
 

 

 

3.2. DATA ACQUISITION AND 
ANALYSIS 
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SAMPLING OF CONTINUOUS TIME DYNAMIC MODELS 
 

• Process models are usually constructed from balance 
equations with suitable constitutive equations.  
 

• The balance equations can be either ordinary or partial 
differential equations depending on the assumptions on the 
spatial distribution of process variables. 
 

• In order to solve balance equations, we need to discretize 
them somehow both in space (if needed) and in time. 
 

• This section discusses discretization in time assuming that we 
have already lumped our PDE model as needed. In other 
words, only lumped process models are considered here. 
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• The lumped balance equations are naturally continuous time 
differential equations whereas almost any known method in 
mathematical statistics works with discrete sets of data and 
uses underlying discrete time models. 

 

• Therefore, the need to transform continuous time process 
models into their discrete time counterparts naturally arises. 
This type of time discretization is called sampling. 

 

• Almost any kind of data acquisition, data logging or control 
system is implemented on computers where continuous time 
signals are sampled by the measurement devices. 
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• Therefore, it is convenient to generate the discrete counterpart of a 
process model by simply forming a composite system from the 
original continuous time process system, the measurement devices 
taking the sampled output signals and from the actuators generating 
the continuous time manipulated input signals to the system as shown 
in Fig.  below. 
 
 
 
 
 
 

 
 

• The box labelled S is the original continuous time process 
system, the box D/A converter converts continuous time signals 
to discrete time ones and the box A/D converter converts 
discrete time signals to continuous time ones. 
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• The sampled data discrete time composite system Sd is in the 
dashed line box. The discrete time input and output variables 
(or signals) to the discrete time system Sd are 

 

 

 

 

• where T = {t0, t1, t2,...} is the discrete time sequence. 

 

• Most often equidistant zero-order hold sampling is applied to 
the system, which means that we sample (measure) the 
continuous time signals and generate the manipulated discrete 
time signals in regular equidistant time instances, i.e. 
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• where the constant h is the sampling interval. Moreover, a 
zero-order hold occurs in the D/A converter to generate a 
continuous time manipulated input signal u(t) from the 
discrete time one u(k): 

 

 

• Equidistant zero-order hold sampling is illustrated in Fig. 
below. 
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• In the general case, we should transform a continuous time 
process model describing the continuous time system S to its 
discrete time sampled version in the following steps: 

 1. Take the sampled discrete time signals of the input and 
output signals. 

 2. Make a finite difference approximation (FDA) of the 
derivatives in the model equations by using Taylor series 
expansion of the nonlinear operators if needed. 

 

• Let us consider a process model in the usual LTI state space 
form: 

 

 

with the constant matrices (A, B, C, D) 
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• Then, its sampled version using equidistant zero-order hold sampling 
with sampling time h is a discrete time LTI state space model in the form 

 

 

• Where the constant matrices (, , C, D) in the discrete time model are 

 

 

 

 

 

• If numerical values of the continuous time model matrices (A, B, C, D) 
are given, then there are ready MATLAB functions to compute the 
matrices (, , C, D) . Most often, if h is small enough, it is sufficient to 
consider only the first order (containing h but not its higher powers) 
approximation of the Taylor series . 
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• EXAMPLE (Sampled linearized state space model of a CSTR). 
Consider the CSTR described earlier with its linearized state 
space model and assuming full observation of the state 
variables. Derive the sampled version of the model assuming 
zero-order hold equidistant sampling with sampling rate. 
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• The state space model matrices in symbolic form are as 
follows: 
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• Applying zero-order hold equidistant sampling to the model 
matrices above with the first-order approximation in the 
above Eqs. we obtain : 
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DATA SCREENING 

  

• If we have collected any real data either steady-state or dynamic, we have to 
assess the quality and reliability of the data before using it for model 
calibration or validation. 

 

• Data screening methods are used for this purpose assuming that we have a set 
of measured data.  

 

 

• with vector-valued data items d(i)   RV, i = 1,...K: arranged in a sequence 
according to the time of the collection (experiment). 

