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Foreword

The present volume continues the objective of Volume 1: to present the
Finite Element Method (FEM) for solid and structural mechanics from a
balanced perspective that interweaves theory, formulation, physical mod-
eling and computer implementation. The challenging balance is made pos-
sible by the three-decade practical experience of the author in teaching
FEM courses while building and leading a large research center (CIMNE)
that conducts advanced research in computational mechanics for a wide
variety of engineering applications. That experience is put to good use to
support of the educational goals addressed by this book series. A major
difference between the first and second volume is in the level and detail of
coverage.

The goal of the first volume was to offer an introductory coverage of FEM.
The material concentrated on solid and structural mechanics to maintain a
clear application focus. The problem class is restricted to linear static anal-
ysis. This volume addressed the fundamentals steps of the Direct Stiffness
Method (DSM) version of FEM, while introducing related mathematical
considerations such as consistency, accuracy and convergence. These are in
turn translated into practical modeling rules. Emphasis is on the physical
interpretation of the method as a “divide and conquer” technique. Accord-
ingly, the exposition level is that appropriate to a first course in FEM at
the master level. The assumed preparation level of a student taking such
a course is expected to include multivariate calculus, linear algebra, and a
basic knowledge of structural analysis at the Mechanics of Materials level,
as well as some familiarity with computer programming concepts. Because
of the inevitable space and time limitations of a first-course treatment,
the contents of Volume 1 were restricted to simple structural elements,
notably axially loaded members and two-dimensional solids. Those mod-
els are sufficient, however, to illustrate the primary steps of DSM, as well
as to provide specific examples that teach the most important modeling
rules.



A key virtue of DSM is that its steps are applicable to any finite element
model formulated within the framework of the stiffness equations. Conse-
quently, those steps need not be repeated in a more advanced treatment
such as that presented in this volume. The author is free to directly pro-
ceed to more difficult problems by focusing on more advanced element
formulation techniques and associated modeling rules. The problems ad-
dressed in the volume involve the classical structural components that
carry bending actions: beams, plates and shell, as well as combinations
such as stiffened plates and shells. The coverage still targets on linear
static problems.

Consideration of bending effects brings about a new set of formulation
and modeling difficulties. Foremost is locking: a pathological overstiffness
endemic to certain “thin” configurations, and which must be overcome to
avoid unsafe designs. Remedies to those difficulties, however, can in turn
produce undesirable side effects. For example reduced integration to cure
locking may give rise to numerical instabilities; e.g., mesh “hourglassing”.
The delicate interplay between diagnosing and curing requires more ad-
vanced mathematical tools, which go beyond those deemed sufficient for
Volume 1. Accordingly, the present treatment is intended for follow-up
courses that cover more advanced models in structural mechanics, as well
as a more detail coverage of the computer implementation. The following
Chapter summary give a more specific idea of the contents of the present
volume.

Chapters 1-4 cover structural beam members. The Euler-Bernoulli and
Timoshenko models of plane beams are presented in Chapters 1 and 2, re-
spectively. Chapter 3 deals with composite laminate farbrications of plane
beans. Chapter 4 addresses 3D beams, focusing on composite fabrica-
tion and the problem of cross section warping under torsion and shear.
Rotation-free beam element models are introduced as advanced topic.

Chapters 5-7 deal with flat plate structural components. The Kirchhoff
and Reissner-Mindlin Model are covered in Chapters 5 and 6 respectively,
while Chapter 7 addresses composite laminates fabrication of plate walls.
Rotation free plate elements are covered again; at the plate level this
represents a still ongoing research topic.

Chapters 8 through 10 deal with shell structures. The coverage includes
facet element models, axisymmetric configurations, doubly curved shell
models, culminating with the treatment of stiffened shells.

Chapter 11 covers prismatic structures. This is a specialized form of shells
(e.g., folded thin roofs) which deserves special treatment on account of its

VIII Foreword



industrial importance as well as ubiquity in various engineering branches
(Aerospace, Civi, Marine and Mechanical).

Chapter 12 present a computer implementation dubbed MATfem, sup-
ported by the MATLAB high level programming language. This may be
viewed as a “unification chapter” that brings together models formulated
in the previous chapters, as well as in Volume 1, into a MATLAB frame-
work. This material was organized in collaboration with Professor Zárate.

Each of the formulation oriented chapters (1 through 11) covers its title
material in three stages. First, classical theories for the pertinent struc-
tural configuration is summarized in a form suitable for FEM formulation.
Second, the construction of finite element models based on those theories.
Third, advanced material pertaining to the topic is included; for example,
how to overcome difficulties such as locking. Some of the advanced material
is still the matter of ongoing research by the author’s team at CIMNE. An
important example are rotation-free elements for beam, plates and shells,
as well as the treatment of prismatic structures.

The volume concludes with seven Appendices that summarize relevant
reference material for the benefit of the reader.

Several features that clearly distinguish this volume from other texts at
a similar level should be noted. The rich treatment of composite fabrica-
tion in Chapters 3, 4 and 7 does not have a counterpart in other FEM
textbooks. The treatment of rotation-free beam, plate and shell elements
in Chapters 1, 2, 5 and 9 reflects the long-term involvement of the author
in that research thrust, which offers significant promise in its extension to
extremely large deformations as occur in important fabrication processes.
Finally, the MATfem implementation in Chapter 12 stands out for the
careful attention to modularity and completeness.

While as noted Volume 1 was specifically oriented to an introductory
course, the present volume can be used in two contexts:

1. A textbook that support advanced FEM courses. Since the overall
content is too extensive to be covered in a one-semester course, the
instructor will likely need to select specific presentation topics, and
perhaps designate others as launching pads for course team projects.
The instructor will have to provide exercitation problems that enhance
the student comprehension of the material, and well as exam problems
that test that understanding.
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2. As a reference monograph for advanced topics that are not adequately
treated aside from the specialized literature. An instance would be
rotation free elements for complex plates and shell assemblies.

In summary, the present volume ably complements and supplements the
first one with a wealth of material that provide both instructors and re-
searchers with a wealth of possibilities.

Carlos Felippa
Professor in the University of Colorado at Boulder
November 2012
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Preface

This book complements the content of the first volume: Structural Analysis
wit the FEM. Basis and solids (Springer/CIMNE, 2009). The scope of the
second volume covers the finite element analysis of “structural elements”
such as beams, plates and shells. Similarly, as in Volume 1, the study is
restricted to linear static analysis only.
The book is addressed to undergraduate students and readers that are
exposed to the FEM analysis of beams, plates and shells for the first time.
No previous experience on the FEM is strictly necessary. However, some
knowledge of basic FEM concepts, such as mesh discretization, displace-
ment interpolation, shape functions, numerical integration, element ma-
trices and vectors, assembly of the stiffness equations, etc., as described in
Volume 1, will facilitate the understanding of the underlying ideas behind
the FEM.
Throughout the text emphasis has been put in the study of beam, plate
and shell structures with composite laminated material, this being a possi-
bility of increasing interest for practical applications. For didactic reasons,
however, the homogeneous and isotropic material case is considered first,
and in most cases in a separate chapter, in order to facilitate the study to
an inexperienced reader.
As in Volume 1, the study of each structural model is introduced with the
detailed description of the underlying theory. This includes the general
structural mechanics assumptions, the kinematic description, the stress
and stress fields, the constitutive relationship and the expression of the
virtual work principle in terms of stress resultants and generalized strains
defined over the “reference geometry” of the element, i.e. a line for a beam,
a plane for a plate or a flat shell and a curved surface for a general shell
structure.
Chapter 1 introduces the FEM analysis of two-dimensional (2D) plane
slender beams following the classical Euler-Bernoulli beam theory. The
popular two-noded Euler-Bernoulli beam element is derived in some de-
tail. The chapter concludes with the formulation of two rotation-free beam
elements. These elements have the vertical deflection as the only nodal



variable and are an interesting alternative to standard slender beam ele-
ments.
Chapter 2 describes the formulation of beam elements based on the more
advanced Timoshenko beam theory. This theory accounts for the effect of
shear deformation and is therefore applicable to slender and thick beams.
Timoshenko beam elements suffer from the so-called shear locking defect
that leads to overstiff situations for slender beams. A number of procedures
to avoid shear locking are described.
Chapter 3 is devoted to the FEM analysis of beams with composite lami-
nated material. Emphasis is put in studying the particularities introduced
by the composite material in the mechanical behaviour of the beam, the
more important one being the introduction of the axial deformation mode
in addition to the standard bending mode typical of homogeneous plane
beams. Higher order beam theories that are able to reproduce the complex-
ity of the in-plane displacement field across the thickness are described. An
effective 2-noded composite laminated Timoshenko beam element based
on the so-called refined zigzag theory is detailed.
Chapter 4 studies three-dimensional (3D) Timoshenko and Euler-Bernoulli
beams under arbitrary loading. Both the classical Saint-Venant theory al-
lowing for a uniform torsion field and the more complex theory for non-
uniform torsion of beams with thin-walled open section are described.
Both theories are generalized for homogeneous and composite material. A
number of two-noded beam elements adequate for each theory considered
are presented.
Chapter 5 focusses on the FEM analysis of homogeneous thin plates fol-
lowing the classical Kirchhoff plate theory. The difficulties for satisfying
the continuity condition for the deflection slopes across the element sides
are detailed. A number of conforming and non-conforming quadrilateral
and triangular thin plate elements are presented. Part of the chapter is
devoted to the study of two families of rotation-free thin plate triangles.
Chapter 6 extends the FEM analysis to thick and thin homogeneous plates
that follow the more advanced Reissner-Mindlin plate theory. This can be
viewed as an extension of Timoshenko beam theory and, thus, it accounts
for transverse shear deformation effects. Different techniques to avoid the
shear locking defect are detailed. A collection of Reissner-Mindlin quadri-
lateral and triangular plate elements is presented.
Chapter 7 is devoted to composite laminated plates. The effect of the axial
displacement induced by the changes in the material properties across the
thickness in the governing equations of the plate problem are detailed. An
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accurate 4-noded composite laminated plate quadrilateral based on the
refined zigzag theory is presented.
Chapter 8 introduces the FEM study of shell structures via flat shell ele-
ments. The basic equations of Reissner-Mindlin flat shell theory expressed
in the local axes of the element are identical to those of a composite lam-
inated plate as studied in the previous chapter. The equations for a flat
shell element are formulated for homogeneous and composite laminated
material. The particularity of the assembly of the element equations in
global axes are detailed. The formulation of thin shell elements following
Kirchhoff theory is also explained. The chapter concludes with the de-
scription of some higher order theories for composite laminated flat shell
elements, including the refined zigzag theory.
Chapter 9 deals with axisymmetric shell structures. Reissner-Mindlin as-
sumptions for the shell kinematics are studied first. Both homogeneous
and composite laminated materials are considered. A simple locking-free
2-noded troncoconical axisymmetric shell element is presented in some de-
tail. The formulation of curved axisymmetric shell elements is also studied
and the combined effect of shear and membrane locking is discussed. The
derivation of thin axisymmetric shell elements following Kirchhoff assump-
tions is explained and two interesting rotation-free thin axisymmetric shell
elements are presented. The axisymmetric formulation is particularized for
circular plates, arches and shallow shells. The derivation of axisymmet-
ric shell elements via the degeneration of 3D axisymmetric solid elements
is also explained. The chapter concludes with the study of higher order
theories for composite laminated axisymmetric shells.
Chapter 10 studies the analysis of 3D shell structures of arbitrary shape
using degenerated solid elements. The degeneration process is explained
and the element matrices and vectors are obtained. Different techniques
for deriving degenerated shell elements free of shear and membrane locking
are presented. Several procedures for the explicit integration of the element
stiffness matrix across the thickness are explained. The basic concepts of
the isogeometry approach and the derivation of isogeometric shell elements
are studied. The chapter concludes with the formulation of stiffened shell
elements by coupling beam and shell elements.
Chapter 11 presents the derivation of finite strip and finite prism methods
for analysis of prismatic plate/shell and 3D solid structures, respectively.
These elements combine a finite element approximation across the trans-
verse section of the structure with Fourier series expansions for represent-
ing the longitudinal response. Both procedures can therefore be considered
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as a particular class of reduced order models. The finite strip formulation
is detailed for plates, folded plates with straight and circular plant and
axisymmetric shells with non arbitrary loading. The simple 2-noded strip
allows one to analyze complex prismatic shell structures, such as box-
girder bridges, in an extremely simple form. The finite prism formulation
is derived for prismatic solids with straight and circular plant and axysym-
metric solids with arbitrary loading.
Chapter 12 explains the programming of some of the elements studied in
the book for beam, plate and shell analysis using MATLAB. The elements
are implemented in the MAT-Fem code that can be freely downloaded
from the web. The general structure of the code is explained as well as the
basic concepts for programming the stiffness matrix and the equivalent
nodal force for the element. The essential parts of the MAT-Fem code are
listed for each element considered.
The book concludes with a number of appendices with details of topics
of general interest such as the properties of selected materials, the equi-
librium equations for a solid, some numerical integration quadratures for
triangular, quadrilateral and hexahedral elements, the derivation of the
shear correction parameters, the shear center and the warping functions
in beams, the stability conditions for beam and plate elements based on
the assumed strain technique, the analytical solution for circular plates
and the expression of the shape functions for some C0 triangular and
quadrilateral elements.
I want to express my gratitude to Dr. Francisco Zárate who was responsible
for writing the computer program Mat-fem presented in Chapter 12 and
also undertook the task of writing this chapter.
The content of the book is an expanded version of the course on Finite
Element Analysis of Structures which I have taught at the School of Civil
Engineering in the Technical University of Catalonia (UPC) since 1979. I
want to express my thanks to my colleagues in the Department of Con-
tinuum Mechanics and Structural Analysis at UPC for their support and
cooperation over many years. Special thanks to Profs. Benjamı́n Suárez,
Miguel Cervera and Juan Miquel, Drs. Francisco Zárate and Daniel di
Capua and Mr. Miguel Angel Celigueta with whom I have shared the
teaching of the mentioned course during many years.
Many examples included in the book are the result of problems solved
by academics and research students at UPC and CIMNE in cooperation
with companies which are acknowledged in the text. I thank all of them
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for their contributions. Special thanks to the GiD team at CIMNE for
providing many pictures shown in the book.
Many thanks also to my colleagues and staff at CIMNE for their coo-
peration and support during so many years that has made possible the
publication of this book.
Finally, my special thanks to Mrs. Maŕıa Jesús Samper from CIMNE for
her excellent work in the typing and editing of the manuscript.

Eugenio Oñate
Barcelona, November 2012
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1

SLENDER PLANE BEAMS.
EULER-BERNOULLI THEORY

1.1 INTRODUCTION

This chapter studies the bending of slender plane beams using the clas-
sical Euler-Bernoulli beam theory and the FEM. Many readers will ask
themselves why we are applying the FEM to a simple structural problem
that can be solved by standard Strength of Materials techniques [Ti2].
The answer is that the study of beam elements is of great interest as it
allows us to introduce concepts which will be applied for the formulation
of thin plate and shell elements in the subsequent chapters.

The matrices and vectors for the 2-noded Euler-Bernoulli beam element
are in many cases identical to those obtained via standard matrix analysis
methods [Li,Pr]. This coincidence illustrates the analogy between the FEM
and classical matrix techniques for structural analysis.

The organization of the chapter is as follows. First, the classical Euler-
Bernoulli theory for plane beams which neglects the effect of shear defor-
mation is presented. This is followed by the formulation of the 2-noded
Euler-Bernoulli beam element. This element introduces the C1 continuous
Hermite shape functions. The formulation of rotation-free beam elements
using the deflection as the only nodal variable is also described. Thick
beam elements based on Timoshenko beam theory which takes shear de-
formation into account will be derived in Chapter 2.

The formulation of Timoshenko and Euler-Bernoulli beam elements
for plane composite laminated beams and 3D beams will be studied in
Chapters 3 and 4, respectively.

E. Oñate, Structural Analysis with the Finite Element Method. Linear Statics:   
Volume 2: Beams, Plates and Shells, Lecture Notes on Numerical Methods  
in Engineering and Sciences, DOI 10.1007/978-1-4020-8743-1_1,  
© International Center for Numerical Methods in Engineering (CIMNE), 2013 

1



2 Slender plane beams. Euler-Bernoulli theory

Fig. 1.1 Euler-Bernoulli plane beam. Definition of loads and displacements

1.2 CLASSICAL BEAM THEORY

1.2.1 Basic assumptions

Let us consider a beam of length L and cross-sectional area A under
vertical point loads and moments acting on the plane xz which is assumed
to be a principal plane of inertia (Figure 1.1). We will also accept that
the beam axis x coincides with the line joining the gravity centers G of
the cross-sections. The material properties are assumed to be isotropic
and homogeneous, so that the beam axis coincides with the neutral axis
(Section 3.6).

The classical Euler-Bernoulli plane beam theory is based on the fol-
lowing hypotheses [Ti2]:

1. The vertical displacement (deflection) w of the points contained on a
cross-section are small and equal to the deflection of the beam axis.
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2. The lateral displacement v (along the y axis in Figure 1.1) is zero.
3. Cross-sections normal to the beam axis remain plane and orthogonal

to the beam axis after deformation (normal orthogonality condition).

1.2.2 Displacement field

Following the above hypotheses the displacement field is written as

u(x, y, z) = −zθ(x)
v(x, y, z) = 0
w(x, y, z) = w(x)

(1.1)

Hypothesis 3 implies that the rotation is equal to the slope of the beam
axis (Figure 1.1); i.e.

θ =
dw

dx
and u = −z dw

dx
(1.2)

1.2.3 Strain and stress fields

Starting from the strain field for a 3D solid [On4] we find

εx =
du

dx
= −z d

2w

dx2
, εy = εz = γxy = γxz = γyz = 0 (1.3)

i.e. the beam is under a pure axial strain (εx) state. The axial stress σx
(Figure 1.2) is related to εx by Hook law [Ti2] as

σx = Eεx = −zEd2w

dx2
(1.4)

where E is the Young modulus. The values of E for some typical materials
are given in Appendix A.

1.2.4 Bending moment-curvature relationship

The bending moment for a cross section is defined as (Figure 1.2)

M = −
∫∫

A
zσx dA =

(∫∫
A
z2dA

)
E
d2w

dx2
= EIy

d2w

dx2
= EIyκ (1.5)

where Iy =

∫∫
A

z2 dA is the moment of inertia (or inertia modulus) of

the section with respect to the y axis and κ =
d2w

dx2
is the curvature of the

beam axis.
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Fig. 1.2 Sign criteria for axial stress σx, bending moment M and shear force Q

Fig. 1.3 Center of gravity G, area and inertia modulus around the y axis (Iy) for
some beam cross sections

Figure 1.3 shows the value of Iy for some cross sections. The position
of the center of gravity G and the inertia moduli for thin wall sections
and solid sections of arbitrary shape can be found in specialized texts
[PCh,Yo].

Eq.(1.5) assumes homogeneous material. Composite laminated plane
beams are studied in Chapter 3. The general case of 3D beams with he-
terogeneous material properties is treated in Chapter 4.

1.2.5 Principle of Virtual Work

The principle of virtual work (PVW) is written as∫∫∫
V
δεxσx dV =

∫ L

0

[
δwfz + δ

(
dw

dx

)
m

]
dx+

∑
i

δwiPzi+
∑
j

δ

(
dw

dx

)
j

M c
j

(1.6a)
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where the sums in the r.h.s. of Eq.(1.6a) extend over the number of points
with point loads Pzi and concentrated moments M c

j . The upper index in
M c

j distinguishes the concentrated moment acting at a point j from the
internal couple Mi at the ith element node.

External vertical point loads Pzi and distributed loads fz(x) are taken
as positive if they act in the direction of the global z axis. The external
concentrated moments M c

j acting at beam points and the distributed mo-
ment m(x) are taken as positive if they act anticlockwise, in consistency
with the definition of the rotation θ (Figure 1.1).

The integral in the l.h.s. of Eq.(1.6a) represents the virtual strain work
(also called internal virtual work) and it can be simplified as follows. Using
Eqs.(1.3)–(1.5)∫∫∫

V
δεxσx dV =

∫ L

0
δ

(
d2w

dx2

)[∫∫
A
z2 dA

]
E

(
d2w

dx2

)
dx

=

∫ L

0
δ

(
d2w

dx2

)
EI

d2w

dx2
dx =

∫ L

0
δκM dx (1.6b)

The virtual strain work is therefore expressed as the integral along the
beam axis of the product between the bending moment and the virtual
curvature.

Substituting Eq.(1.6a) into (1.6b) gives∫ L

0
δκM dx =

∫ L

0

[
δwfz + δ

(
dw

dx

)
m

]
dx+

∑
i

δwiPzi+
∑
j

δ

(
dw

dx

)
j

M c
j

(1.7)

The reduction of the virtual work expression to integrals over the “re-
ference” geometry of the body (i.e. the beam axis, the mid-plane in plates
and the mid-surface in shells) is a distinct characteristic of beam, plate
and shell theories.

The only unknown in Euler-Bernoulli beam theory is the vertical de-
flection w. However, the PVW involves second derivatives of w. Therefore,
C1 continuity is required (w and dw/dx must be continuous) as explained
in Section 3.8.3 of [On4]. This requirement has a physical explanation. As
the rotation dw/dx coincides with the slope of the beam axis, the slope
has to be continuous to ensure a smooth deflection field.
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Fig. 1.4 Two-noded Euler-Bernoulli beam element. Nodal variables, equilibrating
nodal forces and Hermite shape functions

1.3 THE 2-NODED EULER-BERNOULLI BEAM ELEMENT

1.3.1 Approximation of the deflection, curvature and bending moment
fields

The simplest C1 continuous beam element is the 2-noded beam element
shown in Figure 1.4. The continuity of the beam slope across adjacent
elements requires that dw/dx be a nodal variable. Therefore, the element
has four degrees of freedom (DOFs): wi and (dw/dx)i at each node. This
allows us to define a cubic expansion for the deflection as:

w = α0 + α1x+ α2x
2 + α3x

3 (1.8)

The parameters αi are obtained by substituting the deflection value and
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its derivatives (i.e. the rotation dw
dx ) at the nodes in Eq.(1.8). This yields

the following system of equations

w1 = α0 + α1x1 + α2x
2
1 + α3x

3
1(

dw

dx

)
1

= α1 + 2α2x1 + 3α3 x21

w2 = α0 + α1x2 + α2x
2
2 + α3x

3
2(

dw

dx

)
2

= α1 + 2α2x2 + 3α3x
2
2

(1.9)

Eq. (1.8) can be rewritten, after substituting the αi parameters ob-
tained from the solution of Eqs.(1.9), as

w = N1w1 + N1
l(e)

2

(
dw

dx

)
1

+ N2 w2 + N2
l(e)

2

(
dw

dx

)
2

(1.10)

where the element shape functions are

N1 =
1

4
(2− 3ξ + ξ3) ; N2 =

1

4
(2 + 3ξ − ξ3)

N1 =
1

4
(1− ξ − ξ2 + ξ3) ; N2 =

1

4
(−1− ξ + ξ2 + ξ3)

(1.11a)

with the local coordinate ξ defined as (Figure 1.4)

ξ =
2

l(e)
(x− xc) and xc =

x1 + x2
2

(1.11b)

Eq.(1.10) can be written in compact form as

w = N a(e) (1.12a)

where

N =
[
N1, N1, N2, N2

]
and a(e) =

[
w1,

(
dw

dx

)
1

, w2,

(
dw

dx

)
2

]T
(1.12b)

are respectively the shape functions matrix and the nodal displacement
vector for the element, including the nodal deflections w1 and w2 and the

nodal rotations

(
dw

dx

)
1

and

(
dw

dx

)
2

.

The shape functions (1.11) coincide with Hermite polynomials [AS].
Figure 1.4 shows that N1 and N2 take a unit value at a node, zero at the
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other node and their first derivatives are zero at both nodes, while the op-
posite occurs with N̄1 and N̄2. We will see in Chapter 5 that choosing the
deflection and the rotations as the nodal variables for thin plate bending
elements leads, in general, to non-conforming situations where the rota-
tions are discontinuous along the common element boundaries. This is not
so for Euler-Bernoulli beam elements for which the rotation takes a single
value at the nodes shared by two adjacent elements.

It is deduced from Eq.(1.11b) that
dx

dξ
=

l(e)

2
, and thus

dx =
l(e)

2
dξ ;

dw

dx
=

2

l(e)
dw

dξ
and

d2w

dx2
=

4

(l(e))
2

d2w

dξ2
(1.13)

The rotation can be expressed in terms of the nodal displacements from
Eqs.(1.10), (1.11) and (1.13) as

dw

dx
=

[
dN1

dx
,
dN1

dx
,
dN2

dx
,
dN2

dx

]
a(e) =

2

l(e)
[
(−3 + 3ξ2), (−1− 2ξ + 3ξ2),

(3− ξ2), (−1 + 2ξ + 3ξ2), (−1 + 2ξ + 3ξ2)
]
a(e) = N̂a(e)

(1.14)
The virtual deflection and virtual rotation fields are interpolated in

term of the respective nodal variables as

δw = Nδa(e) , δ

(
dw

dx

)
= N̂δa(e) (1.15a)

where

δa(e) =

[
δw1, δ

(
dw

dx

)
1

, δw2, δ

(
dw

dx

)
2

]T
(1.15b)

and N and N̂ are defined in Eqs.(1.12b) and (1.14), respectively.
The curvature at a point within the element is obtained in terms of

the nodal DOFs using Eqs.(1.10) and (1.13) by

κ=
d2w

dx2
=

4

(l(e))2

(
d2N1

dξ2
w1+

l(e)

2

d2N1

dξ2

(
dw

dx

)
1

+
d2N2

dξ2
w2 +

l(e)

2

d2N2

dξ2

(
dw

dx

)
2

)

=

[
6ξ

(l(e))2
,
(−1 + 3ξ)

l(e)
,
−6ξ
(l(e))2

,
(1 + 3ξ)

l(e)

]
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w1(
dw

dx

)
1

w2(
dw

dx

)
2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
= Bba

(e) (1.16a)
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where Bb is the bending strain (or curvature) matrix for the element.
From Eq. (1.16a) we deduce the relationship between the virtual cur-

vature and the virtual nodal displacement as

δκ = Bbδa
(e) (1.16b)

The bending moment is expressed in terms of the nodal displacements
from Eqs.(1.5) and (1.16a) as

M = (EIy)Bba
(e) (1.16c)

Note that the curvature and the bending moment vary linearly within
the element.

1.3.2 Discretized equilibrium equations for the element. Element stiffness
matrix

The PVW for an individual element of length l(e) is written as (Eq.(1.7))∫
l(e)

δκMdx =

∫
l(e)

(
δwfz + δ

(
dw

dx

)
m

)
dx+

2∑
i=1

[
δwiFzi + δ

(
dw

dx

)
i

Mi

]
(1.17)

where Fzi and Mi are the equilibrating nodal forces transmitted to node
i by the adjacent elements ( Figure 1.4).

Substituting Eqs.(1.12a), (1.15a) and (1.16b) into (1.17) gives after
simplification of the virtual nodal displacements∫

l(e)
BT

b Mdx =

∫
l(e)

(NT fx + N̂Tm)dx+ q(e) (1.18a)

where q(e) = [Fz1 ,M1, Fz2 ,M2]
T (1.18b)

is the equilibrating nodal force vector for the element.
Substituting the constitutive expression forM (Eq.(1.16c)) into (1.18a)

and using Eqs.(1.13) gives(∫ +1

−1
BT

b Bb
EIyl

(e)

2
dξ

)
a(e)−

∫ +1

−1
(NT fx+N̂Tm)

l(e)

2
dξ = q(e) (1.19a)

Eq.(1.19a) can be written in compact matrix form as

K(e)a(e) − f (e) = q(e) (1.19b)
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where K(e) and f (e) are, respectively, the stiffness matrix and the equiva-
lent nodal force vector for the element.

The element stiffness matrix has the general form

K(e) =

∫
+1

−1

BT
b Bb

EIyl
(e)

2
dξ (1.19c)

Integrals in beam elements can be computed either analytically or by
numerical integration [Ral,WR]. In practice the Gauss integration rule
(also called Gauss quadrature) is chosen. For 1D integrals, this is generi-
cally written for a function f(ξ) as∫

+1

−1

f(ξ)dξ =

np∑
p=1

f(ξp)Wp (1.19d)

where np is the number of quadrature points, f(ξp) is the value of function
f(ξ) at the ξp quadrature point and Wp is the corresponding weight. For
details of the 1D Gauss quadrature see Appendix C and [On4,ZTZ].

The stiffness matrix of the 2-noded Euler-Bernoulli beam element can
be computed analytically or using a 2-point Gauss quadrature as

K(e) =

(
EIy
l3

)(e)

⎡⎢⎢⎢⎢⎢⎣
12 6l(e) −12 6l(e)

. . . 4(l(e))
2 −6l(e) 2(l(e))2

. . . 12 −6l(e)
sym.

. . . 4(l(e))
2

⎤⎥⎥⎥⎥⎥⎦ (1.20)

Those readers familiar with matrix analysis of structures will recognize
the coincidence of Eq.(1.20) with the expression derived from the standard
slope-deflection relationships of Strength of Materials (see Eq.(1.37b) of
[On4]) [Li,Pr,ZTZ]. The reason is that the cubic deflection field assumed
in Eq.(1.10) coincides with that obtained by integrating the differential
equations of equilibrium for a beam segment (Example 1.1).

1.3.3 Equivalent nodal force vector for the element

The equivalent nodal force vector for a distributed vertical loading fz and
a distributed bending moment m is deduced from Eq.(1.19a) as

f (e) =

⎧⎪⎪⎨⎪⎪⎩
fz1
m1

fz2
m2

⎫⎪⎪⎬⎪⎪⎭ =

∫ +1

−1

(
NT fz + N̂Tm

) l(e)

2
dξ (1.21a)
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Fig. 1.5 Two-noded Euler-Bernoulli beam element a) Sign criterion for equilibra-
ting forces and equivalent nodal forces. b) Equivalent nodal forces for uniformly
distributed loading

The signs for the components of f (e) coincide with those of q(e) (Figure
1.5).

For a uniformly distributed loading of intensity fz = q (Figure 1.5) and
m = 0 then

f (e) = ql(e)

[
1

2
,
l(e)

2
,
1

2
,− l(e)

2

]T

(1.21b)

For a uniformly distributed moment m (with fz = 0), then

f (e) = m[−1, 0, 1, 0]T (1.21c)

Hence, a distributed vertical load generates nodal bending moments
mi in f (e). Conversely, a uniformly distributed bending moment m yields
vertical equivalent nodal forces with opposite sign and zero nodal bending
moments. These results are a consequence of the link between the deflec-
tion field and the nodal rotations via Eq.(1.10). It is interesting that the
terms of f (e) in Eq.(1.21b) coincide (with opposite sign) with the vertical
reactions and the couples at the ends of a clamped beam under uniformly
distributed loading (Figure 1.5b). This coincidence is fortuitous and can
not be generalized to other loading types (Example 1.2).
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The equivalent nodal force vector for external concentrated loads acting
directly at a node i is

pi = [Pzi ,M
c
i ]

T (1.21d)

where Pzi and M c
i are the vertical force and the bending moment acting

at node i (Figure 1.1). The components of pi are directly assembled in
the global nodal force vector f.

1.3.4 Global equilibrium equations

The global stiffness equations Ka = f are obtained by setting the equi-
librium of nodal forces at the beam nodes in the standard manner [On4].
The stiffness matrix K and the equivalent nodal force vector f for the
beam are obtained by assembling the element contributions, as it is usual
in the FEM [On4,ZT2,ZTZ].

Nodal reactions at prescribed nodes can be treated as external concen-
trated loads and assembled into the global equivalent nodal force vector
(Examples 1.3 and 1.4). Solution of the global system of equations for the
nodal deflections and rotations requires prescribing the deflection and/or
the rotation at the constrained nodes [On4].

The reactions at the constrained nodes can be obtained a posteriori
from the computed displacement field as

r = Ka− f ext (1.22)

where r contains the vertical force and the moment reactions at the con-
strained nodes and f ext is obtained by assembling the equivalent nodal
force vector f (e) due to external loads only. Other alternatives for com-
puting the reactions are explained in [On4].

We note that the signs for the reactions coincide with those for the
equivalent nodal forces; i.e. couples are positive if they act anticlockwise
and vertical forces are positive if they point towards the vertical z axis.

Once the nodal deflections and the rotations have been obtained, the
bending moment at any point of an element is computed as

M = EI κ = EIy Bb a
(e) (1.23)

The shear force distribution over the element can be obtained from the
equilibrium equations (Example 1.1), the moment-curvature relationship
(Eq.(1.5)) and Eqs.(1.10), (1.11a) and (1.13) as

Q = −dM

dx
= −EIy

d3w

dx3
=

EIy

(l(e))3
[12, 6l(e),−12, 6l(e)]a(e) (1.24)
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Figure 1.2 shows the sign criterium for the shear force Q. This force is
constant over the element. This is consequence of the cubic interpolation
chosen for the deflection field.

The shear force and the couple at the element nodes can be computed
by noting that (Figures 1.2 and 1.5)

Q1 = −Fz1 , M1 =M1 , Q2 = −Fz2 , M2 =M2 (1.25a)

and, hence,

[−Q1,−M1, Q2,M2]
T = q(e) = K(e)a(e) − f (e) (1.25b)

where Q1,M1 and Q2,M2 are the shear forces and the couples at nodes
1 and 2 of the element, respectively. The equivalence between the compo-
nents of q(e) and the shear forces and the couples at the element nodes is
useful in practice.

Example 1.1: Derive the displacement field for an unloaded beam segment by
integrating the differential equation of equilibrium.

- Solution- Solution

Let us consider the beam segment of length l of Figure 1.6 with a shear force
and a couple acting at each end.
The equilibrium of an unloaded infinitesimal beam segment of length dx leads
to the well known differential equations (Figure 1.7) [Ti2]:

Equilibrium of couples:
dM

dx
= −Q

Equilibrium of vertical forces:
dQ

dx
= 0

Differentiating the first equation and making use of the second one and of
the bending moment-curvature relationship of Eq.(1.5) gives

d4w

dx4
= 0

The solution of this differential equation is the cubic polynomical

w(x) = a1 + a2 + a3x
2 + a4x

3
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Fig. 1.6 Forces and couples acting at the ends of beam segments of finite and
infinitesimal lengths

The conditions at the unloaded beam segment ends are (Figure 1.6)

w = w1 and
dw

dx
=

(
dw

dx

)
1

at x = 0

w = w2 and
dw

dx
=

(
dw

dx

)
2

at x = l

which lead to the following equations system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w1(
dw

dx

)
1

w2(
dw

dx

)
2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
1 l l2 l3

0 1 2l 3l2

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
a1
a2
a3
a4

⎫⎪⎪⎬⎪⎪⎭
from which the parameters ai can be obtained. Substituting these into the
cubic deflection field gives

w(x) = f1(x) w1 + f2(x)
l

2

(
dw

dx

)
1

+ f3(x) w2 + f4(x)
l

2

(
dw

dx

)
2

where

f1(x) = 1 − 3
(x
l

)2

+ 2
(x
l

)3

; f2(x) =
2x

l
− 4

(x
l

)2

+ 2
(x
l

)3

f3(x) = 3
(x
l

)2

− 2
(x
l

)3

; f4(x) = −2
(x
l

)2

+ 2
(x
l

)3

The coincidence of functions fi(ξ) with the Hermite shape functions (1.11a)
can be recognized after making a simple transformation to the natural coor-

dinate system, i.e. changing x by
l

2
(1 + ξ) (Eq.(1.11b).
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Fig. 1.7 Differential equations for an infinitesimal beam segment under distributed
loading

Using the PVW it is easy to deduce that the stiffness matrix for the unloaded
beam segment of length l of Figure 1.6 coincides precisely with that for the
2-noded Hermite beam element (Eq.(1.20)).

Example 1.2: Obtain the reactions in a clamped beam of length L under uni-
formly distributed loading fz = q by integrating the differential equation of
equilibrium.

- Solution- Solution

The deflection in this case satisfies the differential equation (Figure 1.7)

EIy
d4w

dx4
= q

where q is the intensity of the distributed load acting in the direction of the
vertical axis.
The solution of the above equation is the 4th order polynomial

w = a0 + a1x+ a2x
2 + a3x

3 + a4x
4

with a4 =
q

24EIy
. The parameters a0, a1, a2 and a3 are obtained from the

boundary conditions at the clamped ends

w =
dw

dx
= 0 at x = 0 and x = L

which gives a0 = a1 = 0 and the system

a2 + a3L =
qL

24EIy

2a2 + 3a3L =
qL2

6EIy
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Fig. 1.8 End reactions for a clamped beam under uniformly distributed loading

giving a2 =
qL2

24EIy
and a3 = − qL

12EIy
.

The expression for the deflection field is

w(x) =
1

EIy

(
qL2

24
x2 − qL

12
x3 +

qx4

24

)
The bending moment reactions at the clamped ends are

M1 = −(M)x=0 = −EIy

(
dw

dx2

)
x=0

= −qL2

12

M2 = (M)x=L = EIy

(
d2w

dx2

)
x=L

=
qL2

12

and the vertical force reactions

R1 = −(Q)x=0 = EIy

(
d3w

dx3

)
x=0

= −qL

2

R2 = (Q)x=L = −EIy

(
d3w

dx3

)
x=L

= −qL

2

Note that the signs for the reactions coincide with those for the equilibrating
nodal forces (Figure 1.5). The reactions are displayed in Figure 1.8.
The forces acting on the supports are equal to the above reactions, but with
the opposite sign. Grouping these forces in a vector f gives

f =

[
qL

2
,

qL2

12
,

qL

2
, − qL2

12

]T
Vector f coincides with the equivalent nodal force vector f (e) for the 2-noded
Euler-Bernoulli beam element of length l(e) = L (Figure 1.5 and Eq.(1.21b)).
This coincidence is fortuitous and can not be generalized to other loading
cases. However, it allows us to interprete f (e) as a nodal force system which
equilibrates the external loads.
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Fig. 1.9 Simple supported beam under central point loading. Analysis with a single
2-noded Euler-Bernoulli element

Example 1.3: Obtain for the simply supported beam of Figure 1.9 the deflection
and the rotation at the center and the vertical reaction at the supports
using a single 2-noded Euler-Bernoulli beam element.

- Solution- Solution

The global equilibrium equations for the beam are written in matrix form as
(taking into account symmetry conditions)

(
EIy
L3

)
⎡⎢⎢⎢⎢⎢⎣

12 6L −12 6L
. . . 4L2 −6L 2L2

. . . 12 −6L
Symm.

. . . 4L2

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w1(
dw

dx

)
1

w2(
dw

dx

)
2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
R1

0

−P

2
M2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
with w1 = 0 and

(
dw

dx

)
2

= 0.

Eliminating the prescribed DOFs gives

(
EIy
L3

) [
4L2 −6L
−6L 12

] ⎧⎨⎩
(
dw

dx

)
1

w2

⎫⎬⎭ =

⎧⎪⎨⎪⎩
0

−P

2

⎫⎪⎬⎪⎭
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which yields

w2 = − PL3

6EIy
;

(
dw

dx

)
1

= − PL2

4EIy

R1 =
P

2
and M2 =

PL

2

The nodal solution coincides with the exact values [Ti2]. The exact deflection
field for this problem is a cubic polynomial (Example 1.1) and, therefore, the
finite element solution coincides with the exact one throughout the beam.

Example 1.4: Obtain the end displacements and the reactions for the cantilever
beam of Figure 1.10 using a single 2-noded Euler-Bernoulli element for
a) A uniformly distributed loading fz = q,
b) A uniformly distributed bending moment m.

- Solution- Solution

a) Uniformly distributed loading q

Using Eqs.(1.19b), (1.20) and (1.21b) the following global system is obtained

(
EIy
L3

)
⎡⎢⎢⎢⎢⎢⎣

12 6L −12 6L
. . . 4L2 −6L 2L2

. . . 12 −6L
Sym.

. . . 4L2

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w1(
dw

dx

)
1

w2(
dw

dx

)
2

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R1 +
qL

2

M1 +
qL2

12
qL

2

−qL2

12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
with w1 = 0 and

(
dw

dx

)
1

= 0.

Eliminating the first two rows and columns corresponding to the prescribed
DOFs at the clamped end and solving the system gives

w2 =
qL4

8EIy
;

(
dw

dx

)
2

=
qL3

6EIy

R1 = −qL and M1 = −qL2

2
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Fig. 1.10 Cantilever beam under uniformly distributed vertical loading and mo-
ment. Analysis with one 2-noded Euler-Bernoulli element

which coincide with the exact values. This coincidence occurs only at the
nodes since the exact solution is a quartic polynomial (Example 1.3) whereas
the finite element solution is a cubic. The exact nodal values are a consequence
of the coincidence of the element stiffness matrix and the equivalent nodal
force vector with the expressions of standard matrix analysis (Example 1.2).

b) Uniformly distributed bending moment m

The global stiffness equations coincide with those of case a) with the r.h.s.
changed to (Eq.(1.21c))

f = [R1 −m,M1,m, 0]T

Solution of the global equation system gives

w2 =
mL3

3EIy
,

(
dw

dx

)
2

=
mL2

2EIy
, R1 = 0 , M1 = −mL

The solution coincides with the exact one throughout the beam. The reason
is that the exact solution is a cubic polynomial which can be exactly matched
by the cubic approximation chosen. The reader can verify this coincidence.

The coincidence of the nodal values with the exact ones in the two
previous examples is not common in finite element analysis and, in fact,
only happens for some 1D problems for which the shape functions satisfy
the homogeneous form of the equilibrium differential equations [ZTZ] and
Section 2.3.5 of [On4].

It is easy to verify that this condition is fulfilled for the two problems
considered. The homogeneous differential equation for the beam is

EIy
d4w

dx4
= 0 (1.26)
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Fig. 1.11 Cantilever beam of length L under uniformly distributed loading. Bend-
ing moment distribution

which is satisfied by the cubic approximation used. Unfortunately, this
property does not hold for plate problems.

Figure 1.11 shows the bending moment distribution obtained in Exam-
ple 1.4a and the exact one. Both solutions coincide at the two Gauss points
for ξ = ± 1√

3
that integrate exactly the element stiffness matrix (Section

1.3.2 and Appendix C). What may look as a coincidence is in fact due to
the property of the Gauss points which are the optimal sampling points
for evaluating the strains and stresses. In fact, the numerical results at the
Gauss points have a higher order approximation than if sampled at any
other element point (Section 6.7 of [On4] and [Hu,ZTZ]). For the exam-
ple considered here, the exact bending moment field is a parabola which
intersects the linear finite element distribution at the two Gauss points.
Consequently, the bending moment values are exact at these points.

1.4 ROTATION-FREE EULER-BERNOULLI BEAM ELEMENTS

An alternative family of Euler-Bernoulli beam elements can be derived
by approximating the curvature over selected control domains in terms of
the differences in the slopes at appropriate nodal points. The slopes are
in turn expressed as the differences in the nodal deflections. This leads to
an equilibrium equation where the nodal deflections are the only variables.

In the following sections we will study two families of the so-called
rotation-free beam elements: the cell-centred beam element where the con-
trol domain coincides with a 2-noded element, and the cell-vertex beam
element for which the control domain is centred around a node.
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Fig. 1.12 Patch of 3 elements for computing the curvature over the central element
e with nodes i, i+ 1

1.4.1 Cell-centred beam (CCB) element

Let us consider the patch of three beam elements shown in Figure 1.12.
From the definition of the curvature

(
κ = d2w/dx2

)
we write for the cen-

tral element e with nodes i, i+ 1∫
le

(
κ− d2w

dx2

)
dx = 0 (1.27)

where le is the length of element e.
Eq.(1.27) simply states that the curvature is equal to the second deriva-

tive of the deflection field in an average sense over the element.
Let us assume that the curvature is constant over element e and equal

to κe. From Eq.(1.27) we obtain

κe =
1

le

∫
le

d2w

dx2
dx =

1

le

[(
dw

dx

)
i+1

−
(
dw

dx

)
i

]
(1.28)

Eq.(1.28) is the standard way for computing the curvature at the ele-
ment center as the difference between the slopes at the two end nodes. This
procedure is common in centred finite difference methods [Ral,PFTV].

Eq.(1.25) defines a constant bending moment over the element of value

M e = (EIy)
eκe =

(
EIy
l

)e [(dw

dx

)
i+1

−
(
dw

dx

)
i

]
(1.29)

Let us also assume a linear interpolation for the deflection within each
2-noded element, i.e.

w =

2∑
i=1

Niwi (1.30)

where Ni are the standard Co continuous linear shape functions for the
2-noded Lagrange element (Ni =

1
2(1 + ξξi), Figure 2.4 and [On4]).

The deflection gradients are discontinuous between elements and there-
fore the nodal slopes are not uniquely defined at the element edges. This
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ambiguity is overcome by a simple averaging of the nodal slopes, giving(
dw

dx

)
i

=
1

2

[(
dw

dx

)(e)

i

+

(
dw

dx

)(e−1)

i

]
=

1

2

[
wi+1 − wi

le
+

wi − wi−1

le−1

]
(1.31a)

(
dw

dx

)
i+1

=
1

2

[(
dw

dx

)(e)

i+1

+

(
dw

dx

)(e+1)

i+1

]
=

1

2

[
wi+1 − wi

le
+

wi+2 − wi+1

le+1

]
(1.31b)

Substituting the above equations into Eq.(1.28) yields

κe = Bbw̄
(e) (1.31c)

with

Bb =
1

2lele+1le−1
[
le+1,−le+1,−le−1, le−1] (1.31d)

w̄(e) = [wi−1, wi, wi+1, wi+2]
T (1.31e)

Substituting Eq.(1.31c) into the PVW and following the standard pro-
cess of Section 1.3.2 yields the element stiffness matrix as

K(e) = leBT
b (EIy)

eBb (1.32)

In Eq.(1.32) we have assumed that EIy is constant in the element.
The equilibrium equations for the element (termed CCB for Cell Cen-

tred Beam element) involve the deflections at the four nodes belonging
to the three-element patch associated to element e. This increases the
bandwidth of the global stiffness matrix. What is relevant here is that the
rotations have been eliminated as nodal variables and the nodal deflection
are the only DOFs. This explains why these elements are termed “rotation
free” beam elements [JO,OZ,OZ2].

The equivalent nodal force vector is obtained in the standard way via
the linear displacement field. For a uniformly distributed load fz = q

f (e) =
qle

2
[0, 1, 1, 0]T (1.33)

Point loads acting at a node are directly assigned to the node, as usual.
An external bending moment can not be directly accounted for in this
formulation. For a mesh of equal length elements the solution is to replace
the moment by two equivalent vertical loads of value Mi

le with opposite
sign acting at the two adjacent nodes to node i.
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The stiffness equations are assembled as usual leading to the global
system Kw = f with w = [w1, w2, · · · , wN ] where N is the total number
of nodes in the mesh. Solution of the system yields the deflections at all
nodes. This requires prescribing the constrained DOFs as explained below.

Boundary conditions

The prescribed nodal deflection values are imposed when solving the global
system of equations in the standard manner. Prescribed rotations must be
introduced when building the element curvature matrix as detailed next.

Free or simply supported node

We consider that the left-end node of the beam is free or simply supported
(Figure 1.13a). The rotation at the prescribed node i is computed as(

dw

dx

)(e)

i

=
wi+1 − wi

le
(1.34)

The rotation at node i + 1 is expressed by Eq.(1.31b). Substituting
Eqs.(1.34) and (1.31b) into (1.28) gives

κe =
1

2(le)2le+1
[0, le+1,−(le + le+1), le]

⎧⎪⎪⎨⎪⎪⎩
wi−1

wi

wi+1

wi+2

⎫⎪⎪⎬⎪⎪⎭ = Bbw̄
(e) (1.35)

The element stiffness matrix is computed by Eq.(1.32). Note that a
fictitious node i − 1 has been introduced into w̄(e) in Eq.(1.35). This is
convenient in order to keep a 4× 4 dimension for all the element stiffness
matrices. The stiffness associated to the nodal deflection wi−1 is obviously
zero. This does not affect the equation solution process as the value of
wi−1 is prescribed as zero.

We follow a similar approach for a free or simply supported node at
the right-end of the beam. The element curvature is computed as

κe =
1

2(le)2le−1
[le,−(le + le−1), le−1, 0]

⎧⎪⎪⎨⎪⎪⎩
wi−1

wi

wi+1

wi+2

⎫⎪⎪⎬⎪⎪⎭ = Bbw̄
(e) (1.36)

The fictitious deflection wi+2 is now prescribed as zero.
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Fig. 1.13 CCB element. (a) Free or simply supported node B at left and right
ends of a beam. (b) Clamped or symmetry node B at left and right beam ends.
Definition of domains 1 and 2 splitting the element containing the clamped node

Clamped or symmetry edge

Let us consider that the left-end node i is clamped or lays on a symmetry
axis. An obvious possibility is to introduce the condition of zero rotation
when computing the curvature in the element adjacent to the clamped
edge. Thus, from Eqs.(1.28) and (1.31b) we obtain

κe =
1

le

(
dw

dx

)
i+1

=
1

2(le)2le+1

[
0,−le+1, (le + le+1),−le]

⎧⎪⎪⎨⎪⎪⎩
wi−1

wi

wi+1

wi+2

⎫⎪⎪⎬⎪⎪⎭ = Bbw̄
e

(1.37)

Matrix B̄b substitutesBb for computing the stiffness matrix in Eq.(1.33).
A similar method is used for a right-end clamped edge [JO,OZ2].

A more accurate solution is obtained by splitting the element adjacent
to the clamped node into two domains of equal size le

2 (Figure 1.13b). For
a left-end clamped node, the curvature in the first domain is expressed as

κe1 =
2

le

[
wi+1 − wi

le

]
=

2

(le)2
[0,−1, 1, 0]

⎧⎪⎪⎨⎪⎪⎩
wi−1

wi

wi+1

wi+2

⎫⎪⎪⎬⎪⎪⎭ = B1w̄
(e) (1.38a)
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The stiffness matrix corresponding to the first domain is

Ke
1 =

le

2
BT

1 (EIy)
eB1 (1.38b)

The curvature in the second domain is

κe2 =
2

le

[
1

2

(
wi+1 − wi

le
+

wi+2 − wi+1

le+1

)
− wi+1 − wi

le

]
=

=
1

(le)2le+1
[0, le+1,−(le + le+1), le]

⎧⎪⎪⎨⎪⎪⎩
wi−1

wi

wi+1

wi+2

⎫⎪⎪⎬⎪⎪⎭ = B2w̄
(e) (1.39a)

and the corresponding stiffness matrix is

K
(e)
2 =

le

2
BT

2 (EIy)
eB2 (1.39b)

The element stiffness matrix K(e) is obtained by the sum of K
(e)
1 and

K
(e)
2 . Again the fictitious nodal rotation wi−1 is prescribed to a zero value

during the solution process.
The same procedure applies for a right-end clamped or symmetry node

(Figure 1.3b). The curvatures at the two splitting domains that split the
element are

κe1 =
2

(le)2
[0,−1, 1, 0]

⎧⎪⎪⎨⎪⎪⎩
wi−1

wi

wi+1

wi+2

⎫⎪⎪⎬⎪⎪⎭ = B1w̄
(e) (1.40)

κe2 =
1

(le)2le−1
[−le, (le + le−1),−le−1, 0]

⎧⎪⎪⎨⎪⎪⎩
wi−1

wi

wi+1

wi+2

⎫⎪⎪⎬⎪⎪⎭ = B2w̄
(e) (1.41)

Matrices K
(e)
1 and K

(e)
2 are computed as described above and their sum

gives K(e). The fictitious nodal deflection wi+2 is prescribed as zero.
Further details on the derivation of the CCB element can be found

in [JO,OZ2]. The example given next shows the assembly of the global
stiffness equations for a typical node and the comparison of the CCB
element formulation with a centred finite difference scheme.
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Fig. 1.14 Regular mesh of rotation-free beam elements

Example 1.5: Obtain the assembled stiffness equation for a node i in a mesh
of CCB elements of equal length l. Verify the analogy with a centred finite
difference scheme.

- Solution- Solution

Figure 1.14 shows a regular mesh of rotation-free beam element with the
deflection as the only nodal variable. A uniformly distributed load of intensity
q is assumed.
The stiffness matrix for the CCB element e in Figure 1.14 is deduced from
Eq.(1.32) as

K(e) =
EIy
4l3

wi−1 wi wi+1 wi+2⎡⎢⎢⎣
1 −1 −1 1

−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎤⎥⎥⎦
wi−1

wi

wi+1

wi+2

The global stiffness for node i is the assembly of the stiffness contributions
from elements e− 2, e− 1, e and e+1. The assembly of K(e−2), K(e−1), K(e)

and K(e+1) gives

K =
EIy
4l3

wi−3 wi−2 wi−1 wi wi+1 wi+2 wi+3⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 1 · · ·
−1 2 0 −2 1 · ·
−1 0 3 −1 1 1 ·
1 −2 −1 4 −1 −2 1
· 1 −2 −1 3 0 −1
· · 1 −2 0 2 −1
· · · 1 −1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

wi−3

wi−2

wi−1

wi

wi+1

wi+2

wi+3

All other terms outside the central band in K are zero.
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The stiffness equation for node i (i.e. Kijwj = fi) for a uniformly distributed
load q is deduced from the row corresponding to wi in K and Eq.(1.33) as

EIy
4l3

(wi−3 − 2wi−2 − wi−1 + 4wi − wi+1 − 2wi+2 + wi+3)− ql = 0 (1.42)

We will verify next that Eq.(1.42) coincides with the expression derived via a
finite difference scheme centred at the element midpoint. The starting point
is the differential equation of equilibrium (Figure 1.7)

EIy
d4w

dx4
− q = 0 (1.43)

The fourth derivative term is sampled at node i and computed as follows(
d4w

dx4

)
i

=
1

2l

[(
d3w

dx3

)
i+1

−
(
d3w

dx3

)
i−1

]
The third derivatives are computed as(
d3w

dx3

)
i+1

=
1

2l2

[(
d2w

dx2

)
i+2

−
(
d2w

dx2

)
i

]
;

(
d2w

dx3

)
i−1

=
1

2l2

[(
d2w

dx2

)
i

−
(
d2w

dx2

)
i−2

]
Substituting these expressions into the previous one gives(

d4w

dx4

)
i

=
1

4l2

[(
d2w

dx2

)
i+2

− 2

(
d2w

dx2

)
i

+

(
d2w

dx2

)
i−2

]
(1.44)

with(
d2w

dx2

)
i+2

=
1

l2
(wi+3 − 2wi+2 +wi+1) ;

(
d2w

dx2

)
i−2

=
1

l2
(wi−3 − 2wi−2 +wi−1)(

d2w

dx2

)
i

=
1

l2
(wi+1 − 2wi + wi−1)

Substituting the expressions of the second derivatives into Eq.(1.44) and this
one into Eq.(1.43) gives

EIy
4l4

(wi−3 − 2wi−2 − wi−1 + 4wi − wi+1 − 2wi+2 + wi+3)− q = 0

which coincides with Eq.(1.42). The CCB formulation is therefore equivalent
to a finite difference scheme centred at the node, using the third derivative
of w at nodes i+ 1 and i− 1 for computing the fourth derivative at node i.
Clearly, the global stiffness stencil for node i involves the deflection values at
node i and the six adjacent nodes.
Above coincidence has a tutorial value. The analogy with the finite difference
scheme does not necessarily hold for non regular meshes or for the treatment
of the boundary conditions.
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Fig. 1.15 CVB element. Control domains around two nodes i and i+ 1

1.4.2 Cell-vertex beam (CVB) element

An alternative rotation-free beam element can be derived by computing
the curvature at each node using a finite difference scheme. The resulting
element is termed CVB (for Cell-Vertex Beam element).

Let us consider the control domain formed by half of the lengths of the
elements adjacent to a node. The curvature at node i is computed as

κi =
1

li

[(
∂w

∂x

)
Ri

−
(
∂w

∂x

)
Li

]
(1.45)

where li = 1
2(l

e + le−1) and subscripts Ri and Li denote the midpoints
of the elements located at the right and left of node i (Figure 1.15). The
curvature κi is assumed to be constant in the control domain li assigned
to node i (Figure 1.15).

The rotations

(
∂w

∂x

)
Ri

and

(
∂w

∂x

)
Li

are expressed in terms of the nodal

deflections as(
∂w

∂x

)
R

=
wi+1 − wi

le
,

(
∂w

∂x

)
L

=
wi − wi−1

le−1
(1.46)

Substituting Eqs.(1.46) into (1.45) gives

κi =
2

lele−1(le + le−1)
[le,−(le + le−1), le−1, 0]

⎧⎪⎪⎨⎪⎪⎩
wi−1

wi

wi+1

wi+2

⎫⎪⎪⎬⎪⎪⎭ = Biw̄
(e) (1.47)
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where

Bi =
2

lele−1(le + le−1)
[le,−(le + le−1), le−1, 0] , w̄(e) =

⎧⎪⎪⎨⎪⎪⎩
wi−1

wi

wi+1

wi+2

⎫⎪⎪⎬⎪⎪⎭ (1.48)

Similarly, the curvature at node i+ 1 is found as

κi+1 =
2

(le + le+1)

[
wi+2 − wi+1

le+1
− wi+1 − wi

le

]
= Bi+1w̄

(e) (1.49a)

with

Bi+1 =
1

lele+1(le + le+1)
[0, le+1,−(le + le+1), le] (1.49b)

The internal virtual work over the element e is obtained by adding up the
contributions from the two control domains li and li+1 as

δU (e) =

∫
li
2

δκi(EIy)δκidx+

∫
li+1
2

δκi+1(EIy)δκi+1dx (1.50)

Substituting Eqs.(1.47) and (1.49a) into (1.50) and following the stan-
dard process yields the element stiffness matrix as

K(e) = K
(e)
i +K

(e)
i+1 (1.51a)

where

K
(e)
i =

∫
li
2

BT
i (EIy)Bidx =

li
2
BT

i (EIy)
(e)Bi

K
(e)
i+1 =

∫
li+1
2

BT
i+1(EIy)Bi+1dx =

li+1

2
BT

i+1(EIy)
(e)Bi+1

(1.51b)

In the computation of the above integrals we have assumed EIy to be
constant over the control domains.

Similarly as for the CCB element, the stiffness matrix for a CVB ele-
ment involves the nodal deflections of the adjacent elements.

The global stiffness matrix for a mesh of CVB elements can be di-
rectly assembled from the so-called nodal stiffness matrices, given for an
arbitrary node i by

Ki = liB̄
T
i (EIy)B̄i (1.52a)

with

B̄i =
2

lele−1(le + le−1)
[le,−(le + le−1), le−1] (1.52b)
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Matrix Ki links the deflections of nodes i − 1, i and i + 1 and plays
the role of an element matrix. As such it can be assembled into the global
stiffness matrix in the usual manner (Example 1.6).

The global equivalent nodal force fi is computed for the simplest case
as

fi = Pzi + fzi
(le + le+1)

2
(1.53a)

with

fzi =
1

2

[
f (e)
z + f (e+1)

z

]
(1.53b)

where Pzi is the external nodal force acting at node i and and f
(e)
z and

f
(e+1)
z are uniformly distributed loads acting over elements e and e + 1,
respectively. Indeed, more sophisticated loading types can be considered.

Boundary conditions

The prescribed values for the deflection are imposed when solving the
global system of equations, as usual. We detail next how to compute the
curvature at a free end and at simply supported and clamped nodes.

The curvature at a free end node and at a simply supported node is
zero. This condition is implemented by neglecting the contribution of the
boundary node to the element stiffness matrix. For a boundary element
with a free or simply supported node the stiffness matrix is (Figure 1.16a)

K(e) = K
(e)
i+1 if κi = 0 (1.54a)

K(e) = K
(e)
i if κi+1 = 0 (1.54b)

The curvature at a clamped or symmetry left-end node i is computed
as (Figure 1.16b)

κi =
2

le
(wi+1 − wi)

le
=

2

(le)2
[0,−1, 1, 0]

⎧⎪⎪⎨⎪⎪⎩
wi−1

wi

wi+1

wi+2

⎫⎪⎪⎬⎪⎪⎭ = Biw̄
(e) (1.55)

where wi−1 is an auxiliary fictitious deflection.
Similarly, for a right-end clamped or symmetry node (Figure 1.16b)

κi+1 =
2

le
(wi+1 − wi)

le
=

2

(le)2
[0,−1, 1, 0]

⎧⎪⎪⎨⎪⎪⎩
wi−1

wi

wi+1

wi+2

⎫⎪⎪⎬⎪⎪⎭ = Bi+1w̄i (1.56)
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Fig. 1.16 CVB element. (a) Boundary condition of zero curvature at a free or
simply supported node B. (b) Control domain for a clamped or symmetry node

where wi+2 is an auxiliary fictitious deflection.
The element stiffness matrix is computed in both cases by Eq.(1.51b)

with Bi or Bi+1 equal to zero, as appropriate. The fictitious nodal deflec-
tions wi−1 or wi+2 (and indeed wi) are prescribed to a zero value, when
solving the global system of equations.

Further details of the CVB formulation are given in [JO,OZ3].
The example presented next shows the process for assembling the stiff-

ness equations for a typical node i in a mesh of CVB elements using the
element stiffness matrix and the nodal stiffness matrix. The equivalence of
both procedures and the coincidence of the assembled stiffness equations
for the node with a centred finite difference scheme are shown.

Example 1.6: Obtain the assembled stiffness equation for a node i in a mesh
of equal length CVB elements via the element and nodal stiffness matrices.
Verify that the assembled nodal equation coincides with a centred finite
difference scheme

- Solution- Solution

We will consider the mesh of equal length CVB elements surrounding a node
i as shown in Figure 1.14.

Assembly of the element stiffness matrices

The stiffness matrix for a CVB element with nodes i and i + 1 in a regular
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mesh is deduced from Eqs.(1.51) as

K(e) =
EIy
2l3

wi−1 wi wi+1 wi+2⎡⎢⎢⎣
1 −2 1 0

−2 5 −4 1
1 −4 5 −2
0 1 −2 1

⎤⎥⎥⎦
wi−1

wi

wi+1

wi+2

The assembly of K(e−2), K(e−1), K(e), K(e+1) and K(e+2) gives

K =
EIy
2l3

wi−3 wi−2 wi−1 wi wi+1 wi+2 wi+3⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1 0 · · ·
−2 6 −6 2 0 · ·
1 −6 11 −8 2 0 ·
0 2 −8 12 −8 2 0
· 0 2 −8 11 −6 1
· · 0 2 −6 6 −2
· · · 0 1 −2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

wi−3

wi−2

wi−1

wi

wi+1

wi+2

wi+3

The stiffness stencil for node i in the global equation system for a uniformly
distributed load q is deduced from the ith row in the above matrix as

EIy
l3

[wi−2 − 4wi−1 + 6wi − 4wi+1 + wi+2]− ql = 0 (1.57)

Assembly of the nodal stiffness matrices

The general expression for the nodal stiffness matrixKi for equal length CVB
elements is deduced from Eqs.(1.52) as

Ki =
EIy
l3

wi−1 wi wi+1⎡⎣ 1 −2 1
−2 4 −2
1 −2 1

⎤⎦ wi−1

wi

wi+1

The global stiffness equation for node i is obtained by assembling the contri-
butions from nodes i − 1, i and i + 1. The assembly of Ki−1, Ki and Ki+1

gives

K(e) =
EIy
l3

wi−2 wi−1 wi wi+1 wi+2⎡⎢⎢⎢⎢⎣
1 −2 1 0 0

−2 5 −4 1 0
1 −4 6 −4 1
0 1 −4 5 −2
0 0 1 −2 1

⎤⎥⎥⎥⎥⎦
wi−2

wi−1

wi

wi+1

wi+2

It can be clearly seen that the global stiffness stencil for node i coincides
with Eq.(1.57). Both assembly procedures therefore lead to the same system
of equations.
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Let us verify the coincidence of Eq.(1.57) with the expression obtained from
a centred finite difference scheme using the nodes as sampling points.
The starting point is the differential equation of equilibrium for the beam
under uniformly distributed loading given by (Figure 1.7)

EIy
d4w

dx4
− q = 0 (1.58)

The fourth derivative is sampled at node i and computed as follows (Figure
1.14) (

d4w

dx4

)
i

=
1

l

[(
d3w

dx

)
B

−
(
d3w

dx3

)
A

]
(
d3w

dx

)
B

=
1

l

[(
d2w

dx2

)
i+1

−
(
d2w

dx2

)
i

]
;

(
d3w

dx3

)
A

=
1

l

[(
d2w

dx2

)
i

−
(
d2w

dx2

)
i−1

]
Substituting the last two expressions into the previous one gives(

d4w

dx4

)
i

=
1

l2

[(
d2w

dx2

)
i+1

− 2

(
d2w

dx2

)
i

+

(
d2w

dx2

)
i−1

]
(1.59)

The second derivatives are now computed as(
d2w

dx2

)
i+1

=
wi − 2wi+1 + wi+1

l2
,

(
d2w

dx2

)
i

=
wi−1 − 2wi + wi+1

l2(
d2w

dx2

)
i−1

=
wi−2 − 2wi+1 + wi

l2

(1.60)

Substituting Eqs.(1.60) into (1.59) and this one into Eq.(1.58) gives

EIy
l4

(wi−2 − 4wi−1 + 6wi − 4wi+1 + wi+2)− qi = 0

which coincides with Eq.(1.57). The CVB formulation is therefore analogous
to a centred finite difference scheme if the fourth derivative of w at a node is
computed from the third derivatives at the midpoint of the adjacent elements.
The global stiffness equation for node i involves five nodal deflection values
(wi and the deflection at the four adjacent nodes wi−2, wi−1, wi+1 and wi+2).
The bandwith of the global stiffness matrix is therefore smaller than for the
CCB element, as this one involves seven nodal deflections in the stiffness
equation for node i (Eq.(1.42)).
Similarly as for the CCB element, the analogy with the finite difference formu-
lation does not necessarily hold for the treatment of the boundary conditions
or for non-regular meshes.
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Fig. 1.17 Simply supported and clamped beams under a central point load P and
a uniformly distributed load q analyzed with the CCB and CVB rotation-free
beam elements. Units are in the International System

1.4.3 Examples of application of CCB and CVB rotation-free beam
elements

We present a study of the performance of the CCB and CVB rotation-free
beam elements for a simple supported beam and a fully clamped beam
under a central point load and a uniformly distributed load (Figure 1.17).

Table 1.1 shows the convergence of the central deflection error versus
the analytical value [Ti2] using uniform and non-uniform meshes. Only
half of the beam has been discretized in all cases, taken advantage of the
symmetry of the problem.

Figures 1.18 shows the distribution of the deflection and the bending
moment along the beam for the uniformly distributed load, using different
regular meshes of CCB and CVB elements.

In general, both elements yield excellent results for relatively coarse
meshes. Typically, the CVB element performs better than the CCB
one. The accuracy of both elements deteriorates slightly for non-uniform
meshes.

More examples of the performance of the CCB and CVB rotation-free
Euler-Bernoulli beam elements can be found in [JO,OZ3].

The CCB element can be extended to account for shear deformation
effects. This requires introducing the shear angle as an additional nodal
variable. Details can be found in Section 2.10 and [OZ2].

The extension of the CCB and CVB elements to derive rotation-free
thin plate and shell triangles will be studied in Chapters 5, 8 and 10.
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CCB element

Simply supported Both ends clamped

Central
Point
Load

Uniformly
Distributed

Load

Central
Point
Load

Uniformly
Distributed

Load

No. of
elements*

U NU U NU U NU U NU

4 12.50 25.47 5.00 12.48 50.00 58.2 31.25 58.06
8 3.12 7.23 1.25 5.35 12.50 28.9 7.81 32.42
16 0.78 1.81 0.32 1.34 3.12 7.22 1.95 8.10
32 0.19 0.45 0.08 0.33 0.78 1.79 0.49 2.02

CVB element

Simply supported Both ends clamped

Central
Point
Load

Uniformly
Distributed

Load

Central
Point
Load

Uniformly
Distributed

Load

No. of
elements*

U NU U NU U NU U NU

4 3.12 7.23 1.25 6.23 12.50 28.90 7.80 45.60
8 0.78 1.81 0.31 1.56 3.12 7.23 1.90 11.40
16 0.19 0.45 0.08 0.39 0.78 1.81 0.49 2.85
32 0.05 0.11 0.02 0.09 0.19 0.45 0.12 0.71

*Only half beam is discretized due to symmetry

Table 1.1 Simply supported and clamped beams analyzed with CCB and CVB
elements. Convergence of central deflection for uniform (U) and non-uniform
(NU) meshes. Numbers show percentage error versus the analytical solution

1.5 CONCLUDING REMARKS

Euler-Bernoulli beam elements require C1 continuous Hermite shape func-
tions. The stiffness matrix for the simple 2-node beam element is identical
to that obtained via standard matrix analysis techniques. This coincidence
also occurs for the equivalent nodal force vector for some loads.

Understanding Euler-Bernoulli beam elements is useful as an introduc-
tion to the study of plate elements based on Kirchhoff thin plate theory
in Chapter 5.

Rotation-free beam elements combine a finite difference approxima-
tion for the curvature over a control domain with standard finite element
methods. Rotation-free beam elements just have deflection DOFs. These
concepts will be extended for deriving rotation-free plate and shell trian-
gles in other chapters.
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(a) CCB element

  

SS beam under uniform load. CCB solution

  

Clamped beam under uniform load. CCB solution

(b) CVB element

  

SS beam under uniform load. CVB solution

 
 

Clamped beam under uniform load. CVB solution

Fig. 1.18 Symply supported (SS) and clamped beams under uniform load analyzed
with the CCB element (a) and CVB element (b). Deflection and bending moment
distributions for different meshes. Number of elements denotes the discretization
in half of the beam due to symmetry. Results for the whole beam shown have
been projected from the symmetric solution
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THICK/SLENDER PLANE BEAMS.
TIMOSHENKO THEORY

2.1 INTRODUCTION

This chapter studies Timoshenko plane beam elements. Timoshenko beam
theory accounts for the effect of transverse shear deformation. Timoshenko
beam elements are therefore applicable for “thick” beams

(
λ = L

h < 10
)

where transverse shear deformation has an influence in the solution, as
well as for slender beams (λ > 100) where this influence is irrelevant [Ti].

Timoshenko beam elements have also advantages for the analysis of
composite laminated beams, as the effect of transverse shear deformation
is relevant in these cases (Chapters 3 y 4).

Timoshenko beam elements require C0 continuity for the deflection and
rotation fields and, therefore, are simpler than Euler-Bernoulli beam ele-
ments. Unfortunately, they suffer generally from the so-called shear lock-
ing defect which yields unrealistically stiffer solutions for slender beams.
Felippa [Fel] has written an entertaining review of Timoshenko beam ele-
ments.

In the following sections, Timoshenko plane beam theory is described.
Next, the formulation of 2 and 3-noded Timoshenko beam elements is
presented. Shear locking is explained and some techniques to overcome
it via reduced integration, linked interpolations and assumed shear strain
fields are described. After this we derive an exact 2-noded Timoshenko
beam element by integrating the equations of equilibrium. An extension
of the rotation-free slender beam element studied in Chapter 1 to account
for transverse shear deformation effects is presented. The treatment of
beams on an elastic foundation is also described.

E. Oñate, Structural Analysis with the Finite Element Method. Linear Statics:  37 
Volume 2: Beams, Plates and Shells, Lecture Notes on Numerical Methods  
in Engineering and Sciences, DOI 10.1007/978-1-4020-8743-1_2,  
© International Center for Numerical Methods in Engineering (CIMNE), 2013 
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The study of this chapter is important as an introduction to the formu-
lation of thick plate and shell elements later in the book. 3D Timoshenko
beam elements will be studied in Chapter 4.

2.2 TIMOSHENKO PLANE BEAM THEORY

2.2.1 Basic assumptions

Timoshenko plane beam theory shares hypotheses 1 and 2 of conventional
Euler-Bernoulli theory for the vertical and lateral motion of a beam (Sec-
tion 1.2.1). Hovewer, hypothesis 3 for the normal kinematics now reads
as follows: “cross sections normal to the beam axis before deformation
remain plane but not necessarily orthogonal to the beam axis after defor-
mation”. This assumption represents a better approximation of the true
deformation of the cross section in deep beams. As the beam slenderness
(length/thickness ratio) diminishes, the beam cross sections do not re-
main plane. Timoshenko hypothesis is equivalent to assuming an average
rotation for the deformed cross section which is kept plane (Figure 2.1).

The rotation of the cross section is deduced from Figure 2.1 as

θ =
dw

dx
+ φ (2.1)

where dw
dx is the slope of the beam axis and φ is an additional rotation due

to the distortion of the cross-section. Note that the rotation θ does not
coincide with the slope dw

dx , as it happened in Euler-Bernoulli theory.

2.2.2 Strain and stress fields

The strain field is obtained by combining Eqs.(1.1), (1.3) and (2.1) to give
the following non-zero strains

εx =
du

dx
= −z dθ

dx
; γxz =

dw

dx
+

du

dz
=

dw

dx
− θ = −φ (2.2)

Hence, Timoshenko theory introduces a transverse shear deformation
γxz, which absolute value coincides with the rotation φ.

The axial and shear stresses σx and τxz at a point of the beam cross
section are related to the corresponding strains by

σx = Eεx = − zE
dθ

dx
(2.3a)
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Fig. 2.1 Timoshenko beam theory. Rotation of the transverse cross section

τxz = Gγxz = G

(
dw

dx
− θ

)
(2.3b)

where G is the shear modulus G = E
2(1+ν) and ν is the Poisson ratio [On4].

2.2.3 Resultant stresses and generalized strains

The bending moment M and the shear force Q are defined with the sign
criterion of Figure 2.2, as

M = −
∫∫

A
zσx dA , Q =

∫∫
A
τxz dA (2.4a)

Substituting σx and τxz from Eqs.(2.3) into (2.4a) gives

M = D̂b
dθ

dx
= D̂bκ , Q = Ĝγxz (2.4b)
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Fig. 2.2 Timoshenko beam theory. Distribution of the normal and tangential
stresses

with

D̂b =

∫∫
A
Ez2dA and Ĝ =

∫∫
A
GdA (2.5a)

In the following, a “hat” on the constitutive parameters denotes in-
tegrated (also called resultant or generalized) values over the section (in
beams) or the thickness (in plates and shells).

For homogeneous material

D̂b = EIy and Ĝ = GA (2.5b)

In Eq.(2.4b) κ = dθ
dx is the bending strain (sometimes called incorrectly

the curvature). κ and γxz are termed “generalized strains” as they are
sectional quantities which depend on the axial coordinate x only.

Eq.(2.3a) tell us that the normal stress σx varies linearly through the
thickness, and this can be considered “exact” according to classical beam
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theory [Ti2]. On the other hand, Eq.(2.3b) shows that the shear stress
τxz is constant across the thickness. This is in contradiction with the
exact quadratic distribution for a rectangular beam (Figure 2.2) [Ti2].
This problem can be overcome by modifying the internal energy dissipated
by the constant shear stresses in the PVW to match the exact shear stress
energy deduced from beam theory [Co6,Ti2]. Thus, we take

τxz = kz G γxz (2.6a)

and from Eq.(2.4b)

Q = kz Ĝ γxz = D̂s γxz with D̂s = kzĜ (2.6b)

The shear correction parameter kz(kz ≤ 1) takes into account the dis-
tortion of the cross section [Co6]. This distortion is shown in Figure 2.1.

For homogeneous material

Q = kzGA γxz = GA∗ γxz and, hence, D̂s = GA∗ (2.6c)

where A∗ = kzA is the reduced cross sectional area [Ti2].

2.2.3.1 Computation of the shear correction parameter

The value of kz can be computed by assuming cylindrical bending in the
xz plane (i.e. τxy = 0) and matching the exact transverse shear strain
energy (Us) with that given by Timoshenko beam theory (UT

s ) corrected
by the coefficient kz. The values of Us and UT

s are [Ti2]

Us =
1

2

∫∫
A

τ2xz
G

dA , UT
s =

1

2

Q2

kzĜ
(2.7a)

where τxz is the exact transverse shear stress. Equaling Us and UT
s yields

kz =
Q2

2ĜU1

=
Q2

Ĝ

[∫∫
A

τ2xz
G

dA

]−1
(2.7b)

A general approach for computing τxz, and hence kz is presented in
Appendix D. Figure 2.3 shows the value of kz for different sections. The
computation of the shear correction parameter for composite laminated
plane beams is detailed in Section 3.8.
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Fig. 2.3 Shear correction parameter kz for some cross sections. Asterisk denotes
values computed with the FEM [BD5,Bo,Co6]

2.2.4 Principle of virtual work

We consider a beam under the loads shown in Figure 1.1. The internal
virtual work involves the axial and shear stresses and the PVW is written
as∫∫∫

V
(δεxσx+δγxzτxz) dV =

∫ L

0
(δwfz+δθm) dx+

∑
i

δwiPzi+
∑
j

δθjM
c
j

(2.8a)
The virtual internal work in the l.h.s. of Eq.(2.8a) can be modified

using Eqs.(2.2)-(2.6) as∫∫∫
V

[
−zσxδ

(
dθ

dx

)
+ τxzδ

(
dw

dx
− θ

)]
dV =

=

∫ l

0

[
δ

(
dθ

dx

)(∫∫
A
−zσx dA

)
+ δγxz

(∫∫
A
τxzdA

)]
dx =

=

∫ l

0

[
δ

(
dθ

dx

)
M + δγxzQ

]
dx

(2.8b)
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Substituting Eq.(2.8b) into (2.8a) yields the PVW in terms of integrals
along the beam axis as∫ L

0

[
δ

(
dθ

dx

)
M+δγxzQ

]
dx =

∫ L

0
(δwfz+δθm) dx+

∑
i

δwiPzi+
∑
j

δθjM
c
j

(2.9)
The first integral is the internal virtual work induced by the bending

moment and the transverse shear force while the r.h.s. is the virtual work
of the applied loads. Eqs.(2.8b) and (2.9) show that the PVW involves just
the first derivatives of the deflection and the rotation. As a consequence
just Co continuity for w and θ is required to satisfy the integrability con-
dition (Section 3.8.3 of [On4] and [Hu,ZT2,ZTZ]). Eq.(2.9) is the basis for
the finite element discretization presented in the next section.

2.3 TWO-NODED TIMOSHENKO BEAM ELEMENT

2.3.1 Approximation of the displacement field

Let us consider first the simple 2-noded Timoshenko beam element (Figure
2.4). The deflection w and the rotation θ are now independent variables
and each one is linearly interpolated using Co shape functions as

w(ξ) = N1(ξ)w1 +N2(ξ)w2

θ(ξ) = N1(ξ)θ1 +N2(ξ)θ2
(2.10)

or

u =

{
w
θ

}
=

2∑
i=1

Niai = N(e)a(e) (2.11a)

with

a(e) =

{
a
(e)
1

a
(e)
2

}
; a

(e)
i =

{
wi

θi

}
(2.11b)

N(e) = [N1,N2] ; Ni =

[
N1 0
0 N2

]
(2.11c)

In the above, a(e) = [w1, θ1, w2, θ2]
T is the nodal displacement vector

for the element, w1, θ1 and w2, θ2 are the deflection and the rotation of
nodes 1 and 2, respectively, and N1(ξ) and N2(ξ) are the standard C◦

linear shape functions (Figure 2.4).
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Fig. 2.4 Two-noded Timoshenko beam element. Displacement interpolation

Note the difference between the approximation (2.10) and Eq.(1.10) for
the 2-noded Euler-Bernoulli beam element for which the deflection and the
rotation were depending variables due to the C1 continuity requirement.

2.3.2 Approximation of the generalized strains and the resultant stresses

The bending strain κ and the transverse shear strain γxz are expressed in
terms of the nodal DOFs using Eq.(2.10) as

κ =
dθ

dx
=

dξ

dx

dθ

dξ
=

dξ

dx

[
dN1

dξ
θ1 +

dN2

dξ
θ2

]
(2.12)

γxz =
dw

dx
− θ =

dξ

dx

[
dN1

dξ
w1 +

dN2

dξ
w2

]
− (N1θ1 +N2θ2) (2.13)

The element geometry is interpolated in terms of the coordinates of the

two nodes in the standard isoparametric manner as x =
2∑

i=1
Ni(ξ)xi [On4].

From this we deduce dx
dξ = l(e)

2 . Substituting the inverse of this expression
in Eqs.(2.12) and (2.13) and using a matrix notation we can write

κ =
dθ

dx
= Bb a

(e) , γxz =
dw

dx
− θ = Bs a(e) (2.14)
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where

Bb =

[
0,

2

l(e)
dN1

dξ
, 0,

2

l(e)
dN2

dξ

]
=

[
0,− 1

l(e)
, 0

1

l(e)

]

Bs =

[
2

l(e)
dN1

dξ
,−N1,

2

l(e)
dN2

dξ
,−N2

]
=

[
− 1

l(e)
,
−(1− ξ)

2
,
1

l(e)
,
−(1 + ξ)

2

]
(2.15)

are the bending and transverse shear strain matrices for the element.
The virtual displacement and the virtual strain fields are expressed in

terms of the virtual nodal displacements via Eqs.(2.10) and (2.14) as

δu = Nδa(e) , δκ = Bbδa
(e) , δγxz = Bsδa

(e) (2.16)

with δa(e) = [δw1, δθ1, δw2, δθ2]
T .

The bending moment and the shear force (Figure 1.2) are obtained
from the nodal displacements using Eqs.(2.4b), (2.6b) and (2.14) as

M = D̂bBba
(e) , Q = D̂sBsa

(e) (2.17)

Clearly M is constant while Q has a linear distribution within the
element. We will see later that, in practice, the value of Q at the element
mid-point should be taken.

2.3.3 Discretized equations for the element

The PVW for an individual element can be written as (see Eq.(2.9) and
Figure 2.4)∫

l(e)
[δκM + δγxzQ] dx =

∫
l(e)

δuT

{
fz
m

}
dx+

[
δa(e)

]T
q(e) (2.18a)

where
q(e) = [Fz1 ,M1, Fz2 ,M2]

T (2.18b)

is the equilibrating nodal force vector for the element. The signs for the
components of q(e) are shown in Figure 1.4.

Substituting Eqs.(2.16) into (2.18a) gives, after simplifying the virtual
displacements∫

l(e)

[
BT

b M +BT
s Q

]
dx−

∫
l(e)

NT

{
fz
m

}
dx = q(e) (2.19)
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Substituting the constitutive equations for M and Q (Eqs.(2.17) and
using Eqs.(2.14) gives(∫

l(e)

[
BT

b (D̂b)Bb +BT
s (D̂s)Bs

]
dx

)
a(e) −

∫
l(e)

NT

{
fz
m

}
dx = q(e)

(2.20a)
In compact matrix form[

K
(e)
b +K(e)

s

]
︸ ︷︷ ︸

K(e)

a(e) − f (e) = q(e) (2.20b)

where the element stiffness matrix is

K(e) = K
(e)
b +K(e)

s (2.21a)

and

K
(e)
b =

∫
l(e)

BT
b (D̂b)Bb dx ; K(e)

s =

∫
l(e)

BT
s (D̂s)Bs dx (2.21b)

are respectively the bending and shear stiffness matrices for the element,

f (e) =

{
f
(e)
1

f
(e)
2

}
with f

(e)
i =

{
fzi
mi

}
=

∫
l(e)

Ni

{
fz
m

}
dx (2.22)

is the equivalent nodal force vector due to the distributed loading fz and
the distributed moment m.

The above integrals can be expressed in the natural coordinate system.

Recalling that dx = l(e)

2 dξ, the matrices and vectors of Eqs.(2.20)–(2.22)
are rewritten as

K
(e)
b =

∫ +1

−1
BT

b (D̂b) Bb
l(e)

2
dξ ; K(e)

s =

∫ +1

−1
BT

s (D̂s) Bs
l(e)

2
dξ (2.23)

and

f
(e)
i =

∫ +1

−1
Ni

{
fz
m

}
l(e)

2
dξ (2.24a)

For a uniformly distributed values of fz and m then

f
(e)
i =

l(e)

2

{
fz
m

}
(2.24b)
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i.e. the total distributed vertical force and the bending moment are equally
split between the two nodes of the element. The external vertical forces and
bending moments give uncoupled contributions to vector f (e). This is due
to the independent Co interpolation for w and θ (Eq.(2.10)). Recall that
in Euler-Bernoulli beam elements a vertical load induces nodal couples
due to the C1 interpolation for the deflection (Section 1.3.3).

The integrals can be evaluated numerically using a 1D Gauss quadra-
ture as

K(e)
a =

np∑
p=1

(BT
a D̂aBa)pWp

l(e)

2
, with a = b, s (2.25)

where np is the number of integration points in the beam element and Wp

are the quadrature weights (Appendix C and [On4]).
The element stiffness matrix can also be computed as

K(e) =

∫
l(e)

BT D̂B dx (2.26a)

where B and D̂ are generalized strain and constitutive matrices, respec-
tively with

B =

{
Bb

Bs

}
and D =

[
D̂b 0

0 D̂s

]
(2.26b)

The split of the element stiffness matrix via Eq.(2.21a) is more convenient
as it allows us to identify the bending and shear contributions. This is also
of interest for using different quadrature rules for Kb and Ks ir order to
avoid shear locking as shown in the next section.

The global stiffness matrix and the global equivalent nodal force vector
f are assembled from the element contributions as usual. Point loads pi =
[Pzi ,M

c
i ]

T acting at nodes are directly assembled into vector f .
The reactions at prescribed nodes can be obtained “a posteriori” once

the nodal displacements have been found, as described in Section 1.3.4.

2.4 LOCKING OF THE NUMERICAL SOLUTION

From Eqs.(2.15) and (2.23) we deduce that the exact evaluation of the

bending stiffness matrix K
(e)
b requires a single Gauss integration point, as

all the terms in the integrand are constant (Appendix C). Exact integra-
tion gives (for homogeneous material)

K
(e)
b =

(
D̂b

l

)(e)
⎡⎢⎣0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤⎥⎦ (2.27a)
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Fig. 2.5 Cantilever beam under end point load. Analysis with one 2-noded Timo-
shenko beam element

The exact integration of the shear stiffnes matrix K
(e)
s requires two

Gauss integration points, as quadratic terms in ξ are now involved, due
to the products NiNj (Appendix C). For homogeneous material

K(e)
s =

(
D̂s

l

)(e)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
l(e)

2
−1 l(e)

2
. . .

(l(e))

3

2

− l(e)

2

(l(e))

6

2

. . . 1 − l(e)

2

Symm.
. . .

(l(e))

3

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.27b)

The performance of the 2-noded Timoshenko beam element with exact
integration can be assessed in the analysis of an homogeneous cantilever
beam under an end point load. A single element is used first (Figure 2.5).

The global equilibrium equation is[
K

(1)
b +K(1)

s

]
a(1) = f (2.28)

Substituting Eqs.(2.27a) for D̂b = EIy, D̂s = GA∗ and l(e) = L gives

⎡⎢⎢⎢⎢⎢⎣
GA∗
L

GA∗
2 −GA∗

L
GA∗
2(

GA∗
3 L+

EIy
L

)
−GA∗

2

(
GA∗
6 L− EIy

L

)
. . . GA∗

L −GA∗
2

Symm.
. . .

(
GA∗
3 L+

EIy
L

)

⎤⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
w1

θ1
w2

θ2

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
R1

M1

P
0

⎫⎪⎪⎬⎪⎪⎭
w1 = 0
θ1 = 0

(2.29)



Locking of the numerical solution 49

Once the clamped DOFs have been eliminated, the following simplified
system is obtained⎡⎢⎢⎣

GA∗

L
−GA∗

2

−GA∗

2

(
GA∗

3
L+

EIy
L

)
⎤⎥⎥⎦{

w2

θ2

}
=

{
P
0

}
(2.30)

The solution is

{
w2

θ2

}
= F f =

β

β + 1

⎡⎢⎢⎣
(

L

GA∗
+

L3

3EI

)
L2

EIy
L2

EIy

L

EIy

⎤⎥⎥⎦{
P
0

}
(2.31)

where F = K−1 is the flexibility matrix and

β =
12 EIy
GA∗L2

(2.32)

The parameter β characterizes the influence of the transverse shear
strain in the numerical solution. A small value of β indicates that shear
shear strain effects are negligible. β dependes on the geometry and the
material properties of the transverse cross section. For a rectangular beam
of unit width, height h, homogeneous material and Iy = h3

12 ,

β =
12EIy
L2GA∗

=
E

kzG

(
h

L

)2

=
E

kzGλ2
(2.33)

where λ = L2/h is the beam slenderness ratio. Therefore, β tends to
zero for very slender beams (λ → ∞) as expected. For an homogeneous
isotropic rectangular section with ν = 0.25 and α = 5/6, then β = 3

λ2 . For

the same section with E
kzG

= 50, then β = 50
λ2 . The value of β for some

composite laminated sections is given in Table 3.3.
The deflection and the rotation at the free end are found from Eq.(2.31)

as

w2 =
β

β + 1

(
L

GA∗
+

L3

3EIy

)
P , θ2 =

βL2

(β + 1)EIy
P (2.34a)

The reactions are obtained from the first two rows of Eq.(2.29) as

R1 = −P , M1 = −Pl (2.34b)
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Let us study the influence of λ on the numerical solution.
The flexibility matrix giving exact nodal results for this problem (af-

ter eliminating the prescribed DOFs) using conventional Euler-Bernoulli
beam theory (via Eq.(1.20)) and Timoshenko beam theory (via Eq.(2.101c);
see also Example 2.10) is

a) Euler-Bernoulli theory b) Timoshenko theory

F =

⎡⎢⎢⎣
L3

3EIy

L2

2EIy
L2

2EIy

L

EIy

⎤⎥⎥⎦ ; F =

⎡⎢⎢⎣
(

L

GA∗
+

L3

3EIy

)
L2

2EIy
L2

2EIy

L

EIy

⎤⎥⎥⎦ (2.35)

The “exact” end displacements for each theory are

wEB
2 =

L3

3EIy
P ; wT

2 =

(
L

GA∗
+

L3

3EIy

)
P

θEB
2 =

L2

2EIy
P , θT2 =

L2

2EIy
P

(2.36)

where upper indices EB and T refer to Euler-Bernoulli and Timoshenko
beam theories respectively. Note that the end rotations are the same for
both theories.

The effect of transverse shear deformation is negligible for a slender
beam (i.e. for a large value of λ). Hence, Timoshenko solution should
coincide for this case with that of conventional Euler-Bernoulli theory.
The ratio between the end deflection value using the 2-noded Timoshenko
beam element and the “exact” Euler-Bernoulli solution is deduced from
Eqs.(2.34a) and (2.36) as

rw =
w2

wEB
2

=
β

β + 1

(
L

GA∗ +
L

3EIy

)
P(

L3

3EIy

)
P

=
3(4λ2 + 3)

4λ2(λ2 + 3)
(2.37)

Clearly, the ratio rw should tend to one as λ increases.
Figure 2.6 shows the change in rw with λ. For very slender beams

(λ → ∞) rw tends to zero. Thus, as the beam slenderness increases the
numerical solution is progressively stiffer than the exact one. This means
that the 2-noded Timoshenko beam element is unable to reproduce the
conventional solution for slender beams. This phenomenon, known as shear
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Fig. 2.6 Cantilever beam analyzed with one 2-noded Timoshenko beam element.
Change in the ratio rw between the end deflection for the 2-noded Timoshenko
beam element and the exact Euler-Bernoulli solution with the beam slenderness
ratio λ. Influence of the integration order for K

(e)
s
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locking, in principle disqualifies Timoshenko beam elements for analysis of
slender beams.

Many procedures to eliminate shear locking in Timoshenko beam ele-
ments have been proposed. A popular method is to reduce the influence

of the transverse shear stiffness by under-integrating the terms in K
(e)
s

using a quadrature of one order less than is needed for exact integration

(the so-called reduced integration). The terms of K
(e)
b are still integrated

exactly.

For homogeneous material, the computation of K
(e)
s with a single in-

tegration point gives

K(e)
s =

(
D̂s

l

)(e)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 l(e)

2 −1 l(e)

2

. . .

(
l(e)

)2

4 − l(e)

2

(
l(e)

)2

4

. . . 1 − l(e)

2

Symm.
. . .

(
l(e)

)2

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.38)

The element stiffness matrix with a uniform one-point integration for

K
(e)
b and K

(e)
s is therefore

K(e) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
D̂s

l

)(e)
D̂

(e)
s

2
−

(
D̂s

l

)(e)
D̂

(e)
s

2(
D̂sl

4
+

D̂b

l

)(e)
D̂

(e)
s

2

(
D̂sl

4
− D̂b

l

)(e)

(
D̂s

l

)(e)

−D̂
(e)
s

2

Symm.

(
D̂s

l

)(e) (
D̂sl

4
+

D̂b

l

)(e)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.39)

Using Eq.(2.39) instead of Eq.(2.27b), the stiffness and flexibility ma-
trices for the single Timoshenko beam element of Figure 2.5 with uniform
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Number of elements

Limit end deflection ratio rw 1 2 4 8 16

rw =
w

wEB
for λ → ∞ 0.750 0.938 0.984 0.996 0.999

Table 2.1 Cantilever beam under end point load. Convergence of the end deflection
ratio rw with the number of 2-noded Timoshenko beam elements for very slender
beams (λ→∞), using uniform one-point integration

one-point integration, after eliminating the prescribed DOFs, are

K =

⎡⎢⎢⎣
GA∗

L
−GA∗

2

−GA∗

2

(
GA∗

4
L+

EI

L

)
⎤⎥⎥⎦ ; F =

⎡⎢⎢⎣
(

L

GA∗
+

L3

4EI

)
L2

2EI
L2

2EI

L

EI

⎤⎥⎥⎦ (2.40)

Note that F now coincides with the “exact” expression (2.35), except
for the term F11. Solving for the end displacements gives

w2 = F11 P =

(
L

GA∗
+

L3

4EIy

)
P (2.41)

θ2 = F12P =
L2

2EIy
P

It is interesting that the exact Timoshenko solution for the end rotation
has been obtained (see Eq.(2.36)).

The end deflection ratio rw is now

rw =
w2

wEB
2

=
3λ2 + 3

4λ2
(2.42)

The new distribution of rw with λ is plotted in Figure 2.6. Now λ →
0.75 for rw →∞ and, therefore, shear locking has been avoided. Obviously,
the limit solution is not exact due to the coarse mesh used. We can check
that the limit value of rw (for λ → ∞) converges rapidly to the unity as
the mesh is refined (Table 2.1). For a two element mesh, rw tends to 0.938
and the solution practically coincides with the exact one for all values of
the slenderness ratio λ (Figure 2.6).

