Yoghurt

Production Technology Principles

Powered by : Dr.Eng. Shimelis Admassu

March 2/2017

Define the Product

- Choose the yoghurt type
- Stirred type
- Set type
- Fat content
- Shelf life
- Package
- The type determines the process design

Yoghurt Types

Set

- The yoghurt is filled as a liquid at pH6.7
- Fermentation takes place in the cup
- The timing of the process is critical to its success

Stirred

The yoghurt is filled as a viscous solid at pH4.3 Fermentation takes place in a tank The timing of the process is less critical

For Yoghurt Manufacture Use a High Temperature and Long Holding Time

- Produce a relatively sterile and conducive environment for the starter culture
- Competitor organisms are destroyed
- Denature and coagulate whey proteins to enhance the viscosity and texture

The mix is then homogenized using high pressures of 2000-2500 psi.

- Besides thoroughly mixing the stabilizers and other ingredients, homogenization also prevents creaming and wheying off during incubation and storage
- Stability, consistency and body are enhanced by homogenization – improved viscosity
- Once the homogenized mix has cooled to an optimum growth temperature, the yoghurt starter culture is added.

Pasteurisation

- The higher the temperature and the longer the holding time, the better the viscosity of the final product
- Batch 85°C for 20 minutes
- HTST 80 °C⁺ for 3 to 5 minutes
- Homogenisation pressure 150 bar

Starter Cultures

Streptococcus thermophilus
Lactobacillus bulgaricus
They have a symbiotic relationship
There are 'designed' cultures for specific yoghurt types

- Although they can grow independently, the rate of acid production is much higher when used together than either of the two organisms grown individually.
- ST grows faster and produces both acid and carbon dioxide. The formate and carbon dioxide produced stimulates LB growth.
- ✤ On the other hand, the proteolytic activity of LB produces stimulatory peptides and amino acids for use by ST.
- These microorganisms are ultimately responsible for the formation of typical yogurt flavour and texture.
- The yogurt mixture coagulates during fermentation due to the drop in pH.
- ✤ The streptococci are responsible for the initial pH drop of the yogurt mix to approximately 5.0.
- The lactobacilli are responsible for a further decrease to pH
 4.0

- # A ratio of 1:1, ST to LB, inoculation is added to the jacketed fermentation tank.
- A temperature of 43° C is maintained for 4-6 h under quiescent (no agitation) conditions.
- This temperature is a compromise between the optimums for the two micoorganisms (ST 39° C; LB 45° C).
- The titratable acidity is carefully monitored until the TA is 0.85 to 0.90%. At this time the jacket is replaced with cool water and agitation begins, both of which stop the fermentation.
- The coagulated product is cooled to 5-22° C, depending on the product.
- Fruit (sterile) and flavour may be incorporated at this time, then packaged.
- The product is now cooled and stored at refrigeration temperatures (5° C) to slow down the physical, chemical and microbiological degradation Powered by: Dr.Eng.Shimelis

Fermentation Products Contributing to Flavour

lactic acid acetaldehyde acetic acid

diacetyl

Powered by: Dr.Eng.Shimelis Yogurt Production Technology: Millennium Edition

Yoghurt Beverages

- Trinking yogurt is essentially stirred yogurt which has a total solids content not exceeding 11% and which has undergone homogenization to further reduce the viscosity
- Flavouring and colouring are invariably added
- Heat treatment may be applied to extend the storage life
- The HTST pasteurization with sanitary processing will give a shelf life of several weeks at 2-4°C
- WHT process with aseptic packaging will give a shelf life of 8 months at room temperature