 

• Data screening is a passive process in nature, i.e. if poor quality data are 
detected then it is usually better not to use them and preferably repeat 
the experiment than to try to "repair" them by some kind of filtering. 
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Data Visualization 
 

• The most simple and effective way of data screening is visual 
inspection. This is done by plotting the collected set of measured 
data against 

 
 • time or sequence number (time domain), 
 • frequency (frequency domain), 
 • one another 
 
• When we plot data on a single signal, that is on a time dependent 

variable against time or sequence number, then we get visual 
information on 
 

 • trends and seasonal changes  due to some equipment changes, 
 
 • outliers, gross errors or jumps detected just from the pattern. 
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• It is important to visualize the data using different scales 
on both the time and the magnitude axis. 

 

• This plot carries diagnostic information about the nature 
of the disturbances affecting the quality of the data. 

 

• If we plot one signal against another one, then we may 
discover 

 • cross-correlation, and/or 

 • linear dependence between them. 

 

• Visualization helps in identifying quickly abnormal data 
which does not conform to the usual patterns. 
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• As a supplement to data visualization plots simple statistics, 
such as 

 •signal mean value, 

 •auto-correlation coefficients, 

 •signal value distribution 

15 



• Example time-plots of data records of real valued data signals are shown 
below 

 

 

 

 

 

 

 

 

 

 

 

• Two jumps forming a gross error are seen in the Figure. The reason for the 
gross error was a measurement device failure: the corresponding 
automated sensor went off-line when the first jump was observed and then 
went back online causing the second jump. 
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• The first part (in time) of the shows two big outliers and a slow trend. These 
anomalies initiated a recalibration of the corresponding instrument which is seen in 
the form of a positive jump on the plot 
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Outlier Tests 

 

• The outlier test methods are based on two different 
principles: either they are looking for deviations from 

–  the "usual" distribution of the data (statistical methods)  

– or they detect outlier data by limit checking.  

 

• In both cases, we may apply the fixed or the adaptive 
version of the methods depending on whether the normal 
(non-outlier) data statistics are given a priori or they 
should be first estimated from test data. 
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Trends, Steady-State Tests 
 

• If we want to perform a parameter and/or structure 
estimation of static models, then we need to have steady-
state data.  

 
• Steady state or stationarity includes the absence of trends. 

There can be other circumstances when we want to have 
data with no trends.  
 

• Trend detection is therefore an important data screening 
procedure and can be an efficient and simple process system 
diagnosis tool. 
 

• The trend detection or steady-state test methods can be 
divided into two groups: methods based on parameter 
estimation and methods based on other statistics. 
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1. Methods based on parameter estimation 

 

• The simplest way to detect trends is to fit a straight line 
through the measured data and check whether its slope is 
zero. 

 

•  If the measurement errors are independent of each other 
and are normally distributed, then standard statistical 
hypothesis tests can be applied to check their constant mean. 
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2. Methods based on other statistics 

 
• The most well known and commonly used method is the so-

called Cumulative SUMmation (CUSUM) method. 

 

•  CUSUM is a recursive method which is based on a recursive 
computation of the sample mean with growing sample sizes. 

 

• This cumulative sum based mean is then plotted against time 
and inspected either by limit checking or by parameter 
estimation whether it has any slope different from zero. 
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Gross Error Detection 
 

• Gross errors are caused by equipment failures or malfunctions.  

 

• They can be detected by different methods depending on the nature of the 
malfunctioning and on the presence of other "healthy" nearby signals.  

 

• The available methods for gross error detection can be grouped as follows: 

 1. Bias or slow trend detection 

 Gross errors can be visible bias or slow trend in the recorded signal of the 
sensor or sensors related to the equipment in question. Trend detection 
methods  can then be applied to detect them. 

 2. Jump detection 

 In case of sudden failure, a jump arises in the corresponding signal(s) which 
can be detected via bias or jump detection in time series by standard methods 

 3. Balance violation detection 

 The group of related signals of the equipment subject to failure or malfunction 
can also be used for detecting gross error causing the violation of the causal 
deterministic relationship between them. 
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EXPERIMENT DESIGN FOR PARAMETER ESTIMATION 
OF STATIC MODELS 
 

• The parameter estimation for static models requires steady-state data 
because of the model. Therefore, the first step in designing experiments is 
to ensure and test that the system is in steady state.  
 

