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SOLVING TRANSIENT NONLINEAR HEAT
CONDUCTION PROBLEMS BY PROPER
ORTHOGONAL DECOMPOSITION AND THE
FINITE-ELEMENT METHOD

Adam Fic and Ryszard A. Białecki
Institute of Thermal Technology, Silesian University of Technology,
Gliwice, Poland

Alain J. Kassab
Mechanical, Materials and Aerospace Engineering Department,
University of Central Florida, Orlando, Florida, USA

A method of reducing the number of degrees of freedom and the overall computing time by

combining proper orthogonal decomposition (POD) with the finite-element method (FEM)

has been devised. The POD-FEM technique can be applied both to linear and nonlinear pro-

blems. At the first stage of the method a standard FEM time-stepping procedure is invoked.

The temperature fields obtained for the first few time steps undergo statistical analysis,

yielding an optimal set of globally defined trial and weighting functions for the Galerkin

solution of the problem at hand. The resulting set of ordinary differential equations (ODEs)

is of greatly reduced dimensionality when compared with the original FEM formulation.

For linear problems, the set can be solved either analytically, resorting to the modal analysis

technique, or by time stepping. In the case of nonlinear problems, only time stepping can be

applied. The focus of this article is on the time-stepping approach, in which the generation of

the FEM-POD matrices, requiring some additional matrix manipulations, can be embedded

in the assembly of standard FEM matrices. The gain in execution times comes from the sig-

nificantly shorter time of solution of the set of algebraic equations at each time step.

Numerical results are presented for both linear and nonlinear problems. In the case of linear

problems, the derived time-stepping technique is compared with the standard FEM and the

modal analysis. For nonlinear problems the proposed POD-FEM approach is compared

with the standard FEM. Good accuracy of the POD-FEM solver has been observed.

Controlling the error introduced by the reduction of the degrees of freedom in POD is also

discussed.
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1. INTRODUCTION

The accuracy of numerical simulation depends strongly on the density of the
mesh used when discretizing the boundary-value problem at hand. Fine grids
produce trustworthy solutions, but the price is an increased number of degrees of
freedom (DOFs), leading to long computing times and high storage requirements.
In many problems, specifically when real-time solutions are required, the need to
accelerate the calculations is vital. There has been constant progress in the acceler-
ation of solution procedures. The repertoire of means used to reach this goal is
broad: parallelization, multigrid iterative solvers, domain decomposition, to name
only a few.

This article deals with another possibility for reducing the overall computing
time by reducing the number of DOFs of the original discretized problem. The
rationale for this approach is as follows. Consider a spatial field (temperature) that
depends on one parameter (time). It is obvious that the temperature fields corre-
sponding to a sequence of time instants are mutually correlated. The information
concerning the interrelation of the fields can be extracted using statistical methods.
This knowledge can then be used to reduce the number of degrees of freedom neces-
sary to describe the spatial distribution of temperature.

Statistics offer an efficient technique for detecting the correlations present in
large data sets. The technique is known as proper orthogonal decomposition
(POD) and goes under several other names as well. Basic features of the method are
discussed in the next section. It is enough to mention here that POD can be seen as a
technique for approximating a set of vectors using a rotated orthogonal coordinate
frame. The angles of rotation are selected in such a way that the projections of the
vectors on subsequent coordinate axes decay in the most rapid way. Thus, only
the few first projections are needed to approximate all vectors constituting the set.
The directions of the rotated coordinates axes are termed the POD basis.

If the original set of the vectors comes from a solution of a boundary-value
problem, another interpretation of POD is possible. In this case the POD basis is
a discrete approximation of the set of eigenfunctions of the boundary-value problem
at hand. As eigenfunctions constitute the best possible basis of approximation, only
the first few terms are needed to achieve good accuracy of representation of the field
under consideration.

NOMENCLATURE

C covariance matrix of snapshots

F load (right-hand-side) vector

I unit square matrix

K number of reduced DOFs in POD

K conductance (stiffness) matrix

L number of snapshots

M capacitance (mass) matrix

N number of nodes

N column vector of shape functions

N̂N column vector of global trial functions

T̂T column vector of unknowns after POD

transformation

U matrix of snapshots

v eigenvector

V matrix collecting eigenvectors (modal

matrix)

ŵw column vector of global weighting functions

k eigenvalue

U POD basis matrix

ÛU truncated POD basis matrix
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The idea of using POD in the context of time-dependent numerical solution
(primarily the finite-element method, FEM) is not new. It has been exploited in
the literature in structural dynamics [1] and in aeroelastic [2] and fluid dynamics
[3]. Standard time-stepping procedure has been used in all these articles.