Culture Range for East Africa

Type of technology	PH Time Temperature	Technological characteristics	Yo-Mix LYO
SET & DRINKING YOGHURT	4,6-4,5 5-6h 40-43°C	 Smooth texture Stable taste during storage Creamy products 	401 421
STIRRED YOGHURT	4,6-4,5 5-6h 40-43°C	 Thick and smooth texture Low post-acidification Creamy products No syneresis 	401 421
STIRRED YOGHURT Thick texture and mild taste	4,6-4,5 6-7h 40-43°C	 Very thick and smooth texture No post-acidification <u>even</u> with slow cooling 	495 496
PROBIOTIC YOGHURT with high texture	4,6-4,5 5-7h 37-43°C	 Creamy product Very thick and smooth texture No post-acidification even with slow cooling No syneresis Guaranty of 10E6 "probiotic strain" in the yogurt 	205 207

205,207 = S. thermophilus, L. bulgaricus, L. acidophilus, Bifidobacterium lactis

Powered by: Dr.Eng.Shimelis Yogurt Production Technology:

Millennium Edition

Stabiliser Range for East Africa

PROPOSAL	DVI LYO	·	
Stabiliser	units	Dosage	Comment
Grindsted SB 258 A	modified starch, gelatine	0.6-1.0%	Cheapest solution
Grindsted Pectin SY 200	pectin	0.07-0.15	more expensive
Grindsted SB 254	modified starch, gelatine	1.0-1.2	good
Grindsted SB 264	modified starch, gelatine, pectin	2.2-2.6	expensive, but very good
Grindsted SB 251	gelatine, modified starch, starch, pectin	0.5-0.8	get tested
	StabiliserGrindsted SB 258 AGrindsted Pectin SY 200Grindsted SB 254Grindsted SB 264	StabiliserunitsGrindsted SB 258 Amodified starch, gelatineGrindsted Pectin SY 200pectinGrindsted SB 254modified starch, gelatineGrindsted SB 264modified starch, gelatine, pectin	StabiliserunitsDosageGrindsted SB 258 Amodified starch, gelatine0.6-1.0%Grindsted Pectin SY 200pectin0.07-0.15Grindsted SB 254modified starch, gelatine1.0-1.2Grindsted SB 264modified starch, gelatine, pectin2.2-2.6

Three Major Fruit Yoghurt Types

Stirred with fruit dispersed

Powered by: Dr.Eng.Shimelis

Yogurt Production Technology:

Millennium Edition

Fruit at the bottom

Fruit in a separate compartment

15

Fruit Flavoured Yoghurts

- **Do not contain any fruit**
- Contain fruit flavours and colours
- Flavours can be synthetic, nature identical, natural
- Synthetic is the cheapest

Real Fruit for Yoghurt

- The processor can prepare own fruit
- Boil equal weights of fruit and sugar
- This is a cheap and convenient method

or

- The processor can buy processed fruit that contains stabiliser, flavour and colour
- Commercial fruit has to be bought as a sterilized product – very expensive

Functional Requirements for Yoghurt Fruit Preparations

Requirements for Fruit On Bottom Yoghurt

- No interfacial interaction (gelation, syneresis, protein aggregation)
- No colour migration from fruit to white base

Rrequirements for Twin Pot Yoghurt

- Non gelling properties
- Good suspension properties
- High degree of fruit identity and flavour release
- High yield value (flotation control)

Requirements for Stirred yoghurt

- No interaction with white mass (fish eyes, syneresis)
- Good suspension properties and pourable texture
- Texturing effect of the yoghurt is in some cases desirable

Commercial Fruit Preparations

- Our Low viscosity during hot processing
- High ability to regain texture after pumping (thixotropic properties)
- Wide pH tolerance
- Good organoleptic properties, viscosity
- Excellent flavour release
- Superior transparency
- Results: Increased product appeal

Pectins – What they do for your Yoghurt

- ✤ Broad calcium, pH and Brix tolerance
- ✤ Process flexibility
- Excellent for Fruit On Bottom yoghurt
- Excellent yield properties
- ✤ Low viscosity during processing
- ✤ Needs calcium saturation
- Strong carry-through-effect in the white mass
- ✤ Nice creamy mouthfeel with no syneresis
- Low viscosity in low solids formulation (< 55% SS)</p>

