will remove
the first record and return j = 10 and p = 3.2.

nital state of FEL: EVENT. E1 EVENT. E2 EVENT. E3
nitial state ot FEL- TIME: 12.1 TIME: 18.6 TIME: 34.0
CEVENT B4
, [EVENT. Ef EVENT. E2 | » CYENEE4 L [TEVENT. E3
(a) Schedule-event (£4, 227): | FEL " TIME: 121 TME: 186 | ~VME227.0 [TIME: 340
. , EVENT: E1 | [EVENT. E2 | [EVENT E4| [EVENT E3 |
() R?['eEVf'_?Xe:;E' " FEL TIVE 121 | LTIME:186 | | TIME:227 | | TIME:340 |
(0) Cancel-event (E4): = [EVENT. E2 EVENT E4 | [EVENT E3

| TIME: 18.6 TIME: 22.7 | |_TIME: 34.0

Fig. 4.51. Schematic descriptions of the event-handling functions.

(a)New Q: E

(0)j=10:x-32:G,x0>Q | Q@ —>[10][3.2]

(©i20:x-5.6:G,0>Q: | @ —>{10]32]—{20]56]
(@) Q> p): '@ —>[20]56] i=10,p=32

Fig. 4.52. Schematic descriptions of the queue-handling functions.

DEVELOPING YOUR OWN EVENT GRAPH SIMULATOR 101

4.7.2 Functions for Generating Random Variates

Most programming languages support a built-in function for generating a
standard uniform random number u~UJ[0,1]. In Java, the function u = Math.
random() has the same function. Let x ~ U[a, b], then x is obtained from u as
follows:x=a + (b —a) = u.

An exponential random variate X is generated from a uniform random
number U as follows. Since the distribution function F(X) can be regarded as a
uniform random number U, we have U = F(X) =1 — e ™ where 0 is the mean.
Upon solving this equation for X, we can obtain X =—-6 - In(1 — U), which is
equivalent to X =-0-In(U) because (1 — U) is also a uniform random number.
This method of generating a random variable is referred to as the inverse-
transformation method. (See Appendix 3B of Chapter 3 for more details.)

In Java, the natural log In(U) is implemented as Math.log (u). The random
variable generation functions for the inter-arrival times and service times are
listed below in a Java-like form. More details on this subject are provided in
Chapter 3.

Exp (a):

{ If (a <= 0) then return False; u=Math.random ();
Return (- a * Math.log (u)); }

Uni (a, b):

{ If (a > b) then return False; u=Math.random ();
Return (a+(b—-a) * u); }

4.7.3 Event Routines

Figure 4.53 shows a portion of an event graph for an event vertex that has two
scheduling edges and one canceling edge. The event graph indicates that
“whenever EO occurs, the state variable s changes to fy(s). Then, if edge condi-
tion Cl1 is true, E1 is scheduled to occur after t;; if edge condition C2 is true,
E2 is scheduled to occur after t,; and if edge condition C3 is true, E3 is canceled
immediately.”

<
S t
C2 :
@ () e (C1) t1 e ------ (_CSS_) _____ @

{s = feo(s)}
Originating Event | State Change | Edge | Condition | Action Delay | Destination Event
1 C1 schedule t4 E1
EO s = feo(S) 2 c2 schedule | t E2
3 C3 cancel 0 E3

Fig. 4.53. Event vertex with two scheduling edges and a canceling edge.

102 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

Also shown in Fig. 4.53 is an event transition table for EO. An event routine
is a subprogram describing the changes in state variables and how the
next events are scheduled and/or canceled for an originating event in the
event transition table. One event routine is required for each event in an event
graph. The event routine for the EO event in Fig. 4.53 can be expressed as
follows:

Execute-EO-event-routine (Now) // Fig. 4.53 //
{ s=fu(s); // state change

If (Cl) Schedule-event (E1l, Now+ t;);
If (C2) Schedule-event (E2, Now+ t,);
If (C3) Cancel-event (E3);}.

4.7.4 Next Event Methodology of Simulation Execution

As described earlier in Chapter 2 (Section 2.2.4), the simulation maintains a
simulation clock (CLK) and a future event list (FEL). The FEL is an ordered
list of pairs {E,, t}, where t, is the scheduled execution time of the event E,.
The FEL is also a priority queue, ordered in increasing values of t,. The overall
procedure of the simulation execution, which is called the next event methodol-
ogy, is as follows:

0. Reset the simulation clock CLK.
1. Initialize state variables and schedule initial events.

2. Time flow mechanism: get <E-type, E-time> from the FEL and set CLK
to E-time.

3. Execute the event routine for the event E-type.
4. If a termination condition is not satisfied, go back to step 2.
5. Output statistics and stop.

The above next event methodology of the simulation execution, often called
the next event scheduling algorithm, may be drawn as a flow chart as given in
Fig. 4.54.

A template of an event graph model consisting of a set of event vertices
{Ei: k = 1-n} is depicted in Fig. 4.55. As shown in the figure, the given (pure)
event graph must be augmented with a Statistics box as well as with the sta-
tistics variables.

Notice in Fig. 4.55 that that the simulation is stopped if an EOS (end of
simulation) condition is met. Assuming that the Initialize box and Statistics
box are implemented as an initialize routine and a statistics routine, respec-
tively, the main program of the event graph simulator for executing the tem-
plate event graph model of Fig. 4.55 will have the structure shown in Fig. 4.56.
Listed in the Event-routine list are the event routines for E1~En.

DEVELOPING YOUR OWN EVENT GRAPH SIMULATOR 103

| (0) Reset simulation clock: CLK = 0; |
¥

‘ (1) Initialize state variables & schedule initial events

!

4% (2) Time-flow mechanism: Get Next-event & update CLK

v .
‘ (3) Execute the event-routine for the Next-event. I Event-scheduling

No@i@

| (4) Output statistics |

Fig. 4.54. Next event scheduling algorithm.

Initialize: (E,OS) Statistics:
<

% Event Graph consisting of {E1, E2 ... En}

Fig. 4.55. Template of an augmented event graph model.

Main-Program // Fig.4.55 //
Begin
CLK =0;
Execute-initialize-routine (CLK); /I (1) Initialize
While (CLK <500) do { //te =500
Retrieve-event (EVENT, TIME); CLK = TIME; // (2) Time-flow mechanism
Case EVENT of { /I (3) Execute event-routine

E1: Execute-E1-event-routine (CLK);
E2: Execute-E2-event-routine (CLK);

Event-routines list

En: Execute-En-event-routine (CLK);
}/I end-of-case
}; /1 end-of-while
Execute-statistics-routine (CLK); //" (4) Output statistics
End

Fig. 4.56. Main program of the template event graph simulator.

4.7.5 Single Server System Simulator

In this book, an event graph model only concerned with the dynamic behavior
of the system without statistics variables is called a pure event graph. If the
pure event graph is augmented with statistics variables for collecting statistics,
it is called an augmented event graph.

Figure 4.57 presents a pure event graph model of the single server system
introduced earlier in Fig. 4.1. In the figure, Q is the number of jobs in the
buffer, M is the number of idle machines, and te is the EOS (end of simulation)
time.

Shown in Fig. 4.58 is an augmented event graph for collecting the average
queue length (AQL) statistics. Let {C,} denote the queue length change times,

104 INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

Initialize: 3
Q=0; M= 1; /e
(M>0) (CLK> te)
' n N
@+ (M O} (M4} ?’[atlStICS.
Fig. 4.57. Pure event graph model of single server system.
Initialize:
ta~ Exp(5
Q=0; Mi=1; A (@>0)
Before=0; (M>0) ts~ Uni(4.6
SumQ-=0 — s
v
{SumQ += Q*(CLK-Before); {SumQ += Q*(CLK-Before); (M++;} Statistics:
Before = CLK; Before = CLK; SumQ+= Q*(CLK-Before)
Qr+} Q- M-} AQL= SumQ/CLK

Fig. 4.58. Augmented event graph model for collecting AQL statistics.

TABLE 4.5. Event Transition Table for the Event Graph Model of Figure 4.58

Originating Destination
No Event State Change Edge Condition Delay Event
0 Initialize Q=0M=1; 1 True — Arrive
Before = 0;
SumQ =0
1 Arrive SumQ += Q*(CLK- 1 True Exp(5) Arrive
Before); 2 M>0 O Load
Before = CLK;
Q=0Q+1
2 Load SumQ += Q*(CLK- 1 True Uni(4,6) Unload
Before);
Before = CLK; M =
M+1,0=0Q-1;
3 Unload M=M+1; 1 Q>0 0 Load
4 Statistics SumQ += Q*(CLK - Before); AQL = SumQ/CLK

then the k™ queue length change interval becomes Ak = Cy,; — C,. Let Qy be
the queue size during Ak, then the AQL is expressed as AQL = XZ(Qy x Ak)/
Y(Ak) = SumQ/CLK. An event transition table for this event graph model is
given in Table 4.5.

In the event graph of Fig. 4.58, it is assumed that the inter-arrival times
follow an exponential distribution with a mean of 5 and that the service times
follow a uniform distribution with a range of 4.0-6.0. The initialize routine,
event routines, and statistics routine of the augmented event graph model for
collecting the AQL statistics are as follows:

DEVELOPING YOUR OWN EVENT GRAPH SIMULATOR 105

Execute-Initialize-routine (Now) // Fig. 4.58 //

{ 0=0; M=1; Before=0; SumQ =0; Schedule-event
(Arrive, Now); }

Execute-Arrive-event-routine (Now) // Fig. 4.58 //

{ SumQ = SumQ + Q* (Now—Before); Before=Now; Q=Q+1;
Schedule-event (Arrive, Now+ Exp (5)); If (M>0)
Schedule-event (Load, Now); }

Execute-statistics-routine (Now) // Fig. 4.58 //

{ SumQ = SumQ + Q* (Now—Before); AQL = SumQ/Now; }.

Then, from the template event graph simulator in Fig. 4.56, a single server
system simulator is obtained as shown in Fig. 4.59.

Exercise 4.12. Write two event routines Execute-Load-event-routine () and
Execute-Unload-event-routine ().

Another statistic that is commonly collected is the average waiting time
(AWT) of the jobs in a queue. The waiting time (WT) of a job is computed by
subtracting the arrival time (AT) from the load time at the Load event. Let N
be the number of jobs loaded during a simulation, then the average waiting
time is expressed as AWT = Z(WT)/N. An augmented event graph for collect-
ing the AWT statistics is given in Fig. 4.60, where the arrival time clock (CLK)

Main-Program of Single Server System Simulator
Begin
CLK =0;
Execute-Initialize-routine (CLK);
While (CLK <500)do{ //te =500
Retrieve-event (EVENT, TIME); CLK = TIME;
Case EVENT of {

Arrive: Execute-Arrive-event-routine (CLK);
Load: Execute-Load-event-routine (CLK);
Unload: Execute-Unload-event-routine (CLK);

} // end-of-case
}; // end-of-while
Execute-statistics-routine (CLK);
End

Fig. 4.59. Main program of single server system simulator.

Initialize:
New Q; M=1; Q=1
N=0; SumT=0; ts~ Uni(4.6 (CLK>500)
{CLK> Q;} {Q>(AT); M- {M++} Y
WT= CLK - AT; Statistics:
SumT += WT; N++} AWT= SumT/N

Fig. 4.60. Augmented event graph model for collecting AWT statistics.

106

INTRODUCTION TO EVENT-BASED MODELING AND SIMULATION

is stored in the queue (Q) at the Arrive event, and it is retrieved from Q and
assigned to the arrival time variable (AT) at the Load event.

Exercise 4.13. Modify the event graph in Fig. 4.60 to collect both AQL and
AWT statistics.

4.8

4.1.

4.2.
4.3.
44.

4.5.

4.6.
4.7.

4.8.

4.9.
4.10.
4.11.
4.12.
4.13.

REVIEW QUESTIONS

What are the three steps of the integrated simulation modeling (USM)
procedure?

What are the logical modeling components of the single server system?
How are the state variables initialized in SIGMA?

How can an exponential random variate with a mean of 5 be generated
in SIGMA?

How do you obtain a multi-server event graph model from a single
server model?

What is balking? What is blocking?

What is the SIGMA function for en-queuing a record into the ranked-list
L?

Where is the record for an en-queue/de-queue operation stored in
SIGMA?

What does it mean to set RNK[5] = 1 in SIGMA?
How do you implement a FIFO queue in SIGMA?
What is the takt time of inline-type equipment?
What is the flow time of inline-type equipment?

How do you compute the average queue length of a time-dependent
variable?

I CHAPTER 5

Parameterized Event Graph Modeling
and Simulation

Perfection is achieved not when there is nothing more to add, but when
there is nothing left to take away.
—Antoine de Saint-Exupery

5.1 INTRODUCTION

The breakthrough improvement of the ordinary event graph framework is the
parameterization of event vertices in which similar events are represented by
a single vertex with different parameter values [Schruben 1995]. This enhance-
ment enables the construction of a generalized model that represents a class
of systems.

Parameterizing an event vertex is similar to defining an array variable for
a large number of data items. The expression for computing the average of
three data items (A, B, C) is given by:

Mean=(A+ B+C)/3.

This expression for computing the sample mean can be represented by the
event graph model shown in Fig. 5.1(a).

However, if you are asked to compute the sample mean of, say, 500 data
points, you may define an array variable D[j] and formulate the following
expression:

M B 1 SOOD[']
ean = 500 o 1)

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

107

108 PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

Begin
{SUM=0} {SUM= SUM + A} {SUM= SUM + B} {SUM=SUM +C} {MEAN=SUM/ 3}

Fig. 5.1(a). Event graph model for computing the average of three data points.

=]

Begin

{SUM=0} {SUM= SUM + D[K]} {MEAN= SUM / N}

Fig. 5.1(b). Parameterized event graph for computing the sample mean.

Let D[j] be an array of data points. Then, the above sample mean expression
can be modeled as a parameterized event graph, as shown in Fig. 5.1(b). In the
figure, the summation operation is represented by a single parameterized
event vertex.

This chapter is organized as follows. Examples of parameterized event
graphs (PEGs) are introduced in Section 5.2, and the execution rules and
specifications of the PEG models are presented in Section 5.3. The two sections
that follow are devoted to the PEG modeling of tandem lines and job shops,
respectively. Section 5.6 demonstrates the execution of PEG models with
SIGMA. Finally, a method of developing your own PEG simulator is covered
in the last section.

5.2 PARAMETERIZED EVENT GRAPH EXAMPLES

This section presents a number of parameterized event graph (PEG) exam-
ples. There are two common cases of parameterizing an ordinary event graph.
The primary case is building a PEG model by introducing indexing variables
to the repeating pattern of event vertices. The second case is defining a PEG
model by passing attribute values of each entity along event vertices.

5.2.1 Introducing Index Variables to a Repeating
Event-Vertex Pattern

Figure 5.2 presents an event graph model of the two-stage tandem line defined
in Chapter 2 (see Fig. 2.15). There are six event vertices in the two-stage
tandem line model. In general, an n-stage tandem line model has 3n event
vertices. Figure 5.3 shows a PEG model of an n-stage tandem line, which is
obtained by introducing an indexing variable (k) to the repeating pattern of
event vertices “Enter-Load-Unload” in the event graph shown in Fig. 5.2.

PARAMETERIZED EVENT GRAPH EXAMPLES 109

Fig. 5.2. Event graph model of a two-stage tandem line.

(k= 1) (QlK>0)

Fork=1~n

{QIi=0; Mik=1} 1]

ta = Exp(9) (1Q>0)
{(CLK)— Q}
t = Erpla00)._

e

Fig. 5.4. Modified event graph model for collecting sojourn time statistics.

5.2.2 Passing Attribute Values of Each Entity along Event Vertices

Let us assume that we want to collect the sojourn time statistics when simulat-
ing the single server resource failure model introduced in Chapter 4 (see Fig.
4.13). In order to collect the sojourn time statistics, the arrival time of each
job that was generated by the Arrival event must be passed through to the
Unload event.

