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Y Figure 15.25 Parallel conducting wires of Practice Ex-
‘ ercise 15.5.
P )
Xo
Yo
T : > > x
x=0 x=1L

TABLE 15.2 Capacitance
for Practice Exercise 15.5

X, m)  C (pP)

0.0 491
0.2 4.891
04 4.853
0.6 4.789
0.8 4.71
1.0 4.643

15.5 THE FINITE ELEMENT METHOD

The finite element method (FEM) has its origin in the field of structural analysis. The
method was not applied to EM problems until 1968." Like the finite difference method, the
finite element method is useful in solving differential equations. As noticed in Section
15.3, the finite difference method represents the solution region by an array of grid points;
its application becomes difficult with problems having irregularly shaped boundaries. Such
problems can be handled more easily using the finite element method.

The finite element analysis of any problem involves basically four steps: (a) discretiz-
ing the solution region into a finite number of subregions or elements, (b) deriving govern-
ing equations for a typical element, (c) assembling of all elements in the solution region,
and (d) solving the system of equations obtained.

A. Finite Element Discretization

We divide the solution region into a number of finite elements as illustrated in Figure 15.26
where the region is subdivided into four nonoverlapping elements (two triangular and two
quadrilateral) and seven nodes. We seek an approximation for the potential V, within an

*See P. P. Silvester and R. L. Ferrari, Finite Elements for Electrical Engineers. Cambridge, England:
Cambridge Univ. Press, 1983.
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Figure 15.26 A typical finite element subdi-
vision of an irregular domain.
i node no.

element no.

element e and then interrelate the potential distributions in various elements such that the
potential is continuous across interelement boundaries. The approximate solution for the
whole region is

N
Vix, y) = > V(x,y) (15.45)
e=1

where N is the number of triangular elements into which the solution region is divided.
The most common form of approximation for V, within an element is polynomial ap-
proximation, namely

Vix,y) =a + bx + ¢y (15.46)
for a triangular element and
V(x,y) =a+ bx + cy + dxy (15.47)

for a quadrilateral element. The potential V, in general is nonzero within element e but zero
outside e. It is difficult to approximate the boundary of the solution region with quadrilat-
eral elements; such elements are useful for problems whose boundaries are sufficiently
regular. In view of this, we prefer to use triangular elements throughout our analysis in this
section. Notice that our assumption of linear variation of potential within the triangular
element as in eq. (15.46) is the same as assuming that the electric field is uniform within
the element; that is,

E .= —-VV,= —(ba, + ca,) (15.48)

B. Element Governing Equations

Consider a typical triangular element shown in Figure 15.27. The potential V,;, V,,, and
Vs at nodes 1, 2, and 3, respectively, are obtained using eq. (15.46); that is,

Vo I x oy a
VeQ = 1 X2 Vo b ( 1 549)
Ves 1 x5 i c
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The coefficients a, b, and ¢ are determined from eq. (14.49) as

a 1L x oy ! Va
bl=11 x ¥ Vez
¢ 1 x3 y; Ves

Substituting this into eq. (15.46) gives

(2y3 = x3y2)  (o3y;p — X1y3) (Y2 — x2vy) Ve
Ve=11 x y]EAj (y2 = ¥y3) 3 =y o —y) Ve
(x5 — x2) (x; — x3) (x; — x1) Ves

or

3

Ve = E a,-(x, y) Vei

i=1

where

1
=y [(xoy3 = X3y2) + (2 — y3) x + (k3 — x2) ¥l

1
o= [Caayr — xy3) + (s =y x + () — x3) )]

1
a3 = ﬂ[(xl)’z —xXy) (YD) x X))yl

and A is the area of the element ¢; that is,

I x »
2A = 1 X2 Y2
I x3 y3

= (xyy — x2y) T (ayr — x1y3) + (ys — x3y2)
or

A=121Tx = %) — y) — (5 — x)2 — ¥l

(15.50)

(15.51)

(15.52a)

(15.52b)

(15.52¢)

(15.53)

The value of A is positive if the nodes are numbered counterclockwise (starting from any
node) as shown by the arrow in Figure 15.27. Note that eq. (15.51) gives the potential at
any point (x, y) within the element provided that the potentials at the vertices are known.
This is unlike the situation in finite difference analysis where the potential is known at the
grid points only. Also note that «; are linear interpolation functions. They are called the

element shape functions and they have the following properties:

_ 1, [ =]
aixj,yj)“ 0 P %

(15.54a)
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y Figure 15.27 Typical triangular element; the local
node numbering 1-2-3 must be counterclockwise as
indicated by the arrow.

