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Chapter Four 

Computational Analysis of Laminar Convective Heat Transfer 

Introduction 

Now a days the study of heat transfer and energy transport has become an 

increasingly intense concern .in virtually every discipline concerned with physical 

processes involving energy production and exchanges, the need to predict, 

understand, and to optimize has led to detailed study of how energy is carried, 

distributed, and diffused in and by materials . The study of heat transfer is founded 

on the concepts of energy, mass, and momentum. These physical concepts have 

meaning because they can be related to other measurable properties, such as 

temperature and velocity, using the physical laws and empirical relations. When 

fluids are subjected to macroscopic motions due to surface or body forces, the 

thermal energy transferred to or from the flowing fluid can be classified as heat 

transfer by convection. In addition when the rate of heat transfer process is 

influenced by fluid motion it is also classified as convection heat transfer. When 

the energy causing fluid motion is produced by a thermally induced density 

difference in the fluid which arises because of the presence of a heated or cooled 

surface from buoyancy effect the process is called natural or free convection. On 

the other hand if the fluid process is imposed by forcing fluid passage   by 

providing pressure difference the process is called forced convection. 

1. Laminar convective heat transfer over a flat plate  

      1.1 Theoretical background              

When a fluid at one temperature flows along a surface which is at another 

temperature, the behavior of the fluid cannot be described by the hydrodynamic 

equations alone. In addition to the hydrodynamic boundary layer, a thermal 

boundary layer develops. The thickness of both boundary layers is limited to the 

inter-surface distance. Laminar boundary layers occur in many important 

applications, and the techniques of boundary layer analysis has been applied to 

many circumstances. Solutions of the boundary layer equations are called “exact” 

solutions. 

Consider the viscous flow over a flat plate as sketched in fig 1 below. The viscous 

effects are contained within a thin boundary layer adjacent to the surface; the 

thickness is exaggerated in fig 1 below for clarity. Immediately at the surface, the 

flow velocity is zero; this is the “no-slip” condition. In addition, the temperature 

of the fluid immediately at the surface is equal to the temperature of the surface; 

this is called the wall temperature Tw, as shown in fig below. Above the surface, 
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the flow velocity increases in the Y-direction until, for all practical purposes, it 

equals the free stream velocity. This will occur at a height above the wall equal 

to ,as shown in fig below. More precisely,   is defined as that distance above 

the wall where u=0.99ue; here, ue is the velocity at the outer edge of the boundary 

layer. In fig 1 which illustrates  the flow over a flat plate, the  velocity at the edge 

of the boundary layer will be U ;that is ue = U for a body of general shape,  ue is 

the velocity obtained from an inviscid flow solution evaluated at the body surface 

or at the “effective body” surface.  

 

 

 

 

 

 

The quantity   is called the velocity boundary layer thickness. At any given x 

station, the variation of u between y =0 and y = , that is u=u(y), is defined as the 

velocity profile within the boundary layer, as sketched in fig above. This profile 

is different for different x –stations. Similarly, the flow temperature will change 

above the wall, ranging from T= Tw at y = 0 to T=0.99Te at y = t. Here, t is 

defined as the thermal boundary-layer thickness. At any given x station, the 

variation of T between y = 0 and y = t, that is T=T(y), is called the temperature 

profile within the boundary layer. In the above case Te is the temperature at the 

edge of the thermal boundary layer.   For the flow over a flat plate, as sketched 

in fig above Te = T. For a general body, Te is obtained from inviscid flow solution 

evaluated at the body surface.  

In general, two boundary layers can be defined: a velocity boundary layer with 

thickness  and a temperature boundary layer with thickness t. in general, t  . 

The relative thicknesses depend on the Prandtl number: it can be shown that if Pr 

= 1, then  = t; if Pr >1, then t < ; if Pr <1, then t > . This is clearly shown in 

fig below. 

Fig 1 boundary layer properties 
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      Fig 2. Variation of velocity and thermal boundary layer with prandtl number 

For air at standard conditions, Pr = 0.71, hence, the thermal boundary layer is 

thicker than the velocity boundary layer. From fig 2 it can be seen that both 

boundary layer thickness increase with the distance from the leading edge, that 

is,  = (x) and t  =t(x).  This can be seen clearly in fig below. 