For this purpose, the original event graph model (see Fig. 4.13) is modified
as shown in Fig. 5.4. Namely, (1) the clock time (CLK) of each job arrival is
stored in a ranked list Q using an enqueue operation ((CLK)—Q) at the
Arrive event; (2) the arrival time is retrieved from Q using a dequeue opera-
tion (Q—(T)) at the Load event; (3) the retrieved time (T) is passed to the
Unload event as a parameter value. Then, the sojourn time (ST) is computed
by subtracting the arrival time (AT) from the simulation clock (CLK) at the
Unload event. In Fig. 5.4, the distributions of inter-arrival times (t,), service
times (t,), interfailure times (t;), and repair times (t,) are given by t, ~ Exp(9),
ty ~ Uni(6,8), t; ~ Exp(500), and t, ~ Exp(60).

110 PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

5.3 EXECUTION RULES AND SPECIFICATIONS OF THE
PARAMETERIZED EVENT GRAPH

A PEG model provides a compact description of a discrete-event system
(DES) to be interpreted by a human. Its execution rules and specifications are
similar to those of an ordinary event graph model described in Chapter 4.

5.3.1 Execution Rules of the PEG Model

In a PEG, a parameter value is a scheduling edge’s attribute value that is
passed to a destination event, whereas a parameter variable is a destination
event’s indexing or state variable whose value is set to the passed parameter
value. The execution rules for a PEG are essentially the same as those for an
ordinary event graph, with some minor differences as explained below.

PEGs are executed vertex by vertex. Figure 5.5 depicts a PEG with an
originating event (E1) and a destination event (E2), where k is the parameter
value associated with the scheduling edge, and j is the parameter variable
associated with the destination event.

The PEG model shown in Fig. 5.5 may be interpreted as follows [Schruben
1995]:

Whenever event E1 occurs, the state of the system changes to fg(s). Then, if the
edge condition (C) is true, destination event E2(j) is scheduled to occur after a
time delay of t with the value of the parameter variable j equal to the edge
parameter value k.

In general, each of the parameter value k and parameter variable j can be
a vector. The scheduled execution time (7) of E2 is obtained by adding the
time delay (t) to the current execution time (Clock) of E1. Namely, 7= Clock +t.

5.3.2 Tabular Specifications of the PEG Model

As with an ordinary event graph, the event execution rules for a PEG model can
be specified in an event transition table. A parameterized event transition table
is a table that describes (1) the state changes and outgoing edge numbers of each
event and (2) the edge condition, delay time, parameter value, and destination
event of each edge. It has one more column than an ordinary event transition
table: the Parameter column for specifying the parameter value of each edge.
Table 5.1 is an event transition table of the PEG model given in Fig. 5.3.

. ©

{s = fe4(s)} {s = feo(s)}

Fig. 5.5. Parameterized event graph with a scheduling edge.

EXECUTION RULES AND SPECIFICATIONS OF THE PARAMETERIZED EVENT GRAPH 111

TABLE 5.1. Event Transition Table for the Parameterized Event Graph Shown in
Figure 5.3

State Destination
No Event Change Edge Condition Delay Parameter Event
0 Initialize = For k = 1~n 1 True 0 1 Enter (k)
{Q[k] = 0;
M[k] =1}
1 Enter(k) Q[k] ++; 1 k= ta k Enter (k)
2 Mk]>0 O k Load (k)
2 Load(k) Qlk]—; 1 True t[k] k Unload (k)
M[k]—;
3 Unload(k) M[Kk] ++; 1 Q[k] >0 0 k Load (k)
2 k<n 0 k+1 Enter (k)

5.3.3 Algebraic Specifications of the PEG Model

An ordinary event graph (without canceling edges) is a directed graph consist-
ing of a set of event vertices (V), a set of directed edges (E), and a set of state
variables (S). Associated with each vertex (v € V) is a state transition function
(f, € F), and associated with each edge (e € E) are an edge condition (c. € C)
and a time delay (d. € D).

In addition to the above-mentioned six elements (V, E, S, FE, C, and D), a
PEG has two more elements: a set of parameter value lists (K) associated with
each edge and a set of parameter variable lists (J) associated with each vertex.
Thus, a PEG model (Mp) can be defined as an 8-tuple structure [Savage et al.
2005], as follows:

My=<V,E, S, F,C, D, K,J> where
V = {v}: set of event vertices
E={e,q=(v,,vq)}: set of edges // v,: originating event; v,: destination event
S = {s}: set of state variables

F={f,: S—S Vv e V}:set of state transition functions associated with each
vertex (v)

C ={c.;: §—[0,1] Ve € E}: set of conditions associated with each edge (e)

D ={d, € Ry Ve e E}: set of time delays associated with each edge (e)

K = {k, Ve € E}: set of parameter value lists, if any, associated with each
edge (e)

J={j, Vv e V}:set of parameter variable lists, if any, associated with each
vertex (v)

For example, the components of the event graph in Fig. 5.3 (n-stage tandem
line) are as follows:

-
-
N

PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

vy = Enter, v, = Load, v; = Unload}

= (v, V1), 6= (Vi, v2), €3 = (Va, v3), €4 = (v3, 1), es = (v3, V1))
Q[k], M[k]}

{fi- Q[k]++, fo: Q[K]—, M[K]—, f3: M[K]++}

{er: (k = 1), ¢t (M[K] > 0), c5: True, ¢i: (Q[k] > 0), c5: (k <)}
{dl—ta d,=0,d;=t[k],dys=0,ds =0}

=“k”, ky =“k”, ks =“K”, ky = “K”, ks = “k + 17}

=h=j= “k”}

Il
5
A

© N A W N
~xoOmum<
Il 1]

5_#_

5.4 PARAMETERIZED EVENT GRAPH MODELING OF
TANDEM LINES

In the previous chapter, a number of tandem line models were introduced: an
unlimited buffer tandem line model (Fig. 4.15), a limited buffer tandem line
model (Fig. 4.16), a buffer-less tandem line model (Fig. 4.17), and a conveyor-
driven serial line model (Fig. 4.25). In this section, methods of building PEG
models for some tandem line event graph models are described.

5.4.1 PEG Modeling of an Unlimited Buffer Tandem Line

An event graph model of a two-stage unlimited buffer tandem line is given in
Fig. 5.6; this model is obtained from the event graph shown in Fig. 5.2 by split-
ting the original Enter-1 event into Arrive and Enter-1 events. The event graph
model shown in Fig. 5.6 has a repeating pattern of Enter(k)-Load(k)-
Unload(k), which is identical for all {k}. Thus, the PEG model for the event
graph model shown in Fig. 5.6 is obtained easily, as shown in Fig. 5.7, where N
is the number of stages in the tandem line.

———

(@2>0)
Load \ t2 _/Unload\ !
2 2 !

,,,,,,,,,,,,,

e e RS et vt Q2o M2} (M2+4} |

ok (a0

[kll/l[l.i] | b iy o[Load tlk]

B 3 o

,,,,,,,,,,,,,,,,,,,,,,,, D QK {QIKI-, M[K-} {MIK]++}

Fig. 5.7. PEG model of the unlimited buffer tandem line shown in Fig. 5.6.

PARAMETERIZED EVENT GRAPH MODELING OF TANDEM LINES 113

ff

(S1>0) i

% ! t1 ¥
250 - 1 S1=N ¢ /Unioad) 2 (S2=1
= | H

Arrive w 13
{S1++} | {S1--,S2++}

nunn
e

{Q1++) @ MI-} {(B1+4) (M1++ B~} {Q2+4) Q2 M2} {B2++) {M2++, B2~}

Fig. 5.10. Revised event graph model of the limited buffer tandem line.

In the ordinary event graph model shown in Fig. 5.6, the only operation
performed by the Enter-k event is to increase Q, by one. Thus, this event vertex
may be deleted without loss of modeling power, as shown in Fig. 5.8. The
revised event graph has a repeating pattern of Load(k)-Unload(k).

Exercise 5.1. Construct a PEG model for the event graph model shown in
Fig. 5.8.

The event graph model of the unlimited buffer tandem line may be further
simplified by eliminating the Load-k events. The resulting event graph model
of a three-stage tandem line is given in Fig. 5.9. In this event graph model, the
state variable (S,) denotes the number of jobs in Stage-k.

5.4.2 PEG Modeling of a Limited Buffer Tandem Line

A limited buffer tandem line model is obtained from the unlimited buffer
model shown in Fig. 5.2 (or Fig. 5.6) by inserting a Finish-k event between a
Load-k event and an Unload-k event. Figure 5.10 shows an event graph model
of the limited buffer tandem line with the repeating pattern of Enter-Load-
Finish-Unload.

In Fig. 5.10, (1) the Finish-k event sets the blocking variable By to 1 (B,++)
and schedules the Unload-k event if the buffer is not full (Qy,; < ¢,1) and (2)
the Load-k+1 event schedules an Unload-k event if the blocking variable is
true (B, > 0). The PEG model of the limited buffer tandem line is as given in

114 PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

(QKP>0)

(M[]>0)

M1=11 | R1>0 HOB10 R2>0 | B20
M2=11 | 3 ‘
M3=1 |
Gs=0| (===)5~ ()
R1=cof | M1-- {B1=1} M1+ {R2++} M2-- {B2=1} M2+ {R3++} {M3--
ggfg 3 R1- B1=0 ! Q2-- B2=0 | Q3--
e . 1 Re- @ RS-}
Fig. 5.12. Revised event graph model of the conveyor-driven serial line.
(R[k]>0)
For k=1~n{
MIkI=1; |
BLK]=0; i
Q[k]=0; {1}
RU0) 3
R[1]=Q[1]=<; | {MIK]++,
Q[n+1]=0; B[k]--

[K]--, :
Q[k+1]++}

Fig. 5.13. PEG model of the conveyor driven serial line.

Fig.5.11. 1t should be noted that the Arrive event schedules the Enter(1) event
and the Unload(k) event schedules an Enter(k + 1) event when k < n.

5.4.3 PEG Modeling of a Conveyor-Driven Serial Line

Reproduced in Fig. 5.12 is the event graph model of the conveyor-driven serial
line given in Fig. 4.25 of Chapter 4. (For a detailed description of the conveyor-
driven serial line, please refer to Section 4.5.4.) In Fig. 5.12, a dummy transport
event (T1) is added to the event graph model of Fig. 4.25 in order to form the
repeating pattern of the Transport-Load-Finish-Unload events.

A PEG model of the conveyor-driven serial line is presented in Fig. 5.13.
Since the input buffer Buffer-I is treated as a conveyor with an unlimited
capacity and zero conveying time, c[1] = e and t[1] = 0. Also, Q[n + 1] = 0 and
c[n + 1] = = need to be set as boundary conditions.

PARAMETERIZED EVENT GRAPH MODELING OF JOB SHOPS 115
5.5 PARAMETERIZED EVENT GRAPH MODELING OF JOB SHOPS

A discrete-event system is called a job shop if (1) it consists of a number of
stations (s) with each station having one or more identical machines, (2) there
are a number of job types (j) with each job type having its own unique
sequence of processing steps (p =1, 2,...), and (3) the station number (s) for
a processing step (p) of a given job type (j) is specified in the routing sequence
of the job type. A job may visit a given station more than once.

A machine that processes one job at a time is referred to as a table machine.
A simple job shop is a job shop consisting of table machines and unlimited
buffers. Figure 5.14 depicts a reference model of such a job shop. It has six
stations with the number of machines given by {m; =3, m, =5, m; =4, my =7,
ms = 2, mg = 5}. The routing sequence of a type-1 job is 1-3-2-5-Done:
route[1,1] = 1, route[1,2] =3, ..., route[1,5] = Done. The processing time of a
type-j job at processing step (p) is denoted by ¢ [}, p].

Any job shop that is not a simple job shop is called a complex job shop.
Examples of complex job shops are inline job shops and mixed job shops. An
inline job shop is a job shop consisting of the inline cells described in Chapter
4 (Section 4.5.5).

5.5.1 PEG Modeling of a Simple Job Shop without Transport

If we set M[s] = my in the initialize event box of the unlimited buffer tandem
line PEG model shown in Fig. 5.7, the model becomes a multi-server tandem
line model, as depicted in Fig. 5.15. Another slight change in Fig. 5.15 (from
Fig. 5.7) is that the next station (ns) is updated at the Unload(s) event vertex.

t[1,1] t[1,2]

Station-1 Station-3
m;=3 ms;= 4
t[1,4]
Station-5 Station-6
ms= 2 meg= 5

Route for Type-1 Jobs

Station-2
m,=5

Arrive Exit

Assign job-type S:tlfn7_4
=1 =7 |

route [j, p] = station number of type-j job at step ‘p’; route[1,1]= 1, ..., route[1,4]=5, route[1,5]=Done
t[j, p] = processing time of type-j job at step 'p’; mg = number of machines at station 's".

Fig. 5.14. Reference model of a simple job shop (for job type j =1).

(ns<N+1)
(QlsP0)

For s=1~N{ (M(s]>0)
Q[s]=0; i

M[s]=m; }

{s=1} {Qlsi++} {Qls}-, Mis}-} {Ms]++, ns=s+1}

Fig. 5.15. PEG model of a multi-server tandem line obtained from Fig. 5.7.

116 PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

(M[s]>0)

(ns# Done)
] (IQIs]>0)
For s=1~N{ |
Q[s]= @; i
M[s]=m, } |

{1, pl

{p=1;s=route[1,p} {p— Qls]} {Qls]—p; Mis]--} {M[s]++; ns=route[1, p+1];}

Fig. 5.16. PEG model of a simple job shop for processing a single job type (j = 1).

(ns# Done)

[s]
t, p]

(1Qis]>0)

For s=1~l_\l { (M[s]>0)

Q[s]= @;

{Assignj; s =route[j,11;} {(j, p)— Q[s]} {Qls]—(, p); M[s]--;} {M[s]++; ns=route[j,p+1];}

Fig. 5.17. PEG model of a simple job shop for processing multiple job types.

This tandem line is a special case of a simple job shop in which (1) there is
only one job type and (2) the job processing step (p) is the same as the station
number (s; for s=1,2,...,N). Thus, as depicted in Fig. 5.16, the tandem line
PEG model shown in Fig. 5.15 may be converted to a PEG model describing
the simple job shop shown in Fig. 5.14.

In the job shop PEG model shown in Fig. 5.16, a new job generated by the
Arrive event is passed to the Enter event with parameter values {p = 1 and
s = route [1, p]}. At the Enter (1, s) event, the new job is put into the queue
Q[s], and a Load(s) event is scheduled if M[s] > 0. Since there is only one job
type, a job is represented by its processing step (p). Q[s] is the queue of jobs
identified by the current processing step.

When a Load(s) event is fired in the PEG model of Fig. 5.16, a job is
retrieved from Q[s] for processing and an Unload(p,s) event is scheduled to
occur after t[1, p] minutes. At the Unload(p,s) event, the processing step (p)
is increased by one and the station number (ns) for the next processing step
(p + 1) is determined by evaluating ns = route [1, p + 1]. Here, an Enter(p + 1,
ns) event is scheduled if the next station number is not equal to Done and a
Load(s) event is scheduled if Q[s] is not empty.

The PEG model of Fig. 5.16 may be generalized easily to a PEG model of
a simple job shop by adding j (for j = 1~J) to the parameter list as shown in
Fig. 5.17, where a job is represented by its job type and processing step. The
state variables in the simple job shop model are:

j =]job type;

p = processing step of a job;

s = station number for a job;

M[s] = number of idle machines in station s;
Q[s] = list of jobs {(j, p)} at station s.

PARAMETERIZED EVENT GRAPH MODELING OF JOB SHOPS 117

Jobs of type j follow the routing sequence given by the table route [j, p]
with the processing time t[j, p]. If a job finishes the last processing step, then
the station number of the next processing step is set to Done so that the job
exits the job shop. The initialization box shown in Fig. 5.17 is the same as that
shown in Fig. 5.16.

At the Arrive event, a job type (j) is assigned to each new job and the station
number (s) for the first processing step is determined as: s = route [j,1]. At the
Enter (j, p,s) event, the job (j,p) is placed in the queue of station s and a Load(s)
event is scheduled to occur immediately if the station (s) has an idle machine
(M[s] > 0). At the Load(s) event, a job (j, p) is retrieved from the queue and an
Unload(j, p, s) event is scheduled to occur after a time delay of t[j, p] minutes.
At the Unload(j, p,s) event, the processing step is increased by one and the next
station number is determined. Then (1) a Load(s) event is scheduled if the
queue at station s is not empty, (2) an Enter(j, p, s) event is scheduled if the job
needs another processing step, and (3) an Exit(j) event is scheduled if the job is
done. These dynamic behaviors of the simple job shop model can be formally
specified in an event transition table, as shown in Table 5.2.