The present article is an extension of our previous work [4, 5] in which the POD
FEM combination has been used for solving transient linear heat conduction pro-
blems using modal analysis. The procedure proved to be very effective. For example,
when solving a 3-D unsteady linear heat conduction problem in a radiator (51,897
nodes) with constant boundary conditions, the number of DOFs was reduced to
20, and the maximal error was less than 0.8%. The overall computing time was 10
times shorter than when using the standard FEM.

The focus in the present paper is on solving nonlinear transient heat conduction
problems. The nonlinearity excludes the application of modal analysis. Thus, the
resulting set of ODEs has to be solved using time stepping. Although any discretiza-
tion method can be applied to generate the ODEs (finite differences, finite volumes,
finite elements, boundary elements, or meshless techniques), the analysis in this
article is FEM-oriented.

The execution-time economy in the POD-FEM comes in this case from the sig-
nificant drop in the computational time of the equation solver coming from the
reduction of DOFs. On the other hand, the time of POD-FEM matrix assembly is
greater than for its standard counterpart. As a result, overall saving in execution
time can be expected only for very large problems. This article proposes a technique for
accelerating the POD-FEM assembly process designed for the case when the entire
stiffness matrix needs to be recomputed at every time step. Using this approach,
the gains by using the POD-FEM can be seen even for small problems. The crucial
point of the procedure is the evaluation of the POD set. The next section is devoted
to this problem.

2. FUNDAMENTALS OF PROPER ORTHOGONAL DECOMPOSITION

POD is a technique for extracting information from empirical data. Using stat-
istical methods, the correlations among a sequence of data sets are detected. The
POD basis is optimal in the sense that the first terms contain more energy than
the same number of terms of any other basis. Thus, POD has been used to obtain
models which capture the overall behavior of a physical system using a reduced num-
ber of degrees of freedom.

Determination of the optimal basis requires some additional computational
effort. However, as will be shown, the cost of these calculations is low. This article
describes a variant of the POD known as the snapshot method, which was developed
by Sirovich [6]. An alternative approach is to use the singular value decomposition
technique to construct the POD basis. Reference [7] shows the equivalence of three
different POD variants: principal component analysis, Karhunen-Loeve decompo-
sition, and singular value decomposition. The technique is also known under several
other names, such as Hotteling transformation, quasiharmonic modes, empirical
orthogonal functions, etc. The nonuniform terminology comes from the fact that
POD has been reinvented several times and used in surprisingly many fields of
science and technology.
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The literature on the subject is vast, and this article makes no attempt to give a
complete review of the relevant references. The method was developed about 100
years ago [8]. Since then, it has been used as a tool for processing statistical data
[9–11], pattern recognition, e.g., characterization of human faces [12], and control
theory [13]. Another important area of application of POD technique is in turbu-
lence, where this method has been used to detect large-scale organized spatial
motions [14]. In acoustical and random signal decomposition, POD has been applied
to extract information about the modes and energy of the signals under consider-
ation [15]. This feature is very useful in applications that involve compression and
storage of stochastic signals [16]. The analysis of the activity of the visual cortex
in a turtle brain [17] is an example of application of POD in bioengineering. POD
has also been successfully applied to inverse problems [18] exhibiting strong regular-
ization properties.

The fundamental notion of POD is the snapshot, being a collection of N
sampled values of the field under consideration. The snapshot is stored in a vector
(column matrix) Ui, i ¼ 1, 2, . . . , L. A collection of all snapshots is a rectangular
N�L matrix U. The snapshots are generated by changing the values of some para-
meter(s) on which the field depends. In the transient problems discussed in this article,
the natural choice of such a parameter is the time variable.

The snapshots may be obtained either from a mathematical model of the
phenomenon or from experiments. The aim of POD is to construct a set of vectors
(basis) Uj resembling the original matrix U. The basis is stored in another rectangu-
lar matrix U of the same dimensionality as U. The sought-for basis is orthogonal,
i.e.,

UTU ¼ IðLÞ ð1Þ

where the superscript T denotes the transpose and IðLÞ is the unit matrix of dimen-
sion L. The basis matrix also fulfills the adjoint orthogonality condition

UUT ¼ IðNÞ ð2Þ

From basic linear algebra it follows immediately that the snapshots can be expressed
in the basis as

U ¼ Ua ð3Þ

where a is a square matrix of coefficients of the expansion, whose entries can be cal-
culated by taking advantage of the orthogonality condition (1) as

a ¼ UTU ð4Þ

The snapshot matrix can be approximated using a truncated basis matrix ÛUðKÞ
of K < L columns,

U � ÛUðKÞâa ð5Þ

where âa is the truncated coefficients matrix.
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While the truncated basis matrix still satisfies the orthogonality condition,