Analyzing the single beam element under uniformly distributed load-
ing (fz = q) leads to similar conclusions as for the point load case. The
exact quadrature leads to shear locking, whereas the reduced one point
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quadrature for K
(e)
s gives the following end displacements

w2 = q

(
L

GA∗
+

L3

8EI

)
, θ2 =

qL2

4EI
(2.43)

Now the end rotation is not exact, while the end deflection for the limit

slender case (λ→∞) coincides with the exact value of qL3

8EI (Example 1.4).
The end rotation value obviously improves as the mesh is refined.

A similar example is presented next for the same beam under a uni-
formly distributed moment.

Example 2.1: Solve the cantilever beam of Figure 2.5 under a uniformly dis-
tributed moment m using one 2-noded Timoshenko beam element.

- Solution- Solution

The solution with exact integration is obtained from Eq.(2.29) by substituting
the nodal force vector in the r.h.s. by

f =

[
R1,M1 +

mL

2
, 0,

mL

2

]T
The values for w2 and θ2 are deduced from Eq.(2.31) with the r.h.s. given by
f = [0,mL/2]T as

w2 =
β

β + 1

mL3

2EI
, θ2 =

β

β + 1

mL2

2EI

For very slender beams, β → 0 and the solution locks giving w2 = θ2 = 0.
Also from Eq.(2.29) we find R1 = 0 and M1 = mL.
The solution with one-point reduced integration of the shear stiffness terms
is obtained via matrix F of Eq.(2.40) giving

w2 =
mL3

4EI
, θ2 =

mL2

2EI
, R1 = 0 , M1 = −mL

Note that the values of w2 and θ2 are independent of the shear modulus. The
value for θ2 coincides with the exact solution of Euler-Bernoulli theory (Ex-
ample 1.4b). The value for w2 converges fast to the “exact” slender solution

of mL3

3EI as the mesh is refined, similarly as for the end point load case.
It is interesting that the “exact” end displacements for a slender beam coin-
cide with those for the end point load case for P = m.
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We conclude that the one point reduced quadrature for K
(e)
s yields a

2-noded Timoshenko beam element valid for both thick and slender beams.
Once the nodal displacements have been obtained, the bending moment
and the shear force are computed at the element mid-point which is “op-
timal” for the evaluation of stresses (Figure 6.12 of [On4]).

2.4.1 Substitute transverse shear strain matrix

Matrix K
(e)
s in Eq.(2.38) can be obtained by the following expression

K(e)
s = (D̂s)B

T
s Bsl

(e) (2.44)

where (·) denotes values computed at the single quadrature point located
at the element center.

Matrix Bs of Eq.(2.44) is

Bs =

[
− 1

l(e)
,−1

2
,
1

l(e)
,−1

2

]
(2.45)

Matrix Bs is the substitute transverse shear strain matrix and it leads
to a locking-free 2-noded Timoshenko beam element. Matrix Bs can also
be obtained by the procedures to avoid shear locking described in Section
2.8.

2.5 MORE ON SHEAR LOCKING

The effect of shear locking can be also explained by studing the behaviour
of the global system Ka = f as the beam slenderness increases. For a
single element mesh this system can be written making use of Eqs.(2.21a)
(assuming homogeneous geometrical and material properties) as(

EIy
L3

Kb +
GA∗

L
Ks

)
a = f (2.46)

The “exact” solution for slender beams is proportional to L3

3EIy
(see

Eq.(2.36)). Multiplying Eq.(2.46) by this value we obtain(
Kb +

4

β
Ks

)
a =

L3

3EIy
f = f (2.47)

where β is given by Eq.(2.33) and f is a vector of the same order of mag-
nitude as the exact slender beam solution. For slender beams β decreases
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and, therefore, the factor multiplying Ks in Eq.(2.47) is much larger than
the terms of Kb. Consequently, Eq.(2.47) tends for very slender beams to

4

β
Ks a = f̄ (2.48)

In the slender limit for h→ 0, then β → 0 and

Ks a =
β

4
f → 0 (2.49)

Consequently, as the beam slenderness increases the finite element so-
lution progressively stiffens (locks) and the limit slender solution is in-
finitely stiffer than the correct Euler-Bernoulli solution. Furthermore, from
Eq.(2.49) we deduce that the trivial solution a = 0 can be avoided if Ks

(or Ks) is a singular matrix. The singularity of Ks appears as a necessary
(though not always sufficient) condition for the existence of the correct so-
lution in the analysis of slender beams using Timoshenko elements [ZT2].

Singularity of the shear stiffness matrix Ks can be induced by reduced
integration. It can be proved that the numerical integration of the stiffness
matrix introduces s independent relationships at each integration point,
s being the number of strains involved in the computation of the stiffness
matrix [ZT2]. Thus, if p is the total number of integration points and j the
number of free DOFs (after eliminating the prescribed values), the stiffness
matrix will be singular if the total number of independent relationships
introduced can not balance the total number of unknowns, i.e. if

j − s× p > 0 (2.50)

The proof of this inequality is given in Appendix E. Eq.(2.50) allows
us to study the singularity of the shear stiffness matrix Ks and also that
of the global stiffness matrix K, both for an individual element and for a
patch of elements. In all cases we find that Ks becomes singular by using a
reduced quadrature. The subintegration must however preserve the proper
rank of the global matrix K to avoid instabilities in the solution (Section
3.10.3 of [On4]). As an example let us consider the beam in Figure 2.23.
The number of free DOFs is two (w2 and θ2) and only the transverse
shear strain is involved in the computation of Ks (i.e. s = 1). Using exact
integration for Ks (p = 2) gives

2− 1× 2 = 0

and, consequently, condition (2.50) is not satisfied.
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We can verify that Ks is not singular in this case. Eliminating the
prescribed values in Eq.(2.27b) gives

∣∣∣Ks

∣∣∣ = ∣∣∣∣∣
GA∗

l
−GA∗

2

−GA∗

2

GA∗

3
l

∣∣∣∣∣ = l

12
GA∗ (2.51)

Computing Ks with a single quadrature point (p = 1), the rule (2.50)
gives

2− 1× 1 = 1 > 0

and, therefore, Ks should be singular. This can be verified by using the
expression of Ks from Eq.(2.38), i.e.

∣∣∣Ks

∣∣∣ = ∣∣∣∣∣
GA∗

l
−GA∗

2

−GA∗

2

GA∗

4
l

∣∣∣∣∣ = 0 (2.52)

It is very important to check always that the global stiffness matrix K
is not singular. The number of strains involved is two (κ and γxz). Using
a single integration point for Kb and Ks the rule (2.50) gives

2− 2× 1 = 0

which guarantees the non-singularity of K and the existence of a correct
solution, as shown in the example of the previous section.

The need for the singularity of the transverse shear strain matrix to
avoid shear locking can be argued on different grounds. For instance, con-
sider the total internal energy of the beam written as

U =
1

2
aTKba+

1

2
aTKsa = Ub + Us (2.53)

where Ub and Us represent the bending and shear contributions to the
internal energy, respectively. Timoshenko beam elements are able to re-
produce the Euler-Benouilli solution if the shear strain energy Us tends
to zero as the beam slenderness ratio increases. In the limit thin case, Us

should vanish and this justifies the need for the singularity of Ks.
There are other procedures to avoid shear locking which are related to

the singularity of Ks. Some of these methods are discussed in Section 2.8.
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2.6 SUBSTITUTE SHEAR MODULUS FOR THE TWO-NODED
TIMOSHENKO BEAM ELEMENT

The behaviour of the 2-noded Timoshenko beam element with reduced
integration for K(e) can be enhanced by using a “substitute shear modu-
lus” GA

∗
. This is defined such that the “exact” flexibility matrix coincides

with that obtained using a single Timoshenko beam element. Equaling F11

in Eqs.(2.35) and (2.40) gives

l(e)

GA
∗ +

(l(e))3

4EIy
=

l(e)

GA∗
+

(l(e))3

3EIy
(2.54a)

and
1

GA∗
=

1

GA∗
+

(l(e))2

12EI
(2.54b)

Introducing GA
∗
into the expression (2.40) for K

(e)
s and using K

(e)
b

from Eq.(2.27a) we obtain an enhanced stiffness matrix for the 2-noded
Timoshenko beam element as

K
(e)
11 = K

(e)
33 = −K(e)

13 = 12

(
K1

K2

)(e)

; K
(e)
22 = K

(e)
44 = K

(e)
1

(
1 +

3

K
(e)
2

)

K
(e)
24 = K

(e)
1

(
3

K
(e)
2

− 1

)
; K

(e)
12 = K

(e)
14 = −K(e)

34 = −K(e)
23 =

l(e)

2
K

(e)
11

K
(e)
1 =

(
EIy
l3

)(e)

and K
(e)
2 =

[
1 + β(e)

]
(2.55)

where β(e) is deduced from Eq.(2.33) changing L by l(e). For very slender
beams r

β(e) → 0 and the terms in Eq.(2.55) coincide with those of the

stiffness matrix for the 2-noded Euler-Bernoulli beam element (Eq.(1.20)).
Matrix (2.55) yields nodally exact results for thick and slender beams

under uniformly distributed loads and nodal point loads. The exact so-
lution for different loads requires modifying the equivalent nodal force
vector. This is detailed in Section 2.9 where the stiffness matrix of (2.55)
and the equivalent nodal force vector for an “exact” 2-noded Timoshenko
beam element are obtained by integrating the equilibrium equations.

2.7 QUADRATIC TIMOSHENKO BEAM ELEMENT

Let us will consider the 3-noded Timoshenko beam element with quadratic
Lagrange shape functions shown in Figure 2.7. The deflection and the
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Fig. 2.7 3-noded quadratic Timoshenko beam element. Nodal displacements and
quadratic shape functions

rotation are independently interpolated as

w(ξ) = N1(ξ)w1 +N2(ξ)w2 +N3(ξ)w3

θ(ξ) = N1(ξ)θ1 +N2(ξ)θ2 +N3(ξ)θ3
(2.56)

The geometry is interpolated in an isoparametric form, similarly as for
the 3-noded rod element of Section 3.3.4 of [On4], i.e.

x = N1x1 +N2x2 +N3x3 (2.57)

For simplicity we assume that node 2 is at the center of the element.

This gives dx
dξ = l(e)

2 (Section 3.3.4 of [On4]).
The bending strain is obtained by

κ =
dθ

dx
= Bba

(e) (2.58)

where

Bb =
[
0,

dN1

dξ

dξ

dx
, 0,

dN2

dξ

dξ

dx
, 0,

dN3

dξ

dξ

dx

]
=

2

l(e)

[
0, ξ− 1

2
, 0,−2ξ, 0, ξ+ 1

2

]
(2.59)

and

a(e) =

⎧⎨⎩
a1
a2
a3

⎫⎬⎭ , with ai =

{
wi

θi

}
(2.60)



60 Thick/slender plane beams. Timoshenko theory

The transverse shear strain is expressed as

γxz =
dw

dx
− θ = Bsa

(e) (2.61)

with

Bs =

[
dN1

dξ

dξ

dx
,−N1,

dN2

dξ

dξ

dx
,−N2,

dN3

dξ

dξ

dx
,−N3

]
=

=
2

l(e)

[
ξ − 1

2
,− l(e)

4
(ξ2 − ξ),−2ξ,− l(e)

2
(1− ξ2), ξ +

1

2
,− l(e)

4
(ξ2 + ξ)

]
(2.62)

The element stiffness matrix is obtained as explained for the 2-noded
beam element and it can also be split as

K(e) = K
(e)
b +K(e)

s (2.63)

where K
(e)
b and K

(e)
s are the bending and shear stiffness matrices, respec-

tively, given by Eqs.(2.21b). The equivalent nodal force vector is

f (e) =

⎧⎪⎨⎪⎩
f
(e)
1

f
(e)
2

f
(e)
3

⎫⎪⎬⎪⎭ with f
(e)
i =

∫ +1

−1
Ni

{
fz
m

}
l(e)

2
dξ (2.64)

The terms dNi
dξ

dNj

dξ
inK

(e)
b are quadratic in ξ and the exact integration

requires a two-point Gauss quadrature (Appendix C).

On the other hand, the terms NiNj in K
(e)
s are quartic in ξ and a three-

point Gauss quadrature is needed to integrate them exactly (Appendix C).

Unfortunately the exact integration of K
(e)
s leads to shear locking in many

situations. This problem disappears if a reduced two-point quadrature is

used for K
(e)
s . As an example let us consider a beam clamped at one end

and simply supported at the other (Figure 2.8). A single 3-noded beam
element is used. The number of available DOFs is just three, and the rule

(2.50) for a 3 point quadrature for K
(e)
s gives

j − s× p = 3− 1 shear strain× 3 point = 0

i.e., K
(e)
s is not singular and the solution will lock for slender beams.

Singularity is guaranteed by using a reduced two-point quadrature for

K
(e)
s . In this case 3− 1× 2 = 1 > 0 and K

(e)
s is singular. Figure 2.9 shows

K
(e)
b and K

(e)
s using a two-point Gauss quadrature for both matrices.
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Fig. 2.8 Singularity rule for K
(e)
s in a simply supported/clamped beam analyzed

with a single 3-noded Timoshenko beam element.

K
(e)
b =

(
D̂b

3l

)(e)

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 7 0 −8 0 1
0 0 0 0 0 0
0 −8 0 16 0 −8
0 0 0 0 0 0
0 1 0 −8 0 7

⎤
⎥⎥⎥⎥⎥⎥⎦

K(e)
s =

(
D̂s

9l

)(e)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

21 − 9
2
l(e) −24 −6l(e) 3 3

2
l(e)

− 9
2
l(e) (l(e))2 6l(e) (l(e))2 − 3

2
l(e) − (l(e))2

2

−24 6l(e) 48 0 −24 −6l(e)

−6l(e) (l(e))2 0 4(l(e))2 6l(e) (l(e))2

3 − 3
2
l(e) −24 6l(e) 21 9

2
l(e)

3
2
l(e) − (l(e))2

2
−6l(e) (l(e))2 9

2
l(e) (l(e))2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 2.9 K
(e)
b and K

(e)
s matrices for the 3-noded Timoshenko beam element ob-

tained with a uniform two-point Gauss quadrature

Reduced integration is not strictly necessary for analysis of the can-
tilever beam in Figure 2.5 using a single 3-noded Timoshenko element.

Here the exact three-point integration of K
(e)
s satisfies the singularity

rule (2.50). This is an exception and, in practice, the reduced quadrature
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for K
(e)
s is recommended. Also, the bending moment and the shear force

should be computed at the two integration points which are the optimal
sampling points (Figure 6.12 of [On4]).

The reduced integration of the shear stiffness matrix appears to be a
“panacea” which yields an improved solution at a lower computing cost.
However, as for 2D and 3D solid elements [On4], despite its potential
benefits, reduced integration should be used with extreme care in order
not to perturb the proper rank of the global stiffness matrix. This is not
the case for the linear and quadratic Timoshenko beam elements for which

reduced integration of K
(e)
s is recommended for practical purposes.

2.8 ALTERNATIVES FOR DERIVING LOCKING-FREE
TIMOSHENKO BEAM ELEMENTS

2.8.1 Reinterpretation of shear locking

A detailed inspection of Timoshenko beam elements shows that the equal
order interpolation for the deflection and the rotation leads to the limit
condition of zero shear strain not being satisfied, which in turn leads to
shear locking. Let us consider, as an example, the simple 2-noded Timo-
shenko beam element. The linear displacement approximation yields the
following transverse shear strain field

γxz =
∂w

∂x
− θ = α1 + α2ξ (2.65)

with

α1 =
w2 − w1

l(e)
− 1

2
(θ1 + θ2) ; α2 =

1

2
(θ1 − θ2) (2.66)

The limit Euler-Bernoulli condition of vanishing transverse shear strain
for slender beams (γxz = 0) requires

α1 → 0 i.e.
w2 − w1

l(e)
=

θ1 + θ2
2

α2 → 0 i.e. θ1 = θ2

(2.67)

The condition for α1 expresses the coincidence of the average element
rotation and the element slope (which obviously should be identical for
slender beams). However, the condition θ1 = θ2 for α2 has not a physical
meaning and leads to a zero curvature field (as dθ

dx = 1
l(e)

(θ2−θ1) = 0) and,
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hence, to zero flexural stiffness. This originates locking of the numerical
solution.

Therefore, shear locking can be seen as a consequence of imposing a
non-physical relationship on the nodal displacements in order to satisfy the
condition of zero transverse shear strain. It is then obvious that the linear
term in Eq.(2.65) must be eliminated so that the condition γxz = 0 can
be satisfied naturally without introducing spureous constraints. A simple
way to cancel this term is to evaluate γxz at the element midpoint (ξ = 0).
This gives γxz = α1 and the element then behaves correctly in the limit

slender case. This is equivalent to using a single point quadrature for K
(e)
s .

Reduced integration appears here as an effective procedure for eliminating
the spureous contribution in the discretized transverse shear strain field
which is the source of locking.

There are other procedures to avoid shear locking. Following the above
arguments it is reasonable to assume that the physical conditions of the
problem will not be violated if the coefficients of the polynomial repre-
senting γxz are linear functions of both the nodal displacements and the
rotations. This can be achieved if the polynomial terms originating from

the slope dw
dx

are of the same degree as those contributed by θ. This is

satisfied if the polynomial interpolation for w is one degree higher than
that used for θ. This technique is studied in the next two sections.

Another alternative for eliminating shear locking is to assume a priori
a “good” transverse shear strain field over the element (i.e. γxz = α1 in
Eq.(2.65)). Thus, the spurious terms are omitted from the onset and the
source of locking disappears. This is the basis of the assumed shear strain
technique studied in a next section. This procedure has been widely used
for deriving locking-free beam, plate and shell elements, and some of them
will be studied in the following chapters. There are interesting analogies
between the different procedures for eliminating shear locking which in
some cases are completely equivalent.

2.8.2 Use of different interpolations for deflection and rotation

The key to this approach is to use an interpolation for the deflection that is
one degree higher than the one used for the rotation. Hence, the condition

γxz =
dw
dx
− θ = 0 can be naturally fulfilled in the limit.

This technique has been used by different authors [Cr, DL, Ma, TH]
for deriving thick beam and plate elements. It can be verified that the
simplest option of using a linear approximation for the deflection and a
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Fig. 2.10 Timoshenko beam element with cubic deflection and quadratic rotation

constant one for the rotation is equivalent to using one point integration
for the transverse shear stiffness matrix. As an alternative we can choose a
quadratic interpolation for the deflection and a linear one for the rotation.
A more interesting option is to use a cubic approximation for the deflection
and a quadratic one for the rotation leading to a parabolic distribution of
the transverse shear strain over the element (Figure 2.10).

Some caution should be taken as the resulting cubic/quadratic element
is sometimes unable to reproduce a constant shear distribution. Consider,
for instance, a simple supported beam under a central point load analyzed
with one cubic/quadratic element (Figure 2.11). The computed shear force
distribution is quadratic and continuous and this is quite different from
the “exact” constant discontinuous solution.

Example 2.3 shows how the cubic/quadratic Timoshenko beam ele-
ment can be constrained to give a beam element with linear bending and
constant transverse shear strain fields. Also by constraining the transverse
shear strains to be zero the cubic/quadratic beam elements “degenerates”
into the 2-noded Euler-Bernoulli beam element of previous chapter (Ex-
ample 2.5).
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Fig. 2.11 Simply supported beam analyzed with one cubic/quadratic Timoshenko
beam element. Computed and exact distributions of the shear force

2.8.3 Linked interpolation

Shear locking can be avoided by enhancing the interpolation for the de-
flection field with additional higher-order polynomial terms involving the
nodal rotations. The aim is to obtain a transverse shear strain field that
can satisfy the limit Euler-Bernoulli condition of vanishing shear strain.

The following interpolation is locking-free for the 2-noded Timoshenko
beam element

w =
1

2
(1− ξ)w1 +

1

2
(1 + ξ)w2 + (1− ξ2)

l(e)

8
(θ1 − θ2) (2.68)

The above interpolation links the nodal rotations and the deflections.
The resulting transverse shear strain field is

γxz =
dw

dx
−θ =

w2 − w1

l(e)
− θ1 + θ2

2
=

[
− 1

l(e)
,−1

2
,
1

l(e)
,−1

2

]⎧⎪⎪⎨⎪⎪⎩
w1

θ1
w2

θ2

⎫⎪⎪⎬⎪⎪⎭ = Bsa
e

(2.69)
The transverse shear strain vanishes for

w2 − w1

l(e)
=

θ1 + θ2
2

(2.70)

Eq.(2.70) states that the average rotation of the element equals the
slope of the deflection field. This condition is satisfied for slender beams.
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Matrix Bs in Eq.(2.69) coincides with the substitute shear strain ma-
trix of Eq.(2.45) obtained by sampling Bs of Eq.(2.15) at the element
center. The shear stiffness matrix is given by Eq.(2.44). The resulting
2-noded beam element is therefore free from shear locking.

The equivalent nodal force vector for nodal point loads coincides with
that of the standard displacement formulation as the “linking” shape func-
tion (1 − ξ2) vanishes at the end nodes. However, a distributed loading
introduces nodal bending moment components to the linked interpolation.
The equivalent nodal force vector for a uniform loading fz = q, is

f (e) = ql(e)

[
1

2
,
(l(e))2

12
,
1

2
,−(l(e))2

12

]T

(2.71)

Let us consider, for example, a cantilever beam of length L under uni-
formly distributed loading analyzed with just one linked beam element.
The end displacement values are readily obtained using the flexibility ma-
trix of Eq.(2.40) and the force vector of Eq.(2.71) as

w2 =
qL

2GA∗
+

qL3

12EIy
and θ2 =

qL2

6EIy
(2.72)

The end rotation is now exact. The end deflection for a slender beam
has approximately 33% error versus the exact value of qL3/8EIy. This
error diminishes rapidly as the mesh is refined. The original beam element
with reduced integration and f (e) given by Eq.(2.24b) yields an exact end
deflection and an approximate value for the end rotation (Eq.(2.43)).

Fraejis de Veubeke [FdV2] was the first to use linked interpolations for
beam analysis. Tessler et al. [TD,Te] have used similar interpolations for
beams, shallow arches and plates that they call “anisoparametric”. Other
applications of linked interpolations for beams can be found in [Cr,SCB].

The derivation of the displacement field of Eq.(2.68) is shown in the
next example.

Example 2.2: Derive the linked interpolation of Eq.(2.68) for the 2-noded Tim-
oshenko beam element.

- Solution- Solution

The starting point is the 3-noded Timoshenko beam element with node num-
bers 1,3,2 where node number 3 corresponds to the mid-node. The original
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quadratic interpolation for the deflection and the rotation is

w =
1

2
(ξ − 1)ξw1 + (1− ξ2)w3 +

1

2
(ξ + 1)ξw2

θ =
1

2
(ξ − 1)θ1 + (1− ξ2)θ3 +

1

2
(ξ + 1)ξθ2

The transverse shear strain is obtained by

γxz =
dw

dx
− θ =

2

l(e)

(
ξ − 1

2

)
w1 − ε

2
w3 +

2

l(e)

(
ξ +

1

2

)
w2 − 1

2
(ξ − 1)ξθ1−

−(1− ξ2)θ3 − 1

2
(ξ + 1)ξθ2 =

w2 − w1

l(e)
+

2

l(e)
ξ(w1 − 2w3 + w2)− θ3−

−ξ

2
(θ1 − θ2)− ξ2

2
(θ1 − 2θ3 + θ2) = 0

Clearly, γxz should vanish for slender (Euler-Bernoulli) beams. This is achie-
vable for the above interpolation if the linear and quadratic terms in ξ are
zero and γxz is simply expressed as

γxz =
w2 − w1

l(e)
− θ3

The condition γxz = 0 implies w2−w1

l(e)
= θ3, i.e. the average slope equals the

rotation at the mid-node, which is a physical condition for slender beams.
The vanishing of the linear and quadratic terms in the original quadratic
expression for γxz yields the following two conditions

2

l(e)
(w1 − 2w3 + w2)− θ1 − θ2

2
= 0

θ1 − 2θ3 + θ2 = 0

From the above we obtain

w3 =
w1 + w3

2
− θ1 − θ2

8
l(e)

θ3 =
θ1 + θ2

2

Substituting these values into the original quadratic interpolation gives, after
some algebra

w =
1

2
(1− ξ)w1 +

1

2
(1 + ξ)w2 + (1− ξ2)

l(e)

8
(θ1 − θ2)

θ =
1

2
(1− ξ)θ1 +

1

2
(1 + ξ)θ2

which is the linked interpolation (2.68) we are looking for. It can be verified
that the above interpolation yields the constant transverse shear strain field
of Eq.(2.68).
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2.8.4 Assumed transverse shear strain approach

As previously explained, Timoshenko beam elements should be able to
satisfy the condition of vanishing transverse shear strain for slender beams.
Hence the following condition must be satisfied for (λ→∞)

γxz=Bs a = α1(wi, θi) + α2(wi, θi)ξ + α3(wi, θi)ξ
2 + · · ·+ αn(wi, θi)ξ

n = 0

(2.73)

which necessarily leads to

αj(wi, θi) = 0 ; j = 1, n (2.74)

Eq.(2.74) imposes a linear relationship between the nodal displace-
ments and the rotations which can usually be interpreted on physical
grounds. Elements satisfying Eq.(2.74) are therefore able to reproduce na-
turally the limit slender beam condition without locking. However, Tim-
oshenko beam elements typically have some αj coefficients in Eq.(2.73)
which are a function of the nodal rotations only. The condition αj(θi) = 0
is too strong (and even non-physical) and this leads to locking.

A consequence of the above argument is that shear locking can be
avoided by assuming “a priori” a polynomial transverse shear strain field
of the form (2.73). The assumed transverse shear strain can be written as

γxz =

m∑
k=1

Nγk γk = Nγ γγγ(e) (2.75)

where γk are the transverse shear strains sampled at m discrete points,
and Nγk are the transverse shear interpolation functions. Eq. (2.75) is
rewritten after expressing the transverse shear strains γk in terms of the
nodal displacements as

γxz =

m∑
k=1

NγkB̄sk a(e)

k = B̄sa (2.76)

Matrix B̄s is the substitute shear strain matrix mentioned in Section
2.4.1 (B̄s is also called B-bar shear strain matrix) [Cr,Hu]. The expression
of B̄s for the 2-noded Timoshenko beam element coincides with Eq.(2.45).
The coincidence is explained in the next section.

Eq.(2.76) can be written in the form (2.73) which guarantees the ab-
sence of locking.
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The PVW (Eq.(2.9))can be written using (2.75), (2.4b) and (2.6b)∫ l

0

[
δ(

∂θ

∂x
)D̂b

∂θ

∂x
+ δ(Nγ γγγ(e))T D̂s(Nγ γγγ(e))

]
dx = EVW (2.77)

where EVW denotes the virtual work performed by the external loads
(this is equal to the r.h.s. of Eq.(2.18a).

Eq.(2.77) shows that only Co continuity for the rotation is required,
whereas the deflection and the transverse shear strain can be discontin-
uous. This allows one the choice of independent interpolations for the
rotation, the deflection and the transverse shear strain as

w = Nw w(e) ; θ = Nθ θθθ(e) ; γxz = Nγ γγγ(e) (2.78)

The nodal variables w(e), θθθ(e) and γγγ(e) must satisfy the following condi-
tions to guarantee the convergence of the element (Appendix G)

nθ + nw ≥ nγ ; nγ ≥ nw (2.79)

where nw, nθ and nγ are the number of variables involved in the inter-
polation of the deflection, the rotation and the transverse shear strain,
respectively, disregarding the prescribed DOFs.

Eqs.(2.79) must be satisfied for each individual element and also for any
patch of elements as a necessary (though not always sufficient) condition
for convergence [ZQTN,ZTZ]. Eqs.(2.79), therefore, provide a fast and
simple procedure to asses “a priori” the viability of a new element. The
final assessment of the element performance must be verified via the patch
test in all cases.

Selection of the assumed transverse shear strain field

The assumed transverse shear strain field can be obtained directly by
observing the original field, bearing in mind that Eq.(2.79) must be sat-
isfied. Hence, for the 2-noded Timoshenko beam element it is reasonable
to assume a priori the following constant shear strain field (Section 2.8.1)

γxz = α1(wi, θi) (2.80)

The parameter α1 can be obtained by “sampling” γxz at the element
midpoint. This leads to

α1 = (γxz)ξ=0 =
w2 − w1

l(e)
− θ1 + θ2

2
(2.81)
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and the substitute shear strain matrix Bs is deduced from

γxz =

[
− 1

l(e)
,−1

2
,
1

l(e)
,−1

2

]
︸ ︷︷ ︸

Bs

a(e) (2.82)

Matrix Bs coincides with the the original shear strain matrix Bs of
Eq.(2.15) sampled at the element center, i.e. using a one-point quadra-
ture, as well as with the expression of Eq.(2.69) obtained via a linked
interpolation. The analogy between assumed transverse shear strain, re-
duced integration and linked interpolation procedures has been verified in
this case.

The same argument evidences that the assumed transverse shear strain
should vary linearly for the 3-noded quadratic Timoshenko beam element.

Figure 2.12 shows that the 2- and 3-noded Timoshenko beam elements
with constant and linear assumed transverse shear strain fields satisfy
Eqs.(2.79).

The condition nw+nθ > nγ of Eq.(2.79) is equivalent to the singularity
rule (2.50) (Appendix G). This is another explanation for the good perfor-
mance of Timoshenko beam elements based on assumed transverse shear
strain fields for analysis of slender beams. These concepts are of relevance
for deriving locking-free thick plate and shell elements. A methodology for
the systematic derivation of the substitute transverse shear strain matrix
for thick plate elements is presented in Chapter 6.

The assumed transverse shear strain technique can be used to derive
Euler-Bernoulli beam elements starting from Timoshenko elements. The
assumed transverse shear strain field is chosen so that γxz vanishes at a
number of points within the element. In this way, its behaviour approxi-
mates that of Euler-Bernoulli beam theory.

Some examples of the above concepts are presented next. Examples 2.2
and 2.3 describe two alternatives for deriving a Timoshenko beam element
with constant transverse shear strain by constraining the original displace-
ment field. In Examples 2.4 and 2.5 the 2-noded Euler-Bernoulli beam
element is derived by imposing a zero transverse shear strain at selected
points in two different Timoshenko beam elements. Imposing the condi-
tion of vanishing transverse shear strain at a number of discrete points
within the element is also the basis of the so-called Discrete-Kirchhoff
plate elements studied in Section 6.11. Examples 2.6–2.8 finally show the
equivalence between reduced integration and assumed transverse shear
strain techniques for linear and quadratic Timoshenko beam elements.
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Fig. 2.12 Verification of Eqs.(2.79) for 2- and 3-noded Timoshenko beam elements
with constant and linear assumed transverse shear strain fields respectively

Example 2.3: Derive a beam element with linear bending and constant transverse
shear fields starting from the cubic/quadratic Timoshenko beam element of
Figure 2.10.

- Solution- Solution

Figure 2.10 shows the original element and the cubic N4
i and quadratic

N3
i shape functions for the deflection and the rotation, respectively. The

quadratic rotation field automatically guarantees a linear bending field. The
constant transverse shear field is obtained as follows. From the original dis-
placement approximation the transverse shear strain is found as

γxz =
∂w

∂x
− θ =

4∑
i=1

∂N4
i

∂x
wi −N3

1 θ1 −N3
4 θ4 −N3

5 θ5 = A+Bξ + cξ2
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with

A =
1

8l(e)
(w1 − 27w2 + 27w3 − w4 − 8l(e)θ5)

B =
9

4l(e)

[
w1 − w2 − w3 + w4 +

2l(e)

9
(θ1 − θ4)

]
C =

27

8l(e)

[
− w1 + 3w2 − 3w3 + w4 − 4l(e)

27
(θ1 + θ4) +

8l(e)

27
θ5

]
For γxz to be constant it is required that

B = C = 0

These conditions lead to two equations from which two nodal DOFs can be
eliminated. Selecting the intermediate deflections w2 and w3 gives

w2 =
2w1 + w4

3
+

l(e)

81
(11θ1 − 7θ4 − 4θ5)

w3 =
w1 + 2w4

3
+

l(e)

81
(7θ1 − 1θ4 + 4θ5)

Substituting w2 and w3 into the original cubic field for w yields

w =
1

2
(1− ξ)w1 +

1

2
(1 + ξ)w4 +

l(e)

24
(2ξ3 − 2ξ − 3ξ2 + 3)θ1+

+
l(e)

24
(2ξ3 − 2ξ + 3ξ2 − 3)θ4 +

l(e)

6
ξ(1− ξ2)θ5 =

5∑
i=1

Niai = N(e)a(e)

with
a(e) = [w1, θ1, w4, θ4, θ5]

(e)

whereas the original quadratic interpolation is kept for the rotation. Note
that the new interpolation for the deflection involves also the nodal rotations.
This is another example of “linked” interpolation similar to those described

in Section 2.8.3. It can be verified that the rigid body condition (
5∑

i=1

Ni = 1)

still holds in this case.
We can easily check that the required conditions are satisfied, i.e.

κ =
dθ

dx
=

2

l(e)
(2ξ − 1)θ1 − 4ξ

l(e)
θ4 +

1

l(e)
(2ξ + 1)θ5 =

1

l(e)
(θ5 − θ1)+

+
2

l(e)
(θ1 − 2θ4 + θ5)ξ =

1

l(e)
[0, (2ξ − 1), 0,−4, (2ξ + 1)] a(e) = Bba

(e)

γxz =
dw

dx
− θ =

w4 − w1

l(e)
− θ1 + 4θ5 + θ4

6
=

[
− 1

l(e)
,
1

6
,
1

l(e)
,−1

6
,
2

3

]
a(e) = Bsa

(e)
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Example 2.4: Derive the beam element of the previous example starting from
the standard quadratic Timoshenko beam element in Section 2.7.

- Solution- Solution

The curvature and transverse shear strain fields for the 3-noded quadratic
Timoshenko beam element of Figure 2.7 are

κ =
dθ

dx
=

θ3 − θ1
l(e)

+
2

l(e)
(θ1 − 2θ2 + θ3)ξ

γxz =
∂w

∂x
− θ =

1

l(e)
(w3 − w1 − l(e)θ2) +

1

l(e)
(2w1 − 4w2 + 2w3 +

l(e)

2
θ1−

− l(e)

2
θ3)ξ +

(
θ2 − θ1

2
− θ3

2

)
ξ2 = A+Bξ + Cξ2

Note that the bending strain field coincides with that obtained in the previous
example.
The condition γxz = constant requires B = 0 and C = 0. From the later
we deduce θ2 = θ1+θ3

2 . Substituting this value into the interpolation for the

bending strain gives dθ
dx = θ3−θ1

l(e)
, and therefore the required linear bending

distribution can not be obtained.
The alternative is to impose γxz = A + Cξ2. The condition that must be
satisfied now is

B = 0⇒ w2 =
w1 + w3

2
+

l(e)

8
(θ1 − θ3)

The deflection field is

w =
1

2
(1− ξ)w1 +

1

2
(1 + ξ)w3 +

l(e)

8
(θ1 − θ3) =

=

[
1

2
(1− ξ),

l(e)

8
,
1

2
(1 + ξ),− l(e)

8
, 0

]
a(e)

with a(e) = [w1, θ1, w3, θ3, θ2]
T , and the shear strain distribution is

γxz =
w3 − w1

l(e)
−

(
θ1 + θ3

2

)
ξ2 − (1− ξ2)θ2

It is interesting that at ξ = ± 1√
3
the transverse shear strain is

(γxz)ξ=± 1√
3

=
w3 − w1

l(e)
− θ1 + 4θ2 + θ3

6
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which coincides with the constant transverse shear strain obtained in the
previous example. Therefore, an “effective” constant transverse shear field
can be obtained by using a two-point Gauss quadrature for the shear stiffness
terms. This coincidence is a consequence of the properties of the Gauss points;
i.e. the constant transverse shear distribution of Example 2.3 is the least
square approximation of the quadratic field chosen here and both fields take
the same value at the two Gauss points (Section 6.7 of [On4]).

Example 2.5: Derive the 2-noded Euler-Bernoulli beam element by imposing
the condition of zero transverse shear strain over the cubic/quadratic Tim-
oshenko beam element of Figure 2.10.

- Solution- Solution

The initial steps are similar to those of Example 2.3. The transverse shear
strain is obtained as

γxz =
dw

dx
− θ = A+Bξ + Cξ2

where A,B and C coincide with the expressions given in Example 2.3. The
condition γxz = 0 over the element is satisfied if

A = B = C = 0

This leads to a system of three equations which allows us to eliminate the
internal nodal DOFs w2, w3 and θ5 as

A = 0 ⇒ θ5 =
1

8l(e)
(w1 − 27w2 + 27w3 − w4)

B = 0 ⇒ w2 = w1 − w3 + w4 +
2l(e)

9
(θ1 − θ4)

Substituting these values into the equation for C = 0 gives

w3 =
1

27

[
7w1 + 20w4 + 2l(e)(θ1 − 2θ4)

]
and consequently

w2 =
1

27

[
20w1 − 7w4 + 2l(e)(θ1 − 2θ4)

]
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Substituting w2 and w3 into the original cubic deflection field gives

w =
1

4
(ξ3 − 3ξ + 2)w1 +

1

4
(2 + 3ξ − ξ3)w4 +

l(e)

8
(ξ2 − 1)(ξ − 1)θ1+

+
l(e)

8
(ξ2 − 1)(ξ + 1)θ4 = N1 w1 +N1θ1 +N4w4 +N4 θ4

where N1, N1, N4, N4 coincide with the Hermite shape functions for the 2-
noded Euler-Bernoulli beam element (Eqs.(1.11a)). On the other hand, the
condition γxz = 0 implies θ = dw

dx over the element and the deflection field
can be written as

w = N1 w1 +N1

(
dw

dx

)
1

+N4w4 +N4

(
dw

dx

)
4

It can clearly be seen that the element has C1 continuity and it coincides
with the 2-noded Euler-Bernoulli beam element of Section 1.3.

Example 2.6: Derive a 2-noded beam element by imposing the condition of zero
transverse shear strain at the two Gauss points ξ = ± 1√

3
in the quadratic

Timoshenko beam element. Verify that the stiffness matrix of the new ele-
ment coincides with that of the 2-noded Euler-Bernoulli beam element.

- Solution- Solution

The transverse shear strain distribution for the quadratic Timoshenko beam
element can be seen in Example 2.4 and in Eq.(2.62). The condition of zero
transverse shear strain at the two Gauss points ξ = ± 1√

3
is written as

(γxz)ξ= 1√
3
= 0 and (γxz)ξ=− 1√

3
= 0

Substituting the expression for γxz from Example 2.3, the following two equa-
tions are obtained

− (1 + 2a)

l(e)
w1 +

4a

l(e)
w2 +

(1− 2a)

l(e)
w3 − a(a+ 1)

2
θ1−

−(1− a2)θ2 − a(a− 1)

2
θ3 = 0

− (1− 2a)

l(e)
w1 − 4a

l(e)
+ w2 +

(1 + 2a)

l(e)
w3 +

a(1− a)

2
θ1−

−(1− a2)θ2 − a(a+ 1)

2
θ1 − a(a+ 1)

2
θ3 = 0
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with a = 1√
3
. Eliminating w2 and θ2 from the above equations gives

θ2 = −1

4
(θ1 + θ3) +

3

2l(e)
(w3 − w1)

w2 =
1

2
(w1 + w3) +

l(e)

8
(θ1 − θ3)

Substituting these values into the original displacement field gives

θ =
1

4
(3ξ2 − 2ξ − 1)θ1 +

1

4
(3ξ2 + 2ξ − 1)θ3−

− 3

2l(e)
(1− ξ2)w1 +

3

2l(e)
(1− ξ2)w3

w =
1

2
(1− ξ)w1 +

1

2
(1 + ξ)w3 +

l(e)

8
(1− ξ2)θ3

The bending strain and the transverse shear strain fields are obtained from
the new displacement field as

κ =
dθ

dx
=

6ξ

l(e)
2w1 +

(3ξ − 1)

l(e)
θ1 − 6ξ

(l(e))2
w3 +

(3ξ + 1)

l(e)
θ3

γxz =
∂w

∂x
− θ =

(1− 3ξ2)

2l(e)
w1 +

(3ξ2 − 1)

4
θ1 +

(3ξ2 − 1)

2l(e)
w3 +

(3ξ2 − 1)

4
θ3

The bending strain field is identical to the curvature field for the 2-noded
Euler-Bernoulli beam element (Eq.(1.16a)). It can also be verified that γxz =
0 at ξ = ± 1√

3
. The resultant generalized strain matrix is

B =

{
Bb

Bs

}
=

⎡⎢⎢⎣
6ξ

(l(e))2
(3ξ − 1)

l(e)
− 6ξ

(l(e))2
(3ξ + 1)

l(e)

(1− 3ξ2)

2l(e)
(3ξ2 − 1)

4
(3ξ2 − 1)

2l(e)
(3ξ2 − 1)

4

⎤⎥⎥⎦
and the element stiffness matrix is

K(e) =

∫ +1

−1

[
BT

b (D̂b)Bb +BT
s (D̂s)Bs

] l(e)

2
dξ = K

(e)
b +K(e)

s

The expression for K
(e)
b can be integrated exactly using a two-point Gauss

quadrature as

K
(e)
b =

(
D̂b

l3

)(e)

⎡⎢⎢⎣
12 6l −12 6l

4l2 −6l 2l2

12 −6l
Symm. 4l2

⎤⎥⎥⎦
(e)
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which coincides with the stiffness matrix for the 2-noded Euler-Bernoulli
beam element (Eq.(1.20)).

The exact integration of K
(e)
s requires a three-point Gauss quadrature (Ap-

pendix C). For the two-point reduced quadrature, Bs, and therefore K
(e)
s ,

vanish and the stiffness matrix is the same as for the 2-noded Euler-Bernoulli
beam element.
This coincidence is logical as the quadratic rotation field obtained yields a
linear bending field, as for the 2-noded Euler-Bernoulli element. Also γxz = 0
at the two Gauss points that integrate the bending stiffness exactly. There-
fore, the shear stiffness contribution is zero and the stiffness matrix coincides
with that for the 2-noded Euler-Bernoulli beam element.

Example 2.7: Figure 2.13 shows a quadratic/linear Timoshenko beam element.
Derive the stiffness matrix for the 2-noded Timoshenko beam element by
eliminating the central deflection imposing a constant transverse shear
strain field over the element.

- Solution- Solution

The transverse shear strain field in the original quadratic/linear element is

γxz =
∂w

∂x
− θ = (2ξ − 1)

w1

l(e)
− 4ξ

w2

l(e)
+ (2ξ + 1)

w3

l(e)
− 1

2
(1− ξ)θ1 − 1

2
(1 + ξ)θ3

=
w3 − w1

l(e)
− θ1 + θ3

2
+ ξ

(
2
w1

l(e)
− 4w2

l(e)
+

2w3

l(e)
− θ3 − θ1

2

)
For γxz to be constant, it is necessary to cancel out the term in brackets, i.e.

2
w1

l(e)
− 4w2

l(e)
+

2w3

l(e)
− θ3 − θ1

2
= 0

which gives w2 = w1+w3

2 − l(e)

8 (θ3 − θ1).
Substituting this value into the original deflection field yields

w =
w2 + w1

2
+

(
w3 − w1

2
ξ +

l(e)

8
(1− ξ2)(θ1 − θ3)

)
Hence, the resulting displacement field is expressed in terms of four nodal
variables: w1, θ1, w3 and θ3.
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Fig. 2.13 Quadratic/linear Timoshenko beam element of length l(e)

The bending strain and the transverse shear strain in the new 2-noded ele-
ment are

κ =
∂θ

∂x
= − θ1

l(e)
+

θ3
l(e)

γxz =
∂w

∂x
− θ =

w3 − w1

l(e)
− θ1 + θ3

2

The generalized strain matrix is

B =

⎡⎢⎣ 0 − 1

l(e)
0

1

l(e)

− 1

l(e)
−1

2

1

l(e)
−1

2

⎤⎥⎦ =

{
Bb

Bs

}

The exact expression of the stiffness matrix for the new element is

K(e) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
D̂s

l

)(e)
D̂

(e)
s

2
−

(
D̂s

l

)(e)
D̂

(e)
s

2(
D̂sl

4
+

D̂b

l

)(e)
D̂

(e)
s

2

(
D̂sl

4
− D̂b

l

)(e)

(
D̂s

l

)(e)

−D̂
(e)
s

2

Symm.

(
D̂s

l

)(e) (
D̂sl

4
+

D̂b

l

)(e)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The above matrix coincides with that obtained in Eq.(2.39) for the 2-noded

Timoshenko beam element using a one point reduced quadrature for K
(e)
s .

The reasons for the coincidence are: a) the constant curvature field is the
same in both cases; and b) the one point quadrature implies the evaluation
of the terms in B(e) in Eq.(2.15) at ξ = 0. This is equivalent to using the
constant transverse shear strain field chosen in this example.

Example 2.8: Derive the stiffness matrix for the 2-noded Timoshenko beam ele-
ment by imposing a constant transverse shear strain field equal to the value
of the original linear field at the element mid-point.

- Solution- Solution

The linear interpolation for the deflection and the rotation is written as

w =
1

2
(1− ξ)w1 +

1

2
(1 + ξ) ; θ =

1

2
(1− ξ)θ1 +

1

2
(1 + ξ)θ2

The condition of constant transverse shear strain is

γxz = (γxz)ξ=0

The original linear transverse shear strain field is

γxz =
∂w

∂x
− θ =

w2 − w1

l(e)
− θ1 + θ2

2
− θ2 − θ1

2
ξ

Therefore

(γxz)ξ=0 =
w2 − w1

l(e)
− θ1 + θ2

2

The substitute transverse shear strain matrix is

γxz = (γxz)ξ=0 =
[
− 1

l(e)
,−1

2
,

1

l(e)
,−1

2

] ⎧⎪⎪⎨⎪⎪⎩
w1

θ1
w2

θ1

⎫⎪⎪⎬⎪⎪⎭ = B̄sa
(e)

Above expression coincides with that deduced in the previous example.
Clearly, the resulting stiffness matrix coincides with that obtained in Sec-

tion 2.4 using a single integration point for K
(e)
s and K

(e)
b .
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Example 2.9: Derive the stiffness matrix for the 3-noded quadratic Timoshenko
beam element with an assumed transverse shear strain field varying linearly
between the two Gauss points at ξ = ± 1√

3
.

- Solution- Solution

The linear interpolation for γxz can be written as

γxz =
1

2a
(a− ξ)(γxz)ξ=−a +

1

2a
(a+ ξ)(γxz)ξ=a

with a = 1√
3
. From the original expression of γxz for the quadratic Timo-

shenko beam element (Section 2.7 and Example 2.4) we have

(γxz)ξ=−a =
[
− (1 + 2a)

l(e)
,
a(1 + a)

2
,
4a

l(e)
, (1− a2),

(1− 2a)

l(e)
,
a(1− a)

2

]
a(e)

(γxz)ξ=+a =
[ (2a− 1)

l(e)
,
a(a− 1)

2
,
4a

l(e)
,−a(1 + a)

2

]
a(e)

with a(e) = [w1, θ1, w2, θ2, w3, θ3]
T
.

Substituting these expressions into the above linear transverse shear strain
field gives after some algebra

γxz =
[ (2ξ − 1)

l(e)
,
(a2 − ξ)

2
,− 4a

l(e)
ξ, (1− a2),

(1 + 2ξ))

l(e)
,
(a2 − ξ)

2

]
a(e) = B̄sa

(e)

Matrix Bb coincides with that given in Eq.(2.59) for the quadratic beam
element. The element stiffness matrix is

K(e) =

∫ +1

−1

(
BT

b (D̂b)Bb + B̄T
s (D̂s)B̄s

) l(e)

2
dξ = K

(e)
b +K(e)

s

The exact integration of K
(e)
b requires a two-point quadrature and this yields

the expression of Figure 2.9. Similarly, since B̄s is linear in ξ the exact inte-

gration of K
(e)
s also requires a two-point quadrature giving

K(e)
s =

(
D̂s

9l

)(e)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

21 −9

2
l(e) −24 −6l(e) 3

3

2
l(e)

(l(e))2 6l(e) (l(e))
2 −3

2
l(e) − (l(e))

2

2

48 0 −24 −6l(e)

Symm. 4(l(e))
2

6l(e) (l(e))
2

21
9

2
l(e)

(l(e))
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Above expression coincides with that shown in Figure 2.9 obtained with the
original quadratic Bs matrix (Eq.(2.62)) and a two-point reduced quadra-
ture. The assumed linear shear strain field therefore coincides precisely with
that introduced by the two-point reduced quadrature. This shows again the
analogy between the assumed shear strain technique and reduced integration.

Fig. 2.14 Two-noded beam element under distributed loading

2.9 EXACT TWO-NODED TIMOSHENKO BEAM ELEMENT

We derive in this section a 2-noded Timoshenko beam element that yields
nodally exact results. The method is based on the integration of the beam
differential equations over a beam element.

Let us consider a 2-noded beam element of length l in a beam of con-
stant cross-section, length L and uniform material properties along the
beam, subjected to a distributed loading fz(x) with x being the neutral
axis with the origin at the left-hand node of the element (Figure 2.14).

The equilibrium equations are (noting that d(·)
x ≡ d(·)

x′ and dx = dx′)

dM

dx′
+Q = 0 ,

dQ

dx′
+ fz(x

′) = 0 (2.83)

The boundary conditions are

w = w1 ; θ = θ1 at x′ = 0
w = w2 ; θ = θ2 at x′ = l

(2.84)
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We recall the constitutive equations of Timoshenko beam theory for
the bending moment M and the shear force Q (Eqs.(2.4b) and (2.6b))

M = D̂b
dθ

dx′
, Q = D̂s

(
dw

dx′
− θ

)
(2.85)

where D̂b and D̂s are given by Eqs.(2.5a) and (2.6b), respectively.
Substituting the constitutive equations (2.85) into Eqs.(2.83) gives

D̂b
d2θ

dx′2
+ D̂s

(
dw

dx′
− θ

)
= 0

D̂s

(
d2w

dx′2
− dθ

dx′

)
+ fz(x

′) = 0

(2.86)

Eqs.(2.86) show that w and θ vary as a cubic and a quadratic polyno-
mial, respectively for the exact solution of Timoshenko beam theory.

We will express next the resultant stresses M1, Q1 and M2, Q2 at the
two ends of the beam element in terms of the end displacements w1, θ1 and
w2, θ2. These equations will automatically yield the force-displacement
relationship for the 2-noded beam element sought.

Let us obtain first the shear force-displacement relationship. Integra-
tion of Eq.(2.83) for Q gives

Q(x) = Q1 − F (x′) ; F (x) =

∫ x′

0
fz(x

′)dx′ (2.87)

Taking the mean value of Q along the element in Eq.(2.87) yields

Q1 =
1

l

∫ l

0
Q(x′)dx′ +

1

l

∫ l

0
F (x′)dx′ (2.88)

Substituting the constitutive equation for the shear force (Eq.(2.85))
into (2.88) gives

Q1 = −D̂s

l

∫ l

0
θdx′ +

D̂s

l
(w2 − w1) +

1

l

∫ l

0
F (x′)dx′ (2.89)

Note that dw/dx′ has been approximated by (w2−w1/l) in the deriva-
tion of Eq.(2.89).

From Eqs.(2.83), (2.85) and (2.87) we obtain

d2θ

dx′2
= − Q

D̂b

= − 1

D̂b

(Q1 − F (x′)) (2.90)
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We will choose the following quadratic expansion for θ

θ = N1θ1 +N2θ2 +Nmθm (2.91)

where N1 = 1− x′
l , N2 = x′

l , Nm =
(
1− x′

l

)
x′
l , where θm is the rotation

at the element midpoint.
Eq.(2.90) can be written in integral form after weighting with function

Nm as∫ l

0
Nm

d2θ

dx′2
dx′ = −Q1

D̂b

∫ l

0
Nmdx′ +

1

D̂b

∫ l

0
NmF (x′)dx′ (2.92)

Integrating twice by parts the integral in the l.h.s. of Eq.(2.92) gives∫ l

0
θdx′ =

l

2
(θ1 + θ2) +

Q1l
3

12D̂b

− l2

2D̂b

∫ l

0
NmF (x′)dx′ (2.93)

Substituting above expression into (2.89) yields

Q1 =
D̂b

(1 + β)

[
12

l3
(w2 − w1)− 6

l2
(θ1 + θ2)

]
+ f1 (2.94a)

with

β =
12D̂b

l2D̂s

and f1 =
1

l(1 + β)

∫ l

0
(6Nm + β)F (x′)dx′ (2.94b)

The above expression for the parameter β holds for composite beams
and is a generalization of the form of Eq.(2.32) for homogeneous material.

From the equilibrium of the element (Figure 2.14) we have

Q2 = Q1 −
∫ l

0
fz(x

′)dx′ (2.95)

Substituting Eq.(2.94a) into (2.95) gives

Q2 =
D̂b

(1 + β)

[
12

l3
(w2 − w1)− 6

l2
(θ1 + θ2)

]
+ f2 (2.96a)

with

f2 = f1 −
∫ l

0
fz(x

′)dx′ (2.96b)
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Let us derive now the moment-displacement relationship. Using N1 as
the weighting function we write the weighted integral form of the moment-
shear force relationship (Eq.(2.83)) as∫ l

0
N1

dM

dx′
dx′ +

∫ l

0
N1Q(x′)dx′ = 0 (2.97)

Integrating by parts the first integral gives

M1 =
1

l

∫ l

0
Mdx′ +

∫ l

0
N1Q(x′)dx′ = 0 (2.98)

Substituting M and Q from Eqs.(2.85) and (2.87) leads to

M1 =
D̂b

l
(θ1 − θ2) +

l

2
Q1 −

∫ l

0
N1F (x′)dx′ (2.99)

Using N2 instead of N1 in Eq.(2.97) gives

M2 =
D̂b

l
(θ2 − θ1)− l

2
Q1 +

∫ l

0
N2F (x′)dx′ (2.100)

The final moment-displacement relationship is obtained substituting
Q1 from Eq.(2.94a) into Eqs.(2.99) and (2.100). Eqs.(2.94a), (2.96a),
(2.98) and (2.100) can be grouped as

Ka(e) − f (e) = q(e) (2.101a)

where

q(e) = [Fz1 ,M1, Fz2 ,M2]
T = [−Q1,−M1, Q2,M2]

T (2.101b)

K(e) =
D̂b

(1 + β)l3

⎡⎢⎢⎣
12 6l −12 6l

(4 + β)l2 −6l (2− β)l2

12 −6l
Symm. (4 + β)l2

⎤⎥⎥⎦ (2.101c)

f (e) =

[
f1,

l

2
f1 −

∫ l

0
N1Fdx′,−f1 +

∫ l

0
fz(x

′)dx′,
l

2
f1 −

∫ l

0
N2Fdx′

]T
(2.101d)

where f1 and f2 are defined in Eqs.(2.94b) and (2.96b), respectively.
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Matrix K(e) and vector f (e) in Eqs.(2.101) are respectively the stiffness
matrix and the equivalent nodal force vector for a 2-noded beam element
of length l which is nodally exact, i.e. the nodal results coincide with those
obtained by integrating the equilibrium equations (2.83).

Note the sign criteria for the equilibrating nodal forces q(e) and the
end shear forces and bending moments (Figures 1.5 and 2.14).

The expression of f (e) for a uniformly distributed loading is independent
of β and it coincides with the equivalent nodal force vector for the 2-noded
Euler-Bernoulli beam element (Eq.(1.21b)). Table 2.2 shows the expression
of f (e) for different loading types [BD5].

Table 2.2 Equivalent nodal forces for an “exact” 2-noded Timoshenko beam ele-
ment

For β = 0 the stiffness matrix coincides with the expression for the
2-noded Euler Bernoulli beam element (Eq.(1.20)).

The exact 2-noded Timoshenko beam element can also be derived using
a mixed formulation with a linear interpolation for w, a quadratic one for
θ and a constant field for Q. Eliminating the shear force at element level
leads to the expressions for K(e) and f (e) of Eqs.(2.101) [BD5].

The reader can verify the coincidence of Eq.(2.101c) K(e) with the
form of Eq.(2.55) for homogeneous material derived via a substitute shear
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modulus. Clearly, nodally exact results are only obtained if the expression
for f (e) of Eq.(2.101d) is used.

We present next an application of this element to the analysis of a
cantilever beam. Exact nodal results are obtained using just one element.

Example 2.10: Obtain the exact nodal values for the end deflection and the
end rotation for the cantilever beam of Figure 2.5 using the exact 2-noded
Timoshenko beam element of Section 2.9.

- Solution- Solution

For a single beam element of rectangular cross-section under an end point
load, the “exact” stiffness equation is (Eqs.(2.101))

EIy
(1 + β)l3

⎡⎢⎢⎣
12 6l −12 6l

(4 + β)l2 −6l (2− β)l2

12 −6l
(4 + β)l2

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
w1

θ1
w2

θ2

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
R
M1

P
0

⎫⎪⎪⎬⎪⎪⎭ (2.102)

Eliminating the DOFs at the clamped node gives

EIy
(1 + β)l3

[
12 −6l
−6l (4 + β)l2

]{
w2

θ2

}
=

{
P
0

}
(2.103)

Inverting above system yields{
w2

θ2

}
= F

{
P
0

}
(2.104)

where the “exact” flexibility matrix is

F =

⎡⎣( 1
GA∗ +

l3

3EIy

)
l2

2EIy
l2

2EIy
l

EIy

⎤⎦ with A∗ = αA,α =
5

6
(2.105)

From Eq.(2.104)

w2 = P

(
1

GA∗ +
l3

3EIy

)
, θ2 =

l2

2EIy
P (2.106)

For a very slender beam G/E →∞ and the “exact” nodal solution is

w2 =
Pl3

3EIy
, θ2 =

l2

2EIy
(2.107)

Above results coincide with those given in Section 2.4 (Eq.(2.36)).
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2.10 ROTATION-FREE BEAM ELEMENT ACCOUNTING FOR
TRANSVERSE SHEAR DEFORMATION EFFECTS

The CCB rotation-free beam element (Section 1.4.1) can be extended to
account for transverse shear deformation effects. The nodal deflection of
the original rotation-free beam element is enhanced with the shear defor-
mation angle. This allows us to compute the bending and shear deforma-
tion contributions to the PVW. The method is summarized next for the
so-called CCB+1 element. Further details can be found in [ZO3].

The rotation is expressed as the sum of the slope and the shear defor-
mation angle φ (hereafter termed the shear angle) in the standard manner
for Timoshenko theory, i.e.

θ =
dw

dx
+ φ (2.108)

The bending strain (curvature) is expressed in terms of w and φ as

κ =
dθ

dx
=

d2w

dx2
+

dφ

dx
= κw + κφ (2.109)

where κw = d2w
dx2 and κφ = dφ

dx . κw is termed the “geometrical” curvature.
The transverse shear strain is given by (minus) the shear angle, i.e.

γxz =
dw

dx
− θ = −φ (2.110)

The PVW for a single element (Eq.2.18a) is expressed in terms of w
and φ (disregarding distributed and concentrated bending moments) as∫

l(e)
[(δκw + δκφ)M − δφQ] dx−

∫ l

0
δwfzdx =

2∑
i=1

δwiFzi (2.111)

where δκw = δ
(
d2w
dx2

)
and δκφ = δ

(
dφ
dx

)
.

The PVW is split into the following two independent equations∫
l(e)

δκwMdx−
∫
l(e)

δwfzdx =

2∑
i=1

δwiFzi∫
l(e)

[δκφM − δφQ]dx = 0

(2.112)

The constitutive relationship between the bending moment and the
curvature and between the shear force and the shear strain are written as

M = D̂b(κw + κφ) ; Q = −D̂sφ (2.113)
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Fig. 2.15 CCB+1 rotation-free beam element accounting for transverse shear de-
formation effects. The deflection is linearly interpolated in terms of the nodal
values and the shear angle is constant within the element

We express the deflection and shear angle within the element in terms
of a linear interpolation for w and a constant field for φ as (Figure 2.15)

w =
2∑

i=1

Niwi ; φ = φe (2.114)

where Ni are the standard linear shape functions (Figure 2.4).
An alternative procedure is to interpolate linearly both the deflection

and the shear angle. This choice was used by Oñate and Zárate [OZ2]
who derived an accurate rotation-free beam element (termed CCB+) ac-
counting for shear deformation effects. The constant approximation for
the shear angle of Eq. (2.114), however, simplifies the treatment of the
clamped boundary conditions and also yields excellent results. This op-
tion is used for deriving the element matrices as explained below.

A constant geometrical curvature field κew is defined over an element
with nodes i, i+ 1, as is typical in rotation-free beam elements, giving

κew =
1

le

∫ i+1

i

d2w

dx2
=

1

le

[
dw

dx

]i+1

i

=
1

le

[(
dw

dx

)
i+1

−
(
dw

dx

)
i

]
= Bbw̄

(e)

(2.115)
and, hence

δκew = Bbδw̄
(e) (2.116)

Matrix Bb coincides with Eq.(1.31d) and w̄(e) = [wi−1, wi, wi+1, wi+2]
T

collects the deflection at the four nodes that belong to element e and the
two adjacent elements (see Eq.(1.31e) and Figure 2.15).
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An average curvature κφ is defined over the element as

κeφ =
1

le

∫
le

dφ

dx
dx =

1

le
[φi+1 − φi] (2.117)

The shear angles at the element nodes are computed as the average of
the constant values for the elements adjacent to each node, i.e.

φi =
φe + φe−1

2
, φi+1 =

φe + φe+1

2
(2.118)

Substituting Eqs.(2.118) into (2.117) gives

κeφ =
1

2le
[−1, 0, 1]

⎧⎨⎩
φe−1

φe

φe+1

⎫⎬⎭ = Bφφ̄φφ
(e)

(2.119a)

with

Bφ =
1

2le
[−1, 0, 1] , φ̄φφ(e)

= [φe−1, φe, φe+1]T (2.119b)

This technique introduces the fictitious shear angle variables φ0 and
φN+1 (N being the number of elements in the mesh) which are prescribed
to a zero value.

The virtual fields δw and δφ are expressed as

δw = [0, N1, N2, 0]

⎧⎪⎪⎨⎪⎪⎩
δwi−1
δwi

δwi+1

δwi+2

⎫⎪⎪⎬⎪⎪⎭ = Nwδw̄
e (2.120a)

δφ = [0, 1, 0]

⎧⎨⎩
δφe−1

δφe

δφe+1

⎫⎬⎭ = Nφδφ̄φφ
(e)

(2.120b)

Eqs.(2.113), (2.115) and (2.119a) define constant bending moment and

shear force fields over the element in terms of w̄(e) and φ̄φφ
(e)

as

M = D̂b[κ
e
w + κeφ] = D̂b[Bbw̄

(e) +Bφφ̄φφ
(e)

] (2.121)

Q = −D̂sφ̄
(e) = −D̂sNφφ̄φφ

(e)

Substituting Eqs.(2.115), (2.117), (2.120) and (2.121) into (2.112)
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yields (assuming homogeneous material properties)

[δw̄(e)]T [BT
b D̂bBbw̄

(e)+BT
b D̂bBφφ̄φφ

(e)
]l(e)−[δw̄(e)]T

∫
l(e)

NT
wfzdx = [δw̄(e)]Tq(e)

w[
δφ̄φφ

(e)
]T [

BT
φ D̂bBbw̄

(e) +BT
φ D̂bBφφ̄φφ

(e)
+NT

φNφD̂sdxl
(e)φ̄φφ

(e)
]
= 0 (2.122)

where
q(e)
w = [0, Fz1 , Fz2 , 0]

T (2.123)

are the equilibrating nodal forces for the element.
After simplification of the virtual variables and following the usual

global assembly process we obtain the system of equilibrium equations

Kww +Kwφφφ = fw ; KT
ww +Kφφφφ = 0 (2.124)

where w lists the deflection of all nodes and φφφ contains the shear angles
for all the elements (including the auxiliary variables at the first and last
element which are prescribed to zero).

The matrices and vectors in Eq.(2.124) are formed by assembling the
element contributions, as usual. The element stiffness matrices are

K(e)
w = BT

b BbD̂bl
(e) , K

(e)
wφ = BT

wBφD̂bl
(e)

K
(e)
φ = BT

φBbD̂bl
(e) +NT

φNφD̂sl
(e) (2.125)

The equivalent nodal force vector for the element for a uniformly dis-
tributed load fz = q is

f (e)w =
ql(e)

2
[0, 1, 1, 0]T (2.126)

Boundary conditions

Prescribed deflection: A zero deflection at a node is directly imposed when
solving the system of equations.

Simply supported (SS) node: Matrix Bb is modified as explained in Section
1.4.1 (Eqs.(1.35)–(1.37)) whereas for Bφ the following procedure is used.

The curvature κφ in the element i, i + 1 adjacent to a simple support
at a left-end node i (is expressed as (see Eq.(2.117) and Figure 2.16a)

κφ =
1

le
(φi+1−φi) =

1

le

(
φe+1 + φe

2
− φe

)
=

1

2le
[0,−1, 1]

⎧⎨⎩
φe−1

φe

φe+1

⎫⎬⎭ = Bφφ̄φφ
e

(2.127a)
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Fig. 2.16 CCB+1 element. (a) Free or SS node B at left and right ends of the
beam. (b) Clamped or symmetry node B at left and right ends. Shaded areas
show the domains 1 and 2 that split the element containing the prescribed node

with

Bφ =
1

2le
[0,−1, 1] (2.127b)

Note that in Eq.(2.127a) we have assumed that φi = φe.
A similar procedure for a right-end node i+ 1 (Figure 2.16a) gives

Bφ =
1

2le
[−1, 1, 0] (2.127c)

Clamped or symmetry node: The element adjacent to a clamped node i, or to
a node on a symmetry axis, is split in two domains (Figure 2.16b).

The curvature in the first domain is expressed as

κe1 =
2

le

∫ A

i

dφ

dx
dx =

2

le
[θA − θi

=0

↗ ] =
2

le
θA =

2

le

[(
dw

dx

)
A

+ φA

]
=

=
2

le

[
wi+1 − wi

le
+ φe

]
=

2

(l(e))2
[0,−1, 1, 0]

⎧⎪⎪⎨⎪⎪⎩
wi−1
wi

wi+1

wi+2

⎫⎪⎪⎬⎪⎪⎭+

+
2

le
[0, 1, 0]

⎧⎨⎩
φe−1

φe

φ̄e+1

⎫⎬⎭ = Bb1w̄
(e) +Bφ1φ̄φφ

(e)
(2.128)
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For the second domain we obtain

κe2 =
2

le
[θi+1 − θA] =

2

le

[
1

2

(
wi+1 − wi

le
+

wi+2 − wi+1

le+1

)
− wi+1 − wi

le

+
φe+1 + φe

2
− φe

]
=

1

(le)2le+1
[0, le+1,−(le + le+1), le]w̄e +

+
1

le
[0,−1, 1]]φ̄φφe

= Bb2w̄
e +Bφ2φ̄φφ

e
(2.129)

Note thatBb1 andBb2 coincide with matrices B1 andB2 of Eq.s(1.39a)
and (1.40a), respectively.

The two domains in element e are treated as two different elements

with nodes (i, A) and (A, i+1), respectively. Matrices K
(e)
w ,K

(e)
wφ and K

(e)
φ

of Eq.(2.125) are computed for each of the two domains using Bbi and
Bφi

, i = 1, 2 instead of Bb and Bφ, respectively. The stiffness matrices for
the two domains are assembled in the global stiffness matrix as usual.

The same procedure is followed for a right-end clamped node (Figure
2.18b). Matrices Bb1 and Bφ1 for “element” (A, i + i) coincide precisely
with those of Eq.(2.128). For “element” (i, A) Bb2 coincides with matrix
B2 of Eq.(1.41) and Bφ2 is

Bφ2 =
1

le
[−1, 1, 0] (2.130)

We recall that the fictitious shear angles φ0 and φN+1 are prescribed
to a zero value.

2.10.1 Iterative computation of the nodal deflections and the element
shear angles

The following iterative algorithm can be implemented for computing w
and φφφ via Eq.(2.124)

Kww
i = fw −Kwφφφφ

i−1 → wi

Kφφφφ
i = −KT

wφw
i → φφφi

(2.131)

where superindex i denotes the number of iterations. The iterations con-
tinue until convergence of the nodal deflections and the shear deformation
angles is achieved. Convergence is typically measured by the L2 norm of
vectors w and φφφ [OZ2]. The advantage of the iterative scheme versus the
monolithic solution of Eqs.(2.124) is that for i = 1 and φφφ0 = 0, w1 co-
incides with the solution for Euler-Bernoulli beam theory. The effect of
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�

Fig. 2.17 SS thick beam under uniform load. Normalized deflection field for differ-
ent meshes of CCB+1 elements. Bending moment and shear force diagrams for
a 40 element mesh

transverse shear deformation is introduced progressively via the shear an-
gle variables φφφ with the number of iterations. This effect is negligible for
slender beams. Convergence of the iterative scheme (2.131) is quite fast
(2–3 iterations), as the shear angle values are relatively small compared
to the deflections, even for thick beams [ZO3].

For visualization purposes the nodal values of the shear angles can be
computed a posteriori by a simple nodal averaging of the constant values
of the two elements adjacent to a node.

2.10.2 Performance of the CCB+1 element

The accuracy of the CCB+1 beam element was tested in the analysis
of simple supported (SS) and cantilever thick beams respectively loaded
under distributed and end point forces. Figures 2.17 and 2.18 show the
normalized distribution of the deflection (for the SS and cantilever beams)
and the convergence of end deflection (for the cantilever beam) with the
number of elements. The bending moment and shear force diagrams for
the 40 element mesh are also shown. Only half of the beam was discretized
taking advantage of the symmetry.
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�

Fig. 2.18 Cantilever thick beam under end point load. Convergence of end deflec-
tion. Normalized deflection field for different meshes of CCB+1 elements. Bending
moment and shear force diagrams for a 40 element mesh

Table 2.3 shows the central deflection values and the percentage error
versus the thick solution for thick and slender SS beams under a uniformly
distributed load. It is remarkable that 	 5% error is obtained with the
simple four element mesh in all cases.

Other examples of the good behaviour of the CCB+1 element for slen-
der and thick beams can be found in [ZO3].

The bending moment and shear force distributions along the beam are
also plotted for the 40 element mesh. Results are practically coincident
with the analytical values. Similar good behaviour was obtained for other
thick and slender beam problems studied with the CCB+ element [OZ2].

2.11 BEAMS ON ELASTIC FOUNDATION

The treatment of 2D solid structures on an elastic foundation was studied
in Section 9.7 of [On4]. The method can be easily extended to beams.

The virtual work includes now the work of the reactions at the nodes
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Central deflection wc

No. of h/L=0.01 h/L=0.05 h/L=0.10 h/L=0.20
elements*

wc % error wc % error wc % error wc % error

2 -3,94E+02 20.02% -6,33E-01 19.75% -4,00E-02 19.57% -2,63E-03 18.32%
4 -3,45E+02 5.02% -5,54E-01 4.85% -3,51E-02 4.87% -2,32E-03 4.47%
8 -3,32E+02 1.27% -5,34E-01 1.12% -3,39E-02 1.20% -2,24E-03 1.00%
16 -3,29E+02 0.33% -5,29E-01 0.19% -3,36E-02 0.28% -2,22E-03 0.14%
32 -3,28E+02 0.10% -5,28E-01 -0.05% -3,35E-02 -0.05% -2,22E-03 -0.08%

Slender
solution -3,28E+02 -5,25E-01 -3,28E-02 -2,05E-03

Thick
solution -3,28E+02 -5,28E-01 -3,35E-02 -2,22E-03

* Number of elements in half beam due to symmetry

Table 2.3 Simple supported beam under uniformly distributed load. Central de-
flection values and percentage error versus the thick beam solution for slender
and thick beams analyzed with the CCB+1 rotation-free beam element

on the foundation (Figure 2.19) as

IV W = EVW +

∫
lf

δwtzdx (2.132)

where lf is the length of the beam in contact with the foundation and IV W
and EVW denote the internal and external virtual work terms given by
the l.h.s. and r.h.s. of Eq.(2.9), respectively.

Noting that tz = −kw(x) where k is the elastic modulus of the foun-
dation Eq.(2.132) can be written as

IV W +

∫
lf

δwkwdx = EVW (2.133)

Introducing now the standard discretization for 2-noded Timoshenko
beam elements leads to the equilibrium equation for the element

[K(e) +H(e)]a(e) − f (e) = q(e) (2.134)
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Fig. 2.19 Beam laying on an elastic foundation

where all the matrices and vectors have the usual form (Section 2.33) and

H(e) =

[
H11 H12

H21 H22

](e)
with H

(e)
ij =

∫
l
(e)
f

k

[
(NiNj) 0

0 0

]
dx (2.135)

where l
(e)
f is the length of the element in contact with the foundation. A

simple integration gives

H
(e)
ij =

(klf )
(e)

3

[
γ 0
0 0

]
(2.136)

with γ = 1 for i+ j = 2, 4 and γ = 1/2 for i+ j = 3.
H(e) is a full matrix and this introduces a coupling between the de-

flection of nodes 1 and 2. A simplification is to diagonalize H by lumping
the coefficients of each row. This is equivalent to assuming a spring of

elastic constant
(klf )

(e)

2 attached to each node. For equal length elements

(l
(e)
f = l) matrix H is simply

H(e) = kl

[
H1 0
0 H1

]
with H1 =

[
1 0
0 0

]
(2.137)

The process is the same for Euler-Bernoulli beam elements. Matrix H
must account now for the coupling between the nodal deflections and the

nodal rotation (Eq.(1.10)). The expression for H
(e)
ij is

H
(e)
ij =

∫
l
(e)
f

k

[
NiNj , NiN̄j

N̄iNj , N̄jN̄i

]
dx , i, j = 1, 2 (2.138)

where Ni, N̄i, i = 1, 2 are given in Eqs.(1.11a). The lumping of H(e) is also
possible, although it is not recommended in this case.
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2.12 CONCLUDING REMARKS

This chapter has focused on plane beam elements based on Timoshenko
beam theory. Unlike Euler-Bernoulli beam theory, beam cross-sections in
Timoshenko theory do not remain necessarily orthogonal to the beam axis.
This introduces the effect of transverse shear deformation and it allows us
to analize thick and slender beams using simple Co continuous elements.
Timoshenko beam elements are also more suitable for analysis of compos-
ite laminated beams (Chapters 3 and 4). Practically, the only drawback
of Timoshenko beam elements is their tendency to lock for slender beams.
This deficiency can be overcome in a number of ways: by reduced inte-
gration of the shear stiffness terms, by compatible interpolations for the
deflection and the rotation, and by imposing “a priori” a correct transverse
shear strain field over the element. An “exact” 2-noded beam element has
been presented that is useful for analysis of thick and slender beams.

The extended rotation-free beam element with transverse shear de-
formation can be applied to the analysis of slender and thick beams in
an adaptive manner. The shear angle variables are introduced only in
the elements where transverse shear deformation effects are important
[OZ2,ZO3].

Many of the concepts studied in this chapter will be revisited again
when dealing with plates and shells.



3

COMPOSITE LAMINATED PLANE
BEAMS

3.1 INTRODUCTION

Strength performance and weight advantages of composite materials ver-
sus traditional concrete and steel have led to their sustained and increased
applications in aircraft and aerospace vehicles, automotive, naval and civil
structures. The design of efficient and reliable composite structures how-
ever requires improved computational methods that accurately incorpo-
rate the key mechanical effects [AB,Bar2,BC].

Composite beams are typically formed by a piling of layers of composite
material. The finite element analysis of the so called composite laminated
beams has to account for the non-uniform distribution of the material
properties along the beam thickness direction. Timoshenko beam theory
is particularly suited to these problems as the heterogeneity of the material
increases the importance of transverse shear deformation. The formulation
is also applicable to mixed steel-concrete beams and standard reinforced
concrete beams, where the concrete and steel bars are modelled by layers
with different material properties.

In the following sections we present a finite element formulation for
the analysis of composite laminated plane beams using 2-noded Timo-
shenko beam elements. This includes the formulation of an “exact” 2-
noded Timoshenko composite laminated beam element. The derivation
of Euler-Bernoulli composite laminated beam elements is also briefly de-
scribed. The chapter concludes with an overview of composite laminated
beam elements based on higher order approximations for the in-plane dis-
placement across the thickness.

This chapter introduces the main ideas that we will extend in the
subsequent chapters when dealing with 3D beams, plates and shells with
composite laminated material.

E. Oñate, Structural Analysis with the Finite Element Method. Linear Statics:  98 
Volume 2: Beams, Plates and Shells, Lecture Notes on Numerical Methods  
in Engineering and Sciences, DOI 10.1007/978-1-4020-8743-1_3,  
© International Center for Numerical Methods in Engineering (CIMNE), 2013 
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Fig. 3.1 Composite laminated Timoshenko beam. Forces and displacement field

3.2 KINEMATICS OF A PLANE LAMINATED BEAM

Let us consider a straight beam of length L and axis x linking the gravity
centers G of all cross-sections with xz being a principal plane of inertia.
The cross-section is formed by a piling (stacking) of layers of composite
material. Hence, in general the beam axis does not coincide with the neu-
tral axis. The loads are vertical forces and bending moments contained
in the xz plane as usual for plane beams (Figure 3.1). Bending on the
plane yz will not be considered here. The general bending problem will be
studied in Chapter 4 when dealing with 3D beams.

We will assume Timoshenko hypothesis for the rotation of the nor-
mal to hold (Section 2.2). Under these assumptions the axial and vertical
displacements of an arbitrary point A of the beam section are expressed
as

u(x, z) = u0(x)− zθ(x) ; w(x, z) = w0(x) (3.1)

where (·)0 denotes the displacements of the beams axis (Figure 3.1). The
axial displacement u0 is now accounted for in the beam kinematics due to
the effect of non-uniform material properties over the beam section. This
is a key difference with the homogeneous beam theories studied in the
previous two chapters in which w0(x) was denoted as w(x), for simplicity.
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The axial and transverse shear strains are deduced from Eqs.(3.1) as

εx =
∂u

∂x
=

∂u0
∂x

− z
∂θ

∂x
(3.2a)

γxz =
∂w

∂x
+

∂u

∂z
=

∂w0

∂x
− θ (3.2b)

Eqs.(3.2) can be written in matrix form as

εεε =

{
εx
γxz

}
=

[
1 −z 0
0 0 1

] [
∂u0
∂x

,
∂θ

∂x
,
∂w0

∂x
− θ

]T
= Sε̂εε (3.3a)

with

S =

[
1 −z 0
0 0 1

]
, ε̂εε =

[
∂u0
∂x

,
∂θ

∂x
,
∂w0

∂x
− θ

]T
(3.3b)

where εεε is the strain vector, ε̂εε is the generalized strain vector containing

the elongation of the beam axis
(
∂u0
∂x

)
, the curvature

(
∂θ
∂x

)
and the trans-

verse shear strain
(
∂w0
∂x − θ

)
and S is a strain-displacement transformation

matrix depending on the thickness coordinate z.
The assumption θ = ∂w0

∂x (Euler-Bernoulli theory) leads to the trans-
verse shear strain vanishing. As mentioned above, Timoshenko theory is
preferable for composite laminated beams due to the relevance of trans-
verse shear deformation in these structures.

The assumption of a linear displacement field across the thickness can
be enhanced by using a higher order approximation based on linear or
quadratic distributions for the in-plane displacement within each layer.
A description of some higher order laminated beam theories is presented
in the last part of the chapter. Despite the increased accuracy of these
theories, the simpler Timoshenko beam formulation described in the first
part of this chapter yields sufficiently good results for many composite
and sandwich beams found in practice.

3.3 BASIC CHARACTERISTICS OF COMPOSITE MATERIALS

Composite materials for structural applications are typically manufac-
tured by embedding in a matrix material fibers that are all aligned in
a single direction. Appendix A lists the basic properties of the more usual
fiber and matrix (resins and polymers) materials. We present next a com-
parative discussion of the properties of the fibers, the matrix and the
composite.
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Ef ρf σt
fu

(GPa) (Kg/m3) (MPa)

E-Glass 72 2550 3400
S-Glass 86 2500 4800
Carbon 190 1410 1700
Boron 400 2600 3400
Graphite 250 1410 1700

Table 3.1 Young modulus (E), density (ρ) and ultimate tensile stress (σt
fu) of

some fibers [BC]

Ef ρ σt
u

(GPa) (Kg/m3) (MPa)

Aluminium 73 2700 620
Titanium 115 4700 1900
Steel 210 7700 4100

Table 3.2 Young modulus (E), density (ρ) and ultimate tensile stress (σt
u) of

several metals

3.3.1 About the properties of fibers

Table 3.1 lists the Young modulus (Ef ), the density ρf and the ultimate
allowable tensile stress (σt

fu) (also called “failure ” stress) of several typical
fibers. Indices f and m in the material properties in the following denote
fiber and matrix properties, respectively.

Table 3.2 shows the same physical properties for three commonly used
metals: aluminium, titanium and steel. Clearly, the ultimate tensile stress
and the Young modulus of steel are far superior to those of titanium and
aluminium. However, Table 3.2 shows that while steel is far stronger and
stiffer, it is also much heavier that the other two metals.

Comparing the properties of these three metals with those of the fibers
in Table 3.1 we clearly see that fibers have a remarkable lighter ultimate
strength than the three chosen metals. In addition, the fiber densities are
comparable (and even smaller) to those of the lighter metal (aluminium),
while the Young modulus for the fibers are within the same range than
for the three metals.

Clearly, the various metals chosen can be directly used as structural
materials, whereas the fibers can not be used, as such, as structural ma-
terials. However, the remarkable high strength/density ratio of the fibers
justifies their popularity for use in structural applications.
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3.3.2 About the properties of the matrix

A number of polymeric materials can be used as matrix materials. Ther-
moset materials, such as epoxy, are commonly used as matrices for com-
posite materials. The mechanical properties of epoxy are

Em = 3.5GPa , ρm = 1300Kg/m3 , σt
mu = 50MPa and σc

mu = 140MPa
(3.4)

where Em and ρm are the Young modulus and the density, respectively and
(σc

mu, σ
t
mu) are the ultimate allowable stresses in tension and compression,

respectively for the epoxy matrix.

3.3.3 Approximation of the properties of the composite

A crude way of approximating the material properties of a composite
material consisting of fibers all aligned in a single direction embedded in a
matrix is to homogenize the material properties of the composite by using
a rule of mixture defined as [BC]

Ec = VfEf + (1− Vf )Em , ρc = Vfρf + (1− Vf )ρm

σt
cu = Vfσ

t
fu + (1− Vf )σ

t
mu

(3.5)

where Ec, ρc and σt
cu are the Young modulus, the density and the ultimate

tensile stress of the composite and Vf is the volume fraction of fibers in
the composite.

As for the ultimate compression stress for the composite, the value for
the matrix (i.e. σc

cu = σc
mu) can be used as a good approximation.

Consider, for instance, a composite material consisting of graphite
fibers (Vf = 0.6) embedded in an epoxy matrix. The physical properties
of the composite are (see Table 3.1 and Eqs.(3.4) and (3.5))

Ec = 250× 0.6 + 3.5× 0.4 = 150 + 1.4 = 151.4GPa

ρc = 1410× 0.6 + 1300× 0.4 = 846 + 520 = 1366Kg/m3

σt
cu = 1700× 0.6 + 50× 0.4 = 1020 + 20 = 1040MPa

σc
cu = σc

mu = 140MPa

(3.6)

Note that the intrinsic properties of the matrix contribute little to the
Young modulus and the ultimate tensile strength of the composite. How-
ever, the role of the matrix is essential to keep all the fibers together and
to provide an adequate surface finish. A less obvious, but yet important
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role of the matrix is to diffuse the stresses among the individual fibers
[Bar2,BC].

In Section 7.2.3 we will study a more accurate definition of the mate-
rial properties and the constitutive equations for thin sheets of composite
material made of unidirectional fibers embedded in a matrix.

3.4 STRESSES AND RESULTANT STRESSES

The axial and shear stresses are expressed from Eqs.(3.2) as

σx = Eεx = E

(
∂u0
∂x

− z
∂θ

∂x

)
(3.7a)

τxz = Gγxz = G

(
∂w0

∂x
− θ

)
(3.7b)

where E = E(x, z) and G = G(x, z) are the longitudinal Young modulus
and the shear modulus of the beam composite material.

Eqs.(3.4) assume that one of the principal material axes is coincident
with the beam axis, as it is usual in plane beam theory.

Eqs.(3.4) can be written in matrix form using Eq.(3.3) as

σσσ =

{
σx
τxz

}
=

[
E 0
0 G

]{
εx
γxz

}
= Dεεε = DSε̂εε (3.8)

where D is the standard constitutive matrix relating stresses and strains
at a point in the transverse cross section.

The axial force N , the bending moment M and the shear force Q in a
beam section (Figure 3.2) are obtained as

σ̂σσ =

⎧⎨⎩
N
M
Q

⎫⎬⎭ =

∫∫
A

⎧⎨⎩
σx
−zσx
τxz

⎫⎬⎭ dA =

∫∫
A
STσσσ dA (3.9)

where σ̂σσ is the resultant stress vector, S is the transformation matrix of
Eq.(3.3b) and A is the area of the cross-section.

3.5 GENERALIZED CONSTITUTIVE MATRIX

Substituting Eq.(3.8) into (3.9) gives

σ̂σσ =

(∫∫
A
STDS dA

)
ε̂εε = D̂ε̂εε (3.10)
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Fig. 3.2 Sign convenion for resultant stresses N , M and Q

where ε̂εε is the generalized strain vector defined in Eq.(3.3b) and D̂ is the
generalized constitutive matrix. The terms of D̂ are computed as

D̂ =

∫∫
A
STDS dA =

⎡⎣ D̂a D̂ab 0

D̂ab D̂b 0

0 0 D̂s

⎤⎦ (3.11a)

with

D̂a =

∫∫
A
E(x, z) dA ; D̂ab = −

∫∫
A
E(x, z)z dA

D̂b =

∫∫
A
E(x, z)z2 dA ; D̂s = kzĜ with Ĝ =

∫∫
A
G(x, z) dz

(3.11b)
where D̂a is the axial stiffness, D̂b is the bending stiffness, D̂ab is the
coupling axial-bending stiffness, D̂s is the shear stiffness and kz is the shear
correction parameter for bending around the y axis. The computation of
kz is explained in the next section.

For a general composite material with an arbitrary distribution of the
material properties over the beam section, the integrals of Eq.(3.9) can be
computed by dividing the section into a grid of 2D triangular o quadrilat-
eral elements and using numerical integration within each 2D element.

For a laminated beam with nl layers of isotropic material with modulae
Ek, Gk, thickness hk and width bk we have

D̂a =

nl∑
k=1

(zk+1 − zk)bkE
k =

nl∑
k=1

bkhkE
k

D̂ab = −
nl∑
k=1

1

2
(z2k+1 − z2k)bkE

k = −
nl∑
k=1

hkbkz̄kE
k
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Fig. 3.3 Rectangular laminated beam. Coordinates for integrating the material
properties across the layers

D̂b =
1

3

nl∑
k=1

(z3k+1 − z3k)bkE
k

D̂s = kz

nl∑
k=1

(zk+1 − zk)bkG
k = kz

nc∑
k=1

hkbkG
k

(3.12)

where z̄k is the vertical coordinate of the midpoint of the kth layer. If
the section width is constant its value can be taken out of the sums in
Eq.(3.12). Figure 3.3 shows an example of a rectangular laminated beam.

The material parameters Ek and Gk for each layer correspond to the
properties of the composite along the principal material axes, i.e. the lon-
gitudinal direction (the fiber direction) or the transverse direction, as ad-
equate. It is assumed that the fiber direction is aligned in (or orthogonal
to) the beam axis direction.

3.6 AXIAL-BENDING COUPLING AND NEUTRAL AXIS

The off-diagonal term D̂ab in matrix D̂ originates a coupling between the
axial and bending effects. Thus, an axial force yields a curvature and a
bending moment induces an elongation of the beam axis. This coupling
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term vanishes in certain circumstances for which the x axis is the so-called
neutral axis that are studied next.

For homogeneous material

D̂a = EA , D̂ab = −ES̄ , D̂b = EIy , D̂s = kzGA (3.13)

where A is the area of the transverse section, Iy is the moment of inertia
with respect to the y axis and S̄ =

∫∫
A zdA = zgA where zg is the vertical

coordinate of the center of gravity of the section G. If the x axis is placed
at point G then S̄ = 0 and, hence, D̂ab = 0 which means that, for homo-
geneous material, the x axis is the neutral axis and the axial and bending
effects are uncoupled at a section level.

If the material properties (and the section geometry) are symmetrical
with respect to the reference axis x, then x is also the neutral axis.

The position of the neutral axis for an arbitrary composite laminated
section can be found as follows. Let us define the relative vertical coordi-
nate z′ = z − d where d is the vertical distance between the beam axis x
and the neutral axis. If the x axis is placed at point O defining the neutral
axis (Figure 3.4), then

D̂ab = −
∫∫

A
Ez′dA = −

∫∫
A
E(z − d)dA = 0 (3.14a)

From Eqs.(3.14a) and (3.11b) we can obtain

d = −D̂ab

D̂a

(3.14b)

In conclusion, the axial and bending moment effects can be decoupled
at section level by simply placing the origin of the x axis at point O (Figure
3.4) and changing z by z′ in all the equations. This does not affect the
expressions for D̂a and D̂s (as they do not depend on z) and of D̂b (as∫∫

AEz
′2dA =

∫∫
AEz2dA). The change of z by z′ does affects the axial

displacement u, as u = u0−z′θ (Eq.3.1) and the computation of the normal
stress σx via Eq.(3.7a). However, the results for the vertical deflection w0,
the rotation θ and the transverse shear stresses are independent of the
origin of the beam axis.

3.7 THERMAL STRAINS AND INITIAL STRESSES

An initial axial strain due to thermal effects (εox) and initial stresses
(σo

x, τ
o
xz) can easily be accounted for in the present formulation. The strain-
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Fig. 3.4 Position of the neutral axis O in a rectangular beam section

stress relationship of Eq.(3.8) is modified as

σx = E(εx − εox) + σo
x ; τxz = Gγxz + τ oxz (3.15)

where εox = αΔT , α being the thermal expansion coefficient and ΔT the
temperature increment. Recall that the initial tangential stresses due to a
thermal expansion are zero (Section 4.2.4 of [On4]).

The relationship between resultant forces and generalized strains (Eqs.
(3.7)) is modified as

σ̂σσ = D̂ε̂εε+ σ̂σσo (3.16a)

where σ̂σσo is the initial resultant stress vector given by

σ̂σσo = [No,Mo, Qo]T (3.16b)

with

No =

∫∫
A
[−Eεox + σo

x]dA , Mo =

∫∫
A
[Eεox − σo

x]z dA , Qo =

∫∫
A
τ oxzdA

(3.16c)

3.8 COMPUTATION OF THE SHEAR CORRECTION
PARAMETER

We recall the expression for the shear correction parameter given in
Eq.(2.7b)

kz =
Q2

Ĝ

[∫∫
A

τ2xz
G(z)

]−1
dA (3.17)
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This equation was found assuming cylindrical bending around the y
axis and, consequently, τxy = 0. What it remains now is to find an expres-
sion for the distribution of τxz over the cross section.

We will consider again for simplicity the case of cylindrical bending
around the y axis. The more general case is explained in Appendix D.

The laminate beam theory chosen yields a discontinuous distribution
of the normal stress σx across the beam layers, despite the fact that the
strain εx varies linearly in the depth direction. This is a consequence of the
different material properties for each layer (Figure 3.5). Inverting Eq.(3.10)
gives

∂u0
∂x

=
1

D̂
[D̂bN − D̂abM ] (3.18a)

∂θ

∂x
=

1

D̂
[−D̂abN + D̂aM ] (3.18b)

with
D̂ = D̂aD̂b − D̂2

ab (3.18c)

Substituting Eqs.(3.18a,b) into (3.7a) gives σx at each layer in terms
of N and M by

σx =
E

D̂

[
D̂bN − D̂abM − z(−D̂abN + D̂aM)

]
(3.19)

Eq.(3.7b) shows that the shear stress τxz is constant across the beam
depth (as it is usual in Timoshenko beam theory). The “correct” distri-
bution of τxz which satisfies the equilibrium equations of elasticity can be
computed a posteriori once the displacements have been obtained. From
the equilibrium equation along the x direction (Appendix B and [ZTZ])
we have (recalling that τxy = 0)

∂τxz
∂z

+
∂σx
∂x

= 0 → τxz(z) = −
∫ z

h−

∂σx
∂x

dz (3.20)

Substituting Eq.(3.19) into Eq.(3.20) and accepting that
∂N

∂x
= 0 and

using
∂M

∂x
= −Q (Figure 1.7) gives

τxz(z) =
−Q
D̂

F (z) (3.21)
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Fig. 3.5 Distribution of σx and τxz for rectangular beam section with homogeneous
material and 4-layered composite material (symmetric).Mi denotes material type

with

F (z) = D̂aS(z) + D̂ab

∫ z

h−
E(z)dz , S(z) =

∫ z

h−
zE(z) dz (3.22)

where S(z) is the static moment of the Young modulus with respect to the
fiber of coordinate z. For a composite laminated section point G defining
the x axis is generally not equidistant from the lower and upper fibers
with coordinates h− and h+, respectively (|h−| + h+ = h, Figure 3.3).
Both S(z) and F (z) are continuous functions. For composite laminated
beams, τxz has a continuous distribution across the thickness with a steep
gradient at the interfaces between layers with different Young modulus
(Figure 3.5).
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If x is the neutral axis, then D̂ab = 0, and, hence, D̂ = D̂aD̂b and

τxz(z) =
−Q
D̂b

S(z) (3.23)

For a rectangular section with homogeneous material and h− = −h/2
Eq.(3.23) simplifies to the classical parabolic distribution of elasticity the-
ory (with ν = 0) [BD4,Ti3], i.e.

τxz(z) =
3

2

Q

bh

(
1− 4z2

h2

)
(3.24)

Figure 3.5 shows the distribution of τxz for two beam sections of ho-
mogeneous and composite laminated material, respectively.

