CENG 6103 System Analysis and Management Techniques I

Chapter 1
Introduction

Introduction

Alternative Names:

- > operational research
- > operations analysis
- > systems analysis
- > decision analysis
- > etc.

Systems Analysis - Introduction

Definition

- 1.SA/OR is the application of scientific methods, techniques and tools to problems involving the operations of systems so as to provide optimum solutions to the problems.
- SA/OR is the application of the scientific method to the study of the operations of large, complex organizations or activities and to the analysis and solution of managerial decision problems.
- 3. SA/OR frequently attempts to find a best solution called the optimum solution for a given problem.

Systems Analysis - Introduction

Definition - summary

- > Application of SCIENTIFIC METHOD
- > Study of LARGE & COMPLEX SYSTEMS
- ➤ Analysis of MANAGERIAL PROBLEMS
- > Finding OPTIMAL SOLUTION

Origin of the Operations Research Science

- Industrial revolution
 - change in organization size and complexity, it becomes more and more difficult to allocate and utilize resources efficiently.
- Second World War
 - More advanced as there was an urgent need to allocate the scarce resources to the various military operations.
- Computer revolution

Systems Analysis - Introduction

Systems Analysis - Characteristics

- > managerial decision making
- scientific approach
- > system approach
- mathematical models (computers) modelling approach

Systems Analysis - Introduction

Decision Making

- 2 or more alternatives
- Conclusion = Decision
- > Systematic process

Systems Analysis - Introduction Model Solution Infeasible Feasible Optimal Sub optimal

Systems Analysis - Introduction

System analysis/Management Techniques

- > Distribution Models
 - special type of LP problems (special structure of model)
 - □ transportation problem
 - □ assignment problem

Systems Analysis - Introduction

System analysis/Management Techniques

- Multicriteria Decision Making
 - □ multiple criteria
 - □ compromise
 - □ limited/unlimited number of alternatives
 - goal programming

Systems Analysis - Introduction

System analysis/Management Techniques

- ➤ Network Models
 - □ network nodes, arcs
 - evaluated network
 - □ minimal distance, maximal flow etc.
- ➤ Project Management
 - □ planning, scheduling & controlling projects
 - □ CPM, PERT

Systems Analysis - Introduction

System analysis/Management Techniques

- > Inventory Models
 - when to order?
 - □ how much to order?
 - □ deterministic/probabilistic models
- ➤ Waiting Line Models (Queuing Models)
 - □ servers, customers
 - □ goal optimal number of servers
 - □ analytical approach, computer simulation

Systems Analysis - Introduction

System analysis/Management Techniques

- ➤ Simulation models
 - □ computer experiments with models
 - complex systems
- > Theory of Games
 - □ 2 or more decision makers
 - possible strategies

Operation Research techniques OPERATIONS RESEARCH TECHNIQUES Mathematical Inventory Network Others Probablistic Linear Programming LP Models Dynamic P. Decision An Network Simplex Game Th. Transportation Markov An. Non L.P. Pert/ Assignment Queing Th. Integer LP Break-Even Simulation Goal L.P. Forecasting

Example

- This model deals with the development and expansion of an electric power system for a specific region.
- Let us assume that the new power station will be sited not far from the grid network of existing power lines.
- Demand is expected to grow over the next twenty years, so new power station is needed to supply that demand.
- In addition to demand, other needed data include the cost to build and operate various sizes of hydroelectric plants, wind power plants, Thermal power plants, and nuclear power plants.
- Proportional power losses along the segments of the network would likely be important information to have as well.

Example

- The objective is to meet demands for power at the least total cost where cost is the cost of building and operating the expanded system of power plants.
- The constraints are that each city must be assigned sufficient power resources from among all the plants, previously established or newly built.
- Decision variables may be considered building a plant of specific type or not.
- For example, decision variables may be 1 or 0. A variable for a plant of type *k* at site *i* built to size *j* would be 1 if such plant were established and 0 other wise.

Example

Example: Designing a Tank

- Consider the problem of designing a tank to hold a specific amount of Volume V,
- Criterion : cost
- Objective: find the least-cost shape and dimensions of a tank of volume, v.

Example: Tank Design

• Assume a rectangular tank shape

- Design variable are L, W, H of the tank
- V, model parameter
- Objective: L, W, and H that minimizes the total cost

Example: Model & solution

- OF
 - Minimize $Cost = (C_{base} + C_{top})(LW) + 2(C_{side})(LH + WH)$
- Constraint
 - LWH ≥ V
 - Positive L,W,H
- The least-cost solution show that LWH will equal V
- The least-cost solution is given:
 - $W = L = [2*C_{side}*V/(C_{base} + C_{top})]**1/3$
 - $H = V/[2*C_{side}*V/(C_{base} + C_{top})]**2/3$
 - or $H = V^{**}1/3 [(C_{base} + C_{top})/2 * C_{side}] * * 2/3$

Example: Sensitivity analysis

- Sensitivity analyses performed on uncertain parameters or assumptions:
 - Cost parameters or the model itself
 - How does the total cost change with respect to a change in any of the cost parameters or with the required volume V?
 - How much does any decision variable change with respect to changes in these parameters?
 - Guide monitoring and data collection effort

Example

- The rectangular tank one of the designs!!
- Many other shapes , e.g.

