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Preface 

Queueing is an aspect of modern life that we encounter at every step in 
our daily activities. Whether it happens at the checkout counter in the 
supermarket or in accessing the Internet, the basic phenomenon of queueing 
arises whenever a shared facility needs to be accessed for service by a ]arge 
number of jobs or customers. The study of queueing is important as it 
gravides both a theoretical background to the kind of service that we may 
expect from such a facility and the way in which the facility itself may be 
designed to provide some specified grade of service to its customers. 

Our study of queueing was basically motivated by its use in the study of 
communication systems and computer networks. The various computers, 
routers and switches in such a network may be modelled as individual 
queues. The whole system may itself be modelled as a queueing network 
providing the required service to the messages, packets or cells that need to 
be carried. Application of queueing theory provides the theoretical 
framework for the design and study of such networks. The purpose of this 
book is to support a course on queueing systems at the senior undergraduate 
or graduate Ievels. Such a course would then provide the theoretical 
background on which a subsequent course on the performance modeHing 
and analysis of computer networks may be based. This is indeed the strategy 
adopted for teaching computer networks and their performance modeHing 
and analysis in the Department of Electrical Engineering at I.I.T., Kanpur. 
The material of this book was originally provided as lecture notes to the 
students specialising in the area of telecommunications and networking. 
These students were required to go through a sequence of two courses, the 
first one on queueing and the second on computer networks. The first course 
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on queueing and the associated lecture notes were expected to provide the 
theoretical background for the second course and its related topics. 

The phenomenon of queueing also arises in operations research and 
industrial engineering as the facilities studied in these areas may also be 
modelled as either individual queues or queueing networks. This text will 
also be useful for senior students in this area. This book assumes that the 
student is familiar with the basics of probability theory and its applications. 
It also assumes that the students know and can apply results from the theory 
of transforms, especially Laplace Transfonns and Z-Transforms. lt is 
normally expected that students in electrical engineering or computer science 
would be familiar with this required theoretical background before they 
reach their senior undergraduate or graduate Ievels. Students in other areas 
may require additional mathematical training to acquire this knowledge. An 
appropriate mathematical course covering these topics may be a prerequisite 
for such students who may want to use this book for the study of queueing 
systems. 

This book is basically concerned with the analysis of queueing systems. 
Some example seenarios are usually given for the systems being studied 
even though studies of potential queueing applications are not the primary 
objectives of this text. The analytical models have been carefully developed 
and presented. However, given the expected mathematical background of the 
students using this text, obvious steps in the analysis have usually been 
omitted and left as an exercise for the readers. If this book is used for 
students studying queueing at a Ievel lower than what was suggested earlier, 
the analytical steps might be omitted to focus more on the results which are 
finally obtained. For such students, it may be useful to just cover the basic 
queueing models of Chapter 2 and the basics of queueing networks as given 
in Chapter 5. For students or practicing engineers interested only in applying 
exact or approximate queueing network models for solving their application 
problems, the algorithms provided in Chapters 5 and 6 are recommended. 

Chapter 1 provides an introduction to queues and queueing systems. To 
illustrate the simplicity of basic queueing analysis, this chapter also presents 
the analysis of a simple single server queue. This has been done with the aid 
of some simplitying assumptions and is intended to show that a basic 
queueing analysis may indeed be very easily done. 

Chapter 2 presents the equilibrium solutions of basic queues that may be 
analysed using birth-death models. These queues are mostly ones with 
Poisson arrival processes and exponential service time distributions. We also 
discuss Little's result, which is used extensively in this book and elsewhere 
for the study of queues and queueing networks. Queues with bulk arrivals 
and using the method of stages to approximately solve queues with non-
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exponential servtce time distributions have also been considered in this 
chapter. 

Chapters 3 and 4 deal with the single server queue with Poisson arrivals 
and generat service time distributions. While Chapter 3 focusses on the basic 
queue of this type and presents an extensive analysis of its important 
performance parameters, Chapter 4 discusses some important variations of 
this queue. These variations include queues with vacations of different types 
and various priority queueing models. It also presents the analysis of some 
basic discrete-time queues. (All the other queueing models considered in this 
book are continuous-time in nature.) 

Chapters 5 and 6 of the book deal with queueing networks. Chapter 5 
considers simple open and closed network modelsthat have a product-form 
solution and can be analysed exactly, provided suitable simplifYing 
assumptions are satisfied. Jackson's Theorem is introduced here for a variety 
of queueing networks. We also present the convolution algorithm and the 
mean value algorithm for the exact solution of simple closed queueing 
networks. Norton's theorem for reducing closed queueing networks has also 
been discussed in this chapter. 

Chapter 6 focusses on various algorithms that have been proposed as 
approximate methods of analysis for more complex queueing networks. A 
variety of such algorithms have been presented for both open and closed 
networks. Fork/Join nodes and their analysis in open and closed queueing 
network have also been considered. For open networks, we present the 
GIIG/m approximation of QNA that gives exceptionally good results in most 
situations. Networks where some or all the queues are of finite capacity have 
also been considered. The different blocking models that may be used have 
been presented and discussed in detail in this chapter. Even though these 
networks with blocking cannot be solved in an exact fashion (except with 
very restrictive assumptions) the Maximum Entropy Method does provide a 
reasonably good approximate solution. This has been presented for both 
open and closed networks with repetitive service blocking of different types. 
We have also presented approximate algorithms to handle open and closed 
networks with transfer blocking and open networks with rejection blocking. 

Exact analysis of queueing systems is often difficult. Even with 
simplifYing assumptions and approximations, it may not always be possible 
to obtain an analytical solution. In such cases, one has to take recourse to 
simulations for the study of these systems. Chapter 7 discusses the 
simulation approach and provides some of the basic knowledge necessary to 
meaningfully study queueing systems using simulations. 

This book may be used as a textbook for a course on basic queueing 
theory by limiting oneself to the study of single queues of various types 
using Chapters 2, 3 and 4. The material on queueing networks in Chapters 5 
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and 6 may then be omitted from such a course. Chapter 6 gives summary 
descriptions of various approximation techniques that may be used to solve 
complex queueing networks. These would also be useful for practicing 
engineers who need to solve more complex queueing based network models. 
We have implemented the algorithms described in Chapters 5 and 6 in a 
queueing analysis package QNAT. A beta version of this software is being 
publicly distributed and may be downloaded from the Internet. The 
download details for this package may be obtained from the author. lt should 
be noted that QNAT allows both analysis and simulation of all the queueing 
network models described in Chapters 5 and 6. For simulations, QNAT uses 
the discrete event simulation approach described in Chapter 7. 

Sanjay Kumar Base 



Acknowledgements 

This book would not have been possible without the help and feedback of 
my students at the Indian Institute of Technology, Kanpur. Their inputs 
during my course on Queueing Systems are deeply appreciated. I would like 
to especially thank Animesh Kumar who painstakingly corrected the draft 
notes and made valuable suggestions on the contents of the text. 

My faculty colleagues in I.I.T. Kanpur, N.T.U. Singapore and R.M.I.T. 
University Melbourne helped in deciding the content of the book and its 
presentation format. I would especially like to thank Prof. Les Berry and 
Prof. Richard Harris of RMIT for their suggestions and advice. Prof. Bill 
Henderson of the University of Adelaide had originally suggested that I offer 
a course on queueing as a prerequisite to my course on Computer Networks. 
Since this book evolved from the teaching of that course, I would like to 
thank Bill for motivating this book. I would also like to thank my graduate 
students M.N. Umesh, D.M. Bhaskar, and Hema Tahilramani for their 
valuable inputs to this text. The input received from Prof. D. Manjunath of 
I.I.T. Mumbai is also deeply appreciated. 

The effort involved in writing the original set of lecture notes on which 
this book is based and the preparation of this text would not have been 
possible without the help and support of my wife Aditi and my daughter 
Atreyi. I hope they would forgive me now for the evenings I spent poring 
over the computer at home. This book is dedicated to them for their support 
and understanding. This book is also dedicated to Prof. Stephen S. 
Rappapart of S.U.N.Y., Stony Brook, as he is the one who, many years ago, 
taught me the basics of queueing that I would like to think I know. 

IX 



Contents 

List ofFigures xv 

1. Introduction 1 
1.1 Queueing Model Parameters 2 
1.2 A Simple Queueing Model 3 
1.3 Some Basic Queueing Models 7 
1.4 A Summary of the Contents 7 

2. Basic Queueing Theory: Fundamentals of Analyzing Single Queues 9 
2.1 Markov Processes and Markov Chains 9 
2.2 Birth-Death Processes 15 
2.3 Kendall's Notation for Queues 20 
2.4 Little's Result 22 
2.5 Equilibrium Solutions for MIM/-/- Queues 23 
2.6 Delay Analysis for FCFS M/M/1/oo and M/M/m/oo Queues 34 
2.7 Departure Process from a M/M/m/oo Queue 38 
2.8 Time Reversibility Property of Irreducible, Aperiodic 

Markov Chains 40 
2.9 The Method of Stages for Solving a M/-/1/oo FCFS Queue 41 
2.10 Queues with Bulk ( or Batch) Arrivals 45 
Problems 49 

3. Analysis ofthe M/G/1 Queue in Equilibrium: Performance Analysis 
Using Residual Life and Imbedded Markov Chain Approaches 55 

3.1 The Residual Life Approach for Analysing the M/G/1 Queue 57 

Xl 



Xll Contents 

3.2 The Imbedded Markov Chain Approach for Analysing the 
M/G/1 Queue 64 

3.3 Distributions ofTime Spent in System and the Waiting Time 
Prior to Service in a FCFS M/G/1 Queue 70 

3.4 Busy Period Analysis ofa M/G/1 Queue 72 
3.5 Delay Analysisfora LCFS M/G/1 Queue 76 
3.6 The M/D/1 Queue 79 
3.7 Alternative Derivation for the Delays in a FCFS M/G/1 

Queue 81 
Problems 86 

4. Advanced Queueing Theory: Vacations, Bulk Arrivalsand 
Priorities in a M/G/1 Queue and the Geo/G/1 Queue 89 

4.1 M/G/1 Queue with Vacations 90 
4.2 M/G/1 Queue with Only One Vacation after Idle 97 
4.3 M/G/1 Queue with Exceptional First Service 98 
4.4 M[XJ/G/1 Queue- Single Server Queue with Batch Arrivals 101 
4.5 Single Server M/G/1 Priority Queues 106 
4.6 The Discrete Time Geo/G/1 and GeolX1/G/1 Queues 127 
Problems 140 

5. Fundamentals of Queueing Networks: Open and C1osed 
Networks with Product-Form Solutions 143 

5.1 Classification ofDifferent Types of Queueing Networks 145 
5.2 Probabilistic Routing in a Queueing Network 148 
5.3 Open Networks ofMIM/m Type Queuesand Jackson's 

Theorem 150 
5.4 Extensions to Jackson's Theorem for Other Open Networks 161 
5.5 Closed Queueing Networks 164 
5.6 Convolution Algorithm for Finding the Normalisation 

Constant for a Closed Queueing Network 172 
5.7 Mean Value Analysis (MV A) Algorithm for a Closed 

Queueing Network 174 
5.8 Analysis of a Sampie Closed Network Using Convolution 

and MV A Algorithms 181 
5.9 Norton's Theorem for Closed Queueing Networks 184 
Problems 189 

6. Advanced Queueing Networks: Approximation Techniques for 
Open and Closed Queueing Networks 193 

6.1 Mixed Queueing Networks 193 



Contents xiii 

6.2 The GI/G/m Approximation for the Approximate 
Analysis ofOpen Queueing Networks (the QNA Technique) 198 

6.3 Fork/Join Queues in Open and Closed Networks 
of Infinite Capacity Queues 211 

6.4 Models ofBlocking in Open and Closed Networks 
of Finite Capacity Queues 218 

6.5 Approximate Analytical Methods for Solving Closed 
Networks ofFinite Capacity Queues 221 

6.6 Approximate Analytical Methods for Solving Open 
Networks of Finite Capacity Queues 234 

Appendix 6.1: The Generalised Exponential Distribution 254 

7. Simulation Techniques for Queuesand Queueing Networks: Basic 
Principles for the Design of Queueing Simulators 257 

7.1 Simulation Model ofa Real World System 258 
7.2 Discrete Event Simulation 263 
7.3 Collecting and Processing Simulator Outputs for Queues 268 
7.4 Estimation ofConfidence Intervalsand Confidence Levels 271 
7.5 Transient Behaviour and the Warm-up Interval 274 
7.6 Data Collection in Steady State Conditions 275 
Appendix 7.1 Generating Random Numbers 280 

References 283 

Index 285 



List of Figures 

Figure 1.1 Model of a Simple Queue 1 
Figure 2.1 State Transition from State A 10 
Figure 2.2 Classification of States for a Markov Chain 13 
Figure 2.3 State Transition Diagramfora Birth-Death 

Process 16 
Figure 2.4 Graphical Verification ofLittle's Result 22 
Figure 2.5 Arrival/Departure of a Customer of Interest 

from a FCFS MIM/I Queue 3 7 
Figure 2.6 A Network of MIM/rn Queues with Probabilistic 

Routing 39 
Figure 2. 7 Single Sever Queue with Two Stages of Service 42 
Figure 2.8 State Transition Diagram for Single Sever Queue 

with Two Stages of Service 42 
Figure 2.9 Generalised Service in Stages of a Single Server 

Queue 44 
Figure 3.1 A M/G/1 Queue 57 
Figure 3.2 Residual Service Time r(r) as a Function of -r 58 
Figure 3.3 Arrival Process Illustrating the Paradox of 

Residual Life 6 I 
Figure 3.4a Departure Leaves System Non-Empty 64 
Figure 3.4b Departure Leaves System Empty 65 
Figure 3.5 Time Instants of Arrival and Departure for a 

Customer in a FCFS M/G/1 Queue 71 
Figure 3.6 Unfinished Work in a M/G/1 Queue 73 
Figure 3. 7 Customer Arrival and Departure from a LCFS 

M/G/1 Queue 77 

XV 



XVl List oj Figures 

Figure 3.8 Actual Lifetime and Residual Lifctime 83 
Figure 4.1 Residual Time r(T) for a M/G/1 Queue 

with Vacations 91 
Figure 4.2 M/G/1 Queue with Head of Line Priority 106 
Figure 4.3 Server A vailable/U navailable Intervals for 

Class 1 Customers 115 
Figure 4.4 Class 1 Departure Leaving Class 1 Queue 

Non-Empty 118 
Figure 4.5 Class 1 Departure Leaving Class 1 Queue Empty 122 
Figure 4.6 Late Arrival Model of a Discrete Time Queue 129 
Figure 4.7 Early Arrival Model of a Discrete Time Queue 129 
Figure 5.1 An Open Queueing Network 144 
Figure 5.2 A Closed Queueing Network 144 
Figure 5.3 Probabilistic Routing in a Queueing Network 148 
Figure 5.4 Probabilistically Splitting a Poisson Process 149 
Figure 5.5 Combining Poisson Processes 150 
Figure 5.6 A Feedforward Open Network ofM/M/m Queues 151 
Figure 5.7 Immediate Feedback to a Queue 154 
Figure 5.8 Open Queueing Network of Example 1 157 
Figure 5.9 Open Queueing Network of Example 2 158 
Figure 5.10 Open Queueing Network of Example 3 160 
Figure 5.11 A Closed Network with M Jobs 167 
Figure 5.12 A Closed Queueing Network of Single 

Server Queues, M=4 181 
Figure 5.13 Original Queueing Network before Reduction 185 
Figure 5.14 Equivalent Network with Flow Equivalent 

Server 186 
Figure 5.15 Network to Obtain the Flow Rate TO) 

ofthe FES withj Jobs in the Network 186 
Figure 5.16 Open Queueing Network ofProblem 3 189 
Figure 5.17 Closed Queueing Network for Problem 8 191 
Figure 5.18 Closed Queueing Network of Problem 9 192 
Figure 6.1 Superposition and Splitting in a Queueing Network 199 
Figure 6.2 Queue with Immediate Feedback 201 
Figure 6.3 Queueafter Removal of Immediate Feedback 202 
Figure 6.4 Interna! Flow Parameter Calculations 204 
Figure 6.5 Fork/Join Node without Synchronising Queues 212 
Figure 6.6 Fork/Join Node with Synchronising Queues 212 
Figure 6. 7 Blocking in a Queueing Network with 

Finite Capacity Queues 219 
Figure 6.8 Mapping the State Space for Closed 

Network with Transfer Blocking 233 



List of Figures 

Figure 6.9 Open Queueing Network with Transfer 
Blocking 

Figure 6.10 Queueing Network with Transfer Blocking 
Figure 6.11 Holding Nodes for Jobs 
Figure 7.1 Simulation Model of a Real System 

(Continuous or Discrete States) 
Figure 7.2 Continuous State, Continuous Time 

Simulations (Level ofWater in a Tank) 
Figure 7.3 Discrete State, Continuous Time System 

(Number of Jobs in a Queue) 
Figure 7.4 Inserting a New Event in the Event List 
Figure 7.5 An Example ofan Open Queueing Network 
Figure 7.6 Example of an Observation-Based Random 

Variable (Time W; Spent in a Queue by the Job i) 
Figure 7.7 Example of an Time-Weighted Random Variable 

(Number in a Queue as a Function ofTime) 
Figure 7.8 Confidence Estimation with Confidence 

Intervals and Confidence Levels 
Figure 7.9 Transient Behaviour in a Simulation Run 
Figure 7.1 0 The Subinterval Method or The Method 

ofBatch Means 
Figure 7.11 The Regenerative Method of Choosing 

Independent Batches 
Figure 7.12 The Replication Method 

XVII 

246 
248 
249 

258 

262 

262 
264 
266 

269 

271 

272 
274 

276 

277 
278 



An Introduction to 
Queueing Systems 



Chapter 1 

Introduction 

Queueing systems are models of systems providing service. Such a 
model may represent any system where jobs or customers arrive looking for 
service of some kind and depart after such service has been provided. We 
can model systems of this type as either single queues or a system of 
interconnected queues forming a queueing network. These are the kinds of 
systems that are dealt with here and our objective is to describe the analytical 
techniques that may be applied to study their performance. An example of a 
simple queueing model has been shown in Figure 1.1. Such a model may be 
used to represent a typical queueing situation where jobs arrive, wait if all 
servers are busy, eventually get served by an available server and leave after 
the required service is obtained. 

Waiting 
Positions 

Figure 1.1. Model ofa Simple Queue 
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1.1 Queueing Model Parameters 

The analytical modelling of a queue would involve providing the input 
specifications describing the qucue. These would include details on the 
arrival processes of jobs/customers to the queue, the service process at the 
servers of the queue, the number of servers and the number of buffers and 
waiting positions in the queue. Fora system being modelled as a network of 
queues, details like the above will need to be provided for each of the 
individual queues. In addition, one would need to provide details on the way 
jobs are routed from one queue to another and the methods by which 
blocking, if any, is to be tackled. 

The process of analysis of an individual queue aims at providing details 
on the kind of service a customer can expcct as weil as on how the queue 
itself is performing. The service parameters, which will be of interest to a 
customer looking for service at the queue, are the queueing delay, total 
delay, number in the :,ystem and the number waiting in the queue. Jdeally, 
we would like to know the distribution of these quantities. However, if that 
is not possible (and it usually is not), then at least the mean valucs should be 
known. Note that for a new job entering the system, the mean values of all 
these service parameters should be low if satisfactory service is to be 
provided. These mean values are inter-related and may also be found if we 
can find the equilibrium state distribution of the number of jobs in the 
system under the given conditions. In systems with finite waiting capacities, 
an additional parameter of interest will be the mean and distribution of 
blocked customers, i.e. the number of customers leaving without service. 

The server utilisation, mean and possibly its distribution, would be a 
quantity of interest not so much to the users of the queue as to the service 
provider. This is because a service provider would ideally like to maximise 
resource utilisation so as to maximise revenues, even though this may 
adversely affect user satisfaction by increasing delays and the number forced 
to wait in the queue. The nature of the departure process is also useful, if it 
can be found, as this would make it possible to analyse queueing networks 
where apart or whole ofthe output of one queue gets redirected to another. 

If we make suitable simplifying assumptions, the analysis of queueing 
systems may be made quite simple, especially ifwe are only interested in the 
mean values of the performance measures. We have illustrated this in the 
next section. It may not always be possible to find the distributions of these 
parameters and even when these can be found the process may be a difficult 
or tedious one. Even when exact analysis is not possible or feasible, very 
effective approximation techniques may be used to provide good results. 
When even that cannot be done, or cannot be done easily enough, the only 
recourse left is to use Simulations for studying the system. 
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1.2 A Simple Queueing Model 

If we are not averse to making some crude simplifying assumptions, then 
analysis of simple queueing models may be easily done. (These assumptions 
will be justified later.) For example, consider the queue of Figure 1.1 with 
only one server and an infinite number of waiting positions. Let the arrival 
process of jobs be such that arrivals come at rate A. Asstune that when 
tJt----.>0, P{one arrival in time interval tJt}, the probability of one arrival in a 
time interval tJt, is A,tJt. Similarly, P { no arrivals in time interval tJt] is 1-A,tJt 
and P{more than one arrival in time interval tJt} will be negligibly small and 
may be considered tobe zero. For the service process ofthe given server, we 
assume that the averageservicerate is J1 (mean servicetime is 1/fl). Assume 
that when the server is working and when tJt ----.>0, P { one departure from the 
systemintime interval tJt] is fl tJt, the P{no departures in time interval tJt] is 
1-p tJt and P{more than one departureintime interval tJt] is zero. 

Forthis queue, we need to describe the system state in some fashion. The 
system state at any time instant may be taken as the number in the system at 
that instant. Note timt this will include both the number waiting in the queue 
and the customer currently in service, ifany. LetpN(t) = P{system instateN 
at time t}. By ignoring terms with (tJt/ and higher order terms, the 
probability of the system state at time t+ tJt may then be found as 

Po (t + M) =Po (t)[l - A..ilt] + p 1 (t)Jl!lt N=O ( 1.1) 

p N (t + Llt) = p N (t)[l- Aflt- JlLlf] + p N-1 (t)ALlt + p N+l (t)p!lf 

N>O (1.2) 

subject to the normalisation condition that L P; (t) = 1 for all t:? 0. 
'ti 

Taking the Iimits as tJt----.>0, and subject to the same normalisation, we get 

dpo (t) =-A-po (t) + flPJ (t) 
dt 

N=O ( 1.3) 
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N>O (1.4) 

These differential equations (along with the normalisation condition) may 
be used to get both the transient and the equilibrium solutions. For the 
transient solutions, the queue is assumed to start at time t=O with some 
initial state K, i.e. p,(O) =5,K and the differential equations are solved to 
obtain the state probabilities p,(t) i=O, 1, 2 ..... co as a function of the time t. 
For the equilibrium solutions, the conditions invoked are 

dp,(t) . 
--= 0 and pJt) = p, for r=O, 1, 2 ..... co 

dt 

For this, defining p =.VJ.i erlangs, with p <1for stability, we get 

P1 =PPo 

PN+I =(1 + P)PN- PPN-1 = PPN = PN+1Po N~l 
(1.5) 

Solving Eq. (1.5) with the normalisation condition I Pi =1, we get the 
system state probabilities tobe 

Pi= p' (1 ~ P) i = 0, 1, ...... ,CO (1.6) 

It should be noted that the summation in the normalisation condition 
would only have a finite value when p<1. This condition is therefore 
required for the queue to be stable. Note that once we know the equilibrium 
state probabilities, we can use these to compute various mean performance 
parameters ofthissimple queue, Some examples ofthese are given next. 

(a) Mean Number in System, N 

N= i)Pi =fip'(l-p)=_L 
i=Ü i=Ü 1 ~ p 

( 1. 7) 

(b) Mean Number Waiting in Queue (prior to service), Nq 

(1.8) 
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( c) Mean Time Spent in System, W 

To obtain this, we need to assume first come first served (FCFS) service 
even though the result obtained does actually hold for any other service 
discipline where "the server is never idle while the system is non-empty". 
Note that this equality only holds for the mean. The second moment and 
higher moments, as weil as the actual distribution will be different for 
different service disciplines. 

Assuming FCFS discipline, consider a job, which arrives to the system 
when it is in state k, i.e. there are k users already in the system of which one 
is currently being served. We need to make one more assumption before we 
can proceed further with this analysis. We will assume that the mean 
remaining servicetime needed to finish serving the customer currently being 
served, is still liJL This is indeed justified if the service time distribution is 
exponential (with mean 1/p), which is effectively what is being assumed 
here. (This is because of the memory-less property of the exponential 
distribution.) With these assumptions, we get 

(1.9) 

( d) Mean Time Spent waiting in Queue, prior to service, Wq 

It is easy to see that Wq will always be one mean service time less than 
the value of W obtained earlier from Eq. (1.9). Hence, we get 

W =W-_!_=_.:.._P_ 
q f.l p(l- p) 

( 1.1 0) 

Note that we can also obtain Wq directly if we know the probabilities of 
the system states. Using the same arguments and assumptions as in (c) above 
(for deriving W), we can see that a customer arrival which finds the system 
in state k will encounter a mean queueing delay of k/p. This may also be 
used to obtain Wq directly as shown below. 

00 k p 
wq = L -pk =-(1.:..___) 

k=O f.l f.l - p 
(1.11) 
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Note that this mean result will also be independent of the service 
discipline actually followed. 

( e) Server Utilisation 

This will be a parameter of interest to the service provider arranging for 
the server serving the jobs in the queue. Obviously, the service provider 
would like the server to be utilised as much as possible, even though that 
might Iead to !arge queueing delays and a large number of jobs waiting for 
service in the queue. 

The server is busy except when the system is empty, i.e. the system state 
is zero. Therefore, we can see that the utilisation of the server under 
equilibrium conditions will be 1-p0 =p. This quantity is indicative of how 
hard the server is actually working. 

(f) Probability that an arriving customer has to wait for service 

In a way, this parameter is indicative of the quality of service being 
provided by the queue. Obviously, customers will not be happy with the 
service provided if they have to wait for service every time they arrive at the 
queue. From the customers' point of view, a good systemwill be one where 
they immediately start getting served on arrival. 

It is obvious that a customer will get served immediately on arrival, i.e. 
will not have to wait for service, if it sees the queue to be empty on arrival. 
The probability of this is simply p 0, the probability that the system is empty 
and will be given by 1-p. Note that as the traffic p (O<p<1) increases, the 
server utilisation improves at the cost of lower customer satisfaction with the 
quality of service being provided by the queue. 

The simple queue described above is actually what is referred to as the 
M/lvf/1/oc queue, i.e. a queue with Poisson arrivals, exponentially distributed 
service times, single server and infinite waiting positions. (The notation used 
for representing the queue is called Kendall's Notation and will be described 
later.) 

In general, we find that the analysis of a single server queue is attractive, 
because-

(a) It is generally more tractable than the analysis of a multi-server queue 
(b) For a queue with C servers, bounding results may be obtained by 

considering a system with C parallel, single server queues where an arriving 
customer canjoin any ofthe queues randomly. The latter systemwill always 
be less efficient than the actual C server queue. 
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1.3 Some Basic Queueing Models 

The approach given here is always applicable for simple queues where 
the arrival process may be modelledas a Poisson process (with exponentially 
distributed inter-arrival times) and the service times are exponentially 
distributed. This happens because of the memory-less property of the 
exponential distribution. This simpleapproachwill not be applicable ifthese 
conditions are not met. We can easily extend this approach to analyse a 
variety of queueing situations. Some examples ofthese are given below. 

Finite Buffer Queues 
In this case, the system's state will be limited to a value K which is the 

maximum number of users who can be in the system, i.e. the waiting 
customers and the ones in service. Arrivals, which come when the system is 
full, are forced to leave without service as they are not allowed to enter the 
queue. 

Multiple Servers 
In this case, the service rate should be taken as kf.l for the system state 

where k servers are serving 

Variable Arrival Rate 
This, for example, can be the case where the arrival rate is (N-k)A when 

the system is in state k. A model ofthis kind is frequently used to denote the 
arrival process from a system serving a population of finite number of users, 
i.e. N users. Here a user, who has generated a job that is currently in the 
system, does not generate a new one until the earlier job finishes service. 

Queues with "Ba/king" 
This, for example, could be a system where an arriving job checks the 

number, say k, presently in the system. It then decides to join the queue with 
a probability e-ak or leaves without service with probability (1-e-ak), where a, 
O<a<l, is an appropriately chosen constant. Several variations of this are 
also possible such as the case where the arriving user bases its decision for 
"balking" on either the mimher that it sees waitingjor service in the queue or 
its estimated waiting time 

1.4 A Summary of the Contents 

In Chapter 2, we consider simple queueing models with Poisson arrival 
processes and exponential service times. Extension to a generalised service 
time distribution for single-server queues is considered in Chapter 3 and 
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other issues like vacations, priorities, batch arrivals and simple discrete-time 
queues are considered in Chapter 4. Chapter 5 considers simple models of 
systems where queues are interconnected to form a queueing network. 
Approximate methods that can be used to handle more complicated queueing 
networks are discussed in Chapter 6. Chapter 7 ends this text with a 
description of simulation techniques and the issues that arise in simulation 
studies of individual queues and queucing networks. 



Chapter 2 

Basic Queueing Theory 
Fundamentals of Analyzing Single Queues 

As shown in the simple example of the previous chapter, the basic 
approach to the analysis of simple queueing models would begin by defining 
an appropriate system state for the queue. The analysis of the queue would 
then essentially be the study of the way this system state would evolve. The 
transient solution would be the solution obtained for this system state, given 
the various input parameters, and the initial conditions with which the queue 
starts operation. In this text, we are however interested in the performance 
analysis of the queue once equilibrium conditions have been reached. 
Analyses of some basic queues where the arrivals come from a Poisson 
process and the service times are exponentially distributed will be 
considered in this chapter. Before we consider such analysis, it would be 
useful to review some of the basics of the theory of Markov Chains and 
Birth-Death Processes. These are considered next. Further details on this 
may be found in [Fel65], [Kie75] or [Wol89]. 

2.1 Markov Processes and Markov Chains 

Markov processes are memory-less in nature, which makes models using 
such processes easier to handle. For a stochastic process X(t), this memory­
less property, also sometimes called the Markov Property, states that for any 
choice oftime instants t; i=l, ...... , n, we have 

Note that when this property is satisfied, the state of the process/system at 
time instant tn+J depends only on the state of the process/system at the 
previous instant tn and not on any of the earlier time instants. Alternatively, 

9 
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one can say that a process is termed a Markov Process if, given the present 
state of the process, its future evolution is independent of the past of the 
process. This effectively implies a one-step dependency jeature for the 
Markov Process where older values are forgotten. Restricted versions of this 
property Ieads to special cases, such as -

(a) Markov Chains over a Discrete State Space 
(b) Discrete-Time and Continuous-Time Markov Processes and Markov 

Chains 
If the random variables denoting the state of the process are discrete in 

nature, then these discrete random variables {X11} form a Markov Chain ifthe 
probability that the next state is Xn+J depends only on the current state X 11 and 
not on any previous values. For the Discrete Time case, state changes are 
pre-ordained to occur only at the integer points 0, 1, 2, ...... , n (that is at the 
time points to, t;, t2, .•...• , tn). However, for the Continuous Time case, state 
changes may occur anywhere in time. 

In the analysis of simple queues, the state ofthe queue may be represented 
by a single random variable X(t) which takes on integer values {i, i=O, 
1 ... .. , } and the corresponding process may be treated as a Continuous Time 
Markov Chain. Such a chain is referred to as a Homogenaus Markov Chain 
if the probability P{Xn+ 1=j I X11 =i} is the same regardless of n. In timt case, 
one can write the transition probability p;i of going from state i to state j as 
Pu= P{Xn+J=J I Xn=i} \7n. It should be noted that forahomogenaus Markov 
chain, the transition probabilities depend only on the terminal states (i.e. the 
initial state i and the final state j) but do not depend on when the transition 
(i---+ j) actually occurs. 

Discrete Time Continuous 
Time 

Figure 2.1. State Transition from State A 
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Consider the state transition for a homogenous, diserete-time, Markov 
Chain as shown in Figure 2.1 and Iet P{Xn,,=AI~,=A}=p and 
P{X"+1;eAIX"=A}=(l-p). Then for this Markov Chain, we can show that 

and 

P{system stays in state A for N time units I given that the system is 
eurrently in state A} = pN 

P{5ystem stays in state A for N time units before exiting from state A} = 

pN(J-p) 

Note that the above result gives a Geometrie Distribution that would be 
memory less in nature. 

Similar results may also be obtained for the Continuous Time case. In this 
case, assume that the system is in state A at time t and that the departure rate 
from state A is f..l· We consider time t+ T to find the probability that the 
system stays in state A for an additional time T, given that the current time is 
t. We can then show that as Llt ~ 0 

P{..<iystem in state Afor timeT I system eurrently in state A} 

= (1- JLM)%1 ~ e-f.IT 

Note that this is the eumulative distribution funetion (cdt) of the 
exponential distribution. Based on this and the earlier result, we can make 
the important observation that "In a homogenaus Markov Chain, the 
distribution of time spent in a state is (a) Geometrie for diserete time or (b) 
Exponentialfor eontinuous time". The implication of this statement is that 
in a homogenaus Markov Chain, either discrete or continuous, the form of 
the distribution of time spent in a particular state of the system is fixed - i.e. 
it cannot be arbitrarily chosen. The distribution is also memory-less in 
nature. This implies that if we examine the system at a particular instant of 
time and find the system in a particular state (say state A), then the 
additional amount of time the system will spend in th is state (before exiting 
to another state) will not depend on how much time has already been spent 
in this state. This condition gets relaxed if one considers Semi-Markov 
Proeesses. In these processes, the distribution of time spent in a state can 
have an arbitrary distribution but the one-step memory feature of the 
Markovian property is retained. We will find processes ofthistype useful in 
some of our analyses. 

A sequence ofrandom variables {S"} is a Random Walkif-
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So = 0 (assume process starts at origin, without lass of generality) 
and Sn= Sn-J + x;, for n=l, 2, ......... , w 
where Xj, X2, .... etc. are independent, identically distributed (i.i.d.) random 
variables. A random process related to this is the Renewal Process. This is 
related to a random walk except timt our interest here lies in counting the 
number of transitions that take place as a function of time. Let the state at 
time t be given by the number of transitions in (0, t) where t; corresponds to 
the time ofthe i'h transition and (t,- t,_1) t7 i are i.i.d. random variables. Let x; 
= (t,- t,_ 1) t7 i denote this set of i.i.d. random variables. Subject only to the 
conditions that they are independent and have identical distributions, the 
random variables {X;} can have any distribution. Note that this would 
actually correspond to a Semi-Markov Process. 

In particular, consider the special case where X, = r with an exponential 
distribution given by A.e-M. lt can then be shown that the renewal ( counting) 
process for this is the Poisson Process such that 

-A.T 
P{N transitionsinan interval T} = (A.T)N _e __ 

n! 
(2.1) 

corresponding to the Poisson Distribution. To show this, Iet pk{t) be the 
number of transitions up to time t. (In the queueing scenario, this 
corresponds to a queue where arrivals occur but no service is provided - the 
arrivals are merely stored. In this case, Pk(t) will be the probability that the 
queue has k arrivals up to time t, given that queue was empty at time t=O). 
Therefore 

Pk(t+LJt) = Pk(t)[l-A.LJt] + Pk-I(t)A.LJt for k=l, 2, ....... 

and with LJt --;>0, we get 

k = 1, 2, ........ 

Solving these for p 0(0)=1 andpk(O)=O for k=l, 2, ...... , we get Eq. (2.1). 

2.1.1 Discrete Time Markov Chains 

We review this in more detail, as most of our analysis would be based on 
this kind of a Markov chain. As defined earlier, the sequence of random 
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variables X 1• X 2, .......... forms a Markov Chain if for all n (n=l, 2, ......... .) 
and all possible values ofthe random variables, we have that 

Note once again that this property really illustrates a one-step memory where 
the next state depends only on the current state and P{X,,=j I X,,. 1=in-d gives 
the one step transition probability of going from state i11 _1 at the (n-1/11 step 
to state j at the n111 step. 

If the discrete-time Markov Chain is homogenaus in nature, then the state 
transition probability Pu= P{X,,=j I X 11 _1=i} will also be independent of n, i.e. 
the instant when the transition actually occurs. For the homogenous, 
discrete-time Markov Chain, one can also define the m-step state transition 
probability as 

<mJ - P{X - ., X - '} - ""' Cm-IJ P,i - 11+m -} n -l - LJPik PkJ m=2, 3, .... (2.2) 
'dk 

A Markov Chain is said to be Irreducihle if every state can be reached 
from every other state in afinite number of steps. This implies that k exists 
such that p;fJ ;e 0 for Vi, j. Note that if a Markov Chain is not irreducible, 
then-
(a) it may have one or more absorbing states - i.e. states from which the 
process cannot move to any ofthe other states, or, 
(b) it may have a subset of states A from where one cannot move to states in 
Ac, i.e. states outside A 

Recurrent Null 
/ 

Transient ifjj</ 

Statej""' /if'Mi=oo 

".... Recurrent 
ifjj=/ ~ 

Recurrent Non-null 
or Positive Recurrent 
if !v~<oo 

Figure 2. 2. Classification of States for a Markov Chain 

The states of a Markov chain may be classified further as being either 
Recurrent or Transient. Recurrent states may be further divided into 
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Reeurrent Null or Reeurrent Non-null. This classification has been illustrated 
in Figure 2.2. 

A state is considered to be recurrent, if it will occur some time whereas a 
state would be transient if it may not occur at all. Consider the probability 
JtJ of the system returning to state j in exactly n steps after leaving state j. 
Note that trivially, fflJ=p1i and that we can derive the probability jj of the 
system returning to state j some time after leaving state j to be 

00 

f1 = Lf}n) (2.3) 
n=l 

From the definition of jj, we can say that that the state j will be transient if 
jj<l, whereas it will be recurrent ifjj=I. Fora statej, which is recurrent, i.e. 
can occur again, its mean reeurrenee time M; may be defined as 

00 

Mean Recurrence Timeforstatej = M 1 = Lrif)"> 
n=l 

A state j is periodie with respect to a (a > 1), if the only possible steps in 
which state j may occur are a, 2 a, 3 a .. ............. In that case, the recurrence 
time for state j has period a. Note that state j is said to be aperiodic if a= 1. 

A Reeurrent State is said to be Recurrent Null if the mean recurrence 
time forthat state tends to infinity, i.e. MFCXJ. A Reeurrent State is said to be 
Reeurrent Non-null (also called Positive Recurrent) if the mean recurrence 
time forthat state is finite, i.e. M;< CXJ. A Reeurrent State is said to be Ergodie 
if it is both positive-recurrent and aperiodic. This implies that it is possible to 
come back to that state in any given number of steps and that such a return 
will always occur with finite mean recurrence times. An Ergodie Markov 
Chain will have all its states as ergodic. Note that an Aperiodie, Irreducible, 
Markov Chain with a finite number of states will always be ergodic. The 
property of ergodicity is important as it implies that regardless of the initial 
state pfJ, the equilibrium state probabilities obtained for the system, i.e. 
limHoo{pr}---?p1, would still be the same. Note that the probability of the 
system being in state j in the n111 step will be given as 

P{system in state j in the n1h step} = p/") = P{}G,=j} 

The following results then hold [Kle75], [Wol89] for an Irreducible, Markov 
Chain with p/) as defined above -
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[A] The states of an Irreducihle Markov Chain are either all transient, or all 
recurrent null or all recurrent positive. lf the chain is periodic, then all 
states have the same period a. 

[B] In an irreducible, aperiodic, homogenaus Markov Chain, the limiting 
probabilities prlimH,.,{p/J} always exist and these are independent of 
the initial state probability distribution and either-

(a) All states are transient, or all states are recurrent null - in this 
case, the state probabilities p/s are zero for all states and no 
stationary state distribution will exist. 

or (b) All states are recurrent positive - in this case a stationary 
distribution giving the equilibrium state probabilities exists and is 
given by p1=11~ 'r7]. These state probabilities may also be 
calculated by solving the following simultaneaus equations 

or pe =1 

P1 = LPiPiJ 'r7] or p=pP 
'<Ii 

(Normalisation Condition) (2.4) 

(Balance Condition) (2.5) 

where p=(p0 , P~>··········· p,J is the state probability vector and P={pu} is the 
state transition probability matrix. Note that er =(1, ....... , I) is the unit vector. 

2.2 Birth-Death Processes 

A Birth-Death Process is a special type of discrete-time or continuous 
time Markov Chain with the restriction that at each step, the state transitions, 
if any, can occur only between neighbouring states. Without loss of 
generality, we can assume that the State Space of the process is the set of 
integers. This may be done as this is basically just a way of labeHing the 
states. If the process is a Birth-Death process and if the current state Xn is i, 
then the above condition implies that the next state Xn+J can only be i-1, i or 
i+ 1. This states that in successive time instants, the state either stays 
unchanged or has a unit increment or decrement. A variation ofthiswill be a 
Pure Birth Process where decrements are not allowed. One may also have a 
Pure Death Process where increments are not allowed, i.e. the system starts 
from an initial state and decrements to zero as time goes on. 

We consider here the Birth-Death Process as a Continuous-Time Markov 
Chain; the discrete-time case may be similarly handled. Note that since a 
continuous-time process is being considered, we need to focus on changes in 
the process over time interval L1t as L1t~O. Let Ak be the birth rate in state k. 
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Note that when the system is in state k this birth rate is the rate at which the 
system state can increase by one. Similarly, Iet /-lk be the death rate in state k, 
i.e. the rate at which the system state can decrease by one in state k. 

In the queueing theory context, the birth rate would typically correspond 
to the rate of arrivals of new jobs or customers to the queue whereas the 
death rate would be the rate at which customers/jobs leave the queue after 
completion of service. Note that since we have made the implied assumption 
that the corresponding Markov Chain is homogenous, the birth and death 
rates do not depend on time; they may however be state dependent and will 
then depend on the current state of the system, i.e. state k. 

Considering transitions over a time interval L1t as L1t-f0, we get that 
P{state k to state k+ I in time L1t} = A-k(L1t) 
P{state k to state k-I in time L1t} = f-Lk{L1t) 
P{state k to state kintime L1t} = I- (Ak + f-LJ(L1t) 
P{other transitions in L1t} = 0 

LetX(l} be the number in the system at timet, i.e. (total births- total deaths) 
up to time t. Let Pk(t) be the probability of finding the system in state k at 
time t, i.e. Pk (t) = P{X(t) = k}. For X(t)=O, I, .......... ro, we can then write 
the following equations for the state transitions between the time instant t 
and the time instant t+ L1t. 

p 0 (t + M) = p 0 (t)[1- A-0 M] + p 1 {t)f-L1M 

Pk (t + M) = Pk (t)[l- (Ak + 1-'k )M] + Pk-t (t)Ak-l~t + Pk+l (t)f-Lk+IM 
00 

with LPk(t)=1 (Normalisation Condition) 
k~O 

These correspond to the state transitiondiagram shown in Figure 2.3. 

Figure 2.3. State Transition Diagramfora Birth-Death Process 
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With LJt~O, this yields the following 

(2.6) 

which may be solved with the proper initial conditions to get the required 
solutions {pk(t)} k=O, 1, ...... co for the state distribution of the system as a 
function of the time t. Note that the last equation in the above comes from 
the normalising condition which states that the sum of the probability of all 
the states will be unity at any instant of time t. Other than this equation, the 
other equations in Eq. (2.6) may alternatively be derived using ajlow-based 
approach. This is illustrated in the following for state k, k::::J - the 
considerations for the case k=O are similar and may be easily applied. 

(a) Flow into state k = Ak-JPk-J(t) + f..ik, JPk, J(t) 
(b) Flow out of state k = (.:tk + f..liJPk(t) 

dp (t) . 
(c) k = Flow mto state k- Flow out of state k 

dt 

A Flow-Based Approach will typically also be the easiest way of solving 
some of the simpler queueing problems. This approach would typically be 
usable if the arrival process (generating births) is a Poisson process and the 
service process (generating deaths) has exponentially distributed service 
times. In that case the typical approach would be to -

(a) Draw the state transitiondiagram 
(b) Draw closed boundaries and equate flows across this boundary. If 

the closed boundary encloses state k then we get 

as the desired equation for state k. Note that the dependence on t has 
been dropped because equilibrium conditions are being examined. 
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Closed boundaries may also be drawn and used. For example, we 
can draw the closed boundary as a straight line in-between the states 
(k -1) and k, which is actually closed at infinity. In this case, the flow 
balance equation that we will get will be Ak-1Pk--1 = ;.tkPk 

It can be shown that the system of equations would be equivalent 
regardless of the type of closed boundary chosen to write the 
equilibrium flow conditions. However, it is possible that one set of 
equations will be easier to manipulate and use than another set -
something that can be seen in the above. 

(c) Salve the equations in (b) to obtain the equilibrium state probability 
distribution 

Flow Balance Equations may also be generalised as follows. For any 
irreducible, aperiodic, homogenous, Markov Chain at equilibrium, we can 
write the following asjlow balance across the boundary enclosing state j 

Global Balance Equation 

Note that the LHS of the above corresponds to the total flow from states, 
other than state j, to state j and the RHS corresponds to the flow from state j 
to other states. This is referred to as the Global Balance Equation for the 
Birth-Death Process and would Iead to the equations Ak-1Pk-1 + JLk+ 1Pk+ 1 = 

(Jck+;.tk}pk Vk given earlier. 
In addition to the Global Balance Equation (which always hold for a 

system in equilibrium), Detailed Balance Equations may also hold if the 
flow from state i to state j equals the flow from state j to state i. For the 
Birth-Death Process considered here, these will indeed hold and we can 
write. 

Flow from state i to statej =PiPi! 
Flow from state j to state i =pJPJi 

P;Pu = P,P1; Detailed Balance Equation 

Note that for the system considered earlier, the Detailed Balance 
Equations would Iead to the equations AkPk =;.tk,1Pk•1 Vk for the process. 
These could also been derived earlier with a suitable choice of the closed 
boundary. 

Since we have 
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k=O, 1, 2, ...... oo 

we get that 

k=O, 1, 2, ...... oo 

This may be simplified to yield the following probabilities for the system 
states. 

k=1, 2, ...... 00 (2.7) 

The form of the expression for Pk in Eq. (2.7) is important. This is an 
example of a Product Form Solution as it consists of a continued-product of 
terms mu1tiplied by a normalising constant. This form of expressions for the 
state probabilities at equilibrium would be commonly encountered in many 
queueing situations. Applying the normalising condition 

to the expression for pk, we will obtain p0, the probability of the system 
being empty as 

1 
(2.8) Po= "' k-I X 

1 + L: TI ___ _!_ 

k=l i=O Pi+l 

It should be noted that in our derivation above, we have not mentioned the 
conditions under which such steady state (i.e. equilibrium) solutions may be 
obtained. Wehave actually tacitly assumed that the conditions are suchthat 
equilibrium exists and hence the steady state solutions given in Eq. (2.7) and 
Eq. (2.8) will hold. This needs to be more formally stated, as this requires 
the Markov Chain to be Ergodie in nature. To define the generat condition 
for the equilibrium solution to exist, we need to define two variables a and ß 
as given below. 
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"' [ k-1 ;t l a=2: TI-' 
k=O t=O Jli+1 

and 
ro 1 

ß= L k-1 A 
k=O Ak TI·· '· 

1=0 Jli+1 

Chapter 2 

Having obtained a and ß, we can then observe the following for the 
states ofthe Markov Chain -

(a) All states are transient, if and only if 
(b) All states recurrent null, ifand only if 
(c) All states ergodic, if and only if 

a =w, ß <oo 
a =w, ß =oo 
a <w, ß =oo 

We actually need the condition (c) in the above, for our solution, as 
equilibrium (steady state) exists only when all states of the Markov Chain 
are ergodic. Ideally, the condition a <w, ß =oo should be verified to hold 
before we can attempt to obtain the steady state solutions for the process. In 
practice, some equivalent but simpler statements may be made regarding 
when the systemwill have steady state solutions. One simple test is to ensure 
that the system is such that p 0>0 does indeed exist. This has an interesting 
implication as it essentially states that the 5ystem will have an equilibrium 
solution only if it is such that there is a finite probahility that it will 
sometimes be empty, i.e. will be in state 0. Note that by finding p 0 in our 
solution approach, we essentially did apply this condition implicitly. It can 
also be shown that the ergodie condition is met if k0 exists such that 
(.:ikiJJJ<l for all k~ k 11 • This condition for ergodicity basically affirms that 
beyond a certain point in the state space of thc proccss, the rate of new 
arrivals for the states must fall to values that are always lower than the 
corresponding servicerate for these states. It is intuitively obvious that ifthis 
condition is fulfilled then the system state cannot keep growing and will 
have to come down sometime. This would therefore Iead to stable and 
equilibrium conditions. 

2.3 Kendall's Notation for Queues 

This is a useful way to represent different types of queues in a compact 
and easily understood fashion. Kendall's Notation describes the nature ofthe 
arrival process to the queue, the nature ofthe service process (in terms ofthe 
service time), the number of servers, the maximum number of jobs that may 
be in the system and some basic queueing disciplines. The notation has been 
considerably extended to allow it to represent a wide variety of queues. We 
give here a very basic description oftbis notation. 
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Following this representation, a queue is represented by a sequence 
AlB/ClDlE with the following meaning attached to the letters A to E. 

A This symbolically represents the nature of the arrival process to the 
queue. Special letters are used to symbolise the nature of the inter­
arrivaltime distribution. Some ofthe important ones are 

M Exponentially distributed inter-arrival times (Poisson Process) 
D Deterministic (fixed) inter-arrival times 
Ek Erlang distribution of order k for inter-arrival times 
Hk Hyper-exponential distribution of order k for inter-arrival times 
G General (any!) distribution for the inter-arrival times 

B This symbolically represents the nature of the service time 
distribution for the customers getting served in the queue. The same 
letters as the ones above are used to describe the nature of the 
service time distribution 

C Number of servers in the queue 

D Maximum Number ofjobs/customers that can be there in the system. 
This includes both the ones currently being served and the ones 
waiting for service. Note that the default is infinity ( co) which is 
assumed when this is omitted. 

E Queueing Discipline such as -
FCFS First Come First Served 
LCFS Last Come First Served 
SIRO Service In Random Order 

This may also be omitted ifthe queue is FCFS in nature (default). 

Examples: 

M/M/1 or MIM/1/oo Poisson Arrivals, Exponential Service Time 
Distribution, Single Server, InfiniteNumber 
of Waiting Positions 

Poisson Arrivals, Erlangian of order-2 
Service Time Distribution, Two Servers, 
Maximum Number K in system (waiting 
and in service) 
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G/M/2 

2.4 Little's Result 

Chapter 2 

Generalised Arrivals, Exponential 
Time Distribution, 2 Servers, 
Number of Waiting Positions 

Service 
Infinite 

Consider a queue that has a mean arrival rate of A (actually entering the 
queue). lf N is the mean number in system and W is the mcan delay (i.e. the 
mean time spent in the queueing system by a customer including both its 
waiting time and servicetime ), then Little's Result states that 

N=AW (Little 's Result) (2.9) 

will hold under equilibrium conditions. Note that Little's Result will hold for 
virtually all kinds of queueing systems under very generat conditions. lt will 
certainly hold for all the queues that we will consider here. Note that if we 
define Nq as the mean number waiting in queue (prior to service) and W,1 as 
the mean waiting time in queue (prior to service), then these are also 
similarly related. 

(2.1 0) 

A graphical approach demonstrating Liitle's Result is given based on Figure 
2.4 assuming FCFS service and a queue, which is initially empty. 

- a(t), Arrivals in (O,t) 

......... ß(t), Departures in (O,t) 

Timet 

increments by 
one 

Figure 2.4. Graphical Veritication of Littlc's Result 
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Let a(t) be the number of arrivals in (0, t) and Iet ß(t) be the number of 
departures in (0, t). Then a(t) -ß(t) will be the number in the system at timet. 

I 

Area(t) = area between a(t) and ß(t) upto time t = J[a(t)- ß(t)]dt 
0 

Note that Area(t) will also be the total time spent in system by all arrivals 
which enter the system by time t. We can also see that the following will also 
hold. 

Averagearrival rate in the interval (0, t) = A1 = a(t) 
t 

Averagearrival rate (actual) = A =!im~->"' A1 = lim~->oo a(t) 
t 

The average time w; spent in the system by all arrivals who have come in 
(O,t) will be Area(t)/a(t). The average number of jobs M in the system 
observed over the interval (O,t) is Area(t)lt. We can then write 

N = Area(t) = a(t) Area(t) = A W 
I f f a(f) I I 

(2.11) 

The average time W spent in system by an arrival will be approximately 
given by the Iimit !im l-->c.o W1• This neglects the minor errors caused by the 
fact that the jobs in the system at time t would not have finished service at 
time t. As t becomes !arge, the contribution of this error will decrease to 
zero. Taking the Iimits ofEq. (2.11) as t~w, gives the result ofEq. (2.9) 

Note that this graphical illustration of Little's Result makes the 
simplifying assumptions timt (a) the service is FCFS and (b) the system is 
originally empty. These assumptions are actually not needed for Little's 
Result to hold. In general, Little's Result will hold for virtually all queueing 
system in equilibrium except under some very unusual conditions [BeG92]. 
It will certainly hold for all the systems considered in this text. 

2.5 Equilibrium Solutions for M/M/-/- Queues 

In this section, we study the equilibrium solutions for queues where the 
arrivals come from a Poisson Process (i.e. exponentially distributed inter-
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arrival times) and the service required by the jobs/customers in the queue 
have an exponentially distributed service time distribution. The Markov 
Chain describing these queues are Birth-Death Processes and the equilibrii.lm 
state distributions for these queues may be directly obtained by appropriately 
applying the productform solution given by Eq. (2.7) and Eq. (2.8). We will 
subsequently use this to obtain the equilibrium state distributions for a wide 
variety of MIM/-/- queues. Similar examples may also be seen in [BeG92], 
[Kle75] and [Wol89]. 

However, before we proceed to do this, we need to Iook a little more 
closely at the way we have obtained the expression for Pk given by the 
product form expression. Note that this is obtained by defining the queue's 
state to be the total number in the system and using this to draw its state 
transition diagram. The equilibrium solution is then obtained by 
appropriately applying flow balance to this. This in effect gives us the time­
averaged (and hence ergodic, steady state) distribution of the state 
probabilities. If an outside observer were to observe the state of the queue, 
the state probability Pk essentially gives the fraction of time he/she would 
find the system to be in state k. It should be noted that these results 011 the 
state probabilities do not 11ecessarily hold for other types of observations that 
o11e might make 011 this system. Examples ofthese would be-

(a) Observe the system states only at the time insta11ts when new 
arrivals occur 

(b) Observe the system states o11ly at the time i11stants whe11 a 
job/customer departs from the system 

( c) Observe the system at a fixed time of day or with a fixed periodicity 

Consider the situation in (a) whe11 we observe the system states only at the 
instants when a new arrival occurs and wa11t to find the probability 
distribution of the states observed at those instants. Note that this would 
correspond to the state probability distribution as observed by the arrivals 
coming to the queue. For this, the followi11g important result is useful. 

