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Chapter Objectives

End of this chapter, you should be able to:

1. Explain the concept of feedback controllers

2. Explain P, I and D controllers
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Introduction

Consider the continuous blending process, shown below
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Control system

Control objective: 

To keep the tank exit composition x at the 
desired set-point by adjusting w2.
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Measurement : Composition 
Analyzer-Transmitter (AT)

Feedback controller: AC Composition Controller

Final control element: Pneumatic control valve

Current-to-pneumatic transducer: I/P
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Basic Control Modes

• Proportional, Integral and Derivative
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Proportional Control

In feedback control, the objective is to reduce the error 
signal to zero.

Define an error signal, e, by 

)()()( tytyte mSP  (6.1)

where spy = set point

my  = measured value of the controlled variable  

        (or equivalent signal from transmitter) 
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• For proportional control, the controller output is

proportional to the error signal
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e(t)      Kpp(t) c (6.2)

Basic Control Modes

Where

)(tp =  controller output

)(tp =  bias (steady-state) value

cK =  controller gain (usually dimensionless)
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Proportional Band, PB:
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cK
PB

%100


• Applies when Kc is dimensionless
• Small (narrow) PB corresponds to large Kc

• Large (wide) PB corresponds to small Kc

• Some controllers have a proportional band setting 
instead of a controller gain. The proportional band 
PB (in %) is defined as 

(6.3)
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Ideal vs. actual
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Ideal controller does not include 
physical limits

A controller saturates when 
its output reaches a physical 
limit, either pmax or pmin. 

0 e

p

p

0 e

p

p

pmin

pmax

Proportional controller: actual behavior

Proportional controller: ideal behavior
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Proportional controller transfer function
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In order to derive the transfer function for an ideal
proportional controller, define a deviation variable as

ptptp  )()( (6.4)

Then (6.2) can be written as

)()( teKtp c (6.5)

Taking Laplace transform of (6.5) and rearranging we get

cK
sE

sP




)(

)(
(6.6)
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• An inherent limitation of proportional controller is that a 
steady-state error (offset) occurs after a set-point change 
or a sustained disturbance.

Proportional controller limitation
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Integral Control 
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Integral control (reset control, floating control)

For integral control action, the controller output 
depends on the integral of the error signal over time,

      t)dte(pp(t)
t

I

 
0

1

 (6.7)

where      is an adjustable parameter and referred to 
as the integral time constant or reset time, has units 
of time.

I

The transfer 
function: sI

1

E(s)

(s)P



(6.8)
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Integral Control
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• An important practical advantage: Eliminates offset.

• Eq. (6.7) implies that p changes with time unless e(t) = 0.

• This desirable situation occurs unless the controller output or

the final control element saturates.

• The control action by the integral controller is very little until

the error signal has persisted for sometime.

• On the other hand, proportional controller takes immediate 

corrective action as soon as an error is detected. 
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PI Controller 
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Integral control is used in conjunction with proportional 
control as the proportional-integral (PI) controller:









 

t

I

c tdteteKptp
0

)(
1

)()(


(6.9)

The corresponding transfer function is:













s
K

I

c


1
1

E(s)

(s)P
(6.10)
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PI Controller
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The response of the PI controller to a unit step change 
in e(t) is shown in Fig.

- repeats per minuteI/1

0 t 0 t

Kc

I

cK
lope


s

p

0 0
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PI Controller

• Disadvantages:

– Produces oscillatory response

– Reset windup
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When a sustained error occurs, the integral term becomes quite large and the 
controller output eventually saturates – reset windup or integral windup.

Anti reset windup: Temporarily halting the integral action
whenever the control output saturates.
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Reset windup explained

When the output of the controller becomes limited because
process conditions cause it to be fully open or fully closed,
and the PV is still not at the setpoint value, the reset
remainder term continues to increase by the remaining
error. When the process conditions change to allow the
control valve to once again do its work, the reset remainder
term is so large that even when the sign of the error
changes, the output may not respond until all of the reset
remainder term is "used up." The normal solution (anti
reset windup) is to stop accumulating reset remainder
when the output is limit-stopped. Other solutions cause the
controller to go into Manual then reinitialize when the
limit-stop conditions change.
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Derivative control

Advanced Process Control-Dr Lemma Dendena Tufa 18

• Anticipate the future error by considering its rate of change.