Substituting Eq.(3.21) into (3.17) gives (noting that D̂ is a property of
the transverse cross section)

kz =
D̂2

Ĝ

[∫∫
A

F 2(z)

G(z)
dA

]−1
(3.25)

If x is the neutral axis, then F = D̂aS(z), D̂ = D̂aD̂b and

kz =
D̂2

b

Ĝ

[∫∫
A

S2(z)

G(z)
dA

]−1
(3.26)

For homogeneous material

kz =
I2y
A

[∫∫
A
M2

e dA

]−1
(3.27)

where Me =
∫ z
h− zdz is the static moment with respect to the y axis of

the area between the coordinates h− and z.
For a homogeneous rectangular section of dimensions b× h

Me =

∫ z

−h/2
zdz =

z2

2
− h2

8
;

∫∫
A
M2

e dA =
bh5

120
(3.28)

and kz =

[
1

12
bh3

]2
bh

bh5

120

=
5

6
(3.29)

which is the value of kz for homogeneous rectangular beams in Timoshenko
theory (Figure 2.3).

An identical process can be followed for computing ky for bending
around the z axis.
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Fig. 3.6 Shear correction parameter kz for different laminated beam sections. The
stacking sequence indicates the orientation of the main orthotropic direction of
each laminate with respect to the beam axis (Section 5.2.3)

Figure 3.6 shows the values of kz for different laminated composite
beams. The values ofGyz shown are useful for studying the bending around
the z axis.

Clearly, the general expression for kz allows for arbitrary distributions
of the Young modulus and the shear modulus within the cross-section. For
more information on the computation of the shear correction parameters
in composite beams see [Ban,BD5,Be2,Be3,BG,DM,Ga3,Ste,TH3].
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3.9 PRINCIPLE OF VIRTUAL WORK

We study the PVW for distributed loads t only. Other load types (i.e.
point loads) can be easily taken into account as explained in Chapter 2.
The expression of the PVW is∫∫∫

V
δεεεTσσσ dV =

∫
L
δuT t dx (3.30)

where δu = [δu0, δw0, δθ]
T is the virtual displacement vector, δεεε and

σσσ are the virtual strain vector and the stress vector, respectively, and
t = [fx, fz,m]T is the vector of external forces acting over the beam axis
due to distributed axial and vertical loads fx and fz, respectively and a
distributed moment m.

As usual, the integral in the l.h.s. of Eq.(3.30) represents the internal
virtual work. This can be expressed in terms of the work of the resultant
stresses on the generalized strains along the beam axis as follows.

Making use of Eqs.(3.3) and (3.8), Eq.(3.30) can be written as∫∫∫
V
δεεεT σ̂σσ dV =

∫
l
δε̂εεT

[∫∫
A
STDSdA

]
ε̂εε dx =

∫
L
δε̂εεT D̂ε̂εε dx =

∫
L
δε̂εεT σ̂σσ dx

(3.31)
The PVW can therefore be expressed in terms of integrals along the

beam axis as ∫
L
δε̂εεT σ̂σσ dx =

∫
L
δuT t dx (3.32)

Note that all the derivatives appearing in the PVW are of first order.
This allows us using C◦ continuous interpolations for the axial displace-
ment u0, the vertical deflection w0 and the rotation θ.

3.10 TWO-NODED COMPOSITE LAMINATED TIMOSHENKO
BEAM ELEMENT

The beam is discretized into 2-noded elements of length l(e). A standard
linear approximation is chosen for u0, w0 and θ as (Figure 3.7)

u =

⎧⎨⎩
u0
w0

θ

⎫⎬⎭ =
2∑

i=1

Ni(ξ)a
(e)
i with a

(e)
i =

⎧⎨⎩
u0
w0

θ

⎫⎬⎭
i

(3.33)

where (·)i denotes nodal values, as usual. The expression for the linear
shape functions Ni(ξ) is shown in Figure 2.4.
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Fig. 3.7 Two-noded composite laminated Timoshenko beam element. Nodal vari-
ables and shape functions

Substituting the approximation (3.33) into the generalized strain vector
of Eq.(3.3) gives

ε̂εε =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u0
∂x
∂θ

∂x
∂w0

∂x
− θ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
=

2∑
i=1

Bia
(e)
i = Ba(e) (3.34)

with

a(e) =

{
a
(e)
1

a
(e)
2

}
and Bi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Bai

· · ·
Bbi

· · ·
Bsi

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎡⎢⎢⎢⎢⎣
∂Ni
∂x 0 0
· · · · · · · · ·
0 0 ∂Ni

∂x
· · · · · · · · ·
0 ∂Ni

∂x −Ni

⎤⎥⎥⎥⎥⎦ (3.35)

where Bmi ,Bbi and Bsi are the generalized strain matrices corresponding
to axial, bending and transverse shear deformation effects.

Substituting the constitutive relationship (3.16a) into the PVW (Eq.(3.32))
and using Eqs.(3.33) and (3.34) leads, after standard algebra, to the sys-
tem of equations Ka = f where the stiffness matrix and the equivalent
nodal force vector are assembled from the element contributions given by

K
(e)
ij =

∫
l(e)

BT
i D̂Bj dx

f
(e)
i =

⎧⎨⎩
fxi

fzi
mi

⎫⎬⎭ =

∫
l(e)

N
(e)
i t dx−

∫
l(e)

BT
i σ̂σσ

odx i, j = 1, 2

(3.36)

The second integral in the expression of f
(e)
i accounts for the effect of

the initial (thermal) strain and the initial stresses.
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The element stiffness matrix can be written using the components of
Bi and D̂ as

K
(e)
ij = K(e)

aij +K
(e)
bij

+K(e)
sij +K

(e)
abij

+ [K
(e)
abij

]T (3.37a)

where

K(e)
rij =

∫
l(e)

BT
riD̂rBrj dx r = a, b, s (3.37b)

and

K
(e)
abij

=

∫
l(e)

BT
aiD̂abBbi dx (3.37c)

In the above expressions indexes a, b, s and ab denote respectively the
contribution of the axial, bending, shear and coupling axial-bending terms
to the element stiffness matrix.

If x is the neutral axis, then D̂ab is zero (Section 3.6) and so it is matrix

K
(e)
ab . This leads to a decoupling of the axial, bending and transverse shear

effects at the element level. The element stiffness matrix in this case can
be written as

K(e) =

[
K

(e)
a 0

0 K
(e)
f

]
(3.38)

with the nodal displacement vector for the element ordered as

a(e) =
[
uo1 , uo2 , wo1 , θ1, wo2 , θ2

]T
(3.39)

In Eq.(3.38)

K(e)
a =

D̂a

l(e)

[
1 −1
−1 1

]
(3.40)

is the stiffness matrix for the 2-noded axially loaded rod element studied

in Chapter 2 of [On4] and K
(e)
f (f for “flexural” effects) is the 4 × 4

stiffness matrix of the 2-noded Timoshenko beam element incorporating
the bending and shear contributions (Eq.(2.21a)).

3.11 SHEAR LOCKING IN COMPOSITE LAMINATED BEAMS

We saw in Section 2.4 that the relative value of the shear stiffness
terms versus the bending terms affects the finite element solution for
the Timoshenko beam problem. For thick beams, the shear terms domi-
nate the bending ones in the stiffness matrix and this leads to unrealisti-
cally stiff results (locking). The relative influence of the shear terms over
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Isotropic rectangular section

ν = 0.25
kz =

5

6
; β =

3

λ2

Homogeneous rectangular section

with
E

kzG
= 50

kz =
5

6
; β =

50

λ2

Three layer composite section

(Figure 3.6)
kz = 0.595 ; β =

105

λ2

Nine layer composite section

(Figure 3.6)
kz = 0.689 ; β =

65

λ2

Sandwich section with C = 50

(Figure 3.6)
kz = 0.094 ; β =

84

λ2

Table 3.3 Values of the β parameter and the shear correction factor kz for beams
of rectangular section with different materials

the bending terms can be quantified by the parameter β of Eq.(2.94b):

β =
12D̂b

L2D̂s

(3.41)

A small value of β indicates that the influence of transverse shear defor-
mation is negligible in the solution. Parameter β depends on the geomet-
rical and mechanical properties of the section. For a rectangular beam of
length L, depth h and homogeneous isotropic material, β = E(kzGλ2)−1

with λ = L/h being the beam slenderness ratio.
Table 3.3 shows the value of β for different beam sections of isotropic

and composite materials.
For a relatively “thick” isotropic beam (λ = 4), the ratio E

kzG
	 2 and

β = 0.125. It is interesting that for a slender composite beam with λ = 20

and
E

kzG
= 50 the value of β is also 0.125. Therefore, the influence of

transverse shear deformation is the same for a thick isotropic beam and a
slender composite beam, both leading to a small value of β. This justifies
using Timoshenko theory for composite laminated beams.

Shear locking appearing for small values of β can be eliminated by any
of the methods explained in the previous chapter. For the 2-noded com-
posite Timoshenko beam element, the simplest procedure is to evaluate
all integrals in the stiffness matrix using a single Gauss integration point.

The expression for K
(e)
ij in this case is

K
(e)
ij = l(e)[BT

i D̂Bj ]c (3.42)
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where [·]c denotes values at the element center. The expression of [Bi]c is
readily obtained from Eq.(3.35) as

[Bi]c =

⎡⎢⎢⎢⎢⎢⎣
(−1)i
l(e)

0 0

0 0
(−1)i
l(e)

0
(−1)i
l(e)

−1/2

⎤⎥⎥⎥⎥⎥⎦ (3.43)

Similarly as for homogeneous beam element, the single point reduced
quadrature is equivalent to using a constant assumed transverse shear
strain field (Section 2.8.4).

3.12 EXACT TWO-NODED TIMOSHENKO BEAM ELEMENT
WITH COMPOSITE LAMINATED SECTION

The derivation of an exact 2-noded composite laminated Timoshenko
beam element is simple if x is the neutral axis. Matrix Kab is zero in
this case and the bending and shear stiffness matrices coincide precisely
with those derived in Section 2.9. The stiffness matrix has the form
shown in Eq.(3.38) with matrices K

(e)
a and K

(e)
f given by Eqs.(3.40) and

Eq.(2.101c), respectively.

The equivalent nodal force vector is split into axial (f
(e)
a ) flexural (f

(e)
f )

component as

f (e) =

{
f
(e)
a

f
(e)
f

}
(3.44)

with

f (e)ai =

∫
l(e)

Nifxdx , i = 1, 2 (3.45)

and f
(e)
f is given by Eq.(2.101d).

Note that the DOFs in the displacement vector are now ordered as
shown in Eq.(3.39).

The axial and flexural forces at the nodes can be computed separately
in terms of the nodal displacements as

q(e)
m =

{
−N (e)

1

N (e)
2

}(e)

= K(e)
m

{
uo1
uo2

}
− f (e)m (3.46)
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q
(e)
f =

⎧⎪⎪⎨⎪⎪⎩
−Q1

−M1

Q2

M2

⎫⎪⎪⎬⎪⎪⎭
(e)

= K
(e)
f

⎧⎪⎪⎨⎪⎪⎩
wo1

θ1
wo2

θ2

⎫⎪⎪⎬⎪⎪⎭
(e)

− f
(e)
f (3.47)

The derivation of an exact composite laminated Timoshenko beam
element when x is not the neutral axis is more complex but is still possible
using mixed or hybrid formulations [BD5]. In practice it is desirable to find
the vertical position of the neutral axis via Eq.(3.14b) and then change
the coordinate z by z′, so that x is the neutral axis and the expressions
for K(e) and f (e) given above are applicable.

3.13 COMPOSITE LAMINATED EULER-BERNOULLI BEAM
ELEMENTS

The derivation of composite laminated beam elements satisfying Euler-
Bernoulli beam theory follows very similar arguments as for Timoshenko
elements.

The displacement interpolation for the 2-noded composite laminated
Euler-Bernoulli beam element combines a standard linear C◦ interpola-
tion for the axial displacement with a cubic Hermite interpolation for the
vertical deflection (Eq.(1.10)).

The generalized strain matrix contains only the axial and bending
contributions Ba and Bb. The expression for Bai coincides with that of
Eq.(3.35), while Bb is deduced from Eq.(1.16a).

The stiffness matrix is obtained by neglecting the shear stiffness terms

in Eq.(3.37a) (i.e. K
(e)
sij = 0) while the rest of the stiffness matrices (i.e.

K
(e)
a , K

(e)
b and K

(e)
ab ) are computed by Eqs.(3.37b,c). The coupling of the

axial and bending stiffness follows the rules explained in Section 3.6. The
equivalent nodal force vector for a distributed loading is deduced from
Eqs.(1.21) for the Euler-Bernoulli beam element.

The reader is invited to write down the formulation for the 2-noded
Euler-Bernoulli composite laminated beam element, as an exercise.

3.14 HIGHER ORDER COMPOSITE LAMINATED BEAM
THEORIES

Timoshenko beam theory (TBT) produces inadequate predictions when
applied to relatively thick composite laminated beams with material layers
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that have highly dissimilar stiffness characteristics. Even with a judiciously
chosen shear correction factor, Timoshenko theory tends to underestimate
the axial stress at the top and bottom outer fibers of a beam. Also, along
the layer interfaces of a laminated beam the transverse shear stresses pre-
dicted often exhibit erroneous discontinuities. These difficulties are due to
the higher complexity of the “true” variation of the in-plane displacement
field across a highly heterogeneous beam cross-section.

Indeed to achieve accurate computational results, 3D finite element
analyses are often preferred over beam, plate and shell models that are
based on first order shear deformation theories, such as the Timoshenko
and Euler-Bernoulli theories. For composite laminates with hundred of
layers, however, 3D modelling becomes prohibitely expensive, especially
for non linear and progressive failure analyses.

The need for composite laminated beam, plate and shell theories with
better predictive capabilities has led to the development of the so-called
higher order theories. A review can be found in [LL,Red2]. In those beam
theories higher-order kinematic terms with respect to the beam depth are
added to the expression for the in-plane displacement and, in some cases,
to the expressions for the deflection.

In the following sections we describe two popular higher order beam
theories for composite laminated beams; namely the layer-wise theory and
the zigzag theory. A detailed description of the refined zigzag theory (RZT)
proposed by Tessler et al. [TDG] is presented and an interesting 2-noded
composite laminated beam element based on the RZT is described.

3.15 LAYER-WISE THEORY

An enhancement in the prediction of the correct shear and axial stresses for
thick and highly heterogenous composite laminated and sandwich beam,
plate and shell structures can be achieved by using the so-called layer-wise
theory. In this theory the thickness coordinate is split into a number of
analysis layers that may or not coincide with the number of laminate plies.
The kinematics are independently described within each layer and certain
physical continuity requirements are enforced [BOM,LL2,OL,OL2,Red2].
In the more general setting the 3D displacement field in layer-wise theory
is written as a linear combination of some function of the thickness coor-
dinate and independent functions of the position within each analysis layer
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as

ui(x, y, z) = u0i (x, y) +

Ni∑
k=1

uki (x, y)φk(z) (3.48)

where Ni is the number of analysis layers taken across the laminate thick-
ness to model the ith displacement component, uki (x, y) are the displace-
ments at each layer interface k and φj are known functions of the thickness
coordinate z. Generally Ni coincides with the number of actual material
layers (plies) nl. The φk functions are typically piecewise and continuous
within each layer. They are only defined over two adjacent layers and
can be interpreted as a global C◦ Lagrange interpolation associated to the
common interface j. Due to the local definition of φj(z), the displacements
are continuous across the thickness but their derivatives with respect to
z are not. Hence, the transverse shear strains are discontinuous at the in-
terfaces and, consequently, the transverse shear stress can be enforced to
be continuous for the case of layers with different mechanical properties.

For laminated beams Eq.(3.48) is particularized as

u(x, y, z) =

N∑
j=0

uj(x)Nj(z) , w(x, y, z) = w0(x) (3.49)

whereN is the number of analysis layers, u and w are the horizontal (axial)
and vertical displacements respectively and Nj is the linear shape function
for each layer. Figure 3.8 shows a representation of the axial displacement
field for a three-layered beam where N is equal to three.

A drawback of layer-wise theory is that the number of kinematic vari-
ables depends on the number of analysis layers. However, the layer dis-
placements uj can be condensed at each section in terms of the axial
displacement for the top layer during the equation solution process. The
method is described in Section 7.7.3 for laminated plates.

3.16 ZIGZAG THEORIES

The so-called zigzag theories are a sub-class of the general layer-wise the-
ory. They assume a zigzag pattern for the axial displacements and enforce
continuity of the transverse shear stresses across the entire laminate depth.
Importantly, the number of kinematic variables in zigzag theories is inde-
pendent of the number of layers.
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Fig. 3.8 Distribution of the axial displacement field for a three-layered beam (nl =
3) in layer-wise theory

The kinematic field in zigzag beam theories is written as

uk(x, z) = u0(x)− zθ(x) + ūk(x, z) ; w(x, z) = w0(x) (3.50a)

where
ūk = φk(z)Ψ(x) (3.50b)

is the zigzag displacement function.
In Eqs.(3.50), superscript k indicates quantities within the kth layer

with zk ≤ z ≤ zk+1 and zk is the vertical coordinate of the kth inter-
face. The uniform axial displacement u0(x), the rotation θ(x) and the
transverse deflection w0(x) are the primary kinematic variables of the
underlying single-layer Timoshenko beam theory studied in the previous
sections. Function φk(z) denotes a piecewise linear zigzag function, yet to
be established, and Ψ(x) is a primary kinematic variable that defines the
amplitude of the zigzag function along the beam.

Zigzag theories differ in the way they define the zigzag function φk(z).
In the early zigzag theories for plates, Di Sciuva [DiS2,DiS3] and Murakami
[Mu,TM] enforced piecewise linear zigzag displacement fields that satisfy
a priori the transverse shear stress and displacement continuity conditions
at the layer interface. This model was enhanced by adding a cubic in-plane
displacement to the zigzag function [Dis3]. Many zigzag theories, such as
Di Sciuva theory, require C1 continuity for the deflection field, which is a
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drawback versus simpler C◦ continuous approximations. Also many zigzag
theories run into theoretical difficulties to satisfy equilibrium of forces at
clamped supports.

Averill et al. [AA2,Av,AY] developed the piecewise linear, quadratic
and cubic zigzag theories for beams and overcame the need for C1 conti-
nuity by enforcing the continuity of the transverse shear stress across the
laminate depth via a penalty method. However, Averill theory is unable
to model correctly clamped conditions.

Alam and Upadhyay [AU] proposed a 2-noded beam element based on
an extension of Averill’s zigzag theory including a cubic in-plane displace-
ment field within each layer. Good results were reported for cantilever
and clamped composite and sandwich beams. An assessment of different
zigzag theories can be found in [AA,Ca,Sa,KDJ].

Tessler et al. [TDG] developed a refined zigzag theory (RFT) for com-
posite laminated beams starting from the standard Timoshenko kinematic
assumptions. The zigzag functions chosen have the property of vanishing
on the top and bottom surfaces of a laminate. A particular feature of
this theory is that the transverse shear stresses are not required to be
continuous at the layer interfaces. This results in simple piewice-constant
functions that approximate the true shear stress distribution. This theory
also provides good results for clamped supports.

Gherlone et al. [GTD] developed three and two-noded C◦ beam el-
ements based on the RFT for analysis of multilayered composite and
sandwich beams. Locking-free elements are obtained by using special
anisoparametric interpolations [TD,Te] that are adapted to approximate
the four independent kinematic variables modeling the beam deformation.
A family of two-noded beam elements is achieved by imposing different
constraints on the original displacement approximation. The constraint
conditions requiring a constant variation of the transverse shear force pro-
vide an accurate 2-noded beam element [GTD].

Oñate et al. [OEO,OEO2] have taken a different route for deriving a
simple 2-noded composite laminated beam element based on the RZT.
A standard linear displacement field is used to model the four variables
of the so called LRZ element. Shear locking is avoided by using reduced
integration on selected terms of the shear stiffness matrix.

In the next section we describe the RZT. Then we detail the formu-
lation of the 2-noded LRZ beam element. Its good behaviour is demon-
strated in the analysis of SS and clamped composite laminated beams. An
example showing its capabilities to model delamination is also presented.
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Fig. 3.9 Refined zigzag theory. Distribution of zigzag function φk (a), zigzag dis-
placement uk (b) and axial displacement u (c) for a 3 layered section (nl = 3)

3.17 REFINED ZIGZAG THEORY (RZT)

3.17.1 Zigzag displacement field

The key attributes of the RZT are, first, the zigzag function vanishes at the
top and bottom surfaces of the beam section and does not require full shear-
stress continuity across the laminated-beam depth. Second, all boundary
conditions can be modelled adequately. And third, C◦ continuity is only
required for the FEM approximation of the kinematic variables.

Within each layer the zigzag function is expressed as

φk =
1

2
(1− ζ)φ̄k−1 +

1

2
(1 + ζ)φ̄k

k =
φ̄k + φ̄k−1

2
+

φ̄k
k − φ̄k−1

2
ζk (3.51)

where φ̄k and φ̄k−1 are the zigzag functions of the k and k − 1 interface,

respectively with φ̄0 = φ̄nl = 0 and ζk = 2(z−zk−1)
hk − 1 (Figure 3.9a).

Note that the zigzag displacement ūk (Eq.(3.50b) also vanishes at the
top and bottom layers (Figure 3.9b). The axial displacement field is plotted
in Figure 3.9c.

The form of φk of Eq.(3.51) yields a constant distribution of its gradient
within each layer βk, i.e.

βk =
∂φk

∂z
=

φ̄k − φ̄k−1

hk
(3.52a)
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From Eq.(3.52a) and the conditions φ̄0 = φ̄N = 0 we deduce∫∫
A
βkdA = 0 (3.52b)

The βk parameter is useful for computing the zigzag function as shown
in the next section.

3.17.2 Strain and stress fields

The strain-displacement relations are derived from Eqs.(3.2) and (3.50) as

εkx =
∂u0
∂x

− z
∂θ

∂x
+ φk ∂Ψ

∂x
= [1,−z, φk]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂u0
∂x
∂θ

∂x
∂Ψ

∂x

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= Spε̂εεp (3.53a)

γkxz = γ + βkΨ = [1, βk]

{
γ
Ψ

}
= Sk

t ε̂εεt (3.53b)

with

Sp = [1,−z, φk] , ε̂εεp =

[
∂u0
∂x

,
∂θ

∂x
,
∂Ψ

∂x

]T
Sk
t = [1, βk] , ε̂εεt = [γ, Ψ ]T

(3.53c)

where ε̂εεp and ε̂εεt are the generalized in-plane (axial-bending) and transverse
shear strain vectors, respectively.

In Eq.(3.53b), γ = ∂w0
∂x −θ. Integrating Eq.(3.53b) over the cross section

and using Eq.(3.52b) and the fact that Ψ is independent of z yields

γ =
1

A

∫∫
A
γkxzdA (3.54)

i.e. γ represents the average transverse shear strain of the cross section.
Hooke stress-strain relations for the kth orthotropic layer have the stan-
dard form (Eqs.(3.7))

σk
x = Ekεkx = EkSk

pε̂εεp (3.55a)

τkxz = Gkγkxz = GkSk
t ε̂εεt (3.55b)

where Ek and Gk are the axial and shear moduli for the kth layer, respec-
tively.

Note that in the above equations we have distinguished all variables
within a layer with superscript k.
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3.17.3 Computation of the zigzag function

The shear strain-shear stress relationship of Eq.(3.53b) is written as

τkxz = Gkη +Gk(1 + βk)Ψ (3.56)

where η = γ − Ψ is a difference function.
Clearly the distribution of τkxz within each layer is constant, as η is

independent of the zigzag function and βk is constant (Eq.(3.52a)).
The distribution of τkxz is enforced to be independent of the zigzag

function. This can be achieved by constraining the term multiplying Ψ in
Eq.(3.56) to be constant, i.e.

Gk(1 + βk) = Gk+1(1 + βk+1) = G, constant (3.57)

This is equivalent to enforcing the interfacial continuity of the second
term in the r.h.s. of Eq.(3.56).

From Eq.(3.57) we deduce

βk =
G

Gk
− 1 (3.58)

Substituting βk in the integral of Eq.(3.52b) gives

G =

[
1

A

∫∫
A

dA

Gk

]−1
=

[
h

nl∑
k=1

hk

Gk

]−1
(3.59)

which is the equivalent shear modulus for the laminate.
Substituting Eq.(3.52a) into Eq.(3.52b) gives the following recursion

relation for the zigzag function values at the layer interfaces

φ̄k =

k∑
i=1

hiβi with u0 = unl = 0 (3.60)

with βi given by Eq.(3.58).
Introducing Eq.(3.60) into (3.51) gives the expression for the zigzag

function as

φk =
hkβk

2
(ζk − 1) +

k∑
i=1

hiβi (3.61)

We recall that this zigzag theory does not enforce the continuity of the
transverse shear stresses across the section. This is consistent with the
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kinematic freedom inherent in the lower order kinematic approximation
of the underlying beam theory.

For homogeneous material Gk = G and βk = 0. Hence, the zigzag func-
tion φk vanishes and we recover the kinematic and constitutive expressions
of the standard Timoshenko composite laminated beam theory.

We finally note that function Ψ can be interpreted as a weighted-
average shear strain angle [TDG]. The value of Ψ should be prescribed
to zero at a clamped edge and left unprescribed at a free edge.

3.17.4 Generalized constitutive relationship

The resultant stresses are defined as

σ̂σσp =

⎧⎨⎩
N
M
Mφ

⎫⎬⎭ =

∫∫
A
[Sk

p]
Tσk

xdA =

(∫∫
A
[Sk

p]
TSk

pE
kdA

)
ε̂εεp = D̂pε̂εεp (3.62)

σ̂σσt =

{
Q
Qφ

}
=

∫∫
A
[Sk

t ]
T τkxzdA =

(∫∫
A
[Sk

t ]
TSk

tG
kdA

)
ε̂εεt = D̂tε̂εεt (3.63)

In vectors σ̂σσp and σ̂σσt, N,M and Q are respectively the axial force, the
bending moment and the shear force of standard beam theory, whereasMφ

and Qφ are an additional bending moment and an additional shear force
which are conjugate to the new generalized strains ∂Ψ

∂x and Ψ , respectively.

The generalized constitutive matrices D̂b and D̂t are

D̂p =

∫∫
A
Ek

⎡⎣ 1 −z φk

−z z2 −zφk

φk −zφk (φk)2

⎤⎦ dA , D̂t =

[
Ds −δ
−δ δ

]
(3.64a)

with

Ds =

∫∫
A
GkdA , δ = Ds −GA (3.64b)

In the derivation of the expression for D̂t we have used the definition
of βk of Eq.(3.58).

The generalized constitutive equation can be written as

σ̂σσ =

{
σ̂σσp

σ̂σσt

}
= D̂ε̂εε = D̂

{
ε̂εεp
ε̂εεt

}
with D̂ =

[
D̂p 0

0 D̂t

]
(3.65)

It is interesting that this formulation does not require a shear correction
parameter kz.
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3.17.5 Virtual work expression

The virtual work expression for a distributed load fz = q is∫∫∫
V
(δεkxσ

k
x + δγkxzτ

k
xz)dV −

∫
L
δwqds = 0 (3.66)

The l.h.s. of Eq.(3.66) contains the internal virtual work performed by
the axial and tangential stresses over the beam volume V and the r.h.s. is
the external virtual work carried out by the distributed load.

Substituting Eqs.(3.53a,b) into the expression for the virtual internal
work and using Eqs.(3.62) and (3.63) gives∫∫∫

V

(
δεkxσ

k
x + δγkxzτ

k
xz

)
dV =

∫∫∫
V

(
δε̂εεTp [S

k
p]

Tσk
x + δε̂εεTt [S

k
t ]

T τkxz

)
dV =

=

∫
L

(
δε̂εεTp σ̂σσp + δε̂εεTt σ̂σσt

)
dx (3.67)

The virtual work is therefore written as∫
L

(
δε̂εεTp σ̂σσp + δε̂εεTt σ̂σσt

)
dx−

∫
L
δwqdx = 0 (3.68)

This expression is the basis for deriving a 2-noded zigzag beam element
as explained in the next section.

3.18 TWO-NODED LRZ COMPOSITE LAMINATED BEAM
ELEMENT

The kinematic variables are u0, w0, θ and Ψ . They are discretized using
2-noded linear C◦ beam elements of length l(e) (Figure 3.10) as

u =

⎧⎪⎪⎨⎪⎪⎩
u0
w0

θ
Ψ

⎫⎪⎪⎬⎪⎪⎭ =

2∑
i=1

Nia
(e)
i = Na(e) (3.69)

with

N = [N1I4, N2I4] , a(e) =

{
a
(e)
1

a
(e)
2

}
, a

(e)
i =

⎧⎪⎪⎨⎪⎪⎩
u0i
w0i

θi
Ψi

⎫⎪⎪⎬⎪⎪⎭ (3.70)
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Fig. 3.10 Two-noded LRZ composite laminated beam element. Nodal variables
and shape function

where Ni are the standard 1D linear shape functions (Figure 2.4), a
(e)
i is

the vector of nodal DOFs and I4 is the 4× 4 unit matrix.
Substituting Eq.(3.69) into the generalized strain vectors of Eq.(3.53c)

gives
ε̂εεp = Bpa

(e) , ε̂εεt = Bta
(e) (3.71)

The generalized strain matrices Bp and Bt are

Bp = [Bp1 ,Bp2 ] , Bt = [Bt1 ,Bt2 ] (3.72a)

with

Bpi =

⎡⎢⎢⎢⎢⎣
∂Ni

∂x
0 0 0

0 0
∂Ni

∂x
0

0 0 0
∂Ni

∂x

⎤⎥⎥⎥⎥⎦ , Bti =

⎡⎢⎣ 0
∂Ni

∂x
−Ni 0

−− −− −− −−
0 0 0 Ni

⎤⎥⎦ =

⎡⎣Bsi

−−
Bψi

⎤⎦
(3.72b)

where Bpi and Bti are the in-plane and transverse shear strain matrices
for node i.

The virtual displacement and the generalized strain fields are expressed
in terms of the virtual nodal DOFs as

δu = Nδa(e) , δε̂εεp = Bpδa
(e) , δε̂εεt = Btδa

(e) (3.73)

The discretized equilibrium equations are obtained by substituting
Eqs.(3.62), (3.63), (3.69), (3.71) and (3.73) into the virtual work expres-
sion (3.68). After simplification of the virtual nodal DOFs, the following
standard matrix equation is obtained

Ka = f (3.74)

where a is the vector of nodal DOFs for the whole mesh.
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The stiffness matrix K and the equivalent nodal force vector f are
obtained by assembling the element contributions K(e) and f (e) given by

K(e) = K(e)
p +K

(e)
t (3.75)

with

K(e)
pij =

∫
l(e)

BT
piD̂pBpjdx , K

(e)
tij

=

∫
l(e)

BT
tiD̂tBtjdx (3.76)

and

f (e) =

∫
l(e)

Niq[1, 0, 0, 0]
Tdx (3.77)

Matrix K
(e)
p is integrated with a one-point numerical quadrature which

is exact in this case. Full integration of matrix K
(e)
t requires a two-point

Gauss quadrature (Appendix B). This however leads to shear locking for
slender composite laminated beams.

Shear locking can be eliminated by reduced integration of all (or some)

of the terms of K
(e)
t . For this purpose we split this matrix as

K
(e)
t = K(e)

s +K
(e)
ψ +K

(e)
sψ + [K

(e)
sψ ]

T (3.78a)

with

K(e)
sij =

∫
l(e)

DsB
T
siBsjdx , K

(e)
ψij

=

∫
l(e)

δBT
ψi
Bψj

dx (3.78b)

K
(e)
sψij

=

∫
l(e)

(−δ)BT
siBψj

dx

where Bsi and Bψi
are defined in Eq.(3.72b) and Ds and δ are given in

Eq.(3.64b).
This beam element is termed LRZ (for Linear Timoshenko Zigzag

element).
A study of the accuracy of the LRZ beam element for analysis of lami-

nated beams of different slenderness using one and two-point quadratures

for integrating K
(e)
s , K

(e)
ψ and K

(e)
sψ is presented in the next section.

3.19 STUDY OF SHEAR LOCKING AND CONVERGENCE FOR
THE LRZ COMPOSITE LAMINATED BEAM ELEMENT

3.19.1 Shear locking in the LRZ beam element

We study the performance of the LRZ beam element for the analysis of a
cantilever beam of length L under an end point load of value F = 1 (Figu-
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Fig. 3.11 Cantilever beam with rectangular section under point load

Composite material properties

Layer 1 Layer 2 Layer 3
(bottom) (core) (top)

h [mm] 6.6667 6.6667 6.6667
E [MPa] 2.19E5 2.19E3 2.19E5
G [MPa] 0.876E5 8.80E2 0.876E5

Table 3.4 Symmetric 3-layered cantilever beam. Material properties

 

Fig. 3.12 Mesh of 27000 4-noded plane stress rectangular elements for analysis of
cantilever and simple supported beams

re 3.11). The beam has a rectangular section (b × h) formed by a sym-
metric three-layered material whose properties are listed in Table 3.4. The
analysis is performed for four span-to-thickness ratios: λ = 5, 10, 50, 100
(λ = L/h) using a mesh of 100 LRZ beam elements.

The same beam was analized using a mesh of 27000 four-noded plane
stress rectangles [On4] for comparison purposes (Figure 3.12).

Figure 3.13 shows the ratio r between the end node deflection obtained
with the LRZ element (wzz) and with the plane stress quadrilateral (wps)
(i.e. r = wzz

wps
) versus the beam span-to-thickness ratio. Results for the

LRZ element have been obtained using exact two-point integration for all

terms of matrix K
(e)
t (Eq.(3.76)) and a one-point reduced integration for
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�

Fig. 3.13 r ratio
(
r = wzz

wps

)
versus L/h for cantilever beam under point load an-

alyzed with the LRZ element. Labels “all”, S, SPsi and Psi refer to matrices

K
(e)
t , K

(e)
s ,K

(e)
sψ and K

(e)
ψ , respectively

the following three groups of matrices: K
(e)
s ; K

(e)
s and K

(e)
sψ ; and K

(e)
s , K

(e)
sψ

and K
(e)
ψ (Eqs.(3.78b)).

Results in Figure 3.13 show that the exact integration of K
(e)
t leads

to shear locking as expected. Good (locking-free) results are obtained by
one-point reduced integration of the three groups of matrices considered.

The influence of reduced integration in the distribution of the trans-
verse shear stress was studied in [OEO,OEO2] for the three groups of
matrices. The conclusion is that for small values of λ the reduced or exact
reduced integration of matrix K

(e)
t leads to similar results.

It is also recommended using a reduced one-point integration for matri-

ces K
(e)
s and K

(e)
sψ , while matrix K

(e)
ψ should be integrated with a 2-point

quadrature [OEO2].

3.19.2 Convergence of the LRZ beam element

The same three-layered cantilever beam of Figure 3.11 was studied in
[OEO] for three different set of thickness and material properties for the
three layers as listed in Table 3.5. Material A is the more homogeneous
one, while material C is clearly the more heterogeneous.

The problem was studied with six meshes of LRZ elements ranging from
5 to 300 elements. Table 3.6 shows the convergence with the number of
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Material properties

Layer 1(bottom) Layer 2 (core) Layer 3 (top)

Composite A h [mm] 6.66 6.66 6.66
E [MPa] 4.40E5 2.19E4 2.19E5
G [MPa] 2.00E5 8.80E3 8.76E4

Composite B h [mm] 6.66 6.66 6.66
E [MPa] 2.19E5 2.19E3 2.19E5
G [MPa] 8.76E4 8.80E2 8.76E4

Composite C h [mm] 2 16 2
E [MPa] 7.30E5 7.30E2 2.19E5
G [MPa] 2.92E5 2.20E2 8.76E4

Table 3.5 Non symmetric 3-layered cantilever beams. Material properties

elements for the deflection and function Ψ at the beam end, the maximum
axial stress σx at the end section and the maximum shear stress τxz at the
mid section.

Convergence is measured by the relative error defined as

er =

∣∣∣∣v6 − vi
v6

∣∣∣∣ (3.79)

where v6 and vi are the magnitudes of interest obtained using the finest
grid (300 elements) and the ith mesh (i = 1, 2, · · · 5), respectively.

Results clearly show that convergence is always slower for the hetero-
geneous material case, as expected.

For a mesh of 25 elements the errors for all the magnitudes considered
are less than 1% for materials A and B. For material C the maximum
error does not exceed 5% (Table 3.6). For the 50 element mesh errors of
the order of 1% or less were obtained in all cases.

Results for a 10 element mesh are good for material A (errors < 0.4%),
relatively good for material B (errors < 5%) and unacceptable for material
C (errors ranging from around 8% to 20%) (Table 3.6).

3.20 EXAMPLES OF APPLICATION OF THE LRZ COMPOSITE
LAMINATED BEAM ELEMENT

3.20.1 Three-layered laminated thick cantilever beam under end point load

We present results for a laminated thick cantilever rectangular beam un-
der an end point load. The material properties are those of Composite C in
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(a)

er%− w at x = L

Number of Composite

elements A B C

5 1.800 9.588 42.289
10 0.506 2.901 19.277
25 0.0860 0.499 4.913
50 0.0191 0.123 1.406
100 0.0048 0.031 0.339
300 0.0000 0.000 0.000

(b)

er%− Ψ at x = L

Number of Composite

elements A B C

5 0.040 8.563 36.113
10 0.003 1.814 8.042
25 0.000 0.259 0.328
50 0.000 0.063 0.033
100 0.000 0.016 0.007
300 0.000 0.000 0.000

(c)

er%− (σx)max at x = L

Number of Composite

elements A B C

5 0.568 6.923 18.239
10 0.076 2.704 12.437
25 0.013 0.568 4.266
50 0.003 0.131 1.095
100 0.001 0.029 0.250
300 0.000 0.000 0.000

(d)

er%− (τxz)max at L
2

Number of Composite

elements A B C

5 7.020 19.283 50.938
10 0.352 5.176 20.602
25 0.052 0.888 3.408
50 0.010 0.210 0.707
100 0.003 0.049 0.147
300 0.000 0.000 0.000

Table 3.6 Non symmetric 3-layered cantilever thick beams under end point load
(λ = 5). Convergence study. (a) Relative error er for the maximum value of σx
at x = L and (b) idem for τxz at x = L/2

Table 3.5. The span-to-thickness ratio is λ = 5.
For the laminated sandwich considered the core is eight times thicker

than the face sheets. In addition, the core is three orders of magnitude
more compliant than the bottom face sheet. Moreover, the top face sheet
has the same thickness as the bottom face sheet, but is about three times
stiffer. This laminate does not possess material symmetry with respect
to the mid-depth reference axis. The high heterogeneity of this stacking
sequence is very challenging for the beam theories considered herein to
model adequately.

The legend caption PS denotes the reference solution obtained with the
structured mesh of 27000 four-noded plane stress quadrilaterals shown in
Figure 3.12. TBT denotes the solution obtained with a mesh of 300 2-
noded beam elements based on standard laminated Timoshenko beam
theory. LRZ-300, LRZ-50, LRZ-25, LRZ-10 refer to the solution obtained
with the LRZ beam element using meshes of 300, 50, 25 and 10 elements,
respectively.
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�

Fig. 3.14 Non symmetric 3-layered cantilever thick beam under end point load
(λ = 5). Distribution of the vertical deflection w for different theories and meshes

Figure 3.14 shows the deflection values along the beam length. Very
good agreement with the plane stress solution is obtained already for the
LRZ-50 mesh as expected from the conclusions of the previous section.

TBT results are considerable stiffer. The difference with the reference
solution is about six times stiffer for the end deflection value.

Figure 3.15 shows the thickness distribution of the axial displacements
at two beams sections. Excellent results are again obtained with the 50
element mesh. The TBT results are far from the correct ones.

Figure 3.16 shows the distribution along the beam length of the axial
stress σx at the bottom surface of the beam cross section. Very good
agreement between the reference PS solution and the LRZ-50 and LRZ-
300 results is obtained. Results for the LRZ-25 mesh compare reasonably
well with the PS solution except in the vicinity of the clamped edge. The
TBT results yield a linear distribution of the axial stress along the beam,
as expected. This introduces large errors in the axial stress values in the
vicinity of the clamped edge (Figure 3.16).

Figure 3.17 shows the thickness distribution of the axial stress (σx) at
the clamped end. The accuracy of the LRZ results is again remarkable.

LRZ and TBT results for the distribution of the (constant) tangential
shear stress τxz for the bottom layer (layer 1) along the beam length are
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�

(a)
�

(b)

Fig. 3.15 Non symmetric 3-layered cantilever thick beam under end point load
(λ = 5). Thickness distribution of the axial displacement u at x = L/4 (a) and
x = 3L/4 (b)

�

Fig. 3.16 Non symmetric 3-layered cantilever thick beam under end point load
(λ = 5). Axial stress σx at the bottom surface of the cross section along the
beam length

shown in Figure 3.18. TBT results are clearly inaccurate (except for the
value at the clamped edge).
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Fig. 3.17 Non symmetric 3-layered cantilever thick beam under end point load
(λ = 5). Thickness distribution of the axial stress σx at the clamped end (x = 0)

�

(a)

Fig. 3.18 Non symmetric 3-layered cantilever thick beam under end point load
(λ = 5). Transverse shear stress τxz along the beam for the bottom layer (layer
1). Similar results are obtained for layers 2 and 3 are similar
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Figure 3.19 shows the thickness distribution for the transverse shear
stress τxz at two sections ( L

20 and L
2 ). LRZ results provide an accurate

estimate of the average transverse shear stress value for each layer. The
distribution of τxz across the thickness can be substantially improved by
using the equilibrium equations for computing τxz “a posteriori” as ex-
plained in the next section.

3.20.2 Non-symmetric three-layered simple supported thick beam under
uniform load

The next example is the analysis of a three-layered simple supported thick
rectangular beam under a uniformly distributed load of unit value (q = 1).
The material properties and the thickness for the three layers are shown in
Table 3.7. The material has a non symmetric distribution with respect to
the beam axis. An unusually low value for the shear modulus of the core
layer has been taken, thus reproducing the effect of a damaged material
in this zone. The span-to-thickness ratio is λ = 5. Results obtained with
the LRZ element are again compared to those obtained with a mesh of
300 2-noded TBT elements and with the mesh of 4-noded plane stress
(PS) rectangles of Figure 3.12. The PS solution has been obtained by
fixing the vertical displacement of all nodes at the end sections and the
horizontal displacement of the mid-line node at x = 0 and x = L to a
zero value. This way of approximating a simple support condition leads to
some discrepancies between the PS results and those obtained with beam
theory.

No advantage of the symmetry of the problem for the discretization
has been taken.

Thickness and material properties

Layer 1 (bottom) Layer 2 (core) Layer 3 (top)

h [mm] 6.6666 6.6666 6.6666
E [MPa] 2.19E5 5.30E5 7.30E5

G [MPa] 8.76E4 2.90E2 2.92E5

Table 3.7 Thickness and material properties for 3-layered non-symmetric SS rect-
angular thick beam

Figure 3.20 shows the distribution of the vertical deflection for the
different methods. The error in the “best” maximum central deflection
value versus the “exact” PS solution is 	 12%. The discrepancy is due
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�

(a)

�

(b)

Fig. 3.19 Non symmetric 3-layered cantilever thick beam under end point load
(λ = 5). Thickness distribution of τxz at L/20 (a) and L/2 (b)
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�

Fig. 3.20 Non symmetric 3-layered SS thick beam under uniformly distributed
load (λ = 5). Distribution of vertical deflection w along the beam length

to the difference in the way the simple support condition is modelled in
beam and PS theories, as well as to the limitations of beam theory to
model accurately very thick beams. TBT results are quite inaccurate, as
expected [OEO,OEO2].

Figure 3.21 shows the thickness distribution for the axial stress σx at
two beam sections (x = 0 and L/2). The accuracy of the LRZ results is
remarkable with a maximum error of 10% despite of the modeling limita-
tions mentioned above. TBT results are incorrect.

Figure 3.22 shows the thickness distribution of the shear stress at the
section close to the support (x = L/20).

LRZ results can be much improved by computing τxz “a posteriori”
from the axial stress field using the equilibrium equation (Appendix B)

∂σx
∂x

+
∂τxz
∂z

= 0 (3.80)

The transverse shear stress at a point across the thickness with coor-
dinate z is computed by integrating Eq.(3.80) as

τxz(z) = −
∫ z

h−

∂σx
∂x

dz = −∂Nz

∂x
where Nz =

∫ z

h−
σxdz (3.81)

In Eq.(3.81) Nz is the axial force (per unit width) resulting from the
thickness integration of σx between the coordinates h− and z.
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�

(a)

�

(b)

Fig. 3.21 Non symmetric 3-layered SS thick beam under uniformly distributed load
(λ = 5). (a) Thickness distribution of axial displacement at x = 0. (b) Thickness
distribution of axial stress σx at x = L/2
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�

Fig. 3.22 Non symmetric 3-layered SS thick beam under uniformly distributed
load (λ = 5). Thickness distribution of τxz at x = L/20

The space derivative of Nz in Eq.(3.80) is computed at a node i as

∂Nz

∂x
=

2

le + le−1
(N e

z −N e−1
z ) (3.82)

where (le, N e
z ) and (le−1, N e−1

z ) are the element length and the value of
Nz at elements e and e − 1 adjacent to node i, respectively. A value of
τxz(h

−) = 0 is taken. It is remarkable that the method yields automatically
τxz(h

+) 	 0.
Results for τxz obtained with this procedure are termed LRZ-10-Nz

and LRZ-300-Nz in Figure 3.25. We note the accuracy of the “recovered”
thickness distribution for τxz, even for the coarse mesh of 10 LRZ elements.

3.20.3 Non-symmetric ten-layered clamped slender beam under uniformly
distributed loading

We present results for a ten-layered clamped slender rectangular beam
(L = 100 mm, h = 5 mm, b = 1 mm, λ = 20) under uniformly distributed
loading (q = 1 KN/mm). The composite material has the non-symmetric
distribution across the thickness shown in Table 3.8.

Figure 3.23 shows results for the deflection along the beam for LRZ
meshes with 10 and 300 elements (LRZ-10 and LRZ-300). Results obtained
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(a)
Layer hi Material

1 0.5 IV
2 0.6 I
3 0.5 V
4 0.4 III
5 0.7 IV
6 0.1 III
7 0.4 II
8 0.5 V
9 0.3 I
10 1 II

(b)

Material E [MPa] G [MPa]

I 2.19e5 0.876e5
II 7.3e5 2.92e5
III 0.0073e5 0.0029e5
IV 5.3e5 2.12e5
V 0.82e5 0.328e5

Table 3.8 10-layered clamped slender rectangular beam under uniformly dis-
tributed loading. (a) Thickness and material number for each of the 10 layers.
(b) Properties of each material

�

Fig. 3.23 10-layered clamped slender beam under uniform loading. Distribution of
the deflection along the beam

with a mesh of 27.000 4-noded plane stress quadrilaterals and with a mesh
of 300 TBT elements are also shown for comparison. Note the accuracy of
the coarse LRZ-10 mesh and the erroneous results of the TBT solution.

Figure 3.24 shows the thickness distribution of the axial displacement
and the axial stress (σx) for the section at x = L

4 . The accuracy of the
LRZ results is once more noticeable.
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�

(a)
�

(b)

Fig. 3.24 10-layered clamped slender beam under uniform loading. Thickness dis-
tribution of axial displacement (a) and axial stress σx (b) for x = L

4

�

(a)
�

(b)

Fig. 3.25 10-layered clamped slender beam under uniform loading. Thickness dis-
tribution of τxz at x = L

4 . (a) Comparison of LRZ-10 and LRZ-300 results with
plane stress (PS) and TBT solutions. (b) PS solution and LRZ-10-Nz and LRZ-
300-Nz results for τxz obtained by thickness integration of the equilibrium equa-
tion using the LRZ-10 and LRZ-300 results (Eq.(3.81))

Figure 3.25 shows the thickness distribution of the transverse shear
stress at x = L

4 . Results in Figure 3.25a show the values directly obtained
with the LRZ-10 and LRZ-300 meshes. These results are clearly better
than those obtained with the TBT element but only coincide in an average
sense with the plane stress FEM solution.
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3.20.4 Modeling of delamination with the LRZ element

Prediction of delamination in composite laminated beams is a challenge
for all beam models. A method for predicting delamination in beams us-
ing a Hermitian zigzag theory was presented in [DG2,3]. A sub-laminate
approach is used for which the number of kinematic unknowns depends
of the number of physical layers. This increases the number of variables
but it yields the correct an accurate transverse shear stress distribution
without integrating the equilibrium equations.

Delamination effects in composite laminated beams can be effectively
reproduced with the LRZ element without introducing additional kine-
matic variables. The delamination model simply implies introducing a very
thin “interface layer” between adjacent material layers in the actual com-
posite laminated section. Delamination is produced when the material
properties of the interface layer are drastically reduced to almost a zero
value in comparison with those of the adjacent layers due to interlamina
failure. This simple delamination model allows the LRZ element to take
into account the reduction of the overall beam stiffness due to the failure
of the interface layer leading to an increase in the deflection and rotation
field. Moreover, the LRZ element can also accurately represent the jump
in the axial displacement field across the interface layer and the change
in the axial and tangential stress distributions over the beam sections as
delamination progresses.

Figures 3.26–3.30 show an example of the capabilities of the LRZ beam
element to model delamination. The problem represents the analysis of a
cantilever thick rectangular beam (λ = 5) under an end point load. The
beam section has three layers of composite material with properties shown
in Table 3.9. Delamination between the upper and core layers has been
modelled by introducing a very thin interface layer (h = 0.01 mm) between
these two layers (Figure 3.26). The initial properties of the interface layer
coincide with those of the upper layer. Next, the shear modulus value
for the interface layer has been progressively reduced up to 11 orders of
magnitude from G2 = 8.76 × 104 MPa (Model 1) to G2 = 8.76 × 10−7

MPa (Model 12) (Table 3.10).
We note that the reduction of the shear modulus has been applied over

the whole beam length in this case. However it can applied in selected
beam regions as appropriate.

Figure 3.27 shows results for the end deflection value in terms of the
shear modulus of the interface layer for the LRZ-100 mesh. Note that the
deflection increases one order of magnitude versus the non-delaminated
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Fig. 3.26 Modeling of interface layer for delamination study in 3-layered thick
cantilever beam (λ = 5) under end point load

Composite material

Layer 1 Layer 2 Layer 3 Layer 4

h [mm] 2 0.01 16 2
E [MPa] 2.19E5 2.19E5 0.0073E5 7.30E5
G [MPa] 0.876E5 G2 0.0029E5 2.92E5

Table 3.9 Thickness and layer properties for delamination study in a 3-layered
cantilever beam under end point load. Layer 2 is the interface layer. G2 values
are given in Table 3.10

Model G2 Model G2 Model G2

1 8.76E+004 5 8.76E+000 9 8.76E-004
2 8.76E+003 6 8.76E-001 10 8.76E-005
3 8.76E+002 7 8.76E-002 11 8.76E-006
4 8.76E+001 8 8.76E-003 12 8.76E-007

Table 3.10 Shear modulus values for the interface layer for delamination study in
a 3-layered cantilever beam. Values of G2 in MPa

case. It is also interesting that the end deflection does not change much
after the shear modulus of the interface layer is reduced beyond eight
orders of magnitude (results for Model 9 in Figure 3.27). Results agree
reasonably well (error 	 10%) with those obtained with the plane stress
model of Figure 3.12 introducing a similar reduction in the shear modulus
of an ad hoc interface layer.
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Fig. 3.27 Delamination study in 3-layered cantilever beam under end point load.
Evolution of end deflection with the shear modulus value for the interface layer
LRZ-100 results and PS solution

Figure 3.28 shows the thickness distribution for the axial displacement
at the mid section for four decreasing values of the shear modulus at the
interface layer: G2 = 8.76, 8.76× 10−1, 8.76× 10−3 and 8.76× 10−6 MPa.
The jump of the axial displacement across the thickness at the interface
layer during delamination is well captured. We again note that the dis-
placement jump at the interface layer remains stationary after a reduction
of the material properties in that layer of six orders of magnitude. Results
agree well with the plane stress solution also shown in the figure.

Figure 3.29 shows the thickness distribution of the axial stress (σx) for
the same four decreasing values of G2 in the interface layer. The effect of
delamination in the stress distribution is clearly visible. Once again the
LRZ-100 results agree well with the plane stress solution.

Figure 3.30 finally shows the thickness distribution for the transverse
shear stress at x = L

2 for the same four values of G2 at the interface
layer. The three graphs show the PS results, the LRZ-100 results and the
solution obtained by integrating the equilibrium equation (via Eqs.(3.80)–
(3.83)) using the LRZ-100 results. Note the accuracy of the later solution
versus the standard LRZ-100 results as delamination develops and τxz
progressively vanishes at the interface layer.
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Fig. 3.28 Delamination study in 3-layered cantilever beam under end point load.
Thickness distribution of axial displacement at x = L

2 for four decreasing values
of the shear modulus at the interface layer (Models 5, 6, 8 and 11, Table 3.10)

Similar good results for predicting the delamination and the thickness
distribution of the axial and transverse shear stresses are obtained over
the entire beam length.

The example shows the capability of the LRZ element to model a com-
plex phenomenon such as delamination in composite laminated beams
without introducing additional kinematic variables. More evidences of the
good behaviour of the LRZ beam element for predicting delamination in
beams are reported in [OEO3].
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Fig. 3.29 Delamination study in 3-layered cantilever beam under end point load.
Thickness distribution of σx at x = L

2 for four decreasing values of the shear
modulus at the interface layer (Models 5, 6, 8 and 11, Table 3.10)

3.21 CONCLUDING REMARKS

The formulation of composite laminated beam elements introduces the
axial elongation of the beam axis, the axial force and the corresponding
axial stiffness matrix into the classical bending theory of beams. Axial and
bending effects are generally coupled to each other except for a symmetric
distribution of the material properties in the cross-section or, more gen-
erally, when the beam axis coincides with the neutral axis. A composite
laminated material increases the importance of transverse shear deforma-
tion effects, even for slender beams. This makes Timoshenko theory more
appropriate for composite laminated beams.
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Fig. 3.30 Delamination study in 3-layered cantilever beam under end point load.
Thickness distribution of τxz at x = L

2 for four values of G at the interface
layer (Models 5, 6, 8 and 11, Table 3.10). LRZ-100 results, plane stress (PS)
solution and LRZ-100-Nz results obtained by integrating the equilibrium equation
(Eq.(3.81)) using the LRZ-100 results

Timoshenko composite laminated beam elements suffer from shear
locking, although this defect can be eliminated via the techniques studied
in Chapter 2. For the 2-noded beam element, the simplest procedure is
the one point reduced integration of all the stiffness matrix terms. An
exact 2-noded Timoshenko composite laminated beam element has been
presented for the case of uncoupled axial-bending effects.

Euler-Bernoulli composite laminated beam elements share the key fea-
tures of Timoshenko theory with regard to the axial-bending coupling,
while they neglect transverse shear deformation effects.
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Higher order beam theories, such as the refined zigzag theory described
in the last part of the chapter, provide a more accurate description of the
axial displacement and the transverse shear stress field across the cross-
section depth. The 2-noded LRZ beam element is an excellent candidate
for practical analysis of composite laminated beams. The ability of this
element for reproducing delamination effect in a simple manner is remark-
able.

The concepts explained in this chapter are the basis for the study of
finite elements for 3D beams, plates and shells with composite material in
the subsequent chapters.



4

3D COMPOSITE BEAMS

4.1 INTRODUCTION

A three-dimensional (3D) beam, also called a rod, is a member that car-
ries axial, flexural (shear and bending) and torsion force resultants. Struc-
tures containing 3D beams are found in frames of buildings and industrial
constructions, arches, stiffened shells, structural parts in land transport
vehicles, fusselages of airplanes and spacecrafts, ships hulls, mechanical
parts, etc. Figure 4.1 shows schematic examples of structures formed by
an assembly of straight rods.

Fig. 4.1 Schematic representation of 3D beam structures with members carrying
axial, flexural and torsion effects. Points denote beam joints

E. Oñate, Structural Analysis with the Finite Element Method. Linear Statics:  
Volume 2: Beams, Plates and Shells, Lecture Notes on Numerical Methods  
in Engineering and Sciences, DOI 10.1007/978-1-4020-8743-1_4,  
© International Center for Numerical Methods in Engineering (CIMNE), 2013 
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In this chapter we will study finite element methods for 3D beams with
arbitrary cross section and general composite material. Many concepts are
an extension of those studied for plane beams in Chapters 1–3 and several
more advanced topics are introduced here. For the sake of completeness
the key theoretical concepts of 3D beam theory are explained, although
in a concise manner. Readers not familiar with 3D beam analysis are
recommended the prior study in classical books of Strength of Materials
and Structural Analysis [Li,OR,SJ,Ti2,3].

In the first part of the chapter we derive 3D composite beam elements
via an extension of the Timoshenko and Euler-Bernoulli plane beam theo-
ries studied in Chapters 2 and 1, respectively. The formulation of 2-noded
straight and curved 3D beam elements is described. The constitutive re-
lationship between the three significant stresses and strains is assumed to
have a diagonal form. This restricts the applicability of the formulation to
a specific (but wide) range of composite materials. The free torsion (Saint
Venant theory) is studied first. This theory assumes that the strains and
stresses induced by the warping of the section are zero. This assumption
is exact when the internal torque is constant along the beam length and
warping is not restricted at any point. Saint Venant theory is also a good
approximation when the torque is not uniform in beams with solid sections
(rectangular, square, circular, etc.), in sections formed by thin rectangular
members meeting at a point (angular section, T-type section, etc.) and in
hollow cellular sections (tubes, box-type sections with width/length ≤ 4,
etc.). A particularization of the 2-noded 3D beam element based on Saint-
Venant theory to plane grillages is explained.

For other types of sections subjected to a non-uniform torque or to a
constrained uniform torsion, warping strains and stresses must be taken
into account [MB,OR,Vl]. A torsion theory adequate for thin-walled open
beams exhibiting strong warping effects is presented in some detail. A re-
fined version of this theory accounting for the transverse shear deformation
induced by torsion is also briefly described.

In the last part of the chapter, we present a procedure for deriving
curved 3D beam elements based on a degeneration of 3D solid elements.
This formulation is applicable to composite beams and is an alternative
to the traditional methods for deriving beam elements using “classical”
beam theories. The extension of 3D beam elements to be used as stiffners
in shells is studied in Chapter 10.
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Fig. 4.2 3D homogeneous beam. Global (x, y, z) and local (x′, y′, z′) reference sys-
tems. Neutral/beam axis and elastic axis. Global displacements and rotations

4.2 BASIC DEFINITIONS FOR A 3D COMPOSITE BEAM

4.2.1 Local and global axes

A 3D beam is a prismatic solid of length L and transverse area A, oriented
in the longitudinal direction x′ which dimensions in the plane y′z′ orthog-
onal to x′ are relatively small with respect to the longitudinal direction.
Point O defining the origin of the beam axis x′ within the cross-section
will be assumed to be located at the neutral point. Therefore, the x′ axis
will be called hereafter indistinguishably beam axis or neutral axis.

The beam geometry is defined in a global orthogonal coordinate system
x, y, z (Figure 4.2).

In the following we will consider the beam axis to be straight and
assume constant geometrical and material properties along x′.

The definition of the beam axis x′ as the neutral axis decouples bend-
ing and axial effects (Section 3.6). Bending and torsional effects are also
decoupled when the external forces along the y′ and z′ directions act at
the shear center C. Point C is also called bending center. The straight line
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Fig. 4.3 Gravity and shear centers (G and C) and position of neutral axis (O) in
a composite section

connecting points C of all sections is the elastic axis denoted by x̂′. In our
derivations we will assume that the neutral and elastic axes (x′ and x̂′)
are parallel, although they may or not be coincident (Figure 4.2).

The neutral point O coincides with the gravity center of the section G
for homogeneous sections (Figure 4.2 and Section 3.6).

For homogeneous solid sections, closed thin-walled sections and open
thin-walled sections with double symmetry, points O, G and C coincide
(Figures 4.2 and 4.6).

For composite beams, the gravity center (G), the shear center (C) and
the neutral axis position (O) typically do not coincide (Figure 4.3).

4.2.2 Constitutive behaviour

The three local stresses in a section (σx′ , τx′y′ , τx′z′) (Figure 4.4) are related
to the conjugate strains (εx′ , γx′y′ , γx′z′) by the constitutive relationship

σσσx′ =

⎧⎨⎩
σx′

τx′y′

τx′z′

⎫⎬⎭ = D′

⎧⎨⎩
εx′

γx′y′

γx′z′

⎫⎬⎭ = D′εεε′ (4.1)

The 3× 3 constitutive matrix D′ is deduced from the general 3D con-
stitutive equation [On4] by making zero the strains that are neglected in
3D beam theory (i.e. εy′ = εz′ = γy′z′ = 0). For a general heterogeneous
material D′ is a full matrix. For the beam theories studied in this chapter
we will assume that the material is orthotropic with the orientation of one
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Fig. 4.4 Stresses in a 3D beam

of the principal material axes coincident with the beam axis. Under this
assumption matrix D′ has a simple (and standard) diagonal form

D′ =

⎡⎣E 0 0
0 Gy′ 0
0 0 Gz′

⎤⎦ (4.2)

where E is the longitudinal Young modulus (E = Ex′) and Gy′ and Gz′

are the transverse shear moduli (Gy′ = Gx′y′ ; Gz′ = Gx′z′). For isotropic
material

Gy′ = Gz′ = G =
E

2(1 + ν)
(4.3)

The material parameters can vary at each point of the section, provid-
ing the previous assumption holds.

The simple form of D′ of Eq.(4.2) will allow us using many concepts
of classical beam theory that are probably familiar to many readers.

Composite laminated section

For a composite laminated section (Figure 4.5a) we will assume that the
constitutive parameters are constant within each layer. The values of E,
Gy′ and Gz′ for the layer can be computed by rotating the constitutive
equations for the layer material (assumed to be in plane stress state, i.e.
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Fig. 4.5 (a) Lamina axes (L, T, n) in a composite laminated section. (b) Principal
inertia axes (y′, z′) of a section

σn = 0) from the lamina axes (L, T, n) to the beam local axes (x′, y′, z′)
following a procedure similar as explained in Section 8.3.3. The resulting
D′ matrix is a full matrix that can be diagonalized first by eliminating
εy′ and γy′z′ , that are assumed to be zero, and then imposing that the
constitutive relationships for σx′ , τx′y′ and τy′z′ are decoupled.

An alternative procedure is to preserve the full expression of the D′

matrix and then simplify its generalized form (D̂′) relating the resultant
stresses and the generalized strains [Va,VOO].

In our derivations we will accept that D′ is diagonal which invariably
occurs when the angle between the longitudinal lamina axis L and the x′

axis is 0◦ or 90◦ (Figure 4.5a). Despite this simplification, this model is
applicable to a wide number of composite laminated beams.

Under the previous assumptions it is useful to define x′ as the neutral
axis and y′ and z′ as the principal axes of inertia of the section.

4.2.3 Resultant constitutive parameters and neutral axis

Let us choose an arbitrary orthogonal coordinate system x̄, ȳ, z̄ attached
to the gravity center G with x̄ parallel to x′. A simple translation of this
system to the neutral axis O (whose position is still unknown) gives the
system x′, ȳ′, z̄′ attached to point O (Figure 4.5b). The resultant (gener-
alized) axial and bending constitutive parameters are defined as

D̂a =

∫∫
A
E dA , D̂bȳ′z̄′ =

∫∫
A
Eȳ′z̄′dA
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D̂bȳ′ =

∫∫
A
Ez̄′2 dA , D̂bz̄′ =

∫∫
A
Eȳ′2 dA

D̂abȳ′ =

∫∫
A
Ez̄′ dA , D̂abz̄′ =

∫∫
A
Eȳ′ dA (4.4)

For 3D isotropic and composite beams the local axis x′ of system
x′, ȳ′, z̄′ is defined as the neutral axis if

D̂abȳ′ =

∫∫
A
E(ȳ′, z̄′)z̄′ dA = 0 (4.5a)

D̂abz̄′ =

∫∫
A
E(ȳ′, z̄′)ȳ′ dA = 0 (4.5b)

The neutral axis in the coordinate system x′, ȳ′, z̄′ satisfies∫∫
A
Ez̄′ dA =

∫∫
A
E(z̄ − z̄0) dA = 0∫∫

A
Eȳ′ dA =

∫∫
A
E(ȳ − ȳ0) dA = 0

(4.6)

Eqs.(4.6) give the position of the neutral point O(ȳ0, z̄0) in the x′, ȳ, z̄
system as (Figure 4.5b)

z̄0 =

∫∫
A
Ez̄dA∫∫

A
E dA

=
D̂abȳ

D̂a

, ȳ0 =

∫∫
A
EȳdA∫∫

A
E dA

=
D̂abz̄

D̂a

(4.7)

The position of the neutral axis does not change if the local system
x′, ȳ′, z̄′ is rotated around x′ to give the final local reference system x′, y′, z′

where y′, z′ are the principal inertia axes.

4.2.4 Principal inertia axes

The principal inertia axes y′, z′ defining the local coordinate system
x′, y′, z′ (at the neutral point O) are obtained in terms of the resultant
constitutive parameters in the x′, ȳ′, z̄′ system (also at O) as follows.

The coordinates y′, z′ of an arbitrary point of the beam section are
expressed in terms of the coordinates ȳ′, z̄′, i.e.

y′ = Cȳ′ + Sz̄′

z′ = −Sȳ′ + Cz̄′ with C = cosα , S = sinα
(4.8)
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where α is the angle between the principal axis y′ and the ȳ′ axis (Figure
4.5b). Using Eqs.(4.4) we obtain

D̂by′z′ =

∫∫
A
Ey′z′dA = CS(D̂bȳ′ − D̂bz̄′ ) + (C2 − S2)D̂bȳ′z̄′ (4.9)

Axes y′ and z′ are principal inertia axes if D̂by′z′ = 0, i.e. if

tan 2α =
−2D̂bȳ′z̄′

D̂bȳ′ − D̂bz̄′
(4.10)

The principal bending constitutive parameters D̂bz′ and D̂by′ are ob-

tained in terms of the constitutive parameters in the x′, ȳ′, z̄′ coordinate
system (at point O) as

D̂bz′ =

∫∫
A
Ey′2 dA = C2D̂bz̄′ + 2CSD̂bȳ′z̄′ + S2D̂bȳ′

D̂by′ =

∫∫
A
Ez′2 dA = S2D̂bz̄′ − 2CSD̂bȳ′z̄′ + C2D̂bȳ′

(4.11a)

Using Eq.(4.10) gives

(D̂by′ , D̂bz′ ) =
1

2
(D̂bȳ′ + D̂bz̄′ )±

1

2

[(
D̂bȳ′ − D̂bz̄′

)2
+ 4D̂2

bȳ′z̄′

]1/2
(4.11b)

4.2.5 Summary of steps for defining the local coordinate system

The steps for defining the local coordinate system x′, y′, z′, attached to
the neutral point O (Figure 4.5b), for a 3D beam are the following.

1. Find the center of gravity G of the section and define the orthogonal
system x̄, ȳ, z̄ attached to point G, where x̄ is parallel to x′.

2. Find the position ȳ0, z̄0 of the neutral point O defining the system
x′, ȳ′, z̄′ attached to point O (Eqs.(4.7)). Compute the constitutive
parameters D̂a, D̂bȳ′ , D̂bz̄′ and D̂bȳ′z̄′ by Eqs.(4.4).

3. Compute angle α defining the position of the local coordinate system
x′, y′, z′ attached to point O (Eq.(4.10)).

4. Compute the bending parameters in the principal inertia axes D̂by′ ,

D̂bz′ by Eqs.(4.11b).
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For homogeneous material the neutral axis coincides with the center of
gravity and

z̄0 =
1

A

∫∫
A
z̄ dA , ȳ0 =

1

A

∫∫
A
ȳ dA (4.12)

The principal directions of inertia y′, z′ are defined in this case by

tan 2α = − 2Iȳ′z̄′

Iȳ′ − Iz̄′
(4.13)

and the principal moments of inertia are

(Iy′ , Iz′) =
1

2
(Iȳ′ + Iz̄′)± 1

2

[
(Iȳ′ − Iz̄′)

2 + 4Iȳ′z̄′
]1/2

(4.14a)

with

(Iȳ′ , Iz̄′ , Iȳ′z̄′) =

∫∫
A
(z̄′2, ȳ′2, ȳ′z̄′)dA (4.14b)

If either ȳ′ or z̄′ are symmetry axis, then Iȳ′z̄′ = 0 and Iy′ = Iȳ′ ,
Iz′ = Iz̄′ .

4.2.6 Computation of the shear center

Let x′ be the neutral axis and y′, z′ the principal inertia axes of a cross
section. The stress field is defined by the stresses σx′ , τx′y′ and τx′z′ (Figure
4.4). The shear stresses τx′y′ and τx′z′ define the shear forces Qy′ and Qz′

and the torque Mx′

Qy′ =

∫∫
A
τx′y′ dA , Qz′ =

∫∫
A
τx′z′ dA , Mx′ =

∫∫
A
(τx′z′y

′−τx′y′z
′) dA

(4.15)
The torque with respect to the elastic axis x̂′ passing by point C with

coordinates y′c, z′c is

Mx̂′ =

∫∫
A

[
τx′z′(y

′ − y′c)− τx′y′(z
′ − z′c)

]
dA = Mx′ − y′cQz′ + z′cQy′

(4.16)
Point C is the shear center if the shear stresses due to bending effects

satisfy
Mx̂′ = Mx′ − y′cQz′ + z′cQy′ = 0 (4.17)

which gives

y′c =
Mx′

Qz′
for Qy′ = 0 and Qz′ 
= 0 (4.18a)
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Fig. 4.6 Position of the gravity center (G), the shear center (C) and the neutral
axis (O) for some homogeneous sections

z′c = −
Mx′

Qy′
for Qz′ = 0 and Qy′ 
= 0 (4.18b)

The procedure for computing y′c for a composite beam is the following:

- Compute the distribution of τx′y′ and τx′z′ over the section for a shear
force Qz′ following the procedure explained in Appendix D for the
general case and in Section 3.7 for cylindrical bending.

- Compute Mx′ by Eq.(4.15) and then y′c by Eq.(4.18a).
Similar steps are repeated for computing z′c using the shear force Qy′ .
Clearly, the method is also applicable to homogeneous beams.

Figure 4.6 shows the position of the center of gravity O and the shear
center C for some sections. For other sections see [PCh,Yo].

For convenience, a new local reference system x̂′, ŷ′, ẑ′ is defined at the
shear center C so that x̂′, ŷ′ and ẑ′ are parallel to x′, y′ and z′, respectively
(Figure 4.7).

4.2.7 Properties of the shear center

The properties of the shear center are the following:

- External forces Fŷ′ and Fẑ′ applied at the shear center do not produce
a twist of the section. This means that the shear stresses τx′y′ and τx′z′

due to Fy′ and Fz′ are associated to a bending-shear state only.
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Fig. 4.7 External forces Fx′ , Fz′ and torque Mx̂′ acting at the shear center C

- External forces Fy′ and Fz′ applied at an arbitrary pointD are balanced
by shear stresses due to the shear forces Qz′ = Fẑ′ and Qy′ = Fŷ′ and
the torque Mx̂′ = Fz′(y

′
D − y′c)− Fy′(z

′
D − z′c).

- Consequently, any external load contained on the y′z′ plane can be
reduced to two loads (Fŷ′ , Fẑ′) acting at the shear center and a torque
Mx̂′ around the elastic axis x̂′. The two forces originate displacements
along the y′ and z′ axis and the corresponding bending states (in planes
x′y′ and x′z′, respectively), while the torque induces a twist of the
section (θx̂′) around the elastic axis (Figure 4.7).

- The shear stresses due to bending in the plane x′y′ satisfy

Qy′ =

∫∫
A
τx′y′ dA 
= 0 , Qz′ = 0 , Mx̂′ = 0 (4.19a)

those due to bending in the plane x′z′ (τx′z′) satisfy

Qz′ =

∫∫
A
τx′z′ dA 
= 0 , Qy′ = 0 , Mx̂′ = 0 (4.19b)

and those due to a torque Mx̂′ (τx′y′ , τx′z′) satisfy

Qy′ = Qz′ = 0 , Mx̂′ =

∫∫
A
[τx′z′(y

′ − y′c)− τx′y′(z
′ − z′c)] dA 
= 0

(4.20)
- For unconstrained uniform torsion a torque acting at the shear center

induces just shear stresses in the section. For a non-uniform torque
or a constrained uniform torsion, a torque also induces axial (warping)
stresses. For all cases the axial force and the bending moments induced
by a torque acting at the shear center are zero (Appendix I).
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Fig. 4.8 The shear center remains fixed under a torque Mx′ acting at the neutral
point O

- The shear center remains fixed when the section is subjected to a torque
acting at the neutral point O. This property follows from the Maxwell-
Betti reciprocity theorem (Figure 4.8), i.e.

Fẑ′w
′M
c = Mx′θ

F
x′ (4.21)

If Fẑ′ passes by C then the rotation θFz′ due to the force Fẑ′ is zero.
Hence, the vertical displacement of the shear center w

′M
c due to Mx′

is also zero. The same applies for a force θFy′ act C. This explains why
the shear center is also called twist center.

- If the section is symmetric with respect to y′, point C is placed over
this axis and Mx̂′ = 0. Also if O is a point of double symmetry, points
O and C coincide. Finally, if the section is defined by an assembly of
thin walls intersecting at a single point, the shear center practically
coincides with that point (Figure 4.6).

- For homogeneous material the position of C is typically a geometric
property of the section. The position of the shear center for different
homogeneous sections can be found in many publications [PCh,Yo].

- An exception of the above statement is the case of very deformable
thin walled beams with open cross-section. Here the shear center C is
not longer a property of the section and it depends on the boundary
conditions and the external forces (as the transverse shear stresses due
to torsion are not zero on the middle line) [Hy].
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- For a composite beam the position of the shear center C depends on
the geometry and the material properties for each layer. Appendix I
describes a procedure for computing the position of C in thin-walled
open composite sections.

4.3 3D SAINT-VENANT COMPOSITE BEAMS

We study first the finite element formulation for 3D composite beams sat-
isfying the free torsion assumption of Saint-Venant, i.e. the beam cross
section can deform freely due to a torque. As a consequence, the axial
strains and stresses due to torsion (warping effects) are zero, or of lit-
tle importance. As mentioned earlier this assumption is satisfied by solid
sections, T-type sections and closed thin-walled sections (including multi-
cellular sections). The formulation is also applicable to thin-walled open
sections if the torque is uniform and warping is not constrained along the
beam. A refined formulation for thin-walled open sections accounting for
warping effects is presented in Section 4.10. In all cases Timoshenko as-
sumptions for the bending of the section are assumed, i.e. plane sections
remain plane but not necessarily orthogonal to the beam axis. This in-
troduces shear deformation effects in the bending modes, as described in
Chapter 2 for plane beams.

The formulation of 3D Saint-Venant beams following Euler-Bernoulli
assumptions is briefly explained in Section 4.7.

4.3.1 Displacement and strain fields. Timoshenko theory

We will assume that the shear center C and the neutral axis O do not co-
incide. Hence, a coupling between axial, bending/shear and torsion effects
will exist if the kinematic variables are chosen either at O or at C.

A decoupling of these effects can be however obtained by choosing the
following kinematic variables [BD5]:

- The axial displacement u′ sampled at the neutral point O(u′0),
- the displacements v′ and w′ in the directions of axes ŷ′ and ẑ′, respec-

tively sampled at the shear center C (v′c, w′c),
- the twist rotation θx̂′ , and
- the rotations θy′ and θz′ around the y′ and z′ axes at O (Figure 4.9).

Note that, differently from previous chapters, we have chosen a vecto-
rial representation for the rotations (Figure 4.9).
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Fig. 4.9 Sampling points for the kinematic variables and the resultant stresses

Note also that as the elastic axis is parallel to the neutral axis the twist-
ing rotations θx′ and θx̂′ have the same value (Figure 4.9). In the following
we will keep the rotation θx̂′ as the kinematic variable for convenience.

The kinematic variables at point C are expressed in terms of their
values at point O prior to their transformation to global axes.

The displacement field over the beam cross section due to bending
effects, following Timoshenko beam theory (Chapter 2) is written as

u′ = u′0 + z′θy′ − y′θz′ ; v′ = v′c ; w′ = w′c (4.22)

where indexes 0 and c denote the sampling point for each displacement.
The displacement field is completed with the motion due to torsion.

Following Saint-Venant theory we assume that the beam sections twist
along the x′ axis following a twist angle θx̂′ which varies linearly along x̂′

(and also along x′). The displacements along the y′ and z′ axes are −(z′−
z′c)θx̂′ and (y′ − y′c)θx̂′ , respectively where y′c and z′c are the coordinates
of the shear center C. The axial displacement introduced by the twist
is ωφω where ω is the warping function and φω is the twist angle. It is
also assumed that the twist angle coincides with the change of the twist
rotation along the beam length, i.e

φω =
∂θx̂′

∂x′
(4.23)

Figure 4.10 shows the free torsion displacements of an arbitrary point
P within the beam section.

Assumption (4.23) is equivalent to neglecting the effect of the shear
deformations induced by torsion in the analysis. The way for accounting
for the shear deformation terms due to torsion in thin-walled open beams
is studied in Section 4.11.
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Fig. 4.10 Graphical representation of the free torsion displacements of a point P
in local axes x′, y, z′

The twisting displacement is superposed to that induced by the axial
and bending motion and the resulting displacement field can be written
as

u′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u′

v′

w′

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u′0

0

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
axial

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z′θy′ − y′θ′z

v′c

w′c

⎫⎪⎪⎪⎬⎪⎪⎪⎭
bending

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω

dθx̂′
dx′

−(z′ − z′c)θx̂′

(y′ − y′c)θy′

⎫⎪⎪⎪⎬⎪⎪⎪⎭
free torsion

(4.24)

The local displacement vector is

u′ = [u′0, v
′
c, w

′
c, θx̂′ , θy′ , θz′ ]

T (4.25)

The (local) strain field can be deduced from Eqs.(4.1) and (4.24) as

εεε′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
εx′

γx′y′

γx′z′

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u′0
∂x′

0

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
axial

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z′ ∂θy′∂x′

0

∂w′c
∂x′ + θy′

⎫⎪⎪⎪⎬⎪⎪⎪⎭
bending in
plane x’z’

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−y′ ∂θz′∂x′

∂v′c
∂x′ − θz′

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
bending in
plane x’y’

+
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+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0(

∂ω
∂y′ − (z′ − z′c)

)
∂θx̂′
∂x′(

∂ω
∂z′ + (y′ − y′c)

) ∂θx̂′
∂x′

⎫⎪⎪⎪⎬⎪⎪⎪⎭
free torsion

(4.26)

Eqs.(4.24) and (4.26) clearly show the superposition of the displace-
ment and strains due to axial, bending and free torsion effects.

As θx̂′ is assumed to vary linearly along the elastic axis x̂′, then ∂2θx̂′
∂x′2 =

0, and the twisting angle does not contribute to the axial strain εx′ . This
is not the case for thin-walled beams with open section (Section 4.10).

Eq.(4.26) can be written as

εεε′ = S1ε̂εε
′ (4.27a)

where ε̂εε′ is the generalized local strain vector given by

ε̂εε′ =
[
∂u′0
∂x′

,

(
∂v′c
∂x′

− θz′

)
,

(
∂w′c
∂x′

+ θy′

)
,
∂θy′

∂x′
,
∂θz′

∂x′
,
∂θx̂′

∂x′

]T
(4.27b)

and S1 is the strain transformation matrix

S1 =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 z′ −y′ 0

0 1 0 0 0

[
∂ω

∂y′
− (z′ − z′c)

]
0 0 1 0 0

[
∂ω

∂z′
+ (y′ − y′c)

]
⎤⎥⎥⎥⎥⎥⎦ (4.28)

We should remember that if the shear center C and the neutral axis O
coincide then y′c = z′c = 0.

4.3.2 Stresses, resultant stresses and generalized constitutive matrix

The resultant stress vector is defined as

σ̂σσ′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

N
Qy′

Qz′

My′

Mz′

Mx̂′

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

∫∫
A

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

σx′

τx′y′

τx′z′

z′σx′
−y′σx′[

(y′ − y′c)τx′z′ − (z′ − z′c)τx′y′
]

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
dA (4.29)
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where N is the axial force, Qy′ and Qz′ are the shear forces along the y′

and z′ axes, respectively, My′ and Mz′ are the bending moments around
the y′ and x′ axes, respectively and Mx̂′ is the torque around the x̂′ axis
(Figure 4.9).

Eq.(4.29) can be rewritten as

σ̂σσ′ =
∫∫

A
S2σσσ

′ dA where S2 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
z′ 0 0
−y′ 0 0
0 −(z′ − z′c) (y′ − y′c)

⎤⎥⎥⎥⎥⎥⎥⎦ (4.30)

Note that

S1 = ST
2 +

⎡⎢⎢⎢⎢⎣
0 0 0 0 0 0

0 0 0 0 0
∂ω

∂y′

0 0 0 0 0
∂ω

∂x′

⎤⎥⎥⎥⎥⎦ (4.31)

Recall that under a bending state the shear forces Qy′ and Qz′ are non
zero whileMx̂′ = 0. Conversely, under a pure torsional state Qy′ = Qz′ = 0
while Mx̂′ is non zero (Eqs.(4.19) and (4.20)).

4.3.3 Generalized constitutive matrix

The decoupling between the flexural and torsional effects implies that the
shear forces Qy′ and Qz′ are computed from the tangential stresses in-
duced by bending effects only, while the torque Mx̂′ is computed from the
tangential stresses due to torsion. Taking this into account, the relation-
ship between the resultant stresses and generalized strains can be derived
from Eq.(4.29), using Eqs.(4.1) and (4.26), as

σ̂σσ′ =
∫∫

A

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eεx′

Gy′
(
∂v′c
∂x′ − θx′

)
Gz′

(
∂w′c
∂z′ + θy′

)
z′Eεx′

−y′Eεx′

Dt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
dA (4.32)
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where

Dt =

[
Gz′

(
∂w

∂z′
+ y′ − y′c

)
(y′ − y′c)−Gy′

(
∂w

∂y′
− z′ + z′c

)
(z′ − z′c)

]
∂θx̂′

∂x′
(4.33)

Substituting into (4.32) the expression for εx′ of Eq.(4.26) and recalling
that y′, z′ are principal inertia axes we obtain

σ̂σσ′ = D̂′ε̂εε′ (4.34)

The generalized constitutive matrix D̂′ has the following diagonal form

D̂′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D̂a
... 0 0 0 0

... 0· · · · · · · · · · · · · · · · · · · · · · · ·
0

... D̂sy′ 0 0 0
... 0

0
... 0 D̂sz′ 0 0

... 0

0
... 0 0 D̂by′ 0

... 0

0
... 0 0 0 D̂bz′

... 0· · · · · · · · · · · · · · · · · · · · · · · ·
0

... 0 0 0 0
... D̂t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎣D̂a 0 0

0 D̂′
f 0

0 0 D̂t

⎤⎥⎦ (4.35a)

where D̂a, D̂
′
f and D̂t denote the axial, flexural and torsion contributions

to matrix D̂′ with

D̂a =

∫∫
A
E dA ; D̂sy′ = ky′

∫∫
A
Gy′dA ; D̂sz′ = kz′

∫∫
A
Gz′dA

D̂by′ =

∫∫
A
Ez′2 dA ; D̂bz′ =

∫∫
A
Ey′2 dA

D̂t =

∫∫
A

[
Gz′

(
∂ω

∂z′
+ y′ − y′c

)
(y′ − y′c)−Gy′

(
∂ω

∂y′
− z′ + z′c

)
(z′ − z′c)

]
dA

(4.35b)
where ky′ and kz′ are the shear correction parameters accounting for a
non uniform distribution of the shear stresses. These parameters can be
computed as described in Section 3.8 and in Appendix D.

The diagonal form of D̂′ of Eq.(4.35a) is obtained only if x′ is the neutral axis and y′

and z′ are principal inertia axes. Otherwise D̂′ is a full matrix (Example 4.1).
The integrals of Eq.(4.35b) for composite beams are performed taking

into account the distribution of the material properties over the section.
For a beam with heterogeneous material properties (satisfying Eq.(4.1))
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it is convenient to divide the section in a collection of cells with speci-
fied material properties. The integration is performed by adding up the
contributions of each cell to the integrals of Eq.(4.35b).

For composite laminated beams with a material orientation as in Figure
3.3, the axial, bending and shear constitutive parameters can be computed
using an extension of Eqs.(3.12) as

D̂a =

nl∑
k=1

bkhkE
k , D̂sy′ = ky′

nl∑
k=1

bkhkG
k
y′ , D̂sz′ = kz′

nl∑
k=1

bkhkG
k
z′

D̂by′ =

nl∑
k=1

bk
3
(z′3k+1 − z′3k )E

k , D̂bz′ =

nl∑
k=1

hkb
3
k

12
Ek

(4.36)
where hk = z′k+1 − z′k and bk are the depth and width of the kth layer. nl

is the number of layers and (·)k denotes values for the kth layer.
The computation of the torsional stiffness D̂t depends on the warping

function ω. This function can be obtained as explained in Section 4.3.4.
Table 4.1 shows the average value of D̂t for two beam sections with com-

posite laminated material obtained by computing w (via Eqs.(4.44)) and
D̂t with the FEM using different meshes of 3-noded triangles [DB5,Bo].

Expressions (4.35b) simplify for homogeneous material to

D̂a = EA , D̂sy′ = ky′Gy′A , D̂sz′ = kz′Gz′A

D̂by′ = EIy′ , Dbz′ = EIz′ , D̂t = GJ
(4.37a)

where Iy′ and Iz′ are the principal moments of inertia, ky′ and kz′ depend
on the geometry of the section (ky′ = kz′ = 5/6 for a rectangular section)
and J is the torsional inertia given by

J =

∫∫
A

(
ŷ
∂ω

∂z′
− ẑ

∂ω

∂y′
+ ŷ2 + ẑ2

)
dA (4.37b)

where ŷ = y′ − y′c, ẑ = z′ − z′c.
Figure 4.11 shows the values of J for some homogeneous sections

[BD5,PCh,Yo].
The strains and stresses at a point of a section can be computed from

the resultant stresses. Taking into account the decoupling between flexural
and torsional stresses we deduce from Eqs.(4.27a), (4.34) and (4.1)

εεε′ = S1ε̂εε
′ = S1D̂

′−1σ̂σσ′

σσσ′ = D′εεε′ = D′S̄1D̂
′−1σ̂σσ′

(4.38a)
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Material 1 Material 2

Skin
Aluminium Aluminium

G=23664 MPa G=23664 MPa

Core
Polystyrene Foam Araldite

G=7.7 MPa G=1362 MPa

No of 3-noded triangles
per layer

8 32 72 128

No of nodes 15 45 91 153

Material 1 D̂t × 10−6 N/m2 7.23 7.55 7.61 7.62

Material 2 D̂t × 10−6 N/m2 28.05 26.30 26.00 25.86

Table 4.1 Torsional stiffness D̂t for two composite laminated beams. Results show
the average value of D̂t in the section obtained by solving Eqs.(4.44) and (4.35b)
with the FEM using different meshes of 3-noded triangles [DB5,Bo]

where

S̄1 =

⎡⎣1 0 0 −z′ y′ 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤⎦ (4.38b)

for the strains and stresses induced by axial and flexural effects, and

S̄1 =

⎡⎢⎢⎢⎣
0 0 0 0 0 0

0 0 0 0 0
∂w

∂y′
− (z′ − z′c)

0 0 0 0 0
∂w

∂z′
+ (y′ − y′c)

⎤⎥⎥⎥⎦ (4.38c)

for the shear strains and shear stresses induced by the free torsion.
The computation of the shear stresses due to torsion presents some

particular features, as it requires the knowledge of the warping function.
This topic is discussed in the next sections for the general case and for thin-
walled closed sections. Thin-walled open sections are studied in Section
4.10.
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Fig. 4.11 Torsional inertial J and maximum shear stress τi for some homogeneous
sections. Point i shows the position of τi
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Example 4.1: Derive the generalized constitutive matrix D̂′ for an arbitrary
position of the beam axis.

Let us assume that the x′ axis does not coincide with the neutral axis and
y′, z′ are not principal inertia axes. Substituting the expression for the axial
stress εx′ (Eq.(4.26)) into the integral for the resultant stress vector (Eq.(4.32)
gives

σ̂σσ′ =
∫∫

A

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E

(
∂u′

0

∂x′ + z′
∂θx′

∂x′ − y′
∂θx′

∂x′

)
Gy′

(
∂v′c
∂x′ − θx′

)
Gz′

(
∂w′

c

∂x′ + θy′

)
z′E

(
∂u′

0

∂x′ + z′
∂θy′

∂x′ − y′
∂θx′

∂x′

)
−y′E
Dt

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dA

where Dt is defined in Eq.(4.33). Simple algebra gives

σ̂σσ′ = D̂′ε̂εε′ with D̂′ =
∫∫

A

⎡⎢⎢⎢⎢⎢⎢⎣
E 0 0 z′E −y′E 0
0 Gy′ 0 0 0 0
0 0 Gz′ 0 0 0

z′E 0 0 z′2E −y′z′E 0
−y′E 0 0 −y′z′E y′2E 0
0 0 0 0 0 Dt

⎤⎥⎥⎥⎥⎥⎥⎦ dA

with ε̂εε′ given by Eq.(4.27b).

We see that D̂′ is now a full (still symmetric) matrix. This implies that axial
and flexural effects are coupled, i.e. an axial force induces flexural (bending

and shear) effects and viceversa. The off-diagonal terms in D̂′ vanish if x′ is
the neutral axis and y′, z′ are the principal inertial axes (Section 4.2.3).

In practice, either the full form of D̂′ given above or the diagonal form of
Eq.(4.35a) can be used and both yield identical results. The simpler diagonal
form requires the “a priori” computation of the position of the neutral axis
and the principal inertia axes.
Above considerations do not affect the value of the torsional stiffness D̂t.

4.3.4 Computation of shear stresses due to torsion and the warping
function

The shear stresses due to torsion in Saint-Venant beams are expressed in
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terms of the displacements as (see Eqs.(4.1) and (4.26))

τx′y′ = Gy′γx′y′ = Gy′
∂θx̂′

∂x′

[
∂ω

∂y′
− (z′ − z′c)

]
τx′z′ = Gz′γx′z′ = Gz′

∂θx̂′

∂x′

[
∂ω

∂z′
+ (y′ − y′c)

] (4.39)

The equilibrium equation along x′ (noting that σx′ is zero under pure
torsion) is (Appendix B)

∂τx′y′

∂y′
+

∂τx′z′

∂z′
= 0 in A (4.40)

where A is the beam section. Substituting Eqs.(4.39) into (4.40) gives

∂

∂y′

(
Gy′

∂ω

∂y′

)
+

∂

∂z′

(
Gz′

∂ω

∂z′

)
= 0 in A (4.41)

Eq.(4.41) is a Laplace equation which must satisfy the following con-
dition at the cross-section boundary Γ [ZTZ]

τn = τx′y′ny′ + τx′z′nz′ = 0 on Γ (4.42)

noting that ny′ = −∂z′
∂s and nz′ =

∂y′
∂s and using Eqs.(4.39) we have

Gy′
∂ω

∂y′
ny′ +Gz′

∂ω

∂z′
nz′ +Gy′(z

′ − z′c)
∂z′

∂s
+Gz′(y

′ − y′c)
∂y′

∂s
= 0 on Γ

(4.43)
Eqs.(4.41) and (4.43) simplify for homogeneous material to

∂2ω

∂y′2
+

∂2ω

∂z′2
= 0 in A (4.44a)

∂ω

∂n
+

1

2

∂

∂s

[
(z′ − z′c)

2 + (y′ − y′c)
2
]
= 0 on Γ (4.44b)

Solution of the above differential equations yields the distribution of ω
over the beam section. The solution can be obtained analytically for sim-
ple sections with homogeneous material. For the general case, Eqs.(4.44)
are typically solved using finite differences (FD) or finite element (FE)
methods [BD4,Bo,OR,PCh,Yo,ZTZ].

Eqs.(4.44) yield a non unique distribution of ω over the section, as their
solution is not affected by adding a constant to ω. This is not a problem as
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Fig. 4.12 Thin-walled tube of arbitrary cross-sectional shape

the shear stresses depend on the derivatives of ω (Eq.(4.39)) and, hence,
the results are not influenced by the value of the constant.

Once the distribution of ω in the beam section has been found, the
torsional stiffness D̂t can be computed via Eq.(4.35b). This is typically
done using the same FD or FE mesh used for solving Eqs.(4.44) [BD4,Bo].
Table 4.1 shows an example of this procedure for computing D̂t in two
composite laminated beams using the FEM.

Figure 4.11 shows the position of the maximum shear stress in some
homogeneous sections [BD5,PCh,Yo].

4.3.5 Thin-walled closed sections

Given the geometry of thin-walled closed sections it is convenient to resolve
the shear stress into its components tangential and normal to the central
wall line τx′s and τx′n, denoted hereafter as τs and τn for simplicity (Figure
4.12). Furthermore, it is typically assumed that the normal shear stress
τn vanishes through the wall thickness, as the outer surfaces of the beam
are stress-free and the wall thickness is small. The flow of the tangential
stress τs (hereafter denoted as shear flow) is defined as

f(s) = tτs(s) (4.45)

From the local equilibrium equation for a differential element of the
thin-walled beam (Eq.(4.40)) we deduce (assuming τn = 0) [BC]
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∂τs
∂s

+
∂τn
∂n

=
∂τs
∂s

=
1

t

∂f

∂s
= 0 → f(s) = f = constant (4.46)

This constant shear flow distribution generates a torque Mx̂′ about the
neutral point O (coinciding with the shear center C) given by

Mx̂′ =

∫
Ls

frds = f

∫
Ls

rds = 2Af (4.47)

where A is the area enclosed by the central wall line with perimeter Ls.
From Eqs.(4.45) and (4.47) the tangential stress resulting from the torque
is found as

τs =
Mx̂′

2At
(4.48)

This equation is completed with the relationship between the twist rate
and the applied torque (Eq.(4.23))

φw :=
∂θx̂′

∂x′
=

Mx̂′

D̂t

(4.49)

The torsional stiffness D̂t can be obtained by equaling the external
complementary virtual work [ZTZ,BC] done by the torque and the internal
complementary virtual work performed by the tangential stress and using
Eq.(4.48), i.e.