2.5.1 PASTA- Poisson Arrivals See Time Averages 

The PASTA property claims that for queues where the arrival process is 
Poisson (i.e. Mf-1-1- type queues), the state probability distribution as see11 by 
a 11ew arrival (coming from the arrival process) to the queue would be the 
same as the time-averaged (i.e. ergodic, steady state) state probability 
distributio11. 

To prove the PASTA property for Poisson arrivals, Iet Pk(t) be the 
probability that the system is in state k at time t a11d Iet qk(t) be the 
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probability that an arrival at timet finds the system in state k. Let A(t, t+L1lj 
be the event of an arrival in the time interval (t, t+L1lj and Iet N(lj be the 
actual number in the system at timet. We then have 

qk(t) = limt.Ho P{N(t) = k I A(t,t + M)} 

I. P{A(t,t + M) I N(t) = k}P{N(t) = k} 
- tm 
- t.t--->o P{A(t,t + .t-.t)} 

(2.12) 

However, since the arrivals come from a Poisson Process with 
exponentially distributed service times, we can use the memory-less property 
of the process to claim that the number of arrivals A(t, t+L1lj in the time 
interval (t, t+.L1t) cannot depend on the state of the system N(lj at time t. 
Therefore, P{A(t, t+.L1t)l N(t) = k }would be equal to P{A(t, t+L1t)}. Hence 

as required by the PASTA property. Note that PASTA will not hold if the 
arrival rate depends on the state of the system. Obviously, it will also not 
hold for non-Poisson type of arrival processes. The usefulness of PASTA 
comes from the fact that it is sometimes relatively easier to obtain averages 
of performance parameters (like N, Nq. W, W" ) from the point of view of a 
newly arriving customer. If PASTA holds for the system then the results 
obtained from this may also be interpreted to hold for ergodie time averages. 

2.5.2 M/M/1 (or M/M/1/oo) Queue 

This is a single server queue with infinite m1mber of buffers where the 
arrival process is Poisson (i.e. exponentially distributed inter-arrival times) 
and service times are exponentially distributed. Note that this is really the 
queue considered in a simplified fashion in Section 1.2. For this case, we 
have 

Vk 

k=O 
k = 1,2,3, ...... . 

We define p=J.JJJ as the traffic offered to the queue in units of erlangs. 
Note that in this case, if p<l, then the parameters a and ß of Section 2.2 are 
such that a<oo and ß=oo. This implies that an equilibrium state probability 
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distribution for the queuewill exist if p<l, i.e. :i<Jl. This solution may then 
be found using Eq. (2.7) and Eq. (2.8) tobe the same as given in Eq. (1.6). 
We find that in this case p 0 =(1-p) > 0 for :i<p. This then also satisfies the 
other way in which we had stated the condition for the existence of 
equilibrium state probability distributions for a Birth-Death Process (i.e. that 
the system must be such that its probability of being empty at equilibrium 
must be non-zero). Actually, we need to find p 0 by applying the normalising 
condition. The reader can verify that findingp0 in this way is only possible if 
:i<Ji or p<l as otherwise the infinite sum cannot be evaluated. 

The mean number N in the system and the mean number N,1 waiting in 
queue may be found directly using the state probabilities as shown in Section 
1.2. We have illustrated there how the mean time W spent in the system by 
an arriving customer may be found. Note that this derivation actually implies 
use ofthe PASTA principle as it uses the ergodie state distributiontobe also 
the distribution as seen by an arriving customer. In addition, as mentioned in 
Section 1.2, the memory-less property of the exponential distribution is also 
used. The derivation used for this assumes an FCFS queue. However, the 
same mean result will apply for any queueing discipline where the server is 
not allowed to idle as lang as there are jobs waiting for service in the queue. 
In particular, the mean time W spent in the system will be the same even if 
the service discipline is LCFS or SIRO. The same comments hold for the 
derivation of the mean time w;1 spent waiting in qucue (prior to service) by 
an arriving customer. 

The distributions of the delays may also be found and are considered later 
in Section 2.6 for the FCFS discipline. In Chapter 4, we obtain the delay 
distributions for a general M/G/1 queue for both the FCFS and LCFS 
disciplines. These may be used to obtain the corresponding results for the 
simpler M/M/1 case. In general, it should be noted that although the means 
are the same, different disciplines would have different distributions, and 
different second and higher moments. Specifically, the FCFS discipline has 
the smallest variance and LCFS tbe highest, i.e. the spread of the delay 
distribution is least for FCFS and highest for LCFS, even though both have 
the same mean values. 

Actually, of the four parameters calculated above, one really needs to 
calculate only one, as the other three may be found from that. For this, one 
can use the following relations -

1. W=Wq+JL- 1 

2. N = A-W 
3. Nq = :iWq 

from mean service time considerations 
from Little's result 
from Little's result 
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2.5.3 MIM/1/oo Queue with Discouraged Arrivals 

Forthis case, we have 

1-lk = 0 k = 0 

= 1-1 k = I, 2, 3, ....... 

We refer to this type of arrival process as discouraged arrivals as in this 
case, the mean arrival rate progressively decreases as the state of the system 
goes up. This is as if we are discouraging new arrivals to this queue, when 
there are more people waiting in the queue for service. We will derive the 
usual performance parameters for this queue but the following two points 
should be kept in mind. 

(a) PASTA will not be applicable here as the arrival process is not 
Poisson in nature 

and (b) For applying Little's result, we need to use Ae;rwhich would have to 
be calculated as 

(2.13) 

after we find the equilibrium state probabilities {pk}. 
Since this is a still a Birth-Death Process with (state dependent) Poisson 

arrivals and exponentially distributed service times, the product-form 
solution of Eq. (2.7) and Eq. (2.8) may be applied to find the equilibrium 
state probability distribution. This will be given by 

k-1 ...1, (A.Jk 1 
Pk =PoTI C I) =Po - kl 

i=O /-1 l + /-1 · 

A 
Po= exp(--) 

1-1 

for k=l, 2, 3, ........ (2.14) 

(2.15) 
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Note that we can find that the condition for ergodicity for this case to be 
YJL <co .This will be the condition that needs to be satisfied for equilibrium 
conditions to exist. For a queue in equilibrium, the system performance 
parameters for this case may be found as follows. 

Mean number in system 

Average arrival rate to system Aeff = f Ak P k = fl [1 - exp(- A )] 
k~ Jl 

Using these and Littlc's result, we get the mean time W spent in system 
by a customer (including both the waiting time and the time to get service) 
as 

In this case, we can compute W directly as weil. However, for that, we 
need to find the probability distribution of the qucue as seen by an arriving 
customer. Note that tbis will be different from the equilibrium state 
probability distribution obtained above because PASTA will not hold for this 
queue. Let n,. = P{arriving customer sees r in system (before joining the 
system)} and Iet .dE be the event of an arrival in (t, t+ Llt), where E, is the 
event ofthe system being in state i 

Then Llt-:>0 

Using P{E;} = p, = e-u 11 (~); ~ and Pf!'!E I E,} = ~!'!t and simplifying, 
Jl ll t+1 

we get ( )
r+l ( J A 1 e-)./p 

nr = - ;u as the required probability. 
Jl (r+l)! 1-e- 1' 
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This may now be used to directly compute Was follows 

giving the same expressionasthat obtained earlier using Little's Result 

2.5.4 MJM/m/oo Queue (m servers, infinite number ofwaiting 
positions) 

Forthis case, we have the average arrival rates given by 

and the average service rates as 

O:;;k:;;(m-1) 

k?:.m 
or 

Defining p=AIJi, we get that equilibrium conditions exist if p<m and that 
the equilibrium state probability distribution {pk} may be found using the 
product form solution of Eq. (2.7) and the normalising condition of Eq. (2.8) 
tobe 

=Po I k-m m.m 

for k::;;m 

for k>m 

(m-1 pk mpm J-I 
Po= 2:-+-~--

k=O k! m!(m- p) 

(2.16) 

(2.17) 

For this system, an important performance mcasure that 1s usually 
mentioned is the probability of queueing. This may be found as 

P { queueing} = P { arriving customer has to wait for service} 
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oo mpm 
or P{queueing} = LPk = C(m,p) =Po _ __.:.__ __ 

k=m m!(m- p) 
(2.18) 

Note that C(m,p) defined by Eq. (2.18) is a function tbat may usually be 
found in tables and is referred to as the Erlang-C Formula. This is because 
this queue was first analysed by Erlang as a model of a telephone exchange 
with m outgoing lines (i.e. m servers) where callers who arrive to find all 
lines busy, wait until a line becomes free. This corresponds to a queue with 
an infinite number ofwaiting positions, since there is no Iimit on the number 
of people who may wait for a line. Note that this model of a telephone 
exchange could be one where there is an operator who connects callers to 
outgoing lines and asks the callers to hold if alllines are busy. 

2.5.5 MIM/rn/rn Queue (rn server loss systern, no waiting) 

Forthis case, we have the average arrival rates given by 

k<m 

otherwL<,·e (Blocking or Lass Condition) 

and the average service rates as 

O::;;k::;;m 

otherwise 

Unlike the previous case, jobs enter this system only when a free server is 
available. If all servers are busy, the arriving customer does not enter the 
queue and leaves without service. This is a more realistic model for a 
telephone exchange where a caller gets one of the m outgoing lines only if 
one such line is free. If all the lines are busy, the caller is forced to leave 
without service. 

Note that this is a loss system. If the probability of blocking is given as 
P8 , then the mean arrival rate actually entering the queuewill only be J,.(l­
Ps). This should be the ).41 to be used as the J,. in Little's result, if that is 
applied to calculate performance parameters. This system will always be 
ergodie as the system state is limited to {0, I, ...... m). Hence, steady state 
will always exist and equilibrium state probability distributions may be 
found for all values of m, J,. and Jl. Using the product form expressions of 
Eqs. (2.7) and (2.8), and defining p=Aip, we can find the state probabilities. 
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for k~m 
(2.19) 

otherwise 

1 (2.20) Po= m k 

L:L 
k=O k! 

The Blocking Probability B(m,p) for this queue is defined as the 
probability that an arrival finds all servers busy and leaves without service. 
This is given by 

p"' 
B(m,p)=p0 -

m! 
(with p=~) 

J.L 
(2.21) 

The blocking probability B(m, p) is also a tabulated function that can be 
found and is commonly referred to as the Erlang-E Formula or Erlang 
Blocking Probability. lt can also be easily computed based on the following 
recursion which may be derived from Eq. (2.21) 

B(O,p)=l 

pB(m-1,p) 
~-----··----~ 

B(m,p)= pB(':-t,p) 
1 + --- -- --- -- -­

m 

2.5.6 M/M/1/K Queue (single server queue with K-1 waiting 
positions) 

(2.22) 

In this queue, the amount of waiting space available is finite. 
Jobs/Customers who come when the system is full are not allowed to enter 
the system and have to leave without service. For this case, we have the 
average arrival rates given by 

k<K 
otherwise (Blocking or Lass Condition) 

and the average service rates as 
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f.Jk = fJ 

=0 

k::.;..K 

otherwise 

Chapter 2 

We define p=NJJ, and note that in this case the states are restricted (i.e. 
k=O,J,2, ..... ,K) and cannot grow to infinity. This system will always be 
ergodie and steady state will always exist. The equilibrium state probability 
distribution may be found using Eqs. (2.7) and (2.8) and will be given by 

k 
Pk =PoP 

=0 

for k::.;..K 

otherwise 
(2.23) 

(2.24) 

Note that once the equilibrium state probability distribution is known, the 
typical mean performance parameters N, N,1, Wand W" may be found - other 
higher moments, like variances etc., may also be calculated. 

2.5.7 M/M/1/-/K Queue (single server, infinite number ofwaiting 
positions, finite customer population K) 

Actually, since the size of the customer population is limited to K, the 
number of waiting positions in the queue need not be more than K-1. This is 
because customers arrive from the (finite) customer population to the queue 
and rejoin the customer population only after service is completed. Forthis 
case, we have the average arrival rates given by 

A-k =A-(K -k) 

=0 

k<K 

otherwise (Blocking or Loss Condition) 

and the average service rates as 

otherwise 

Note that in this case also the states are restricted (i.e. k=O,I,2, ..... ,K) and 
cannot grow to infinity. This system will always be ergodie and steady state 



2. Basic Queueing Theory 33 

will always exist. Defining p=Äif.l, the equilibrium state probability 
distribution may be found using Eqs. (2.7) and (2.8) and will be given by 

k K! 
Pk =PoP (K -k)! k=l, 2, .... , K 

I 
Po= K K' 

"' k • L.J p -(K -_ k)' 
k=O · 

2.5.8 MIM/oo 1-/K Queue (infinite servers, finite customer 
population) 

(2.25) 

(2.26) 

This is really the same system as the one considered earlier in Section 
2.5.7, except that we now assume that there are an infinite number of servers 
available in the queue. Therefore, an arriving job will always find a server 
available. For this case also, we have the average arrival rates given by 

A-k =A-(K -k) 

=0 
k<K 
otherwise (Blocking or Loss Condition) 

The average servicerateswill now be 

k~K 

otherwise 

Note that in this case also the states are restricted (k=O, 1,2, ..... ,K) and 
cannot grow to infinity. This systemwill always be ergodie and steady state 
will always exist. Defining p=Äif.l, the equilibrium state probability 
distribution may be found using Eqs. (2.7) and (2.8) and will be given by 

k K! k(K) Pk =PoP (K -k)!k! =PoP k k=l, 2, ...... , K (2.27) 
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(2.28) Po = K Kl (1 + p)K t;pk k!(K ~k)! 

In this case, the mean number in the system N may also be easily 
computed and may be shown to be Kp l(l+p). We can also find Aeff; the 
effective arrivalrate to the queue as 

(2.29) 

Using Eq. (2.29) and the value of N, we can get the other mean 
parameters as W=,u-1, Wq=O and ~1 =0 

2.6 Delay Analysis for FCFS M/M/1/oo and M/M/m/oo 
Queues 

The analysis for obtaining the delay distributions ofthe M/M/1/oo and the 
M/M/m/oo queues for the FCFS service disciplines are given next. It should 
be noted that the delay distribution will depend on the nature of the service 
discipline, even though the mean delays will be the same regardless of the 
service discipline. 

2.6.1 Delay Analysis for a FCFS M/M/1/oo Queue 

Let Q be the (random) queueing delay (not counting the service time) 
encountered by an arrival to this queue and Iet JQ(t) and F Q(t) be its 
probability density function (pdf) and cumulative distribution function (cdf), 
respectively. Similarly, Iet W be the random variable corresponding to the 
total delay (waiting and service time) and letfrv(t) and Fw(t) be its probability 
density function and cumulative distribution function respectively. Let LQ(s) 
and Lw(s) be the respective Laplace Transfenns (L.T.) of the pdt's of the 
queueing delay and total delay. Assume that the mean arrival rate to the 
queue is A and the mean servicetime is llf.L The servicetime (r.v. T) has an 
exponential distribution with probability density function Jle fl' t& with its 
L.T. given by Jil(s+ p). Note that W=Q+ T and that Q will be indepcndent of 
T (i.e. Q.J. T). Therefore, we have 

Jl 
Lw(s) = L 0 (s)--

- s + Jl 
(2.30) 
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This implies that knowing the distribution (pdf, cdf or L.T.) of either of the 
two random variables Wand Q will allow the distribution of the other to be 
computed. In the following, we will first derive the distribution of Q and 
then use that to derive the distribution of W. 

Consider a particular arrival of interest and the queueing delay Q that it 
will encounter. For this, 

FQ(t) = P{queueing delay:::; t} 
= P{queueing time=O} + p:::n.?J P{queueing time::; t I arrival found njobs 

in system} ]p" 

The probability of n service completions in a time interval (x. x+dx) is given 
by an Erlang-n Distribution given by 

P{n service completions in (x, x+dx)} = (fJ,(,ux)"-1 e-w:Jdx for x21J 
(n -l)! 

Note that these follow from the fact that the sum of n independent, 
identically distributed (iid) random variables with an exponential distribution 
will have an Erlang-n type distribution. Moreover, since PASTA is 
applicable, the probability that an arriving customer will find n customers in 
the systemwill be (1-p)p 11 from Eqs. (2.14) and (2.15). Using these, we get 

FQ(t)=(l-p)+(l-p)fpn J JJ(,UX)n~1 e-flXdx 
n=1 x=O (n-1). 

= (1- p) + (1- p)p f,ue-.uxf (,uxp)n-1 dx 
o n=1 (n-1)! 
I 

= (1- p) + (1- p)p JJJe-.ux<1-p)dx 
0 

= (1- p) + p(l- e-pt(1-p)) 

dF (t) 
and fo (t) = Q = 6(t)(l- p) + A-(1- p)e-pt(l-pJ 

- dt 

Using (2.30), we can then get 

t21J (2.31) 

t21J (2.32) 
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I 

fw (t) =(I- p)f.ie-"1 + A.(l- p)f.l Je-p(l-p)(l-x)e-,ux dx fort~ 0 
0 

which may be simplified to 

fw (t) = (!'- A.)e-<1-1-J)t fort~ 0 

to get the desired probability density function ofthe total time W spent in the 
system by an arriving job. 

2.6.2 Delay Analysis for the FCFS M/M/m/oo Queue 

Using the same notation as for the previous M/M/1/co case, consider the 
queueing delay Q and its cumulative distribution function F0 (t) as defined 
earlier. In the expression for F 0 (t), using PASTA, the individual terms may 
be expressed as 

m-1 m-1 n 

P{queueing time=O} = LPn = p 0 L p 1 
n=O n=O n. 

P{queueing time :::; t I arrival found n in system}=P{(n-m+ 1) service 

completions in (0, t)} = 1Jmf.J(mJIXt-m -m,ux dx 
0 (n-m)! 

Therefore, we can obtain FQ(t) as 

F. (t)=p ~ pn +p ~ p" tfmf.J(mj.JX)"-m -mtL'dx 
Q 0 ~ I 0 ~ I n-m ( ) 1 

n=O n. n=m m. m o n - m . 
(2.33) 

Simplifying this, by summing the first term and interchanging the order of 
the summation and integration in the second, we get 

fo(t) = 1- Po mp 8(t) + !'PoP e u(t) { [ 
m ]} [ m -p(m-p)t : 

- m! ( m - p) ( m - 1)! 
(2.34) 
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where u(t) is the unit step function and !i(t) is the delta function. Using Eq. 
(2.30), we can also obtain the probability density functionfw(t) as 

fw (t) = 1- Po mp fie- 111 - flPo e - e (2.35) { [ 
m ]} [ Pm [ -f.1(m-p)t -f.11 ]] 

m!(m- p) (m -1)!(1- m- p) 

Once the delay distributions fw(t) and/or fo(t) ( or the corresponding cdfs 
or Laplace Transforms) are known, we can calculate the other moments that 
we might want for these random variables. Specifically, the mean system 
delay Wand queueing delay WQ may be found from this. Using Little's 
Result, the mean number in the system N and the mean number waiting in 
queue NQ may also be found for the queue in equilibrium. 

Note that since PASTA is applicable to this queue (the arrival process is 
Poisson), N and NQ will also be the average numbers (in system and waiting 
in queue, respectively) that an arriving customer will see. It would be 
interesting to find the distribution of the number in the system that will be 
seen by a departing customer - this would correspond to the number in the 
system that a customer who has just left the queuewill see, looking back into 
the system. For this, consider a user of interest, who spends time t in the 
system before departure. Let N* be the number in the system that it will see 
left behind when it departs with probability p 11 *=P{N* =n} for N* =0, 1, .... , co. 
This situation is illustrated in Figure 2.5. 

Arrival of 
customer 
o(interest 

Time spent in system by the 
customer ofinterest 

Departure of 
customer of 

interest 

Arrivals coming while the 
customer ofinterest is in the 

svstem 

Figure 2. 5. Arrival/Departure of Customer of Intcrest from a FCFS M/M/1 Queue 

From the above figure, it becomes evident that N* will be equal to the 
number of arrivals (from a Poisson process with average rate IL) that enter 
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the system in the time interval t, i.e. while the customer of interest is in the 
system. The Generating Function c* (z) for N* will then be given by 

00 00 00 ( ~ )11 
G* ( ) """ 11 * """ 11 f Af -Jet I' d z=L...Zp11 =L...z --e Jw(t)t 

n! 11=0 n=O t=O 

00 

= Je-AI(l-z) fw (t)dt =Lw (A- k) 
0 

(2.36) 

Since Lw(s) is known (i.e. it is the Laplace Transform of fw(t), the 
Generating Function G*(z) for N' may be found. This can then be inverted to 
find the probability distribution of the number in the system as seen by a 
departing customer. The mean number E{N*} in the system as seen by a 
departing customer may be directly found using 

(2.37) 

which turns out to be the same as the value N obtained earlier in Section 
2.5.2. 

It is also important to note that the result G(z) =Lw(A--k) really says 
something which would be found generally useful. One way of viewing this 
result is to say "if we observe Poisson arrivals at average rate A over a 
random time interval T with probability density function f 1(t) and L. T LT(s), 
then the generafing function of the number arriving in T will be given by 
L7(A--k) ". This result is one we willuse often. 

2. 7 Departure Process from a M/M/m/oo Queue 

The departure process from a queue would also be useful to characterise. 
Note that if a network of queues is being considered then the departure 
process of a queue would be the arrival process of one or more downstream 
queues. In such a system, we would certainly need to know the nature ofthe 
departure process from the first queue, in order to be able to analyse the 
behaviour ofthe downstrcam queue(s). Burke's Theorem provides the results 
necessary to look at the departure process of a M/M/m/CI) (which will include 
M/M/1 as weil) queue. We present (without proof) the three statements 
associated with Burke's Theorem. 
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Burke's Theorem: The following three statements hold for the departure 
process from a M/M/m/oo queue -

[A] The departure process from a M/M/m/oo queue is Poisson in nature. 
[B] For a MIM/m/oo queue, at each time t, the number of customers in 

the system is independent of the sequence of departure tim es prior to 
t. 

[C] For a M/M/m/oo FCFS queue, given a customer departure at time t, 
the arrival time of this customer is independent of the departure 
process prior tot. 

Statement [A] from Burke's Theorem will actually be very useful to 
analyse networks of queues where the output of one queue feeds one or more 
queues. Consider the example shown in Figure 2.6. 

Figure 2.6. A Network ofM/M/m Queues with Probabilistic Routing 

In Figure 2.6 the arrival to Ql is from a Poisson Process with rate A,, The 
output process of QJ (by Burke's Theorem) is then also Poisson with rate A. 
Note that flow equilibrium will ensure that the flow rate entering a queue at 
equilibrium would also be equal to the flow rate leaving the queue. The jobs 
leaving QJ, randomly decide with probability p to go to Q2 and with 
probability (1-p) to go to Q3. We use the result that splitting a Poisson flow 
randomly gives rise to flows that are also Poisson. Using this, the flows 
entering Q2 and Q3 will also be Poisson with average rates Ap and A-(1-p), 
respectively. The flow leaving Q2 and entering/leaving Q4 is also Poisson 
with rate A-p and the flow entering and leaving Q3 is Poisson with rate A-(1-
p). Note that the equilibrium state probabilities of each of these queues may 
be found as each of their respective arrival processes are also Poisson in 
nature with known rates. Note that we could not have done this without the 
application ofBurke's Theorem as we would then be unable to claim that the 
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arrival processes of Q2, Q3 and Q4 are also Poisson in nature. Knowing 
these, we can apply the results of Eqs. (2.16)-(2.18) to obtain the 
performance of each ofthe queues in the network. 

Statement [B] of Burke's Theorem is somewhat counter-intuitive in 
nature. If one observes departures from a queue and finds a Iot of jobs 
leaving it, then "lay" philosophy might say that the queue would be a busy 
one and we should find the system state to be high. However, Burke's 
Theoremshows that such a conclusion would be wrong as one cannot really 
say anything about the state of the queue by merely observing the sequence 
of departures from it. Statement [C] takes this further by stating that if we 
observe a customer departing at time t, then even if we are observing the 
departure process until time t, we cannot use this information to say anything 
about the time when that customer would have entered the system. 

2.8 Time Reversibility Property of Irreducible, 
Aperiodic Markov Chains 

Consider a discrete time, irreducible, aperiodic Markov Chain X 1, X2, 

...... , Xn-h Xn, Xn~ 1, ........ for which the transition probabilities are given tobe 
{pii}. These, for example, may arise in the study ofM/M/m type queues. The 
transition probabilities may be used to obtain the equilibrium state 
probability distribution {p;} for this chain. 

We can also consider the same chain backwards in time, i.e. the chain 
...... Xn+h Xn. .. .... , X3, X2, X 1• This would also be a Markov Chain since we 
can write 

P{Xm =jiXm+l =i,Xm+2 =iz, ...... ,Xm+k =id 

P{Xm = j,Xm+l = i,X m+2 = i2 , ...... ,Xm+k = ik} 

P{Xm+l =i,Xm+2 =iz, ...... ,Xm+k =ik} 

P{Xm =j,Xm+l =i}P{Xm+Z =i2, ...... ,Xm+k =ik IXm =j,Xm+l =i} 

P{Xm+l =i}P{Xm+Z =i2 , ...... ,Xm+k =ik IXm+l =i} 

Since the original (forward) chain is Markovian, the conditioning on both 
{Xm=j} and {Xm+ 1=i} in the numerator is equivalent to just conditioning by 
{Xm+ 1=i} in the denominator. Therefore, we get 
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P{Xm =JIXm+I =i,X"a2 =i2 , •••••• ,Xm+k =i1J 
P{Xm =J,Xm+I =i} P{Xm =j}P{Xm+I =iiXm =}} 

=----'-"-------"-'-'-.:..._-

P{Xm+l = i} P{Xm+I = i} 

PJP1; 
=--=pi; 

p, 

From the above, we can state that for the backward chain, conditioned on the 
state at (m+ 1), the state at m is independent of the states at (m+ 2), (m+ 3), 
........ etc. and that the backward chain has the transition probability Pu • =p1 

pt/p;. The Markov Chain is considered to be time reversible for the special 
case where Pu • =pu 17' i, j. The following properties of the reverse chain may 
be demonstrated -

1. The reversed chain is also irreducible and aperiodic like the forward 
chain 
2. The reversed chain has the same stationary state distribution as the 
forward chain 
3. The chain is time reversible only if the detailed balance equation PJJu 
= PJPii holds for V i,j~O 

Similar ideas of reversibility may also be applied to Irreducihle Continuous 
Time Markov Chains. 

2.9 The Method of Stages for Solving a M/-/1/oo FCFS 
Queue 

This method is useful to analyse queues where the service time is not 
exponentially distributed but may be represented (at least approximately) as 
a sum of independent, exponentially distributed random variables. These 
variables may not be identical but should be independent. (As we will show 
later, other more complex cases may also be handled by this method. 

To illustrate this method, consider a single server queue where the 
service time is a random variable consisting of the sum of two, independent, 
exponentially distributed random variables with means Il,u1 and ll,u2 • The 
arrival process is Poisson with rate IL and we asswne that the queue has an 
infinite buffer. The operation of this queue may be illustrated as in Figure 
2. 7. In this queue, a customer starting service, first enters Stage I, where it 
gets served for an exponentially distributed random time with mean 1/,u1• On 
completion of this, it enters Stage 2 for an exponentially distributed random 
time with mean ll,u2 and then departs from the system. New customers enter 
Stage 1 only after the previous customer has Ieft the system, i.e. left Stage 2. 



42 Chapter 2 

The overall service time would thus be the sum of the random service times 
at the two stages. 

Stage 1 Stage 2 
H • • I I r ~ 1/pl 1 I p 2 

Figure 2. 7. Single Sever Queue with Two Stages of Service 

We can denote the state of the system in Figure 2.7 as (n, j) where n is 
the total number of customers in the system where the customer currently 
being served is at Stage}, n=O,J, ...... ,oo,j=l, 2. We use (0,0) to denote the 
special case when the system is empty. The State Transition Diagram of this 
systemwill be as shown in Figure 2.8. 

Figure 2.8. State Transition Diagram für Single Sever Queue with Two Stages ofService 

The balance equations for this may be written as follows 
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APoo = f-l2P12 

(}., + 1-li)PII =APoo + Ji2P22 

(). + f-l2)P12 = JiiPu 

(A+JII)P2I =AP11 +f-l2P32 

(). + f-l2 )P22 = AP12 + JIJP21 

etc ....... 
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(2.38) 

These may then be solved to get solutions for the state probabilities as a 
function of Poo, the probability ofthe system being empty, as 

(2.39) 

etc ...... 

The complete solution for the various state probabilities may then be found 
by using the normalisation condition ofEq. (2.4) to first findpo0 and then the 
various PnJ n=l,2, ...... ,ro, j=l, 2. This approach may be easily extended to 
allow for the following -

(1) Have k Stages of Service Times- For this, we may extend the approach 
given above to allow k stages of service. 

(2) Finite Waiting Positions in the Queue- This may be handled by making 
the arrivalrate a function ofthe number in the system, i.e. make it go to zero 
when all the waiting positions have been filled. 

(3) Multiple Servers - Approximation for this may be done by allowing more 
than one customer to enter service at a time. 

(4) More General Service Distributions - A similar approach may be used to 
handle more generat service time distributions whose Laplace Transforms 
(oftheir pdfs) may be represented as a rational function ins. These will be 
functions of the type L8 (s)=N(s)/D(s) with simple roots. For this, consider 
the system with several stages of service, organised as shown in Figure 2.9 
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Entry ... Stage I .. Stage I 
... JIJ a2 ... fll 

.. .... 
a1 

I-a1 I-a2 

~ , .. .. 
Exit 

Figure 2. 9. Generalised Service in Stagesofa Single Server Queue 

Consider a general system of the type shown in Figure 2.9 where the 
individual stages have independent exponentially distributed service times. 
We assume that the time spent in Stage j is an exponentially distributed 
random variable with mean 1 I /-1; and Laplace Transform ;...t1 l(s+ Jl). The 

' ' 

Laplace Transform Ln(s) of the overall service may then be represented as 

.i Jl 
Ln(s) =(l-a1) + I:a1 ...... aH (1-a 1 )0--;-

/?.2 ' i=l s + Jl; 
(2.40) 

This Ls("') has simple roots and may be expanded usmg partial fraction 
expansion in the following form. 

LB(s) = ßo + L ___!!,___ 
i s + Jl; 

(2.41) 

Note that the coefficients ß; i=O, 1, 2, ....... may be expressed as functions 
of the variables J!, and a;. 

Given a LB(s) that is a rational function of s with simple roots, we would 
need to first express it in the form given in Eq. (2.40). This may then be 
expanded in the form of partial fractions to obtain the form of Eq. (2.41) 
from which a model using stages may be built as shown in Figure 2.9. This 
model with service in stages may be analysed in the same way in which we 
had earlier illustrated the analysis where only two stages were involved. This 
would involve drawing its state transition diagram with a proper definition of 
the system state. This state transition diagram may then be used to obtain the 
corresponding balance equations. These can then be solved to obtain the 
equilibrium state probabilities of the system. Once the system state 
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probabilities are known, other system parameters may be calculated as 
desired. 

2.10 Queues with Bulk (or Batch) Arrivals 

In this case, we assume that the arrivals come in batches (also referred to 
as bulk arrivals). Effectively, that means that each arrival comes with a 
random number (say r) of job/customer service requests together. The 
typical notation for queues of this type is M[XJ/M/1, M[XJ/M/s/s, M[XJ/G/1 
etc .. Note that the symbol M[XJ used for the arrival process indicates that the 
batches arrive following a Poisson process but timt each batch may have a 
random number of jobs/customers. In this section, we will Iook at the 
M[Xl/M/1 and the M[XJ/M/s/s queues. The M[XJ/G/1 queuewill be considered 
later in Chapter 3. For the random batch sizes, we assume that ßr is the 
probability that a batch will have r customers with r =I, 2, 3, ....... , oo, with 

00 00 

Generating Function ß(z) = Lßrzr and mean jJ = 'Lrßr 
r=l r=l 

Note that with the above notation, we have assumed that the batch size is 
at least one (i.e. the batch will have at least one job). It is possible to use a 
notation where a zero-sized batch is allowed. If this is assumed then the 
results and derivations given subsequently will need to be appropriately 
modified. We also assume that A, is the averagearrivalrate ofbatches to the 
system. This would, imply that the average arrival rate of a batch of size k 
would be A.ßk· The service rate of individual customers is assumed to 
be J.i where the service times are assumed to be exponential in nature. (The 
case of generally distributed service times is considered later in Chapter 3.) 
Note that a batch of size k would then have a batch service timethat would 
be the sum of k i.i.d. exponentially distributed random variables - this would 
be an Erlang-k distribution. 

2.10.1 The M 1x1/M/1 Queue 

Defining the system state to be the number in the system, the following 
set ofbalance equations may be written for this system. 

Apo= 1-'P1 

(A, +!-')PI = I'P2 + A.ß1Po 

and 

for k=O 

for k=l 
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k-1 

(/!, + Jl)Pk = JiPk+1 + L/lßk-iPi 
;~o 

Chapter 2 

for k::::::l 

It is easier to use a z-transform based approach here to directly find the 
Generating Function P(z) of the system state. The generating function P(z) 
is defined as 

00 

P(z)= LPnZn 
n=O 

To obtain this, we would need to multiply the k1h balance equation above by 
z" and sum from k=l to k=co. This yields 

00 00 00 k-1 

(I!.+ Ji)LPkZk = JiLPk+1zk+! + LLAJ7ßk-izk 
k=1 z k=1 k~1 i~O 

Interchanging the order ofthe double summation and simplifying, we get 

(1!. + JL)[P(z)- Po]= Ji [P(z)- Po- p 1z] + AP(z)ß(z) 
z 

P(z)= JiPoO-z) 
ji(I- z)- k[l- ß(z)] 

To find p 0, we can use the normalising condition of P(l) = 1 to get p 0=(1-p) 
with p defined to be the average Ioad offered to the system as 

ll.ß 
p=­

ji 

Substituting this value of p0, the generating function P(z) is found to be 

P(z) = JL(l- p)(l- z) 
ji(I - z)- k[l- ß(z)] 

(2.42) 

This generating function may then be used to find the individual state 
probabilities under equilibrium conditions. The moment generating property 
of the generating function may also be used to directly find the moments of 
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the system state. In particular, one may use Eq. (2.42) to find that the 
average number N in the system will be 

N = p(ß + ß2) 
2(1- p) 

where ßk is the k111 moment ofthe batch size. 

2.10.2 The M 1x1/M/s/s Queue 

(2.43) 

This corresponds to a s-server queue with no waiting positions and 
batch arrivals coming from a Poisson process. The service times are 
exponentially distributed random variables. However, additional details need 
to be given on the Batch Acceptance strategy before this system can be 
analysed This essentially describes how the system will handle the situation 
when a batch of size K arrives to a system which has space only for k jobs, 
with K>k. We describe two strategies that one can adopt to handle this 
situation. 

(a) Partial Batch Acceptance Strategy (PBAS) 
If this strategy is followed, k out of the K jobs in the batch (chosen 
randomly) will enter the queue, the remaining (K-k) jobswill be lost 

(b) Whole Batch Acceptance Strategy (WBAS) 
If this strategy is followed, the entire batch will be refused entry, unless 
all its jobs can be accepted. 

The analysis given below is for an M[XJ/M/s/s Queue following the PBAS 
strategy. (A similar procedure may be followed for a queue using a WBAS 
strategy.) Apart from the notation used earlier for the M[XJ/M/1 queue, we 
define rpi as the probability that a batch has i or more jobs in it. (Note that 
rp1=1). We can also easily see that 

for i=J, 2, ........ (2.44) 

In this case, the Global Balance Equations may be written as follows 
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j-1 

/L LPißj-i + (j + l)ppi+1 = (/L + jp)pi for j = 1,2, ..... ,s 

s-1 
(2.45) 

/L L P/Ps-1 = Sf!p, for j =s 
I=Ü 

Thesebalance equations may then be solved to get 

;t J-1 

Pi = -.-LP/P;-i for j=l, 2, ....... s 
.J J.1 1=0 

(2.46) 

Using this recursion, we can get the individual state probabilities {p.i}, as a 
function of p 0 for any j. For example, one can derive 

Once the state probabilities {p;} are obtained as a function of p 0, we can use 
the normalisation condition to find first p 0 and then the other state 
probabilities. 
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Problems 

1. Analyse a queue with a single server where the average arrival rate of 
customers is (N-i)A, per second from a Poisson process, when the system is in 
state i. Assurne that service time required by a customer is exponentially 
distributed with mean 1/j.i seconds. Assurne that N is the highest state ofthe 
system. 

2. The networks Iab opens in the morning at 9:00 am. Students arrive at 
random for the Iab following a Poisson process with average rate A. Each 
student stays in the Iab for a random duration X. Students arriving when 
there is already a student in the Iab, wait outside in the corridor. Find the 
probability P that the second arriving studentwill have to wait and also find 
W, his/her mean waiting time, for the two cases (a) X=C constant and (b) X 
is exponentially distributed with mean f.i-1• 

3. Consider an infinite server queue with exponentially distributed service 
times of mean 1/j.i .. The arrivals to the queue come from a state dependent 
Poisson process with the average rate in state i given as a·i. Obtain the 
partial differential equation for P(z,t) that would have to be solved (with 
proper initial conditions) in order to obtain the time-rlependent (transient) 
state distributionoftbis system. 
Redo the above for the case where the system has finite capacity N, i.e. the 
state ofthe system can only be N or less. 

4. For a M/M/m/oo queue, consider a particular customer A, who on 
arrival finds all m servers busy and n other customers waiting for service. 
The queue follows a FCFS discipline. Assurne that no new customers come 
to the queue for service after A's arrival. Let 1/JL be the mean service time 
for customers. 
(a) Find the expected length oftime customer A spends waiting for service. 
(b) Find the expected length of the time interval T measured from A' s arrival 
to the time when the system becomes completely empty. 
( c) Define X be the order of completion of service of customer A where X=k 
if A is the l(h customer to complete service after its arrival to the system. 
Find P{X=k} for k=1,2, ....... ,(m+n-1). 
(d) Find the probability that customer Ais able to complete its service before 
the customer who is immediately ahead of hirn/her in the queue. 
( e) Let w be the random amount of time customer A waits for service. Find 
its cumulative distributionfunction (i.e. c.d.f.). 
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5. Consider a M/M/2/4 queue at equilibrium. Its state probabilities are 
observed tobe 1116, 4/16, 6/16, 4/16, and 1116 respectively for system states 
0, 1, 2, 3, and 4. Forthis queue, determine N and Mr Ifthe mean arrivalrate 
(from a Poisson process) is observed to be 2 customers per hour, determine 
the mean delay quantities Wand Wq and estimate the mean service time. 

6. Consider a M/M/co/co queue where the service rate in state j is given as 
!-1J =jp. The arrival process provides arrivals at an averagerate 'A. Show that 
the state probabilities ofthe system are given by 

k 

P =e-P andp =e-PLfork~1 
0 ' k k! 

. I A, 
WJt1 p=-

Jl 

7. Analyse a M/M/1/co queue with the following parameters 

Ak = d' A, for k=0,1,2, ..... and O~a~l 
Jlk = J1 for k=1,2,3 .... .. 

Obtain the steady state distribution of the queue and the conditions under 
which such a distribution will exist. 

8. Analyse an M/M/1/co queue with parameters A, and p where the 
customers get impatient and leave if they think they will have to wait too 
lang for service. Specifically, ifthe arrivalfind k users already in the system, 
then it estimates its own waiting time as w=klp .. It then either joins the 
queue with probability exp{-aw) or leaves without scrvice with probability 
[1- exp{-aw)]. Assurne a>O. 
(a) Find the state distribution of this system and give the conditions under 
which this will exist. 
(b) For a-+oo, find the state distribution of the system and the average 
number in the system. Can you give a physical explanation of the system 
behaviour in this case? 

9. The manager of our bank wants to put a new teller system into 
operation. The proposed system will start operation with only one teller. 
Whenever the nurober of customers exceeds KH, another teller will be 
brought in to serve the customers. This second teller continues serving until 
the number of customers falls below K 1, where KL<KH. At this point the 
second teller leaves and the system continues with one teller. This process 
continues repetitively. The manager wants our advice on the operation of 
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this system. Customers arrive at rate A. from a Poisson process and each 
teller serves with an exponentially distributed servicetime with mean 1/!J .. 

(a) Give a proper definition of the system state and draw the corresponding 
state transition diagram with the appropriate transition rates. 
(b) Obtain the corresponding state probabilities when the system is in steady 
state. 

10. The Queueing Theory Association is arranging a get-together in a hall 
where K 1 people can sit and an additional K2 people can stand. While there is 
still space available to sit, guests arrive at rate A.1. When there is only space 
to stand, guests arrive at rate A.2. (In both cases, the arrival process is Poisson 
in nature.) The doors are closed whenever the hall fills up with K1+K2 

guests. Nobody leaves the get-together once they enter the hall - not even 
when people start singing badly! Assurne that the hall is initially empty 
when the get-together starts at time t=O 
(a) Obtain the probability Pk(t) of there being k guests in the hall at time t, 
k2::0. (Results may be left in the form of an expression but simplify them to 
the extent possible.) 
(b) From (a) or otherwise, obtainpk(t) for the case where K2=0. 

11. The server in a single-server queue adopts the following approach for 
serving the customers who arrive for service. Whenever the system becomes 
empty, the server goes for a coffee-break and comes back to provide service 
only when the number of customers in the system reaches K. Otherwise, 
he/she provides service just like anormal M/M/1 queue. Assurne A. tobe the 
average customer arrival rate and Ii to be the average service rate of a 
customer being served and Iet p=}J Ii erlangs. 
(a) Draw the State Transition Diagram for this system with a proper 
definition ofthe system's state. 
(b) Now consider specifically the system with K=2 and obtain the following 
in terms of p. 

(i) The equilibrium state probability Pk of finding k customers in the 
system. 
(ii) The mean number in the system (waiting and in-service). 
(iii) The probability that the server is actually working 

12. In a M/-/1/oo queue, the Laplace Transform of the serv1ce time 
distribution is given by 
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LB(s)= O.Ss(Jil +Ji2)+!-LJI-l2 
(s + p 1 )(s + p 2 ) 

Chapter 2 

Forthis queue, find (in terms of the probability Po of the system being 
empty), the probability of there being one user in the system (i.e. p 1 ) and 
the probability of there being two users in the system (i.e. p 2 ). Assume that 
the arrivals come from a Poisson process of average rate A. 

13. Prof. Calculus has been given the job of registering students for the 
queueing course in our departmental Conference Room. Prof. Calculus gets 
a student registered in an exponentially distributed time interval with mean 
2/J.l. He is however known to get very upset if he does not have any 
additional help when there areKor more students in the room (including the 
one being registered)! When that happens, he calls M. Tintin from our office 
to help in the registration process. M. Tintin can also register a student in an 
exponentially distributed time interval with mean 2/~J- .. When M. Tintin is in 
the Conference Room, both Prof. Calculus and M. Tintin work in parallel to 
register students. However, M. Tintin does not quite like this job and 
manages to return to the office whenever there are no students in the 
Conference Room. (He gets called again when the m1mber in the room 
reaches K.) Assurne that (a) the Conference Room has an infinite number of 
chairs for waiting students, (b) Prof. Calculus and M. Tintin both work in a 
FCFS manner and that (c) the students wishing to register arrive from a 
Poisson process with rate /L 
(a) With a proper definition of system state, draw the state transitiondiagram 
for the above queueing situation. 
For K=2, do thc following-
(b) For your states as in (a), obtain the state probabilities ofthe system. 
(c) What will be the meanm1mber ofstudents in the Conference Room? 
(d) What is the probability that Prof. Calculus is working on student 
registration? 
(e) What is the probability that M. Tintin is working on student registration? 

14. Considcr the M/-11/3 queue, which is limited to having a maximum of 
3 users in the system. Assurne that the arrivals come from a Poisson process 
of averagerate A and that the L.T. ofthe servicetime distribution is 
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(a) Draw the State Transition Diagram of the system and write its balance 
equations. 
(b) Use (a) to find the probabilities of the individual states in the state 
transition diagram. 
(c) Use (b) to find the overall state probabilities po, p J, P2 and PJ· 
(d) What is the probability that an arrivalwill have to leave without service? 

15. A M/-11/2 queue has a servicetime distribution with L.T. given by 

The average arrival rate is /L Note that the queue is limited to a maximum 
state of 2. Use the method of stages to solve this queue and obtain the 
following. 
(a) State Transition Diagram (with a proper definition of system states) 
(b) Obtain the state probability distribution 
(c) What will be the averagedeparturerate from this queue? 

16. Consider an examination facility, with an infinitely !arge waiting room 
and an examination centre, where queueing theory students are being 
evaluated. Prof. Calculus and his T.A. for the course sit in the examination 
centre and students enter the examination centre one at a time. The students 
(coming from an infinite population of queueing theory students) enter the 
examination facility at an average rate of /l per time unit. If there is a student 
already in the examination centre, then the new student waits in the waiting 
room. The queueing strategy is assumed FCFS. The student entering the 
examination centre is first examined by the T.A. for an exponentially 
distributed testing time with mean 0.5 units. Prof. Calculus randomly picks 
half of the students examined by the T.A. and grills them further for an 
exponentially distributed time of 1.0 units. (The others are lucky and can 
leave immediately without being examined by Prof. Calculus.) Assuming 
that the probability p 0 of the system being empty is known, find the 
following. 
(a) The probability that there is one student in the examination facility 
(b) The probability that there are two students in the examination facility 

17. Consider a M[XJ/M/1 queue where the batch arrival process is Poisson 
with rate /land the batch size distribution is given by ß; = P{batch size = i} 
for i ,c 0 with ß(z) as its z-transform. Assurne that the mean service time for a 
job is 1/f.l. 
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(a) Draw the State Transition Diagram of the system and write its balance 
equations. 
(b) Find the generating function P(z) of the number in the system at 
equilibrium as a function of A, fl and G(z) with 

A,ß'(l) 
p=--

fl 

defined as the affered Ioad. 
(c) For the case where ßi =(1-a)d for O<a<I and i = 0, I, ............. ,rofind 
P(z) and use this to get the state probability distribution Pk k=O, I, ..... , co. 
(d) Find the mean number of jobs in the system. Use this and Little's result 
to find the mean time spent in the system by a particular job. 
(e) Assuming FCFS operation, derive the mean time spent waiting for 
service to begin to a particular batch. (How would you find this?) Can I use 
this to find the mean time spent in system by a particular job? 

I8. Consider a JvfX1/MJI/4 queue with batch arrival rate A and service rate 
of individual jobs as fl· The Generating Function of the batch sizes is given 
tobe (ßo + ß 1z +ß2z2). Analyse this system for the cases where (i) PBAS and 
(ii) WBAS strategies are being used. Foreach case, obtain the following. 
(a) State probabilities ofthe system 
(b) The mean number in the system 
(c) The probability that a batch is refused entry in the WBAS case and the 
probability that a job is refused entry in the PBAS case. 

I9. Consider a MIXJ/-/1/3 queue where the batch arrival rate is A and the 
generating function of the batch sizes is given by (0.25z+0.25z+0.5z2). Note 
that the queue is limited to a maximum state of 3 and follows the WBAS 
strategy. 
(a) Ifthe L.T. ofthe servicetime distribution is 

draw the state transition diagram of the queue with an appropriately defined 
system state. 
(b) Foraservice time distribution with L.T. fl/(s+ft), do the following­

i. Draw the state transition diagram. 
ii. Find the state probabilities ofthe queue. 
iii. What is the probability that a batch is refused entry into the queue? 
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Analysis of the M/G/1 Queue in Equilibrium 
Performance Analysis Using Residual Lift and Imbedded Markov 
Chain Approaches 

In the previous chapter, we were primarily concerned with queues where 
the service times were exponentially distributed. Queues with non­
exponential service times were not really considered, except in a Jimited 
fashion in Section 2.9 while describing the Method of Stages. In this chapter, 
we consider the detailed analysis of single server queues with infinite buffers 
where the service times can have any general distribution. The arrival 
process is still assumed tobe Poisson in nature. 

The exponential distribution is particularly easy to handle in analytical 
modelling because of its memory-Iess property. Consider a situation where 
the service time is a random variable X with mean ~~-I. If a job in service is 
examined at any time while its service is continuing, the distribution of the 
remaining service time will still be exponentially distributed with the same 
mean value ~~-I as before. This essential feature simplifies the analysis of a 
queue by allowing us to define the system state at any time instant t by using 
just a single variable, i.e. the number in the system at time t. This simple 
definition is no Ionger possible in the general case where the system state has 
a non-exponential distribution. If that is the case, the system state at an 
arbitrary time instant t must be defined as an n-tuple. This would consist of 
both the number in the system at time t as weil as the residual service times 
for each customer currently in service. This additional complexity makes the 
non-exponential service time distribution case much barder to analyse. 

Unfortunately, though the assumption of exponential distribution is 
convenient for analytical purposes, it may not be justified in all systems. For 
situations where the servicetime can be expressed, at least approximately, as 
a combination of exponentially distributed components, the Method of 
Stages of Section 2.9 may be used. The approach given in that section may 
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be suitably modified to allow, at least approximately, for more than one 
server or limited waiting spaces in the queue. Exact analytical modelling is 
however possible for generally distributed service times in the case of single 
server queues with infinite buffers, i.e. M/G/1 queues. This may be done in a 
number ofways. We present two such methods in this chapter- the Residual 
Life Approach and a method using an Imbedded Markov Chain. The 
Residual Life Approach is simpler but can only give mean results on the 
mean queueing parameters W, Wq. N and Nq. The method using an imbedded 
Markov chain is more powerful and may be used to obtain distributions of 
the various parameters, as weil as their mean values. This latter approach 
analyses a M/G/1 queue by identifying a special sequence of time instants. 
These are such that the Markovian property of being memory-less will be 
satisfied for the system state (defined as the number in the system) between 
these time instants. In this case, the intelligent choice of thesetime instants, 
enforcing the Markovian property, simplifies the system state definition and 
the consequent analysis. 

Unless specifically indicated otherwise, we consider the M/G/lqueue to 
be FCFS in nature. (This does not make any difference to the mean values of 
the system parameters but would affect higher moments and distributions.) 
The arrival process is considered Poisson with average arrival rate A.. The 
inter-arrival times will be exponentially distributed with mean 11 A. and 
variance 11A.2• The interarrival times will have the cumulative distribution 
function A(t) and probability density function a(t) respectively given by 

A(t) I -A.t = -e for t:?O 
=0 for t<O 

a(t) = M-Ä.I for t:?O 
=0 for t<O 

The Laplace Transform (L.T.) LA(s) of the probability density function will 
then be-

The service time X is considered to be generally distributed with mean 
E{X} =X. For X=t (tz 0) , the distribution is given in terms of its cumulative 
distribution function B(t), probability density function b(t) or its L.T. La(s). 
We assume that the distribution is known. The analysis given here is under 
equilibrium conditions when p = A.X < I holds. 
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3.1 The Residual Life Approach for Analysing the 
M/G/1 Queue 
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For convenience, we will assume that the queue serves customers using 
the FCFS service discipline. As mentioned earlier, this service discipline will 
not make a difference to the mean performance parameters as long as the 
server does not stay idle in a situation where there are one or more customers 
in the queue. This implies that the mean performance results will remain the 
same even ifwe use LCFS or SIRO service disciplines. A queueoftbis kind 
is shown in Figure 3.1. 

Arrivals 
A-

L. 
M/G/1 

Departures 

Figure 3.1. A M/G/1 Queue 

For the queue shown, consider a particular arrival of interest that enters 
the queue. If it arrives to a non-empty queue, it will find -

(a) one or more customers waiting in the queue, and 
(b) a customer currently in service who would have r seconds of residual 
service time left. 

Note that the residual service would be the additional time required to finish 
service to the customer currently being served. If the arrival finds the queue 
empty, then the residual servicetime it will seewill also be zero and it will 
enter service immediately. 

Let R=E{r} be the mean residual service time. This will be the mean of 
the random variable r as observed by arrivals to the queue. Note that for this 
queue, PASTA property will hold, as the arrival process is Poisson in nature. 
Therefore, using Little's result, we can write 
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Defining p=).E{X} as before, we require p<l for the queuetobe stable. In 
that case, we can simplify the above to get 

W = R 
q (1- p) 

To use this to find Wq, we would need the mean residual service time R. 
As shown in [BeG92], this may be conveniently found using a graphical 
approach. To apply this approach, we first observe that the value of R as 
seen by the arrival will also be the mean residual service time as calculated 
by observing the queue in steady state and taking time averages. This would 
be true because PASTA would hold for this queue, as its arrival process is 
Poisson in nature. We define r(T) as the value of the residual service time 
that will be seen if the system is examined at time r. The function r(T) is 
plotted below as a function of r . The saw-toothed nature of the plot arises 
because 

(a) r(T) jumps by an amount equal to the required servicetime whenever 
a new customer starts service, and 
(b) when r( T) is non-zero, it decreases at a unit rate until it reaches zero 
(when it reaches zero the customer being served completes service). 

These properties are illustrated in Figure 3.2. 

r(T) 

Figure 3.2. Residual Service Time r(r) as a Function of r 

Let M(t) be the number of departures from the queue in the time interval 
(0, t). We can then find the time average of r(T) for Os rst as follows 

1 1 1 M(l) 1 
Timeaverage ofr(T) in (O,t) =- Jr(r)dr:::::- L -Xi2 

t 0 t i;] 2 
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Note that because ofthe ergodicity implied by the PASTA property, the 
Iimit of this average as t~w will then be equal to R. The approximation 
above holds by ignoring the errors, if any, in the last residual service time in 
the interval (0, t). Note that this approximation becomes betteras t~oc. We 
can then write 

1 M(l) 1 1 M(t) 1 M(t) 1 
Time average of r(c) in (0, t) =- L-X;2 =----- L-X/ 

t i=l 2 2 t M(t) i=l 2 

M(t) I M(t) 1 -
For t~w, we get -----,) -1., and --L -X 2 ---,) X 2 

Therefore, by PASTA, 

A-X2 

W=--­
q 2(1- p) 

t M(t) i=l 2 I 

(Pollaczek-Khinchine or P-K Formula) 

(3.1) 

(3.2) 

Incidentally, the graphical approach given above would be found to be a 
useful trick to use for analysing many queueing situations. We can also make 
an interesting observation on R by decomposing it as follows, using the fact 
that the residual service time observed by an arrival to an empty queue will 
be zero. For this note that as obtained earlier, the Ioad on the queue will be 
given by p =Alp and that p and (1-p) will be the probability that arrival finds 
the queue non empty and the probability that arrival finds the queue empty, 
respectively. 

This is easy to argue regardless of the actual nature of the arrival and 
service processes. Consider a long interval of time T, with T ~oo. The 
average number of arrivals in that interval would be A-T and each arrival will 
require a mean service time of E{X}. Therefore, if the queue is a stable one, 
then out of the total time T, a time of (A.T)E{X} will be observed to be the 
average time the server is busy. This implies that the P{server is 
busy}=p=AE{X} and P{server not busy}=(1-p). 