• This is done by steady-state tests. Thereafter, we decide the number of 
measurements, the spacing of the test points and the sequencing of the 
test points. 
 

Number of Measurements 
 

• The number of measurements depends on the number of test points and 
on the number of repeated measurements in the test points.  
 

• If we repeat measurements at the test points, then we may have a good 
estimate on the variances of the measurement errors which is very useful 
to assess the fit of the estimate. 
 

23 



• The number of test points depends critically on the number of 
state variables of the process system and on the number of 
estimated parameters.  

 

• In general, we need to make sufficient measurements to 
estimate unknown parameters and possibly unknown states, 
i.e. the number of measurements should be significantly 
greater than the number of unknown parameters and states. 
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Test Point Spacing 
 

• It is important that we have a set of measurements which "span" 
the state space of the process system the model is valid for.  
 

• This means that we have to space experimental measurement 
points roughly uniformly over the validity region of the process 
model we are going to calibrate or validate. 
 

• It is equally important that we stay within the validity region of our 
process model. 
 

• For linear or linearized models, this validity region can be quite 
narrow around the nominal operating point of the model.  
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Test Point Sequencing 

 
• For static models and process systems in steady-state, the 

sequence of measurements should not affect the result of 
parameter estimation.  

 

• That is, because measurement errors of the individual 
measurements are usually independent and equally distributed 
with zero mean. 

 

• For some kinds of process systems, however, we can achieve the 
above properties of independence and zero mean only by 
randomization of the measurements. 

 

•  This artificially transforms systematic errors into random 
measurement errors.  
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EXPERIMENT DESIGN FOR PARAMETER ESTIMATION OF 
DYNAMIC MODELS 

 
• The experimental design for parameter and structure 

estimation of dynamic models involves a number of additional 
issues compared with static models. 

 

•  The reason for this is that we can only design the input 
variable as part of the independent variables in the model and 
then the output variables are determined by the dynamic 
response of the process system itself. 

27 



Sampling Time Selection 
 

• Proper sampling of continuous time signals and process models 
is essential. 
 

• The selection of the sampling time is closely connected with the 
selection of the number of measurements.  
 

• We want to have sufficiently rapid sampling for a sufficient  
length of time. 
 

• Moreover, we want to have information about all time response 
characteristics of our dynamic process model.  
 

• For this reason, we have to select the sampling time to be roughly 
one third or one quarter of the fastest time response of the 
process system, which is usually in the order of seconds for 
process systems. 
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3.3 STATISTICAL MODEL CALIBRATION AND 
VALIDATION 

 

• Model validation is one of the most difficult steps in the 
modelling process.  

 

• It needs a deep understanding of modelling, data acquisition 
as well as basic notions and procedures of mathematical 
statistics. 
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GREY-BOX MODELS AND MODEL CALIBRATION 

 
• In practical cases, we most often have an incomplete model if 

we build a model from first principles according to Steps 1 -4 
of the SEVEN STEP MODELLING PROCEDURE.  

 

• The reason for this is that we rarely have a complete model 
together with all the parameter values for all of the 
controlling mechanisms involved. 

 

• An example of this is a case when we have complicated 
reaction kinetics, where we rarely have all the reaction kinetic 
parameters given in the literature or measured independently 
and often the form of the reaction kinetic expression is only 
partially known. 
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Grey-box Models 
 

• Grey-box Models  is used in contrast to the so-called empirical or 
black-box models where the model is built largely from measured data 
using model parameter and/or structure estimation techniques. 

 

• The opposite case is the case of white-box models where the model is 
constructed only from first engineering principles with all its 
ingredients known as a well-defined set of equations which is 
mathematically solvable. 

 

•  In practice, of course, no model is completely "white" or "black" but 
all of them are "grey", since practical models are somewhere in 
between. 

 

• Process models developed using first engineering principles but with 
part of their model parameters and/or structure unknown is termed as 
grey-box models. 
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Model Calibration 
 

• We often do not have available values of the model parameters and 
part of the model structure.  
 