Exercise 5.2. Revise the PEG model of the simple job shop shown in Fig.
5.17 by adding a new event Select-s (j, p) where the station number (s) for a
job (j, p) is determined.

5.5.2 PEG Modeling of a Job Shop with Transport and Setup Times

In the simple job shop PEG model shown in Fig. 5.17, only the net processing
times (t[j, p]) are reflected. In practice, considerable amounts of setup time
(when the job type is changed) and transport delay (when the job is to be
moved by a transporter) may be incurred in a job shop.

TABLE 5.2. Event Transition Table for the PEG Model of a Simple Job Shop
(Figure 5.17)

No Event State Change Edge Condition Delay Parameter Next Event
0 Initialize For s = 1~-N 1 True 0 — Arrive
QM) {Q[s] =
M[s] = my}
1 Arrive Assign j; 1 True 0 i, 1,8 Enter
s = routelj, 1]; G>p»9)
2 True ta — Arrive
2 Enter (j, (j,p)— QJs]; 1 M[s]>0 0 S Load (s)
p.s)
3 Load (s) QIs]— @, p); 1 True th.pl j.p.s Unload
M[S]__; (j’ ps S)
4 Unload M[s]++ 1 IQ[s]l>0 0 s Load (s)
G, pss) ns = route[j, 2 ns # Done 0 j,p+1,ns Enter
p+1]; (. p,)
3 ns=Done 0 j Exit (j)
5 Exit (j) 1

118 PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

{Assign j; s=0;
re=m ns= route [j, 1))
Initialization: |)
Fors=1~N{ | ' {Qlsl—>(. p);
Q= o; | Ms]--;

Mis]=1; tp= tf, pl;

JT[s]=0; }; ij, 1,s, : — :
Reaéﬁ‘% b ? If j# JT[s]) tp= tp +07}
routefj,p]; !
ti.pL;
delays,nsfh (ns# Done) {ns= route[j, p+1]}

Fig. 5.18. Standard PEG model of a job shop reflecting setup time and transport time.

Figure 5.18 shows a PEG model of a simple job shop in which the setup
times and the transport delay times are reflected. In order to reflect the setup
time (o) in the PEG model, a state variable denoting the current job type of
each station (JT[s]) is introduced. (However, this is only valid when there is a
single machine at each station.) It is assumed that all stations have identical
setup times. Thus, the following additions are made to the PEG model shown
in Fig. 5.17:

1. At initialization, the job type of each station is reset: JT[s] =0 for s = 1-N.

2. At the Load event, a setup time (o) is selectively added: If (j # JT[s])
{tp=tp+ a}.

3. At the Unload event, the current job type of the station is updated:
JT[s] =j.

The next station number (ns) and transport delay time (td) are modeled
explicitly by the two event nodes Depart and Move: (1) ns is obtained from
ns = route [j, p + 1] at the Depart event; (2) td (transport delay from station s
to station ns) is evaluated from td = delay [s, ns] at the Move event.

The PEG model shown in Fig. 5.18 may be regarded as a standard template
for defining a general job shop model from the PEG model of a station that
starts with a Load event and ends at the Depart event. The event transition
table for the PEG model shown in Fig. 5.18 is given in Table 5.3.

5.5.3 PEG Modeling of an Inline Job Shop

A job shop consisting of inline cells is called an inline job shop. Reproduced
in Fig. 5.19 are the reference model (Fig. 4.27) and the event graph model (Fig.
4.34) of the inline-type cell introduced in Chapter 4. This is called a uni-inline
cell because the input (Load) and output (Unload) operations are performed
at the shared I/O-Port. It should be noted that the event graph (Fig. 5.19)
without the redundant event FGU is the same as the one (Fig. 4.34) with FGU.

PARAMETERIZED EVENT GRAPH MODELING OF JOB SHOPS

119

TABLE 5.3. Event Transition Table for the Revised PEG Model Shown in Figure 5.18

Next

No Event State Change Edge Condition Delay Parameter Event

0 Initialize For s = 1~-N 1 True 0 — Arrive
(Qls] = ;

M[s] =1,
ITs] = 0}:

Read {route[j,p];
t[j,p]; delay[s,
ns])

1 Arrive Assign j;s =0; 1 True ta — Arrive
ns = route[j, 1]; 2 True 0 j, 1,8, 18 Move (j,

p, s, ns)
2 Move (j, td = delay][s, ns]; 1 True td j, p, ns Enter (j,
b, s, IlS) p, S)
3 Enter (j, (j,p) — Q[s]; 1 M[s] >0 0 s Load (s)
p.s)

4 Load (s) Q[s]— (j,p); 1 True tp j.p, s Unload
M[S]_’ (j’ p; S)
tp = t[j, p]; If
(G #IT[s))

{tp=tp+ o}
5 Unload M[s]++; JT[s] =j; 1 IQ[s]I >0 0 s Load (s)
G,p,s) 2 True 0 i, ps s Depart
G.p,s)
6 Depart ns = route[j, 1 ns # Done 0 j,p+1,s, Move (j,
G.p:s) p+1J: ns p, s, ns)
2 ns = Done 0 j Exit (j)
7 Exit (j) 1
5) Cassette Depart
‘ © ’ @ (3) Glass Load (t: takt-time/glass)
W) Casee - Ofomste (7 -
I:'>> ———
;;:n;:,n““ g Robot(R) Inline (7: flow time)
</
(4) Glass Unload
Stocker (Q) I/0 Port (B, E)
(@>0)
{Q++} {Q--, E—-, B++} {R=0; B--; {R=1} {E++}
ty= A *t}

Fig. 5.19. Reference model and event graph of a uni-inline cell.

120 PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

The event graph model in Fig. 5.19 has five event nodes, four state variables,
and two time delay variables. The state variables are Q (number of arriving
cassettes in the Stocker queue), B (number of arriving cassettes in the I/O-Port
buffer), E (number of empty shelves in the I/O-Port), and R (status of Robot;
1 if Robot is idle, 0 if busy). The time delay variables are t; (cycle time for
processing a cassette of glasses) and 7 (flow time). The state variables are
changed by the events as follows:

e CA (Cassette Arrival) increases Q by one {Q++}
e CL (Cassette Load) decreases Q and E, and increases B by one {Q—,

E—, B++}
e FGL (First Glass Load) sets Robot to busy and decreases B by one
{(R=0,B—}

e LGL (Last Glass Load) sets Robot to idle {R = 1}
e CD (Cassette Departure) increases E by one {E++}

Let u denote the parameter variable for a uni-inline cell; then, all event
vertices and state variables are parameterized in terms of u. In addition, the
job type (j) and processing step (p) of a cassette may also be passed as param-
eter values. With these parameter variables, the state variables are defined as
follows:

Q[u]: Stocker queue of arriving cassettes {(j, p)} in the uni-inline cell (u)

B[u]: /O-Port queue of arriving cassettes {(j, p)} in the uni-inline cell (u)

E[u]: number of empty ports (shelves) in the I/O-Port of a uni-inline cell (u)

RJu]: status of the track-in Robot of a uni-inline cell (u)

The processing cycle time and flow time are parameterized as t,[j, p] and
j, p]- Thus, the event graph model of the uni-inline cell given in Fig. 5.19 may
be parameterized as shown in Fig. 5.20. In the uni-inline cell PEG model shown
in Fig. 5.20, the list handling operations are defined as follows.

* {(j,p) = Q[u]}: ajob (j, p) is stored in the Stocker queue (Q[u])
* {(j,p) — B[u]}: ajob (j, p) is stored in the I/O-Port queue (B[u])
e {Q[u] = (j, p)}: ajob (j, p) is retrieved from the Stocker queue (Q[u])
e {B[u] — (j, p)}: ajob (j, p) is retrieved from the I/O-Port queue (B[u])

In order to build a uni-inline job shop model, a state variable (JT[u]) denot-
ing the current job type of a cell is introduced for modeling the setup time (o)
and the Move event is added to model the transport delay time (td) explicitly.
Thus, as shown in Fig. 5.21, a standard PEG model of a uni-inline job shop
may be constructed from the standard PEG model of a simple job shop shown

PARAMETERIZED EVENT GRAPH MODELING OF JOB SHOPS 121

Q[u]|>0
(BLI>0) CLPo

1 tfi
u 10, p]

{G. p— Qup {Qlu—=(, p)—Blul; {R[ul=0;
i Efu]--} Blu]=(, p)}

{Assign j; u=0;
nu=route [j, 1]}

{QuI={, p: o= pal =1
0 ’é)[l; _E;[“]’ T e tp o)

(1Q[u>0)

(nu# Done) {Eu]++;

nu = routefj, p+1]}

Fig. 5.21. Standard PEG model of a uni-inline job shop.

in Fig. 5.18 and the PEG model of the uni-inline cell shown in Fig. 5.20. As
mentioned earlier, the state variables are the Stocker queue (Q[u]), I/O-Port
queue (B[u]), number of empty shelves (E[u]), Robot status (R[u]), and job
type (JT[u]). Assuming that the system is empty and the number of shelves in
the I/O-Port of each cell (u) is 4, the state variables may be initialized as
follows:

Foru=1~N {Q[u]=®; B[u]=®; E[u]=4; R[u]=1; JT[u] =0}.

5.5.4 PEG Modeling of a Mixed Job Shop

A mixed job shop may have different types of stations and/or cells. For example,
by merging the two PEG models shown in Figs. 5.18 and 5.21, we can build a
PEG model of a job shop consisting of table stations and uni-inline cells, as
shown in Fig. 5.22. In the PEG model of the mixed job shop given in Fig. 5.22,
TM denotes a set of table-type machines and UC a set of uni-inline cells in
the job shop.

A job shop with different types of machines is often called a heterogeneous
job shop, and one with one type of machine is called a homogeneous job shop.

122 PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

‘station(s) 1 2 |
a 3 L5} (Qis]0) §
@ (Mis]>0) tp (ip.s] Unload
T S Qs | Qs Misk- Mare: LPs] |
wmppealipnl B el hekh
it : If (j JT[s]) tp=tp +0;} (ns;Done)
d _ (ns# Done) i) ‘
(j,“;f,og,ens W {ns=route[j, p+1] }
{td= delay([s, ns] } (s€UC) T 777 : []
[i.p.ns] Qo) (BlPo)
(EL>0) RIu=1) : |
0 (B
{(.p)>Qu} | {QuI>(p)>Blu; B>, p) RuI=0; {Rlu=1; :
3 E[ul-} tp=tfipul; JTIU=1) ‘
‘ If (7 JT[u]) tp=1p + o;
! - !
CD 1
(nu# Done) ! —
| EunPY (e Done)
¢ Uni-inline Cell (u) nu= routefj, p+1] } ;

Fig. 5.22. Standard PEG model of a mixed job shop.

In a general job shop model, the material handling equipment may be modeled
explicitly. More detailed discussions of these subjects may be found in Chapter

11 of this book.

5.6 EXECUTION OF PARAMETERIZED EVENT GRAPH MODELS
USING SIGMA

The basic SIGMA functions were covered in the Chapter 4. This section aims
to provide you with more experiences in and confidence with modeling with

PEG and executing the PEG model with SIGMA. More specifically,

this

section demonstrates how to use certain advanced SIGMA functions in col-
lecting the sojourn time statistics, reading array data, handling priority queues,
and so on. All the SIGMA models discussed in this section, together with a
brief SIGMA tutorial, may be found in the official website of this book (http:/

VMS-technology.com/Book/Sigma).

As mentioned in Chapter 4 (see Section 4.6), in order to execute a given
event graph model using SIGMA, the event graph model is converted to a
SIGMA-compatible event graph model. Figure 5.23 presents a schematic view
of the SIGMA simulation program: all variables that appear in the SIGMA-
compatible event graph model must be declared in the State Variable Editor;
all state variables that are defined as parameters of the Run vertex are initial-

http://VMS-technology.com/Book/Sigma
http://VMS-technology.com/Book/Sigma

EXECUTION OF PARAMETERIZED EVENT GRAPH MODELS USING SIGMA 123

State Variable Editor
- Declare all variables that appear in the SIGMA program

Run Options SIGMA-compatible Event Graph
1. Initialize State Variables (Q,M)

2. Specify Trace Variables ‘
3. Specify Output Plots . @ Event Graph

4. Specify EOS Condition 3

o

Fig. 5.23. Structure of the SIGMA simulation program.

ta = Exp(9)
Initialize Box: (M>0)
A T

Q=0: M=1: rrive

(190)

t_ = Uni(6,8)

Load

{(CLK)— Q} {M=0, Q—(T)}

M=-1}

Fig. 5.24. Event graph model for collecting sojourn time statistics.

ized in the Run Options dialog box; the values of the state variables are passed
to the Run vertex as parameter values.

5.6.1 Collecting Sojourn Time Statistics Using SIGMA Functions

Reproduced in Fig. 5.24 is the event graph model shown in Fig. 5.4 in Section
5.2.2. Recall from Section 5.2.2 that, in order to collect the sojourn time sta-
tistics, the arrival time of each job must be stored at the Arrival event and its
sojourn time (ST) is computed by subtracting the arrival time (AT) from the
departure time (CLK) at the Unload event.

5.6.1.1 Constructing a SIGMA-Compatible Event Graph In order to
execute the event graph model using SIGMA, it must be converted to a
SIGMA-compatible event graph in which (1) a Run event is defined to initial-
ize the state variables and (2) the PUT{} and GET{} functions are used for
storing and retrieving data in and from the built-in ranked list, respectively. A
SIGMA-compatible event graph for collecting the sojourn time statistics is
given in Fig. 5.25.

At the Run vertex shown in Fig. 5.25, RNK[1] = 0 is set so that ranked list
1 is ranked by the data field ENT[0]. At the Arrive vertex, the current arrival
time (CLK) is assigned to ENT[0] and stored in ranked list 1 in an increasing
order by invoking the PUT{INC;1} function. At the Load vertex, the arrival

124 PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

/AQ*ERL(H (@>0)
(M>0) 6+2'RND = nload

Arrive 2 Load ENT[0] (A1))

{M=0, Q= Q- GET{FST;1}} {M=1, ST=CLK-AT} \‘\

{RNK[1]=0} {ENT[0]= CLK, Q= Q + PUT{INC;1}}

60°ERL{1})

Fig. 5.25. SIGMA-compatible event graph for collecting sojourn time statistics.

@ 6 e

—> —>

) T P Name: | Size: 1
|

Description: [use commas for multi dim arrays
Q 1T INT queue length
J M 1 INT machine status

(ENT 15 INT
ST 1 REAL sohoumtime
AT 1 REAL anivallme
(a) (b)
Fig. 5.26. (a) SIGMA-generated event graph and (b) declaration of state variables.

time is retrieved and stored in ENT[0] by the GET{FST;1} function; then, it is
passed to the Unload vertex as an edge parameter value.

In Fig. 5.25, the number of jobs in the buffer is denoted by the integer vari-
able (Q) and the sojourn time of a job is stored as the real variable (ST). The
statistics that are collected are the time average queue length (TAV{Q}) and
the average sojourn time (AVE{ST}). In this particular case, ranked list 1 is in
effect a FIFO queue. Thus, we could use PUT{FIF,1} instead of PUT{INC,1}.

5.6.1.2 Building a SIGMA Program for Simulation As explained in
Chapter 4, the procedure for building a SIGMA program consists of six steps.
Step 1 is to create a graphical model of the SIGMA-compatible event graph
on the main screen of SIGMA. As shown in Fig. 5.26(a), this graph consists of
six vertices and eight edges. Step 2 is to bring in the State Variable Editor
dialog box and declare all variables that appear in the SIGMA-compatible
event graph. As shown in Fig. 5.26(b), the state variables are Q, M, RNK[10000],
ENT[15], ST, and AT.