Decomposing R into the two cases mentioned above, i.e. where arrival 
finds an empty system and where arrival finds a non-empty system, then 
gives 
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R = (1-p)E{r I system found empty on arrival} + pE{r I system found 
not empty on arrival} 

Since E{rl system found empty on arrival} = 0, then using R obtained in Eq. 
(3 .1 ), we get that 

-- RP -_ x2Xz -- 21 [x- + uxl J E{r I system found not empty on arrival} 

This result is actually somewhat counter-intuitive. Since the arrival coming 
to a non-empty queue essentially samples an ongoing service, lay reasoning 
may Iead us to expect timt the mean value of the residual service time 

observed in that case should be -X rather tban the - X +-=- . 1 - I [- ul J 
2 2 X 

Tbis is also popularly referred to (in the context of other phenomenon) as 
the Paradox of Residual Life. This is not really a paradox - as will be 
explained subsequently. Instead, this follows from the fact that the arrival (to 
a non-empty queue) is more Iikely to sample a Ionger service time than a 
shorter one. 

3.1.1 The Paradox of Residual Life 

The paradox of residual life is commonly illustrated in another way by 
observing arrivals from a proccss, whose inter-arrival times have some 
general distribution, i.e. it is not necessarily a Poisson process with the inter­
arrival times exponentially distributed. Consider the process of arrivals as 
illustrated in Figure 3.3. As shown in the figure, Iet the time instant tk be the 
instant of the k1h arrival from the arrival process. Let the random variable X 
represent the time between successive arrival instants, i.e. the intcr-arrival 
time ofthe process. lts mean and second momentwill then be given by 

E{tk -tk_1} =X 

E{(tk -<k-1)2}=X2 

where the inter-arrivaltime Xis considered to be a lifetime. 
We examine this process at an arbitrary time t, as shown. Assurne tbat t 

happens to fall in the interval (h, tk+J) and that the random variable Y 
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corresponding to the Residual Lifetime is given by Y = (tk+J - t). Drawing an 
analogy with the results obtained earlier for the residual service time when 
the arrival comes into a non-empty queue, we can see that 

- 1 - 1 u~ 
Y=-X+- ..:_ 

2 2 X 

t 

.y 
~I 

Time 

Figure 3.3. Arrival Process Illustrating the Paradox ofResidual Life 

(3.3) 

The Paradox oj Residual Life may then be stated as follows. "Since t can 
be chosen anywhere, we would expect Y = O.SX. However, this is not really 
the case as we would find that (as obtained above!) actually Y ~ O.SX and 
that Y increases with increasing ~'( (i.e. with increasing randomness)". 

The subject of Renewal Theory would Iook at this residual life from a 
somewhat different (but essentially similar) perspective. This would consider 
a system where components fail at timet;, i=l, 2, ...... and are immediately 
replaced. The system is observed at some random time t and the observer 
Iooks at the residual life Y of the current component. Assume that we are 
given that X=(tk+J - tJ is the lifetime of the ll' component with its 
distribution ( cumulative distribution function Fx(x) and probability density 
functionfx(x) ) defined as follows 

We would then like to find the distributionfrCYJ ofthe random variable Y 
(the residual lifetime) and its mean. Consider X* tobe the lifetime (random 
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variable) of the component being examined at time t (i.e. the selected 
component). We would first need to find the probability density function 
fx•(x) of this random variable. Forthis consider the probability of the event 
that {t falls in a lifetime oflength x}. (Note that timet is thc instant at which 
the system is observed.) We can observe the following. 

(a) P{t falls in a life time oflength x} would be proportional to the length 
x ofthe lifetime, as t is more likely to fall in a Ionger lifetime than in a 
shorter one. 

(b) P{t falls in a life time of length x} would also be proportional to 
fx(x)dx, i.e. the probability of occurrence of a lifetime of length x. 

(c) P{t falls in a life time of length x}=P{a lifetime of length x is 
selected} =fx•(x) 

Therefore, we get that, 

P{t falls in a life time oflength x} = fx• (x)dx = Kxfx (x)dx 

where K is a normalising constant. Integrating fx•(x)dx=Kxfx(x)dx over the 
range (0, oo) for x, we get 

K= (E{x} = Yx 
The probability density function of the lifetime of the selected component 
will then be given as 

f ( ) _ xfx (x) 
x• x -

X 
(3.4) 

in terms of the probability density function and mean of the component 
lifetime ( overall, i.e. unselected) X. 

Now consider the residual lifetime Y. Note that the residual lifctime ariscs 
by the selection oft in a uniformly distributed fashion over the lifetime of 
the selected component. Therefore, 

P{Y::::: y I X*= x} = y for 0::::: y::::: x (3.5) 
X 

or 



3. Analysis ofthe M/G/1 Queue 

P{y:::;;Y:::;;y+dy,x:::;;X*:::;;x+dx}= dy xfx(x) dx 
X X 

= fx~x) dxdy for O:::;;y:::;;x 
X 
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(3.6) 

Integrating Eq. (3.6) with respect to x over y:::::; x s oo, we get the required 
probability density functionfrM ofthe residuallifetime Yto be 

1 
fr (y)dy = P{y s Y:::::; y + dy} = --=[1- Fx (y)]dy 

X 
(3.7) 

The Laplace Transform Ly{s) of the probability density function of the 
residuallifetime Ymay then be computed from Eq. (3.7) tobe 

[ 1 1 YJ J 1-Lx(s) Ly (s) = L. T. --=---= fx (y )dy = ---:=-
X X 0 sX 

(3.8) 

where Lx(s) is the Laplace Transform of the probability density function of 
X. Differentiating this, we get 

1-Lx(s)+sL~(s) 
L~(s) = (3.9) 

Using Eq. (3.9) and the moment generating property of the Laplace 
Transform, the Mean Residual Lifetime E{Y} = Y may be found using 

Y = -L~ (st~o. This actually becomes indeterminate when evaluated at s=O, 

so L'Hospital's Rufe has tobe used to evaluate this. Using this and the fact 

that X=- L~ (st~o and X 2 = L~ (s)i,~o' we get 

- _ 1. (-L~(s)+L~(s)+sL~(s)) 
y - Im s-..0 2sX 

(3.1 0) 
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Note that this 1s what we had also obtained earlier with the graphical 
approach. 

3.2 The lmbedded Markov Chain Approach for 
Analysing the M/G/1 Queue 

For MIM/-/- type of queues, we were able to represent the system state at 
timet as the number in the system at timet and were able to use this to form 
an imbedded Markov Chain at any arbitrary set of time points. For the 
M/G/1 queue, this cannot be done, as the service time is no Ionger memory­
less. If we did want to persist with this approach then we need to expand the 
system descriptor appropriately. One way to do this would be to describe the 
system as say (n, a). Here n would be the number in the system at timet and 
a would be the time left to finish service to the customer currently in service 
at time t. Note that we did not have to do this for a system with 
exponentially distributed service times because of the memory-Iess property 
ofthat distribution. 

However, even for the M/G/1 queue, a single system state descriptor will 
work if we choose our time points carefully so that the Markov Property is 
satisfied between these time points. One such set of time points satisfying 
the Markov property arc the time instants just after the departure of a 
customer following service. Consider the imbedded Markov Chain of system 
states (denoting the number in system) at the time instants t; i=l, 2, 3, ...... cc 
when the /h customer departs from the system. At a time instant l;, we define 
the system state n; to be the number of customers left: behind when the i1h 

customer departs (i.e. immediately after the departure ofthe /h customer). 

i'" departure !eaves 
non-empty system (i+ J)"' deparlure 

11; 1 1 = 11;-1 +a; 1 1 11; > 0 

(i+ J)'h servicetime 

t········ t 
U1 + 1 arrivals in 

(i+ J)'" service time 

Figure 3.4a. Departure Leaves System Non-Empty 
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Note that the system state is actually what the departing customer would 
see Jooking back into the system after it Jeaves (the system) - that is it does 
not count itself in the number indicating the system state. Let a;+J be the 
number of arrivals in the (i+ 1/h service time. Note that the (i+ 1Y11 service 
time will end with the departure ofthe (i+ 1/11 customer. Two situations arise 
here, as shown in Figure 3.4a and 3.4b, and must be considered separately. 

In the first case, shown in Figure 3 .4a, the i'h departure leaves behind a 
non-empty queue. Therefore the time interval between the (i+ J)'h and the l 11 

departure is just one (random) service time with a;+ 1 arrivals in that interval 
as per the definition given above. Note that the state at the (i+ J)'h departure 
instaut can be related to the state at the ih departure instant thereby forming a 
Markov Chain. Specifically, the state at the (i+ 1/h departure instaut is n;-

1+a;+J· 

fh departure leaves 
empty system 

n; =0 

First Arrival to 
the system after il 
becomes empty 

(i+ l)'h departure 

n;+J = a;+! 

(i+ 1/h servicetime 

t ...................... t 
a;+ 1 arrivals in 

(i+ 1/'' servicetime 

Figure 3.4b. Departure Leaves System Empty 

For the case where the l 11 departure leaves the queue empty, service does 
not start again (nor are any departures possible) until the (i+ 1/h arrival. This 
is the customer whose departure will be tagged as the (i+ J)'h departure as 
shown in Figure 3.4b. The number left behind in the queue after this 
customer departs will merely be the number arriving during the service time 
of the customer. Therefore, the system state n; at the (i+ 1/h departure is 

merely a;+J· 
From the above, it can be seen that 

ni+I = ai+I 

=n; -1 + ai+I 

for n; =0 

for n; = 1,2,3 ........ . 
(3 .11) 

Sometimes, it may also be convenient to rewrite Eq. (3 .11) as 
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for n, = 0, 1, 2, 3, ...... .. (3 .12) 

where U(nJ is the unit step function. 
It should be noted that for the queue to be stable we should once again 

have p=)Jp<l. This can be justified either based on the earlier arguments 
for stability of a single server queue or by requiring ( equivalently) that the 
average number of customers arriving in a service time should be less than 1 
for the system to be stable. The results obtained below hold when this 
stability condition is met. 

For the M/G/1 queue being considered, Eq. (3 .12) may now be used to 
obtain the probabilities of the system state as observed by a departing 
customer. (We do this subsequently.) At first sight, these probabilities do not 
seem to be too useful as they hold only for the departure instants. It is not 
immediately obvious how these results may be used to find ergodie (i.e. 
time-averaged, steady state) distributions and moments. We need the 
following to help us put these results to more practical use. 

I. Kleinrock's Result: 
This states that for systems where the system state can change at most by 

+1 or -1, the system distribution as seen by an arriving customer will be the 
sameasthat seen by a departing customer. 

We can use this result to claim that the distributions or moments 
computed from the point of view of the dcparting customer will therefore be 
the same as the state distributions and moments as seen by an arriving 
customer. 

2.PASTA 
Since the arrival process is Poisson (i.e. the queue is M/G/1 ), PASTA will 

hold. Therefore the state distribution and moments as seen by the arriving 
customer will also be the same as the time averages observed under 
equilibrium conditions. 

U sing both Kleinrock' s Result and the PASTA property, we can 
therefore claim that the state distribution and moments calculated for the 
departure instants will also be the time averaged (ergodic) results that will be 
observed for the system at equilibrium. This is what makes the results 
obtained using Eq. (3 .12) useful for studying the equilibrium performance of 
a M/G/1 queue. Some typical results are derived next based on the system 
description given by Eq. (3.12). 
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3.2.1 Probability of the System Being Empty 

For obtaining this, we take the expectations of both sides of Eq. (3.12) to 
get that E{U(nJ)=E{a;+J}. We can then see that since 

00 

E{U(n;)}=l-p0 and E{ai+l} = f(A-t)b(t)dt = AX = p 
0 

we get our expected result that Po= 1-p 

3.2.2 Generating Function ofthe Number in the System (the P-K 
transform equation) 

We define the generating functions P,{z) and P;+ 1(z) as follows where 
Pj(z) is the generating function of the state as seen by the /h departing 
customer. 

00 

~ (z) = E{z";} = 2:Zk P{n; = k} 
k=O 

00 

~+I (z) = E{zni+l} = L:Zk P{n,+1 = k} 
k=O 

Since future arrivals would not depend on the current state, we would have n; 

tobe independent of a; (i.e. n; _1 a; ). We would therefore get that 

This can be simplified by observing that-
(1) Since the system is being examined in steady state (equilibrium) 
conditions, the dependence on "i" may be dropped. 
(2) Jf we define A(z)=E{z0} as the generating function of the number 
arriving in a service time, then we would get that 

A(z) = JE{za I servicetime = t}b(t)dt = Jfz" (~;" -:<t b(t)dt 
0 0 n=O · 

00 

= fe-..<t(i-z)b(t)dt 

0 



68 Chapter 3 

leading to 

(3.13) 

lt is interesting to note that the result of Eq. (3.13) could have been 
written down directly as A(z) is the generating function of the number 
arriving in a service time, where the arrival process is Poisson with rate ...i. 
This may be done following the approach taken to derive Eq. (2.36) in 
Chapter 2 and the associated comments given there. 

Using Eq. (3.13) and the moment generating properties of both 
generating functions and Laplace Transforms, we get that 

A'(z) = -IIL~ (A-- k) A'(l) = -IIL~ (0) = AX = p 

A"(z) = Ji? L~(/l-k) A"(l) = /1.2 L; (0) = /1,2 X 2 

Using Eq. (3.12), we can then obtain 

P(z) = A(z)E{zn-U(n) }= A(z) i>k-U(k) P{n = k} 
k=O 

[ 
0 ~ k-1 ] [ 1 ~ k 1 ] =A(z)zp0 +L....Jz Pk =A(z)p0 +-L....Jzpk--p0 

k=l z k=O z 

= A(z{~P(z)- ~ p 0 (l- z)] 
Using p 0 =1-p, and rearranging terms, this is simplified to give the 
Generating Function P(z) of the number in the system as seen by a departing 
customer (at equilibrium) tobe 

P(z) = (1- p)(l- z)A(z) 
A(z)- z 

where A(z) may be found using Eq. (3.13). Substituting for A(z) and 
simplifying, we get the final expression for the generating function 

P(z) = (1- p)(l- z)L8 (/l- k) 
L 8 (/l-k)-z 

P-K Transform Equation (3.14) 
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Note that the generating function P(z) may be inverted (i.e. its inverse z­
transform may be computed) to find the corresponding state distribution. 
This distribution will not only hold for the system observed at the departure 
instants, but will also hold for the system observed at the arrival instants. It 
will also be the ergodie state distribution. Note that even if P(z) may not be 
exactly inverted in a closed-form expression, we can obtain the desired 
distribution by expanding it in a Taylor Series expansion as 

00 

P(z)= L:aizi 
i=O 

Once this is done by suitably manipulating the R.H.S of Eq. (3.14), we can 
identify ai as the equilibrium probability Pi ofthe system being in state i (i.e 
P { i in system}. Various moments of the system state can then be found using 
these probabilities. It will, of course, be far simpler to use the generating 
function P(z) directly to find the required moments. This is illustrated next. 

3.2.3 Computing Moments of the System Parameters for the M/G/1 
Queue 

i) Note that P(l)=A(l)=l, and that as obtained previously 

A'(l) =/LX= p and A"(1) = .A? X 2 

")P(1)-l' P( )-I' (l-p)[(l-z)A'(z)-A(z)] __ (1-p)_ 1 ll - Im I Z - Im I - -
z-+ z-+ A'(z)-1 p-1 

Note that evaluation of the above Iimit requires the use of L'Hospital's Rute. 
The result P(l) = 1 is expected as the total sum of all the state probabilities 
must be unity. 

iii) From the P-K Transform Equation, we can obtain the mean and higher 
moments as weil 
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P(z)[A(z)- z] = (1- p)(l- z)A(z) 

P'(z)[A(z)- z] + P(z)[A'(z) -1] = (1- p)(l- z)A'(z)- (1- p)A(z) 

P"(z)[A(z)- z] + 2P'(z)[A'(z) -1] + P(z)A"(z) = (1- p)(l- z)A"(z)- (1- p)A 

Putting z= I and using earlier results, we get 

- 2P'(1)(1- p) + ..1? X 2 = (1- p)( -2p) 

,.12 xz 
N=P'(l)=p+---

2(1- p) 
Mean number in system 

Other higher moments may be similarly found by fmiher differentiation of 
P(z). Note that this will then also need evaluation of higher differentials of 
A (z) for z= 1. The other mean system performance parameters, i.e. W, W" and 
N,i' may now be found from N and are given below. 

Mean Time Spent in System= W =X+ A-X 2 (using Little's Result) 
2(1- p) 

Mean TimeSpentin Queue =Wq = W- X= AX 2 

2(1- p) 

Mean Number Waiting in Queue Nq = X 2 (using Little's Result) 
2(1- p) 

lt should be noted that the expression given above for Wq is the same as the 
mean result (P-K Formula) obtained earlier in Eq. (3.2) using the residual 
life approach. 

3.3 Distributions of Time Spent in System and the 
Waiting Time Prior to Service in a FCFS M/G/1 
Queue 

Given the distribution for the number in the system as seen by a 
departing customer, it is fairly Straightforward to derive the distribution of 
time spent waiting in queue and total time spent in system by a customer. 
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We outline the approach next as this approach is very commonly used in 
analysing the delays of a queueing-type system. The distribution for a LCFS 
queue is much more difficult to obtain and will be postponed for Section 3.5 

--,;~~-.... --- Qn ----l~·l 
Service starts for 

the n'h arrival 
n'h arrival 

Service ends for 
the n1h arrival 

._.4 .. ... .. ... ... ... 
Time 

Figure 3.5. Time Instants of Arrival and Departurefora Customer in a FCFS M/G/1 Queue 

Fora FCFS M/G/1 queue, consider the n1h arrival to the queue as shown 
in Figure 3.5. As shown in the figure, this arrival waits in the queue for a 
time interval of length Qn before its service can start. (Note that Qn=O ifthe 
arrival enters an empty queue.) Once service starts, the customer engages the 
server for a time interval Xn corresponding to its service time. The total time 
Tn spent in the system by the n'h arrival is then Qn+Xn. 

As before, we use b(t) to denote the probability density function of the 
service time Xn with its L.T. given by L8 (s). Similarly, Iet /Q(t) be the 
probability density function ofthe queueing delay Qn with L.T. Lg(s) and Iet 
fr(t) be the probability density function of the total time Tn spent in system 
by the n'h arrival with L.T. LT(s). 1t is important to note here that the 
probability density function's ofthese random variables and their L.T.s have 
been written without explicitly mentioning the variable n (for the n'h arrival) 
since the system is assumed to have reached equilibrium conditions. 

Consider the n'h arrival as shown in Figure 3.5. Since the queue is 
assumed to be FCFS in nature, the number of customers that the n1h user will 
see left behind in the queue when it departs will be the number of arrivals 
that occur while it is in the system. The generating function for this random 
number (at equilibrium) has already been obtained as P(z) in Eq. (3.14) as 
the generating function of the number in the system as seen by a departing 
customer. 

We can also argue that the generating function P(z) for the number in the 
system when this n1h customer departs can also be obtained in another way. 
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Using the approach used to get Eq. (2.36) and Eq. (3.13), we can argue that 
thls will be given as LT(:i-A.z) whcre L1(s) is the L.T. of the probability 
density function of the total time T spent in the system by an arriving 
customer. Therefore, we get that 

LT (A _ A.z) = (1- p)(l- z)L8 (:i- A.z) 
L 8 (:i- A.z)- z 

Substituting s=(:i- A.z), we then get 

(3.15) 

The L.T. Lr(s) may then be inverted to obtain the probability density 
function fr(t) of the total time spent by an arriving customer in a FCFS 
M/G/1 queue. Tt is also possible to directly use L 1(s) to obtain the desired 
moments of the random variable T, the total time spent in system by an 
arriving customer. 

Knowing Lr(s), and using the fact that Q+X=T, where Q and X are 
independent of each other (i.e. Q_i_X), we get 

(3 .16) 

as the L.T. ofthe probability density function}QM ofthe queueing delay Q. 
Inverting this Laplace Transform will give the associated probability density 
function fg(t) of the queueing delay. Even if this inversion is not explicitly 
done, the moments of Q may be found directly from L 0 (s) itself by 
differentiating it and evaluating this at s=O using the moment generating 
properties of Laplace Transforms. 

3.4 Busy Period Analysis of a M/G/1 Queue 

We can observe the server of this single-server queue to see the time 
intervals during which it is is busy or idle. If we observe the queue in this 
fashion, we will notice that the time-axis may be considered to be divided 
into cycles of random length. Each cycle consists of a sequence of an idle 
period (when the queue is empty and the server is idle) followed by a busy 
period (during which the server is busy and the queue is non-empty). 
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The busy period may also be viewed on the basis of a variable, 
Unfinished Work U(t), that is sometimes convenient to consider in a queue. 
We define U(t) at time t as the amount of time that it would take to empty 
the system of a/l those customers who were present in the system at time t, 
without taking into account any later customer arrivals. This has been 
illustrated in Figure 3.6. Note that for every new arrival, U(t) would have a 
step corresponding to the amount of work required by that arrival. At other 
times, whenever U(t)>O, it decreases at a unit rate. If U(t) reaches zero, it 
stays at that value until the next arrival forces it to jump up by the required 
step size. 

U(t) Cycle 

~--·-·-·-·-·---------·-----------~ 

/die 
Period 

Busy Period Time 

Figure 3.6. Unfinished Work in a M/G/1 Queue 

The busy period may then be viewed as the time interval starting with the 
first arrival to an empty queue (i.e. ending the idle period) which continues 
as long as the unfinished work U(t) stays non-zero (i.e. the queue does not 
go empty). The busy period ends and the next idle period begins, when the 
unfinished work becomes zero, i.e. the queue becomes empty. We let BP be 
the random variable denoting the length of such a busy period with 
probability density function f 8 p(t) whose L.T. is LBp(s). Similarly, the !die 
Periodstarts with the departure ofthe customer who leaves behind an empty 
queue and ends with the arrival ofthe first subsequent customer- who would 
then start the next busy period. Let fip(t) denote the probability density 
function of an idle period with length IP with L.T. L1p(s). Note that the 
random variables BP and IP will be independent of each other. The length of 
a cycle will then be the sum ofthe random variables BP and IP. Note that the 
cycle will also be of random length. 
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3.4.1 Idle Period (IP) 

Since the arrival process is Poisson with rate ...l, the inter-arrival times 
have an exponential distribution with mean 1/...l. Using this, we get 

P{JP ~y} = P{no arrivalinan interval oflengthy} 
= e-"-Y 

for y~O. Therefore the cumulative distribution function of the idle period 
will be (1- e-"-Y) and its probability density function will be ...le-"-Y (i.e. an 
exponential distribution, as expected). The L.T. of its probability density 
function will then be 

(3.17) 

3.4.2 Busy Period (BP) 

We obtain this based on the observation [Kle75] that the unfinished work 
U(t) in the system is invariant with respect to the service discipline being 
followed in the queue. This effectively implies that once the customers are in 
the queue, we can permute the order in which they are served without 
changing the distribution of the busy period. This can be easily seen, as the 
busy periodwill end when the queue becomes empty once again regardless 
of the sequence in which the customers were being served during the busy 
period itself! 

The implication of this observation is that we can assume the service 
discipline to be LCFS without changing the distribution of the busy period 
(even though the queue is/may actually be FCFS in nature.). We therefore 
consider the busy period for a LCFS queue in the following and will 
subsequently use the result obtained even for our FCFS queue. This is used 
to derive the probability density functionf8p(lj and its L.T. L8 p(s). 

Consider a busy period that starts with the arrival of customer A 1• We 
assume the following-

(a) X 1 is the servicetime for A 1 

(b) n* arrivals (Az, ................. , An*+I) arrive during the servicetime X~o in 
the sequence A2, ................. , An*+ I· 
(c) BP is the length of the busy period started by A 1 (whose distribution 
we want to find) 

Consider the n* arrivals (A2, ................. , An*+I) during the servicetime X1=x1 

of A 1• Since the service is LCFS in nature, each one ofthese will initiate sub-
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busy periods BP2, ................. , BPn*+l of its own so that we have the overall 
busy period as the sum of these sub-busy periods and the servicetime of A 1• 

BP = X 1 + BP2 + .......... + BPn*+l 

where X" BP2, ....... , BPn*+J and n* are all random variables. The following 
important observations can be made regarding the sub-busy periods and the 
busy period -

(a) The sub-busy periods are independent and identically distributed (iid) 
random variables. 
(b) The distribution (cumulative distribution function, probability density 
function and L.T. of probability density function) of a sub busy period 
will be the same as the distribution ofthe (main) busy period. 

W e then get that 

We first remove the conditioning on n *, using the fact that these are arrivals 
over an interval x from a Poisson process with rate A. This yields 

E{e-s(BP) !XI =x}=e-'"'i:e-Ax (A.xi [LBP(s)]k 
k=O k! 

= e-sx e-A.x eA.rL8 p(s) (3 .18) 
= e -x(s+A.-A.L8 p(s)) 

We can now remove the conditioning on X 1 using its probability density 
function b(t) with L.T. LB(s) to get 

00 

L 8 p(s) = E{e-s(BP)} = Je-x[s+).-A.L8 p(s)b(x)dx 

x=O 

or L8p (s) = L8 (s + /L- /LL 8 p (s)) (3.19) 

Note that if we are given the average arrival rate /1, of the Poisson Arrival 
process, and the probability density function JB(t) ( or its L.T. Ls(s)) of the 
service times, then Eq. (3.19) may be solved to find Lsp(s) of the busy 
period. From this, its probability density function fsp(t) may then be 
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determined by taking the inverse Laplace transform of L 8 p(s). For vcry 
simple systems, it may actually be possible to solve this functional equation 
directly. lt would be more common to use some kind of numerical recursion 
to solve it. However, even this may be computationally complex. The 
functional expression may of course be directly used to find the moments 
E{(BP/} ofthe busy period. Same typical values obtained in this fashion are 
given below for p=AIJi. 

E{(BP)} = X E{(BP) 2 }- X 2 

(1-p) (l-p)3 

Note once again that the above results for the busy period of a M/G/1 queue 
will hold regardless of the service discipline followed by the queue. This 
follows once again from the argument that the distribution ofthe busy period 
itselfwill be invariant to the service discipline (as lang as work is conserved 
and the server does not idle with a non-empty queue) and therefore, so will 
be its moments. 

3.5 Delay Analysis for a LCFS M/G/1 Queue 

In Section 3.3, we had done the delay analysis for the FCFS M/G/1 queue 
to obtain the distributions of the total time spent in the system by an arriving 
customer and the queueing delay encountered by a job (before its scrvice is 
started). In this section, we consider the delay analysis for a LCFS M/G/1 
queue to obtain the same distributions. Note that the distributions of the 
delay will depend on the service discipline even though the means will 
remain the same. 

Forthis derivation, we consider a customer A arriving to the system. Two 
cases are possible here. The first case is when customer A arrives to an 
empty queue, with probability (1-p); in this case, the queueing delay is zero 
and service to customer A starts immediately. The second case is more 
complicated and arises when customer A arrives to a non-empty queue (with 
probability p). 

This second case has been shown in Figure 3.7. We consider this in more 
detail. Note that in this case, the total time T spent in the system by 
Customer A will be the sum of its queueing time Q and its service time X, 
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i.e. T = Q+ X. (In the first case, the queueing time would be zero as service 
would start immediately for customer A, immediately upon arrival.) 

Endof 
Residual 

Service Time 

Customer A 's 
service starts 

Customer A 

l: Du i 

Customer A 
arrives to a 
non-empty 

queue 

' .... )>' <(·· 
····· ····· ..... » 
Q 

Queuing Delay 
for Customer A 

······· )t• 

X 
Service time 

forA 

Figure 3. 7. Customer Arrival and Departure from a LCFS M/G/1 Queue 

Note that when it arrives to a non-empty queue, customer A will actually 
come in the middle of the ongoing service time of whichever customer is 
currently being served. Let Da be the residual service time for this service to 
complete. The Queueing Delay Q is shown to consist of D 0 and another 
component D 1• Since the queue service is LCFS, this second component D 1 

will consist of sub busy periods, one associated with each of the customer 
arrivals in Da. (Since the queue is LCFS, these will have to be served first 
before Customer A can be served.) Note that Da and D1 arenot independent 
of each other. This is evident as the length of D0 affects the number arriving 
in it, which in turn affects the length D 1. 

When customer A arrives to a non-empty queue, it will essentially 
sample an ongoing service where Da is the corresponding residual service 
time. From our earlier results on residual life, as given in Eq. (3.7), we can 
then state that 

JD (t)= 1-B(t) 
o X 

(3.20) 

where B(t) is t~ cumulative distribution function of the serv1ce time X 
whose mean is X . Taking transforms, we get 

() 1-L8 (s) 
L D s = ----==:---

0 sX 
(3.21) 
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Let N0 be the number of arrivals in D 0 . Then, for customer A coming to a 
non-empty queue, we get 

where LBp(s) is the L.T. ofthe probability density function ofthe busy period 
which can be found using Eq. (3 .19). Therefore for the case where customer 
A arrives to a non-empty queue, we will have 

and 

E{ e-sQ I Do = y}= f (Ayr e-,lye-·'Y[Lßp(s)r 
n=O n. 

= exp[ -y{s + A.- A.L8p(s)}] 

Using the probability density function (and its L.T.) of D 0, from Eqs. 
(3 .20) and (3 .21 ), we get that for the case of customer A coming to a non­
empty queue, we will havc 

(3.22) 

and 

E{e-sQ}= l-L13 (s+A-A.LB,u(s)) = 1-L13p(s) 
X(s + A.- A.L13p(s)) X(s + A.- A.LBP (s )) 

(3.23) 

Therefore, considering both the cases where Customer A finds the queue 
empty and non-empty, we get 

L (s)-(1 )+ 1-LBP(s) 
Q - - p p (s + A- A.LBP (s))X 

(3 .24) 
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as the L.T. of the probability density function of the queueing delay Q for 
the LCFS M/G/1 queue. 

The L.T. of the probability density function of the overall delay T for the 
LCFS M/G/1 queue may also be found. This follows from the fact that 
T=Q+ X where Xis the service time and that Q and X will be independent of 
each there. Therefore, we have 

(3.25) 

Note that Lßp(s) may be obtained by first solving Eq. (3.19). This may be 
used in Eq. (3.24) to get LQ(s). Since L8 (s) is given (as it is the L.T. ofthe 
probability density function of the service time X), we can then use Eq. 
(3.24) and Eq. (3.25) to obtain LT(s). 

3.6 The M/D/1 Queue 

The M/D/1 queue has Poisson arrivals like the M/G/1 queue, but the 
service tim es are fixed (i.e. deterministic ). Study of this kind of a queue has 
become more important because this may be a convenient way to model an 
Asynchronaus Transfer Mode (A TM) node with fixed size cells as the jobs 
requiring service. This may also be a good model for a packet switching 
node or router in a computer network where the packets are of fixed size. 
The results obtained for the M/G/1 queue in Sections 3.1-3.5 may be easily 
applied for this queue to obtain the corresponding results. 

Let m be the duration of service (which is fixed). We will then have 

X- X2 2 1 L ( ) -sm =m, =m , p=/l,m, B s =e 

We can use Eqs. (3 .I) and (3 .2), respectively, to get the residual service 
time R and the mean queueing delay Wq. 

..tm 2 
W=--­

q 2(1- p) 

m p 
----
21-p 

(3 .26) 

Knowing the mean queueing delay Wq, the mean time W spent in the 
system may be found as 
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W = m + W = m(2 - p) 
q 2(1- p) 

Chapter 3 

(3.27) 

Similarly, Eq. (3.14) may be used to get the generating function P(z) for 
the number in the system. 

(1- p)(l- z)e-mA-(1-z) (1- p)(l- z)e-p(l-z) 
P(z)- = p = mA. (3.28) 

- -mA-(1-z) e-p(l-z) - z e -z 

lt should be noted that the mean results W and Wq and the generating 
function P(z) will hold regardless of the service discipline followed by the 
M/D/1 queue, i.e. whether it is FCFS, LCFS, SIRO etc .. 

For the FCFS MIDI 1 queue, we can use P(z)= L7(A.-A.z) as in Section 3.3, 
to find the L.T. LT(s) of the probability density function JT(t) of the time T 
spent in system by an arriving customer. This is then given by 

L (s) = s(1- p)e-sm 
T 1 1 -sm s - /l, + /l,e 

(FCFS M/D/1 Queue) (3.29) 

This Laplace Transform may be inverted to find the actual probability 
density functionfr(t) (at least, we can do that in principle, cven if thc actual 
inversion is not easy to do). We can also use the transform of Eq. (3.29) 
directly to find the various moments of the time spent in system by a 
customer arriving to this queue. One can also use this to find the distribution 
(probability density function or its L.T.) or the moments of the time spent 
waiting in the FCFS M/D/1 queue by an arriving customer. This may be 
obtained from LQ(s)=LT(!))IL8 (5) using the fact that the queueing delay Q and 
the service time X are independent random variables. 

The busy period distribution of the M/D/1 queue may also be found by 
using Eq. (3 .19), with proper substitutions in the M/G/1 results. This gives 

L ( ) _ -m(s+A--J.l.ßp (s)) _ -ms-p pLBP (s) 
BP s - e - e e (3.30) 

Note that L 8 p(s) may then be obtained by solving the equation -

L8 p (s )[ exp(-pL8 p (s))] = e-ms-p (3.31) 

For the LCFS M/G/1 queue, one can similarly obtain the distribution of the 
queueing delay from Eq. (3.25) by proper substitution. This will be 
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L (s) = (1- p) + /l[1- LBP (s)] 
Q s + /l- /LL 8 p (s) 

(3.32) 

using L8 p(s) as obtained earlier in Eq. (3.30). 

3. 7 Alternative Derivation for the Delays in a FCFS 
M/G/1 Queue 

We can re-derive our earlier results of Section 3.3 on the distribution of 
the queueing delay and total delay for a FCFS M/G/1 queue following an 
alternative approach given in this section. Though the results obtained are 
the same, the approach given here illustrates a direct, but somewhat more 
difficult way of obtaining the same results. The derivation of Section 3 .3 was 
somewhat indirect as it was based on the observation that for a FCFS M/G/1 
queue, the number left behind in the system by a departing customer will be 
the number arriving while this customer was in the system. This observation 
was used to derive the distributions ofthe total delay and the queueing delay. 

The derivation given in this section actually Iooks at how the busy period 
evolves in a FCFS M/G/1 queue. For this, we decompose a busy period of 
the M/G/1 (FCFS) queue into a sequence of dependent random variables X0" 

x,, x2 ....... ... as follows. 

X0 servicetime (X) ofthe first customer (say Customer 1) initiating the 
busy period 

X 1 time taken to serve all customers arriving in X 0 

X2 time taken to serve all customers arriving in X 1 

x; time taken to serve all customers arriving in x;_, 

etc. 

The sequence X0, X 1, X2 ••.....••. terminates with XN, if no customers arrive 
to the queue during XN. In that case, XN will be the terminating interval in 
the sequence and XN+ 1=XN+2= ......... XXJ =0. It is possible to show that if p<l, 
then the sequence {Xi} will indeed terminate and therefore the busy period 
will be of finite length. 

The Busy Period Duration B will then be given as 
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(3.33) 

with the understanding that the intervals x; beyond the terminating one are of 
zero length. Let Lx(iJ=E{exp(-sXJ) be the L.T. of the probability density 
function of the random variable x; and Iet n; represent the number of arrivals 
(random) in X,. We can then derive the following by successively removing 
the conditioning terms one by one. 

E{e-sX; IXH =x,nH =n}=[L8 (s)Y 

E{ -sX; I X - } - Loo (Ax-)" -AxLil ( ) - e-).x(l-Lß(s)) e . 1 -X- e 8 S-
t- 1 

n=o n. 
00 

E{e-sX;} = Je-A.x(I-Lß(s))dXH (x) 

x=O 

Therefore 

(3.34) 

This gives the way the distributions of the successive time intervals in {Xi} 
will evolve within a busy period. 

Consider now a particular arrival, say customer A, which comes during 
the busy period. Assurne that this arrival comes during the interval x; and 
that it encounters a queueing delay of Q*. Therefore, we have 

Q* =Residual Life ofthe interval Xi + L(service times of all those 
customers who arrived in the interval x; but before customer A) 

Let Y; be the residual life of the interval Xi when customer A arrives and Iet 
N; be the number of arrivals in x; which came before customer A. Then -

E{ -so• I . X Y ß N } -sß Ln ( ) e- 1, ;=a, ;=, ;=n=e sS (3.35) 

Removing the conditioning on N; using the Poisson distribution of the 
arrivals, we get 
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E{ -sQ* I. X - y - ß}- -sß~ [..t(a- ß)t -A(a-ß) rn ( ) e 1, ; - a, ; - - e L... 1 e 3 s 

I~ 

n~o n. 
-sß-}c(a-ß)+A(a-ß)L3 (s) 

=e 

Lifetime 

I Residual Lifetime 

I 
Lifetime Selection 

Figure 3.8. Actual Lifetime and Residual Lifetime 
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(3.36) 

Recall that if X is a life time and Y is a residuallife time as shown above 
in Figure 3.8, then Ywill always be less thanX For y sx, we have from Eqs. 
(3.5) and (3.6) that 

P{Y::::: y I X::::: x} = y 
X 

f (x) 
P{y::::: Y :::::y +dy,x::::: X :::::x + dx} =-x-dxdy 

E{X} 

Using this in Eq. (3.36), we get that 

ro a . . f (a)da 
E{e-sQ* I i} = J J e -[s-A+ALs(>)]ß e -[A-ALB(s)]a x, . dß 

a~o p~o E{X,} 

roJ e-sa - e -[A-}.LB(s)]a fx (a)da 

= a~o -s+A--A-L3 (s) ~{X;} 
E{e -sX;} _ E{e -}c[J-L3 (s)JX;} 

E{X; }[ -s + A- A-L3 (s)] 
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and therefore, 

L (s) - L (A, - U (s)) 
E{e-sQ* I i} = X(i) X(i) B 

E{X; }[-s + A- ALB (s)] 

Using Eq. (3.34) in (3.37), we obtain that 

E{e-sQ*Ii}= Lx(i+l)(s)-Lx(i)(s) 
E{X, }(s- A, + :lLB (s)) 

Chapter 3 

(3.37) 

(3.38) 

Given that the arrival of Customer A happened during a busy period ( of 
length BP), the probability that it will occur during the i1h such interval .x; 
will be E{A';}/E{BP}. This may then be used to derive 

E{e-sQ*1 customer A arrives in busy period} 

= fE{e-sQ* I i} E{XJ 
i=ü E{BP} 

1 if) 

= E[BP}[s- A + /lLB (s)] ~[Lx(i+l) (s)- L X(i) (s)] (3.39) 

l-LB(s) 

E[BP}[s- A +ALB (s)] 

Note that the last expresion follows from the fact that 

since X 0 is just a servicetime X and Lx (wJ(s) = 1 since X"' =0 beyond the busy 
interval. 

We can also obtain the mean busy period length, E{BP}, from simple 
arguments. Consider an idle period IP (of mean leangth 1/A), followed by a 
busy period such that the sum of the two will constitute a cycle. Then, we 
have 

p = E{BP} + E{IP} 
E{BP} E{BP} 

(3.40) 
E{BP} + A-1 
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This may be simplified to give 

E{BP} = E{X} 
(1- p) 

which leads to 

E{ -so•i A . . b . d} (1-p)(l-LB(s) e - customer arnves m usy peno = ---=----=-__:__:_--"'-_:___:_-
E{X}(s- A, +A-LB (s)) 

85 

Considering tagether the two cases where customer A arrives in an idle 
period and when it arrives in a busy period, we get 

LQ (s) = (1- p) + pE { e -sQ• I customer A arrives in busy period} 

This may be simplified to get our earlier result that 

a$ given in Eq. (3.16) for the FCFS M/G/1 queue. 



86 Chapter 3 

Problems 

1. For a particular M/G/1 queue, the Laplace Transform of the service 
time is given to be 

Analyse this queue to the extent possible, using both the residual life 
approach and the imbedded Markov chain approach. 

2. Consider a special M/G/1 queue, which operates normally except when 
the system becomes empty. Whenever that happens, service starts again only 
when there are K customers present in the system, where K is a given 
constant. Once service begins, it continues normally unti I the system 
becomes empty once again. Forthis queue, obtain the following. 

(a) The probability that the system is empty 

(b) The distribution for the nurober in the system 

(c) The mean nurober in the system 

( d) The mean queueing delay 

3. Consider a special M/G/1 queue operating in the following fashion. A 
new custorner (say custorner A) entering the queue starts service 
immediately regardless of whether the queue is empty or non-empty when it 
arrives. In the latter case, it pre-empts the customer currently being served 
(say customer B) who is pushed back into the queue once again. Service to 
the pre-empted customer B resumes from its point oj interruption after 
service to customer A and service to all subsequent arrivals after customer A 
get completed. [Note that work is still conserved as service is interrupted on 
a pre-emptive resume basis.] 

(a) For this queue, show that the distribution (L.T. of the probability 
density function) of the time an arriving customer will spend in the 

system will be given by Lc(s)=L3 (s+A-ALc(s)) with mean X 
(1- AX) 

Note that this time effectively has the same distribution as the busy 
period ofthe normal M/G/1 queue. 
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(b) The distribution (generating function) of the number of other 
customers served while a particular customer is in the queue will be 

given by F(z)=La(A--A.z)withmean M 
(l-AX) 

4. Consider a special M/G/1 queue where a customer arriving tosses a 
coin that has probability p of coming up heads and probability (1-p) of 
coming up tails. If the coin shows heads, then the customer leaves without 
service (i.e. servicetime is zero ). If it comes up tails, then the customer goes 
for a service time that is exponentially distributed with mean I I 11· Analyse 
this queue, to the extent possible using the approaches given in this section 
both for the case where the service discipline is FCFS and for the case where 
it is LCFS. 

5. Consider a M/G/1 queue where the service times have the probability 
density functionfx(t) and L.T. L8 (s). Whenever a customer finishes service, 
it eithcr dccidcs to go for another service immediately with probability p 
(and this may continue subsequently, as weil) or leaves the queue with 
probability (1-p). Analyse this queue for the two cases where the service 
disciplines are FCFS and LCFS in nature. 

One can also consider a variation of this queue, where a customer who on 
finishing service decides to go for another service joins the queue once again 
as a new customer would. Consider this for the LCFS and FCFS variations 
as weil. 
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Advanced Queueing Theory 
Vacations, Bulk Arrivalsand Priorities in a M/G/1 Queue and the 
Geo/G/ 1 Queue 

In this chapter, we consider several useful variations ofthe M/G/lqueue, 
the basic model of which was discussed in Chapter 3. These variations are 
useful as they may be used to model situations where, even though the basic 
queue is a single-server one with an infinite buffer, several other special 
considerations apply. The analytical approaches used for these queueing 
models are similar to those used in Chapter 3 but require some special 
techniques, which are interesting and useful to know. 

We first consider queues with vacations where the server stops serving 
for some time even though there may be users still in the queue who are 
waiting for service. Note that this will not happen in a simple M/G/1 queue, 
as regardless of the queueing discipline followed, the server will never be 
allowed to idle unless the system itself is empty. Two different ways of 
modelling such vacations have been considered. We also consider the special 
case exceptional jirst service to a M/G/1 queue where the first customer 
starting a busy period requires some special service different from the way 
the other subsequent customers in that busy period are served. This is 
commonly observed in several real life situations. For example, in a 
computer network, the first packet of a multi-packet transmission may 
require special handfing because of the buffer allocations and routing 
decisions that are required tobe made. The other packetsoftbis multi-packet 
transmission may then be served without these special considerations. This 
chapter also considers queues with batch arrivals where the batches arrive 
from a Poisson process but a batch may have one or more (random) 
customers. This is similar to the batch arrivals considered in Section 2.10 
except that there we were limited to only exponentially distributed service 
times. We also describe priority queues and analyse single-server M/G/1 
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queues for different priority mechanisms. The chapter concludes with a 
description and analysis of discrete-time queues of the type Geo/G/1 and 
Geo[XJ/G/1. 

4.1 M/G/1 Queue with Vacations 

Consider a M/G/1 queue, where after each busy period, the server goes 
on a vacation for a random interval of time. The server is not available for 
providing service while it is on vacation. Arrivals coming during the 
vacation can go into service only after the server returns from vacation. This 
type ofbehaviour is exhibited in many real life situations. This, for example, 
will be the case if a server serving a queue goes for a coffee break whenever 
the system becomes empty and can resume service only after it returns from 
its coffee break. Scenarios likc this may also arise in communication systems 
and other service models. For example, in a polling type situation, a single 
server may provide service at a number of service locations moving from 
one to other in some pre-defined sequence. One way of modelling such a 
system would be to assume that from the service station's point ofview, the 
server goes for a vacation (i.e. moves to the other stations) after completing 
service to all the customers at its present location. Service at the service 
station being considered resumes only after the server returns to this station. 
Note that polling systems of this type may also be modelled in other way, 
not necessarily invoking the vacation model considered here [BeG92]. 

We assume in this section that if on returning from a vacation, the server 
still finds the system empty, then it goes on another vacation of random 
length. This continues until the server returns from the vacation and finds 
jobs/customers waiting in the queue - it then starts serving customers 
normally once again. After it starts service, following a vacation, the server 
continues serving normally (like a normal M/G/1 queue) until the system 
becomes empty once again. At that time, the server once again leaves for a 
random Jength vacation and the process is repeated. 

This would be the basic vacation model that we will discuss here. Simple 
variations to this are also encountered. Some examples are -

(a) Server goes on only one vacation after the busy period ends. Once it 
comesback from this vacation, it does not go for anothcr vacation even ifthc 
system is still empty at that time. This has been discussed in Section 4.2 

(b) On return from a vacation, server starts service only if it finds K or 
more jobs/customers waiting in queue. If the number waiting is less than K, 
thcn it goes for anothcr vacation. [Note that our basic vacation modcl 
described above and analysed subsequently is really the case for K = 1.] 

As for the case of the normal M/G/1 queue, we will analyse this queue 
using both the (a) Residual Life-Time Approach and the (b) Imbedded 
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Markov Chain Approach. Note that the analyses for the variations to the 
basic vacation model may also be done using either of these two approaches. 

4.1.1 Residual Life Approach 

r(t): Residual Timefor the Currently 
Ongoing Service or Vacation Time 

X;: i1h servicetime 
r(t) Vj: /h vacation time 

Figure 4.1. Residual Time r(r) for a M/G/1 Queue with Vacations 

For this we follow the same approach as for the simple M/G/1 queue 
analysed in Section 3.1. As for the simple M/G/1 queue, we draw the plot of 
the residual life-time r(t) as a function of time t as shown in Figure 4.1. In 
this case, however, the residual life time measures either the time left to the 
end of the current service or the current vacation, depending on whether a 
service or a vacation is on-going at time t. Let X; be the i'h service time and 

~· the /' vacation interval. 
We consider the interval (0, t) and evaluate the mean value of r(t) over 

this interval as 

1 I 1 M (I) } 1 L(l) 1 
TimeAverageofr(t)over(O,t) =- Jr(x)dx=- 2:-Xi2 +-L:-v} 

t 0 I i=l 2 t J=l 2 

where M(t) is the number of arrivals in the interval (O,t) and L(t) is the 
number of vacation intervals in that same interval. Note that is really an 
approximation ignoring minor errors in the last residual time (either service 
time or vacation time, as the case may be), as was justified for the case in 
Section 3.1. This error will tend to zero as t--?ro. Using the definitions of 
M(t) and L(t), we get that 
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1 l 1 M(t) 1 M(l) 2 1 L(t) 1 L(t) 2 
- Jr(x)dx=-----:Lx +---:Lv 
t 0 2 t M(t) 1=1 I 2 t I,(t) j=l I 

Taking appropriate Iimits ofthe terms above as t->w, we get 

• l I 

R = hm~-->oo- Jr(x)dx 
t 0 

] M(l) _ 

limi---?<Xl -- LX/ = X 2 

M(t) i=l 

. M(t) 
lnn 1 ~ 00 ~- = A 

t 
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(4.1) 

Note that as before, X and X 2 are the first and second moments, 

respectively of the scrvice times. For the vacation intervals, V and V 2 are 
the first and second moments, respectively. We note also that for t~w, the 
fraction of time the server will stay idle will tend to (1-p) where p is the 
affered traffic p=A,E{X} = ),}{. Since t(l-p) will be the total time interval in 

(O,t) over which the serverwill be idle, therefore lim~-->oo t(l- p) =V. Using 
L(t) 

these in conjunction with Eq. ( 4.1 ), we get that for this case the mean 
residual time R will be given by 

1 -2 1 V 2 
R =-;LX + -(1- p)----=-

2 2 V 
(4.2) 

However, as in the case ofthe simple M/G/1 queue, the mean queueing delay 
Wq may be expressed as the sum of the mean residual time R and the mean 
time spent to serve the N'l customers ahead of the new arrival who are 
already in the queue. (Note that though this implicitly assumes a FCFS 
queue, this will actually be true for any service discipline.) We can then say 
that 
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Defining p = /LE{X} =/LX, and substituting the mean residual time R from 
Eq. (4.2), we get the mean queueing delay for this case as 

(4.3) 

The above analysis was based on the assumption that the intervals {Xj} and 
{ v;} are independent of each other and are also independent of the arrival 
process. Actually, these conditions may be relaxed to some extent and strict 
independence ofthistype is not really needed for Eq. (4.3) to hold [BeG92]. 

4.1.1 Imbedded Markov Chain Approach 

For this, we imbed our Markov Chain of system states (denoting the 
number in .the system) at the time instants !; i= 1, 2, 3, ........ when the i111 

customer departs from the system. As in Section 3.2 and [Kle75], at the time 
instant t" the system state n, is defined to be the number of customers left 
behind in the system when the lh customer departs. Similarly, Iet a,+ 1 be the 
number of arrivals in the (i+ 1/h service time. For the M/G/1 queue with 
vacations, we additionally define that 

j = number of customers waiting for service when 
a busy period begins, j 2 1 

and .iJ =PU customers starting the busy period} 

Note that these additional terms j and .iJ are needed because one or more 
customers may come during the last vacation interval after which the busy 
period begins. Therefore, the busy period will start with either one customer 
or with more than one customer. 

The generating function F(z) of the number of customers waiting in 
queue when the busy period starts is given by 

"' 
F(z) = Lf1 z 1 = E{z 1} 

;=I 

We also define fv(t) to be the probability density function of the vacation 
interval with cumulative distribution function Fv(t) and L.T. (of the 
probability density function) as Lv(s). For the imbedded time points t; at the 
customer departure instants, we then can write that 
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ni+l = n; + a,+1 -1 + }[1- U(n, )] for i=l, 2, ,3, ...... . ( 4.4) 

where U(nJ is the unit step function. Note that Eq. ( 4.4) may also be 
explicitly written as 

ni+l = a,+ 1 + j- 1 

=n; + ai+l -1 

for n, = 0 

for n,;:o:1 
(4.5) 

At steady state, the dependence on i may be dropped. Further, we define A(z) 
to be the generating function of the number arriving in a service time. Since 
PASTA will be applicable to this queue (the arrival process is Poisson) and 
Kleinrock's Result is also applicable (see Section 3.2), the probability p" of 
there being n users in the system will be the same for both the arrival and the 
departure instants. Moreover, these same probabilities will also hold for the 
ergodie situation when the system is in steady state. Using these and 
simplifying, we get 

P(z) = E{zn+a-l+J[H!(n)]} = E{za} E{zn-l+J[l-U(n)]} 

"' = A(z)E{p0 zi-l +I; zn-l Pn} 
n=! 

[ p 1 1 J = A(z) -° F(z) +- P(z)-- Po 
z z z 

Simplifying this yields the required generating function P(z) as 

P(z) = p 0 A(z) 1- F(z) 
A(z)- z 

(4.6) 

To use Eq. (4.6), we need to know the terms p 0"A(z) and F(z). Note that we 
would then need to apply the condition that P(J)=l to find p 0 before we can 
give the actual expression for P(z). We can also find p 0 by taking the mean 
of both the LHS and RHS of either Eqs. ( 4.4) or ( 4.5} under steady state 
conditions. This will be equivalent to obtaining this probability by applying 
the normalisation condition inherent in P(J)=l. We further note the 
following 
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(i) Since A(z) is the generating function of the number arriving in a 
service time (probability density function b(t) with L.T. Ls(:s) ) 
from a Poisson process at rate /L From earlier derivations of 
Section 3.2, as in Eq. (3.13), we get thatA(z)=L8 (..1-k) 

(ii) Let F* (z) be the generating function of the number of arrivals in 
one vacation interval. Then, we would get as before that 
F* (z) = Lv(.-1-k). 

(iii) We can also show that 

F(z)= F*(z)-F*(O) = Lv(.-1-k)-Lv(A) 
1-F*(O) 1-Lv(..i) 

_F_"(_1) = _ ..iL~ (0) = ..1 V~ 
F'(1) L~ (0) V 

A(1) = P(l) = F(l) = 1 

A'(1) = p = AX F'(l)= ..iV 
1-Lv(..i) 

(4.7) 

(4.8) 

where V and V 2 are respectively the first and second moments of the 
vacation interval. We can now differentiate both sides of Eq. (4.6) and 
evaluate the LHS and RHS at z= 1. Using the results given in Eq. ( 4.8) and 
evaluating provides us with the probability p 0 ofthe system being empty. 

1- p 
Po = F'(l) (4.9) 

Substituting these in Eq. (4.6), we get the required generating function P(z). 
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( 1- _?~~A-- kL-:-_~!'_CA-)) 
[1-p] 1-Lv(A-) Pz=--L A--k () F'(l) 8 ( ) L8 (A--k)-z (4.10) 

=(1-p)(l-Lv(A--k){ LH(A--k) ) 
A-V \ L8 (A-- k)- z 

Note that this holds for the customer departure instants from the M/G/1 
queue. However, since Kleinrock's result will hold for this queue, this 
generating function will also hold for the customer arrival instants. Since the 
arrival process is Poisson, PASTA would also apply. Hence, the above 
generating function would also hold for the time averaged system state at 
equilibrium. 

The P(z) obtained in Eq. ( 4.1 0) may be used to find the mean number in 
the system N. We can then use Little's Result on this to get the mean time 
spent in system Was N/A-. From this, we can obtain the mean time spent 
waiting in queue as Wq=W-E{X}. This can be shown tobe 

A-X2 v2 
w = +-= 

q 2(1-p) 2V 
(4.11) 

as obtained in Eq. ( 4.3) earlier by the Residual Life-Time Based Approach 
of Section 4.1.1. 

One important observation should be noted about the results obtained in 
this section. For the results on the first moments (mean quantities W, Wq, N, 
and Nq), the queue may have any service discipline, i.e. FCFS, LCFS or 
SIRO. The results on the probability generating function (and hence the state 
probability distribution) of the number in the system also hold for any 
service discipline. The second and higher moments of the delay quantities 
and their distributions (i.e. probability density function or L.T. of probability 
density function) will depend on the nature of the actual service discipline 
that is being followed. 