• For ideal derivative action,

dt

tde
ptp D

)(
)(  (6.11)

where       is the derivative time, and has units of time. D

As long as the error is constant de/dt = 0, the controller

output is equal to .p

Rate action, pre-act, anticipatory control 
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Derivative control
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• Derivative action is never used alone. 

• Always used in conjunction with P or PI control. 

PD controller has the transfer function 

 sK Dc 


1
E(s)

(s)P
(6.12) 

The derivative control action tends to stabilize the 

controlled process. 
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PID Controller 
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PID control algorithm is given by









 

t

D

I

c
dt

de
tdteteKptp

0

)(
1

)()( 


(6.13) 

Transfer function of an ideal controller (parallel form) 












s

s
K D

I

c 


1
1

E(s)

(s)P
(6.14) 

Transfer function – actual (Series form) 





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Typical responses of Feedback control systems
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Consider response of a controlled system after a sustained 

disturbance occurs (e.g. step change in load variable) 

 

No control

New steady state is reached

P control

Offset reduced

PI control

Offset eliminated

Oscillatory response

PID control

Oscillations reduced

No offset
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Effect of controller parameters
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-Too small a value of Kc

Sluggish response
Larger deviation

-Too large a value of Kc

Exhibit oscillatory or unstable   
behavior
-Intermediate values of Kc is desirable
-Increasing      tends to improve the 
response by reducing the maximum 
deviation, response time, and degree 
of oscillation
-If        is too large, measurement 
noise is amplified and the response 
may become oscillatory.

D

D
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I
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• Increasing the integral time makes the controller more 
sluggish.

• Offset will be eliminated for all values 
• For large values of     , it takes very long time to return to 

the set-point.

I

Effect of controller parameters
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Summary of the Characteristics of the Most Commonly 
Used Controller Modes
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1. Two Position (ON-OFF):
• Inexpensive
• Extremely simple
• Cause continual cycling of the CV
• Produces excessive wear on the control valve

2. Proportional:
• Simple
• Inherently stable when properly tuned
• Easy to tune
• Experiences offset at steady state
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3. Proportional plus reset (PI):
• No offset
• Better dynamic response than reset alone
• Possibilities exist for instability due to lag introduced 

4. Proportional plus rate(PD):
• Stable
• Less offset than proportional alone (use of higher gain 

possible).
• Reduces lags, i.e., more rapid response.
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5. Proportional plus reset plus rate (PID):
• Most complex
• Rapid response
• No offset
• Difficult to tune
• Best control if properly tuned.
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Reverse or Direct Acting Controller

Advanced Process Control-Dr Lemma Dendena Tufa 27

Kc can be made positive or negative

• Direct-Acting (Kc < 0)
• “controller output increases as 

input increases (measured 
value)"

• Reverse-Acting (Kc > 0)
• “output increases as input 

decreases (measured value)"

0 e

p

p

pmin

pmax

0 e

p

p

pmin

pmax
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Conclusion!

• Concept of feedback control

• P, I, D controller modes

• Advantages and disadvantages

• Motivation for additional modes
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Schematic diagram of blending system
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Consider the blending process

•The dynamic model of a stirred-tank blending process
was developed as
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q
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w
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K 1
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w
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K




1
2      (7.2) (8.2)
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Block diagram development 

• Figure below provides a block diagram representation
of information in (8.1) and (8.2).
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Sensor dynamics

• Composition Sensor-Transmitter (Analyzer)
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1s
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            A useful approximation: 0m  since  m . 
 

(8.3)

The dynamic behavior of the analyzer can be approximated by

















1)(

)(

s

K

sX

sX

m

mm



4/27/2020



Controller
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Suppose an electronic proportional plus integral controller
is used. The controller transfer function is
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The error signal is expressed as 

)()(~)( txtxte msp
 (8.5)

or after taking the Laplace transforms, 

)()(
~

)( sXsXsE msp
 (8.6)

denotes the internal set-point expressed as an

equivalent electrical current signal.

It is related to the actual composition set-point by the

composition-transmitter gain :

)(~ txsp


mK

)()(~ txKtx spmsp
 (8.7) 
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I/P Converter (Transducer)
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Thus
m

sp

sp
K

sX

sX






)(

)(
~

(8.8)

The symbol that represents the subtraction operation is called a 
comparator.