• Therefore, we want to obtain these model parameters and structural 
elements using experimental data from the real process.  
 

• Because measured data contains measurement errors, we can only 
estimate the missing model parameters and structural elements. This 
estimation step is called Statistical Model Calibration. 
 

• The model calibration is performed using 
 • the developed grey-box model by the steps 1-4 of the SEVEN STEP 

MODELLING PROCEDURE, 
 • measured data from the real process system which we call calibration 

data, 
 • a predefined measure of fit, which measures the quality of the 

process model with its missing parameters and estimated structural 
elements. 
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Conceptual Steps of Model Calibration 
• In realistic model calibration, there are other important steps 

which one should carry out besides just a simple model 
parameter and structure estimation.  

 

• These steps are needed to check and to transform the grey-box 
model and the measured data to a form suitable for the 
statistical estimation and then to check the quality of the 
obtained model.  

 

• These conceptual steps to be carried out when doing model 
calibration are as follows: 
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1. Analysis of model specification 
 

• Here, we have to consider all of the ingredients of our grey-box 
process model to determine which parameters and/or structural 
elements need to be estimated to make the process model 
equations solvable for generating their solution for dynamic 
models.  
 

• This step may involve a DOF analysis and the analysis of the non-
measurement data available for the model building. 

 
2. Sampling of continuous time dynamic models 

 
• Statistical procedures use a discrete set of measured data and a 

model. To get an estimate, we need to discretize our grey-box 
process models to be able to estimate its parameters and/or 
structural elements 
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3. Data analysis and preprocessing 
 

• Measurement data from a real process system are usually of 
varying quality. We may have data with outliers or large 
measurement errors due to some malfunctions in the 
measurement devices or unexpectedly large disturbances. 
 

• From the viewpoint of good quality estimates it is vital to detect 
and remove data of unacceptable quality.  

 
4. Model parameter and structure estimation 
 
5. Evaluation of the quality of the estimate 

 
• The evaluation is done by using either empirical, usually graphical 

methods or by exact hypothesis testing if the mathematical 
statistical properties of the estimates are available. 
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• Model calibration is usually followed by model validation 
where we decide on the quality of the model obtained by 
modelling and model calibration.  

 

• Model validation is in some sense similar to model calibration 
because here we also use measured data, but another, 
independently measured data set (validation data) and also 
statistical methods. 
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MODEL PARAMETER AND STRUCTURE ESTIMATION 
 
• During model calibration we use the developed grey-box 

model and measured experimental data to obtain a well-
defined or solvable process model.  
 

• In the model validation step, we again use measured 
experimental data (the validation data) distinct from what 
has been applied for model calibration.  
 

• We do this in two different ways: 
 • to compare the predicted outputs of the model to the 

measured data, or 
 • to compare the estimated parameters of the model based 

on validation data to the "true'' or previously estimated 
parameters. 
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STATISTICAL MODEL VALIDATION VIA PARAMETER 
ESTIMATION 
 

• The principle of statistical model validation is to compare by the 
methods of mathematical statistics either 

 • the (measured) system output with the model output, or 

 • the estimated system parameters with the model parameters. 

 

• In other words "validation" means "comparison" of 

 

 

• Statistical methods are needed because the measured output y is 
corrupted by measurement (observation) errors 
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• The items of a model validation problem are as follows: 

 • a developed and calibrated process model, 

 • measured data from the real process system which we call 
validation data, 

 • a predefined measure of fit, or loss function which 
measures the quality of the process model. 
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• The conceptual steps to be carried out when performing model 
validation are also similar to that of model calibration and include: 

  

      1. Analysis of the process model 

 This step may involve the analysis of the uncertainties in the 
calibrated process model and its sensitivity analysis. The results 
can be applied for designing experiments for the model validation. 

 

 2. Sampling of continuous time dynamic models 

 3. Data analysis and preprocessing 

 4. Model parameter and structure estimation 

 5. Evaluation of the quality 
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3.4. ANALYSIS OF DYNAMIC PROCESS MODELS 
 

 
• BASIC DYNAMICAL PROPERTIES: OBSERVABILITY CONTROLLABILITY, 

AND STABILITY 
 

State Observability 
 
• The state variables of a system are not often directly observable. 