Step 3 is to define the Run vertex by creating the Edit Vertex 1 dialog box
and specifying the state variables Q and M as its parameter variables. Step 4
is to create Edit Vertex dialog box for each event vertex in the SIGMA-
generated event graph shown in Fig. 5.26(a) and to define its state changes
and parameters where applicable. Figure 5.27(a) presents the Run vertex

EXECUTION OF PARAMETERIZED EVENT GRAPH MODELS USING SIGMA

125

Edit Vertex 1 Edit Vertex 2 Edit Edge Number 3 (subsdge 3)
Gere [Diply] || [Genea [Digiay] Fiom: Lost To: Unoe
Name: Run Name: [Anive Description: |
£r.5 Delay: r
Description: Desciiption: g3y B+2AND
Condition: TRUE
3 5ta§ RNK(1]=0]
Stale ENT(O]=CLK, Q=Q+PUTHNC] ||
Patameter(s): Q.M Change(s} Attibutes: ENT[D)
(@) (b) (©)

Fig. 5.27. Defining the (a) Run vertex, (b) Arrive vertex, and (c¢) Load-Unload edge.

[Run Options 5 untted out
MODEL, DEFAULTS
Description: S—————
Hodel Name: SSS-MF
= Hodel Description:
Output File: UNTITLED.OUT Output File: untitled.out
Output Plot Style: NOAUTO_FIT
Rlandom Seed: Fun Mode: Run Mode: HI_SPEED
= 12245 oh Spe Trace Uars: Q.M. ST, TAUCQ) . AVECST
Randon Nunber Seed: 12345
Stop On - Initial Values: 8.1
@ Time Stop time: 5000.000 Ending Condition: STOP_ON_TIME
5 Ending Tine: 5008000
© Event Trace Events: ALL EVENTS TRACED
Hide Edges:
\T,:;m QM ST TAVIRLAVE(ST) Tine Event Count @Q noost TAUCQ> AVECST?
8.608 Run 1 0 1 9.080 ©.000 ©.008
Initial (@M} 8.008 Arrive 1 1 1 .88 ©0.000 ©.000
Valies 8.008 Load 1] @ ©0.080 0.000 ©.008
1,633 Arrive 2 1 © ©0.000 ©0.000 ©.000
2.895 Unload 1 1 1 7.895 0.000 ©.000
01 7.895 Load 2 @ 8 7.895 0.793 1.57
13.918 Unload 2 @ 1 12.918 9.793 2.631
31.582 Arrive 3 1 1 12.918 0.449 4.101
Initial Piot Defaut] | 31-582 Lead 3] 8 12.918 B.198 5.203
(7] Qutput Plat (L il Pt Defoul 39.113 Unlead 3 a 1 8413 8.498 6.868
(a) (b)

Fig. 5.28. (a) Run Options dialog box and (b) Model Defaults output.

dialog box in which RNK[1] = 0 is entered in the State Change(s) field, and
Q and M are entered in the Parameter(s) field (Q and M are initialized in the
Run Options dialog box). Figure 5.27(b) shows the Arrive vertex dialog box.

The fifth step is to create an Edit Edge dialog box for each edge in the
SIGMA-generated event graph shown in Fig. 5.26(a) and to specify the time
delay value, edge condition, and parameter value. Figure 5.27(c) shows the
dialog box of the edge Load—Unload whose time delay that is a Uniform(6,8)
random variate is specified in the Delay field as “6+2*RND,” edge condition
TRUE is specified in the Condition field, and parameter value ENT[0] is speci-
fied in the Attributes field.

5.6.1.3 Running the SIGMA Program for Simulation The last step is to
create the Run Options dialog box and to specify the experimental conditions
and output requirements. Figure 5.28(a) shows the experimental conditions
such as the random number seed (12345), end-of-simulation time (5,000 min),
and the initial values of Q and M. Also specified in Fig. 5.28(a) are the variables

126 PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

[simutation Plot (=)to/Ea | [smulstion Flot [=le=]
untitied out (@ vs. Time) untitied out (TAV{Q) vs
i 4 Time)
2
10 A
8y
8 / SR e
Q TAV(Q)2 /
" /
| "‘
~
¢ 1 S
.
2 ey
J
0 | o
0 1000 2000 3000 4000 5000 500(0 1000 2000 3000 4000 5000 6000
Time Time

(a) (b)

Fig. 5.29. Simulation plots of the (a) queue sizes and (b) time average of the queue
sizes.

M(t)=M + (n(t)— n(0));

t,= Exp(1/A%) (@>0) & (M(t)>0) (Q>0) & (M()>0)
PR (U <Mt/A*) (M(t)>0)
{U=Uni(0,1)} {Q++} {M--, Q--} {M++}

Fig. 5.30. Simple service shop with fluctuating arrival rates and varying resource levels.

(Q, M, ST) and statistics (time average of Q and average of ST) to be traced.
Figure 5.28(b) shows the model default values and a list of the traced variable
values at each event time.

Figure 5.29(a) and (b), respectively, present the simulation plots of the
queue sizes (Q) and the time average of Q. The queue sizes fluctuate consider-
ably as a result of the disturbances due to failures, but the time average of Q
appears to converge to 2.

5.6.2 Simulating a Simple Service Shop with SIGMA

Figure 5.30 reproduces the event graph of a simple service shop that was given
in Fig. 4.19 of Chapter 4 (Section 4.5.1). The simple service shop is subject to
time-varying arrival rates (A(t)). In order to manage the customer fluctuations,
the number of servers (n(t)) is planned to change over time, which is often
referred to as a flexible multi-server system.

Let us assume that customers arrive at the shop with arrival rates (customers
per minute) of 0.0 during 0:00~5:59,0.02 during 6:00~7:59,0.10 during 8:00~9:59,
and so on, as summarized in Table 5.4.That is, R[0] = R[1] =R[2] =0, R[3] =0.02,
and so on. The maximum arrival rate is 0.5 during 14:00~15:59 (R[7] =0.5). The
base number of servers during the day hours (8:00~17:59) is three, with a peak
of five during 2:00~3:59 p.m. (N[7] = 5). All servers are identical and their
service times are exponentially distributed with a mean of 9.

EXECUTION OF PARAMETERIZED EVENT GRAPH MODELS USING SIGMA 127

TABLE 5.4. Arrival Rates and Number of Servers over a 24-Hour Period

Hours 0000- 0200- 0400- 0600- 0800- 1000- 1200- 1400- 1600- 1800- 2000- 2200-
(120min) 0159 0359 0559 0759 0959 1159 1359 1559 1759 1959 2159 2359

k 0 1 2 3 4 5 6 7 8 9 10 11

R[k] 0.00 0.00 0.00 002 010 030 040 050 040 0.10 0.02 0.00
N[k] 0 0 0 0 3 3 3 5 3 1 1 0

(Q>0) & (M > Ny=N[H])

(k<11) (1/Ryn) ERL{1} (@>0) & (M > Ng-N[H))

_ (M > No-NTH])
K1)/ o) (RND<RATIO) O N

< Arrive @ 2
{Ruax=0.5, {R[k]= DISK{RN.DAT;0}, {H=MOD{CLK/120:12}, {Q=Q+1} {M=M-1, {M=M+1,
N, =5} N[k]= DISK{RN.DAT;0}} RATIO= R[H]/Ryax} Q=Q-1} H=MOD{CLK/120:12}}

‘RN.DAT: 0000 0000 0.000 0.020 0103 0.30 3 0403 0.50 5 0.40 3 0.10 1 0.02 1 0.00 0 ‘

Fig. 5.31. SIGMA-compatible PEG model for managing fluctuations.

3¢ Event Graph - MSS-NH - [Simulation Graph] =3 Eoh °<=)
[&] File Edit Run Veriables Zoom Window Help [=][=] =

8-8-0-8-0 |

Fig. 5.32. SIGMA-generated event graph.

5.6.2.1 SIGMA-Compatible Event Graph for the Modified Event Graph
Figure 5.31 presents a SIGMA-compatible event graph model of the modified
event graph shown in Fig. 5.30. The figure also shows the input text file RN.
DAT. The function DISK {RN.DAT; 0} reads the text file RN.DAT sequentially,
and the for loop is implemented using the parameterized event Read(k). The
simulation clock (CLK) is converted to the index value (h) shown in Fig. 5.31
using the function MOD{CLK/120; 12}. The default time unit of minutes is
converted to 2-hour units by dividing CLK by 120. The RND function returns
a standard uniform random variate.

5.6.2.2 Building a SIGMA Program for Simulation The first step of
building a SIGMA program for simulation is to create a SIGMA-generated
event graph on the main screen of SIGMA, as shown in Fig. 5.32. The second
step is to bring in the State Variable Editor dialog box and declare all user-
defined variables as state variables: Q, M, RMAX, R[12],N[12],NO, H, RATIO,
and K (dialog box not shown).

The third step is to double click the Run vertex (shown in Fig. 5.32) to create
the Edit Vertex 1 dialog box and enter the information {RMAX = 0.5; N0 = 5;

128

PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

Edit Vertex 1 Edit Vertex 5
General | Display General | Display
Name: Run Name: Read [¥] Trace Event
Description: Description:
Stale RpMAx=05, NO=H Stale RK]-DISKIRN.DAT 0}, N[K|=DISK{RN.DAT.0)
Change(s): Chanagels]:
Parameter(s): G M Parameter(s): K

(a)

(b)

Fig. 5.33. Defining the (a) Run vertex and (b) Read vertex.

Edit Edge Number 3 Edit Edge Number 4 Edit Edge Number 5

From: Run To: Read From: Read To: Arive From: Read To: Read
Description: Description: Desciiption:

Delay: 0 Delay: 0 Delay: 0

Condition: TRUE Conditior: 11 Conditiorn: .11

Attiibutes: g Attributes: Attributes: K41

Fig. 5.34. Examples of edge dialog boxes.

Q = 0; M = NO} appearing in the Run vertex (shown in Fig. 5.31). As shown in
Fig. 5.33(a), RMAX = 0.5 and NO =5 are entered in the State Change(s) field,
and Q, M are specified in the Parameter(s) field. The fourth step is to create
a dialog box for each event vertex. The dialog box of the Read vertex is shown
in Fig. 5.33(b), in which the parameter value is K.

The fifth step is to create an Edit Edge dialog box for each of the edges in
the SIGMA-generated event graph shown in Fig. 5.32. Figure 5.34 presents the
dialog boxes of the three edges Run—Read (From: Run; To: Read), Read—
Arrive, and Read—Read.

5.6.2.3 Running the SIGMA Program for Simulation The sixth step is to
create the Run Options dialog box. Shown in Fig. 5.35(a) is the Run Options
dialog box in which the experimental conditions such as the random number
seed (12345), end-of-simulation time (5,000 min), and initial values of Q and
M are specified. The dialog box also specifies the variables and statistics to be
traced. Figure 5.35(b) shows a simulation plot of Q (number of customers in
the queue) over the simulation time.

5.6.3 Simulation of a Three-Stage Tandem Line Using SIGMA

The PEG model introduced earlier in this chapter (Fig. 5.3 in Section 5.2.1)
will be used as a vehicle for demonstrating the simulation of an n-stage tandem

EXECUTION OF PARAMETERIZED EVENT GRAPH MODELS USING SIGMA 129

UNTITLED.QUT (Q vs. Time)
Description: 30
Output File: UNTITLED.OUT 2
Random Sged: 12345 Run Mode:
Stop On 20
@ Time Stop time: 5000.000
() Event Q15
Trace QM. TAV{Q)LHRHLNH] 0
Variables: 1
Initial {am} 5
Values:
n A
L] 1000 2000 3000 4000 5000
Output Plot Initial Plot Defay Time
(a) (b)

Fig. 5.35. Run Options dialog box and simulation plot of Q.

Q[1] = Q[2] = Q[3] =0;
M[1] = M[2] = M[3] =1;

ta ~ Exp(3); t[1] ~ Exp (5)
t[2] ~ Exp (4); t[3]~Exp (3)

M[1], M[2],
M[3], n)

{QIKI=Qlk}+1,
ta= (k==1)*
3ERL{1}}

{QIKI=Q[KI1, MIKI=MK]-1, {MIK]= M[K}+1}
{k|=(k==1)"5"ERL{1}+(k==2)"
4ERL{1}+(k==3)"3"ERL{1}}

Fig. 5.37. SIGMA-compatible PEG model of the n-stage tandem line (n = 3).

line with SIGMA. The PEG model shown in Fig. 5.3 is reproduced in Fig. 5.36
with n =3, where the distribution functions of the inter-arrival time and service
times at the three stages are also specified.

5.6.3.1 Building a SIGMA-Compatible PEG Model In general, the first
step in simulation with SIGMA is to modify the given event graph model in
order to manage specific requirements. In this particular case, however, modi-
fications are not required. Thus, the first step is to build a SIGMA-compatible
PEG model from the neutral PEG model given in Fig. 5.36.

Figure 5.37 presents a SIGMA-compatible PEG model of the three-stage
tandem line. Note in Fig. 5.37 that the number of stages “n” defined in the Run

130 PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

vertex is never used in the model. A convenient feature of SIGMA is the use
of Boolean variables. For example, the service time (t[k]) at stage k is given
by Exp(5) if k = 1, Exp(4) if k = 2, and Exp(3) if k = 3, which is expressed in
SIGMA as follows:

t[k] = (k == 1)*S*ERL{1} + (k == 2)*4*ERL{1} + (k == 3)*3*ERL({1}.

5.6.3.2 Building a SIGMA Program and Running the Simulation Figure
5.38(a) presents the SIGMA-generated event graph of the three-stage tandem
line; Fig. 5.38(b) shows the State Variable Editor dialog box. The SIGMA-
generated event graph for a PEG model is the same as that for an event graph
model. The variables declared as the state variables are Q, M, TA, T, N, and K.
The sizes of the arrays Q, M, and T are set to 4 in Fig. 5.38(b) because in Fig.
5.37 Q[k] and M[k] are defined for k=1, 2, 3 (Q[0] and M][0] are not used).

The dialog boxes for the Run vertex and the Enter vertex are given in Fig.
5.39(a) and (b), respectively. The variables to be initialized in the Run Options
dialog box are declared as parameters in the Run vertex dialog box shown in
Fig. 5.39(a). The State Change(s) (Q[K] = Q[K] + 1, TA=(K==1)*3*ERL{1})
and the parameter K are defined in the Enter vertex dialog box shown in Fig.
5.39(b). Figure 5.40 shows the dialog boxes defining the Run—Enter edge,
Enter—Load edge, and Enter—Enter edge.

[l event Graph - PEG-TLMod - [Simulation Graph) l=ldq State Variable Editor

(E] File Edit Run Variables Zoom Window Help
Name: Size: 1 Type: | I
Description: [use commas for multi dim arays)

] 4 INT number of entities wating st each stage
M 4 INT umber of machines at each stage

TA 1 REAL inter-arrival time

T 4 REAL service time at each stage

N 1 INT number of stages

K 1 INT parameter

(a) (b)
Fig. 5.38. (a) SIGMA-generated event graph and (b) declaration of state variables.

Edit Vertex 1 Ecit Vertex 2
Name: Run MName: Enter
Description: Description:
r:hangé?sl; than::g Q[KJ=0[K}H1, TA=(K==1FERL{1}
Parameter(s): Q[1],0[2.0[3.M[1LM[2LM[3LN Parameter(s) K

(@) (b)
Fig. 5.39. Defining (a) the Run vertex and (b) the Enter vertex.

EXECUTION OF PARAMETERIZED EVENT GRAPH MODELS USING SIGMA

131

Edit Edge Number 1 Edit Edge Number 2 Edit Edge Number 4

From: Run To: Enter From: Enter To: Load From: Enter To: Enter
Description: Description: Description:

Delay: 0 Delay: 0 Delay: TA

Condition: TRUE Condition: pMK}0 Condition: g _1

Attributes: { Atributes: Attributes:

(@) (b) ()
Fig. 5.40. Defining the edges (a) Run—Enter, (b) Enter—Load, and (c) Enter —Enter.

Run Options =i PESlmuhﬂun Plot ﬁ@l
Description: 18 UNTITLED.OUT (Q[1] vs. Time)
OutputFile: UNTITLED.OUT e
Random Sged: 12345 Run Mode: [(Graphics -
Stop On 12T
@ Time Stop time: 100.000
© Event Q) o1
Trace Q[110[2LQ[3MI1 L M[ZIMI3L TAON . TAVIO2.TAVIG 67
Variables: 3]}
a4
Il @MTLORLABIMIIMIZLMELN ol
Valiex o 20 40 60 80 100
0001113 Time
(a) (b)

Fig. 5.41. (a) Run Options dialog box and (b) the simulation plot of Q[1].