Transducer transfer function consists of a steady-state gain KIP:

IP
t K

sP

sP






)(

)(
(8.9)

)(' sP )(' sP t

]mA[ [psi]
IPK
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Control Valve
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A first-order transfer function provides an adequate model for 

control valves. Thus 
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Block diagram for the control system
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Closed-loop Transfer Functions
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The standard notations are: 

 

 Y = controlled variable 

 U = manipulated variable 

 D = disturbance variable 

 P = controller output 

 E = error signal 

 Ym = measured value of Y 

  Ysp = set-point 

  spY
~

 = internal set-point (used by the controller) 

 Gc = controller transfer function 

 Gv = transfer function for final control element  

 Gp = process transfer function 

 Gd = disturbance transfer function 

 Gm = transfer function for measuring element and transmitter 

 Km = steady-state gain for Gm 
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Standard block diagram
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For simplifying the notation, prime and s dependence have been dropped.

Forward path

Feedback 
path

Closed loop
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Ysp and D are the independent input signals for the controlled 
process because they are not affected by the operation of the 
control loop.

To evaluate the performance of the control system, we
need to know how the controlled process responds to
changes in Ysp and D.

We derive expressions for the closed-loop transfer
functions and .)(/)( sYsY sp

)(/)( sDsY

Standard block diagram
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Closed-loop Transfer functions
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(8.11)
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• Comparison of (8.12) and (8.13) indicates that both 
closed-loop transfer functions have the same 
denominator, 

1+ GpGvGcGm.

• The  roots the denominator determines the nature of 
the closed loop response , 

1+ GpGvGcGm=0.

• The denominator is often written as 1+GOL where GOL is 
the open-loop transfer function, 

• GOL = GpGvGcGm.
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Characteristic Equation

Closed-loop Transfer functions
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General Expression for Feedback Control Systems

•Closed-loop transfer functions for more complicated block 
diagrams can be written in the general form: (For negative 
feedback only)
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






l

f

iZ

Z

1

(8.22)

where Z = the output variable or any internal variable 

within the control loop. 

           Zi = an input variable 

           f
= product of transfer functions in the forward 

path from Zi to Z. 

          l
= product of every transfer function in the 

feedback loop 
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Example

•Find the closed-loop transfer function C/R for the 
complex control system shown in fig.

Advanced Process Control-Dr Lemma Dendena Tufa 454/27/2020



4/27/2020 Advanced Process Control-Dr Lemma Dendena Tufa 46

Effect of P- controller on closed-loop response

1. Offset

Servo problem
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Offset  =
Desired steady 
state response

Attained steady 
state response

_

Closed-loop Response 
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Consider a step change in Ysp of magnitude A

Desired steady state response = A

Closed-loop response
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Closed-loop Response 
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Regulator problem
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The effect of disturbance should be removed therefore, the 
desired steady state response = 0 for regulator problem

Closed-loop response for regulator problem

Closed-loop Response 
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Effect of Proportional Controller
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2. Effect of P- controller on the order and speed of closed-loop 
response

01  mpvc GGGG

The  nature of the closed-loop response depends on characteristics 
equation: 

For proportional controller

01  mpvc GGGK

The order of the closed loop response is not affected by 
Proportional controller.



Effect on the speed of the response
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Increasing proportional controller gain, Kc, can cause much 
oscillation by reducing the damping coefficient.
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Consider a second order GvGpGm with proportional controller 
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Effect of integral action on closed-loop response

1.  Offset

Servo problem
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Consider a step change in Ysp of magnitude A

Desired steady state response = A
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Regulator problem
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G
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)(
1

)(





desired steady state response = 0            for regulator problem

Closed-loop response for regulator problem
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A
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
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0
)(0

0

)(

)(
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0






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 mpvIsmpvI

dI

GGGsN
s

s

A

GGGsNs

Gs
ty





Attained steady state

000 Offset

Integral action eliminates offset for regulator problem

Conclusion
Integral action eliminates offset for both for regulator and 
servo problem

Closed-loop Response 
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01  mpvc GGGG

2. Effect of integral action on the order of the closed loop response
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
s

N

D

N

s

K

s

K

p

m

p

p

v

v

I

c



The characteristic equation

Where Dp(s) is the denominator of the process transfer function

Introducing the transfer functions in the characteristic equation

Closed-loop Response 
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The order increases by one due to integral controller. Therefore 
integral controller can make the closed-loop response sluggish.   

