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Source Coding 

 Information sources may be analog or discrete (digital) 
 Analog sources: Audio or video 

 Discrete sources: Computers, storage devices such as magnetic or 
optical devices 

 Whatever the nature of the information sources, digital 
communication systems are designed to transmit 
information in digital form 

 Thus the output of sources must be converted into a format 
that can be transmitted digitally 
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Source Coding …  

 This conversion is generally performed by the source 
encoder, whose output may generally assumed to be a 
sequence of binary digits 

 Encoding is based on mathematical models of information 
sources and the quantitative measure of information 
emitted by a source 

 We shall first develop mathematical models for information 
sources 
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Mathematical Models for Information Sources 

 Any information source produces an output that is random 
and which can be characterized in statistical terms 

 A simple discrete source emits a sequence of letters from a 
finite alphabet 
 Example: A binary source produces a binary sequence such as 

1011000101100; alphabet: {0,1} 

 Generally, a discrete information with an alphabet of L possible 
letters produces a sequence of letters selected from this alphabet 

 

 Assume that each letter of the alphabet has a probability of 
occurrence pk such that 

    pk =P{X = xk},    1≤ k ≤ L; and  
 

          ∑ pk = 1 
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Two Source Models 

1. Discrete Sources 
• Discrete Memoryless source (DMS): Output sequences from the 

source are statistically independent 
• Current output does not depend on any of the past outputs 

 

• Stationary source: The discrete source outputs are statistically 
dependent but statistically stationary 
• That is, two sequences of length n, (a1, a2, …..an) and (a1+m, a2+m, 

…..an+m) each have joint probabilities that are identical for all n  1 
and for all shifts m 

 

2. Analog source has an output waveform x(t) that is a 
sample function of a stochastic process X(t), where we 
assume X(t) is a stationary process with autocorrelation 
Rxx() and power spectral density Φxx(f) 
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Mathematical Models …  

 When X(t) is bandlimited stochastic process such that 
Φxx(f) = 0 for │f│≥ W; by the sampling theorem 

 

 

 

 
 Where {X(n/2W)} denote the samples of the process at the 

sampling rate (Nyquist rate) of f = 2W samples/s 
 

 Thus applying the sampling theorem we may convert the 
output of an analog source into an equivalent discrete-
time source 
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Mathematical Models …  

 The output is statistically characterized by the joint pdf  
p(x1, x2 , …xm) for m ≥ 1 where xn=X(n/2W); 1≤ n ≤m, are 
the random variables corresponding to the samples of X(t) 
 

 Note that the samples {X(n/2W)} are in general continuous 
and cannot be represented digitally without loss of 
precision 

 Quantization may be used such that each sample is a 
discrete value, but it introduces distortion (More on this 
later) 
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Logarithmic Measure of Information 

 Consider two discrete random variables X and Y such that 

    X = {x1, x2,……xn} and Y = {y1,y2,…….ym} 

 Suppose we observe Y = yj and wish to determine, 
quantitatively, the amount of information Y = yj provides 
about the event  

   X = xi,        i = 1,2,…..n 
 

 Note that if X and Y are statistically independent Y = yj 
provides no information about the occurrence of X = xi 

 If they are fully dependent Y = yj determines the 
occurrence of X = xi 

 The information content is simply that provided by X = xi 
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Logarithmic Measure of Information …  

 A suitable measure that satisfies these conditions is the 
logarithm of the ratio of the conditional probabilities       
P{X = xi│Y = yj} =  P{xi│yj} and P{X = xi} = p(xi) 

 

 Information content provided by the occurrence of Y = yj 
about the event X = xi is defined as 

 

 

 

 I(xi , yj) is called the mutual information between xi and yj 

 Unit of the information measure is the nat(s) if the natural 
logarithm is used and bit(s) if base 2 is used 

 Note that ln a = ln 2. log2a = 0.69315 log2a 
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Logarithmic Measure of Information …  

 If X and Y are independent I(xi , yj) = 0 

 If the occurrence of Y = yj uniquely determines the 
occurrence of X = xi,  

                I(xi , yj) = log (1/ p(xi)) 

 i.e., I(xi , yj) = -log p(xi) = I(xi) – self information of event X 
 

 Note that a high probability event conveys less 
information than a low probability event 

