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4.1. Introduction

• The problem of estimating one signal from
another is one of the most important in signal
processing.

• In many applications, the desired signal is not
available or observable directly.
– The observable signal is a degraded or distorted

version of the original signal.

• The signal estimation problem is to recover, in the
best way possible, the desired signal from its
degraded replica.
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• Typical Examples:

– Desired signal may be corrupted by strong
additive noise.

– Signal distorted by magnitude and phase
distortion due to channel properties.

– Image blurring due to motion between camera
and object.

– Infer one signal from observation of another.
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General Problem
• Estimate a random signal xn on the basis of

available observations of a related signal yn.

• What does best estimate mean?
– The maximum a posteriori (MAP) criterion.

– The maximum likelihood (ML) criterion.

– The mean square (MS) criterion.

– The linear mean-square (LMS) criterion.
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• Assume that the desired signal xn is to be
estimated over a finite time interval na≤n ≤nb.

• Estimation is therefore determining the
functional dependence
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The maximum a posteriori (MAP) 
criterion

• Maximizes the a posteriori conditional density
of xn given that y already occurred.

• Therefore, the estimate is the most probable
choice resulting from the given observation.

• In general, results in non-linear equations.
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Maximum Likelihood (ML)

• Selects estimate that maximizes the
conditional density of y given xn, that is

• Selects estimates as though the collected
observations y are the most likely to occur.

• In general, results in non-linear equations.
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Mean Square (MS)

• Minimizes the mean-square estimation error

• This solution is the conditional mean

• That is, the estimate is the expected value
given the observation y.

• In general, results in non-linear equations.
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Linear Mean Square (LMS)

• Minimizes the mean-square estimation error
assuming the estimate is linear function of
the observations,

• Results in linear equations.

– Easier to solve
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Example: 

• A discrete-amplitude, constant in time signal x can
take on three values -1, 0, or 1 each with
probability of 1/3. This signal is placed on a known
carrier waveform cn and transmitted over a noisy
channel. The received samples are of the form

where vn are white Gaussian noise IID(0,σ2).

• Obtain and compare the four alternative
estimates.

Bisrat Derebssa, SECE, AAiT, AAU



• Obtain the conditional probabilities

– p(y|x)

– p(x|y)

If x is given the only 
randomness in y is v

Law of total 
probability
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• MAP approximation

– Since p(x|y) is three impulses, it is the maximum of these
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• ML approximation
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• MS approximation

• LMS approximation (to be derived later)
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4.2. Linear Mean Square Error Estimation

• Design an estimator that provides an estimate of desired
y(n) using linear combination of observed data x(n)

• Goal is to obtain the coefficients ck(n) such that the MSE
is minimized.

• In general, the coefficients are different at each time
instant.
– Assuming the index n is obvious, it is usually dropped in

the equation.
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• Depending on the location of n with respect to 
the data segment
– Smoothing

– Filtering
• Observations in the present and past are taken

– Prediction
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• Conventions

– All random variables are assumed to have zero mean.

• If not, the mean is subtracted first.

– The number M of data components used in the
estimation is called the order of estimator.

– The coefficient values that minimize the mean square
error are called the linear MMSE (LMMSE) estimator,
c0.

– The estimate found using c0 is called the LMMSE
estimate
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• By using the linearity property of the expectation
operator

• Where

Power of desired response

Cross-correlation between observed 
data vector x and desired response y.

Autocorrelation matrix of the observed 
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• Note the MSE function P(c) :
– depends only on the second-order moments of the desired

response and the data,

– is a quadratic function of the estimator coefficients and
represents an (M + 1) dimensional surface with M degrees of
freedom.

– If the autocorrelation matrix, R, is positive definite, then P(c)
is bowl-shaped and has a unique minimum.
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• Putting the previous equation in “perfect square”.

• Note that only third term is dependent on c.

• In addition, since R is positive definite, its inverse
is also positive define.

– The third term is always non-negative definite.

– The lowest error is when the third term is zero.
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• These are called the normal equations:
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• The minimum error is then

• Note that:

– If x and y are uncorrelated, the error is the worst
P0=Py.

– As long as d is not zero, the MSE decreases the
error.

• The normalized MSE is used for comparison
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• Any deviation from the optimum vector
increases the error.

• Note that the excess MSE depends on the
input correlation matrix only.