It should also be noted, that in this case, the server may be idle even 
when there are customers waiting. This, for example, may happen if at that 
time, the server is on a vacation. This was not allowed in the simple M/G/1 
queue considered earlier. However, once the server starts serving (i.e. the 
busy period starts), the server can no Ionger idle until the queue becomes 
empty once again. 
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4.2 M/G/1 Queue with Only One Vacation after Idle 

In this case, the server goes for only one vacation of random length when 
the queue becomes idle. (Note that for the case considered in Section 4.1, the 
server may go on multiple consecutive vacations provided it finds the system 
empty whenever it returns from a vacation.) Once this vacation is over, it 
remains in the system and waits for a customer to come (so that it can start 
service) even ifit finds the queue empty when it returns from its vacation. 

Let fv(t) to be the probability density function of the vacation interval 
with cumulative distribution function Fv(t) and L.T. Lv(s) (ofthe probability 
density function) as defined earlier in Section 4.1. Let} be the nurober in the 
system at the end ofthe vacation with distributionjf and generating function 
F(z). Note that the following will hold 

where V, V 2 are respectively the first and second moments of the vacation 
interval. Ifthe Imbedded Markov Chain approach is used, we can shown that 
for this case the nurober left behind by the (i+ 1/h departure may be written 
as 

ni+I = ai+I + i- U(j) 

=n; + ai+I -1 

for n; =0 

for n; ~I 
( 4.12) 

From this, following the same procedure as in Section 4.1.2, we can obtain 
the results that 

l-AX 
(4.13) 

Po= ).V +Lv(A) 

and 

P(z) = Lv (A -ll.z)- (1- z)Lv (A) -1 ( I - AX )( L 8 ( A - ll.z) )( ) 
AV+Lv(A) z-L8 (A-Ilz) 

(4.14) 
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The Residual Life approach of Section 4.1.1 may also be applied to 
analyse this queueing situation. Note that, as before, we will have 

W = R 
q l-AX 

However, the expression for the mean residual time R will differ from 
that of the previous case in Section 4.I.I. Note that in an interval (O,t), the 
total mean idle time will be t(l-A,E{X})and the mean length of each idle 
period in a cycle will be given by 

- (- I) (- I ) E{IP}=IP= V+ / 0 A, = V+ A, Lv(A.) 

Following the graphical approach given in Sec. 4.l.I, we can then derive 
that 

(4.14) 

and 

( 4.15) 

Following our usual approach, once the mean queueing delay W,1 is 
known, the mean number Nq waiting for service in the queue may be found 
by applying Little's result. One can also find the mean time W spent in the 
system knowing Wq and the mean service time. Little's result may be applied 
once again to Wto find the mean number N in the system. 

4.3 M/G/1 Queue with Exceptional First Service 

We consider here a special kind of M/G/1 queue where the first customer 
to get serviced when a busy period starts gets a different kind of service (i.e. 
with a different distribution of the service time) than the other customers 
served during the busy period. This kind of situation may arise in many 



4. Advanced Queueing Theory 99 

practical situations as the server starting work after a period of idling may 
work slower (or faster) than the way it otherwise would. In a computer 
network, this may also arise because the first packet in a sequence may 
require special processing for raute establishment and buffer set-up and will 
therefore require a different kind of service than the subsequent packets. 

Once again, it is possible to analyse this using either the residual lifetime 
approach or the method of imbedded Markov chain. In the following, the 
latter method will be described based on the choice of the customer 
departure instants {tJ as the imbedded time points and the system state 
represented by the number in the system {n,} as seen by a departing 
customer. Note that both PASTA and Kleinrock's Result will still be 
applicable to this queue allowing us to generalize the distributions obtained 
at the departure instants to both the arrival instants and the ergodie system 
averages. 

Let b(t) (with L.T. L8 (s)) be the probability density function of the 
normalservicetime and Iet b*(t) (with L.T. Ls•M) be the probability density 
function of the service time of the first customer being served in a busy 
period, i.e. that ofthe exceptional first service time. In the following we will 
use superscript * to denote quantities relevant to the exceptional first service. 
Forthis system, we can then show that 

( 4.16) 

where a*H is the nurober of arrivals in the first ( exceptional) servicetime of 
the busy period and a;, 1 is the number of arrivals in the normal service tim es. 
The generating functions for these will be denoted by A*(z) and A(z), 
respectively and may be found using A *(z)=L8 .(J..-J.z) and A(z)=Ls(J..-J..z). 
Taking expectations of the RHS and LHS of Eq. ( 4.16) at equilibrium (i.e. 
by dropping the subscript i), we get that 

a* 
1 - Po = l _ * with a = AX and a * = J..X * 

-a+a 
( 4.17) 

Therefore, 

l-AX ( 4.18) 
Po= l-AX +J..X* 

Using Eq. (4.16), we can also find that 
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P(z) = p 0 [A(z)-zA*(z)] 
A(z)- z 

where A *(z)=L8 .(A.-A.z) and A(z)=L8(A.-A.z). 
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( 4.19) 

It should be noted that the above results will hold even ifthe queue is not 
FCFS in nature. If a FCFS service discipline is assumed, we can find the 
distribution of the total time T spent in system by an arriving customer by 
identifying as before that P(z)=LT(A-A.z). This would be the L.T. of the 
probability density function ofT and will be given by 

LT (s) = Po [AL 8 (s)- (IL- s)L8 • (s)] 
AL8 (s) + s -IL 

(4.20) 

This needs to be inverted to find the actual distribution (probability density 
function) ofT, in case that is required. The mean of this will be the mean 
time W spent by a customer in the system. This and other moments may be 
found directly from Lr(s) using the moment generating properties of Laplace 
Transform. Using this approach, the following W may be obtained. 

X* A-X 2 IL(X *2 - X 2 ) w = + + ---'------=====-
1 - AX + A-X * 2(1 - AX) 2(1 - AX + A.X *) 

(4.21) 

The overall mean servicetime will be [(1-p0)E{X}+p0E{X*}} taking into 
account the fact that the first customer in the busy period (probability p 0) 

will encounter a mean service time of E{X*}, whereas the other customers 
(probability 1-p0) will have a mean service time of E{X}. Using this, the 
mean queueing delay Wq may be found to be 

(4.22) 

Knowing Wand Wq, the mean N number in the system and the mean number 
Nq waiting in the queue may be found using Little's Result. It should be 
noted that even though the probability density function (actually the L.T. of 
the probability density function) result of Eq. ( 4.20) holds only for the FCFS 
queue, the mean results ofEqs. (4.21) and (4.22) and the results for N and 
N" will hold for any service discipline, i.e. FCFS, LCFS or SIRO. 

The above results may also be obtained by using a residual life based 
analytical approach. This is being left as an exercise for the user (see 
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Problem 1). Another typical way of describing a queue like the one 
considered in this section is to state that the first service in a busy period 
requires an additional LI seconds of service (L! random with its own moments 
and distribution) over and above the normal servicetime X. The analysis of 
such a system may be done in the same manner as above. 

4.4 M 1x1/G/1 Queue - Single Server Queue with Batch 
Arrivals 

We consider here a single server queue with batch arrivals and with a 
generalservicetime distribution for the individual jobs within the batch. The 
following notation is used in the analysis. The arrival process of the batches 
is considered to be Poisson with average rate /L A batch will contain r 
individual jobs (lS'" rS'"w) where r is a discrete random variable with 
distribution ß,. and generating function ß(z). 

Cl) 

ß(z) = L ß,.zr 
r=l 

The mean batch size E{r} will then be given by 

Cl) 

E{r} = r = ß'(l) = Lrß,. 
r=l 

Note that it is also possible to model these using batch sizes that range from 
0 to ro. This would merely change the form ofthe expressions derived in this 
section but the analytical approach will remain the same. 

The service times of the individual jobs are considered to be generally 
distributed. This distribution is assumed to have a given probability density 
function b(t) and its corresponding L.T. is L8 (z). (As usual, the service times 
are assumed to be i.i.d random variables.) In this case, it is also possible to 
define and use a batch service time as the total service time rcquired by all 
the r jobs in a batch - the L.T. of the probability density function of this 
(given r) will be [L8 (z)]'. 

Consider an arbitrary interval of length t in this queueing system. Let N(t) 
be the number of customer arrivals in time interval t and y(t) be the number 
of batches arriving in this time interval. Then, we have 
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P{y(t) = n} = (.-ttr e-Ai 

n! 

Chapter 4 

(4.23) 

Let the batch sizes be a 1, a 2, a 3, ........................ ar where ai_la1 for i;z!j 
and {aj are independent, identically distributed (i.i.d.) random variables. 
We then get that 

N(t) = N = a 1 + a 2 + ........ + ar (i.e. sum of i.i.d. random variables) 

(4.24) 

Note that E{zN} given by Eq. (4.24) is the generating function of the 
number of arrivals in an arbitrary interval of length t. lf we now consider the 
time interval t to be actually a service time, we can get the generating 
function A(z) ofthe number of arrivals within a servicetimetobe 

00 

A(z) = Je-Ai[l-ß(z)Jb(t)dt = L 8 (IL- /Lß(z)) (4.25) 
t~o 

If we imbed our Markov Chain once again at the customer departure 
instants then using the A(z) given above, we can analyse this Markov Chain 
in the same way as for the normal M/G/1 queue. Let Q(z) be the generating 
function of the number left behind in the system by a departing customer. 
Substituting the above value of A(z)from Eq. (4.25) in the earlier M/G/1 
result (i.e. the P-K Transform equation ofEq. (3.14)), we will obtain Q(z) as 

Q(z) = (1- p)(l- z)L8 (1L- /Lß(z)) 
L 8 (/L- /Lß(z)- z) 

where p = A'(l) = ILßX = ILß'(l)X 

(4.26) 
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Unfortunately, this does not Iead to results which are very usable [Kle75], 
The problern with Eq. (4.26) isthat the state distribution given by Q(z) is 
only valid at the customer departure instants. Since the queue has batch 
arrivals, positive state transitions can be more than + 1 and hence Kleinrock's 
result cannot be applied - i.e., we cannot claim that this same distribution 
will hold for the arrival instants as well! PASTA will also not be applicable 
as the arrival process of the individual jobs is also no Ionger Poisson in 
nature. 

To get more insight into the performance of the M[XJ/G/1 queue, we 
would need to approach the analysis ofthis queue in a different manner. This 
is discussed next. 

4.4.1 An Alternate Approach to the Analysis of the M 1x1/Gil Queue 

In this approach, Iet us view the batch arrivals themselves as the service 
requests with their service times being the sum of the time taken to service 
all the customers within the batch. Let b*(t) be the probability density 
function of this bat eh service time X* with L. T. L8 .(s). We can therefore see 
that 

00 

L8 .(s)= Lßr(L8 (s)Y =ß(L8 (s)) (4.27) 
r=l 

with 

(4.28) 

= [L; (s)ß'(L 8 (s)) + {L~ (s)} 2 ß"(L8 (s))L0 
.I (4.29) 

Let z(z)=L8 .(A.-J.z)=ß(L8 (A.-J.z)) be the generating function ofthe number 
of batch arrivals within a batch service time. Since we are considering the 
entire batch as a service request, we can imbed our Markov Chain at the 
batch departure instants. Let Q*(z) be the generating function of the number 
ofbatches left behind by a departing batch. The advantage ofworking in this 
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way is that since the number of batches in the system can go up or down by 
at most ±1, this distribution will also hold for the customer arrival instants 
(using Kleinrock's Result). Moreover, since the batch arrival process is 
Poisson, this same distribution will also hold for time averages at 
equilibrium. By analogy with our earlier analysis, we can then identify that 

A(z)--+ x(z) = LB. (/L- /Lz) = ß(LB (/L- /Lz)) 

with p = /LrX 

This Ieads to 

Q * (z) = (1- p)(l- z)[ß(L8 (/L- /Lz))] 
[ß(LB(/L- /Lz))]- Z 

( 4.30) 

( 4.31) 

(4.32) 

Let Wqb be the mean waiting time in queue for service to start to a batch. 
We can obtain this either from direct residual life-time arguments or from 
Q*(z) above tobe-

W = /L X *2 
qb 2(1- p) 

(4.33) 

where p is the overall traffic value given by Eq. (4.31) and 

(4.34) 

Alternatively, we can also write Wqh in the form 

w = prX [l+ c~ +C 2 ] 
qb 2(1-p) r r 

(4.35) 

2 

· h C 2 a-x d w1t x = _ 2 an 
X 

as the squared coefficients of variation 

(also called SQV) of X and r. 

We now assume that within a batch, customers are served in a random 
order. We then need to find the probability Yk that a customer is served in the 
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J(h order in a batch. The queueing delay for this customer will then be the 
batch queueing delay Wqb and the sum of k service times - the mean of this 
will then be Wqb+kE{X}. Knowing n, the mean of this overall queueing 
delay may be found. This will then be the average queueing delay as seen by 
an arbitrary customer (within a batch) in this MlXJ/G/1 queue. 

To find Yb we proceed as follows. Let x; be the batch size of the lh batch 
and Iet ylk) be the probability that there is a call in the i'" batch which ts 
served in the k" order. Then, we can see that 

ylk )=I 
=0 

for Xj;?k 
otherwise 

Now consider a set of n batches (note that we will eventually take the Iimit 
as n-;>cx:). For these, we will have 

Number of calls served in the e" order 
Yk = Jimn~oo i=l ::::: 

" Total number of calls in n batches LX; 
i=l 

This may then be simplified as follows 

1 11 

- LYJk) P{X > k} 1 00 

= lim n i=l = ; - = - ~ ß. r k 11--HIJ 1 11 E{X } - ~ , - L:xi i r l=k 

n i=l 

(4.36) 

Let W2 be the random queueing delay for a call given that service to its batch 
has started. Assurne that the random variable W2 has probability density 
function fw 2 (t) with L.T. Lw 2 (s). Then, we have 

This may be simplified to get 
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(4.37) 

Using the moment generating property ofthe L.T., we get 

w = T (s)l = X[r2- r] = .x[!._(l + C2)- _!_] 
2 ~2 s=l 2r 2 r 2 (4.38) 

Therefore the overall mean queueing delay Wq for a job (in a batch) in an 
M[Xl/G/1 queuewill be 

(4.39) 

4.5 Single Server M/G/1 Priority Queues 

Consider a single server M/G/1 queue where the customers have P 
different priority Ievels, 1 toP. We assume that customers of priority class 1 
have the lowest priority whereas customers of priority class P have the 
highest priority. It is possible to conceptually think of the queue as being 
organised sequentially in the buffer of the single server queue as shown in 
Figure 4.2. 

Class 1 Class P 
Jobs Jobs 

-··~+~·1 m w•l• ml•~••P. 
P Priority Classes 

Class P Highest Priority Class 
Class 1 Lowest Priority Class 

Figure 4.2. M/G/1 Queue with Head ofLine Priority 
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The queueing arrangement illustrated in Figure 4.2 is often referred to as 
Head-of-Line (HOL) priority. This emphasises the fact that if the queue is 
FCFS in nature, then an arrival of priority class k joins the queue after the 
last class k arrival that is presently queued. Whenever the server finishes 
service to ajob/customer, it picks up the next customer tobe served from the 
front of the queue, whatever its present state may be. Additional rules are 
still required to handle the situation when a customer of a higher priority 
class (say j), arrives when a customer of relatively lower priority (say k, k<j) 
is in service. When this happens, we can have several choices on the 
approach to be followed for handling the presently ongoing service and the 
service to the newly arriving customer of higher priority class. The common 
approaches for handling such a situation are the following. 

[A} Non-preernptive Priority 
Consider an arrival of priority j to the system which finds a customer of 

priority k currently being served where j>k. lf the Non-preernptive Priority 
discipline is followed, the new customer joins the queue of its own priority 
class without interrupting the ongoing service ofthe customer of class k even 
though the newly arriving customer has a higher priority Ievel. Once the 
current service gets completed, the server examines the queue to start service 
to the customer at the front of the highest priority class with a non-empty 
queue. 

[B} Preernptive Resurne Priority 
Consider an arrival of priority j to the system which find a customer of 

priority k currently being served where j>k. If the Preernptive Resurne 
Priority discipline is followed then the new arrival immediately preernpts the 
service of the lower priority customer currently being served. Service to the 
preempted customer resurnes frorn the point oj interruption when that 
priority class is the highest priority class with a non-empty queue once again. 
Note that in this case, the work done on the preempted customer is 
conserved as service resumes from the point of interruption, i.e. work done is 
not lost because of the preemption. (Note that work will also not be lost for 
the Non-preernptive Priority case.) 

[C} Preernptive Non-Resurne Priority 
Consider an arrival of priority j to the system which find a customer of 

priority k currently being served where j>k. In this case also the lower 
priority customer currently being served gets preempted by the new higher 
priority arrival. However, unlike the preemptive resume strategy, when 
service resumes for the preempted customer it starts once again from the 
beginning, i.e. the service that has already been provided when the customer 
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was preempted is lost. This priority approach is non-work conserving 111 

nature. Its analysis is difficult and will not be attempted here. 

We introduce below the common notation that we will use for studying 
this type of queues in this section. 

(i) Averagearrival rate for priority class i = A; i=l, ........ , P 

We assume that the arrival process of each class is individually Poisson 
in nature and that the arrival processes of different classes are 
independent of each other. The total arrival process will also be also be 
Poisson as the sum of independent Poisson processes is also a Poisson 
process. 

(ii) Service time for priority class i has mean X; with cumulative 

distribution function B; (t) and probability density function b; (t) with 

L.T. LBi(s), for i=l, ....... ,P The service times for the different priority 
classes are assumed tobe independent of each other. 

(iii) Traffic of priority class i = P; = A;X; 

p 

(iv) Total Arrival Rate= A =LA; 
i~J 

- -fx-(v) Average Overall Service Time= X= LJ-1 X; 
i~J A, 

p 

(vi) Total Traffic = p = AX = LP; 
i~J 

i=l, ........ , p 

In the following, we analyse the steady state behaviour of simple, Single­
server, priority queues with infinite buffer capacities. One should also note 
that for priority queues, it is possible for the queue to become unstable for 
lower priority traffic while still being stable for the higher priorities. As an 
example, consider the preemptive resume, two-priority case with class 1 of 
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low priority and class 2 of high priority, where this combined traffic is 
affered to a M/G/1 queue. If p2<1, then the queuewill be stable with respect 
to class 2 priority traffic and equilibrium conditions will exist for this class. 
However, if at the same time, (p1+ p2)> 1, then the queue will be unstable if 
one takes into account the low priority traffic as weil. To keep our analysis 
simple, we will normally assume that the traffic {p;} are such that the queue 
is stable for all priority classes. This implies that the condition 

will hold since the queue is single-server in nature. 

4.5.1 Residual Life Analysis for the Non-Preemptive Priority M/G/1 
Queue 

We assume a queue with P priority classes of users with class 1 with the 
lowest priority and class P with the highest priority. Let Nqk be the mean 
number waiting in queue for the priority class k and Iet Wqk be the 
corresponding mean waiting time in queue. Note that Little's result will still 
hold for this and that therefore Nqk=AkWqk· Consider a particular arrival of 
class k which enters the queue. Let R be the mean residual time that it will 
see to finish service to whichever customer is currently being served. Note 
that R will not depend on the priority class k of the arriving customer as it 
will be the same for an arrival from any priority class. This will be true 
because of the non-preemptive priority discipline followed by this queue. 
Using the typical graphical approach followed for the residual life based 
analysis earlier, we get the mean residual time R (for arrival of any priority 
class) tobe 

1 p -2 
R=-"' XX 2L.. I I 

;~] 

(4.40) 

where X;2 is the second moment ofthe servicetime for the zth priority class. 

Consider an arrival of class P (the highest priority class), to this queue. 
Forthis arrival, we can write 
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Using Little's result for this priority class (i.e. Nqp=.:ipWqp), we get 

( 4.41) 

Similarly, for an arrival of class (P-1), we can write 

(4.42) 

lt is worthwhile to examine the individual delay terms in the R.H.S. of Eq. 
( 4.42). The first term R gives the mean residual service time to finish service 
to the customer (if any) currently being served (when the customer of 
interest of class P-1 arrives). The term X PNqP is the mean time taken to 

serve all the waiting customers of class P who are presently waiting in the 
queue. Similarly, Xp_1 N q(P-1) is the mean time taken to serve all those class 

P-1 customers, who are presently waiting in the queue. Finally the term 
X pApWq(P-1) is the mean time taken to serve all the customers of class P 

who arrive while the class P-1 customer of interest is waiting in the queue. 
Simplifying Eq. ( 4.42) using Nqp=.:ipWqP and Nq(P-l}=.:ip_1 Wq(P-IJ• we get 

wq(P-1) (1- PP - PP-1) = w"p (4.43) 

Using Eq. (4.41), this may be simplified to get the mean queueing delay for 
class (P-1) customers as 

R 
wq(P-1) = --------­

(1-pp)(I-pp -PP-1) 

For class (P-2), we can similarly show that 

wq(P-1) = R + x p N qP + x P-1 N q(P-1) + x P-2 Nq<P-2) 

+ x P.:tl'wq<P-2) + x P-1.:tP-1wq(P-2) 

which on simplification Ieads to 

(4.44) 

(4.45) 
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R 
wq<P-2) = ---------------

(1- PP - PP-1 )(1- PP -PP-I - PP-2) 
( 4.46) 

We can therefore derive the generat result for the mean queueing delays for 
each of the P classes as 

R 
wqP =---

1- PP 

R 
wq(P-i) = i-1 i 

o - :L P 1'-j )(1 - :L P 1'-j) 

j=O j=O 

for i=P 

for i=1, ..... ,(P-1) (4.47) 

Once the queueing delay Wq; i=1, ... ,P is found, the mean time spent in 
system by a customer of priority class i may be found using 

( 4.48) 

Using Little's result, the mean number M· of class i jobs in the system and 
the mean number Nqi of class i jobs waiting in queue may then be found from 
w; and Wq;, respectively, for i=I, .... ,P 

4.5.2 Residual Life Analysis for the Preemptive Resurne Priority 
M/G/1 Queue 

In this case, the service to customers of priority i gets interrupted if 
arrivals occur from priority classes i+ I or higher. The interrupted service 
resumes from the point of interruption when all customers of priority classes 
i+ 1 or higher in the queue have been served. As in the non-preemptive case, 
there is no loss of work. lt should also be noted that the service to customers 
of priority class k is completely unaffected by the service demands of 
customers of lower priority classes, i.e. priority classes I, ...... , (k-1). This 
pointwill be useful in the subsequent analysis based on residuallifetimes. 

In this case, one cannot meaningfully define a mean queueing delay (i.e. 
time spent waiting in queue prior to service) for priority classes I, .... , (P-1), 
i.e. for priority classes other than the highest priority class. This is because 
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even after service to such a customer starts, the service may be preempted 
and the customer will be forced back into the queue to wait once again. 
However, the mean total time W, spent in system by a customer of priority 
class i may still be defined in the usual fashion as the mean time taken for an 
arriving customer to leave the system. 

In contrast to the non-preemptive case, a customer arrival of class k will 
see a mean residual servicetime Rk which will depend on its own class. This 
is because this customer will see the residual service time only from on­
going service of class k or higher. Following the usual graphical derivation 
approach, we can get 

for k=1, 2, ..... , P ( 4.49) 

Consider an arrival of the highest priority class P. In this case, we can 
define a queueing delay WqF in the usual fashion and can write-

Therefore 

( 4.50) 

and hence 

(4.51) 

For an arrival of class (P-1), we can write 

( 4.52) 

In the R.H.S. ofEq. (4.52), the component X 1._1 is obvious as the mean time 
taken to actually serve the customer of interest of class P-1. The term 
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RP-I is analogaus to writing WIJ =-.!!:._ as the mean time to serve 
1- Pr- PP-I 1- P 

those customers of class P and P-1 who are already in system when the 
customer of interest ( of class P-1) arrives. Note that this term may be argued 
from the observation that we can effectively ignore the presence of priority 
classes 1, .... ,(P-2) for these customers because of the nature of the 
preepmptive resume priority operation. We can interpret PP +PP-I as p and 
Rp. 1 as R in that expression. The mean residual servicetime Rp.f observed by 
an arrival of class P-1 will depend on the traffic of classes P and P-1 but will 
be unaffected by traffic of lower priority classes. (Note that unlike the non­
preemptive case of Sec. 4.5.1, the mean residual service time is class 
dependent because of the preemptive nature of the priority mechanism.) The 
expression for this is given in Eq. (4.49). The term XpApW1,_1 corresponds 
to the mean time taken to serve all those customers of class P who arrive 
while the customer of interest ( of class P-1) is in the system. Since these 
class P customers will also get served before the service to the customer of 
interest concludes, this also needs to be included in Eq. ( 4.52). Simplifying 
the above, we get 

W -X P-l (1- PP -PP-I)+ RP-1 
P-1-

(1-pp)(l-pp -PP-I) 

Similarly, for an arrival of class (P-2), we will have 

(4.53) 

(4.54) 

The mean time spent in system for other classes may be similarly found. 
For example, for the lowest priority customers of class 1, we will get 

( 4.55) 

The term (1-pp -.... -pJ in the denominator of the mean delay w; for a 
customer ofpriority class i in Eq. (4.50) and Eqs. (4.53)-(4.55) is important. 
Its presence shows that the mean delay for priority class i for this priority 
mechanism will stay bounded only if (pp + .... +p1)<1 as had been stated 
earlier. Depending on the traffic values, the mean delay may become 
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unbounded for a lower priority class even though it is bounded for higher 
classes. 

The analysis for the priority queues given above has been done using a 
residual life approach. As discussed earlier, this approach can only give 
mean results for the performance parameters like mean number in the 
system, mean m1mber waiting in queue, waiting time in queue and mean 
time spent in system. If actual distributions are desired, then we need to 
follow an imbedded Markov Chain approach with the imbedded points 
appropriately defined, i.e. as the departure points of the corresponcling 
customers. This analysis can be done but tencls to be quite complex. We 
illustrate this approach below für the Two Priority Preemptive Resume 
M/G/1 queue. This approach may be extended [Hay84] for more priority 
classes but the approach and the expressions become consiclerably more 
complex as the number of priority classes increase. 

4.5.3 Imbedded Markov Chain Analysis for the Preemptive Resurne 
Priority M/G/1 Queue 

Consicler the preemptive resume M/G/1 queue with just two classes of 
customers - high priority customers of class 2 ancl low priority customers of 
class 1 - with the notation as used in the earlier residual life basccl analysis. 
We analyse the queue separately for the two classes of customers. 

Queue jor Class 2 Customers 

Note that for class 2 customers, the system woulcl behave just like a 
simple M/G/1 queue with average arrival rate /L2• Given that a class 2 service 
time has the probability density function b2(t) with L132(s) as the 
corresponding Laplace Transform, the system may then be analysecl for this 
priority class just like the simple M/G/1 queue of Chapter 3 using the 
approach of Section 3 .2. Th is is because the presence of class 1 customers 
will not affect the performance of the queue for class 2 customers in any 
way. Specifically, the generating function P2(z) for the number of class 2 
customers in the system may then be obtained as for Eq. (3 .14) in Section 
3.2. 

p2 (z) = (1- P2 )(1- z)Ls2 (/L2 - A-2z) 
LR2 (/L2 - A2z)- z 

( 4.56) 

As done for the case of the simple M/G/1 queue in Sec 3.3, we can do a 
busy periocl analysis for this priority queue as weil, considering only the 
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class 2 customers. This will be the busy period only for class 2 customers in 
the queue, i.e. when the server is engaged in serving the higher priority class 
2 customer. LetfsPJ(t) be the probability density function ofthis class 2 busy 
period with its L.T. given by L1m(s). This may be obtained by applying the 
results ofSection 3.3. Specifically, using Eq. (3.19) we can find 

(4.57) 

The mean nurober N 2 of class 2 users in the system may be found directly 
from Eq. (4.56) using the moment generating property of the generating 
function. Application of Little's result to N 2 will give the mean of the total 
time W2 spent in the system by a class 2 arrival. We can then find Wq 2 as this 
will be the difference of W2 and the mean service time of a class 2 job. 
Little's result may once again be applied to ~12 to find the mean nurober of 
class 2 jobs queued for service. 

Queue jor Class 1 Customers 

....-----, Server Not Available; one or more C!ass 2 customers 

I• I in queue during this interval. This will also be a 'busy' 
L.·· -~-"l. period for C/ass 2 users in the queue 

I Server Available; no C!ass 2 customers 
L---J. in queue during this interval 

Figure 4.3. Server Available/Unavailable Intervals for Class I Customers 

The lower priority queue needs separate analysis as the service to lower 
priority customers can get preempted by the service demands from the class 
2 users. From the point of view of class 1 users, the time axis of the queue 
may be divided into two kinds of intervals - server available and server 
unavailable intervals. Theseare illustrated in Figure 4.3. It is easy to see that 
the Server Available (for class 1) intervals shown above will be 
exponentially distributed with mean 1/;1.2 (i.e. with probability density 
function ;1.2 exp(-:t2t) for t ~ 0 ). This is because these correspond to the Idle 
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Periods of the class 2 queue. Considered from the point of view of the class 
1 users, there is another important difference between this priority queue and 
anormal M/G/1 queue. In a simple M/G/1 queue, a new arrival, which finds 
the system empty, will start service immediately. In the priority queue being 
discussed here, a new class 1 arrival, which comes at a time when there is no 
other class 1 user in the system, may not start its service immediately. 
Specifically, a new class 1 arrival may be forced to wait in queue (even 
when there are no other class 1 customers in the system) if it comes during 
the Server Unavailable periods when the queue is actually serving class 2 
customers. The class 1 queue is analysed by selecting the imbedded Markov 
points at the departure instants of the class 1 customers. As before (for the 
simple M/G/1 queue ), we define n, to be the number in the system as seen 

by the {h departing customer. In order to properly define ai+l and ai+l, we 
need to define the "service time" properly for this class of customcrs. Note 
that because of potential interruptions from class 2 customers, the service 
time of a class 1 customer may not be a continuous interval. In this case, we 
define the "service time" of a class 1 user to be the sum of the actual service 
duration and the time during which the server is unavailable (during this 
service) because of preemption and the consequent serving of class 2 
customers. With this definition of "service time", we can then define 

ai+I = Number of class 1 arrivals during the "service time" of the (i+ 1Y11 

class 1 user 

ai+l = Number of class 1 arrivals during the time of waiting for the Server 

and the "service time" ofthe (i+ 1Y11 class 1 customer. 

W e can then write, as before, that 

( 4.58) 

or equivalently 

ni+l = n; -1 + ai+l for n; ~ 1 

= ai+l for n, = 0 
(4.59) 
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Note that the case for a,+1 arises only when n, = 0. This is because of the 

following reasons. 

(i) a 1+1 is for the case where the queue has at least one class 1 user (already 
waiting in the queue) for whom service can begin immediately aftcr the 
service completion ofthe previous class 1 user. 

(ii) ai+l is for the case where the class 1 queue is empty when the previous 
class 1 service is completed. Service to the new class 1 arrival may get 
delayed if it comes at a point in time when the server is not available for 
class 1 - i.e. server is serving class 2. 1ftbis happens then service to the class 
I arrival can start only after the class 2 queue becomes empty - this is what 
has been referred to as the "time of waiting for the server" in the definition 

given above for ai+l. 

Using Eqs. (4.58) or (4.59), we can show as before, that at steady state, 
the generating function P 1(z) of the number of class l users in queue at the 
class 1 departure instants, will be given by 

p 0 [A(z)- zA(z)] 
~(z)=~---------­

A(z)- z 

where 

A(z)= generating function of a, i.e. a 1+1 at steady state 

A(z)= generating function of a, i.e. ai+l at steady state 

(4.60) 

(found later) 

(found later) 

The probability p 0 of the system being empty of class 1 customers may be 
found from Eq. (4.60) by using P1(z)=l for z=l. This yields 

I-a 
Po= 1 _ ~ 

-a+a 
(4.61) 
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with a and a as the means of a and a, respectively. These means may be 

obtaincd using the normalisation conditions P1 (1) = A(l) = A(l) = 1 and the 

moment generating properties A'(l) = Zi and A'(1) = a. Therefore the 

complete solution would require that we obtain A(z) and A(z) as given next. 

Incidentally, the fact that A(z) and A(z) are different may also be viewed as 
an example of exceptionalfirst service. 

Obtaining A (z) 

For this we need to consider the case where the departure of a class 1 
customer leaves the class 1 queue non-empty. This has been illustrated in 
Figure 4.4 where the d11 class 1 customer leaves at time to. At that instant, 
there are one or more class 1 users still in the queue and service to the 
(n+ 1/h class 1 customer starts immediately. Figure 4.4 shows that, after a 
number of service interruptions ( caused because of class 2 arrivals ), the 
(n+ 1/h class 1 customer finally leaves the system at time f 11 • 

Departure ofn'" C!ass I user. 
C!ass I queue !efl non-empty 

Departure of (n +I)'" 
C!ass 1 user 

Server A vailable for Class I 

la 

Server NotA vailable for Class I 

Figure 4.4. Class l Departure Leaving Class 1 Queue Non-Empty 

In Figure 4.4, we have shown the service of the (n+ 1/17 class 1 customer 
to be interrupted for the first time by a class 2 arrival at time t 1 and the 
corresponding busy period is (t1, t2 ) during which the server is not available 
to the (n+ 1/11 class I customer whose service had started. This service 
resumes at t2 and continues until the next interruption at time t3. This process 
continues until the service to this class 1 customer finally concludes at time 
t". Note that in the above figure, the intervals A 1, .... ,A111 correspond to the 
server available (for class 1) intervals and the intervals h ...... .Im-1 correspond 
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to the intervals when the server is not available. As mentioned before, the 
intervals {A;} are independent, identically distributed (i.i.d.) random 
variables which are exponentially distributed with mean ..i/. Similarly, the 
interruption intervals {!;} are also i.i.d. random variables with the L.T. of 
their probability density function obtained by solving Eq. (4.57) for L8P2(s). 
This may then be inverted to obtain the desired probability density function 

.fsP2(s). We use the following notation, as appropriate, in the following 
derivation. 

T= totalservicetime for this class 1 user (including interruptions) 
x1 = actual servicetime (i.e. the real service time) whose probability density 
function is b,(t) with L.T. LH1M 
I,= duration ofthe i1h interruption 
n = number of service interruptions 

Then, it may be easily seen that T will consist ofthe realservicetime ofthe 
class 1 job and the interruptions encountered from class 2 arrivals during its 
service. this gives 

n 

T=xl + Ll; (4.62) 
i=l 

Taking the mean of Eq. (.62), we will also get that 

( 4.63) 

where BP2 is the mean busy period for the class 2 queue. It can also be 

easily shown that ifthe duration ofthe class I service is actually x1 (i.e. the 
real service time), then the probability of n interruptions in its servicewill be 

given by the Po isson distribution [ [ exp(-A, x, ) ] ( "':1' )" ]- Th i s wou ld 

follow from the fact that the lengths ofthe server available intervals are i.i.d. 
with an exponential distribution of mean ..i/ and that the sum of these add 
up to x 1• If t is the total service time of a class 1 user in the queue, whose 
actual service time requirement is u, and if n is the number of service 
interruptions encountered during its service, then (a) these service 
interruption intervals are i.i.d. random variables and (b) their total time is (t­
u). The probability density function of one such service interruption will be 
fsP2(t) with L.T. L8n(s). The sum of n such random variables will have the 
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probability density function j1j~i (t) which is the n-fold convolution of 
f 8P2(t); the corresponding L.T. will be [L13P2(s)]". Therefore, we have 

P{t<Tst+dt [ x 1=u, n interruptions} = f~i;~ (t ~ u)dt 

implying that 

lf /T(t) is the probability density function ofT with L.T. LJ{s), then we have 

fr (t)dt = P{t < T::::: t + dt} 

" Cl) (A, ur 
= Lo~[exp(~A-2 u)] ~! JJ~~(t~u)b1 (u)dudt 

Taking the Laplace Transform ofj1(t), we obtain 

"' 
Lr (s) = fe-st fr (t)dt 

1=0 

Changing the order of integration and identifying L8P2(s) as the Laplace 
Transform ofj8P2(t), we get that 

/07 U 11 -Sll ro [ w ( 1 )" ] 

Lr (s) = uL b1 (u)[exp(~A-2 u)] ~ ~! (L 13p 2 (s)) e du 

Cl) 

= f[exp(~u[s+A-2 ~A-2 L8p 2 (s)])]b 1 (u)du (4.64) 
U=Ü 

The L.T. Lr(.<.) of the probability density function h(t) of the random 
variable T may also be obtained by an alternate, somewhat easier, approach. 
For this, note that 
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E{e-s1' Ju,n}=(L8 P2(s))"e-'" 

Removing the conditioning on n in Eq. (4.65), we get 

E{e-sT I u} = :t (LBP2 (s))" e-su (A2U)n [exp(-A2u)] 
n=O n! 

= exp[-su- A-2 u + A-2 uL8 n (s)] 

=exp[-u(s+A2 -A2 L 13p 2 (s))] 

Finally, we remove the conditioning on u in Eq. ( 4.66) 

"' 
Lr (s) = Jrexp- u(s + -i2 - -i2 L 13p 2 (s)]bJu)du 

U=Ü 

to get the same result as in Eq. (4.64) once again. 
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(4.65) 

(4.66) 

Since A(z) is the generating function of the m1mber of class 1 customers 
arriving in the time interval T, we can then write 

(4.67) 

To summarise, the overall procedure for getting A(z) will therefore be 

(a) Solve Eq. (4.57), L13n (s) = L82 (s + ll2 - A2 L 131•2 (s)), for LsPJ(s) 

(c) GetA(z) from Eq. (4.67), A(z) = Lr(A1 - A-1z) 

Obtaining A(z) 

For this we need to consider the case where the departure of a class 
customer leaves the class 1 queue empty as illustrated in Figure 4.5. As 
shown in Figure 4.5, assume that the n'" class 1 departure occurs at time t=O. 
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However, since in this case, there are no other class 1 users in the queue at 
that instant, the serverwill actually become idle at this point. (The fact that a 
class I userwas being served at t=O- of course implics that there cannot be a 
class 2 user in the queue at that instant.) There will be a sequence of "server 
available for class I" {A 1 i= 1,2, .... } and "server unavailable for class 1" g 
}=1,2,"") intervals after this as shown in the figurc. Note that the next period 
when the server is busy serving a class 1 customer cannot begin until therc is 
an actual class I arrival. Servicetothis newly arriving class 1 customer, i.e. 
the (n+ 1/h one, may or may not begin from the instant of its arrival to the 
queue. If this arrival happens at a time when the server is unavailable to 
serve class I customers (i.e. if it is busy serving some higher priority class 2 
arrival which came after t=O), then service to the (n+ 1/h class 1 customer 
will not begin until the queue once again becomes empty of class 2 
customers. However, if the. (n+ 1/' class 1 customer does arrive during one 
ofthe "server available for class 1" interval (when the queuewill actually be 
empty), then service to it will begin from its arrival instant itself. Once 
service to the (n+ 1/h class 1 customer begins, it will proceed, possibly with 
interruptions cause by pre-emption by class 2 customers, until its required 
service is over. When that happens, the (n+ 1/h class 1 service time will be 
completed and that customer will depart at time t=tn as shown in Figure 4.5. 

Departure ofn'" Class I user. 
C!ass I queue lefl empty 

Departure of(n+ Il' 
C!ass I user 

Server A vailable for Cfass 1 

t=O 

Server NotA vailable for C/ass 1 

Figure 4.5. Class I Departure Leaving Class I Queue Empty 

Let t=r be the time instant (random variable, measured from t=O) when 
the next class 1 customer arrives - i.e. after the class I departure at t=O 
which left the class 1 queue empty. Then, we can make the following 
Observations -

(a) r is exponentially distributed with mean :1,1 1 as the class 1 arrivals 
come from a Poisson process with mean arrival rate :1,1 



4. Advanced Queueing Theory 123 

(b) Arrival may fall either in an A; interval or in an I;· interval. If it falls 
in A;, then service starts immediately; if it falls in f;, then service 
starts after I; is over 

(c) The {A,} intervals are i.i.d. with each ofthem having an exponential 
distribution with mean A-/ 

(d) The {1;} intervals are i.i.d. random variables and are also 
independent of the {A;} intervals. Note that the {I;} intervals are 
actually the busy periods for the class 2 customers in the queue. 
These will have the probability density functions asfsPJ(t) with L.T. 
L 8n(s) obtainable by solving Eq. (4.57). The probability density 
functionf8P2(0 may then be obtained by taking the inverse transform 
of L8P2(s). 

Let WQJ be the (random) time between the arrival of a class 1 user (to an 
empty class 1 queue) and its start of service. Let the probability density 
function of this be .fivQ1(t) with L.T. LwQ1(s). Actually, what we need to find 
is the distribution of the time interval T* for which an arrival, such as this 
(n+ J)'h one, stays in the system, given that the previous class 1 departure left 
the class 1 queue empty. Note that T* will actually be the sum of T, as 
defined for finding A(z) earlier, and WQJ where the two random variables 
are independent of each other. lt should be recalled that T, as defined for 
finding A(z), is the time between the start of service to a class 1 customer 
and the completion of this service, including the time intervals when the 
service gets preempted by class 2 customers. We can therefore write that 

T*=T+WQI T _L WQJ (4.68) 

and therefore, 

Lp (s) = Lr (s)LwQl (s) ( 4.69) 

Since LT(.~) can be found using Eq. (4.64), we really just need to find Lw()}(s) 
to find the required LT•(s). Once this is known, we can follow our usual 
approach to show that since the class 1 arrivals, come from a Poisson 
process with mean rate A-1, we would have 

(4.70) 

We therefore need to find the distribution of WQJ, the queueing delay to 
start service to a class 1 arrival when the previous class 1 departure left the 
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class queue empty. For this, we need to consider separately, the following 
two cases-

(a) WQJ =0, i.e. the class 1 arrival happens in some interval A, when the 
server is available. In this case, the arrival starts service from the 
instant of arrival. Note that in this case the arrival can start service 
immediately as it enters the queue at a time when the server is not 
engagcd in serving other customers 

(b) WQI>O, i.e. the class 1 arrival happens in some interval l; when the 
server is not available. In this case, the arrival is queued to wait until 
the end of this l; interval as that is the time when the serverwill once 
again become available for serving class I customers. 

We consider first the case when WQI =0 where the (n+ I/' class I arrivai 
happen at time r:. For this, we can show that 

(4.71) 

Note that for notational convenience, we have set A 0=F0=0 in Eq. (4.71). 
This allows a more compact form of the equation without any lass of 
generality. Note that r: is an exponentially distributed ranom variable. It will 
therefore be memory-less and its memory-less property may be utilized to 
show that 

r{t,(A, +f,)<c"t,(A, +f,)+A"''} 

~ [ ü P{ A, <r}P{l, < c) }'{A"'' ~ c} 

(4.72) 

The argument for the above may be given as follows. If r: does not fall in A, 
then the probability that { r: docs not fall in IJ, i.e. P{ r: does not fall in J,}, 
will be P{I;<r:}. This will hold as one may consider r: as beginning from the 
start of I; and use the fact that the inter-arrival times for a Poisson arrival 
process (i.e. the class 1 and class 2 arrivai processes) will be exponentially 
distributed and hence memoryless. Similar arguments may be given for the 
probability terms P{A,<r:} and P{An, 1,? r:} in Eq. (4.72). We can then use the 
typical properties of the Poisson arrival processes of class I and class 2 
trafftc to get 
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P{A; < r} = P{Class 2 arrival occurs before a Class I arrival} 
Cl) 00 

= J[exp(-A2t)](A2dt) J[exp( -A1a)](A1da) 
1=0 a=t 

00 

= JA2 [exp(-A2t)][exp(-A1t)]dt 
(4.73) 

1=0 

P{An+l 2:: r} = P{Class 1 arrival occurs before a Class 2 arrival} 
Cl) 00 

= J[exp(-A1t)](A1dt) J[exp(-A2a)](A2da) (4.74) 
1=0 a=l 

P{l, < r} = P{Class 2 busy period finishes before a Class 1 arrival} 
00 00 

= f/8 p 2 (t)dt J[exp(-A1a)](A1da) 
t=O a=t (4.75) 

00 

= f[exp(-A1t)]j8 p 2 (t)dt 
1=0 

Using Eqs. (4.72)-(4.75) in Eq. (4.71), we get 

P{Wql = 0} = Al :t[A2LBP2 (At )]n 
A1 + A2 n=o A1 + A2 (4.76) 

At 
=----~-~ 

We now consider the case for WQJ>O. Recall that this is the case when 
the class 1 arrival (after the class 1 gets empty) occurs in a l; interval. Then 
for t>O, the probability density function/wQJ(t) would be given by 
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fwQ 1 (t)dt = P{t < Wq 1 ~ t + dt} 
co n+l 

= 2: P{t < 2: (A, +I,)- T ~ t + dt} 
(4.77) 

n~o ;~o 

Note that in the abovc, ( ~ ( A, + I,) - r }s thc wai ti ng time foc th i s case 

(i.e. wql >0)]. Since T is memory-less, as mentioned earlier, we have 

n+l 

P{t < L (A, +I,)- T ~ t + dt} 
1~0 

-[ 0 P{ A, < r}P{I, < r} ]P{A"., < r}P{t + r <I"., ~I+ T+ di) ( 4. 78) 

=[( /1,2 )"+1 (L8p 2 (/l,1))" J[exp(-/t1r)]j8p 2 (r+t)/t1dr]dt 
/l,I + A2 r=o 

Considering both these cases, we get the required probability density 
functionfivQ 1(t) for all t as 

Taking the transform of both sides of Eq. ( 4. 79) gives the required transform 

(4.80) 

and the mean as 

( 4.81) 
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Recall that BP2 is the mean busy period length for the class 2 queue. 
Substituting LwQ1(s) from Eq. (4.80) and Lr(s) from Eq. (4.64) in Eq. (4.69), 
we can obtain Lr•(s). Similar substitution in Eq. (4.70) will yield the other 

generating function A(z). 

Collecting all the above results for convenience, we can summarise as 
follows-

l.For class 2, the results are the same as that of an M/G/1 queue with 
average arrival rate /1,2 and service time probability density function b2(t) 
with L.T. Ls2(s) . 

2. For class I, solve for L8P2(s) using Eq. (4.57). Use this in Eq. (4.64) to get 
Lr(s) and in Eq. (4.80) to get Lw01 (s). The generating functions, A(z) and 

A(z) may now be found by substitution in Eqs. (4.67) and (4.70). To findp0 

using Eq. ( 4.61 ), the required moments a and a may be obtained from A(z) 

and A(z), respectively, using the moment generating property of the 

generating functions. These means are obtained to be 

(4.82) 

(4.83) 

After p 0 is found, then using A(z), A(z) and Eq. (4.60), the generating 
function PJ(z) of the number of class 1 users in the system can be found This 
may then be used to find other performance parameters of the queue for the 
lower priority class I traffic. 

4.6 The Discrete Time Geo/G/1 and Geo1x1/G/1 Queues 

In all our discussions until now and in subsequent chapters of this text, 
we consider systems, which are continuous in time, where arrivals and 
departures can occur at any time. In this section we Iook at one example of a 
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discrete-time system where the time axis is segmented into a sequence of 
equal time intervals which we will refer to as slots. lt is assumed that arrivals 
can only occur at the slot boundaries. Service to a job/customer can also start 
only at these boundaries and the service duration is always an integral 
multiple of the slot duration. Consider the arrival process to such a system. 
We assume that the number of jobs that arrive in successive slots are 
independent, identically distributed (i.i.d.) random variables. If we assume 
that only one job can arrive in a slot with probability )V and that no jobs 
arrive in a slot with probability 1-A, (0<).<1), then the inter-arrival time I 
will be geometrically distributed with mean 1/:t and with probability P{I = k 
slots}=:t(l-:tlk for k=1,2, ....... This kind ofarrival process will be referred to 
as a geometric process or a Bernoulli process. A single server queue with 
infinite buffers and with this arrival process is typically represented as a 
Geo/G/1 queue. Note that time is measured as multiples ofslot durations. 

If more than one job can arrive in a slot, then the inter-arrival time 
between batches will still bc considered to be geometrically distributed and 
the arrivals may be considered to come in batches of random size. A single 
server queue with infinite buffers of this type will be represented as a 
Geo[XJ/G/1 queue. Both the Geo/G/1 and the Geo[XJ/G/1 queueing models are 
useful to analyse service seenarios which operatc in a discrete-time mode 
and are considered in detail in this section. 

Consider the Geo[XJ/G/1 queue with Aas the number of jobs that arrive in 
a single slot. The probability distribution of A will then be specified as 

:t(k) = P{A = k} k=O, 1,2 .......... ( 4.84) 

with the generating function A(z) defined as 

O') 

A(z) = LA(k)zk ( 4.85) 
k=O 

in the usual fashion. Let ;t and A,(iJ respectively denote the mean of A and its 
i" factorial moment as 

;t = E{A} = A(l) (1) 

;tCZ) =E{A(A-1)} 

;tU) = E{A(A- l) ...... (A- i + 1)} = Acn (1) 

( 4.86) 

i = 3, 4, ........ 

For the special case of the Geo/G/1 queue which allows at the most one 
arrival pcr slot, we will have 
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A(z) = 1- /1,(1- z) Geo/G/1 arrivals (4.87) 

In the discrete-time system, we need to be more precise about the exact 
arrival points of jobs arriving in a slot and the slot in which service to a job, 
which arrives when the system is empty, actually gets started. This Ieads to 
the two choices - late arrival model and early arrival model - described 
subsequently. Note that we will always measure the queue size immediately 
after the slot boundaries and that this will not be affected by the choice ofthe 
early/late models. The measurement of the waiting time will, however, 
depend on the choice ofthis model. 

n 

Service 
Campletion 

I 
I 
I n+l 

~ 
Arrival 

n+2 

Time 

Figure 4.6. Late Arrival Model ofa Discrete Time Queue 

n 

Service 
Campletion 

I 
I 
I n+l 

"* 

Arrival 

n+2 

Time 

Figure 4. 7. Early Arrival Model of a Discrete Time Queue 

In the late arrival model shown in Figure 4.6, jobs are assumed to arrive 
late in the slot, i.e. just before the slot ends. The arrivals, if any, will then see 
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the job, which has just finished service about to leave, and this departure will 
include the newly arrived jobs in the ones it leaves behind in the queue. In 
this case, if the new job arrives to an empty queue (say at the end of the n111 

slot), then it will enter service from the beginning of the next (i.e. the (n+ 1 Y11 

slot). In this case, the time spent in the queue is measured from the (n+ lY11 

slot, i.e. the slot after the one in which the job actually arrives. 
In the early arrival model shown in figure 4.7, we assume that the jobs 

arrive early in the slot, i.e. just after the slot begins. If the queue is cmpty 
when the arrival occurs, service to the job sta11s immediately from the same 
slot. This slot (where the job arrives early) is also counted in measuring the 
time spent in the queue by the arriving job. 

A close examination of the early and late arrival models Iead to some 
useful conclusions. For a queue in steady state, the joint distributions of the 
queue size and the residual or elapsed service time at an arbitrary point on 
the continuous time axis will be the same in both the models. Thc waiting 
time in queue for a particular job will also be the same in both the models. 
The queuc size at servicc completion in an early arrival modcl will, however, 
be lower than that of the corresponding late arrival model by the number of 
jobs that actually arrive at that slot boundary. Note that the queue size is 
always measured immediately after a slot boundary (as mentioncd carlier) 
which gives rise to the above difference between the two models. 

In our analysis here, we assume that the service duration can have any 
general distribution as lang as the servicetime of ajob is an integral multiple 
ofthe slot duration. Servicestartsand ends only at the slot boundaries. Let X 
be the (random) service time of a job mcasured in units of slots, i.e. the 
service duration is of duration X slots. The probability distribution b(k) of X 
is given by 

b(k) = P{X = k} k=l,2 ......... . 

with the generating function B(z) defined as 

CO 

B(z) = l:b(k)zk [z[ ~ 1 
k=l 

Letband b(i) respectively denote the mean of X and its /' moment as 

b = E{X} 

b< 2l = E{X 2 } 

b<'l = E{X 1} i = 3, 4, ....... . 

( 4.88) 

(4.89) 

(4.90) 
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The Ioad affered to the single server queue is defined in the usual manner 
tobe given by p, with p =A,b. Fora stable queue, we require that the affered 
Ioad be less than unity, i.e. p <1. This stability condition will be assumed in 
our subsequent analysis. 

4.6.1 The Geo/G/1 Queue 

We consider here the case where only one arrival, at the most, can 
occur in a slot and the service duration of a job is an integral (random) 
multiple of the slot duration. The queue has only one server and has an 
infinite number of waiting positions. We consider the analysis of this queue 
separately for the late arrival and early arrival models. 

Late Arrival Model 

Let n1 be the number of jobs in the queue immediately after the service 
completion of the i'h job. Let a; be the number of jobs arriving during the 
service time of the /' job. This Ieads to thc following for the late arrival 
model 

ni+l = ai+l 

= n, + ai+l -1 
(4.91) 

The random variables a; i=l,2,...... are independent and identically 
distributed random variables with the generating function A(z) and mean p. 
The state ofthe queue n, will then form a homogenaus Markov chain. Under 
conditions of equilibrium, the steady-state distribution Pk of this Markov 
chain wi II be 

k = 0,1,2, ....... 

with the generating function P(z) found using 

00 

P(z) = LPkZk 
k=O 

(4.92) 

(4.93) 

Note that Eq. (4.91) is in the sameform as Eq. (3.11), which was the 
equivalent state expression derived for the M/G/1 queue. lt can therefore be 
solved in the same fashion as Section 3.2 to find P(z) as 
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with 

P(z) = (1- p)(1- z)A(z) 
A(z)- z 

Po =1- P 

Chapter 4 

(4.94) 

(4.95) 

As in Section 3.2, A(z) is the generating function for the number of jobs 
arriving during a service interval. Using Eq. (4.87), it can be shown that for 
the Geo/G/1 queue we will get 

A(z) = :tb(j) :t(i);._k (1- .-1y-k zk =B(l- ..i + k) 
j=l k=O k 

This Ieads to 

P(z) = (1- p)(l- z)B(l- ..i + k) 
B(l-Ä+ k)-z 

(4.96) 

(4.97) 

as the generating function for the number in the system at the instant of 
service completion. In this case also, it can be shown as in Section 3.2, that 
the generating function of the queue states will be given by P(z) even at the 
time instant immediately after each slot boundary. (This will actually also be 
true at any arbitrary time instant on the continuous time axis.). Therefore, we 
can use P(z), as given in Eq. (4.97), to find the equilibrium state distribution 
of the queue (i.e. the probability distribution of the number in the system) 
immediately after each slot boundary. 

The discrete-time equivalent of the PASTA property may also be proved. 
This property is sometimes referred to as BASTA (i.e. Bernoulli arrivals see 
time averages) or GAST A (geometric arrivals seetime averages). Using this 
property, we can then also claim that the state distribution as given by P(z) 
of Eq. (4.97) will also hold for the number in the system as seen by an 
arriving customer. 

Using P(z) from Eq. (4.97), the mean number N in the system may be 
obtained tobe 

.A_2b(2)- ..ip 
N= +p 

2(1- p) 
(4.98) 
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The discrete-time version of Little's result also holds and is stated as 

N=A.W (4.99) 

where N is the mean nurober in the system as given by Eq. (4.98), ). is the 
mean nurober of arrivals in one slot and W is the mean time spent in system 
(in units of slots) by an arriving customer. This may then be used to obtain 
the mean time spent in system. Once W has been obtained, the mean time Wq 
spent waiting for service (in nurober of slots) will be given as 

W = W - b = _A.b_<_2)_-_;P,__ 
q 2(1- p) 

(4.100) 

Little's result (Nq=A.Wq) may then be applied once again to find the mean 
nurober waiting in queue in the system, prior to service. 