Choosing a Stabilizer: Your Target

Good suspension of fruit particles

- Good viscosity at processing temperatures and also at refrigeration temperatures
- No syneresis holds the water in
- Good mouthfeel
- Does not leave an aftertaste or sense of particles
- Smooth, creamy
- Stable texture throughout the shelf life
- Does not interact with the yoghurt white mass
- No gelation
- Large formulation tolerance
- Tolerant to various fat contents Powered by: Dr.Eng.Shimelis Vogurt Production Technology: Millennium Edition

Process Control of the Yoghurt

- From the time of inoculation, must do pH or acidity tests frequently throughout the fermentation process
- Normal time for fermentation is 4.5 hours
- Tests become more frequent as the fermentation proceeds

Inoculation
Time 0
30 minutes
1 hour
1.5 hours
2.0 hours
3.0 hours
3.0 ⁺ hours every 15 minutes

Cultures

- The ideal yoghurt culture has a composition of 50%S. thermophilus and 50% L. bulgaricus
- As the lactic acid concentration increases the S. thermophilus which is less tolerant of high acidity declines and is taken over by the L. bulgaricus which is the primary acid producer
- If using mother culture then should microscopically examine the culture to verify that the relative 50% proportion is maintained

Filling Stirred Yoghurt

- © Cool to approximately 20°C
- Cooling can be either in a jacketed tank or in a plate cooler
- Transfer cups to cold store for final cooling

Filling Set Yoghurt

- ☑ Fill at 43°C
- ☑ Must finish filling by pH6.0
- ☑ Transfer filled cups to incubator set at 45°C
- ☑ Monitor the acidity and pH frequently until pH4.6
- ☑ Transfer to refrigerator at pH4.6
- ☑ Adjust the process timing so that the final pH at <10°C will be pH4.3

Product Assessment

- Viscosity measurement: pipette, Bostwick viscometer, penetrometer etc
- Texture
- 🔳 Taste
- After taste
- **D** Syneresis
- Colour seepage between layers
- Colour reduction
- Shelf life

Changes in Bacteria Population During Shelf Life

- The initial count on Day 1 should be approximately 10⁷ to 10⁸ per ml
- The number of organisms declines during the shelf life
- Coliforms decline during shelf life because coliforms do not tolerate the high acidity
- Yeasts and Moulds increase during shelf life
- The main spoilage organisms are yeasts and

moulds Powered by: Dr.Eng.Shimelis

Yogurt Production Technology: Millennium Edition

Recommended pectin dosages and application areas for GRINDSTED® Pectin YF range

DANISCO

Product	Usage level [%]	mg Ca ^{2+/} g GRINDSTED® Pectin YF	Application areas
GRINDSTED ® Pectin YF 310	0.5-0.9%	25-40 brix ~ 55 mg/g 55 brix ~ 25 mg/g	Excellent for stirred yoghurts and fruit on the bottom.
GRINDSTED ® Pectin YF 450	0.4-0.6%	5-15 mg/g	Perfect for stirred yoghurts, giving high fruit identity and high yield stress values.
GRINDSTED ® Pectin YF 738	1-2%	0 mg/g	Dual function pectin, creating viscosity in fruit prep. and acidified white base.

Yoghurt Fruit - Market potentials

	Potential	Market Share in %
LE Pectin	1500 MT	10
Carrageenan	200 MT	0
LBG, Xanthan, Guar, Alginate	300 MT	5
and HE Pectin		
Blends	?	0
Flavouring	350 Mio DKK	< 1

Vanilla Fruit preparation for All Types of Yoghurt

1)	Dry blend pectin and sugar I and dissolve the blend in hot water I (80°C), using a high-speed mixer
2)	Mix fruit, sugar II, and water II and bring the blend to the boil
3)	Add 1) to 2) agitating continuously
4)	Add the calcium as a calcium slurry (calcium lactate dissolved in water)
5)	Evaporate until the desired soluble solids is reached
6)	Add preservatives
7)	Adjust pH with sodium citrate solution
8)	Add the flavourings
9)	Cool to filling temperature and fill