                                                  

 

                        Fig 3. Variation of velocity boundary layer thickness along the plate.  

The consequence of the velocity gradient at the wall is the generation shear stress 

at the wall, 
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is the velocity gradient evaluated at y = 0, that is, at the wall. 

Similarly, the temperature gradient at the wall generates heat transfer at the wall, 

which is given by  
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 is the temperature gradient evaluated at y = 0; that is, at the 

wall. In general both w  and 
wq



 are functions of distance from the leading edge; 

that is, w =  xw  and 
wq



 =  xq w


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1.2 Problem description and assumptions imposed in the analysis 

The main objective of this analysis is to determine the convective heat transfer 

coefficient associated with the plot of velocity and temperature boundary layers 

using finite difference explicit forward marching scheme with fixed meshes for 

forced, laminar convective heat transfer over the flat plate. 

           For simplicity consider the following assumptions: 

 Two-dimensional flow over a flat plate at zero angle of incidence 

 The fluid is assumed to be Newtonian, steady and incompressible 

 The flow is considered to be laminar 

 The flow properties are evaluated at mean value of temperature, the so-   called 

film temperature 

 2.3 Governing set of equations.   

       The stream approaches at a uniform velocity u . A boundary region forms in 

which the fluid is decelerated by viscous action. The local thickness of the 

boundary region is denoted by . The relevant Navier Stokes equations, the 

continuity equation and the energy equation and the boundary conditions are 

shown below. The dynamic viscosity of the fluid  is a function of temperature. 

for gases, the temperature dependence is not great, and a constant value of  may 

be used in the analysis when the temperature difference within the boundary layer 

is only a few hundred degrees or less. Therefore in this analysis  is assumed 

constant as the working fluid is air. 
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        The Governing Sets of Equations are:-  

o Continuity Equation 
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o Momentum Equation 

 Momentum in x- direction 
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  Momentum in y- direction 
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o Energy Equation          
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       The above equations can be reduced further by imposing the following 

boundary layer assumptions.  

 L   Where L is the boundary layer development length 
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  Based on the above assumptions equations (4) and (6) reduced to:- 

                         
















2

2

y

u

x

u
u




          ------------ (8)                         

(7) 



 6 

  

2

2

2

































y

u

cy

T

c

k

x

T
u

pp 




             ------------ (9) 

2

2

2
































y

u

cy

T

x

T
u

p


 Where  

pc

k


 =  --------- (10)   

2.4 Boundary Conditions 

The boundary conditions for the above two equations are  

1) The plate surface is adiabatic, that is 0




y

T
  

 At y = 0     u = 0 

         The above equation specifies no fluid velocity in the x direction relative to 

the solid surface for the fluid physically in contact with the surface at y = 0. This 

is the no-slip condition.  

    At y = 0      T= Tw 

2) The plate surface maintained at free stream temperature T and             

             Velocity u 

 At y =t           u = u 

        i.e. the viscous velocity in the boundary layer approach the  inviscid velocity 

at large (on scale of the boundary layer) distances above the surface.  

 At y = t           T = T 

Numerical Analysis. 

           computation of velocity and temperature distribution 

o First divide the flow domain in by a computational grid, as shown in figure below 

o Assume all mean flow properties are constant in the control volume 

o Integrate the governing equation in each cell                       

Admin
Highlight
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                                                Fig 4   discretization of flow domain 

Consider the following arrangement for the analysis of the computational grid 

                               

The explicit finite difference equivalent for the simplified governing equations (8) 

and (10) for the above element with yx  are: 

From equation (8) 
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           Solving for 
1m

ju  gives  
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Fig 5.  Discretization of flow domain 
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  From equation (9)  
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Computation of local and average heat transfer coefficients 

 To compute the local heat transfer coefficients 

       From conduction heat transfer   
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Where    wm TTT     ( 2TTm   and 1TTw        

  From convection heat transfer  
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Equating equations (15) and (16) and solving for xh  gives  

                     
  yTT

TT
kh

w

mw

x







                     ------ (17) 