Other results, similar to the ones derived in Chapter 3 for the M/G/1 
queue may also be similarly derived for this Geo/G/1 queue. For example, 
consider a FCFS Geo/G/1 queue. In this case, the nurober left behind in the 
system by a departing customer will be the same as the nurober arriving to 
the system, while that customer was in service. Let Gw(z) be the generating 
function for the nurober of slots for which an arriving job stays in the 
system. We can then show that 

P(z) = Gw (I-).+ k) 

This will allow us to find the required generating function Gw(z) as 

Gw (z) = (1- p)(l- z)B(z) 
(1- z)- A.(l- B(z)) 

(4.101) 

(4.102) 

Since the waiting time in queue forajobwill be independent of its service 
time (each one ofthem measured in units ofslots), we can write 

Gw (z) = Gwq (z)B(z) (4.103) 

where Gwq(z) is the generating function of the nurober of slots spent waiting 
in queue by ajob before its service actually starts. Therefore 

G ~ ( z) = (1 - p )(I - z) 
q (I- z)- A.(1- B(z)) 

(4.1 04) 
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Early Arrival Model 

In this case, Iet the state n; be the system state after the completion ofthe /h 
service and before the possible arrival point. Let the nurober of arrivals a1 in 
a service duration be detined as for the late arrival case. At equilibrium, the 
generating functions for these are P(z) and A(z), respectively. In addition we 
define Zi; as the "number of jobs arriving in the service time of the ;th job 
minus one slot" with equilibrium values of its probability distribution and 
generating function given by 

P{Zi = k} = L .! - k (1- -i)H-k b(j) "' (. 1} 
i=k+1 k 

00 

~ ""k A(z)=L.z P{Zi=k} 
k=O 

= i>k f (j -l]Jk (1- -i)j-1-k b(j) 
k=O j=k+l k J" 

00 j-] ( • 1) = ~b(j)t; J ~ (A.z)k(l-A-)1-1-k 

OC) 

= Lb(J)(1-A+Az) 1 - 1 

j=l 

B(l- A- + A.z) 

1--i+k 

k = 0, 1,2, ...... . 

(4.105) 

The state transition equation (corresponding to Eq. (4.91) for the late arrival 
case) may then be written as 

11;+1 = ai+1 

= n; + a;+ 1 -1 

n; =0 

n; :::::1 
(4.1 06) 

This Ieads to the following generating function for the system states at 
equilibrium 

P(z) = (1- p)[A(z)- zA(z)] 
(1- -i)[A(z)- z] 

(4.107) 
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Simplifying Eq. (4.107) by substitution using Eqs. (4.96) and (4.105), we get 
the final expression for the generating function P(z) as 

P(z) = (1- p)(1- z)B(l- A, + k) 
(1- A, + k)[B(l- A- + k)- z] 

(4.108) 

Comparing this with the result ofEq. (4.97) for the late arrival model, we see 
that the expressions differ merely by a scaling factor of (1-A-+k). The queue 
size in the early arrival model is lower than in the late arrival model. This 
happens because in the early arrival model, we are observing the queue size 
before the possible arrival point in a slot. Note that since the slot in which 
the job arrives is counted in the early arrival model, when we calculate the 
time spent by it in the queue, the expression for Gw(z) given in Eq. (4.101) 
for the late arrival model will get modified to be 

I 
P(z) = Gw (I- A- + k) 

(1- A- + k) 
(4.109) 

Using this, the generating function Gw(z) for the number of slots spent in the 
system by ajob (waiting andin service) may be obtained as 

Gw (z) = (1- p)(1- z)B(z) 
(1- z)- A-(1- B(z)) 

(4.110) 

Note that this is the same as the result of Eq. ( 4.1 02) for the late arrival 
model. This is expected since the number of slots that are spent in the system 
by a job will be the same in both cases. Other results, such as those obtained 
for the late arrival model, may also be similarly obtained. 

4.6.2 The Geo1x1/G/1 Queue 

We consider here the case where there may be more than one job arrival 
in a slot. In all other aspects, the queue is the sameasthat examined for the 
Geo/G/1 case. The generating function for the number of arrivals in a slot is 
given by A(z) as in Eq. (4.85) with Jo(k) as the probability of k arrivals in a 
slot. As for the Geo/G/1 case, for both the late and early arrival models, we 
consider the distribution of the queue size (i.e. its generating function P(z)) 
immediately after a service completion. For the distribution of the waiting 
time or of the time spent in the system, we consider this immediately after 
each slot boundary for the late arrival model. In contrast, for the early arrival 
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model, we consider this immediately after a possible arrival following the 
slot boundary. 

Late Arrival Model 

Let n; be the number of jobs in the queue immediately after the service 
completion of the /h job. Let a1 be the number of jobs arriving during the 
service time of the lh job. We also assume that A * is the number of jobs 
arriving in a slot which is such that there is at least one job arrival in that 
slot. Using the notation of Eqs. (4.84) and (4.85), the generating function 
A *(z) for this may be derived to be 

A' (z) = A(z)- A-(0) 
I- A-(0) 

(4.111) 

The state transition equations corresponding to the Markov chain of n" 
i=J,2, ........ may be written as 

n,+1 = A* + a,+1 -I 

= n1 + a 1+1 -1 

n1 =0 

n, ;::: 1 
(4.112) 

Using the fact that, under equilibrium conditions, the generating function 
A(z) of the number a arriving within a service duration will be given in this 
case by 

A(z) = B(A(z)) (4.113) 

we get the generating function P(z) ofthe number in the system immediately 
after the service completion instants as 

P(z) = (1- p)[l- A(z)]B(A(z)) 
A-[B(A(z))- z] 

(4.114) 

In this case, the generating function for the number in the system 
immediately after an arbitrary slot boundary is not the same as P(z). (Note 
that the two were equal for the Geo/G/1 queue.) [BrK93] claims that, at 
equi1ibrium, the following relationship between the generating function at 
service completion and the generating function P*(z) immediately after 
arbitrary slot boundaries will hold for a ]arge class of discretc time models, 
including the Geo[XJ/G/1 queue. This relationship is expressed as 
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P(z) = p* (z) 1- A(z) 
A-(1- z) 
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(4.115) 

Note that substituting A(z)=l-A-+k in Eq. (4.115) gives P(z)=P*(z) for the 
Geo/G/1 queue as per our earlier claim that for this case, the two generating 
functions will be equal. 

Using Eq. (4.115), we get that the generating function ofthe system state 
immediately after an arbitrary slot boundary will be given by 

p* (z) = (1- p)(l- z)B(A(z)) 
B(A(z))- z 

(4.116) 

Since nothing in the system can change between the slot boundaries, the 
system state at any arbitrary point in time will then also be equal to the state 
observed (i.e. the generating function giving the state probabilities) at the 
preceding slot boundary. We can also use the generating function P*(z) of 
Eq. (4.116) to directly compute the mean m1mber N in the system just after 
any arbitrary slot boundary ( or at any arbitrary time instant) to be 

(4.116) 

Even if we assume a FCFS service discipline as before, deriving the 
delay distribution for this case requires more effort than the corresponding 
case of the Geo/G/1 queue. This is because one would need to account for 
the fact that arrivals come in batches, which may have more than one job in 
them. Consider a particular job in a batch whose queueing delay (prior to 
service) is required tobe found. It is convenient to tackle this by considering 
the total queueing delay wq of a job in a batch (mean ~1 with generating 
function Gwq(z)) to consist of the batch queueing delay w" (mean Wb with 
generating function Gw6(z)) and a delay Wx (mean W, with generating 
function Gwx(z)) corresponding to the servicetime of those members of the 
batch who get served before the job of interest. (The batch queueing delay is 
the time to wait before service to the first member of the batch can begin.). 
Since the two components of the queueing delay will be independent, we 
observe that 

wq =W6 +~, 

Gwq (z) = Gwh (z)Gwx (z) 
( 4.117) 
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Note that this argument is essentially similar to the approach taken to 
handle the queueing delay in the M[Xl/G/1 queue in Section 4.4. Following 
an approach similar to the one used there, we can derive the generating 
functions Gwh(z) and Gwx(z) and the corresponding means as given next. 

G ( ) - (1 - p )(1 - z) 
Wb z -

A(B(z))- z 

G 1- A(B(z)) 
w.,(z)= A-[1-B(z)] 

This Ieads to 

G, (z) = (1- p)(l- z)[l- A(B(z))] 
fiq A-[A(B(z))- z][l- B(z)] 

A-2 bC 2l - Jcp + JcC 2 l b 
W=------'----

" 2(1- p) 

(4.118) 

(4.119) 

(4.120) 

as the generating function and mean of the queucing delay encountcred by a 
job arriving to the system (as possibly part of a batch). The relationship 
between the mean queueing delay Wq and the mean time W spent in the 
system by an entering job will still be given as W=Wq+b where b is the 
service time of a job, as defined earlier. This Ieads to 

(4.120) 

which agrees with value one would obtain by applying Little's result to Eq. 
(4.116). Applying Little's result to (4.120), we can also get the mean number 
of jobs Nq waiting in queue (prior to service ). 

Early Arrival Model 

In this case, we consider the system state ni immediately after the /'' 
service complction and before a possible arrival at the beginning of the 
following slot. These will form a Markov chain with the transitions governed 
by the following 
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n,+1 = A* + a;+l -1 

= ni + ai+l -I 

n, =0 

ni ~ 1 
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(4.121) 

Here A * is defined as for the case of the late arrival Geo/G/1 queue with 
generating function A*(z) given by Eq. (4.111). The number of arrivals in 
the (i+ 1/h service duration is a,+ 1 with its generating function A(z) given by 
Eq. (4.113) under equilibrium conditions. The quantity a', 1 represents the 
number of jobs arriving during the (i+ 1/h servicetime given that the system 
state ni =0, i.e. the ih departure left the system empty. This will also be the 
number of arrivals during the last k-1 slots if the servicetime of the (i+ 1/h 
job is k slots. Under equilibrium conditions, the generating function A '(z) for 
this may be derived as 

A'(z) = i:b(k)[A(z)t-1 = B(A(z)) 
k=l A(z) 

(4.122) 

Using these the generating function P(z) of the system state at the 
designated time instants will be 

P(z) = (1- p)[1- A(z)]B(A(z)) 
A-A(z)[B(A(z))- z] 

(4.123) 

In this case, as weil, the generating function P*(z) of the number in the 
system immediately after an arbitrary slot boundary ( or at any arbitrary point 
on the continuous time axis) will be different from the generating function 
P(z) given above in Eq. ( 4.123). As a matter of fact, it can be shown that the 
expression for P*(z) will be the same asthat given for the late arrival model 
in Eq. (4.116). Since the values ofthe queue's output parameters N, Nq, W 
and Wq are derived using the generating function P*(z) and Little's result, 
the expressions for these parameters for the early arrival model will also be 
the same as for the late arrival model. 

We have considered only two basic discrete-time queues in this section. 
More detailed treatment of such queues may be found in [Tak94] and 
[BrK93]. 
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Problems 

1. Consider the M/G/1 queue with exceptional first service discussed in 
Section 4.3. Analyse this queue using the residuallife approach assuming the 
following-

The basic service time X has mean X and second moment X 2 . The 
additional service time required by the first customer in the busy period 

is t. with mean ~ and second moment t.2 . The random variables X and 
t. are independent and identically distributed random variables. 

2. Analyse a M/Gil queue such that whenever there are N or more 
customers in the system at the beginning of a service time, thc service time 
distribution is modified so that its L.T. is B*(s) rather than the normal B(s). 
Set up the approach that would be needed to solve for a generat value of N 
but solve explicitly only for N=2. 

3. Analyse a M/G/1 queue where the arrivals come from a Poisson 
process with rate A1 when the server is idle and with rate A8 from a Poisson 
process when the server is busy. 

4. Consider a M[XJ/G/1 queue with a service facility whose service time 
distribution is given in terms ofthe L.T. of its pdf as 

The batch arrival process generates batches at rate A where the batches are 
either of size I or 2 with equally likely probabilities. Solve this system using 
the standard approach of Section 4.4 to obtain thc corresponding rcsults. 

5. For the M[XJ/G/1 queue ofProblem 4, we consider the service facility in 
more detail. Assume that the service facility contains two stages of 
exponential servers, where stage I serves at rate 2 !' and stage 2 serves at rate 
fl. A job entering the service facility first gets served at stage 1. On 
completing this service, the job leaves the system with probability 0.5 or 
joins service at stage 2 with probability 0.5. On completing service at stagc 
2, the job enters service at stage 1 once again and goes through the same 
random choice as described above once it finishes service at stage 1. This 
continues until the job leaves the system. 
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Show that this model of the service facility will Iead to the same overall 
service time distribution as given in Problem 4. Note that with the service 
modelled in terms of the stages as described above, we can now also use the 
method of stages to solve this queue. Set up the state transition diagram and 
the balance equations that will be required to solve the queue in this fashion. 

The approach given by the method of stages may also be used if the queue 
has a finite capacity. Use this approach to solve the M1x1/G/1/2 queue of this 
type when either a whole batch acceptance strategy or a partial batch 
acceptance strategy is used. For both these strategies, calculate the 
probability that a job arriving to the system is actually allowed to enter the 
queue. 

6. Derive results similar to the ones derived in Section 4.4 for the 
M1x1/Gil queue where the batch sizes are geometrically distributed. Assurne 
that the probability that a batch will be of size n will be given by (1-q)qn for 
n20. Use standard assumptions and notations otherwise. 

7. Students enter the dining hall for breakfast in equally likely groups of 
either one or two with a group arrival rate of /t. The first member of the 
group is served in an expone,Etially distributed time X with probability 
density function b(t) and L.T. B(s). The second member (if any) orders an 
extra omelette which requires L1 seconds more where L1 is fixed. The mess 
operates as a single server M1x1/G/1 queue. Find the mean delay that an 
arriving student will encounter before being served. 

8. Consider an M[Xl/G/1 queue where the first customer in the batch 
requires exceptional service which is L1 seconds more than the normal 
service time. Obtain the queueing delay for a customer in this system. Use 
standard assumptions and notations, otherwise. 

9. Consider an MIXJ/G/1 queue with vacations and carry out the 
corresponding analysis. This can be tried with either a normal vacation 
model (repetitive vacations on idle) or a single vacation per idle model. 

10. Consider a 2-priority preemptive resume priority M/G/1 queue with 
high priority customers of class 2 and lower priority customers of class 1. 
The system enforces the rule that there can be only one class 2 customer in 
the system at any time (i.e. there is no buffering for class 2)- however, there 
is infinite buffering for class 1 customers. Let X2 (fixed, not random) be the 
service time for class 2 and X 1 (fixed, not random) be the service time for 
class 1. Arrival processes are Poisson with average arrival rate AJ for class 1 
and /t2 for class 2. For this, consider a class 1 customer who start service at 
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timet and leaves the system at time t+T What would be thc distribution (or 
L.T.) ofthe random variable T? 

11. Consider the system of Problem l 0 once again except that we now 
assume that class 2 customers can also be infinitely buffered. Forthis obtain 
the average total delays encountered by class 2 and class 1 customers. 

12. For the n-priority Non-preemptive M/G/1 queue, show that 

~ wCk) _ Rp 
L...,;Pk q - ( 1- ) 
k~I p 

where Wq(k) is the mean wating time in queue for a customcr of priority class 
k. This is an example ofthe so-called Work Conservation Principle! 
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Fundamentals of Queueing N etworks 
Open and Closed Networks with Product-Form Salutions 

In this chapter, we consider service models, where the service to be 
provided may be represented as a sequence of services provided by several 
servers. Such a service scenario may be conveniently represented as 
Networks of Queues as shown in Figures 5.1 and 5.2. In these models, 
customers/jobs which finish service at a queue may either move on for the 
next stage of service to another queue (or even re-enter the earlier queue) or 
may Ieave the network altogether. 

A standard example of such a queueing network type model arises in 
modeHing a machine shop where there are a number of machines, each with 
its own queue. A job here would require a sequence of operations by one or 
more machines in sequence. A job entering the machine shop would 
correspond to arrivals to this network model and the departures from the 
shop occur when all the required services at the designated machines have 
been obtained. The types of operations to be done decide the machines that 
the job must go through while it is in the machine shop and the sequence in 
which these operations are needed to be done at the various machines 
involved decide the routing ofjobs from one machine to another. 

A communication/computer network with various service facilities and 
store and forward nodes may also be modelled similarly as a network of 
queues. The individual packets or messages that have to be carried from their 
respective source nodes to their corresponding destination nodes correspond 
to the jobs or customers that have to be served in the system. These enter the 
system from their respective source nodes and leave the system from their 
designated destination node. During their transit through the system, they 
may have to go through store and forward queues at various intermediate 
nodes leading naturally to a queueing network based model for the required 
analysis. 

143 
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Figure 5. 1. An Open Queueing Network 

r-·-· .. · .. - .... '------l.otiiii---IL_] ! • 4------___.J 

Figure 5.2. A Closed Queueing Network 

Modelling a service scenario as a queueing network, rather than as a 
single queue, is also a very convenient way of representing it and may Iead 
to simple analytical techniques that may be conveniently applied. The 
Method oj Stages described in Section 2.9 for analysing M/EK/1 is an 
example of such a technique where the Erlangian service time is 
decomposed into two or more successive exponential service times to make 
the analysis simpler. This modcl did rcquirc some special restrictions on thc 
movement of jobs as new jobs were not allowed to enter the first stage 
unless the previous job has exited from the system after completing its 
service at all the intermediate stages. The queueing networks considered by 
us here (and in Chapter 6) are not as restrictive as this and indeed allow a 
great degree of flexibility in routing jobs from one queue to another. As a 
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result, some very complex queueing seenarios can be modelled in this 
fashion. 

In order to keep our models as generat as possible, we also assume that 
routing of jobs from the output of a queue can be probabilistic in nature. This 
implies that a job finishing its service at one queue, may get routed to more 
than one queue with the actual queue to which it will be routed chosen 
probabilistically using a pre-defined probability parameter, i.e. it will be 
routed to the queue Qk with probability Pk for the various queues Qj, ...... ,QK 
in the network. This is referred to as Probabilistic Routing and will be the 
routing model used by us in this chapter and the next. It is also possible to 
have Deterministic Routing where the jobs are deterministically routed from 
one queue to another. In the case of multi-class jobs, jobs of different classes 
may have different deterministic routes that they follow through the 
queueing network between the queue where they enter and the queue from 
where they leave the network. In the case of deterministic routing, ajob of a 
particular class, entering the network at some node, may be required to 
follow a definite sequence of nodes before its eventual departure from the 
network. On the other band, if the routing is probabilistic then a job may 
have to probabilistically (i.e. randomly) decide which node to go to (out of a 
set of nodes ), after it finishes service at the previous node/queue. In the case 
of probabilistic routing, the routing choices made by individual jobs are also 
assumed to be independent in nature. This implies that the choice of a 
particular path by a job does not affect the way other jobs (following 
probabilistic routing) will choose their paths through the network. 

The techniques described in this chapter provide the basic tools to analyse 
simple queueing networks provided some important assumptions about the 
nature of the network are satisfied. Subsequently, in Chapter 6, we consider 
approximate methods that give good results even when some of these 
assumptions arenot strictly met by the queueing network. For more detailed 
advanced treatment of queueing networks, we refer the readers to [Per94], 
[Wal88] and [Woo89] and various other research papers which will be 
referenced subsequently at appropriate places in Chapters 5 and 6. 

5.1 Classification of Different Types of Queueing 
Networks 

The most common method of classifying queueing networks is to 
consider them as being either open or closed networks depending on whether 
jobs are allowed to enter and leave the system or whether the system always 
has a fixed number of jobs circulating in it. 1t is also possible to define a 
mixed queueing network when one is considering a situation where there are 
a number of different classes of jobs in the system. In this case, the network 
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may be open for some of the classes while it may be closed for some other 
classes of customers. 

5.1.1 Open Qucueing Networlis 

An Open Network is one where jobs/customers arrive from outside to one 
or more queues and eventually leave the network from some of the queues. 
Inside the network, a job finishing service at one queue may leave the 
network altogether or may go to another queue for service. We will consider 
this routing to be probabilistically done in our subsequent discussions but the 
routing can actually also be deterministic in nature for multiple job classes. 
Arrivals from the external world to the network may take place in one or 
more than one queues and departures may leave the network from one queue 
or more than one queue. An example of an open network has been shown in 
Figure 5.1. 

In addition, a open network is considered tobe Acyclic if a node is visited 
by a job at most once during its entire sojourn through the network. Since 
there is no feedback in such an acyclic network, it is also sometimes referred 
to as a Feedforward Network. This implies that there will be no feedback in 
such an open network. If there is feedback present in an open queueing 
network, then it may Iead to situations where a job finishing service at one 
queue may return to the same queue later for anothcr round of service. 

5.1.2 Closed Queueing Networks 

A Closed Network is one where there are a constant number of jobs that 
continually circulate in the network with no other arrivals to the system or 
departures from the system. The number of jobs in the network is fixed and 
the sum of the jobs at all the individual queues always equals the total 
number of jobs in the system. No additional jobs can enter the network 
through any of its component queues. On completion of service at a 
particular queue, a job will get routed to another queue in the network. This 
is done just as in the case of open networks, except that jobs cannot be 
routed out of the network but will have to be routed to another queue, either 
probabilistically or in a deterministic fashion. 

A closed network seems an unusual one at first sight since it does not 
allow jobs to enter or leave the network. In reality, this may actually be a 
good way of modeHing a service facility. A typical systemoftbis type would 
be one where there is a large (infinite) number of jobs waiting to enter a 
system at all times, the number of jobs allowed inside the system is fixed at 
some value and a job enters the system immediately, whenever the sequence 
of services for another job is completed. This, for example, is a typical way 
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of modelling a time-shared computer system where a fixed number of jobs, 
individually ask for a number of computing and/or input/output services that 
they require for their task. Whenever the tasks required for a job are finished, 
another job enters the system for its required services, replacing the earlier 
one, which has got the services it required. 

5.1.3 Mixed Queueing Networl<s 

As mentioned before, one sometimes also refers to a Mixed Network 
where there are multiple classes of jobs. For some of these job classes, the 
network will be closed (i.e. no arrivals from the outside or departures to the 
outside for these classes) while it would be open for the other job classes 
(i.e. jobs of these classes arrive from outside the network and eventually 
leave the network). 

5.1.4 Multiple Classes of Jobs/Customers 

One can have open or closed networks with multiple classes as weil. A 
Multi-dass Open Network will have a number of classes of customers with 
their respective routing and arrivallservice specifications where the network 
is open with respect to each of these classes. In a Multi-dass Closed 
Network, the network will be closed for each one of these classes even 
though individual classes would have their own routing and service 
specifications. 

5.1.5 Blocl<ing in a Queueing Network 

Queueing networks may be classified in other ways as weil. For example, 
a queueing network where all queues are of infinite capacity is categorized 
as a Queueing Network without Blocking; here, a job can never be blocked 
while moving from one queue to another (i.e. because the destination queue 
is full). If a queueing network has one or more queues of finite capacity then 
it will be classified as a Queueing Network with Blocking [Per94]. In such a 
network, a job, which wants to move to a finite capacity destination queue, 
will experience blocking if the destination queue is full and cannot 
accommodate the job trying to enter. Special rules will need to be formulated 
to handle this blocking event. Depending on these rules, different types of 
blocking will be classified subsequently in Chapter 6. 
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5.1.6 Product-Form Queueing Networks 

For analyzing a queueing network under steady state conditions with 
appropriate simplifying conditions, one can model the state ofthe system as 
a vector consisting of the states of the individual queues. The system may 
then be modeled as a Multidimensional Birth-Death process and analyzed. 
In a !arge number of cases, under fairly generat conditions or as a good 
approximation, the solution for the overall system state may be represented 
by a Product Form Solution ofthe following form. 

K 

P{n1 ,n2 , •...•.••.•. nK}= fl.t;(n1 ) 

i=l 

Here, P{n 1, n2, ........ ,nK} is the joint distribution of the states in the K queues 
in the network. The existence of the product form solution implies that this 
joint distribution may be written as a product ofterms which are functions of 
the individual queue states n" i.e. {[;(nJ}, i=l, ..... ,K. (There may be an 
additional normalisation constant term ensuring that the sum of the 
probabilities of all the network states sum to unity.) We consider networks of 
queues where either this property holds exactly or where it may be 
considered to holdas a good approximation. 

5.2 Probabilistic Routing in a Queueing Network 

Routing Probabilities are p and (1-p) 

Figure 5.3. Probabilistic Routing in a Queueing Network 

Consider a queueing network with K queues, where a job leaving Q1 can 
move to any one of queues Q1, ....... QK (or can leave the system in the case of 
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an open network). An example of such a network with three queues is shown 
in Figure 5.3. We would typically consider Probabilistic Routing where the 
job leaving Qi decides randomly which destination it would go to and this 
random decision is made independently for each job leaving Q;. In such a 
network, a probability matrix will be needed to specify the routing 
probabilities with which jobs move from one queue to another or leave the 
system. In this text, we will only consider this kind of probabilistic routing 
strategy. The i-j1h entry, PiJ, of the transition probability matrix (also called 
the routing matrix) denotes the probability that a job finishing service at Q; 
decides to go to Q1 in the network. 

Poisson Process 
Average Rate }. ... ... 

p 1 .... Poisson 
... Rate J.p1 

Pi Poisson 
l---!...1.--t_.._ Rate J.p1 

PN .... Poisson 
~ Rate J.pK 

Figure 5.4. Probabilistically Splitting a Poisson Process 

Probabilistic routing may also be viewed as randomly splitting a process 
into several processes. In case the original process is Poisson and if the 
probabilistic splitting is done in a manner which is independent of the inter­
arrival times ofthe original arrival process, then one can easily show that the 
processes obtained after the splitting will also be Poisson in nature. As an 
example consider the case of binary splitting, where on getting an arrival 
from a Poisson process with average rate A., we toss a coin which has 
P{head}=p and P{tai/}=1-p. The arrival is sentonraute 1 on getting a head 
and is sent on raute 2 on getting a tail. Note that this effectively amounts to 
splitting the original Poisson process probabilistically with probabilities p 

and 1-p to get two processes with average rates A-p and A-(1-p). It can be 
easily shown that if independent random choices with probabi lities p and (1-

p) are made for each arrival then the two processes obtained after splitting 
are independent of each other and are also Poisson in nature with the average 
rates as given earlier. This may be generalized to state that the processes 
obtained after splitting probabilistically a Poisson process with average rate 
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A, using probabilities {p1}, would also be independent Poisson processes 
with rates {Ap1}. Wehave illustrated this kind of splitting in Figure 5.4. 

Poisson Process 
Average Rate ..11 

Poisson Process 
Average Rate ..12 

Poisson Process 
Average Rate ..11+ ..12 

Figure 5.5. Combining Poisson Processes 

In this context, it is also useful to note that combining Poisson processes 
with differentrateswill also Iead to a Poisson process with a rate equal to the 
sum of the individual rates, i.e. the sum of N Poisson processes with average 
rates A1, ............... , AN is also a Poisson process with average rate (A1 + 
............... + AN ). This is illustrated in Figure 5.5 for the case where two 
Poisson processes of rates A1 and A2 combine to give a Poisson process of 
rate A1+ A2. 

5.3 Open Networks of M/M/m Type Queuesand 
Jackson's Theorem 

It may be recalled that Burke's Theorem (Scction 2.7) states that, under 
equilibrium conditions, the departure process from a M/M/m/oo queue will 
also be a Poisson process with the same average rate as the arrival rate to the 
queue. This may be used in conjunction with the following results, 

(a) splitting a Poisson process randomly yields Poisson processes after 
splitting 

(b) sum of Poisson processes is also a Poisson process 

to analysc open networks of M/M/m/oo queues which are acyclic in nature, 
i.e. feedforward networks without any feedback. 
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As an example of this, we may consider the queueing network shown in 
Figure 5.6. Consider the network shown with inputs from Poisson processes 
with average rates Al and A2 at Q1 and Q2, respectively. The routing 
probabilities have also been shown. 

0.4 0.6 

0.4 

Figure 5.6. A Feedforward Open Network ofM/M/m Queues 

Using these routing probabilities and the fact that flow balance will exist 
at equilibrium, we can obtain the average rate of arrivals entering each of the 
queues. Let AQ1, AQ2 , AQ3 and AQ.; be the respective average arrival rates of 
the jobs actually entering queues Q1, Q2, Q3 and Q.;. These will be given by 

AQI =Average arrivalrate for Q1 = ).,] 
AQ2 = Average arrival rate for Q2 = 0.4Al + ).,2 
AQ3 =Average arrivalrate for Q3= 0.4).,1 
AQ.; =Average arrivalrate for Q.;= 0.84Al+A2 

If we assume that each of the queues - Q1, Q2, Q3 and Q.;- are of type 
M/M/m/oo, then Burke's Theorem and the results quoted earlier for the 
random splitting and superposition of Poisson flows, indicate that each ofthe 
above arrival processes (to each of the queues) will also be Poisson. 
Consider Q1where i=l, 2. 3 or 4. Forthis queue, standard M/M/m/oo results 
may now be applied with A(!i as the arrival rate to find PQlnJ as the 
probability of there being n1 customers in the system at Q, - this would of 
course also require knowledge of the mean service at this queue. This 
computation may be done for each of these queues to find the state 
probability distribution for each queue. Note that this procedure may be 
generalized for any queueing network as long as there is no feedback and 
may be used for any type of M/M/m/oo queue. (The presence of feedback 
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will introduce dependencies between the output and input processes of the 
queue and therefore these statements cannot be directly made. However, it 
turnsout that, even in such cases, this approach is still valid.) In this case, we 
can also obtain (using Jackson's Theorem discussed subsequently) that the 
joint state distribution for the system overall will be given by the product of 
the individual state probabilities as 

(5.1) 

Jackson's theorem is also the one which shows that the approach given 
above may be used to give the same kind of product form solutions, even 
when there is feedback present in the system. This theorem is given next. 

5.3.1 Jackson's Theorem 

Jackson's Theorem is applicable in a Jackson Network. This is defined to 
be an arbitrary network of M/M/m/oo queueing nodes where jobs arrive in a 
Poisson stream from outside (to one or more nodes) and are transferred 
probabilistically from one node to another until their eventual departure from 
the system. The departures can also occur from one or more queues. (Note 
that the system is therefore an open queueing network.) The M/M/m/oo 
queueing nodes are sometimes also referred to as Jackson Servers. 

Consider a Jackson Network with K such queues and Iet A be the average 
arrival rate from a Poisson process from outside entering the network to the 
;th queue Q;. Note that A;=O implies that there is no arrival from outside to 
Q;. It should also be noted that we are considering an Open Network here 
(Closed Networks are considered later) and that for such networks, at least 
one such A; >0 mustexist for at least one of the queues. A customer served 
at Q; is routed to Q1 with routing probability Pu or exits the network with 

prob ab; I ;ty [I - t. p ij] . Let ~ be the total average fl ow rate of an; vals 

entering Q1. This may be found by applying the flow balance conditions 
given in Eq. (5.2) and solving the set of simultaneaus equations for the mean 
arrival rates ofjobs {A.1} j=l, ....... , Kto each ofthe K queues in the network. 

K 

A. 1 = A 1 + LA.; p !i for j = 1,2, ...... . K (5.2) 
i=l 
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For an Open Network as being considered here, the K equations given by 
the above may be solved to obtain the average arrival rate for each of the K 
queues in the system. (Note that this cannot be done for a Closed Network, 
which is one reason why we consider such networks separately later.) It 
should also be noted that in the above, we have not restricted the routing 
probabilities in any manner, which is why they may be such that there is 
feedback present in the network. The set of flow balance equations given in 
Eq. (5.2) may also be written in a matrixform as 

(5.3) 

where 

p =[pij] 
~T 

A = [~, .......... ,AK] 
~T 

A =[A1, ....... ,AK] 

Fora network oftbis type with M/M/m/oo queues (i.e. Jackson Servers) at 
each node, Jaclcson 's Theorem states that provided the arrival rate at each 
queue is such that equilibrium exists, the probability of the overall system 
state (n1, ....... , nK) will be given as 

K 

P(ii) = P(n1 , ...... ,nK) = f1p 1(n) 
./=1 

(5.4) 

Here pj(n)=P{n1 customers in Q1}may be found by considering the 
MIM/m/oo queue at node j in isolation with its total average arrival rate A-1, its 
mean service time I I f1J and the corresponding results for the steady state 
MIM/m/oo queue. Note that the individual queues, and hence the whole 
network, will be in equilibrium only if the Ioad Pi = A-1 lfiJ < m1 for Q1, 

j=l,2, ... ,K, (i.e. for each queue in the network) where m1 is the mimher of 
servers at Q1. 

Note that there are some important implications of the statement of 
Jackson's Theorem as it is given above. [The theorem may be generalized 
further- such generalizations are mentioned subsequently.] One isthat once 
the average flow rates are determined, the queues may be considered in 
isolation even when the network is such that there is feedback. The secend is 
that the states of the individual queues behave as if they are independent of 
each other and therefore the joint probability of the system states will be 
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given as the product of the state probabilitics of thc individual qucues. It 
should also be noted that the flows entering the individual queues behave as 
if they are Poisson even when they may not actually be Poisson - such as 
when the system has feedback. To see the importance of this last statement, 
consider the simple feedback situation (i.e. immediate Feedback) illustrated 
in Figure 5.7. 

Figure 5. 7. Immediate Feedback to a Queue 

For the example shown in Figure 5.7, consider the case when (1-p)<<l 
and fl >>/L In this case, even if the external arrival process is Poisson, the 
arrival process actually entering the queue will not be Poisson. As a matter 
of fact, it can be easily seen that because of the feedback, the arrivals to the 
queuewill tend tobe in bursts of random size, which will be triggered by the 
arrival of a customer from outside. This illustrates the fact that the presence 
of feedback will cause dependencics to arise and will make thc arrival 
process to a queue non-Poisson in nature. The importance of Jackson's 
Theorem is that it states that even in such a situation, the individual queues 
may be analysed as if their inputs are Poisson processes and that the overall 
system state will behave as if the individual queues are independent of each 
other. Using Jackson's Theorem, the queueing network example given above 
may be solved for the joint state probability of the system. Same other 
examples, which incorporate feedback, are given subsequently. 

Network Performance Parameters 

Once the actual flow rate to each queue in the network has been obtained, 
Jackson's Theorem may be used to first obtain the state distribution of each 
queue in isolation and the overall state distribution as the product of the 
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individual distributions. Using these flows and the state distributions, the 
following parameters of interest are typically calculated. 

K 

Total Throughput = IL = LA J 
j=l 

(5.5) 

This follows from stability considerations, as the flow in of jobs entering the 
system must be equal to the flow out of jobs leaving the system, when the 
system is stable. The average traffic Ioad to each queue may be found as 

IL 
Average tra.ffic Ioad at nodej (i.e. QJ = p 1 = _.1 

jJ .I 

IL 
17' • A • V I " lSlt count to noue J = J = -· 

IL 

(5.6) 

(5.7) 

The visit count to node j, is a measure of the average nurober of visits a 
job makes to the queue Q1 once it enters the queueing network. These may 
also be found directly by solving the K linear equations ofEq. (5.8). 

(5.8) 

It is easily seen that Eq. (5.8) may be directly obtained by normalizing the 
flow balance equations of Eqs. (5.2) or (5.3) by IL. This is sometimes 
preferred but the two equations are really the same and ifEq. (5.8) is used to 
solve for the visit counts then the actual flow to the queues may be obtained 
using ILJ=ILVJ for j=I,2 ..... ,K. 

<XJ 

Averagenumber ofjobs at nodej = NJ = LkpJ(k) 
k=O 

K 

Averagenumber ofjobs in system = N = LNJ 
j=l 

(5.9) 

(5.10) 
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Note that Eq. (5.9) directly follows from the definition of the state 
probability for each ofthe queues, Q1j=1,2, ..... ,K and (5.10) is obtained by 
summing the mean number in each queue in the network. Applying Little's 
result to Q1 with the averagearrivalrate A.J (i.e. W;= N;IA:1 ) will then give the 
total mean delay W; (queueing delay and service time) that a job will 
experience every time it visits Q1. Note that a job enters Q1 for V; times, 
every time it enters the system. Therefore, the total time spent by a job in Q;, 
every time it enters the system will be V;N; 1.?.:1 = ~ lA.. One can also define 
the performance parameter mean sojourn time as the mean total time spent in 
the system by an arriving job before it leaves the network. This may be 
found eithcr as the sum of thc total timcs that thc job will spend in each of 
the K queues in the network or one may apply Little's result directly to the 
overall network and obtain this as N lA:. Both these definitions are given in 
Eq. (5.11 ). 

N K N 
Mean Sojourn Time = W =- = L - 1 

.?.: J~l .?.: 
(5.11) 

Actually, the Product Form expression for the state probabilities of a 
queueing network (Closed or Open, even though we have only mentioned 
Jackson's Theorem for open networks above) holds for any network where 
the local balance conditions are satisfied. Specifically, open or closed 
networks with the following types of queues will all have a product form 
solution-

1. FCFS queues with exponentially distributed service times 
2. LCFS pre-emptive resume queues with service times having a 

Coxian distribution 
3. Processor Sharing (PS) queues with service times having a Coxian 

distribution 
4. Infinite Server (IS) queues with service times having a Coxian 

distribution. 

A Coxian Distribution is one where the L.T.. of the serv1ce time's 
probability density function is ofthe following form. 
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with ß,. = 1- y,. for 1 :-s:: i :-s;; r and Yr+l = 1 

The Exponential Distribution may be observed to be a special case of a 
Coxian Distribution. It should also be noted that for queues of the type 
mentioned above, an arrival process that is Poisson in nature, would Iead to a 
departure process that is also Poisson in nature. This result is once again 
useful because a Poisson process may be randomly split or different Poisson 
processes may be combined without losing the Poisson property. 

We consider next some actual examples of open networks which may be 
analysed using the approach given in this section. 

5.3.2 Some Examples of Jackson Networks 

Example 1 

Consider the queueing network shown in Figure 5.8 which 1s an open 
queueing network with feedback. 

Q2 ......... 1----' 
MIM/1 """ /i2 

Service Rate ofQI=Jli 
Service Rate ojQ2=J12 

/i2 =/i1P2 

Figure 5.8. Open Queueing Network ofExample 1 

For this simple system, we can immediately observe from Flow Balance 
that 
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Therefore, p 1 
/L(l- PJ) 

and p 2 = ------'-
f.12P1 

Using the results for M/M/1 queues, one can therefore get 

System State Probability: 

Mean Number in the Queues: 

Therefore N = N 1 + N 2 will be the total mean number of users in the overall 
system. We can also apply Little's Formula to get the total time spent by a 
job entering the system to be 

Example 2 

Consider the network of Figure 5 .9, where arrivals can enter the network 
at two points with rates r and 2r. The queues Q1 and Q2 have service rates 2p 
and p, respectively 

r 
2ji 

QJ 
MIM/I 

p 

1-p 

Q2 
lv//M/1 

p I-2p 

Figure 5.9. Open Queueing Network of Example 2 
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From flow balance conditions, we get 

A1 = r + A2 (1 - 2 p) 

/1,2 = 2r + /1,1 (1 - p) + /1,2 p 

Solving these we get 

/1,1 = r(3- 5p) 
2p(l- p) 

r(3- 5 p) 
P1 = 

4,up(l- p) 

.1
2

= r(3-p) 
2p(l- p) 

r(3- p) 
P? = 

- 2pp(l- p) 

159 

The joint state probability of the two queues in the system will then be given 
by 

The average visit counts to the two queueswill be given by 

3-Sp v; = ---=--
6p(l- p) 

3-p v2 =---=--
6p(l- p) 

Using, M/M/1 results, we can find the mean number in the two queuestobe 

N _ _f!j_ 
1-

1- P1 

The mean ofthe total number ofjobs in the systemwill be 

N=_f!j_+~ 
1- P 1 1- P2 

The mean sojourn time W of a job entering the system (at either of the two 
entry points) may then be found to be N/3r. This follows from the 
application ofLittle's result to the value of N obtained above. 
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Example 3 

0.2 

• Q2 I 0.2 

lv//!vf! I I ... 
0.6 

0.4 

~ , " .. /l .. f '\ ... Ql I 02 .. / D ~ M9~/l I ~ "'\._ ~ ... M/M/1 I ...\._ 
.. .. .. .. 

0.4 
0.6 

• Q3 I 0.2 ... 
M/!vl/1 I ... 

0.2 

Figure 5.1 0. Open Qucucing Nctwork of Examplc 3 

Consider the open network of single-server M/M/1 type queues shown in 
Figure 5.1 0, where the mean service tim es at the queues Qj, Q1" Q3 and Q.~ 
are specified to bell,u, 2/,u, 2/,u and 2/ft seconds, respectively. Let /L be the 
average external arrival rate (Poisson) to Q1. Apart from the usual 
performance parameters as considered in our earlier examples, in this case, 
we would also like to find the maximum value of /L under which the network 
will operate in a stable fashion. For this, we identity the first queue that 
becomes unstable as /L increases and the mean number in each of the other 
queues when the first one becomes unstable. The flow equations for the 
network are 

0.2/L2 + 0.2/L3 + /L = /Ll 

/L2 = /L3 = 0.4~ 
/L4 = 0.2~ + 0.6/L2 + 0.6/L3 

Solving these, we get the solution for the mean arrival rates to each queue to 
be 

and the traffic is 
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with Po =Aif.l. 

Following our usual approach, we obtain the system state probability as 

P(nl 'n2 'n3 'n4) =(I- PI )(1- Pz )2 (I- P4 )p;'I p;z+n3 p;4 

for 0 :S n1 , n2, n 3 , n4 :S oo 

N -~ 4-
1- P4 

Note that P-1 is the largest queue traffic occurring at Q4. Therefore as the 
affered traffic /L increases, this is the queue that we expect to become 
unstable first. The condition p-1<l is then the required stability condition for 
the network. This, therefore, implies that p0<0.6176 or /L<0.6176f.1 for the 
queueing network tobe stable. 

The stability Iimit of p-1<l also implies that at the point when the network 
is about to become unstable, the traffic at the queues Q1, Q2 and Q3 will be 
p 1<0. 7352 and p 2 =p3<0.5882, respectively. At this stability Iimit, the 
number in each of the queues Q1, Q2, Q3 and Q-1 will be N 1=2. 7764, 
N2=N;= I. 4284 and N-1~00. 

5.4 Extensions to Jackson's Theorem for Other Open 
Networks 

The statement of Jackson's Theorem can actually be generalized to cover 
more complex queueing networks than the one discussed earlier in Section 
5.4. The statements of Jackson's Theorem for two such extensions are 
summarized next. 

5.4.1 Jackson's Theorem with State Dependent Service Rates at the 
Queueing Nodes 

For this, assume timt the service times at Q1 are exponentially distributed 
with mean 1/p;(m) when there are m customers in Q, just before the 
departure of a customer (Note that m would include the departing customer.) 
Unlike the network considered in Sec. 5.3, here the service rate Jl;(m) is 
actually dependent on the number of customers currently in the queue. This 
approach may be used to model multi-server M/M/- type queues in a very 
general fashion. 
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Consider a queucing nctwork of K queues formed with queues like Q1 , as 
described above, where the other assumptions remain the same as before in 
Section 5.3. Let the Ioad p/m) at Q1 when there are m customers in that 
queue, be defined as 

for j=l, ..... , K and m=l, 2, ........ 

where the Ajs are obtained by solving the flow balance equations 

K 

Aj = A, + LAipiJ 
i=l 

as before. We also define 

llj 

= f1p}(k) 
k=l 

for j=l, ..... , K 

n =0 
.I 

n 1 >0 

Then Jackson's Theorem for this network oj queues with state dependent 
servicerotes states that the system state probabilitywill be given by 

oo oo K 

with Normalisation Constant G = 2: ...... L f1 P,(ni), O<G<co. 
11]=0 IIK=O i=l 

lt is important to note that the system's state probability distribution is 
still in the form of continued products and hcncc this solution is also 
classifiable as a product-form solution. For any given queue Q;, the service 
rate when the queue is in state m can be arbitrarily specified and this 
specification may be done differently for different queues. This is a very 
powerful feature ofthis extension to Jackson's theorem as it not only allows 
the individual queues to be modelled in a variety of different ways, but also 
allows queues of very different types to be mixed tagether in the same 
queueing network. As a simple application of this concept, we can consider 
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queueing networks made up of multi-server queues. Consider a particular 
queue with s servers. We can then consider the service rate ,u(m) for that 
queue to be m,u for m~ s, and s,u for m>s. Here we assmne ,u to be the 
service rate of one server and the service times to be exponentially 
distributed with mean 11 ,u .. Other more complicated service seenarios may 
also be modelled in this fashion. Note that, as assumed in Section 5.3, we 
still require the individual service times to be exponentially distributed and 
the queues to be ones with infinite buffers. 

5.4.2 Queueing Networks with Multiple Customer Classes 

Jackson's Theorem is also applicable to networks serving multiple classes 
of customers, provided that at each queue the service time distribution is the 
same for all customer classes. Consider such a queueing nctwork with C 
customer classes (i.e. c=l, ....... , C) with 

(a) average rates Aj(c) for Poisson arrivals of class c from outside to 
the network at node j 

(b) routing probabilities p;j{c) giving the (transition) probability that a 
job of class c completing service at node i, goes to node j next 

Assurne that the mean service time ( exponentially distributed) at Q1 when 
there are m users in that queue, is given by 1/f~(m) as in Section 5 .4.1 earlier. 
Note that this is also state dependent as in the previous case but ts now 
required to be the same for all the C classes. W e define the vector 

zJ =(c1, .•••••••.•• ,cn.) 
.I 

where nJ is the number of customers in ß and c; is the class of the customer 
in the /h position in QJ. Note that the vector z1 essentially gives the 
composition of Q1 at a given instant of time. The state of the netvvork at a 
given time instant may then be represented by the vector z , where 

Z = (z1 , •••••••••• ,ZK) 

We can solve the flow balance equations foreachtype of job c=l, .... ,C to 
obtain the arrival rate of class c customers to Q; as A;(c) j=J, .... K and 
c=l, .... ,C. Using this and the servicerate model for each of the queues, we 
can define the following Ioad parameter. 
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We also define 

nJ 

= TI.PJ(ck,k) 
k=1 

K 

n =0 
.I 

and G = L TI PJ (z J) as the normalisation constant. 
(Zj , ...... ,ZK) j=] 

Chapter 5 

Jackson's Theorem for this type of queueing network then states that the 
state probability of this system will be given by the following product form 
express10n. 

~ 'n:K~ P(z) =- P1 (z1 ) 

G J=t 

5.5 Closed Queueing Networks 

We showed an example of a Closed Queueing Network earlier in Figure 
5.2. Here jobs would continually circulate around the network as shown, 
with probabilistic routing between the nodes. There are no arrivals from 
outside nor are there any departures from the system to the outside world. 
The system is started with a certain m1mber of jobs and these jobs 
continually circulate in the network moving from one nodc to another on 
completing service at the former. The destination node, to which the job 
moves on completing service at the earlier queue, is decided based on the 
probabilistic routing specified by the routing probabilities. 

Consider a closed network of this type with K qucucs - Q1, ...... , QK. 
Assurne that there are Mjobs of the same class circulating in the network. 
(As mentioned in the case of open networks, it is also possible to have 
multiple classes of customers for closed networks as weil. The formulation 
ofthe problem and the results may be extended to cover this case which will 
be somewhat more complicated but solvable in a similar fashion.) Let p;1 be 
the routing probability from Q; to Q1 - i.e. ajob finishing service at Q; will be 
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routed to Q; with this probability. Note that if Q, to QJ is the only transition 
possib1e, then Pu= 1. Since we are considering a closed network, jobs must be 
routed to one of the queues in the network and the sum of the transition 
probabilities from Q, to any other Q, in the network (including Q, itselt) must 
add up to unity. This implies that we have 

in a closed network. 
Let A,J be the total average arrival rate to Q1 }= 1, ........ , K where 

application ofjlow balance would Iead to the following K equations 

K 

Aj = LAiPi/ }=1, ....... , K ( 5 .12) 
i~J 

Note that these equations arenot independent (since there are no external 
arriva1s to the network) and hence (un1ike the Open Network case) they 
cannot be solved to uniquely find the ..11s for the K queues, }=!, ..... , K. 
However, using any of the K-1 equations in the above, we can find the A-/s 
up to a multiplicative constant. In order to do this, assume that a(M) is an 
(unknown) scalar quantity and Iet {..t/} j=1, ... ,K be a particular solution of 
Eq. (5.12) such that the true average arrival rates {..ij(M)} j=1, .... ,K are 
given by 

A,i(M)=a(M)..ii* j=1, ....... K (5.13) 

Note that both a(M) and {..1/M)} are functions ofthe population size M(i.e. 
the total number of jobs circulating in the system) though {A/} j= 1, ... ,K are 
independent of M. 

An alternate approach which is equivalent is to choose any one queue in 
the network (say Q1) as the reference queue and assume that ..t/=a, where 
any value of a may be chosen. (One usually chooses something which is 
convenient such as a= JlJ so that p 1 =A-1 *; J11 becomes equal to 1, simpl ifying 
calculations.) We can then use the flow balance equations given by Eq. 
(5.13) to obtain (..12',..1/, ....... ,..1/) in terms of a. Note that (..t/,..12*, ....... ,..1K*) 
are referred to as the Relative Throughputs with respect to the reference 
queue - which, in this case, was selected to be Q1 (any other queue may also 
be chosen as the reference queue). 
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Let ,ulm) be the (state dependent) service rate at Q1 (where the service 
times are exponentially distributed) when Q1 is in state m. Note that the 
service times for a particular job at a qucuc arc still assumcd to be 
exponentially distributed even though the service rates at the queue may vary 
depending on the state of the queuc. Using any partietdar solution {A,/} of 
Eq. (5.12), we can then define 

A.,* 
u (m) = 1 

J fl·(m) 
I 

j=l, ..... , K; m=l, ...... , lvf (5.14) 

as the relative utilization of Q1 with respect to the relative utilization of the 
reference queue. Let 

P1(n1 )=1 

= u1 (1)u1 (2) ....... u 1 (n1 ) 

n =0 
) 

n 1 ;::: 1 
( 5 .15) 

and the corresponding normalisation constant G(M) for a population M is 
defined to be -

G(M)= ( 5 .16) 
n1 + ... .+n;::=M 

We can now state Jackson 's Theorem for Closed Networks usmg these 
quantities. 

5.5.1 Jackson's Theorem for Closed Networks 

Jackson's Theorem for Closed Networks states that for all states 
n~o ........ ,n;:: such that n1+n2 + ........... +n;:: = M, the probability of the state 
vector (n 1, n2, ........... , n;::) will be given by the following product-form 
expression. 

(5 .17) 

Note that the expression is indeed in a product-form (i.e. continued product 
of terms) as wc would expect for a Jackson Network. It should be noted that 
the only restriction in the above result is that the individual service time of a 
job at any of the queues is exponential in nature. We also require that the 
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service rate for Q1 with m jobs in the queue may be expressed in the form 
Ji 1 (m) as described above and that the actual service tim es of individual 
jobs are exponentially distributed. Apart from these restrictions, the theorem 
is quite general and can be applied to handle queues where the service rate 
varies as a function of the system state. We illustrate this with a simple 
example next. 

Example 

Consider the closed network with two queues Q1 and Q2 shown in Figure 
5.11 with M jobs in the system. Both Q1 and Q2 are single server qucues with 
service rates ji1 and fiz, respectively, where the service times are 
exponentially distributed. The routing probabilities are p, 1-p, q, 1-q as 
shown in Figure 5.11. Note that the M jobs will continually circulate in the 
network moving from one queue to another as per the routing probabilities 
indicated. At any given instant of time, some of these M jobs will be in one 
queue while the remainingjobs will be in the other queue. 

p 

Figure 5.11. A Closed Network with M Jobs 

We choose the particular solution A-1 * for Q1 to be A-1 * =f11. Then from the 
flow balance equations we will get 

• ·1-q 1-q 
A-2 =A-1 --=JI.J--

1-p 1-p 

and, therefore 
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The Steady State Distribution of the M users in the system (ioeo n1 in Q1 

and n2 in Q2, such that n 1+n2 =M) will then be given by the product form 
solution to be 

where G(M) is the normalisation constant (for M jobs circulating 111 the 
system)o This will be given by 

M 1 M+l 
G(M) =Lu; = _-_u_cc2_ 

n=O ] - U2 

This state probability distribution may now be used to find the various 
performance parameters of the individual queues and of the overall systemo 
For example, the probabilities ofthe queuestobe busy, will be given by 

o _ _ ur1 G(M -1) 
P{Q1 1s busy} - 1-P(O, M)- 1--- = ____;_ _ ___:_ 

G(M) G(M) 

P{Q2 is busy} = 1-P(M, 0) = 1--1- = u? _G---'-(M_-_1__:_) 
G(M) - G(M) 

Visit Ratios in a Closed Queueing Network 

The visit ratio V, of the / 11 queue Q1 in the queueing network is defined as 
the mean number of times Q, is visited by a job/customer for every visit it 
makes to a given reference queue, say Q10 (Note that this definition is very 
similar to the definition of visitratios in the case of open networks) 

lf Q1 is chosen as the reference queue, we will then have 

V= ;tl* 
I A. 

I 

i=J, 2, 00000, K (50 18) 
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We can also obtain the visit ratios directly by solving for them in the same 
way as solving for the relative throughputs (..11 ·, .... /LK*). In vector form, this 
implies solving for the vector 

V= (Vl , ....... , VK) 

using the following vector equation with V1 =I 

(5.19) 

where P =!Pu] is the matrix ofthe routing probabilities Pu of going from Qi 
to ß. 

Relative Utilizations of Queues in a Closed Queueing Network 

Note that the relative utilization u1 of Q1 is defined as above tobe 

/L,· 
U;=­

Jl; 
(5.20) 

This definition implies that the relative utilization of a queue is being 
defined with reference to the relative utilization of the reference queue. As 
mentioned earlier, a proper choice of the relative throughput of the reference 
queue may be done such that its relative utilization becomes unity. This is 
generally desirable, as it would then simplify subsequent calculations to 
some extent. 

5.5.2 Jackson's Theorem for Closed Networks ofMulti-Server 
Queues 

We consider here the specific case of a Closed Network of Multi-Server 
Queues where there are Mjobs circulating in K queues Q1, •..... ,QK and where 
ß has s1 servers such that the service rate in Q1 when it has m jobs/customers 
is JLlm)=min(mJL, SJl) with exponentially distributed service times. Forthis 
network, an alternative statement of the product-form solution (given earlier 
in Eqs. (5.16) and (5.17)) for the probability of the system being in state 
n =(nJ, ..... ,nK) is 

1 
[ 

K ni l - ui 
P(n)=P(n1 , ••••••• ,nK)=-- TI ·. 

