5. Beams and
6. Frames



Beams and frames

« Beams are slender members used for
supporting transverse loading.

« Beams with cross sections symmetric with
respect to loading are considered.
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Potential energy approach

Strain energy 1n an element of length dx 1s
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J‘y"'cH is the moment of inertia I
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The total strain energy for the beam 1s given by-

U = %IEI(dzv/dﬁ)dx



Potential energy of the beam 1s then given by-
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Where-
-p 1s the distributed load per unit length
-p,, 15 the pomt load at point m.
-M,, 1s the moment of couple applied at point k
-v,, 1s the detlection at point m
-v’; 1s the slope at point k.



Galerkin’s Approach

pl TTTT1 *Here we start from equilibrium
| V+dV of an elemental length.
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For approximate solution by Galerkin’s approach-
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@ 1s an arbitrary function using same basic functions as v



Integrating the first term by parts and splitting the interval 0 to L
to (0 to x,,), (X, to X;) and (x,. to L) we get-
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® and M are zero at support..at X, shear force 1s p,, and at x,_
Bending moment 1s -M,.



assume the displacement w is a cubic polynomial

V(X) =a, +a,X +a,x° +a,x’

a,, a,, a5, 8, are the undetermined coefficients

L = Length

| = Moment of Inertia of
the cross sectional area
E = Modulus of Elsaticity
v = Vv(X) deflection of the
neutral axis

0= dv/dx slope of the
elastic curve (rotation of
the section

F = F(x) = shear force
M= M(x) = Bending
moment about Z-axis

L, El




a
v(x)={1 X X2 x3}<a2$; e(x):{o 1 2X 3)(2}<
3
(84
dv
x=0, v(0O)=v,; —| =80
() 1 dXX=0 1
dv
( ) 2 dXX:L 2
fvi\ rl O 0 O ) al\
0, 01 00 a,
T [~ 2 13 (Y.
V; 1 L L L a,
6;] |0 1 2L 3% (&,




¢ Applying these boundary conditions, we get

1d}=[P(x)Ha}
{a}=[P()]{d}

d; =V, a, :91

a, = é (-3v, —2L6, +3v, — L6,)

¢ Substituting coefficients a; back into the original equation

v(x):{l X X° x3}4




¢ The interpolation function or shape function is given by
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Internal virtual energy SU°= j S{a}T {c}dv
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substitute {c}=[E]{e} in above eqn.

8U°= [ 5{e}
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External virtual workdue to body force

swi=8 (d(x)! {bldv = js [N]'{b, }dv
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External virtual work due to surface force
SWE _[8 d(x) pldv = js [N]T {p, }ds
External virtual work due to nodal forces
swe=5{d} {P°}, (P} =[P, M,.P,,....]

From virtual work principle sU°® = sw*e
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othe stiffness matrix [K] is defined

[K]= IV[B]TE[B]dV . j (dAy® )E j [B]"[B]dx
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To compute equivalent nodal force vector
for the loading shown
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Given:

Find:
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The beam shown above 1s clamped at the two ends and
acted upon by the force P and moment M in the mid-
span.

The deflection and rotation at the center node and the
reaction forces and moments at the two ends.
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Given: P=50kN, k=200kN/m,” L =3 m, %Vs

E=210 GPa, I=2x10"m".

Find: Slope, deflection, reactions and member end forces



Solution:

The beam has a roller (or hinge) support at node 2 and a
spring support at node 3. We use two beam elements and one
spring element to solve this problem.

The spring stiffness matrix is given by,
Vs Vs T Vs
K = k  —k| v, .
-k kv,

Ty,



Stiffness matrix for element 1
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We now apply the boundary conditions,
v, =6, =v,=v,=0,
M,=M,=0, by =-P

Deleting’the first three and seventh equations (rows and
columns), we have the following reduced equation,
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Solving this equation, we obtain the deflection and rotations at
node 2 and node 3,
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The influence of the spring £ is easily seen from this result.
Plugging in the given numbers, we can calculate

0,] [-0.002492 rad |
1V3 =4 —0.01744 m
0, |[—0.007475 rad |

e




From the global FE equation, we obtain the nodal reaction
forces as,

(F,] [ -69.78 kN |
M,| |-69.78kN-m
£, (7] 162N |

_E;Y_ | 3488 kN

Checking the results: Draw free body diagram of the beam

69.78 kN 50 kKN
69.78 KN-m T | 1

116.2 kN 3.488 kN



For element 1

v, ) 12 18 -12 18 (0 1 (-70 170 fo
IMil_jgeg6 8 36 18 18 1]0 )70 5 )
v, 12 -18 12 -18 |0 70 139.6
M, 18 18 -18 36(-0.00249| |-139.6)
vV, ) 12 18 -12 18 (0 | (-46.53) 16,53 5 53
M, 18 36 -18 18 |[-0.00249 | [139.6 l r\
v, (719950 15 18 12 18 |]-0.01744 [ (4653 | L