φwδMx̂′ =

∫
Ls

γsδτsds =

∫
Ls

τs
δτs
G

tds =

[∫
Ls

Mx̂′

4A2Gt
ds

]
δMx̂′ (4.50)

From Eq.(4.50) we find after simplification and noting that Mx̂′ is
constant within Ls

φω =
1

D̂t

Mx̂′ with D̂t = 4A2

[∫
Ls

ds

Gt

]−1
(4.51)

For an arbitrary closed section of constant wall thickness

D̂t =
4GtA2

Ls
= GJ with J =

4tA2

Ls
(4.52)

Eq.(4.52) shows that the cross-section of maximal torsional stiffness
is the thin-walled circular tube. The tangential stress is deduced from
Eq.(4.48) as

τs =
Mx̂′

2πR2
mt

(4.53)

where Rm is the mean radius of the tube.
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Fig. 4.13 Shear flows in each cell of a thin-walled multi-cellular section [BC]

4.3.5.1 Torsion of multi-cellular sections

For multi-cellular sections equilibrium arguments require the shear flow to
remain constant along each wall. Also at each connection point the sum
of the flows going into the joint must vanish [AMR,BC,OR].

These continuity requirements are automatically satisfied if constant
shear flows are assumed to act in each cell. For the four-cell section
shown in Figure 4.13 shear flows circulating around each cell are denoted
f (1), f (2), f (3) and f (4), and their assumed positive direction is indicated
[BC]. Figure 4.13 also illustrates the shear flows converging to joint E:
the continuity condition is satisfied because (f (4))+ (f (3)− f (4))+ (f (2)−
f (3)) + (−f (2)) = 0.

The solution of the problem requires the computation of the constant
shear flows, one around each cell. The total torque, Mx̂′ , carried by the

section equals the sum of the torques carried by each individual cell, M
(i)
x̂′ ,

where i indicates the cell number, i.e.

Mx̂′ =

Ncells∑
i=1

M
(i)
x̂′ = 2

Ncells∑
i=1

A(i)f (i) (4.54)

where Ncells is the number of cells and A(i) the area enclosed by the ith cell
with perimeter C(i). This single equation does not allow the determination
of the shear flows in the Ncells cells.

Additional equations can be obtained by expressing the compatibility
conditions requiring the twist rates of the various cells to be identical. In

response to the shear flow, f (i), acting within the cell, a twist rate, φ
(i)
ω ,

develops in the cell. Compatibility of the deformations of all cells provides
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Ncells - 1 additional equations

φ(1)
ω = φ(2)

ω = · · · = φ(i)
ω = · · · = φ(Ncells)

ω (4.55)

The relationship between the twist rate and the torque carried by the
cell is deduced from Eq.(4.50) as

φ(i)
ω =

∫
L
(i)
s

M
(i)
x̂′

4(A(i))2
ds

Gt
=

∫
L
(i)
s

2A(i)f

4(A(i))2
ds

Gt
=

1

2A(i)

∫
L
(i)
s

f

Gt
ds (4.56)

Eqs.(4.55) and (4.56) provide the Ncells equations needed to solve for
the Ncells shear flows in the cells of a multi-cellular section under torsion.

Example 4.2: Two-cell cross-section.

The thin-wall cross-section shown in Figure 4.14 taken from [BC] represents
a highly idealized air-foil structure for which the curved portion is the leading
edge, the thicker vertical web is the spar, and the trailing straight segments
form the aft portion of the airfoil. Eq.(4.54) gives

Mx̂′ = 2

Ncell∑
i=1

A(i)f (i) = πR2f (1) + 6R2f (2) (4.57)

Fig. 4.14 A two-cell thin-walled section under torsion [BC]

The compatibility condition requires twist rates for the two cells to be iden-
tical. Eq.(4.56) yields the twist rate for the front cell as

φ
(1)
ω =

1

2A(1)

∫
C(1)

f

Gt(s)
ds =

1

GπR2/2

[
f (1)

t
πR+

f (1) − f (2)

3t
2R

]
=

1

GπRt

[
πf (1) +

2

3
(f (1) − f (2))

] (4.58)
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and the twist rate for the aft cell is

φ
(2)
ω =

1

2A(2)

∫
C(2)

f

Gt(s)
ds =

1

6G3R2

[
f (2) − f (1)

3t
2R+ f (2)2

√
10

R

t

]
=

1

6GRt

[
2

3
(f (2) − f (1)) + 2

√
10f (2)

]
(4.59)

Equating the two twist rates yields the second equation for the shear flows

1

π

[
πf (1) +

2

3
(f (1) − f (2))

]
=

1

6

[
2

3
(f (2) − f (1)) + 2

√
10f (2)

]
(4.60)

which simplifies to f (1) = 1.04f (2).
This result, along with Eq.(4.57), can be used to solve for f (1) and f (2) giving

R2f (1) = 1.04Mx̂′/(6 + 1.04π) and R2f (2) = Mx̂′/(6 + 1.04π)

Note that the shear slow in the front cell, f (1), is only about 4% greater than
that in the aft cell, f (2), and hence, the shear flow in the spar, R2(f (1) −
f (2)) = 0.04M1/(6 + 1.04π), nearly vanishes.
Because the torsional stiffness of a closed section is proportional to the square
of the enclosed area, the largest contribution to the torsional stiffness comes
from the outermost closed section, which is the union of the front and aft
cells. Consequently, the largest shear flow circulates in this outermost section,
leaving the spar nearly unloaded.
The torsional stiffness is computed as the ratio of the torque to the cell twist

rate (Eq.(4.49)). Since the twist rates of the two cells are equal, either φ
(1)
ω

or φ
(2)
ω can be used. For instance, using φ

(1)
ω yields

D̂t =
Mx̂′

φ
(1)
ω

=
(π1.04 + 6)R2f (2)

1/πGRt[1.04π + 2/3(1.04− 1)]f (2)
= 2.81πGR3t (4.61)

4.3.6 Virtual work expression

The PVW is written as∫∫∫
V
[δεx′σx′ + δγx′y′τx′y′ + δγx′z′τx′z′ ]dV =

∫
L
δu′T t′dx′ +

∑
i

δu′Ti p′i

(4.62)
where t′ and p′i are distributed forces along the beam axis and point loads,
respectively, V is the beam volume and L is the beam length.
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Fig. 4.15 Forces and moments acting on a 3D beam

The components of the virtual displacement vector δu′ and the external
force vectors t′ and p′i are expressed in the local coordinate system as
(Figure 4.15)

δu′ = [δu′0, δv′c, δw′c, δθx̂′ , δθy′ , δθz′ ]
T

t′ = [fx′ , fŷ′ , fẑ′ , mx̂′ , my′ , mz′ ]
T

p′i = [Fx′i , Fy′̂i , Fẑ′i , Mx̂′i , My′i , Mz′i ]
T

(4.63)

Note that the distributed and point forces along the ŷ′ and ẑ′ axes
(fy′ , fz′ , Fy′i , Fz′i) as well as the torques (mx̂′ ,Mx̂′i) act on the elas-
tic axis x̂′, while the axial forces (fx′ , Fx′i) and the bending moments
(my′ ,mz′ ,My′i , Mz′i) act along the neutral axis x′ (Figure 4.15).

The internal virtual work can be written in terms of the resultant
stresses and the virtual generalized strains. Using a matrix notation we
can write the l.h.s. of Eq.(4.62) using Eqs.(4.27a) and (4.31) as∫∫∫

V
δεεε′Tσσσ′dV =

∫∫∫
V
δε̂εε′TST

1 σσσ
′ dV =

∫∫∫
V
δε̂εε′TS2σσσ

′dV +

+

∫∫∫
V

∂θx̂′

∂x̂′

(
∂ω

∂y′
τx′y′ +

∂ω

∂z′
τx′z′

)
dV (4.64)

The first integral in the r.h.s. can be expressed using Eq.(4.30) as∫∫∫
V
δε̂εε
′TS2σσσ

′ dV =

∫
L
δε̂εε
′T

(∫∫
A
S2σσσ

′dA
)
dx′ =

∫
L
δε̂εε
′T σ̂σσ′dx′ (4.65)
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The second integral in the r.h.s. of Eq.(4.64) vanishes as shown next.

Recalling that
∂θx̂′

∂x′
is constant and using integration by parts we have

I =
∂θx̂′

∂x′

∫∫∫
V

(
∂ω

∂y′
τx′y′ +

∂ω

∂z′
τx′z′

)
dV =

∂θx̂′

∂x′

[
−

∫∫∫
V
ω

(
∂τx′y′

∂y′
+

∂τx′z′

∂z′

)
dV +

∫∫
S
ω(τx′y′ny′ + τx′z′nz′) dsdx

′
]

(4.66)
The surface integral in the r.h.s. of Eq.(4.66) is zero as τx′y′ny′ +

τx′z′nz′ = 0 on the beam boundary in absence of other traction forces (Ap-
pendix B). Also, for shear stresses originating from torsion effects σx′ = 0,
and from the equilibrium equations of 3D elasticity (Appendix B)

∂σx′

∂x′
+

∂τx′y′

∂y′
+

∂τx′z′

∂z′
=

∂τx′y′

∂y′
+

∂τx′z′

∂z′
= 0 (4.67)

and, therefore, I = 0.
For shear stresses originating from bending effects, then from the pre-

vious equilibrium equation

∂τx′y′

∂y′
+

∂τx′z′

∂z′
= −∂σx′

∂x′
(4.68a)

and, hence,

I = −∂θx̂′

∂x′

∫∫∫
V
ω
∂σx′

∂x′
dV (4.68b)

From Eqs.(4.68) and (4.26) we deduce

∂σx′

∂x′
= E

∂εx′

∂x′
= E

[
∂u′0
∂x′

+ z′
∂θy′

∂x′
− y′

∂θz′

∂x′

]
(4.69)

Substituting (4.69) into (4.68b) gives

I = −∂θx̂′

∂x′

∫∫∫
V
ωE

(
∂u′0
∂x′

+ z′
∂θy′

∂x′
− y′

∂θz′

∂x′

)
dV =

= −∂θx̂′

∂x′

∫
L

[
∂u′0
∂x′

∫∫
A
EωdA+

∂θy′

∂x′

∫∫
A
z′EωdA− ∂θz′

∂x′

∫∫
A
y′EωdA

]
dx′

(4.70)
This integral will vanish if∫∫

A
Eω dA =

∫∫
A
z′Eω dA =

∫∫
A
y′Eω dA = 0 (4.71)
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These conditions can be proved by noting that the axial force and the
bending moments induced by a torque acting at the shear center are zero
(Section 4.2.7). In conclusion, the PVW can be written as∫

L
δε̂εε′T σ̂σσ′dx′ =

∫
L
δu′Tt′ dx′ +

∑
i

δu′Ti p′i (4.72)

4.4 FINITE ELEMENT DISCRETIZATION. 2-NODED
TIMOSHENKO 3D BEAM ELEMENT

4.4.1 Definition of neutral axis and element matrices

The reference (neutral) line is discretized in C◦ continuous 1D straight
finite elements of length l(e), such as the 2 and 3-noded beam elements
shown in Figure 4.16. The coordinates of a point on the reference line are
obtained by the isoparametric interpolation [On4]

x = [x0, y0, z0]
T =

n∑
i=1

Nixi (4.73)

with Ni = Ni(ξ)I3, where Ni(ξ) is the 1D shape function of node i (Figure
2.4) and n is the number of nodes per element. The unit tangent vector
to the beam axis along x′ is obtained as

e1 =
x1 − x2

|x1 − x2| (4.74)

where x1 and x2 are the coordinate vectors of the element end nodes.
For a straight beam e1i

= e1. For a curved beam modeled with straight
segments e1i

is taken as the average of the tangent vectors of the two
elements meeting at node i.

Unit vectors e2i
and e3i

are defined along the principal directions y′

and z′ at each node, respectively. For beams with non uniform section the
principal directions may vary at each point. The position of vectors e1, e2

are interpolated within the element from the nodal values as

ea =

n∑
i=1

Nieai , a = 1, 2, 3 (4.75)
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Fig. 4.16 Discretization of a 3D beam in 2-noded and 3-noded (curved) beam
elements. Definition of unit tangent vectors at nodes

Above expressions are particularly useful for curved elements (Section
4.6).

The local displacements are interpolated as

u′ =
n∑

i=1

Ni(ξ)I6a
′(e)
i ; a

′(e)
i = [u′0i , v

′
ci , w

′
ci , θx̂′i , θy′i , θz′i ]

T (4.76)

where I6 is the 6× 6 unit matrix. Substituting Eq.(4.76) into the general-
ized strain vector ε̂εε′ of (4.27b) gives

ε̂εε′ =
[
∂u′0
∂x′

,

(
∂v′c
∂x′

− θz′

)
,

(
∂w′c
∂x′

+ θy′

)
,
∂θy′

∂x′
,
∂θz′

∂x′
,
∂θx̂′

∂x′

]T
=

n∑
i=1

B′ia
′(e)
i

(4.77)
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with

B′i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂x′
0 0 0 0 0

· · · · · · · · · · · · · · · · · ·
0

∂Ni

∂x′
0 0 0 −Ni

0 0
∂Ni

∂x′
0 Ni 0

0 0 0 0
∂Ni

∂x′
0

0 0 0 0 0
∂Ni

∂x′
· · · · · · · · · · · · · · · · · ·
0 0 0

∂Ni

∂x′
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
Bai

· · ·
Bfi

· · ·
Bti

⎤⎥⎥⎥⎥⎦ (4.78)

where Bai , Bfi and Bti are the axial, flexural and torsion contributions
to the generalized strain matrix of node i.

Substituting the expression of ε̂εε′ of Eq.(4.77) into the PVW (Eq.(4.72))
and using Eqs.(4.34) and (4.76) yields the element stiffness matrix and the
equivalent nodal force vector for distributed forces in local axes as

K
′(e)
ij =

∫
l(e)

B′Ti D̂′B′j dx
′ , f

′(e)
i =

∫
l(e)

Nit
′ dx′ , i, j = 1, 2 (4.79)

Introducing Eqs.(4.35a) and (4.78) into K
′(e)
ij gives

K′
ij =

∫
l(e)

[
BT

aiD̂aBaj +BT
fi
D̂fBfj +BT

tiD̂tBtj

]
dx′ (4.80)

The element matrices are typically evaluated using a numerical quadra-
ture. Shear locking can be avoided by under integrating the shear contri-

butions in K
′(e)
ij . The simplest 3D beam element is the linear 2-noded

element with one point uniform quadrature. Its local stiffness matrix can
be obtained explicitly as

K
′(e)
ij = [B′Ti D̂B′j ]cl

(e) =
[
BT

aiD̂aBaj +BT
fi
D̂fBfj +BT

tiD̂tBtj

]
c
l(e)

(4.81a)
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where (·)c denotes values at the element center. The expression of [B′i]c is

[B′i]c =

⎡⎢⎢⎢⎢⎣
Bai

· · ·
Bfi

· · ·
Bti

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ai 0 0 0 0 0· · · · · · · · · · · · · · · · · ·
0 ai 0 0 0 −1/2
0 0 ai 0 1/2 0
0 0 0 0 ai 0
0 0 0 0 0 ai· · · · · · · · · · · · · · · · · ·
0 0 0 ai 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
with ai = (−1/l(e))i

(4.81b)

Matrix K
′(e)
ij for the 3D 2-noded beam element is shown in Box 4.1.

Note that it is an extension of the stiffness matrix for the 2-noded Timo-
shenko plane beam element with one-point quadrature (Eq.(2.39)).

4.4.2 Stiffness and force transformations

Before assembly it is necessary to refer all nodal variables to the neutral
point O. From Eqs.(4.24) we obtain (for y′ = z′ = 0)

v′c = v′0 − z′cθx̂′

w′c = w′0 + y′cθx̂′
(4.82)

The relationship between the nodal displacement vector a′i and the
vector containing the DOFs at point O (ā′i) is

a′i = Liā
′
i (4.83a)

where

ā′i = [u′0i , v
′
0i , w

′
0i , θx′i , θy′i , θz′i ]

T and Li =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 −z′ci 0 0
0 0 1 y′ci 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (4.83b)

In Eq.(4.83b) we have taken θx̂′ = θx′ , as mentioned in Section 4.3.1.
The nodal point forces are transformed as

p̄′i = LT
i p

′
i (4.84a)

where
p̄′i = [Fx′i , Fy′i , Fz′i ,Mx′i ,My′i ,Mz′i ]

T

p′i = [Fx′i , Fŷ′i , Fẑ′i ,Mx̂′i ,Mŷ′i ,Mẑ′i ]
T (4.84b)



184 3D composite beams

K
′(e)
11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D̂a

l(e)
0 0 0 0 0

0
D̂sy′

l(e)
0 0 0

D̂sy′

2

0 0
D̂sz′

l(e)
0 − D̂sz′

2
0

0 0 0
D̂t

l(e)
0 0

0 0 − D̂sz′

2
0

(
D̂sz′

4
l(e) +

D̂by′

l(e)

)
0

0
D̂sy′

2
0 0 0

(
D̂sy′

4
l(e) +

D̂bz′

l(e)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K
′(e)
12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− D̂a

l(e)
0 0 0 0 0

0 − D̂sy′

l(e)
0 0 0

D̂sy′

2

0 0 − D̂sz′

l(e)
0 − D̂sz′

2
0

0 0 0 − D̂t

l(e)
0 0

0 0
D̂sz′

2
0

(
D̂sz′

4
l(e) − D̂by′

l(e)

)
0

0 − D̂sy′

2
0 0 0

(
D̂sy′

4
l(e) − D̂bz′

l(e)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K
′(e)
22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D̂a

l(e)
0 0 0 0 0

0
D̂sy′

l(e)
0 0 0 − D̂sy′

2

0 0
D̂sz′

l(e)
0

D̂sz′

2
0

0 0 0
D̂t

l(e)
0 0

0 0
D̂sz′

2
0

(
D̂sz′

4
l(e) + D̂by′

)
0

0 − D̂sy′

2
0 0 0

(
D̂sy′

4
l(e) +

D̂bz′

l(e)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K
′(e)
21 = [K

′(e)
12 ]T

Box 4.1 Local stiffness matrices K
′(e)
ij for a 2-noded 3D Timoshenko beam element

with one point uniform quadrature
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Fig. 4.17 Components of nodal point force vectors p′
i and p̄′

i

Eq.(4.84a) is easily deduced if we note that the all the components of
p′i coincide with those of p′i, except the torques Mx′i and Mx̂′i that are
related by (Figure 4.17)

Mx′i = Mx̂′i − z′cFŷ′i + y′cFẑ′i (4.84c)

The transformation of the local element stiffness matrix to global axes

is as follows. Matrix K
′(e)
ij is first transformed to the x′, y′, z′ system sam-

pled at the neutral point O as

K̄
′(e)
ij = LT

i K
′(e)
ij Lj , i, j = 1, 2 (4.85)

For straight elements Li = Lj .

Matrix K̄
′(e)
ij is finally transformed to the global cartesian system x, y, z

as
K

(e)
ij = TT

i K̄
′(e)
ij Tj with Ti = [e1i , e2i , e3i ] (4.86)

where vectors e1i , e2i and e3i are defined as explained in Section 4.4.1.
The two transformations are equivalent to using the following modified

generalized strain matrix
Bi = B′iLiTi (4.87a)

with B′i given by Eq.(4.78). The global stiffness matrix is computed as

K
(e)
ij =

∫
l(e)

BT
i D̂

′Bjdx
′ (4.87b)

The transformation of the local equivalent nodal forces to global axes
follows a similar steps. First the components of vector f

′(e) of Eq.(4.79)
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are transformed to the x′, y′, z′ axes by

f̄
′(e)
i = LT

i f
′(e)
i (4.88)

The equivalent nodal forces f̄
(e)
i are then transformed to the global

coordinate system by

f
(e)
i = TT

i f̄
′(e)
i = TT

i L
T
i f
′(e)
i (4.89)

4.5 QUASI-EXACT TWO-NODED 3D TIMOSHENKO BEAM
ELEMENT

The exact 2-noded Timoshenko beam element of Section 2.9 can be ex-
tended to the 3D case. The resulting element yields exact nodal results
when applied to the bending analysis of 3D straight plane beams under
loads acting on the planes x′z′ and y′z′. For arbitrary loads (including
torques) and curved geometry of the beam (discretized with straight 2-
noded elements) the results are not longer “exact”, in the sense of perfect
agreement with analytical values. However, the element has an excellent
behaviour for thick and slender 3D beams and frame structures and its
accuracy its typically better (for the same number of elements) than that
of the 2-noded 3D Timoshenko beam element of the previous section.

Box 4.2 shows the stiffness matrix of the so-called “quasi-exact” 2-
noded 3D beam element.

The equivalent nodal force vector f ′(e) for fx̂′ , fŷ′ , fẑ′ and mx̂′ constant
and my′ = mz′ = 0 is

f ′(e) =

{
f
′(e)
1

f
′(e)
2

}
(4.90a)

f
′(e)
1 =

[
l(e)

2
fx′ , fŷ′1 , fẑ′1 ,

l(e)

2
mx̂′ ,

(
l(e)

2
fŷ′ −

∫
l(e)

N1Fŷ′dx
′
)
,(

l(e)

2
fẑ′ −

∫
l(e)

N1Fẑ′dx
′
)]T

(4.90b)

f
′(e)
2 =

[
l(e)

2
fx̂′ ,

(
−fŷ′1 +

∫
l(e)

fŷ′dx
′
)
,

(
−fẑ′1 +

∫
l(e)

fẑ′dx
′
)
,
l(e)

2
mx̂′ ,(

l(e)

2
fŷ′1 −

∫
l(e)

N2Fŷ′dx
′
)
,

(
l(e)

2
fẑ′1 −

∫
l(e)

N2Fẑ′dx
′
)]T

(4.90c)
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K
′(e)
11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D̂a

l(e)
0 0 0 0 0

0 12φy′D̂bz′ 0 0 0 6φy′D̂bz′ l
(e)

0 0 0 12φz′D̂by′ −6φz′D̂by′ l
(e) 0

0 0 0
D̂t

l(e)
0 0

0 0 −6φz′D̂by′ l
(e) 0 (4 + βz′)D̂by′ (l

(e))2 0

0 6φy′D̂bz′ l
(e) 0 0 0 (4 + βy′)D̂bz′ (l

(e))2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K
′(e)
12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− D̂a

l(e)
0 0 0 0 0

0 −12φy′D̂bz′ 0 0 0 6φy′D̂bz′ l
(e)

0 0 −12φz′D̂by′ 0 −6φz′D̂by′ l
(e) 0

0 0 0 − D̂t

l(e)
0 0

0 0 6φz′D̂by′ l
(e) 0 (2− βz′)D̂by′ (l

(e))2 0

0 −6φy′D̂bz′ l
(e) 0 0 0 (2− βy′)D̂bz′ (l

(e))2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K
′(e)
22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D̂a

l(e)
0 0 0 0 0

0 12φy′D̂bz′ 0 0 0 −6φy′D̂bz′ l
(e)

0 0 12φz′D̂by′ 0 6φz′D̂by′ l
(e) 0

0 0 0
D̂t

l(e)
0 0

0 0 6φz′D̂by′ l
(e) 0 (4 + βz′)D̂by′ (l

(e))2 0

0 −6φy′D̂bz′ l
(e) 0 0 0 (4 + βy′)D̂bz′ (l

(e))2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

βy′ =
12D̂bz′

D̂sy′ (l
(e))2

, βz′ =
12D̂by′

D̂sz′ (l
(e))2

φy′ =
1

(1 + βy′)(l(e))3
, φz′ =

1

(1 + βz′)(l(e))3

K
′(e)
21 = [K

′(e)
12 ]T

Box 4.2 Quasi-exact 2-noded 3D Timoshenko beam element. Local stiffness ma-
trices

In the derivation of Eqs.(4.90) we have assumed that fx′ and mx̂′ are
constant along the element. Also

N1 = 1− x′

l(e)
, N2 =

x′

l(e)
, Fα =

∫ x′

0
fαdx

′ , α = ŷ′, ẑ′ (4.91)
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In Eqs.(4.90b,c), fŷ′1 , fẑ′1 are deduced from Eqs.(2.94b) as

fŷ′1 =
1

l(e)(1 + βy′)

∫
l(e)

(6Nm + βy′)Fŷ′dx
′ (4.92a)

fẑ′1 =
1

l(e)(1 + βz′)

∫
l(e)

(6Nm + βz′)Fẑ′dx
′ (4.92b)

where Fŷ′ and Fẑ′ are deduced from Eq.(2.87), Nm =
(
1− x′

l(e)

)
x′
l(e)

and

βy′ , βz′ are given in Figure 4.2.

The expression of f
′(e)
1 and f

′(e)
2 for uniformly and triangular distributed

loads and point loads can be deduced from Table 2.2.
If shear deformation effects are neglected, then βy′ = βz′ = 0 and

vectors f ′(e) and f
′(e)
2 of Eq.(4.90) are

f
′(e)
1 =

l(e)

2

[
fx′ , fŷ′ , fẑ′ ,mx̂′ ,−fẑ′ l

(e)

6
, fŷ′

l(e)

6

]T

(4.93a)

f
′(e)
2 =

l(e)

2

[
fx′ , fŷ′ , fẑ′ ,mx̂′ , fẑ′

l(e)

6
,−fŷ′ l

(e)

6

]T

(4.93b)

4.6 CURVED TIMOSHENKO BEAM ELEMENTS

The previous formulation is applicable to moderately curved 3D beams,
i.e. when a

R � 1, where R is the curvature radius of the reference line and
a is a characteristic cross section dimension.

The curved geometry is approximated by an isoparametric interpola-
tion using curved n-noded 1D elements [On4]. The tangent vector e1 is
obtained as

e1 =
1

|∂x∂s |
∂x

∂s
=

1

|∑n
i=1

∂Ni
∂s xi|

n∑
i=1

∂Ni

∂s
xi (4.94)

For end nodes shared by two elements the nodal tangent vector e1i is
obtained by a simple averaging procedure.

The unit vectors e2i and e3i are defined nodally along the principal
directions y′ and z′ for each nodal section respectively. The position of
vectors e1, e2 and e3 within the element is obtained by Eq.(4.75).

The element expressions are deduced from those for straight beams
simply substituting the derivative ∂Ni

∂x′ by ∂Ni
∂s and dx′ by ds, where s is

the curvilinear coordinate. The curvilinear derivatives are computed as

∂Ni

∂s
=

∂Ni

∂ξ

∂ξ

∂s
=

1

J

∂Ni

∂ξ
(4.95)
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where J = ∂s
∂ξ is obtained from the isoparametric description using

Eq.(4.73) (see also Section 9.8.2). The element integrals are evaluated
numerically noting that ds = Jdξ.

The curvilinear formulation of curved beams coincides with that de-
rived in Chapter 9 as a particular case of curved axisymmetric shell ele-
ments (Section 9.8). A general formulation for curved 3D beams obtained
by degeneration of solid elements is presented in Section 4.12.

4.7 3D EULER-BERNOUILLI BEAMS. SAINT-VENANT THEORY

3D Saint-Venant beam elements following Euler-Bernoulli theory can read-
ily derived from the formulation of the previous section simply imposing
that the local rotations θy′ and θz′ coincide with the slopes of the neutral
axis. With the sign criterion of Figure 4.9,

θz′ =
∂v′c
∂x′

and θy′ = −∂w′c
∂x′

(4.96)

Substituting these expressions into Eqs.(4.26) gives the strain field as

εx′ =
∂u′0
∂x′

− z′
∂2w′c
∂x′2

− y′
∂2v′c
∂x′2

γx′y′ =

[
∂ω

∂y′
− (z′ − z′c)

]
∂θx̂′

∂x′
; γx′z′ =

[
∂ω

∂z′
+ (y′ − y′c)

]
∂θx̂′

∂x′
(4.97)

i.e., the shear strains are due to torsion only (i.e. a bending state induces
no shear strains). The generalized local strain and resultant stress vectors
are

ε̂εε′ =
[
∂u′0
∂x′

,
∂2w′c
∂x′2

,
∂2v′c
∂x′2

,
∂θx̂′

∂x′

]T

, σ̂σσ′ = [N, My′ ,Mz′ , Mx̂′ ]
T (4.98)

The new form of matrix S1 of Eq.(4.28) is

S1 =

⎡⎣1 0 0 −z′ −y′ 0
0 0 0 0 0 A
0 0 0 0 0 B

⎤⎦ (4.99)

with A = ∂ω
∂y′ − (z′ − z′c) and B = ∂ω

∂z′ + (y′ − y′c). Similar changes are
introduced in S2 and S1 of Eqs.(4.30) and (4.38b).

The shear forces Qy′ , Qz′ are computed from the shear stress distribu-
tion due to bending following classical procedures of Strength of Materials
[Ti2,3]. The PVW is given by Eq.(4.72). C1 continuous finite elements
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approximations for v′c and w′c are required due to the presence of their
second derivatives in ε̂εε′.

The simplest 3D Euler-Bernoulli beam element has two nodes and uses
a linear C0 continuous interpolation for the axial displacement u′0 and the
twist rotation θx′ , and a cubic Hermite C1 continuous approximation for
v′c and w′c. The displacement interpolation is written as

u′ =

⎧⎪⎪⎨⎪⎪⎩
u′0
v′c
w′c
θx̂′

⎫⎪⎪⎬⎪⎪⎭ =

2∑
i=1

⎡⎢⎢⎣
Ni 0 0 0 0 0
0 NH

i 0 0 0 N̄H
i

0 0 NH
i 0 −N̄H

i 0
0 0 0 Ni 0 0

⎤⎥⎥⎦
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ū′0i
v′ci
w′ci
θx̂′i
θy′i
θz′i

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
=

2∑
i=1

Nia
′(e)
i

(4.100)

where Ni = 1
2(1 + ξξi) and NH

i and N̄H
i are the cubic Hermite shape

functions (Eq.(1.11a)). The negative sign in N̄H
i in the third row of Ni is a

consequence of the definition of θy′ (see Eq.(4.96)). Substituting Eq.(4.100)
into (4.98) yields

ε̂εε′ =
2∑

i=1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂x′
0 0 0 0 0

0 0
∂2NH

i

∂x′2
0 −∂2N̄H

i

∂x′2
0

0
∂2NH

i

∂x′2
0 0 0

∂2N̄H
i

∂x′2

0 0 0
∂Ni

∂x′
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
a
′(e)
i =

2∑
i=1

B′ia
′
i

(4.101)

The local stiffness matrix for the element is given by Eq.(4.79). Explicit
integration is possible and the resulting expression coincides with that of

classical matrix structural analysis (Box 4.3). Matrix K
′(e)
ij can be deduced

by neglecting shear deformation effects (i.e. making βy′ = βz′ = 0) in the
expressions of Box 4.2. The transformation to global axes follows precisely
the steps explained in Section 4.4.2.

The equivalent nodal force vector is given by Eq.(4.79). Distributed
loads induce now nodal bending moments due to the Hermite interpolation

for v′c and w′c, similarly as for Euler-Bernoulli beam elements. Vector f
′(e)
i

for uniform distributed loading coincides with Eqs.(4.93).
The formulation of curved Euler-Bernoulli beam elements using a curvi-

linear description follows the arguments of Section 4.6.
The 2-noded 3D Euler-Bernoulli beam element can be enhanced by

using an Hermite interpolation of the geometry. This is a better approx-
imation for curved beams and it is usually combined with a Hermite



Plane grillage 191

K
′(e)
11 =

1

(l(e))3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D̂a(l
(e))2 0 0 0 0 0

0 12D̂bz′ 0 0 0 6D̂bz′ l
(e)

0 0 12D̂by′ 0 −6D̂by′ l
(e) 0

0 0 0 D̂t(l
(e))2 0 0

0 0 −6D̂by′ l
(e) 0 4D̂by′ (l

(e))2 0

0 6D̂bz′ l
(e) 0 0 0 4D̂bz′ (l

(e))2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

K
′(e)
12 =

1

(l(e))3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−D̂a(l
(e))2 0 0 0 0 0

0 −12D̂bz′ 0 0 0 6D̂bz′ l
(e)

0 0 −12D̂by′ 0 −6D̂by′ l
(e) 0

0 0 0 −D̂t(l
(e))2 0 0

0 0 6D̂by′ l
(e) 0 2D̂by′ (l

(e))2 0

0 −6D̂bz′ l
(e) 0 0 0 2D̂bz′ (l

(e))2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

K
′(e)
22 =

1

(l(e))3

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D̂a(l
(e))2 0 0 0 0 0

0 12D̂bz′ 0 0 0 −6D̂bz′ l
(e)

0 0 12D̂by′ 0 6D̂by′ l
(e) 0

0 0 0 D̂t(l
(e))2 0 0

0 0 6D̂by′ l
(e) 0 4D̂by′ (l

(e))2 0

0 −6D̂bz′ l
(e) 0 0 0 4D̂bz′ (l

(e))2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

K
′(e)
21 = [K

′(e)
12 ]T , K̄

′(e)
ij = LTK′

ijL , L = Li = Lj (Eq.(4.84b))

Box 4.3 Local stiffness matrix for a 2-noded 3D Euler-Bernoulli beam element

approximation for the axial displacement. The higher order approxima-
tion makes it more difficult for obtaining an explicit form of the element
stiffness matrix.

Euler-Bernoulli beam elements are naturally free of shear locking al-
though in their curve form can suffer from membrane locking. The remedy
is to use a high order approximation for the axial displacement and uni-
form reduced integration (Section 9.15).

3D Euler-Bernoulli beam elements coincide in their plane version with
the plane arch elements derived in Section 9.9.3.2 as a particular case of
thin axisymmetric curved shell elements.

4.8 PLANE GRILLAGE

It is usual to find structures formed by an assembly of beams such that:

- the beams are linked by their gravity centers all placed on the same
global plane xy,



192 3D composite beams

Fig. 4.18 Plane grillage model of a skewed slab-beam assembly. Equivalent section
for a beam in the grillage

- the beams are oriented such that plane xy coincides with the symme-
try plane x′y′ (z′c = 0) of all the beams. The principal axis z′ is then
parallel to the global z axis.

This type of structure is called a plane grillage. Plane grillage mod-
els are typically used for analysis of slab-beam assemblies in bridges and
building floors, among other applications. Figure 4.18 shows an schematic
example of this type of model for a skewed slab-beam bridge.

Figure 4.19 shows the local and global axes for a beam in a grillage.
Each beam is subjected to concentrated or distributed forces on the z
direction acting on the elastic axis (inducing bending in the plane x′z′)
and to torques around the x̂′ axis. Hence, the kinematic variables satisfy

u′0 = v′ = θz′ = 0 (4.102)

The displacement field is expressed as

u′ = [w′c, θx̂′ , θy′ ]
T (4.103)
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Fig. 4.19 Local and global axes for a beam in a grillage

The local generalized strain vector and the resultant stress vector are

ε̂εε′ =
[(

∂w′c
∂x

+ θy′

)
,
∂θy′

∂y′
,
∂θx̂′

∂x′

]T

(4.104)

σ̂σσ′ = [Qz′ ,My′ ,Mx̂′ ]
T (4.105)

The generalized constitutive matrix is

D̂′ =

⎡⎢⎢⎢⎢⎢⎣
D̂sz′ 0

... 0

0 D̂by′
... 0

· · · · · · · · · · · ·
0 0

... D̂t

⎤⎥⎥⎥⎥⎥⎦ (4.106)

The PVW expression is given by Eq.(4.72). The displacement interpo-
lation for a 2-noded grillage element is written by Eq.(4.76) with

a
′(e)
i = [w′ci , θx̂′i , θy′i ]

T (4.107)

The generalized strain matrix is

B′i =

⎡⎢⎢⎢⎢⎣
∂Ni

∂x′
0 Ni

0 0
∂Ni

∂y′

0
∂Ni

∂x′
0

⎤⎥⎥⎥⎥⎦ (4.108)
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The local stiffness matrixK
′(e)
ij for a 2-noded Timoshenko grillage beam

element is deduced from Box 4.1 as

K
′(e)
ij =

⎡⎢⎢⎢⎣
αijD̂sz′ 0 βiD̂sz′

0 αijD̂t 0

βjD̂sz′ 0

(
D̂sz′

4
+ αijD̂by′

)
⎤⎥⎥⎥⎦ (4.109a)

with

αij =
(−1)i+j

l(e)
, βi =

(−1)i
2

i, j = 1, 2 (4.109b)

Box 4.4 shows the local stiffness matrix for the quasi-exact 2-noded
Timoshenko beam element and the 2-noded Euler-Bernoulli beam element
for a plane grillage. These matrices can be deduced from the expressions
in Boxes 4.2 and 4.3, respectively.

Quasi-exact 2-noded Timoshenko beam element for plane grillage

K
′(e)
ij =

⎡⎢⎢⎢⎣
12φz′αijD̂by′ 0 6φz′ β̂iDby′ l

(e)

0
αij

l(e)
D̂t 0

6φz′βjD̂by′ l
(e) 0 (cj + φz′αij) D̂by′ (l

(e))2

⎤⎥⎥⎥⎦ i, j = 1, 2

φz′ =
1

(1 + βz′)(l(e))3
, βz′ =

12D̂by′

D̂sz′ (l
(e))2

2-noded Euler-Bernoulli beam element for plane grillage

K
′(e)
ij =

1

(l(e))3

⎡⎢⎢⎢⎣
12αijD̂by′ 0 6βiD̂by′ l

(e)

0
αij

l(e)
D̂t 0

6βjD̂by′ l
(e) 0 cjβjD̂by′ (l

(e))2

⎤⎥⎥⎥⎦ i, j = 1, 2

For both cases

αij = (−1)i+j , βi = (−1)i , cj =

{
4 j = 1

2 j = 2

Box 4.4 Plane grillage. Local stiffness matrix for the quasi-exact 2-noded Timo-
shenko beam element and the 2-noded Euler-Bernoulli beam element
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The global stiffness matrix is given by Eqs.(4.85)–(4.86) with

Li = Lj =

⎡⎣1 y′ci 0
0 1 0
0 0 1

⎤⎦ and Ti = Tj =

⎡⎣1 0 0
0 C −S
0 S C

⎤⎦ (4.110)

where C = cosα, S = sinα and α is the angle that the neutral axis (x′)
forms with the global axis x (Figure 4.18).

The equivalent nodal force vector for distributed loads is computed in
global axes as

f
(e)
i = TiL

T
i f
′(e)
i with f

′(e)
i =

∫
l(e)

Ni

⎧⎨⎩
fẑ′

mx̂′

my′

⎫⎬⎭ dx′ (4.111)

For uniformly distributed loading, f
′(e)
i = l(e)

2 [fẑ′ ,mx̂′ ,my′ ]
T .

Recall that the vertical forces fẑ′ and the distributed torque mx̂′ act
on the elastic axis x̂′ (Figure 4.15).

4.9 EXAMPLES OF THE PERFORMANCE OF 3D TIMOSHENKO
BEAM ELEMENTS

The first example is the analysis of a circular cantilever rectangular beam
with a point load acting on the free edge. Figure 4.20 shows the geom-
etry and the different solutions for the end deflection obtained with the
following meshes of 3D Timoshenko beam elements: ten 2-noded (linear)
elements and one six-noded (quintic) element. The numerical solution in
the later case practically coincides with the analytical one [Ji,Ti3].

The second example is the clamped helycoidal beam shown in Figure
4.21. Self-weight loading is considered. Table 4.2 shows the convergence of
the central deflection and maxima and minima of some resultant stresses
for different meshes of the following 3D Timoshenko beam elements: linear
straigth (n = 2) and quadratic (n = 3), cubic (n = 4), quartic (n = 5) and
quintic (n = 6) curved beams. Note the higher accuracy of curved elements
for coarse meshes (in particular for predicting the maximum torque).

The computational efficiency of curved element can be enhanced by
condensing the internal DOFs prior to the global solution process.
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Fig. 4.20 Cantilever beam with point load acting on free edge. Deflection at the free
edge for meshes of ten 2-noded and one 6-noded 3D Timoshenko beam elements.
Dimensions are in inches and forces in pounds

4.10 THIN-WALLED BEAMS WITH OPEN SECTION

When a thin-walled beam is subjected to an applied torque, shear stresses
are generated. In turn, these shear stresses cause out-of-plane deformations
of the cross-section called warping. Although the magnitude of warping
displacements is typically small, they can have an influence on the tor-
sional behaviour of the structure.

Warping effects are particularly relevant when dealing with the non-
uniform torsion or a constrained uniform torsion of open sections. In both
cases, the twist rate varies along the beam’s axis. This contrasts with the
Saint-Venant theory studied on Section 4.3 which assumes that the twist
rate is constant along the beam’s length.

In the following lines we will develop a finite element formulation for
analysis of thin-walled beams with open section under combined axial and
flexural effects allowing for warping. The beam kinematics are assumed to
follow Timoshenko beam theory (Chapter 2).

Warping can also appear in slender thin-walled closed sections under a
non uniform torque. These effects are less relevant than for open sections
and these problems will not be considered here. The interested reader is
referred to the literature on the subject [BB,BC,BLD,BT2,OR,Pi,Vl].
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Fig. 4.21 Clamped helycoidal beam with square section under self-weight. E =
2.1× 106 Kg/cm2, ν = 0.5, specific weight = 2.5 T/m3

4.10.1 Geometric description

We consider a straight thin-walled open beam of length L with geometrical
and material properties which are independent of the x′ coordinate. We
will assume that the neutral axis x′ and the principal axes y′ and z′ are
known (origin at point O), as well as the position of the shear center C
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Number of elements

Variable No. nodes 2 8 16 32

2 -0.282 -0.341 -0.360 -0.365
w 3 -0.054 -0.367 -0.366 -0.367

(β = 120o) 4 -0.286 -0.367 -0.367 -0.367
5 -0.361 -0.367 -0.367 -0.367
6 -0.366 -0.367 -0.367 -0.367

2 2.171 2.181 2.171 2.170
Nmax 3 2.060 2.147 2.153 2.156

(β = 240o) 4 2.138 2.157 2.157 2.158
5 2.169 2.158 2.158 2.158
6 2.160 2.158 2.158 2.158

2 1.501 1.572 1.691 1.601
Qz̄max 3 1.688 1.628 1.617 1.613
(β = 0o) 4 1.625 1.613 1.612 1.612

5 1.599 1.612 1.612 1.612
6 1.610 1.612 1.612 1.612

2 -0.262 -0.072 0.081 0.162
Tmax 3 0.103 0.251 0.256 0.255

(β = 240o) 4 0.249 0.257 0.255 0.255
5 0.249 0.255 0.255 0.255
6 0.251 0.255 0.255 0.255

2 0.581 0.753 0.801 0.810
Mȳmax 3 0.514 0.798 0.815 0.816

(β = 120o) 4 0.763 0.816 0.816 0.816
5 0.813 0.816 0.816 0.816
6 0.816 0.816 0.816 0.816

2 -2.132 -2.181 -2.151 -2.110
Mȳmin 3 -1.515 -2.025 -2.058 -2.060
(β = 0o) 4 -1.815 -2.059 -2.061 -2.060

5 -2.027 -2.060 2.060 2.060
6 -2.060 -2.060 2.060 2.060

Table 4.2 Clamped helycoidal beam with square section under self-weight. Con-
vergence of central deflection and maxima and minima of some resultant stresses
using different meshes of 2,3,4,5 and 6-noded 3D Timoshenko beam elements

and the elastic axis local coordinate (y′c, 0). The thin wall is defined by
a middle surface parametrized by the coordinate s with 0 ≤ s ≤ Ls and
by a thickness t which is assumed to be constant for simplicity. The end
points at s = 0 and s = Ls are D and F , respectively (Figure 4.22).

The position of an arbitrary point p on the middle line within a section
is defined in the fixed cartesian system i, j,k by

rp = y′p(s)j+ z′p(s)k (4.112)
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Fig. 4.22 Thin-walled tubular beam with open section

and
ds = (dy′2p + dz′2p )

1/2 (4.113)

The tangent vector to the middle line in p is (in component form)

t =
∂rp
∂s

=
∂y′p
∂s

j+
∂z′p
∂s

k (4.114)
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The unit normal at p is defined as

n = i× t = ny′j+ nz′k (4.115a)

with

ny′ = −
∂z′p
∂s

, nz′ =
∂y′p
∂s

(4.115b)

The position of an arbitrary point q across the thickness is defined by
the thickness coordinate ζ (Figure 4.22b). In the fixed cartesian system

rq = rp + ζn ; − t

2
≤ ζ ≤ t

2
(4.116)

The coordinates of point q (y′q, z′q) ≡ (y′, z′) can be expressed in the
i, j,k system as

y′(s, ζ) = y′p(s) + ζny′(s) ; z′(s, ζ) = z′p(s) + ζnz′(s) (4.117)

For completeness we define vector c joining the shear center C and
point p on the middle line (Figure 4.22b). The tangent vector t can be
also obtained in terms of vector c as t = dc

ds .

4.10.2 Kinematic assumptions. Timoshenko theory

As already mentioned, a torque acting on a thin-walled open section can
produce a significant axial displacement due to warping effects. If warping
is restrained due to the presence of stiffners or a clampled end, for instance,
the torsion induces an axial stress σx′(x

′, s, ζ) which must be added to the
axial stress induced by bending effects.

The displacements of the arbitrary point q due to torsion can be ex-
pressed as

u′ = ω(s, ζ)
∂θx̂′

∂x′
, ut = −(cn + ζ)θx̂′ , un = ctθx̂′ (4.118)

where, as usual, θx̂′ is the twist rotation, u′, ut and un denote the torsion
displacements along the local axes x′, t, n, respectively, cn and ct are the
projections of vector c along the t and n axes, respectively and ζ is the
coordinate of point q along the normal direction (Figure 4.22b).

Eqs.(4.118) clearly show that the torsion introduces a linear variation
of the tangential displacement ut across the wall thickness.
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The relationship between the displacement v′, w′ and ut, un is

v′ = unny′ − utnz′ , w′ = unnz′ + utny′ (4.119)

The total displacements are obtained by adding the displacements due
to axial and bending effects in Timoshenko beam theory to the torsion
displacements. From Eqs.(4.24), (4.118) and (4.119) we obtain the local
displacement vector as

u′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u′

v′

w′

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
u′0

0

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
axial

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z′θy′ − y′θ′z

v′c

w′c

⎫⎪⎪⎪⎬⎪⎪⎪⎭
bending

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω
∂θx̂′

∂x′

−[ctny′ + (cn + ζ)nz′ ]θx̂′

[ctnz′ − (cn + ζ)ny′ ]θx̂′

⎫⎪⎪⎪⎬⎪⎪⎪⎭
non-uniform torsion

(4.120)
A key difference with Sain-Venant formulation is that the twist rotation

θx̂′ is not a linear function and, hence,
∂2θx̂′
∂x′2 
= 0. Consequently, torsion

originates a non zero axial strain and stress as shown next.

4.10.3 Warping function and strains and stresses due to torsion

Let us assume an thin-walled open beam under a torque only. The dis-
placement field induced by torsion is given by Eqs.(4.118).

The warping function ω is defined so that in a torsion state the shear
strain γx′ζ is zero over the section and the shear strain γx′s is zero at the
center line, i.e.

γx′ζ = 0 ∀ s and ζ (4.121)

γx′s = 0 ∀ s for ζ = 0 (4.122)

Assumption (4.121) and Eq.(4.118) lead to

γx′ζ =
∂u′

∂ζ
+

∂un
∂x′

=

(
∂ω

∂ζ
+ ct

)
∂θx̂′

∂x′
= 0 (4.123)

Eq.(4.123) implies that ∂ω
∂ζ + ct = 0. Integrating this along ζ gives

ω(s, ζ) = g(s)− ct(s)ζ (4.124)

Assumption (4.122) and Eqs.(4.118) lead to

γx′s|ζ=0 =

(
∂u′

∂s
+

∂ut
∂x′

)
ζ=0

=

(
∂ω

∂s

∣∣∣
ζ=0

− cn

)
∂θx̂′

∂x′
= 0 (4.125)
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Hence,

∂ω

∂s

∣∣∣
ζ=0

− cn = 0 and ω(s, 0) = ωs(s) =

∫ s

0
cn ds (4.126)

Combining Eqs.(4.124) and (4.126) gives

g(s) = ωs(s) + ωD (4.127)

where ωD is a constant (typically ωD = ω(0, 0)). The computation of ωs

and ωD is detailed in Appendix F.
Function ωs in Eq.(4.127) is called sectorial area coordinate (Figu-

re 4.23). Eqs.(4.127) and (4.124) lead to the following expression for the
warping function

ω(s, ζ) = ωs(s) + ωD − ct(s)ζ (4.128)

which gives (noting that ∂ωs
∂s = cn from Eq.(4.126))

∂ω

∂s
= cn − ∂ct

∂s
ζ (4.129)

The strain field due to torsion is obtained from Eqs.(4.118) and (4.119)
as

εx′ =
∂u′

∂x′
= ω(s, ζ)

∂2θx′

∂x′2

γx′s =
∂u′

∂s
+

∂ut
∂x′

=

[
∂ω

∂s
− (cn + ζ)

]
∂θx̂′

∂x′
= −ζ

(
1 +

∂ct
∂s

)
∂θx̂′

∂x′
(4.130)

The expression for γx′s can be rewritten using the following relation-
ships

∂ct
∂s

=
∂

∂s
(cT · t) = ∂cT

∂s
t+ cT

∂t

∂s
= tT t+ cT

∂t

∂s
= 1 +

cn
R

(4.131)

In the derivation of Eq.(4.131) we have used the identities t = ∂c
∂s and

∂t
∂s = 1

Rn where R is the curvature radius of the curved wall (Figure 4.23)
and cT · n = cn.

The non zero strains due to torsion are finally expressed as

εx′ = ω
∂2θx̂′

∂x′2

γx′s = −ζ
(
2 +

cn
R

) ∂θx̂′

∂x′

(4.132)
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Fig. 4.23 Sectorial area coordinate ωs

For a section formed by an assembly of straight segments R =∞ and
γx′s = −2ζ ∂θx̂′

∂x′ .
The torsion strains are added to the axial and bending strains as for

the Saint-Venant torsion. This is detailed in the next section.
The stresses induced by torsion are deduced from Eqs.(4.132) and (4.1)

as

σω
x′ = Eεx′ = Eω

∂2θx̂′

∂x′2
(4.133a)

τx′s = Gγx′s = −Gζ
(
2 +

cn
R

) ∂θx̂′

∂x′
(4.133b)

In Eq.(4.133b) we have assumed Gy′ = Gz′ = G.
The upper-index ω in σω

x′ denotes that this axial stress is due to warp-
ing effects. Recall that this stress is zero in Saint-Venant theory. The axial
stress σω

x′ varies linearly with the thickness via the ζ-dependance of the
warping function ω (Eq.(4.128)). In practice function ω is generally as-
sumed to be constant across the thickness and so is σω

x′ (Section 4.10.7
and [BC,OR,Pi,Ti3]).

Eq.(4.133b) shows that the shear stress τx′s (or τs for short) varies lin-
early across the wall thickness. This is a key difference with closed thin-
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walled sections where τs is constant across the thickness (Section 4.3.5).
The relationship between the shear strains and the shear stresses in

the x′, y′, z′ and x′, t, n axes is

γx′y′ = γx′snz′ , γx′z′ = −γx′sny′

τx′y′ = τx′snz′ , τx′z′ = −τx′sny′
(4.134)

Also

τx′s = τx′y′nz′ − τx′z′ny′ , γx′s = γx′y′nz′ − γx′z′ny′ (4.135)

More details on the computation of the stresses due to torsion in thin-
walled open sections are given in Section 4.10.7.

4.10.4 Resultant stresses and generalized constitutive equation

The non zero strains are a sum of the strains induced by the axial, bending
and torsion effects, i.e.

εεε′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
εx′

γx′y′

γx′z′

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂u′0
∂x′

0

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
axial

+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

z′
∂θy′

∂x′
− y′

∂θz′

∂x′
∂v′c
∂x′

− θz′

∂w′c
∂x′

+ θy′

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
bending

+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ω
∂2θx̂′

∂x′2

−ζ
(
2 +

cn
R

)
nz′

∂θx̂′

∂x′

ζ
(
2 +

cn
R

)
ny′

∂θx̂′

∂x′

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
torsion

(4.136)
The stress-strain relationship coincides with Eq.(4.1) with D′ given by

Eq.(4.2). The resultant stresses are defined as

σ̂σσ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

N
Qy′

Qz′

My′

Mz′

Mω

Mx̂′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

∫∫
A

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σx′

τx′y′

τx′z′

z′σx′
−y′σx′
ωσx′

−ζ (2 + cn
R

)
τx′s

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
dA (4.137)

where Mω is called the bimoment (Figure 4.24) [BC,OR,Ti3].
Substituting the tangential shear stress τx′s in terms of τx′y′ and τx′z′

via Eq.(4.135) and using the stress-strain relationship (Eq.(4.1)) into
(4.137) gives

σ̂σσ′ = D̂′ε̂εε′ (4.138)
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Fig. 4.24 Bimoment Mω in a thin-walled open section

where ε̂εε′ is the generalized strain vector and D̂′ is the generalized consti-
tutive matrix respectively given by

ε̂εε′ =
[
∂u′0
∂x′

,

(
∂v′c
∂x′

− θz′

)
,

(
∂w′c
∂x′

+ θy′

)
,
∂θy′

∂x′
,
∂θz′

∂x′
,
∂2θx̂′

∂x′2
,
∂θx̂′

∂x′

]T
(4.139a)

and

D̂′ =

⎡⎣D̂a 0 0

0 D̂f 0

0 0 D̂t

⎤⎦ (4.139b)

where D̂a and D̂f are given in Eqs.(4.35) and the torsion constitutive
matrix is

D̂t =

[
D̂w 0

0 D̂t

]
(4.140a)

with

D̂ω =

∫∫
A
ω2E dA , D̂t =

∫∫
A
ζ2

(
2 +

cn
R

)2
GdA (4.140b)

In the expression for D̂t we have assumed Gy′ = Gz′ = G.
For homogeneous material

D̂t = GJ and D̂ω = EIω (4.141)

where J =
∫∫

A ζ2
(
2 + c2n

R

)
dA is the torsional inertia and Iω =

∫∫
A ω2dA

is the warping inertia modulus. Figure 4.27 shows the values of J and Iw
for several sections.
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For a curved section of uniform thickness

J 	 1

3
Ls

t3

3
and D̂t 	 G

3

n∑
i=1

Ls
t3

3
(4.142a)

where Ls is the length of the middle line (Figure 4.22). These expressions
are exact for a circular section [OR,Ti3].

For thin-walled homogeneous open sections formed by n straight seg-
ments of thickness ti and length li [OR,Ti3],

J =
1

3

n∑
i=1

t3i li and D̂t =
G

3

n∑
i=1

t3i li (4.142b)

The maximum shear stress at each segment will occur at the wall edges
located at a distance ±t/2 from the midline. Its value is deduced from
Eq.(4.133b) for ζ = ± t

2 and R =∞ and Eq.(4.138) as

τmax
s = ±Gt

∂θx̂′

∂x′
= ±Gt

Mx̂′

D̂t

(4.143)

Clearly the maximum shear stress will be found in the segment featur-
ing the largest thickness.

Example 4.2: Comparison of open and closed thin-walled sections.

The torsional behaviour of thin-walled closed sections is quite different from
that of open sections. For closed sections, the shear stress is uniformly dis-
tributed through the thickness of the wall (Figure 4.25), whereas a linear
distribution through the wall thickness is found in open sections. The tor-
sional stiffness D̂t is proportional to the square of the enclosed area for a
closed section (Eq.(4.52)) in contrast with a thickness cubed proportionality
for open sections (Eq.(4.142a) [BC].
Consider, for instance, a thin ring of circular shape and a thin-walled open
circular tube, both of identical mean radius Rm and thickness t, as depicted
in Figure 4.25. The torsional stiffness of the closed and open sections, de-
noted D̂closed

t and D̂open
t , respectively, are given by Eqs.(4.52) and (4.142a),

respectively, as D̂closed
t = 2πGR3

mt and D̂open
t = 2πGRmt3/3. Their ratio is

D̂closed
t

D̂open
t

= 3

(
Rm

t

)2
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Fig. 4.25 Thin-walled closed and open tubes

If the two sections are subjected to the same torque, Mx̂′ , the maximum
shear stresses in the open and closed sections, denoted τopenmax and τ closedmax ,
respectively, are given by Eqs.(4.143) and (4.53), respectively, as

τopenmax =
Mx̂′t

D̂open
t

=
3Mx̂′

2πRmt2
, τ closedmax =

Mx̂′

2πR2
mt

Their ratio can then be expressed as

τopenmax

τ closedmax

= 3

(
Rm

t

)
For a typical thin-walled beam with Rm = 20t. The torsional stiffness of the
closed section will be 1200 times larger than that of the open section. Under
the same applied torque, the maximum shear stress in the open section will
be 60 times larger than that of the closed section. In other words, the closed
section can carry a 60 times larger torque for an equal shear stress level [BC].

4.10.5 Virtual work expression

The PVW expression for a distributed load is∫∫∫
V
δεεε
′Tσσσ′ dV −

∫
l
δu′Tt′dx′ = 0 (4.144)

The internal virtual work can be written after some algebra using
Eqs.(4.136)–(4.138) as∫∫∫

V
δεεε′Tσσσ′ dV =

∫
L

(
δε̂′x′Nx′ + δ

(
∂v′c
∂x′

− θz′

)
Qy′ + δ

(
∂w′c
∂x′

+ θy′

)
Qz′

+
∂δθy′

∂x′
My′ +

∂δθz′

∂x′
Mz′ +

∂2δθx̂′

∂x′2
Mω +

∂δθx̂′

∂x′
Mx̂′

)
dx′

=

∫
L
δε̂εε′T σ̂σσ′ dx′ (4.145)
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where σ̂σσ′ and ε̂εε′ are defined in Eqs.(4.137) and (4.139a).
The underlined terms in Eq.(4.145) are due to torsional effects.
The external work for distributed loads is written as

δW =

∫
L
δu′T t′ dx′ =

∫
L

[
δu′T t′ +

∂δθx̂′

∂x′
fω

]
dx′ (4.146a)

with vectors δu′ and t′ defined as in Eq.(4.63) and

fω =

∫∫
A
ωfx′dA (4.146b)

The expression of δW for point loads and concentrated moments is

δW =
∑
i

[
δu′Ti p′i + δ

(
∂θx̂′

∂x′

)
i

Fωi

]
(4.147a)

where p′i is defined in Eq.(4.63) and

Fωi = ωFx′i (4.147b)

Index i in above equations denotes the point along the x′ axis where
the axial load Fx′i is applied.

4.10.6 Two-noded Timoshenko beam element with thin-walled open
section

The formulation of 3D Timoshenko beam elements with thin-walled open
section can be derived by superimposing axial effects, flexural effects, with
or without shear deformation, and torsion effects. C1 continuity is required
to approximate the twisting rotation θx̂′ , as the second derivatives of θx̂′

appear in the PVW (Eq.(4.145)). This can be implemented in 2-noded
straight elements by choosing ∂θx̂′/∂x

′ as the 7th nodal DOF and a stan-
dard cubic Hermite interpolation for θx̂′ .

The displacement interpolation is written as

u′ =
2∑

i=1

Nia
′
i (4.148a)

with
u′ =

[
u′0, v

′
c, w

′
c, θx̂′ , θy′ , θz′

]T
(4.148b)

a
′(e)
i =

[
u′0i , v

′
ci , w

′
ci , θx̂′i , θy′i , θz′i ,

∂θx̂′

∂x′i

]T

(4.148c)



Thin-walled beams with open section 209

and

Ni =

⎡⎢⎢⎢⎢⎢⎢⎣

Ni 0 0 0 0 0 0
0 Ni 0 0 0 0 0
0 0 Ni 0 0 0 0
0 0 0 NH

i 0 0 N̄H
i

0 0 0 0 Ni 0 0
0 0 0 0 0 Ni 0

⎤⎥⎥⎥⎥⎥⎥⎦ (4.148d)

where Ni is the standard linear shape function and NH
i , N̄H

i are the cubic
Hermite shape functions (Eqs.(1.11a)).

The generalized strain-displacement relationship is written as

ε̂εε′ =
2∑

i=1

B′ia
′
i where B′i =

⎡⎢⎢⎢⎢⎣
Bai

· · ·
Bfi

· · ·
Bti

⎤⎥⎥⎥⎥⎦ (4.149)

with Bai and Bfi given by Eq.(4.81b) and

Bti =

⎡⎢⎢⎢⎣
0 0 0

∂2NH
i

∂x
′2
i

0 0
∂2N̄H

i

∂x
′2
i

0 0 0
∂NH

i

∂x
′
i

0 0
∂N̄H

i

∂x
′
i

⎤⎥⎥⎥⎦ (4.150)

The element stiffness matrix is obtained as explained in Section 4.4.1.
The different stiffness terms coincide with those shown in Box 4.1 with
exception of the following terms that complete the 14×14 stiffness matrix
for the element (7 DOFs per node)

k′4,4 =
12D̂ω

(l(e))3
+

6D̂t

5l(e)
, k′4,7 =

6D̂ω

(l(e))2
+

D̂t

10

k′4,11 = −k′4,4, k′4,14 = k′4,7, k′7,7 =
4D̂ω

l(e)
+

2l(e)D̂t

15

k′7,11 = −k′4,7, k′7,14 =
2D̂ω

l(e)
− l(e)D̂t

30
, k′11,11 = k′4,4

k′11,14 = −k′4,7, k′14,14 = k′7,7

(4.151)

with k′ij = k′ji.
An alternative interpolation for θx̂′ giving “exact” results at the nodes

can be chosen using hyperbolic shape functions as described in [BD5].
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The transformation of the first six nodal DOFs to the global axes
is identical as described in Section 4.4.2. The transformation of

∂θx̂′
∂x′ is

more cumbersome for folded beams and straight rods with variable sec-
tion [GP,Gu,Sh]. The degree of nodal compatibility between two elements
depends on the satisfaction of the following equation [BD5](

∂θx̂′

∂x′

)(a)

i

= c

(
∂θx̂′

∂x′

)(b)

i

(4.152)

where c ≤ 1 and indexes a and b denote values at each of the two adjacent
elements. Different values for c have been proposed on the basis of local
finite element analyses for beam assemblies with sections shaped in H
and U [Sh]. An alternative is to assume that the nodal quantities

∂θx̂′
∂x′

are discontinuous between elements and that there are as many warping
variables at a node as beam elements connected to the node [Ak,BD5].

4.10.7 Computation of stresses due to torsion in thin-walled open sections

The axial and shear stresses induced by torsion in thin-walled open beams
can be computed by Eq.(4.133). For straight walls (R→∞) and

τx′s = −2ζG∂θx̂′

∂x′
(4.153)

The maximum values occur at the wall edges (ζ = ± t
2), i.e.

max |τx′s| = tG

∣∣∣∣∂θx̂′∂x′

∣∣∣∣ (4.154)

This tangential stress is sometimes referred as Saint-Venant shear stress
(denoted hereafter as τ svx′s), meaning that it does not include the shear
stress induced by the axial stress due to warping.

The axial stress induced by warping effects can be computed using
Eqs.(4.133a) and (4.138) as

σω
x′(s, ζ) = ω(s, ζ)E

∂2θx̂′

∂x′2
= ω(s, ζ)

E

D̂ω

Mω (4.155)

with ω(s, ζ) = g(s)− ct(s)ζ (Eq.(4.124)).
If g(s) 
= 0, the contribution of the term ctξ is typically negligible.

Figure 4.26 shows the distribution of g(s) and σω
x′(s, 0) for three sections.

The full derivation for one of the sections is presented in Example 4.3.
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σω
x′(s, 0) = g(s)

E

D̂ω

Mω Eq.(4.155)

τω
x′s(s) = −SωE

∂3θx′

∂x′3

Fig. 4.26 (a) Distribution of g(s), σω
x′(s, 0), Sω(s) and (b) τωx′s(s) for three thin-

walled open sections

The maximum values of σω
x′ are usually located at the extremities of the

section (points D in Figure 4.27) and are independent of ζ. If g(s) = 0
these values are placed at the extremity points and at the corners. In
general we can write

max |σω
x′ | = β1E|∂

2θx̂′

∂x′2
| (4.156)

Figure 4.27 shows the value and position of β1 (and hence of max |σω
x′ |)

for different sections.
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max |σω
x′ | = β1E| ∂2θx̂′

∂x
′2 | , max |τω

x′s| = β2E| ∂3θx̂′
∂x
′3 |

Fig. 4.27 Torsional inertia (J), warping inertia modulus (Iω) and value and posi-
tion of the maximum stresses due to warping for different thin-walled sections
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Shear stress due to the warping axial stress σω
x′

The axial stress σω
x′ induces an additional shear stress field. The so-called

warping shear stress (τωx′s) can be computed by integrating the local equi-
librium equations a posteriori. The method follows the arguments used
for computing the shear stress distribution in plane beams under bending
loads (Section 3.7 and Appendix D). The equilibrium equations are

∂σω
x′

∂x′
+

∂τωx′s
∂s

= 0 with τωx′s = 0 at s = 0, Ls (4.157)

Introducing Eq.(4.155) into (4.157) gives

∂τωx′s
∂s

= −ω(s, ζ)E∂3θx̂′

∂x′3
(4.158)

The thickness variation of the warping shear stresses is typically ne-
glected. Hence, Eq.(4.158) is rewritten (using Eq.(4.124)) to give

τωx′s(s, ζ) = −Sω(s)E
∂3θx̂′

∂x′3
with Sω(s) =

∫ s

0
g(s)ds (4.159)

Consequently, the shear stresses due to warping is zero if g(s) = 0. The
maximum values are placed at the points where Sω is a maximum, i.e.

max |τωx′s| = β2E|∂
3θx̂′

∂x′3
| (4.160)

Figure 4.27 shows the value and position of β2 (and max |τωx′s|) for
different sections.

The total shear stress due to torsion is the sum of the Saint-Venant shear stress
(Eq.(4.153)) and the warping shear stress (Eq.(4.159)).

Figure 4.28 shows the distribution of τx′s in a thin-walled open section.

Example 4.3: Computation of ω, Sω and Iω for a double L-shaped section.

- Solution- Solution

Let us consider the thin-walled section shown in the next page:

Distribution of ωs(s)

DA segment: 0 ≤ s ≤ b ; −b ≤ y ≤ 0 ; z = −h
2

ds = dy , cn = −h

2
, ωs(s) =

∫ s

0

cnds = −h

2
s
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Fig. 4.28 Shear stresses across the thickness at a point of a thin-walled open
section. The total shear stress is the sum of the Saint-Venant shear stress and
the warping shear stress

AB segment: b ≤ s ≤ b+ h ; y = 0 ; −h
2 ≤ z ≤ h

2

ds = dz , cn = 0 , ωs(s = b) = −h

2
b

BF segment: b+ h ≤ s ≤ b+ 2h ; 0 ≤ y ≤ b ; z = h
2

ds = dy , cn =
h

2
, ωs(s) = −h

2
b+

∫ s

b+h

h

2
ds = −h

2
b+

h

2
(s−b−h)

Mean value: ωm = −ωD

ωm =
1

2b+ h

∫ 2b+h

0

ωsds = −bh(b+ h)

2Ls
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Sectorial area ω and Sω:

ω(s, ζ) = g(s)− ct(s)ζ with g(s) = ωs(s) + ωD

Neglecting the thickness variation, ω(s) = g(s) and Sω(s, 0) =
∫ s

0
g(s)ds.

Sectorial inertia modulus: Iω =
∫
A
ω2dA = th2b3

12

(
b+2h
2b+h

)
The contribution of the term −ctζ of ω(s, ζ) in Iω is negligible. Its value

is Iω = t3

12

(
2b3

3 + h3

12

)
The figures below shows the distribution of ωs(s), g(s) and Sω(s) in the
double L-shaped section considered.

Distribution of ωs(s) Distribution of g(s) Distribution of Sω(s, 0)

4.11 THIN-WALLED OPEN TIMOSHENKO BEAM ELEMENTS
ACCOUNTING FOR SHEAR STRESSES DUE TO TORSION

4.11.1 Basic equations

The shear stresses induced by torsion can be important in short clamped
beams and in open thin-walled beams with composite material. These
terms can be taken into account in the theory presented previously fol-
lowing similar arguments to those used for introducing transverse shear
deformation effects in classical beam theory. The twist angle (φω) is now

assumed to be the sum of the change of the twist rotation
(
∂θx̂′
∂x′

)
and an

additional angle (φs) induced by the shear stresses due to torsion (Figure
4.29), i.e.

φω =
∂θx̂′

∂x′
+ φs (4.161)

The angle φs can be interpreted as (minus) the shear deformation γt
introduced by torsion effects (Figure 4.29). Clearly if φs = 0, then φω =
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Fig. 4.29 Twist angle (φω) and shear deformation due to torsion (γt)

∂θx̂′
∂x′ and we recover the classical definition for the twist angle of Eq.(4.23)
[Va,VOO].

The displacement field induced by torsion effects is written in the local
axes x′, t, n in the new theory as

u′ = ωφω , ut = −(cn + ζ)θx̂′ , un = ctθx̂′ (4.162)

The only difference with Eq.(4.118) is the definition of the axial dis-
placement. Note that φω is now taken as an independent variable.

The strains induced by torsion (denoted hereafter εεε′t) are

εεε′t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ω
∂φω

∂x′
∂ω

∂s
φω − (cn + ζ)

∂θx̂′

∂x′
∂ω

∂ζ
φω + ct

∂θx̂′

∂x′

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.163)

Using Eq.(4.129) and assuming that ∂ω
∂ζ = −ct and ∂ct

∂s = 1 we find

εεε′t =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ω
∂φω

∂x′

cnφs − ζ

(
φω +

∂θx̂′

∂x′

)
ct

(
∂θx̂′
∂x′ − φω

)
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = Stε̂εε

′
t (4.164a)

with

St =

⎡⎣ω 0 0
0 −2ζ cn
0 0 ct

⎤⎦ , ε̂εε′t =

⎧⎨⎩
κw
κx′s
γt

⎫⎬⎭ =

⎧⎪⎨⎪⎩
∂φω

∂x′
1
2

(
φω +

∂θx̂′
∂x′

)
∂θx̂′
∂x′ − φω

⎫⎪⎬⎪⎭ (4.164b)
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The resultant stresses due to torsion are (accepting that cn
R = 0)

σ̂σσ′t =

⎧⎨⎩
Mω

Mx̂′

Mt

⎫⎬⎭ =

∫∫
A

⎧⎨⎩
ωσx′

−2ζτx′s
ctτx′ζ + cnτx′s

⎫⎬⎭ dA =

∫∫
A
[St]

Tσσσ′tdA (4.165)

The constitutive equation is assumed to be of the form

σσσ′t =

⎧⎨⎩
σx′

τx′s
τx′ζ

⎫⎬⎭ =

⎡⎣E 0 0
0 G 0
0 0 G

⎤⎦ =

⎧⎨⎩
εx′

γx′s
γx′ζ

⎫⎬⎭ = D′εεε′t (4.166)

Substituting this equation into (4.165) gives

σ̂σσ′t = D̂tε̂εε
′
t with D̂t =

∫∫
A
[St]

TD′StdA (4.167)

A simple multiplication gives

D̂t =

∫∫
A

⎡⎣Eω2 0 0
0 4ζ2G −2ζcnG
0 −2ζcnG |c|2G

⎤⎦ dA with |c|2 = c2n + c2t (4.168)

A comparison of Eqs.(4.140a) and (4.168) shows the terms introduced
by shear deformation in the torsion constitutive matrix. For homogeneous
material

D̂t =

⎡⎣D̂ω 0 0

0 D̂t 0

0 0 D̂st

⎤⎦ (4.169)

where D̂ω and D̂t coincide with the expressions in Eq.(140b)
(
for

cn
R

= 0
)

and D̂st =

∫∫
A
|c|2GdA.

Using Eqs.(4.166), (4.164b) and (4.167) we can deduce that torsion
effects contribute the following terms to the PVW∫∫∫

V

(
δεx′σx′ + δεx′sτx′s + δεx′ζτx′ζ

)
dAdx′ =

=

∫
L
(δκωMω + δγtMt + δκsMx̂′) dx

′ =
∫
L
δε̂εε′tσσσ

′
tdx

′ (4.170)

If φs = 0 then γt = 0, κs =
∂θx̂′
∂x′ , κω =

∂2θx̂′
∂x′2 and the PVW recovers the

expression of Eq.(4.145) for the torsion terms.
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We note that only the first derivative of the twist angle θx̂′ appears in
the PVW. This allows us to use a C0 continuous interpolation for all the
displacement variables. These variables include the twist angle φω as an
additional degree of freedom.

4.11.2 Finite element discretization

The displacement interpolation for a two-noded beam element is written
as

u
′
=

∑
e

Nia
′(e)
i with a

′(e)
i = [u′0i , v

′
ci , w

′
ci , θx̂′i , θy′i , θz′i , φωi ]

T (4.171)

In Eq.(4.171) Ni are the standard 1D linear shape functions (Figure
2.4).

The generalized strains are expressed in terms o the nodal DOFs as

ε̂εε′ =
2∑

i=1

B′ia
′(e)
i (4.172a)

with

ε̂εε′ =
[
∂u′0
∂x′

,

(
∂v′c
∂x′

− θz′

)
,

(
∂w′c
∂x′

+ θy′

)
,
∂θy′

∂x′
,
∂θz′

∂z′
,
∂φω

∂x′
,

1

2

(
φω +

∂θx̂′

∂x′

)
,

(
∂θx̂′

∂x′
− φω

)]T
(4.172b)

and

B′i =

⎡⎢⎢⎢⎢⎣
Bai

· · ·
Bfi

· · ·
Bti

⎤⎥⎥⎥⎥⎦ (4.172c)

where Bai and B′fi are obtained by extending the expressions in Eq.(4.78)
with a column of zeros and B′ti are the torsion contributions to the gen-
eralized strain matrix given by

B′ti =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0 0

∂Ni

∂x′

0 0 0
1

2

∂Ni

∂x′
0 0

1

2
Ni

0 0 0 ∂Ni

∂x
′ 0 0 −Ni

⎤⎥⎥⎥⎥⎦ (4.173)
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The element stiffness matrix has the standard form

K
′(e)
ij =

∫
l(e)

B′Ti D̂′B′j dx
′ , i, j = 1, 2 (4.174a)

where

D̂′ =

⎡⎣D̂a 0 0

0 D̂f 0

0 0 D̂t

⎤⎦ (4.174b)

Introducing Eqs.(4.172c) and (4.174b) into (4.174a) gives

K
′(e)
ij =

∫
l(e)

[
BT

aiD̂aBaj +BT
fi
D̂fBfj +BT

tiD̂tBtj

]
dx′ (4.175)

Shear locking induced by flexural and torsion effects can be eliminated
in the 2-noded beam element using a one-point reduced quadrature for
integrating all the terms in the element stiffness matrix.

The same procedure can be followed for deriving three-noded (quadratic)
and four-noded (cubic) 3D thin-walled open beam elements accounting for
shear deformation effects due to torsion. The performance of the quadratic
element improves using a uniform reduced two-point quadrature. The cu-
bic element has an excellent behaviour using a full four-point quadrature
[Va,VOS].

Alternative numerical and analytical procedures for analysis of thin-
walled open beams accounting for the shear deformation induced by tor-
sion can be found in [BT2,BW2,FM2, Ko2,KP,KSK,Le,LL3,PK,ST].

4.11.3 Examples

Cantilever composite laminated beam under end torque

Figure 4.30 shows a section of a composite laminated cantilever beam
of L = 1000 mm with double-T section. Each member has seven plies
with symmetric orientations [0,90,0,90,0,90,0] with respect to the beam
axis. We have considered two different loading cases: (a) a torque of 1
KN×mm acting at the free end, and (b) a vertical load of 1KN also acting
at the free end. Both problems have been solved with different meshes of
2-noded linear beam elements and 3-noded quadratic beam elements with
full and reduced integration and 4-noded cubic beam elements with full
integration. The same problems have been analyzed with the mesh of 550
flat shell DKQ quadrilaterals (Section 8.12.3) also shown in Figure 4.30
which is taken as the reference solution for comparison purposes.
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Fig. 4.30 Double-T cantilever beam. Geometry and mesh of 550 DKQ shell quadri-
laterals used as a reference solution [Va]

Figure 4.31 displays the ratio between the beam and shell results for
the twist rotation of the free end section (for the torque load) and the
vertical deflection ratio at the gravity center of the free end section (for
the end load) in terms of the beam slenderness ratio λ = L/h for the one
element mesh. The graphs show that:

• The 2-noded linear beam element with full 2 point integration (L-F)
locks for slender beams. The one-point uniform reduced quadrature (L-
R) eliminates shear locking and yields excellent results for thick and
slender beams.

• The 3-noded quadratic beam element with full 3 point integration (Q-
F) presents a slight locking behaviour for slender beams. Excellent
results are obtained for all cases using the two-point uniform reduced
quadrature (Q-R).

• The 4-noded cubic beam element with full 4 point integration (C-F) is
locking-free and gives accurate solutions for thick and slender beams.

Figure 4.32 shows the convergence of the free end deflection and twist
rotation ratios for a slender beam (λ = 20) with the number of elements
for the linear element (L-R), the quadratic element (Q-F and Q-R) and the
cubic element (C-F). All solutions converge fast to the reference values.

We note that θ ≡ θx̂′ has been used in Figures 4.31 and 4.32 for sim-
plicity.
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Fig. 4.31 Double-T cantilever beam. Results for twist ratio θbA/θ
s
A under end torque

(a) and deflection ratio wb
A/w

s
A for end point load (b) at end point A in terms

of the beam slenderness (λ) for single element meshes of linear (L), quadratic
(Q) and cubic (C) beam elements with full (F) and reduced (R) integration. (·)b
beam solution; (·)s solution with 500 DKQ flat shell elements

U-shaped cantilever and clamped beams under end point loads

The next example is the analysis of a U-shaped composite laminated can-
tilever beam under two point loads acting at the free end. Figure 4.33
shows the geometry of the beam and the material properties. The prob-
lem has been solved with the following three elements:
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Fig. 4.32 Double-T cantilever slender beam (λ = 20). Composite material. Con-
vergence of deflection ratio and twist ratio at the beam end with the number of
beam elements (NEL). (·)b and (·)s denote beam and shell solutions

Fig. 4.33 U-shaped cantilever beam under end point loads. Geometric description
and loads. Dimensions: h = 200 mm; b = 60 mm; t = 10 mm;L = 2000 mm

• Mesh of twenty 2-noded open thin-walled Timoshenko beam elements
accounting for the shear stresses due to torsion with one-point uniform
reduced integration (Section 4.11).

• Mesh of twenty 3-noded open thin-walled Euler-Bernoulli beam ele-
ments based on Saint-Venant theory (Section 4.7).

• Mesh of 550 9-noded DKQ shell quadrilaterals (Section 8.12.3).

The problem has been solved for the following two different materials
and loads:

Homogeneous isotropic material (steel).

E = 210000 MPa , ν = 0, 30
Loads: Py′ = 25000 N , Pz′ = −25000 N
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Composited laminated material. Laminate with ten plies [90,04]s of glass
epoxy matrix with the following properties:

E1 = 53780 MPa , E2 = 17930 MPa , ν12 = 0, 25

G12 = G11 = 8960 MPa , G23 = 3450 MPa

Loads: Py′ = 250 N , Pz′ = −250 N

2-noded Euler-Bernoulli/ 2-noded Timoshenko/ DKQ
Saint-Venant beam element beam element shell element

(Section 4.7) (Section 4.10)

Homogeneous Composite Homogeneous Composite Homogeneous Composite
material material material material material material

vc mm 301.86 13.648 301.91 13.662 304.68 13.676
wc mm -16.998 -0.766 -17.219 -0.787 -18.667 -0.790
θx̂′ rad -0.692 -0.062 -0.545 -0.044 -0.512 -0.045

Table 4.3 U-shaped cantilever under end point loads. Maximum value of lateral
and vertical displacements of the shear center (vc and wc) and twist rotation
(θx̂′)

Figure 4.34 shows the distribution along the beam of the vertical deflec-
tion at the shear center and the twist angle for homogeneous material for
the three elements considered. Results are normalized with the maximum
value of the DKQ solution. Results for the composite laminated material
are practically coincident with those of Figure 4.34.

The 2-noded Timoshenko beam element yields very accurate results.
Note the discrepancy in the twist angle results for the 2-noded Euler-
Bernoulli beam element based on Saint-Venant theory.

Table 4.3 shows the maximum values for the lateral and vertical dis-
placements of the shear center and the twist rotation with the three ele-
ments considered for the homogeneous and composite laminated sections.
The distribution of the horizontal and lateral displacements along the
beam is practically coincident for the three elements.

Figure 4.35 and Table 4.4 show a similar set of results for a clamped
U beam of the same dimensions under eccentric point loads acting at the
central section. The beam has been studied for the same two types of
homogeneous and composite laminated material. The conclusions are the
same as for the cantilever beam.
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Fig. 4.34 U-shaped homogeneous cantilever under end point loads. Distribution
of vertical deflection of shear center (a) and twist angle (b). Results for meshes
of 20 Timoshenko and 20 Euler-Bernoulli (Saint-Venant) 2-noded beam elements
and 550 DKQ shell quadrilaterals (shown in figure). Results are normalized with
maximum deflection and twist obtained with the DKQ element mesh

As a general conclusion, the simple two-noded 3D rod element with
a single point integration has an excellent behaviour for analysis of thin-
walled open beams.

4.12 DEGENERATED 3D BEAM ELEMENTS

3D beam elements can be also derived by imposing the following constrains
to solid elements:
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Fig. 4.35 Clamped homogeneous U-shaped beam under eccentric point loads act-
ing at the center. Distribution of vertical deflection of shear center (a) and twist
angle (b) for meshes of 20 Timoshenko and 20 Euler-Bernoulli (Saint-Venant)
2-noded beam elements and 550 DKQ shell quadrilaterals (shown in figure). Re-
sults are normalized with the deflection and maximum twist obtained with the
DKQ element mesh

1. Linear variation of the displacements over each section (Saint-Venant’s
plane section assumption),

2. No changes of the section dimensions (which limits the nodal DOFs),
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2-noded Euler-Bernoulli/ 2-noded Timoshenko/ DKQ
(Saint-Venant) beam element beam element shell element

(Section 4.7) (Section 4.10)

Homogeneous Composite Homogeneous Composite Homogeneous Composite
material material material material material material

vc mm 0.472 0.213 0.473 0.217 0.492 0.233
wc mm -0.0266 -0.01197 -0.0321 -0.01733 -0.0328 -0.01762
θx̂′ rad -0.0173 -0.01560 -0.0051 -0.00281 -0.0052 -0.00292

Table 4.4 Clamped U-shaped beam under eccentric loads acting at central section.
Maximum value of lateral (vc) and vertical (wc) displacements of the shear center
and twist rotation for homogeneous and composite laminated materials

Fig. 4.36 (a) 20-noded quadratic hexahedral element and (b) Degenerated 3-noded
quadratic 3D beam element

3. Plane stress assumption in local axes (σy′ = σz′ = γy′z′ = 0).

The process is analogous to that explained to derive degenerated shell
elements in Chapter 10.

The starting point is a prismatic element. For simplicity only hexahedra
will be considered here (Figure 4.36). This limits the formulation to beams
with rectangular cross section. Other sections can be modelled by using an
equivalent rectangular section with the same area and inertia properties.

4.12.1 Description of geometry and displacement field

The beam reference axis is defined as the line joining the centers of gravity
of the sections. A local curvilinear coordinate system x′, y′, z′ is defined at
each node on the reference line so that x′ is tangent to the beam axis and
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y′, z′ are the principal inertia directions of the section (Figure 4.36). The
element geometry is expressed in isoparametric form as

x =

⎧⎨⎩
x
y
z

⎫⎬⎭ =
n∑

i=1

Ni(ξ)

(
xi +

ηai
2

e2i +
ζbi
2
e3i

)
(4.176)

where n is the number of elements, Ni(ξ) is the 1D Lagrangian shape func-
tion of node i [On4], xi = [xi, yi, zi]

T contains the cartesian coordinates of
the node, ai and bi are the dimensions of the section at the node and η, ζ
are the transverse natural coordinates (Figure 4.36).

The displacement field is defined following the assumption of Timo-
shenko beam theory for the section rotation as

u =

⎧⎨⎩
u
v
w

⎫⎬⎭ =
n∑

i=1

Ni(ξ)

⎡⎣ui +Ti

⎛⎝ηai
2

⎧⎨⎩
−θz′i
0
θx′i

⎫⎬⎭+
ζbi
2

⎧⎨⎩
θy′i
−θx′i
0

⎫⎬⎭
⎞⎠⎤⎦=

n∑
i=1

Nia
′(e)i

(4.177a)

where a
′(e)
i = [ui, vi, wi, θx′i , θy′i , θz′i ]

T , and

Ni =

[
Ni(ξ)I3,Ti

(
ηai
2

Iη +
ξbi
2
Iζ

)]
(4.177b)

with

Iη =

⎡⎣0 0 −1
0 0 0
1 0 0

⎤⎦ , Iζ =

⎡⎣ 0 1 0
−1 0 0
0 0 0

⎤⎦ , Ti = [e1i, e2i, e3i] (4.177c)

We note that the components of vectors e1i, e2i and e3i are expressed
in the global coordinate system.

Vector a
′(e)
i contains the three global displacements of node i: ui, vi, wi

and the three local nodal rotations: θx′i , θy′i , θz′i (defined in vector form).

4.12.2 Strain field

Taking into account that the displacements are expressed in different axes,
the local and global strains at a point are related as

εεε′ =

⎧⎨⎩
εx′

γx′y′

γx′z′

⎫⎬⎭ = S εεε (4.178a)
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where εεε is the standard strain vector of 3D elasticity [On4,ZTZ]

εεε = [εx, εy, εz, γxy, γxz, γyz]
T =

[
∂u

∂x
,
∂v

∂y
,
∂w

∂z
,
∂u

∂y
+
∂v

∂x
,
∂u

∂z
+
∂w

∂x
,
∂v

∂z
+
∂w

∂y

]T
(4.178b)

and

S=
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⎤⎥⎥⎥⎥⎦
(4.178c)

where ex1 , e
y
1 , e

z
1 are the components in global axes of e1 at the point where

the strains are computed. These components can be obtained by interpo-
lation of the nodal values. The same applies for the components of e2 and
e3.

The global strain components are obtained in terms of the displace-
ments as follows.

First, the natural derivatives of the global displacements are obtained
as

∂u

∂ξ
=

n∑
i=1

∂Ni

∂ξ

⎡⎣ui +Ti

⎛⎝ηai
2

⎧⎨⎩
−θz′i
0
θx′i

⎫⎬⎭+
ζbi
2

⎧⎨⎩
θy′i
−θx′i
0

⎫⎬⎭
⎞⎠⎤⎦

∂u

∂η
=

n∑
i=1

ai
2
NiTi

⎧⎨⎩
−θz′i
0
θx′i

⎫⎬⎭ ;
∂u

∂ζ
=

n∑
i=1

bi
2
NiTi

⎧⎨⎩
θy′i
−θx′i
0

⎫⎬⎭ (4.179)

The cartesian derivatives and the natural derivatives of the global dis-
placements are related by the inverse of the 3D jacobian matrix J as[

∂u

∂x
,
∂u

∂y
,
∂u

∂z

]
= J−1

[
∂u

∂ξ
,
∂u

∂η
,
∂u

∂ζ

]T
(4.180a)

where

J =

[
∂x

∂ξ
,
∂x

∂η
,
∂x

∂ζ

]T
with x = [x, y, z]T (4.180b)
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The elements of the jacobian matrix J are computed from the isopara-
metric description (4.176) by

∂x

∂ξ
=

n∑
i=1

∂Ni

∂ξ

(
xi +

ηai
2

e2i +
ζbi
2
e3i

)
∂x

∂η
=

n∑
i=1

ai
2
Nie2i ;

∂x

∂ζ
=

n∑
i=1

bi
2
Nie3i

(4.181)

The global strain matrixB is obtained by substituting the displacement
interpolation (4.177a) into (4.178b). The full expression is given in Box 4.5.
Using this result and Eq.(4.178a) gives the relationship between the local
strains and the local displacement as

εεε′ =
n∑

i=1

B̄′a′(e)i = B̄′ia
′(e) (4.182a)

with

B̄′i =
{
B̄′abi
B̄′si

}
= SBi; B̄′abi = S1Bi; B̄′si = S2Bi (4.182b)

where B̄′abi and B̄′si contain the axial-bending and shear contributions to
the local strain matrix and S1 and S2 are the first row and the last two
rows of matrix S of Eq.(4.178c), respectively.

The nodal rotations are next expressed in global axes giving the final
relationship between the local strains and the global displacements as

εεε′ =
n∑

i=1

B̄′i Qia
(e)

i =

n∑
i=1

B′i a
(e) (4.183a)

where

B′i =
{
B′abi
B′si

}
with B′abi = B̄′mbi

Qi , B′si = B̄′siQi (4.183b)

with

Qi =

[
I3 0
0 Ti

]
(4.183c)

In above a
(e)
i = [ui, vi, wi, θxi , θyi , θzi ]

T and Ti is the transformation
matrix of Eq.(4.177c). Eq.(4.148a) relates the local strains and the global
nodal DOFs.

The constitutive equation is expressed in local axes by Eq.(4.1). This
formulation allows us to consider an arbitrary heterogeneous material over
the beam section in a straigthforward manner.
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εεε = [εx, εy, εz, εxy, εxz, εyz]
T =

n∑
i=1

Bia
′(e)
i = Ba′(e)

B = [B1,B2, · · · · · · · · · ,Bn] , a
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i = [ui, vi, wi, θx′i , θy′i , θz′i ]
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N j
i = J−1

j1

∂Ni

∂ξ
; Gj

i = N j
i T̂i +

ai

2
J−1
j2

NiTiTη +
bi
2
J−1
j3

NiTiTξ

T̂i = Ti +
ηai

2
Iη +

ζbi
2

Iξ, Ti = [e1i , e2i , e3i ]

Iη =

⎡
⎣0 0 −1
0 0 0
1 0 0

⎤
⎦ , Iζ =

⎡
⎣ 0 1 0
−1 0 0
0 0 0

⎤
⎦ ,

J−1
ij : term ij of the inverse

jacobian matrix

Box 4.5. Global strain matrix for a degenerated 3D beam element

4.12.3 Stiffness matrix and equivalent nodal force vector for the element

Substituting Eq.(4.177a) and (4.182a) and the constitutive equation (4.1)
into the PVW expression (Eq.(4.62)) gives, after the usual algebra, the
element stiffness matrix and the equivalent nodal force vector in global
axes by

K
(e)
ij =

∫∫∫
V (e)

[
B′

T

abi
D′ B′abj +B′

T

si D′ B′sj
]
dV = K

(e)
abij

+K(e)
sij

(4.184a)

f
(e)
i =

∫∫∫
V (e)

NT
i b dV +

∫∫
A(e)

NT
i t dA+ p

(e)
i (4.184b)

where V (e) is the volume of the parent solid element. K
(e)
ab and K

(e)
s are the

axial-bending and shear contributions to the global stiffness matrices, re-
spectively, b are the volumetric body forces (self-weight), t are distributed

forces acting on one of the element faces (η = ±1 or ξ −±1) and p
(e)
i are

nodal point force vectors, respectively. All the load components are defined
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in global axes as

b = [bx, by, bz, 0, 0, 0]
T

t = [fx, fy, fz,mx,my,mz]
T

pi = [Fxi , Fyi , Fzi ,Mxi ,Myi ,Mzi ]
T

(4.185)

If the distributed forces t act along the beam axis, then the area integral
in Eq.(4.184b) is substituted by a line integral over the element length and
η = ζ = 0 in the expression of Ni of Eq.(4.177b).

The explicit integration over the section for curved elements has some
difficulties. This is nevertheless possible following similar procedures as
detailed in Chapter 10 for degenerated shell elements. For straight beams
the analytical computation of the element stiffness matrix is straightfor-
ward. For a 2-noded beam element the stiffness matrix and the equivalent
nodal force vector have identical expressions to those derived in Section
4.4 starting from 3D beam theory. In practice, a 3D Gauss quadrature is
used for the integration of the element matrices and vectors, i.e.

K
(e)
ij =

nξ∑
p=1

nη∑
q=1

nζ∑
r=1

(
B′

T

i D′ B′j |J(e)|
)
p,q,r

WpWqWr

f
(e)
i =

nξ∑
p=1

nη∑
q=1

nζ∑
r=1

(
NT

i b|J(e)|
)
p,q,r

WpWqWr + (4.186)

+

nξ∑
p=1

[NT
i t|J|]P,η=0, ζ=0Wp

where nξ, nη nζ are the integration points in the directions ξ, η, ζ, respec-
tively and Wp,Wq,Wr are the corresponding weights. For homogeneous
material nη = nζ = 2 is usually chosen. A higher order quadrature (or
even a cell integration) over the cross section is necessary for arbitrary
heterogeneous beams. For a laminated section a layer integration suffices.

Shear locking is avoided by using a reduced quadrature for integrat-

ing the shear stiffness matrix K
(e)
s along the element length. Typically

nξ = 1 and nξ = 2 are chosen for the 2 and 3-noded degenerate beam

elements, respectively, as for plane beams. For straight elements K
(e)
ab a

full quadrature is typically used (ηξ = 2 and ηξ = 3 are taken for 2 and
3-noded beam elements, respectively). Uniform reduced integration for all
the stiffness terms in the curved case is recommended to alleviate axial
locking (Sections 9.5 and 10.11.1).
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This formulation can be adapted to Euler-Bernoulli theory by making
θz′ =

∂v′
∂x′ , θx′ = −∂w′

∂x′ , thus satisfying the normal orthogonality condi-
tion. This leads to the vanishing of the shear strains due to bending and
introduces the need for a C1 continuous approximation for the local dis-
placements v′ and w′, as their second derivatives appear in the expression
of the axial strain. A C◦ continuous interpolation can be still chosen for
the axial displacement u′. This can be implemented by defining the dis-
placement interpolation in the local axes followed by the transformation
to global displacement components. The simplest 2-noded degenerated
Euler-Bernoulli beam element uses a cubic Hermite approximation for v′

and w′ and a linear field for u′. For homogeneous material, constant sec-
tion and uniform loading the expression for the stiffness matrix and the
equivalent nodal force vector coincide with those expressions derived using
classical 3D beam theory (Section 4.7).

4.13 CONCLUDING REMARKS

We have shown the formulation of 3D beam elements adequate for analysis
of composite beams using Timoshenko and Euler-Bernoulli theories. Both
the Saint-Venant free-torsion theory and the more sophisticated torsion
theory allowing for warping effects in thin-walled open sections have been
studied in some detail. The simple 2-noded Timoshenko beam element
with a single integration point is a useful alternative for practical analysis
of all kind of 3D beams.

3D beam elements obtained by degeneration of 3D solid element can
be an interesting option for some cases.

The coupling of 3D beam elements with plate/shell elements is straight-
forward and provides a useful approach for analysis of stiffned shell/plate
structures. This topic is studied in Section 10.21.