  The average surface coefficient 


h  from 0x  to L  may be obtained                           

from         
L

xh

h

m

x 




1     ------ (18), where L  is the plate length       



 9 

Matlab Code for the above case 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%       MATLAB PROGRAMMING FOR CONVECTIVE LAMINAR BOUNDARY %%%% 

%       LAYER ON A FLAT PLATE USING AN EXPLICIT FORWARD     %%%% 

%       DIFFERENCE METHOD FOR VELOCITY AND TEMPERATURE      %%%% 

%       DISTRIBUTION UNING FIXED MESH METHOD                %%%%  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clc 

clear; 

cpa=4180;         %heat capacity of air 

Ka=0.612;        %thermal conductivity of air 

mue=5e-5;      % dynamic viscosity of air 

rho=1000;          %density of air [kg/m^3] 

Usurr=3;          %free stream velocity 

Tsurr=315;        %surrounding temperature 

Twall=500;        %wall temperature 

alpha=Ka/(rho*cpa);%thermal diffusivity 

dy=(8*alpha/(Usurr));% grid spacing in vertical direction 

m=100;  %number of nodes along the plate 

n=50;  %number of nodes in vertical direction 

dx=dy; 

% initializing velocity and temperature 

%-------------------------------------- 

U=zeros(1,n); 

T=zeros(1,n); 

%Initial data input of velocity and temperature 

%-------------------------------------- 

 for i=1:n 

      if i==1 

          Ui=0; 

          Ti=Twall; 

      else 

          Ui=Usurr; 

          Ti=Tsurr; 

      end 

      U(i)=Ui; 

      T(i)=Ti; 

  end 

  %COMPUTATION OF VELOCITY DISTRIBUTION AND VELCITY BOUNDARY LAYER THICKNESS 

  %------------------------------------------------------------------------- 

 for j=1:m 

     err=1; 

     iter=0; 

     dx1(1)=0; 

     dx1(j+1)=j*dx; 

     while err >3e-7; 

         iter=iter +1; 

         Uio=U; 

         K=iter; 

         if K==1; 

             Ui=0; 

         else 

             Ui=Uio(K)*(1-(2*mue/(dy*rho*Uio(K))))+(mue*(Uio(K+1)+Uio(K-

1))/(dy*rho*Uio(K))); 

         end 

         Uii(K)=Ui; 

         Velo(K)=Ui; 
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         delta(K)=(K-1)*dy; 

         err=abs(Usurr-Ui); 

     end 

     deltaV(1)=0; 

     deltaV(j+1)=iter*dy; 

     for b=iter+1:n 

         Uii(b)=Usurr; 

     end 

               

     U=Uii; 

     Vel(j,:)=U; 

 end 

 Vel; 

 deltaV; 

 sum=0; 

 %COMPUTATION OF TEMPERATURE DISTRIBUTION AND THERMAL BOUNDARY LAYER THICKNESS 

 %---------------------------------------------------------------------------- 

for j=1:m 

     err=1; 

     iter=0; 

      dx1(1)=0; 

     dx1(j+1)=j*dx; 

     dx11(j)=j*dx; 

     while err > 3e-7; 

         iter=iter +1; 

        Tio=T; 

         P=iter; 

         if P==1; 

             Ti=Twall; 

         else 

             Ti= Tio(P)*(1-

(2*alpha/(dy*Vel(j,P))))+(alpha/(dy*Vel(j,P)))*(Tio(P+1)+Tio(P-1))... 

                  +mue*(Vel(P+1)+Vel(P-1))/(4*rho*cpa*Vel(j,P)*dy); 

          end 

         Tii(P)=Ti; 

         Temp(P)=Ti; 

         delta1(P)=(P-1)*dy; 

         err=abs(Tsurr-Ti); 

     end 

   %COMPUTATION OF LOCAL AND AVERAGE  HEAT TRANSFER COEFFICIENTS   

   %----------------------------------------------------------- 

     q(1)=0; 

    q(j+1)=Ka*(Twall-Temp(2)); 

    hx(j)=q(j+1)/(dy*(Twall-Tsurr)); 

    sum=hx(j)+sum; 

    deltaT(1)=0; 

    deltaT(j+1)=iter*dy;         

     for b=iter+1:m 

         Tii(b)=Tsurr; 

     end 

     T=Tii; 