Finally, the simulation experiment data are provided in the Run Options
dialog box as depicted in Fig. 5.41(a). A simulation plot of Q[1] is given in
Fig. 5.41(Db).

5.6.4 Simulation of the Simple Job Shop with SIGMA

The PEG model of the job shop in Fig. 5.18 will be used as an example of a
simulation using SIGMA. The example job shop has four single-machine sta-
tions (s = 0~3, i.e., M[s] = 1) and three job types (j = 0-2). A job arrives at
every 12 minutes (=t,) with job mix ratios of 26% for j =0, 48% for j =1, and
26% for j = 2. The routing sequences ({route(j,k)}) and processing times ({t;c:
j =job type, k = processing step}) are as given in Table 5.5. Note that the pro-
cessing step is denoted by “k” (not “p”) only when the routing sequence data
and processing time data are as defined in Fig. 5.43 and Table 5.5.

Figure 5.42 depicts the routing sequence and processing times of the type-1
jobs. Let the transport delay time from station v to station w be denoted by
d,w; then, the net sojourn time of the type-1 job is expressed as tyo + do; + ty;
+dy3 + tp + ds; + ty3 + dpp + ty4 + doy. The transport delay data are summarized
in Table 5.6.

132 PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

TABLE 5.5. Routing Sequence and Processing Times of the PEG Model Figure 5.18

Step-1
Step-0 (k = 0) (k=1) Step-2 (k=2) Step-3 (k=3) Step-4 (k=4)
Job route route route route route
(Ratio) 070) th (]’1) tjl (Jaz) tj2 (J’B) tJ'3 (]’4) tj4
j=0 0 Exp 1 Exp 2 Exp 3 Exp®) — —
(26%) (6) (5) (15)
j=1 0 Exp 1 Exp 3 Exp 1 Exp 2 Exp
(48%) 11) 4) (15) (6) (27)
j=2 1 Exp 0 Exp 2 Exp — —
(26%) (7) (7) (18)
dm/\ﬂ
Station-0: Station-1:
: t,,~Exp(11) t,,~EXp(4); t;;~Exp(6)
Arrive “ d/ = “
i 2 _diy dsy
Assign job-type: | Station-2: < Station-3:
{11:10 V"vvl't‘: 2860/{:’;; t,,~Exp(27) t,,~Exp(15)
=2 with 26%} : Aoy

Fig. 5.42. Routing sequence and processing times of the type 1 job (j = 1).

TABLE 5.6. Transport Delay Data

To Station (w) Text file format of

delay[v, w] = d,y 0 1 2 3 4 INPUTT.DAT

From Station (v) 0 0 dy=2 dp=4 dy=6 dy=2 0 2 4 6 2
1 d10:6 O d12:2 d13:4 d14:2 6 O 2 4 2
2 dy=4 dy=6 0 dy=2 dy=2 4 6 0 2 2
3 d30=2 d31=4 d32=6 0 d34=2 2 4 6 O 2

5.6.4.1 Data Reading and Input Generation with SIGMA The configura-
tion of a job shop is defined by a master data set. The important master data
of the job shop are as follows:

1. Initial state of the queue in each station: Q[0] = 0, Q[1] = 0, Q[2] = 0,
Q[3]=0

2. Number of machines in each station: M[0] =1, M[1]=1,M[2] =1,M[3] =1

3. Initial job type of each station (machine): JT[0] =0,JT[1] =0,JT[2] =0,
JT[3]=0

4. Routing sequence for each job type: route [J, K] as given in Table 5.5

5. Mean processing times for each job type: t[J, K] as given in Table 5.5

EXECUTION OF PARAMETERIZED EVENT GRAPH MODELS USING SIGMA 133

(J<=MAXJ) (J<MAXJ) (V<=MAXN) (V<MAXN)
&(K<MAXK) &(K==MAXK) &W<MAXN+T) &(W==MAXN+1)

(J>=MAXJ)
&(K>=MAXK)

(V>=MAXN)
&(W>=MAXN+1)

.........

{QO=Q[1]FQ[2]=Q[3]=0, {route[;K]= DISK{INPUTRDAT;0}, {delay[V:W] = {U=RND,
MOJ=M[1]=M[2]=M[3]=1, ;K= DISK{INPUTR DAT:0}} DISK{INPUTT.DAT:0}} J= (U>0.26)+(U>0.74),
JTIOJ=JT[]=JTI2I=JT[3]=0} s= route[J;0]}

Fig. 5.43. SIGMA-compatible PEG model for data reading and input generation (K:
processing step).

TABLE 5.7. INPUTR.DAT File of Routing and Mean Processing Time Data in
Table 5.5

0 6 1 5 2 15 3 8 4 0 4 0
0 11 1 4 3 15 1 6 2 27 4 0
1 7 0 7 2 18 4 0 4 0 4 0

6. MAXJ =2, MAXK = 5: maximum numbers of job types (J) and process-
ing steps (K)

7. Transport delay times between stations: delay [V, W] as defined in Table
5.6

8. MAXN = 3: maximum number of stations (V, W)

9. Inter-arrival time and setup time: TA =12, TS =30

Figure 5.43 provides a SIGMA-compatible event graph for initializing the
variables and reading the data, where (1) MAXJ =2, MAXK =5, MAXN = 3,
TA =12, and TS = 30 are received as parameter values; (2) Q[s], M[s], and
JT[s] are initialized at the Run event; (3) route[J,K] and t[J,K] are read at the
Read event; and (4) delay[V,W] is read at the ReadT event. The data reading
function DISK {F; 0} is used to read the input data. Table 5.7 shows the input
file INPUTR.DAT) in which the routing data (route[J,K] = s) and mean pro-
cessing time (t[J,K]) of Table 5.5 are provided. For example, the second line
contains the following data: route[1,0] =0, t[1,0] = 11, route[1,1] = 1, t[1,1] =4,
route[1,2] = 3, t[1,2] = 15, route[1,3] = 1, t[1,3] = 6, route[1,4] = 2, t[1,4] = 27,
route[1,5] =4, and t[1,5] = 0. Notice in Table 5.7 that s =4 is used as a delimiter
value indicating the end of a job process. The transport delay data of Table 5.6
are stored in the input file INPUTT.DAT) in the same manner.

5.6.4.2 Building a SIGMA-Compatible PEG Model for a Job Shop Simu-
lation The main part of the SIGMA-compatible PEG model for simulating
the job shop operation is shown in Fig. 5.44. It is essentially the same as the
PEG model shown in Fig. 5.18, but it has the following differences: (1) at the

134 PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

ts= 30

{ENT[O]=j, ENT[1]=p, {Q[s]=Q[s]-GET{FST;s}, {M[s]=M[s]+1,
Q[s]=Q[s]+PUT{FIF;s}} J=ENT[0]; p=ENTI[1], JT[s]=}
Mis]=M[s}1,
tp= tfj; pI"ERL{1}+(j!=JT[s])*ts}

ns=route[j;p+1],
td= delay[s; ns]}

Fig. 5.44. SIGMA-compatible PEG model for the job shop operation (p: processing
step).

Enter (j,p,s) event, the job type (j) and processing step (p) are assigned to each
job entering the station (s); (2) the transport delay td = delay[s; ns] is defined
at the Depart event; and (3) at the Load(s) event, the job (j, p) is retrieved
and its processing time (tp) is computed as follows:

tp =t[j; p]* ERL{1}+ (j! = JT[s])*TS.

The event transition table for the combined PEG model shown in Figs.
5.43 and 5.44 is given in Table 5.8. The constant data MAXJ (maximum
number of job types), MAXK (maximum number of processing steps), MAXN
(maximum number of stations), TA (deterministic inter-arrival time), and
TS (deterministic setup time) are declared as parameters at the Run event.
These values are specified in the Run Options dialog box. The job type (J)
is obtained at the Arrive event using the RND function: U = RND,
J=(U>0.26) + (U > 0.74).

5.6.4.3 Building a SIGMA Program and Running the Simulation The
first step of building a SIGMA program is to draw a SIGMA-generated event
graph. Figure 5.45 shows the SIGMA-generated event graph model of the job
shop in which there are 10 event vertices.

The second step is to declare all user-defined variables as state variables in
the State Variable Editor dialog box, as shown in Fig. 5.46(a). There are 22
user-defined variables declared in the dialog box. The dimensions of the system
variables ENT and RNK are also declared here. Among the declared variables
are the three array variables (T, ROUTE, and DELAY) that constitute the
master data of the job shop. Figure 5.46(b) shows the dialog box of the Run
event, in which the job shop is initialized in the State Change(s) field and the
constant variables are declared in the Parameter(s) field.

Finally, the simulation experiment data are provided in the Run Options
dialog box as depicted in Fig. 5.47(a). A simulation plot of Q[2] is also shown
in Fig. 5.47(b).

(Sd'r)210N SNT+dT Al ¥ = iSN 14 [SN ‘SIAVTdd = Al
1IXy r daL #==SN 1 q1+ dr]31Nn09 = SN (sa‘mredag 8
(S)peo S 0 0<I[slo 14
(sdredeq SdT 0 aniy, 1 r=[SlLrr+[SInN=[SIN (Sd‘T)peolun L
S.L«([SILt
=i0) + {(JTaa«[drlL=dr
T - [SIN = [SIN
‘rlLN" =4 ‘[0lLN" = ¢
(sd‘r)peojun SdT dL anuy, 1 {siLsalrao-[slo = [s]o (S)peo 9
{sid1d}Lnd + [S]O = [S]O
(S)peo1 S 0 0<[SIN 1 d = [1]1IN4 T = [0l LN (sdp)rug S
(sd’p)rouyg SdT 0 anu, 1 (Sdr)es0N %
[0ff]ALNOA =S
(Sd'r)n0N SO°T 0 anup, 14 ‘bro<n)+(zo<n)=r
QALY VL anu, 1 ‘ANd =N QALLLY €
QALY 0 (THNXVIN=<M)2(NXVIN=<A) €
(MA)LPeYd 0T+ A 0 (IH+FNXVIN=M)(NXVIN>A) 4 {0:Lva@ LLNdANIPISIA
(MA)Lpead I+ MA 0 (IHNX VI M) R (NXVIN=>A) 1 =[mAlAvT1aA (MA)Lpeay 14
(MA)LPed 00 0 CIXVIN=<D®(IXVIN=<[) ¢ {0Lvad.LNdNISIA = DIrlL
(I r)peay 0T+ 0 CIXVIN==3)®(IXVIN>T) 14 fo'lrva
(Ir)peoy T+ 0 CIXVIN>D) R (X VIN=>T) 1 “ALNINIPDISIA = DIE]aLNoYd (Ir)peoy T
0=I[glLro (g =s1
= [zlLe ‘o= [1]Le ‘o = [olLe ‘TI=VL
T=[eIN‘T ‘€ = NXVIN
=[N ‘T =[1IN T = [0IN ‘6 =IXVIN
‘o=I[clo‘0 ‘T=IXVIN)
(IT)peoy 00 0 anup, I =[zlo‘o=1[1]lO ‘0= [0]O uny 0
JUOAH IXON IojoweIed Ae[p(g uonIpuo)) a3pg a3uey) eI JuaAq ON

p'S PUB £f°G SAINSL] Ul UMOYS [PPOIAl D Y} 10§ IQEL UONISURI], JUIAT *§'S HTAVL

135

136

PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

' Event Graph - PEG-JS.mod - [Simulation Graph]

(=] fle gdit Bun yoriables Zoom Window Help

Fig. 5.45. SIGMA-generated event graph model of the job shop.

State Variable Editor Edit Vertex 1

Mame: | Size: 1 Type: |Integer General | Display

Description: [use commas for multi dim anays)

Name: Run [¥] Trace E

Q 4 INT queue of station Description:

M 4 INT status of station

JT 4 INT previous job lype of stalion s

e i N kbtme State [0}-0, O[1 -0, AZ0, QE0, MIDJ1. M{1}<1. ME2ZI=1. M{3}-1
£ 1| ML e Changelsk JT(0]-0, JT[1}=0, JT[2-0, JTI2}-0
S 1 INT station

NS 1 INT next station

K 1 INT parameter

MAX) 1 INT maximum number of job types

MAXK 1 INT masimum number of steps

W 1 INT parameter

W 1 INT ameter

MEXN 1 INT number of stations:

TA 1 INT job arrival time

T- 36 REAL processing time [job type, step]

P 1 REAL processing time:

15 1 REAL setup lime

ROUTE 36 INT route sequence [job type, step]

DELAY 44 REAL transfer time [current station, next station] Patameler(sk MAX) MAXK MAXN_ TA.TS

ENT 15 INT £

RNK 10000 INT

Il lu 1__RE andom varisble
(a) (b)

Fig. 5.46. (a) Declaration of state variables and (b) defining the Run vertex.

Run Options
untitied.out (Q[2) vs. Time)
Descriplion: T
Output File: UNTITLED.OUT 6
FandomSeed: 72345 | Aun Mod: s
StopOn 4
@ Time Stop time: 1000.000 a2
) Event 3
Trce QIOON)ORIAEMP.SNS 2
Variables:
1
Initial (A MAXK MARN.TA. TS} m l |
Values: 0
0 100 200 300 400 500 600 700 800 900 1000 1100
2531230 Time
(a) (b)

Fig. 5.47. (a) Run Options dialog box and (b) simulation plot of Q[2].

DEVELOPING YOUR OWN PARAMETERIZED EVENT GRAPH SIMULATOR 137

5.7 DEVELOPING YOUR OWN PARAMETERIZED EVENT
GRAPH SIMULATOR

The process of developing your own simulator for a PEG model is the same
as that for developing an (ordinary) event graph model, as described in
Chapter 4. Namely, (1) the (pure) PEG model is converted to an augmented
PEG model by adding the statistics variables and a statistics routine; (2) an
event transition table is constructed from the augmented PEG model; (3) the
initialize routine, event routines, and statistics routine are developed; and (4)
the main program is obtained from the event graph simulator template shown
in Fig. 4.56. The process of developing your own PEG simulator is described
by using the three-stage tandem line model considered in Section 5.6.3
and the simple job shop model covered in Section 5.6.4. A complete list of
C# codes for the tandem line simulator and the job shop simulator may be
found in the official website of this book (http://VMS-technology.com/Book/
EventGraphSimulator).

5.7.1 Tandem Line PEG Simulator

This section describes how to develop a PEG simulator for the tandem line
shown in Fig. 5.36 in Section 5.6.3. Let us assume that we are interested in the
average queue length at each stage of the tandem line.

Figure 5.48 shows an augmented PEG model of a three-stage tandem line
for collecting the average queue length (AQL) statistics. The statistic variables
introduced are the previous event time (Bef[k]) and the area under the queue-
size curve (SumQ[k]) at stage k for k = 1-3. The average queue lengths
(AQLJK]) for k = 1~3 are computed in the statistics routine. The event transi-
tion table of the PEG model is given in Table 5.9.

As in the case of the ordinary event graph simulator (see Chapter 4, Section
4.7), the initialize routine, event routines, and statistics routine of the aug-
mented PEG model (Fig. 5.48 and Table 5.9) for collecting the AQL statistics
are obtained easily, as follows:

Initialize: 2 :;TE =
For k=1~3 { 1% |ly3o
QK =0; 1S |£Ex
M[k] =1 52, u_ 8._¢, <3
Beflk]= 0; : i @ (%
SumQlk]= 0; 1 {SumQk] += Q[K]*(CLK-Bef[K]); {SumQ[k]+= Q[k]*(CLK-Bef[K]); {M[K]++} B = L
} i Beflk] = CLK; Q[k]++; Beflk]= CLK; Q[k]--; M[K]--; ! = =

! if (k==1) ta= Exp(3);} tlk]= (k=1)*Exp(5)+ (k=2)*Exp(4)+ (k=3)*Exp(3);} ! bal

Fig. 5.48. Augmented PEG model of a three-stage tandem line for collecting AQL
statistics.

http://VMS-technology.com/Book/EventGraphSimulator
http://VMS-technology.com/Book/EventGraphSimulator

138 PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

TABLE 5.9. Event Transition Table for the PEG Model Shown in Figure 5.48

No

Next
Event State Change Edge Condition Delay Parameter Event

0

Initialize For k = 1~3 {Q[k] = 1 True — 1 Enter(k)
0; M[k] =1;
Bef[k] = 0;
SumQ[k] = 0}
Enter(k) SumQJk] += Q[k]* 1 k=1 ta k Enter(k)
(CLK-Bef[k]); 2 Mk]>0 0 k Load(k)
Bef[k] = CLK;
Q[k] ++
if (k==1)
ta = Exp(3);
Load(k) SumQ[k] += Q[k]* 1 True t[k] k Unload(k)
(CLK-Bef[k]);
Bef[k] = CLK;
QIK}—: M[k]—
tlk] =(k=1)*
Exp(d) + (k =2)*
Exp(4) + (k =3)*
Exp(3);
Unload(k) M[k]++; 1 QJk]>0 0 k Load(k)
2 k<3 0 k+1 Enter(k)
Statistics ~ For k = 1~3 { SumQ[k] += Q[k]*(CLK-Bef[k]); AQL[k] = SumQ[k]/
CLK;}

Execute-Initialize-routine (Now) // Fig. 5.48 //
{ For k=1to 3 {Q[k] =0; M[k] =1; Bef[k] =0; SumQ[k] = 0};
Schedule-event (Enter, 1, Now);

'

Execute-Enter-event-routine (k, Now) // Fig. 5.48 //
{ SumQ[k] += Q[k] * (Now - Befl[k]); Befl[k] = Now;
Q[k] ++;

If (k==1) Schedule-event (Enter, k, Now + Exp (3));
If (M[k] > 0) Schedule-event (Load, k, Now);

}.

