
UNCLASSIFIED

Finite Element Modelling of Heat Exchange with

Thermal Radiation

Leonid K Antanovskii

Weapons and Combat Systems Division

Defence Science and Technology Group

DST-Group–TR–3345

ABSTRACT

This report addresses the mathematical and numerical modelling of heat exchange in a solid
object with the effect of thermal radiation included. Three models are analysed, the general
three dimensional model and two approximate models. Based on Finite Element Method
(FEM), a fully vectorized MATLAB R© solver is developed for the three models, and simulation
results are compared. The developed code can be used to enhance the VIRSuite software
developed in DST Group for simulation of weapon-target engagement.
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Finite Element Modelling of Heat Exchange with

Thermal Radiation

Executive Summary

This report addresses the mathematical and numerical modelling of heat exchange in a solid
object with the effect of thermal radiation included. Three models are analysed, the general
three dimensional model and two approximate models. Based on Finite Element Method
(FEM), a fully vectorized MATLAB R© solver is developed for the three models, and simulation
results are compared. The developed code can be used to enhance the VIRSuite software
developed in DST Group for simulation of weapon-target engagement.

It is recommended to seriously consider an option to employ hybrid meshes, which will be
composed of 1D, 2D and 3D finite elements linked together with specially designed transition
elements. A particular target can be better approximated by such elements, opening an
opportunity for real-time simulation of very complex targets.
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1 Introduction

For real-time simulation of an engagement of a missile equipped with an infra-red sensor and
a target radiating thermal heat, it is important to develop a numerical model for the sensor
seeing a particular object dynamically. This means that, due to the motion of the weapon
and potentially of the target, the sensor detects the target from different view points, and
therefore the thermal radiation will be different. Because of this relative motion, some surface
patches of the target may be in shadow, being obscured by other objects. For real-time
simulations, the calculation of the view factors is the most time-consuming procedure [Siegel
& Howell 2002, Modest 2003, Jacobs 2006].

At the same time we need to know the temperature distribution along the target surface in
order to calculate thermal radiation governed by the Stefan–Boltzmann law. Since a target
engagement has a relatively short duration as compared to the characteristic time of tem-
perature change, the transient distribution of temperature can be pre-calculated before the
real-time simulations are conducted. In rare circumstances, when the target is manoeuvring
at a high speed and acceleration to avoid the weapon hit, the temperature field may change
due to the aerodynamic heating even during the short time of engagement. This situation is
obviously more complicated as the problem of computation of the temperature field becomes
coupled with the target motion.

The VIRSuite software developed in DST Group is designed to provide real-time simulation
of weapon–target interaction. The underlying data structure is based on a triangular mesh
representing the target skin, each facet of which has given thickness and material properties.
The temperature field changes across the facet thickness in real time. No heat conduction
along the surface is taken into account. This data structure is suitable for the calculation of
surface radiation but has known deficiency when approximating models which do not have
thin surface layers.

We propose to use different data structures for different types of simulation, namely, the
triangular mesh for real-time simulation used by VIRSuite, and a 3D mesh for high-fidelity
simulation. The 3D element should be either a tetrahedron or a triangular prism to be compat-
ible with the boundary mesh composed of triangular facets. The pre-calculated temperature
distribution over the boundary can be used as an input into the VIRSuite software which does
not need to compute heat flow across the target skin any more, and therefore will be even
better performing.

The effect of 3D diffusion on thermal radiation is demonstrated in [Swierkowski et al. 2014].
It is shown the expected superiority of the 3D model for calculating heat diffusion around a
chunky section of a target, such as an engine room.

In this report the mathematical and numerical models for heat transfer are described. A code
prototype is developed in MATLAB. For comparison different approximations with VIRSuite
data structure, a utility translating the VIRSuite triangular mesh equipped with thickness
to a 3D mesh composed of triangular prisms is also developed. A copy of the code may be
released on request.
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2 Problem formulation

The mathematical model for heat flow in and around a target must take into account various
physical effects, ranging from conduction and convection to thermal radiation. In fact this
is a coupled problem to be solved simultaneously with the ambient atmosphere. The full
system of continuum mechanics equations has to be solved in the general case, because the
density, velocity, pressure and temperature fields are coupled. In a simplified situation the
effect of atmosphere can be modelled by boundary conditions, and therefore the temperature
field needs to be computed inside the target only.