ÛU
TðKÞÛUðKÞ ¼ IðKÞ ð6Þ

it does not fulfill the adjoint orthogonality,

ÛUðKÞÛUT ðKÞ 6¼ IðNÞ ð7Þ

Taking advantage of the orthogonality of the truncated POD basis (6), the
truncated matrix of coefficients can be evaluated from the relationship

âa ¼ ÛU
T
U ð8Þ

There is an infinite number of orthogonal bases and the task is to select one
exhibiting optimal approximation property. Let e be the error of the approximation
defined as

e ¼
��U� ÛUðKÞâa

�� ¼
��U� ÛUðKÞÛUT ðKÞU

�� ð9Þ

The goal is to find a truncated, orthonormal basis that for a prescribed error level e
has a minimum number of columns K. This condition is supplemented by an ad-
ditional requirement, that the basis is expressed as a linear combination of snap-
shots, i.e.,

ÛUðKÞ ¼ UV̂V ð10Þ

where V̂V is a rectangular matrix comprised of L rows by K columns. By introducing
the latter condition, finding the optimal basis ÛU has been recast into the problem of
evaluating a much smaller matrix V̂V.

It can be shown [8] that the constraint optimum problem posed by (9) and (10)
is equivalent to the following eigenvalue problem:

Cv ¼ kv ð11Þ

where

C ¼ UTU ð12Þ

is the covariance matrix, and the following solutions, i.e., eigenvectors vi, are asso-
ciated with eigenvalues ki (i ¼ 1, 2, . . ., L) of the problem (11). The eigenvectors are
by definition orthogonal and can be scaled to satisfy a condition

vivj ¼
dij
ki

ð13Þ

where Kronecker symbol dij ¼ 1 if i ¼ j and dij ¼ 0 if i 6¼ j.
As matrix C is positive definite and symmetric, the eigenvalues are positive and

real. It is convenient to calculate them in decreasing order. The truncated modal
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matrix V̂V is now defined as a collection of the first K eigenvectors stored as columns
of the matrix.

Calculation of the full spectrum of the covariance matrix C may lead to long
computing times. Some economy can be achieved by limiting the number of evalu-
ated eigenvalues and eigenvectors. In the present work this has been accomplished
using an ISML routine, DEVFSF [19], in which only the largest eigenvalues (belong-
ing to a predefined interval) are evaluated.

From the orthogonality condition (13), it follows immediately that the trunc-
ated modal matrix is indeed orthogonal:

V̂V
T
V̂V ¼ K�1ðKÞ ð14Þ

where K�1ðKÞ is a diagonal matrix whose entries are defined as fK�1gii ¼ 1=ki. The
truncated modal matrix satisfies the condition

V̂V
T
CV̂V ¼ IðKÞ ð15Þ

A consequence of the latter property is the orthogonality of the truncated basis,

ÛU
T
ÛU ¼ U V̂V

� �T
UV̂V
� �

¼ V̂V
T
C V̂V ¼ IðKÞ ð16Þ

POD can be interpreted as a decomposition of the field into a set of approxi-
mating functions (eigenfunctions). Thus the technique is sometimes referred to as the
empirical eigenfunctions method. In view of this, Eqs. (3) and (5) are discrete analogs
of Fourier expansion of the field into uncorrelated modes.

If velocity is the field under consideration, it can be shown [20] that the kinetic
energy corresponding to a given mode (eigenvector) is equal to the associated eigen-
value. In this case, the error introduced by working with the truncated basis has a
simple physical interpretation. The total energy of the field is equal to the sum of
eigenvalues in the complete POD basis. The energy associated with the first
K POD eigenmodes is equal to the sum of the first K eigenvalues. The ratio of these
two sums of eigenvalues defines the fraction b of energy included in the truncated
basis.

Reference [1] gives an alternative interpretation of POD for structural pro-
blems. Here the POD modes are interpreted in terms of polar moments of inertia.
For other fields the physical interpretation of POD is not that obvious, but in any
case the eigenvalues of the covariance matrix are the measure of importance of a
given POD mode.

As the snapshots are generated by sampling some physical fields, they are
mutually interrelated. Rapid decay of subsequent eigenvalues indicates a strong cor-
relation of the snapshots giving rise to the reduction of the necessary DOFs to
describe the behavior of the field. In typical applications, only the few first eigenva-
lues are significant. The modes whose energy is at the level of computer accuracy can
be neglected without loss of accuracy.
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3. COMBINED POD-FEM NUMERICAL TECHNIQUE

3.1. Time-Stepping Approach

A transient nonlinear heat conduction problem is considered. The standard
FEM procedure leads to a set of N ODEs of the form

MðTÞ _TTþ KðTÞT ¼ FðTÞ ð17Þ

where T is the vector of unknown nodal temperatures, _TT denotes the vector of their
temporal derivatives, M stands for the capacitance (mass) matrix, K denotes the
conductance (stiffness) matrix, and F is the right-hand-side (load) vector.