     Te(j,:)=T; 

 end  

 h=sum*dx/(dx1(m)) 

    Temp; 

    deltaT; 

    dx1; 

   %COMPUTATION OF VELOCITY BOUNDARY LAYER THCIKNESS FROM ANALYTICAL RESULT 

   %----------------------------------------------------------------------- 

    for z=2:m 

        blayer(1)=0;   

      Rex(z)=(rho*Usurr*z*dx)/mue; 

      blayert(z)=5*z*dx/(Rex(z))^.5; 
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    end 

 %PLOT OF COMPUTED RESULTS 

 %------------------------ 

 plot(Velo,delta) 

xlabel('velocity [m/s]  ') 

ylabel('distance from the surface of the plate in Y- direction') 

title('The graphical representation of velocity  at x station ') 

 grid on 

 pause 

 plot(Temp,delta1) 

 xlabel('temperature [K] ') 

ylabel('distance from the surface of the plate in Y- direction') 

title('The graphical representation of temperature  at x station ') 

grid on 

pause 

plot(10^2*dx11,hx) 

xlabel('horizontal plate length [m] ') 

ylabel('convective heat transfer coefficient[W/m^2K] ') 

title(' variation of convective heat transfer along the plate ') 

grid on 

pause 

plot(10^2*dx1,deltaV,'*',10^2*dx1,deltaT,'*') 

xlabel('length[m]') 

ylabel('boundary layer thicknes[m]') 

title('Velocity and Termal Boundary-layer thicknes  profiles along the plate') 

legend('velocity boundary layer thickness','temperature boundary layer thicknes') 

grid on 

pause 

plot(10^2*dx11,blayert,'*') 

xlabel('length[m]') 

ylabel('boundary layer thicknes[m]') 

title(' velocity Boundary-layer thicknes  profiles from analytical result along the 

plate') 

grid on 
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Results and discussion 

                 1. Velocity distribution with in the boundary layer 

from the following figure it can be seen that the velocity variation at a given x 

station is obtained using the explicit method is consistent with the velocity 

distribution with in the boundary layer, and it increases from zero at the wall to 

the free stream velocity at y = .The profile is also parabolic as expected for the 

distribution with in the boundary layer.  

 

                       Fig 6. Velocity distribution at a given x station 

                 2. Temperature distribution with in the boundary layer 

From the following figure it can be seen that the temperature variation at a given 

x station is obtained using the explicit method is consistent with the temperature 

distribution with in the boundary layer, and it increases from the wall temperature 

to the free stream temperature   at y = t The profile is also parabolic as expected 

for the distribution with in the boundary layer. In this analysis the wall is assumed 

colder than the fluid.  
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Fig 7.Temperature distribution at a given x station    

3. Variation of local convective heat transfer coefficient 

          The local convective heat transfer coefficient varies with the distance from 

the leading edge of the plate. As shown in the figure below it decreases with an 

increase in horizontal distance along the plate. In addition the distribution is more 

or less hyperbolic as expected. Therefore the forward explicit method is 

reasonably good to compute the local heat transfer coefficient. The average 

convective heat transfer coefficient is also computed in the matlab program and 

the result agrees well with recommended average convective heat transfer 

coefficient for air with forced convection.   

       The recommended value of the average convective heat transfer coefficient 

for gases in forced convection is in the range of cmWcmW 0202 /300/30  .In this 

analysis a value of  ch 02106.640W/m


 is obtained which agrees with recommended 

values of


h .  
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Fig 8. Variation of convective heat transfer coefficient along the plate 

1. Profile of velocity and temperature boundary layer thicknesses 

          The velocity and temperature boundary layer thickness profiles are shown 

in figure below. From the figure we can see that both boundary layer thicknesses 

increase along the plate from the leading edge. If we compare the velocity profile 

with the analytical result it can be seen that the profile is the same. In addition the 

thermal boundary layer thickness is larger than the velocity boundary layer 

thickness. 