0)1)(1(  pmvcpmvI NKKKDsss 

Order increases by one

Rearranging 

Closed-loop Response 



Effect of PD controller
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s

A

GGGsK

KGGsK
sY

mpvDc

mpvDc

)1(1

)1(
)(










Effect of PD controller on closed-loop response
1.  Offset

Servo problem

TF of PD controller

Using (2) in (1) and introducing a step change of magnitude A 
in set point 

sp

mpvc

mpvc
Y

GGGG

KGGG
sY




1
)( (1)

)1( sKG Dcc  (2)

(3)
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pvcm
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
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AOffset
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smpvDc
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KGGsK
ty







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0




Effect of PD controller

Applying the final value theorem to find the steady state value 
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pvcm KKKK

A
Offset




1

%
1

100

pvcm KKKK
Offset




Offset  for Servo Problem  with Derivative Action

A similar analysis for regulator problem leads to 

pvcm

d

KKKK

AK
offset




1

%
1

100

pvcm

d

KKKK

K
offset




Offset for Regulator Problem  with Derivative Action

The same as 
P controller

The same as 
P controller

Effect of PD controller
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Effect of derivative action on the order of closed-loop 
response

sKG Dcc 

TF of derivative action

01  mpvDc GGsGK 

Using the derivative action in the Characteristic Equation

The order of closed-loop response is not affected by derivative 
action

Effect of PD controller



The effect of derivative action: damping
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0
12

1
22





ss

K
sK Dc




Consider the characteristics equation when  GmGv Gp is 

second order with derivative action

Rearranging 

The damping coefficient increases with Kc. Therefore, derivative
action enables to increase the controller gain Kc without
increasing the oscillations.

  01222  sKKss Dc

01)2(22  sKKs Dc
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Introduction
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• An important consequence of feedback control is that it can 

cause oscillatory responses. 

• Under certain circumstances, the oscillations may be 

undamped or even have amplitude that increases with time 

until a physical limit is reached. 

• In these situations, the closed-loop system is said to be 

unstable.

4/27/2020



Control system:

 cc KG        
12

1




s
Gv  

15

1




s
GG dp        

1

1




s
Gm  (9.1) 
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Consider the feedback control system with the following 

transfer functions: 

mpvc

pvcm

sp GGGG

GGGK

Y

Y




1

The transfer function for set-point changes is:

(9.2)

ssYsp /1)( Consider a step change in set-point .

Substituting (9.1) in (9.2), and rearranging gives us

sKsss

sK
sY

c

c 1

181710

)1(
)(

23 



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After Kc is specified, y(t) can be obtained.

Fig. below demonstrates that as Kc increases, the response 
become more oscillatory and is unstable for Kc = 15.
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General Stability Criterion:
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• Most industrial processes are stable without feedback 
controllers. They are said to be open-loop stable or self-
regulating.

• Definition of stability: An unconstrained linear system is said 
to be stable if the output response is bounded for all bounded 
inputs. Otherwise, it is said to be unstable.

• By a bounded input, we mean an input variable that stays 
within upper and lower limits for all values of time. 

• The term unconstrained refer to the ideal situation where 
there is no physical limits on the input and output variables.

4/27/2020



Characteristic Equation
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Consider the closed-loop equation. It is already developed for
feedback control system :

D
G

G
Y

G

GGGK
Y

OL

d
sp

OL

pvcm







11

Where, GOL= GcGvGpGm

The stability of the closed-loop system is determined by the
poles of the closed-loop transfer function. The poles of the
transfer function are the roots of the Characteristic Equation:

01  OLG Characteristic 
equation

(9.1)

(9.2)



Characteristic equation
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If GOL is a ratio of polynomials in s, then the closed-loop transfer
function also a rational function. Then, it can be factored into
poles (pi) and zeroes (zi) as

))....()((

))....()((

21

21

n

m

sp pspsps

zszszs
K

Y

Y






The poles are also the roots of the characteristic equation of the
closed-loop system:

where K’ is a multiplicative constant selected to give the correct
steady-state gain. To have a physically realizable system, the
number of poles must be greater than or equal to the number of
zeroes.