The entries of the stiffness and mass matrices are evaluated by integration over
the volume of the computational domain. Influence of the boundary conditions is
accounted for by performing integration over the boundary, which is much cheaper
than volume integration. Therefore, for nonlinear cases, the worst possible scenario
is when material properties are solution-dependent. In such a case, the entries of
stiffness, mass matrices, and elements of the load vector are solution-dependent.
As opposed to the linear case, the matrices cannot be reused at the next time step
and should be recomputed at every time step.

The procedure starts with a solution of the problem by the standard FEM. The
set of equations (17) is solved using an (implicit or explicit) time-stepping procedure.
The process is terminated after executing the first L time steps. Subsequent vectors
Ui ¼ Ti (i ¼ 1, 2, . . . , L) of all resulting nodal temperatures (snapshots) collected in
columns of matrix U are used to calculate the symmetric and positive-definite covari-
ance matrix C [Eq. (12)], whose subsequent eigenvectors are used to determine the
truncated POD basis ÛU of N rows and K columns, as described in the previous
section.

Because of the strong snapshots correlation, the decay of the eigenvalues of the
covariance matrix is rapid. As a result, only the first few K modes are needed to de-
fine the truncated POD basis ÛU. Once the basis is known, the temperature field can
be approximated with acceptable accuracy by

T ¼ ÛUT̂T ð18Þ

The column vector T̂T is here a collection of new unknowns. The dimensionality of
this vector is reduced to K elements, which is significantly less than the number of
nodes N.

The Galerkin method can be employed now to formulate the system of equa-
tions in terms of the set of new unknowns collected in vector T̂T. The trial and weight-
ing functions are then defined as a linear combination of shape functions. Thus, the
global trial functions collected in vector N̂NðxÞ of dimension K are determined as

N̂N
TðxÞ ¼ NTðxÞÛU ð19Þ

where x stands for the coordinate vector and NðxÞ is the N-dimensional column
vector of standard shape functions. The column vector of the weighting functions
ŵwðxÞ is defined as follows:

ŵwðxÞ ¼ ÛU
T
NðxÞ ð20Þ
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The approach is equivalent to transformation of the system (17) by its left-
sided multiplication by ÛU

T
and substitution of (18), which results in

M̂M _̂TT_TTþ K̂K T̂T ¼ F̂F ð21Þ

where

M̂M ¼ ÛU
T
MÛU ð22Þ

K̂K ¼ ÛU
T
KÛU ð23Þ

F̂F ¼ ÛU
T
F ð24Þ

M̂M and K̂K are now symmetric, fully populated K�K matrices. System (21) is solved
using an implicit time-stepping procedure, which leads to the K�K system of
algebraic equations of form:

AT̂T ¼ B ð25Þ

Inverse transformation is defined by Eq. (18).
As mentioned previously, the aim of using the POD technique combined with

the FEM is reduction of the number of DOFs, but the primary goal is to reduce the
computing time. The cost of FEM solution consists, roughly speaking, of two com-
ponents: matrix generation and solution of equations. As the dimensions of the
POD-FEM matrices K̂K and M̂M are much lower than their standard FEM counter-
parts, the time required to solve the equation set (25) is much less than for the orig-
inal FEM system. On the other hand, matrix generation in POD-FEM is
considerably more expensive than in the case of the standard FEM. The reason
for this is clear. As can be seen from Eqs. (22) and (23), generation of POD-FEM
matrices requires two additional matrix multiplications. Evaluation of the
POD-FEM matrices at every time step directly from Eqs. (22) and (23) would lead
to prohibitively long computing times. Thus, the approach used in the study was
to separate the solution-dependent part of the element matrix from the geometry-
dependent one. The procedure for assembling the final POD-FEM stiffness matrix
consists of the following steps:

At the first step, the FEM element matrices K1e are determined. These are the
standard FEM element matrices evaluated taking the conductivity value equal to 1.

For every FEM element matrix, the POD-FEM element matrix K̂K1e is calcu-
lated and stored. This was done making use of the equation

K̂K1e ¼ ÛU
T

e K1e ÛUe ð26Þ

where matrices ÛUe collect only the appropriate rows of matrix ÛU referred to the
following nodes of element e. Thus, advantage has been taken of the sparsity of
the element stiffness matrix K1e.
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In the following time steps, the global POD-FEM matrix K̂K is assembled as

K̂K ¼
XNE

e¼1

keK̂K1e ð27Þ

where NE stands for the total number of volumetric elements and ke is the average
conductivity for element e. It should be stressed that only these values of the conduc-
tivity undergo changes in subsequent time steps.