This agrees with the theoretical result that for prandtl number less than one the 

thermal boundary layer thickness is larger than the velocity boundary layer 

thickness. 

    In this case the working fluid is air with prandtl number less than one which 

means that the thermal boundary layer is greater which agrees with the result 

obtained.Therefore the forward difference explicit method is very suitable for 

computing the boundary layer thickness as it does for convective heat transfer 

coefficient.      
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Fig 9. Velocity and thermal boundary layer thickness 

 

Fig 10. Velocity boundary layer thickness from analytical result 
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Conclusion 

       Generally the forward difference explicit method is well suited in the 

computation of boundary layer problems. More over the method gives good results 

for the computation of velocity and temperature distribution with in the boundary 

layer. Besides it is well suited for computing the distribution of the local heat 

transfer coefficient. From this analysis the following conclusions can be made. 

 The velocity with in the boundary layer increases from zero value at the 

wall to the free stream velocity at the outer edge of the boundary layer 

 The velocity distribution at a given x station increases in parabolic form 

from the surface up to the outer edge of the boundary layer. 

 The temperature distribution at a given x station increase in a similar 

manner from the wall temperature to the free stream temperature.(In this 

analysis the wall is considered colder than the working fluid). 

 From the result the thermal boundary layer thickness is larger than the 

velocity boundary layer as expected as the working fluid is air with prandtl 

number less than one.  

 The local heat transfer coefficient decreases along the length of the 

plate. In addition the value of the average heat transfer coefficient 

calculated from this result falls with in the range of values recommended 

for forced convection. Hence the   implementation of the forward explicit 

method is reasonably good at computing boundary layer problems.   
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Case 2: Laminar convective heat transfer between two fixed plates 

 Problem description and assumptions imposed in the analysis 

The main objective of this analysis is to determine the convective heat transfer 

coefficient associated with the plot of velocity and temperature distribution and 

the formation of both the velocity and temperature boundary layers using finite 

difference explicit method with fixed meshes of laminar convective heat transfer 

between two fixed plates.  

 For simplicity consider the following assumptions: 

 Two-dimensional fluid flow between two fixed parallel plates at zero angle of 

incidence 

 The fluid is assumed to be Newtonian, steady and incompressible 

 The flow is considered to be laminar 

 The flow properties are evaluated at mean value of temperature, the so-called 

film temperature 

 Governing set of equations.   

The stream approaches at a uniform velocity u. A boundary region is formed in 

which the fluid is decelerated by viscous action. The local thickness of the 

boundary region is denoted by . The relevant Navier Stokes equations, the 

continuity equation and the energy equation and the boundary conditions are 

shown below. The dynamic viscosity of the fluid  is a function of temperature. 

For gases, the temperature dependence is not great, and a constant value of  

may be used in the analysis when the temperature difference within the boundary 

layer is only a few hundred degrees or less. Therefore in this analysis  is 

assumed constant as the working fluid is taken to be air. 

The Governing Sets of Equations are  

 1. Continuity Equation 
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Where: -   u- is X – component of velocity  

                v –is Y – component of velocity 
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 2. Momentum Equation 

 Momentum in x- direction 

         































2

2

2

21

y

u

x

u

x

p

y

u
v

x

u
u






                           ------------- (2) 

  Momentum in y- direction 

































2

2

2

21

y

v

x

v

y

p

y

v
v

x

v
u






                                 --------------- (3) 

 3.Relationship between shear stress and pressure gradient  

Consider the free body of any fluid having the form of an elementary 

parallelepiped of length dx, thickness dy and width dz as shown below. 

Because of viscous effects, the velocity distribution is non-uniform, i.e., there 

exist a relative velocity between two adjacent layers. 

These velocity gradients across the two layers setup shear stresses. Let   

represent the shear stress on the lower face AA’B’B and that on the upper face 

DD’C’C be given by ( +( /y)* dy). For a steady two – dimensional flow there 

will be any shear stress on the vertical faces of the element.    