3
> ax,y) =1 (15.54b)
i=1

The shape functions «; and «,, for example, are illustrated in Figure 15.28.
The energy per unit length associated with the element e is given by eq. (4.96); that is

1 1
We=1 j g |[E[*dS = > J g |VV,|>dS (15.55)

where a two-dimensional solution region free of charge (og = 0) is assumed. But from
eq. (15.51),
3
VW, = > V, Vo (15.56)
i=1

Substituting eq. (15.56) into eq. (15.55) gives

1 3
We = E E 2 BVEI":j VO[,' : VC(_I dS} Vej (1557)

i=1 j=1

If we define the term in brackets as

cy = J Ve, - Vo, dS (15.58)

Figure 15.28 Shape functions «; and
o, for a triangular element.
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we may write eq. (15.57) in matrix form as
1
We =5 eVl [CUT1V.] (15.59)

where the superscript 7 denotes the transpose of the matrix,

Vel
v, =| V. (15.60a)
Ve3

and

ci o cy
[C9l=|CY C% %R (15.60b)
ch ¢t 8
The matrix [C' is usually called the element coefficient matrix. The matrix element Cgf) of

the coefficient matrix may be regarded as the coupling between nodes i and j; its value is
obtained from eqs. (15.52) and (15.58). For example,

cly = J Vo - Va, dS

1
= e (2 = ¥3)3 — y1) + (63 — (0 — x3)] JdS (15.61a)

1
= (2 = y3)ys — ¥y + (3 — x)(x; — x3)]

Similarly:
c = é [(vy — v + (63 — x2)7] (15.61b)
Ciy = i (2 = ¥3)1 — y2) + (63 — 22 — %)) (15.61c)
c = i (s — ¥ + Cty — 23] (15.61d)
Cy = ﬁ (03 = ¥y = ¥2) + O = x3)002 = xp)) (15.61e)
Y = ﬁ (61 = y2F’ + (2 — %)’ (15.61f)
Also

Cf=cg ci=ch B=cy (15.61g)
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However, our calculations will be easier if we define
Py =2y Py = (y; =y Py = (y; — y2) (15.62a)
0 = (x3 — x2), Oy = (x) — X3), 3= (X = x))

With P; and Q, (i = 1, 2,3 are the local node numbers), each term in the element coeffi-
cient matrix is found as

L1
€ = 1 PP + 0.0) (15.62b)

where

1
A =5 (P05 — PsQy) (15.62¢)

3 3
Note that P, + P, + Py = 0= Q, + 0, + Qs and hence >, C’ = 0= Y C{. This
i=1 =1

may be used in checking our calculations.

C. Assembling of All Elements

Having considered a typical element, the next step is to assemble all such elements in the
solution region. The energy associated with the assemblage of all elements in the mesh is

N
1
W= 2 W.="¢ M m (15.63)
e=1
where
_V]_
v,
[Vi=1 "~ (15.64)
v,

n is the number of nodes, N is the number of elements, and [C] is called the overall or
global coefficient matrix, which is the assemblage of individual element coefficient matri-
ces. The major problem now is obtaining [C] from [C @,

The process by which individual element coefficient matrices are assembled to obtain
the global coefficient matrix is best illustrated with an example. Consider the finite element
mesh consisting of three finite elements as shown in Figure 15.29. Observe the numberings
of the nodes. The numbering of nodes as 1, 2, 3, 4, and 5 is called global numbering. The
numbering i-j-k is called local numbering and it corresponds with 1-2-3 of the element in
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Figure 15.29 Assembly of three elements: i-j-k cor-
responds to local numbering 1-2-3 of the element in
Figure 15.27.