Strictly speaking, the heat conductivity should be sampled at each Gaussian
node, but averaging of the material property introduces insignificant error while
greatly speeding up the calculations. Therefore, material property averaging is popu-
lar among programmers. To provide a fair comparison of the FEM and POD-FEM,
material property averaging has also been used in all reference FEM solutions
reported in the results section.

The volumetric contributions to both the mass matrix and load vector can be
evaluated using an analogous procedure. Comparison of the execution times for
POD-FEM and the standard FEM is shown in the next section. It should be stressed
that material properties averaging has been applied in both cases.

3.2. Modal Approach for Linear Problems

For linear problems, an alternative POD-FEM technique can be applied
for solving transient heat conduction problems. This approach is applicable for
both constant and time-dependent loads [4, 5]. The first step is the generation
of ODEs (17) using the classical FEM approach. An outline of the method is
described below. It is assumed that the lumped formulation of capacitance matrix
is used.

For linear problems, the set of equations of form (17) can be solved using the
concept of modal decomposition analysis [21]. This method is an analytical solution
of the set of equations (17) with respect to time. The crucial stage of this approach is
the determination of the eigenvalues and eigenvectors of the transformed stiffness
matrix in the case of the problem considered. It is therefore convenient to have this
matrix symmetric, as then the eigenvalues are real. To preserve the symmetry of
the transformed stiffness matrix, system (17) should be transformed defining a
new variable T�:

T ¼ M�1=2 T� ð28Þ

where M�1=2 is an N�N diagonal matrix determined as M�1=2
� �

ii
¼ 1=

ffiffiffiffiffiffi
mii

p
, with mii

denoting the ith diagonal term of the diagonal capacitance matrix M.
Substitution of (28) into (17) and multiplying the result by M�1=2 yields a set of

N ODEs of form

_TT
� þ K� T� ¼ F� ð29Þ
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where K� ¼ M�1=2 KM�1=2 is a symmetric sparse matrix, and F� ¼ M�1=2 F. The
POD technique comes to play at the next step. Transformation

T� ¼ ÛUT̂T ð30Þ

similar to (18), leads to the system of form (21), with slightly redefined matrices:
M̂M ¼ IðKÞ, K̂K ¼ ÛU

T
K� ÛU, and F̂F ¼ ÛU

T
F�. Matrix K̂K is a fully populated K�K

symmetric matrix, and the number K of new unknowns collected in vector T̂T is
significantly smaller than the original number of nodes N. Thus, the solution of
the resulting ODEs can be accomplished by modal decomposition with significant
gain in computing times [4, 5]. Inverse transformation is more complex than in the
case of the time-stepping approach. However, the transformation matrix linking
the modal solution and the original temperature field T needs to be determined only
once [5].

It should be pointed out that the snapshots in the case of the modal approach
of POD-FEM considered are not just the nodal temperatures. The covariance matrix
is generated using the vectors of nodal temperatures scaled by the mass matrix
entries, i.e., Ui ¼ T�i (i ¼ 1, 2, . . ., L).

3.3. Errors Introduced by POD Truncation

The quantity of direct interest is the error in temperature introduced by the
POD approximation. To investigate how the error develops with time, two relative
error definitions at a given time instant t are introduced: the average error dmðtÞ and
the local error dTðtÞ. These errors are expressed in terms of three quantities: the
absolute error dTi of the temperature at node i, the excess DTi of temperature over
the initial condition at a given node, and, the mean excess of temperature
DTm ¼

PN
i¼1 DTi=N. The average global error is defined as

dmðtÞ ¼
PN

i¼1 dTi

NDTm
ð31Þ

while the measure of the local one is

dTðtÞ ¼ max
i

dTi

DTi

� �
ð32Þ

The standard FEM solution has been treated as a reference solution to which
the POD-FEM results are benchmarked in every case reported in the example
section.

4. NUMERICAL EXAMPLES

A 2-D gas-cooled turbine blade was considered. The geometry and the imposed
boundary conditions are shown in Figure 1. The initial condition was a constant
temperature T0 ¼ 300K. The temperatures of both the coolant and the working fluid
changed in time. The initial coolant temperature was equal to the initial temperature
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of the blade, i.e., 300K. Then, the temperature of coolant changed linearly in time,
reaching 750K after 150 s. After this time, the coolant temperature remained
constant. The temperature of the working fluid changed exponentially as
Tf ¼ 300þ 1;100 ½1� expð�t=80Þ�, where t denotes time in seconds.

The problem has been solved using an in-house FEM package based on FEAP
[21] equipped with a time-stepping POD-FEM option and in-house code based on
the described modal POD-FEM technique. The numerical mesh consisted of 4-node
isoparametric elements.