G(M) i=l ß, (n,) 
( 5.21) 
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for all n =(nJ, ..... ,nK) suchthat nj+n2+ ...... +nK =M. Here ß;(nJ is given by 

ß, =n,! 

= S; !{s; )(n;-s;) 
(5.22) 

and G(M) is the Normalisation Constant given by 

(5.23) 

For the analysis of closed networks of multi-server queues of this type, 
using Eqs. (5.21)-(5.23) is generally somewhat simpler than using the 
original product form expressions of Eqs. (5.16) and (5.17). 

In the solution of Closed Queueing Networks, the primary difficulty is 
usually in the calculation of the Normalisation Constant G(M). This 
computation becomes increasingly difficult to do in a direct way when the 
number of queues and/or the population of jobs in the system become large, 
i.e. by evaluating each component term in Eqs. (5.16) or (5.23) and summing 
all ofthem individually. This problern can be avoided in one oftwo ways. 

If the mean system performance parameters are the only ones that are 
really desired (and not the state probabilities), then these may be directly 
computed using the Mean Value Algorithm which is based on Reiser and 
Lavenberg's Mean Value Theorem [ReL80]. This is a computationally 
efficient way of calculating the mean number in each queue and the mean 
time spent in the queue. Other mean performance measures may also be 
subsequently computed from these parameters. 

The other method suggested is a Convolution Algorithm [Mol89], 
[LZS84] for calculating the Normalisation Constant G(M). This method also 
provides G(M-n), n=O, ... , M-1 in the intermediate stages of the calculation 
Note that G(M-n) is the normalisation constant for the same network when 
there are M-n jobs in the system, instead of M The normalisation constant 
G(M) may be used to get the state probabilities of the system as mentioned 
earlier. In some cases, the normalisation constants G(l), ........ ,G(M) may also 
be used by themselves to easily obtain various system performance measures 
in a direct and simple fashion. Note that both these algorithms can only be 
applied to queues where the individual service times are exponentially 
distributed. 

Fora closed network of K single server queues with M circulatingjobs, it 
is also possible to simplify Eqs. (5.16)-(5.20) to get the following results 
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P(if) = P(n1 , •••••• ,nK) = - 1-[TI u;i] for n1+ ...... +nx =M 
G(M) i=l 

(5.24) 

with G(M) as the Normalisation Constant given by 

(5.25) 

For this, consider the case where we. want to compute P{n1 ~ n}, i.e. the 
probability that Q1 contains n or more customers. In this case, we would need 
to sum P(n) over all states n satisfying this condition. This may be shown 

tobe 

G(M -n) 
P{n. 2:: n} = un ---'---=-

1 · .! G(M) 
j=l, ...... , K (5.26) 

The actual utilization of a single-server queue is merely the probability 
that the queue is not empty. Therefore the actual utilization p1 of Q1 will be-

G(M -1) 
pj = uj G(M) j=l, ...... , K 

and its actual throughput ~· will be -

(5.27) 

(5.28) 

for each queue Qj in the network,j=l, ...... , K. Moreover, using the general 
result that 

ct) cf) oO C() 

E{n} = L:nP{n} = LLP{k} =L:P{k 2:: n} (5.29) 
n=l n=l k=n n=l 

we can derive the mean number E{n) in Q1 tobe 
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E{nJ} = fu;' G(M- m) }=1, ...... , K 
m=I · G(M) 

(5.30) 

Note that the results given in (5.26)-(5.30) are really useful if the 
normalisation constants for the queueing network of single server queues are 
known for m=1, ....... ,M (where M is the actual population of jobs in the 
system). This, for examplc would bc thc casc if thc convolution method is 
being used to solve the network. In that case, these equations may be used to 
quickly obtain the performance results for the individual queues in the 
network. This method is described in the next section. 

5.6 Convolution Algorithm for Finding the 
Normalisation Constant for a Closed Queueing 
Network 

We present here the convolution method for finding the normalisation 
constant G(M) for a closed network of K queue with M jobs circulating in 
the network. The jobs are considered to have exponentially distributed 
service times. We consider separately the two cases (a) where all the queues 
are single-server queues and (b) where one or more queues may have more 
than one server or when one or more queues have state-dependent service 
rates. The algorithm given for the Iatter may be used for the network of 
single server queues as weil. However, the former algorithm is more simply 
stated and easier to use for actual calculations. 

5.6.1 Network of Single Server Queues 

Define the variable g(n, k) as the normalisation constant when there are n 
jobs circulating in a network with k queues where the individual queues have 
the samerelative utilizations as in the original network. This is given by 

( 5.31) 

This may be expressed equivalently as 

(5.32) 

We can then write g(n-1, k) and g(n, k-1) as 
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( 1 k) n-1 n-2 n-2 n-3 2 n-1 g n- , = u1 + u1 u 2 + .......... + u1 uk + u1 u2 + ....... + uk 
(5.33) 

( k 1) n n-1 n-1 n-2 2 n 
g n, - = ul + U1 U2 + ·········· + ul uk-1 + U1 Uz + ······· + uk-1 

(5.34) 

This Ieads to the following recursion for g(n, k) 

g(n.k) = g(n,k -1) + ukg(n- I,k) (5.35) 

The recursion of Eq. (5.35) is basically the one needed where we start the 
recursion with the initial values g(O, k) == 1 and g(n, I)= u/ for k= I, .... ,K and 
n=l, ...... ,M The required normalisation constant G(M) is then given by 

G(M) = g(M, K) (5.36) 

which is obtained at the end ofthe recursion process. It should be noted that, 
as mentioned earlier, the normalisation constant when there are L jobs 
circulating in the network, for L=l, .... ,M-I is also obtained as intermediate 
results during the actual process of recursion. These values may then be 
conveniently used, as in Eqs. (5.25)-(5.30), to find the performance 
parameters of the network. 

5.6.2 Network of Multi-Server Queues or Network of Queues with 
State Dependent Service Rates 

The convolution method may also be conveniently used for finding the 
normalisation constant for a network with K queues with state dependent 
service rates when there are M jobs circulating in the system. Note that the 
case of multi-serverqueueswill just be a special case ofthis. 

Forthis assume that the state dependent service rate at Qi when there are 
j customers in the queue is given by !'iOJ· Note that this will be the value of 
the servicerate untiljust before the departure ofthe/h customer from Qi. We 
can define the relative utilization for Qi this case to be 

x· 
ui ==-'-

fii(l) 

We define a quantity A;(n) as follows 

(5.37) 



174 

A;(n) =TI f/;(J) 
j=l ,U; (1) 
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(5.38) 

Note that for the case of multi-server queues (but not for queues with general 
state-dependent service rates) A;(n) will be the same as ß;(n). Using these, we 
can now write the recursion for g(n, k) as 

n (u )1 
g(n,k)= L_k -. g(n- j,k-1) 

j;O Ak (;) 

with the initial values g(O, k) and g(n, 1) given as-

g(O, k) = 1 and g(n,l) = (u1 f 
A1(n) 

k=1, ... ,K n=1, .. ,.M 

(5.39) 

(5.40) 

As in the earlier case, the recursion ends when g(M, K) has been calculated 
to provide the required normalisation constant G(M) as 

G(M) = g(M,K) (5.41) 

5.7 Mean Value Analysis (MVA) Algorithm for a Closed 
Queueing Network 

This algorithm directly computes the mean performance measures of the 
network without computing the normalisation constant or evaluating the 
state probabilities though extensions to compute state probabilities are also 
possible. Since the performance parameters are directly computed, this 
algorithm is a very convenient one to use if only these parameters, and not 
the actual state probabilities, are really required. This method is based on 
Resire and Lavenberg's Mean Value Theorem. This theorem [ReL80] states 
that a customer arriving to a queue in a Product Form Network sees the 
same average number in the queue as an outside observer will see if the 
network had one less customer. 

We do not consider the proof of this theorem in this text but it is easy to 
see how it helps in analysing a closed queueing network. We can add 
jobs/customers to the network, one at a time, to derive the queueing results 
for the case of n+ 1 jobs in the system from the results obtained earlier when 
there were n jobs in the system. The total delay seen by a job being added to 
one suchqueuewill then be the newly addedjob's mean servicetime and the 
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total delay seen in that qucuc when there was one less job in the system. This 
last statement follows from the statement ofthe Mean Value Theorem. This 
approach is easy to see in the recursive MV A algorithm given subsequently, 
which is started with zero jobs in the system (when all queueswill be empty 
and all queueing delays will be zero) and is continued until Mjobs have been 
added to the network. 

We give next the actual statement of the Mean Value Algorithm (MVA) 
that has been devised using this theorem for analysing a queueing network. 
Note that as expected, the mean performance results are the same for FCFS, 
LCFS or Processor Sharing (PS) queues. (In a processor-sharing queue, the 
service resources are fixed but are shared equally by all the customers in the 
queue.) The Infinite Server (IS) queue is a special queue, which has an 
infinite number of servers working at the samc scrvice rate independent of 
the number in the queue. However, since there are an infinite number of 
servers, all the customers prcscnt in the IS queue will get served 
simultaneously. Note this also happens with a PS queue, except that in this 
case, since the service resources are fixed, the service rate available to the 
individual jobs in the queue will go down linearly as the number of jobs in 
the queue goes up. In the MV A algorithms given next, the individual queues 
may be FCFS, LCFS, PS or IS in nature and these can be mixed in any 
manner in the queueing network being analysed. Note once again that this 
algorithm may only be applied if the jobs have service times that are 
exponentially distributed. 

In the following, we consider separately the MV A algorithms for the case 
of (a) closed qucucing nctworks of singlc scrver qucues and (b) closed 
queueing networks of multi-server queues. The algorithm of (a) may be 
obtained from that of (b ). However, it is still useful to state the algorithm for 
single-server queues separately as it is substantially simpler to understand 
and use than the more general one for multi-server queues. 

We need to introduce the following notation for our statement of the 
MV A algorithm given subsequently. Note that we are considering the 
application ofthis algorithm for a closed queueing network of K queues with 
M jobs circulating in the network. 

~(n) 

W;(n) 

llf..J; 

Mean number of jobs in Q1 when there are a total of n in the 
network. This includes the job currently being served at ß. 
Mean time spent by a job in the queue Q1 when there are n in the 
network. This is the total delay at QJ including the service time of 
the job. 
Mean servicetime for ajob at ß Note that this will be the same 
regardless ofthe number of jobs/customers in Q1 

Visit Ratio of ß. This is as defined earlier in Eq. (5.18) 
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5.7.1 Network of Single Server Queues with Single Traffic Class 

Initialise for each queue with Nk(O) =0 k=l, 2, ...... , K 

Repeat Steps 1, 2, & 3 given next, for m=J, 2, ...... M This will increase the 
nurober of customers by 1, in sequence, until the final population of M is 
reached. 

1. Foreachqueue Qk in the network, k=l, 2, ..... , K, calculate 

I 
Wk(m)=-

Jlk 
Nk(m-1)+1 

Jlk 

jor IS queues 

jor FCFS, LCFS, PS queues 

2. Using Little's result, set the overall throughput as 

m 
A = -K:::-----

z:wk(m)Vk 
k=l 

(5.42) 

(5.43) 

3. Foreach ofthe queues Qk in the network, k=l, 2, .... , K, update Nk(m) as 

(5.44) 

As mentioned earlier, the above recursion is terminated when m reaches 
the desired number of jobs M circulating in the network. When that happens, 
the algorithm will directly provide the following performance results for 
each queue in the network -

(a) Wk=Wk(J\1) as the total average time spent by a job in queue Qk of the 
network, k=J, 2, .... , K. From this, the queueing delay Wqk at the queue Qk 
may be found to be 

wqk =O 

1 
=Wk--

Jlk 

jor IS queues 

for FCFS, LCFS, PS queues 
(5.45) 
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(b) Nk=Nk(M) as the averagetotal number of jobs in Qk (including the one in 
service), k=I,2, .... , K. From this, or using Little's reult on Eq. (5.45), we can 
also find the mean number of jobs Nqk waiting in queue at Qk. 

(c) The average system throughput /L will be directly available from Eq. 
(5.43) at the final step when it is calculated for m=M The average 
throughput /Lk of the queue Qk in the network, k= I, 2, .... , K, may be found 
using 

k=I,2, .... , K (5.46) 

using the visit ratios obtained earlier using Eqs. (5 .18) or (5.19). 

5.7.2 Network ofMulti-Server Queues with Single Traffic Class 

Initialise for each queue with Nk(O) =0, pk(O, 0) =I, and Pk0, 0) =0 for 
j=I, ....... ,(ck-I), k=I, ...... ,Kwhere Qk has ck servers. 

Repeat Steps 1, 2, 3 & 4 given next, for m=I, 2, ...... M This will increase the 
number of customers by 1, in sequence, until the final population of M is 
reached. 

I. Foreachqueue Qk in the network, k=I, 2, ..... , K, calculate 

I 
Wk(m)=- IS 

f.l.k 

Nk(m-1)+1 
SingleServer FCFS,LCFS,PS (5.47) 

f.l.k 

Nk(m-1)+1+Sk 

f.l.k 

with sk defined as 

ck-1 

Sk = L(ck- j)pk(j -I,m -1) 
J=l 

Multiple Server FCFS 

2. Using Little's result, set the overall throughput as 

(5.48) 
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m 
A = -K:-:----- (5.49) 

:Lwk(m)Vk 
k=l 

3. Foreach ofthe queues Qk in the network, k=l, 2, .... , K, update Nk(m) as 

(5.50) 

4. For k=l, 2, .... , K, calculate the probabilities Pk0.m) as 

K 

Pk{J,m)=1- LPk(i,m) for j=O 
i=] (5.51) 

Apk(j-l,m-1) 
= for j = l, ...... ,M 

On conclusion, i.e. after the step for m=M has been done, the results of the 
above algorithm directly provide the following. 

(a) Wk=Wk(M) as the total average time spent by a job in queue Qk of the 
network, k=l, 2, .... , K. From this, the queueing delay Wqk at the queue Qk 
may be found. 

(b) Nk=Nk(M) as the averagetotal number of jobs in Qk (including the one in 
service), k=1,2, .... , K. From this, or using Little's result on Wqk, we can also 
find the mean number of jobs Nqk waiting in queue at Qk. 

(c) The average system throughput A, will be directly available from Eq. 
(5.43) at the final step when it is calculated for m=M. The average 
throughput Ak ofthe queue Qk in the network, k=I, 2, .... , K, may be found 
using Ak=AVk. 

5.7.3 MVA Algorithm for Closed Network with Multiple Traffic 
Classes 

Unlike the single class case where there is a main loop which increments 
the number of customers in each iteration cycle, the Multiple Class case will 
have a loop for each class. The basic methodology remains substantially 
similar to what is done for a single class of customers. We calculate first the 
average time W;k spent at node i for class k from the average queue sizes 
obtained in the earlier iteration for one less class k customer. (The equations 
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are given later.) We then determine the throughput (i.e. the internal arrival 
rate at node i) for each class k using Little's result for the equivalent network 
as seen by a class k customer entering node i. We finally update the queue 
length at each node by adding tagether the queue lengths of each class as 
obtained in the previous step. These steps have to be executed for alt 
combinations of customer populations. Note that in this case, the population 
will be denoted by the vector c given by c={c 1, ••••••••• , c11} where R is the 
number of classes and C; is the number of customers of class i. We use the 
following notation. 

W;k(c)= Average time spent by a class k customer at node i when the 
population vector is c 

V;k = Visit ratio for class k at node i 
R = Number of customer classes 
C; = Total number of customers of class i in the network 

for i=1, ...... ,R 
n = number of queues (nodes) in the network 
m; = number of servers at node i for multiple-server FCFS nodes 

for i=1, .... ,n 
e k = R-dimensional unit vector 
/1ik-J = mean service time ( exponential random variable) at node i for 

class k 

The corresponding MVA algorithm is given below. 

Step 1. Initialise the following variables to start the recursion process -

N; (0) = 0; P; {0,0} = 1; P; {j,O} = 0 i=1, ...... ,n andj=1, ..... , m;-1 

Step2. Repeat Steps 3-6 for c1=l, ...... ,CJ; c2=l, ..... ,CJ; .......... ; 
cR=l, ........ ,C11 • 

Note that these are the actual steps ofthe recursion ofthe MV A 

Step 3. (Mean Value Theorem on each node for each class) 
For i=l, .... ,n; k=l, .... ,R and ifnode i is in the raute ofclass k, then 
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Single Server FCFS, LCFS, PS 

1 
IS (5.52) 

llik 

1 + N; ( c - e" ) + S;k = ------"-------"'-- Multi Server FCFS 

where 

m;-1 

sik = L: (m; - J)P; u -1, c- e"} (5.53) 
.J=l 

Step 4. (Little 's Theorem for each class) 
At Node 1 (selected as the reference node), calculate the following 
for k=l, ...... ,R 

n 

wk (c) = L W;k (c)V;klk (i) 
i=l 

and 

where h(i) = 1 if node i is in the raute of class k 
= 0 otherwise 

Step 5. (Little's Theorem at each node) 
For i=l, ..... ,n, do the following 

R 

N;(c) = 'L:A-1kVikwik (c) 
k=l 

Step 6. (Recurrence equationfor probability update) 
At each node i (i=l, ...... ,n), do the following forj=l, ..... ,m;-1 

(5.54) 

(5.55) 

(5.56) 
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R A, (c) V mi-1 L k lk + L(mi- J)P;{j,c} 
P; {O, c} = 1_ k=1 fl,k 1=1 

where Ii(m) = 1 
=0 

if class m passes through node i 
otherwise 
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(5.57) 

Note that at the end ofthe recursion, we will get the mean time in queue, 
number in queue and throughput at the queue (with reference to node 1 
which has been selected as the reference queue) for each class at each of the 
nodes of the network. 

5.8 Analysis of a Sampie Closed Network Using 
Convolution and MV A Algorithms 

We consider here the application of both the convolution algorithm and 
the MVA algorithm to solve the sample queueing network of Figure 5.12 
when there are four jobs circulating in the network, i.e. M=4, K=3. All the 
queues are assumed to be single-server queues with respective service rates 
fi1=1, fi2=0.5 and J13=0.2. Note that the service times of the jobs in each of 
the queues Q1, Q2 and Q3 are then exponentially distributed with means 1, 2 
and 5, respectively. 

0.6 

_____. Q3 ~ 

Ji;-0.2 0.4 

Figure 5.12. A Closed Queueing Network of Single Server Queues, M=4 
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The flow balance equations for this network are 

/LI* = 0.21!.2 * + 0.41!.3 * 

1!.2 * = 0.51!.1 * + 0.61!.3 • 

Chapter 5 

Solving these for a particular solution with 1!.1 • =I, we get 

A./=1, 1!.2 .=1.5385 and A./=1.7308 Relative Throughputs 

The relative utilizations and the visit ratios can also be calculated from the 
relative throughputs and are found to be 

u1=1, u2=3.077, u3=8.654 Relative Utilizations 

Visit Rattos 

These may also be computed directly by solving the respective set of linear 
simultaneaus equations. 

5.8.1 Using the Convolution Algorithm 

In this case, we start the recursion of Eq. (5.35) using the values of the 
relative utilizations u1, u2 and u3 calculated above with the initial values 
g(O,k)=l and g(n,k)=u/ for k=1,2,3 and n=1,2,3,4. The following values 
were obtained. 

Table 5.1. Values of g(n,k) for n=O, 1,2,3,4 and k=J ,2,3 

n 

0 

2 
3 
4 

k 1 2 

4.077 
13.545 
42.678 
132.32 

3 

I 
12.731 
123.72 

1113.35 
9767.26 

The value of the normalisation constant for a network with M=4 would 
then be G(4) = g(4,3) = 9767.26. Note that the last column of the table 
actually gives the normalisation constants G(n) for n=O, 1,2,3,4 in the 
corresponding rows - these would correspond to a network where there are n 

circulating jobs. 
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as the joint probability of the queue states (i.e. the system state probability) 
at equilibrium. The actual throughputs of the three queues are found using 
(5.28) tobe 

..i1 =0.114, ..i2 =0.1754, ..i3 =0.1973 

The mean numbers in each queue is computed using Eq. (5.30) as 

NI =0.1281, N2 =0.5178, N3 =3.3541 

5.8.2 Using the MVA Algorithm 

In this case we start the recursions of Eqs. (5.42)-(5.44) with the initial 
values N1(0)= NJ(O)= N 3(0)=0 and do this recursion for m=l, 2, 3 and 4. 
The following values were obtained at each step. 

1. For m=l 

W1 (I) = I, W2 (I) = 2, W3 (I) = 5 

..i = 0.07855 

NI (I)= 0.07855, N2 (I)= 0.2417, N3 (I)= 0.6798 

2. For m=2 

W1 (2) = 1.07855, W2 (2) = 2.4834, W3 (2) = 8.399 

..i = 0.1029 

NI (2) = 0.11098, N2 (2) = 0.3932, N3 (2) = 1.49586 

3. For m=3 

W1 (3) = 1.11098, W2 (3) = 2.7864, W3 (3) = 12.4793 

..i=0.1111 

NI (3) = 0.12346, N 2 (3) = 0.4 764, N3 (3) = 2.4002 
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4. For m=4 

W1 ( 4) = 1.12346, W2 ( 4) = 2.9528, W3 ( 4) = 17.001 

A-=0.114 

NI (4) = 0.12806, N2 (4) = 0.51783,N3 (4) = 3.35411 

Chapter 5 

The average total delay at each queue and the average number in each queue 
are directly given by the values obtained above for m=4. The network 
throughput A-=0.114 is also available. Using this and the visit ratios obtained 
ear1ier, we can also find the actual throughputs for each of the queues in the 
network using Eq. (5.46). 

5.9 Norton's Theorem for Closed Queueing Networks 

Norton's Theorem for the analysis of closed queueing networks draws its 
inspiration from its analogy with Norton's Theorem in the analysis of 
electrical circuits where a complex circuit is compactly represented as a 
current source with parallel impedance driving the Ioad impedance. The 
current source and its parallel impedance then represents the rest of the 
circuit other than the Ioad impedance whose effects are required to be 
studied, i.e. the voltage across the Ioad and the current through it. 

Norton's Theorem for closed networks performs an essentially similar 
function. It is basically a technique to reduce a closed queueing network with 
K FCFS exponential service queues and M jobs/customers circulating in the 
network so that the performance of one of the queues (any queue in the 
network) or the performance of a sub-network of the queues may be easily 
studied. Following this method, a smaller equivalent network may be 
obtained by replacing all queues except those in a designated sub-network by 
a single Flow Equivalent Server (FES). The authors (Chandy, Herzog and 
Woo) of this method [CHW75] show that for certain types of system 
parameters, the behaviour of the equivalent network will be exactly the same 
as that of the original network - this is also known as the Chandy-Herzog­
Woo Theorem and is illustrated next. This approach may also be extended as 
an approximation to a closed network of FCFS queues with generat service 
times. 1t can also be extended to networks with other service disciplines and 
may also be used for networks that have several classes of customers. In this 
section we will, however, Iimit our discussion to the simple, closed queueing 
networks with a single class of jobs, which have exponentially distributed 
service times and probabilistic routing. 

In order to illustrate the application ofNorton's Theorem to such a closed 
queueing network consider the example network of Figure 5.13 where we 
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have identified the queue Q; as the queue whose performance needs to be 
studied. (Note that we could have also considered a sub-network of queues 
tobe studied instead ofjust one queue Q;.) 

l 

B 

Figure 5.13. Original Queueing Network before Reduction 

Consider the situation where we want to characterize the queue Q; in 
different ways and see how this affects the performance of the queue and the 
throughput of the overall network. This, for example, may be done by 
changing the service rates at Q;. Obtaining the queueing statistics at Q; for 
different characterizations of it will be simplified if the rest of the closed 
queueing network can be given a more compact representation - preferably 
as a single queue. The technique ofNorton Reduction may be applied to this 
network to obtain such a compact representation of the rest of the queueing 
network other than the queue Q;. The final objective of this objective of this 
reduction will be to obtain the network given in Figure 5.14 where the sub­
network other than Q; is replaced by a single queue with a state dependent 
service rate JLOJ where j is the number of jobs in that queue. This queue is 
also referred to as a Flow Equivalent Server (FES) representation of the 
equivalent queue replacing the rest of the network (other than Q;). The 
reason for calling it a tlow equivalent server is because it represents that sub­
network of queues by a single queue, which is equivalent in terms of the 
overall tlow from that sub-network. lt should be noted, however, that the 
actual nature of the equivalence will depend on the number of jobs that one 
considers the closed network to have - the equivalent service rate Jl0) of the 
tlow equivalent server will vary depending on the number of jobs circulating 
in the network. 
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4----------' 
B 

Figure 5.14. Equivalent Network with Flow Equivalent Server 

Chapter 5 

The flow rate JLÜ) of the FES may be calculated as T(j) where this is 
obtained by shorting A and B and evaluating T(j) as tbe throughput between 
these points wben there are j jobs circulating in that modified network. Tbis 
is exactly analogaus to way the "short-circuit" current is evaluated in 
applying Nortons' Theorem to an electronic circuit where thc strength ofthe 
equivalent current source is taken to be the value of this short-circuit current. 
This is illustrated in more detail in Figure 5.15. As shown in the figure, thc 
flow rate of the FES is calculated by removing tbe queue Q, of interest and 
connecting its two end points A and B directly, i.c. by sbort-circuiting the 
queue. This may also be done by making the service time of Q, to be zero. 
The flow between A and B will then be the network's throughput and is 
calculated as T(j) when there arej jobs circulating in this modificd nctwork. 

l 
TOJ 

Figure 5.15. Network to Obtain the Flow Rate T(J) of the FES withj Jobs in the Network 
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In general, the portion ofthe network that can be isolated is not limited to 
a single queue and can be a network of queues. Following usual 
terminology, such a network of queue is called the designated network and 
the remaining network is called the aggregate. The aggregate network is 
reduced to a single FEC and the performance of the designated network is 
studied for variations in the parameters of the designated network. This 
hierarchical decomposition produces exact results for a !arge class of 
networks - i.e. the ones typical referred to as BCMP Networks [BCM75] 
where local balance conditions hold. The procedure is summarized below. 

1. Select the designated sub-network oj queues from the original 
network that is to be studied. The remaining network is the 
aggregate network to be reduced to a single FES. 

2. Generate a queueing network in which the service times at all the 
queues in the designated network is set to zero, i.e. this is the 
process of shorting them. Note that the designated network should 
be selected such that the throughput through all the shorts in the new 
network should be identical. 

3. Solve the above network using any of the known techniques. Solve 
this for all possible values ofthe network population, i.e.j=l, .... , M 
The throughput through the short for different populations 
correspond to the service rate of the FES with that number of jobs in 
the queue, i.e. TOJ. 

4. The service rates of the equivalent FES are now available for 
different values of the number of jobs j circulating in the network. 
We now consider the equivalent network with the designated 
network and the FES where the FES replaces the aggregate network. 
The results for the designated network in this equivalent network 
will be the same as those in the original network. 

Aggregation produces exact results for queueing networks with a 
product-form solution. However, this approach may be computationally 
more expensive than using the usual techniques (MV A or Convolution) if 
the objective is to solve for only one set of parameters for the designated 
network. 

The real advantage of aggregation may actually lie in solving non­
productform queueing networks. In this case, the usual strategy is to put the 
components that do not have the product form in the designated network. A 
FES is then obtained for the aggregate, which contains only those queues 
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that would have a product form solution. The equivalent network may now 
be solved using either approximate non-product form solution techniques or 
by simulation. Since solving an actual non-product form nctwork is 
computationally very expensive, the reduced m1mber of queues in the 
equivalent model would reduce the computation time. However, in this casc, 
aggregation is only an approximation. This is because the FES cannot 
exactly model the behaviour of the aggregate as the information on thc 
Jocation of the customers in the aggregate is discarded. 1-Iowever, in many 
cases ofpractical interest, the approximation provided by this approach gives 
acceptable results. 
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Problems 

I. For the following open network with two single server, infinite-buffer 
queues, Q1 and Q2, solve for the throughputs of each queue. 

External Arrival Rate to Q1 = ll, External Arrival Rate to Q2 = 0 
Service Rate of Q1 = fl1 Service Rate of Q 2 = fl2 

Routing Probabilities are P(I,I) = p, P(I,2) = I-p, P(2,2) = q 

2. For the following open network of single-server, infinite capacity queues, 
Q1, Q2 and Q3, solve for the throughputs of each queue, the average number 
in each queue and the total delay in the system. 

Extemal Arrival at rate /l.. only to Q1 

Service Rates of Q1, Q2 and Q3 are respectively, fLJ, fl2o and J.lJ 
Routing Probabilities are - P(l,2) = I 

P(2,I) = O.I, P(2,2) = 0.55, P(2,3) = 0.3 
P(3,2) =I 

3. Consider the open network of single-server, FCFS, exponential service 
time queues shown in Figure 5.16 

Figure 5.16. Open Queueing Network of Problem 3 

The external arrivals are at Q2 from a Poisson process with average arrival 
rate /l... The mean service rates are flJ = fl3 = fl and J.L2 = fl-1 = 0. 5 fl· 

(a) What will be the maximum value of ll, for which the system will be 
stable? 
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(b) For /L=0.1 and j.i= 1, give the state distribution of the system, the mean 
number in each queue and the mean time spent in the queueing network by a 
new custorner entering the systern. 

4. For the following closed network of three single server, infinite-buffer 
queues, Q~> Q2 and Q3, solve for the visit ratios of each queue-

Routing Probabilities are P(J,2) = 0.5 P(1,3) = 0.5 
P(2,1) = 1/8 P(2,2) = 7/8 
P(3,1) = 1/4 P(3,3) =314 

Assurne that f.1 is the service rate of each of the queues in the network, and 
that the nurnber of jobs circulating in the system is 5. Salve for the state 
probability of the overall network. Consider applying the convolution and 
MV A algorithms to this network as weil. 

5. Consider the following closed network of single server queues, Q1, Q2 and 
Q3 , with service rates 36, 3 and 1, respectively -

Routing Probabilities are P(l,1) = 1/2, P(J,2) = 1/6, P(1,3)=1/3 
P(2,1) = 1 
P(3,1) = 1 

Assurne that there are four custorners in the network. Find the relative 
utilization and actual utilization of each queue, the average number in each 
queue, the throughput of the overall network and the average delay of each 
queue using the convolution algorithm and/or the MV A to solve the 
network. 

6. Consider a closed network of four FCFS single-server, infinite-capacity 
queues, Q1 - Q.J. The rnean service times (exponentially distributed) for Q1, 

Q2, Q3 and Q-1 are respectively 0.35, 0.25, 1.50 and 2.0. The routing 
probabilities between the queues are given to be -

Ta Q, Q2 Q3 Q-1 
From 
Q, 0.1 0.5 0.1 0.3 
Q2 0.0 0.0 0.5 0.5 
Q3 0.2 0.2 0.3 0.3 
Q-1 0.8 0.0 0.0 0.2 
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(a) Obtain the visit ratios, V;-V.;, for each ofthe queues, taking Q1 tobe the 
reference queue with V1 = 1. 

(b) Use the MV A Technique to obtain the mean number (waiting and in 
service) in each queue, and the mean time spent in each queue by an arriving 
customer when there are a total of 6 customers in the queue. 

7. Consider once again the queueing network of Problem 6 with a total of 6 
customers in the network, and obtain the following -

(a) Calculate the relative utilizations, uru-1, of each queue, assuming u1=1 

(b) Apply the Convolution Algorithm to find the Normalisation Constant. 

( c) Calculate the actual utilization of each queue. 

8. Consider the closed network of single-server queues shown in Figure 
5.17. The mean service tim es ( exponentially distributed) at the queues Q~, Q2 

and Q3 are given to be 0. 028 seconds, 0. 040 seconds and 0. 400 seconds, 
respectively. Assume that there are 6 customers in the network. 

(a) Calculate the normalisation constant and give the expression for the state 
distribution of the network. 

(b) Find the actual throughput of each queue and the throughput of the 
network. 

____... Q2 

0.7 

0.2 

Figure 5.17. Closed Queueing N etwork für Problem 8 
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(c) Use the state probability distribution to find the mean number in each 
queue and the mean time spent by a job in each queue. 

(d) Obtain the results of (c) directly by solving the network using the MVA 
algorithm. 

9. Consider the closed queueing network of single server queues with 
exponentially distributed service times, as shown in Figure 5.18. 

Figure 5.18. Closed Queueing Network ofProblem 9 

The average service rates ofthe queues Q" Q2, Q3 and Q-1 are 1.0, 1.0, 0.5 
and 0.5, respectively. The system has a total user population of 6. 

Use the convolution algorithm to obtain the normalisation constant and the 
state probability distribution of the network. Use these results as weil as the 
MV A algorithm to obtain the actual throughput of each queue, the overall 
network throughput, the mean number in each queue and the mean of the 
total time spent in each queue. 
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Advanced Queueing N etworks 
Approximation Techniques and Algorithms for Open and Closed 
Queueing Networks 

Exact analytical methods are available for studying open and closed 
queueing networks with product-form solutions. Examples of such networks 
and the methods for obtaining exact analytical results for them were 
considered in Chapter 5. These results are applicable only if the queues 
satisfy all the restrictive conditions that are required on their respective 
arrival and service processes. These conditions may be quite restrictive and 
may not allow us to use these techniques under more generat conditions. 

In this chapter, we consider various approximation techniques that may 
be used to study queueing networks of different kinds, which cannot be 
handled by the exact analytical methods of Chapter 5. Some of these are 
based on extensions which assume that even though the product-form 
solution may not be satisfied in such networks, it still holds as a remarkably 
good approximation. Other approximate approaches and some extended 
queueing models (such as mixed networks and fork/join queues) are also 
considered in this chapter. In general, these have been observed to provide 
good results. However, the accuracy of the results obtained using these 
methods cannot really be guaranteed. If these methods are used, the user 
should check the results obtained for typical cases using either simulations or 
other methods of approximation. 

6.1 Mixed Queueing Networks 

Mixed queueing networks are networks with multiple customer classes. 
The different customer classes are such that the network may be considered 
open for some classes while it is closed for the others. The two different 
types of customer classes may however share service at one or more queues 
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in the network. A brief description of such networks was given earlier in 
Section 5.1.3. 

Each of the open classes in the network is characterised by the average 
arrival rate ofthat class entering the network from outside - this will also be 
the average arrival rate of customcrs of this class leaving the network 
altogether after service has been obtained. Each closed class is characterised 
by the number of jobs of that class circulating in the network; this is 
generally givcn as part of a population vcctor (i.e. population of each closed 
class) given for all the closed classes in the network. In addition to these 
parameters, the other typical input parameters such as routing probabilities 
for each class (assuming static routing) and mean service times for each 
class at each of the network nodes (assuming exponentially distributed 
service times) must also be given. 

Lazowska et al [LZS84] provides an approximate algorithm for analysing 
a queueing network ofthis type. This may be applied whcn the network and 
the queues are loaded such that equilibrium conditions exist in the network, 
the service times are assumed to be exponentially distributed and the arrival 
processes of the open classes are Poisson in nature. In this algorithm, the 
utilisation for each of the open classes at each node is computed first. These 
are thcn used to computc thc nct utilisation of each node considering only 
the open classes. The performance parameters of the closed classes are 
subsequently computed by eliminating the open classes and converting the 
mixed network model into a closed model with inflated service demands for 
the closed classes. The inflation factor used at node i for this is (l-U,,ro;), i.e. 
(I - utilisation due to all the open classes at node i), which is given by 

0 

ui,{O) = L u,,c 
c~l 

(6.1) 

where U;,c is the utilisation of class c at node i. We should observe that this 
is the percentage of time the server is not used by the open classes and is 
therefore the time available for the closed classes to get service in the queue. 
(This service inflation is a basic approximation inherent in this technique.) 
The performance ofthe closed classes is analysed using the standard solution 
techniques discussed earlier, using the inflated service times for the closed 
class customers as given above. The performances of the open classes are 
then computed by considering the actual mean queue length of the closed 
classes at each node in the network. Note that this method may also be used 
when either the number of open classes or the number of closed classes is 
zero as in those cases it reduces to the usual Jackson Network models for 
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closed and open networks, respectively. For conveniencc, we summarise 
below the basic assumptions that are needed to apply this method. 

• All the queues in the network have infinite buffer capacity. 
• The service disciplines for all classes are FCFS at all the nodes 

in the network. 
• There can be creation or combination of jobs for the open 

classes. (This has not been considered here.) 
• All the classes are independent of each other. 
• There must be an external arrival for each of the open classes. 

These processes must be Poisson. 
• The service time distributions for all the classes in the network 

are exponential. 
• The routing probabilities for the jobs in the network are static 

for alt the job classes. However, these may be different for the 
different classes. 

The algorithm described subsequently reqUJres the following input 
parameters. 

Input Parameters 

R total number of classes in the mixed model 
0 total number of open classes in the mixed network 
C total number of closed classes in the mixed network 

(Note that R = 0 + C) 
N number ofnodes in the mixed model 
mi number of servers at node i in the mixed network for 

i = 1,2, .... , N 
C population vector ofthe closed classes 

= { c], C2, ........ ,Ce } 
[Qk]NxN routing probability matrix for k=J, 2, ...... , R 

with qk.(i,J) as the routing probabilities for i,j=J, 2, ..... , N 

For the open classes: 

AOi,c mean external arrivalrate of class c at node i for c=l ,2, ..... ,0 
and i=1,2, ... , N 

'0c mean servicetime distribution of class c at node i, for c=l ,2, .. ,0 
and i=l,2, .. . , N 

]/Lc multiplication factor of class c at node i for i =l ,2, ... , N and 
c=l,2, ... ,0 
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For the closed classes: 

T;c mean servicetime distribution of class c at node i , for c= 1 ,2, .... ,C 
and i=l,2, ... , N 

The algorithm provides the following output parameters regarding the 
queues in the queueing network. 

Output Parameters 

M. open mean number of open class jobs at node i 
N;, closed mean number of closed class jobs at node i 

For the open classes: 

A;c net arrival of class c at the node i for i= 1 ,2, ...... , N and 
c=l,2, ...... ,0 

N;, open, c mean queue length of class c at the node i for i= 1 ,2, ...... , N 
and c=1,2, ...... ,0 

W;, open, c mean delay of class c at the node i for i= 1 ,2, ...... , N and 
c=I,2, ...... ,0 

dep;, open, c departure rate of class c at the node i for i= 1 ,2, ...... , N and 
c=1,2, ...... ,0 

v;, open, c visit counts of class c at the node i for i= 1 ,2, ...... , N and 
c=1,2, ...... ,0 

U;, c util ization of class c at the node i for i= 1 ,2, ...... , N and 
c=1,2, .... .. ,0 

For the closed classes: 

N;, c/osed, c mean queue length of class c at node i for i= 1 ,2, ... , N and 
c=l,2, ... ,c 

W;, c/osed, c mean delay of class c at node i for i= 1 ,2, ... , N and 
c=l,2, ... ,C 

A;, closed, c throughput of class c at node i for i= 1 ,2, ... , N and 
c=1,2, ...... ,c 

Vi. c/osed, c visit ratios of class c at node i for i=l,2, ... , N and 
c=l,2, ... ,c 

The actual algorithm, described earlier, is given below. 
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Algorithm 

Step I. Solve the following equations, to get the net arrivals to the nodes for 
each of the open classes 

N 

A;k = Ao;,k + LA;kqk,(J,i) i=1,2, ... , N and k=1,2, ... ,0 
J=l 

u - A;k 7 ik . 1 2 N d k= 1 2 0 ,,k -~~ z=, , ... , an -, , ... , 
m; 

0 

ui,{O} = z:u,,k i=l,2, ... , N and k=l,2, ... ,0 
k=l 

N 

throughput (k) = LA;k 
1=1 

A-,k V, open k = -~~~~~ 
' · throughput (k) 

i=l,2, ... ,N and k=l,2, ... ,0 

k=1,2, ... ,0 

i=l,2, ... ,N and k=1,2, ... ,0 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

Step 2. Inflate the service times ofthe closed classes by a factor of [1-U;.roJJ 
at each node i. 

i=I ,2, .. . ,N and k=l,2, ... ,C (6.8) 

We should then solve the closed network as a multiple-class, closed 
network using the MV A method of Scction 5. 7. 
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Step 3. The mean delays and the queue lengths for each of the 0 open 
classes are then computed at each of the N nodes of the network. 

W _ 7:ik~.open,k(l+Qlength;,{C}) ( ) 
. k- i=l,2, ... ,Nandk=l,2, ... ,0 6.9 z,open, l-U 

where, 

Qlength i,{C)) = Ni,closed 
c 

i,{O) 

= L Ni,closed,k 
k=l 

and 

Ni,open,k = (throughput(k))Wi,open,k 

0 

Ni,open = LNi,open,k 
k=l 

i=1,2, ... ,N (6.10) 

i=l,2, ... ,N (6.11) 

i=l,2, ... ,N (6.12) 

6.2 The GI/G/m Approximation for the Approximate 
Analysis of Open Queueing Networks (the QNA 
technique) 

The GI/G/m approximation described here is an example of a method 
using Parametrie Decomposition where the individual queueing nodes are 
analysed in isolation based on their respective input and output processes. 
This method has been used by Whitt in [Whi83] for the Queueing Network 
Analysis (QNA) software. 

In this model, the arrival process to each queue is assumed to be a 
generalised inter-arrival (GI) process. The service times may have any 
general distribution. The approximation made by this approach is that only 
the mean and the squared coefficient ofvariance (SQV= variancel(mean/) 
of the inter-arrival times and service times are required for our calculations -
this is the reason why this kind of method is sometimes referred to as a two­
moment method. The queueing network involves nodes where customer 
streams may join (i.e. the individual flows get combine before entering the 
queue/node) or customers leaving a node may be split into different streams 
in a probabilistic fashion. We have encountered these kinds of Splitting and 
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superposition earlier in the context of our discussions on basic queueing 
networks. An example of superposition and splitting is shown in Figure 6.1. 

It is also possible to use this approach to handle networks where there is 
feedback. However, immediate jeedback, where a fraction of the output of a 
particular queue enters the queue once again, needs special treatment 
because ofthe close correlation this will cause between the input and output 
of the queue. This has been described subsequently. The method also allows 
the inclusion of a multiplication factor v, v >0, by which a job finishing 
service at a queue becomes v jobs before the subsequent routing is done. 
Note that if v <1, then this really corresponds to attenuation of the number 
of jobs departing from a queue. The method was first proposed by Whitt for 
use in his Queueing Network Analysis (QNA) software [Whi83] and has 
been shown to provide remarkably good results for general, open queueing 
networks. 

Splitting 

Superposition 

Figure 6.1. Superposition and Splitting in a Queueing Network 

In order to apply this method, we assume that the arrival process to a 
network node is renewal in nature, in which the arrival intervals are all, 
independent, identically distributed (i.i.d.) random variables. It may also be 
possible to approximate a process that is actually non-renewal in nature by a 
suitable renewal process with the same first and second moments. Before the 
actual detailed analysis of the queueing network is done, the method first 
removes immediate feedback in a queue by suitably modifying its service 
time and the routing probabilities of the jobs leaving the queue. This is done 
for all the queues that have immediate feedback in the network and the 
modified network is used in the subsequent analysis. The algorithm then 
calculates the mean and variance of the internal arrival processes to the 
individual nodes/queues by solving a set of linear equations for the mean 
flows. This can be done as the queueing network is assumed to be in 
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equilibrium and hence the mean flow entering a queue must equal the mean 
flow leaving the queue. These flow balance equations depend on the 
whether the flow is split, superposed or both split and superposed at the 
nodes. For each queue in the network, it then replaces this internal arrival 
process by a rencwal process with equivalent first and second moments. This 
effectively decomposes the queueing network into individual subsystems 
(i.e. the queues or nodes) that can be examined separately. Each of these 
would be a standard GI/G/m queue characterised by the first two moments of 
its arrival process and service time. Approximate two-moment based 
formulas are available for calculating the congestion measures in such a 
queue. These would be the delay and the queue length at each queue. Note 
that if a queue has been modified by the removal of its immediate feedback, 
then the delay and queue length parameters of the queue have to be modified 
once again to get the results for the queue when immediate feedback is 
present. Once the individual queue congestion measures are known, network 
performance measures may be suitably computed. We summarise below the 
basic assumptions ofthis method. 

• The queueing network is an open one 
• The individual queues may have one or more servers and has 

infinite waiting space so that there is no blocking or lass 
anywhere in the system 

• The service discipline is FCFS in nature 
• The approach is described here for a single class of customers 

with probabilistic routing. (Whitt's original paperalso discusses 
using this for multi-class systems where the routing 1s 
deterministic in nature.) 

• The routing matrix is static and does not change over time 
• Whitt's original paper also incorporates the concept of a 

multiplication factorthat can be applied at a node. For example, 
a job sent by a node may get split into several jobs to provide 
this multiplication effect. From that point onwards these jobs 
may travel independently in the network. 

The following input parameters are required for this approach. 

Input Parameters 

K number of nodes/queues in the network 
m, number of servers at node i 
/t1, flow leaving Q, which goes to Q, 
Ao; external arrival rate to node i 
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c,,/ squared coefficient of variation (SQV) of the inter-arrival time of 
the external arrival process to node i 

N h SQV variance 
ote t at = ? 

(mean)-

T, average service time at node i = f/i-J 

ci squared coefficient ofvariation (SQV) ofthe servicetime at 
node i 

P=[pu} Probability transition matrix where Pu is the probability that a 
jobfinishing service at node i goes to node j 

vi Multiplication factor at the output of node i 

6.2.1 Network Reconfiguration by Immediate Feedback Removal 

Queues in the network which have immediatefeedback (p,i>O) as shown 
in Fig. 6.2 pose a problem in this method which needs to be handled 
separately. This is because the GI/G/m algorithm basically assumes that the 
input and output of the queue are uncorrelated - this would not be true if 
there is immediate feedback around the queue. An example of this has been 
shown in Figure 6.2. Here, a fraction Pii of the output traffic from Qi is fed 
back to this queue itself so that the net arrival process to the queue is the sum 
ofthe external arrivals from A and the fed back portion, i.e. p;,Aj. 

A,Pii 

A ~ 

I ~,.., ... Q, ... 
I.....J .... I A, A 

... 
A, 

Figure 6.2. Queue with Immediate Feedback 

The approach followed to eliminate this immediate feedback at the queue 
is to suitably adjust the service times at the queue and the transition 
probabilities for jobs leaving the queue. This is done to take into account the 



202 Chapter 6 

fact that some of the jobs get routed back to this queue because of the 
presence of the immediate feedback. This would leave a queue without 
immediate feedback as shown in Figure 6.3. 

Assurne that the original service parameters for Q; are 

Mean Service Time = r; u 
SQV of Service Time=· c.,.1,u 2 

and the original routing probabilities are Pu.u j=l, ..... ,K with P11.u>O. 

A Q, 
A 

Figure 6.3. Queueafter Removal oflmmediate Feedback 

Removing this immediate feedback from Q;, we will get the modified service 
parameters as 

<;u 
<;,M = , 

1- Pii,U 

(6.13) 

C~;,M = Pu,u + (1 - P,;,u )c~,,u (6. 14) 

with the new routing probabilities Pu.M for jobs leaving Q; given by 
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Pu.u 
Pu.M = 1 

- Pii,U 

=0 j = i 

203 

(6.15) 

Effectively, this reconfiguration combines the multiple services that a job 
may receive at Q; (because of the feedback with probability p;;=p;; u) into a 
single !arge service interval. This reconfigured queue without immediate 
feedback is used subsequently for solving the queueing network. The 
performance measures obtained by this analysis for reconjigured queue 
would have to be modified once again to get the results for the actual queue, 
i.e. the one prior to the reconfiguration removing immediate feedback. Let 
Wq;,u be the mean waiting time for a job in the original queue Q; 
(unmodified, prior to immediate feedback removal) and Iet Wq;,M be the mean 
waiting time for ajob in the modified ß (after immediate feedback removal, 
i.e. the queue in the queueing network which is solved, as described 
subsequently, after immediate feedback removal). After the solution process 
(in the network without immediate feedback) yields Wr,,,M as the qucueing 
delay for Q;, we can then obtain the actual queueing delay in the original 
unmodified Q, as 

wqi,u = (1- P;;,u )Wqi,M (6.16) 

The SQV of this waiting time may also be computed as shown in Whitt's 
paper [Whi83]. The average rate of the actual arrival process A,,u (i.e. 
A;,u=A.;) entering Q, (actual queue before reconfiguration done for immediate 
feedback removal) may also be calculated from the value Au.r obtained by 
solving the queueing network after immediate feedback removaL This will 
be given by 

A. A - i,M 
i,U - (l- .. ) 

PII,U 

(6.18) 

We have mentioned earlier, that the procedure for immediate feedback 
removal at a queue, essentially amounts to combining the multiple services 
that a job will get at the queue (because of the feedback) into one Ionger 
service interval. Note that if the queue was FCFS in nature, then we may 
have a situation where the job which is fed back, rejoins the queue behind all 
the other customers waiting for service. Thc model used here for immediate 
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feedback removal does not capture this dctail. However, this is not expected 
to affect the mean performance parameters ofthe queue. 

With immediate feedback removed from the queues ofthe network, from 
where ever it may be present, the QNA approximation then considers 
networks where none of the queues have any immediate feedback. In the 
following, we consider a queueing network of this kind, assuming that 
immediate feedbacks around any of the original queues have already been 
appropriately removed and the network has been suitably reconfigured. It 
can be easily seen that in such a network, the traffic flows (i.e. the arrival 
processes to the various queues and arrivals/departures from/to outside the 
network) require one of the following three operations. In each case, the 
resulting process will be described as a General Inter-arrival (GI) process 
and will be described using a two-moment approach based on the mean and 
SQV of its inter-arrival times. (The mean flow rate will be (mean serv1ce 
timeY 1.) These flow operations are listed below. 

1. Superposition of GI streams approximated as a GI stream 
2. Splitting a GI stream probabilistically to obtain several GI streams 
3. GI stream passing through a Queue with its output process approximated 

as another GI stream 

We consider these in detail next for calculating the mean flow rate and the 
SQV (ofthe inter-arrival times) ofthe internal flows. 

6.2.2 Calculating the Parameters (Mean and SQV) of the Internat 
Flows 

jlow from outside 
the network 

v, A-, Pn Ao; 

Figure 6. 4. Interna! Flow Parameter Calculations 
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In Figure 6.4, we have shown a typical queue Q, in a network ofthe type 
being considered here. Note that A1 is the internal flow to Q1 which comes 
both from the flows A1, ............. , AK from the other (K-1) queues in the 
network (after appropriate multiplication and routing) as weil as the flow ..{01 

entering the network from outside at Q,. lt should be noted that following 
Whitt's original formulation, we have allowed the use of a multiplication 
factor vk for the flow leaving Qk. This implies that if the flow rate entering 
Qk is Ak, then the flow rate leaving this queue would be vk..ik. Incorporating 
this multiplication factor, the flow balance equations may then be written as 

K 

A1 = A01 + LA1v1p 11 

j=J 

for i=l, ...... , K (6.19) 

Note thatpii, i=l, ...... , K in the above equation will actually be zero since 
immediate feedback has already been removed. However, this term has still 
been included for ease of notation. The mean flow rate entering each of the 
K queues in the network may then be obtained by solving Eq. (6.19), given 
the external flows, the multiplication factors (if any) at the output of each 
queue and the routing probabilities. Note also that if m1 is the number of 
servers at Q1 then we can write 

S U .1. . Q A1r1 erver ti Ization at 1 = p, = --
m, 

(6.20) 

For calculating the internal arrival SQV, ca/ at Q,, we again get a system 
of equations but the derivation of these equations is not as straight fot'Ward 
as for the flows. This is because, the superposition of the K arrival processes 
(which we assumed to be renewal in nature) does not yield a renewal process 
except when each of the component processes are individually Poisson in 
nature. This means that we cannot get the n111 moment of the Superposition 
stream by simply adding the n111 moments of the individual streams. Instead, 
approximations will have to be made to dcrive the variance and other 
moments of the inter-arrival tim es. 

Consider the internal flow process into Q1• We want to replace this by a 
renewal process with the same first and second moments. The basic 
approximation process here is to use the n111 partial sum Sn (which is the sum 
of the first n arrival intervals) of the superposition process and use its first 
two moments to approximately define the approximating renewal process. 

Let M;(X) denote the /h moment of some random variable X If H is the 
random variable which represents the inter-arrivaltime ofthe approximating 
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renewal process, then the moments of H are calculated from those of the n1h 

partial sum to be 

M(S) 
M .(H) = 1 " 

J n 

We should then first calculate the moments of S" and then divide that by n to 
get the approximate moments of H. For doing this, the Stationary Interval 
Method uses n= 1 which does not take interdependence between subsequent 
intervals into account but is a simple and workable choice in many cases. 
The Asymptotic Method, on the other hand uses n=w considering the 
asymptotic behaviour of the process as time tends to infinity. In general, any 
one method does not work weil for the entire range of traffic intensities. 
Intuitively, it may be observed that the stationary interval method works 
weil at low traffic intensities as here the inter-arrival times would be ]arge 
enough to reduce the approximation errors. Under heavy traftic conditions, 
the asymptotic method is found to be more accurate. Therefore a hybrid 
combination of the moments obtained using both the methods probably 
offers the best consensus choice. For our applications, using this kind of a 
hybrid poses one problem. The stationary interval method of approximating 
a Superposition stream by a renewal process gives a variance which a non­
linear function ofthe variances ofthe component processes. This would Iead 
to the unfortunate situation where a non-linear set of equations would need 
to be solved to get the second moment of the Superposition process (i.e. the 
intemal arrival process). Fortunately, a convex combination of the variance 
obtained the asymptotic method and that of an exponential (which would 
have a variance coefficient of unity) is found to perform weil and has been 
suggested for use by Whitt in [Whi83]. 

For this approximation, consider the departure process from Q1. 

Approximating this point process by a renewal process, the stationary 
interval method would give the following values for the SQV (cJ/ )s. (Note 
that the result given for the GI/G/m queue is really an approximation.) 

( 2 ) _ 2 2 (I 2 ) 2 
\Cd} s - P;Csj + - P; caj for a GI/G/1 queue 

for GI/G/m queue 

Here, the subscript S denotes the fact that this is calculated using the 
stationary interval method. 
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The number of departures d1 in time interval (0, t) from the queue would 
be given by d1=ar - n1• Here a, is the number of arrivals in that interval and n1 

is the number in the system at time t. With t tending towards oo (as for the 
asymptotie approximation), n1 would tend towards a steady state value if the 
queue is stable. This would mean that d, would follow a, and therefore the 
asymptotic approximation for c,/ would be ca/ itself, i.e. 

Here, the subscript A denotes the fact that this is calculated usmg the 
asymptotic method. 