Execute-Load-event-routine (k, Now) // Fig. 5.48 //

{ SumQ[k] += O[k] * (Now - Bef[k]); Bef[k] = Now;
Qlk]—; M[k]—;
tlk] = (k=1) * Exp(5) + (k=2) * Exp(4) + (k=3) * Exp(3);

Schedule-event (Unload, k, Now + tf[k]);

DEVELOPING YOUR OWN PARAMETERIZED EVENT GRAPH SIMULATOR 139

Execute-Unload-event-routine (k, Now) // Fig. 5.48 //
{ M[k] ++;

If (Q[k] > 0) Schedule-event (Load, k, Now);

If (k < 3) Schedule-event (Enter, k + 1, Now);
}.

Execute-statistics-routine (Now) // Fig. 5.48 //

{ For k = 1~3 {SumQ[k] += Q[k] * (Now — Bef[k]); AQL[k]
= SumQ[k] / Now; }

With these event routines and initialize/statistics routines, the next event
methodology algorithm for simulating the three-stage tandem line is realized
as shown in Fig. 5.49.

If we are interested in the average sojourn time (AST) statistics, the aug-
mented PEG model will be as shown in Fig. 5.50. The statistics variables
required to collect the AST statistics are the job arrival time (AT), sum of
sojourn times (SumT), and number of jobs passed through the third station
(N). It should be noted that Q[k] is a list of real numbers (arrival times of jobs
in the k'™ stage).

Main-Program // PEG model in Figure 5.48 and Table 5.9 //
Begin
CLK=0;
Execute-Initialize-routine (CLK); /I (1) Initialize
While (CLK <500)do{ //te =500
Retrieve-event (EVENT, k, TIME); CLK = TIME; // (2) Time-flow mechanism

Case EVENT of { /" (3) Execute event-routine
Enter: Execute-Enter-event-routine (k, CLK);
Load: Execute-Load-event-routine (k, CLK);
Unload: Execute-Unload-event-routine (k, CLK);

} /I end-of-case
}; /I end-of-while
Execute-statistics-routine (CLK); /I (4) Output statistics
End

Fig. 5.49. Main program of the three-stage tandem line simulator for computing AQL.

Initialize: ‘
FNor kg[;ii(3 (IQIK]>0) ;

ew QUK ‘ ! (CLK>500
MK = 1: tlk] (?)
) | L
SumT=0; L) {QKI> AT; MKl {Mikg++; | v
N=0; | AT=ClLKta=Exp()} tIKJ= (=1)'Exp(5)+ (k=2 'Exp(d)+ IF(k=3) (N ! | statistics:

| AT Qi) (kE3)'Exp(3);} SumT+=(CLK-ATY} + | AT = SumT /N

Fig. 5.50. Augmented event graph model for collecting AST statistics.

140 PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

Initialize: | | {U=Uni(0.1; | =
Fors=0~3{ |! j=(U>0.26)+ ; e
Newals | (074 R
J'Il[ss]];d' } s=routefj 0] {dt=CLK-Bef[s; {dt=CLK - Bef[s]; {Mis]++; 2 |Tee
SumQ[s}= 0; SumQls] += |Qls][‘dt; SumaQls] += [Q[s]*dt; JTIsI=) e EEE
Befls]=0 [ips] Befls]=CLK; Bef[s] = CLK; : o E
k (i p)>Qlsl) Qlsl~>, p); Misl-; $1a
Read { tp= Exp(fj,p]); (ns=4) 255
iy I (4 JTIs) tp += ;) BES
delay(s,ns]; " (ns #4) e=routel,p+;
ts = 30; td= delay[s,ns];}

Fig. 5.51. Augmented PEG model of a simple job shop for collecting AQL statistics.

5.7.2 Simple Job Shop PEG Simulator

In this section, the simple job shop model covered in Section 5.5.2 (Fig. 5.18)
and in Section 5.6.4 is adopted as a more general example of developing a
PEG simulator. As described in Section 5.6.4, the simple job shop consists of
four single-machine stations (s = 0, 1, 2, 3) and handles three job types (j =0,
1, 2). The routing sequences and mean processing times are as given in Table
5.5; the transport time delays are as specified in Table 5.6. An augmented PEG
model of this simple job shop is shown in Fig. 5.51, where EOS denotes the
end-of-simulation condition.

In this example, the parameter variables are not equal among the events,
which may cause difficulty in implementing the event routines. A simple
method to avoid this difficulty is to use the same list of parameter variables
for all event routines. In this case, the parameter list (j, p, s) is used for all event
routines. For example, the event routines for the Arrive event and Enter event
can be obtained as follows:

Execute-Arrive-event-routine (j, p, s, Now) // Fig. 5.51 //
{ U =0Uni (0, 1); J = (U > 0.26) + (U > 0.74);
s = route [j, 0];
Schedule-event (Arrive, 0, 0, 0, Now +12);
Schedule-event (Move, j, 0, s, Now);

}.

Execute-Enter-event-routine (j, p, s, Now) // Fig. 5.51 //
{ SumQ[s] += |Q[s]| * (Now - Bef[s]); Bef[s] = Now;
(3, p) — Qlsl;
If (M[s] > 0) Schedule-event (Load, 0, 0, s, Now);

{110 / [slowns = [s]TOV ([sFod-31T1D)«I(5)OI =+ [s]owns } ¢~0 = s 104 sonspels g
I (315)
(Dixg L0 p=su ¢
(s’d‘foroy su‘r + d[P p=jsu 1 ‘[su‘s]Aerop = p1¢[1 + d ‘[J]omor=su (s‘d‘[)redo(9
(s)peoT s 0 o<islol ¢
(s‘d‘Mredog sdef 0 anuy, 1 L=[s]Lf SN (s‘d)peojun S
1=+ dy ([slLr# D g1 ([d Th)dxg = dy -—[s]n
(s'd‘lpeoqun sdf oni, (d*D<[s]O 71D = [shed ([s]1ed—1T1D)«I[s]OI =+ [s]owns (s)peo1 ¢
(s)peo] s 0 o<[sIm 1 [slo<(d D 310 = [shed ([sled—IT1D)«[s]Ol =+ [s]ouns (s'd'Doyug ¢
(s‘d‘Daoyug sdef 0 aniy, 1 (s‘d‘l)oroN 4
(s‘d‘l)onoN so‘f 0 anuy, Z
QALY — 4! oni, T foflemor=s:(yL0<)+ (9z0 <) =(T'0)run =N Aty
0€ =81 p~0 = 3 pue ¢~0 = [10§ {[¥
‘|Aerop} peay 6~ = 3 pue g~0 = [10§ {[y “[]s [y “[Joynox } peoy
QALY 0 oni, 1 H{o=[seg =[s]owns = [s]Lr ‘T = [S]N :[s]O MON} €~0 =5 104 szieniu] 0
JUOAT IXON Iojowered Ae[o(q ‘puo) a8pg 98uey) eI JuoAT ON

IS°S 23y ur umoys PPOA DA Y} 10§ JQEL, UONISUBL, JUIAF *0T'S ATAVL

141

142 PARAMETERIZED EVENT GRAPH MODELING AND SIMULATION

Exercise 5.3. Write a main program (in a pseudocode form) for the PEG
simulator that executes the augmented PEG model shown in Fig. 5.51.

5.8 REVIEW QUESTIONS
5.1. What are the two common cases for parameterizing an ordinary event
graph?

5.2. What is the difference between a parameter variable and a parameter
value?

5.3. What is the difference between a parameterized event transition table and
an ordinary event transition table?

5.4. Compared to the ordinary event graph model, what are the additional
elements in the algebraic structure of the PEG model?

5.5. What is the repeating pattern of event nodes in a limited buffer tandem
line model?

5.6. What is a simple job shop?

5.7. What are the state variables in the event graph model of a simple job
shop?

5.8. Where do you declare the state variables in SIGMA? Where do you ini-
tialize them?

I CHAPTER 6

Introduction to Activity-Based
Modeling and Simulation

In all things there is a law of cycles.
—Publius C. Tacitus

6.1 INTRODUCTION

Our lives are full of activities: It is through activities that something meaning-
ful is achieved. An activity always involves at least one actor. In our definition
of a discrete-event system, it is often the case that the actor is a resource and
the target of an activity is a transient entity to be served or processed by the
resource. In a machine shop, the resource is a machine and the transient entity
is a job. The outcome of one activity may trigger other activities. If we can
identify the relationships among the activities, we can better understand the
present situation and may be able to predict future situations.

Thus, activity-based modeling is a natural way to represent our knowledge
of a system. When we describe a real-life dynamic situation, we naturally
follow a sequence of steps, i.e., activities that are involved in the situation. In
activity-based modeling, the dynamics of the system are represented using an
activity cycle diagram (ACD), which is a network model of the logical relation-
ships between the activities. An ACD is a formal model that can be executed
with a well-defined algorithm.

The single server system introduced in Chapter 2 (Figs. 2.6 and 2.8) is shown
in Fig. 6.1: A job arrives at the system as a result of a Create activity performed
by the Job Creator, and it is served by the Machine through the Process activ-
ity. Each job goes through the system in the following sequence: After being
created for t, minutes, it stays in the passive resource Buffer until it can be
loaded onto the Machine, and then it is processed by the active resource

Modeling and Simulation of Discrete-Event Systems, First Edition. Byoung Kyu Choi and
Donghun Kang.
© 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

143

144 INTRODUCTION TO ACTIVITY-BASED MODELING AND SIMULATION

Unlimited
Job Source

Unload

Fig. 6.1. Reference model and ACD model of a single server system.

Machine for t, minutes. The system state is defined by the states of the resources:
Job Creator (C =1 if idle, C =0 if busy), Machine (M = 1 if idle, M = 0 if busy),
and Buffer (Q = number of jobs in the Buffer).

The purpose of this chapter is to explain the essential features of activity-
based modeling and simulation (M&S) using an ACD. The advanced features
and special applications of the activity-based M&S will be covered in Part 111
(Chapter 10) of this book. After studying this chapter, you should be able to
do the following:

1. Construct an activity transition table for an ACD model

2. Build ACD models with various “template systems” such as a flexible
multi-server system, limited buffer tandem line, nonstationary Poisson
process, batched service multi-server line, and inspection-repair line

3. Build ACD models for simple service systems such as restaurants, gas
stations, coffee shops, and car repair shops

4. Build an ACD model for a PERT (program evaluation and review tech-
nique) system

5. Build an ACD model for a conveyor-driven serial line

6. Construct parameterized ACD models of n-stage tandem lines and of a
job shop

7. Simulate various types of ACD models using the formal ACD simulator
ACE®

The remainder of this chapter is organized as follows. The execution rules
and specifications of ACD are described in Section 6.2, and ACD modeling
templates and examples are given in Section 6.3 and Section 6.4, respectively.
The definition and execution rules of a P-ACD as well as its application to
modeling tandem lines and job shops are given in Section 6.5. How to simulate

DEFINITIONS AND SPECIFICATIONS OF AN ACTIVITY CYCLE DIAGRAM 145

ACD models using the formal ACD simulator ACE® is explained in detail in
the last section.

6.2 DEFINITIONS AND SPECIFICATIONS OF AN ACTIVITY
CYCLE DIAGRAM

The core idea of activity-based M&S was conceived by Tocher in 1957 [Hol-
locks 2008] when he was investigating the congestion control problem at the
United Steels in the United Kingdom. Tocher argued that “in more complex
plants, in which there is a multiplicity of possible routes for the steel through
the plant, it is possible to minimize congestion and maximize the rate of flow
by a (simulation-based) scheduling procedure” [Tocher 1960, p.50].

Tocher used a flow diagram of activities in modeling the dynamic behavior
of the steel plant (Fig. 6.2). “The plant is regarded as a set of machines, each
with a set of states, progressing as time unfolds through states that change only
at discrete events. At any moment of time, components are grouped together
in activities, which endure for a sampled time, and then become free, after a
possible change of state, to regroup with other components in further activi-
ties” [Tocher 1960, p.59].

The activity flow diagram shown in Fig. 6.2 later evolved into the ACD
where an activity node is denoted by a rectangle and a queue node (or passive
state node) by a circle [Carrie 1988]. This version of the ACD is often referred
to as the classical ACD. However, it has transpired that the classical ACD has
some inherent limitations in handling complex systems [Hlupic and Paul 1994].
In order to enhance the modeling power, concepts of a hierarchical ACD
[Kienbaum and Paul 1994] and an extended ACD [Martinez 2001] have been
proposed. More recently, a formal specification of an extended ACD has been
developed by the authors of this book [Kang and Choi 2011].

Iron from
Blast furnace

| Flow of metal

Ancillary equipment

Fit il f
nozzle to QYc=s

ladle N
Time dependent
\ d activities
\ .

Charge
mixer

Fig. 6.2. Flow diagram of Acid Bessemer steel-making process [Tocher 1960].

146 INTRODUCTION TO ACTIVITY-BASED MODELING AND SIMULATION

6.2.1 Definitions of an ACD

In the classical ACD, an activity typically represents the interaction between
an entity and active resources. (Note that in this book the term entity is used
to denote a transient object that arrives at the system and eventually leaves
the system, while in other ACD literature this term includes resident resources
as well.) An entity or an active resource is either in a passive state called a
queue or in an active state called an activity. Queue nodes and activity nodes
are connected by arcs.

Figure 6.3 presents a classical ACD model for a single server system with
a setup operator. There are two types of entities (Job and Break) and four
types of resources (Job Creator, Machine, Operator, and Break Generator).
The basic conventions for drawing an ACD are as follows:

. Each entity and resource has an activity cycle.

. Each cycle consists of activities and queues.

. Activities and queues alternate in a cycle.

. Activities are depicted by rectangles and queues by circles.

DN B W N =

. A cycle is closed.

The dynamics of an ACD model are described in terms of token variables.
The value of a token variable represents either the state of an active resource
or the number of entities in a passive resource like a buffer. In the ACD model
shown in Fig. 6.3, the token (denoted by a dot “e”) in the Machine Cycle
indicates that the machine is in the Hold state, which is specified as Hold = 1.
The numeric value of a token variable in a queue is specified in a pair of
chevrons <>. For example, the number of tokens in the Q queue is specified
as <3>, indicating that there are three jobs in Q. When the value is zero, the
number may be omitted.

For example, the number of tokens in the Ready queue is not specified
because it is zero. A vector representing the numbers of tokens in the queues
is called a marking. For the ACD model shown in Fig. 6.3, the marking M is a
vector of token variables {C, Q, Hold, Ready, Wait, B, G, BG} and the initial
marking, M, ={1,3,1,0, 1,0, 1, 1}, defines the initial state of the system.

As can be seen in Fig. 6.3, the duration of an activity is also specified in a
pair of chevrons <>. For example, the duration of the Process activity is speci-

[C=1,Q=3,Hold =1, Ready=0, Wait=1,8=0,G=1,8G=1 |

Job Cycle \ , i

] i
Jobs Create Process | Machine Setup Break Generate
0 /- <ta> -- <tp> CyClC <t > <tb <t >
A A

Job Creator Cycle | I U AT T PP L NP —*' Break Cycle \ Breal
:) - ' Opcrdtur Cycle Generator

Cycle

Fig. 6.3. Classical ACD for a single server system with a setup operator.