Figure 15.27. For example, for element 3 in Figure 15.29, the global numbering 3-5-4 cor-
responds with local numbering 1-2-3 of the element in Figure 15.27. Note that the local
numbering must be in counterclockwise sequence starting from any node of the element.
For element 3, for example, we could choose 4-3-5 or 5-4-3 instead of 3-5-4 to correspond
with 1-2-3 of the element in Figure 15.27. Thus the numbering in Figure 15.29 is not
unique. However, we obtain the same [C] whichever numbering is used. Assuming the par-
ticular numbering in Figure 15.29, the global coefficient matrix is expected to have the
form

Cll C12 C13 C|4 C15
Gyt Cn Gy Cy Gy
[Cl=|GCy G Cy Gy G (15.65)
Cy Cun Cy5 Cu Cs
C51 C52 C53 C54 C55

which is a 5 X 5 matrix since five nodes (n = 5) are involved. Again, C; is the coupling
between nodes i and j. We obtain C;; by utilizing the fact that the potential distribution must
be continuous across interelement boundaries. The contribution to the i, j position in [C}]
comes from all elements containing nodes i and j. To find C,;, for example, we observe
from Figure 15.29 that global node 1 belongs to elements 1 and 2 and it is local node 1 in
both; hence, ’

C,, =Y + ¢y (15.66a)
For C,,, global node 2 belongs to element 1 only and is the same as local node 3; hence,
C,, = C& (15.66b)

For C,,, global node 4 is the same as local nodes 2, 3, and 3 in elements 1, 2, and 3, re-
spectively; hence,

Cu = C% + CH + CH (15.66¢)
For Cy4, global link 14 is the same as the local links 12 and 13 in elements 1 and 2, respec-

tively; hence,

Cu=CY+c§y (15.66d)

Since there is no coupling (or direct link) between nodes 2 and 3,

Coy = C3=0 (15.66¢)
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Continuing in this manner, we obtain all the terms in the global coefficient matrix by in-
spection of Figure 15.29 as

ClY + ¢ Cly CF ci? + ¢ 0
sy sy 0 cy 0
[Cl=|Cc8 0 CR+CY CH+CR  CRi (1567
C + €Y CF P+ CR+CH+cg Y
0 0 5 s s

Note that element coefficient matrices overlap at nodes shared by elements and that there
are 27 terms (nine for each of the three elements) in the global coefficient matrix [C]. Also
note the foliowing properties of the matrix [C]:

1. Itis symmetric (C;; = C;;) just as the element coefficient matrix.

2. Since C;; = 0 if no coupling exists between nodes i and j, it is evident that for a
large number of elements [C] becomes sparse and banded.

3. Ttis singular. Although this is not so obvious, it can be shown using the element co-
efficient matrix of eq. (15.60b).

D. Solving the Resulting Equations

From variational calculus, it is known that Laplace’s (or Poisson’s) equation is satisfied
when the total energy in the solution region is minimum. Thus we require that the partial
derivatives of W with respect to each nodal value of the potential be zero; that is,

W_aw _ W
oV,  av, v,
or
ow
— =0, k=1,2,. . .
av, n (15.68)

For example, to get dW/aV; = Q for the finite element mesh of Figure 15.29, we substitute
eq. (15.65) into eq. (15.63) and take the partial derivative of W with respect to V;. We
obtain

oW
0 === 2ViCuy + VoCiy + VaCiz + ViCiy + VsCis
1

+ Voo + V3G + ViCyy + VsCs,
or

0= VIC“ + VZCIZ + V3C13 + V4C14 + V5C15 (1569)
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In general, dW/9V, = 0 leads to

n

0= > V,Cy (15.70)
i=1

where n is the number of nodes in the mesh. By writing eq. (15.70) for all nodes
k=1,2,. . . n, we obtain a set of simultaneous equations from which the solution of
v = [Vi, Vs, . . ., V,] can be found. This can be done in two ways similar to those used
in solving finite difference equations obtained from Laplace’s (or Poisson’s) equation.

Iteration Method:

This approach is similar to that used in finite difference method. Let us assume that node 1
in Figure 15.29, for example, is a free node. The potential at node 1 can be obtained from

eq. (15.69) as

1 5
Vi = —— > VCy, (15.71)
Cn <=

11 i=

In general, the potential at a free node k is obtained from eq. (15.70) as

1 n
Vi=—— > VCu (15.72)

Ckk i=Li#k

This is applied iteratively to all the free nodes in the mesh with » nodes. Since Ci; = 0 if
node & is not directly connected to node i, only nodes that are directly linked to node k con-
tribute to Vi in eq. (15.72).

Thus if the potentials at nodes connected to node k are known, we can determine V,
using eq. (15.72). The iteration process begins by setting the potentials at the free nodes
equal to zero or to the average potential.

vave =172 (vmin + Vmax) (1573)

where Vi, and V. are the minimum and maximum values of the prescribed potentials at
the fixed nodes. With those initial values, the potentials at the free nodes are calculated
using eq. (15.72). At the end of the first iteration, when the new values have been calcu-
lated for all the free nodes, the values become the old values for the second iteration. The
procedure is repeated until the change between subsequent iterations becomes negligible.