Let D be a domain occupied by a solid body in the three-dimensional space. Assuming the
solid body to be non-deformable, we choose a coordinate system co-moving with the rigid
body. Let ~x be the position vector, t the time, and denote the boundary of the solid body
by ∂D. Our task is to find the temperature field T = T (~x, t) as the solution to the heat
conductivity equation

ρ cp
∂T

∂t
−∇ · (κ∇T ) = Q in D, (1)

with the boundary condition

−~n · (κ∇T ) = q on ∂D, (2)

and the initial condition

T = T0 at t = 0. (3)

Here ρ is the mass density, cp the specific heat capacity, κ the thermal conductivity, Q the
volume density of heat sources, and q the heat flux along the inward normal vector ~n at the
boundary ∂D. The heat source Q models heat generated inside the target, say, by the target
engine, but must set zero otherwise. Note that, according to Fourier’s law, the heat flux ~q is
given by the formula

~q = −κ∇T (4)

and therefore the boundary condition states ~q · ~n = q. Since the normal vector ~n is inward,
the normal flux q represents heat flowing into the domain D.

In the general case the material properties ρ, cp and κ, and the right-hand sides Q and q are
given functions of temperature. For example, the Stefan–Boltzmann thermal radiation law
specifies the normal component of the heat flux

qSB(T ) = σ ε(T )T 4 (5)

where σ is the Stefan–Boltzmann constant and ε the emissivity coefficient which generally
depends on the absolute temperature T . The Stefan–Boltzmann heat flux must contribute
to q with the minus sign because it describes the outgoing energy. Adsorption of incoming
energy by the surface ∂D is modelled by additional physical parameters. For example, the
adsorption of solar radiation is specified by solar intensity I and solar adsorptivity coefficient α.
It is worthwhile emphasizing that infra-red sensors detect a portion of the total flux qSB(T )
corresponding to a particular bandwidth.

2
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3 Approximate models

Let us assume that the domain D is thin in one direction, and thus can be represented by a
surface S equipped with thickness h and a unit normal vector ~n. In other words, the domain
D is parametrized by the mapping

S × R 3 (~x, z) 7→ ~x+ z ~n (~x) ∈ D . (6)

This parametrization is invertible in the layer 0 ≤ z ≤ h (~x) provided that the surface S is
smooth and h is small enough compared to the principal radii of the surface curvature.

We call the surface S the outer boundary of D, corresponding to z = 0, and the surface
z = h (~x) the inner boundary. We get the decomposition

∇ = ∇S + ~n
∂

∂z
(7)

where ∇S is the surface gradient. The normal vector ~n is inward with respect to D at the
outer boundary S, and is close to the outward normal vector at the inner boundary if the
surface gradient of the thickness, ∇Sh, is negligible with respect to the unity.

Let us now assume that heat predominantly flows across the thickness, so the heat flux ~q is
nearly orthogonal to to the surface S. This is equivalent to the statement that

|∇ST | �
∣∣∣∣∂T∂z

∣∣∣∣ , (8)

and hence the governing equations reduce to the following problem

ρ cp
∂T

∂t
=

∂

∂z

(
κ
∂T

∂z

)
+Q for 0 < z < h (~x), (9)

−κ ∂T
∂z

= q0 at z = 0, κ
∂T

∂z
= qh at z = h (~x), (10)

where q0 and qh are the heat fluxes through the outer and inner boundaries, respectively.
Note that the point ~x of the surface S is just a parameter in this formulation.

If h, ρ, cp and κ are approximated by constants at each facet, one needs to solve a series of
heat conductivity equations per facet. These equations are independent and therefore can
be solved simultaneously in separate threads. This one-dimensional model is implemented in
VIRSuite.