5

THIN PLATES.
KIRCHHOFF THEORY

5.1 INTRODUCTION

This chapter introduces the study of structures formed by “thin surfaces”
such as plates and shells. Plates will be studied in this and the two fol-
lowing chapters. Shell structures formed by assembly of flat plates will be
considered in Chapter 8. Axisymmetric shells will be treated in Chapter
9. Finally, the more general case of curved shell structures of arbitrary
shape will be studied in Chapter 10.

Plate theory is a simplification of 3D elasticity analogous to that made
in Chapters 1–3 for the analysis of beams, which serves as a solid founda-
tion to what follows.

Like for beams, plate theories differ on the assumptions for the rotation
of the normal to the middle plane. The classic thin plate theory establishes
that the normal remains straight and orthogonal to the middle plane after
deformation. Thin plate theory is based on the assumptions formalized
by Kirchhoff in 1850 [Ki] and indeed his name is often associated with
this theory, through an early version was proposed by Sophie Germain
in 1811 [BD7,Re3,TW]. The more advanced thick plate theory proposed
by Reissner [Re] and Mindlin [Mi] assumes that normals remain straight,
though not necessarily orthogonal to the middle plane after deformation.

This chapter presents the formulation of plate elements following Kirch-
hoff thin plate theory. Like for Euler-Bernouilli beam elements, Kirchhoff
plate elements require C1 continuity of the deflection field due to the pres-
ence of second derivatives of the deflection in the virtual work expression.
However, unlike beam elements, Kirchhoff plate elements have serious dif-
ficulties for satisfying the continuity requirements between elements. This
leads to “non-conforming” elements, some of which can be still applied to
practical situations.

E. Oñate, Structural Analysis with the Finite Element Method. Linear Statics:   
Volume 2: Beams, Plates and Shells, Lecture Notes on Numerical Methods  
in Engineering and Sciences, DOI 10.1007/978-1-4020-8743-1_ ,  
© International Center for Numerical Methods in Engineering (CIMNE), 2013 
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A part of this chapter studies rotation-free Kirchhoff plate elements
with the deflection as the only nodal variable. These elements are an
extension of the rotation-free beam elements studied in Chapter 1 and are
competitive for many practical applications. Their formulation combines
finite element and finite volume concepts.

Plate elements based on Reissner-Mindlin theory will be studied in the
next chapter. These elements are analogous to Timoshenko beam elements
and include the effect of shear deformation. This makes them applicable for
both thick and thin situations and they require only C0 continuity for the
deflection. Reduced integration and equivalent procedures are necessary
to avoid shear locking, like for slender Timoshenko beam elements.

Which of the plate theories is more appropiate? This is the logical
question that an unexperienced reader would ask in order not to waste
time studying concepts that may be of little use, or even obsolete. In an-
swer, we would say that the study of both Kirchhoff and Reissner-Mindlin
theories is highly recommended. Kirchhoff plate elements are available in
most commercial codes and are continuously evolving due to the introduc-
tion of new concepts, such as the rotation-free formulation [OZ] and the
isogeometric theory (Section 10.10 and [CHB]). Reissner-Mindlin plate el-
ements, on the other hand, are attractive thanks to their versatility for
analysis of thick and thin plates and the simplicity of their formulation.
However, special care should be taken when using Reissner-Mindlin ele-
ments to avoid problems like shear locking or spureous mechanisms. In the
next chapter we will show that some interesting thin plate elements can
be derived by constraining the transverse shear strain to zero in Reissner-
Mindlin elements.

5.2 KIRCHHOFF PLATE THEORY

5.2.1 Main assumptions

A plate is defined as a flat solid whose thickness is much smaller than its
other dimensions. We assume that themiddle plane is equidistant from the
upper and lower faces. This plane is taken as the reference plane (z = 0)
for deriving the plane kinematic equations. A plate with homogeneous
isotropic material carries lateral loads by bending, like a straight beam (Fi-
gure 5.1). Hence the axial straining is zero, the middle plane coincides with
the neutral plane and the displacement field can be expressed in terms of
the lateral deflection and the rotations of the normal (the so called bending
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Fig. 5.1 Geometric definition of a plate. Sign convention for displacements, rota-
tions, distributed and point loads and moments

state). If in-plane loading is present or the material is heterogeneous, the
axial strains are not zero. This situation is studied in Chapters 7 and 8.

The assumptions of Kirchhoff thin plate theory are the following:

1. In the points belonging to the middle plane (z = 0)

u = v = 0 (5.1)

In other words, the points on the middle plane only move vertically.
2. The points along a normal to the middle plane have the same vertical

displacement (i.e. the thickness does not change during deformation).
3. The normal stress σz is negligible (plane stress assumption).
4. A straight line normal to the undeformed middle plane remains straight

and normal to the deformed middle plane (normal orthogonality con-
dition).

Assumptions 1, 2 and 4 allow the displacement field to be defined over
the whole plate. Assumption 3 affects the stress-strain relationship, as
shown in Section 5.2.3.

5.2.2 Displacement field

From assumptions 1, 2, 4 and Figure 5.2, we deduce

u(x, y, z) = −zθx(x, y)
v(x, y, z) = −zθy(x, y)

}
(assumptions 1 and 4)

w(x, y, z) = w(x, y) (assumption 2)
(5.2)
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Fig. 5.2 Deformation of the normal vector and in-plane displacement field in a
thin plate

where w is the vertical displacement (deflection) of the points on the
middle plane and the rotations θx and θy coincide with the angles followed
by the normal vectors contained in the planes xz and yz respectively in
their motions (assumption 4). Vector

u = [w, θx, θy]
T (5.3)

is the displacement vector of a point on the middle plane of the plate. Note
that u contains the deflection and the two rotations.

From assumption 4 and Figure 5.2 we deduce

θx =
∂w

∂x
, and similarly θy =

∂w

∂y
(5.4)

i.e. the rotations of the normal coincide with the slopes of the middle plane
at each point.

The displacement field in a plate can thus be expressed as

u(x, y, z) = −z ∂w(x, y)
∂x

v(x, y, z) = −z ∂w(x, y)
∂y

(5.5)

w(x, y, z) = w(x, y)

The displacement vector is written as

u =

[
w,

∂w

∂x
,
∂w

∂y

]T
(5.6)
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The assumption that the normals remain straight is only an approxi-
mation since in practice the normals are distorted as shown in Figure 5.2
and the angles θx and θy depend on the thickness coordinate. The hypoth-
esis of a straight normal is equivalent to assuming an “average” uniform
rotation for the normal, which obviously simplifies the kinematics.

The normal orthogonality condition only holds for thin plates (thick-
ness/average side ratio: t/L ≤ 0.05). For moderately thick (0.05 ≤ t/L <
0.10) and very thick (t/L ≥ 0.10) plates, the distortion of the normal
during deformation increases. Reissner-Mindlin theory studied in the next
chapter represents a better approximation to the actual deformation of
the plate in these cases. If the distortion of the normal is large, as for
thick slabs or for particular loading types or boundary conditions, then it
is necessary to make use of 3D elasticity theory [On4].

5.2.3 Strain and stress fields and constitutive equation

Using the strain-displacement expressions from 3D elasticity [On4] and
Eqs.(5.5) gives

εx =
∂u

∂x
= −z ∂

2w

∂x2

εy =
∂v

∂y
= −z ∂

2w

∂y2
; εz = 0

γxy =
∂u

∂y
+

∂v

∂x
= −2z ∂2w

∂x∂y

γxz =
∂w

∂x
+

∂u

∂z
=

∂w

∂x
− ∂w

∂x
= 0

γyz =
∂w

∂y
+

∂v

∂z
=

∂w

∂y
− ∂w

∂y
= 0

(5.7)

Eq.(5.7) shows that the normal orthogonality assumption leads to
zero transverse shear strains γxz and γyz. Therefore, the transverse shear
stresses do not contribute to the deformation work. This does not mean
that these stresses are insignificant. They can be computed “a posteriori”
using the equilibrium conditions as shown in a next section. Note also
that the condition of vanishing normal strain (εz = 0) is redundant, as
the normal stress σz vanishes due to plane stress assumption and, hence,
the work performed by the normal strain σz is zero (i.e. σzεz = 0).
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Fig. 5.3 Sign convention for stresses and bending moments

The strain vector containing the three significant strains is

εεε =
[
εx, εy, γxy

]T
=

[
−z ∂

2w

∂x2
,−z ∂

2w

∂y2
,−2z ∂2w

∂x∂y

]T
= Sε̂εεb (5.8)

with

S = −z
⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ = −zI3 , ε̂εεb =

[
∂2w

∂x2
,
∂2w

∂y2
, 2

∂2w

∂x∂y

]T
(5.9)

where ε̂εεb is the generalized strain vector (or curvature vector). Index b in
ε̂εεb denotes the bending strains. Matrix S transforms the curvatures of the
middle plane surface into the strains at any point across the thickness.

The strain vector is conjugate to the stress vector

σσσ = [σx, σy, τxy]
T (5.10)

For sign convention, see Figure 5.3.
The constitutive relationship between stresses and strains is written in

the standard form as
σσσ = Dεεε (5.11)

The constitutive matrix D is obtained from the general expression of
3D elasticity by introducing the plane stress assumption (σz = 0) and the
conditions σxz = γyz = 0. The expression of D coincides with that of plane
stress theory (Chapter 4 of [On4]) as the significative strains and stresses
are the same in both cases. The general expression of D for an orthotropic
material will be derived in Section 6.2.3. In this chapter we will consider
isotropic material for simplicity. Hence,

D =
E

1− ν2

⎡⎣1 ν 0
ν 1 0
0 0 1−ν

2

⎤⎦ (5.12)
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5.2.4 Bending moments and generalized constitutive matrix

The resultant stress vector (or bending moment vector) is defined as

σ̂σσb =

⎧⎨⎩
Mx

My

Mxy

⎫⎬⎭ =

∫ + t
2

− t
2

ST

⎧⎨⎩
σx
σy
τxy

⎫⎬⎭ dz =

∫ + t
2

− t
2

STσσσdz (5.13)

where Mx and My are the bending moments produced by the stresses
σx and σy, respectively, and Mxy is the torque produced by the tangential
stress τxy. The sign convention for the moments is shown in Figure 5.3. The
signs of Mx and My are consistent with those of θx and θy, respectively.
Also note that S ≡ ST , as S is diagonal (Eq.(5.9)).

Substituting Eqs.(5.11) into (5.13) yields

σ̂σσb =

∫ + t
2

− t
2

STDεεεdz =

∫ + t
2

− t
2

STDSε̂εεbdz = D̂b ε̂εεb (5.14)

The generalized bending constitutive matrix D̂b in Eq.(5.14) is ob-
tained as

D̂b =

∫ + t
2

− t
2

STDSdz =

∫ + t
2

− t
2

z2Ddz (5.15a)

For homogeneous material

D̂b =
t3

12
D (5.15b)

The principal bending moments MI and MII are the roots of the char-
acteristic polynomial

det[[M ]− λI2] = 0 (5.16a)

where

[M ] =

[
Mx Mxy

Mxy My

]
and I2 =

[
1 0
0 1

]
(5.16b)

From Eq.(5.16a) we obtain

MI =
Mx +My

2
+

1

2
[(Mx −My)

2 + 4M2
xy]

1/2

MII =
Mx +My

2
− 1

2
[(Mx −My)

2 + 4M2
xy]

1/2
(5.16c)

The sign for the principal bending moments is shown in Figure 5.4.
The angle that the principal direction I forms with the x axis is obtained
from

tg2α =
2Mxy

Mx −My
(5.16d)
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Fig. 5.4 Principal bending moments

5.2.5 Principle of virtual work

The PVW is written as∫∫∫
V
δεεεTσσσdV =

∫∫
A
δuT tdA+

∑
i

δuT
i pi (5.17a)

with

δu =

[
δw, δ

(
∂w

∂x

)
, δ

(
∂w

∂y

)]T
, δui =

[
δwi, δ

(
∂w

∂x

)
i

, δ

(
∂w

∂y

)
i

]T
t = [fx,mx,my]

T , pi = [Pzi ,Mxi ,Myi ]
T (5.17b)

In Eqs.(5.17), δu is the virtual displacement vector, t is the distributed
force vector and pi is the point force vector. As for the components of the
load vectors, fz is a distributed vertical force, mx and my are distributed
bending moments around the x and y axes, respectively, and Fzi , Mxi and
Myi are the external vertical point load and the bending moments acting
at point i, respectively (Figure 5.1). Moments are taken as positive if they
act anticlockwise in the plane xz or yz (Figure 5.1).

The kinematic and constitutive expressions of the previous section al-
low us to simplify the virtual strain work δU given by the l. h. s. of
Eq.(5.17a) into a surface integral over the plate middle plane (the “refer-
ence” geometry) in terms of the bending moments and the virtual curva-
tures. Making use of Eqs.(5.8) and (5.13) gives

δU =

∫∫∫
V
δεεεTσσσdV =

∫∫∫
V

[
Sδε̂εεTb

]T
σσσdV =

=

∫∫
A
δε̂εεTb

[∫ + t
2

− t
2

STσσσdz

]
dA =

∫∫
A
δε̂εεTb σ̂σσbdA (5.18)
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Substituting Eq.(5.18) into (5.17a) gives the expression of the PVW as∫∫
A
δε̂εεTb σ̂σσbdA =

∫∫
A
δuT tdA+

∑
i

δuT
i pi (5.19)

Consequently, the plate can be treated as a 2D solid, since all the vari-
ables and integrals in the PVW are functions of the coordinates of the
middle plane only.

It is interesting to rewrite the expression of the virtual strain work of
Eq.(5.18) as

δU =

∫∫
A

[
∂2w

∂x2
Mx +

∂2w

∂y2
My + 2

∂2w

∂x∂y
Mxy

]
dA (5.20)

Eq.(5.20) clearly shows that the virtual strain work can be obtained
as the integral over the plate area of the work performed by the bending
moments over the corresponding virtual curvatures.

The integrand of (5.20) contains second derivatives of the deflection.
This requires the continuity of the deflection and its first derivatives; i.e.
C1 continuity requirement (Section 3.8.3 of [On4]).

The C1 continuity requirement for the deflection field is a particular
feature of Kirchhoff plate elements, like it was for Euler-Bernouilli-beam
elements (Chapter 1).

5.2.6 Equilibrium equations

The equilibrium equations are of particular interest in Kirchhoff plate
theory. Among other things, they allow us to compute the shear forces
from the nodal deflections. Also, the equilibrium equations have a simple
differential form in terms of the deflection which has been widely used for
the analytical (and numerical) solution of thin plate problems [TW].

The equilibrium of external forces, bending moments and shear forces
over a differential element of a plate under distributed vertical forces fz
only (i.e. mx = my = 0) (Figure 5.5) gives

Equilibrium of vertical forces∑
Fz = o ⇒

(
∂Qx

∂x
dx

)
dy +

(
∂Qy

∂y
dy

)
dx+ fzdxdy = 0 (5.21a)

Dividing by the area differential (dxdy) gives

∂Qx

∂x
+

∂Qy

∂y
+ fz = 0 (5.21b)
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Fig. 5.5 Loads, moments and shear forces in a differential plate element

Equilibrium of moments∑
Mx = 0 ⇒

(
∂Mx

∂x
dx

)
dy +

(
∂Mxy

∂y
dy

)
dx+

+(Qxdy) dx+

(
∂Qy

∂y
dy

)
dx

dx

2
− fzdxdy

dy

2
= 0

(5.22a)

∑
My = 0 ⇒

(
∂My

∂y
dy

)
dx+

(
∂Mxy

∂x
dx

)
dy+

+(Qydx)dy +

(
∂Qx

∂x
dx

)
dy

dy

2
− fzdxdy

dy

2
= 0

(5.22b)

Ignoring second order terms we have after simplification

∂Mx

∂x
+

∂Mxy

∂y
+Qx = 0 (5.23a)

∂My

∂y
+

∂Mxy

∂x
+Qy = 0 (5.23b)

Differentiating Eqs.(5.23a) and (5.23b) with respect to y and x respec-
tively, and substituting the derivatives of the shear forces into Eq.(5.21b)
gives

∂2Mx

∂x2
+ 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
− fz = 0 (5.24)

Eq.(5.24) can be rewritten for an isotropic material using (5.14) as

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
− fz

D
= 0 (5.25a)

with

D =
Et3

12(1− ν2)
(5.25b)
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Eq.(5.25a) is a fourth order differential equation relating the deflection to
the applied distributed loading and the material properties of the plate.

Substituting Eq.(5.14) into (5.23) gives the expression for the shear
forces in terms of the deflection as

Qx = −D
(
∂3w

∂x3
+

∂3w

∂x∂y2

)
; Qy = −D

(
∂3w

∂y3
+

∂3w

∂y∂x2

)
(5.26)

The “exact” thickness distribution of the shear stresses can be found
in terms of Qx and Qy from elasticity theory [Ug,VK,TW]. Accepting a
parabolic distribution for the tangential stresses across the plate thickness,
similarly as for beams, gives the maximum value of the shear stresses as
[TW]

(τxz)max =
3

2

Qx

t
; (τyz)max =

3

2

Qy

t
(5.27)

5.2.7 The boundary conditions

The boundary conditions which have to be imposed on the problem are:

1. Fixed boundary where displacements at restrained points of the bound-
ary are given specified values. These conditions are expressed as

w = w̄ , θn = θ̄n and θs = θ̄s (5.28)

Here n and s are directions normal and tangential to the boundary line
(Figures 5.6 and 5.7) and (̄·) denotes a prescribed value. Note that in
Kirchhoff thin plate theory the specification of w along s automatically
prescribes θs (as θs = ∂w

∂s , Figure 5.7b) but this is not the case for thick
plates where w and θs are independently prescribed.

A clamped edge is a special case of Eq.(5.28) with zero values assigned to
the prescribed values. A point support is characterized by wi = 0 (Figure
5.7a).

2. Traction boundary where the resultant stressesMn,Mns and Qn (Figure
5.6) are given prescribed values

Mn = M̄n ; Mns = M̄ns ; Qn = Q̄n (5.29a)

The expressions for Mn, Mns and Qn can be obtained in terms of the
bending moment and the shear forces as

Mn = Mxn
2
x + 2Mxynxny +Myn

2
y
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Fig. 5.6 Local rotations, local stresses and resultant stresses at a boundary edge

Mns =−Mxnxny +Mxy(n
2
x − n2

y) +Mynxny

Qn =Qxnx +Qyny

(5.29b)

where nx, ny are the components of the unit normal vector n = [nx, ny]
T

pointing towards the exterior of the boundary edge (Figure 5.6).
Mn and Mns are the moments at the boundary edge induced by the

normal stress σn and the tangential stress τns at the edge obtained from

{
σn
τns

}
=

[
n2
x n2

y 2nxny

−nxny nxny (n2
x − n2

y)

]⎧⎨⎩
σx
σy
τxy

⎫⎬⎭ (5.29c)

Eq.(5.29c) can be deduced from the stress transformation given in
Eq.(4.12b) of [On4]. For the sign of σn and τns see Figure 5.6

The bending moments Mn and Mns and the shear force Qn are work-
conjugate to the local rotations θn and θs and to the deflection w, respec-
tively.

A free edge is a special case with zero values assigned to M̄n, M̄ns and
θ̄n.

3. Mixed boundary conditions, where both traction and displacement com-
ponents can be specified. A typical case is the simply supported (SS) edge
(Figure 5.7b). Here it is clear that w = 0 (and consequently θs = 0) and
Mn = 0. It is less obvious whether Mns = 0 needs to be specified. In
practice it suffices to prescribe w = 0 at the nodes on the SS edge [ZT2].
For a curved SS edge modelled as a polynomial, a unique normal to each
node must be specified and used to prescribe w = θs = 0 at the node.
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Fig. 5.7 (a) Supported (end) conditions for a plate. Conventionally illustrated
simple support and real approximation. (b) Simply supported (SS) conditions.
(c) Definition of unique normal and tangent directions in a SS polygonal edge

Otherwise the solution is equivalent, paradoxically, to that of a clamped
support [Bab,BS].

The treatment of boundary conditions on edges which are inclined with
respect to the cartesian axes is discussed in Section 6.3.5.

The alternatives for integrating the differential equations (5.25a) with
the appropriate boundary conditions will not be discussed here. The more
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popular analytical procedures are based on double Fourier series and the
numerical ones on the finite difference method. Both techniques have been
widely used to study a large variety of thin isotropic plates, generally of
rectangular shape [Ga4,Pan,Sz,TW,Ug,VK].

The analytical study of thin plates with arbitrary geometry, hetero-
geneous material and complex boundary conditions is difficult. There are
also severe limitations in the application of traditional numerical tech-
niques such as the finite difference method.

The finite element method is free of most, if not all, the drawbacks
mentioned above, as it can be easily applied to any plate problem, despite
the complexity of the geometry or the material properties. It is interesting
that it was in the solution of plate bending problems that the FEM gained
its popularity in the late 1960’s (see references in Chapter 11 of [ZT2]).
The generality of the FEM versus the limitations of analytical solutions,
or other numerical techniques, like grillage methods, and even the finite
difference method, favoured the fast and broad development of the FEM
for analysis of thin plates. Some of the more popular thin plate elements
are described in the next sections.

5.3 FORMULATION OF THIN PLATE ELEMENTS

The intuitive way to satisfy the C1 continuity requirement for the deflec-
tion is to choose the deflection and the two rotations as the nodal variables,
in a similar way to what we do for Euler-Bernouilli beam elements.

Consequently, a thin plate element would have in principle three vari-

ables per node: wi,
(
∂w
∂x

)
i
and

(
∂w
∂y

)
i
, and the total number of variables for

a n-noded element would be 3n. This defines the number of polynomial
terms approximating the deflection w within each element.

In general

w = α1 + α2x+ α3y + α4x
2 + α5xy + ....(up to 3n terms) (5.30)

The αi parameters are obtained by imposing at each node

wi = (w)i

θxi =

(
∂w

∂x

)
i

; θyi =

(
∂w

∂y

)
i

⎫⎪⎬⎪⎭ i = 1, 2, ..., n (5.31)

which gives 3n equations.
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Fig. 5.8 Non-conforming 4-noded MZC thin plate rectangle

The key issue is the selection of the adequate polynomial terms in
Eq.(5.30) and, in general, several alternatives are possible. Each one de-
fines a different plate element which performance must be carefully assesed
since many of the elements just do not work in practice. In the following
sections the pros and cons of some of the more popular rectangular and
triangular Kirchhoff thin plate elements are presented.

5.4 RECTANGULAR THIN PLATE ELEMENTS

5.4.1 Non-conforming 4-noded MZC rectangle

The element is shown in Figure 5.8. It has four nodes and hence the num-
ber of polynomial terms in Eq.(5.30) is 12. It is however impossible to
choose a complete polynomial for describing w, as the complete polyno-
mials of third and quartic order have 10 and 15 terms, respectively (Figure
5.8). Thus, three terms of the quartic polynomial must be omitted. The
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selection of these terms is not a trivial issue. Melosh [Me3] and Zienkiewicz
and Cheung [ZCh,ZCh2] developed a popular 4-noded plate rectangle, de-
noted hereonwards MZC, on the basis of the following approximation

w = α1 + α2x+ α3y + α4x
2 + α5xy + α6y

2 + α7x
3 + α8x

2y +

+α9xy
2 + α10y

3 + α11x
3y + α12xy

3 (5.32)

Above expression guarantees geometry invariance [On4,ZTZ,ZT2]. Along
the sides x =constant and y =constant the deflection varies as a complete
third order polynomial which can be uniquely defined in terms of the
two deflections and the two rotations at the end nodes of each side. This
ensures the continuity of w between adjacent elements.

The α1, . . . , α12 parameters are obtained making use of Eq.(5.31). It
can be found after some algebra

a(e) = [w1, θx1 , θy1 , · · · , w4, θx4 , θy4 ] = A [α1, α2, α3, · · · , α11, α12]
T

(5.33a)
with

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 y1 x21 x1y1 y21 x31 x21y1 x1y
2
1 y31 x31y1 x1y

3
1

0 1 0 2x1 y1 0 3x21 2x1y1 y21 0 3x21y1 y31

0 0 1 0 x1 2y1 0 x21 2x1y1 3y
2
1 x31 2x1y

2
1

...
...

...

...
...

...

0 0 1 0 x4 2y4 0 x24 2x4y4 3y
2
4 x34 2x4y

2
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.33b)

Eq.(5.33a) gives
ααα = A−1a(e) (5.34)

Combining Eqs.(5.32) and (5.34) yields, finally

w = PTααα = PTA−1a(e) = Na(e) (5.35a)

where
N = PTA−1 (5.35b)

is the shape function matrix with

P = [1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x3y, xy3]T (5.35c)
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This process is quite tedious and costly. Melosh [Me3] derived an ex-
plicit form for the shape functions. Eq. (5.32) is rewritten as

w =

4∑
i=1

[
Niwi + N̄i

(
∂w

∂x

)
i

+ ¯̄Ni

(
∂w

∂y

)
i

]
= Na(e) (5.36)

where

N = [N1,N2,N3,N4] ; a(e) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a
(e)
1

a
(e)
2

a
(e)
3

a
(e)
4

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.37)

and

Ni = [Ni, N̄i,
¯̄Ni] ; a

(e)
i =

[
wi,

(
∂w

∂x

)
i

,

(
∂w

∂y

)
i

]T
Figure 5.8 shows the analytical form of the shape functions Ni, N̄i

and ¯̄Ni in natural coordinates. Similarly, as for the Hermite shape func-
tions of the analogous 2-noded Euler-Bernouilli beam element (Eq.(1.11a))
function Ni corresponding to the deflection takes a unit value at node i,
whereas its first derivatives are zero at the node. Conversely, functions
N̄i and ¯̄Ni have a zero value and unit slopes in the directions ξ and η,
respectively at node i.

The curvature matrix is obtained from Eqs.(5.9) and (5.36) as

ε̂εεb =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂2w

∂x2

∂2w

∂y2

2
∂2w

∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

4∑
i=1

Bbia
(e)
i = Bba

(e) (5.38)

with

Bb = [Bb1 ,Bb2 ,Bb3 ,Bb4 ] , Bbi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂2Ni

∂x2
∂2N̄i

∂x2
∂2 ¯̄Ni

∂x2

∂2Ni

∂y2
∂2N̄i

∂y2
∂2 ¯̄Ni

∂y2

2
∂2Ni

∂x∂y
2
∂2N̄i

∂x∂y
2
∂2 ¯̄Ni

∂x∂y

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(5.39)
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The computation of the second derivatives of the shape functions in
Bbi is immediate simply noting that

∂2

∂x2
=

1

a2
∂2

∂ξ2
and

∂2

∂y2
=

1

b2
∂2

∂η2
(5.40)

The bending moment field is expressed in terms of the nodal DOFs by
substituting Eq.(5.38) into (5.14). This gives

σ̂σσb = D̂bBba
(e) (5.41)

It is deduced from Eqs.(5.35c) and (5.39) that the curvature field, and
hence the bending moment field, is linear within the MZC element.

Following the usual procedure it is deduced that

δw = Nδa(e) and δε̂εεb = Bbδa
(e) (5.42)

The PVW for a single element can be written as (see Eq.(5.19))∫∫
A(e)

δε̂εεTb σ̂σσbdA =

∫∫
A(e)

δuT tdA+

3∑
i=1

[δa
(e)
i ]Tq

(e)
i (5.43a)

with

δa
(e)
i =

[
δwi, δ

(
∂w

∂x

)
i

, δ

(
∂w

∂y

)
i

]T
, q

(e)
i = [Fzi ,Mxi ,Myi ]

T

(5.43b)

where q
(e)
i is the vector of equilibrating nodal forces for node i.

Substituting Eqs.(5.42) and the constitutive equation (5.41) into the
PWV, the standard equilibrium equation for the element is found as

K(e)a(e) − f (e) = q(e) (5.44)

The element stiffness matrix is

K
(e)
ij =

∫∫
A(e)

BT
bi
D̂bBbjdxdy (5.45)

The equivalent nodal force vector for a distributed vertical loading and
distributed bending moments is

f
(e)
i =

⎧⎨⎩
fzi
mxi

myi

⎫⎬⎭ =

∫∫
A(e)

⎡⎣Ni Ni,x Ni,y

N̄i, N̄i,x N̄i,y
¯̄Ni

¯̄Ni,x
¯̄Ni,y

⎤⎦⎧⎨⎩
fz
mx

my

⎫⎬⎭ dxdy (5.46)
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K(e) = D [K
(e)
1 +K

(e)
2 +K

(e)
3 +K

(e)
4 ] ; D =

Et3

12(1− ν2)

K
(e)
1 =

b

6a3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
6a 8a2

0 0 0

−6 −6a 0 6
6a 4a2 0 −6a 8a2 Symmetric
0 0 0 0 0 0

−3 −3a 0 3 −3a 0 6
3a 2a2 0 −3a 4a2 0 −6a 8a2

0 0 0 0 0 0 0 0 0

3 3a 0 −3 3a 0 −6 6a 0 6
3a 4a2 0 −3a 2a2 0 −6a 4a2 0 6a 8a2

0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K
(e)
2 =

a

6b3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
0 0
6b 0 8b2

3 0 3b 6
0 0 0 0 0 Symmetric
3b 0 4b2 6b 0 8b2

−3 0 −3b −6 0 −6b 6
0 0 0 0 0 0 0 0
3b 0 2b2 6b 0 4b2 −6b 0 8b2

−6 0 −6b −3 0 −3b 3 0 −3b 6
0 0 0 0 0 0 0 0 0 0 0
6b 0 4b2 3b 0 2b2 −3b 0 4b2 −6b 0 8b2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K
(e)
3 =

ν

2ab

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
a 0
b 2ab 0

−1 0 −b 1
0 0 0 −a 0 Symmetric
−b 0 0 b −2ab 0

1 0 0 −1 a 0 1
0 0 0 a 0 0 −a 0
0 0 0 0 0 0 −b 2ab 0

−1 −a 0 1 0 0 −1 0 b 1
−a 0 0 0 0 0 0 0 0 a 0
0 0 0 0 0 0 0 0 0 −b −2ab 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K
(e)
4 =

1 − ν

30ab

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

21
3a 8a2

3b 0 8b2

−21 −3a −3b 21
3a −2a2 0 −3a 8a2 Symmetric
−3b 0 −8b2 3b 0 8b2

21 3a 3b −21 3a −3b 21
−3a 2a2 0 3a −8a2 0 −3a 8a2

−3b 0 2b2 3b 0 −2b2 −3b 0 8b2

−21 −3a −3b 21 −3a 3b −21 3a 3b 21
−3a −2a2 0 3a 2a2 0 −3a −2a2 0 3a 8a2

3b 0 −8b2 −3b 0 2b2 3b 0 −8b2 −3b 0 8b2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Box 5.1. 4-noded MZC thin plate rectangle (2a× 2b). Stiffness matrix for
homogeneous isotropic material
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σ̂σσb =

⎧⎨
⎩

Mx

My

Mxy

⎫⎬
⎭ =

4∑
i=1

D̂b Bbi a
(e)
i

D̂bBbi =

⎡
⎢⎢⎣
(d̂11 Nxx

i + d̂12 Nyy
i ) d̂12 N̄xx

i d̂11
¯̄Nyy
i

(d̂21 Nxx
i + d̂22 Nyy

i ) d̂21 N̄xx
i d̂22

¯̄Nyy
i

2d̂33 Nxy
i 2d̂33 N̄xy

i 2d̂33
¯̄Nxy
i

⎤
⎥⎥⎦

Nxx
i = − 1

4a2
(3ξiξ + 3ξiηiξη) N̄xx

i =
1

4a
(3ξ + ξiηiη + 3ηiξη + ξi)

Nyy
i = − 1

4b2
(3ηiη + 3ξiηiξη) N̄xy

i =
1

8b
(3ηiξ

2 + 2ξiηiξ − ηi)

Nxy
i =

1

8ab
(4ξiηi − 3ξiηiξ

2 − 3ξiηiη
2) ¯̄Nyy

i =
1

4b
(3η + ξiηiξ + 3ξiξη + ηi)

¯̄Nxy
i =

1

8a
(3ξiη

2 + 2ξiηiη − ξ)

d̂ij term ij of matrix D̂b

Box 5.2. 4-noded MZC thin plate rectangle. Matrix D̂Bbi for computing the bend-
ing moments

where fzi , mxi and myi are the vertical force and the bending moments
acting at node i and Ni,x = ∂Ni

∂x , etc.
Note that a distributed vertical loading originates nodal bending mo-

ments, like for Euler-Bernouilli beam elements. Similarly, distributed
bending moments give nodal vertical forces. This is due to the depen-
dence of the deflection field with the nodal rotations (Eq.(5.36)).

The integrals in Eqs.(5.45) and (5.46) can be computed numerically
by a Gauss quadrature [On4]. However, the exact integration of the MZC
rectangular element stiffness matrix is straightforward and its expression
is given in Box 5.1 for homogeneous isotropic material. Box 5.2 shows the
explicit product D̂bBi needed for computing the bending moment field via
Eq.(5.41). The equivalent nodal force vector for a uniformly distributed
vertical load fz = q is

f (e) = 4qab

[
1

4
,
a

12
,
b

12
,
1

4
,− a

12
,
b

12
,
1

4
,− a

12
,− b

12
,
1

4
,
a

12
,− b

12

]T
(5.47a)

The expression of fi for external forces acting at a node is

fi = [Pzi ,Mxi ,Myi ]
T (5.47b)

where Pzi , Mxi and Myi are the vertical point load and the bending mo-
ments acting at node i, respectively (Figure 5.1).
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The global system of equations Ka = f is obtained by assembling the
element stiffness matrices and equivalent nodal force vectors in the stan-
dard manner. Reactions at the prescribed nodes are computed a posteriori
as explained in Section 1.3.4 for beams.

Example 5.1: Derive the term 11 of K
(e)
11 for the MZC thin plate rectangle.

- Solution- Solution

From Eq.(5.45) we deduce

[K
(e)
ij ]11 =

∫∫
A(e)

[BT
bi ]1 D̂b[Bbj ]1 dxdy

where index 1 in Bi denotes the first row and in Bj the first column. Using
Eqs.(5.39) and (5.40) and the expressions of Figure 5.8 we obtain

[K
(e)
ij ]11 =

∫ +1

−1

∫ +1

−1

[
9 d̂11 b4(1− ηjη)(1 + ηiη)ξiξjξ

2+

+18d12 a2 b2 ((1 + ηiη)(1 + ξjη)ξiηjξη + (1 + ξiξ)(1 + ηjη)ηiξjξη)+

+a d̂22 a4(1 + ξiξ)(1 + ξjξ)ηiηjη
2 + d̂33 a2 b2(3ξ2 + 3η2 − 4)ξiηiξjηj

]
a b dξ dη

where d̂ij is the term ij of matrix D̂b in Eq.(5.15a). Integration gives

[K
(e)
ij ]11 =

1

4a2b2

[
3 d̂11 b4ξiξj(1 +

1

3
ηiηj) + 3 d̂22 a4ηiηj(1 +

1

3
ξiξj)+

+2d12 a2 b2ξiξjηiηj +
28

5
d̂33 a2 b2ξiξjηiηj

]
Particularizing for i = j = 1 yields

[K
(e)
11 ]11 = d̂11

b

a3
+ d̂22

a

b3
+

d̂12
2 ab

+
7

5

d̂33
ab

The same procedure yields the rest of stiffness matrix terms of Box 5.1.

Incompatibility of the normal rotation

It is important to understand that even though the deflection field of
Eq.(5.36) guarantees the continuity of w between elements, however it
does not guarantee the continuity of the first derivatives of w (slopes),
except at the nodes where it is obvious that they are uniquely defined. To
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Fig. 5.9 Discontinuity of the slope ∂w
∂y along a side of a 4-noded rectangular plate

clarify this, let us consider the two elements A and B of Figure 5.9. It is
assumed that all the nodal variables are zero with the exception of θx3 = 1.

Since w = 0 over element 1, then
(
∂w
∂y

)
= 0 along side 2-5 shared by both

elements. For element B, w = (ξ2−1)(ξ−1)(1+η)/8 and
(
∂w
∂y

)
= l2−3

2 (ξ2−
1)(ξ − 1)/8 along side 2-5. The slope ∂w

∂y is therefore discontinuous along
the common side. This indicates that the MZC element is incompatible
(non-conforming) [ZT2,Ya].

The discontinuity in the slope orthogonal to a side, termed hereafter the
normal rotation (Figure 5.10a) implies that the cross derivatives ∂2w

∂x∂y and
∂2w
∂y∂x take a different value at the nodes, and this violates one of the basic

requirements for the continuity of w. Figure 5.10b shows that ∂w
∂y along side

1-2 depends on
(
∂w
∂y

)
1
and

(
∂w
∂y

)
2
, whereas ∂w

∂x along side 2-3 depends on(
∂w
∂x

)
2
and

(
∂w
∂x

)
3
. Therefore, the derivative ∂2w

∂x∂y along side 1-2 depends on(
∂w
∂y

)
1
. Similarly ∂2w

∂y∂x along side 2-3 depends on
(
∂w
∂x

)
3
. Generally

(
∂w
∂y

)
1

and
(
∂w
∂x

)
3
will take different values and obviously

(
∂2w
∂x∂y

)
2

=

(
∂2w
∂y∂x

)
2
.

It is therefore imposible to guarantee the conformity of the MZC thin
plate rectangle simply by taking the deflection and its first derivatives
as nodal variables. This, however, does not invalidate the element which
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Fig. 5.10 (a) Normal (θn) and tangential (θs) rotations. (b) Discontinuity of ∂2w
∂x∂y

at node 2

satisfies the patch test (Section 5.9) [TZSC,Ya,ZTZ]. This ensures the con-
vergence as the mesh is refined.

Unfortunately the patch test is not satisfied for arbitrary quadrilateral
shapes as the constant curvature criterion is violated in those situations.
This limits the application of the MZC element plate domains that can be
discretized into rectangular plate elements. However, in these cases it is an
accurate element, as shown in the examples presented below.

Henshell et al. [HWW] studied the performance of the MZC thin plate
element (and also some other plate quadrilaterals of higher order) formu-
lated in curvilinear coordinates and concluded that reasonable accuracy is
obtained for arbitrary quadrilateral shapes. The use of curvilinear coordi-
nate for extending the MZC element to parallelogram shapes is discussed
in [Da,ZCh,ZCh2,ZT2]. Argyris [Ar2] proposed a different approach for
deriving the shape function of a similar 4-noded plate quadrilateral.

Example 5.2: Obtain the deflection and bending moment distributions along
the central line of the homogeneous isotropic clamped plate shown in Fi-
gure 5.11 under uniformly distributed loading of intensity fz = −q. Use a
mesh of 2× 2 MZC elements with ν = 0.3.

- Solution- Solution

Only a quarter of the plate is analyzed due to the double symmetry of the
problem. After eliminating the columns and rows of the prescribed nodal
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Fig. 5.11 Square plates analyzed with a mesh of 2× 2 MZC thin plate rectangular
elements

DOFs in the stiffness matrix of the single element considered and using the
force vector of Eq.(5.47a), the following equation for the only free nodal
variable, i.e. the deflection w2, is obtained

d̂11

[
b

a3
+

a

b3
+

ν

2ab
+

21(1− ν)

30ab

]
w2 = −qab

Making ν = 0.3 and a = b = 1 (Figure 5.11) gives

2.64d̂11w2 = −q

and

w2 = −0.378 q

D
with d̂11 =

Et3

12(1− ν2)
= D

The exact solution for this problem is (for L = 4) [TW]

w2 = −0.00126L4 q

d̂11
= −0.322 q

D

The error between the exact and computed deflections is ≈ 17%. The deflec-
tion field is obtained by substituting w2 in the expression for w of Figure 5.8
to give

w = −0.0472 q

D
(1 + ξ)(1− η)(2 + ξ − η − ξ2 − η2)
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�

(a) w

�(b) Mx

Fig. 5.12 Clamped square plate under uniform loading. Deflection and bending
moment (Mx) diagrams along the central line for meshes of 2 × 2, 4 × 4, 8 × 8
and 12× 12 MZC elements

Along the central line (η = −1)
w = −0.0944 q

D
(1 + ξ)(2 + ξ − ξ2)

which is a cubic polynomial in ξ as expected. This solution is compared with
the exact one [TW] in Figure 5.12a and also with that obtained using meshes
of 2 × 2, 4 × 4 and 8 × 8 MZC elements. Note the excellent accuracy of the
central deflection value obtained with the simple 2× 2 mesh.
The bending moment distribution within the element is obtained from the
value of w2 and the expressions of Box 5.2 (with ν = 0.3, d̂11 = d̂22 = D and
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d̂33 = 1−ν
2 D = 0.35D) giving

Mx = − 3d̂11
4a2b2

[ξ(1− η)b2 − 0.3η(1 + ξ)a2]w2 = −0.284q[ξ − 0.3η − 1.3ξη]

My = − 3d̂11
4a2b2

[0.3ξ(1− η)b2 − η(1 + ξ)a2]w2 = −0.284q[0.3ξ − η − 1.3ξη]

Mxy = − d̂33
4ab

[3ξ2 + 3η2 − 4]w2 = −0.034q[3ξ2 + 3η2 − 4]

The distribution of Mx and My along side 1-2 (η = −1) is linear in ξ whereas
Mxy is quadratic. The linear distribution of Mx along the central line is com-
pared in Figure 5.12b with the exact one [TW] and with that obtained using
different meshes. The accuracy of the bending moment solution is poorer than
that for the deflection, as expected. However, even for the coarse 4× 4 mesh
the values of Mx at the center and the clamped edge are a good estimate for
design purposes.
The bending moments computed at the 2×2 Gauss points approximate better
the exact values. This is further evidence of the benefit of computing the
stresses at the “optimal sampling points” ([ZTZ] and Section 6.7 of [On4]).
Table 5.1 shows the percentage error values versus the exact solution of the
deflection and the bending moment Mx at the plate center C and at the
mid-point of the clamped edge (point A in Figure 5.11).
Figure 5.13 shows the convergence of the distribution of w and Mx along the
central line for different meshes. We see that the MZC thin plate element ele-
ment, although it is incompatible, converges in its rectangular form. Finally,
Figure 5.14 shows the contours for w,Mx and My in one quarter of plate for
a 14× 14 mesh.

MCZ mesh wC MC
x MA

x

2× 2 23,49% 112,77% -11,52%
4× 4 11,25% 22,17% -2,63%
8× 8 3,08% 4,99% -0,79%

12× 12 1,38% 2,17% -0,39%

Analytical [TW] wC = −0, 00126 qL4

D
MC

x = −2, 291× MA
x = −2, 24MC

x

10−2qL2

Table 5.1 Deflection at plate center (C) and bending moment Mx at plate center
(C) and the mid-point of clamped edge (A) for different meshes of MZC elements.
Numbers show percentage error versus the analytical solution [TW]
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�

Fig. 5.13 Clamped square plate under uniform loading. Convergence of the error
in the deflection w and the bending moment Mx at the central point for different
meshes of MZC thin plate rectangles

���

(a) w
���

(b) Mx

���

(c) Mxy

Fig. 5.14 Clamped square plate under uniform loading. Contours of vertical de-
flection w (a) and bending moments Mx (b) and Mxy (c) for a mesh of 14 × 14
MZC rectangles. Results are shown in one quarter of the plate due to symmetry

Example 5.3: Obtain the central deflection for the clamped plate of Figure 5.11
under a central point load (−P ). Use a mesh of 2× 2 MZC elements.

- Solution- Solution

The process is identical to that followed in the previous example. The load
acting at node 2 is −P

4 due to symmetry. The equation for w2 is

2.64d̂11w2 = −P

4
and w2 =

−P
10.56d̂11

= −0.0946 P

d̂11
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The error with respect to the analytical solution (w2 = −0.0896 P
d̂11

[TW])

is ≈ 5.5%. The bending moment distribution is obtained as in the previous
example.

Example 5.4: Obtain the central deflection for the square plate of Figure 5.11
with simple supported edges under: a) Uniformly distributed loading (−q),
and b) Central point load (−P ) using a mesh of 2 × 2 MZC thin plate
rectangular elements.

- Solution- Solution

Case a) Uniformly distributed loadingCase a) Uniformly distributed loading

Along the simply supported sides 14 and 43 we just need to prescribe w = 0.
This automatically implies θs = 0 along these edges. Hence the only non-zero
DOFs due to the double symmetry are θx1 , w2 and θy3 (Figure 5.11). The
resulting system of three equations is deduced as(

4b

3a
+

4(1− ν)a

15b

)
θx1 −

(
b

a2
+

(1− ν)

10b

)
w2 = −qab2

3D

−
(

b

a2
+

(1− ν)

10a

)
θx1 +

(
b

a3
+

a

b3
+

ν

2ab
+

7(1− ν)

10ab

)
w2+

+

(
a

b2
+

(1− ν)

10a

)
θy3 = −qab

D̂(
a

b2
+

(1− ν)

10a

)
w2 +

(
4a

3b
+

4(1− ν)b2

15ab

)
θy3 =

qab2

3D

with D = d̂11.
Making ν = 0.3 and a = b = 1 and noting that due to symmetry θy3 = −θx1 ,
the above system can be simplified to

1.52θx1 − 1.07w2 = −0.33 q

D

−2.14θx1 + 2.64w2 = − q

Dwhich gives

w2 = −1.25 q

D
and θx1 = −θx3 = −1.08 q

D

The bending moment distribution can be obtained from Box 5.2.
The value of w2 agrees reasonably well with the exact one of w2 = −1.040 q

D
[TW] (error ≈ 20%) despite of the simplicity of the mesh.
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�

(a) w
�

(b) Mx

�

(c) Mxy

Fig. 5.15 Simple supported square plate. Uniform loading. Contours of vertical
deflection (a) and bending moments Mx (b) and Mxy (c) for a mesh of 14 × 14
MZC rectangles. Results shown in one quarter of the plate due to symmetry

Figure 5.15 shows the contours of vertical deflection (a) and bending moments
Mx (b) and Mxy (c) for a 14× 14 mesh.

Case b) Central point loadCase b) Central point load

The system of equations is the same as in the previous example substituting
the 1st, 2nd and 3rd right-hand sides for 0, −P

4D and 0, respectively. After
eliminating θy3 and making ν = 0.3 and a = b = 1 we obtain

1.52θx1 − 1.07w2 = 0

−2.14θx1 + 2.64w2 = 0.33
P

D

giving

w2 = −0.219P
D

and θx1 = −θy3 = −0.154P
D

The value of w2 obtained with this very simple mesh is again not far from
the analytical value, w2 = −0.1856P

D [TW] (error ≈ 18%).
The bending moment distribution can be obtained from Box 5.2.

5.4.2 12 DOFs plate rectangle proposed by Melosh

A rectangular plate element with the same DOFs as the MZC rectan-
gle was derived almost simultaneously by Melosh [Me,Me2]. The shape
functions are obtained by combining the 1D Hermite polynomials used
for the 2-noded Euler-Bernouilli beam element (Section 1.3.1) giving the
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following interpolations for the deflection

w = N1(x)N1(y)w1 +N2(x)N1(y)w2 +N2(x)N2(y)w3+

+N1(x)N2(y)w4 + N̄1(x)N1(y)

(
∂w

∂x

)
1

+ N̄2(x)N1(y)

(
∂w

∂x

)
2

+

+N̄2(x)N2(y)

(
∂w

∂x

)
3

+ N̄1(x)N2(y)

(
∂w

∂x

)
4

+N1(x)N̄1(y)

(
∂w

∂x

)
1

+

+N2(x)N̄1(y)

(
∂w

∂x

)
2

+N2(x)N̄2(y)

(
∂w

∂x

)
3

+N1(x)N̄2(y)

(
∂w

∂x

)
4

(5.48)

where Ni and N̄i are the Hermite polynomials of Eq.(1.11a) written in
cartesian coordinates and referred to each of the element sides.

This element satisfies the continuity requirements for the normal rota-
tion along the sides. However, the approximation (5.48) does not contain
the term α6xy and the element can not reproduce a constant torque strain(

∂2w
∂x∂y

)
state and this violates the patch test. This problem does not oc-

cur for the MZC element, neither for the BFS one presented in the next
section. Consequently, these elements are more reliable for practical pur-
poses.

5.4.3 Conforming BFS plate rectangle

Many authors have attempted to derive conforming Kirchhoff thin plate
elements which satisfy the continuity requirements for the normal rotation
and the second cross derivative ∂2w

∂x∂y along the sides. A popular technique

is to introduce the cross derivative ∂2w
∂x∂y as a fourth nodal variable (Figure

5.16). Bogner, Fox and Schmidt [BFS] proposed an element of this type
using a 16 term polynomial expansion for w as a product of two complete
cubic polynomials in x and y.

An interesting feature of the BFS element is that, as for the Melosh
rectangle, the shape functions can be obtained by simple products of 1D
cubic Hermite polynomials. The approximation for the deflection is there-
fore written as

w(e) = [Nw,Nθx ,Nθy ,NΓ ]

⎧⎪⎪⎨⎪⎪⎩
w
θθθx
θθθy
ΓΓΓ

⎫⎪⎪⎬⎪⎪⎭ (5.49)
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Fig. 5.16 4-noded conforming BFS plate rectangle

with

w = [w1, . . . , w4]
T ; θθθx =

[(
∂w

∂x

)
1

, . . . ,

(
∂w

∂x

)
4

]T
θθθy =

[(
∂w

∂y

)
1

, . . . ,

(
∂w

∂y

)
4

]T
; ΓΓΓ =

[(
∂w

∂x∂y

)
1

, . . . ,

(
∂w

∂x∂y

)
4

]T
(5.50)

and

Nwi =Ni(ξ), Ni(η) , Nθxi = N̄i(ξ), Ni(η)

Nθyi =Ni(ξ), N̄i(η) , NΓi = N̄i(ξ), N̄i(η)
(5.51)

where Ni and N̄i are the 1D Hermite shape functions of Eq.(1.11a).

Eqs.(5.50) and (5.51) allow the element stiffness matrix to be derived
in a straightforward manner. Details can be found in [WJ,Ya]. The BFS
element satisfies the continuity requirements for the normal and cross-
derivatives along the sides. The reason is that the normal rotation varies
along a side as a cubic polynomial uniquely defined by four parameters,
i.e. one rotation and the cross derivative at each of the two end nodes.
The element is therefore conforming and it satisfies the patch test. The
BFS rectangle is more accurate than the MZC one [WJ]. This is not due
to the conformity of the former, but to the fact that the BFS rectangle
involves a higher approximation with more nodal variables.

Unfortunately, the practical use of the BFS element is limited to rect-
angular shapes only. The continuity requirements for the second cross
derivatives at the nodes in arbitrary quadrilaterals requires all the second
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derivatives of w with respect to the different side directions meeting at
each node to be defined as nodal variable. Obviously this is quite difficult
to generalize for practical purposes.

A development of the BFS element to include the continuity of higher
derivatives was outlined in [Sp].

The derivation of conforming plate quadrilaterals starting from trian-
gular plate elements will be studied in Section 5.6.

5.5 TRIANGULAR THIN PLATE ELEMENTS

Triangular plate elements are of interest for the analysis of plates with
irregular shapes. Their formulation, however, has the same difficulties for
satisfying conformity as the rectangular elements previously studied. Some
of the more popular non-conforming and conforming Kirchhoff plate tri-
angles are presented next.

5.5.1 Non-conforming thin plate triangles

Let us consider first the 3-noded triangle. The obvious choice of nodal

variables gives a total of nine DOFs (wi,
(
∂w
∂x

)
i
and

(
∂w
∂y

)
i
at each node).

A complete cubic polynomial has ten terms and, hence, a problem arises
when choosing the term to be dropped out. A number of authors have pro-
posed different elements on the basis of the term omitted. Unfortunately
all of them require substantial manipulation for ensuring conformity.

Adini and Clough [AC] omitted the xy term in the cubic expansion,
i.e.

w(x, y) = a1+a2x+a3y+a4x
2+a6y

2+a7x
3+a8x

2y+a9xy
2+a10y

3 (5.52)

This simple criterion yields a poor element which is unable to reproduce

constant torsion curvature
(

∂2w
∂x∂y

)
states. In addition, the element does

not satisfy the C1 continuity requirement.
Tocher and Kapur [TK] grouped the terms a8 and a9 of the cubic

polynomial as

w(x, y) = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2+

+a7x
3 + a8(x

2y + xy2) + a9y
3

(5.53)

This element does not respect the continuity of the normal rotation
along the sides. Also, matrix A of Eq.(5.33b) becomes singular when the
sides of the triangle are parallel to the x, y axes [TK,To].
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Fig. 5.17 4-noded plate triangle with 10 degrees of freedom [HK]

Harvey and Kelsey [HK] obtained a complete cubic deflection field by
adding a fourth central node with a single deflection variable (Figure 5.17).
The internal DOF can be eliminated by static condensation. The resulting
element does not satisfy the continuity requirement for the normal rota-
tion and it has poor convergence. The performance of this element can
be substantially improved by imposing the continuity requirement using
Lagrange multipliers. Harvey and Kelsey [HK] showed that the enhanced
element satisfies the patch test and it converges monotonically to the exact
solution. Further details can be found in [Ya].

Bazeley et al. [BCIZ] developed a 3-noded plate triangle with 9 DOFs.
The element was subsequently modified by Cheung, King and Zienkiewicz
[CKZ] (termed hereafter CKZ element). The starting point is an incom-
plete cubic expansion of the deflection using area coordinates as

w = a1L1 + a2L2 + a3L3 + a4

(
L2
1L2 +

L1L2L3

2

)
+ a5

(
L2
2L1 +

L1L2L3

2

)

+a6

(
L2
2L3 +

L1L2L3

2

)
+ a7

(
L2
3L2 +

L1L2L3

2

)
+

+a8

(
L2
3L1 +

L1L2L3

2

)
+ a9

(
L2
1L3 +

L1L2L3

2

)
(5.54)

The bracketed terms guarantee the reproduction of an arbitrary cur-
vature field (including that of constant curvature) for a zero value of the
nodal deflections.

Following a similar procedure as for the MZC rectangle, Eq.(5.54) can
be written in the form

w =
3∑

i=1

(
Niwi + N̄i

(
∂w

∂x

)
i

+ ¯̄Ni

(
∂w

∂y

)
i

)
(5.55)
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Fig. 5.18 Shape functions for the 3-noded CKZ plate triangle [CKZ]

The shape functions Ni , N̄i and ¯̄Ni are given in Figure 5.18. The
stiffness matrix for this element can be found in [CKZ].

The CKZ triangle violates the continuity requirement for the normal
rotation and hence is non conforming. However, it converges in a mono-
tonic manner and this has contributed to its popularity [CKZ].

Bazeley et al. [BCIZ] proposed a correction to the deflection field lead-
ing to a linear distribution of the normal rotation along the sides. This
modification does not improve the CKZ element substantially and the
performance of the original form is sometimes superior.

Different authors have tried to enhance the behaviour of the CKZ tri-
angle so that it passes the patch test [BN,FB2,KA]. A simple proposal was
due to Specht [Sp] who achieved conformity by adding 4th degree terms
to the cubic expansion (5.54) as

w = a1L1 + a2L2 + a3L3 + a4L1L2 + a5L2L3 + a6L1L3 +

+a7

[
L2
1L2 +

L

2
(3(1− γ3))L1 − (1 + 3γ3)L2 + (1 + 3γ3)L3

]
+

+a8

[
L2
2L3 +

L

2
(3(1− γ1))L2 − (1 + 3γ1)L3 + (1 + 3γ1)L1

]
+

+a9

[
L2
3L1 +

L

2
(3(1− γ2))L3 − (1 + 3γ2)L1 + (1 + 3γ2)L2

]
(5.56)
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Fig. 5.19 Morley plate triangle of constant curvature

with L = L1L2L3, γ1 =
l23−l22
l21

; γ2 =
l21−l23
l22

; γ3 =
l22−l21
l23

and l1, l2 and l3

are the element sides. The element passes all patch tests and performs
excellently [Sp,TZSC,ZT2].

Morley 6 DOFs constant curvature triangle

Morley proposed a simple non-conforming 6-noded triangle with just 6
DOFs [Mo,Mo2]. The element uses a complete quadratic expansion of the
deflection in terms of the three corner deflection values and the three nor-
mal rotations at the mid-sides (Figure 5.19). The Morley triangle has con-
stant curvature and bending moment fields. It satisfies the patch test and
converges despite the violation of the C1 continuity requirement, which
demands a cubic deflection field. The element stiffness can be explicitly
obtained by

K(e) = A(e)BTDbB (5.57)

with

B =
1

A(e)
[G1,G2] (5.58a)

G1 = −

⎡⎢⎣ C4S4 − C6S6 C5S5 − C4S4 C6S6 − C5S5

−C4S4 + C6S6 −C5S5 + C4S4 −C6S6 + C5S5

−C2
4 + S2

4 + C2
6 − S2

6 −C2
5 + S2

5 + C2
4 − S2

4 −C2
6 + S2

6 + C2
5S

2
5

⎤⎥⎦
(5.58b)

G2 =
[
G4

2,G
5
2,G

6
2

]
, Gk

2 = −

⎡⎢⎢⎣
C2
k lk

S2
klk

2SkCklk

⎤⎥⎥⎦ , k = 4, 5, 6 (5.58c)

where Ck = yji/lk, Sk = −xji/lk, xji = xj − xi, yji = yj − yi and lk =
(x2ji + y2ji)

1/2 is the lengh of side k. The constant bending moment field is
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given by
σ̂σσb = DbBa(e) (5.59a)

with

a(e) =

[
w1, w2, w3,

(
∂w

∂n

)
4

,

(
∂w

∂n

)
5

,

(
∂w

∂n

)
6

]T
(5.59b)

The equivalent nodal force vector due to a uniformly distributed load-
ing fz = q is

f (e) = q
A(e)

3
[1, 1, 1, 0, 0, 0]T (5.60)

Nodal point loads are assumed to act at the corner nodes only. Full
details on the derivation of the Morley triangle can be found in [Wo].

The Morley triangle is so far the simplest Kirchhoff plate triangle in-
volving deflections and rotations as variables. Its simplicity is comparable
to that of the constant strain triangle for plane elasticity problems. De-
spite its slow convergence, the Morley triangle enjoys big popularity for
analysis of plates and shells. A thin plate triangle with identical features
as the Morley triangle can be derived starting from the Reissner-Mindlin
TLLL triangle (Section 6.8.3) using a Discrete Kirchhoff approach (see
Section 6.8.3).

5.5.2 Conforming thin plate triangles

Satisfying the conformity requirements in triangles is a challenging task.
The technique of using the curvatures as additional nodal variables is cum-
bersome and it also makes the extension of the elements for shell analysis
difficult. A more successful alternative is to guarantee the continuity of
the normal rotation along the sides using additional mid-side variables.
Some of these elements are described next.

A conforming plate triangle emerges as a modification of the CKZ
element previously described. The shape functions of Eq.(5.54) define a
quadratic variation of the normal rotation along each side which can not
be uniquely described by the two end values. A solution to this problem is
adding three additional mid-side variables which coincide with the normal
rotation to each side (Figure 5.20) [ZT]. This suffices to define a complete
cubic variation of ∂w

∂n along each side and conformity is thus satisfied.
Clough and Tocher [CT] developed another conforming triangle start-

ing from an idea of Hsieh in correspondence with Clough [Ya] (denoted
here as HCT element). The shape functions are obtained by dividing the
element into three inner triangular subdomains as shown in Figure 5.21a.
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Fig. 5.20 Conforming 12 DOFs triangle

Fig. 5.21 HCT conforming thin plate triangles

A nine-term incomplete cubic expansion is written in the local axes x̄ , ȳ
for every triangular subdomain 4ij with ȳ chosen orthogonal to the side
ij. Thus, for the triangle 423 (Figure 5.21) we write

wA = C1+C2x̄+C3ȳ+C4x̄
2+C5ȳ

2+C6x̄ȳ+C7x̄
3+C8x̄ȳ

2+C9ȳ
3 (5.61)
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Fig. 5.22 18 DOFs conforming plate triangle proposed by Irons [Ir]

with ȳ being orthogonal to side 23. Similar expressions are used for trian-
gles 412 and 431. The omission of the term x̄2ȳ in Eq.(5.61) guarantees
that the normal rotation varies linearly along the external sides, whereas
the deflection varies quadratically. The local stiffness matrices for each tri-
angular subdomain are transformed to global axes for assembly purposes.
The three DOFs of the central node are eliminated by imposing conti-
nuity of the normal rotation at the mid-point of the inner sides (three
conditions). Further details can be found in [CMPW,CT,Ya]. The HCT
element is conforming and it has 9 DOFs as the CKZ element. However,
it has a slightly stiffer behaviour.

The performance of the HCT element can be enhanced by starting from
three triangular subdomains where, in addition to the standard corner
variables, a normal rotation variable is introduced at each mid-side point.
This defines a quadratic variation of the rotation along the sides. After
eliminating the internal variables a 12 DOFs plate triangle similar to the
modified CKZ element is obtained (Figure 5.18b) [Ga2].

A drawback of elements with mid-side normal rotations as variables
is that they involve a different number of DOFs per node. To overcome
this problem Irons [Ir] proposed a 18 DOFs quartic triangle where the

deflection and the curvature ∂2w
∂n∂s are added as mid-side variables (Figu-

re 5.22).
Other authors have proposed different 3-noded conforming plate tri-

angles based on cubic and quartic expansions of the normal rotation ∂w
∂n

along the sides. Cowper et al. [CKLO] proposed a 18 DOFs plate triangle

with w, ∂w
∂x ,

∂w
∂y ,

∂2w
∂x2 ,

∂2w
∂y2

, ∂2w
∂x∂y at each node (Figure 5.23a). The shape

functions omit three terms of a complete quintic polynomial (which has
21 terms) preserving a cubic variation of ∂w

∂n along the three sides.
This element can be enhanced by adding three mid-side nodes with

the normal rotation as variable [AFS,Be,Ir] (Figure 5.23b). The shape
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Fig. 5.23 18 and 21 DOFs conforming plate triangles

functions are now complete quintic polynomials (21 terms) and ∂w
∂n has a

quartic variation along the sides.
More information on these elements can be found in [Ya,ZT2] in ad-

dition to the previously quoted references. Despite their accuracy, the
practical acceptance of thin plate triangles with curvatures as nodal vari-
ables has been limited. The main reason for this is the intrinsic difficulties
for their extension to shell analysis.

5.6 CONFORMING THIN PLATE QUADRILATERALS OBTAINED
FROM TRIANGLES

One of the first conforming plate quadrilaterals derived from triangles is
due to Fraejis de Veubeke [FdV,FdV2]. The element was later developed
by Sander [San]. The starting point is the splitting of the quadrilateral into
four inner triangles as shown in Figure 5.24a. A complete 10-term cubic
polynomial is used to approximate the deflection within each subdomain
and, thus, the total number of initial variables is 40. After eliminating
the internal variables the DOFs are reduced to 16, i.e. the three standard
corner variables and the normal rotations at the mid-side points. The el-
ement is conforming and it can be distorted to arbitrary quadrilateral
shapes. The mid-side normal rotations are eliminated by imposing a lin-
ear variation of ∂w

∂n along each side. This, however, does not improve the
performance of the element [FdV2].

A second thin plate quadrilateral was developed by Clough and Felippa
[CF] almost at the same time as the Fraejis de Veubeke element described
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Fig. 5.24 Conforming plate quadrilaterals of Fraejis de Veubeke [FdV2] (a) and
Clough and Felippa [CF] (b)

above. The triangular subdivision is very similar in both cases, as shown in
Figure 5.24b. A complete cubic expansion is again used for the deflection
within each inner triangle. All internal DOFs are eliminated after assembly
by simple static condensation and also by imposing the continuity of the
normal rotation at the internal mid-side nodes. The resulting conforming
quadrilateral has only 12 DOFs and is quite accurate.

5.7 CONFORMING THIN PLATE ELEMENTS DERIVED FROM
REISSNER-MINDLIN FORMULATION

Conforming thin plate elements can also be derived by “degeneration” of
the Co continuous Reissner-Mindlin plate elements to be studied in the
next chapter. The process consists in constraining the transverse shear
strains to take a zero value at a discrete number of points of the original
Reissner-Mindlin element. Consequently, the “effective” shear energy is
zero over the element. These elements are termed DK (for Discrete Kirch-
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hoff) and they perform like Kirchhoff thin plate elements. However, they
only require Co continuity for the displacement field and this guarantees
compatibility.

This technique can be considered as a generalization of that used in
Chapter 2 for deriving Euler-Benouilli beam elements from Timoshenko
elements (Section 2.8.4 and Examples 2.5 and 2.6).

The formulation of DK plate elements is described in the next chapter
when dealing with Reissner–Mindlin thick plate theory. Nevertheless, we
should keep in mind that they are another class of thin plate elements.

5.8 ROTATION-FREE THIN PLATE TRIANGLES

Rotation-free plate elements can be derived by extending the concepts
explained in Section 1.4 for rotation-free Euler-Bernouilli beam elements.

The idea of using the deflection as the only nodal variable for plate
bending analysis was originally exploited by finite difference (FD) practi-
tioners [Ug]. The obvious difficulties in FD techniques are the treatment of
boundary conditions and the problems when dealing with non-orthogonal
or unstructured grids.

Several authors have proposed plate and shell finite elements with dis-
placements as the nodal variables. Nay and Utku [NU] derived a rotation-
free 3-noded thin plate triangle using a least square quadratic approxima-
tion to describe the deflection field within the patch surrounding a node
in terms of the deflections of the patch nodes. The element stiffness ma-
trix was obtained by the standard minimum potential energy approach.
Later Barnes [Bar] proposed a method for deriving a 3-noded plate trian-
gle with the nodal deflections as the only DOFs based on the computation
of the curvatures in terms of the normal rotations at the mid-side points
determined from the nodal deflections of adjacent elements. This method
was exploited by Hampshire et al. [HTC] assuming that the elements are
hinged together at their common boundaries, the bending stiffness being
represented by torsional springs resisting the rotations about the hinge
lines. Phaal and Calladine [PC2,3] presented a similar class of rotation-free
triangles for plate and shell analysis. Yang et al. [YJS+] derived a fam-
ily of triangular elements of this type for sheet stamping analysis based
on so called bending energy augmented membrane approach which basi-
cally reproduces the hinge bending stiffness procedure described in [HTC].
Brunet and Sabourin [BS5,6,SB2] used a different method to compute the
constant curvature field within each triangle in terms of the six nodal
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displacements of a macro-element (quadrilateral). The triangle was suc-
cessfully applied to non-linear shell analysis using an explicit dynamic
approach. Rio et al. [RTL] have used the concept of side hinge bending
stiffness for deriving a thin shell triangle of “translational” kind for explicit
dynamic analysis of sheet stamping problems.

Oñate and Cervera [OC2] obtained a competititve and simple three
node plate triangle with the deflection as the only nodal DOF by blending
ideas from finite element and finite volume methods [IO,OCZ,ZO]. This
work was generalized and extended by Oñate and Zarate [OZ] who used for
the first time the name rotation-free element and derived two families of
rotation-free plate and shell triangles by combining a standard linear finite
element approximation over 3-noded triangles with cell centred (CC) and
cell vertex (CV) finite volume schemes. These elements were extended to
linear and non linear analysis of shells by Flores and Oñate [FO2,3,4] and
Oñate et al. [OCM,OF,OFN]. Details of this two families of rotation-free
plate triangles are given in the next sections.

Rotation-free thin plate and shell quadrilaterals have been derived by
Savourin et al. [SCB2] and Flores and Estrada [FE]. These elements re-
quire some stabilization to avoid spurious deformation modes and are not
so popular as the rotation-free triangles.

Other rotation-free plate and shell elements based on the upgrading
of membrane theory to shells [LWB], isogeometric formulations [BBHH,
KBLW] and Bezier interpolations over triangular patches [UO] have been
recently proposed. Indeed, this topic seems to continue attracting much
interest in the computational mechanics community.

5.8.1 Formulation of rotation-free triangles by a combined finite element
and finite volume method

Let us consider an arbitrary discretization of the plate into standard 3-
noded triangles. The curvature and the bending moments are described by
constant fields within appropriate non-overlapping control domains (also
termed “control volumes” in the finite volume literature [IO,OCZ,ZO])
covering the whole plate as

ε̂εεb = ε̂εεpb , σ̂σσb = σ̂σσp
b (5.62)

where (·)p denotes constant values for the p-th control domain.
Two modalities of control domains are considered: a) that formed by a

single triangular element (Figure 5.25a), and b) the control domain formed
by one third of the areas of the elements surrounding a node (Figure
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Fig. 5.25 Cell-centred (a) and cell-vertex (b) schemes. BPT and BPN triangles.
Numbers in brackets denote local node numbers. Element sides are defined by
opposite local node numbers, i.e. side 1 has nodes 2 and 3, etc.

5.25b). In the finite volume literature the two options are termed “cell-
centred” (CC) and “cell-vertex” (CV) schemes, respectively [OCZ,ZO].

In the CC scheme each control domain coincides with a standard 3-
noded finite element triangle. In the CV scheme a control domain is con-
tributed by different elements, as shown in Figure 5.25b.

We identify the “patch of elements” associated with a control domain.
In the CC scheme the patch is always formed by four elements (except in
elements sharing a boundary segment). In the CV scheme the number of
elements in the patch can vary.

In a CC scheme the chosen variables (i.e. the curvatures and bending
moments) are “sampled” at the center of the cells discretizing the analysis
domain (i.e. the 3-noded triangles). In a CV scheme the variables are
sampled at the mesh nodes.

Let us now integrate the constitutive equation (5.14) and the curvature-
deflection relationship (5.9) over each control domain as∫∫

Ap

(σ̂σσb − D̂bε̂εεb)dA = 0 (5.63)∫∫
Ap

(ε̂εεb − Lw)dA = 0 (5.64)

where Ap is pth control domain area and the curvature operator L is

L =

[
∂2

∂x2
,
∂2

∂y2
, 2

∂2

∂x∂y

]T
(5.65)

Eqs.(5.63) and (5.64) express the satisfaction of the constitutive and
curvature-deflection equations over a control domain in a mean sense.
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Introducing into Eq.(5.63) the assumed constant bending moment and
curvature fields within each control domain gives

σ̂σσp
b = D̂p

bε̂εε
p
b , where D̂p

b =
1

Ap

∫∫
Ap

D̂bdA (5.66)

is the average constitutive matrix over a control domain.
From Eqs.(5.62) and (5.64) we also obtain

ε̂εεpb =
1

Ap

∫∫
Ap

Lw dA (5.67)

A simple integration by parts of the r.h.s. of Eq.(5.67) leads to

ε̂εεpb =
1

Ap

∫
Γp

T∇∇∇wdΓ (5.68)

where
∇∇∇ =

[
∂

∂x
,
∂

∂y

]T
, T =

[
nx 0 ny

0 ny nx

]T
(5.69a)

and nx, ny are the components of the outward unit normal n to the bound-
ary Γp of the pth control domain (Figure 5.25). For the ith side of p with
length lpi

ni =
1

lpi
[−bpi ,−cpi ] , Ti =

1

lpi

[
bpi 0 cpi
0 cpi b

p
i

]T
(5.69b)

bpi = ypj − ypk , cpi = xpk − xpj i, j = 1, 2, 3 (5.69c)

where parameters bpi and cpi are obtained by cyclic permutation of the
indexes i, j, k.

Note that the element sides are defined by the opposite local node
number, i.e. side 1 is defined by nodes 2,3, etc. (Figure 5.26).

Eq.(5.68) defines the average curvatures for each control volume in
terms of the deflection gradients along its boundaries. The transformation
of the area integral of Eq.(5.67) into the line integral of Eq.(5.68) is typical
of finite volume methods [IO,OCZ,ZO].

The line integral in Eq.(5.68) poses a difficulty when the deflection gra-
dient is discontinuous at the control domain boundary and some smooth-
ing procedure is required. This issue is discussed below.

The PVW for the case of a distributed vertical load (Eq.(5.19)) is
written as (noting that δε̂εεb = Lδw)∑

p

∫∫
Ap

(Lδw)T σ̂σσp
bdA−

∫∫
A
δwfzdA = 0 (5.70)
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The sum in the first term of Eq.(5.70) extends over all the control
domains in the mesh.

Integrating by parts the first integral in Eq.(5.70) and recalling that
the bending moments are constant within each control domain, gives

∑
p

(∫
Γp

[T∇∇∇δw]TdΓ

)
σ̂σσp
b −

∫∫
A
δwfzdA = 0 (5.71)

Substituting Eqs.(5.66) and (5.68) into (5.71) yields finally

∑
p

{(∫
Γp

[T∇∇∇δw]TdΓ

)
1

Ap
D̂p

b

(∫
Γp

T∇∇∇wdΓ

)}
−

∫∫
A
δwfzdA = 0

(5.72)
Eq.(5.72) is the basis for deriving the final set of equilibrium equations,

after the appropriate discretization of the deflection field.
An alternative derivation of Eq.(5.72) using a Hu-Washizu variational

principle and a mixed formulation can be found in [OZ].

Derivation of the discretized equations

The deflection field is interpolated linearly within each triangular element
in terms of the nodal values as in the standard FEM, i.e.

w =

3∑
i=1

Niwi = N(e)w(e) (5.73)

with N(e) = [N1, N2, N3] and w(e) = [w1, w2, w3]
T . In Eq.(5.73) Ni are

the standard linear shape functions for the 3-noded triangle. Substituting
Eq.(5.73) into (5.68) gives

ε̂εεpb =
1

Ap

∫
Γp

T∇∇∇N(e)w(e) = Bpw̄p (5.74)

where vector w̄p lists the deflections of the nodes linked to the p-th control
domain and Bp is the curvature matrix relating the constant curvature
field within each control domain and the nodal deflections w̄p. Matrix Bp

is different for the CC and CV schemes.
Substituting Eq.(5.73) into (5.72) and using (5.74) gives the final sys-

tem of equilibrium equations as

Kw = f (5.75)
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where vector w contains the nodal deflections of all mesh nodes. The
global stiffness matrix K is obtained by assembling in the usual manner
the stiffness contributions from the different control domains given by

Kp = [Bp]T D̂p
bB

pAp (5.76)

The components of the nodal force vector f in Eq.(5.75) are obtained
as for standard C◦ linear finite element triangles [On4], i. e.

Point loads
fi = Pzi (5.77)

where Pzi is the vertical point load acting on the i-th node

Distributed loading

f
(e)
i =

∫∫
A(e)

Nifz(x)dA (5.78)

The global nodal force component fi is obtained by assembling the

element contributions f
(e)
i . For a constant distributed load fz = q

fi =
∑
e

qA(e)

3
(5.79)

where the sum extends over all the triangles sharing the i-th node, and
A(e) is the area of element e.

The previous equations are particularized next for CC and CV schemes.

5.8.2 Cell-centred patch. BPT rotation-free plate triangle

In CC patches the control domain coincides with an individual element
and the evaluation of the constant curvature field of Eq.(5.68) can be
simply written as

ε̂εεpb =
1

Ap

3∑
j=1

lpjT
p
j (∇∇∇w)pj = Cp(∇∇∇w)p (5.80a)

with

Cp = [Cp
1,C

p
2,C

p
3] , Cp

i =
1

lpi

⎡⎣bpi 0
0 cpi
cpi 0

⎤⎦ , (∇∇∇w)p =

⎧⎨⎩
(∇∇∇w)p1
(∇∇∇w)p2
(∇∇∇w)p3

⎫⎬⎭
(5.80b)

In Eq.(5.80a) the sum extends over the three sides of element p coin-
ciding with the pth control domain, Tp

j is the transformation matrix of
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Eq.(5.69) for the side j of element p, (∇∇∇w)pj is the deflection gradient at
the side mid-point, xpj , y

p
j are the coordinates of node j of element p.

The evaluation of the deflection gradient (∇∇∇w)pi at the element sides
in Eq.(5.80a) poses a difficulty as these gradients are discontinuous across
elements for linear interpolations of w. Oñate and Cervera [OC2] overcome
this problem by computing the deflection gradient at the triangle sides as
the average values of the gradients contributed by the two elements sharing
the side. This gives

(∇∇∇w)p = Mp(∇̂∇∇w)p (5.81a)

with

Mp =
1

2

⎡⎣I2 02 I2 02
I2 02 02 I2
I2 I2 02 02

⎤⎦ , (∇̂∇∇w)p =

⎧⎪⎪⎨⎪⎪⎩
(∇∇∇w)p

(∇∇∇w)a

(∇∇∇w)b

(∇∇∇w)c

⎫⎪⎪⎬⎪⎪⎭ , I2 =

[
1 0
0 1

]
, 02 =

[
0 0
0 0

]
(5.81b)

In Eq.(5.81b) (∇∇∇w)k is the (constant) deflection gradient at element k.
Substituting the linear interpolation of the deflection (Eq.(5.73)) into

(5.81a) gives
(∇∇∇w)p = MpGpw̄

p (5.82)

with

Gp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b̄p1 b̄p2 b̄p3 0 0 0
c̄p1 c̄p2 c̄p3 0 0 0
b̄a3 b̄a2 0 b̄a1 0 0
c̄a3 c̄a2 0 c̄a1 0 0
0 b̄b3 b̄b2 0 b̄b1 0
0 c̄b3 c̄b2 0 c̄b1 0
b̄c2 0 b̄c3 0 0 b̄c1
c̄c2 0 c̄c3 0 0 c̄c1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, w̄p =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wi

wj

wk

wl

wm

wn

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(5.83)

where b̄pi =
bpi
2Ap , c̄

p
i =

cpi
2Ap with bpi , c

p
i given in Eq.(5.69c).

Substituting Eq.(5.82) into (5.80a) gives finally

ε̂εεpb = CpMpGpw̄
p = Bpw̄p (5.84a)

with the curvature matrix Bp for element p given by

Bp = CpMpGp (5.84b)

Bp is a 3× 6 matrix relating the curvatures with the deflections at the
six nodes of the four element patch contributing to the control domain.
Consequently, Kp is a 6× 6 stiffness matrix.
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Fig. 5.26 Basic plate triangle (BPT) next to a boundary line. Numbers in brackets
denote local node numbers. Definition of element sides

The resulting plate element is termed BPT (for Basic Plate Triangle).
The element can be viewed as a standard finite element plate triangle with
one DOF per node and a wider bandwidth, as each element is linked to
its neighbours through Eq.(5.84a).

The BPT element can be extended to shell analysis leading to a simple
and accurate rotation-free shell triangle (Section 8.13).

5.8.2.1 Boundary conditions for the BPT element

A difference between the BPT element and standard plate elements is that
the conditions on the prescribed rotations must be imposed when building
the curvature matrix Bp.

Free edge

A BPT element with a side along a free boundary edge has one of the
elements contributing to the patch missing. The contribution of this ele-
ment is therefore omitted in matrix Mp of Eq.(5.81b) when performing
the average of the deflection gradients. Thus, if side 3 corresponding to
nodes i, j lies on a free boundary (Figure 5.26), matrix Mp is modified as

Mp =
1

2

⎡⎣ I2 02 I2 02
I2 02 02 I2
2I2 02 02 02

⎤⎦ (5.85)

while matrix Gp of Eq.(5.83) can remain unaltered. Clearly, the deflection
at node 1 in the missing element should be prescribed to zero.
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Additional conditions must be imposed on boundary edges where the
rotations and/or the deflections are constrained as explained next.

Simply supported edge
(
w =

∂w

∂s
= 0

)
The condition ∂w

∂s = 0, where s is the boundary direction, is imposed by
prescribing w = 0 at the boundary nodes. The “missing” element in the
patch at the boundary edge is treated as described above for the free edge.

Clamped edge (w =∇∇∇w = 0)

The condition w = 0 at clamped edges is satisfied by making the corre-
sponding nodal deflections equal to zero when solving the global system
of equations, as it is standard in the FEM.

The condition of zero rotations is imposed by disregarding the con-
tributions from the clamped edges when computing the sum along the
element sides in Eq.(5.80a). For instance, if side ij is clamped, matrix Mp

of Eq.(5.81b) is modified as

Mp =
1

2

⎡⎢⎣I2 02 I2 02

I2 02 02 I2

02 02 02 02

⎤⎥⎦ (5.86)

Symmetry line
(
∂w

∂n
= 0

)
The condition of zero normal rotation is imposed by neglecting the con-
tribution from the prescribed rotation term at the symmetry line when
computing Eq.(5.80a).

Let us assume that side 3 of element p with nodes i, j is a symmetry
axis (Figure 5.26). The deflection gradient at that side is expressed in term
of the tangential and normal rotations as

(∇∇∇w)p3 =

[
Cα Sα

Sα −Cα

]⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂w

∂s

∂w

∂n

⎫⎪⎪⎪⎬⎪⎪⎪⎭
p

3

(5.87)

where s and n are the directions along the side and normal to the side,
respectively, Cα = cosα and Sα = sinα and α is the angle that the side
forms with the x axis (Figure 5.26).
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The condition of zero normal rotation at the side is now introduced in
Eq.(5.87), i.e.

(∇∇∇w)p3 =

[
Cα Sα

Sα Cα

]⎧⎨⎩
wj − wi

lp3
0

⎫⎬⎭ =
1

lp3

[−Cα Cα

−Sα Sα

]{
wi

wj

}
(5.88)

Matrix Mp is modified to account for the contribution of the element
adjacent to the side lying on the symmetry axis only as

Mp =
1

2

⎡⎣I2 02 I2 02
I2 02 02 I2
02 2I2 02 02

⎤⎦ (5.89)

Finally, the third and four rows of matrix Gp are modified as

1

lp3

[−Cα Cα 0 0 0 0
−Sα Sα 0 0 0 0

]
(5.90)

5.8.3 Cell-vertex patch. BPN rotation-free plate triangle

A different class of rotation-free plate triangles can be derived starting
from the “cell vertex” (CV) scheme (Figure 5.25b) [OZ]. The advantage
is that the deflection gradient is now continuous along the control domain
boundary. This allows the constant curvature vector to be computed di-
rectly over the control domain as

ε̂εεib =
1

Ai

∫
Γi

T∇∇∇NiwwwidΓ = Biw̄i (5.91)

where Ni contains the contributions of the shape functions from all the
elements participating to the i-th nodal control domain. Eq.(5.91) can be
rewritten taking into account that the deflection gradients are constant
within each element, as

ε̂εεib =
1

Ai

ni∑
j=1

lj
2
Tj∇∇∇N(j)www(j) = Biw̄

i (5.92)

where the sum extends over the ni elements contributing to the i-th con-
trol domain (for instance ni = 5 in Figure 5.27), lj is the external side
of element j, Tj is the transformation matrix of Eq.(5.69) for side lj , su-

perindex j refers to element values and Ai =
1
3

ni∑
k=1

A(k) where A(k) is the

area of element k.
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Fig. 5.27 BPN element. Typical CV control domain and numbering of nodes

Vector w̄i in Eq.(5.92) lists all the patch nodes. For instance in Figure
5.27, w̄i = [wi, wj , wk, wl, wm, wn]

T .
The computation of the curvature matrix Bi for the patch is not so

straightforward as its size depends on the number of nodes in the patch
contributing to a nodal control domain. Typically,

Bi
3×n

=

1 2 . . . np[
Bi, Ba, . . . , Br

]
(5.93)

where np is the number of nodes in the patch (i.e. np = 6 for the patch
of Figure 5.27) and upper indexes i, a, . . . r refer to global node numbers.
Box 5.3 shows matrix Bi for the control domain of Figure 5.27.

Note that Bi is the global curvature matrix for the central i-th node.
The stiffness matrix for the i-th control domain is obtained as

Ki = BT
i D̂

i
bBiAi (5.94)

where D̂i
b is the average constitutive matrix for the i-th control domain.

The global stiffness matrix is assembled from the nodal stiffness matrices
Ki for the different control domains. The process is analogous to that fol-
lowed for assembling the stiffness matrices for the CVB rotation-free beam
element (Section 1.4.2). An element stiffness matrix can be also found by
combining the nodal stiffness matrix of the three nodes as described for the
CVB element. However, the direct assembly of the nodal stiffness matrix
is recommended in practice.
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Bi = [Bi,Bj ,Bk,Bl,Bm,Bn]

Bi =
1

2Ai
[laTaG

(a)
1 + lbTbG

(b)
1 + lcTcG

(c)
1 + ldTdG

(d)
1 + leTeG

(e)
1 ]

Bj =
1

2Ai
[laTaG

(a)
2 + leTeG

(e)
3 ] , Bk =

1

2Ai
[laTaG

(a)
3 + lbTbG

(b)
2 ]

Bl =
1

2Ai
[lbTbG

(b)
3 + lcTcG

(c)
2 ] , Bm =

1

2Ai
[lcTcG

(c)
3 + ldTdG

(d)
2 ]

Bn =
1

2Ai
[ldTdG

(d)
3 + leTeG

(e)
2 ]

G
(k)
i =∇∇∇N

(k)
i =

1

2A(k)

{
bi
ci

}(k)

, b
(k)
i = y

(k)
j − y

(k)
k , c

(k)
i = x

(k)
k − x

(k)
j

Box 5.3 Curvature matrix for the BPN control domain of Figure 5.27

(a) (b)

Fig. 5.28 (a) Contribution of control domains (in grey) to a rotation-free BPN
triangle in the cell-vertex scheme. (b) Control domain sharing a boundary line.
Arrows show the integration patch for computing the curvature matrix

The nodal force vector fi is computed as explained in Section 5.8.1.
This plate element is termed BPN (for Basic Plate Nodal patch) [OZ].

The term “element” is somehow ambiguous as the BPN element combines
a standard finite element interpolation over triangles with non-standard
integration regions (the control domains) (Figure 5.28a).
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The boundary conditions in the BPN element are imposed following
the lines explained for the BPT element. The procedure is simpler as the
deflection gradient is continuous on the control domain boundaries which
lay within the elements. The conditions on the nodal deflections are im-
posed by prescribing wi at the equations solution level. The conditions
on the rotations, however, are imposed when building the curvature ma-
trix. The integration patch for computing the curvature matrix should be
adequately defined in this case. An example is shown in Figure 5.28b.

Clamped edges and symmetry lines. Zero rotations at clamped edges and sym-
metry lines are imposed by eliminating the contributions from these rota-
tion terms in the sum of Eq.(5.92).

Simple supported edges. The condition ∂w
∂s = 0 along an edge direction is

accounted for by making zero the deflection at the edge nodes.

Free edges. No special treatment for the rotations is required at free edges.
The performance of the element can be improved by prescribing the edge
bending moments Mn and Msn to a zero value. This can be simply done
by making the appropriate rows in the constitutive matrix D̂p

b equal to
zero at the patches containing a free edge. For free edges which are not
parallel to one of the cartesian axes, a transformation of the constitutive
equation to edge axes is necessary. This procedure can also be applied for
prescribing the condition Mn = 0 at simply supported edges [OZ].

Similarly as for the CVB beam element (Section 1.4.3), the perfor-
mance of the BPN element is superior to the BPT one for regular meshes.
However, its accuracy slightly deteriorates for non-structured meshes and
particularly when the control domains involve less than six nodes, since
the evaluation of the curvatures is not as accurate in these cases. Also, its
extension to shells is not so straightforward as for the BPT element.

5.9 PATCH TESTS FOR KIRCHHOFF PLATE ELEMENTS

The three modalities of patch tests A, B and C explained in Section 6.10 of
[On4] are applicable to plate elements. Patch test A consists in prescribing
a displacement field at all nodes of a patch of elements and checking that
the equilibrium conditions are satisfied. In patch test B the displacements
of the nodes at the boundary of the patch are prescribed. Then the values
of the displacement at the internal nodes are computed and compared to
the exact ones. Patch test C consists in assembling the matrix system for
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the whole patch and finding the solution after fixing the minimum number
of DOFs necessary to eliminate rigid body motion. The computed solution
is then compared to the exact one. Satisfaction of patch tests A and B is
a necessary conditions for convergence of the elements, while patch test C
assesses the stability of the solution and provides a necessary and sufficient
condition for convergence [On4,ZTZ].

A simple patch test of type B can be applied in thin plate elements in
order to verify the good representation of rigid body displacements and
the absence of spurious modes. The following displacement field is imposed
at the boundary nodes

w = c− ax− by (5.95)

where a, b and c are arbitrary numbers.
After solving the system of equations the internal DOFs must comply

with Eq.(5.95) and the curvatures must be zero at each point in the patch.
A similar type B patch test can be devised for verifying the capability

of the element for reproducing a constant curvature field. The test is based
on imposing to the patch boundary nodes the quadratic displacement field

w(x, y) =
1

2
(ax2 + by2 + cxy) (5.96)

where again a, b and c are arbitrary numbers. The numerical solution
for the deflection at internal nodes must be in accordance with Eq.(5.96).
Also, the curvature field must be constant at each point within the element
giving ε̂εεb = [a, b, c]T .

For compatible Kirchhoff plate elements (i.e. those satisfying the C1

continuity requirement) the patch tests are not theoretically needed. The
tests however are useful for verifying the absence of programming errors.

5.10 COMPARISON OF KIRCHHOFF PLATE ELEMENTS

Some of the thin plate elements presented in this chapter are compared in
the analysis of a clamped square plate under a central point load (Figure
5.29) and a uniformly distributed load (Figure 5.30). Only a quarter of
the plate is discretized due to symmetry. Figures 5.29a and 5.30a show the
error in the central deflection obtained with different meshes of rectangular
elements. The non-conforming MZC element converges from above, thus
giving an upper bound for the correct solution. This is so for most non-
conforming elements. All the conforming elements considered converge
from stiffer solutions in a fast and monotonic manner.



Comparison of Kirchhoff plate elements 287

Fig. 5.29 Comparison of different rectangular and triangular Kirchhoff plate ele-
ments in the analysis of a clamped square plate under a central point load
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Fig. 5.30 Comparison of different rectangular and triangular Kirchhoff plate ele-
ments in the analysis of a clamped square plate under a uniformly distributed
loading
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The same type of analysis now using triangular elements is shown in
Figures 5.29b and 5.30b. The solution for the Morley element is poor for
coarse meshes as it involves fewer DOFs. Both the CKZ (non-conforming)
and the Morley triangle elements converge from “the flexible side” due
to their non-conformity. Conversely, the conforming triangles considered,
i.e. Cooper et al. [CKLO], modified CKZ [ZT], HCT [CT] and Spetch
[Sp] converge monotonically from the stiff side. The best results for coarse
meshes were obtained with the first of these three elements. The modified
10 DOFs triangle of Harvey and Kelsey [HK] also converges to the exact
solution. Very poor results (not shown in the figure) are found if the
original version of this element is used. Note the monotonic convergence
from the “flexible” side of the BST and BSN rotation-free triangles which
involve approximately one third of the DOFs required for the rest of the
elements tested. The good performance of the Discrete-Kirchhoff thin plate
triangle (DKT) and quadrilateral (DKQ) described in Section 6.11 is also
shown. The performance of all the element tested is very similar for simple
supported plates.

More examples on the comparison of Kirchhoff plate elements can be
found in [CMPW,Raz,SD,Ya,ZT2].

Abel and Desai [AD] assessed the “computational efficiency” of differ-
ent Kirchhoff plate elements. This was defined as the computational effort
required to obtain a prescribed accuracy and was measured in terms of the
number of algebraic operations to solve the global equation system. The
conclusion was that lower order elements are more efficient than higher
order ones. Paradoxically, Rossow and Chen [RCh] arrived at the oppo-
site conclusion simply by modifying the efficiency criterion and including
the effect of the boundary conditions. The issue is therefore still open for
discussion.

The advantage of higher order plate elements is their better ability to
approximate complex bending moment fields over larger regions. Lower
order elements are typically less accurate and require finer meshes. How-
ever, they usually include “physical” nodal variables (i.e. deflection and
rotations) which avoids the cumbersome interpretation of the equivalent
nodal force terms associated to higher order nodal variables, such as cur-
vatures. Lower order triangular elements such as the Morley triangle and
the BST and BSN rotation-free triangles are particularly attractive for
practical applications and adaptive mesh refinement analysis.
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5.11 CONCLUDING REMARKS

Kirchhoff thin plate theory requires C1 continuity for the deflection field.
This results in a higher complexity for deriving conforming plate elements
that satisfy the C1 continuity requirement.

Different conforming and non-conforming thin plate triangles and
quadrilaterals have been studied and their behaviour has been compared
in simple but illustrative examples of application.

A conclusion is that although conformity is not an essential requirement
for the convergence of an element, it does guarantee a good performance
for arbitrary geometries, and mainly for quadrilateral elements. Thus, any
of the conforming quadrilaterals and triangles studied can be used with full
confidence in practice. We note the simplicity of the MZC rectangle and
the non-conforming Morley triangle which are two candidates for practical
purposes.

The BPT and BPN rotation-free triangles have the deflection as the
only nodal variable and their performance has been found to be very good
for solving practical plate and shell problems [FO2,3,4,OCM,OF,OFN].

Kirchhoff plate elements based on mixed and hybrid formulations for
which the displacements and the bending moments are simultaneously in-
terpolated have not been studied in this chapter. Some successful elements
of this type can be found in [ZT2]. A different family of plate elements is
based on an explicit representation of the free strain states. This approach
is called “natural formulation” in the thin plate and shell elements derived
by Argyris et al. [AHM,AHMS,APAK,ATO,ATPA] and “free formulation”
in the thin and thick elements proposed by Bergan et al. [BN,BW,FM]

In the next chapter we will derive an interesting family of Discrete-
Kirchhoff thin plate elements starting from a “thick” (Reissner-Mindlin)
plate formulation.



6

THICK/THIN PLATES.
REISSNER-MINDLIN THEORY

6.1 INTRODUCTION

Kirchhoff plate elements studied in the previous chapter are restricted to
thin plate situations only (thickness/average side ≤ 0.10). Also the C1

continuity requirement for Kirchhoff elements poses severe difficulties for
deriving a conforming deflection field. These problems can be overcome
by using the plate formulation due to Reissner [Re] and Mindlin [Mi]
presented in this chapter.

The so called Reissner-Mindlin plate theory assumes that the normals
to the plate do not remain orthogonal to the mid–plane after deformation,
thus allowing for transverse shear deformation effects. This assumption is
analogous to that made for the rotation of the transverse cross section in
Timoshenko beam theory (Chapter 2). This allows us to use Co continu-
ous elements. Unfortunately, some difficulties arise when Reissner-Mindlin
elements are used for thin plate situations due to the excessive influence
of the transverse shear deformation terms. The “shear locking” defect is
analogous to that found when Timoshenko beam elements are applied to
slender beams. Elimination of shear locking is possible via reduced in-
tegration, linked interpolations or assumed transverse shear strain fields,
similarly as described for beams in Chapter 2.

Reissner-Mindlin plate elements can be taken as the starting point for
deriving Co continuous thin plate elements by adequately constraining the
transverse shear deformation to be zero at selected element points. Some
of the so called Discrete-Kirchhoff (DK) plate elements are described.