At the output of Q;·, the flow gets split probabilistically according to the 
probabilities p1;, i= 1, .... ,} i;;'j. If a renewal process with SQV c2 is split into k 
streams according to probability p,, i=J, .... ,k, then the SQV ofthe i'h stream 
will be 

c; = p,c 2 + (1- p,) (6.21) 

Using this and both the stationary interval and asymptotic methods, we get 

(6.22) 

(c}; )A =Pi; (c3, )11 + (1- P,;) (6.23) 

Therefore the SQV of the stream from j to i, computed as a hybrid of the 
above two methods is 

(6.24) 

The asymptotic SQV can then be found as 

(6.25) 
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with 

(6.26) 

Note that qJi represents the proportion of arrivals to Q that come from ß. 
Using the above and the fact that a convex combination of the asymptotic 
value and an exponential SQV (=1) gives a good approximation to the actual 
SQV, we get 

(6.27) 

This may also be written in the following convenient form 

(6.28) 

where 

) 

Vp =w;qiiPiivJ(l-pj) 

max(c~, 0.2) -1 
x1 =1+ r:;::-

-ymi 

1 w. = ------..,:----
1 1+4(1-p1 ) 2 (y 1 -1) 

I 
Yi =-K--

L:q,] 
/=Ü 

This set of linear equations for i=l, ..... ,K may then be solved to get co/. 
Once the parameters of the internal flows have been found (using the 

above equations), we can then solve for the congestion measures (i.e. the 
queueing parameters) at each queue assuming the queues to be independent 
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of each other. The output parameters that may be computed are described 
next. 

6.2.3 Output Parameter Calculations for the Node Qi 

The following parameters of interest may be calculated for each node in 
the network. We consider here the results for the /h queue Q1. 

Mean Waiting Time ~1, and Related Parameters Nq" W,, N1 

If Q; is a GI/G/1 queue, the following approximation (Kramer and 
Langenbach-Beiz approximation) is used to get the mean waiting time in 
queue. 

with 

W. = r,p, (c;, + c}, )ß 
'I' 2(1-p;) 

(for GI/G/1 queue) 

ß - [ 2(1-p1)(1-c;1)
2

: 
- exp - 2 2 

3p, (cw + c,;) 

=1 2 > 1 cai-

(6.29) 

(6.30) 

For the SQV of the waiting time in the /h queue, the approximation 
recommended is 

with 

) ) 

2 2 l+c;,+p,c;, 
h(p; ' c w ' c,; ) = 2 2 2 2 

1 + p 1(c,.1 -1) + p 1 (4ca1 + c,.1) 

4p, 
2 2 (4 2 2 ) cai + p, cai + c,.; 

2 < 1 CGI -

2 > 1 ca,-

(6.31) 
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2 - 2 . 1 4(1 - p, )q,; 
CD;- p, - + 3(c;i + 1)2 

.;,, = 3c;, (1 + c;1 ) 

= (2c;1 + 1)(c;, + 1) 

Chapter 6 

2 > 1 
CSI-

c;1 < 1 

If Q, is a GI/G/m queue, an approximation based on heavy traffic Iimit 
theorems is suggested. This recommends modifying the corresponding 
results from the M/M/m queue to get approximate values of thc mcan and 
SWV of the queue Q1 as 

W. = Cai +es, W M/M!m ( 2 2] 
LJI 2 'fl 

(for GIIG/m queue) (6.32) 

Here W,1,M M m is the waiting time in queue for the corresponding M/M/m 
queue. We approximate the SQV of the waiting time to be the same as that 
of an M/M/m queue with the same set of input parameters, i.e. 

2 2 M!Mim 
CWqi = CWqi (for GI/G/m queue) (6.33) 

Once W,11 has been found, the other related parameters for Q, may be 
found in the usual way as follows 

Mean total time spent in Q1 by ajob (on every arrival) =TV,=W,Ji+T, 

Mean number of jobs waiting in Q,, prior to service = Nq,=A,Wq; 

Mean number oftotal jobs in Q, (waiting and in servicc) = l'/,=A)'V, 

Visit Ratio for Q, 

The visit ratio V, for Q, is defined as usual to be the average number of 
visits to node i by a job during the entire time it spends in the network. This 
will be given by -

(6.34) 
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Sojourn Time at Q; 

The Sojourn Time T; is the average total time an arbitrary job spends in 
node i, until it departs from the system. This will be 

(6.35) 

6.2.4 Network Sojourn Time and Departure Rate 

The Sojourn Time T for the whole network will be the mean total time 
that a job entering the network spends inside the network before its ultimate 
departure. This will be -

(6.36) 

If the multiplication factors of all the nodes are equal to 1, then the total 
output flow rate from the network will equal the net input flow rate. In this 
case, the total departurerate d from the network will be given by 

}1=1 (6.37) 

For the general case of v; ~ 1, we get that 

K K 

d= LA;V;(l- LPu) l1 ~ 1 (6.38) 
i=l J=l 

6.3 Fork/Join Queues in Open and Closed Networks of 
Infinite Capacity Queues 

In a fork/join node (or queue), an enteringjob [KiA89], 1LiP91], [NeT88] 
is decomposed to be serviced in parallel by a number of sibling queues. This 
is referred to as the jorking process where one job is affered to the two or 
more sibling queues for every job which actually enters the node. Once the 
jobs get their desired service at all the sibling queues, they are recombined 
into one job once again by the joining process before departing from the 
fork/join node. Note that for every job entering the fork/join node, only one 
job leaves the node (after all the sub-jobs at all the sibling queues get 
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completed), even though multiple copics of the job (onc for cach sibling 
queue) will get created inside the fork(join node. Examples of such forkljoin 
nodes with k sibling queues are shown in Figures 6.5 and 6.6. 

Sibling 1 

Sibling k 

Figure 6.5. Fork/Join Node without Synchronising Queues 

Sibling 1 Synchronizing Queue 

~~ 
==:J--­

Sibling k Synchronizing Queue 

Figure 6.6. Fork/Join Node with Synchronising Queues 

As shown for the two cases illustrated in Figs. 6.5 and 6.6, two kinds of 
forkljoin nodes may be considered. These are fork(join nodes without 
synchronising queues and fork/join nodes with synchronising queues. These 
two kinds of queues operate somewhat differently and need different 
approaches for their modeHing and analysis. Note that in the case of 
fork/join nodes with a synchronising queue, there will be one such queue 
associated with each ofthe siblings. This will essentially be a buffer holding 
a sub-job until it can be recombined with the sub-jobs from the other sibling 
queues 
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If there is no synchronizing queue, as in Figure 6.5, then a sub-job 
finishing service at a sibling queue will be forced to wait at that queue itself, 
blocking the server there for other customers in that sibling queue. The 
servers at all the sibling queues are released simultaneously when all the 
sub-jobs finish their required service at all the siblings. When that happens, 
the sub-jobs are recombined and the resultant job is released to depart from 
the fork/join node. Simultaneously, the servers at the sibling queues become 
free and can now start serving the sub-jobs for the next job, if any, entering 
the fork/join node. Note that effectively the service time for a job in the 
fork/join node will be the maximum of the service times of the individual 
sub-jobs and that the fork/join node cannot serve the sub-jobs of any 
subsequent job until the previous job leaves the node. 

On the other hand, if a synchronizing queue is present, as in Figure 6.6, 
then a completed sub-job will move to the synchronising queue of that 
sibling queue after it gets the desired service. This will free the server at that 
sibling queue for the sub-jobs of subsequent jobs entering the fork/join node. 
When all the sub-jobs of a particular job are present in their respective 
synchronising queues, the fork/join node will combine them into a single job 
and will Iet it depart from the node. 

Note that in both cases, the nurober of sub-jobs that is generated by a job 
entering the fork/join node is always equal to the number of sibling queues 
and these always get recombined into a single job once again before leaving 
the fork/join node. In general, the sibling queues inside the fork/join node 
may be of different types and an exact solution of this node would be 
difficult. We make the simplifying assumption that all the sibling queues are 
single-server FCFS queues with exponentially distributed (possibly different) 
service times. Some approximate models to analyse a fork/join node in open 
or closed queueing networks of infinite capacity queues are given next. 

6.3.1 Fork/Join Node without Synchronising Queues in Open or 
Closed Networks oflnflnite Capacity Queues 

In this case, the service time encountered by a job entering the fork/join 
node will be the maximum oj the service times for the sub-jobs at the k 
sibling queues. Assuming that the service provided at the sibling queues are 
independent of each other, the probability density function of this service 
time (i.e. of the fork/join node) may be found from the probability density 
function/cumulative distribution function ofthe service times ofthe k sibling 
queues. For doing this, we can use the result that if X and Y are independent 
random variables and Z is a random variable defined as Z=max(X, J), then 
the cumulative distribution function Fz(z) and probability density function 
fz(z) of Z are respectively given by 
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(6.39) 

(6.40) 

where Fx(x), Fy6;J, fx(x) and fy(y) are the cumulative distribution function 
and probability density function of X and Y, respectively. 

Note that the probability density function and cumulative distribution 
function of Z may be found using Eqs. (6.39) and (6.40), if the probability 
density function and cumulative distribution function of X and Y are known. 
This result may also be easily extended for the case of k random variables 
corresponding to the service times of the k sibling queues. One way to do 
this will be to take the maximum of any two random variables and then take 
the maximum of this result with the next random variable and continue this 
until all the variables have been considered. Given the service time 
distributions of the individual (single server) sibling queues, the overall 
service time distribution of a job entering the fork/join node can then always 
be found. We can then also use this servicetime distribution to find the mean 
and SQV ofthe job's servicetime in a fork/join node oftbis type. 

Even though the above calculation of the scrvice time distribution can be 
clone for any given sub-job servicetime distribution at the sibling queues, the 
results are greatly simplified if we assume the sub-jobs to be independent, 
exponentially distributed random variables. In this case, Iet 1/,ui be the mean 
of the ( exponentially distributed) service time of a sub-job at the ;th sibling 
queue, i= J, ...... ,k. Let X be the random variable denoting the overall service 
time of a job at the fork/join node without synchronising queues. Using the 
earlier approach and Eq. (6.39), we can then write the cumulative 
distribution function Fx(x) of the overall service time at this fork/join node 
as 

k 

Fx (x) = TJ (1- exp(-,uix)) ( 6.41) 
i=l 

Open Network 

In this case, we consider the situations where there are fork/join nodes of 
this type in an open network of GI/G/m queues or if such nodes are being 
considered in isolation. We can then find the cumulative distribution 
function and probability density function of the overall service times at thc 
fork/join nodes; we can use Eq. (6.41) directly if the sub-jobs have 
independent, exponentially distributed service times. We can then use these 
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distributions to find the mean and SQV of the resultant overall service time 
random variable at each of t~e fork/join nodes. Using these two service 
parameters, the approach of Se~tion 6.2 may be directly applied to obtain the 
required solution. j 

Closed Network 

In this case, we consider the situation where there are fork(join nodes of 
this type in a closed network. For analysing such a network, we would like 
to apply the MV A or the Convolution Algorithms. This however requires 
that the service times at all the queues should be exponentially distributed in 
nature. To approximately satisfy this condition, we fit an exponential 
distribution to the resultant distribution of the overall service time at each of 
the forkljoin nodes. Note that the resultant distributions are the ones obtained 
as the distribution of the maximum of the k random service tim es at each of 
the k sibling queues of a fork/join node. This may be done by simply 
matehing the first moments, as an exponential distribution is completely 
characterised by its mean. However, simulations show that a somewhat 
better way is to minimise the mean square error between the two 
distributions to get the best exponential fit. For this, Iet Fx(x) be the 
resultant cumulative distribution function of the service time X at the 
fork!join node. (Note that ifthe sibling queues have exponentially distributed 
service times then this will be given by Eq. (6.41 ).) Let Fe.111mated(x) be the 
cumulative distribution function (to be found) of the exponentially 
distributed minimum mean square error fit to Fx(x). This may then be found 
as 

Festimated (X) = 1 - e -Ux exponential fit to Fx (x) 

00 

&(x,U) = [Fx(x)-Fe.wmated(x)] dx ~ f 2 mean square error 
0 

~ 

Umin = mjn[s(x,U)] minimise the mean square error 
u 

This Ieads to 

F ( ) _ 1 -[fminx 
eslimated X - - e 

(6.42) 

(6.43) 

(6.44) 

(6.45) 
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as the desired distribution. Once these resultant approximate exponential 
service time distributions are found for each of the fork/join nodes without 
synchronisation queues, we can use standard MV A or Convolution 
Algorithms to solve the overall queueing network in the same manner as 
described in Sections. 5.6 and 5.7. 

6.3.2 Fork/Join Node with Synchronising Queues in Closed 
Networks of Infinite Capacity Queues 

In this case, we cannot give a solution metbad (not even an approximate 
one) for solving an open network, which has one or more such fork/join 
nodes. However, Liu and Perras have proposed a metbad [LiP91] for solving 
a closed network oftbis kind. This is the method described here. 

The algorithm proposed in [LiP91] for solving such a network involves 
an iterative approximation procedure. Consider a k-sibling fork/join queue 
with M customers. We first obtain a two-sibling closed fork/join queue by 
choosing any two of the siblings from the original k. This fork/join queue 
withj customers can be solved to obtain the throughput for j=l, ...... ,M This 
gives the Norton equivalent for the two-sibling fork/join queue. Another 
two-sibling queue is now obtained in which one ofthe siblings is the Norton 
equivalent from above and the other is one of the remaining siblings in the 
original k-sibling queue. This can be solved as before and the process 
repeated till all the k siblings have been used to obtain the Norton equivalent 
ofthe original k-sibling fork/join queue. 

Consider a closed queueing network with M customers and one k-sibling, 
fork-join queue. Let A be the point of forking and B the point where the jobs 
are combined before leaving the system. To apply Norton's theorem between 
points A and B, consider first only the sibling queues 1 and 2 where the 
points A and B are shorted together. This system can be solved exactly as 
follows. 

Let P;J be the probability that there are i jobs in sibling queue 1 andj jobs 
in sibling queue 2. This is a closed queueing network with state-dependent 
service rates at the queues. Let (i, j) represent the state of the two queue 
system with i customers in sibling queue 1 andj customers in sibling queue 
2 with probability P;J· Note that all combinations of i andj arenot feasible. 
For example, if M=3, then the only feasible states are (0,3), (1,3), (2,3), 
(3,3), (3,2), (3,1) and (3,0). It can be shown that foragenerat value of M, the 
total number of feasible states are [(M+ 1 )2 - M]. Let ,u1(i) be the service rate 
of sibling queue 1 when it has i sub-jobs and Iet ,u20J be the service rate of 
queue 2 when it has j sub-jobs. We can then draw the corresponding state 
transition diagram and obtain the following balance equations 
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PM,M [,u! (M) + Jl2 (M)] = PM,M-!fl! (M) + PM-!,M Jl2 (M) 

PM,n [,u! (M) + Jl2 (n)] = PM,n-!Jl! (M) + PM,n+!Jl2 (n + 1) 

PM,oJl1 (M) = PM,1fl2 (1) 

Pn,M [Jl! (n) + .U2 (M)] = Pn+!,M .U1 (n + 1) + Pn-!,M .Uz (M) 

Po,M Jl2 (M) = P!,M .U1 (1) 

M-1 M-1 

PM,M + LPM,i + LPJ,M =1 
;~o ;-o 

217 

1:S:n:S:M-1 

1:S:n:S:M-1 

Solving this set of equations, we can get the corresponding state probabilities 
for this two-sibling queue case as 

M 

Pn,M =PM,M f1p2(}) 
J-n+l 

M 

PM,n =PM,M ITPt (}) 
J-n+! 

where 

and 

( i) = .U2 (i) 
PI JlJ(M) 

P2 (}) = ,u1 (j) 
Jl2 (M) 

O:S:n:S:M-1 

OsnsM-1 (6.46) 

(6.47) 

(6.48) 

The system throughput of this two-sibling fork-join node with forking 
and joining nodes shorted together and M users is then given by 
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M-1 M-1 

{;eff(M) = fl2 (M) LP,,u + P1 (M) Lp"'t,1 (6.49) 

This may be calculated for different M and these results may then be used 
to get the Norton's equivalcnt FES (flow equivalent server) for the two 
sibling queues for the steps ofthe subsequent reduction. In the next step, we 
use the Norton's equivalent FES for the first two sibling queues and combine 
this FES with the third queue, if any, to obtain an new FES for thc new 
combination. This process is continued in steps, until all the k sibling queues 
have been combined to generate a single equivalent Norton's FES for the 
fork/join node. The equivalent FES obtained in this fashion then replaces the 
fork/join node in the actual network. If there are more than one such 
fork/join nodes, then each one of them is reduced to their equivalent FES in 
a similar manner. The resultant ( closed) network is then solved by the usual 
methods (MV A or Convolution) to evaluate its overall performance and that 
ofthe individual nodes. A simpler approximation technique für this approach 
is also given in [LiP91]. 

We can also handle closed networks where some of the fork(join nodes 
have synchronising queues while the other fork/join nodes do not. In this 
case, the fork/join nodes with synchronising queues are replaced by their 
equivalent FES. The fork/join nodes without synchronising queues are 
replaced by suitably approximated single server queues with exponentially 
distributed service times. The resultant closed network can then be solved 
using the MV A or Convolution algorithms. Unfortunately, this option of 
mixing the types of fork/join nodes cannot be handled analytically in an 
open network. This is because, for open networks, we do not have a suitable 
approximation method for handling fork/join nodes with synchronising 
queues. 

6.4 Models of Blocking in Open and Closed Networks of 
Finite Capacity Queues 

Consider the queueing network scenario shown in Figure 6.7 where we 
now assume that the queues (at least the queues Q1 and Qk) are of finite 
capacity. To illustrate blocking, consider the situation when a job finishes 
service at Q; and wants to move to Q; (with probability PI)) or to Qk (with 
probability p;k). No blocking will occur if the buffer of the target queue has 
enough capacity to store the job. However, if the buffer of the target queue is 
full, the job will encounter blocking and cannot be expected to move to the 
target queue as required. 
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In general, blocking may arise in a network of queues where some or all 
queues have finite buffer capacities. The flow of customers from a node wi II 
be blocked ifthe corresponding destination node is full, i.e. all its servers are 
busy and all waiting positions are full with waiting customers. Blocking in 
such a network will be handled depending on the blocking mechanism that is 
being adopted. A blocking mechanism is a set of rules specifying when a 
node is blocked, what happens during the blocking period, and how a node 
becomes unblocked. Note that deadlock conditions may also arise in such 
networks. Various types of blocking mechanisms have been considered in 
the literature. Same of the more commonly identified blocking mechanisms 
have been summarised next. More details may be found in [Onu90], [Per89] 
and [Per94]. 

~ Q, 

Figure 6. 7. Blocking in a Queueing Network with Finite Capacity Queues 

6.4.1 Rejection Blocldng 

If the customer is forced to leave the network as soon as it encounters a 
full node as its destination node, then the blocking mechanism is called 
Rejection Blocking. This kind of blocking essentially models lass systems 
and may be used in open networks of finite capacity queues. Since customers 
who are blocked are made to leave the system, this kind of blocking 
mechanism is not relevant for closed networks. This model has been widely 
used to model computer systems and packet-switching networks where 
jobs/packets are lost if they cannot be provided the desired buffer space. 
Deadlock conditions do not arise for this type of blocking as a blocked 
customer is always made to leave the system altogether. 
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6.4.2 Transfer Bloclung 

Consider a queueing network where a job on completion of its service at 
a source node attempts to join a destination node that is filled to its capacity. 
If the Transfer Blocking (or Blocking-After-Service, BAS) mechanism is 
being followed, the job waits at the source node blocking the server there, 
until it can enter the destination node. Note that it can do that only after a 
service completion at the destination node. In this blocking mechanism, 
therefore, the server at the source node becomes unblocked only when the 
number of customers in the destination node drops below its maximum 
capacity. This blocking mechanism has been used to model systemssuch as 
disk 1/0 configurations and manufacturing systems. In queueing networks 
with arbitrary topologies, it is possible that a node blocks more than one 
customer at the same time. Normally, a First-Biocked-First-Served rule is 
used to handle such a situation, i.e. the customer that was blocked first will 
also be the first to get unblocked. 

Note that deadlock is possible in transfer blocking networks. If in a 
network, all the stations in any directed cycle are full at the sametime and a 
blocked customer is scheduled to go to the next station in the cycle, then the 
network gets deadlocked. Deadlock may be handled by including some kind 
of deadlock handling strategy into the model. A modelling assumption that is 
frequently made is that a deadlock, when it occurs, is immediately resolved 
by simultaneously moving all the blocked jobs to their respective 
destinations. This would then remove the deadlock immediately, whenever it 
occurs. Another approach would be to restriet the system to situations where 
deadlocks are impossible. In a closed network, this may be ensured if the 
total number of customers in the system is less than the total capacity of any 
ofthe directed cycles in the network. 

6.4.3 Repetitive Service - Random Destination or Fixed Destination 

The blocking model in which a customer immediately receives another 
service at the source node itself if its destination node is full (and keeps 
repeating this until the customer completes service at a time instant when the 
destination node is not full) is called Repetitive Service (RS) Blocking. In 
this type of blocking, two cases may arise - Repetitive Service with Fixed 
Destination (RS-FD) or Repetitive Service with Random Destination (RS­
RD). In the first case, the customer attempts to join the same destination 
node after each repeated service completion as mentioned above. In the 
second case, each time the customer completes service, a new destination 
node is chosen independent of the previous choice; this choice is made 
according to the routing probabilities from the source node. A repetitive 
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service mechanism with fixed destination has been used in modelling 
telecommunication systems. Similarly, a repetitive service mechanism with 
random destination has been used to model a flexible manufacturing system. 
Due to the inherent nature of this blocking mechanism, deadlocks may arise 
in both open and closed networks with RS-FD type of blocking. On the other 
band, open networks with RS-RD blocking can never encounter deadlock, 
even though such deadlocks may happen in closed networks oftbis type. 

6.4.4 Blocking-Before-Service 

Another type of blocking which has been identified in some systems, 
such as communication networks, is Blocking-Before-Service. In this type of 
blocking, a customer declares its destination node, say node j, prior to 
starting service at the source node i. If the destination node j is full at that 
instant, the server of node i becomes blocked, i.e. it cannot serve other 
customers. When a departure occurs from destination node j, the server at 
node i becomes unblocked and the customer begins receiving service. 

In the subsequent Section 6.5 and 6.6., we present some approximate 
methods which may be used to analyse networks of finite capacity queues 
with Rejection Blocking, Transfer Blocking and Repetitive Service Blocking 
(with either Fixed Destination or Random Destination) as the blocking 
mechanisms being followed. We consider separately the methods used for 
open and closed networks of such queues. In general, we assume that all the 
nodes ofthe network are of finite capacity. However, the methods given here 
may generally be extended for networks where some of the queues are of 
finite capacity while the others are infinite capacity queues. This can 
typically be done by assuming sufficiently !arge (i.e. effectively infinite) 
buffer sizes for the nodes that are to be modelled as infinite capacity queues. 
For simplicity, we also assume here that the blocking mechanism is the same 
every where in the network. ModeHing and analysing networks with 
different blocking mechanisms at different places in the network will be 
considerably more complex in nature. 

6.5 Approximate Analytical Methods for Solving Closed 
Networks of Finite Capacity Queues 

We present here methods for solving closed networks of finite capacity 
queues under conditions of Transfer Blocking, Repetitive Service with 
Random Destinations (RS-RD) and Repetitive Service with Fixed 
Destination (RS-FD) Blocking. Since the network is closed, no loss of jobs 
can occur and hence the Rejection Blocking model will not be relevant for 
such a network. 



6.5.1 Transfer Blocking 

Consider a situation where a job on completing service at node j attempts 
to join node k. In this case, blocking will arisc if nodc k is full at that instant. 
In the case of Transfer Blocking (BAS or Blocking After Service), the 
blocked job at node j waits at the server (keeping it blockcd) until it can 
enter node k. A product-form approximation method has been proposed by 
Akyilidiz [Aky89] for the analysis of Closed Queueing Networks with 
Transfer Blocking. This technique assumes the use of deadlock avoidance so 
that a deadlock cannot happen in the system being analysed. In order to 
ensure this, it is assumed that the number of customers in the system is less 
than the total capacity ofthat directed cycle in the network, which has the 
minimum total capacity. This assumption therefore implies that no directed 
cycle can ever have all its stations full at the same time and deadlocks will 
therefore be impossible. This technique seems to work weil for various 
networks but its results cannot really be guaranteed to be the correct ones in 
all cases. 

To analyse a closed queueing network with transfer blocking, this 
approach first considers an identical network where therc is no blocking, i.e. 
one where all the nodes have infinite capacity. All the states of the 
equivalent non-blocking network will not be feasible in the blocking 
network. The states violating the constraints on thc capacities of the various 
nodes are appropriately "normalised". This "normalisation" procedure is 
donein the following fashion. 

If the number of customers in a node exceeds its capacity (before 
normalisation), then the number in that node is set equal to the capacity of 
the node and the excess jobs are distributed among all the other nodes 
depending on the incoming transition probabilities (i.e. those from the rest of 
the nodes to the node whose capacity constraints were being violated). We 
continue to do this until a "feasible" state is obtained. A "feasible" state is 
one that is a valid state for the blocking network. By normalising all the 
infeasible states of the identical non-blocking network, we obtain an 
equivalent state space that consists only of those states that are feasible for 
the blocking network. The probability PH of a fcasible state 'H' is the sum of 
the probabilities of all the states of the equivalent non-blocking network, 
which get normalised to this feasible state. This has been illustrated in Figurc 
6.8. For example, in this figure, the states 'a' and 'b' in the non-blocking 
network both reduce to state 'x' in the actual blocking network after the 
normalisation process. Similarly, states 'c' and 'd' of the non-blocking 
network correspond to states 'y' and 'z', respectively, in the blocking 
network after normalisation. It should be noted that this normalisation 
procedure is effectively like an enumeration of the states to identify the 
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correspondence between one or more states in the non-blocking network 
with states in the blocking network. This would be difficult to do for ]arge 
(closed) queueing networks or for networks with a ]arge number of 
circulating jobs. This Iimits the applicability of this approximate analytical 
technique to small and medium sized networks. 

Figure 6.8. Mapping the State Space for Closed Network with Transfer Blocking 

Note that for the non-blocking network, a product-form solution may be 
used to calculate its state probabilities. Basedon the normalisation described 
above, the state distribution of the blocking network may be found from that 
ofthe non-blocking network. All the parameters, except throughput, can now 
be calculated from this state distribution. Calculation of the throughput is 
based on the fact that a non-blocking network with an equal number of states 
as the blocking network has the same stochastic structure as that of the 
blocking network. The throughput of these networks will also be 
approximately the same. In order to compute the throughput, we determine 
the number of states in the blocking queueing network. The equivalent 
number of jobs in the non-blocking network is then obtained such that the 
two networks have the same number of states. The non-blocking queueing 
network with this equivalent number of jobs is now analysed to obtain its 
throughput. This will also be the approximate throughput of the blocking 
network. The details of this approximate analysis algorithm are given next. 
We summarise below the assumptions made in this approach for analysing a 
general, closed network of multi-server finite-capacity queues with transfer 
blocking. 

• The number of customers in the network is fixed and all 
customers belang to the same class. 

• Service times at all the nodes are exponentially distributed. 
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• FCFS service disciplinc is followed at all the nodes. 
• The transition probability matrix is static. 
• In situations whcre morc than one customer is blockcd by thc 

same node, the blocked customers enter the node on a first­
blocked-first-enter basis. 

• Some or all the nodes in the network may have infinite capacity. 
• The network is deadlock free. 

The following general notations are uscd 111 thc algorithm given 
subsequently. 

N number of nodes in the network 
Jl, service rate at node i 
m, number of servers at node i for i = 1 ... N 
VI visit Ratio of i 111 node with respect to node 1 
Af; capacity ofthe i 111 node (number of servers and the number of 

waiting positions) 
(P] routing probability matrix with Pu, i,j= 1, ...... N, as the 

probability of a job finishing service at node i getting routed to 
nodej 

K number of jobs/customers in the ( closed) nctwork 

The actual algorithm is givcn bclow. 

Algorithm 

Step 1. Solve for the visit ratios using 

'"'N Vi = L...-.J=l V! Ptt i = 1 ... N (6.50) 

for V1, the mean number of visits to node i, assuming node 1 to be 
the reference node, i.e. V1=1. 

Step 2. Find state probabilities using 

(6.51) 
* _ .'( )kt -m1 -m1• m1 
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where G(K) is the normalisation constant and p(k) is the equilibrium 
state probability distribution of the network without any capacity 
restrictions, i.e. the equivalent non-blocking network. This may be found 
using any ofthe typical methods described in Section 5.6 and 5.7. 

Step 3. Normalise the customers using the following redistribution 
approach 

Foreach i, i=l, ..... ,N, if k;* >M;, then set k; j=l, ..... ,N as follows 

to normalise the customers 

k; =M1 j = i 

= k • + ( k * - M ) V, P,, 
J I I V:O-pii) 

(6.52) 

until k;* ::;; M,, i.e. there is no violation of the capacity constraint of 
node i. 

Step 4. The equilibrium state probability distribution for the feasible states 
is computed as -

p( k) = 2: p. ( k. ) (6.53) 
k' where f(k')=k 

where (k) is the "normalised" state or state corresponding to the 
blocking network and the function f transforms the non-feasible 
state (k*) to the feasible state (k). 

Step 5. Calculate the number ofstates Z'(K) ofthe blocking network as 
Z' = Z16 Z2 @. .......... 6 ZN where 6 is the convolution operator and 
Z; i=l,2, ....... ,N is a (K+ 1) dimensional vector given by 

Z;=[z;(O), z;(l) ....................... z;(K)f with 
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Z;(k) =I if k = 0,1, ........ , M, + 

= 0 otherwise 

N 

""'t;'m 
~ J 

J=l and p ji >0 

Chapter 6 

Note that in the same network, if there are no capacity limitations, 
then the number of states will be given by the binomial expression 

Z _N+K-IC 
- N-1 

Step 6. Calculate the equivalent number of customers Ke such that 

is approximately equal to Z'(K). 

Step 7. Using any Product Form Algorithm such as MV A or Convolution, 
analyse the non-blocking network with Ke total number of customers 
to obtain the total throughput ANB(Ke). 
As explained earlier, this will also be approximately the throughput 
AB(K) ofthe actual blocking network with K customers. 

(6.54) 

Step 8. The throughput A; and utilisation p; of each node i, i=l, ..... ,N are 
computed as 

(6.55) 

Step 9. The mean time taken by a job to circulate once through the whole 
system is referred to as the mean total response time or mean cycle 
time Tc ofthe closed network. This may be computed from 

T. (K)- K 
c - AB(K) 

(6.56) 

Step 10. Using the state distribution obtained in Eq. (6.53) after the 
normalisation procedure, we can calculate the mean number N;(K) 
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of jobs at node i, when there are K jobs circulating in the closed 
network. Using this, the mean time 1fc spent by a job at node i in 
one cycle, will be 

Tc (K) = _N_, (_K_) 
l AB (K) 

(6.57) 

Note that, this algorithm ends up by providing all the required node and 
network parameters that will generally be of interest. For the network as a 
whole, it provides the network throughput A8 (K), the cycle time Tc(K) and 
the approximate state distribution vector p(k) for K circulating jobs in the 
network. For each individual node, say node i, it provides the visit ratio V" 
the throughput J.,(K), the node utilisation p,(K), the mean number in the node 
N,(K), and the mean time lic(K) spent in the node by ajob in one cycle. 

6.5.2 Repetitive Service (RS) Blocking 

Consider a situation where a customer upon completion of its service at 
node i, attempts to join node j. If node j is full, the customer immediately 
receives another service at node i. This will continue until the customer can 
actually move to node j on its service completion. This type of blocking is 
termed Repetitive Service Blocking. In the above description, we assume 
that the destination node is fixed. This is essentially Repetitive Service 
Blocking with Fixed Destination (RS-FD). Alternatively, if the customer 
chooses a destination node (from the set of nodes allowed by the routing 
probabilities) independently after every service completion, and tries to 
move to it then the blocking mechanism is called Repetitive Service with 
Random Destination (RS-RD). We give here the Maximum Entropy Method 
of Kouvastos et al [KoX89] for the analysis of arbitrary queueing networks 
with multiple general servers and Repetitive Service blocking. ' 

The Maximum Entropy technique is based on the principle that "of all the 
distributions satistying the set of constraints imposed by the system, the 
most likely distribution is the one that maximises the system's entropy". In 
the analysis of closed networks with Repetitive Service Blocking, a related 
"pseudo-open" network is first solved. This "pseudo-open" network is a 
closed network, which is represented as an open network with no external 
arrival streams and no external departures. The pseudo-open network must 
also satisty the principle of "conservation of population". This is represented 
by the fixed mean population constraint, i.e., the mean number of jobs at all 
the nodes in network must sum up to the number of jobs actually circulating 
in the closed network. The individual queues in the closed network are 
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"censored", i.e. arrivals to a queue when all the N buffers are full are turned 
away and, moreover, no departures are allowed to occur when the queue has 
minimum possible number of jobs K (K;;j)), In closed networks, K will be 
greater than zero for some node i if the total number of jobs circulating in the 
network is greater than the total capacity of the network, excluding this 
node. If L is the number of jobs in the network, a node with capacity N 
greater than or equal to L will effectively behave as an infinite capacity 
node. In this case, the capacity of such a node (having N;?L) can instead be 
set to the number of jobs L without making any difference in the analysis. 
The pseudo-open network is decomposed into individual censored queues 
with revised inter-arrival and service time distributions and solved in the 
same way as an open network under Repetitive Service Blocking. The 
analysis of open queueing Networks with Repetitive Service Blocking has 
been explained subsequently in Section 6.6.2. The solution obtained from the 
pseudo-open network may not satisfy the job flow balance equations. The 
values of the flow balance coefficients are then iteratively adjusted so that 
the flow balance equations are satisfied. The marginal state probabilities 
obtained after these iterations may now be used to obtain the performance 
measures of interest. It is, however, suggested that an efficient technique be 
used to compute the normalisation constant for the calculation of the state 
probabilities. An iterative convolution method has been proposed as a 
suitable method to calculate this normalisation constant. 

The details of the analytical approach will be beyond the scope of this 
text. For this, the reader is referred to the original papers by Kouvastos et al., 
such as [KoX89]. We give the algorithm herein some detail as it may be of 
use to obtain the performance parameters of a closed network with RS-RD 
or RS-FD blocking. We summarise below the assumptions made in this 
approach for the analysis of a general closed network of finite capacity 
queues with multiple general servers and Repetitive Service blocking. 

• The number of customers in the network is fixed and all 
customers belang to the same class. 

• A First-Come-First-Served (FCFS) service discipline is followed 
at each node. 

• The routing probability matrix is static. 
• Some or all the nodes in the network may have infinite capacity. 
• Each queue in the network is modelled as a GEIGE/c!K;N 

(0.5K.::;N) censored queue with Generalised Exponential (GE) 
inter-arrival and service times, where c is the number of servers, 
N is the capacity of the queue and K is the censoring value 
mentioned earlier, (i.e. departures not allowed from state K). 
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The following notations are used in the subsequent algorithm -
M number of nodes in the network 
L number of customers in the network 
C; number of servers at node i, C; ~ 1 
N; capacity of node i (including the number of servers) 
Ji; service rate at node i 
Cs/ SQV ofthe servicetime at node i 
K; minimum number of customers always present at node i 
L; virtual capacity of node i, i.e. Li = Min(N;, L) 
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Ao; the overall external arrival rate to node i; this will be zero for a 
closed network 

C0/ SQV ofthe external inter-arrival times 
Pii routing probability that a job completing service at node i 

attempts to join node j 
tr;1 probability that a job completing service at node i is blocked by 

nodej 
7lo; probability that an external arrival finds node i in state N; 
7ld; probability that a job completing service at node i is blocked 

under the RS-RD blocking mechanism 

The actual algorithm for both the RS-RD and the RS-FD mechanisms is 
given below. 

Algorithm 

Stage 1: Solving the Pseudo-Open Network 

Step 0. Remove immediate feedback for all nodes i = 1, ...... , M. 
If p;; > 0, then this is done as follows -
Ji; = Jli (1- p;J, Cs/ = Pii + (1 -piJCs/ 
piJ=p;j(1-p;J fori:;z!j,j=l,2, ..... ,Mand piJ=Ofori=j 
Note that this procedure is the same as described to remove 
immediate feedback in Section 6.2. 

Step 1. Find L; and K; using the following-

M 

K; =max(O,L- LN1 ) 
(6.58) 

)"'-i,j=l 
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Step 2. Solve the following :flow balance equations for the initial values of 
the individual :flows to each queue in the network 

i=J, ....... ,M (6.59) 

The effective routing probabilities p1; are computed iteratively later but 

the iterations may be started with p Ji = p 1; 

Step 3. Solve iteratively, the set ofnon-linear equations given below-

(6.60) 

j=l, ......... ,M (6.61) 

2 

i,j=l, ......... ,M i:;1 (6.62) 
i =0 

M 

L = LE{n;} where E{n;} is the mean number ofjobs in node i (6.63) 
i=l 
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M 

Jrd; = LPuJru 
j=l 

x = X; 
I 1- 7[ 

I 

~2 2 
C Oi = 7r Oi + (I - 7r Oi )C Oi 
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(6.64) 

(6.65) 

RS-RD (6.66) 

RS-FD (6.67) 

(6.68) 

(6.69) 

(6.70) 
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{ 
I-:rcu 

· ~ Pu-­
wtth Pu = I- :red; 

Pu 

RS-RD 

RS-FD 
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(6.70) 

(6.80) 

Details on the derivations of the above approximating formulae may be 
found in [KoX89]. 

The state distribution p;(n) for each queue i= 1, ...... .. ,M is found by solving 
the censored GE( /1.1 , C;2 )/GE( Jl;, Cl; )lc/K;N; queue using the maximum 
entropy based approximate method of Kouvastos. Foraqueue of this type, 
the results are 

p(n) = p(K)Gnxh(n) yf(n) n=K+l, .......... N (6.81) 

Note that since the queue is censored, departures cannot occur once the 
system state reaches K. Therefore, the system state cannot become less than 
K. Moreover, since the capacity is finite, i.e. N, the system state cannot 
exceed N. For evaluating the state probability using Eq. (6.81), we use the 
following. 

/1. =Average arrivalrate ofthe arrival process to the queue 

C2 = SQV ofthe inter-arrivaltime ofthe arrival process to the queue 

m(n) 

Gn = TI g(l) J = max(c, K + 1) h(n) = max(O, n- J) 
I=K+l (6.82) 

j(n) = max(O, n- N + 1) m(n) = max(K +I, min(c, n)) 
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with 

g(K + 1)= 

rcpa 
(K + 1)[a(l- r) + r] 

rcpa 
rp(l- a) + a 

a(l- r) + r 
rp(l- a) + a 

{ 

rcp + (l -1)a(1- r) 

1 _ l[ a(l- r) + r] 
g( ) - a[rcp + (J -l)a(l- r)] 

J[ rp(1 - a) + a] 

rp + a(l - r) 1 
X= y= 

rp(l - a) + a 1 - (1 - a )x 

K <c-1 

K=c-1 

K'C.c 

I <J 
l=(K+2), ........ ,J 

l=J 

2 
0" = -----:-

1 + c 2 s 

2 
r=--

1 +C 2 

and p(K) may be found by using the normalisation condition that 
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(6.83) 

(6.84) 

2 
p=­

Cfl 

(6.85) 

The iterations of Step 3 above are performed until we obtain sufficient 

convergence in the vatues of cJi and c/ . 

Stage 2: Solving the Closed Network 

Step 4. Use the convolution algorithm of Section 5.6 to find the 
normalisation constant and use that to find the marginal state 
probabilities ofthe individual queues {p;(n;)}, i=l, ...... ,M. 

Step 5. For each queue i=l, ..... ,M, the marginal mean queue length E{n;} 
and the mean throughput X; may be calculated using 

L; 

E{n;} = Ln;P;(nJ (6.86) 
n; ;K; 
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L; 

X;= /1; L:o;(nJp;(n;) (6.87) 
n;=K;+I 

where b';(n;) = ; . ; {
c [1- (1- 0" )n;-K;] 

mm(n;, c;) 
(6.88) 

and 
2 

(6.89) 0";= 2 
1 +Cs; 

Step 6. Using the value ofy; is the one obtained in Step 3, set 

Step 7. 

6.6 

i = I, ...... ,M (6.89) 

and iteratively adjust the value of the flow balance coefficients by 
using the following -

(6.90) 

X 
Repeat from Step 4 for i=l, ...... ,Muntil we get -' =constant 

X; 

Approximate Analytical Methods for Solving Open 
Networks of Finite Capacity Queues 

We present here approximation techniques to handle open networks of 
finite capacity queues with a variety of blocking mechanisms. Rejection 
Blocking, Repetitive Service Blocking (both RS-RD and RS-FD) and 
Transfer Blocking have been considered. 
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6.6.1 Rejection Blocking 

In Rejection Blocking, a customer arriving to a fully occupied node is 
lost, i.e. it is forced to leave the network. (This kind of blocking mechanism 
cannot therefore be considered in a closed network!). We give here a 
technique [BrG84] for solving open exponential queueing networks with 
Rejection Blocking, i.e. networks with Poisson arrival processes and 
exponentially distributed service times. This technique is based on the 
assumption that the net flow into the node, consisting of the external arrivals 
and the secondary flow from the other nodes in the network, may also be 
assumed to be Poisson in nature. Flow balance equations are solved 
iteratively in order to find the net offered traffic to node i. These equations 
are not the same as those for Jackson-type networks, but have been modified 
to incorporate Rejection Blocking. It is assumed that networks with 
Rejection Blocking may still be approximated by a product-form solution. 
Using this assumption, the network is decomposed into individual M/M/c/K 
queues and each queue is analysed independently, using the net offered 
traffic to this queue. 

Apart from the average number, average sojourn time etc., parameters like 
conditional expected sojourn time for the customers who are eventually lost 
( Ut) or conditional expected sojourn time for the customers who left the 
network after completing their service requirements ([/,) will also be 
important for networks with Rejection Blocking. To calculate [/, and Ut, we 
need to consider the random walk of the customer through the network with 
"Loss" and "Served" as the absorbing states. These states respectively 
represent the situations when a customer was lost on encountering a full 
queue or when the customer left the network after completing its service 
requirements. Customers who are lost before starting service at any node in 
the network are referred to as rejected customers. These are essentially the 
external arrivals that encounter a full node upon entry into the network and 
are lost. On the other hand, a lost customer in this context is one who is lost 
before completing its service requirements. Lost customers also include 
those customers who are rejected right at their point of entry into the 
network. In this technique, we consider networks with exponentially 
distributed inter-arrival and service times. However, the nodes may have 
multiple servers. The assumptions inherent in this technique are summarised 
below. 

• All external arrival processes are Poisson in nature. 
• The service times at all the nodes are exponentially distributed. 
• For each node, the superposition of the original Poisson flow 

from the external source with all the secondary flows coming 
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from various other nodes in the network is also assumed to be 
Paisson. 

• The rauting prabability matrix is static. 
• All the jobs in the network are ofthe same class. 
• The service discipline at all the nodes in the network is FCFS. 
• Same or all thc nodes in the network may have infinite capacity. 

The follawing notatians are used in the subsequent algarithm -

M number of nades in the network 
m; number of servers at nade i 
Jli service rate at nade i 
Aoi external arrival rate ta nade i 
N, capacity ofnode i (including the servers) 

The actual algarithm ta find approximate pcrformance rcsults for a network 
ofthistype is given belaw. 

Algorithm 

Step 0. Salve the fallowing equatians iteratively 

M 

AJ = L A7ut Pu + Ao/ (6.91) 
i~l 

(6.92) 

(6.93) 



6. Advanced Queueing Networks 237 

(6.94) 

These iterations essentially solve the queueing network. Once 
sufficient convergence is obtained, the various output parameters 
ofthe queue may be found. 

Step 1: Using the state distributions p;(k) for each queue in the system, 
i=l, ..... M, the various output parameters for the individual queues 
and the overall network are found as follows. 

N; 

Averagenumber waiting in queue i = Nq; = L (k-m; )p;(k) 
k=m; 

Nq; 
Therefore, Wq; = -­A,ouc 

I 

xml 
AverageNumber ofBusy Servers at queue i =-'­

Jl; 

(6.95) 

(6.96) 

(6.97) 

The average total flow rate of customers completing their service in the 
network is-

(6.98) 

The average total flow rate of lost customers is 

(6.99) 
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where A-0 is the average total flow of external arrivals to the network and 
will be given by -

M 

Ao = L)"o, 
j=l 

(6.1 00) 

We can also find the averagetotal flow rate of rejected customers- these 
are the external arrivals to the network which are rejected and lost as 
soon as they arrive at a node from outside. This will be given by -

M 

AreJ = L Ao; [1- 1Z'; (A; )] (6.101) 
1=1 

Note that the total flow rate of lost customers will also include the 
customers who are rejected. This is because the rejected customers are 
also counted as lost customers except that they get lost right an the first 
node where they enter the network. The average number of services 
received by ajob entering the network will be given as 

(6.102) 

and, simi1arly, the average number of services rcceived by a customer 
who was not rejected, will be 

lv! Aout 

m=Z:~-'---'~ 
i=l Ao - Arej 

(6.103) 

The sojourn times for a job entering the network arealso of interest. We 
can define two sojourn times in this case. The average sojourn time of a 
job in the network will be 

(6.104) 

This sojourn time will also include those customers (with sojourn 
time=O) which get rejected. We can define another average sojourn time 
for the customers who are not rejected, i.e. ones that actually da enter the 
network. (Even thcsc customcrs may get lost latcr and may leave without 
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getting the full service that they want.) The average sojourn time in the 
network for such customers, who arenot rejected, will be 

(6.1 05) 

The average conditional sojourn time ~ of a customer who was 
eventually lost from the network and the average conditional sojourn time U.,. 
of a customer who actually completes its service are two other sojourn times 
that may be of interest. To compute these parameters, the approach taken is 
to consider the random walk of a customer in the network with the states L 
and S as the two absorbing states indicating the lost and served states, 
respectively. The lost state L is entered by a customer when it gets rejected at 
the entry to one of the queues in the network (the first queue or any 
subsequent queue) during its service sequence. The served state S is entered 
by a customer who gets all the desired service and leaves the queue at the 
completion of the full sequence of service that it requires. Note that we can 
represent the state of a customer to be either the queue in which it is 
currently present or the lost and served states, L and S. A customer entering 
the network will transit through one or more queues (i.e. states) but will 
eventually end up in one of the two absorbing states L and S. With suitable 
approximations to consider this as a Markov Chain, this random walk can be 
analysed to obtain the desired sojourn times U1 and U." mentioned earlier. 
The detail ofthis analysis are beyond the scope ofthis text but can be found 
in the original paper ofBronshtein and Gertsbakh. 

6.6.2 Repetitive Service Blocking 

Analysis of systems with Repetitive Service blocking has been described 
earlier for closed networks. In this section, we consider open networks with 
repetitive service blocking. The approximate analysis of this type of open 
queueing networks also uses the Maximum Entropy Method which was 
described earlier for the corresponding case of closed network. 

Consider an arbitrary open queueing network under RS-RD or RS-FD 
blocking mechanisms. We assume that the network consists of M FCFS 
multiple server queues of finite or infinite capacity. It has been shown 
[KoX89] that the Maximum Entropy (ME) solution, subject to normalisation 
and certain other constraints, can give an approximate product form solution 
for the network ofthe type 
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M 

p(n) = p(n1 , ..... , nM) =TI Pi (ni) 
i=l 

Chapter 6 

(6.106) 

where p(n) is the equilibrium state probability distribution of the network in 
state n and p,(nJ is the probability that the lh queue is in state nj. Following 
the MEM approach, plnJ may be found as the marginal maximum entropy 
based solution for the corresponding GE!GE!c/N, queue. 

The open network to be analysed is decomposed into individual 
GE/GE/c,/Ni queues with appropriate inter-arrival and service time 
distributions. All the incoming streams (including the external arrival 
stream) to node i merge to form the overall arrival stream to node i. The 
effective servicetime at node i is the total time for which a server of queue i 
is occupied by a particular job. The following assumptions are inherent in 
this approach and are summarised for convenience. 

• A First-Come-First-Served (FCFS) service discipline is followed 
at each node. 

• The routing probability matrix is static. 
• Some or all the nodes in the network may have infinite capacity. 
• Each queue in the network is modellcd as a GEIGEleiN qucuc 

with Generalised Exponential inter-arrival and service times 

The following notations are used in the subsequent algorithm -

M number of nodes in the network 
ci number of homogeneaus servers at node i, ci 2 1 
N; capacity of node i (including the m1mber of servers) 
fl; service rate at node i 
Cs/ SQV ofthe servicetime 
Ao; average external arrival rate to node i 
C0/ SQV ofthe inter-arrival times ofthe external arrivals 
Pu routing probability that ajob completing service at node i 

attempts to join node j 
1ru probability that a job completing service at node i is blocked 

by nodej. 
1r0i probability that an external arrival finds node i in state N,. This 

will also be the probability that an e~ernal arrival is blocked 
on entry at node i and is not allowed to enter the network 

7rdi probability thatjob completing service at node i is blocked 
under the RS-RD blocking mechanism 
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Algorithm 

Step 0. Remave immediate feedback for all nodes i = 1, ...... , M. 
If p,; > 0, then this is done as follows -
Jl; = f.l; (1- p;J, Cs/ = p;; + (1-p;JCs/ 
Pu= p;j(I-p;J for i~,j=I,2, ..... ,Mand Pu= Ofor i=j 
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Note that this procedure is the samc as described to remove 
immediate feedback in Section 6.2. 

Step I. Initialisation for the subsequent iterations are done by choosing 
suitable initialising values for-

~2 . 
Cd; and ITJ; for z=I, ...... ,M 

Note that any appropriate value may be chosen to start the 
subsequent iterations. The probability value should of course be 
chosen between 0 and I and we have got good results with a choice 
of 0.5. The SQV value may be conveniently chosen as I which 
would actually be the case if the distribution was exponential in 
nature. 

Step 2. Salve the following set of linear flow equations 

M 

X; =Xa; + L:Xjf;,; (6.1 07) 
j=l 

usmg 

i=l, ....... ,M (6.108) 

The effective routing probabilities p 1; are computed iteratively later but 

the iterations may be started with p 1; = p 1;. The variable JTo; is also 

computed later but any suitable initial value can be used at this point. 

Step 3. Salve iteratively the set of non-linear equations given below 
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2 

-!1+~3u •u - 2 
2 I +C0; 

M 

7rd; = LPulru 
j=l 

Chapter 6 

(6.1 09) 

·-J M }- , ......... , (6.110) 

i,j=l, ......... ,M i?Ej (6.111) 
i= 0 

(6.112) 

(6.113) 

RS-RD (6.114) 
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/1; 
/1;=-----'------

L~ 
}. P· >0 1 - ff;,· 

' I} . 

x = xi 
l 1-;r. 

I 

{ 

1-;rij 
' A pij--

Wlth pij = 1-;rdi 

Pü 

RS-RD 

RS-FD 
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RS-FD (6.115) 

(6.116) 

(6.117) 

(6.118) 

(6.119) 

(6.120) 

Details on the derivations of the above approximating formulae may be 
found in [KoX89] and [Per94]. 
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The state distribution p/n) for each queue i= l, ........ ,M is found by 

solving the GE( A1, C 12 )/GE( ,u1 , Cl1 )/c,/M queue using the maximum 

entropy based approximate method of Kouvastos. For a queue of this type, 
the results are 

p(n) = p(O)Gnxh(n) yf(n) n=l, .......... N (6.121) 

Note that unlike the case of closed networks, thc queue hcrc is not ccnsorcd 
and hence the states may range over the integers 0 to N. For evaluating the 
state probability using Eq. (6.121 ), we use the following . 

..i = Average arrival rate of the arrival process to the queue 

C2 = SQV ofthe inter-arrivaltime ofthe arrival process to the queue 

with 

m(n) 

Gn = fl g(l) .! = max(c, 1) h(n) = max(O, n- .!) 
I=K+l 

j(n) = max(O, n- N + 1) m(n) = max(l, min(c, n)) 

1 
rcpO" 

(1) = [ 0'(1 - r) + r] 
g TCpO' 

rp(l- 0') + 0' 

c > 1 

c =1 

l _ l[ 0'(1 - T) + T] 1 
rcp + (l-1)0'(1- r) 

g( ) - O"[rcp + (.! -1)0'(1- T)] 

.J[rp(l- 0') + 0'] 

rp+O"(l-r) 
X = ---'-----------'-_____:___ 

rp(l- 0') + 0' 

1 
y=----

I- (1- O')X 

l <.! 
1=2, ........ ,.! 

l =.! 

2 
CJ=~~ 

1 + C 2 s 

2 
T=~~ 

1 + C 2 

and p(O) may bc found by using thc normalisation condition that 

(6.122) 

(6.123) 

(6.124) 

..i 
p=­

c,u 
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N 

LP(n)=l (6.125) 
n~o 

The iterations of Step 3 above are performed until we obtain sufficient 

convergence in the values of c~, and c/. 

Note that these equations are very similar to the equations given earlier 
for the censored queue in the case of closed networks with rejection 
blocking. The differences between them arise from the fact that the queues 
are not censored in the case of open networks. 

Step 4. All the parameters of interest may now be calculated from the state 
distribution and flow parameters obtained after the convergence in 
Step 3. These are done in the usual fashion given that the state 
distributions of the individual queues and of the network are known 
and the effective flow rate to each queue has also been found. 

6.6.3 Transfer Blocking 

We have developed [TMB99] a new approximation technique for the 
analysis of general open networks with multiple servers under transfer 
blocking mechanism. This approach has been verified to work weil in 
networks with light or medium loading and has been described in this 
section. In this approach, a hypothetical node is added to handle blocking at 
the individual queues. The network is decomposed into individual nodes 
with modified arrival processes. The resulting network is then iteratively 
solved using flow balance and Maximum Entropy techniques. This approach 
can handle any general network configuration. Suitable approximations have 
been included to handle general arrival processes and service times. 

It is possible for deadlocks to occur even in an open network of finite 
capacity queues if the Transfer Blocking mechanism is being used. This is 
illustrated in the network shown in Figure 6.9. For example, there are several 
ways in which deadlocks can occur in the network shown in the Figure 6.9. 
A particularly simple situation is one where Q1 and Q3 are filled to their 
respective capacities and all the servers in Q1 have blocked jobs waiting to 
go to Q3 and vice versa. Such deadlocks can obviously occur in any network 
of this type, which has feedback, i.e. where a routing loop can be formed. In 
an actual queueing network, such a deadlock situation cannot be resolved 
except through external intervention. We assume a similar condition in our 
analytical approach. Specifically, we assume that any deadlock condition 
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that arises is immediately resolved by moving all the deadlocked jobs 
simultaneously to their respective destinations. 

Q-1 

Figure 6.9. Open Queueing Network with Transfer Blocking 

For this analysis, thc inter-arrival and service time distributions are 
assumed to be generalised exponential (GE) in nature. A GE distribution is 
defined through its mean and its squared coe.fficient of variation (SQV). A 
GE distribution has been chosen because of its capability to represent a wide 
variety of arbitrary distributions, either exactly or approximately. (See 
Appendix 6.1.) The original network is reconfigured by the addition of a 
hypothetical node to each incoming stream of all those queues that have 
finite capacity. This hypothetical node is added to hold the blocked jobs, if 
any. A blocked job will be routed to this hypothetical node which is 
modelled as an infinite server queue. 