4.1. LINEAR PROBLEM: EXAMPLE 1

Comparison of the results obtained by the time-stepping and modal
approaches of the POD-FEM is the purpose of investigations presented in this sub-
section. The values of the material properties used in the example were: heat conduc-
tivity k ¼ 22W=mK, specific heat capacity of a unit volume cp ¼ 3.67MJ=m3K. The
numerical mesh consisted of 3,151 nodes.

After generating 200 snapshots using a time step of 0.1 s and central differ-
ences, the POD basis has been generated. The fraction b of neglected energy
was of the order of 5E-12. The full set has been limited to 16 degrees of freedom
(recall that the original set contained 3,151 unknowns) using the modal version
of POD-FEM, and to 11 DOFs for the time-stepping approach. The eigenvalues
of the covariance matrix decreased very rapidly in both versions, suggesting strong
interrelation of the snapshots (cf. Figure 2). However, in the modal POD-FEM,
the interrelation is slightly worse. This can be explained by the fact that for the modal
analysis the snapshots are defined as scaled temperatures T� [Eq. (22)], i.e., quantities
with no physical meaning. The snapshots used in the time-stepping POD-FEM
approach are defined as vectors of nodal temperature, and as such have direct
physical meaning.

Figure 1. Geometry of the blade, boundary conditions, and location of selected nodes.
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The changes of temperature at three characteristic nodes marked in Figure 1
obtained using the time-stepping POD-FEM, as well as changes of fluid tem-
peratures, are shown in Figure 3. The accuracy of the modal solution at node

Figure 2. Distribution of eigenvalues of the covariance matrix for the linear problem: (a) modal approach;

(b) time-stepping approach.

Figure 3. Fluid temperatures and resulting temperatures at selected nodes for linear problem using time-

stepping POD-FEM.
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3,117 was the worst among all nodal points. These nodal temperatures are
compared with the standard FEM results. The temporal variation of errors of
the temperature for the time-stepping and modal POD-FEM is presented in
Figure 4.

It should be noticed that the maximal error does not exceed 3%, and the aver-
age error 0.8%. The time-stepping POD-FEM yields results comparable with the
modal POD-FEM, and maximal error is even smaller in this case. The errors reach
their maximum in an asymptotic way, not exceeding it. The time interval used to
generate the snapshots was of the order of 20 s, while the POD solution has been
generated for times one order of magnitude larger.

4.2. Nonlinear Problem: Example 2

In the second example the source of the nonlinearity was the temperature-
dependent heat conductivity. The value of conductivity was k ¼ 40W=mK at
300K, k ¼ 20W=mK at 1,500K, with linear dependence of the conductivity on tem-
perature between these two temperatures. Remaining assumptions were the same as
in Example 1. The problem was solved using the time-stepping POD-FEM. The
numerical mesh consisted of 3,151 nodes.

Figure 4. Comparison of errors for the linear problem solved by modal and time-stepping POD-FEM.
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Two hundred snapshots were also generated using a time step of 0.1 s. Although
the fraction b of neglected ‘‘energy’’ was slightly higher than previously and equal to
1E-11, the resulting dimensionality of the POD basis was larger (31) than in the linear
case (16). This suggests that the interrelation of snapshots is worse than in the linear
case. The eigenvalues of the covariance matrix are shown in Figure 5. Rapid decay of
their values proves a strong correlation between the snapshots. Figure 6 shows the
comparison of the exact FEM solution with the time-stepping POD-FEM results.
As the eigenvalues (Figure 5) from about the 11th are almost constant and very small,
the problem was recalculated using lower values of DOFs (number of modes K of the
truncated POD basis ÛU). The errors, defined by Eqs. (31) and (32), are, for the case
under consideration, depicted in Figure 7. Results obtained using 31 and 11 DOFs
(b ¼ 1.5E-11) were practically the same. Further reduction of DOFs up to 7
(b ¼ 1E-09) did not incur significant loss of accuracy. If 6 DOFs (b ¼ 0.9E-09) were
used, the errors magnified notably and, referred to the time instant 380 s, the
maximum relative error achieved 6.97%, while the average was 1.98%.

It can be seen that the material nonlinearity considered does not introduce
additional error when compared to the linear case.

It is worth noting that the POD-FEM technique does not work correctly when
degenerated triangle elements (quadrangles with double nodes) are used.

4.3. Nonlinear Problem: Example 3

The third problem considered was similar to Example 2, but the numerical
mesh consisted of 37,732 nodes. Moreover, the heat capacity per unit volume was
assumed to be temperature-dependent. Its value was cp ¼ 3.5MJ=m3K at 300K,
and cp ¼ 5.0MJ=m3K at 1,500K, with linear dependence on temperature between
these two temperatures. As a result, the capacitance matrix had to be recalculated
in each time step. The remaining assumptions were the same as in Example 2.