The reduced system of equations can be formally obtained by scaling h (and z respectively) by
a small factor ε, κ by ε2 that demands scaling q by ε, and then retaining only the leading-order
terms in the governing equations. In a dimensionless form, this formal procedure corresponds
to the following asymptotic conditions

h� ∆x ,
ρ cp
∆t
≈ κ

h2
� κ

∆x2
, (11)

where ∆x is the characteristic length scale along the surface, and ∆t is the characteristic time
scale.
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For example, let us choose h ≈ 0.04 m which is negligible compared to the typical size of a
target, say ∆x ≈ 4 m. For Steel (1% Carbon) with material properties

ρ = 7800
kg

m3
, cp = 473

J

kg K
, κ = 43

W

m K
, (12)

we get the condition for the characteristic time scale ∆t ≈ 137 s. For Aluminum with material
properties

ρ = 2770
kg

m3
, cp = 884

J

kg K
, κ = 201

W

m K
, (13)

we get somewhat smaller value of ∆t ≈ 19 s. The latter poses a restriction on the rate of
change of heat fluxes in time. Note that ∆t can be thought of as the characteristic time of
propagation of a heat wave.

Let us now analyse the opposite situation when heat flows predominantly along the target
skin. This is equivalent to the statement that

|∇ST | �
∣∣∣∣∂T∂z

∣∣∣∣ . (14)

Such a situation arises when the inner surface of the skin is well insulated. In this case
temperature is nearly uniform across thickness, and the reduced governing equations are
obtained by averaging the general equation (1) in the normal direction. As a result we obtain
the following equation

ρ cp h
∂T

∂t
−∇S · (κh∇ST ) = Qh+ q0 + qh on S. (15)

Notice the thickness h appearing as a factor in the equation coefficients.

It is natural to associate the governing equations (1), (15) and (9) with the 3D, 2D and 1D
problems, respectively. This association corresponds to the number of independent spatial
variables. The choice of either 1D or 2D model must be dictated by the asymptotic condi-
tions (8) and (14), respectively. The 3D model is free of any assumption as, in fact, does not
contain the concept of surface thickness.

4 Numerical scheme

Finite Element Method (FEM) is well suited for solution of heat exchange problems. We
approximate the absolute temperature T in the 3D problem (1)–(2) by the finite sum

T (~x, t) =
∑
i

Ni (~x) Ti(t) (16)

where Ni (~x) is the shape function associated with a node numbered by i. Upon substituting
this representation into the governing equation, multiplying the result by a weighting func-
tion Wk (~x) and integrating by parts, we get the system of ordinary differential equations

∑
i

(
Mki

dTi
dt

+ Ski Ti

)
= Fk (17)

4
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where

Mki =

∫
D

ρ cpWkNi dV , (18)

Ski =

∫
D

κ∇Wk · ∇Ni dV , (19)

Fk =

∫
D

WkQdV +

∫
∂D

Wk q dA . (20)

Here dV is the volume element and dA is the area element. The coefficients Mki and Ski are
called the mass and stiffness matrix, respectively, and Fk is called the load vector. Strictly
speaking, the system of equations (17) becomes a system of ordinary differential equations
when resolved with respect to time derivatives. The latter is achieved by inverting the mass
matrix.

It is a common practice to move temperature-dependent terms of Q and q from the load vector
to the stiffness matrix. For example, if Q = Q̂−B(T )T and q = q̂ − β(T )T then

Ski =

∫
D

κ∇Wk · ∇Ni dV +

∫
D

BWkNi dV +

∫
∂D

βWkNi dA , (21)

Fk =

∫
D

Wk Q̂dV +

∫
∂D

Wk q̂ dA . (22)

In particular, we get β = σ ε(T )T 3 for the Stefan–Boltzmann radiation. The term q̂ describes
other heat fluxes such as solar adsorption and aerodynamic heating provided that they do not
depend on temperature.

The system of ordinary differential equations (17) can be solved by various numerical schemes,
such as a family of Runge–Kutta schemes, some of which are capable of automatically select-
ing the time step to achieve a desired accuracy. The backward Euler scheme with ‘frozen’
coefficients taken from the previous time level is implemented as follows∑

i

(Mo
ki + So

ki τ) Ti =
∑
i

Mo
ki T

o
i + F o

k τ (23)

where τ is the time step, and the superscript ‘naught’ is supplied to quantities evaluated at the
previous time level. The numerical scheme is implicit and does not pose severe limitations on
the time step τ . If the material properties strongly depend on temperature, a few iterations can
be conducted to improve accuracy. In this case the solution to the system of equations (23) is
called the predictor, and the iterated solution with updated material properties at the current
time level is called the corrector.