 For a single event x where  p(x) = 1, I(x) = 0 the 
occurrence of a sure event does not convey any information 
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Logarithmic Measure of Information …  

Example  

1. A binary source emits either 0 or 1 every τs seconds with 
equal probability. Information content of each output is 
then given by 

                 I(xi) = -log2 p = -log2 1/2 = 1 bit,     xi = 0,1 

2. Suppose successive outputs are statistically independent 
(DMS) and consider a block of binary digits from the 
source in time interval kτs 

 Possible number of k-bit block = 2k = M, each of which is 
equally probable with probability 1/M = 2-k 

                I(xi) = -log22-k = k bits in kτs sec 

             (Note the additive property) 
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Logarithmic Measure of Information …  

 Now consider the following relationships 

 

 

 
 

 and since 

 

 
 

 

 Information provided by yj about xi is the same as that 
provided by xi about Y = yj 
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Logarithmic Measure of Information …  

 Using the same procedure as before we can also define 
conditional self-information as 

 

 
 

 Now consider the following relationships 

 

 

 

 Which leads to 
 

 

 Note that          is self information about X = xi after having 
observed the event Y = yj 
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Logarithmic Measure of Information …  

 Further, note that   
                                                       and thus 

 

 

 Indicating that the mutual information between two events 
can either be positive or negative 
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Average Mutual Information 

 Average mutual information between X and Y is given by 
 
 
 
 

 

 Similarly, average self-information is given by 
 
 
 
 

 where X represents the alphabet of possible output letters 
from a source 

 H(X) represents the average self information per source 
letter and is called the entropy of the source 
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Average Mutual Information …  

 If p(xi) = 1/n for all i, then the entropy of the source 
becomes 

 

 

 In general, H(X) ≤ log n for any given set of source letter 
probabilities 
 Thus, the entropy of a discrete source is maximum when the output 

letters are all equally probable 
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Average Mutual Information …  

 Consider a binary source where the letters {0,1} are 
independent with probabilities  

                 p(x0=0)=q or p(x1=1)=1-q 

 The entropy of the source is given by  

H(X)= -q log2q – (1-q) log2(1-q) = H(q)  

 whose plot as a function is shown below  
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Average Mutual Information …  

 In a similar manner as above, we can define conditional 
self-information or conditional entropy as follows 

 

 

 

 Conditional entropy is the information or uncertainty in X 
after Y is observed 

 From the definition of average mutual information one can 
show that 
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Average Mutual Information …  

 Thus I(X,Y) = H(X) – H(X/Y) and H(X) ≥ H(X|Y), with 
equality when X and Y are independent 

 H(X/Y) is called the equivocation  

 It is interpreted as the amount of average uncertainty 
remaining in X after observation of Y   

 

 H(x) – Average uncertainty prior to observation 

 I(X;Y) – Average information provided about the set X by 
the observation of the set Y 
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Average Mutual Information …  

 The above results can be generalized for more than two 
random variable 

 Suppose we have a block of k random variables 
x1,x2,…..xk with joint probability P(x1,x2,…..xk) 

 The entropy of the block will then be given by 
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Continuous Random Variables - Information Measure 

 If X and Y be continuous random variables with joint pdf     
f (x,y) and marginal pdf’s f (x) and f (y)  

 The average mutual information between X and Y is 
defined as 

 

 

 

 The concept of self information does not exactly carry over 
to continuous random variables since these would require 
infinite number of binary digits to exactly represent them 
and thus making their entropies infinite 
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Continuous Random Variables …  

 We can, however, define differential entropy for continuous 
random variable as 

 

 
 

 And the average conditional entropy as 

 

 

 

 Average mutual information is then given by               
I(X,Y)= H(X) - H(X/Y) or I(X,Y) = H(Y) - H(Y/X) 
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Continuous Random Variables …  

 If X is discrete and Y is continuous, the density of Y is 
expressed as 

 

 

 The mutual information about X = xi provided by the 
occurrence of the event Y = y is given by 

 

 

 

 The average mutual information between X and Y is 
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