Figure 5. Distribution of eigenvalues of the covariance matrix for Example 2.
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Two hundred snapshots were also generated in this example using a time step
of 0.1 s. The eigenvalues of the covariance matrix are shown in Figure 8. The
neglected ‘‘energy’’ fraction b was higher than the previously assumed value and
equal to 8E-11. The resulting dimensionality of the POD basis was 21. Comparative
calculations using the standard FEM and the time-stepping POD-FEM was carried
out employing a POD basis consisting of 6 through 21 modes. It can be seen that the
eigenvalues starting from the 10th were 10 orders of magnitude higher than the first
one. The errors of the POD-FEM results in the cases considered are shown in
Figure 9. Accuracy of results obtained using 21 and 8 DOFs (b ¼ 2E-10) was prac-
tically the same. Further reduction of DOFs reduced the accuracy. For 6 DOFs
(b ¼ 1E-08) the maximum relative error assumed the value of 3.09%, while the aver-
age was 0.93% for the time instant 380 s.

It should be pointed out that although the number of nodes used in this
example was more than 10 times higher than in Example 2, the number of POD
modes required to keep the error at an acceptable level was practically the same.

Figure 6. Fluid temperatures and results at selected nodes for Example 2.
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4.4. Computing Times

Simplified operation count shows that the execution time of the equation solver
depends on the square of the number of DOFs O (N2) [1] for the FEM matrix (in-
core skyline solver) and the cube of the number of POD modes O (K3) in the
POD-FEM case (standard symmetric Gauss solver). The assembly time is pro-
portional to the number of DOFs in standard FEM O (N), while the assembly of
the POD-FEM system is of order O (NK2) and as such is of order of O (K2) more
expensive. The latter tendency has been checked empirically. Figure 10 shows the de-
pendence of the assembly time for the exact (left) and simplified version of entries
evaluation of the POD-FEM matrix arising in Example 2. It can be seen that the as-
sembly time is in both cases proportional to the squared number of POD modes K.

The POD-FEM reduces total execution times only in the case of large pro-
blems, where the solution time dominates. For the code used in our examples, the
limit was about 3,000–4,000 DOFs. When compared to the stiffness matrix assembly

Figure 7. Errors of results obtained for Example 2 when POD basis with different values of DOFs was

used. Numbers on the right margin indicate the numbers of DOFs.
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Figure 8. Distribution of eigenvalues of the covariance matrix for Example 3.

Figure 9. Errors of results obtained for Example 3 when POD basis with different values of DOFs was

used. Numbers on the right margin indicate the numbers of DOFs.
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with material properties evaluated at every Gaussian node, using the concept of
average material properties decreases the assembly time of the K̂K matrix significantly.
For the case of four Gaussian nodes=element used in the examples, the acceleration
is between 4 and 10 times, depending on the number of POD modes. This can be
clearly seen by comparing the execution times in Figure 10 and Table 1. It should
be stressed that the simplification does not influence the accuracy of the final results.
The differences between the temperature fields obtained using the simplified and
rigorous matrix generation were in all cases considered below 0.2%.

The same averaging procedure applied to the standard FEM matrix does not
lead to such a CPU time economy in the assembly process. Thus, the number of

Figure 10. CPU time for assembly of volumetric components of matrix K̂K in a simplified and an exact way

for Example 2.

Table 1 Processor times (s) for different operations within a single time step for Examples 2 and 3 with 8

DOFs using time-stepping POD-FEM

Operation

Example 2 Example 3

FEM POD-FEM FEM POD-FEM

Assembling capacitance matrix M or M̂M 0.03 0.04 0.44 0.79

Assembling volumetric component

of conductance matrix K or K̂K exactly

0.08 0.14 0.98 1.80

Assembling volumetric component of matrix

K or K̂K in a simplified way

0.02 0.01 0.21 0.18

Assembling boundary components

of matrices K and F or K̂K and F̂F
<0.005 0.01 0.01 0.05

Remaining operations while building

final set of algebraic equations

0.03 <0.005 0.71 <0.005

Solving set of algebraic equations 0.03 <0.005 3.92 <0.005

Single time step

K or K̂K calculated exactly 0.14a 0.16a 6.06 2.64

K or K̂K calculated approximately 0.08a 0.02a 5.29 1.02

aCapacitance matrix was calculated only once.
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nodes at which the POD-FEM brings execution time economy is lower if the simpli-
fied generation of matrices K and bKK is used. For Example 2, with a small number of
unknowns, the time-stepping POD-FEM technique with exact evaluation of matrix
K̂K did not yield any gain in computing time. The savings in equation solving were
compensated by the higher cost of the assembly. This is true even if a small but
acceptable number of POD DOFs is applied (8 DOFs). The POD-FEM with simpli-
fied matrix generation leads to significant execution-time reduction.