A method for extending the basic rotation-free plate triangle described
in Section 5.8.2 to accounting for shear deformation effects is also outlined
in the last part of the chapter.

E. Oñate, Structural Analysis with the Finite Element Method. Linear Statics:  
Volume 2: Beams, Plates and Shells, Lecture Notes on Numerical Methods  
in Engineering and Sciences, DOI 10.1007/978-1-4020-8743-1_ ,  
© International Center for Numerical Methods in Engineering (CIMNE), 2013 
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Fig. 6.1 Reissner-Mindlin plate theory. Sign convention for the displacements and
the rotations of the normal. For loading types see Figure 4.1.

Reissner-Mindlin plate theory is very adequate for studying composite
laminate plates for which shear deformation effects are important. The
derivation of finite elements for this type of structures is presented in the
next chapter.

Reissner-Mindlin plate theory can be readily extended to shell analysis.
The study of this and the following chapters is therefore recommended as
an introduction to the chapters dealing with shell structures.

The simplicity of Reissner-Mindlin plate elements and their versatility
for analysis of thick and thin plates with homogeneous and composite
material have contributed to their popularity for practical applications
(see references in chapters on plate analysis in [CMPW,Cr,HO,ZT2]).

6.2 REISSNER-MINDLIN PLATE THEORY

Reissner-Mindlin plate bending theory shares the first three assumptions
of Kirchhoff plate theory (Section 5.2.1). The fourth assumption on the
rotation of the normal is different and reads as follows:

4) A straight line normal to the undeformed middle plane remains straight
but not necessarily orthogonal to the middle plane after deformation
(Figure 6.1).

The reader will recognize the analogy of this assumption with that for
the rotation of the cross section in Timoshenko beams (Section 2.2). There
are in fact many common features between both plate and beam theories.
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6.2.1 Displacement field

The 3D displacement field is expressed in terms of the middle plane kine-
matic variables w, θx and θy as

u(x, y, z) = −zθx(x, y)
v(x, y, z) = −zθy(x, y)
w(x, y, z) = w(x, y)

(6.1)

where θx and θy are the angles defining the rotation of the normal vector.
Eq.(6.1) is identical to (5.2) for Kirchhoff theory. Here again the middle
plane is taken as the reference plane (z = 0). The displacement vector is

u = [w, θx, θy]
T (6.2)

Assumption 4 of previous page allows us to express the rotation of the
normal on the plane xz as (Figure 6.1)

θx =
∂w

∂x
+ φx (6.3)

Similarly, for the plane yz

θy =
∂w

∂y
+ φy (6.4)

The rotation of the normal in each of the two vertical planes xz and
yz is obtained as the sum of two terms: 1) the adequate slope of the plate
middle plane, and 2) an additional rotation φ resulting from the lack
of orthogonality of the normal with the middle plane after deformation
(Figure 6.1). Consequently, the rotations θx and θy can not be computed
in terms of the deflection only and, therefore, are treated as independent
variables . This is a substantial difference between Reissner–Mindlin and
Kirchhoff plate theories.

The assumption of straight normals is an approximation of the true
plate kinematics as in reality the plate normals are distorted during de-
formation. Clearly this effect is more important for thick plates. The angles
θx and θy can be interpreted as the rotations of the straight line repre-
senting the “average” deformation of the normal (Figure 6.1).

6.2.2 Strain and stress fields

Substituting the displacement field (6.1) into the expression for the strains
in a 3D solid (see Eq.(8.3) of [On4]) gives

εx =
∂u

∂x
= −z ∂θx

∂x
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εy =
∂v

∂y
= − z

∂θy
∂y

εz =
∂w

∂z
= 0

γxy =
∂u

∂y
+

∂v

∂x
= − z

(
∂θx
∂y

+
∂θy
∂x

)
γxz =

∂u

∂z
+

∂w

∂x
= − θx +

∂w

∂x
= − φx

γyz =
∂v

∂z
+

∂w

∂y
= − θy +

∂w

∂y
= − φy

(6.5)

The non-orthogonality of the normal vector induces non zero transverse
shear strains γxz and γyz, which coincide (in absolute value) with the
rotations φx and φy. These strains are independent of the coordinate z.

Making zero the transverse shear strains we recover the normal ortho-
gonality condition of Kirchhoff plate theory as θx = ∂w

∂x and θy = ∂w
∂y .

The same comments on the irrelevance of the normal strain εz made
in Section 5.2.3 apply in this case.

The strain vector containing the significant strains is therefore

εεε =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εx
εy
γxy
· · · · · ·
γxz
γyz

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−z ∂θx
∂x

−z ∂θy
∂y

−z
(
∂θx
∂y

+
∂θy
∂x

)
· · · · · · · · · · · · · · ·

∂w

∂x
− θx

∂w

∂y
− θy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎨⎩
εεεb

· · · · · ·
εεεs

⎫⎬⎭ (6.6)

where vectors εεεb and εεεs contain the bending and transverse shear strains,
respectively. The strain vector of Eq.(6.6) can be expressed as

εεε = Sε̂εε (6.7)

where

ε̂εε =

{
ε̂εεb
ε̂εεs

}
(6.8)
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Fig. 6.2 Sign convention for the in-plane stresses σx, σy, τxy and the transverse
shear stresses τxz and τyz

is the generalized strain vector and

ε̂εεb =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂θx
∂x
∂θy
∂y(

∂θx
∂y

+
∂θy
∂x

)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
and ε̂εεs =

⎧⎪⎪⎨⎪⎪⎩
∂w

∂x
− θx

∂w

∂y
− θy

⎫⎪⎪⎬⎪⎪⎭ (6.9)

are the generalized bending strain vector and the transverse shear strain
vector, respectively. The strain transformation matrix S in Eq.(6.7) is

S =

⎡⎢⎢⎢⎢⎣
−z 0 0 0 0
0 −z 0 0 0
0 0 −z 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦ (6.10)

The stress vector is

σσσ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σx
σy
τxy
· · · · · ·
τxz
τyz

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎨⎩
σσσb

· · · · · ·
σσσs

⎫⎬⎭ (6.11)

where σσσb and σσσs are the stresses due to pure bending and transverse shear
effects, respectively. As usual in plate theory σz has been excluded from
Eq.(6.11) due to the plane stress assumption (σz = 0). The sign convention
for the stresses is shown in Figure 6.2.
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6.2.3 Stress–strain relationship

We will consider in the following the material to be homogeneous and
isothermal conditions only. This is consistent with the assumption of plate
bending theory, as no axial strains or axial forces are introduced during the
plate deformation. Axial effects appear for composite laminated plates or
when thermal effects are taken into account. These situations are treated
in the next chapter.

Starting from the constitutive equation of 3D elasticity (Eq.(8.5) of
[On4]) and using the plane stress assumption (σz = 0), we can find a
relationship between the non–zero stresses and strains. For an orthotropic
material with orthotropy axes 1,2,3 with 3 = z and satisfying the condition
of plane anisotropy (i.e. the plane 1,2 is a plane of material symmetry
[BD4]) we can write

σσσI =

{
σσσ1

σσσ2

}
=

⎡⎢⎣ D1
... 0

· · · · · · ... · · · · · ·
0

... D2

⎤⎥⎦{
εεε1
εεε2

}
= DIεεεI (6.12)

where
σσσ1 = [σ1, σ2, τ12]

T , σσσ2 = [τ13, τ23]
T

εεε1 = [ε1, ε2, γ12]
T , εεε2 = [γ13, γ23]

T
(6.13)

are the bending and transverse shear stresses and strains in the principal
orthotropy axes and

D1 =
1

1− ν12ν21

⎡⎣ E1 ν21E1 0
ν12E1 E2 0
0 0 (1− ν12ν21)G12

⎤⎦ , D2 =

[
G13 0
0 G23

]
(6.14)

with ν12E2 = ν21E.51. If isotropy exists in the direction 1 (i.e. on the
plane 2− z, Figure 6.3) as for fiber composites with fibers in the direction
1 covered by a matrix, then G13 = G12.

The following relationships hold [BC,BD4,CMPW]

εεε1 = T1εεεb, εεε2 = T2εεεs
σσσb = TT

1 σσσ1, σσσs = TT
2 σσσ2

(6.15a)

with

T1 =

⎡⎣ C2 S2 CS
S2 C2 −CS

−2CS 2CS C2 − S2

⎤⎦ , T2 =

[
C S
−S C

]
(6.15b)
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Fig. 6.3 Orthotropic material in the plane 1-2 and isotropic in the plane 2− z

where C = cosβ, S = sinβ and β is the angle between the axes 1 and x
(Figure 6.3) and εεεb, εεεs are defined in Eq.(6.6).

The inverse relationship can be obtained simply by replacing β by −β
in Eqs.(6.15) [BC], i.e.

εεεb = T̄1εεε1 , εεεs = T̄2εεε2

σσσ1 = T̄T
1 σσσb , σσσ2 = T̄T

2 σσσs

(6.16a)

with

T̄1 =

⎡⎣ C2 S2 −CS
S2 C2 CS
2CS −2CS C2 − S2

⎤⎦ , T̄2 =

[
C −S
S C

]
(6.16b)

Combining Eqs.(6.12) and (6.15) gives the constitutive equations for
the bending and transverse shear stresses in global axes as

σσσb = Dbεεεb , σσσs = D̄sεεεs (6.17a)

or

σσσ =

{
σσσb

σσσs

}
= D

{
εεεb
εεεs

}
= Dεεε with D =

[
Db 0
0 D̄s

]
(6.17b)

and
Db = TT

1 D1T1, D̄s = TT
2 D2T2 (6.17c)
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The case of isotropic material is simply recovered for β = 0, giving

Db =
E

1− ν2

⎡⎣1 ν 0
ν 1 0
0 0 1−ν

2

⎤⎦ , D̄s = G

[
1 0
0 1

]
(6.18)

Substituting Eq.(6.7) into (6.17) gives the relationship between the
stresses at a point across the thickness and the generalized strains as

σσσ =

{
σσσb

σσσs

}
= DSε̂εε = D

{−zε̂εεb
ε̂εεs

}
(6.19)

Eq.(6.19) shows that the distribution of the “in-plane” bending stresses
σx, σy and τxy varies linearly with z, while the transverse shear stresses
τxz and τyz are constant across the thickness (Figure 6.2).

The “exact” thickness distribution of the transverse shear stresses ob-
tained from 3D elasticity theory is not uniform and they vanish at the
upper and lower plate surfaces. For isotropic material the distribution
is parabolic (Figure 6.2) [TW]. This problem, which also appeared for
Timoshenko beam theory (Section 2.2.3), can be overcome by scaling the
internal work associated to the transverse shear stresses so that it coinci-
des with the exact internal work obtained from 3D elasticity theory. Thus,
the total strain work is computed exactly, although the transverse shear
stresses have not a correct thickness distribution locally.

In practice this implies modifying the shear constitutive relationship
of Eq.(6.17a) as

σσσs = Dsεεεs with Ds =

[
k11D̄s11 k12D̄s12

k12D̄s12 k22D̄s22

]
(6.20)

where Dsij are the components of D̄s of Eq.(6.17c) and kij are shear
correction parameters. Their computation follows a procedure analogous
to that explained for Timoshenko beams. For an isotropic plate k12 = 0
and k11 = k22 = 5/6, as for rectangular beams (Section 2.2.3.1). The
computation of the shear correction parameters for composite laminated
beams is presented in Section 7.3 and in Annex D.

6.2.4 Resultant stresses and generalized constitutive matrix

The vector of resultant stresses at a point of the plate middle plane is
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Fig. 6.4 Sign convention for the resultant stresses in a plate

defined as

σ̂σσ =

⎧⎨⎩
σ̂σσb

· · · · · ·
σ̂σσs

⎫⎬⎭ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Mx

My

Mxy

· · · · · ·
Qx

Qy

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

∫ + t
2

− t
2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−zσx
−zσy
−zτxy
· · · · · ·
τxz
τyz

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
dz =

=

∫ + t
2

− t
2

⎧⎨⎩
−zσσσb

· · · · · ·
σσσs

⎫⎬⎭ dz =

∫ + t
2

− t
2

STσσσ dz

(6.21)

where S is the transformation matrix of Eq.(6.10) and vectors σ̂σσb and σ̂σσs

contain the moments and the shear forces, respectively. For sign conven-
tion see Figure 6.4.

Eq.(6.21) can be modified using Eqs.(6.17) and (6.7) as

σ̂σσ =

⎧⎨⎩
σ̂σσb

· · ·
σ̂σσs

⎫⎬⎭ =

∫ + t
2

− t
2

STDεεε dz =

∫ + t
2

− t
2

STDSε̂εε dz =

∫ + t
2

− t
2

⎧⎨⎩
z2Dbε̂εεb
· · · · · ·
Dsε̂εεs

⎫⎬⎭ dz = D̂ε̂εε

(6.22)
where ε̂εε is the generalized strain vector of Eq.(6.9) and

D̂ =

∫ + t
2

− t
2

STDS dz =

∫ + t
2

− t
2

[
z2Db 0
0 Ds

]
dz =

[
D̂b 0

0 D̂s

]
(6.23)

is the generalized constitutive matrix with Db and Ds given in Eqs.(6.17c)
and (6.20), respectively.

For isotropic material

D̂b =
t3

12
Db and D̂s = tDs =

5

6
tGI2 (6.24)
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where Db is given by Eq.(6.18) and I2 is the 2× 2 unit matrix.
Eq.(6.22) relates the resultant stresses and the generalized strains at

any point of the plate surface. The stresses across the thickness can be
recovered from the generalized strains combining Eqs.(6.7) and (6.17) as

σσσ = DSε̂εε (6.25)

Eq.(6.25) gives an inaccurate constant distribution of the transverse
shear stresses across the thickness. Enhanced values can be obtained by
assuming a parabolic distribution of these stresses and computing their
maximum value at z = 0 from the shear forces using Eq.(5.27).

6.2.5 Virtual work principle

Let us consider a plate loaded by a vertical distributed loads t and point
loads pi. The virtual work expression is written as∫∫∫

V
δεεεTσσσdV =

∫∫
A
δuT t dA+

∑
i

δuT
i pi (6.26a)

where

δu = [δw, δθx, δθy]
T , t = [fz,mx,my]

T , pi = [Pzi ,Mxi ,Myi ]
T

(6.26b)

and δu are the virtual displacement vector, δεεε is the virtual strain vector,
fz, mx and my are the vertical distributed load and the distributed mo-
ments acting on the xz and yz planes, respectively. Pzi , Mxi and Myi are
the vertical point load and the concentrated bending moments acting at
a point i, respectively (Figure 5.1).

The virtual internal work over the plate domain can be expressed in
terms of the middle plane variables (i.e. resultant stresses and generalized
strains) using Eqs.(6.7) and (6.21) as follows∫∫∫

V
δεεεTσσσdV =

∫∫
A
δε̂εεT

[∫ t/2

−t/2
STσσσdz

]
dA =

∫∫
A
δε̂εεT σ̂σσdA (6.27)

The PVW is finally written in terms of integrals over the plate surface
as ∫∫

A
δε̂εεT σ̂σσTdA =

∫∫
A
δuT t dA+

∑
i

δuT
i pi (6.28a)
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Fig. 6.5 Discretization of a plate using 4-noded Reissner-Mindlin rectangles

Above integrals contain displacement derivatives up to first order only.
This allows us to use Co continuous elements which are simpler than
Kirchhoff plate elements.

Sometimes it is interesting to split the virtual internal work in terms of
the bending and transverse shear contributions using Eqs.(6.8) and (6.21).
The PVW is then written as∫∫

A
[δε̂εεTb σ̂σσb + δε̂εεTs σ̂σσs]dA =

∫∫
A
uT t dA+

∑
i

δuT
i pi (6.28b)

6.3 FINITE ELEMENT FORMULATION

6.3.1 Discretization of the displacement field

The plate middle plane is discretized into a mesh of n node elements;
for instance Figure 6.5 shows a discretization in 4-noded plate rectangles.
The deflection and the two rotations are independent variables and the
displacement field is interpolated in the standard Co form; i.e.

u =

⎧⎨⎩
w
θx
θy

⎫⎬⎭ =
n∑

i=1

⎧⎨⎩
Niwi

Niθxi

Niθyi

⎫⎬⎭ =

⎡⎢⎢⎢⎣
N1 0 0

...
... Nn 0 0

0 N1 0
... · · · ... 0 Nn 0

0 0 N1
...

... 0 0 Nn

⎤⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1

θx1

θy1
· · ·
...
· · ·
wn

θxn

θyn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

= [N1,N2, . . . ,Nn]

⎧⎪⎨⎪⎩
a
(e)
1
...

a
(e)
n

⎫⎪⎬⎪⎭ = Na(e) (6.29)
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where

N = [N1,N2, . . . ,Nn] , a(e) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a
(e)
1

a
(e)
2
...

a
(e)
n

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (6.30a)

and

Ni =

⎡⎣Ni 0 0
0 Ni 0
0 0 Ni

⎤⎦ , a
(e)
i =

⎧⎨⎩
wi

θxi

θyi

⎫⎬⎭ (6.30b)

are the shape function matrix and the displacement vector for the element
and a node i, respectively.

6.3.2 Discretization of the generalized strains and resultant stress fields

The generalized strains are expressed in terms of the nodal displacements
(using Eqs.(6.8), (6.9) and (6.29)) as

ε̂εε =

⎧⎨⎩
ε̂εεb
· · ·
ε̂εεs

⎫⎬⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂θx
∂x
∂θy
∂y(

∂θx
∂y

+
∂θy
∂x

)
· · · · · · · · · · · ·
∂w

∂x
− θx

∂w

∂y
− θy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

n∑
i=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ni

∂x
θxi

∂Ni

∂y
θyi(

∂Ni

∂y
θxi +

∂Ni

∂x
θyi

)
· · · · · · · · · · · · · · · · · ·
∂Ni

∂x
wi −Niθxi

∂Ni

∂y
wi −Niθyi

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

=

n∑
i=1

{
Bbi

Bsi

}
a
(e)
i = [B1, . . . ,Bn]

⎧⎪⎨⎪⎩
a
(e)
1
...

a
(e)
n

⎫⎪⎬⎪⎭ = Ba(e) (6.31)

where B and Bi are the generalized strain matrices for the element and a
node i, respectively. From Eq.(6.31) we deduce

Bi =

⎧⎨⎩
Bbi

. . .
Bsi

⎫⎬⎭ with Bbi =

⎡⎢⎢⎢⎢⎢⎢⎣
0
∂Ni

∂x
0

0 0
∂Ni

∂y

0
∂Ni

∂y

∂Ni

∂x

⎤⎥⎥⎥⎥⎥⎥⎦ , Bsi =

⎡⎢⎢⎣
∂Ni

∂x
−Ni 0

∂Ni

∂y
0 −Ni

⎤⎥⎥⎦
(6.32)
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Bbi and Bsi are the bending and transverse shear strain matrices associ-
ated to the ith node, respectively.

The resultant stresses are expressed in terms of the nodal displacements
using Eqs.(6.22) and (6.31) as

σ̂σσ = D̂Ba(e) and σ̂σσb = D̂bBba
(e) , σ̂σσs = D̂sBsa

(e) (6.33a)

with

Bb = [Bb1 ,Bb2 , · · · ,Bbn ] , Bs = [Bs1 ,Bs2 , · · · ,Bsn ] (6.33b)

6.3.3 Derivation of the equilibrium equations for the element

The PVW for a single element under distributed loads reads (Eq.(6.28a))∫∫
A(e)

δε̂εεT σ̂σσdA =

∫∫
A(e)

δuT t dA + [δa(e)]Tq(e) (6.34)

where, as usual, δa(e) is the virtual nodal displacement vector and the last
term of the r.h.s. is the virtual work of the equilibrating nodal forces q(e),
with

δa(e) =

⎧⎪⎨⎪⎩
δa

(e)
1
...

δa
(e)
n

⎫⎪⎬⎪⎭ , δa
(e)
i =

⎧⎨⎩
δwi

δθxi

δθyi

⎫⎬⎭ , q(e) =

⎧⎪⎨⎪⎩
q
(e)
1
...

q
(e)
n

⎫⎪⎬⎪⎭ , q
(e)
i =

⎧⎨⎩
Fzi

Mxi

Myi

⎫⎬⎭
(6.35)

Substituting Eq.(6.33a) into (6.34) and using Eqs.(6.29) and (6.31)
yields the standard discrete equilibrium expression for the element

K(e)a(e) − f (e) = q(e) (6.36)

where

K
(e)
ij =

∫∫
A(e)

Bi
T D̂BjdA (6.37)

f
(e)
i =

∫∫
A(e)

Ni[fz,mx,my]
TdA (6.38)

are the element stiffness matrix connecting nodes i and j and the equiva-
lent nodal force vector due to a distributed vertical load fz and distributed
bending moments mx and my.

The global system of equations Ka = f is obtained by assembling
the element contributions to the global stiffness matrix K and the global
equivalent nodal force vector f in the usual manner.
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The element stiffness matrix can be split into the bending and trans-
verse shear contributions using Eqs.(6.23) and (6.32) as follows.

K
(e)
ij =

∫∫
A(e)

[BT
bi
,BT

si ]
T D̂

{
Bbj

Bsj

}
dA =

=

∫
A(e)

(
BT

bi
D̂bBbj +BT

siD̂sBsj

)
dA = K

(e)
bij

+ K(e)
sij (6.39a)

where

K
(e)
bij

=

∫∫
A(e)

BT
bi
D̂bBbjdA ; K(e)

sij =

∫∫
A(e)

BT
siD̂sBsjdA (6.39b)

Above splitting provides a more economical way for computing the
element stiffness matrix. It also helps explaining the behaviour of the
element for thin plate situations.

Differently to Kirchhoff plate elements, vertical loads and bending mo-

ments contribute to the terms of f
(e)
i in an uncoupled manner, i.e. vertical

loads do not introduce bending moment components in f
(e)
i . This is due

to the independent interpolation for the deflection and the rotations.
Self-weight is treated as a vertical distributed loading. For the gravity

g acting in opposite direction to the global z axis, fz = −ρgt and

f
(e)
i = −

∫∫
A(e)

Niρgt[1, 0, 0]
TdA (6.40a)

where ρ and t are the material density and the plate thickness, respectively.
Finally, the equivalent nodal force vector due to an external vertical point
load Pzj and concentrated bending moments Mxj ,Myj acting at a node
with global number j is

pj = [Pzj ,Mxj ,Myj ]
T (6.40b)

As usual concentrated forces acting at nodes are assembled directly
into the global vector f .

The reactions at the prescribed nodes are computed a posteriori once
the nodal displacements have been found as explained in Section 1.3.4.

6.3.4 Numerical integration

The integrals appearing in the element stiffness matrix and the equivalent
nodal force vector are typically computed by a Gauss quadrature.
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From Eq.(6.39a) we deduce

K
(e)
ij =

nbp∑
p=1

nbq∑
q=1

[
BT

bi
D̂bBbj |Je|

]
p,q

WpWq+

nsp∑
p=1

nsq∑
q=1

[
BT

si , D̂sBbj |Je|
]
p,q

WpWq

(6.41)
where |Je| is the Jacobian determinant [On4], (nbp , nbq) and (nsp , nsq) are
the integration points for the bending and transverse shear stiffness ma-
trices, respectively and Wp,Wq are the corresponding weights. Eq.(6.11)
allows us to use a selective integration rule for the bending and transverse
shear stiffness matrices.

The Gauss quadrature for the equivalent nodal force vector of Eq.(6.38)
is

f
(e)
i =

np∑
p=1

nq∑
q=1

[
Ni[fz,mx,my]

T |Je|]
p,q

WpWq (6.42)

6.3.5 The boundary conditions

The standard boundary conditions are:

Point support : wi = 0

Symmetry axis (of geometry and loading): θn = 0, where n is the ortho-
gonal direction to the symmetry axis.

Clamped (CL) side: w = θx = θy = 0

Simply supported (SS) side:

• Hard support: w = θs = 0
• Soft support: w = 0

where s is the direction of the side. Recall that in Kirchhoff theory
constraining of w along a direction s automatically specifies θs = 0
(Section 5.2.7). This is not the case for Reissner–Mindlin theory where
both w and θs have to be independently prescribed.

Figure 6.6 shows graphically the different boundary conditions. A free
edge requires no specific constraint, as usual.

In plates with corners, the soft support condition introduces a bounda-
ry layer of order t adjacent to the prescribed side for the resultant stresses
Qs, Qn and Mns where n is the orthogonal direction to the side. The hard
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Fig. 6.6 Some boundary conditions in Reissner–Mindlin plates

Fig. 6.7 Simply supported (SS) square plate under uniform distributed loading
q. Distribution of shear force Qy along the support line AB for hard support
(a) and soft support (b) conditions. Solution obtained with an adapted mesh of
10× 10 QLQL elements in a quarter of the plate and t/L = 0.02

support condition is recommended in those cases, as capturing the bound-
ary layer requires a very fine discretization near the side. Figure 6.7 shows
a situation of this kind for a simply supported square plate under uni-
formly distributed loading (fz = q) and t

L = 0.02. The distribution of the
shear force Qy along the support line AB is plotted for the hard support
(w = θx = 0) and soft support (w = 0) conditions. Note the strong varia-
tion of Qy in the vicinity of the corner A for the soft support assumption
whereas the value at the center is quite insensible to the boundary condi-
tions chosen. The analysis was performed with a mesh of 10 × 10 QLQL
elements in a quarter of plate due to symmetry (Section 6.7.4). The mesh
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Fig. 6.8 Boundary conditions in a plate with inclined simply supported (SS) side

density was higher near the plate edges in order to capture the boundary
layer [BD5].

The condition θs = 0 along an inclined axis requires transforming the
cartesian rotations to the boundary axes.

For instance, the boundary conditions on the simply supported inclined
side AB in the plate of Figure 6.8 are w′ = θx′ = 0 (note the definition of
the rotation vectors in the figure). The displacement transformation for
all nodes belonging to the inclined boundary line AB is written as

a
(e)
i = [wi, θxi , θyi ]

T = Li[wi, θx′i , θy′i ]
T = Lia

′(e)
i (6.43a)

where

Li =

⎡⎣1 0 0
0 cosφi − sinφi

0 sinφi cosφi

⎤⎦ (6.43b)

Clearly in the plate of Figure 6.8 φi = φ for all nodes on the boundary
AB.

The stiffness matrix of the element adjacent to the boundary line AB
is transformed as (Section 9.2 of [On4])

K̄ij = L̂T
i KijL̂j (6.44)

with

L̂i =

{
Li, if node i lays on the inclined boundary
I3, if node i belongs to the interior domain

where I3 is the 3× 3 unit matrix.
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6.4 PERFORMANCE OF REISSNER–MINDLIN PLATE
ELEMENTS FOR THIN PLATE ANALYSIS

6.4.1 Locking. Reduced integration. Constraint index

Reissner–Mindlin plate elements suffer from the same drawbacks as Tim-
oshenko beam elements, i.e. the numerical solution “locks” for thin plate
situations.

This defect can be observed following the same procedure as for beams
(Section 2.5). Let us consider an isotropic plate of constant thickness under
nodal point loads. The global equilibrium equations are written as

(Kb + Ks)a = f (6.45)

where Kb and Ks assemble the individual bending and shear stiffness con-
tributions for each element. Since the material properties and the thickness
are constant we can rewrite Eq.(6.45) as(

Et3

12(1− ν2)
K̄b + GtK̄s

)
a = f (6.46)

The “exact” thin Kirchhoff plate solution, termed hereafter ak, is in-
versely proportional to Et3

12(1−ν2) [TW]. Dividing Eq.(6.46) by this expres-
sion gives (

K̄b +
1

β
K̄s

)
a =

12(1− ν2)

Et3
f = O(ak) (6.47a)

with

β =
Et2

12(1− ν2)G
(6.47b)

The r.h.s. of Eq.(6.47a) is of the order of magnitude of the exact thin
plate solution. Clearly, as t → 0, then β → 0 and 1

β → ∞, i.e. the trans-
verse shear terms in Eq.(6.47a) dominate the solution as the plate is thin-
ner. The influence of the bending terms is negligible for very thin plates
and Eq.(6.47a) tends to

1

β
K̄sa = O(ak) and K̄sa = βO(ak)→ 0 (6.48)

Hence, for very thin plates the solution is infinitely stiffer than the “exact”
thin plate solution. From Eq.(6.48) we deduce that the only possibility for
obtaining a solution different from a = 0 is that Ks be singular.
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Singularity of Ks can be achieved by reduced integration, similarly as
for Timoshenko beam elements [ZT2,ZTZ]. Eq.(2.50) can be used to check
the singularity of Ks for each mesh “a priori”.

To clarify concepts the following terminology will be used hereonwards:

Full integration: exact integration for K
(e)
b and K

(e)
s

Selective integration: exact integration for K
(e)
b and reduced

integration for K
(e)
s

Reduced integration: reduced integration for both K
(e)
b and K

(e)
s

Exact integration is only possible for simple geometrical element shapes,
i.e. rectangles or straight-sided triangles, as for 2D solid elements. The
term full integration hereonwards therefore refers to the Gauss quadra-
ture that yields an exact integration for the element in its rectangular or
straight-sided triangular form [On4].

The singularity of Ks can be anticipated by evaluating the constraint
index (CI) of each element. The CI is obtained by applying Eq.(2.50) for
a single quadrilateral plate element with two adjacent edges clamped and
the other two edges free. This gives (for s = 2)

CI = Free DOFs − 2 ∗ NGP (6.49)

where NGP is the number of Gauss points chosen for integrating K
(e)
s .

Values of CI ≥ 4 ensure the singularity of Ks for any mesh [BD5,ZT].

Values of CI < 0 indicate that K
(e)
s is not singular and invalidate the

element. A value of CI close to zero indicates that the element is not
reliable and that some situations where singularity is not satisfied can
be found (leading to locking). Figure 6.9 shows the CI for some plate
elements. The CI is the same for reduced and selective integration as it

only depends on the quadrature for K
(e)
s .

Alternative indexes based on the rank ofK
(e)
s for assessing the tendency

of the element to lock have been proposed [BD5]. The same conclusions

regarding the merits using a reduced quadrature for K
(e)
s were found.

6.4.2 Mechanisms induced by reduced integration

An element has a mechanism when it can adopt a deformed shape com-
patible with the boundary conditions, without consuming internal work
(strain energy). For this reason mechanisms are also called zero energy
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Fig. 6.9 Some Reissner-Mindlin plate quadrilaterals. Constraint index (CI) for full
(F), selective (S) and reduced (R) integration

modes. An individual element, free of external constraints, has the stan-
dard rigid body mechanisms of translation and rotation which disappear
by prescribing the boundary conditions. Thus, a beam element has two
mechanisms (the vertical deflection and the rotation) which vanish when
the beam is simply supported at two points, or clamped at one end. Sim-
ilarly, a plate element has three mechanisms: the deflection and two ro-
tations. (Figure 6.10). These mechanisms can be identified by computing
the zero eigenvalues of the stiffness matrix for an unconstrained element
[CMPW,Cr,ZT2]. Each zero eigenvalue corresponds to a mechanism whose
shape is given by the corresponding eigenmode. This procedure can be ap-
plied to any element assembly.
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Fig. 6.10 Rigid body mechanisms for beam and plate elements

Reduced integration can induce additional zero eigenvalues in the ele-
ment stiffness matrix and hence originate new mechanisms in addition to
the rigid body motions. These new mechanisms can or can not propa-
gate themselves within a mesh. This depends on their compatibility with
adjacent elements and with the boundary conditions. Consequently, the

singularity of K
(e)
s must always be verified together with the existence of

spurious mechanisms in the global element stiffness matrix K(e) and on
their capacity to propagate within a mesh.

6.4.3 Requirements for the ideal plate element

On the basis of the preceedings arguments the ideal plate element should
fulfil the following requirements:

a) It should be applicable to both thick and thin situations.
b) It should not have other mechanisms than the standard rigid body

modes.
c) It should satisfy the usual invariance and convergence conditions.
d) It should give accurate solutions for the deflection, the rotations, the

bending moments and the shear forces.
e) It should be insensitive to geometry distorsions.
f) Its formulation should not be based on user’s dependent adjustement

parameters.
g) It should be easy to implement and use in a computer program.
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The more popular Reissner–Mindlin plate elements satisfying most of
these conditions are presented in the next sections. In order to facilitate
their study, the elements have been classified in three groups: i) those
based on selective/reduced integration techniques, ii) those based on as-
sumed transverse shear strain fields, and iii) those based on linked interpo-
lations. Recent research experiences favour the second, and to some extent
the third, approaches. However, didactic and historical reasons justify the
overview of the elements based on selective and reduced quadratures which
have enjoyed popularity in last decades.

6.5 REISSNER-MINDLIN PLATE QUADRILATERALS BASED
ON SELECTIVE/REDUCED INTEGRATION

All elements presented in this section are based on the strict application
of the concepts explained in Section 6.4.1, i.e. the singularity of matrix

K
(e)
s is sought by using a lower order quadrature.

6.5.1 Four-noded plate quadrilateral (Q4)

The bilinear 4-noded plate quadrilateral was initially developed using se-
lective integration by Hughes et al. [HTK] and Pugh et al. [PHZ]. This
element is contemporary of the 8 and 9-noded elements of next sections.

The Q4 element has the standard bilinear shape functions of the 4-
noded quadrilateral (Section 4.4.1 of [On4]). Full integration for rectan-

gular shapes requires a 2× 2 Gauss quadrature for K
(e)
b and K

(e)
s (Table

6.1). Figure 6.9 shows that the CI is negative in this case. The one point

quadrature for K
(e)
s makes this matrix singular and gives CI = 1, far from

the optimum value of CI ≥ 4. The quadratures shown in Table 6.1 are
applicable for both rectangular and quadrilateral shapes.

Reduced integration leads to seven zero energy modes (Table 6.2). Af-
ter substracting the three rigid body modes the element still has the four
spurious mechanisms shown in Figure 6.11 which invalidate the quadra-
ture. Belytschko et al. [BT,BTL] derived a procedure to stabilize these
mechanisms. This allows using the Q4 element with the simple one point
reduced quadrature.

Selective integration (Table 6.1) brings down the number of spurious
mechanisms to the first two of Figure 6.11. The second one can not prop-
agate in a mesh, but the first one can lead to problems. An example is
a square plate simply supported at the four corners where the stiffness
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Quadrature for
integration of

Element Quadrature K
(e)
b K

(e)
s

F 2× 2 2× 2
Q4 S 2× 2 1× 1

R 1× 1 1× 1

QS8,QL9 F 3× 3 3× 3
QH9,QHG S 3× 3 2× 2
QHET R 2× 2 2× 2

F 4× 4 4× 4
QS12, S 4× 4 3× 3
QL16 R 3× 3 3× 3

Table 6.1 Full (F), selective (S) and reduced (R) quadratures for various Reissner-
Mindlin plate quadrilaterals

Number of zero eigenvalues (mechanisms) for

K(e) in an isolated element
Element Full Selective Reduced

integration integration integration

Q4 3 (0) 5 (2) 7 (4)
QS8 3 (0) 3 (0) 4 (1)
QL9 3 (0) 4 (1) 7 (4)

QH9,QHG 3 (0) 3 (0) 4 (1)
QHET 3 (0) 3 (0) 6 (3)
QS12 3 (0) 3 (0) 3 (0)
QL16 3 (0) 4 (1) 7 (4)

Table 6.2 Mechanisms in quadrilateral Reissner-Mindlin plate elements induced by
different quadratures. Numbers within brackets denote the number of spurious
mechanisms

matrix is singular. These mechanisms can be stabilized, yielding a safe
element [BT,BTL]. The element performs well with selective integration
for a clamped plate, as shown in Figure 6.10.

The resultant stresses must be computed at the 2 × 2 Gauss points,
while the central point is optimal for evaluating the shear forces [HTK].

McNeal [Ma2] proposed an interesting version of this element using a
modified shear modulus similarly as done for Timoshenko beams in Section
2.6. This idea was applied to higher order plate elements by Tessler and
Hughes [TH] (Section 6.7.6).
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Fig. 6.11 Q4 plate element. Spurious mechanisms induced by reduced (1-4) and
selective (1 and 2) integration

6.5.2 Eight-noded Serendipity plate quadrilateral (QS8)

The QS8 8-noded Serendipity Reissner-Mindlin plate quadrilateral (Figure
6.9) has an irregular behaviour for thick and thin plates. Full integration

requires a 3× 3 Gauss quadrature for both K
(e)
b and K

(e)
s (Table 6.1) and

CI is negative in this case. The 2 × 2 reduced quadrature for K
(e)
s gives

an insufficient value of CI= 1 (Figure 6.9).
Reduced integration introduces a spurious zero eigenvalue in K(e) (Ta-

ble 6.2). The associated mechanism can not propagate in a mesh and the
element is “safe” for practical purposes. Unfortunately, reduced integra-

tion does not suffice to ensure the singularity of K
(e)
s and the element locks

for some problems. An example is the clamped plate of Figure 6.12.
In conclusion, the QS8 plate element should be used with precaution. It

is free from spurious mechanisms and performs well for thick and moder-
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Fig. 6.12 Clamped square plate under uniform load. Central deflection versus L/t
for different quadrilateral elements: Bilinear (Q4), Serendipity quadratic and cu-
bic (QS8 and QS12), Lagrangian biquadratic and cubic (QL9 and QL16), Het-
erosis (QHET) and Hierarchical (QH9, QHG) with full (F), selective (S) and
reduced (R) integration. A quarter of the plate is analyzed with a 4 × 4 mesh
due to symmetry

ately thin plates. Its behaviour for very thin plates depends on the bound-
ary conditions.

6.5.3 Nine-noded Lagrange plate quadrilateral (QL9)

The QL9 9-noded Lagrange plate quadrilateral (Figure 6.9) has an op-
posite behaviour to the QS8 element. A 3 × 3 full integration yields a

negative CI. The 2 × 2 reduced quadrature for K
(e)
s raises the CI to 4,

thus anticipating a good behaviour for thin situations (Figure 6.9). This
is shown in the clamped plate of Figure 6.12 where excellent results are
obtained for a wide range of thicknesses. The solution deteriorates for
L
t ≥ 106 due to round–off errors when solving the equations. This defi-

ciency can be avoided by using a fictitious thickness when computing K
(e)
s
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such that (Lt )
2 ≥ 10p/2, where p is the number of decimal digits which

the computer can store, while the bending stiffness is computed with the
correct thickness. In this manner, the shear strain is computed incorrectly
when its effect is so small that it does not influence the numerical solution
[CMPW,Fr,Fr2,HTK].

Reduced integration excites four spurious mechanisms (Table 6.2),
while selective integration induces just one mechanism. This mechanism
can propagate in a mesh for some boundary conditions and thus the el-
ement is not reliable. Figure 6.13 shows an example of two square plates
under a corner point load with the minimum boundary constraints to avoid
rigid body movements. The QL9 element with reduced integration yields
such poor results that can not even be graphically plotted. Selective inte-
gration induces an oscillatory solution due to the propagable mechanism
(Figure 6.13b). The QS8 element yields the correct solution (for moderate
thickness), as well as the 9-noded Hierarchical and Heterosis quadrilaterals
presented in the next sections.

6.5.4 Nine-noded hierarchical plate quadrilateral (QH9)

The behaviour of the QS8 and QL9 quadrilaterals evidences the need for
an element which incorporates their best features, i.e. a plate quadrilateral
free of spurious mechanisms and valid for all range of thicknesses.

Cook [CPMW] modified the QS8 element by adding a central node with
a bubble function for the deflection only (Figure 6.9). The displacement
field is defined as

θx =
8∑

i=1

Niθxi , θy =
8∑

i=1

Niθyi (6.50a)

w =

(
8∑

i=1

Niwi

)
+ N̄9w̄9 (6.50b)

where Ni are the standard shape functions for the QS8 element and N̄9 =
(1 − ξ2)(1 − η2). The hierarchical variable w̄9 is the difference between
the nodal deflections obtained with the QS8 and QL9 elements. For the
isoparametric description the Ni shape functions are used.

Reduced integration (Table 6.1) gives CI = 2, which places the element
at an intermediate position between the QS8 and QL9. Reduced integra-
tion excites one spurious mechanism (Table 6.2). The mechanism can be
eliminated by multiplying the diagonal stiffness coefficient corresponding
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Fig. 6.13 Analysis of two square plates under corner point load with minimum
boundary constraints: (a) Geometry, b.c. and loading. (b) and (c) Deformed
shapes obtained using QL9, QS8, QH9, QHG and QHET elements with full (F)
and selective (S) integration

to w̄9 by (1+e) where e is a small number (e = 10−2t/L is recommended).
This is equivalent to adding a small “spring” to the hierarchical node. Se-
lective integration eliminates the internal mechanism (Table 6.2) and leads
to good results for thick and thin plates (Figures 6.12 and 6.13).

6.5.5 A generalization of the 9-noded hierarchical plate quadrilateral (QHG)

Oñate et al. [OHG] generalized and improved the QH9 element by in-
cluding the two rotations as hierarchical variables. The displacement field
is ⎧⎨⎩

w
θx
θy

⎫⎬⎭ =

⎛⎝ 8∑
i=1

Ni

⎧⎨⎩
wi

θxi

θyi

⎫⎬⎭
⎞⎠ + N̄9

⎧⎨⎩
w̄9

θx9

θy9

⎫⎬⎭ (6.51)

where Ni and N̄9 have the same meaning as in Eq.(6.50).
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This allows us to retain three variables per node. Also, the value of CI
with the reduced 2× 2 quadrature increases to 4 (Figure 6.9).

The diagonal coefficients ofK(e) corresponding to the three hierarchical
variables are multiplied by (1 + e1), (1 + e2) and (1 + e3), respectively.
By choosing e1 = e2 = e3 = 0 the element performs as the QL9 one.
Making e1, e2 and e3 very large is equivalent to eliminating the hierarchical
variables and the behaviour of the QS8 element is reproduced. Finally,
making e1 and e2 very large reproduces the QH9 element.

Reduced integration introduces one spurious mechanism (Table 6.2).
This can be eliminated by adjusting the spring parameters (e1 = e2 =
e3 = 0.004 is recommended in [OHG]) or by selective integration. Figures
6.12 and 6.13 show the good behaviour of the QHG element with selective
integration.

The choice of different spring parameters for the hierarchical variables
allows us to derive plate elements with features laying between the QS8
and QL9. An example is the element presented in the next section.

6.5.6 Nine-noded heterosis plate quadrilateral (QHET)

Hughes and Cohen [HC] proposed a 9-noded plate quadrilateral termed
Heterosis (hybrid wich inherites the best properties of its parents) with
the following interpolation

θx =

9∑
i=1

NL
i θxi ; θy =

9∑
i=1

NL
i θyi y w =

8∑
i=1

NS
i wi (6.52)

where NL
i and NS

i are the shape functions of the 9-noded Lagrangian and
the 8-noded Serendipity quadrilaterals, respectively (Appendix I). The
Serendipity shape functions are used to interpolate the element geometry.

The element (termed here QHET) has an acceptable value of CI = 3
(Figure 6.9). Selective integration eliminates the spurious mechanism typ-
ical of the QL9 element (Table 6.2). This preserves the good performance
for thin plate analysis as shown in Figures 6.12 and 6.13.

The QHET element is a particular case of the QHG of previous section
by making e1 = e2 = 0 and e3 equal to a large number [OHG].

An inconvenient of the QHET element is that, similarly as for the QH9,
it has a different number of DOFs at the central node. Also it does not
satisfy the patch test for irregular shapes [Cr].



Reissner-Mindlin plate elements based on assumed transverse shear strain fields 319

6.5.7 Higher order Reissner–Mindlin plate quadrilaterals with 12 and 16
nodes

Higher order Serendipity and Lagrange Reissner–Mindlin plate quadri-
laterals present a behaviour analogous to the QS8 and QL9 ones. We
consider here the cubic 12-noded Serendipity (QS12) and the 16-noded
Lagrange (QL16) quadrilaterals (Figure 6.9 and Table 6.1). Selective inte-
gration for the QS12 element eliminates all spurious mechanisms, similarly
as for the QS8 one (Table 6.2). However, its behaviour for thin plate anal-
ysis is poor as indicated by the negative value of CI = −3 (Figure 6.9).
The QL16 element has CI = 9 with reduced and selective integration and
it behaves well for thin plates. Unfortunately, both quadratures induce a
spurious mechanism, similarly as for the Q9L element (Table 6.2). Figure
6.12 shows the performance of the QS12 and QL16 elements for a clamped
plate under uniform loading. The merit of selective/reduced integration
versus the full quadrature is not relevant for these elements [PHZ,ZT2].

6.6 REISSNER-MINDLIN PLATE ELEMENTS BASED ON
ASSUMED TRANSVERSE SHEAR STRAIN FIELDS

6.6.1 Basic concepts

A thin plate element must satisfy Kirchhoff condition of zero transverse
shear strains. From Eq.(6.31) we can write

ε̂εεs =Bsa
(e) = ααα1(wi, θθθi) + ααα2(wi, θθθi)ξ + ααα3(wi, θθθi)η + · · · · · ·

· · · · · · + αααn(wi, θθθi)ξ
pηq = 0

(6.53)

The fulfilment of Eq.(6.53) implies

αααj(wi, θθθi) = 0; j = 1, n (6.54)

Eq.(6.54) imposes a linear constraint between the nodal deflections
and the rotations which can be interpreted from a physical standpoint.
Elements which are able to satisfy Eq.(6.54) can reproduce the thin plate
condition without locking.

However, in many elements the αj ’s are a function of the nodal rota-
tions only. The condition αααj(θθθi) = 0 is then too restrictive (and sometimes
even non physical!) and this leads to locking.
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Example. The 4-noded plate rectangle

As an example let us consider the simple 4-noded plate rectangle of Figure
6.14. Using the standard bilinear shape functions, Ni =

1
4(1+ξξi)(1+ηηi)

(Appendix I) the shear strain γxz is given by

γxz =
∂w

∂x
− θx =

4∑
i=1

[
(
ξi
4a

wi − 1

4
θxi) + (

ξiηi
4a

wi − ηi
4
θxi)η +

+ (
ξi
4
θxi)ξ − (

ξiηi
4

θxi)ξη

]
= α1(wi, θxi) +

+ α2(wi, θxi)η + α3(θxi)ξ + α4(θxi)ξη

(6.55)

The Kirchhoff constraint γxz = 0, implies α1 = α2 = α3 = α4 = 0.
The conditions on α1 and α2 are physically posible and they impose a
relationship between the average rotation θx over the element and the
nodal deflections. However, the element is unable to satisfy naturally the
conditions α3 = 0 and α4 = 0, unless θxi = 0 (which leads to wi = 0
and, hence, to locking). Identical conclusions are found for γyz simply by
interchanging ξ by η and θxi by θyi . Note the analogy with the performance
of the 2-noded Timoshenko beam element (Section 2.8.4).

We deduce from above that a simple way to avoid locking is to evaluate
the transverse shear strains at points where the undesirable terms αααj(θθθi)
vanish. For the 4-noded rectangle the terms α3 and α4 are zero if γxz
and γyz are sampled along the lines ξ = 0 and η = 0, respectively. The
resulting expansion for ε̂εεs is

ε̂εεs =

{
γxz
γyz

}
=

{
α1(wi, θxi) + α2(wi, θyi)η
ᾱ1(wi, θxi) + ᾱ2(wi, θyi)ξ

}
= B̄s a(e) (6.56)

This transverse shear strain field can satisfy naturally the thin plate
condition. The substitute transverse shear strain matrix Bs is used in-
stead of the original matrix Bs for computing the shear stiffness matrix in
Eq.(6.39b), i.e.

K(e)
s =

∫∫
A(e)

B̄T
s D̂sB̄sdA (6.57)

The new shear stiffness matrix can now be integrated “exactly” (using
a 2× 2 quadrature.

The B̄s matrix was already introduced in Section 2.4.1 for the Timo-
shenko beam element.
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Fig. 6.14 Four-noded plate quadrilateral. a) Assumed transverse shear strain field.

b) Reduced quadrature for integrating the shear terms in the original K
(e)
s matrix

The “assumed” transverse shear strain field is displayed in Figure 6.14.
The element is identical to that proposed by Bathe and Dvorkin [BD]
(termed here QLLL) and is studied in some detail in Section 6.7.

For rectangles the shear stiffness matrix of Eq.(6.57) is identical to that
obtained with the original Bs matrix and the special reduced quadrature
shown in Figure 6.14b. The reasons for this coincidence are:

1. Sampling the original shear strain field at the quadrature points shown
in the figure leads precisely to the assumed field of Eq.(6.56).

2. The quadrature points along the lines ξ = 0 and η = 0 integrate exactly
the quadratic terms in η and ξ of the original shear stiffness matrix,
respectively. This leads to the same stiffness matrix of Eq.(6.57) using
2× 2 integration.

Above arguments show us the coincidence between the assumed shear

strain method and an “ad hoc” reduced quadrature for K
(e)
s in the stan-

dard stiffness matrix. Unfortunately, the “special” reduced quadrature is
not so simple to identify in other cases and the general procedure described
next is recommended in practice.

The general method is based in imposing “a priori” a transverse shear
strain field which fulfils condition (6.54), thus allowing the vanishing of ε̂εεs
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in the thin limit. The assumed transverse shear strain interpolation is

ε̂εεs =

m∑
k=1

Nγk γγγk = Nγ γγγ(e) (6.58)

where γγγ(e)

k are the transverse shear strain values at m points within the ele-
ment and Nγk are the shear interpolating functions. Combining Eqs.(6.53)
and (6.58) gives

ε̂εεs =

m∑
k=1

Nγk Bsk ak = B̄s a(e) (6.59)

Eq.(6.59) can be written in the form (6.53) and this ensures a locking-
free element, as long as the conditions described in the next section are
satisfied.

6.6.2 Selection of the transverse shear strain field

The assumed transverse shear strain field must satisfy certain conditions.
The starting point is a three field mixed formulation where the deflection,
the rotations and the transverse shear strains are interpolated indepen-
dently as

w = Nw w(e); θθθ = Nθ θθθ(e); ε̂εεs = Nγ γγγ(e) (6.60)

The conditions which must satisfy the three fields are [ZL,ZQTN,ZT2]

nθ + nw ≥ nγ

nγ ≥ nw
(6.61)

where nw, nθ y nγ are the number of variables involved in the interpolation
of the deflection, the rotations and the transverse shear strains, respec-
tively (after eliminating the prescribed values). The proof of Eq.(6.61) is
given in Appendix G. It is important to point out that the rotation field in
Eq.(6.60) has to be Co continuous, whereas a discontinuous interpolation
can be used for the deflection and the transverse shear strain fields.

Note also that the conditions (6.61) are identical to (2.79) for Timo-
shenko beam elements.

Conditions (6.61) apply for each element, or any patch of elements, as
a necessary (although not always sufficient) requirement for the stability
of the solution [BFS3,ZL,ZQTN,ZTPO,ZT2]. The convergence must be
verified via the patch test. It is interesting that the condition nw+nθ > nγ

is analogous to the singularity condition for Ks (Appendix G). This shows
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the link between reduced integration and assumed transverse shear strain
techniques [MH]. A systematic way for deriving B̄s is presented in the
next section.

6.6.3 Derivation of the substitute transverse shear strain matrix

We consider an isoparametric Reissner–Mindlin plate element with n
nodes for which the deflection, the rotation and the transverse shear
strains are interpolated independently according to Eq.(6.60). We also
assume that this interpolation satisfies conditions (6.61).

Step 1

The transverse shear strains are interpolated in the natural coordinate
system ξ, η as

γγγ′ =

{
γξ
γη

}
=

[
1 ξ η ξη · · · ξpηq | 0 0 0 · · · 0
0 0 0 0 · · · 0 | 1 ξ η · · · ξrηs

]⎧⎪⎪⎪⎨⎪⎪⎪⎩
α1

α2
...

αnγ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = Aααα

(6.62)
where nγ is the number of sampling points defining the polynomial ex-
pansion for γξ and γη within the element. To simplify the notation, the
generalized transverse shear strain vector ε̂εεs is denoted hereonwards γγγ.

The transverse shear strains in the cartesian system are obtained as

γγγ =

{
γxz
γyz

}
= J−1γγγ′ (6.63a)

where J is the 2D Jacobian matrix [Hu,On4,ZTZ]

J =

⎡⎢⎣
∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η

⎤⎥⎦ (6.63b)

Step 2

The transverse shear strain along a natural direction ξ̄i is defined as

γξ̄i = cosβiγξ + sin βiγη (6.64)

where βi is the angle that the ξ̄i direction forms with the natural ξ axis.
The ξ̄i direction along the element sides is taken so that it follows the
increasing numbering of the corner nodes (Figure 6.16).
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The shear strains γξ̄i are sampled at each of the ηγ points placed along
the ξ̄i directions. From Eq.(6.64)

γγγ ξ̄ = T(βi)γ̂γγ
′ (6.65)

where

γγγ ξ̄ = [γ1

ξ̄ , γ
2

ξ̄ , · · · , γ
nγ

ξ̄
]T (6.66a)

γ̂γγ′ = [γ1
ξ , γ

1
η, γ

2
ξ , γ

1
η, · · · , γnγ

ξ , γ
nγ
η ]T (6.66b)

where (·)1, (·)2 etc. denote values at each samping point.
From Eq.(6.62) it is found

γ̂γγ′ =

⎡⎢⎣ A1

...
Anγ

⎤⎥⎦ααα = Â(ξi, ηi)ααα (6.67)

Substituting Eq.(6.67) into (6.65) gives

γγγ ξ̄ = P(ξi, ηi, βi)ααα (6.68)

where P = TÂ is a nγ × nγ matrix.
Vector ααα is obtained as

ααα = P−1γγγ ξ̄ (6.69)

Step 3

Combining Eqs.(6.62), (6.65) and (6.69) gives

γγγ′ = A P−1 T γ̂γγ′ (6.70)

In many cases the relationship between γγγ′ and γ̂γγ′ can be written from
simple observation of the assumed transverse shear strain field. This allows
writing directly the matrix resulting from the product AP−1T.

Step 4

The relationship between the cartesian and the natural transverse shear
strains at each sampling point is

γ̂γγ′i =
{
γiξ
γiη

}
= Ji

{
γixz
γiyz

}
= Ji γ̂γγi (6.71)
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where Ji is the Jacobian matrix at the ith sampling point. Thus,

γ̂γγ′ =

⎡⎢⎣J
1 0
. . .

0 Jnγ

⎤⎥⎦
⎧⎪⎨⎪⎩

γ̂γγ1

...
γ̂γγnγ

⎫⎪⎬⎪⎭ = C γ̂γγ (6.72)

Substituting Eqs.(6.70) and (6.72) into (6.63a) gives

γγγ = J−1AP−1TCγ̂γγ = Nγγ̂γγ (6.73)

where
Nγ = J−1APT−1C (6.74)

are the shape functions which interpolate the cartesian transverse shear
strains in terms of their values at the sampling points.

Step 5

The general relationship between the cartesian transverse shear strains
and the nodal displacements for each element can be written using a
weighted residual procedure [OZST,ZT2,ZTZ] as∫∫

A(e)

Wk[γγγ − (∇∇∇w − θθθ)]dA = 0 (6.75)

where ∇∇∇ =
[

∂
∂x ,

∂
∂y

]T
and Wk are arbitrarily chosen weighting functions.

Eq.(6.75) imposes the satisfaction of the equality γγγ = ∇∇∇w − θθθ in a mean
integral sense over the element.

Substituting Eqs.(6.73) and (6.31) into (6.75) and chosing a Galerkin
weighting , i.e. Wk = Nγk [ZTZ] gives[∫∫

A(e)

NT
γNγdA

]
γ̂γγ =

[∫∫
A(e)

NT
γBsdA

]
a(e) (6.76)

where Bs is the standard transverse shear strain matrix of Eq.(6.32).
Eq.(6.76) is used to obtain the shear strains at the sampling points for
each element as

γ̂γγ = B̂sa
(e) (6.77)

with

B̂s =

[∫∫
A(e)

NT
γNγdA

]−1 ∫∫
A(e)

NT
γBsd (6.78)
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A simpler procedure is to use point collocation in Eq.(6.75). This im-
plies choosing Wi = δi where δi is the Dirac delta at the ith sampling
point (i = 1, · · ·nγ). This gives

B̂s =

⎧⎪⎨⎪⎩
B1

s
...

B
nγ
s

⎫⎪⎬⎪⎭ (6.79)

where Bi
s is the value of the original transverse shear strain matrix at the

ith sampling point.

Step 6

Combining steps 1–5 yields finally

γγγ = J−1 A P−1 TC B̂s a(e) = B̄s a(e) (6.80)

where B̄s is the substitutive transverse shear strain matrix given by

B̄s = J−1 A P−1 T C B̂s (6.81)

The weighting procedure described in Step 5 is not the only alternative
to derive a relationship between the transverse shear strains and the nodal
displacements. One could for instance require integrals such as∫

Γ (e)

Wk

[
γξ̄ −

(
∂w

∂ξ̄
− θξ̄

)]
dΓ (6.82)

to vanish on a segment of the element boundary Γ (e). This allows us to
obtain directly a relationship of the form

γγγ ξ̄ = [TCB]a(e) (6.83)

and the substitute shear strain matrix is given by [OTZ,OZST,ZT2]

B̄s = J−1 A P−1[TCB] (6.84)

Fig. 6.15 2-noded Timoshenko beam element
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Example 6.1: Obtain the substitutive transverse shear strain matrix for the 2-
noded Timoshenko beam element using a constant shear strain field.

- Solution- Solution

The element is shown in Figure 6.15. In this case

γξ = (α0 + α1ξ)ξ=0 = α0, A = [1]

The natural direction ξ̄ coincides with ξ and therefore

γξ̄ = γξ; β = 0 and P = [1], T = [1]

Also

(γξ)ξ=0 =
l(e)

2
(γx)ξ=0 and J =

[
l(e)

2

]
, C =

[
l(e)

2

]
(γx)ξ=0 =

1

l(e)

[
−1,− l(e)

2
, 1,− l(e)

2

]
a(e) = B̂s a(e)

(6.85)

Finally from Eq.(6.81)

B̄s = J−1 A P−1 T C B̂s =
1

l(e)

[
−1,− l(e)

2
, 1,− l(e)

2

]
Note that B̄s coincides with the original Bs matrix (Eq.(2.15)) evaluated at
the element mid–point. This is another evidence of the analogy between the
assumed transverse shear strain procedure and reduced integration (see also
Section 2.8.4 and Example 2.8).

6.7 REISSNER–MINDLIN PLATE QUADRILATERALS BASED
ON ASSUMED TRANSVERSE SHEAR STRAIN FIELDS

6.7.1 4-noded plate quadrilateral with linear shear field (QLLL)

This popular element was initially developed by Bathe and Dvorkin
[BD,DB]. Its formulation can be considered a particularization of the pro-
cedures based on auxiliary transverse shear modes proposed by Mac Neal
[Ma,Ma2] and Hughes et al. [HTT]. Donea and Lamain [DL] and Oñate
et al. [OTZ,OZBT] derived the element using assumed strain concepts. In
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the following lines we will derive the element following the methodology
described in Section 6.6.3.

The starting point is the standard 4-noded Q4 element of Section 6.5.1
with a bilinear interpolation of the deflections and the rotations. We define
an assumed transverse shear strain field in the natural system ξ, η as
(Figure 6.14a)

γξ = α1 + α2η

γη = α3 + α4ξ; i.e. A =

[
1 η 0 0
0 0 1 ξ

]
(6.86)

The αi parameters are found by sampling the natural transverse shear
strains γξ̄ at the four mid-side points shown in Figure 6.16, with

γξ̄i = (α1 + α2η) cosβi + (α3 + α4ξ) sinβi; i = 1, 4 (6.87)

where βi is the angle between the ξ̄i and ξ axis. A simple operation gives⎡⎢⎢⎣
1 −1 0 0
0 0 1 1
−1 −1 0 0
0 0 1 −1

⎤⎥⎥⎦
︸ ︷︷ ︸

P

⎧⎪⎪⎨⎪⎪⎩
α1

α2

α3

α4

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ1

ξ̄

γ2

ξ̄

γ3

ξ̄

γ4

ξ̄

⎫⎪⎪⎪⎬⎪⎪⎪⎭ and P−1 =
1

2

⎡⎢⎢⎣
1 0 −1 0
−1 0 −1 0
0 1 0 1
0 1 0 −1

⎤⎥⎥⎦ (6.88)

The strains γi
ξ̄
are related to γiξ, γ

i
η by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ1

ξ̄

γ2

ξ̄

γ3

ξ̄

γ4

ξ̄

⎫⎪⎪⎪⎬⎪⎪⎪⎭ =

⎡⎢⎢⎣
1 0 0

0 1
−1 0

0 0 1

⎤⎥⎥⎦
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

γ1
ξ

γ1
η
...
γ4
ξ

γ4
η

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= Tγ̂γγ′ (6.89)

The cartesian transverse shear strains at the sampling points are re-
lated to the natural transverse shear strains by

γ̂γγ′ =

⎡⎢⎢⎣
J1 0

J2

J3

0 J4

⎤⎥⎥⎦
⎧⎪⎨⎪⎩
γ̂γγ1

...
γ̂γγ4

⎫⎪⎬⎪⎭ = C γ̂γγ ; γ̂γγi =

{
γixz
γiyz

}
(6.90)
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Fig. 6.16 4-noded Reissner-Mindlin plate quadrilateral with assumed linear trans-
verse shear strain field (QLLL). Numbers within brackets denote node numbers

The relationship between the cartesian transverse shear strains at the
four sampling points and the nodal displacements is

γ̂γγ =

⎧⎪⎪⎨⎪⎪⎩
B1

s

B2
s

B3
s

B4
s

⎫⎪⎪⎬⎪⎪⎭ a(e) = B̂s a(e) (6.91)

The substitute transverse shear strain matrix is obtained by Eq.(6.81).
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This element has been given different names in the literature [ZT2].
Here it is termed QLLL (for Quadrilateral, biLinear deflection, biLinear
rotations and Linear transverse shear strain fields). The QLLL element
satisfies conditions (6.61) for meshes of more than 2× 2 elements (Figure
6.16) and it is considered robust for practical applications. Computation
of the stiffness matrix requires a full 2 × 2 quadrature for all terms, and
this preserves the element from spurious mechanisms. The bending mo-
ments and shear forces are constant along each natural direction. Hence
fine meshes are required for certain applications. The extension for shell
analysis is studied in Chapter 9.

The product AP−1T in Eq.(6.70) is

A P−1 T =
1

2

[
(1− η) 0 0 0 | (1 + η) 0 0 0

0 0 0 (1 + ξ) | 0 0 0 (1− ξ)

]
(6.92)

This matrix could have been anticipated by writting directly the assumed
transverse shear strain field as

γξ =
1

2
(1− η)γ1

ξ +
1

2
(1 + η)γ3

ξ

γη =
1

2
(1 + ξ)γ2

η +
1

2
(1− ξ)γ4

η

(6.93)

6.7.2 8-noded Serendipity plate quadrilateral with assumed quadratic
transverse shear strain field (QQQQ-S)

The starting point is the QS8 plate quadrilateral of Section 6.5.2. The
fulfilment of conditions (6.61) requires an assumed transverse shear strain
field containing ten terms. The simplest choice is

γξ = α1 + α2ξ + α3η + α4ξη + α5η
2

γη = α6 + α7ξ + α8η + α9ξη + α10ξ
2

(6.94)

Figure 6.17 shows the sampling points for the transverse shear strains
γξ and γη (two points along each side and the central point). The ξ̄ direc-
tions coincide with those defined for the QLLL element (Figure 6.16).

The derivation of the substitute transverse shear strain matrix can be
simplified if we define the assumed field for γξ as

γξ =
1

4

[
(1 +

1

a
ξ)γ1

ξ + (1− 1

a
ξ)γ2

ξ

]
(1 + η) +

+
1

4

[
(1 +

1

a
ξ)γ4

ξ + (1− 1

a
ξ)γ5

ξ

]
(1− η) + (1− η2)γ3

ξ (6.95)
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Fig. 6.17 8-noded Reissner-Mindlin plate quadrilateral with an assumed quadratic
transverse shear strain field (QQQQ-S)

with a = 1√
3
. A similar interpolation can be written for γη simply inter-

changing ξ by η and the points 1,2,4,5 by 6,7,8 and 9, respectively in
Eq.(6.94). This yields directly the product A P−1 T in Eq.(6.70) as

A P−1 T =

⎡⎢⎢⎢⎢⎣
Aη1
4

0
Bη1
4

0 η3 0
Aη2
4

0
Bη2
4

0 0
1×8

0
1×8

0
Āξ1
4

0
B̄ξ1
4

0 ξ3 0
Āξ2
4

0
B̄ξ2
4

⎤⎥⎥⎥⎥⎦ (6.96)
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with

A = 1 +
√
3ξ , B = 1−

√
3ξ , Ā = 1 +

√
3η , B̄ = 1−

√
3η

s1 = 1 + s , s2 = 1− s , s3 = 1− s2 with s = ξ, η
(6.97)

The following expressions for C and B̂s are necessary for computing
the sustitutive transverse shear strain matrix B̄s via Eq.(6.81)

C =

⎡⎢⎢⎢⎣
J1 0

J2

. . .

0 J9

⎤⎥⎥⎥⎦ , B̂s =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
B1

s

B2
s
...
B9

s

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.98)

The global stiffness matrix is integrated with a full 3 × 3 quadrature
which eliminates any spurious mechanisms [DL,HH2,HH4].

This element is termed QQQQ-S (for Serendipity plate Quadrilateral
with Quadratic deflection, Quadratic rotations and Quadratic transverse
shear strain fields). Conditions (6.61) are satisfied for meshes of more than
2× 2 elements (Figure 6.17).

6.7.3 9-noded Lagrange plate quadrilateral with assumed quadratic
transverse shear strain field (QQQQ-L)

The starting point is the QL9 element of Section 6.5.3. Satisfaction of
condition (6.61) requires the following assumed transverse shear strain
field containing 12 terms

γξ = α1 + α2ξ + α3η + α4ξη + α5η
2 + α6ξη

2

γη = α7 + α8ξ + α9η + α10ξη + α11ξ
2 + α12ηξ

2
(6.99)

Figure 6.18 displays the sampling points for the transverse shear
strains. The ξ̄ directions coincide again with those shown in Figure 6.16.

Direct observation gives the γξ field as

γξ =
1

4

[
(1 +

1

a
ξ)γ1

ξ + (1− 1

a
ξ)γ2

ξ

]
η(1 + η) +

+
1

2

[
(1 +

1

a
ξ)γ3

ξ + (1− 1

a
ξ)γ4

ξ

]
(1− η2) +

+
1

4

[
(1 +

1

a
ξ)γ5

ξ + (1− 1

a
ξ)γ6

ξ

]
η(η − 1) (6.100)
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Fig. 6.18 9-noded Lagrangian plate quadrilateral with assumed quadratic trans-
verse shear strains (QQQQ-L)

with a = 1√
3
. The interpolation for γη is obtained simply by interchanging

ξ by η and points 1, . . . , 6 by 7, . . . , 12, respectively in Eq.(6.99). The
product A P−1 T in Eq.(6.70) can be written directly as

A P−1 T =

⎡⎢⎢⎣
Aη1
4 0 Bη1

4 0 Aη2
2 0 Bη2

2 0 Aη3
4 0 Bη3

4 0 0
1×12

0
1×12

0 Āξ1
4 0 B̄ξ1

4 0 Āξ2
4 0 B̄ξ2

4 0 Āξ3
4 0 B̄ξ3

4

⎤⎥⎥⎦ (6.101)
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where A,B, Ā and B̄ coincide with the values given in Eq.(6.97) and

s1 = s(1 + s) , s2 = 1− s2 , s3 = s(1− s) with s = ξ, η (6.102)

The C and B̂s matrices for computing the substitute transverse shear
strain matrix are

C =

⎡⎢⎢⎢⎣
J1 0

J2

. . .

0 J12

⎤⎥⎥⎥⎦ , B̂s =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
B1

s

B2
s
...

B12
s

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (6.103)

A full 3 × 3 quadrature is used for integrating all the stiffness matrix
terms and this eliminates the spurious mechanisms. The element satisfies
conditions (6.61) for meshes with more than one element (Figure 6.18).

The element is termed QQQQ-L (for Lagrange plateQuadrilateral with
Quadratic deflection, Quadratic rotations and Quadratic trasverse shear
strain fields). This element was simultaneously developed by Hinton and
Huang [HH3,HH4] and Bathe and Dvorkin [BD2]. Donea y Lamain [DL]
presented a different version of the element based in the direct derivation
of expressions (6.100) in cartesian coordinates. The performance of the
QQQQ-L element is superior to the QQQQ-S.

6.7.4 Sixteen DOFs plate quadrilateral (QLQL)

The interpolating fields are the following.

1. The deflection is bi-linearly interpolated as

w =

4∑
i=1

Niwi (6.104)

where Ni are the bilinear shape functions of the Q4 element.
2. An incomplete quadratic interpolation is chosen for the rotations as

θθθ =

4∑
i=1

Niθθθi + f(ξ)(1− η)e12Δθs5 + f(η)(1 + ξ)e23Δθs6
+

+f(ξ)(1 + η)e23Δθs7
+ f(η)(1− ξ)e14Δθs8

(6.105)

where f(ξ) = 1− ξ2 and f(η) = 1− η2. In above ΔθSi is a hierarchical
tangential mid-side rotation and eij are unit vectors along the side
directions (Figure 6.19).
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Fig. 6.19 Sixteen DOFs QLQL Reissner-Mindlin plate quadrilateral, (w linear, θθθ,
cuadratic and γγγ linear)

3. The transverse shear strains are assumed to vary linearly as in Eq.(6.86).
The substitute transverse shear strain matrix is found as explained for
the QLLL element (Section 6.7.1). A 2 × 2 quadrature is used for all
the terms of the stiffness matrix.

The element is termed QLQL (for Quadrilateral, biLinear deflection,
Quadratic rotations and Linear transverse shear strain fields) and it sa-
tisfies conditions (6.61) for all meshes.

The hierarchical side rotations can be eliminated by imposing the con-
dition of zero transverse shear strains along the sides. This leads to a
4-noded Discrete Kirchhoff thin plate quadrilateral identical to that pro-
posed by Batoz and Ben Tahar [BBt] (Section 6.11.2). A procedure for
eliminating the side rotations while still preserving some shear strain en-
ergy within the element is described in [BBt,BD5].

6.7.5 4-noded plate quadrilateral of Tessler-Hughes

Tessler and Hughes [TH] derived a plate quadrilateral with a quadratic in-
terpolation for the deflection, a linear one for the rotations and a constant
transverse shear strain along the sides. The element is free from spurious
mechanisms and applicable to both thick and thin plates.

The formulation shares some similarities with the Heterosis and Hi-
erarchical plate elements (Sections 6.5.4–6.5.6). The starting point is the
standard 8-noded Serendipity interpolation for the deflection, while the
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Fig. 6.20 Four-noded plate quadrilateral of Tessler and Hughes [TH]

rotations are bilinearly interpolated using the corner node values (Figu-
re 6.20). Thus

u =

⎧⎨⎩
w
θx
θy

⎫⎬⎭ =

⎡⎣N̄(ξ2, η2) 0 0
0 P(ξ, η) 0
0 0 P(ξ, η)

⎤⎦⎧⎨⎩
w
θθθx
θθθy

⎫⎬⎭
(e)

= N̂a(e) (6.106)

where N̄(ξ2, η2) = [N1, N2, . . . , N8] are the quadratic shape functions of
the QS8 element and P(ξ, η) = [P1, P2, P3, P4] are the bilinear shape func-
tions of the QL4 element. The nodal displacement vector is written as

a(e)
16×1

= [w1, · · · , w8, θx1 , · · · , θx4 , θy1 , · · · , θy4 ]T (6.107)

The 4-noded configuration is reached after eliminating the mid-side
deflections w5, w6, w7 and w8 by imposing a constant transverse shear
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strain γsz along the sides, where s is the size direction (Figure 6.20). This
ensures continuity of the tangential transverse shear strain across the sides
of adjacent elements. The final displacement interpolation is written as

u = Nâ(e) (6.108)

where
â(e)
12×1

= [w1, · · ·w4, θx1 , · · · θx4 , θy1 , · · · , θy4 ]T

N =

⎡⎣P(ξ, η) Nx(ξ
2, η2) Ny(ξ

2, η2)
0 P(ξ, η) 0
0 0 P(ξ, η)

⎤⎦ (6.109)

with Nx = [Nx1 , Nx2 , Nx3 , Nx4 ], Ny = [Ny1 , Ny2 , Ny3 , Ny4 ] and

Nx1 =
1

8
[−b12N5 − b14N8] ; Nx2 =

1

8
[b12N5 − b23N6]

Nx3 =
1

8
[b23N6 + b34N7] ; Nx4 =

1

8
[−b34N7 + b14N8]

Ny1 =
1

8
[−a12N5 + a14N8] ; Ny2 =

1

8
[a12N5 + a23N6]

Ny3 =
1

8
[a34N7 − a23N6] ; Ny4 =

1

8
[−a34N7 − a14N8]

(6.110)

where aij and bij are given in Figure 6.20.
Note that the interpolation for the deflection involves also the rotations.

This can be seen as a class of “linked interpolation” (Section 6.10).
The geometry is defined in sub-parametric manner using the corner

nodes coordinates. The bending and transverse shear strain matrices are

Bb =

⎡⎢⎢⎢⎢⎢⎣
0

∂

∂x
P 0

0 0
∂

∂y
P

0 − ∂

∂y
P − ∂

∂x
P

⎤⎥⎥⎥⎥⎥⎦ , Bs =

⎡⎢⎢⎣
∂

∂x
P

(
∂

∂x
Nx −P

)
∂

∂x
P

∂

∂y
P

∂

∂y
P

(
∂

∂y
Ny −P

)
⎤⎥⎥⎦

(6.111)
The equivalent nodal force vector for distributed loads is

f (e) =

∫∫
A(e)

⎛⎝fz

⎧⎨⎩
PT

NT
x

NT
y

⎫⎬⎭+

⎧⎨⎩
0

mxP
T

myP
T

⎫⎬⎭
⎞⎠ dA (6.112)

Note that bending moment components are introduced in f (e) by the
distributed load fz.
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A 2×2 reduced quadrature eliminates spurious mechanisms and avoids
locking. However, the behaviour of the element is somehow stiff for very
thin plates.

An enhanced element can be derived by modifying the shear correction
parameter k as we did by using a substitute shear modulus for Timoshenko
beams (Section 2.6). The substitute shear correction parameter k∗ is found
by comparing the analytical solution for a simple supported rectangular
plate with that obtained with a single element in a quarter of the plate
(using symmetry conditions) giving [TH]

k∗ =
Cbψ

1 + Cbψ
k with ψ =

ws

wb
(6.113)

where wb and ws are the bending and shear contributions to the ana-
lytical solution for the central deflection and Cb is a number close to
unity deduced from numerical experiments. Good results were reported in
[TH] using Cb = 0.9 and the value of ψ obtained from the analysis of a
rectangular plate (a× b) under sine loading giving

ψ =
π2

6(1− ν)k

(
t

a

)2 [
1 +

a2

b2

]
(6.114)

For arbitrary shape elements a and b are taken as the average side
lengths (Figure 6.20).

Similar substitute shear correction parameters for Reissner-Mindlin
plate elements have been suggested [Fr,Fr2,FY,Ma,Ma2,SV,TH2]. A sim-
ple one was proposed by Carpenter et al. [CBS] as

k∗ =
c

1 + c
k with c =

E t2

2αG(1− ν2)A(e)
(6.115)

6.7.6 8-noded plate quadrilateral proposed by Crisfield

Crisfield [Cr3] developed an 8-noded thick quadrilateral following similar
arguments as for the 4-noded Tessler-Hughes element of the previous sec-
tion. The starting point is the 27 DOFs quadrilateral of Figure 6.21. The
standard quadratic 8-noded Serendipity interpolation is used for the rota-
tions and a quadratic 9-noded Lagrange field is used for the deflections.

The four mid-side deflections are eliminated by imposing a constant
tangential shear strains along the sides. The central deflection is elimi-
nated by imposing an “effective” constant shear strain field along the two
diagonals (Example 2.8).
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Fig. 6.21 8-noded plate quadrilateral of Crisfield [Cr3]

The final element has 20 DOFs as shown in Figure 6.21. A full 3 × 3
quadrature is required for all the stiffness terms. This element has similar
features as the QLQL of Section 6.7.4 but has more DOFs.

6.7.7 Higher order 12 and 16-noded plate quadrilaterals with assumed
transverse shear strain fields

Hinton and Huang [HH2,HH4] developed 12 and 16-noded plate quadri-
laterals using assumed transverse shear strain fields with 16 and 24 pa-
rameters, respectively. The elements perform well for thick and thin plates
but contain an excessive number of variables for practical purposes.

6.8 REISSNER-MINDLIN PLATE TRIANGLES

Most Reissner-Mindlin plate triangles have been developed using the as-
sumed transverse shear strain methodology. Some popular elements are
presented next.

6.8.1 6-noded quadratic triangle with assumed linear shear strains (TQQL)

Zienkiewicz et al. [ZTPO] developed a 6-noded plate triangle with a stan-
dard quadratic interpolation for the deflection and the rotations and the
following assumed linear transverse shear strain field

γξ = α1 + α2ξ + α3η
γη = α4 + α5ξ + α6η

, i.e A =

[
1 ξ η 0 0 0
0 0 0 1 ξ η

]
(6.116)
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Fig. 6.22 Eighteen DOFs TQQL Reissner-Mindlin plate triangle (w Quadratic, θθθ
Quadratic, γγγ, Linear). Figures within brackets denote node numbers

Figure 6.22 shows the position of the six shear sampling points and the
ξ̄i directions. Following the procedure of Section 6.6.3 we find

P =

⎡⎢⎢⎢⎢⎢⎢⎣

1 ξ1 η1 0 0 0
1 ξ2 η2 0 0 0
−a −aξ3 −aη3 a aξ3 aη3
−a −aξ4 −aη4 a aξ4 aη4
0 0 0 1 ξ5 η5
0 0 0 1 ξ6 η6

⎤⎥⎥⎥⎥⎥⎥⎦ ; T =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0
1 0

−a a
−a a

0 1
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
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C =

⎡⎢⎢⎢⎣
J1 0

J2

. . .

0 J6

⎤⎥⎥⎥⎦ , B̂s =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
B1

B2

...
B6

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , a =

√
2

2
(6.117)

Matrix B̄s is computed by Eq.(6.81). A full 3-point Gauss quadrature

is used for the numerical integration of K
(e)
s .

This element was termed TRI-6R in [ZTPO] and T6D6 in [ZT2]. In our
notation we call it TQQL (for Triangle, Quadratic deflection, Quadratic
rotation and Linear transverse shear strain fields). The element satisfies
conditions (6.61) for all meshes (Figure 6.22).

The TQQL element performes well although sometimes is too flexible
[ZTPO,ZT2]. Improvements are found by imposing a linear variation for
the normal rotation θn along the three sides as

θni −
1

2
(θni−2 + θni+2) = 0 (6.118)

where i = 4, 5, 6 are the mid-side nodes (Figure 6.22).
Eq.(6.118) can be used for eliminating the normal rotation at the mid-
side nodes [OC,ZTPO]. Conditions (6.61) still hold in this case. A plate
triangle based on this concept is presented next.

6.8.2 Quadratic/Linear Reissner–Mindlin plate triangle (TLQL)

Zienkiewicz et al. [ZTPO], Papadopoulus and Taylor [PT] and Oñate et al.
[OC,OTZ,OZBT] developed very similar enhanced versions of the TQQL
element of previous section. The basic assumptions are

1. The deflection varies linearly as:

w =
3∑

i=1

Niwi (6.119)

2. A incomplete quadratic interpolation is used for the rotations:

θθθ =
3∑

i=1

Niθθθi + 4N1N2e12Δθs4
+ 4N2N3e23Δθs5

+ 4N1N3e13Δθs6

(6.120)
3. The transverse shear strains vary linearly within the element in terms

of the three shear strain γs at the element mid-side points. This defines
a constant shear strain along each side.
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In above expressions Ni are the standard linear shape functions for
the 3-noded triangle, Δθsi is a hierarchical tangential rotation at the
mid-side points and eij are unit vectors along the side directions (Fig-
ure 6.23). Eq.(6.120) defines a linear variation for the normal rotation
along the sides, while the tangential rotation varies quadratically. This
is equivalent to imposing condition (6.118) explicitely. The vector of
nodal variables is

a(e) = [w1, θx1 , θy1 , w2, θx2 , θy2 , w3, θx3 , θy3 , Δθs1 , Δθs1 , Δθs3 ]
T

(6.121)

This element was termed DRM in [ZTPO] and T3T3 in [ZT]. Here
it is called TLQL (for Triangle, Linear deflection, Quadratic rotations
and Linear transverse shear strain fields). The TLQL element satisfies
conditions (6.61), for all meshes (Figure 6.23). It can be considered the
triangular counterpart of the QLQL quadrilateral of Section 6.7.4. Matrix
B̄s can be derived by constraining the quadratic shear strain field of the
TQQL element. A more direct procedure is to write the assumed linear
shear strain field in the natural coordinate system as [OZBT]

γγγ′ =
{
γξ
γη

}
=

[
1− η −√2η η

ξ
√
2ξ 1− ξ

]⎧⎪⎨⎪⎩
γ12

ξ̄

γ23

ξ̄

γ13

ξ̄

⎫⎪⎬⎪⎭ = [A−1PT ]γγγ ξ̄ (6.122)

where γij
ξ̄
= [γ12

ξ̄
, γ23

ξ̄
, γ13

ξ̄
]T contains the local shear strains at the element

mid-side points. The signs in Eq.(6.122) correspond to the side coordinates
ξ̄1, ξ̄2 and ξ̄3 as defined in Figure 6.23.

The relationship between the shear strains and the nodal displacements

is obtained by imposing the condition γij
ξ̄

=
(
∂w
∂ξ̄
− θs

)
to be satisfied

along each side in a weighted residual form, similarly as explained in step
5 of Section 6.6.3. Thus, we write∫

lij
Wk

[
γij
ξ̄
− ∂w

∂ξ̄
+ θs

]
dξ̄ = 0 (6.123)

where lij is the length of the side ij.
Choosing a Galerkin weighting with Wk = 1 [ZTZ] and assuming that

γij
ξ̄

is constant along each side leads, after substituting Eqs.(6.119) and
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Fig. 6.23 Twelve DOFs TLQL Reissner-Mindlin plate triangle (w Linear, Q
Quadratic, γγγ Linear)

(6.120) into (6.123), to the following equation for each side

γij
ξ̄
=

1

lij
ξ̄

∫
lξ̄

(
∂w

∂ξ̄
− θξ̄

)
dξ̄ =

1

lij
ξ̄

(wj − wi)− lij

2lij
ξ̄

eT
ij(θθθi + θθθj)− 2

3
Δθsk

lij

lij
ξ̄

(6.124)
where k = 3 + i, l12

ξ̄
= l13

ξ̄
= 1 and l23

ξ̄
=
√
2. Vectors eij are defined so

that i and j coincide with the corner nodes with smaller and larger global
numbers, respectively (Figure 6.23). From Eq.(6.124) we can write

γγγ ξ̄ = [TCB]a(e) (6.125)
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Fig. 6.24 Nine DOFs TLLL Reissner-Mindlin plate triangle (w linear, θθθ quadratic,
γγγ linear) [OZF]

where

[TCB] =

⎡⎢⎢⎢⎢⎣
−1 x12

2
y12

2 1 x12

2
y12

2 0 0 0 −2
3 l

12 0 0

0 0 0 − 1√
2

x23√
2

y23√
2

1√
2

x23√
2

ȳ23√
2

0 −
√
2
3 l23 0

1 − C̄13
2 − S̄13

2 0 0 0 −1 − C̄13
2 − S̄13

2 0 0 −2
3 l

13

⎤⎥⎥⎥⎥⎦
(6.126)

with xij = xi−xj and yij = yi−yj . The substitute transverse shear strain
matrix is

B̄s = J−1[A−1PT ][TCB] (6.127)

where [A−1PT ] is deduced from Eq.(6.122). A full 3 point quadrature is
used and this prevents the element from having spurious mechanisms.

The TLQL element performs well and examples can be found in
[OZBT] and in Section 6.11. The element yields linear bending moments
and constant transverse shear distributions along the sides which satisfy
the equilibrium conditions (5.23). This contributes to its good behaviour.

The three hierarchical tangential rotations Δθsk at the mid-side points
can be eliminated by imposing a zero value of the transverse shear strain
along the sides. This leads to the nine DOFs Discrete Kirchhoff thin plate
triangle (DKT) described in Section 6.11.1.

6.8.3 Linear plate triangle with nine DOFs (TLLL)

Oñate et al. [OZF] proposed a low order Reissner-Mindlin plate triangle
based on the following fields (Figure 6.24)
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1. The deflection is linearly interpolated in terms of the three corner
values by Eq.(6.119)

2. The rotations are linearly interpolated in terms of mid-side values by

θθθ =
6∑

i=4

N θ
i θθθi; θθθi = [θxi , θyi ]

T (6.128)

where

N θ
4 = 1− 2η, N θ

s = 2ξ + 2η − 1, N θ
6 = 1− 2ξ (6.129a)

For convenience, we define the displacement vector as

a(e) = [w1, w2, w3, θx4 , θy4 , θx5 , θy5 , θx6 , θy6 ]
T (6.129b)

Eq.(6.128) defines an incompatible rotation field with interelemental
compatibility satisfied at the mid-side nodes only. The good perfor-
mance of the element is ensured as the patch test is satisfied [OFZ].

3. A linear assumed transverse shear strain field is assumed identical to
that of Eq.(6.122) for the TLQL element. The derivation of B̄s follows
the arguments of the preceeding section with matrix [A−1PT ] deduced
from Eq.(6.122) and matrix [TCB] given by

[TCB] =

⎡⎣−1 1 0 x12 y12 0 0 0 0
0 1√

2
1√
2

0 0 x23√
2

x23√
2

0 0

−1 0 1 0 0 0 0 x13 y13

⎤⎦ (6.130)

A full 3 point quadrature is used.
The TLLL element (for Triangle and Linear interpolation for the de-
flection, the rotations and the transverse shear fields) satisfies condi-
tions (6.61) and it is free from spurious mechanisms. Examples of its
good behaviour can be found in Section 6.14.1 and [OFZ].

Flores and Oñate [FO2] have enhanced the behaviour of the TLLL ele-
ment for plate and shell analysis by using a one-point reduced integration
for the shear stiffness matrix. A stabilized method is used for eliminating
the spureous energy modes induced by reduced integration.

The tangential side rotations can be eliminated by constraining the
mid-side shear strains to be zero. This yields a six DOFs Discrete Kirchhoff
thin plate triangle with identical features as the Morley triangle (Section
5.5.1) [On4].
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Fig. 6.25 Reissner-Mindlin plate triangles based on assumed transverse shear
strain fields

6.9 MORE PLATE TRIANGLES BASED ON ASSUMED SHEAR
STRAIN FIELDS

Zienkiewicz and Lefebre [ZL2] developed a quadratic triangle with a linear
interpolation for the transverse shear strains. Three hierarchical quartic
bubbles are added to the standard quadratic field giving a total of 24
DOFs (Figure 6.25a). Good performance is obtained by integrating Kb

and Ks with seven and four point quadratures, respectively.
A linear triangle with an additional cubic bubble to the linear rota-

tional interpolation and a constant shear field was developed by Xu [Xu]
(Figure 6.25b). The original 9 DOFs element satisfies Eqs.(6.61) but it
locks for very thin plates. The so-called EL1 element was enhanced using
the concept of linked interpolation described in the next section [XZZ].

Arnold and Falk [AF] proposed a 9 DOFs plate triangle with an incom-
plete cubic interpolation for the rotations, a linear discontinuous deflection
field and a constant transverse shear strain field (Figure 6.25c). The el-
ement performs reasonably well after eliminating the internal rotations
[AF,Di]. However, the representation of the deflection field requires an
adequate smoothing to avoid non-physical discontinuities.

Belytschko et al. [BSC] developed a 3-noded plate triangle by splitting
the strain energy into bending and transverse shear modes. The bending
mode is defined so that the bending energy coincides with that of an
equivalent Kirchhoff mode with zero transverse shear strains. The rest of
the element strain energy is associated to the transverse shear mode.

Hughes and Taylor [HT] proposed a 3-noded plate triangle based on a
degeneration of a 4-noded quadrilateral with a linear transverse shear field.
This element only works correctly with a reduced one point quadrature.
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The stiffness matrix is then identical to that of the triangle proposed by
Belytschko et al . [BSC].

The popularity of many of these elements has been limited by the dif-
ficulties for their extension to shell analysis. A review of Reissner-Mindlin
plate elements can be found in [BD5,On3,Tu,ZT2].

6.10 REISSNER-MINDLIN PLATE ELEMENTS BASED ON
LINKED INTERPOLATIONS

A different class of Reissner-Mindlin plate elements can be derived by
using an interpolation for the deflection field of one order higher than for
the rotations. This favours satisfying the thin plate conditions θx = ∂w

∂x

and θy = ∂w
∂y in the thin limit. The concept is similar to that studied for

Timoshenko beams in Section 2.8.2.
An effective procedure of this type is via “linked interpolations”, where

the deflection field is enriched with additional higher order polynomial
terms involving the nodal rotations (Section 2.8.3).

For the 3-noded linked triangle and the 4-noded linked quadrilateral
we require that

1. The deflection field along a side is defined by the rotations at the end
side nodes only, in order to guarantee C◦ continuity;

2. The rotation terms must introduce quadratic expansions into the de-
flection field;

3. The transverse shear strains are constant along the sides.

The following interpolation satisfies above conditions

w =

n∑
j=1

Niwi +
1

8

ns∑
k=1

N ilij(θsi − θsj ) (6.131a)

θθθ =

n∑
j=1

Niθθθi (6.131b)

where Ni are the shape functions of the original element (with n = 3 and
n = 4 for the linear triangle and the bilinear quadrilateral, respectively),
ns is the number of nodes along the element sides, lij is the length of side
ij, θsi and θsj are the rotations along the tangential directions to the k-th

side with nodes i and j and N i are quadratic shape functions vanishing
at the corner nodes.
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For 3-noded triangles,

N = [N1, N2, N3] = 4[L1L2, L2L3, L3L1] (6.132a)

For 4-noded quadrilaterals,

N = [N1, N2, N3, N3] =
1

2

[
(1− ξ2)(1− η), (1− ξ)(1− η2),

(1− ξ2)(1 + η), (1− ξ)(1 + η2)
]

(6.132b)

The tangential rotations θsi are expressed in terms of the cartesian
components at each node. For side ij

θsi = θxi cosφij + θyi sinφij (6.133)

where φij is the angle that side ij forms with the x axis. Substituting
Eq.(6.133) into (6.131a) yields the deflection field in terms of the deflection
and the two cartesian rotations at the corner nodes.

For a 4-noded rectangle Eq.(6.131a) takes the following form for side
12 with η = −1

w =
1

2
(1− ξ)w1 +

1

2
(1 + ξ)w2 + (1− ξ2)

l12
8
(θs1 − θs2) (6.134)

Eqs.(6.134) and (6.131b) guarantee a constant shear distribution along
the side. Assuming a rectangular shape with s = ξ = x gives for side 12

γxz =
∂w

∂x
− θx =

w2 − w1

l12
− θx1 + θx2

2
(6.135)

and γyz = 0. A similar result is obtained for the three other sides. Note
the analogy with the process of Section 2.8.3 for Timoshenko beams.

The linked interpolation introduces bending moments in the equivalent
nodal force vector for a distributed loading, similarly as for linked beam
elements (Section 2.8.3).

Linear and quadratic plate triangles based on linked interpolations
have been derived by Tessler [Te], Tessler and Hughes [TH], Xu et al.
[XZZ], Lynn et al. [GL,LD], Aurichio and Lodavina [AL] and Taylor et al.
[AT2,PT,TA]. Linked plate quadrilaterals have been proposed by Crisfield
[Cr], Auricchio and Taylor [AT] and Zienkiewicz et al. [ZXZ+].

A different strategy for deriving Reissner-Mindlin plate elements based
on a sort of linked interpolation is by starting from the analytical solution
for a Timosnhenko beam [ZT2]. Different interesting shear-locking free
3-noded triangles and 4-noded quadrilaterals of this kind for thick/thin
plate analysis have been proposed [ChC4,ChC5,Ib,SLC,SCLL,ZK].
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Fig. 6.26 3-noded DKT plate element

6.11 DISCRETE–KIRCHHOFF PLATE ELEMENTS

A family of thin plate elements can be derived by imposing the Kirchhoff
constraints (γxz = γyz = 0) at selected points within a Reissner-Mindlin
element so that the transverse shear strain energy is effectively zero.

The so-called Discrete-Kirchhoff (DK) plate elements were originally
proposed by Wempner et at. [WOK], Stricklin et al. [SHTG] and Dhatt
[Dh,Dh2] as early as in 1968-70 as a way for overcoming the C1 continuity
limitations of Kirchhoff plate theory. Several DK plate and shell elements
were subsequently developed [BD5,6,BRI,Cr,Cr3,DMM], the most success-
ful ones being the 3-noded DK triangle (DKT) detailed in the next section
and the “semi-loof” shell element [IA,Ir2] (Section 7.12.5). The derivation
of DK elements can be viewed as a particular class of assumed transverse
shear strain techniques, leading to the vanishing of the transverse shear
strain energy over the element. A state of the art on DK plate elements is
presented in [BD3].

6.11.1 3-noded DK plate triangle (DKT)

The DKT element was initially developed by Striklin et al. [SHTG] and
subsequently modified by Dhatt [Dh,Dh2] and Batoz et al. [Bat,BBH,BD5]
who analyzed its performance extensively.

The starting point is the 6-noded Reissner-Mindlin triangle of Figure
6.26a under the following constraints:

1. The rotations θx and θy vary quadraticaly over the element (12 DOFs).
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2. The deflection varies as a cubic Hermite polynomial along each side ij
in terms of wi,

(
∂w
∂s

)
i
, wj ,

∂w
∂sj

. After transformation, this gives a total

of 9 DOFs (w, ∂w∂x and ∂w
∂y at each corner node).

3. A linear variation for the normal rotation θn is imposed along each
side.

4. The conditions of zero transverse shear strain are imposed:

a) at the corner nodes (γxz = γyz = 0)
b) at the mid-side nodes (γsz =

∂w
∂s + θs = 0).

5. Only the contribution of the bending terms is taken into account for

computing the element siffness matrix, i.e. K(e) = K
(e)
b .