Band Matrix Method:
If all free nodes are numbered first and the fixed nodes last, eq. (15.63) can be written
such that
1 Cy C %
W=-g[V V]{ﬁ" fPHfJ (15.74)
2 £ Cpf Cpp V,,
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where subscripts fand p, respectively, refer to nodes with free and fixed (or prescribed) po-
tentials. Since V), is constant (it consists of known, fixed values), we only differentiate with
respect to Vrso that applying eq. (15.68) to eq. (15.74) yields

CyV, + CpV, = 0

or
[Cql [VA = —[C,1 1V, (15.75)
This equation can be written as
[A] V] = [B] (15.76a)
or
[Vl = [A]"' [B] (15.76b)

where [V] = [V], [A] = [C}], and [B] = —[C,] [V,]. Since [A] is, in general, non-
singular, the potential at the free nodes can be found using eq. (15.75). We can solve
for [V] in eq. (15.76a) using Gaussian elimination technique. We can also solve for [V]
in eq. (15.76b) using matrix inversion if the size of the matrix to be inverted is not
large.

Notice that as from eq. (15.55) onward, our solution has been restricted to a two-
dimensional problem involving Laplace’s equation, V>V = 0. The basic concepts devel-
oped in this section can be extended to finite element analysis of problems involving
Poisson’s equation (V2V = —p /e, V’A = —puJ) or wave equation (V¢ — v?¢ = 0). A
major problem associated with finite element analysis is the relatively large amount of
computer memory required in storing the matrix elements and the associated computa-
tional time. However, several algorithms have been developed to alleviate the problem to
some degree.

The finite element method (FEM) has a number of advantages over the finite differ-
ence method (FDM) and the method of moments (MOM). First, the FEM can easily handle
complex solution region. Second, the generality of FEM makes it possible to construct a
general-purpose program for solving a wide range of problems. A single program can be
used to solve different problems (described by the same partial differential equations) with
different solution regions and different boundary conditions; only the input data to the
problem need be changed. However, FEM has its own drawbacks. It is harder to under-
stand and program than FDM and MOM. It also requires preparing input data, a process
that could be tedious.

Consider the two-element mesh shown in Figure 15.30(a). Using the finite element
method, determine the potentials within the mesh.
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y Figure 15.30 For Example 15.6: (a) two-element
mesh, (b) local and global numbering of the ele-
- 4 Node: (x, ») ments.
1 (0.8, 1.8)
3 2 (1.4,1.4)
_ : 3 (2.1,2.1)
V=10 4 (1.2,2.7)
— v=0 2
j I | . x

(a)

(b)

Solution:

The element coefficient matrices can be calculated using eq. (15.62). For element 1,
consisting of nodes 1-2-4 corresponding to the local numbering 1-2-3 as in Figure
15.30(b),

P, =-13, P, =09, Py =04

0, = -02, 0, = —04, 0; =06

A = 1/2(0.54 + 0.16) = 0.35
Substituting all these into eq. (15.62b) gives

1236 —0.7786 —0.4571
[CV] =] —0.7786  0.6929  0.0857 (15.6.1)
—0.4571  0.0857 03714

Similarly, for element 2 consisting of nodes 2-3-4 corresponding to local numbering 1-2-3
as in Figure 15.30(b),

P] = _06, P2 = ]3, P3 = _07

0, = —009, 0, =02, 0, =07

A

Il

1/2(0.91 + 0.14) = 0.525
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Hence,
0.5571 —0.4571 -0.1
[C?] = —0.4571 0.8238 —0.3667 (15.6.2.)