 
• Therefore, we need to determine the value of the state variables at any 

given time from the measured inputs and outputs in such a way that 
we only use functions of inputs and outputs and their derivatives 
together with the known system model and its parameters.  
 
 

• A system is called (state) observable, if from a given finite measurement 
record of the input and output variables, the state variable can be 
reconstructed at any given time. 
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State Controllability 

 
• For process control purposes over a wide operation range, we 

need to drive a process system from its given initial state to a 
specified final state.  

 

• A system is called (state) controllable if we can always find an 
appropriate manipulable input function which moves the 
system from its given initial state to a specified final state in 
finite time. 

 

• This applies for every given initial state to final state. 
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Stability 

 

• There are two related but different kinds of stability : 
 • BIBO stability which is also known as external stability, 
 • asymptotic stability, known as internal stability 
 
 BIBO Stability 

 
• The system is BIBO or externally stable if it responds to any 

bounded-input signal with a bounded-output signal. 
 

 Asymptotic or Internal Stability 
 

• A solution to the state equation of a system is asymptotically 
stable if a "neighbouring“ solution described by a different 
initial condition has the same limit as t →. 
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MODEL SIMPLIFICATION AND REDUCTION 
 

• The term "model simplicity" may have different meanings depending on the 
context and on the set of models we consider.  
 

• A process model may be more simple than another one in terms of 
 

 • model structure 
 
  We can say, for example, that a linear model is simpler than a nonlinear 

one. 
 

 • model size 
 

• For process models of the same type of structure (for example both linear) the 
model size can be measured in the number and dimension of model variables 
and parameters. 
 

•  Most often the number of the input and output variables are fixed by the 
problem statement, therefore, the number of state variables and that of 
parameters play a role. 
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Simplification of Linear Process Models 

 

• The model simplification can be carried out in a graphical 
way using two basic simplification operations: 

 

 • variable removal by assuming steady state, 

 • variable coalescence by assuming similar dynamics. 

 

• With these two elementary transformations, we can 
simplify a process model structure by applying them 
consecutively in any required order. 
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Elementary Simplification Transformations 
• The elementary transformations of model structure 

simplification are as follows. 

 

 1. Variable lumping: lump(xj, xl) 

  

 Applicability conditions: We can lump two state variables Xj and 
xl together to form a lumped state variable if they have "similar 

dynamics", that is, 
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2. Variable removal: remove(xj) 
 

• Applicability conditions:  

 We can remove a state variable Xj from the structure graph if it 
is either changing much faster or much slower than the other 
variables.  

 Note that a "perfect" controller forces the variable under control 
to follow the setpoint infinitely fast, therefore a controlled 
variable can almost always be removed from the structure 
graph.  

 In both cases the time derivative of the variable to be removed 
is negligible, that is, 
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• EXAMPLE( (Variable lumping and variable removal of the 
three jacketted CSTR in series model. 

 

• Simplify the structure graph of the system by: 

 1. lumping of all the cooling water temperatures together, 

 2. removing all the cooling water temperatures. 
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Variable lumping 

• We may assume that the temperature state variables 
belonging to the cooling water subsystem, i.e. 

 

 

 have similar dynamical behaviour with respect to changes 
in the manipulated input and disturbance variables.  

 

• Therefore, we can form a lumped cooling water 
temperature TC

* from them by applying the variable 
lumping transformation twice: 
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• The resultant structure graph is shown in Fig below. 

 

 

 

 

 

 

 

 

 
• Simplified structure graph of three jacketted CSTRs by variable 

removal. 
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Variable removal 

• For a cooling system with large overall heat capacity, we can 
assume that the temperature state variables belonging to the 
cooling water subsystem 

 

 

 are in quasi-steady state and are regarded as constants. 
Therefore, we can remove them from the structure graph by 
applying the variable removal transformation three times: 

 

 

 

• The resultant structure graph is shown in the next Fig. 
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Simplified structure graph of three jacketted CSTRs by variable 
removal 
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