(9.3)
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For a unit step change in set-point, (9.3) becomes
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s

K
Y


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

(9.4)

If there are no repeat roots (all distinct poles), then the 

partial fraction expansion of (9.8) has the form
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Taking the inverse Laplace transform of (9.5) gives

tp

n

tptp

o
neAeAeAAty  ....)( 21

21

(9.5)

(9.6)
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Suppose that one of the poles is a positive real number; i.e., 

pk > 0. 

Then it is clear from (9.6) that y(t) is unbounded and thus the 

closed-loop system is unstable. 

If pk is a complex number, with a positive real part, then the 

system is also unstable. 

If all the poles are negative (or have negative real parts) then 

the system is stable.

4/27/2020
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Real

Unstable region

Imaginary 

Stable 

Stable 

Stability region in the
complex plane for the
roots of the characteristic
equation.



General stability criterion:
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A feedback control system is stable if and only if
all roots of the characteristic equation are
negative or have negative real parts. Otherwise,
the system is unstable.

4/27/2020



Graphical interpretation of stability criterion: 
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Roots of
1 + GcGvGpGm= 0

(Each test is for 
different value of Kc)

4/27/2020
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• If the characteristic equation is either first-order or second-
order, we can find the roots analytically. 

• For higher-order polynomials, we have to use 0ther 
techniques.
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Routh Stability Criterion 
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Uses an analytical technique for determining whether any 

roots of a polynomial have positive real parts.

Characteristic equation

001

1

1  

 asasasa n

n

n

n 

where an >0.  According to the Routh criterion, if any of the 

coefficients a0, a1, aK, an-1 are negative or zero, then at least one 

root of the characteristic equation lies in the RHP, and thus, the 

system  is unstable. On the other hand, if all of the coefficients 

are positive, then one must construct the Routh Array. 

(9.7)
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Routh Array 
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Routh Array

For stability, all elements in the first column must be positive. 

4/27/2020



Routh Array 

 
1

321
1



 


n

nnnn

a

aaaa
b   

1

541
2



 


n

nnnn

a

aaaa
b  

 

 
1

2131
1

b

baab
c nn  
   

1

3151
2

b

baab
c nn  
  
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The first two rows of the Routh Array are comprised of the coefficients 
in the characteristics equation.  The elements in the remaining rows are 
calculated from coefficients from the using the formulas:

(n+1 rows must be constructed
n = order of the characteristic eqn.)

4/27/2020



Routh Stability Criterion: 
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A necessary and sufficient condition for all roots of the 
characteristic equation to have negative real parts is that all of the 
elements in the left column of the Routh array are positive.

Solution: Because the s term is missing, its coefficient is zero. 
Thus the system is unstable.

Example 9.1 
Determine the stability of a system that has the characteristic
equation

0135 234  sss
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Example  9.2 
Determine the stability of a system that has the characteristic
equation

0798126 234  ssss

Routh Array
Row

6                 8              71

12               9             02

5.3
12

)96()812(
1 


c

7
12

)06()712(
2 


c

c1=3.5        c2 =7       03

d1=-15        0 04

15
5.3

)712()95.3(
1 


d

e1= 7           0 05
7

15

)05.3()715(
1 




e



Example 
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Example 9.3

The transfer functions of a process, the control valve and the

measurement are given below. Determine the values of the

controller gain for which a simple feedback control system

with proportional controller will be stable.

15

2.0




s
Gp

1

5




s
Gv 12

1




s
Gm

Solution

01  mpvc GGGG

Characteristic equation
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Example 
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All coefficients are positive provided that 1+Kc > 0 or Kc > 

-1. Therefore, we have to construct the Routh Array to 

determine the satbility.