2
M, | 18 18 -18 36(-0.007475] |0 | 139.6 0




For the beam and loading shown in Fig. E8.1, determine (1) the slopes at 2

12 kN/m
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FIGURE E8.1



EI (200 x 10%)(4 X 107°)
= e =8 X 10°N/m




(V, ) 12 6 -12 6 (v,
M, 6 4 6 2 0,
V, |-12 -6 12+12 -6+6 -12 6 ||v,
172 L-gx10 <

M, 6 2 646 4+4 -6 2 ||,
V, 12 6 12 -6||v,
M, | 6 2 -6 4|6,

Boundary condition
V,0,V,,v,=0

Loading Condition

M, =-1000; M, =1000

[8 27(0,] (-1000
8x10 =
2 416, |1000.0
0,] 1 4 -27[-1000] [-2.679x10™
0, 28*8x10°|-2 8]|1000.0| |4.464x10™
Final member end forces

{1 = [k]{d} +{FEMS}



For element 1

' )
428-64 | 857.28

§1285.92

(0] 12 6 -12 6](0 ] (-1285.92)
0 |6 4 -6 2|0 _428.64
> =< ++8X10 3 =< >
0 12 -6 12 -6 |]0 1285.92
0] 6 2 6 4]|-2679x10*) |[-857.28 | [128592
(6000 12 6 -12 610 ] (6856.8)
1000 | 6 4 -6 2||-2679x10*| [856.96
b =1 > +8X10 < o =9 >
6000 12 -6 12 -6 |]0 5143.2
_ _ -4
(—1000 6 2 -6 4)|4464x10" | |0 ] 6856.8

856.96




: . . ) Guided Support
Find slope at joint 2 and deflection at @ i/ 20 KN 20kN/m

joint 3. Also find member end forces ¥ v YYYVYYYyy
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V= Ve
Global coordinates q =1 GA @

4
fan T&E ey &8
Fixed end reactions (FERS) Q W‘”"W‘V‘VV""VV@
/ /
SC&BM
a8 &g
Action/loads at global <{ e @Azﬂ?@
coordinates .,



For element 1

-

1X10*

For element 2
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1X10*

v, 6

(12 36

(12 24 -12 24]
24 64 -24 32
12-24 12 -24
24 32 24 64
V2 e2

12 36

36 144 -36 72
-12 -36 12 -36

36 72
V2 e2

36 144

Vs

0,




o [E | [1875 3750 1875 3750
M, 3750 10000 -3750 5000
F, -1875 -3750 1875+555.56 -3750+1666.67 -555.56 1666.67
M, (T|3750 5000 -3750+1666.67 10000+6666.67 -1666.67 3333.33 |
F -555.56 -1666.67 555.56 -1666.67
M| | 1666.67 3333.332 -1666.67 6666.67 |

Boundary condition
vV,0,v,,0,=0
Loading Condition
M, =-50; F,=-60

16666.67 -1666.67](0,] [-50
{-1666.67 555.56 va} ] {—60}

0, 1 [555.56 1666.67 |(-50] [-0.019714
{v3}: 6481481.5{1666.67 16666.67}{—60}:{—0.16714 }
Final member end forces
(f} = [K]{d) + {FEMS}




For element 1
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For element 2

L=

K6O 3

\_60)

60
60
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1X10*

1X10*

(12 24 -12 24]
24 64 -24 32
-12-24 12 -24

24 32 24 64

(12 36 -12 36
36 144 -36 72
-12 -36 12 -36

<
0

0
0

-0.019714)

100 X
—0.019714

183.93

1-0.16714 |
36 72 -36 144||0

(—63.93 |
—88.57

-207.14]

(120
207.14 &

152.85



Planar Frames

Frames look like trusses, but the connections are rigid, i.e. welded or riveted.

Each member can carry axial force, shear force and bending moment,

10 10

y
—px

Each member can be modeled as a single element or multiple elements.

The above bicycle frame has 7 members.

It is possible to think of a frame element as the superposition of truss and beam
elements.



Frame Element

We now have transformation matrices for arbitrarily oriented beam and truss
elements.

Frame elements carry axial force, shear force and bending moment.

They can be obtained by the superposition of beam and truss elements.
Frame element has 3 unknowns at each node.

Frame element in Frame element in
local coordinates global coordinates
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If f' member end forces in local coordinates then

ify=[k]ia’}
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are forces in global coordinate direction a5 I s

At node |

e
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FIGURE 8.9 Frame element.