 

Fig1.  Pressure and viscous forces on a fluid element  

Shear force on the element  
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                                      = [ +( /y)* dy]dx dz -  dxdz 

                                      = ( /y)* dx dy dz 

If P is the intensity of pressure on the face ADD’A’, then the pressure intensity 

on the face BCC’B’ will be [P+ (P/x)* dx]. Thus  

Pressure force on the element is  

                                        = P dy dz - [P+ (P/x)* dx]dy dz 

                                        = - (P/x)  dx dy dz 

for equilibrium in steady flow, the acceleration is zero and the summation of the 

pressure and viscous forces in the x-direction must vanish. 

      ( /y)* dx dy dz- (P/x)  dx dy dz = 0 

or       /y = - (P/x)   

since P =P(x) the partial derivatives  can be replaced  by total derivatives. Thus  

      
Yd

Ud

dX

dP
2

2

                                                -------------------(4) 

The flow has a zero velocity relative to an adjacent surface giving the boundary 

conditions: 

U = 0 at y = 0; U = 0 at y = y (n) where   Y = 0: Y (n)   

The characteristic flow are then governed by the differential equation, 
Yd

Ud

dX

dP
2

2

  

With the knowledge that 
dX

dP
 is independent of y, the above differential equation 

can be twice integrated with respect to y to give 21

2

2

1
CYC

Y

dX

dP
U 


 where 

constants C1 and C2 are to be determined by introducing the boundary conditions 

discussed above  

C2 = 0 and C1 = 
dX

dPnY

2

)(
  substituting these values in the above equation  
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))()(*)()((
2

1 2 jYjYnY
dX

dP
U 


 Then solving for 

dX

dP
   

))()(*)((

2
2 jYjYnY

U

dX

dP





   Multiplying both sides by (-1/) 

))()(*)((
2

1
2 jYjYnY

U

dX

dP


 


                                      --------------- (5) 

 4. Energy Equation     

For incompressible steady flow neglecting viscous dissipation and no heat 

generation         

            


























2

2

2

2

y

T

x

T

c

k

y

T
v

x

T
u

p
            ---------------------- (6) 

The above equations can be reduced further by imposing the following boundary 

layer assumptions.  

 

 

 Momentum change in the Y-direction is neglected  

 L   Where L is the boundary layer development length 

o  0
2

2






x

u
 

o 0




Y

p
         

o 0
2

2






x

T
 

Based on the above assumptions equations are reduced to:- 

               0









y

v

x

u
                                                     ------------ (8)       




























2

21

y

u

x

p

y

u
v

x

u
u 


                                              ------------ (9)     

(7) 
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))()(*)((
2

1
2 jYjYnY

U

dX

dP


 


                                         ------------(10)        























2

2

y

T

y

T
v

x

T
u                                                        ------------ (11)               

            Where  =
pc

k


   

 Boundary Conditions 

The boundary conditions for the above three equations are  

1) At the wall surfaces                 

 At y = 0            u = 0 

 At y = 0            v = 0 

 At y = ymax        u = 0 

 At y = ymax        v = 0 

 At y = 0            T= Tw 

 At y = ymax      T= Tw 

The above equation specifies no fluid velocity in the both x & y direction relative 

to the solid surface for the fluid physically in contact with the surface at y = 0 and 

at y=ymax. This is the no-slip condition.  

The fluid temperature is the same as wall temperature at y = 0 and at y=ymax 

2) The inlet fluid is at free stream temperature T and velocity u 

 At x =0          U = U 

 At x =0          T = T 

 Numerical Analysis. 

a) Computation of velocity and temperature distribution 

o First divide the flow domain in by a computational grid, as shown in figure below 

o Assume all mean flow properties are constant in the control volume 

o Integrate the governing equation in each cell                       

Consider the following arrangement for the analysis of the computational grid 

     n 

 n-1 
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 X  

The explicit finite difference discritization for the above simplified governing 

equations are: 

x

uu

x

u jiji








  ,,1
                  

y

uu

y

u jiji








 

2

1,1,
       

y

vv

y

v jiji








  1,1,1
 

x

TT

x

T jiji








  ,,1
                   

y

TT

y

T jiji








 

2

1,1,
 

y

uuu

y

u jijiji








  1,,1,

2

2 2
         

y

TTT

y

T jijiji








  1,,1,

2

2 2
 

))()(*)((
2

1
2 jYjYnY

U

dX

dP


 