– Any deviation from the optimum can be detected
by monitoring the MSE.
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4.3. Principal component analysis of 
LMSE

• If R is expressed in terms of its eigenvalues
and eigenvectors,

• Transforming the optimum parameter vector
by the eigenvectors

• Substituting these into the normal equations
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• Since Λ is diagonal,

• The MMSE becomes

• Note that since all the eigen values are positive,
increasing the estimator order will always result
in lower estimation error.
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Assignment 4.1

• Show that the estimation error is orthogonal 
to the data used for estimation.
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4.4. LDLH Decomposition of the 
Normal Equations

• By taking the Hermatian and positive definiteness of
the autocorrelation matrix, it can be written as

• When the decomposition is known

Solution is trivial
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Example: when M=4
• LDLH decomposition
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• Solving for k

• Solving for c

Obtained in a forward way,
Previous values of k do not 
depend on next values

Obtained in a backward way
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Obtained in a forward way,
Previous values of k do not 
depend on next values

Obtained in a backward way
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• By using the LDLH decomposition, the MMSE
can be obtained without using the optimum
estimator coefficients

• Since ξi>0, increasing the order of the filter
can only reduce the MMSE.

– Therefore better estimate.
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A computationally effective linear 
MMSE estimation 
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4.5. Optimum FIR Filters

• The optimum filter forms an estimate of the desired 
response y(n) by using samples from a related input 
signal x(n). 
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• Note also that, the above problem is identical 
to the problem of linear MSE estimation.

• Therefore,

Hermitian, but not Toeplitz
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Stationary Wiener Filter

• If the input and desired response are jointly wide-
sense stationary, the correlation matrix and cross-
correlation vector do not depend on the index n,

Wiener-Hopf equation

Hermitian and 
Toeplitz
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Comparison with conventional 
frequency selective filters

Conventional frequency-selective 
filters 

Optimum Filters

Designed to shape the spectrum of
the input signal within a specific
frequency band in which it operates.

Designed using the second-order
moments of the processed signals
and have the same effect on all
classes of signals with the same
second-order moments.

Effective only if the components of
interest in the input signal have their
energy concentrated within non-
overlapping bands.

Effective even if the signals of
interest have overlapping spectra

To design the filters, we need to
know the limits of these bands, not
the values of the sequences to be
filtered.

These filters are optimized to the
statistics of the data and thus
provide superior performance when
judged by the statistical criterion.
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Optimum Infinite Impulse Response 
Filters

• The normal equations for optimum IIR filters are the
same for FIR filters;

– Only the limits in the convolution summation and the
range of values for which the normal equations hold are
different.

• Both are determined by the limits of summation in
the filter convolution equation.

Only analytical solutions 
are possible due to infinite 

summation
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Non-causal IIR Filters

• By using the Z-transform, for non-causal IIR
filters, the convolution becomes
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Causal IIR Filters

• Since the convolution is defined for positive index
values for causal filters, Z-transform cannot be used

• However, if the input is white, the solution is trivial.

• Since it is causal
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Construction of the Wiener Filter by 
Prewhitening

• If we are estimating the signal from white-noise
sequence with delta-function autocorrelation,
the solution would be much simpler.

• Then
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• By using the fact that any random process can
be modeled as the output of an LTI system
with white-noise excitation,

• Where, the whitening filter has to satisfy

Spectral factorization
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• Then y(n) is estimated from the white noise with

– This is the one-sided z-transform of ryw(l). 

• To obtain Ryw(Z)

Bisrat Derebssa, SECE, AAiT, AAU



Bisrat Derebssa, SECE, AAiT, AAU



4.6. Filtering Additive Noise

• Assume a signal has been corrupted by additive
noise and it is required to estimate the
undegraded signal

– Where, the signal and noise are uncorrelated and 
zero mean.

– They have known autocorrelation sequences ry(l) 
and rv(l).
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• To design the optimum filter, the autocorrelation
matrix rx(l) and the cross-correlation ryx(l) are
required.

• Taking the z-transform of the above equations

• The noncausal optimum filter is then given by
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Example: 

• Extract a random signal with known autocorrelation
sequence which is corrupted by additive white noise.

The signal and noise are uncorrelated.

α=4/5 and

variance of noise=1
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• Solution:

– Since they are uncorrelated

– The complex PSD are
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• Non-causal filter is

• The MMSE is then
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• Causal filter

– Taking the causal part
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• Mth-order FIR filter
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Assignment 4.2

• Suppose it is desired to estimate a signal xn on
a basis of noisy observation

– The noise is white noise with 1 variance and
uncorrelated with xn.

– Suppose the signal xn is a first order Markov
process with variance of w 0.82.

• Design the optimum linear filter.
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Assignment 4.3

• A random process x(n) is said to be exactly
predictable if

• Show that a random process is exactly
predictable if its PSD consists of impulses.
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