€ m 0 0 0 0
—m € 0 0 0 0
B 0 0 1 0 0 0
ot 0 0 0 € m 0
0 0 0O —m £ 0

0 0 0 0 0 % |

g, =Q,cos0+q,sind
g, =—q,sin0+q,coso

" 73 (g% | =cosO; m=sin0O

(8.48)



using conditions {q'}=[L]{q}; and {f}=[LI{f}
Stiffness matrix for an arbitrarily oriented beam element is given by

[K]=[L] [K][L]

pl. ptl pt. pl: [T
£ = e
[0’ > 1 b 3 12

The nodal loads due to the distributed load p are given by

f=L"f







a3
Z displacement in local coordinates
Ay
Twist in y'-Z' ,
plane gq=1 % % N
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If f' member end forces in local coordinates then

ify=[k]ia’}
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The transformation from local to global axis system is accomplished as follows:
k=TTkT
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¢ If axial load is tensile, results from beam
elements are higher than actual = results are
conservative

¢ If axial load Is compressive, results are less than
actual

size of error 1s small until load 1s about 25% of Euler
buckling load



¢ for 2-d, can use rotation matrices to get
stiffness matrix for beams in any orientation

¢ To develop 3-d beam elements, must also add
capability for torsional loads about the axis of
the element, and flexural loading In x-z plane



¢ to derive the 3-d beam element, set up the beam
with the x axis along its length, and y and z
axes as lateral directions

¢ torsion behavior iIs added by superposition of
simple strength of materials solution



¢ =torsional moment about X axis

G = shear modulus

L = length

d.i» $,; are nodal degrees of freedom of angle of
twist at each end

T;, T; are torques about the x axis at each end



¢ flexure in x-z plane adds another stiffness
matrix like the first one derived

¢ superposition of all these matrices gives a
12 x 12 stiffness matrix

¢ to orient a beam element in 3-d, use 3-d
rotation matrices



+ for beams long compared to their cross section,
displacement is almost all due to flexure of
beam

¢ for short beams there i1s an additional lateral
displacement due to transverse shear

¢ some FE programs take this into account, but
you then need to Input a shear deformation
constant (value



¢ limitations:

same assumptions as In conventional beam and
torsion theories

no better than beam analysis

axial load capability allows frame analysis, but
formulation does not couple axial and lateral loading
which are coupled nonlinearly analysis does not
account for

stress concentration at cross section changes
where point loads are applied
where the beam frame components are connected



Finite Element Model

¢ Element formulation exact for beam spans with
no intermediate loads

need only 1 element to model any such member
that has constant cross section

¢ for distributed load, subdivide Into several
elements

¢ need a node everywhere a point load Is applied



¢ need nodes where frame members connect,
where they change direction, or where the
Cross section properties change

¢ for each member at a common node, all have
the same linear and rotational displacement

¢ boundary conditions can be restraints on linear
displacements or rotation



¢ simple supports restrain only linear
displacements built in supports restrain
rotation also



- Element

C$()



restrain vertical and horizontal displacements of
nodes 1 and 3

no restraint on rotation of nodes 1 and 3

need a restraint in x direction to prevent rigid body
motion, even if all forces are in y direction



¢ cantilever beam

o _ 1

has x and y linear displacements and rotation

O—Node

- Element




¢ point loads are idealized loads

structure away from area of application
behaves as though point loads are applied



¢ only an exact formulation when there are no
loads along the span

for distributed loads, can get exact solution
everywhere else by replacing the distributed

load by equivalent loads and moments at the
nodes






Computer Input Assistance

¢ preprocessor will usually have the same
capabilities as for trusses

¢ a beam element consists of two node
numbers and assoclated material and
physical properties



¢ material properties:
modulus of elasticity

If dynamic or thermal analysis, mass density
and thermal coefficient of expansion

¢ physical properties:
cross sectional area

2 area moments of inertia
torsion constant

location of stress calculation point



¢ boundary conditions:

specify node numbers and displacement
components that are restrained

¢ loads:
specify by node number and load components

most commercial FE programs allows
application of distributed loads but they use
and equivalent load/moment



Analysis Step

¢ small models and carefully planned element
and node numbering will save you from
pandwidth or wavefront minimization

¢ potential for 1ll conditioned stiffness matrix
due to axial stiffness >> flexural stiffness
(case of long slender beams)




Output Processing and Evaluation

¢ graphical output of deformed shape usually
uses only straight lines to represent
members

¢ you do not see the effect of rotational
constraints on the deformed shape of each
member

¢ to check these, subdivide



¢ most FE codes do not make graphical
presentations of beam stress results
user must calculate some of these from the stress
values returned
¢ for 2-d beams, you get a normal stress normal to
the cross section and a transverse shear acting on
the face of the cross section

normal stress has 2 components
axial stress



top or bottom of the cross section
transverse shear is usually the average

transverse load/area

does not take into account any variation across the
section



¢ BEAMS

normal stress IS combination of axial stress, flexural
stress from local y- and z- moments

stress due to moment is linear across a section, the
combination is usually highest at the extreme
corners of the cross section

may also have to include the effects of torsion
get a 2-d stress state which must be evaluated

also need to check for column buckling