 

Continuity equation 

 0
1,1,1,,1









 

y

vv

x

uu jijijiji
    

Solving for jiv ,1  

 )(, ,,11,11 jijijiji uu
x

y
vv 












   ------------------------ (12) 

Momentum equation  

























































 

2

1,,1,

,

1,1,

,

,,1

,

21

2 y

uuu

x

p

y

uu
v

x

uu
u

jijiji

ji

jiji

ji

jiji

ji 


 

 i    j+1   i+2                                                                                                       m-2  m-1  m  

   

j-1  
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Solving for jiu ,1  








































































 





y

uu
v

y

uuu

YYY

U

u

x
uu

jiji

ji

jijiji

jijin

ji

ji

jiji
2

2

*
2

1,1,

,2

1,,1,

2

,,

,

,

,,1  ----- 

(13) 

Energy equation  












































 





 2

1,,1,1,1,

,1

,,1

,1

2

2 y

TTT

y

TT
v

x

TT
u

jijijijiji

ji

jiji

ji   

Solving for jiT ,1  























































 











y

TT
v

y

TTT

u

x
TT

jiji

ji

jijiji

ji

jiji
2

2 1,1,

,12

1,,1,

,1

,,1  --------------- (14) 

 

b) Computation of local and average heat transfer coefficients 

To compute the local heat transfer coefficients. From conduction heat transfer   

            
y

T
k

n

T
kq





















                              ----------------- (15) 

   Where    wn TTT      

              2TTn   ,  1TTw        

                 















y

TT
kq 12                                    --------------- (16) 

  From convection heat transfer  

                 



 TThq wx    1TTw      

                  



 TThq x 1                                    ---------------- (17)                    
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Equating equations (14) and (15) and solving for xh  gives  

                                            





































TT

y

TT

khx

1

21

       -------------- (18) 

FDM discritization is 










































TT

y

TT

kh
i

ii

i

1,1

2,11,1

1            --------------- (19) 

The average surface coefficient 


h  from 0x  to L  may be obtained                           

from  

                            
 L

x xh
L

h
0

1
     

                            





n

i

ii xh
L

h
0

1
                              ------------ (20) 

                 Where L  is the plate length        

C) Computations of velocity and thermal boundary layer  

When a fluid at one temperature flows along a surface which is at another 

temperature, the behavior of the fluid cannot be described by the hydrodynamic 

equations alone. In addition to the hydrodynamic boundary layer, a thermal 

boundary layer develops. The thickness of both boundary layers is limited to the 

inter-surface distance. Laminar boundary layers occur in many important 

applications and the techniques of boundary layer analysis has been applied to 

many circumstances. Solutions of the boundary layer equations are called “exact

” solutions. 

In general, two boundary layers can be defined: a velocity boundary layer with 

thickness  and a temperature boundary layer with thickness t. in general, t  . 

The relative thicknesses depend on the Prandtl number: it can be shown that if Pr 

= 1, then  = t; if Pr >1, then t < ; if Pr <1, then t > .  
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 is defined as that distance above the wall where u=0.99ue; here, ue is the velocity 

at the outer edge of the boundary layer. 

The quantity  is called the velocity boundary layer thickness. At any given x 

station, the variation of u between y =0 and y = ,that is u=u(y), is defined as the 

velocity profile within the boundary layer 

t is defined as the thermal boundary-layer thickness. At any given x station, the 

variation of T between y = 0 and y = t, that is T=T(y), is called the temperature 

profile within the boundary layer. 

If   99.0
,

1,




ji

ji

U

U
    then             yj =  

If 99.0
1,

,


ji

ji

T

T
     then              yj = t 

**************************************************************** 

Project  

Obtain the results for flow between two parallel plates using case 1 as a reference. 

Write a mat lab code for this case (modify the code above for case 1). The problem 

statement, discretization and numerical method are elaborated as follows. Complete 

this report and submit with the results, analysis of results and conclusions included: 

Expected outcomes in the results 

a) Computation of velocity and temperature distribution 

b) Computation of local and average heat transfer coefficients 

C) Computations of velocity and thermal boundary layer 