Conditions 3 and 4 impose twelve constraints which allow us to elimi-
nate the slopes ∂w

∂x and ∂w
∂y at the corner nodes and the rotations θn and

θs at the mid-side nodes. The rotation field is finally expressed in terms
of the standard nine nodal DOFs as{

θx
θy

}
=

[
Nx1 , Nx2 , Nx3 , Nx4 , Nx5 , Nx6 , Nx7 , Nx8 , Nx9

Ny1 , Ny2 , Ny3 , Ny4 , Ny5 , Ny6 , Ny7 , Ny8 , Ny9

]
a(e) (6.136)

where
a(e) = [w1, θx1 , θy1 , w2, θx2 , θy2 , w3, θx3 , θy3 , ]

T (6.137)

is the nodal displacement vector. The shape functions Nxi and Nyi are
shown in Box 6.1.

Eq.(6.136) allows us to obtain the bending strain matrix Bb from which
the element stiffness matrix can be exactly computed using a 3 point
quadrature. The bending moments are sampled at the quadrature points.

Batoz [Bat,BD5] derived an explicit form for the stiffness matrix of
the DKT element. First the matrix is evaluated in the local axes x̄, ȳ of
Figure 6.27

K̄(e) =
1

A(e)
Q S (6.138)

Matrices Q and S are shown in Figure 6.28. The global stiffness matrix
is obtained by

K
(e)
ij = TT K̄

(e)
ij T with T =

⎡⎣1 0 0
0 − sinα cosα
0 − cosα − sinα

⎤⎦ (6.139)

The bending moments are obtained at any element point by

σ̂σσb =
1

2A(e)
D̂b N3 S a(e) (6.140)
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{
θx
θy

}
=

3∑
i=1

[
Nxi Nxi+1 Nxi+2

Nyi Nyi+1 Nyi+2

]⎧⎨
⎩

wi

θxi

θyi

⎫⎬
⎭

Nx1 = 1.5(a6N6 − a5N5) ; Nx2 = b5N5 + b6N6 Nx3 = N1 − c5N5 − c6N6

Nx4 = 1.5(a4N4 − a6N6) ; Nx5 = b6N6 + b4N4 Nx6 = N2 − c4N4 − c6N6

Nx7 = 1.5(a5N5 − a4N4) ; Nx8 = b4N4 + b4N5 Nx9 = N3 − c4N4 − c5N5

Ny1 = 1.5(d6N6 − d5N5) ; Ny2 = −N1 + e5N5 + e6N6 ; Ny3 = −Nx2

Ny4 = 1.5(d4N4 − d6N6) ; Ny5 = −N2 + e4N4 + e6N6 ; Ny6 = −Nx5

Ny7 = 1.5(d5N5 − d4N4) ; Ny8 = −N3 + e4N4 + e5N5 ; Ny9 = −Nx8

ak = −xij

l2ij
; bk =

3

4l2ij
xijyij ck =

(
1

4
x2
ij − 1

2
y2
ij

)
/l2ij

dk = −yij
l2ij

; lk =

(
1

4
y2
ij − 1

2
x2
ij

)
/l2ij ; l2ij = (x2

ij + y2
ij)

xij = xi − xj , yij = yi − yj , k = 4, 5, 6 for sides ij = 23, 31, 12.
Ni= shape functions of the 6-noded quadratic triangle (Appendix I)

Box 6.1 Shape functions for the DKT element

Fig. 6.27 Sign convention for rotations and local axes for computing the stiffness
matrix for the DKT plate element. Note the vectorial definition of rotations

where N3 is the linear shape function matrix for the 3-noded triangle
[Bat,BD5]. Figure 6.28 shows the explicit form for the local stiffness matrix
of the DKT element.

Alternative derivation of the DKT element

We present an alternative procedure for deriving a DKT element with
identical features to that of the previous section. The starting point is the
TLQL element of Section 6.8.2. The transverse shear strain is made zero
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ȳ
3
(6
a
4
+

p
5
)

ȳ
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ȳ
3
t 5

)
(

−
x̄
2
3
p
5

+
(1
−

r
5
)ȳ
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Fig. 6.28 Local stiffness matrix for the DKT element
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over the element by constraining the tangential transverse shear strains
along the sides to a zero value. This allows us to eliminating the hierar-
chical tangential rotations at the mid-side nodes as

γij
ξ̄
= 0⇒ Δθsk =

3

2lij
(wj − wi)− 3

4
eij(θθθi + θθθj) (6.141)

Substituting Eq.(6.141) into (6.120) gives the new rotation field as

θθθ =
3∑

i=1

N̄ia
(e)
i ; a

(e)
i =

⎧⎨⎩
wi

θxi

θyi

⎫⎬⎭ (6.142)

with

N̄1 =

[
−

(
6L1L2

l12
e12 +

6L1L3

l13
e23

)
, (L1 − 3L1L2 − 3L1L3) I2

]
N̄2 =

[(
6L1L2

l12
e12 − 6L2L3

l23
e23

)
, (L2 − 3L1L2 − 3L2L3) I2

]
N̄3 =

[(
6L2L3

l23
e23 +

6L1L3

l13
e13

)
, (L3 − 3L2L3 − 3L1L3) I2

]
(6.143)

where I2 is the 2× 2 unit matrix.
The bending strain matrix Bb is obtained by using the shape functions

N̄i instead of Ni in Eq.(6.32). The bending stiffness matrix is computed
with a 3 point quadrature.

Figures 6.27 and 6.28 show the performance of the DKT element for
analysis of a clamped plate under point and uniform loads.

6.11.2 DK plate quadrilaterals

The first DK quadrilaterals where developed by Dhatt and Venkatasubby
[DV] and Baldwin et al. [BRI]. Later Irons proposed several DK plate and
shell quadrilaterals [IA], among which the semi-loof [Ir2] has enjoied big
popularity (Section 7.12.5). Lyons [Ly], Crisfield [Cr,Cr2] and Batoz and
Ben Tahar [BBt] have also derived DK plate quadrilaterals and same of
these are displayed in Figure 6.29.

Derivation of a 4-noded DKQ element

The QLQL quadrilateral of Section 6.7.4 is starting point for deriving a 12
DOFs DK quadrilateral. The arguments follow as explained in the previous
section for deriving a 3-noded DK triangle from the TLQL element. The
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Fig. 6.29 Some DK plate quadrilaterals
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constraint of vanishing transverse shear strain at the element sides (Figure
6.19) allows us to eliminate the four hierarchical tangential side rotations
by an expression identical to Eq.(6.141). The final rotation field can be
found substituting Eq.(6.141) into (6.105) to give

θθθ =

4∑
i=1

N̄iai with ai = [wi, θxi , θyi ]
T (6.144)

and N̄i = [N̄1, N̄2, N̄3, N̄4] with

N̄1 =
[(− 3

4l12
f(ξ)(1− η)e12 − 3

4l14
f(η)(1− ξ)e14

)
,
(
N1 − 3

8
f(ξ)(1− η)− 3

8
f(η)(1− ξ)

)
I2
]

N̄2 =
[(

3
4l12

f(ξ)(1− η)e12 − 3
4l23

f(η)(1 + ξ)e23

)
,
(
N2 − 3

8
f(ξ)(1− η)− 3

8
f(η)(1 + ξ)

)
I2
]

N̄3 =
[(

3
4l43

f(ξ)(1 + η)e43 +
3

4l23
f(η)(1 + ξ)e23

)
,
(
N3 − 3

8
f(ξ)(1 + η)− 3

8
f(η)(1 + ξ)

)
I2
]

N̄4 =
[(

3
4l14

f(η)(1− ξ)e14 − 3
4l43

f(η)(1 + ξ)e43

)
,
(
N4 − 3

8
f(η)(1− ξ)− 3

8
f(ξ)(1 + η)

)
I2
]

(6.145)

where f(ξ) = 1− ξ2, f(η) = 1− η2 and I2 is the 2× 2 unit matrix.
MatrixBbi is obtained using N̄i instead of Ni in Eq.(6.32). The bending

stiffness matrix is computed with a 2× 2 quadrature.
The element is basically identical to that derived by Batoz and Ben

Tahar [BBt]. Examples of its good performance can be found in [BBt,BD5].

6.12 DK ELEMENTS ACCOUNTING FOR SHEAR
DEFORMATION EFFECTS: DST ELEMENT

Batoz and Lardeur [BL] presented an extension of the DKT element ac-
counting for shear deformation effects. The starting point is the displace-
ment field of the DKT element (Section 6.11.1). The fourth constraints on
the transverse shear strains are modified as

4a) At the corner nodes 1, 2, 3

∂w

∂x
− θx = γxz ,

∂w

∂y
− θy = γyz (6.146a)

4b) At the mid-side points 4, 5, 6(
∂w

∂s

)
k

+ (θs) = γsz = −Skγxz + Ckγyz k = 4, 5, 6 (6.146b)
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with Sk = sinφij , Ck = cosφij where φij is the angle between the
normal to the side ij and the x axis.

The transverse shear strains γxz and γyz are obtained from the equi-
librium equations (Eqs.(5.23)) as

γxz =
Qx

D̂s

= − 1

D̂s

(
∂Mx

∂x
+

∂Mxy

∂y

)
γyz =

Qy

D̂s

= − 1

D̂s

(
∂My

∂y
+

∂Mxy

∂x

) (6.147)

Substituting the bending moments in terms of the rotations into
Eq.(6.147) via Eqs.(6.22) and (6.9) gives

γ̄xz = −D̂b

D̂s

[
∂2θx
∂x2

+ ν
∂θy
∂x∂y

+
1− ν

2

(
∂2θx
∂y2

+
∂θy
∂x∂y

)]
γ̄yz = −D̂b

D̂s

[
∂2θy
∂y2

+ ν
∂θx
∂x∂y

+
1− ν

2

(
∂θx
∂x∂y

+
∂θy
∂x2

)] (6.148)

In the above D̂b =
Et3

12(1−ν2) and D̂s = kGt.

The nine conditions introduced by Eqs.(6.146), plus the three con-
straints imposed by prescribing a linear variation of θn along the sides,
allow us to eliminating the same twelve DOFs, similarly as for the DKT
element. The rotation field is finally expressed as

θθθ = Nθa
(e) , a(e) =

⎧⎪⎨⎪⎩
a
(e)
1

a
(e)
2

a
(e)
3

⎫⎪⎬⎪⎭ , a
(e)
i =

⎧⎨⎩
wi

θxi

θyi

⎫⎬⎭ (6.149)

The bending and transverse shear matrices are deduced as

ε̂εεb = B̂ba
(e) and ε̂εεs = B̂sa

(e) (6.150)

MatricesNθ, B̂b and B̂s can be found in [BD5,BL]. The stiffness matrix
is obtained by adding the bending and transverse shear contributions,
using B̂b and B̂s instead of Bb and Bs in Eqs. (6.39).

The DST element behaves well if the plate is moderately thin and
transverse shear deformation effects are not very important. Its extension
to shell analysis is possible but is not so simple [BD5].

Batoz and Katili [BK]derived an enhanced version of the DST element
using constant bending modes plus incompatible energy orthogonal higher
order bending modes. Katili [Ka2,3] proposed other simple triangular and
quadrilateral elements for analysis of thick and thin plates obtained as an
extension of the DKT and DKQ elements of previous sections.
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6.13 PATCH TESTS FOR REISSNER-MINDLIN PLATE
ELEMENTS

The absence of spurious modes in the element can be verified by computing
the number of zero eigenvalues in excess of three in the stiffness matrix of a
single unconstraint element. The procedure is the same as for assessing the
mechanisms in plate elements induced by reduced and selective integration
quadratures (Section 6.4.2). The absence of spurious modes and the good
representation of rigid body motions can be assessed by imposing the
following displacement field to the nodes laying on the boundary of a
patch (patch test of type B, Section 4.9 and [On4])

w = c+ ax+ by , θx = a , θy = b (6.151)

where a, b and c are arbitrary numbers. The numerical solution for the
displacements at the internal node must agree with Eq.(6.151). Also the
curvatures and the transverse shear strains must be zero everywhere in
the patch.

A patch test can be devised for assessing the capability of Reissner-
Mindlin plate elements to reproduce a pure bending state. The following
displacement field is imposed to the boundary nodes of a type B patch

w =
1

2
(ax2+ by2+ cxy) , θx = ax+

1

2
cxy , θy = by+

1

2
cx (6.152)

where a, b and c are arbitrary numbers. The solution for the internal nodal
displacements must comply with Eq.(6.152). Also a constant curvature
field ε̂εεb = [a, b, c]T and a zero transverse shear strain field ε̂εεs = [0, 0]T

must be obtained everywhere in the patch.
A similar but less severe patch test is based in imposing the following

displacement field
w = 0 at all patch nodes

θx = ax+
1

2
cy , θy = by +

1

2
cx (6.153)

and α = 0 or very small in order to make Ks a null matrix at each
element. The numerical solution must satisfy the same conditions as for
the previous test. These two tests are also applicable to DK plate elements.

The following displacement field can be imposed to the boundary nodes
of a type B patch in order to verify the element ability to reproduce a
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constant transverse shear strain field and a zero curvature field

w =
1

2
(ax+ by) , θx =

−a
2

, θy =
−b
2

(6.154)

Naturally, the displacements found at the internal nodes must be in
accordance with Eqs.(6.154).

The stability of the element can be assessed via a patch test C (Sec-
tion 4.9 of [On4]), i.e. by computing the rank of the stiffness matrix in
element patches with the minimum number of DOFs prescribed. This test
when applied to a single element is equivalent to the zero eigenvalue check
mentioned above.

We note finally that the “count” inequalities of Eq.(6.61) are necessary
conditions to be satisfied by plate elements based on assumed transverse
shear strain fields. The kinematic patch tests described above are however
mandatory to ascertain the good behaviour of the element.

6.14 EXAMPLES

6.14.1 Performance of some plate elements based on assumed transverse
shear strain fields

The performance of some of the plate elements described in this chapter
is studied first for the analysis of a square plate under a uniform load
and a central point load. The analysis is performed for simple supported
(SS) edges with hard support (w = θs = 0) and fully clamped edges. The
material properties are E = 10.92 and ν = 0.3 (units in the International
System). The problem is solved for two values of the a/t ratio of a

t =
10 (thick) and 100 (thin), where a and t are the plate side length and
thickness, respectively. The elements studied are the QLLL (Section 6.7.1),
QLQL (Section 6.7.4), TLQL (Section 6.8.2) and TLLL (Section 6.8.3).
All problems were solved with uniform meshes in a quarter of the plate
due to symmetry.

Results are compared with analytical and series values for the thin
and thick cases when available [SG,SR,TW] or, alternatively, with FEM
results for the deflection at the center of the middle plane obtained using
a mesh of 40× 40× 6 8-noded hexahedra [On4] in a quarter of plate. For
the point load case the analytical value of the deflection under the load
given by thick plate theory is infinity. Hence, results for thick plates are
compared at the mid-point along a central line in this case.
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Figure 6.30 shows the convergence of the normalized values of the cen-
tral and mid-side deflection for the QLLL and QLQL elements under point
and uniform loads. Both elements converge well to the reference solutions
for thick and thin situations.

Figure 6.31 shows similar results for the TLQL element for the two
mesh orientations shown. Results are sensitive to the mesh orientation.
This does not preclude the convergence of the element.

Figure 6.32 shows results for the same SS squate plate obtained with
the TLLL element for the SS (hard) case under uniform loading. The
results plotted are the central deflection and the central bending moment.
The performance is good for thick and thin situations and results are less
sensitive to the mesh orientation than for the TLQL element.

Figure 6.33 shows results for a moderately thick clamped circular plate
using the TLQL, QLLL and QLQL elements. Graphics show the conver-
gence of the deflection and the bending moment at the center toward the
analytical solution (Appendix H and [BD5,TW]) and the distribution of
the radial bending moment and the radial shear force along a radial line.
All elements behave well. Note the accuracy of the QLLL element.

Table 6.3 shows results for the deflection and the bending moment at
the center for thick and thin SS and clamped circular plates obtained with
the TLLL element. The performance of this simple element is remarkably
good with less than 10% error versus the reference solution for meshes of
64 elements in all cases.

Note that in all cases the deflection for thick plates converges to larger
values than those given by thin plate theory. The reason is the increased
capacity of a Reissner-Mindlin plate to deform under external loads due
to the shear deformation terms in the PVW.

Table 6.4 shows the convergence of the central deflection at the two
free corners in cantilever skew plates under uniform load and different skew
angles. Results obtained with the TLLL element are shown as well as those
obtained with the DRM triangle [ZTPO,ZT2] (an equivalent of the TLQL
of Section 6.8.2) and the EL1 triangle of Figure 6.25b for comparison
purposes. The performance of the TLLL element is again noticeable.

More evidence of the good performance of the QLLL element can be
found in [BD,OZST]. Results for the TLQL, QLQL and QQQQ elements
are presented in [OZST]. The good behaviour of the TLLL element in its
original and enhanced versions is studied in [FO,OZF].
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Fig. 6.30 QLLL and QLQL elements. Square plate with SS (hard) and clamped
edges under central point load and uniform load. Convergence of the deflection at
the plate center C (uniform load and point load for a/t = 100) and at a mid-side
point D along a center line (point load for a/t = 10)
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Fig. 6.31 TLQL element. Square plate with SS (hard) and clamped edges under
central point load and uniform load. Convergence of the deflection at the plate
center C (uniform load and point load for a/t = 100) and at a mid-side point D
along a center line (point load for a/t = 10) for two different thicknesses and two
mesh orientations

6.14.2 Simple supported plate under uniform load. Adaptive solution

The next example is the analysis of a square plate with soft SS conditions
(w = 0) and uniform loading using adaptive mesh refinement (AMR)
following the two AMR strategies explained in [OB] and in Section 9.9.4
of [On4]. Figure 6.34 shows the geometry and material properties of the
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Fig. 6.32 TLLL element. Square plate with SS (hard) edges under uniform loading.
Convergence of central deflection and central bending moment for two different
thicknesses and two mesh orientations

CIRCULAR PLATES. TLLL ELEMENT

R/t = 10 R/t = 100

Elem. DOF wc × 102 M∗
c wc × 105 M∗

c

Clamped circular plate

4 12 3.7668 6.9599 3.6950 6.9606
16 54 2.2352 7.7235 2.1657 7.7431
64 220 1.7882 7.9751 1.7186 8.0146

144 498 1.7023 8.0243 1.6326 8.0726
225 780 1.6774 8.0391 1.6077 8.0904

Anal. (App. H) 1.6339 8.1250 1.5625 8.1250

SS circular plate (soft, w = 0)
4 17 7.2815 1.6400 7.2096 1.6402

16 62 6.7248 1.9427 6.6553 1.9449
64 236 6.5191 2.0279 6.4495 2.0319

144 522 6.4763 2.0437 6.4066 2.0487
225 810 6.4637 2.0484 6.3939 2.0536

Anal. (App. H) 6.4416 2.0625 6.3702 2.0625

*Clamped plate: M∗
c = Mc ; SS plate: M∗

c = Mc × 10

Table 6.3 TLLL element. Convergence of central deflection and central bending
moment (Mxc = Myc = Mc) for thick and thin situations in clamped and SS
(soft) circular plates under uniform load. Material properties as in Figure 6.33
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Fig. 6.33 Clamped circular plate (t/R = 0.20) under uniform load analyzed with
TLQL, QLLL and QLQL elements. Convergence of central deflection wc and
central bending moment (Mxc = Myc = Mc) towards exact values we and Mce.
Distribution of radial bending moment Mr and radial shear force Qr along a
radius. Exact results taken from Appendix H
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CANTILEVER SKEW PLATES. TLLL ELEMENT

20◦ 40◦ 60◦

Mesh DOF w̄1 w̄2 w̄1 w̄2 w̄1 w̄2

2× 2 14 3.0093 2.6744 2.5112 1.3772 2.1821 0.4959
4× 4 41 1.9701 1.7478 1.7478 0.8321 1.3882 0.2940
8× 8 137 1.6032 1.1611 1.3950 0.6349 1.0800 0.2111
16× 16 497 1.4802 1.0741 1.2610 0.5724 0.9521 0.1781
32× 32 1889 1.4442 1.0517 1.2159 0.5554 0.9030 0.1672
TLQL/DRM
[Xu,ZT2]

416 1.4269 1.0436 1.1789 0.5456 0.8435 0.1553

EL1 [Xu] 472 1.4237 1.0421 1.1722 0.5441 0.8314 0.1538

Table 6.4 TLLL element. Cantilever skew plates under uniform loading fz = q.
Convergence of the normalized deflection (w̄i = Et3wi/qa

4) at the two free cor-
ners for different skew angles θ

plate and the initial unstructured mesh of 68 TLQL elements. The weak
support conditions yield a zero torque Mxy along the supporting sides.
This originates a boundary layer for the torque Mxy in the vecinity of
these sides [OCK]. The percentage of admissible global error in the energy
norm is η = 5%. We have taken p = 1 and d = 2 in the expression for the
mesh refinement parameter β(e) for each AMR strategy (Section 9.9.4 of
[On4]). The computed value of the global error parameter for the initial
mesh is ξg = 2.7074. The aim is to reduce this parameter to a value close
to unity by adaptive mesh refinement.

Figure 6.34 shows the sequence of the refined meshes obtained using
two mesh optimality criteria: one based on the equidistribution of the
global error (Section 8.9.4.1 of [On4]) and the based in the equidistribution
of the error density in the mesh (Section 8.9.4.2 of [On4]). The number of
elements and the value of ξg for each mesh are also shown. The criterion
based on the equidistribution of the error density leads to meshes with a
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L = 10, t = 0.5
E = 10.92
Soft support (w = 0)
Uniform loading : q = 0.5
Initial mesh of TLQL elements
Initial global error parameter ξg = 2.7074

A B

NE = 415
ξg = 1.562

NE = 369
ξg = 1.527

NE = 923
ξg = 0.9878

NE = 1617
ξg = 0.859

NE = 1007
ξg = 0.927

NE = 3079
ξg = 0.938

Fig. 6.34 Symmetric quadrant of a SS (soft) plate under uniform loading. Sequence
of meshes obtained with mesh adaption strategies based on: Uniform distribution
of the global error (column A); Uniform distribution of the error density (column
B); Target global error: η = 5%; NE = number of elements [On4,OCK]
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(a) (b)

Fig. 6.35 Symmetric quadrant (5.0×5.0) of a SS (soft) plate under uniform loading.
a) Isolines for the torque Mxy; b) Distribution of Mxy along the line y = 2.5.
Results obtained with the mesh of 3079 TLQL elements of Figure 6.34

larger number of elements. Its advantage, however, is that it captures very
well the boundary layer for the torque Mxy (Figure 6.35).

6.14.3 Effect of shear deformation in a plate simply supported at three
edges under a line load acting on the free edge

The plate is displayed in Figure 6.36, where the geometry, the boundary
conditions and the uniformly distributed loading along the edge is also
shown. The edge loading induces high transverse shear stresses and strains
near the edge, which play an important role in total deflection value for
thick situations. This example was analyzed in [On] using 20 Reissner-
Mindlin linear strip elements (Chapter 11) and in [Bl] using a mesh of
10× 10 QLLL plate elements. In both cases half of the plate was studied
due to symmetry, with a finer mesh in the vicinity of the free edge. Both
experimental [AR] and analytical results (based on Kirchhoff thin plate
theory) [TW] are available.

Figure 6.36a shows the distribution of the maximum σx stress in the
center of the free edge for different line load intensities ( da) and two values
of the ratio t

a = 1
20 and 1

4 . The Kirchhoff analytical solution is independent
of the thickness and it differs in excess from the Reissner-Mindlin finite
element solution as the load concentrates and the thickness increases. This
difference raises to 60% for a thick plate (t/a = 1/4).

Figures 6.36b and c show the distribution of σx on the plate sur-
face along several lines parallel to the loaded edge for a load intensity
of d

a = 0.01 and two thickness ratios of t
a = 1

20 and 1
4 , respectively. At
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Fig. 6.36 Square plate simply supported (soft) at three edges under a line loading
acting on the free edge. Distribution of σx using Kirchhoff thin plate theory
(analytical) and 10× 10 QLLL elements
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the mid-point of the free edge
(y
a = 1, x

a = 0.5
)
the thin plate (Kirchhoff)

solution yields a much larger value than the thick (Reissner-Mindlin) one,
as expected.

The differences between the thin and thick plate solutions diminish as
we move away from the edge and from the plate center. It is interesting
that Reissner-Mindlin results are larger than the Kirchhoff values in these
regions.

This example clearly shows the importance of accounting for the trans-
verse shear deformation effects in certain situations.

6.15 EXTENDED ROTATION-FREE PLATE TRIANGLE WITH
SHEAR DEFORMATION EFFECTS

The rotation-free basic plate triangle (BPT) of Section 5.8.2 can be ex-
tended to account for shear deformation effects. The enhanced element is
termed BPT+1. The method is similar to that used to introduce shear
deformation in the rotation-free CCB beam element (Section 2.10).

The curvatures in the BPT+1 element are expressed in terms of the
deflection and the shear angles φx, φy substituting Eqs.(6.3) and (6.4) into
(6.9) as

ε̂εεb =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂2w

∂x2
+

∂φ

∂x
∂2w

∂y2
+

∂φy

∂y

2
∂2w

∂x∂y
+

(
∂φx

∂y
+

∂φy

∂x

)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
= κκκw + κκκφ (6.155)

where

κκκw =

[
∂2w

∂x2
,
∂2w

∂y2
, 2

∂2w

∂x∂y

]T
, κκκφ =

[
∂φx

∂x
,
∂φy

∂y
,
∂φy

∂x
+

∂φx

∂y

]T
(6.156)

are termed the geometrical curvature and the transverse shear curvature,
respectively.

The transverse shear strains are expressed in terms of φx and φy as

ε̂εεs =

[
∂w

∂x
− θx,

∂w

∂y
− θy

]T
= − [φx, φy]

T = −φφφ (6.157)
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The PVW is written substituting Eqs.(6.155) and (6.157) into (6.26a)
(assuming a distributed vertical load fz to act only). This gives∫∫

A
[[δκκκw + δκκκφ]

T σ̂σσb − δφφφT σ̂σσs]dA−
∫∫

A
δwfzdA = 0 (6.158)

Eq.(6.158) is split in the following two independent equations∫∫
A
δκκκTwσ̂σσbdA−

∫∫
A
δwfzdA = 0 (6.159)

∫∫
A
[δκκκTφ σ̂σσb − δφφφT σ̂σσs]dA = 0 (6.160)

The plate is discretized into 3-noded triangles. The deflection is linearly
interpolated in terms of the nodal values within the pth triangle as

w =
i∑

i=1

Niwi = Np
ww

p , Np
w = [N1, N2, N3] , wp = [w1, w2, w3]

T

(6.161)

In Eq.(6.161)Ni is the shape function for the 3-noded linear C◦ triangle
with area Ai, i.e.

Ni =
1

2Ai
(ai+bix+ciy) with ai = xjyk−xiyj , bi = yj−yk , ci = xk−xj

(6.162)

We assume an average value for the geometrical curvature field κκκpw over
a 3-noded triangle following the method described in Section 5.8.1, i.e.,

κκκw = κκκpw =
1

Ap

[∫∫
Ap

κκκwdA

]
=

1

Ap

∫
Γp

T∇∇∇wdΓ (6.163)

where T contains the components of the outward unit normal to the
boundary Γp of element p (Eq.(5.69a) and Figure 6.37).

Substituting the approximation (6.161) into (6.163) and following the
procedure described in Section 5.8.2 gives

κκκpw = Bww̄
p (6.164)

where Bw coincides with matrix Bp of Eq.(5.84b) and w̄p is defined in
Eq.(5.83).
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Fig. 6.37 Four-element patch for the pth BPT+1 triangle (ijk). Nodal deflections
(wi), transverse shear strains for each element in the patch (φφφp) and at the mid-
side points of element p(φφφp

i )

The transverse shear curvature within the central triangle p is com-
puted as follows. First the shear angles are assumed to be constant within
each triangle, i.e. for the pth triangle (Figure 6.37)

φφφ = φφφp with φφφp =
[
φp
x, φ

p
y,
]T

(6.165)

An average value of the transverse shear curvature over the pth triangle
is assumed as κκκφ = κκκpφ where

κκκpφ =
1

Ap

∫∫
Ap

κκκφdA =
1

Ap

∫
Γ p

TφφφdΓ =
1

Ap

3∑
j=i

lpjT
p
jφφφ

p
j = Cpφ̂φφ

p
(6.166)

where Cp is given in Eq.(5.80b), lpj are the element sides and

φ̂φφ
p
=

⎧⎨⎩
φφφp
1

φφφp
2

φφφp
3

⎫⎬⎭ (6.167)

where φφφp
i are the values of the shear angles at the mid-side points of

element p (Figure 6.37). As the shear angles are discontinuous at the
element sides, vector φφφp is expressed in terms of the constant shear angles
for the four elements in the patch via a simple averaging procedure as

φφφp = Mpφ̄φφ
p

with φ̄φφ
p
=

⎧⎪⎪⎨⎪⎪⎩
φφφp

φφφa

φφφb

φφφc

⎫⎪⎪⎬⎪⎪⎭ (6.168)
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where Mp is given by Eq.(5.81b).
Substituting Eq.(6.168) into (6.166) gives

κκκpφ = CpMpφ̄φφ
p
= Bφφ̄φφ

p
with Bφ = CpMp (6.169)

Substituting Eqs.(6.169) and (6.164) into (6.155) gives

ε̂εεpb = Bww̄
p +Bφφ̄φφ

p
(6.170)

We assume a constant bending moment field σ̂σσp
b over the element ex-

pressed in terms of the nodal deflections and the nodal shear angles as

σ̂σσp
b = D̂p

bε̂εε
p
b = D̂p

b [Bww̄
p +Bφφφφ

p] (6.171)

where D̂p
b =

1
Ap

∫∫
Ap

D̂bdA is an average bending constitutive matrix.

The constitutive equation for the shear forces is written as

σ̂σσs = D̂sε̂εεs = −D̂sφφφ = −D̂sMpφ̄φφ
p

(6.172)

Substituting the assumed constant curvature fields κκκpw and κκκpφ (via
Eqs.(6.164) and (6.169)) in the PVW (Eqs.(6.159) and (6.160)) gives∑

p

{
[δw̄p]TBT

wσ̂σσ
p
bAp −

∫∫
Ap

δwfzdA

}
= 0

∑
p

{
[δφ̄φφ

p
]TBT

φ σ̂σσ
p
bAp −

∫
Ap

[δφ̄φφ
p
]T σ̂σσsdA

}
= 0

(6.173)

Substituting Eqs.(6.171) and (6.172) into (6.174) gives∑
p

[δw̄p]T

{
[BT

wD̂bBww̄
p +BT

wD̂bBφφ̄φφ
p
]Ap −

∫∫
Ap

N̄pf̄dA

}
= 0

∑
p

[δφ̄φφ
p
]T

{
BT

φ D̂bBwApw̄
p +

(
BT

φ D̂bBφAp +

∫∫
Ap

MT
p D̂sMpdA

)
φ̄φφ
p

}
= 0

(6.174)
The sums in Eqs.(6.173) and (6.174) extend over all the triangles in the
mesh and

N̄p = [N1, N2, N3, 0, 0, 0]
T , f̄ = fz[1, 1, 1, 0, 0, 0]

T (6.175)

Simplification of the virtual DOFs yields the system of equations

Kww +Kwφφφφ = fw

KT
wφw +Kφφφφ = 0

(6.176)
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with

w = [w1, w2, · · · , wN ]T , φφφ = [(φφφ1)T , (φφφ2)T , · · · , (φφφne)T ]T (6.177)

where N is the total number of nodes and ne is the total number of
elements in the mesh.

The global matrices and vectors are assembled from the element con-
tributions in the usual manner with

Kp
w = BT

wD̂
p
bBwA

p , Kp
wφ = BT

wD̂
p
bBφA

p

Kp
φ =

[
BT

φ D̂
p
bBφ +MT

p D̂sMp

]
Ap

(6.178)

In the derivation of the second term in Kp
φ we have assumed a constant

transverse shear constitutive matrix D̂s over the element.
For a uniformly distributed load fz = q and

fpw =
qAp

3
[1, 1, 1, 0, 0, 0]T (6.179)

Note the similarity of Eqs.(6.176) with Eq.(2.125) obtained for an anal-
ogous rotation-free beam element.

6.15.1 Iterative solution scheme

The following iterative scheme is recommended for solving Eqs.(6.176).

Step 1. Compute the nodal deflections w1

Kww
1 = fw → w1 (Kirchhoff thin plate solution) (6.180)

Step 2. Compute φφφi, i ≥ 1

Kφφφφ
i = fφ −KT

wφw
i → φφφi (6.181)

Step 3. Compute wi, i > 1

Kww
i = fw −Kwφφφφ

i−1 → w̄i (6.182)

Return to step 2.

Convergence of the above iterative scheme is quite fast (2–4 iterations),
even for thick plates [OZ2,3].
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6.15.2 Boundary conditions
Free edge

A BPT+1 element with a side along a free boundary edge has one of
the triangles belonging to the patch missing. This is taken into account
by ignoring the contributions of this triangle when computing Bw and
Bφ. This can be implemented by a simple modification of matrix Mp in
Eq.(6.168), similarly as described for the BPT element in Section 5.8.2.1.

Simple supported (SS) edge

Soft (SS) condition
(
w = 0, ∂w∂s

)
= 0: The two edge deflections wi and wj

are prescribed to a zero value when solving the system of equations.

Hard (SS) condition (w = 0, θs = 0). The condition wi = 0 at the SS
nodes is imposed when solving the global system of equations.

The condition θs = 0 is introduced using a penalty method as follows.
The expression for the virtual work is extended by adding to Eq.(6.158)
the term αlpi δθsθs, where αlpi is the length of the SS side and α is a large
number that plays the role of a penalty parameter. The tangential rotation
is expressed in terms of the nodal deflection and shear angle variables as

θs = θxCα + θySα =

(
∂w

∂x
+ φx

)
Cα +

(
∂w

∂y
+ φy

)
Sα

=
1

2Ap

3∑
i=1

(biCα + ciSα)wi + φp
xCα + φp

ySα (6.183)

where bi, ci are given in Eq.(6.162), Cα = cosα, Sα = sinα and α is the
angle that the SS side forms with the x axis. Eq.(6.183) is grouped as

θs = Pww̄
p +Pφφ̄φφ

p
(6.184)

with
Pw = [P1, P2, P3, 0, 0, 0] , Pi =

1

2Ap
(biCα + ciSα)

Pφ = [Cα, Sα, 0, 0, 0, 0, 0, 0] (6.185)

Introducing the approximation (6.184) in the penalty term gives

αlpi δθsθs = αlpi [P
T
w(δw̄

p)T +PT
φ (δφ̄φφ

p
)T ][Pww̄

p +Pφφ̄φφ
p
] (6.186)

The contribution of Eq.(6.186) to the element matrices is

K̄p
w = Kp

w + αlpiP
T
wPw , K̄p

wφ = Kp
wφ + αlpiP

T
φPφ
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K̄p
φ = Kp

φ + αlpiP
T
φPφ (6.187)

where Kp
w,K

p
wφ and Kp

φ are given in Eq.(6.178).
Clearly as the parameter α increases, the condition θs = 0 is better

satisfied. In practice a value α = 105Et3 suffices to obtain accurate results.

Clamped edge (θθθ = 0)

The contribution of a clamped edge to the curvatures κκκpw and κκκpφ is ne-
glected. This implies modifying matrix Mp as explained in Section 5.8.2.1.
In addition, the edge deflections are prescribed to a zero value.

Symmetry edge (θn = 0)

The condition θn = 0 at a symmetry edge is imposed via a penalty ap-
proach similar as for the SS (hard) case. The PVW is enhanced with the
term

αlpi δθnθn = αlpi [P
T
w(δw̄

p)T +PT
φ (δφ̄φφ

p
)T ][Pww̄

p +Pφφ̄φφ
p
] (6.188)

where Pw and Pφ are given in Eq.(6.185) with Pi =
1

2Ap
[biSα−ciCα]. The

element matrices are modified as in Eq.(6.187).

6.15.3 Examples of performance of the BPT+1 element

The efficiency and accuracy of the BPT+1 element has been tested in the
analysis of simply supported (SS, soft) square plates of side L and circular
plates of diameter 2L under uniformly distributed loading and clamped
or square plates under a central point load. The study was performed
for different thicknesses ranging from to t/L = 10−3 (very thin plate)
to t/L = 0.1 (thick plate) and several uniform meshes with increasing
number of elements in all the plate surface.

Results of the study using the iterative scheme of Section 6.15.1 are
presented in Figures 6.38–6.40. Each figure shows:

(a)The convergence of the vertical deflection and the shear angles with
the number of iterations measured as

Lw
2 =

⎡⎣ N∑
j=1

(wi
j − wi−1

j )2

(wi
j)

2

⎤⎦1/2

, Lφφφ
2 =

⎡⎣ ne∑
j=1

[φφφi
j − φφφi−1

j ]T (φφφi
j −φφφi−1

j )

[φφφi
j ]
Tφφφi

j

⎤⎦1/2

(6.189)
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whereN is the number of nodes in the mesh and an upper index denotes
the iteration number. A value of w0

j = 0 and φφφ0
j = 0 has been taken.

The iterative scheme stops when Lw
2 < 10−3.

(b)The ratio between the normalized central deflection and a reference
solution for four values of t/L = 10−3, 10−2, 5 × 10−2 and 10−1 for
each of the meshes considered. For cases when an analytical solution
is not available we have used as the reference solution the 3D FEM
results for the deflection at the center of the midle plane using a mesh
of 40× 40× 6 8-noded hexahedra [On4] in a quarter of plate.
For the clamped plate under central point load the analytical value
for the deflection under the load given by thick plate theory is infinity
(See Section 6.16). Hence, results for the deflection for thick plates
(t/L = 0.05 and t/L = 0.10) are compared at the mid-poind D along
a central line in this case (Figure 6.39).

(c)The distribution of the bending moment Mx and the shear force Qx

along the central line for the thick case (t/L = 0.10) for each of the
five meshes considered. The isovalues of Mx and Qx over a quarter of
the plate are also shown for the finer mesh.

The following conclusions are drawn from the examples:

• The BPT+ element reproduces accurately the expected results for the
deflection field for thin and thick plates.

• A converged solution for the deflection field was obtained in a maximum
of four iterations for all cases considered. The convergence of the shear
angles is slightly slower than for the deflection field.

• The distribution of the bending moments and the shear forces was good
and in accordance with the expected results for the thick case.

• For thin plates the distribution of bending moments is also very good.
The distribution of the shear forces deteriorates slightly if computed
via Eq.(6.172) as shear angles tend to zero as the plate is thinner. It is
more appropriate in theses cases to compute the shear forces from the
bending moments via Eq.(5.23).

• Similar good results were obtained for the “hard” SS condition obtained
by prescribing φ̄si = 0 at the support nodes (Table 6.5) [OZ2].

A similar 3-noded plate triangle element (called BPT+) was derived in
[OZ2] using a continuous linear interpolation for the shear angles within
each element. The BPT+1 element has a slighly superior behaviour for
capturing shear force jumps [OZ2,3].
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SIMPLE SUPPORTED PLATE. UNIFORM LOAD

Normalized deflection

t/L=0,001 t/L=0,01 t/L=0,05 t/L=0,10

Mesh N Nodes wc/wh
c wc/wh

c wc/wF
c wc/wF

c

1 8 81 0,896 0,897 0,868 0,838
2 16 289 0,944 0,946 0,916 0,887
3 32 1089 0,971 0,973 0,942 0,912
4 64 4225 0,985 0,987 0,955 0,925
5 128 16641 0,993 0,998 0,999 0,999
6 200 40401 0,995 1,002 0,999 1,002

wF
c 425,63 455,76

wh
c 406,23 406,23 415,13 427,28

wh
c : Hard support (series) [SG,SR,TW] wF

c : 3D FEM

Fig. 6.38 BPT+1 element. SS (Soft) square plate under uniform load (q = 1). Table
shows convergence of normalized central deflection wc for different thicknesses.
Upper curves show convergence of vertical deflection and shear angles for a thick
plate with number of iterations. Lower diagrams show the distribution of Mx and
Qx along the central line and their contours
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CLAMPED PLATE. CENTRAL POINT LOAD

Deflection at center Deflection at point D

t/L=0,001 t/L=0,01 t/L=0,05 t/L=0,10

Mesh N Nodes wc/wa
c wc/wa

c wc/wF
c wc/wF

c

1 8 81 1,208 1,210 1,139 1,122
2 16 289 1,064 1,066 1,040 1,032
3 32 1089 1,020 1,023 1,016 1,007
4 64 4225 1,007 1,011 1,010 0,999
5 128 16641 1,004 1,007 1,008 1,002
6 200 40401 1,003 1,007 1,007 0,994

wF
c 25,52 28,57

wh
c 56,00 56,00

wh
c : [TW] wF

c : 3D FEM solution

Fig. 6.39 BPT+1 element. Clampled square plate under central point load (P =
1). Table shows convergence of normalized central deflection wc for different thick-
nesses. Upper curves show convergence of vertical deflection and shear angles for
a thick plate with number of iterations. Lower diagrams show the distribution of
Mx and Qx along the central line and their contours
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SIMPLE SUPPORTED PLATE. UNIFORM LOAD

Deflection at center

t/L=0,001 t/L=0,01 t/L=0,05 t/L=0,10

Mesh N Nodes wc/wa
c wc/wa

c wc/wF
c wc/wF

c

1 256 145 0,891 0,891 0,891 0,899
2 1024 545 0,981 0,981 0,982 0,982
3 4096 2113 0,992 0,992 0,992 0,992
4 16384 8321 0,997 0,997 0,997 0,999
5 65536 33025 0,998 0,999 0,999 0,999

wa
c 398,14 398,18 399,25 402,60

wa
c : Analytical solution ([TW] and Appendix H)

Fig. 6.40 BPT+1 element. SS (soft) circular plate under uniform load (q = 1).
Table shows convergence of normalized central deflection wc for different thick-
nesses. Upper curves show convergence of vertical deflection and shear angles for
a thick plate with the number of iterations. Lower diagrams show the distribution
of Mx and Qx along the central line and their contours
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SS (hard) square thick plate. Uniform load, t/L = 0.10

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6

wc 381,73 404,59 416,31 421,98 424,65 425,59

wc/w
h
c 0,893 0,947 0,974 0,988 0,994 0,996

wh
c (Series solution): 427.28 [SG,SR,TW]

Convergence achieved in a maximum of 4 iterations for each mesh

Table 6.5 BPT+1 element. SS square thick plate (hard support) under uniform
load. Normalized central deflection values for t/L = 0.10

Mesh, t/L = 10−1; wc × 10−2 t/L = 10−3; wc × 10−7

M hard support soft support hard support soft support

2 4.2626 4.6085 4.0389 4.2397
4 4.2720 4.5629 4.0607 4.1297
8 4.2727 4.5883 4.0637 4.0928

16 4.2728 4.6077 4.0643 4.0773
32 4.2728 4.6144 4.0644 4.0700

Series [SG,SR,TW] 4.2728 4.0624

Table 6.6 BPT+1 element. Normalized center displacement (wc) for SS plate under
uniform load for two t/L ratios; E = 10.92, ν = 0.3, L = 10, fz = 1.

6.16 LIMITATIONS OF THIN PLATE THEORY

Kirchhoff plate element have obviously limitations to reproduce the be-
haviour of thick plates. Reissner-Mindlin plate elements are superior as
they are applicable to thick and thin situation. Table 6.6 taken from [ZT2]
shows some results obtained for SS plates with hard and soft support con-
ditions under uniform load for two different side length/thickness ratios.
Numerical results were obtained with the 4-noded QLLL element (Section
6.7.1) but the conclusions hold for any Reissner-Mindlin plate element.
The effect of the hard and soft SS conditions is clearly shown in the table.
The central deflection for the thick plate always converges to larger values
than those given by thin plate theory. Also for the SS case the soft support
condition yields larger deflection values, as expected. These differences can
be more pronounced in different plate configurations.

Figure 6.41 shows results for a simple supported rombic plate for L/t =
100 and 1000 analyzed with the triangular element of Zienkiewicz and
Lefebre (Figure 6.25). There is an exact solution for this problem using
Kirchhoff plate theory [Mo4]. Results for the “thicker” case (L/t = 100)
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Fig. 6.41 Skew rombic plate (30o) with soft SS conditions under uniform load.
Convergence of central deflection with the number of DOFs. The problem was
solved with the triangle of Zienkiewicz and Lefebre [ZL2] (Section 6.9)

converge to a central deflection value which is 4% larger than the exact
thin plate solution.

Babŭska and Scapolla [BS] studied this problem using 3D elasticity the-
ory with “soft” support conditions which approximate better the physical
problem. 3D results for L/t = 100 are close to the thick plate solution.
This confirms the superiority of Reissner-Mindlin theory for this problem.

We note finally an important difference between thick and thin plates
when point loads are involved. In the thin case the deflection w remains
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finite under the load. However, as mentioned earlier, transverse shear de-
formation effects lead to an infinite displacement under the load for thick
plates (as indeed 3D elasticity theory predicts). In finite element approx-
imations one always predicts a finite displacement at point load locations
with the magnitude increasing without limit as a mesh is refined near the
point load. Thus, it is meaningless to compare the deflections at point load
locations. It is recommended to compare the total strain energy for such
situations [ZT2].

6.17 CONCLUSIONS

Reissner-Mindlin plate theory is the basis for systematically deriving Co

continuous plate elements which include transverse shear strain effects.
Practically, the only drawback of Reissner-Mindlin plate elements is the
appearance of shear locking for thin plate situations. The reduced inte-
gration of the transverse shear stiffness terms is a simple and efficient
procedure for eliminating shear locking, although it can introduce spu-
rious mechanisms which can pollute the solution in some cases. The as-
sumed transverse shear strain technique is a more consistent approach for
designing robust locking-free plate elements and some of these elements
have been presented in detail.

We note the good performance of the low order QLLL quadrilateral
and the TLLL triangle based on assumed transverse shear strain fields.

Reissner-Mindlin plate elements are also the starting point for deriving
Discrete-Kirchhoff thin plate elements, while keeping all the features of the
Co continuous formulation.

The merits of the Reissner-Mindlin plate formulation will show clearer
when dealing with composite plates and shells in the subsequent chapters.
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COMPOSITE LAMINATED PLATES

7.1 INTRODUCTION

High-performance and lightweight characteristics of composite materials
have motivated a wide range of applications of these materials in aero-
nautic and space vehicles and in naval, automotive and civil structures,
among other fields [Bar2,BC,Mar,TH4,Ts,Wh]. The development of cost-
effective and reliable composite laminated structures requires advanced
stress analysis and failure prediction methods.

Differently from the plate bending theories for homogeneous material
studied in previous chapters, the middle plane points in a composite lam-
inated plate can move in the plane direction and this originates in-plane
elongations and axial forces. This changes the standard bending mode of
a homogeneous plate to a mixed mode where bending and axial effects are
coupled. Axial effects will be also called membrane effects in the following.

The study of composite laminated plates in this chapter is introduc-
tory to that of shells to be treated in the following chapters. Composite
laminated structures typically combine flat and curved surfaces meeting
at different angles and shell theory is needed for their study.

By assuring that the plate surface is flat we can analyze in detail many
interesting features of the kinematics, the constitutive relationships and
the discretized equations for composite laminated plates. Understanding
these concepts will easy the way for studying shell structures.

The standard first-order theory presented in the next section follows
precisely the assumption of Reissner-Mindlin plate theory studied in the
previous chapter. Kirchhoff thin plate theory is also applicable to compos-
ite laminated plates and it is the basis of the so-called “classical laminated
plate theory (CLPT)” [Red2]. However, Reissner-Mindlin theory is gener-
ally more precise, as the effect of transverse shear deformation is important
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Volume 2: Beams, Plates and Shells, Lecture Notes on Numerical Methods  
in Engineering and Sciences, DOI 10.1007/978-1-4020-8743-1_7,  
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Fig. 7.1 Displacements and rotations in a plate with bending and in-plane effects

in these structures [Wh2]. The case is similar to the analysis of laminated
beams using Timoshenko theory (Chapter 3).

Higher order composite laminate plate theories, such as the layer-wise
and refined zigzag theories, are studied in the second part of the chapter
and the procedures to develop accurate plate finite elements are described.
The chapter concludes with an overview of failure theories in composite
laminated plates.

7.2 BASIC THEORY

7.2.1 Displacement field

The displacement field of Reissner-Mindlin plate theory Eq.(6.1) is ex-
tended by introducing the horizontal (in-plane) displacements u0(x, y) and
v0(x, y) as (Figure 7.1)

u(x, y, z) = u0(x, y) − zθx(x, y)
v(x, y, z) = v0(x, y) − zθy(x, y)
w(x, y, z) = w0(x, y)

(7.1)

where (·)0 denotes the displacements of the middle plane. For convenience,
this plane is taken as the reference plane (z = 0) for defining the plate
kinematics, as in the previous two chapters.
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More sophisticated laminated plate theories can be derived by assum-
ing higher order expansions for the displacement field in the thickness
direction, or even a linear distribution of the kinematic variables within
each layer [BOM,Red,Red2]. A selection of these theories is presented in
Sections 7.6–7.8. A simplification of Eqs.(7.1) can also be introduced by
accepting that the normals remain orthogonal to the middle plane after
deformation. This yields the classical laminated plate (CLT) theory follow-
ing Kirchhoff assumptions [Bar2,Red2,TH]. Reissner-Mindlin plate theory
is a good compromise between CLT and higher order theories for practical
analysis of composite laminated plates and shells.

7.2.2 Strain and generalized strain vectors

The strain vector is obtained from the expressions of 3D elasticity theory
(Chapter 8 of [On4]), neglecting the thickness strain εz, as it does not
contribute to the internal work due to the plane stress assumption (σz =
0). Substituting Eqs.(7.1) into the strain expressions of 3D elasticity gives

εεε =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εx
εy
γxy
· · · · · ·
γxz
γyz

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x
∂v

∂y
∂u

∂y
+

∂v

∂x
· · · · · ·

∂u

∂z
+

∂w

∂x
∂v

∂z
+

∂w

∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u0
∂x
∂v0
∂y

∂u0
∂y

+
∂v0
∂x

· · · · · · · · ·
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−z ∂θx
∂x

−z ∂θy
∂y

−z
(
∂θx
∂y

+
∂θy
∂x

)
· · · · · · · · ·
∂w0

∂x
− θx

∂w0

∂y
− θy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

=

{
εεεm
0

}
+

{−zε̂εεb
ε̂εεs

}
= Sε̂εε (7.2)

where

ε̂εε =

⎧⎨⎩
ε̂εεm
ε̂εεb
ε̂εεs

⎫⎬⎭ with

ε̂εεm =

[
∂u0
∂x

,
∂v0
∂y

,

(
∂u0
∂y

+
∂v0
∂x

)]T

ε̂εεb =

[
∂θx
∂x

,
∂θy
∂y

,

(
∂θx
∂y

+
∂θy
∂x

)]T

ε̂εεs =

[
∂w0

∂x
− θx,

∂w0

∂y
− θy

]T

(7.3)

are the generalized (resultant) strain vectors due to membrane, bending
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and transverse shear deformation effects, respectively and

S =

[
I3 −zI3 02
0T3 02 I2

]
with 02 =

[
0 0
0 0

]
, 03 =

⎡⎣0 0
0 0
0 0

⎤⎦ (7.4)

and In is the n× n unit matrix.
From Eq.(7.2) we deduce the following useful expressions

εεε =

{
εεεp
εεεs

}
(7.5a)

with

εεεp =

⎧⎨⎩
εx
εy
γxy

⎫⎬⎭ = ε̂εεm − zε̂εεb , εεεs =

{
γxz
γyz

}
= ε̂εεs (7.5b)

where vectors εεεp and εεεs respectively contain the in-plane strains and the
transverse shear strains at a point in the thickness direction. The trans-
formation of the generalized strains ε̂εε to the actual strains εεε at a point is
performed via matrix S. This transformation is typical for beams, plates
and shells.

7.2.3 Stress-strain relationship

Let us consider a composite laminated plate formed by a piling of nl

orthotropic layers (also called “laminas” or “plies”) with orthotropy axes
L, T, z and isotropy in the L axis (i.e. in the plane Tz). The L axis defines
the direction of the longitudinal fibers which are embedded in a matrix of
polymeric or metallic material (Figure 7.2). We also assume that

• each layer k is defined by the planes z = zk and z = zk+1 with zk ≤
z ≤ zk+1,

• the orthotropy directions L and T can vary for each layer and are
represented by the angle βi between the global axis x and the directions
Li of the ith layer (Figure 7.2),

• each layer satisfies the plane stress assumption (σz = 0) and the plane
anisotropy condition (the z axis is the orthotropy axis for all the layers),

• the displacement field is continuous between the layers and satisfies
Eq.(7.1).

The names layer, lamina and ply will be indistinguishable used in the
following sections.

Note that the orthotropy axes were denoted as 1, 2, z in Figure 6.3 for
convenience.
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Fig. 7.2 Definition of layers (laminas) in a composite laminated plate

The above assumptions allow us to write the relationships between the
in-plane stresses σx, σy, τxy and the transverse shear strains τxz, τyz with
their conjugate strains for each layer k as

σσσp =

⎧⎨⎩
σx
σy
τxy

⎫⎬⎭ = Dp

⎧⎨⎩
εx
εy
γxy

⎫⎬⎭+

⎧⎨⎩
σ0
x

σ0
y

τ0xy

⎫⎬⎭ = Dpεεεp + σσσ0
p (7.6a)

σσσs =

{
τxz
τyz

}
= Ds

{
γxz
γyz

}
+

{
τ0xz
τ0yz

}
= Dsεεεs + σσσ0

s (7.6b)

or

σσσ =

{
σσσp

σσσs

}
=

[
Dp 0
0 Ds

]{
εεεp
εεεs

}
+

{
σσσ0
p

σσσ0
s

}
= Dεεε+ σσσ0 (7.7)
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Fig. 7.3 Stresses and resultant stresses in 3-layered (symmetric) plate element

Figure 7.3 shows the sign convention for the stresses.
In Eqs.(7.6) σσσ0

p and σσσ0
s are the vectors of initial in-plane and trans-

verse shear stress vectors, respectively. Initial stresses due to initial ther-
mal strains have been included in vectors σσσ0

p and σσσ0
s for convenience (see

Eqs.(7.14)).
The constitutive matrices Dp and Ds are symmetrical and their terms

are a function of five independent material parameters and the angle βk.
These matrices can be obtained as follows.



388 Composite laminated plates

The constitutive relationships in the orthotropy axes L, T, z are

σσσ1 = D1εεε1 + σσσ0
1 , σσσ2 = D2εεε2 ++σσσ0

2 (7.8a)

or

σσσI =

{
σσσ1

σσσ2

}
=

[
D1 0
0 D2

]{
εεε1
εεε2

}
+

{
σσσ0
1

σσσ0
2

}
= DIεεεI + σσσ0

I (7.8b)

σσσ1 = [σL, σT , τLT ]
T , σσσ0

1 = [σ0
L, σ

0
T , τ

0
LT ]

T

σσσ2 = [τLz, τTz]
T , σσσ0

2 = [τ0Lz, τ
0
Tz]

T

εεε1 = [εL, εT , γLT ]
T , εεε2 = [γLz, γTz]

T

D1 =

⎡⎣DLL DLT 0
DTT 0

Sym. GLT

⎤⎦ , D2 =

[
GLz 0
0 GTz

] (7.9)

with

DLL =
EL

a
, DTT =

ET

a
, a = 1− νLT νTL

DLT =
ET νLT

a
=

ELνTL

a

(7.10)

The five independent coefficients can be either

DLL, DLT , DTT , GLz = GLT , GTz (7.11a)

or

EL, ET , νLT

(
or νTL =

ET

EL
νLT

)
GLz = GLT , GTz

(
or νTz and GTz =

ET

2(1 + νTz)

)
(7.11b)

The constitutive parameters in matrices D1 and D2 can be measured
experimentally, as described in Example 7.1.

The relationship between matrices Dp and Ds of Eqs.(7.6) and D1 and
D2 is obtained by (Section 6.2.4)

Dp
3×3

= TT
1 D1T1 , Ds

2×2
= TT

2 D2T2 (7.12)

The following relationships hold

εεε1 = T1εεε , σσσp = TT
1 σσσ1 , εεε2 = T2εεεs , σσσs = TT

2 σσσ2

σσσ0
p = TT

1 σσσ
0
1 , σσσ0

s = TT
2 σσσ

0
2

(7.13)
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where T1 and T2 are the transformation matrices of Eq.(6.15b) with C =
cosβk and S = sinβk and βk is defined as shown in Figure 7.2.

It is easy to verify that both Dp and Ds are symmetrical.
The in-plane stresses σσσp are discontinuous in the thickness direction

when the material properties vary between layers. This also occurred for
composite plane beams (Figure 3.5).

For initial stresses due to thermal effects we can obtain

σσσ0
p = −TT

1 D1

[
αLΔT,αTΔT, 0

]T
, σσσ0

s = 0 (7.14a)

where αL and αT are the thermal expansion coefficients in the L and T
directions, respectively and ΔT is the temperature increment. For homo-
geneous isotropic material

σσσ0
p = −

EαΔT

(1− ν2)
[1, 1, 0] , σσσ0

s = 0 (7.14b)

The examples presented next describe the experiments needed for char-
acterizing the properties of a composite laminated material [BC].

Example 7.1: Experimental measurement of constitutive parameters for a com-
posite laminated material.

Consider a thin sheet of composite material made of unidirectional fibers
embedded in a matrix. The constitutive parameters can be measured experi-
mentally by simple tests where the composite is subjected to a known stress
field. For this purpose it is more convenient to write the constitutive laws in
compliance form as

εεε1 =

⎧⎨⎩ εL
εT
γLT

⎫⎬⎭ =

⎡⎣ 1
EL

− νLT

ET
0

− νTL

EL

1
ET

0

0 0 1
GLT

⎤⎦⎧⎨⎩ σL

σT

τLT

⎫⎬⎭ = C1σσσ1 (7.15a)

εεε2 =

{
γLz

γTz

}
=

[ 1
GLz

0

0 1
GTz

]{
τLT

τTz

}
= C2σσσ2 (7.15b)

It is easy to verify that D1 = C−1
1 and D2 = C−1

2 . D1 and D2 are given in
Eq.(7.9)
We consider first the measurement of the constitutive parameters in D1 by
performing simple tests with the applied stresses acting on the L− T plane.
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Fig. 7.4 Three simple tests for the determination of the in-plane constitutive pa-
rameters in a composite [BC]

In the first test the composite is subjected to a prescribed stress in the fiber
direction only σL, i.e. σT = τLz = 0 (Figure 7.7a).
The first equation of Eq.(7.15a) now reduces to εL = σL

EL
. The strain in the

fiber direction, εL, can be measured by means of a strain gauge and the
Young modulus in the fiber direction is then computed as EL = σL

εL
.

The strain in the direction transverse to the fiber can also be similarly mea-
sured. The Poisons’s ratio νLT is deduced from the second equation of (7.15a)
as νLT = −EL

εT
σL

.
Consider now a second similar test where the composite is subjected to a know
stress in the direction transverse to the fiber σT , i.e. σL = τLz = 0 (Figure
7.4b). Using the same approach as before, a measurement of the transverse
strain εT will yield the Young modulus in the direction transverse to the
fiber ET . An additional measurement of the strain in the fiber direction,
εL, will yield νTL. The symmetry of the compliance matrix can be verified
experimentally by checking that the measured quantities satisfy νLT

EL
= νTL

ET

(within the expected measurement errors).
Finally in the last test the composite is subjected to a known shear stress
νLT only, i.e. σL = σT = 0. A measurement of the shear strain γLT then
allows the evaluation of the shear modulus from the third equation of (7.15b)
as GLT = τLT

γLT
. This completes the definition of the compliance matrix C1.

The constitutive matrix D1 is obtained by inverting C1. Table 7.1 lists the
constitutive parameters for different composite materials, as well as the vol-
ume fraction of fibers in the composite and the density of the material.
Other material properties for composites are given in Appendix A and in
[BC,Mar,PP4,Ts].
As for the determination of the parameters in the transverse shear constitu-
tive matrix D2 (or C2) we note that GLz = GLT . The GTz parameter can
be found by subjecting the composite to a prescribed transverse shear stress
field as shown in Figure 7.5. The measurement of the shear strain γTz yields
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Material Vf EL ET νLT GLT Density
[GPa] [GPa] [GPa] [kg/m3]

Graphite/Epoxy (T300/5208) 0.70 180 10 0.28 7.0 1600
Graphite/Epoxy (AS/3501) 0.66 138 9 0.30 7.0 1600
Boron/Epoxy (T300/5208) 0.50 204 18 0.23 5.6 2000
Scotchply (1002) 0.45 39 8 0.26 4.0 1800
Kevlar 49 0.60 76 5.5 0.34 2.3 1460

Table 7.1 Material parameters for the in-plane constitutive matrix D1 for different
composite materials [BC]

Fig. 7.5 Shear test for determining the transverse shear modulus GTz [BC]

the sought transverse shear modulus as GTz = τTz

γTz
. This type of test is more

difficult to perform that the in-plane tests previously described.

Example 7.2: Effect of the fiber orientation in the constitutive matrix for a
composite [BC].

Let us study in some detail the effect of the fiber orientation in the consti-
tutive matrix for a composite made of Graphite/Epoxy T300/5028. For the
sake of conciseness we will consider the in-plane constitutive matrix Dp only.
The properties of this material are listed in Table 7.1 of previous example.
The terms of Dp can be expressed as

Dp =

⎡⎣Dp
11 Dp

12 Dp
13

Dp
12 Dp

22 Dp
23

Dp
13 Dp

23 Dp
33

⎤⎦ (7.16)

Figure 7.6 shows the stiffness components Dp
11 and Dp

22 as a function of the
lamina angle, β. Note the rapid decline of the stiffness coefficient, Dp

11, when
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Fig. 7.6 Generalized stiffness coefficients, Dp
11, Dp

22, Dp
13, Dp

23 and Dp
33 for a

Graphite/Epoxy T300/5028 composite, as a function of the fiber angle β [BC]

the lamina angle moves away from zero degrees. This sharp decline is due
to the high directionality of the lamina stiffness properties. The shearing
stiffness component, Dp

33, shown in Figure 7.6, drastically increases when the
lamina angle is 45 degrees. This can be explained as follows: a state of pure
shear is equivalent to stresses in tension and compression acting at 45 and
135 degree angles, respectively. Theses stresses are now aligned with the fiber
direction, which presents very high stiffness.
The coupling stiffness terms, Dp

13 and Dp
23, do not vanish and their variation

in terms of the lamina angle β is shown in Figure 7.6. These terms show
a coupling between extension and shearing of the lamina. In contrast, the
constitutive matrix D1, expressed in the fiber aligned triad, has vanishing
terms in the corresponding entries. Indeed, when the loading is applied along
the fiber direction, which is the intersection of two planes of symmetry, the
response of the system must be symmetric, precluding extension-shear cou-
pling. When the loading is no longer aligned with the intersection of the two
planes of symmetry, a coupled response of the lamina is intuitively expected.

7.2.4 Resultant stresses and generalized constitutive matrix

The resultant stress vectors are defined as

Membrane forces

σ̂σσm =

⎧⎨⎩
Nx

Ny

Nxy

⎫⎬⎭ =

∫ t/2

−t/2
σσσp dz (7.17a)

Bending moments

σ̂σσb =

⎧⎨⎩
Mx

My

Mxy

⎫⎬⎭ = −
∫ t/2

−t/2
zσσσp dz (7.17b)
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Transverse shear forces

σ̂σσs =

{
Qx

Qy

}
=

∫ t/2

−t/2
σσσs dz (7.17c)

where −t/2 and t/2 are the z coordinates of the plate’s upper and lower
surfaces, respectively (Figure 7.2). The sign of the resultant stresses is
shown in Figure 7.3.

Substituting Eqs.(7.6) into Eqs.(7.15–7.17) gives

σ̂σσm = D̂mε̂εεm + D̂mbε̂εεb + σ̂σσ0
m

σ̂σσb = D̂mb
ε̂εεm + D̂bε̂εεb + σ̂σσ0

b

σ̂σσs = D̂sε̂εεs + σ̂σσ0
s

(7.18)

where

σ̂σσ0
m =

∫ t/2

−t/2
σσσ0
pdz , σ̂σσ0

b = −
∫ t/2

−t/2
zσσσ0

pdz , σ̂σσ0
s =

∫ t/2

−t/2
σσσ0
sdz

D̂m =

∫ t/2

−t/2
Dp dz , D̂mb =

∫ t/2

−t/2
zDp dz

D̂b =

∫ t/2

−t/2
z2Dp dz , D̂s =

[
k11D̄s11 k12D̄s12

Sym. k22D̄s22

]
with D̄sij =

∫ t/2

−t/2
Dsij dz

(7.19)
Eq.(7.18) can be written in compact form as

σ̂σσ = D̂ε̂εε+ σ̂σσ0 (7.20a)

with

σ̂σσ =

⎧⎨⎩
σ̂σσm

σ̂σσb

σ̂σσs

⎫⎬⎭ , σ̂σσ0 =

⎧⎨⎩
σ̂σσ0
m

σ̂σσ0
b

σ̂σσ0
s

⎫⎬⎭ , D̂ =

⎡⎢⎢⎣
D̂m D̂mb 03

D̂mb D̂b 03

02 02 D̂s

⎤⎥⎥⎦ (7.20b)

where 0n is a n× n zero matrix.
For composite plates where x and y are orthotropy axes for all the

layers, matrix D̂s is diagonal and it has two transverse shear correction
parameters k11 and k22 only [BD5]. For an isotropic plate k12 = 0 and
k11 = k22 = 5/6 as for rectangular beams (Section 3.5).

The computation of the kij parameters is described in the next section.
Eqs.(7.17) defining the resultant stresses can be grouped as

σ̂σσ =

∫ t/2

−t/2
STσσσdz (7.21a)
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where S is defined in Eq.(7.4). Substituting Eq.(7.7) into (7.21a) gives

σ̂σσ =

∫ t/2

−t/2

[
STDSε̂εε+ STσσσ0

]
dz = D̂ε̂εε+ σ̂σσ0 (7.21b)

with

D̂ =

∫ t/2

−t/2
STDSdz , σ̂σσ0 =

∫ t/2

−t/2
STσσσ0dz (7.21c)

Eqs.(7.21c) define the generalized constitutive matrix D̂ and the initial
resultant stress vector σ̂σσ0 in compact form.

For a laminate with nl orthotropic layers and homogeneous material
within each layer (Figure 7.2) we can write

D̂m =

nl∑
k=1

tkDpk ; D̂mb = −
nl∑
k=1

tkz̄kDpk ; D̂b =

nl∑
k=1

1

3
[z3k+1−z3k]Dpk

(7.22)
where tk = zk+1−zk, z̄k = 1

2(zk+1+zk) andDpk is the in-plane constitutive
matrix for the kth layer.

For homogeneous material, or a material whose properties are symmet-
rical with respect to the middle plane (z = 0), matrix D̂mb = 0. Plane
xy then coincides with the neutral plane and the membrane and bend-
ing effects are uncoupled. This means that in-plane forces acting on the
neutral plane do not produce any curvature and, conversely, bending mo-
ments do not produce any membrane strain. However, it must be pointed
out that symmetry is not the only way to supress in-plane/flexural cou-
pling; several types of non-symmetrical uncoupled laminates exist, such
as [60/30/30/0/60/30] for example [KV].

The constitutive equations (7.18) simplify for the uncoupled case to

σ̂σσm = D̂mε̂εεm + σ̂σσ0
m , σ̂σσb = D̂bε̂εεb + σ̂σσ0

b , σ̂σσs = D̂sε̂εεs + σ̂σσ0
s (7.23)

For homogeneous isotropic material

D̂m = tDp , D̂b =
t3

12
Dp , D̂s = kD̄s with k = 5/6 (7.24a)

with

Dp =
E

1− ν2

⎡⎣1 ν 0
ν 1 0
0 0 1−ν

2

⎤⎦ , D̄s = Gt

[
1 0
0 1

]
(7.24b)

The stresses within each layer can be directly computed in terms of
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the resultant stresses via Eqs.(7.7), (7.2) and (7.20a) as

σσσ =

{
σσσp

σσσs

}
= DSD̂−1(σ̂σσ − σ̂σσ0) + σσσ0 (7.25)

The bending moments and the membrane and shear forces have unit
of moment and force per unit width of the plate, respectively.

7.3 COMPUTATION OF TRANSVERSE SHEAR CORRECTION
PARAMETERS

We present first a method for computing the transverse shear correction
parameters kij of Eq.(7.19) based on considerations of static equilibrium
and energetic equivalences. The aim is that the transverse shear stiffness of
the plate model corresponds as much as possible with that deduced from
3D elasticity. An alternative and simpler procedure based on assuming
cylindrical bending is also described.

In the following we will accept that the bending and membrane effects
are uncoupled (i.e. D̂mb = 0) and there are no initial stress effects. Matrix
D̂s is defined so that the shear strain energy density obtained for an exact
3D distribution of the transverse shear stresses τxz and τyz (denoted as U1)
is identical to the shear energy associated to the Reissner-Mindlin plate
model (denoted as U2).

For a 3D solid

U1 =
1

2

∫ t/2

−t/2
σσσT
s D

−1
s σσσs dz (7.26)

Reissner-Mindlin theory gives

U2 =
1

2
σ̂σσsD̂

−1
s σ̂σσs (7.27)

Equaling U1 and U2 yields the expression for D̂s and, consequently, the
transverse shear correction parameters.

We focus next on the derivation of an expression for U1 in terms of the
resultant stresses.

The transverse shear stresses σσσs = [τxz, τyz]
T are obtained in terms of

the in-plane stresses σσσp = [σx, σy, τyz]
T from the equilibrium equations of

3D elasticity (assuming zero body forces, Appendix B)

∂σx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

= 0

∂σy
∂y

+
∂τxy
∂x

+
∂τyz
∂z

= 0
(7.28a)
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from where we deduce the transverse shear stresses

σσσs =

{
τxz
τyz

}
= −

∫ z

−t/2

⎧⎪⎨⎪⎩
∂σx
∂x

+
∂τxy
∂y

∂σy
∂y

+
∂τxy
∂x

⎫⎪⎬⎪⎭ dz (7.28b)

with τxz = τyz = 0 for z = −t/2 and t/2.
The in-plane stresses σσσp are next expressed in terms of the resultant

stresses. From Eq.(7.25) we deduce (for Dmb = 0 and σσσ0 = 0)

σσσp = [σx, σy, τxy]
T = Dp[D̂

−1
m σ̂σσm − zD̂−1

b σ̂σσb] (7.29a)

Accepting a pure bending state (σ̂σσm = 0) we have

σσσp = −zA(z)σ̂σσb with A
3×3

(z) = Dp(z)D̂
−1
b (7.29b)

Substituting Eq.(7.29b) into (7.28b) gives after some algebra

σσσs = Ds1σ̂σσs +Ds2λλλ (7.30)

with

Ds1 =

∫ z

−t/2
z

2

[
A11 +A33, A13 +A32

A31 +A23, A22 +A33

]
dz

Ds2 =

∫ z

−t/2

z

2

[
A11 −A33, A13 −A32, 2A12, 2A31

A31 −A23, A33 −A22, 2A32, 2A21

]
dz

(7.31)

where Aij are the components of A of Eq.(7.29b) and

λλλ =

[
∂Mx

∂x
− ∂Mxy

∂y
,
∂Mxy

∂x
− ∂My

∂y
,
∂My

∂x
,
∂Mx

∂y

]T
(7.32)

In the derivation of Eq.(7.30) we have used the relationships between
shear forces and bending moments of Eqs.(5.23).

Substituting Eq.(7.30) into the expression of U1 (Eq.(7.26)) yields (ne-
glecting the contribution of the terms involving λλλ)

U1 � 1

2
σ̂σσT
s Hsσ̂σσs (7.33)

with

Hs =

∫ t/2

−t/2
DT

s1D
−1
s Ds1 dz (7.34)
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Equaling U1 (Eq.(7.33)) and U2 (Eq.(7.27)) gives the generalized trans-
verse shear strain constitutive matrix as

D̂s = H−1
s = Ĥs (7.35)

Expression (7.35) identifies the transverse shear correction parameters
for a composite laminate plate as

k11 =
Ĥs11

D̄s11

, k12 =
Ĥs12

D̄s12

, k22 =
Ĥs22

D̄s22

(7.36)

where Ĥsij are the components of Ĥs = H−1
s and D̄sij are defined in

Eq.(7.19).
For an homogeneous plate of thickness t

Ds1 =
6

t3

(
t2

4
− z2

)
I2 , k11 = k12 = k22 =

5

6
(7.37a)

For an homogeneous isotropic plate (GLz = GTz = G), k12 = 0 and

D̂s =
5

6
tGI2 (7.37b)

The expression of D̂s of Eq.(7.37b) coincides with that of Eq.(7.24a) for
homogeneous isotropic plates, as expected. Substituting Ds1 of Eq.(7.37a)
into (7.30) and neglecting the terms involving λλλ yields the standard
parabolic distribution for the transverse shear stresses in the thickness
direction (see also Eq.(3.24)).

The validity of the choice D̂s = Ĥ−1
s (Eq.(7.35)) can be verified a pos-

teriori when an estimate of the solution is available (typically obtained
using the displacement and stress fields from plane stress theory) as fol-
lows. First the transverse shear field is obtained from Eq.(7.30), then the
correct expression for U1 is found from Eqs.(7.26) and (7.30) as

U1 =
1

2
[σ̂σσT

s ,λλλ
T ]

[
C11 C12

CT
12 C22

]{
σ̂σσs

λλλ

}
(7.38)

with

C11 =

∫ t/2

−t/2
DT

s1D
−1
s Ds1dz , C12 =

∫ t/2

−t/2
DT

s1D
−1
s Ds2dz (7.39)

and

C22 =

∫ t/2

−t/2
Ds2D

−1
s Ds2dz (7.40)

where (Ds1 , Ds2) and Ds are given in Eqs.(7.31) and (7.12), respectively.
The final step is to compare U1 and U2 (Eq.(7.27)) and this completes the
verification process.
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Computation of shear correction parameters assuming cylindrical bending

Assuming cylindrical bending in the in-plane directions (i.e. τxy = 0), the
equilibrium equations are simply (Appendix B)

∂σx
∂x

+
∂τxz
∂z

= 0

∂σy
∂y

+
∂τyz
∂z

= 0
(7.41)

Integrating Eqs.(7.41) in the thickness direction gives

τxz = −
∫ z

−t/2
∂σx
∂x

dz , τyz = −
∫ z

−t/2

∂σy
∂y

dz (7.42)

Assuming that the axial forces are negligible and that Dp and D̂b are
diagonal matrices, Eqs.(7.29a) yield

σx = −zDp11

D̂b11

Mx , σy = −zDp22

D̂b22

My (7.43)

where (Dp11 , Dp22) and (D̂b11 , D̂b22) are diagonal elements of Dp and D̂b,
respectively. For isotropic material, Dp11 = Dp22 = E and D̂b11 = D̂b22 =

Et3

12(1−ν2) .
Substituting Eqs.(7.43) into (7.42) gives

τxz =
−Qx

D̂b11

g1(z) , τyz =
−Qy

D̂b22

g2(z) (7.44)

with

g1(z) =

∫ z

−t/2
zDp11 dz , g2(z) =

∫ z

−t/2
zDp22 dz (7.45)

In the derivation of Eqs.(7.44) we have used Qx = −∂Mx
∂x , Qy = −∂My

∂y
deduced from Eqs.(5.23), accepting that Mxy = 0.

The strain energy for each transverse shear stress component is deduced
from Eq.(7.25) (assuming that Ds is a diagonal matrix) as

Uxz =
1

2

∫ t/2

−t/2
τ2xz
Gxz

dz =
Q2

x

2D̂2
b11

∫ t/2

−t/2
g21(z)

Gxz
dz

Uyz =
1

2

∫ t/2

−t/2

τ2yz
Gyz

dz =
Q2

y

2D̂2
b22

∫ t/2

−t/2

g22(z)

Gyz
dz

(7.46)
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Let us now assume a constant distribution of the transverse shear
stresses in the thickness direction. The internal energy for each shear stress
is

Ūxz =
1

2

∫ t/2

−t/2
τxzγxzdz =

1

2

Q2
x

D̂s11

Ūyz =
1

2

∫ t/2

−t/2
τyzγyzdz =

1

2

Q2
y

D̂s22

(7.47)

with D̂s11 = k11
∫ t/2
−t/2Gxzdz and D̂s22 = k22

∫ t/2
−t/2Gyzdz. For isotropic

material, D̂s11 = D̂s22 = ktG.
Equalling Eqs.(7.46) and (7.47) we finally deduce

k11 =
Ūxz

Uxz
= (D̂2

b11)

[
Ḡxz

∫ t/2

−t/2
g21(z)

Gxz
dz

]−1

k22 =
Ūyz

Uyz
= (D̂2

b22)

[
Ḡyz

∫ t/2

−t/2
g22(z)

Gyz
dz

]−1 (7.48a)

where

(Ḡxz, Ḡyz) =

∫ t/2

−t/2
(Gxz, Gyz)dz (7.48b)

Eqs.(7.45) are analogous to (3.26) for composite laminated beams.
Once again, for homogeneous material k11 = k22 = k = 5

6 .
Eqs.(7.48) can also be found by assuming that the constitutive matrices

Dp (Eqs.(7.12)) are proportional from one layer to another [BD5].

7.4 PRINCIPLE OF VIRTUAL WORK

The PVW is written in terms of the generalized strains, the resultant
stresses and the external distributed loads t as∫∫∫

V
δεεεTσσσ dV =

∫∫
A
δuT t dA (7.49)

where V and A are the volume and the mid-plane surface of the plate,
respectively, δu = [δu0, δv0, δw0, δθx, δθy]

T and t = [fx, fy, fz,mx,my]
T .

In vector t, fx and fy are in-plane distributed loads acting in the direction
of the x and y axes, respectively and the rest of loads are defined in Figure
5.1.
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The integral in the l.h.s. of Eq.(7.49) represents the virtual internal
work. This expression is written in terms of the work of the resultant
stresses on the virtual generalized strains over the plate middle surface as
follows. From Eq.(7.2) we obtain

δεεε = Sδε̂εε (7.50)

Substituting Eq.(7.50) into the l.h.s. of Eq.(7.49) and using Eq.(7.21a)
gives ∫∫∫

V
δεεεTσσσ dV =

∫∫∫
V
δε̂εεTSσσσ dV =

∫∫
A
δε̂εεT σ̂σσ dA (7.51)

The PVW is therefore written in terms of integrals over the plate mid-
plane as ∫∫

A
δε̂εεT σ̂σσ dA =

∫∫
A
δuT t dA (7.52)

The effect of the initial resultant stresses in the PVW can be taken
into account by substituting Eq.(7.21b) in the left-hand side of Eq.(7.52)
giving ∫∫

A
δε̂εεT D̂ε̂εεdA+

∫∫
A
δε̂εεT σ̂σσ0dA =

∫∫
A
δuT t dA (7.53)

The displacement derivatives in the integrals of Eq.(7.53) are of first
order, as usual for Reissner-Mindlin plate theory. Therefore, a C◦ con-
tinuous finite element interpolation can be used for all the displacement
variables.

7.5 COMPOSITE LAMINATED PLATE ELEMENTS

7.5.1 Displacement interpolation

Let us consider a plate discretized into n-noded finite elements of trian-
gular or quadrilateral shape. The displacements and rotations are inter-
polated within each element as

u =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u0
v0
w0

θx
θy

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

n∑
i=1

Nia
(e)
i = [N1,N2, · · · ,Nn]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a
(e)
1

a
(e)
2
...

a
(e)
n

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = Na(e) (7.54a)
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with

Ni =

⎡⎢⎢⎢⎢⎣
Ni 0 0 0 0
0 Ni 0 0 0
0 0 Ni 0 0
0 0 0 Ni 0
0 0 0 0 Ni

⎤⎥⎥⎥⎥⎦ ; a
(e)
i = [u0i , v0i , w0i , θxi , θyi ]

T (7.54b)

where Ni(ξ, η) is the C◦ continuous shape function of node i.

7.5.2 Generalized strain matrices

Substituting Eqs.(7.54a) into the expression for ε̂εε of (7.3) yields

ε̂εε =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε̂εεm
· · · · · ·
ε̂εεb

· · · · · ·
ε̂εεs

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u0
∂x
∂v0
∂y

∂u0
∂y

+
∂v0
∂x

· · · · · · · · · · · ·
∂θx
∂x
∂θy
∂y(

∂θx
∂y

+
∂θy
∂x

)
· · · · · · · · · · · ·
∂w0

∂x
− θx

∂w0

∂y
− θy

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

n∑
i=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ni

∂x
u0i

∂Ni

∂y
v0i(

∂Ni

∂y
u0i +

∂Ni

∂x
v0i

)
· · · · · · · · · · · · · · · · · ·

∂Ni

∂x
θxi

∂Ni

∂y
θyi(

∂Ni

∂y
θxi +

∂Ni

∂x
θyi

)
· · · · · · · · · · · · · · · · · ·
∂Ni

∂x
w0i −Niθxi

∂Ni

∂y
w0i −Niθyi

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

= [B1,B2, · · · ,Bn]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a
(e)
1

a
(e)
2
...

a
(e)
n

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = Ba(e) (7.55)

where Bi is the generalized strain matrix for the ith node. This matrix can



402 Composite laminated plates

be split into its membrane, bending and transverse shear contributions as

Bi =

⎧⎨⎩
Bmi

Bbi

Bsi

⎫⎬⎭ with Bmi =

⎡⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂x
0 0 0 0

0
∂Ni

∂y
0 0 0

∂Ni

∂y

∂Ni

∂x
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

Bbi =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 −∂Ni

∂x
0

0 0 0 0 −∂Ni

∂y

0 0 0 −∂Ni

∂y
−∂Ni

∂x

⎤⎥⎥⎥⎥⎥⎥⎦ , Bsi =

⎡⎢⎢⎣0 0
∂Ni

∂x
−Ni 0

0 0
∂Ni

∂y
0 −Ni

⎤⎥⎥⎦
(7.56)

7.5.3 Stiffness matrix and equivalent nodal force vector

The discretized equilibrium equations relating the nodal forces and the
nodal displacements are obtained by substituting the discretization equa-
tions into the PVW in the standard manner. The stiffness matrix and the
equivalent nodal force for an element are

K
(e)
ij =

∫∫
A(e)

BT
i D̂Bj dA (7.57)

f
(e)
i =

∫∫
A(e)

NitdA−
∫∫

A(e)

BT
i σ̂σσ

0dA (7.58)

Matrix K
(e)
ij can be obtained by adding the contributions from the stiff-

ness matrices due to membrane, bending, transverse shear and membrane-
bending coupling effects. These matrices are written in compact form as

K(e)
aij =

∫∫
A(e)

BT
aiD̂aBaj dA , a = m, b, s

K
(e)
mbij

=

∫∫
A(e)

[
BT

mi
D̂mbBbj +BT

bi
D̂mbBmj

]
dA

(7.59)

All integrals are computed using a Gauss quadrature [On4]. Clearly,

K
(e)
mb vanishes for the cases when D̂mb = 0 (Section 7.2.4).
Composite laminated plate elements based on Reissner-Mindlin theory

suffer from shear locking, similarly as explained for homogeneous plates.
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Orthotropic material

Skin: EL = 3.4156, ET = 1.793, GLT = 1, GLZ = 0.608, GTZ = 1.015,
νLT = νTL = 0.44

Core: E and G modules of skin divided by C

Results: w̄ = w
GLT (core)

qt
, σ̄x =

σx

q

Fig. 7.7 Simply supported (hard) sandwich square plate

Shear locking can be eliminated using any of the procedures detailed in the
previous chapter. Indeed any of the locking-free triangular and rectangular
plate elements can be used for analysis of composite laminated plates.

For instance, for the 4-noded QLLL element based on an assumed
transverse shear strain approach (Section 6.7.1) matrix Bs should be re-
placed by the substitute shear matrix B̄s of Eq.(6.81).

The coupling between membrane and bending stiffness matrices at el-
ement can induce the so-called membrane locking. This defect, of less im-
portance than shear locking in composite Reissner-Mindlin plates, can be
eliminated using similar techniques as for shear locking. Membrane lock-
ing is more important in curved shells. More details are given in Sections
(8.11), (9.5.2), (9.15), (10.11.1) and (10.15).

7.5.4 Simply supported sandwich square plate under uniform loading

We present some results for the analysis of a simply supported (SS) three-
layered sandwich square plate (hard support conditions: w = θs = 0)
under uniformly distributed loading (Figure 7.7). The two skin layers and
the core are formed by orthotropic material with the same axes of or-
thotropy. The E and G values of the core are C times weaker than those
of the skin. The analysis has been performed for values of C = 1, 10 and
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C Model w̄ σ̄x σ̄x σ̄x

(z = 0) (z =0.4) (z =-0.4) (z =0.5)

QLLL 6× 6 180.05 29.10 29.10 36.37
C = 1 DST 6× 6 [LB] 180.88 27.48 27.48 34.34
k11 = k22 = 0.8333 Heterosis 4× 4 [OF2] 183.99 28.98 28.98 36.22

3D elasticity [Sr] 181.05 28.45 28.45 35.94
CLPT [Sr] 168.38 28.88 28.88 36.10

QLLL 6× 6 39.50 5.40 54.37 67.90
C = 10 DST 6× 6 41.92 4.71 47.06 58.82
k11 = k22 = 0.3521 Heterosis 4× 4 41.92 4.87 48.73 65.23

3D elasticity 41.91 4.86 48.61 65.08
CLPT 31.24 5.36 53.56 66.95

QLLL 6× 6 16.25 1.18 59.04 73.80
C = 50 DST 6× 6 16.65 1.06 53.05 66.32
k11 = k22 = 0.0938 Heterosis 4× 4 16.85 0.93 46.65 58.31

3D elasticity 16.75 0.74 37.15 66.90
CLPT 6.76 1.16 57.97 72.46

Table 7.2 Displacement and stresses at the center of a SS sandwich square plate

50 using a mesh of 6 × 6 QLLL elements in a quarter of the plate due
to symmetry. This problem was also solved by Owen and Figueiras [OF2]
using the Heterosis quadrilateral (Section 6.5.6) and by Lardeur and Ba-
toz [LB] using the DST element (Section 6.12). An analytical solution
using 3D elasticity theory was reported by Srinivas [Sr]. Table 7.2 shows
the shear correction factors for each case (note that k rapidly decreases
with the value of C) and the normalized values of the deflection w and
the σx stress at the plate center for the different numerical and analytical
solutions considered. Results of classical laminate plate theory (CLPT)
based on Kirchhoff thin plate assumptions are also presented to show the
importance of accounting for transverse shear deformation effects. A good
correlation between all results is observed. Note that for C = 50 the cen-
tral displacement is 2.5 times larger than the CLPT solution.

Satisfactory results are also obtained for the σx stress. For C = 50 the
3D distribution of σx shown in Figure 7.8a indicates that the assumption
of constant transverse shear strain is not valid as the warping of the section
is non linear.

Figure 7.8b shows the thickness distribution of τxz
q for C = 1, 10 and

50. The value of C greatly influences the distribution of τxz. For C = 50,
τxz is almost linear in the skin layers and constant in the core [LB].
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Fig. 7.8 SS (hard) sandwich square plate. Distribution of σ̄x(C = 10) and τ̄xz(C =
1, 10, 50) at the plate center

7.6 HIGHER ORDER COMPOSITE LAMINATED PLATE
ELEMENTS

A number of higher order theories for analysis of composite laminate plate
and shell structures have been developed in an effort to obtain accurate
results for stress analysis and failure prediction. Indeed, the use of a 3D
finite element model is prohibitive for laminates with hundred of layers
and this has motivated the search for refined finite element models based
on extension of the plate/shell kinematics. This topic was already touched
upon in Chapter 3 when dealing with composite beams.

Higher order plate theories are based on representing the displacement
field across the thickness by quadratic or cubic polynomials or trigonomet-
ric expressions in terms of the thickness coordinate [ChP,LL,Red]. These
theories typically avoid the need for the transverse shear correction pa-
rameters, at the expense of using more than five kinematic variables at
each node. Two relatively simple and effective higher order theories for
composite laminated plates are the layer-wise theory [Red,Red2] that as-
sumes a linear variation of the in-plane displacement within each layer,
and the refined zigzag theory (RZT) [GTD,TDG2] for which the number
of kinematic variables are independent of the number of layers.

In the following sections we present the formulation of a TLQL triangu-
lar plate element based on the layer-wise theory and a QLLL quadrilateral
plate element based on the RF theory.
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Fig. 7.9 TLQL plate element with layer-wise approximation

7.7 LAYER-WISE TLQL TRIANGULAR PLATE ELEMENT

A number of plate/shell elements based on the layer-wise theory of com-
posite laminates have been developed [Red2]. Here we present the layer-
wise extension of the TLQL element of Section 6.8.2 proposed by Botello
et al. [BOM]. Figure 7.9 shows the element with the thickness discretized
in layers k = 1, 2, · · ·nl. Each layer k is defined by the interfaces k, k + 1.

7.7.1 Displacement field

A linear variation for the in-plane displacements is assumed within each
layer as{

u
v

}
=

3∑
i=1

Ni(ξ, η)

{
Nk(ζ)

{
uki
vki

}
+Nk+1(ζ)

{
uk+1
i

vk+1
i

}}
+

+
6∑

i=4

Ni(ξ, η)ei−3[Nk(ζ)Δukti +Nk+1(ζ)Δuk+1
ti

] (7.60)
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where uki , v
k
i are the in-plane displacement of the kth interface, Δukti (i =

4, 5, 6) are the nodal displacement increments at the mid-side nodes for
the kth interface in the direction of the unit vectors ei−3.

The vertical displacement is assumed to be constant across the thick-
ness and it is interpolated in terms of the corner node values as

w =

3∑
i=1

Ni(ξ, η)wi (7.61)

In Eq.(7.61), the linear shape functionsNi(ξ, η) are given by Eqs.(6.162)
and Nk(ζ) = 1−ζ

2 , Nk+1(ζ) = 1+ζ
2 .

The transverse shear strain field is assumed to be linear within the
element as described in Section 7.8.2.

Indeed, for a single layer the element coincides with the TLQL plate
triangle of Section 6.8.2.

7.7.2 Generalized strain matrices

Eqs.(7.60) and (7.61) together with the assumed linear transverse shear
strain field allow us to write for every layer the relationship between the
generalized strains and the displacements as

εεεkb = Bba
k , εεεks = Bsa

k (7.62a)

where

εεεb =

[
∂u

∂x
,
∂v

∂y
,
∂u

∂y
+

∂v

∂x

]T
, εεεs =

[
∂w

∂x
+

∂u

∂z
,
∂w

∂y
+

∂v

∂z

]T

ak =
[
[āk]T , [āk+1]T , w1, w2, w3

]T (7.62b)

and
āk = [uk1, v

k
1 , u

k
2, v

k
2 , u

k
3, v

k
3 , Δukt4 , Δukt5 , Δukt6 ]

T (7.62c)

Matrices Bb and Bs are

Bb = [Bk
b ,B

k+1
b ,B0

bi
] , Bk

b = [Bk
b1 ,B

k
b2 , · · · ,Bk

b6 ] (7.63)
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with

Bk
bi
=

⎡⎢⎢⎢⎢⎢⎣
∂Ni

∂x
0

0
∂Ni

∂y
∂Ni

∂y
Nk ∂Ni

∂x
Nk

⎤⎥⎥⎥⎥⎥⎦ i = 1, 2, 3 (7.64a)

Bk
bi
= Bk

bi−3
ei−3 i = 4, 5, 6 (7.64b)

Bs = J−1P[Bk
s ,B

k+1
s ,Bw] , Bk

s = Bs , Bk+1
s = −Bk

s (7.64c)

Bk
s =

⎡⎣a12 b12 a12 b12 0 0 c12 0 0
0 0 a23 b23 a23 b23 0 c23 0
a31 b31 0 0 a32 b32 0 0 c32

⎤⎦ , Bw =

⎡⎣−1 1 0
0 −1 1
−1 0 1

⎤⎦ (7.64d)

P =

[
1− η −η η
ξ −ξ 1− ξ

]
, aij = −Cil

ij

2tk
, bij = −Sil

ij

2tk
, cij = −2lij

3tk

(7.65)
J is the jacobian matrix, Ci, Si are the components of the unit side vector
ei = [Ci, Si]

T , lij is the length of side ij and tk is the thickness of the kth
layer.

7.7.3 Element stiffness matrix

The element stiffness matrix is given by

K(e) =

∫∫
A(e)

(
nl∑
k=1

∫
tk
BT D̂kBdz

)
dA (7.66)

where B =

{
Bb

Bs

}
and D̂k is the constitutive matrix for the kth layer

given by Eq.(7.20). Typically a simple one point integration is used for the
thickness integration within each layer, while a full three point quadrature
is chosen for the area integration over the element plane, as for the TLQL
element (Section 6.8.2).

The stiffness matrix can be assembled over the thickness follows the
general rule as for 1D elements. The global system of equations can be
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written in the form⎡⎢⎢⎢⎢⎢⎢⎢⎣

K1
11 K1

12 0 0 · · · K1
3

K1
21 (K1

22 +K2
11) K2

12 0 · · · (K1
23 +K3

23)
0 K2

21 (K2
22 +K3

11) K
3
12 · · · (K1

13 +K3
23)

. . .
...

Symm. Knl
22 Knl

23

Kw

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a1

a2

a3

...
anl+1

aw

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f1

f2

f3

...
fnl+1

fw

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(7.67)

where Kk
ij is the stiffness matrix linking the interfaces i and j for the

kth layer, Kw assembles the stiffness contributions affecting the vertical
deflection DOFs aw, a

k are the in-plane nodal displacements for the kth
interface and aw = [w1, w2, · · · , wn]

T where n is the total number of corner
nodes with vertical deflection DOFs.

The form of Eq.(7.67) allows one the elimination of the interface vari-
ables a1, a2 · · ·anl using a substructuring technique. From the first row of
Eq.(7.67) it follows

a1 = [K1
11]
−1[f11 −K1

12a
2 −K1

13aw] (7.68)

and the new equation system can be written in terms of a2, a3, · · · aw only.
Again it is possible to eliminate a2 (the in-plane variables for the second
interface) in a similar way. The procedure is repeated for every layer so
that the final condensed system of equations contains only the in-plane
displacement for the top layer anl+1 and the nodal vertical displacements
aw, i.e. [

K̄11 K̄12

K̄21 K̄22

]{
anl+1

aw

}
=

{
fnl+1

fw

}
(7.69)

where (̄·) denote the modified stiffness matrices and equivalent nodal force
vectors. Once the displacement anl+1 and aw have been found. Eq.(7.68)
can be used to obtain the in-plane displacement at each interface. This
substructuring technique was initially suggested by Owen and Li [OL,OL2]
and later used in [BOM] for linear and linear analysis of composite lami-
nated plates and shells under static and dynamic loads.