0181710 23  CKsss

0
)12(

1

)15(

2.0

)1(

5
1 




sss
Kc

Inserting, the transfer functions

Rearranging we get



Example 
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To have a stable system, each element in the left column must 
be positive,  c1>0 and d1 > 0

The Routh array  is: 

  
17

110)8(17
1

CK
c




1      10                            8

2      17                           1+Kc

3      c1 0

4      d1 0 CKd 11
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Example 
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  
0

17

110)8(17
1 


 CK

c

6.121
10

)8(17
CK

From d1

1CK

Therefore, for the closed-loop system to be stable -1< Kc < 12.6
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Objectives

End of this unit, you should be able to :

1. Explain tuning criteria

2. Tune P,PI, and PID controllers

Advanced Process Control-Dr Lemma Dendena Tufa 884/27/2020



Introduction

• The  stability and performance of a feedback control 
system highly depends on the controller settings, i.e.,  
the values of Kc, I, D .

• PID controller settings can be determined by a number 
of alternatives techniques:

– Direct synthesis (DS) method

– Internal model control method

– Controller tuning relations

– Frequency  response techniques

– Computer simulation

– Online  tuning (Ziegler –Nichols, Tyreus-Luyben)
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Controller tuning criteria
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



0

2)( dtteISE





0

)( dttetITAE

Integral of the absolute value of the error





0

)( dtteIAE

Integral of the squared error

Integral of the time-weighted absolute error

1. Integral Error Criteria
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2. Quarter decay ratio
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Quarter decay ratio 
=c/a 0.25



Ziegler-Nichols Method

Online Procedure (Ziegler-Nichols)
Step 1. After the process has reached steady state, eliminate the 

integral and derivative action by setting D to zero and I to the 
highest possible value.

Step 2. Set Kc equal to a small value and place the controller in the 
automatic mode.

Step 3.  Introduce a small, momentary set point change so that the 
controlled variable moves away from the set-point. Gradually 
increase, Kc, until a continuous cycling occurs.

Step 4.  Calculate the PID controller settings using the Ziegler- Nichols 
or Tyreus-Luben settings

Step 5. Evaluate the Z-N or T-L settings by introducing a small 
set- point change and observing the closed-loop response. Fine 
tune the settings if necessary.
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Ziegler- Nichols and Tyreus - Luyben method
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Table 10.1 : Ziegler-Nichols and Tyreus-Luyben settings 



• Offline procedure

Step 1. With proportional controller determine the 
characteristic equation.

Step 2. Replace s=j in the characteristic equation to get a 
complex equation with unknowns  and Kc

Step 3. Find the value of  and Kc by equating the 
imaginary part to zero and the real part to zero. 
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01  mpvc GGGK



• Step 4. Determine Tu and Kcu as follows

• Step 5. Determine the Ziegler-Nichols or Tyreus-Luyben 
settings using Table 10.1
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ccu KK 



2
cuT



Example
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Example 10.1

The transfer functions of a process, the control valve and the

measurement are given below. Determine settings of a PID

controller using the Ziegler-Nichols method..

15

2.0




s
Gp

1

5




s
Gv

12

1




s
Gm

Solution

Characteristic equation

01  mpvc GGGG

Inserting, the transfer functions

0
)12(

1

)15(

2.0

)1(

5
1 




sss
Kc
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0181710 23  CKsss

Rearranging we get

Replacing s = j

0181710 23  CKjj 

Rearranging

0)117()810( 23  CKj 

For a complex number to be zero, both the imaginary and 

real part should be zero
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0810 3  

Equating the imaginary part to zero

8944.010/8 

Equating the real part to zero

0117 2  cuK

1)8944.0(17117 22  cuK

6.12cuK

0248.7
8944.0

2



uT
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7.1

6.12
cK

8781.0
8

0248.7
D

Using, PID-controller setting from Ziegler-Nichols setting 

(Table 10.1)

5124.3
2

0248.7
I



Example
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Example 10.2

The dynamic model of a process is given by Equation (1),

where M(s) is the manipulated variable and D(s) is the

disturbance variable.

)(
14

21.0
)(

)14(

5.6
sD

s
sM

ss
Y







13.0

82.0




s
Gv

15.0

1




s
Gm

(1)

The transfer functions for the transmitter, Gm,  and the valve are 
below: 



Determine

(1) The stability of the open-loop system

(2) The range for which a closed-loop system with 
proportional controller will be stable

(3) Determine the Zeigler-Nichols setting for

(a) proportional controller

(b) PID controller

(4) Determine the offset for part (3) (a) for a unit step 
change in set-point and load.
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