We have briefly described the Bubnov–Galerkin method [Zienkiewicz & Taylor 1989] which
reduces to the Galerkin method when the weighting functions coincide with the shape func-
tions, namely when Wk = Nk. In this case the mass and stiffness matrices become symmetric.
Note that the Bubnov–Galerkin method is indispensable when heat convection is modelled.
Since this effect is not accounted for, we use exclusively the Galerkin method in the following
numerical simulations.
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5 Simulation results

In the simulations below the heat source intensity is equal to I = 1000 W/m2, and the
radiation flux direction is given by the expression

~ds(t) = − (cos (π t/t0) , 0, sin (π t/t0)) (24)

where t0 = 1000 s. The initial distribution of temperature is T0 = 300 K which is also the
equilibrium temperature of the Stefan–Boltzmann thermal radiation at the outer surface S.
For the sake of simplicity, we do not calculate view factors but only compute the heat flux
according to the direction of the normal vector. The inner surface is insulated. In other
words,

q0 = I α max
(
~ds(t) · ~n, 0

)
+ σ ε

(
T 4
0 − T 4

)
, qh = 0 . (25)

Recall that the unit normal vector ~n to the outer surface S is inward to the body D.

The data structure employed by VIRSuite consists of a triangular mesh each facet of which
is equipped with thickness. To run 3D simulations, we need to convert the triangular surface
mesh to a triangular prism mesh. This is achieved by assigning normal vectors to each node
of the surface using the available normal vectors to the facets, and then creating a stack of
triangular prisms by adding new nodes along the node-based normals. The index from the
triangular prism element to the parent facet has to be calculated to populate the element
attributes with material properties taken from the parent facet. This procedure may result in
a severely distorted 3D mesh when the surface is not smooth and thickness is not small, for
example, when the surface has corners.

First we set up a benchmark model problem. Consider the surface of a block of dimension 10-
by-8-by-5 metres, and tessellate it using 250 mm spacing size. The material is Steel with the
physical properties (12), and select α = 1 and ε = 1. The number of elements across thickness
is 10. In the 3D model this is the number of prisms, and in the 1D problem employed by
VIRSuite this is the number of elements.

Figures A1–A3 show the final temperature distribution at the block surface for uniform thick-
ness h = 10 mm. As expected, the 1D simulation results provide uniform temperature at all
faces of the block because each facet of the face has the same angle with the source direction,
and no heat diffusion is taken into account. Unlike the 1D case, the 2D and 3D simulation
results show non-uniform temperature distribution. It is seen spurious undershooting and
overshooting of temperature in 3D simulations because the triangular prism elements are
very thin. Indeed, the ratio of the prism height to the facet size is 1/250. Otherwise, the
results match quite accurately.

Figures A4–A6 show the final temperature distribution at the block surface for uniform thick-
ness h = 100 mm. As before, the 1D simulation results provide uniform temperature at all
faces of the block but the 2D and 3D simulation results show non-uniform temperature distri-
bution. Spurious undershooting and overshooting of temperature in the 3D simulations was
observed due to the thin triangular prism elements; the ratio of the prism height to the facet
size is 1 : 25.

Most of the VIRSuite models fail to run after the transformation of the surface mesh to
triangular prism mesh. This is because the transformation (6) becomes singular when the

6
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model contains very fine details. All the VIRSuite meshes contain free edges indicating that
the models are composed of several separate shapes which apparently do not share nodes.
Even a couple of models contain unreferenced nodes which must be removed to make the
FEM matrix non-singular.

We have succeeded to simulate only two simple models of VIRSuite in both 2D and 3D
cases, which are originally named Wall2 and Wall3. All the material properties including
adsorptivity α and emissivity ε are loaded from the VIRSuite database.

The simulation results for Wall2 are shown in Figures A7–A9. It is seen that the 1D and 3D
results match each other much better than the 2D results.

The simulation results for Wall3 are shown in Figures A10–A12. Unlike Wall2, all the 1D,
2D and 3D results match each other much better though undershooting and overshooting of
temperature is seen in both 2D and 3D simulation results.