DEFINITIONS AND SPECIFICATIONS OF AN ACTIVITY CYCLE DIAGRAM 147

fied as <t,> in the activity node. There are two forms of activity cycles: (1) an
entity activity cycle for an entity that has a definite sequence and (2) a resource
activity cycle for an active resource that may perform one or more different
activity cycles in any sequence. In Fig. 6.3, for example, the Operator Cycle,
which is a resource activity cycle has two cycles to choose. In this case, it is
implicitly assumed that a rule exists for choosing one of the two.

6.2.2 Execution Rules and Tabular Specifications of an ACD

An important extension to the classical ACD is the addition of arc conditions
and arc multiplicities, which is often referred to as an extended ACD. An arc
condition is a Boolean expression that must be true in order for the arc to be
enabled, and an arc multiplicity represents the number of tokens passing
through the arc when the enabled activity is executed. An arc condition and
an arc multiplicity define the arc attributes of the arc. When arc attributes are
not specified, by default, the arc condition is true and the arc multiplicity is 1.

Figure 6.4 shows a portion of an extended ACD in which (1) Q1 is an input
queue, (2) cl is an input arc condition, (3) m1 is an input arc multiplicity, (4)
c2 is an output arc condition, (5) m2 is an output arc multiplicity, (6) Q2 is an
output queue, and (7) A2 and A3 are influenced activities of activity Al
(because the execution of Al directly influences the start of A2 and A3).
Queues S1, S2, and S3 represent the numbers of idle resources required to
perform activities A1, A2 and A3, respectively. A2 has a higher priority over
A3 because A3 is only enabled when the A2 resource is busy (S2 = 0).

In the following, the execution rules of an extended ACD are described for
the Al activity in Fig. 6.4. An activity is confined by two events: an activity-
begin event and an activity-end event. Once an activity-begin event occurs, the
activity-end event is bound to occur after the time delay of the activity dura-
tion. Thus, the activity-end event is called a bound-to-occur event (BTO event).

The At-begin execution rules of activity Al in Fig. 6.4 are as follows: “If the
input arc condition (cl) is true and the number of tokens in the input queue
Ql is at least its arc multiplicity (Q1 2 m1 > 0 or Q1 > m1 = 0) and if there is
at least one token in the queue S1 (S1 > 0), then (1) the A1 activity will begin
after de-queuing m1 tokens from Q1 (Ql = Q1 — ml) and one token from
S1 and (2) its BTO event is scheduled to occur after the activity duration
(t;).” Similarly, the At-end execution rules are expressed as “If the output arc

€ Ll e (€2) o E
—o@ pm < 4> — Mz Q2 4> @

Fig. 6.4. Illustration of the arc attributes in an extended ACD.

148 INTRODUCTION TO ACTIVITY-BASED MODELING AND SIMULATION

condition (c2) is true, then (1) m2 tokens are created and en-queued into the
output queue Q2 and (2) a token is returned to queue S1. Then, the influenced
activity A2 is examined first for execution, and if A2 is not ready for execution
(i.e. S2 =0), A3 is considered for execution.”

An activity transition table is a formal specification of an ACD in a tabular
form that defines the properties of the ACD. It specifies At-begin condition,
At-begin action, BTO-event time, and BTO-event name of each activity. Here,
updating state variables is referred to as an action. The table also specifies
At-end condition, At-end action, and Influenced Activity for each output arc
of the activity. Table 6.1 is an activity transition table of the ACD shown in
Fig. 6.4. This table may also be regarded as an execution rules table because
the execution rules are summarized concisely within it. In addition, the initial
marking and enabled activities (i.e., activities whose At-begin conditions are
true) are specified in the Initialize row of the table.

Table 6.2 gives another illustration of an activity transition table for the
single server system ACD shown in Fig. 6.1. The single server system ACD
consists of two activities (Create, Process) and four queues (C, Q, M, Jobs).
Since the Jobs queue denotes the outside world in which there are an infinite
number of jobs (i.e., the number of tokens is), it is disregarded when inter-
preting the ACD.

Exercise 6.1. Construct an activity transition table of the classical ACD in
Fig. 6.3.

6.2.3 Algebraic Specifications of an ACD

As mentioned in Chapter 2 (Section 2.3.3), a classical ACD is essentially a
timed Petri net. A Petrinet is a bipartite directed graph, so it is a classical ACD.
An activity node in the ACD corresponds to a (timed) transition in a Petri net,
and a queue node relates directly to a place. A Petri net consists of a finite set
of places and a finite set of transitions, and an arc runs from a place to a transi-
tion, or vice versa. The places from which an arc runs to a transition are called
input places of the transition; the places to which arcs run from a transition are
output places. The places in a Petri net may contain a number of tokens. Any
distribution of tokens over the places will represent a state of the net called a
marking [Peterson 1981]. Due to their common structure, the algebraic specifi-
cation of an ACD is derived from a Petri net. Further discussion on the Petri
net and its relationship to the ACD is presented in Chapter 10.

An ACD is a bipartite directed graph consisting of a set of activity nodes
(A) and a set of queue nodes (Q). The arcs connecting the activities from the
input queues are defined in the input function (/), and those connecting the
output queues from the activities are defined in the output function (O).
Associated with each activity node (a € A) is a time delay (7, € T), and a
number of tokens (u, € p) is specified for each queue node (¢ € Q) with their
initial marking u,. Thus, a classical ACD model M can be defined as 7-tuple
structure, as follows:

[} = samanoy pajqouzg {0 =70 = TO ‘1 = €S = TS = TS} = Sunywpy jmug azIfenu]
(0<¢S)
% (0<Z0D)
€V €S anuy, I S ALEINS | g ‘—€S —70 % (0=2S) €V ¢
(0<71S)
(A S aniy, I [AZZLEIE 9 ‘—7S —20 % (0<20) A% 14
VTV Tw+70 =70 () 4 —IS <19 »
v TS anif, T TVIUAT B} Tw-10=10 (wzI10) ¥ (19) v T
KIAn0Y uonoy uonipuo) 2y QBN Qg uonoy uonIpuo) Aanoy ON
posuanpuy
puoy aA-OLd u13aq-}y

°9 23y Ul OV Y3 Jo d|qeL, uonisuel], JANdY I'9 ATIVL

149

150 INTRODUCTION TO ACTIVITY-BASED MODELING AND SIMULATION

TABLE 6.2. Activity Transition Table of the Single Server System ACD in Figure 6.1

At-begin BTO-event At-end
Influenced
No Activity Condition Action Time Name Arc Condition Action Activity
1 Create (C>0) C—; t, Created 1 True CH+; Create
2 True Q++; Process
2 Process (Q>0)& Q—; ty Processed 1 True M++; Process
M>0) M—;

Initialize Initial Marking = {C =1,M =1, Q = 3}; Enabled Activities = {Create}

M=<A,Q,1,0,T, u, yp>, where
A =ay, a, - - - a,} is the finite set of activities;
0 =1{q1, q> - - - g} is the finite set of queues;

I=1{i,c O |ae A} is the input function, which is mapped from a set of
queues to an activity;

O ={o,c Ol a € A}is the output function, which is mapped from an activ-
ity to a set of queues;

T ={t, € Rjla e A} is the time delay function;

1 ={u, € Nilq e Q} is the finite set of the number of tokens for each queue;
and,

Ho={w, 1 - - - 1.} is the finite set of initial number of tokens for each queue.

As an example, the single server system ACD in Fig. 6.1 may be specified
as follows:

M=(A 01 OT,u W), where

A ={ay, a,} = {Create, Process}

Q ={a1, 42, g5, g4} = {Jobs, C, Q, M}
I(a;) ={q1, g2}, 1(a2) = {q5, q4}
O(a;) = {q2, g5}, O(a2) = {q1, q4)
T(a;) =t,, T(ax) = ¢,

K= (i, o, s, L)
Bo={tt=c0, =1, s =3, uy = 1}

An algebraic structure of an extended ACD is defined similarly [Kang and
Choi 2011].
6.3 ACTIVITY CYCLE DIAGRAM MODELING TEMPLATES

The single server system ACD model shown in Fig. 6.1 is the baseline ACD
model in which a resource processes one entity at a time and the buffer has

ACTIVITY CYCLE DIAGRAM MODELING TEMPLATES 151

[C=M1=M2=1,Q1=Q2=0 |

_C=1, M=4, Q=0
(Jobs <
NG
Create<t> |— :@

Fig. 6.6. ACD model of a fixed multi-server system with four identical servers.

an infinite capacity. This baseline model can be embellished to cover more
complex situations. Most ACD modeling templates covered in this section are
taken from the event graph modeling templates introduced in Section 4.4 of
Chapter 4. The templates involving event canceling are covered in Chapter 10.
The ACD modeling templates presented here can be used as building blocks
for modeling large systems.

The single server ACD model of Fig. 6.1 is easily extended to a two-stage
tandem line ACD model by adding one more stage (i.e., Process activity) as
shown in Fig. 6.5. The two-stage tandem line ACD model has two Process activi-
ties (Process1 and Process2) with two time delays (t; and t,, respectively).

Exercise 6.2. Construct an ACD model of a three-stage tandem line.

6.3.1 ACD Template for Flexible Multi-Server System Modeling

The single server system depicted in Fig. 6.1 consists of a single server and a
buffer with an unlimited capacity. If there are two or more identical servers
in the system, it is a multiple server system. Figure 6.6 shows the ACD model
of a fixed multi-server system with four identical servers. The initial marking
isy={C=1,M=4,Q=0).

Consider the case in which the number of servers varies over time, which
is called a flexible multi-server system. Let N(t) denote the number of servers
at time t, then the ACD model of the flexible multi-server system becomes the
one shown in Fig. 6.7. CLK denotes the current simulation clock time.

An activity transition table for the flexible multi-server ACD in Fig. 6.7 is
given in Table 6.3. At every At-begin execution time, the state variable D,
which denotes the change in the number of servers, is updated and the Process
activity is started if its At-begin Condition (M > D) & (Q > 0)) is true. The

152 INTRODUCTION TO ACTIVITY-BASED MODELING AND SIMULATION

C=1, M=Ng, Q=0

Create <t,>
{D = Ny— N[CLK]} {D = No- N[CLK]}

Fig. 6.7. ACD model of a flexible multi-server system.

TABLE 6.3. Activity Transition Table of the Flexible Multi-Server ACD Given in Figure 6.7

At-begin BTO-event At-end
Influenced
No Activity Condition Action Time Name Arc Condition Action Activity
1 Create (C>0) C—; t, Created 1 True C++; Create
D=N,- 2 True Q++; Process
N[CLK];
2 Process (M>D)& M—;Q—; t; Processed 1 True M++; Process
(Q>0) D=N;-
N[CLK]

Initialize Initial Marking = {C =1, M = N, Q = 0}; Enabled Activities = {Create}

initial marking is {C = 1, M = N;, Q = 0}. As a convention, the state variable
updates are specified beneath the activity node in the ACD and are described
in the At-begin Action entry of the activity transition table.

6.3.2 ACD Template for Limited Buffer Tandem Line Modeling

As discussed in Chapter 4 (Section 4.4), balking may occur if the waiting space
for the arriving jobs becomes full, and blocking may occur if the unloading
space of a machine is full. In activity-based modeling, the limited buffer
problem is managed using Kanbans, which is the work-in-progress (WIP)
control mechanism used in just-in-time (JIT) production or lean manufactur-
ing. A Kanban is a kind of entrance ticket that is issued to an incoming entity
and is collected when the entity leaves the system.

Consider the unlimited buffer two-stage tandem line model shown in Fig.
6.5. Let’s assume that the buffer capacity in front of Stagel is three (K1 = 3)
and the buffer capacity between Stagel and Stage?2 is four (K2 =4).The capac-
ity of the waiting space or buffer is represented by the number of tokens (or
Kanbans) in queues K1 and K2. The ACD model of the two-stage limited
buffer tandem line is shown in Fig. 6.8. The Enter activity is allowed to start
only when at least one token is available in K1. The Unloadl activity is pro-
hibited (i.e., blocked) when there are no tokens in K2.

ACTIVITY CYCLE DIAGRAM MODELING TEMPLATES 153

[C=M1=M2=1, K1=3, K2=4, Q0=Q1=Q2=Q3=Q4=Q5=0 |

®

Fig. 6.8. Limited buffer tandem line modeling (balking and blocking).

C=1,M=1,Q=0

Process
<ts>

{d= Exp(1/Rzy); Ratio=R(CLK+ d)/Romgy; U=Uni(0,1);)

Fig. 6.9. ACD model of a single server system with nonstationary arrival rates.

C=1,M=2,Q=0 N

Create <t,> Process <ty

Fig. 6.10. ACD model of a batched service multi-server system.

6.3.3 ACD Template for Nonstationary Arrival Process

The thinning method of generating inter-arrival times under a nonstationary
Poisson process was explained in Chapter 3 (see Fig. 3.4 in Section 3.4.3), and
an event graph model of a single server system subject to fluctuating arrival
rates was given in Chapter 4 (Fig. 4.9 in Section 4.4.1).

Figure 6.9 shows an ACD model of a single server system with fluctuating
inter-arrival times sampled from a nonstationary Poisson process. The time
delay (d) of the next Create activity is computed with the maximum arrival
rate (Ry.y), and then the generated job is sent to queue Q only when it passes
the thinning test (i.e., U < Ratio), where CLK is a function returning the
current simulation clock, R() is the arrival rate function, Exp() is an exponen-
tial random variate generation function, and Uni(0,1) is a standard uniform
random number generator.

6.3.4 ACD Template for Batched Service Modeling

An ACD of a batched service multi-server is shown in Fig. 6.10, where the
multiplicity of the (directed) arc from queue Q to activity Process is set to

154 INTRODUCTION TO ACTIVITY-BASED MODELING AND SIMULATION

TABLE 6.4. Activity Transition Table for the ACD in Figure 6.10

At-begin BTO-event At-end
Influenced
No Activity Condition Action Time Name Arc Condition Action Activity
1 Create (C>0) C—; t, Created 1 True C++; Create
2 True Q++; Process
2 Process (Q=2b)& Q=0Q-b; t, Processed 1 True M++; Process
M>0) M—;

Initialize Initial Marking = {C=1,M =2, Q = 0}; Enabled Activities = {Create}

Create1 0 m_“» Process! | (:) > Process2
<131> <f$1> <'s2>

Create2 . n

i <t> @

""""" @ [[C1=C2=TM1=M2=1,P1=P2=Q=0]

Fig. 6.11. ACD model of a joining operation line.

batch size b. In general, there are a maximum number (b) and a minimum
number (a) of jobs that can be processed at one time, which is denoted as
a <J < b, where J is the actual number of jobs in a batched service. If a = b, it
is a full batched service; if a < b, it is a partial batched service. The activity
transition table of the ACD model for a full batched service system is given
in Table 6.4.

Exercise 6.3. Revise the ACD in Fig. 6.10 to create a partial batched service
model.

6.3.5 ACD Template for Joining Operation Modeling

An ACD model for a production line that joins two parts (Job-1, Job-2) is
shown in Fig. 6.11, where the Job-1 part is treated as the main entity. When m
parts of Job-1 and n parts of Job-2 are joined, they are specified as an arc
multiplicity.

6.3.6 ACD Template for Probabilistic Branching Modeling

Figure 6.12 presents an ACD model for probabilistic branching where 90% of
the jobs pass inspection and go to queue P for the next processing. The remain-
ing jobs are moved to queue S for the scrapping operation. A probabilistic
branching is modeled as an arc condition involving a uniform random number
(U). The activity transition table of this ACD model is given in Table 6.5.

ACTIVITY CYCLE DIAGRAM MODELING TEMPLATES 155

G =09 .
@ ='G &
{U=Uni(0,1)} @

Fig. 6.12. ACD model for probabilistic branching.