The saving is more pronounced for larger problems (Example 3), as then the
cost of equations solving becomes dominant. The computing time for solving sets
of algebraic equations increases in the FEM with the growth of the number of nodes
[O(N2)] much more quickly than the assembly process [O(N)] [1]. Simultaneously, the
cost of algebraic equations solving in the POD-FEM [O(K3)] does not depend
practically on the number of nodes N, while the cost of assembly [O(NK2)] increases
versus the growth of N comparatively as in the standard FEM.

Comparison of total computing times of Examples 2 and 3 is presented Table 2.
The codes were run on a Pentium 4, 2.2GHz, with 1 GB RAM. The simplified method
of calculation of volumetric components of matrices for the POD-FEM (matrix K̂K)
based on Eq. (27) and the standard FEM (matrix K) was applied in the time-stepping
procedure. The mass matrix M̂M [Eq. (22)] was assembled in an exact way.

If the number of DOFs in the time-stepping POD-FEM technique is selected at
a reasonable level (8–10 in Examples 2 and 3), the gain in the overall computational
time (taking into account snapshots and basis generation) is of the order of 3–5
times. Further decrease of this time can be achieved using a simplified assembling
procedure also for the mass matrix M̂M.

The computational time in the time-stepping POD-FEM method depends
strongly on the number of DOFs. Thus, this number should be selected carefully.
If it is selected too high, the proposed technique cannot yield any execution time
saving. On the other hand, too low a number of DOFs leads to unacceptable errors.

4.5. Error Estimation

Working with the truncated POD basis introduces some error. A simple means
of assessing the error introduced by this approximation is an important question in
practical applications. Recalling that access to the original stiffness and mass

Table 2 Computing times for Examples 2 and 3

Kind of calculations

Example 2 Example 3

No. of DOFs Time (s) No. of DOFs Time (min)

FEM 3,151 321.0 37,732 445.2

Snapshots generation 20.3 24.4

POD basis generation 31 8.5 21 3.1

Time-stepping POD-FEM 31 178.4 21 201.7

11 92.4 10 72.5

8 81.0 8 65.5

7 77.0 7 62.2
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matrices as well as the load vector is available, the POD solution obtained at a given
time instant may be substituted into the original set of ODEs (17). The necessary
temporal differentiation can be carried out numerically. The residuum of the original
set of equations (17) can then be readily calculated at an arbitrary time instant. The
norm of the residuum is frequently taken as a measure of the error in the case of
iterative solvers, but the physical interpretation of such error is difficult.

The question that arises is how to relate two measures of the error: the
residuum (which can be readily evaluated but does not have a direct physical mean-
ing), and the error in nodal temperatures, which is the quantity of interest, but no
plausible technique for its evaluation is available. Intuitively, these two measures
should be closely related, hence the idea of assessing the error in temperatures by
investigating the residuals arises in a natural way. Numerical tests indicate that

Figure 11. Ratio of maximum error and norm of residuals for Examples 2 and 3.
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the ratio of these two error indicators remains practically at the same order of mag-
nitude in time. Specifically, this is true in the case of the maximum absolute error
½max

i
ðdTiÞ�. This is shown in Figure 11, which presents results for Examples 2 and

3 for 8 POD degrees of freedom.

5. CONCLUSIONS

The main reason for dealing with POD in the FEM context is the potential for
reducing computing times. In the case of modal analysis and medium-size problems
(60,000 DOFs), the technique leads to time economy of one order of magnitude [5].
In this case the stiffness and mass matrices are generated only once, and so are their
POD-FEM counterparts. Moreover, the solution of the reduced ODEs is carried out
analytically. In the case of nonlinear problems, the time saving is not that pro-
nounced. The reason is that the POD-FEM matrices need to be recalculated at every
time step. Thus, additional cost of multiplication of the FEM matrix by the POD
basis is incurred at every time step. On the other hand, the system matrices to be fac-
tored are of significantly lower dimensionality. In the example under consideration,
the time economy is of the order of 3–4. As the cost of solution increases faster than
the cost of the matrix assembly, it can be predicted that the gain in using POD for
larger problems will increase.

The main result of this study is the development for a technique for applying
POD to nonlinear cases. Another important conclusion is that the error incurred
by the truncated POD basis is (at least in the problem under consideration)
at an acceptable level of 1%. It is worth noting that the POD basis need not be
recalculated.

Additional gains in execution time can be expected. As shown in the case of
hyperbolic equations [2], the POD-FEM equations can be solved using much larger
time steps. This issue will be a topic of further research.
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