—0.1 —0.3667  0.4667

Applying eq. (15.75) gives

Co C24}[Vz} [cm CBHVI}
S 15.6.3
': C4 2 C 44 V4 C4 1 C43 V3 ( )

This can be written in a more convenient form as

10 00 Vi 1 0
R k] S il [
0 Cpp 0 Cy Vy —Cqyy —Cy
or
[C1{V] = [B] (15.6.4b)

The terms of the global coefficient matrix are obtained as follows:
Cy = C8 + CF = 0.6929 + 0.5571 = 1.25
Cin = Cyy = C) + C¥ = 0.0857 — 0.1 = —0.0143
Cy = C) + CF = 03714 + 0.4667 = 0.8381
C,y = C8) = —0.7786
Cy, = C% = —04571

—0.4571

Cy = Cgll)
Cyz = CF = —0.3667

Note that we follow local numbering for the element coefficient matrix and global num-
bering for the global coefficient matrix. Thus the square matrix [C] is obtained as

0 0 0

1
_10 1.25 0 —0.0143
Cl= 0 0 ) 0 (15.6.5)
0

—0.0143 0 0.8381
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and the matrix [B] on the right-hand side of eq. (15.6.4a) is obtained as

0
4.571

10.0
3.667

[B] = (15.6.6)

By inverting matrix [C] in eq. (15.6.5), we obtain

0

| 3708

4.438
Thus V; = 0, V, = 3.708, V5 = 10, and V,; = 4.438. Once the values of the potentials at

the nodes are known, the potential at any point within the mesh can be determined using
eq. (15.51).

PRACTICE EXERCISE 15.6

Calculate the global coefficient matrix for the two-element mesh shown in
Figure 15.31 when: (a) node 1-is linked with node 3 and the local numbering
(i — j — k) is as indicated in Figure 15.31(a), (b) node 2 is hnked with node 4 with
local numbermg asin Figure 15.31(b).

0.9964 0.05  =0.2464 —038

| L 005 07 =075 0.0
Answer: @)1 _go4er 075 15964 —0.6
~08 00 —06 14

1.333 - 07777 - 0.0 —1.056
®) -0.0777 - 08192 —-098  0.2386
0.0 —-0.98 204 -—1.06
~1.056 0.2386 —1.06 1.877

Node 1: (2, 1) Node 3: (2, 2.4)
Node 2. (3,2.5) Node4: (1.5,1.6)

3

~

(a) (b)

Figure 15.31 For Practice Exercise 15.6.
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Write a program to solve Laplace’s equation using the finite element method. Apply the
program to the two-dimensional problem shown in Figure 15.32(a).

Solution:

The solution region is divided into 25 three-node triangular elements with the total
number of nodes being 21 as shown in Figure 15.32(b). This is a necessary step in order
to have input data defining the geometry of the problem. Based on our discussions in
Section 15.5, a general Matlab program for solving problems involving Laplace’s equa-
tion using three-node triangular elements was developed as in Figure 15.33. The devel-

y Figure 15.32 For Example 15.7:
(a) two-dimensional electrostatic
1.0 problem, (b) solution region di-
vided into 25 triangular elements.

100V

(a)

214
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FINITE ELEMENT SOLUTION OF LAPLACE’S EQUATION FOR
TWO-DIMENSIONAL PROBLEMS

TRIANGULAR ELEMENTS ARE USED

ND = NO. OF NODES

NE = NO. OF ELEMENTS

¢ P o oe

o o

NP = NO. OF FIXED NODES {WHERE POTENTIAL IS PRESCRIBED)
% NDP(I) = NODE NO. OF PRESCRIBED POTENTIAL, I=1,2,...,NP
% VAL(I) = VALUE OF PRESCRIBED POTENTIAL AT NODE NDP({I)
% NL(I,J) = LIST OF NODES FOR EACH ELEMENT I, WHERE
% J=1,2,3 REFERS TO THE LOCAL NODE NUMBER
% CE(I,J) = ELEMENT COEFFICIENT MATRIX
% C(I,J) = GLOBAL COEFFICIENT MATRIX
% B(I) = RIGHT-HAND SIDE MATRIX IN THE SYSTEM OF
% SIMULTANEQOUS EQUATIONS; SEE EQ. (15.6.4)
% X(I), Y(I) = GLOBAL COORDINATES OF NODE I
% XL(J), YL(J) = LOCAL COORDINATES OF NODE J=1,2,3
% V({I) = POTENTIAL AT NCDE I

MATRICES P(I) AND Q (I) ARE DEFINED IN EQ. (15.62a)

LRSS SRS RS RS SA RS R RS EEEEEEREREREEEREERESEEEREEREEEEEEEESE]

FIRST STEP - INPUT DATA DEFINING GECMETRY AND
BOUNDARY CONDITIONS

IE R RS S SRR SRS SRR R R R A RS SRR AR SRS EREREEEEEESEEEEE RS

aC oe

90

clear
input (‘Name of input data file = ')

