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EQUIPMENT DESIGN: FERMENTER
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Fermentation process

* The entire process of biotechnology can be divided in to
three stages

v'Upstream processing which involves preparation of liquid
medium, separation of particulate and inhibitory chemicals from
the medium, sterilization, air purification etc.

v'Fermentation which involves the conversion of substrates to
desired product with the help of biological agents such as
microorganisms; and



Cont.

v'Downstream processing which involves separation of cells from
the fermentation broth, purification and concentration of desired
product and waste disposal or recycle
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Bioprocess

* Bioprocess operations make use of microbial, animal
and plant cells and components of cells such as
enzymes to manufacture new products and destroy

harmful waste

ALGAE BACTERIA
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* For fermenter design, therefore the knowledge of the
following concepts are required

v Reaction Kkinetics ;
v'"Mass and energy balance, and

v"Mass transfer rate

- Besides, the advantage and disadvantage of one reactor
configuration over the other ,under certain fermentation
condition, iIs needed to be known



Reaction kinetics

* Enzymes

k k
E+S — ES —2>E+P
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Leonor Michaelis,
1875-1949

Maud Menten,
1879-1960
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» Factors affecting enzyme activity

v Temperature

Optimal temperature for Optimal temperature for
typical human enzyme enzyme of thermophilic
(heat-tolerant)

bacteria

Rate of reaction —»
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Cont.
/pH
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v Inhibitors

« Competitive inhibitors: are chemicals that resemble an enzyme’s
normal substrate and compete with it for the active site
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Enzymes

» Deciding the type of enzyme to be used is also important

v Free enzyme

* more sensetive to environmental conditions

« Separation problem |
v Immobilized enzyme

* Reduction in performance e




Cell growth

Reactions and processes involved in
cell growth and product formation.
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Source: Bioreaction Engineering Eroteins (more cells)
Princples. 279 ed.




Mass balance (cont’d)

Monod model . p = pu,,,
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(From J.A. Roels, 1980, Application of macroscopic principles to microbial metabolism, Biotechnol. Bioeng. 22, 2457-2514)

Organism Elemental formula - Degree of reduction y
(relative to NH 3 )
Escherichia coli CH, 770, 40N; 24 407
Klebsiella aeragenes CH, 7504 43Ng 22 4.23
K. aerogenes H, 5300 43Ng.24 4.15
Kl aerogenes H, 5504 .47Np.17 4.30
Kl aerogenes CH, 530, 43N0 .24 4.15
Pseudomonas C,B H, 0000.52N0.23 4.27
Aerobacter aerogenes CH, 3300.55Ng 25 3.98
Paracoccus denitrificans CH, 4,00.51Np.20 4.19
P. denitrificans CH, 5,04 46No.19 3.96
Saccharomyces cerevisiae CH, 400.52N0.16 4,12
S. cerevisiae CH, 430 5¢No.7 4.20
S. cerevisiae H, 5,0051No.17 4.28
Candida utilis CH, 5:04 54Ny 10 4.45
C. utilis CH | .EFOD.S(JNG.Z[:- 4.15
C. utilis CH, 3:00 4¢No.19 4.34
C. utilis CH, 4:04.5¢No.20 4.15
Average CH 1.?90{}.5&NG+2D 4.19
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The oxygen transport path to the microorganism. Generalized path of oxygen from the gas bubble to the
microorganism suspended in a liquid is shown. The various regions where a transport resistance may be
encountered are as indicated
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Kk, is the liquid phase mass-transfer coefficient
acy —kalC*=C a is area for mass transfer
La(C, L) . .
dt C is concentration



Oxygen transfer (cont.)

* At Steady-state with no O, accumulation in the liquid
phase:

v Rate of oxygen transfer = Rate of oxygen uptake
* In general:

v'Qq, = f(microbial species and type of cell, age of cell, dissolved
O, conc., temperature, pH, etc.)

* Qq, - Respiration rate



Oxygen transfer (cont.)

* If O, concentration, C,, is the limiting factor in cell growth, then Qg
Is a strong function of dissolved O, concentration C, (= mg O,/L).
The relationship between Qg, and C, is of the Monod type
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Basic Features of Fermenation Equipement

An agitator system

An oxygen delivery system

A foam control system

* A temperature control system

A pH control system

Sampling ports

» A cleaning and sterilization system
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Fermenter configuration
» Stirred aerobic reactor
v" Agitation

* Provides mixing
 Facilitates oxygen and heat transfer

« Maintains uniform environment through out the vessel

v'Baffles (on the walls of vessels)

* Prevent vortex formation in the fermentation broth

» There should be enough gap between wall and baffle so that scouring action around
vessel is facilitated



Configuration (Con.)

v'Bubble column
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v Airlift reactor
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Confugration (cont’d)

v'Packed bed
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 Packed bed fermenter

v The particles should be relatively incompressible and able to withstand
their own weight in the column without deforming and occluding liquid flow

v Recirculating medium must also be clean and free of debris to avoid
clogging the bed

v Packed beds are unsuitable for processes which produce large quantities
of carbon dioxide or other gases which can be come trapped in the
packing



v Fluidized bed reactor
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Reactor performance

» Configuration
» Aspect of construction

* Mode of operation



The dimensions of a “standard” stirred tank
bioreactor vessel with Baffles
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Geometric Ratios for a Standard Bioreactor
Vessel

Impeller No.
Type D./D, H, /D, L./D, W,/D. H,/D. W, /D, Baffles
Flat-Blade
turbine 0.33 1.0 0.25 0.2 1.0 0.1 4

Where:

D, = tank diameter,

H;, = liquid height

D; = impeller diameter

H;, = impeller distance from bottom of vessel

W, = baffle width
Source : Catapano et.al (2009), Bioreactor design and

L; = impeller blade length
scale up, Cell Tissue React. Eng. 173-259

W; = impeller blade height



v Head space for disengagement (20-30 % of aerobic reactor)

« Minimum entrainment of droplets in exhaust gas




Fermenter Operation Modes

» Batch operation

v" A batch bioreactor is normally equipped with
* An agitator to mix the reactant
* pH controller
* Foam breaker
* Temperture controller

e efc




» Estimate the batch reaction time required to reduce the
substrate concentration from s, to s;
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 Continous stirred tank reactor Feed stream Product stream

F A F
A continuous stirred- ;.- b
tank reactor (CSTR)
is an ideal reactor L “--->
which is based on the
assumption that the
reactants are well
mixed.
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