Consider a network of GEIGEimiNqueues which is arbitrarily connected 
with appropriate routing probabilities which are static in nature. We use flto 
denote this set of queues and assume timt the external arrivals (if any) into 
queue i have a rate Ae1 with Ce/ as the SQV of its inter-arrival times. Let Pu 
denote the probability that a job finishing service at queue i is routed to 
queue j. Queue i is assumed to have m, servers with p, as the rate of service 
and Cs/ as the SQV of the service time distribution. The buffer capacity of 
queue i, including the servers, is assumed to be N,. The steady state 
probability ofthe queueing network being in state n=(n1, ......... nM) is denoted 
by ;r(n) where n, is the state of queue i. Since the output of a GEIGEimiN 
queue may also be approximated by a GE process, we can assmne that the 
product-form solution will approximately hold at equilibrium and therefore, 
we can write 
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M 

;rr(n) = rr ff, (n,) (6.126) 
i=l 

where 7r;(nJ is the steady-state distribution of queue i which can be found by 
using the Maximum Entropy based methods of Kouvastos as given in Eq. 
(6.121)- (6.125). 

Since we are assuming finite capacity queues, some jobs will experience 
b1ocking where the blocking mechanism being considered here is Transfer 
Blocking. External arrivals that see a full queue are assumed to be lost, i.e. 
rejected. Jobs moving from one queue to another, which see a full 
destination queue, are held at its server in the source queue. This will block 
the server at the source queue until the destination server has free capacity to 
accommodate this job. This is because of the nature of the Transfer Blocking 
mechanism being considered here. Let PB;(i) be the probability that a job 
finishing service at queue i and wanting to go to queue j is blocked and Iet 
PBa(j) be the probability that job wanting to arrive into queue j is blocked. 
Let PBf(i) be the probability that a jobfinishing service at queue i is blocked 
and Iet PBe(i) be the probability that an external arrival to queue i is blocked. 

We make use of the following three properties of the GE distribution in 
our analysis. (See Appendix 6.1.) Theseare-

(i) The departure process from a GEIGEimiNqueue may be approximated by 
another suitably approximated GE process. 
(ii) Bernoulli (random) sampling of these departures, which will correspond 
to probabilistic (i.e. Markovian) routing will also have a GE distribution 
(iii) Combining these sampled processes, which will correspond to the 
arrival process to a queue in the network, will also have a GE distribution. 

However, the process of blocking will further complicate the nature of the 
arrival and departure processes at the queues. Moreover, the transfer 
blocking discipline is not work-conserving in nature, and therefore, strictly 
speaking, the product form distribution cannot be used for the original 
network. We tackle this problern by making an equivalent work-conserving 
network by the addition of hypothetical holding nodes to the original 
network. These holding nodes are GEIGEiodro queues whose GE 
distribution parameters will correspond to the service times and inter-arrival 
times corresponding to the blocking delay experienced by a job finishing 
service and wanting to go to a finite buffer queue. We claim that if we can 
describe the arrival and service processes to the queues in the equivalent 
network, then we can solve for the required queueing parameters. For this 
we use a relaxation method of obtaining a fixed-point solution where the 
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iterations terminate on the convergence of the parameters of interest. We 
explain this procedure of adding additional holding nodes further using the 
example network shown in Figure 6.1 0, where Q2 and Q3 are assumed to be 
ones with finite buffers. This network is expanded to the equivalent work­
conserving network by the addition of holding nodes. The resultant 
expanded network is shown in Figure 6.11. Here we have added holding 
nodes hu, h12 , h23 and h32 to handle the effects oftransfer blocking 

Figure 6./ 0. Queueing Network with Transfer Blocking (Queues 2 and 3 have finite buffers) 

In general, the equivalent work-conserving network is obtained by adding 
a holding node between every node pair (i,j) in the original network where 
node j is a queue of finite capacity and Pu:;r()· This holding node would 
unblock a blocked server by removing the blocked job and holding it in the 
holding node. The time spent by a blocked job in the holding node should 
correspond to the time it would be blocked in the original nctwork. 
Simultaneously, we increase the service time of the other jobs in the queue 
unblocked in this fashion to reflect the time lost to the jobs behind the 
blocked job in the actual network. We represent by h,1 the holding node 
added between queues i andj, if any. The set of all holding nodes added in 
this fashion is denoted by H and the resultant set of all nodes in the 
equivalent work-conserving network by Hfl. As shown in Figure 6.11 for 
the original network of Figure 6.1 0, the holding nodes represent the 
additional delay caused by the transfer blocking mechanism. We model these 
holding nodes as GEIGE/co/co queues to introduce delays equivalcnt to the 
blocking delays ofthe blocked jobs. 
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Figure 6.1!. Holding Nodes for Jobs along (I ,3), (I ,2), (2,3) and (3,2) 

We then need to obtain the parameters of the arrival and service 
processes for each of the holding nodes in H. For the holding node h,1, the 
arrival process is obtained by random (Bernoulli) sampling of the departure 
process at queue i with probability PBj(i), the blocking probability for a job 
leaving queue i for queue j. To obtain the service moments at the holding 
node hu, we use the fact that the time for node j to accept the new 
(previously blocked) job is the minimum of the m1 residual times 
corresponding to one of the currently served m1 jobs in queue j finishing its 
service. The moments of the distribution of this time may be approximately 
calculated from residual time results by using the mean and the SQV of the 
service time at the blocking node to find the approximate service time 
distribution. This is fitted as one of exponential, balanced H2 or Ek kind of 
distribution depending on whether the SQV is equal to, greater than or less 
than unity. For this, consider a random variableS which is the minimum of 
k random variables s1, ......... ,sk whose resultant distribution may then be 
computed using the distributions of the individual random variables s; as the 
ones corresponding tothat ofthe approximated servicetime distribution. The 
moments of S may then be computed and may be used to compute the 
moments ofthe delay R by using the result [Kie75], [[BrG84] that 

(6.127) 

where E{Rn} and E{S'} are the respective n1h moments of RandS. 
Consider once again the blocking scenario of a job getting blocked in 

attempting to move to queue j from queue i. Specifically consider the 
network of Figure 6.10 and 6.11 where there are blocked jobs waiting to go 
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to node 3 from both nodes 1 and 2 when the holding nodes h13 and h23 are 
both occupied. In this situation, if a job now finishes service at node 3, then 
only one of the jobs from either nodes 1 or 2 can move to node 3 and the 
other job is blocked again. This implies that a "service completion" 
(corresponding to the destination finishing service to a job) at the holding 
node might result in one or more rounds of blocking before the job becomes 
eligible to move to the destination queue j. Thus there will be a non-zero 
blocking probability PBJ(h;) for jobs going from hu to node j and these 
blocked jobs will return to hu. This constitutes immediate feedback to the 
node hij and needs tobe removed following the usual strategy for immediate 
feedback removal described earlier, for example in Section 6.2. This would 
further increase the service times at the holding nodes - note that this 
increase is in effect taking into account the contribution from other nodes 
feeding into the same blocking node. 

Using the above, we can obtain the arrival rates Ahii and the SQV C"/ of 
the inter-arrival times ofthe holding node hu as 

A-"u = A-ipi.JPB/hy) 

Clu = 1- PuPB;(hu) + PuPB;(hu )[pi2Cli + (1- pJC~; 

+ Pi(l- Pi)] 

where p;=A-i/(mi/1). 

(6.128) 

The mean !lhiJ and SQV C8"/ of the service tim es of the node hu also need 
to be determined. When blocking occurs, all the servers of blocking node 
will be busy. The distribution oftime until any one ofthe m; servers finishes 
service is the residual life of the minimum of m; GE random variables of rate 
fl; and SQV CS/. Let !lri and Csr/ be the mean and SQV ofthisresidual life 
which can be obtained once again as in Eq. (6.127). The mean and SQV of 
the service time at hu may then be approximated by the geometric sum of 
random variables with mean !lri and SQV Csr/. 

We also need to use the following modified routing probabilities. 

P;" = P B1· (i) 
'I 

(6.130) 
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The mean number ofjobs in the original node (actual network) is the sum 
of the mean number of jobs in the original node (work-conserving network) 
and the mean number of jobs in all the holding nodes which emanate from 
this node. Moreover, the time for which the serverwill be held in the node in 
the actual network will be the sum of the times for which it is held at the 
node in the modified network and the time spent in the holding node. 

After obtaining the input queueing parameters for the holding nodes in 
the modified network, we apply an iterative procedure to solve this network. 
This is along the lines of a fixed-point solution, which yields approximate 
steady state solutions for the transfer blocking, open, queueing network 
being examined. 

The iterative solution procedure first obtains the parameters ofthe arrival 
process and service tim es at each node of the expanded network. Each queue 
is then treated independently using the Maximum Entropy method to find the 
probabilities lri(nJ, PBj(i), PBf(i) and PBa(i) as defined earlier. This would 
require solving a set of coupled non-linear equations. The recursion will 
finally yield the mean and SQV of the arrival and service processes at the 
holding nodes. These are then used to modify the statistics of the original 
network and then the approximate product-form solutions are used to find 
the overall network parameters 

For all the nodes in the expanded network with immediate feedback, we 
first modify the mean and SQV of their service time in the usual fashion 
using Eqs. (6.13) and (6.14) as in Section 6.2. The routing probabilities are 
also adjusted using Eq. (6.15) as given there. The mean and SQV for the 
arrival processes for nodes i E Q are obtained as follows. The mean arrival 
rate A.1 into node·j is obtained by solving the following set of tlow balance 
equations. 

A.j[I- PBa(j)] = A.ej[I- PBe(j)] + LA.;[l- PBa(i)]pu, jE n (6.131) 
ieD.H 

over all the queues in the network. Note that the tlow balance equations in 
Eq. (6.131) take into account both the external tlows and their lass due to 
blocking as weil as the internal tlows. 

The SQV of the inter-arrival times at each node j is obtained as follows. 
The departures from every node i EilH are sampled with probability Pu to get 
the individual streams arriving at node j and the SQV of the combined 
arrival process at node j is then computed using Eqs. (A6.2) and (A6.3) of 
Appendix 6.1. For this we need to know the blocking probabilities PBj(i) 
from all other nodes i, PBa(j) and PBe(j). Theseare obtained as follows. 
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(6.132) 

where CAj is the SQV of the inter-arrival times of the jobs from node i to 
node j obtained using (A6.4) with appropriate substitution. 

. PB1(i) 
Ae1 PBe(J) +LA; Pu . 

1-PB(l) 
PBa(j) = ,Eo J 

;;._. "x .. 1 
e; + L_. 1 P 'f 1 _ p B . ( ') 

I EO J 1 

(6.133) 

Note that PBeOJ and PBaOJ are not equal because arrivals from inside the 
network into nodej arenot Poisson in nature. 

I[ ]m _ 11
[ IN -n mJ- C2 + 1 I C2 -1 I 

PB;(i)=L 2AJe 2 t nJ(n) 
n=O C Aje + C Sj C A;e + 1 

(6.134) 

We also need to increase the servicetime moments of the nodes in .Q to 
account for the fact that a blocked job is moved to the corresponding holding 
node. This shou1d have the same effect overall as when the job is actually 
blocking the server. This will be done as follows 

Ji; = [1- PBf(i)]Ji1 

C}, = PBJ(i) + C,~, [1- PBf(i)] 

withPBf(i)= LPuPB1(i) 
iEOH 

iE.Q 

The overall algorithm is summarised below. 

(6.135) 

1. Remave immediate feedback in the network and initialize the following 
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PBj(i)=PBeOJ =PBaOJ =PBf(i)=O V i, j ED 
2. Expand the network by adding the required holding nodes 
3. Obtain the mean inter-arrival times using (6.131) and its SQV as 
explained therein. Obtain the mean and SQVs of the service times using Eq. 
(6.135) 
4. Using the Maximum Entropy based approach given earlier for open 
networks, solve for J0(nJ, i EDH 
5. Find the blocking probabilities PB/i), PBaOJ, PBe(J) V i, j E.QH 

6. Do as in Step 3. 
7. Repeat from Step 4, if the flow statistics (mean and SQV of the arrival 
processes at the nodes) have not converged to the desired accuracy. 
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APPENDIX 6.1: THE GENERALISED EXPONENTIAL 
DISTRIBUTION 

The generalised exponential (GE) distribution is a two-parametcr distribution that may bc 
used to approximate a variety of distributions by matehing two of their moments. (In contrast, 
the exponential distribution is a one-moment distribution, which is completely spccified by 
just its mean value.) lts probability density function is given by 

x=O 
x>O 

(A6.1) 

with aE[O,J). The mean ofthis distribution is X 1 and its SQV is (l+a)/(1-a). It may also be 
viewed as a limiting case of the hyper-geometric distribution where one of the phases is of 
zero length. For the limiting case of a=O, it reduces to the exponential distribution. The GE 
distribution is useful für modelling processes where the SQV is grcater than one. It can also 
model batch Poisson arrivals with a geometrically distributed batch size. It has also been 
shown that the GE distribution is a robust two-moment approximation for any service time 
distribution with SQV greater than one. 

Two ofthe most useful properlies oftheGE distribution in queueing networks are that it is 
closed under merging and random sampling. This means that the sum of two or more GE 
processes (i.e. ones whose inter-arrival times have a GE distribution) is also a GE process. 
Similarly, random ßernoulli sampling of arrivals from a GE proccss also Ieads to a GE 
process. These properlies are similar to the oncs that we had seen earlier for Poisson arrival. 
For pretty much the same reasons, the GE process (like the Poisson process) is easy to handle 
in the analysis of such networks. 

Merging or Superposition of GE Streams 

We consider the GE process arising from the merging N GE streams. The ith stream has 
mean arrival rate 'A and has C;2 as thc SQV of its inter-arrival times. The mean 'A:v1 and SQV 
CM2 ofthe combined GE process are given by 

(A6.2) 

Bernoulli Sampling of GE Strcams 

If a GE arrival process is sampled with probability p, then the sampled process will also be 
a GE process. Let the original GE process have mcan tlow rate 'A and SQV ( of the intcr­
arrival times) ofC2 Then the mean and SQV ofthe sampled process will be given as 

;t5 = p/t c~ = (1- p) + pC 2 (A6.3) 
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Queueing with GE Arrival Streams 

Another convenient feature of the GE process in a queueing scenario is that the output 
from a GEIGEimiNqueue can also be shown to be approximately GE in nature. Assume that 
the arrival process to the queue has the mean flow rate .-1.," with SQV (of the inter-arrival 
times) of C,/. Let the mean and SQV of the service times in the queue be ;i1 and C/. 
Defining p=.Y(mp), the mean flow rate ofthe output process and its SQV will be given by 

Aout = Atn (1- Pn) 

C~ut = p 2Cl + (1- p)C~ + p(l- p) 
(A6.4) 

with P8 as the probability that a customer arriving to the queue is blockcd. This is given by 

1 m~ N 

P8 = ~ ;r(n)(l-r)N-n[ 0" ] + "";r(n)(l-r)N-n 
L.. a(l-r)+< L.. 
n=O n=m 

(A6.5) 

2 2 with a = --2-, r = --2- and ;r(n) is the probability that there are n jobs in the queue. 
I+ Cs I+ C;n 

Evaluating this probability ;r(n) is a non-trivial task. Onc approach that may be taken is to use 
the equivalent state probabilities from an MIMimiN for this. The othcr approach is to use the 
Maximum Entropy techniques to estimate these probabi lities as part of the process of solving 
the overall queueing network. 
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Simulation Techniques for Queues and Queueing 
Networks 
Basic Principles for the Design of Queueing Simulators 

In our previous chapters, we have presented various analytical methods 
for studying the performance of queues and queueing networks. As would be 
evident from our discussions in those chapters, analytical models of such 
systems are tractable only if one makes suitable simplif)ting assumptions. 
For example, in the study of individual queues, we usually have to resort to 
such assumptions regarding the nature ofthe arrival and service processes in 
order to provide analytical results on the performance of the system. The 
situation becomes worse for queueing networks where the simple product­
form solution holds exactly only under very restrictive assumptions. In some 
of the methods described for analysing queueing networks, the entire 
analysis was based on the assumption that even though the product-form 
expression may not be exactly applicable to the particular network, it still 
holds as a good approximation. Even with such an assumption (and some 
even more drastic ones), the analysis of reasonably complicated systems of 
individual queues or queueing networks becomes rapidly impossible to 
tackle. In situations where studies of such systems are nevertheless required 
to be clone, there is usually very little choice other than to use simulations 
and simulation tools to examine the system. 

Simulations provide a convenient tool to study complex systems, which 
cannot be accurately modelled for exact or approximate mathematical 
analysis. A simulation scenario for a complex system may be set up with as 
much detail as required - essentially as much detail as it would feasible to 
handle within the Iimits of the simulation time that can be spent and the 
simulation complexity one is prepared to code for. Since analytical 
modeHing usually requires simplifying assumptions of its own, simulations 
are also useful to provide crosschecks on the results obtained by analysis. 

257 
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In this chapter, we present the basics of how simulations may be used to 
study queues and queueing networks. We introduce some of the basic 
terminology of simulation techniques and review some of the relevant 
concepts of simulations. We consider in detail how simulators may be 
constructed to study queues and queueing networks and discuss how one can 
generate confidence in the results obtained through simulations. The reader 
can get more details from texts on simulation, such as [BCN96] or [Pay 88] 

Given the choice between studying a system through simulations or 
through analytical modelling, the best idea usually is to use a combination of 
both the approaches. A system can be simulated to behave very closely to 
what would actually happen in a real system whereas exact or approximate 
analysis of the system may only be feasible under very drastic (and 
sometimes inappropriate) assumptions. However, simulations would 
generally take a long time to run if one wants to generate results with a high 
enough degree of confidence. Sensitivity of the various system performance 
parameters to variations in the valucs of various input paramcters is also 
easier to study using analytical methods than with simulations. 

7.1 Simulation Model of a Real World System 

Real 
System 

Real System 
runs in real 

time 

Model Parameters 

Level of 
Detail 

<:18"'''''/''''%\,J 

Simulation Results 

Simulator 
runs in 

simulated 
time 

Figure 7. I. Simulation Model of a Real System (Continuous or Discrete States) 

The basic ideas behind developing a simulation model for a real system 
in order to study its behaviour is illustrated through Figure 7.1. This sbows 
the relationship between tbe real system and its simulation model. A real 
physical system may have a Iot of small details. When one develops a 
simulation model for it, one tries to make the model as realistic as possible 
by capturing as many features and details of the real system as feasible. 
However, it would be extremely fortuitous if we are able to capture all the 
details ofthe reallife system in our simulator. This may not even be possible 
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in all cases, as the observer may not even know all the fine details ofthe real 
system. Even when one has complete knowledge of the real system with all 
its details, it may not be practical to incorporate all such detail in the 
simulator. For one, the amount of coding and complexity required to capture 
aii those details in the simulation model may be horrendous. Secondly, a 
simulator mimicking a real system in such excruciating detail may take an 
unacceptably long time to run and give results with the desired degree of 
confidence. One therefore often compromises in building a simulation model 
of a real system by incorporating only those aspects of the real system, 
which are deemed tobe relevant to the objectives ofthe study. These Model 
Parameters need to be carefully chosen to satisfy the requirements of the 
simulation while keeping in mind the complexity of the simulator code and 
the time required for running it on a computer. During the running of the 
simulator, one would need to keep track of the values taken on by the 
parameters that one wants to study through simulations. At the conclusion of 
the run, the simulator would typically output the moments ofthe parameters 
that are being monitared during the Simulations. One can also optionally 
generate a time trace of the some of the selected parameters to see the way 
these change during the simulation process. Simulations are also sometimes 
carried out to see if there is any logically inconsistent behaviour in the 
original system - this, for example, may be an objective if a protocol or 
algorithm is to be verified through simulations. This is not usually the 
objective in the simulation of queueing systems. However, simulations of 
queueing networks may be useful to indicate the different kinds of deadlock 
conditions that may arise in the real system and suggest possible ways of 
handling them. 

For a given set of values of the model parameters, it is usually not 
enough to get results just from on single run of the simulator. In order to 
generate results with some pre-specified degree of confidence, one would 
usually have to run the simulations several times making sure that the 
simulation runs are independent and different from each other. One usually 
modifies the seed in the random number generator, which will be inherent in 
all simulation code, to ensure this difference. This would ensure that the 
patterns of events generated by the different simulation runs are sufficiently 
different even though they are being run from the same set of model 
parameters. 

The real system being simulated will actually run in real time while the 
simulatorwill run on a different simulated time, dependent on the simulation 
code and the system on which the simulation is being run. The way time is 
handled in a simulator could also be different for different simulators. Since 
the simulator is being run on a computer, it would necessarily run on a 
discrete time basis. These discrete time units could be made arbitrarily small 
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ifthe processing time ofthe simulator allows this so that it effectively Iooks 
like a continuous time simulation. Same real systems, such as discrete-time 
queues, do have a natural discrete-time operation. In such a system, changes 
in the system can happen only at discrete time instants and the simulator may 
effectively use this to simulate events and handle them only at these time 
instants. A very effective style of simulation only triggers its internal actions 
when some events affecting the system's state actually occur. This is known 
a:s Discrete Event Simulation and will be the focus of our attention here. 

lt is important to emphasise that the simulator is intended to imitate the 
real system in as much detail as possible or as much detail as is needed to 
satisfy the objectives of the simulation study. The real system will have its 
own entities with their respective attributes, which may interact with each 
other or have other inter-dependencies as a function of time. We define 
entities as some object of interest in the real system. For example, in the 
simulation of a queueing network, the individual queues, the jobs 
entering/leaving the system and circulating between the queues and the 
routes followed by them will be some of the important functional entities. 
The attribute of an entity is some relevant property that we would like to 
study through simulations. For example, for a particular queue one may like 
to study attributes such as buffer and server occupancy. For individual jobs, 
we may be interested in attributes like the time taken to get served in a 
queue, the time taken to transit a system or whether the job gets lost, say in a 
finite capacity system. The entities and their attributes would form the state 
of the system as modelled in the simulator. The various events that would 
occur in the simulator (andin the real system) during its operationwill affect 
this state. Selecting the set of events that will be allowed to impact the 
simulation model and the way they will affect the simulation process will 
need tobe modelled in such a way that they closely imitate what will happen 
in the real system. As mentioned earlier, the simulation model may be forced 
to make simplifying assumptions about the real system being studied. 
However, for the simulation to be meaningful, these must correlate weil with 
the behaviour ofthe actual system. 

The best way to see how a system will perform would undoubtedly be to 
construct a prototype system and study its behaviour. This is usually not 
feasible, especially when one wants to study the behaviour of large, complex 
and costly systems. This is usually the reason why one has to take recourse 
to either simulations or analysis to obtain results on the behaviour of the 
system. Given that this is so, whether simulations or analysis is the best 
strategy is open to debate. Simulators are generally closer to the real system 
than analytical models as they typically require fewer and less drastic 
simplifying assumptions than the latter. For example, most analytical results 
in the area of queueing hinge on the crucial assumptions of Poisson arrivals 
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and possibly exponentially distributed service times. Ifthese assumptions are 
not acceptable, using other models for the arrival and service processes 
would be a simple task in a simulator but may be difficult, if not impossible, 
to handle in the corresponding analytical model. Changing the structure of 
the model, the rules of the algorithms followed and the values of system 
variables are sometimes required to see their effects on the system. These 
changes will be much easier to incorporate in a simulator but will generally 
be difficult, and may even be impossible to do, in an analytical model. The 
simulator may also make it easy to study the behaviour of any attribute of 
any entity in the system by monitaring those during the simulation run. 
Analytical results for all such variables may not be available which would 
make it impossible to do a corresponding study using an analytical approach. 
On the other hand, good simulation models typically take a long time to 
construct and may also take a long time to run on a computer. This 
complexity of simulator construction ( especially when one wants to 
construct an efficient simulator using suitable code profiling) and the fact 
that simulators are generally computationally expensive are the major 
disadvantages of taking a simulation rather than an analytical approach. 
Sometimes, the validation of the simulation model and its debugging may 
also be expensive. Finally, analytical results often allow us to see the 
relationship between the model variables and the sensitivity of the output 
parameters to the various inputs. This is not something a simulator can easily 
do - studying any such change would actually require several simulation runs 
to see how the system would behave. 

Finally, it is perhaps important to point out that building and running a 
good simulator and getting meaningful results is an art that must be carefully 
practised. Texts on simulations, including this one, can only point out some 
of the things that can be done. Much more can usually be achieved by 
actually building a simulator and carefully examining its operation to see 
that it is indeed doing things right. Sanity checks using the simulator, where 
one knows, or can closely guess, how the system should perform in real life 
are a good way of ensuring this. 

Consider a system consisting of a water tank, which is being fed by one 
or more sources at rates that vary with time. Assurne that water also gets 
taken out ofthe tank from various outlets at ratesthat also change with time. 
We can define the Ievel of water in the tank as the state of the system and 
can easily construct a simulator to model the real system, i.e. the water tank. 
For this, we would also need the additional information on how the input 
flow rates and the output flow rates vary with time. Given these quantities, 
we can build a simulator quite easily which will tell us what we need to 
know about the real system, i.e. the way the Ievel of water changes over the 
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day or what would be the Ievel ofwater at a particular time. A typical output 
of such a simulator is shown in Figure 7.2. 

Water stored 
in a tank 

Time 

Figure 7.2. Continuous State, Continuous Time Simulations (Level ofWater in a Tank) 

Note that the system state in this case, i.e. the Ievel ofwater in the tank, is 
a continuous variable. Since the state varies continuously with time, it is also 
a continuous time variable. 

No. of Jobs 
in Queue 

I 

~--------------------------~~Time 

Figure 7.3. Discrete State, Continuous Time System (Number of Jobs in a Queue) 

Unlike the example of the water tank shown, a queueing system would 
have discrete states and would be represented by a discrete variable. An 
example of this showing the state of a single queue as a function of time is 
shown in Figure 7.3. Note that for the example shown, the state is a 
continuous time random variable corresponding to a continuous time queue. 
lf we had instead considered a discrete time queue, then the system state 
would have been a discrete time variable. In general, whether the system 



7. Simulation Techniques 263 

state is continuous or discrete and whether the system is a continuous time or 
discrete time one would depend on the nature ofthe system being modelled. 

Queueing systems are examples of discrete time systems and we will 
focus on such systems in our subsequent discussion. In such a system, there 
will be specific time instants when the model 's state will undergo a change. 
These time instants are sometimes referred to as simulation times or event 
times. In between these times, the state of the system does not change. Note 
timt a crude way of simulating a system would be to step it through small 
intervals of time Llt. We can do this to observe how the system changes 
from time t+nLit to t+nLit+Lit following the rules of how the system state 
will change over the small time interval Llt. Though this is a possible way to 
build a simulator, this would not be an efficient way to do so ifthe system is 
a discrete state system where the system changes only at specific event 
times. A discrete event simulation approach is a more reasonable way of 
simulating such a system and will be discussed next 

7.2 Discrete Event Simulation 

In discrete event simulations, the simulation model only focuses on the 
event times that may occur as these are the only times when the system is 
going to change its state. It is not necessary for the simulator to examine ( or 
simulate) the system in between successive event times. This is because the 
system state will stay unchanged between one event time and the next. This 
of course implies that the events on the event Iist should be carefully chosen 
to represent all the possible events that may affect the state of the system. A 
continuous simulation of the system in continuous/discrete time is not 
necessary. 

In this case, the simulator always keeps an event !ist (or even multiple 
event lists which then have to be examined tagether or are controlled 
through a master event !ist)) of the events that are currently scheduled to 
happen and the time instants when they will happen. This is typically 
organised as a doubly linked Iist where event n+ 1 keeps one link to its 
predecessor event n and another to its successor event n+2. The events in the 
Iist are therefore organised suchthat event i is listed before eventj if event i 
occurs before event j. At any instant of time during the simulator run, the 
event which is currently the top most event in the Iist is the one to be 
processed next. This event will be processed and the simulatorwill take all 
the actions that are required for completing the processing of that event. 
These actions may change the state of the system and the values and 
attributes of the various entities affected by this event in the system. The 
processing of this event may also create new events that have to be 
scheduled at the appropriate times that they are required to occur. If this 
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happens, then depending on the time of occurrence of these new events, they 
would be inserted in the appropriate place on thc linked Iist of cvents. This 
will be done for all the events generated by the processing of the current 
event. For example, suppose that the processing of the current event at time 
tn creates a new event which is scheduled to occur at time t*. The simulator 
will search the event Iist for the event i occurring at event f; such that t* falls 
in the interval (t,, t,+ 1). The linked Iist will then be modified by inserting the 
new event in between the earlier event i and i+ 1. This is illustrated in Figure 
7.4 by an example. Note that appropriate special modifications will be 
needed to handle the cases where the new event is either required to join at 
the top of the event Iist (after the event currently being processed) or at the 
very end of the event Iist, after the last event that has bccn currently 
scheduled. 

tn event currently being processed 

l; 

Time 

current event 
generates a new 
event scheduled 
for t* such that 

f; < t* < f,, 1 

new event to occur 
at t* inserted here 

Figure 7.4. Inserting a New Event in the Event List 

The simulation process is started with an initialisation procedure. This 
creates the first few events in the event Iist and also initialises all the relevant 
system variables, including those that will be used to record (and later 
compute) the performance results. Subsequently, the simulation proceeds by 
processing the event scheduled to occur next which in turn may create 
additional events that will be placed appropriately in the event Iist. Once the 
event at the top ofthe event Iist has been fully processed, the simulationtime 
is incremented to the time of occurrence of the next event on the I ist and this 
event is then processed. This continues either until the event Iist becomes 
empty (no further simulation can be done) or when the simulation 
termination condition is reached. The simulation termination condition may 
be specified either as a Iimit on the simulation time or as a Iimit on the 
number of events that will be processed. In the latter case, this may either be 
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a Iimit on the total number of all events or a Iimit on the total number of 
some particular types of events. 

The simulation algorithm may be summarised as consisting of the 
following component procedures. Note that the structure of the simulator is 
fairly simple consisting of an initialisation procedure, followed by the main 
simulation loop and the termination procedure. These steps may need to be 
repeated multiple times with independent runs in order to generate results 
with the desired degree of confidence. 

l Initialisation Procedure 
Setting up the initial event Iist, initialising the event attributes and 
variable values internal to the simulator as weil as the variables used 
to monitor the simulation and collect statistics 

2. Main Simulation Loop 
i. Process current event on top of the event Iist (i.e. the most 

recent event - the procedures here will include actions like 
updating the system state, creating new events and gathering 
statistics. The actual processing of the event will depend on 
its type. 

ii. Move to the next event on the event Iist and advance the 
simulation clock to the time of occurrence of this (next) 
event. 

iii. Repeat from (i) if the simulation termination conditions 
stipu lated have not been reached 

3. Termination Procedure 
On termination, process the output parameters to report the required 
results. 

4. Con.fidence Levels and Con.fidence Intervals 
Repeat 1-3 above with independent simulation runs (i.e. new choice 
of the seeds for random number generation) until the desired 
confidence Ievels for the computed confidence intervals are 
generated for the simulation results to be considered acceptable. 

The procedure for discrete event simulation of a queueing system is best 
illustrated through an example. For this, we consider the simple queueing 
network shown in Figure 7.5. This is an open network of two queues with 
two arrival streams from the outside into the network and probabilistic 
routing from one queue to another. Various modifications to this simple 
scenariosuch as static class-based routing (depending on the external arrival 
stream) or differences between the priorities of the two streams may also be 
easily incorporated in this model but have not been considered here. 
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For the example network of Figure 7.5, the events tobe considered in the 
simulation are as follows -

1. Arrivals from stream I (i.e. external arrival stream 1) 
2. Arrivals from stream 2 (i.e. external arrival stream 2) 
3. Arrivals to queue Q1 (total arrival stream to Q1) 

4. Arrivals to queue Q2 (total arrival stream to Q2) 

5. Service completions at (departures from) Q1 

6. Service completions at (departures from) Q2 

These events are inter-related with one event triggering another. W e discuss 
these in detail subsequently. 

The initialisation procedure for the event Iist for this example is very 
simple. All that we would need to do to start the simulation will be to 
generate the first arrival from both stream I and stream 2 to the network. The 
subsequent simulations may be designed to follow thereafter as events 
arising from the processing of these and other subsequent events. 

Figure 7.5. An Example ofan Open Queueing Network 

The following are some of the performance parameters that may be of 
interest. The ones, which are actually of interest, will have to be 
measured/recorded during the simulation phase. Once the simulation 
terminates, average values ofthese will be computed. Higher moments (e.g. 
the second moment or the variance) may also be computed. Similar 
parameters will need to be defined and computed for the actual simulation 
being done. 

I. Nurober in Q1 (including/excluding those in service) 
2. Nurober in Q2 (including/excluding those in service) 
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3. Waiting time for a job in ß before service or total time spent by a 
job in Q1 

4. Waiting time for a job in Q2 before service or total time spent by a 
jobinQ2 

5. Server utilisation at Q1 or Q2 
6. Sojourn time of ajob entering the network from stream 1 
7. Sojourn time of a job entering the network from stream 2 
8. Effective arrivalrate entering Q1 

9. Effective arrival rate entering Q2 

I 0. Departure rate from Q1 to Q2 and vice versa 
11. Departure rates from Q1 and Q2 leaving the network 
12. Blocking/loss ratios ofthe various tlows for finite capacity queues 

We consider separately the processing required for some ofthe events in 
this system, as listed earlier. 

Externat Arrival Event 1 
Depending on the nature ofthe arrival process, generate the next (random) 

arrival event of this type. This will be scheduled to happen at some time t 
depending on the nature of the arrival process. Depending on the value oft, 
this event of next arrival frorn the arrival stream 1 is placed in the proper 
position in the current linked Iist of events. We then generate another 
random nurnber corresponding to a random choice of whether the arrival is 
tobe routed to Q1 or Q2 depending on the routing probabilities given for this. 
Depending on the value oftbis random number, the current (external) arrival 
event is routed to Q1 or Q2• This would convert the event to one of an arrival 
to Q1 or Q2 (as the case may be). It is then rescheduled to occur in the same 
place (i.e. at the same time) as the current event on the event Iist. Once this is 
done, move to processing the next event on the event Iist. (Note that in this 
case, the next event will occur at the same simulation time instant as the 
current event but it now becornes an event of another type, i.e. it will be an 
arrival to either Q1 or Q2. 

Externat Arrival Event 2 
The processing of this is similar to that of an external arrival event from 

strearn 1, except that the arrival is only routed to Q2 . Therefore, after 
generating and suitably placing the next event of this type, this event is 
converted to become an arrival event to Q2 occurring at the same simulation 
time instant as before. 

Arrival Event to Q;, i=l, 2 
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If no free server is available, then increment by one the number in the 
buffer of Qi· This is done so as to make the arriving job wait in queue for 
later service. On the other band, if a server is available then service to job 
will begin. This involves incrementing by one the m1mber of busy servers at 
Q, and then scheduling a departure event corresponding to this job. The 
departure event is generated at a random time t corresponding to the 
simulationtime when this job will finish service. For this, the random timet 
is generated as per the service process ( or service time distribution) of the 
server at Q,. This departure event is placed at its proper position in the event 
Iist. 

Departure Eventjrom Q;, i=l,2 
Depending on the queue from which the departure is taking place and 

following the routing probabilities for a job leaving that queue, generate a 
random number to decide which queue the job will be routed to next. Tf the 
departure is leaving the network, then we merely need to increment by one 
the number served by the system. If the departing job is destined for ßj= 1, 
2, then convert this event to one of an arrival to Q1 and reschedule it for the 
same simulation time as the original departure event and place it on the event 
Iist. 

In addition to the above processing for each of the events ( depending on its 
type), the simulation will also incorporate various counters so that statistical 
results ofthe simulation may be computed after termination. 

7.3 Collecting and Processing Simulator Outputs for 
Queues 

We had mentioned earlier that we need to monitor and record the values 
of various variables during the simulation in order to providc the rcquired 
performance results once the simulation terminates. In this section, we 
discuss this in more detail in the context of how this will be done in the 
simulation of single queues or queues in a queueing network 

In general, we can divide the variables to be observed for a queue into 
two classes - observation-based variables and time-weighted variables. 
These are discussed separately next. 

7.3.1 Obscrvation-Based Variables 

Observation based variables are based on individual observations of the 
queue. Examples of this for a particular queue would be variables like the 
service time of a particular job or the total time spent by a job in the queue 
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(waiting and in service). For a queueing network, an example of such a 
variable would be the sojourn time for ajob in an open network, i.e. the total 
time it spends in the network from the time instant when it enters the queue 
to the time when it finally departs from the system. In a queueing system, 
variables of this type are usually the ones that we associate with a particular 
job. 

Consider a random variable W of this type. If we knew its actual 
stochastic properties (i.e. its probability distribution), then we would be able 
to find its moments of first and higher orders, i.e. typically, its mean E{W} 
and its variance o-/. Consider the situation where K instances of this 
particular variable are observed as shown in Figure 7.6 where these may be 
assumed to correspond to the total time spent in the system by the jobs 1, 2, 
.... ,K. 

.... .. 
Job/Customer Number i 

Figure 7.6. Example ofan Observation-BasedRandom Variable (Time Wi Spent in a Queue 
by the Job i) 

If K instances { W1, W2, ........ , WK. 1, WK) of a particular variable W are 
actually observed, then its observed mean and observed variance may be 
computed as 

Observed Mean (7.1) 

Observed Variance cr2 - I .fcw -w )2 
wo - (K -I) i1 1 o 

(7.2) 
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Other (observed) moments may also be similarly computed. It should be 
noted that these are merely the observed moments and there is no guarantee 
that they will indeed be the same or close to the corresponding values of the 
actual moments that may be obtained had the probability distribution of the 
random variable W been known. This is where confidence estimation, 
discussed later, becomes important. The confidence estimation methods will 
be based on the observed mean and variance of a variable as estimated in a 
number of independent runs ofthe simulator. 

Finally, it should be pointed out that the observed moments, such as the 
mean and variance calculated using Eqs. (7.1) and (7.2), are meaningful only 
when the moments actually exist and can be properly defined. This is 
possible only when the system is indeed in steady state after all its transients 
have died out. This has two implications. One is that the computation of 
these moments is only meaningful in a system that can actually reach steady 
state. If the queue is overloaded then it is never going to reach steady state 
and it would not be meaningful to compute the observed moments for such a 
system. The second implication is that, even for a system which does reach 
steady state, one must be careful that the observations for ~ }=1,2 ...... ,K 
must be taken only after the initial transient behaviour ofthe system has died 
down. This is usually done by prescribing an initial warm-up time during 
which observations are not made. This effectively assumes that the system 
would reach steady state at the end of the warm-up period. Note that a 
judicious choice of the warm-up period will have to be made to ensure that 
this is indeed the case. 

7 .3.2 Time-Weighted Variables 

Time-weighted variables are based on the extent of their actual duration 
and have to be weighted by the length of this time duration. An example of 
this would be the number of jobs in the system. This would actually be a 
function of time N(t), 0 S t S T, where T is the total simulation time over 
which the variable is observed. An example ofthis is shown in Figure 7. 7. 

Other examples of such time-weighted variables in the context of queues 
and queueing networks would be quantities like number of jobs waiting for 
service in the queue, the number of busy servers in a queue or the total 
nurober of jobs in the entire network. During the simulation run, say over the 
time interval (0, T), one would typically be observing a variable ofthistype 
as a function N(t) over the time t. Note that even though N(t) is implied as 
being a continuous function of time, we really do not need to observe it 
continuously. It is enough to observe it at the time instants when events 
actually occur, as we know that the system will not change state in between 
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these time instants. Fortunately, this also agrees very weil with the way the 
Simulationsare handled in a discrete-event simulator. 

Figure 7. 7. Example of an Time-Weighted Random Variable (Number in a Queue as a 
Function ofTime) 

The observed mean and observed variance of the variable N(t) may be 
computed using the following. 

Observed Mean 
]' 

N 0 = ~ fN(t)dt 
I=Ü 

(7.3) 

Observed Variance 2 1 2 2 
[ T J O'No = T JN (t)dt - N 0 (7.4) 

As in the case of observation-based variables, we would need these 
quantities from independent Simulation runs for purposes of confidence 
estimation. The comments made there about steady state and warm-up 
intervals arealso applicable in this case. 

7.4 Estimation of Contideuce Intervals and 
Confidence Levels 

lt is evident that the point estimation of output variables from the 
simulator, as described in Section 7.3 from a single simulation run, would be 
of limited use. If the variance of the variable being observed is !arge, then 
the actual "spread" of the random variable would be !arge. The observed 
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mean of the random variable is basically what one would get from single 
observation made on it. This can lie anywhere within the range that the 
random variable can take and there is really no way of saying how close this 
observed mean would be to the actual mean ofthe random variable. Tdeally, 
one would like to provide some way of specifying the degree of confidence 
onc can place on such point estimates. This is the reason why estimation of 
confidence is required for the output of any simulation-based experiment. 
This is briefly described in this section. 

Let W be the random variable being observed where the quantity of 
interest (from the simulation experiments) is the mean of this random 
variable. Let E{W} be the true mean of the random variable W - this would 
be what we would be able to calculate if we knew the actual distribution of 
this random variable. Let W0 be the observed mean of the random variable 
as obtained by averaging over the observed means obtained from one or 
more simulation runs. We denote by Llw the confidence interval that is 
estimated for a confidence Ievel of a. If confidence estimation is being done, 
then we would typically be able to make a statementsuch as "The true mean 
E{W} of the random variable is expected to lie between ..:t0.5L1w of the 
calculated mean W0 with a probability oj a." We have illustrated this in 
Figure 7.8. It should be noted that choosing a range of the type ..:t0.5L1w is 
basically just a convention that we will follow here. Ranges, which are 
unequal on the two sides of the true mean, may also be considered but are 
seldom used. 

a = P{E{W} willlie in this range} 
w '" - w "' ~· •w ~fi:.o 

0.5L1w 0.5L1w 

Figure 7.8. Confidence Estimation with Confidence Intervalsand Confidence Levels 

Note that this is in effect equivalent to saying that, on the average, we 
would be correct ( a x I 00) percent of the time, that E{FV} will indeed lie in 
the range (Wo -0.5L1w, W0 +0.5L1w). The variablea is called the confidence 
Ievel with Llw the corresponding confidence interval. 
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Consider a situation where we run our simulation experiment n times to 
get the sample mean and variance for each run. Then these may be used to 
get the observed mean and variance as 

2 1 ~ 2 
CYwo =~-L)Wo; -Wo) 

(n -1) J~l 
(7.5) 

For a confidence Ievel a, the confidence interval of the observed mean W0 

will then be given by 

(7.6) 

where fo.5(J-aJ,(n-lJ is the Student's t-parameter for n-1 degrees of freedom and 
awo is the standard deviation corresponding to the variance crw0 2. The value 
of fo.5(J-a),(n-JJ may be found from standard tables. For example, for a =0.95, 
the values of this parameter for n=6 and n= 11, may be found to be 2.571 
and 2.228, respectively. 

t0.025,5 = 2.571 to.o2s,JO = 2.228 

Using this, if for example we do six runs of an experiment, then the actual 
mean value of the parameter observed would be guaranteed to lie between 
(Wo- 1. 05 crwo, Wo + 1. 05 crwo) with 95% probability. 

If the confidence Ievel a is given, then confidence estimation would 
estimate the range of the confidence interval :tO. 5 Llw araund the observed 
mean within which we would expect the actual mean value to lie. We can 
summarise this as follows. 

i. Observe the required variable W for n runs 
ii. From these n observations, compute the observed mean W0 and the 

observed variance aw0 2 

iii. Obtain the required Student's t-parameter to5(1-aJ,(n-lJ for a confidence 
Ievel a 

iv Use Eq. (7.6) to compute the range ofthe confidence interval within 
which we would expect the actual mean E{W} to lie with ( a x 1 00) 
percent confidence. 

Note that if the confidence interval obtained in this fashion is not tight 
enough to suit the experimental requirements then it can be made tighter by 



274 Chapter 7 

doing more experimental runs. This will change the value of n in the steps 
given above and will Iead to tighter confidence intervals. The usual 
procedure followed is to keep doing simulation runs of the experiment until 
the confidence interval for each ofthe required result variables become small 
enough to be acceptable for the specified Ievel of confidence. Note that, 
given the confidence Ievel, it is not possible to specify in advance the 
number of simulation runs that will be required to get the required tightness 
of the confidence interval for the observed variable. To complicate matters 
further, if a number of variables are being observed, then the confidence 
intervals obtained may be different for each of them. The simulation runs 
will have to be continued until the required confidence intervals of all the 
variables are individually satisfied, i.e. the confidence interval of each of the 
variables are equal or smaller than the corresponding required Ievel. 

While reporting the results of a simulation experiment, it would be 
desirable to mention the confidence estimate ( confidence Ievel and 
confidence interval) associated with each of the observed variables. 
Typically, reporting results in this fashion would be more meaningful than 
giving just the mean results. 

7.5 Transient Behaviour and the Warm-up Interval 

Steady State 

0 Tw T 
Time 

Figure 7. 9. Transient Behaviour in a Simulation Run 

In Figure 7.9, we have illustrated the typical behaviour of a simulation 
parameter W during a simulation run carried out over a (simulation) time 
interval (0, 1). Note that the parameter W being observed goes through a 
transient stage when the simulations are first started but eventually reaches 
steady state values. (We obviously asstune that the simulations are being 
done with input parameters suchthat the systemwill be able to reach steady 
state.) Though W has been shown to be a continuous random variable, such 
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as the time spent in system, discrete variables like the system state will also 
show analogaus behaviour - except that they will take discrete values. Since 
the simulation output is typically required under equilibrium conditions, we 
really should monitor and record the values of W (for calculating the 
observed mean and variance for the simulation run) only during the time 
when the system has reached equilibrium. This is done by specifying an 
initial warm-up interval, which should be at least as !arge as the transient 
duration, during which system statistics are not recorded. 

In Figure 7.9, looking at the time trace of W(t), we have decided to Iabel 
the interval 0 ::; t < T w, as the transient interval and the interval T w::; t < T as 
the one during which the simulation has reached equilibrium conditions. The 
warm-up interval, mentioned earlier, should be at least as !arge as (0, Tw), if 
not !arger. Deciding a reasonable value for Tw seems obvious from the plot 
for W(t) shown in Figure 7.9 but in practice would be hard to do 
automatically inside a computer program. The reason for this lies in the fact 
that the effect of transients and the transient interval are both going to be 
highly dependent on the actual simulation model and even possibly on the 
particular variable being observed. 

We cannot really give any general guidelines on how the warm-up 
interval, covering the effects of the transients, should be chosen. One 
possibility isthat we choose the overall simulation interval (0, T) to be !arge 
enough so that the effects of the transients will be negligible and may be 
ignored. The other option is to actually observe the simulation experiment 
for a few independent runs and base a suitable choice of the warm-up period 
based on the observations made for these runs. Subsequent runs may be done 
using this value of the warm-up period (during which data is not collected) 
for calculating the observed means and variances. 

7.6 Data Collection in Steady State Conditions 

We briefly discuss in this section some of the common methods used to 
gather steady state observation data during a simulation run. The problem 
specifically considered is the way one can get n independent simulation runs 
over which the output parameters may be observed and estimated so that the 
results from the runs may be used to get a suitable confidence estimate. The 
three techniques commonly proposed for this are (i) The Subinterval Method, 
(ii) The Regenerative Method and (iii) The Replication Method. In our earlier 
discussions, we had in a way implied the use of the replication method as 
that is indeed the one that is most commonly used. 
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7.6.1 The Subinterval Method or the Method ofBatch Means 

This method really involves only one very long simulation run which is 
suitably subdivided into an initial transient period and n batches. Each of 
these batches is then treated as an independent run of the simulation 
experiment while no observations are made during the transient period 
which is treated as the warm-up interval. An example of this has been shown 
in Figure 7.1 0. Note that one would normally choose batch intervals of equal 
size but this is not mandatory. One can choose batch intervals of different 
lengths ifthere is a reasonable logic on which this may be based. 

Choosing a !arge batch interval size would effectively Iead to 
independent batches and hence, independent runs of the simulation as 
required for confidence estimation purposes. One advantage of this method 
isthat only one transient (warm-up) interval needs tobe accounted for and 
discounted and removed during the process of recording observations. Since 
the simulation would tend to run for a long simulation time in this approach, 
this would also tend to reduce the ill effects, if any, of not properly removing 
the transient period during the warm-up interval. 

: . : . ·~·· 

Time 

Figure 7.1 0. The Subinterval Method or the Method of Batch Means 

One disadvantage of this approach is that thc batchcs, as illustrated in 
Figure 7.1 0, may not really be independent. Statistically, one can make the 
observation that high values of an observed parameter will tend to follow 
high values and low values will tend to follow low values. This would be 
especially true if the batch sizes are not !arge enough and will Iead to 
significant correlation between successive batches. Since the confidence 
estimation measures are based on the independence of the individual 
simulation runs, this Iack of independence between successive batches, if 
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sufficiently serious, may have a serious impact on the accuracy of the 
confidence estimation procedures. 

7.6.2 The Regenerative Method 

This method is basically intended to reduce the problern of correlation 
between the batches that one may encounter in the Subinterval Method of 
Section 7.6.1. We still use one long run as before but select an appropriately 
identified state of the system as the regenerative state and the time instants 
when this occurs as the regenerative points. The batches start and end at 
theseregenerative points once steady state has been reached. This method is 
illustrated in Figure 7 .11. 

Choosing the regenerative state appropriately may not be as difficult as it 
may first appear. Consider the variable N representing the number in a 
queue, which is being simulated. This will typically build up from a zero 
value but, if the system is stable, then it will also eventually return to a zero 
value. This will happen repeatedly with the system state fluctuating between 
positive, non-zero integer values in between the zero-value points. The zero­
value points are interesting because once the system reaches this state, its 
future evolution does not depend on how it actually reached this state. This 
behaviour of the system implies that the way the system evolves in one idle­
to-idle cycle of this type will not depend on previous cycles of this type and 
will not affect future cycles ofthistype either. Since this is the case, we can 
indeed choose these idle-to-idle cycles as the independent batches suggested 
in the earlier description and illustrated in Figure 7.11. 

e Regenerative Points 

Batch k Batch k+l 

Time 

Figure 7.11. The Regenerative Method of Choosing Independent Batches 

This method is qualitatively better at ensuring independence between 
successive batches than the earlier Subinterval Method. Apart from the fact 
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that one must correctly identify the regenerative states, this method does 
have a few problems that should be considered. Firstly, the time interval 
between regenerative points may be long - if this happens then one will need 
to run the simulation for a long time (in terms of the simulation time) in 
order to get a sufficient number of independent batches. The adverse effect 
of this, if it happens, will also be that only a few batches may be obtainable 
even in a Jong simulation run. If this is the case then it will adversely affect 
the computation of the confidence intervals for confidence estimation 
purposes. One other problern is that the batch sizes and their duration will 
themselves be random in nature. lt may be necessary to account for this in 
our computations. 

7 .6.3 The Replication Method 

This method is the one most popularly used and had been implied in a 
way in our earlier descriptions. This was basically the suggested technique 
for getting n independent runs of the simulation experiment by running the 
simulator n times with different initial random seeds for the simulator's 
random number generator. We have illustrated an example of this in Figure 
7.12 where the independent runs for the two batches, batch k and batch k+ 1 
are shown with their own transient (warm up) intervals and the time intervals 
during which the system reaches steady state in these two runs. 

ßatch k Batch k+l 

Time Time 

Figure 7.12. The Replication Method 

In this case, n independent replications ofthe simulation run are done. In 
each case, an appropriately selected transient (warm up) period is removed 
from each run before the data collection is started. For the observed intervals 
after the warm up period (i.e. the intervals during which the system reaches 
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steady state), data is collected and processed for the point estimates of the 
variables being observed and for their subsequent confidence estimation. 

The n simulation runs must be truly independent. In practice, this may 
generally be satisfactorily achieved by selecting different seeds for starting 
the random number generator used by the simulator. In order to achieve 
independent replications in this fashion, one should ensure the use of a good 
random number generator and sufficiently statistically different starting 
seeds for each run. This method does require separate warm up periods to be 
estimated and removed from each run to eliminate the effects of transients. 
Apart from this, the replication method is simple and easy to use and is the 
method typically used to generate multiple simulation runs of the simulation 
experiment for confidence estimation. 
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APPENDIX 7.1 GENERATING RANDOM NUMBERS 

In most computer systems, one can find a random number generator (usually a function 
called rand) which may be called to generate uniforrnly distributed real valued random 
numbers between 0 and I. Typical usage of this generator is to specify a seed first before the 
random number gcnerator is used. The seed is usually any randomly chosen !arge integer with 
the number of digits corresponding to the largest size integer timt may be represented on that 
computer. Once thc sced has been speeified, calling the random number generator function 
repeatedly will generate a sequence of uniforrnly distributed random numbers. Note that the 
same sequence of randorn nurnbers is always generated if the seed vulue is the sarne. 
However, specifying a different seed will generate a different sequenee of uniformly 
distributed random numbers. 

The random number generator that typieally comes with the systern is called ran(iseed) or 
rand(iseed). The usual method of ealling this funetion would be to say 

x = rand(iseed) 

whieh would give x as the next randorn nurnber generated and will also automatically updatc 
iseed for the next time the function is called. The random nurnber generators supplied with 
most computer systerns are usually quite poor in guaranteeing true randomness of the 
sequence ofrandom nurnbers they generate. It is usually a much better idea to write oncs own 
or to use a random nurnber generaring routine from a good reference source such as 
Numerical Recipes [PTV92]. 

Since most system supplied or refereneed random number generators only generate a 
sequence of random numbers uniformly distributed between 0 and I (i.e. random number X 
O<X<I), we still have the problem ofusing this random number generator to generate randorn 
nurnbers with other distributions. (Some systems may provide means of generaring Gaussian 
random variables or cxponentially distributed random variables.) 

The easiest way to do this is by using the so-called Transformation Method. Suppose we 
have a randorn nurnber generator generating uniforrnly distributed randorn nurnbers X 
between 0 and I. If we are actually required to generate a random variable Y with cumulative 
distribution function F(y), then we can do that by using the following transformation to 
generate the required Y from X. 

(A 7.1) 

This would mean that we first get X and thcn apply the transforrnation of Eq. (A 7. l) to get 
Y. for example, if we want to generate the random variable Y to have an exponential 
distribution (cumulative distribution function of e.;_y) i.e. for Poisson arrival processes or 
exponentially distributed serviee times) of mean X 1 then the required transforrnation needed 
is 

Y=-ln(X) 
A. 

(A7.2) 

The transformation method is simple but suffers from the inherent disadvantage that one 
cannot really use it unless the function F reprcsenting the curnulative distribution funclion of 
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the target random variable can be inverted, i.e. its inverse function F -J (X) may be evaluated 
either analytically or numerically. 

The Rejection Method offers a more general approach to generate random variables with a 
required distribution. The only requirement is that the target random variable must have a 
probability density functionfy(y), which is known and computable. (Note thatfy(y)dy actually 
gives the probability that the random variable Y falls between y and y+dy.). It does not 
require that the cumulative distribution function be readily computable orthat it be in a form 
where its inverse can be analytically or numerically computed, as required in the 
transformation method. Discussion of this method and of computer programs implementing it 
for various target distributions may be found in the literature, e.g. in [PTV92]. 
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