ER e b R b S I S A e I I S S e SR I S SR e b R S b ik R I R R R A i

SECOND STEP - EVALUATE COEFFICIENT MATRIX FOR EACH
ELEMENT AND ASSEMBLE GLOBALLY

SRS SRR RS RS SR RS R R SR E SRR RS SRR REREEREERESEEEEESEESEEEY

a0 o

zeros (ND, 1) ;

zeros (ND,ND) ;

or I=1:NE

% FIND LOCAL COORDINATES XL (J), YL{(J) FOR ELEMENT I
K = NL(I,[1:31);
XL = X(K);
YL = Y(K);

P=zeros(3,1);

It

M W oo
I

h

)
P(1) = YL(2) - YL(3);
P{2) = YL(3) - YL(1)};
P(3) = YL(1) - YL(2):
Q(1) = XL(3) - XL(2);
Q(2) = XL(1) - XL(3);
Q(3) = XL(2) - XL(1);
AREA = 0.5*abs( P{2)*Q(3) - Q(2}*P(3) );

Figure 15.33 Computer program for Example 15.7.
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DETERMINE COEFFICIENT MATRIX FOR ELEMENT I
CE=(P*P’'+Q*Q" )/ (4.0*AREA) ;
ASSEMBLE GLOBALLY - FIND C(I,J) AND B(I)

oe

o0

for J=1:3
IR = NL(I,J);
IFLAGL1=0;
% CHECK IF ROW CORRESPONDS TO A FIXED NODE
for K = 1:NP
if (IR == NDP(K))
C(IR,IR) = 1.0;
B(IR) = VAL(K):;
IFLAGl=1;
end
end % end for K = 1:NP
if (IFLAGL == 0)
for L = 1:3
IC = NL(I,L);
IFLAG2=0;
% CHECK IF COLUMN CORRESPONDS TO A FIXED NODE
for K=1:NP
if ( IC == NDP(XK) 1},
B(IR) = B{IR) - CE{(J,L)*VAL(K):
IFLAG2=1;
end
end % end for K=1:NP
1f(IFLAG2 == 0)
C(IR,IC) = C(IR,IC) + CE(J,L);
end
end 9% end for L=1:3
end $end 1f (iflagl == 0)

end % end for J=1:3
end % end for I=1:NE

Ar AR IR A AF AR AR T AA TR AR AR AT A AT A AT AR AT Ak kbbb kAR Ak k%

THIRD STEP - SOLVE THE SYSTEM OF EQUATIONS

Khk I Ak A XX AIXA IR XA RFAA TR T I A TA A A A kA A I A Ak hkkhkxdhhkdThkrrhkhxxdhx

e

a® of

V = inv(C) *B;
V=V’ ;
IR EEEEEE R RS S E S S S S S EEE SRS EEEEEERESEEEEEESSEEREERSESESEESS

FOURTH STEP - OUTPUT THE RESULTS

hkkkkkkkkkhkhkhkhrhkrhkrhkrkxrkr kI kXX hkr kX hkrrrhhxhxhhdkdkhxxx

of o ¢

diary examld7.out
[ND, NE, NP}

[ [1:ND]" X7 Y’ V']
diary off

Figure 15.33 (Continued)
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opment of the program basically involves four steps indicated in the program and ex-
plained as follows.

Step 1: This involves inputting the necessary data defining the problem. This is the only step
that depends on the geometry of the problem at hand. Through a data file, we input the
number of elements, the number of nodes, the number of fixed nodes, the prescribed values
of the potentials at the free nodes, the x and y coordinates of all nodes, and a list identifying
the nodes belonging to each element in the order of the local numbering 1-2-3. For the
problem in Figure 15.32, the three sets of data for coordinates, element-node relationship,
and prescribed potentials at fixed nodes are shown in Tables 15.3, 15.4, and 15.5, respec-
tively.