The last example demonstrates the expected superiority of the 3D model for calculating
heat diffusion when the thermal gradient is not normal to the target surface [Swierkowski
et al. 2014]. We considered a plate made of steel (1% Carbon) and of dimensions 4-by-3
metres and of constant thickness h = 100 mm. The plate is a schematic representation of a
section of the target wall with an engine block attached to the wall by means of four legs as
shown in Figure A13. The engine was kept at a high temperature which diffuses to the outer
wall surface. The Stefan–Boltzmann thermal radiation was imposed at the outer surface but
the solar radiation was suppressed for simplicity. The inner surface was insulated except for
the four rectangular patches which gave a heat flux according to the Biot boundary condition.
In this case we had the following boundary conditions

q0 = σ ε
(
T 4
0 − T 4

)
, qh = β (T1 − T ) , (26)

where T0 is the equilibrium temperature of the radiative surrounding, T1 is the onset engine
temperature and β is the heat exchange coefficient. The rectangular patches schematically
model the contact areas on the plate from the four legs of the engine. The Biot coefficient β
vanishes outside the contact patches.

In the numerical simulation we set T0 = 300 K, T1 = 500 K and β = 1 kW/m2/K. The 1D,
2D and 3D simulations start with the initial temperature T0 and the physical time duration
of the simulated heat diffusion is 1 hour. The computational time depends on the numerical
time-step τ which in general is much shorter than the physical time, especially for long time-
steps.

Figure A14 shows the final distribution of temperature calculated by the 1D model. In
the absence of lateral heat diffusion, the resultant temperature field is piecewise constant,
reflecting sharp boundaries between surface facets. Figure A15 shows the final distribution of
temperature calculated by the 2D model. It demonstrates the opposite extreme case of too
extended propagation of heat wave in the lateral directions. As expected, the 3D model results
shown in Figure A16 are more realistic. In contrast to the 1D model results, the temperature
distribution spreads beyond the areas of contact with the hot engine, attaining quite large
values between the contact patches. However, compared to the 2D results, the temperature
field is more localized near the engine legs.

The simulation time of the 3D model is significantly greater than that of the 1D and 2D models
and it is not feasible to apply the 3D solver for real-time simulation. It has been implemented,
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however, in the off-line module for prediction of initial pre-engagement signatures.

6 Discussion

A mathematical model for 3D heat transfer and a numerical model based on FEM are de-
scribed. A code prototype for VIRSuite enhancement was developed in MATLAB.

An issue with the mesh quality was identified. This issue does not manifest itself in VIRSuite
because the facet geometry is used for visualization only. However, in both 2D and 3D
simulation the mesh quality must be good enough to produce accurate results. In fact, poor
surface mesh composed of very distorted facets did not allow the mesh conversion utility to
produce non-singular triangular prisms from facets.

Alternatively, one should consider an application of a hybrid mesh, composed of 3D, 2D and
even 1D elements linked with specially designed transition elements. In this case a 3D mesh
will approximate thick chunks of the target only as there is no need to employ the expensive
3D solver in thin sections, whereas a 2D mesh will approximate thin sections of the target.
Finally, 1D elements equipped with cross-section area will approximate target spikes such as
antennas and wires.
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Appendix A: Figures

Figure A1: Temperature distribution on a 10 mm-thick block surface (1D results)

Figure A2: Temperature distribution on a 10 mm-thick block surface (2D results)
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Figure A3: Temperature distribution on a 10 mm-thick block surface (3D results)

Figure A4: Temperature distribution on a 100 mm-thick block surface (1D results)
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Figure A5: Temperature distribution on a 100 mm-thick block surface (2D results)

Figure A6: Temperature distribution on a 100 mm-thick block surface (3D results)
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Figure A7: Temperature distribution on Wall2 (1D results)

Figure A8: Temperature distribution on Wall2 (2D results)

12
UNCLASSIFIED



UNCLASSIFIED
DST-Group–TR–3345

Figure A9: Temperature distribution on Wall2 (3D results)

Figure A10: Temperature distribution on Wall3 (1D results)
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Figure A11: Temperature distribution on Wall3 (2D results)

Figure A12: Temperature distribution on Wall3 (3D results)
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Figure A13: Engine block model

Figure A14: Temperature distribution near engine block (1D results)
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Figure A15: Temperature distribution near engine block (2D results)

Figure A16: Temperature distribution near engine block (3D results)
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