[C=M1=M2=M3=1, I=P=5=0]

TABLE 6.5. Activity Transition Table for the ACD in Figure 6.12

At-begin BTO-event At-end
Influenced
No Activity Condition Action Time Name Arc Condition Action Activity
1 Create (C>0) C—; t, Created 1 True C+t; Create
2 True I++; Inspect
2 Inspect (I>0)& I—Ml—; t Inspected 1 True M1++; Inspect
(M1 >0) U = Uni(0, 2 (U<09) P+ Process
1); 3 (U>09) S++ Scrap
3 Process (P>0)& P—; t, Processed 1 True M2++; Process
M2>0) M2—;
4 Scrap (§S>0)& S—; ty Scraped 1 True M3++; Scrap
M3>0) M3—;
Initialize Initial Marking ={C=M1=M2=M3=1,1=P =S =0}; Enabled
Activities = {Create}
Jobs
Create<ta> |- () - Process <ts>

{If (ttf<10) {ts= ttf+80; ttf=500;} else {ts=10; ttF-=10;} }

Fig. 6.13. ACD for a single server system with machine failure.

6.3.7 ACD Template for Resource Failure Modeling

In Chapter 4 (Section 4.4.1), two cases of resource failure event graph models
were considered: a failure model where the server may fail even when it is
idle, and a model where a failure is only allowed when the server is busy. In
this section, only the second case of resource failure is modeled using an ACD.
The ACD modeling of the first case will be discussed in Chapter 10 (for which
we need a canceling arc).

Figure 6.13 presents an ACD model of the single server system with machine
failure where a failure is only allowed when the server is busy and the

156 INTRODUCTION TO ACTIVITY-BASED MODELING AND SIMULATION

Worker-A or by Worker-B . Worker-B)<--------""" M3 is operated by Worker-B

Fig. 6.14. Reference model of a worker-operated two-stage tandem line.

TABLE 6.6. Activity Transition Table of the ACD Model of Figure 6.13

At-begin BTO-event At-end
Infl.
No Activity Condition Action Time Name Arc Condition Action Act.
Create (C>0) C—; ta Created 1 True C++; Create
2 True Q++; Process

Process (Q>0) & Q—; M—;If ts Processed 1 True M-++; Process

M>0) (ttf<10)
{ts = ttf + 80;
ttf = 500;}
else {ts = 10;
ttf —=10;}

Initialize

Activities = {Create};

interrupted job is discarded. Its event graph model was given in Fig. 4.14 in
Chapter 4, where the service time was 10 (ts = 10), repair time was 80 (tr = 80),
and the value of remaining time-to-failure (ttf) was initially set to 500. As with
the event graph model, the variable ttf is regarded as a state variable. The
activity transition table of this ACD model is given in Table 6.6.

6.4 ACTIVITY-BASED MODELING EXAMPLES

System modeling is an art that may only be mastered by learning the best
practices and internalizing them through relentless practices. This section pres-
ents basic ACD modeling examples including a worker-operated tandem line,
an inspection-repair line, a restaurant, a simple service station, a car repair
shop, a project management system, and a conveyor-driven serial line. We use
the terms serial and tandem interchangeably. More advanced examples involv-
ing parameterized ACDs will be presented in Section 6.5 and in Chapter 10.

6.4.1 Activity-Based Modeling of a Worker-Operated Tandem Line

Figure 6.14 depicts a reference model of a worker-operated tandem line. The
first operation is performed on machine M1, which is operated by Worker-A

Initial Marking = {C =1, M =1, Q = 0}; Variables = {ts = 10, ttf = 500}; Enabled

ACTIVITY-BASED MODELING EXAMPLES 157

or Worker-B; the second operation is performed on either of the two identical
machines M2 and M3. M2 is operated by Worker-A and M3 by Worker-B.

If the machines are operated unattended, the ACD model of the line would
be that of Fig. 6.5 with M2 = 2 (and the Depart activity is added). One rule
for building an ACD model is that “operations involving different resources
are treated as different activities.” Thus, the process activity for M1 is divided
into two activities: (1) Processla performed by Worker-A and (2) Processlb
performed by Worker-B. The resulting ACD model is given in Fig. 6.15.
Worker-A is given a higher priority over Worker-B for processing a job on
M1, and M2 has a higher priority over M3 for the second operation. However,
the Worker-A (Worker-B) cycle does not have a specified sequence, and a
dispatching rule may be required in order to choose between Processla (Pro-
cess1b) and Process2 (Process3).

6.4.2 Activity-Based Modeling of an Inspection-Repair Line

Figure 6.16 is a reference model of an inspection-repair line in which two types
of jobs are inspected on a single inspection machine (I) and are repaired by a
single repair machine (R). Another rule for building an ACD model is that
“jobs that follow separate paths are treated as separate entities.” Thus, by using
this rule and employing the probabilistic branching template (Fig. 6.12), an
ACD of the inspection-repair line is obtained as given in Fig. 6.17. In Fig. 6.17,
note that the arcs from the final activity nodes (i.e., Delivery-1, Delivery-2, and
Scrap) to the source queue nodes (J1 and J2) are omitted for brevity.

[C=WA=WB=M1=M2=M3=1, Q1=Q2=Q3=0 |

Fig. 6.15. ACD model of the worker-operated tandem line in Fig. 6.14.

Pass (J1: 98%, J2: 95%)

Deliver

—_— o Inspect

Fail (J1: 2%, J2: 5%)

Pass (90%)

Semp]

Fig. 6.16. Reference model of an inspection-repair line.

Fail(10%)

158 INTRODUCTION TO ACTIVITY-BASED MODELING AND SIMULATION

[C1=C2=1, M1=M2=I1=R=D1=D2=S=1, Q1=Q2=Q3=Q4=F1=F2=F3=P1=P2=0 |

Create 1 Proc-2 ‘..mspecﬁ (U>.98) : (U<9) |

L {U=UniO 1)} {U=Uni(0,1))‘

- @: o

Create 2‘-».—d Proc-2 F» >l Inspect-2 [/(U>.95) :
T {U=Uni, 1) . -
@ @ ‘

Fig. 6.17. ACD model of the inspection-repair line in Fig. 6.16.

(U>.9)

Diners e
0

Creeted: Seated: Order: Served: Eat: Pay:
@ @—’O" H "Q’ TH *Q" W "Q" TIW " T Q—’ H

Occupy a table

v

Fig. 6.18. Lifecycle of the entity in a restaurant model.

Occupied Cleaning:
by diners W
Greet Accept
I diner i payment

(a) (b) ()
Fig. 6.19. Lifecycle of the (a) table, (b) head waiter, and (c) waiters.

6.4.3 Activity-Based Modeling of a Restaurant

Consider a restaurant served by a head waiter (H) and two waiters (W) [Activ-
ity cycle diagram 2012]. There are five tables (T) in the restaurant. A batch of
diners coming together is regarded as an entity. The life cycle of an entity
(customer batch) is Arrive — Greeted (by H) — Seated (at T by H) — Order
(at T to W) — Served (at T from W) — Eat (at T) — Pay bill (to H), which
may be represented as the ACD shown in Fig. 6.18.

The life cycle of a table (T) is “occupied by diners” and “cleaned,” which
can be modeled as in the ACD of Fig. 6.19(a). The head waiter (H) greets
diners, seats them on a table, and accepts payment, which is may be modeled
as in the ACD of Fig. 6.19(b). Waiters (W) take orders, serve meals, and clean
the table after the diners leave, which is modeled as the ACD of Fig. 6.19(c).
By combining these individual ACDs, an ACD model of the restaurant system
can be obtained as shown in Fig. 6.20. Note that the two resource cycles, H
and W, have an indefinite sequence.

ACTIVITY-BASED MODELING EXAMPLES 159

C=H=1, T=5, W=2

B O B =

Hours (120 min) 0000- | 0200- | 0400- | 0600- [0800- [1000- | 1200- | 1400- | 1600- | 1800- | 2000- | 2200-
0159 | 0359 | 0559 | 0759 | 0959 | 1159 | 1359 | 1559 | 1759 | 1959 | 2159 | 2359

Index (k) 0 1 2 3 4 5 6 7 8 9 10 11
Arrival rate/min: R[k]| 0.00 | 0.00 | 0.00 | 0.02 | 0.10 | 0.30 | 0.40 | 0.50 | 0.40 | 0.10 | 0.02 | 0.00
No. of servers: N[k] 0 0 0 0 3 & 2 5 3 1 1 0

(1R ERL{1} (Q>0) & (M > Ng-N[k]) (@>0) & (M > Ng-N[k])

Riax= 0.5, Ng=5,

(RND<Ratio)

Q=0,M=N,,
For k=0~11{
Read {R[k], N[k]}
{k= MOD{CLK/120;12}; {@=Q+1} {M=M-1; M=M+1;
Ratio= RIK]/Ryax} Q=0Q-1} k= MOD{CLK/120;12};}

Fig. 6.21. Input data for a flexible multi-server system and its event graph model.

6.4.4 Activity-Based Modeling of a Simple Service Station

A simple service station, like a gas station or coffee shop, is a flexible multi-
server system (see Section 6.3.1) with nonstationary arrival rates (see Section
6.3.3). Figure 6.21 presents the table showing the arrival rates and number of
servers over a 24-hour period together with a SIGMA-compatible event graph
model of the flexible multi-server system that is reproduced from Section 5.6.2
in Chapter 5 (Table 5.4 and Fig. 5.31). In the event graph model, CLK is a
built-in function returning the simulation clock (in minutes), and the current
simulation time CLK is converted to the index k using the modulus function
k = MOD (CLK/120, 12).

The customer arrival rates (per minute) are 0.00 for 00:00-05:59, 0.02 for
06:00-07:59, 0.10 for 08:00-09:59, etc. Thus, we have R[0] = R[1] = R[2] =0,
R[3]=0.02,R[4] =0.10, etc. The maximum arrival rate is 0.5 during 14:00~15:59
(R[7] =0.5). The number of servers during the day hours (8:00~17:59) is three,
with a peak level of five during 2:00~3:59 p.m. (N[7] =5). All servers are identi-
cal and their service times are exponentially distributed with a mean of 9. A

160 INTRODUCTION TO ACTIVITY-BASED MODELING AND SIMULATION

[Rem05.Ns=8 ROZNZ
Jobs ¢
& =
‘ 7 (M>No-N[K) + :
" (U<Ratio) m ot
Create <Exp(1/Rpay) : » Q Process <Exp(9)>

{U=Uni(0,1); k=(CLK/120)%12; Ratio=R[K]/Ras } {k=(CLK/120)%12; }

Fig. 6.22. ACD model of the flexible multi-server system given in Fig. 6.21.

TABLE 6.7. Activity Transition Table of the ACD Model of Figure 6.22

At-begin BTO-event At-end
Infl.
No Activity Condition Action Time Name Arc Condition Action Act.
1 Create (C>0) C— U= Exp(1/ Created 1 True C++; Create
Uni(0,1); Rix) 2 (U< Ratio) Q++; Process
k = (CLK/
120)%12;
Ratio =
RIK]/Rpas;
2 Process (Q>0)& Q—;M—; Exp(9) Processed 1 True M-++; Process
M>N;- k=(CLK/ 2 True — —
N[k]) 120)%12;

Initialize Initial Marking = {C=1,M =5, Q = 0}; Variables = {R,.,x = 0.5, N, = 5, Read
{R[K], N[K]} for k = 0~11};
Enabled Activities = {Create};

formal ACD model of the flexible multi-server system is presented in Fig. 6.22,
and its activity transition table is given in Table 6.7.

6.4.5 Activity-Based Modeling of a Car Repair Shop

Figure 6.23 presents a reference model and an event graph model of a car
repair shop under the same operator policy that was presented in Section 4.5.2
of Chapter 4 (Fig. 4.20 and Fig. 4.21). The fasten operation is performed by a
technician; an inspection operation needs both a technician and a repairman;
a repair operation is handled by a repairman. The same operator policy refers
to a policy where a car is fastened and inspected by the same technician and
is inspected and repaired by the same repairman. Thus, a technician stands by
after fastening a car until a repairman is available. There are three technicians
(T =3) and two repairmen (R = 2) in the car repair shop.

An ACD model and an activity transition table of the car repair shop are
given in Fig. 6.24 and Table 6.8, respectively. Note that the ACD model is
almost identical to the reference model. The initial state of the systemis {C=1,
T=3,R=2,Q1=0Q2=Q3=0}.

ACTIVITY-BASED MODELING EXAMPLES 161

oS ,,—-—/;-=;\ Repairmen (R=2)>4-~ - __
__reae<a> . . b

\
L 4 v 1 U

ﬁil, — ’ ’

0—0 Fasten <t,> ———— 2 Inspect<t> "3 Repair <t> —>
a2 |as]
Buffer1 Buffer2 Buffer3

Fig. 6.23. Reference model of a car repair shop.

[C=1, T=3,R=2, Q1=Q2=Q3=0 |

O e 2 e ;

[

! :
-~ Create [~ @ Fasten @ Inspect @ Repair
<t,> <t,> <t,> <t>

J
Fig. 6.24. ACD model of the car repair shop given in Fig. 6.23.
TABLE 6.8. Activity Transition Table of the ACD Model of Figure 6.24
At-begin BTO-event At-end
Influenced
No Activity Condition Action Time Name Arc Condition Action Activity
1 Create (C>0) C—; t, Created 1 True C++; Create
2 True Ql++; Fasten

2 Fasten (Q1>0)& Ql—; t; Fastened 1 True Q2++; Inspect

(T>0) T—;
3 Inspect (Q2>0) & Q2—; t, Inspected 1 True Q3++; Repair

(R>0) R—; 2 True T++; Fasten
4 Repair (Q3>0) Q3—; t; Repaired 1 True R++; Inspect

Initialize Initial Marking ={C=1,T=3,R=2,Q1 =Q2 = Q3 =0}; Enabled
Activities = {Create}

6.4.6 Activity-Based Modeling of a Project Management System

Figure 6.25 presents the program evaluation and review technique (PERT)
diagram introduced in Chapter 4 (Fig.4.22). There are nine activities (A1~A9)
and two active resources (R1, R2) involved in the model. Resource R1 is
responsible for A1, A3, and A7, while resource R2 is responsible for A2, A8,
and A9. Again, the non-bottleneck resources performing the remaining activi-
ties are excluded from the model. The PERT diagram is converted to an ACD
by inserting a queue in the middle of each arc of the PERT diagram, as
depicted in Fig. 6.26.

6.4.7 Activity-Based Modeling of a Conveyor-Driven Serial Line

Reproduced in Fig. 6.27 is the reference model of the conveyor-driven serial
line introduced in Chapter 4. There are three work stations connected by

162 INTRODUCTION TO ACTIVITY-BASED MODELING AND SIMULATION

TR ST e S
R cmwD gE
TR et e R ST Ty

Fig. 6.25. Reference model of a project schedule (PERT diagram).

Q1=R1=R2=1, Q2~12=0

Fig. 6.26. ACD model of the PERT diagram in Fig. 6.25.

Station-1 Station-2 Station-3
Buffer-I (Sy) Conveyor-2 (S,) Conveyor-3 (S3) Buffer-O

(C1=°°)—’| (py) H (t) H (P,) H (t &) H (5) }_>(C4=00)

Fig. 6.27. Reference model a three-stage conveyor-driven serial line.

$1=52=83=1, C2=c,, C3=c [L= Load; P= Process; U= Unload; T= Transport; |

Fig. 6.28. ACD model of the three-stage conveyor driven serial line.

accumulating conveyors in serial. Entities are jobs that are stored in the input
buffer (Buffer-I) and are moved along the line. Resources are the Stations and
Conveyors. Activities are the production operations of the Stations and the
transport operations of the Conveyors.

Each station-j for j = 1~3 is specified by its production operation time (p;).
Each accumulating conveyer-j for j = 2, 3 is specified by its transport time (t;)
and capacity (¢;). The activity cycle of a job at each station is Load (L) —
Process (P) — Unload (U). Since an accumulating conveyor acts as a finite
capacity buffer with a Transport (T), each station is modeled using the block-
ing template introduced in Section 6.3.2. The resulting ACD model is pre-
sented in Fig. 6.28.

PARAMETERIZED ACTIVITY CYCLE DIAGRAM AND ITS APPLICATION 163

6.5 PARAMETERIZED ACTIVITY CYCLE DIAGRAM AND
ITS APPLICATION

In Chapter 5, we showed that a complex system with some repeating patterns
could be concisely represented using a parameterized event graph, in which
an event node is allowed to have parameter variables. The classical ACD can
also be parameterized