TABLE 15.3 Nodal Coordinates
of the Finite Element Mesh
of Figure 15,32

Node «x y Node «x y

00 00 12 00 04
02 00 13 02 04
04 00 14 04 04
06 00 15 06 04
08 00 16 00 06
10 00 17 02 06
00 02 18 04 06
02 02 19 00 08
04 02 20 02 08
06 02 21 00 10
08 02

—_ e
— O 0V 0 3NN RN e

TABLE 15.4 Element-Node Identification

Local Node No. Local Node No.
Element No. 1 2 3 Element No. 1 2 3
1 1 2 7 14 9 10 14
2 2 8 7 15 10 15 14
3 2 3 8 16 10 11 15
4 3 9 8 17 12 13 i6
5 3 4 9 18 13 17 16
6 4 10 9 19 13 14 17
7 4 5 10 20 14 18 17
8 5 11 10 21 14 15 18
9 5 6 11 22 16 17 19
10 7 8 12 23 17 20 19
11 8 13 12 24 17 18 20
12 8 9 13 25 19 20 21
13 9 14 13
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TABLE 15.5 Prescribed Potentials
at Fixed Nodes

Prescribed Prescribed
Node No. Potential Node No. Potential

1 0.0 18 100.0
2 0.0 20 100.0
3 0.0 21 50.0
4 0.0 19 0.0
5 0.0 16 0.0
6 50.0 12 0.0
i1 100.0 7 0.0
15 100.0

TABLE 15.6 Input Data for the Finite Element
Program in Figure 15.33

NE
ND
NP
NL

25;

[N NI
W o — PN
=
[
F=Ne] N
Nelieo) ~J

5 10
11 10
6 11
8 12
8 13 12
8 9 13
9 14 13
9 10 14
10 15 14
10 11 15
12 13 1e
13 17 16
13 14 17
14 18 17
14 15 18
16 17 19
17 20 1%
17 18 20
1% 20 2171

SN U s s W W 0]
=
(=)
o

DO 0 OO0
N O oo
[=NeloliNe NN
AN O DOy
OO0 oo o
= O OO

N O OO
[=NeolNeNeNa)

0. .8
4 56 11 15 18 2

-0 0.0 0.0 0.0 0.0 ...
0.0 100.0 100.0 100.0 100.0
50.0 0.0 0.0 0.0 0.0];

1
0
0
0.
0
0
0

NDP =
VAL =

711
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Step 2: This step entails finding the clement coefficient matrix [C**'] for each element and

the global coefficient matrix [C]. The procedure explained in the previous example is
applied. Equation (15.6.4) can be written in general form as

b el =g lm

[CT[V] = [B]

or

Both “global” matrix [C] and matrix [B] are calculated at this stage.

Step 3: The global matrix obtained in the previous step is inverted. The values of the po-
tentials at all nodes are obtained by matrix multiplication as in eq. (15.76b). Instead of in-
verting the global matrix, it is also possible to solve for the potentials at the nodes using
Gaussian elimination technique.

Step 4: This involves outputting the result of the computation.
The input and output data are presented in Tables 15.6 and 15.7, respectively.

TABLE 15.7 Output Data of
the Program in Figure 15.33

Node X Y Potential
1 0.00 0.00 0.000
2 0.20 0.00 0.000
3 040 0.00 0.000
4 0.60 0.00 0.000
5 0.80 0.00 0.000
6 1.00  0.00 50.000
7 0.00 0.20 0.000
8 020 0.20 18.182
9 040 020 36.364

10 060 020 59.091
11 080 020  100.000
12 0.00 040 0.000
13 0.20 040 36.364
14 040 040 68.182
15 0.60 0.40 100.000
16 0.00 0.60 0.000
17 020 0.60 59.091
18 040 0.60 100.000
19 0.00  0.80 0.000
20 020 0.80 100.000

[N
—

0.00 1.00 50.000
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PRACTICE EXERCISE 15.7
Rework Example 15.3 using the finite element method. Divide the solution region
into triangular elements as shown in Figure 15.34. Compare the solution with that

obtained in Example 15.3 using the finite difference method.

Answer: See Example 15.3.

. Electric field lines and equipotential lines due to coplanar point sources can be plotted

using the numerical technique presented in this chapter. The basic concept can be ex-
tended to plotting magnetic field lines.

. An EM problem in the form of a partial differential equation can be solved using the

finite difference method. The finite difference equation that approximates the differen-
tial equation is applied at grid points spaced in an ordered manner over the whole solu-
tion region. The field quantity at the free points is determined using a suitable method.

. An EM problem in the form of an integral equation is conveniently solved using the

moment method. The unknown quantity under the integral sign is determined by match-
ing both sides of the integral equation at a finite number of points in the domain of the

quantity.

. While the finite difference method is restricted to problems with regularly shaped solu-

tion regions, the finite element method can handle problems with complex geometries.
This method involves dividing the solution region into finite elements, deriving equa-
tions for a typical element, assembling all elements in the region, and solving the re-
sulting system of equations.