We present next an application of the layer-wise TLQL element to the
analysis of a SS composite laminated square plate.

7.7.4 Simple supported multilayered square plates under sinusoidal load

We study a graphite-epoxy simply supported (hard) plate. The geometry
and material properties are shown in Figure 7.10. We consider five plies
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Fig. 7.10 Simply supported (hard) square laminated plate (five graphite-epoxy
laminates) geometry and material properties

with orientations 0◦/90◦/0◦/90◦/0◦ and thickness t/6///t/4///t/6///t/4///t/6.
The distributed load over the plate is given by q = q0 sin

πx
a sin πy

a .
The problem was solved using the layer-wise TLQL element described

in the previous section. The thickness DOFs were eliminated using the
condensation technique there explained. Only a quarter of plate was ana-
lyzed due to symmetry. The discretization is shown in Figure 7.10. Table
7.3 shows results for the vertical deflection at the plate center and the
stresses at some characteristic points for different side length/thickness
ratios (a/t). Results are compared with those obtained by Stavsky [Sta2]
using classical laminated plate theory. Note the difference in the results
when the thickness increases. The discrepance is due to the effect of trans-
verse shear deformation which is important for thick plates.

7.8 COMPOSITE LAMINATED PLATE ELEMENTS BASED ON
THE REFINED ZIGZAG THEORY

As mentioned in Section 3.16, zigzag theories aim to reproducing a zigzag-
like distribution for the in-plane displacements through the laminate thick-
ness with discontinuous derivatives in the thickness direction along the
lamina interfaces, while ensuring a fixed number of kinematic variables
regardless the number of material layers. Indeed this can be achieved by
using the layer-wise theory and the substructuring technique described in
the previous section. However, this has a computational cost that zigzag
theory aims to reduce. See Section 3.16 for a review of zigzag theories.
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MESH a/h w̄c σ̄x σ̄y τ̄xz τ̄yz
(a/2, a/2) (a/2, a/2,±h/2) (a/2, a/2,±h/2) (0, a/2, 0) (a/2, 0, 0)

m = 2 4 5.0097 ±.585 ±.397 .160 .171
m = 4 4 5.6431 ±.625 ±.455 .202 .212
m = 8 4 5.7582 ±.625 ±.473 .21775 .226
CLPT 4 4.291 ±.651 ±.626 N.A. .233
m = 2 20 1.0226 ± .4575 ±.340 .170 .151
m = 4 20 1.1624 ±.5225 ±.373 .228 .191
m = 8 20 1.1946 ±.535 ±.378 .250 .207
CLPT 20 1.145 ±.539 ±.380 .268 .212
m = 2 100 .8439 ±.468 ±.318 .178 .148
m = 4 100 .971693 ±.528 ±.396 .259 .186
m = 8 100 1.001176 ±.539 ±.362 .272 .210
CLPT 100 1.0 ±.539 ±.359 .272 .205

w̄c =
π4Qwc

12s4tq0
, (σ̄x, σ̄y, τ̄xz, τ̄yz) =

1
q0s2

(σx, σy, τxz, τyz)

s =
a

t
, Q = 4GLT + [EL + ET (1 + 2νLT )](1− νLT νTZ)

−1

Table 7.3 Deflection and stresses at the center of SS graphite-epoxy laminated
plate (5 laminates) under sinusoidal distributed load. Results for different meshes
of layer wise TLQL elements and classical laminate plate theory (CLPT) [Sta2]

Following the arguments explained in Section 3.16 for laminated beams,
the displacements in zigzag plate theory are expressed as

uk(x, y, z) = u0(x, y)− zθx(x, y) + ūk(x, y, z)
vk(x, y, z) = v0(x, y)− zθy(x, y) + v̄k(x, y, z)
w(x, y, z) = w0(x, y)

(7.70a)

where ūk and v̄k are the zigzag interfacial displacements defined as

ūk(x, y, z) = φk
x(z)ψx(x, y)

v̄k(x, y, z) = φk
y(z)ψy(x, y)

(7.70b)

Superscript k denotes quantities between the k and k+1 laminae. Thus
the kth lamina thickness coordinate is defined in the range z ∈ [zk−1, zk],
k = 1, nl where nl is the number of layers. The φk

x, φ
k
y functions represent

the through-the-thickness piecewise-linear zigzag functions, associated to
non homogeneous plates, to be defined later, while ψx, ψy are the spatial
amplitude of the zigzag displacement. These two amplitudes together with
the five standard kinematic variables (u0, v0, w0, θx, θy) are the problem
unknowns.
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The zigzag interfacial displacements ūk and v̄k may be regarded as
corrections to the in-plane displacements of standard Reissner-Mindlin
plate theory (Eq.(7.1)) due to the laminate heterogeneity.

Di Sciuva [DiS] developed a “linear zigzag model” for plate bending
problems that employs only five kinematic variables namely u, v, w, ψx and
ψy. The zigzag functions in Di Sciuva’s theory are determined by enforcing
the transverse shear stresses to be continuous along the adjacent lamina
interfaces and, in addition, by requiring that the zigzag functions vanish
in a single “fixed layer” that is selected a priori. Di Sciuva’s theory has
the following characteristics: (a) the transverse shear stresses are uniform
through the thickness and they correspond to those in the “fixed layer”;
(b) the laminate transverse shear stiffness is governed by the transverse shear
moduli of the “fixed layer” alone; (c) the transverse shear strains and stres-
ses erroneously vanish along fully clamped edges; and (d) the integral of
the transverse shear stress across the laminate thickness does not corre-
spond to the shear force obtained from the plate equilibrium equations.

To remove the flaws associated with Di Sciuva’s zigzag model, Tessler
et al. [TDG2] introduced a refined zigzag theory (RZT) for laminated-
composite plates in which: (1) a novel zigzag function is used to produce
non-vanishing zigzag displacements in every lamina, thus removing the
shear stiffness bias associated with the “fixed layer” approach, and (2) the
equilibrium of transverse shear stresses along adjacent lamina interfaces
is fulfilled only in an average sense. The resulting theory overcomes must
of the aforementioned flaws of the previous zigzag theories and has been
shown to demonstrate consistently superior results [GTD,TDG2,3]. 3 and
6-noded C◦ continuous RZT-based plate triangles with anisoparametric
shape functions have been recently proposed [VGM+].

The RZT theory for composite laminated beams was detailed in Section
3.17. In the following sections we describe this theory for plates.

7.8.1 Refined zigzag theory

7.8.1.1 Definition of the zigzag functions

Tessler et al. [TDG2] proposed the following linear and Co continuous
zigzag functions within each layer of a composite laminated plate

φk
x =

1

2
(1− ζk)φ̄k−1

x +
1

2
(1 + ζk)φ̄k

x

φk
y =

1

2
(1− ζk)φ̄k−1

y +
1

2
(1 + ζk)φ̄k

y

(7.71)
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Fig. 7.11 Notation for a three-layered laminate and zigzag function in the xz plane.
Same applies for φk

y by interchanging x for y and u by v

where φ̄k
x, φ̄

k
y and φ̄k−1

x , φ̄k−1
y are the values of the zigzag functions at the

k and k − 1 interface, respectively, and

ζk =
2(z − zk−1)

tk
, k = 1, · · · , nl (7.72)

with the first layer begining at z0 = −t/2, the last nlth layer ending at
znl

= t/2 and the kth layer ending at zk = zk−1 + tk where tk is the
layer thickness. Figure 7.11 shows the graphic representation of the zigzag
function across the thickness of a three-layered laminate.

Its very important to note that the zigzag function values (and hence
the interfacial displacements) at the bottom and top plate surface are set
herein to vanish identically, i.e.,

ū0 = ūnl = v̄0 = v̄nl = 0 (7.73)

The linear form of the zigzag function allows us to define the following
constant functions within each layer

βββk = [βk
x , β

k
y ]

T =

[
∂φk

x

∂z
,
∂φk

y

∂z

]T

=
1

tk
[(φ̄k

x − φ̄k−1
x ), (φk

y − φk−1
y )]T (7.74)

It is simple to show that the through the thickness integration of func-
tions βk

α vanish identically, i.e.∫ t/2

−t/2
βk
αdz = 0 (7.75)
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7.8.1.2 Strain and stress fields

The in-plane and transverse shear strains within each layer consistent with
Eqs.(7.70a) are

εkx =
∂u0
∂x

− z
∂θx
∂x

+ φk
x

∂ψx

∂x

εky =
∂v0
∂x

− z
∂θy
∂y

+ φk
y

∂ψy

∂y

γkxy =
∂u0
∂y

+
∂v0
∂x

− z

(
∂θx
∂y

+
∂θy
∂x

)
+ φk

x

∂ψx

∂y
+ φk

y

∂ψy

∂x

(7.76)

The transverse shear strains can be written as

γkαz = γα + βk
αψα , α = x, y (7.77a)

where

γα =
∂w0

∂α
− θy , βk

α =
∂φk

α

∂z
, α = x, y (7.77b)

Integrating the expression for γkαz of Eq.(7.77b) across the laminate
thickness and noting Eq.(7.75) gives{

γx
γy

}
=

1

t

∫ t/2

−t/2

{
γxz
γyz

}k

dz (7.78)

i.e., γx, γy represent the average transverse shear strains, coinciding with
the standard transverse shear strains of Reissner-Mindlin theory (Eq.(7.3)).
Eq.(7.78) also shows that the zigzag amplitude variables do not contribute
to the average transverse shear strains.

The strains at each layer can be expressed in terms of generalized
strains by

εεεkp =

⎧⎨⎩
εkx
εky
γkxy

⎫⎬⎭ = Sk
pε̂εεp with ε̂εεp =

{
ε̂εεm
ε̂εεb

}
(7.79a)

εεεks =

{
γkxz
γkyz

}
= Sk

t ε̂εεt (7.79b)

where

ε̂εεm =

[
∂u0
∂x

,
∂v0
∂y

,
∂u0
∂y

+
∂v0
∂x

]T
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ε̂εεb =

[
∂θx
∂x

,
∂θy
∂y

,

(
∂θx
∂y

+
∂θy
∂x

)
,
∂ψx

∂x
,
∂ψx

∂y
,
∂ψy

∂x
,
∂ψy

∂y

]T

ε̂εεt =

[(
∂w

∂x
− θx

)
,

(
∂w

∂y
− θy

)
, ψx, ψy

]T (7.80)

Sk
p = [I3,S

k
φ] ; Sk

φ = [−zI3, [φk]] ; [φk] =

⎡⎣φk
x 0 0 0
0 φk

y 0 0

0 0 φk
x φk

y

⎤⎦
Sk
t = [I2, [β

k]] ; [βk] =

[
βk
x 0
0 βk

y

] (7.81)

where ε̂εεm, ε̂εεb and ε̂εεt are generalized membrane bending and transverse
shear strain vectors. Note that ε̂εεm coincides wit the expression of Eq.(7.3),
while ε̂εεb and ε̂εεt contain contributions from functions ψx and ψy.

The generalized Hooke’s law for the kth orthotropic lamina, whose
principal material directions are arbitrary with respect to the middle place
reference coordinates x, y is written as (disregarding initial stresses)

σσσk
p =

⎧⎨⎩
σx
σy
τxy

⎫⎬⎭
k

= Dk
p

⎧⎨⎩
εx
εy
γxy

⎫⎬⎭
k

= Dk
pεεε

k
p = Dk

pS
k
pε̂εεp

σσσk
s =

{
τxy
τzz

}k

= Dk
s

{
γxz
γyz

}k

= Dk
sεεε

k
s = Dk

sS
k
t ε̂εεt

(7.82)

where the constitutive matricesDk
p andDk

s for the kth lamina are obtained
as explained in Section 7.2.3.

7.8.1.3 Computation of the zigzag function

The βk
α functions are determined by first casting the transverse shear

strains γkαz (Eq.(7.77a)) in terms of transverse shear strain measures ηα =
γα − ψα (α = x, y) and the zigzag amplitude function as{

γxz
γyz

}k

=

{
ηx
ηy

}
+

[
(1 + βk

x) 0
0 (1 + βk

y )

]{
ψx

ψy

}
(7.83)

The ηα strain measures are set to vanish explicitely in Di Sciva’s the-
ory [DiS] and enforced to vanish by way of penalty constraints in Averill’s
theory [Av,AY]. Tessler et al. [TDG2,3] do not impose such constraints on
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these strain measures. Alternatively, they express the constitutive equa-
tion for the transverse shear stresses in the following form

σσσk
s =

{
τxz
τyz

}k

= Dk
s

[{
ηx
ηy

}
+

[
(1 + βk

x) 0
0 (1 + βk

y )

]{
ψx

ψy

}]
(7.84)

where ηα = γα − ψα, α = x, y is a difference function.
In Eq.(7.84) the tangential stress vector associated with the ηα strain

measure is independent of the zigzag functions. The second vector includes
the coefficients Dk

s11(1 + βk
x) and Dk

s22(1 + βk
y ) that are dependent on

the zigzag functions through βk
α. These coefficients are set to be constant

quantities denoted as Gα (α = x, y), thus imposing constraint conditions
on the distribution of the zigzag functions. These constraints yield the
following expression for βk

α

{
βk
x

βk
y

}
=

⎧⎪⎪⎨⎪⎪⎩
Gx

Dk
s11

− 1

Gy

Dk
s22

− 1

⎫⎪⎪⎬⎪⎪⎭ (7.85)

The Gx and Gy constant material parameters are obtained by integrat-
ing Eq.(7.85) through the laminate thickness and using the property that
the thickness integration of the βk

α functions is zero. The result is

{
Gx

Gy

}
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1

t

nl∑
k=1

tk

Dk
s11

)−1
(
1

t

nl∑
k=1

tk

Dk
s22

)−1
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(7.86)

Substituting Eq.(7.74) into (7.75) gives the following recursion relation
for the zigzag function values at the layer interfaces{

φ̄k
x

φ̄k
y

}
=

k∑
i=1

{
tiβi

x

tiβi
y

}
, k = 1, · · · , nl (7.87)

Substituting the expressions for φ̄k
x, φ̄

k
y of Eq.(7.87) into Eq.(7.71) gives

an explicit form of the zigzag functions in terms of the βk
α functions as{

φk
x

φk
y

}
=

tk

2
(ζk − 1)

{
βk
x

βk
y

}
+

k∑
i=1

ti

{
βi
x

βi
y

}
(7.88)
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For homogeneous plates the ratios Gx

Dk
s11

and
Gy

Dk
s22

in Eq.(7.85) are unit-

valued and the βk
α functions are zero. This automatically leads to the van-

ishing of the zigzag function (Eq.(7.87)) and the interfacial displacements
(Eqs.(7.70b). Consequently, the kinematic and constitutive equations co-
incide with those of Reissner-Mindlin flat shell theory (Section 7.2).

7.8.1.4 Resultant constitutive equations

The stresses are defined as

σ̂σσ =

{
σ̂σσp

σ̂σσt

}
=

⎧⎪⎪⎨⎪⎪⎩
σ̂σσm

σ̂σσb

· · ·
σ̂σσt

⎫⎪⎪⎬⎪⎪⎭ =

∫ t/2

−t/2

⎧⎨⎩
[Sk

p]
T σσσk

p

· · · · · ·
[Sk

t ]
T σσσk

s

⎫⎬⎭ dz (7.89)

where σ̂σσ is the resultant stress vector. The axial resultant stresses σ̂σσm

coincide with those of Eq.(7.17a) while the bending and transverse shear
resultant stress vectors are

σ̂σσb = [Mx,My,Mxy,M
φ
x ,M

φ
xy,M

φ
y ,M

φ
yx]T

σ̂σσt = [Qx, Qy, Q
φ
x, Q

φ
y ]T

(7.90)

where (Mφ
x ,M

φ
xy,M

φ
y ,M

φ
yx) and (Qφ

x, Q
φ
y ) are pseudo-bending moments

and pseudo-shear forces introduced by the RZT that have not a physical
meaning.

The resultant constitutive equations are obtained by substituting Eqs.(7.82)
into (7.89), i.e.

σ̂σσ =

∫ t/2

−t/2

{
[Sk

p]
T Dk

p Sk
p ε̂εεp

[Sk
t ]

T Dk
s Sk

t ε̂εεs

}
dt =

[
D̂p 0

0 D̂t

]{
ε̂εεp
ε̂εεt

}
= D̂ε̂εε (7.91)

with

D̂p =

∫ t/2

−t/2
[Sk

p]
TDk

pS
k
p , D̂t =

∫ t/2

−t/2
[Sk

t ]
TDk

sS
k
t dt (7.92)

where Dp and Dt are given in Eqs.(7.12) and Sk
p and Sk

t in Eqs.(7.81).
Substituting the expression for ε̂εεp of Eqs.(7.79a) yields after small al-

gebra an expanded form of the generalized constitutive equation as

σ̂σσ =

⎧⎨⎩
σ̂σσm

σ̂σσb

σ̂σσt

⎫⎬⎭ =

⎡⎢⎢⎣
D̂m D̂mb 0

D̂T
mb

D̂b 0

0 0 D̂t

⎤⎥⎥⎦
⎧⎨⎩
ε̂εεm
ε̂εεb
ε̂εεt

⎫⎬⎭ = D̂ε̂εε (7.93)
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where D̂m coincides with the expression of Eq.(7.19),

D̂b =

∫ t/2

−t/2
[Sk

φ]
TDk

pS
k
φ dz and D̂mb =

∫ t/2

−t/2
DpPkSk

φ dz (7.94)

where Sk
φ is given in Eqs.(7.81).

7.8.1.5 Principle of virtual work

The expression of the internal virtual work (l.h.s. of Eq.(7.49)) is written in
terms of the new generalized strains and resultant stresses using Eq.(7.93)
as∫∫∫

V

{
[δεεεkp]

Tσσσk
p + [δεεεks ]

Tσσσk
s

}
dV =

∫∫∫
V

{
[δεεεkp]

TDk
p[S

k
p]ε̂εεp + [δεεεks ]

TDk
tS

k
t ε̂εεt

}

=

∫∫
A

[
δε̂εεTp D̂pε̂εεp + δε̂εεtD̂tε̂εεt

]
dA =

∫∫
A
δε̂εεT σ̂σσdA

(7.95)

The PVW is therefore finally expressed by Eq.(7.52)

7.8.1.6 Element matrices

Composite laminated plate elements based on the RFT can be derived
by adding functions ψx and ψy to the standard five kinematic variables
(u0, v0, w, θx, θy). A C◦ interpolation is used for all the kinematic variables
as it is usual is Reissner-Mindlin elements, i.e.

u = [u0, v0, w, θx, θy, ψx, ψy]
T =

n∑
i=1

Nia
(e)
i (7.96)

where Ni are the element shape functions and

ai = [u0i , v0i , w, θxi , θyi , ψxi , ψyi ]
T (7.97)

Substituting Eq.(7.96) into the expression for the generalized strains
in Eqs.(7.80) yields

ε̂εεm = Bma(e) , ε̂εεb = Bba
(e) , ε̂εεt = Bta

(e) (7.98)
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with the generalized strain matrices given by

Bmi =

⎡⎢⎢⎢⎢⎢⎣
∂Ni

∂x
0 0 0 0 0 0

0
∂Ni

∂y
0 0 0 0 0

∂Ni

∂y

∂Ni

∂x
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ , Bbi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
∂Ni

∂x
0 0 0

0 0 0 0
∂Ni

∂y
0 0

0 0 0
∂Ni

∂y

∂Ni

∂x
0 0

0 0 0 0 0
∂Ni

∂x
0

0 0 0 0 0
∂Ni

∂y
0

0 0 0 0 0 0
∂Ni

∂x

0 0 0 0 0 0
∂Ni

∂y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bti =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
∂Ni

∂x
−Ni 0 0 0

0 0
∂Ni

∂y
−Ni 0 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 Ni 0

0 0 0 0 0 0 Ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎧⎨⎩
Bsi

· · ·
Bψi

⎫⎬⎭ (7.99)

The stiffness matrix is obtained by Eq.(7.59) with matrix K
(e)
t substi-

tuting K
(e)
s given by

K
(e)
t =

∫∫
Ae

BT
t D̂tBtdA (7.100)

The membrane stiffness matrix K
(e)
m is integrated with a full quadra-

ture while the bending and transverse shear matrices are integrated with
the same quadratures as explained for Reissner-Mindlin plate elements in
Chapter 5. Shear (and membrane) locking in RTT element can be avoided
using selective/reduced integration, assumed transverse shear strain tech-
niques or linked interpolations.

For example, if an assumed transverse shear technique is used, matrix
Bsi of Eq.(7.92) should be substituted by

Bsi = [B̄si ,02] (7.101)
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where B̄si is the substitute transverse shear strain matrix and 02 is a 2×2
null matrix.

The equivalent nodal force vector for a distributed load fz is

f (e) =

∫∫
Ae

Nifz[0, 0, 1, 0, 0, 0, 0]
TdA (7.102)

The global stiffness equations are assembled in the standard manner.
The boundary conditions for the new nodal variables ψxi , ψyi are the same
as for the rotations, i.e.

ψxi = ψyi = 0 at a clamped edge
ψαi = 0 if α is a symmetry axis (α = x, y)
ψyi = 0 if x is a SS edge (likewise for ψxi)

(7.103)

7.8.2 QLRZ plate element

Oñate et al. [OEO,OEO2] have extended the QLLL plate element of Sec-
tion 6.7.1 based on a linear assumed transverse shear strain field using the
RZT. Matrices Bmi , Bbi and Bψi

are computed using bi-linear shape func-
tions while the substitute transverse shear strain matrix B̄si of Eq.(6.7.1)
replaces matrix Bsi in Eq.(7.99) as shown in Eq.(7.101). All the terms in
the stiffness matrix and the equivalent nodal force vector for the element
are computed using a 2×2 quadrature. Some applications of the so-called
QLRZ element to the analysis of composite laminated plates are shown in
the next section. For further details see [EOO].

7.8.2.1 Convergence study for the QLRZ plate element

The convergence of the QLRZ plate element is studied in the analysis of
simply supported (SS) and clamped square plates of three-layered com-
posite laminated material under uniformly distributed loading. The side
length/thickness ratio is λ = a

t = 40. Three different materials and thick-
ness distributions for the three layers are shown in Table 7.4. Each layer is
assumed to behave isotropically. The “reference” solution obtained with a
mesh of 10× 10× 9 20-noded hexahedra with 13497 DOFs [EOO] (Figure
7.12).

Tables 7.5 and 7.6 show the error in the vertical deflection at the plate
center, and in the σx stress and the zigzag amplitude function ψx at the
upper surface of point E for the three composite materials considered .

The analysis of the results for the SS plate (Table 7.5) shows that errors
for the three variables chosen are less than 2.5% for the 8 × 8 mesh and
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Layer 1
(top)

Layer 2 Layer 3
(bottom)

t [m] 0,0333 0,0333 0,0333
Composite A E [MPa] 0,219 0,219E-1 0,44

ν 0,25 0,25 0,25

t [m] 0,0333 0,0333 0,0333
Composite B E [MPa] 0,219 0,219E-2 0,219

ν 0,25 0,25 0,25

t [m] 0,01 0.08 0.01
Composite C E [MPa] 0,219 0,725E-3 0,73E-1

ν 0,25 0,25 0,25

Table 7.4 3-layered composite plates used for convergence analysis

Simple supported plate - Relative error (%)
Convergence analysis

Mesh of wc σx at E ψx at E

QLRZ elements A B C A B C A B C

2× 2 2,69 19,36 25,83 26,98 32,89 33,24 -9,11 41,06 51,92
4× 4 0,68 6,50 10,14 4,86 7,70 9,05 -3,99 8,95 13,67
8× 8 0,25 1,54 2,22 -0,30 -0,79 0,44 -0,71 -0,40 -1,84

16× 16 0,15 0,38 0,35 -1,55 -3,04 -1,92 0,07 -0,45 -1,44
32× 32 0,12 0,12 -0,02 -1,86 -3,49 -2,07 0,00 0,00 0,00

Table 7.5 SS square plate under uniformly distributed load (λ = 40). Relative
error for the deflection at the plate center wc and for σx and ψx at point E

Clamped plate - Relative error (%)
Convergence analysis

Mesh of wc σx at E ψx at E

QLRZ elements A B C A B C A B C

2× 2 11,71 50,28 60,99 99,99 100 100 26,13 80,09 86,48
4× 4 4,65 30,16 43,47 20,86 44,14 45,53 -6,28 43,34 54,80
8× 8 1,60 12,32 22,44 2,90 14,35 17,24 -1,47 13,68 18,58

16× 16 0,29 3,67 9,25 -1,21 -0,40 -1,15 -0,30 2,58 2,22
32× 32 -0,14 0,69 2,85 -2,22 -4,70 -4,62 0,00 0,00 0,00

Table 7.6 Clamped square plate under uniformly distributed load (λ = 40). Rela-
tive error for the central vertical deflection wc and for σx and ψx at point A

the three composite materials. For the clamped plate (Table 7.6) errors
are less than 10% for the 16× 16 mesh in all cases. Convergence is always
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Fig. 7.12 20-noded hexahedral meshes (10× 10× 9) for: a) Composite A; b) Com-
posite C

slower for the more heterogeneous material (material C). It is remarkable
that errors for material A do not exceed 3% for the 8× 8 mesh for all the
problems analyzed.

Figure 7.13 shows the convergence curves for the vertical deflection for
the SS and clamped cases.

7.8.2.2 Simply supported of square and circular multilayered plates

We study next a 4-layered square SS plate and a 9-layered circular SS
plate under uniformly distributed loading. The layer distribution and the
material properties of each layer for each case are shown in Table 7.7.

The numerical solution for the square plate has been obtained with
two meshes of 8× 8 and 16× 16 QLRZ elements as well as with a mesh of
16× 16 standard QLLL composite plate elements derived as explained in
Section 7.5. Results are compared with a “reference” 3D solution obtained
using a mesh of 10× 10× 12 20-noded hexahedra (Figure 7.15a).
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�

(a) SS square plate
�

(b) Clampled square plate

Fig. 7.13 Convergence curves for the central deflection in a square plate under
uniform loading. a) SS plate. b) Clamped plate

(a) (b) 

 
 
 
 

 
 
 
   

Fig. 7.14 QLRZ and QLLL element meshes for the analysis of square and cir-
cular SS composite laminated plates under uniformly distributed load. Only one
quarter of the plate is discretized due to symmetry. a) 8×8 mesh. b) 168 elements

Figure 7.16a shows the distribution of the deflection along the central
line. Note the accuracy of the QLRZ results and the erroneous results
obtained with the QLLL element.

Figures 7.16b,c,d respectively show the thickness distribution of the
horizontal displacement u and the stress σx at the plate center and the
transverse shear stress τxz at three points on the middle line. The zigzag
distribution of the axial displacement is accurately captured with the
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Composite laminate plates

Composite Materials tk/t

C1 (4-layers) (A/B/C/D) (0,1/0,3/0,5/0,1)
C2 (9-layers) (A/C/A/C/B/C/A/C/A) (0,1/0,1/0,1/0,1/0,2/0,1/0,1/0,1/0,1)

Material E1 E2 E3 ν12 ν13 ν23 G12 G13 G23

A 15790 958 958 0,32 0,32 0,49 593 593 323
B 19,15 19,15 191,5 6,58E-4 6,43E-8 6,43E-8 42,3E-7 36,51 124,8
C 10,4 0,30 4
D 10410 0,31 3973

Table 7.7 Material properties. 4 and 9-layered plates. Units for E and G in MPa

 

 

 

(a) 4-layered square SS plate. Material C1

 

 

 

(b) 9-layered circular SS plate. Material C2

Fig. 7.15 Meshes of 20-noded hexahedra for analysis of SS 4-layered square plate
and 9-layered circular plate under uniformly distributed loading. A quarter of
the plate is analyzed due to symmetry

QLRZ element while the QLLL results yield a wrong linear distribution.
Very accurate results are also obtained with the QLRZ element for the
thickness distribution of the axial stress σx and the transverse shear stress
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(a) 

Deflection along BC 

(b) 

Axial displacement u at point B 

 

 

(c)  

Axial stress σx at point C 

(d) 

Transverse shear stress τxz at point E 

  

 

 

 

 

 

 

 

 

   

Fig. 7.16 SS square plate under uniformly distributed loading. Material C1. a)
Distribution of vertical deflection along central line BC. b) Thickness distribution
of the in-plane displacement u at boundary point B. c) of the axial stress σx at
central point C and d) of the transverse shear stress τxz at point E

τxz. The QLLL results are reasonably good for σx but are far from the
correct value for τxz.

Figures 7.17 display a similar set of results for the circular plate. The
mesh used for the 3D analysis is shown in Figure 7.15b. The conclusion is
identical to the square plate case: the QLRZ element reproduces the com-
plex kinematics of the composite laminate and yields an accurate distri-
bution of the stresses across the thickness. Conversely, the QLLL element
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(a) 

Deflection along BC 

(b) 

Axial displacement u at point B 

 

 

(c)  

Axial stress σx at point C 

(d) 

Transverse shear stress τxz at point E 

  

 

Fig. 7.17 SS circular plate under uniformly distributed loading. Material C2. a)
Distribution of vertical deflection along central line BC. b) Thickness distribution
of the in-plane displacement u at point B. c) of the axial stress σx at central point
C. d) Thickness distribution of the transverse shear stress τxz at point E

gives wrong results for the deflection curve and an inaccurate thickness
distribution for the axial and transverse shear stresses.

More evidence of the good behaviour of the QLRZ element for analysis
of composite laminated plates can be found in [EOO].
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Fig. 7.18 Experimental tests for estimating the ultimate stresses in a lamina

7.9 FAILURE THEORIES

Failure at a point in a solid can be identified when the maximum princi-
pal stress reaches a limit value, typically called the ultimate stress or the
failure stress. This criterion is typically used for detecting the onset of fail-
ure in fragile material (concrete, glass, ceramics, etc.). More sophisticated
failure criteria are based on verifying the limit bound for an appropriate
stress invariant [ZT2].

In the following section we present some basic concepts on the ultimate
stress (also called the limit strength) of a lamina in a composite under
different loading conditions.

7.9.1 Ultimate stress of a lamina under simple loading conditions

The ultimate stress of a lamina (i.e. a layer) made of composite material
formed by unidirectional fibers embedded in a matrix can be experimen-
tally determined as follows [BC]. Assuming that the lamina is under a
plane stress state we apply a single tensile stress along the fiber direction
(σt

L) to an isolated lamina (Figure 7.18a). The applied stress is increased
until the material fails for a stress level σt

Lu
. The same test can be repeated

for a compressive stress σc
L giving σc

Lu
as the absolute value of the ultimate

compressive stress at failure. Typically σt
Lu

and σc
Lu

will be different.
In a second test (Figure 7.18b) the lamina is subjected to a single tensile

stress σt
T applied in the direction transverse to the fiber. The stress level

that corresponds to failure in the lamina (i.e. in the matrix material) is
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denoted σt
Tu
. The absolute value of the compressive stress applied in the

direction transverse the fiber yielding material failure is denoted σc
Tu
.

In the third test shown in Figure 7.18c the lamina is subjected to a
shear stress τLT . The failure level for this stress is termed τu for simplicity.

These tests are conceptually simple but quite difficult to perform in
practice. The ends of the test specimens must be reinforced in the tensile
test to prevent premature failure near the grips. Also the specimen must
be long enough to eliminate end effects. Buckling of the specimen should
be prevented in the compressive tests by providing lateral support to the
test sample. The shear test in a flat rectangular specimen is also complex.
Tubular specimens can be used at a greater cost. Table 7.8 lists the typical
failure stress level for lamina made of different materials [BC].

Lamina material σt
Lu

σc
Lu

σt
Tu

σc
Tu

τu

Graphite/Epoxy (T300/5208) 1500 1500 40 240 68
Graphite/Epoxy (AS/3501) 1450 1450 52 205 93
Boron/Epoxy (T300/5208) 1260 2500 61 202 67
E-glass/Epoxy (Scotchply 1002) 1060 60 31 118 72
Arand (Kevlar 49)/Epoxy 1400 235 12 53 34

Table 7.8 Typical ultimate stresses for lamina made of different composite mate-
rials. Stress values in MPa

7.9.2 Failure stress of a lamina under combined loading conditions

In practical applications, a lamina might be subjected to several stress
components simultaneously. Figure 7.19 shows the so-called failure stress
envelope in the two-dimensional (2D) stress space. The intersection with
the coordinate axes corresponds to the failure stress levels σt

Lu
, σc

Lu
, σt

Tu
,

σc
Tu

defined in the previous section. Points laying on the failure envelope
denote the values of the stresses acting along the fiber and transverse
directions for which the lamina will fail. For instance, point A found by
the intersection of the failure envelope with the 45 degree line corresponds
to the case for which failure occurs for equal tensile stresses acting along
the fiber and the transverse direction, i.e. σt

Lu
= σt

Tu
.

All stress states within the failure envelope correspond to stress levels
the lamina material can sustain without failure, whereas the stress states
on and outside the failure envelope result in failure.

The tangential stress τLT has not been taken into account in the 2D
failure envelope of Figure 7.19. If this stress is taken into account (as it
is the case in practical design situations) the failure envelope becomes a
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Fig. 7.19 Failure stress envelope in two-dimensional stress space

3D surface which is a function of the three stresses acting on the lamina
coordinate system σL, σT and τLT .

The failure envelope could be obtained experimentally by performing
a large number of tests with various combination of applied stress com-
ponents σL, σT and τLT . This approach is non practical as it requires
many tests to determine the failure envelope. A more practical approach
is to define the failure envelope in terms of the five failure stress levels
σt
Lu

, σc
Lu

, σt
Tu
, σc

Tu
and τu. This can be achieved by mean of a failure cri-

terion that predicts failure (i.e. the point laying on the failure envelope)
under combined loads. Many different failure criteria have been proposed
[Red2]. However, their agreement with experimental results for the failure
stresses is not fully satisfactory. In the next section we briefly present a
failure criterion widely used for design of composite structures.

Note finally, that failure of the matrix due to a transverse load does not
decrease much the ability of the lamina to continue carrying out load in
the fiber direction. However, if fiber failure occurs then the load carrying
capability of the lamina is completely lost. This means that in a composite
material the failure mode is as important as the failure stress [BC].

7.9.3 The Tsai-Wu failure criterion

The Tsai-Wu failure criterion states that failure occurs in a lamina when
the combined applied stresses (expressed in the fiber aligned triad) satisfy
the following equality

FLLσ
2
L + 2FLTσLσT + FTTσ

2
T + FSτ

2
LT + FLσL + FTσT = 1 (7.104)
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The coefficient multiplying the stresses in Eq.(7.104) are determined
experimentally, as follows. The five coefficients FLL, FTT , Fs and FT are
computed by applying the three tests explained in Section 7.9.1 where a
single stress component is applied for each test. For instance, if the stress
σL is applied, at failure in tension and in compression the satisfaction of
Eq.(7.104) implies

FLL(σ
t
Lu

)2 + FLσ
t
Lu

= 1 and FLL(σ
c
Lu

)2 − FLσ
c
Lu

= 1 (7.105)

The second test involves the stress component σT only and it yields

FTT (σ
t
Tu
)2 + FTσ

t
Tu

= 1 and FTT (σ
c
Tu
)2 − FTσ

c
Tu

= 1 (7.106)

Finally, the last test involves τLT only and implies FSτ
2
u = 1. These five

equations can be solved for the five coefficient sought. Introducing these
in Eq.(7.104) and rearranging the terms, the following expression is found

σ̄2
L + 2F̄LT σ̄Lσ̄T + σ̄2

T + τ̄2LT + F̄1σ̄L + F̄2σ̄T = 1 (7.107)

where the following non-dimensional stress components are defined

σ̄L =
σL

(σt
Lu

σc
Lu

)1/2
, σ̄T =

σT
(σt

Tu
σc
Tu
)1/2

, τ̄LT =
τLT
τu

(7.108)

as well as the following non-dimensional coefficients

F̄1 =
σc
Lu
− σt

Lu

(σt
Lu

σc
Lu

)1/2
, F̄2 =

σc
Tu
− σt

Tu

(σt
Tu
σc
Tu
)1/2

(7.109)

Coefficient F̄LT is yet undetermined. Clearly, this could be found by an
additional test where both σL and σT are applied simultaneously (i.e. a
biaxial stress state). This test is quite difficult to perform and, therefore,
F̄LT is often selected by fitting the prediction of the failure criterion to
experimental data. The best fit has been found for F̄LT = −1/2 and the
final expression for the Tsai-Wu criterion is [BC]

σ̄2
L − σ̄Lσ̄T + σ̄2

T + τ̄2LT + F̄1σ̄L + F̄2σ̄T = 1 (7.110)
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Fig. 7.20 (a) Failure test for a lamina at an angle β. (b) Variation of the tensile
and compressive failure loads with lamina angle β

Example 7.3: Tsai-Wu failure criterion for uniaxial stress.

In this example taken from [BC] we apply the Tsai-Wu criterion to a simple
test where a single stress component σx is applied to a lamina with fibers
running at an angle β (Figure 7.20). The stress rotation formula (Eqs.(6.16))
yields the applied stresses in the fiber aligned triad as σL = σx cos

2 β , σT =
σx sin

2 β and τLT = −σx sinβ cosβ.
The level of applied stress that correspond to failure satisfies the failure cri-
terion (7.110), i.e.

σ2
x

[
C4

A2
− S2C2

AB
+

S4

B2
+

S2C2

τ2u

]
+ σy

[
C2

A
+

S2

B

]
= 1 (7.111)

where A = (σt
Lu

σc
Lu

)1/2, B = (σt
Tu
σc
Tu
)1/2, C = sinβ and C = cosβ.

The two solutions of the above second order equation yield the failure stress in
tension and compression. Figure 7.20 shows the absolute value of these failure
stresses as a function of the lamina angle β for the Graphite/Epoxy material
(T300/5208) whose properties are given in Table 7.8. Note the sudden drop
in the failure stress as the lamina angle moves away from zero degrees.

7.9.4 The reserve factor

The reserve factor, R, is defined as the number by which the applied stress
can be multiplied to reach failure, i.e.

σt
Lu

= Rσt
L , σc

Lu
= Rσc

L , etc (7.112)
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From this definition it follows that

• R = 1 means that the applied stress strictly induces lamina failure.
• R > 1 means that the applied stress is below the failure level, i.e. the

stress level is safe. For instance R = 3 would mean that the applied
stress can be tripled before lamina failure occurs.

• R < 1 means that the applied stress is above the failure stress.

Assuming that failure can be predicted by the Tsai-Wu criterion and
substituting in Eq.(7.110), the stress component by R times their value,
the failure condition (7.110) can be written as [BC]

(σ̄2
L − σ̄Lσ̄T + σ̄2

T + τ̄LT )R
2 + (F̄1σ̄L + F̄2σ̄T )R = 1 (7.113)

The positive root for R in Eq.(7.113) indicates the failure stress level,
while the negative root gives the failure stress level when the sign of the
applied stresses is reversed.

In general, the modules of these two roots are different since the failure
stress levels in tension and in compression are not equal.

7.9.5 Some conclusions on failure criteria of laminates

Practical failure criteria of laminates are typically based on the classical
laminated plate theory and typically assume elastic constant ply proper-
ties. A relevant design criterion is the Tsai-Wu criterion because it includes
some interaction between stresses and different strengths in tension or
compression and residual and hygrothermal stresses can be incorporated
without difficulties. It also involves simple algebraic calculations and thus
is easier to apply than the criteria involving inequalities.

The performance of a given criterion always has to be validated using
some well-founded mechanical experiments on materials and structures.
Moreover, the applicability of a criterion is usually a function of many
external (loading history, environmental conditions) and internal (rheo-
logical properties of the matrix) parameters. In particular, the post first
ply failure prediction requires particular assumptions on the damage pro-
cess. Failure criteria that can be easily used in structural design are usually
not directly related to failure modes and their couplings. Hence, they only
have to be regarded as empirical and oversimplified ways to predict oc-
currence of some internal damage, i.e. of the irreversible and unacceptable
loss of the load bearing capabilities of a laminate [PP3,Red2].

A more accurate prediction of failure in composite laminates is possible
using non linear finite element methods that incorporate sophisticated
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material model for characterizing onset of play failure and its evolution in
the laminate as well as the effect of ply delamination [OO].

7.10 MODELING OF DELAMINATION VIA ZIGZAG THEORY

Delamination effects in composite laminated plates due to interlamina fail-
ure can be effectively reproduced with the refined zigzag theory (RZT) the-
ory presented in Section 7.8.1. Similarly, to beams, the delamination model
simply implies introducing a very thin “interface layer” between adjacent
material layers. Delamination is produced when the material properties of
the “interface layer” are reduced to almost a zero value in comparison to
those of the adjacent layers due to interlamina failure. The RZT can take
into account the reduction of the overall plate stiffness due to the failure
of the interface layer. Moreover, the refined zigzag model can accurately
represent the jump in the axial displacement field across the interphase
layer, as well as the change in the axial and tangential stress distribution
over the plate section.

Figures 7.21 and 7.22 show an example of the capabilities of the QLRZ
element of Section 7.8.2 to model delamination. The problem represents
the analysis of a SS plate under uniformly distributed loading. The plate
has a 9 layers of composite material which properties are shown in Table
7.7 (material C2). Delamination is modelled by progressively reducing the
value of the shear modulus at the fourth layer (starting from the bottom),
as shown in Table 7.9. The fourth layer is therefore assumed to act as
an interface layer that induces delamination between the third and fifth
layers.

Shear modules values for layer 4

Model No. G(MPa) Model No. G(MPa) Model No. G(MPa)

1 4000 4 0,4 7 0.0004
2 40 5 0,04
3 4 6 0,004

Table 7.9 Shear modulus for the delamination layer in square SS plate

Figure 7.21 shows results for the central deflection value in terms of
the properties of the interface layer. Note that the deflection increases one
order of magnitude versus the non-delaminated case. It is also interesting
that the deflection does not change after the material properties of the
interface layer are reduced beyond 6 orders of magnitude. Results agree
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Fig. 7.21 Delamination study in SS square plate under uniformly distributed load-
ing. Values of central deflection for each of the material models studied

reasonably well with those obtained with the 3D model of Figure 7.12b
introducing a similar reduction in the material properties and an ad hoc
interface layer. The discrepancy for the smaller values of the shear modulus
for the interface layer (G5,G6 andG7) is due to the intrinsic higher stiffness
of the plate bending model versus the 3D model.

The jump of the axial displacement across the thickness at the inter-
face layer during delamination can be clearly seen in Figure 7.22. Again
note that the displacement jump remains stationary after a reduction of
the material properties in the interphase layer of 8 orders of magnitude.
Results agree well with the 3D solution also shown in the figure .

The example shows clearly the capability of the QLRZ element to
model a complex phenomena such as delamination without introducing
additional kinematic variables. More evidence of the good behaviour of
the QLRZ element for delamination studies can be found in [OEO2].

7.11 EDGE DELAMINATION IN COMPOSITE LAMINATES

The simplest theory for determining the in-plane elastic response of a
laminated composite assumes that a state of plane stress exists for sym-
metric laminates under in-plane traction, wherein the interlaminar stress
components vanish. This assumption is accurate for interior regions far
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Fig. 7.22 Delamination in SS square plate under uniform loading. Material C2
of Table 7.7. Thickness distribution of in-plane displacement u at point B for
models 1–6. Results are compared with a 3D solution (HEXA20)
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from geometric discontinuities, such as free edges. However, there exists
a boundary layer, near the laminate free edges, where the stress state is
three-dimensional. There is a stress transfer between plies through the ac-
tion of interlaminar stresses that are substantially increased in that region
[On2]. The width of this boundary layer is a function of the elastic prop-
erties of the laminate, its fibre orientations and the laminate geometry. A
simple rule proposed by Pipes and Pagano [PP1] for hard-polymer-matrix
composites is that the thickness of the boundary layer is approximately
equal to the laminate thickness.

The primary consequences of the laminate boundary layer are delami-
nation induced failures that initiate within this region and distortions due
to the presence of interlaminar stress components (Figure 7.23).

Fig. 7.23 Schematic representation of the deformed cross section of a laminate
caused by delamination due to edge effects [On4]

The laminate stacking sequence may have a significant influence upon
the values and distribution of the interlaminar stresses within the bound-
ary layer causing delamination. Pagano and Pipes [PP2] analyzed the
stacking sequence in a boron-epoxy angel ply laminate under uniaxial ten-
sion with built-in thermal stresses assumed. Numerical results show that
the interlaminar tensile stress (which is the most probable cause of delami-
nation failure) is highest in a [±15/±45]s laminate becoming much lower in
a [15/±45/−15]s orientation. On the other hand, a [±45/±15]s orientation
gives the highest normal compressive stresses, and a [45/± 15/− 45]s ori-
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entation is optimum because both interlaminar shear and normal stresses
are kept to a minimum. Similar results were observed experimentally by
Foye and Baker [FB].

Kim and Soni [KS ] performed investigations towards the suppression
of free-edge delamination by reduction of the predominant interlaminar
stress components. Their conclusions are that the mixing of S-glass and
carbon reinforced plies reduced the interlaminar stress values. The amount
of this reduction varies depending upon the laminate type, including the
orientation and the location of the S-glass plies. As a general rule, laminate
resistance to delamination is enhanced by hybridization.

Soni and Kim [SK] studied the suppression of free-edge delamination by
introducing an adhesive layer at appropriate interfaces of high interlaminar
stresses. This procedure leads to significant higher ultimate strength of
laminates.

7.12 CONCLUDING REMARKS

The study of composite laminated plates with the FEM requires introduc-
ing in-plane (membrane) effects into the standard plate bending theories.
In this chapter we have derived a family of composite laminated plate
elements based on extensions of classical Reissner-Mindlin plate theory.
These elements account for transverse shear deformation effects which are
important in composite laminated plates and, therefore, in general are
more accurate than elements derived via the traditional Kirchhoff thin
plate theory.

Higher order formulations based on the layer-wise and the refined
zigzag theory (RFT) have also been explained. We note the simplicity
and accuracy of the RFT for reproducing the complex distribution of the
in-plane displacements and the stresses across the thickness in a lami-
nated plate. The RZF has also possibilities for modeling delamination
effects and, as such, it is indeed a very promising procedure for linear and
non-linear analysis of composite laminated plates with the FEM.

2



8

ANALYSIS OF SHELLS WITH FLAT
ELEMENTS

8.1 INTRODUCTION

A shell can be seen, in essence, as the extension of a plate to a non-
planar surface. The non-coplanarity introduces axial (membrane) forces
in addition to flexural (bending and shear) forces, thus providing a higher
overall structural strength.

Shell-type structures are common in many engineering constructions
such as roofs, domes, bridges, containment walls, water and oil tanks and
silos, as well as in airplane and spacecraft fuselages, ship hulls, automobile
bodies, mechanical parts, etc.

The way in which a shell supports external loads by the combined
action of axial and flexural effects is similar to that of arches and frame
structures. Thus, while a beam and a plate typically resist the external
forces by flexural effects only, frames, arches and shells offer a higher
resistance to load due to the coupled action of axial and flexural forces.
A good structural knowledge of frames and arches is therefore helpful to
understand the behaviour of shells. Figure 8.1 shows a simple scheme of
the axial forces acting on a plane frame and on a folded shell formed by
assembly of two plates.

It is important to understand that the coupling of membrane and flex-
ural effects can also occur in flat shells made of composite laminated ma-
terial. This case was studied in the previous chapter when dealing with
composite laminated plates.

Shells are typically classified by the shape of their middle surface. In
this book we will study shells with arbitrary shape (Chapters 8 and 10),
axisymmetric shells (Chapter 9) and prismatic shells (Chapter 11).

E. Oñate, Structural Analysis with the Finite Element Method. Linear Statics:  
Volume 2: Beams, Plates and Shells, Lecture Notes on Numerical Methods  
in Engineering and Sciences, DOI 10.1007/978-1-4020-8743-1_8,  
© International Center for Numerical Methods in Engineering (CIMNE), 2013 
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Fig. 8.1 Axial forces in frames and folded plate structures

The governing equations of a curved shell (equilibrium and kinematic
equations, etc.) are quite complex due to the curvature of the middle
surface [Fl,Kr,Ni,No2,TW,Vl2]. A way of overcoming this problem is con-
sidering the shell as formed by a number of folded plates (Figures 8.2 and
8.3). This is precisely the approach to be followed in this chapter.

The chapter stars with the formulation of flat shell elements as a direct
extension of the Reissner-Mindlin thick plate theory studied in Chapter
5. It will be shown that in many cases the element stiffness matrix can
be formed by assembling the flexural and axial contributions of the corre-
sponding plate and plane stress elements, similarly as for straight members
in frames. The second part of the chapter deals with flat shell elements
following Kirchhoff thin folded plate theory. The derivation of rotation-
free thin shell triangles as an extension of the rotation-free plate elements
of Section 4.8 is also presented. The chapter concludes with a description
of some higher order theories for modelling composite laminated shells.

8.2 FLAT SHELL THEORY

A “shell element” combines a flexural (bending and shear) behaviour and
an “in-plane” (membrane) one. The membrane state induces axial forces
contained in the shell middle surface. If the shell element is flat then
the flexural and in-plane states are typically decoupled at the element
level, an exception being the case of composite laminated shells. This
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Fig. 8.2 Examples of folded plate structures

Fig. 8.3 a) Discretization of a curved arch in segments. b) Discretization of a
cylindrical surface in flat rectangular elements

decoupling extends to the element stiffness matrix which is formed by
a simple superposition of the flexural and membrane contributions. The
full flexural-membrane coupling appears when flat elements meeting at
different angles are assembled in the global stiffness matrix.
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Fig. 8.4 Discretization of slab-beam bridge in rectangular flat shell elements

Flat elements are “natural” for folded plate structures such as bridges,
plane roofs and some mechanical parts (Figure 8.2) and can also be used
to discretize a curved shell as shown in Figure 8.3. Figure 8.4 shows the
discretization of a slab-beam bridge in rectangular flat shell elements

Consequently, flat elements provide a general procedure for analysis
of shells of arbitrary shape. The simplicity of their formulation versus the
more complex curved shell elements (Chapter 10) makes flat shell elements
a good and popular option for practical purposes.

The formulation of flat shell elements follows the lines of the pre-
vious chapters. First the basic kinematic, constitutive and equilibrium
(virtual work) equations will be derived for an individual element. Then
the global assembly process will be studied. The formulation based on
Reissner-Mindlin theory (adequate for thin and thick situations) will be
presented first. Thin flat shell elements based on Kirchhoff theory will be
studied in the second half of the chapter.

8.3 REISSNER-MINDLIN FLAT SHELL THEORY

8.3.1 Displacement field

Let us a consider the rectangular shell domain of Figure 8.5 defined in a
global coordinate system x, y, z. As in plates, the middle plane is taken as
the reference surface for the kinematic description. A local system x′, y′, z′

is defined where z′ is the normal to the middle plane and x′, y′ are two
arbitrary orthogonal directions contained in it. These directions will be as-
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Fig. 8.5 Rectangular flat shell domain. Local and global axes

sumed to coincide with two adjacent sides of the rectangular shell domain,
for simplicity. A more general definition for the local axes will be intro-
duced in a later section. The deformation of the domain points referred
to the local coordinate system will be considered next.

We will assume that Reissner-Mindlin assumptions for the normal rota-
tion hold (Section 6.2). Accordingly, the displacements of a point A along
the normal direction OA are expressed as (Figure 8.6)

u′(x′, y′, z′) = u′0(x
′, y′)− z′θx′(x′, y′)

v′(x′, y′, z′) = v′0(x
′, y′)− z′θy′(x′, y′)

w′(x′, y′, z′) = w′0(x
′, y′)

(8.1)

where u′0, v′0 and w′0 are the displacements of point O over the middle
plane along the local directions x′, y′ and z′, respectively; θx′ and θy′ are
the rotations of the normal OA contained in the local planes x′z′ and y′z′,
respectively, and z′ = OA. The local displacement vector of point A is

u′ =
[
u′0, v

′
0, w

′
0, θx′ , θy′

]T
(8.2)

In addition to the “bending” displacements (w′0, θx′ , θy′), the middle
plane points have in-plane displacements (u′0, v′0). This in-plane motion
introduces membrane strains and axial forces.

The above displacement field is analogous to that used for composi-
te laminated plates (Section 7.2) where the different material properties
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Fig. 8.6 Local displacements in a flat shell element. Reissner-Mindlin theory

across the thickness induced in-plane displacements in addition to the
bending modes. The kinematics of a flat shell element are in fact identical
to those of a composite laminate plate, if the local coordinate system in
the shell is made coincident with the global system in the plate.

8.3.2 Strain field

As for plates, the normal strain εz′ does not play any role in the internal
work due to the plane stress assumption (σz′ = 0). The relevant strains
are written in the local axes using Eqs.(7.3) as

εεε′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

εx′

εy′

γx′y′

· · · · · ·
γx′z′

γy′z′

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u′

∂x′
∂v′

∂y′
∂u′

∂y′
+

∂v′

∂x′
· · · · · ·

∂u′

∂z′
+

∂w′

∂x′
∂v′

∂z′
+

∂w′

∂y′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u′0
∂x′
∂v′0
∂y′

∂u′0
∂y′

+
∂v′0
∂x′

· · · · · · · · ·
0
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−z′∂θx′
∂x′

−z′∂θy′
∂y′

−z′(∂θx′
∂y′

+
∂θy′

∂x′
)

· · · · · · · · ·
∂w′0
∂x′

− θx′

∂w′0
∂y′

− θy′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8.3)
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or

εεε′ =

⎧⎨⎩
εεε′p
· · · · · ·
εεε′s

⎫⎬⎭ =

⎧⎨⎩
ε̂εε′m
· · · · · ·

0

⎫⎬⎭ +

⎧⎨⎩
−z′ε̂εε′b
· · · · · ·
ε̂εε′s

⎫⎬⎭ (8.4)

i.e.

εεε′p = ε̂εε′m − z′ε̂εε′b
εεε′s = ε̂εε′s

(8.5)

Vectors εεε′p and εεε′s contain in-plane strains due to membrane-bending ef-
fects (εx′ , εy′ , γx′y′) and transverse shear strains (τx′z′ , τy′z′), respectively
and

ε̂εε′m =

[
∂u′0
∂x′

,
∂v′0
∂y′

,

(
∂u′0
∂y′

+
∂v′0
∂x′

)]T

(8.6a)

ε̂εε′b =
[
∂θx′

∂x′
,
∂θy′

∂y′
,

(
∂θx′

∂y′
+

∂θy′

∂x′

)]T

(8.6b)

ε̂εε′s =
[
∂w′0
∂x′

− θx′ ,
∂w′0
∂y′

− θy′

]T

= [−φx′ ,−φy′ ]
T (8.6c)

are generalized local strain vectors due to membrane (elongations), bend-
ing (curvatures) and transverse shear effects, respectively. As in plates,
the transverse shear strains γx′z′ and γy′z′ represent (with opposite sign)
the transverse shear rotations φx′ and φy′ , respectively (Eq.(8.6c)).

Eq.(8.4) shows that the total strains at a point are the sum of the
membrane (axial) and flexural (bending and shear) contributions.

Eq.(8.4) can be rewritten as

εεε′ = Sε̂εε′ (8.7)

where

ε̂εε′ =

⎧⎪⎨⎪⎩
ε̂εε′m
ε̂εε′b
ε̂εε′s

⎫⎪⎬⎪⎭ and S =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 −z′ 0 0 0 0

0 1 0 0 −z′ 0 0 0

0 0 1 0 0 −z′ 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ (8.8)

are the generalized local strain vector and the transformation matrix re-
lating 3D strains and generalized strains.
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8.3.3 Stress field. Constitutive relationship

The stress-strain relationship of 3D elasticity is written in local axes in
order to introduce the plane stress condition (σz′ = 0). The following
relationship between the significant local stresses and strains is obtained
after eliminating εz′ ,

σσσ′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

σx′

σy′

τx′y′

· · · · · ·
τx′z′
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· · ·
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′
p

... 0

· · · · · · · · ·
0

... D′
s
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σ0
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σ0
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· · · · · ·
τ0x′z′

τ0y′z′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
= D′εεε′+σσσ

′0

(8.9a)
with

σσσ
′0 =

{
σσσ
′0
p

σσσ
′0
s

}
, σσσ

′0
p = [σ0

x′ , σ
0
y′ , τ

0
x′y′ ]

T , σσσ
′0
s = [τ0x′z′ , τ

0
y′z′ ]

T (8.9b)

where σσσ′p and σσσ′s contain the in-plane stresses (σx′ , σy′ , τx′y′) and the

transverse shear stresses (τx′z′ , τy′z′) in local axes, respectively and σσσ
′0 is

an initial stress vector. For isotropic material

D′
p =

E

1− ν2

⎡⎣1 ν 0
ν 1 0
0 0 1−ν

2

⎤⎦ , D′
s = G

[
1 0
0 1

]
(8.10)

Figure 8.7 shows the distribution of the stresses across the shell thick-
ness for homogeneous material.

Let us consider now a composite laminated shell formed by a num-
ber of orthotropic layers with orthotropy axes L, T, z′ with −→z ′ = −→n and
satisfying the plane anisotropy conditions (Figure 8.8). The constitutive
equation in the orthotropy axes L, T, z′ for each layer is written as

σσσI = DIεεεI (8.11)

where vectors σσσI , εεεI and matrix DI are given by Eqs.(7.8)-(7.11).
The constitutive matrices in local axes x′, y′, z′ are found as explained

in Section 7.2.3 for composite laminated plates. The result is

D′
p = TT

1D1T1, D′
s = TT

2D2T2 (8.12)

The constitutive matrices D1 and D2 are given in Eq.(7.9) and the trans-
formation matrices T1 and T2 in Eq.(6.15b).
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Fig. 8.7 Stress distribution across the shell thickness for homogeneous material.
Membrane (·)m and bending (·)b contributions to the in-plane stresses

The initial stress vector σσσ
′0 of Eq.(8.9a) induced by a temperature

increment is

σσσ
′0 =

⎧⎪⎪⎨⎪⎪⎩
σσσ
′0
p

. . .
0
0

⎫⎪⎪⎬⎪⎪⎭ with σσσ
′0
p = −TT

1D1[αLΔT, αTΔT, 0]T (8.13)

where αL and αT are the thermal expansion coefficients in the orthotropy
directions L and T , respectively, and ΔT is the temperature increment.
For isotropic material β = 0, αL = αT = α and

σσσ
′0
p = −EαΔT

1− ν2
[1, 1, 0]T (8.14)
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Fig. 8.8 Composite laminated flat shell element. Piling of three layers at 0/90/0

Substituting Eqs.(8.5) into (8.9a) gives the relationship between the
local stresses and the generalized local strains at a point as

σσσ′ =

{
σσσ′p

σσσ′s

}
= D′

[
ε̂εε′m − z′ε̂εε′b

ε̂εε′s

]
+ σσσ

′0 = D′Sε̂εε′ + σσσ
′0 (8.15)

Eq.(8.14) shows that the stresses σx′ , σy′ and τx′y′ vary linearly across
the shell thickness and they are not necessarily zero for z′ = 0. This is
analogous to the distribution of normal stresses in beam cross sections
under axial and bending forces, i.e. the total stress is obtained as the sum
of a uniform stress field due to the axial forces and a symmetric linear
bending stress field. This is shown in Figure 8.7 where superindices m and
b denote the membrane and bending contributions to the stress field.

Eq.(8.15) evidences that the tangential stresses τx′z′ and τy′z′ are con-
stant across the thickness. Hence, the transverse shear moduli must be
properly modified, specially for composite laminated material [Co1]. The
correct distribution of the tangential stresses can be computed “a poste-
riori” using the transverse shear forces, similarly as for plates. The exact
distribution of the tangential stresses is parabolic for homogeneous mate-
rial (Figure 8.7).

For composite laminated shells the distribution of stresses across the
thickness follows the pattern of Figure 7.3.
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Fig. 8.9 Sign convention for resultant stresses in a flat shell element

8.3.4 Resultant stresses and generalized constitutive matrix

The resultant stress vector at a point of the shell middle plane is

σ̂σσ′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ̂σσ′m
· · ·
σ̂σσ′b
· · ·
σ̂σσ′s

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nx′

Ny′

Nx′y′

· · ·
Mx′

My′

Mx′y′

· · ·
Qx′

Qy′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

∫ t
2

− t
2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σσσ′p
· · ·
z′σσσ′p
· · ·
σσσ′s

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ dz′ =
∫ t

2

− t
2

STσσσ′ dz′ (8.16)

where σ̂σσ′m, σ̂σσ′b and σ̂σσ′s are resultant stress vectors corresponding to mem-
brane, bending and transverse shear effects and t is the shell thickness.
The definition of axial forces, bending moments and transverse shear forces
coincides with that for composite laminated plates (Section 7.2.4 and Fig-
ures 7.3 and 8.9). The resultant stresses have units of moment or force per
unit width of the shell surface.

Introducing Eq.(8.9a) into (8.16) and using Eq.(8.7) gives the relation-
ship between resultant stresses and local generalized strains (including
initial stresses) as

σ̂σσ′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ̂σσ′m
· · ·
σ̂σσ′b
· · ·
σ̂σσ′s

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

∫ t
2

− t
2

ST (D′εεε′ + σσσ
′0)dz′ = D̂′ε̂εε′ + σ̂σσ

′0 (8.17)
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where the generalized constitutive matrix is

D̂′ =
∫ t

2

− t
2

STD′Sdz′ =
∫ t

2

− t
2

⎡⎣ D′
p −z′D′

p 0

−z′D′
p z′2D′

p 0

0 0 D′
s

⎤⎦ dz′ =

⎡⎣ D̂′
m D̂′

mb 0

D̂′
mb D̂′

b 0

0 0 D̂′
s

⎤⎦
D̂′

m =

∫ t
2

− t
2

D′
pdz

′ ; D̂′
mb = −

∫ t
2

− t
2

z′D′
pdz

′

D̂′
b =

∫ t
2

− t
2

z′2D′
pdz

′ ; D̂′
s =

[
k11D̄

′
s11 k12D̄

′
s12

Sym. k̄22D̄
′
s22

]
(8.18a)

with
D̄sij =

∫ t
2

− t
2

D′sijdz
′ (8.18b)

and

σ̂σσ
′0 =

⎧⎪⎨⎪⎩
σ̂σσ
′0
m

σ̂σσ
′0
b

σ̂σσ
′0
s

⎫⎪⎬⎪⎭ =

∫ t
2

− t
2

STσσσ
′0 dz′ (8.19a)

or

σ̂σσ
′0
m =

∫ t
2

− t
2

σσσ
′0
p dz

′ , σ̂σσ
′0
b =

∫ t
2

− t
2

σσσ
′0
p dz

′ , σ̂σσ
′0
s =

∫ t
2

− t
2

z′σσσ
′0
s dz

′ (8.19b)

In above D̂′
m, D̂′

b and D̂′
s are the membrane, bending and transverse shear

constitutive matrices, respectively; D̂′
mb is the membrane-bending coupling

constitutive matrix and σ̂σσ
′0 is the initial resultant stress vector deduced

from the initial stress field. All matrices are symmetrical.
The computation of the shear correction parameters is performed as

explained for composite laminated plates in Section 7.3. For isotropic ma-
terial k11 = k22 = 5/6 and k12 = 0.

An arbitrary initial stress field induces axial forces as well as bending
moments in σ̂σσ

′0. For internal thermal stresses the temperature increment
is typically defined in both shell faces and a linear distribution is accepted
across the thickness direction. This simplifies the computation of σ̂σσ

′0.
For a composite shell formed by nl orthotropic layers with constant

material properties within each layer, matrices D̂′
m, D̂′

b and D̂′
mb can be

computed by

D̂′
m =

nl∑
i=1

D′
mi

Δz′i , D̂′
b =

1

3

nl∑
i=1

D′
mi

(z′3i+1 − z′3i )

D̂′
mb = −

1

2

nl∑
i=1

D′
mi

(z2i+1 − z2i )

(8.20)
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where Δz′i = z′i+1 − z′i is the layer thickness (Figure 8.8).
This formulation can also be applied for introducing the effect of steel

bars in reinforced concrete shells.
Indeed, the position of a neutral plane can be found. Taking the neutral

surface as the reference surface leads to the decoupling of the bending and
membrane effects at each point. Finding the neutral plane for heteroge-
neous materials is a tedious task, and, hence, the middle plane is usually
chosen as the reference surface.

If the material properties are homogeneous, or symmetric with respect
to the middle plane D̂′

mb = 0, the middle plane is a neutral plane and
each local resultant stress vector can be computed from the corresponding
generalized local strains in a decoupled manner as

σ̂σσ′m = D̂′
mε̂εε
′
m + σ̂σσ

′0
m ; σ̂σσ′b = D̂′

bε̂εε
′
b + σ̂σσ

′0
b ; σ̂σσ′s = D̂′

sε̂εε
′
s + σ̂σσ

′0
s (8.21)

For homogeneous material we obtain the standard expressions

D̂′
m = tD′

p; D̂′
b =

t3

12
D′

p and D̂′
s =

5

6
tD′

s (8.22)

8.3.5 Principle of Virtual Work

The PVW for a flat shell is∫∫∫
V
δεεε′Tσσσ′dV =

∫∫
A
δu′Tt′dA +

∑
i

δu′Ti p′i (8.23)

where V and A are the shell volume and the area of the shell surface,
respectively,

t′ =
[
fx′ , fy′ , fz′ ,mx′ ,my′

]T
(8.24)

is the surface load vector, fx′ , fy′ , fz′ are distributed loads acting on the
shell surface in the local directions x′, y′, z′, respectively; mx′ , my′ are
distributed moments contained in the planes x′z′ and y′z′, respectively,
and

p′i = [Px′i , Py′i , Pz′i ,Mx′i ,My′i ]
T (8.25)

are concentrated loads and moments. Substituting Eqs.(8.4) and (8.9a)
into the l.h.s. of (8.23) gives (neglecting the initial strains)∫∫∫

V
δεεε′Tσσσ′dV =

∫∫∫
V
δ
[
ε̂εε
′T
m − z′ε̂εε′Tb , ε̂εε′Ts

]{σσσ′p
σσσ′s

}
dV =
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=

∫∫∫
V

(
δε̂εε′Tmσσσ

′
p − z′δε̂εε′Tb σσσ

′
p + δε̂εε′Ts σσσ

′
c

)
dV =

=

∫∫
A

[
δε̂εε′Tm

(∫ + t
2

− t
2

σσσ′pdz
′
)

︸ ︷︷ ︸
σ̂σσ′m

+δε̂εε′Tb

(∫ + t
2

− t
2

−z′σσσ′pdz′
)

︸ ︷︷ ︸
σ̂σσ′b

+

+ δε̂εε′Tc

(∫ + t
2

− t
2

σσσ′sdz
′
)

︸ ︷︷ ︸
σ̂σσ′s

]
dA =

=

∫∫
A
(δε̂εε

′T
mσ̂σσ′m + δε̂εε

′T
b σ̂σσ′b + δε̂εε

′T
s σ̂σσ′s)dA =

∫∫
A
δε̂εε′T σ̂σσ′dA (8.26)

i.e. the internal virtual work is obtained as the sum of the membrane,
bending and transverse shear contributions. Also the integration domain
reduces from three to two dimensions, similarly as for plates.

The PVW can therefore be finally written as∫∫
A
δε̂εε
′T σ̂σσ′dA =

∫∫
A
δu

′T t′dA+
∑
i

δu
′T
i p

′
i (8.27)

Note that all the derivatives in the integrals in Eq.(8.27) are of first
order, which allows us to use C0 continuous elements.

8.4 REISSNER-MINDLIN FLAT SHELL ELEMENTS

8.4.1 Discretization of the displacement field

Let us consider the shell surface discretized into C0 isoparametric flat
shell elements with n nodes. Figure 8.10 shows a discretization into 8-
noded rectangles. Each element is contained in the local plane x′, y′. The
definition of this plane and the advantages of choosing a particular element
will be discussed later. The local displacements are interpolated as

u′ =

n∑
i=1

Nia
′(e)
i = [N1,N2, · · · ,Nn]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a
′(e)
1

a
′(e)
2
...

a
′(e)
n

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = Na′(e) (8.28a)
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Fig. 8.10 Shell discretized with 8-noded flat rectangles. Local coordinate system
for the element (x′, y′, z′). Local axes at an edge node i (xi, ti, ni)

where

Ni =

⎡⎢⎢⎣
Ni 0 0 0 0
0 Ni 0 0 0
0 0 Ni 0 0
0 0 0 Ni 0
0 0 0 0 Ni

⎤⎥⎥⎦ ; a
′(e)
i =

[
u′0i , v

′
0i , w

′
0i , θx′i , θy′i

]T

(8.28b)

are the shape function matrix and the local displacement vector of a node
i, respectively. This vector contains the in-plane displacements u′0i and
v′0i , the lateral displacement w′0i and the local rotations θx′i and θy′i .

8.4.2 Discretization of the generalized strain field

Substituting Eq.(8.28a) into the expression for the generalized local strain



Reissner-Mindlin flat shell elements 453

vector (8.8) gives (using Eqs.(8.6))

ε̂εε′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ε̂εε′m
· · · · · ·
ε̂εε′b

· · · · · ·
ε̂εε′s

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u′0
∂x′
∂v′0
∂y′

∂u′0
∂y′

+
∂v′0
∂x′

· · · · · · · · · · · ·
∂θx′

∂x′
∂θy′

∂y′
∂θx′

∂y′
+

∂θy′

∂x′
· · · · · · · · · · · ·
∂w′0
∂x′

− θx′

∂w′0
∂y′

− θy′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

n∑
i=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ni

∂x′
u′oi

∂Ni

∂y′
v′oi

∂Ni

∂y′
u′oi +

∂Ni

∂x′
v′oi

· · · · · · · · · · · · · · · · · ·
∂Ni

∂x′
θx′i

∂Ni

∂y′
θy′i

∂Ni

∂y′
θx′i +

∂Ni

∂x′
θy′i

· · · · · · · · · · · · · · · · · ·
∂Ni

∂x′
w′oi −Niθx′i

∂Ni

∂y′
w′oi −Niθy′i

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

=

n∑
i=1

B′ia
′(e) =

[
B′1,B

′
2, · · · ,B′n

]
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a
′(e)
1

a
′(e)
2
...

a
′(e)
n

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
= B′a′(e) (8.29)

where B′ and B′i are the local generalized strain matrices for the element
and a node i, respectively. The later can be written as

B′i =

⎧⎪⎪⎨⎪⎪⎩
B′mi

B′bi
B′si

⎫⎪⎪⎬⎪⎪⎭ (8.30)

where B′mi
, B′bi and B′si are respectively the membrane, bending and
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transverse shear strain matrices of a node given by

B′mi
=

⎡⎢⎢⎢⎢⎢⎣
∂Ni

∂x′
0 0 0 0

0
∂Ni

∂y′
0 0 0

∂Ni

∂y′
∂Ni

∂x′
0 0 0

⎤⎥⎥⎥⎥⎥⎦ , B′bi =

⎡⎢⎢⎢⎢⎢⎣
0 0 0

∂Ni

∂x′
0

0 0 0 0
∂Ni

∂y′

0 0 0
∂Ni

∂y′
∂Ni

∂x′

⎤⎥⎥⎥⎥⎥⎦

B′si =

⎡⎢⎢⎣0 0
∂Ni

∂x′
−Ni 0

0 0
∂Ni

∂y′
0 −Ni

⎤⎥⎥⎦
(8.31)

8.4.3 Derivation of the element stiffness equations

The PVW (Eq.(8.27)) applied to a single element reads∫∫
A(e)

δε̂εε′T σ̂σσ′dA =

∫∫
A(e)

δu′T t′dA+
[
δa′(e)

]T

q′(e) (8.32a)

In above q′(e) is the equilibrating nodal force vector with

q
′(e)
i =

[
Fx′i , Fy′i , Fz′i ,Mx′i ,My′i

]T

(8.32b)

where Fx′i , Fy′i and Fz′i are nodal equilibrating point forces acting in the
local directions x′, y′, z′, respectively, and Mx′i , Mz′i are nodal couples
contained in the planes x′z′ and y′z′, respectively.

Substituting the constitutive equation (8.17) into (8.32a) gives∫∫
A(e)

δε̂εε′T D̂′ε̂εε′dA+

∫∫
A(e)

δε̂εε′T σ̂σσ
′odA−

∫∫
A(e)

δu′Tt′dA =
[
δa′(e)

]T

q′(e)

(8.33)
Introducing the finite element discretization (Eqs.(8.28a) and (8.29))

into (8.33) and following the standard process, the equilibrium equations
for the element are obtained as

q′(e) = K′(e)a′(e) − f ′(e) (8.34)

where the stiffness matrix and the equivalent nodal force vector for the
element in local axes are

K
′(e)
ij =

∫∫
A(e)

B′Ti D̂′B′jdA (8.35a)
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f
′(e)
i = [fx′i , fy′i , fz′i ,mx′i ,my′i ]

T =

∫∫
A(e)

NT
i t
′dA−

∫∫
A(e)

B′Ti σ̂σσ
′0dA

(8.35b)
In Eq.(8.35b) only the effect of surface loads and initial stresses has

been considered. Other load types can be included in a straightforward
manner. For instance, the self-weight is equivalent to a uniformly dis-
tributed vertical load of intensity −ρt, where ρ is the specific weight and t
the thickness. In practice, it is convenient to write the components of the
equivalent nodal force vector directly in global axes. This is explained in
the next section when dealing with the global assembly process.

The expression of K
′(e)
ij of Eq.(8.35a) is rewritten using Eqs.(8.18a) and

(8.30) as follows

K
′(e)
ij =

∫∫
A(e)

[
B′Tmi

,B′Tbi ,B
′T
si

] ⎡⎣D′
m D̂′

mb 0

D̂′
mb D̂′

b 0

0 0 D̂′
s

⎤⎦
⎧⎪⎨⎪⎩
B′mj

B′bj
B′sj

⎫⎪⎬⎪⎭ dA =

= K′(e)
mij

+K
′(e)
bij

+K′(e)
sij +K

′(e)
mbij

+
[
K
′(e)
mbij

]T
(8.36)

where

K′(e)
mij

=

∫∫
A(e)

B′Tmi
D̂′

mB′mj
dA ; K

′(e)
bij

=

∫∫
A(e)

B′Tbi D̂
′
bB
′
bj
dA

K′(e)
sij =

∫∫
A(e)

B′Tsi D̂
′
sB

′
sjdA ; K

′(e)
mbij

=

∫∫
A(e)

B′Tmi
D̂′

mbB
′
bj
dA

(8.37)

are the local stiffness matrices corresponding to membrane, bending,
transverse shear and membrane-bending coupling effects, respectively. If

D̂′
mb is zero, the terms of K

′(e)
mb vanish and the local stiffness matrix for the

element is obtained as the sum of the membrane, bending and transverse
shear contributions.

The local element stiffness matrix for the element can be directly ex-
pressed in this case as

K
′(e)
ij

5×5
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(K
′(e)
PS )ij
2×2

... 0
2×3

· · · · · · · · · ... · · · · · · · · ·
0

3×2
...

(K
′(e)
PB)ij
3×3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
u′

v′

w′

θx′

θy′

(8.38)
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Fig. 8.11 Transformation of the two local rotations (θx′ , θy′) to the three global
rotations (θx, θy, θz)

where K
(e)
PS and K

(e)
PB are the element stiffness matrices corresponding to

the plane stress and plate bending problem given by Eqs.(6.61) of [On4]
and (6.37), respectively.

In conclusion, when the coupling membrane-bending effects can be
neglected, the local stiffness matrix for a flat shell element can be rea-
dily obtained by combining the plane stress and plate bending stiffness
matrices as shown in Eq.(8.38). At the local level the membrane stiffness
(plane stress) equilibrates the in-plane forces, and the bending stiffness
balances the out of plane forces. The membrane-bending coupling appears
when the element stiffness matrices are assembled into the global stiffness
matrix, as studied in the next section.

8.5 ASSEMBLY OF THE STIFFNESS EQUATIONS

The global equilibrium equations are obtained as usual on a node by node
basis by establishing the equilibrium of all the nodal forces meeting at
each node. This requires that these forces are defined in the same global
coordinate system. Hence, a transformation of the nodal displacements
and forces prior to the assembly process is mandatory, as for bar structures
(Chapter 1 of [On4] and [Li]). This is somehow more complicated in shells
as the transformation of the two local rotations θx′i and θy′i to the global
axes introduces a third global rotation θzi (Figure 8.11). The same occurs
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Fig. 8.12 Sign convention for the local and global rotations

with the transformation of the bending moments which introduces a third
nodal bending moment Mzi .

The local and global displacements and forces are related by the fol-
lowing transformations

a
′(e)
i = L

(e)
i a

(e)
i , f

′(e)
i = L

(e)
i f

(e)
i (8.39)

where

a
(e)
i = [uoi , voi , woi , θxi , θyi , θzi ]

T

f
(e)
i = [fxi , fyi , fzi ,mxi ,myi ,mzi ]

T
(8.40)

are the global displacement vector and the global load vector of a node,
respectively, including the third rotation and the third bending moment, as
mentioned above. Note that the global rotations and the bending moments

are defined now in vector form, i.e.
−→
θ x is the rotation vector defined by

the axial axis x, etc. (Figure 8.12).

As the element is flat, the transformation matrix L
(e)
i is constant for

all the element nodes and it has the following expression

L
(e)
i =

⎡⎣λλλ(e)

3×3 0

0 λ̂λλ
(e)

2×3

⎤⎦ , λλλ(e) =

⎡⎣λxx′ λxx′ λx′z
λy′x λy′y λy′z
λz′x λz′y λz′z

⎤⎦(e)

(8.41)



458 Analysis of shells with flat elements

with λx′x being the cosine of the angle formed by axes x′ and x, etc.
Keeping in mind the different sign conventions for the local and global
rotations, the rotation transformation matrix is

λ̂λλ
(e)

=

[−λy′x −λy′y −λy′z
λx′x λx′y λx′z

](e)
(8.42)

We deduce from Eq.(8.39)

a′(e) = T(e)a(e) , f ′(e) = T(e)f (e) (8.43)

where

T(e)

5n×6n
=

1 2 · · ·n⎡⎢⎣L
(e)
1

. . .

L
(e)
n

⎤⎥⎦
1
2
...
n

(8.44)

is the transformation matrix for the element. As the element is flat L
(e)
1 =

L
(e)
2 = . . . = L

(e)
n .

Combining Eqs.(8.34) and (8.43) gives finally

q(e) =
[
T(e)

]T

q′(e) =
[
T(e)

]T [
K′(e)a′(e) − f ′(e)

]
=

=
[
T(e)

]T

K′(e)T(e)a(e) −
[
T(e)

]T

f̄ ′(e) = K(e)a(e) − f (e) (8.45)

which is the new equilibrium equation for the element, where the displace-
ments and forces are referred to the global axes. In above

K(e) =
[
T(e)

]T

K′(e)T(e) ; f (e) = [T]T f ′(e) (8.46)

are the element stiffness matrix and the equivalent nodal force vector in
global axes.

External point loads Pi acting directly at a node i are added to the
global equivalent nodal force vector f in the standard manner.

The triple matrix product in Eq.(8.46) is not necessary in practice.
Combining Eqs.(8.35a) and (8.46) gives

K
(e)
ij =

[
L
(e)
i

]T
[∫∫

A(e)

B′Ti D̂′B′j

]
L
(e)
j =

∫∫
A(e)

BT
i D̂

′BjdA (8.47)
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where
Bi = B′iL

(e)
i (8.48)

Note that L
(e)
i = L

(e)
j can be used in Eq.(8.47), taking advantage from

the flat geometry of the element.
The key results sought in shell analysis are the nodal displacements in

global axes and the local resultant stresses. The later allow us to evaluate
the resistant capacity of the structure and to design the necessary steel
reinforcement. A relationship between the local resultant stresses and the
global nodal displacements is obtained combining Eqs.(8.17), (8.29), (8.39)
and (8.48) (neglecting the initial strains) as

σ̂σσ′ = D̂′ε̂εε′ = D̂′
n∑

i=1

B′ia
′(e)
i = D̂′

n∑
i=1

B′iL
(e)
i a

(e)
i = D̂′

n∑
i=1

Biai = D̂′Ba(e)

(8.49)

Matrix Bi therefore has a double utility; it reduces the matrix opera-
tions to obtain the global stiffness matrix for the element, and it can also
be used for the direct computation of the local resultant stresses.

The transformation (8.49) can be written separately for each of the
membrane, bending and transverse shear strain matrices giving

Bmi = B′mi
L
(e)
i , Bbi = B′biL

(e)
i and Bsi = B′siL

(e)
i (8.50)

The global stiffness matrices can be therefore computed by an expres-
sion identical to (8.37) simply substituting B′m, B′b and B′s, by Bm, Bb

and Bs, respectively.

8.6 NUMERICAL INTEGRATION OF THE STIFFNESS MATRIX
AND THE EQUIVALENT NODAL FORCE VECTOR

Both the global stiffness matrix K(e) and the equivalent nodal force vector
are evaluated using numerical integration. A first step is to define the
nodal coordinates in the local axes x′y′z′. This can be performed by a
simple coordinate transformation analogous to Eq.(8.39) for the nodal
displacements as

x′ = [x′, y′, z′]T = λλλ(e)(x− x0) (8.51)
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where λλλ(e) is the transformation matrix of Eq.(8.42) and x0 are the coor-
dinates of the origin of the local system. During the computation of the
element stiffness matrix the coordinates appear in the Jacobian evalua-

tion only, via the terms
∂x′

∂ξ
,
∂y′

∂η
etc. Hence, since λλλ(e) is constant within

the element and
∂

∂ξ
x0 =

∂

∂η
x0 = 0, the simpler transformation x′ = λλλ(e)x

can be used with identical results. This explains why the element stiffness
matrix is independent of the origin of the coordinate system [Li].

The element stiffness matrix can be directly computed in global axes
using a Gauss quadrature by

K
(e)
ij =

npm∑
pm=1

nqm∑
qm=1

(I(e)m )pm,qmWpmWqm +

npb∑
pb=1

nqb∑
qb=1

(I
(e)
b )pb,qbWpbWqb+

+

nps∑
ps=1

nqs∑
qs=1

(I(e)s )ps,qsWpsWqs +

npmb∑
pmb=1

nqmb∑
qmb=1

(I
(e)
mb)pmb,qmb

Wpmb
Wqmb

(8.52a)

where
I(e)a = BT

aiD̂
′
aBaj

∣∣J(e)
∣∣ a = m, b, s (8.52b)

I
(e)
mb =

[
BT

mi
D̂′

mbBbj +BT
bi
D̂′

mbBmj

]
|J (e)| (8.52c)

In Eq.(8.52a), npa , Wpa and nqa , Wqa are the number of integra-
tion points and the corresponding weights along each natural directions
ξ and η, respectively. Subscripts m, b, s,mb denote membrane, bending,
transverse shear and membrane-bending coupling contributions, as usual.
Eq.(8.52a) allows us to use different quadrature rules for each of these
terms. This is useful to avoid shear (and membrane) locking.

If the number of integration points is large, then the evaluation of

Bai(= B′aiL
(e)
i ) at each integration point in Eq.(8.52a) can be costly. A

more economical option is to compute the local stiffness matrix first and
then transform this to the global axes using Eq.(8.47). A disadvantage of
this option is the need to repeat the transformations (8.49) to compute
“a posteriori” the local resultant stresses at each Gauss point (which are
the “optimal” sampling point for the stresses in most cases) [On4]. Which
option is the best one depends on the element type and the quadrature
chosen. For linear and quadratic elements with 2×2 and 3×3 quadratures,
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performing first the transformations (8.50) and then directly computing
the global stiffness matrix is more advantageous.

The equivalent nodal force vector (in global coordinates) of Eq.(8.35b)
is also computed numerically using a Gauss quadrature as

f
(e)
i =

np∑
p=1

nq∑
q=1

(If )p,qWpWq with If = (NT
i t−BT σ̂σσ′0)|J|(e) (8.53)

Note that in the expression of If of Eq.(8.53) the surface loads are
expressed in the global coordinate system.

8.7 BOUNDARY CONDITIONS

Standard boundary conditions in shells are the following.

Point support: u0i = v0i = w0i = 0

Clampled edge: (ai = 0). All DOFs at nodes laying on a clampled edge are
prescribed to a zero value.

Simple supported (SS) edge

• Soft SS edge: u0i = v0i = w0i = 0
• Hard SS edge: u0i = v0i = w0i = θti = 0, where t is the tangential

direction at the ith edge node (Figures 8.10 and 8.13).

The definition of the tangential direction at an edge node implies the
following steps. First the average unit normal at a node is computed (ni).
The unit tangential vector ti is defined as orthogonal to ni and contained
in the plane formed by the two edge sides sharing node i. The edge coor-
dinate system at a node (ti, ai,ni) is completed by defining vector ai as
ai = ni ∧ ti.

Symmetry edge: θai = 0, where ai is the normal vector to the symmetry
plane at node i.

The edge system at a symmetry node is obtained as described for a SS
node.

Prescribing the edge rotations θti and θai implies first the definition of
the edge coordinate system at each edge node and then transforming the
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Fig. 8.13 Shallow cylindrical shell discretized with 4-noded rectangles. Schematic
representation of boundary conditions at nodes laying on a SS edge, the edges of
a rigid diaphragm and a symmetry plane

local nodal rotations to the edge rotations (Figures 8.10 and 8.13). The
transformation is [On4]

θθθ′i =
{
θx′i
θy′i

}
=

[
Cx′s Cx′t
Cy′s Cy′t

]
︸ ︷︷ ︸

λ̂λλ
(e)
i

{
θti
θai

}
(8.54)

where Cx′s is the cosine of the angle between the x′ axis and the t axis, etc.

Matrix λ̂λλ
(e)

i of Eq.(8.54) substitutes the rotation transformation matrix

λ̂λλ
(e)

in Eq.(8.42). Note that λ̂λλ
(e)

i may now vary for each boundary node.
The definition of the local and edge rotations follows the same angular

criterium. The nodal DOFs after the local-global transformation are a
(e)
i =

[u0i , v0i , w0i , θti , θai ]
T .

Figure 8.14 shows the difference between the local and edge axes at a
node on a SS edge.

If all the elements sharing a boundary node lay on the same plane
(i.e. the node is coplanar (Section 8.9)), then the edge axes t, a, n can
be made coincident with the local axes x′, y′, z′. The nodal variables
are u0i , v0i , w0i , θx′i , θy′i . The SS (hard) boundary condition is simply pre-
scribed by making θx′i = 0, while the symmetry edge condition implies



Definition of the local axes 463

Fig. 8.14 Edge and local coordinate systems at a node on a SS edge

making θy′i = 0. An example of this situation is node j laying on a SS
edge in Figure 8.13.

8.8 DEFINITION OF THE LOCAL AXES

A good definition of the local axes is essential for identifying the local
resultant stresses easily.

The local axis x′ can take any arbitrary direction within the element.
The selection of x′ influences the definition of the local coordinate system
x′, y′, z′ and the transformation matrix T(e). The solution is not unique
and several alternatives exist. Some options are presented below.

8.8.1 Definition of local axes from an element side

Vector x′ is defined as the direction of one of the element sides. This
process is equally valid for triangular and quadrilateral elements.

For the elements shown in Figure 8.15 vector V
(e)
x′ is computed using

the coordinates of two nodes i and j along a side as

V
(e)
x′ =

⎧⎨⎩
xj − xi
yj − yi
zj − zi

⎫⎬⎭
(e)

=

⎧⎨⎩
xij
yij
zij

⎫⎬⎭
(e)

(8.55)

The unit vector is

v
(e)
x′ =

⎧⎨⎩
λx′x
λx′y
λx′z

⎫⎬⎭
(e)

=
1

l
(e)
ij

⎧⎨⎩
xij
yij
zij

⎫⎬⎭ (8.56)

where l
(e)
ij =

√
(x2ij + y2ij + z2ij)

(e) is the length of side ij.
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Fig. 8.15 Definition of local axes starting from an element side

The direction cosines of the z′ axis are obtained by the cross product
of any two sides, i.e.

v
(e)
z′ =

⎧⎨⎩
λz′x
λz′y
λz′z

⎫⎬⎭
(e)

=
1

|V(e)
ij ∧V

(e)
im|

(V
(e)
ij ∧V(e)

im) =
1

d
(e)
z′

⎧⎨⎩
yijzim − zijyim
ximzij − zimxij
xijyim − yijxim

⎫⎬⎭
(e)

(8.57a)
and

d
(e)
z′ =

√
[(yijzim − zijyim)2 + (ximzij − zimxij)2 + (xijyim − yijxim)2](e)

For a triangle d
(e)
z′ is twice its area and this simplifies the computations.

The direction cosines of the y′ axis are obtained by the cross product
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Fig. 8.16 Definition of the local x′ axis by intersecting the element with a plane
parallel to the global plane xz

of the unit vectors in the z′ and x′ directions:

v
(e)
y′ =

⎧⎨⎩
λy′x
λy′y
λy′z

⎫⎬⎭
(e)

= v
(e)
z′ ∧ v

(e)
x′ =

⎧⎨⎩
λz′yλx′z − λx′yλz′z
λx′xλz′z − λz′xλx′z
λz′xλx′y − λz′yλx′x

⎫⎬⎭
(e)

(8.57b)

8.8.2 Definition of local axes by intersection with a coordinate plane

A useful alternative is to define x′ as the intersection of the element plane
with a plane parallel to one of the global coordinate planes xz or yz.

For instance, the x′ axis can be defined by intersecting the element with
a plane parallel to the xz plane as shown in Figure 8.16. The projection
of x′ along the y axis is then zero and,

v
(e)
x′ =

⎧⎨⎩
λx′x
0

λx′z

⎫⎬⎭
(e)

(8.58)
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As the length of this vector is unity, then

(λ
(e)
x′x)

2 + (λ
(e)
x′z)

2 = 1 (8.59)

The second necessary equation comes from the condition that the scalar

product of the unit vectors v
(e)
z′ and v

(e)
z′ is zero, i.e.

λ
(e)
x′xλ

(e)
z′x + λ

(e)
x′zλ

(e)
z′z = 0 (8.60)

From Eqs.(8.59) and (8.60) we have

λ
(e)
x′x =

1√
1 + (

λ
(e)

z′z
λ
(e)

z′x
)2

and λ
(e)
x′z =

1√
1 + (

λ
(e)

z′x
λ
(e)

z′z
)2

(8.61)

Vector v
(e)
y′ is finally obtained by the cross product of v

(e)
z′ and v

(e)
x′ .

8.8.3 Definition of a local axis parallel to a global one

A mesh of rectangular or triangular elements in a prismatic shell can
always be generated so that one of the element sides is always parallel to
a global axis (For instance the x axis in Figure 8.17). This side defines the
local direction x′. From Figure 8.17 we deduce

v
(e)
x′ = [1, 0, 0]T (8.62)

Vector v
(e)
y′ is contained in the yz plane and it can be defined from the

coordinates of two nodes ij along a side orthogonal to x′, i.e.

v
(e)
y′ =

1

l
(e)
ij

⎧⎨⎩
0
yij
zij

⎫⎬⎭
(e)

with l
(e)
ij =

√
(y

(e)
ij )2 + (z

(e)
ij )2 (8.63)

Finally, the normal vector v
(e)
z′ is obtained by

v
(e)
z′ = v

(e)
x′ ∧ v

(e)
y′ =

1

l
(e)
ij

[
0,−z(e)ij , y

(e)
ij

]T
(8.64)

This technique depends on the shell shape and the element chosen. The
method explained in Section 8.8.2 is the more general procedure.
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Fig. 8.17 Definition of the local x′ axis as parallel to the global x axis

8.9 COPLANAR NODES. TECHNIQUES FOR AVOIDING
SINGULARITY

A node is termed coplanar when all the elements meeting at the node
lay in the same plane. This situation is typical in folded plate structures
(Figure 8.18). A local coordinate system can be chosen at a coplanar
node so that the local nodal rotations θx′i , θy′i are uniquely defined for
all the adjacent elements. If the equilibrium equations at the node are
assembled in such a local system, six equations are obtained, the last
of which (corresponding to the θz′ direction) is simply θz′ = 0 and the
element stiffness matrix is singular. If the assembly is performed in global
axes, then the six resulting equilibrium equations at the node appear to
be correct, although they are equally singular. Singularity means that one
of the three equations expressing equilibrium of bending moments at a
node is linearly dependent on the other two. The detection “a priori” of
this singularity is, in general, not easy. Some alternatives to avoid it are
described below.

Singularity can also occur in the so called “quasi-coplanar” situation.
This is typical in smooth shells when a mesh of flat elements is used. As
the mesh is refined the elements meeting at a node tend to lay in the same
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Fig. 8.18 Example of coplanar and non coplanar nodes

tangent plane and the singularity explained above arises. This problem is
discussed in a next section.

8.9.1 Selective assembly in local axes

The simplest alternative to avoid singularity is to assemble the rotational
equations at coplanar (or quasi-coplanar) nodes in the same local nodal
coordinate system. The nodal displacement vector for a coplanar node is

a
(e)
i =

[
uoi , voi , woi , θx′i , θy′i

]T

(8.65)

and the nodal transformation matrix L
(e)
i is

L
(e)
i =

[
λλλ
(e)
i 0
0 I2

]
with I2 =

[
0 0
0 0

]
(8.66)

For non-coplanar nodes the assembly is performed in the global system
in the usual manner, as explained in Section 8.5.

This procedure leads to a different number of DOFs per node (five
DOFs in coplanar nodes and six DOFs in non-coplanar ones). This does
not pose a serious problem for most FEM codes.
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Keeping the local definition of rotations at coplanar nodes also simpli-
fies the treatment of boundary conditions along inclined boundaries where
the use of local rotations is mandatory.

The detection of a coplanar node requires verifying the angle between
the normal directions for all the elements meeting at the node. This process
is repeated for all nodes. When the angle between two normal directions
exceeds a prescribed value (say 5◦) the node is marked as coplanar. The
limit angle should not be too small so that quasi-coplanar situations in
smooth shells can be easily identified.

8.9.2 Global assembly with six DOFs using an artificial rotational stiffness

A procedure to keep six DOFs at all nodes is by inserting an arbitrary
coefficient Kθz′ in the diagonal term of the local stiffness matrix as

K̄
′(e)
ij

6×6
=

⎡⎣K(e)
ij

5×5
0

0 Kθz′

⎤⎦ (8.67a)

The local displacement vector is now

a′(e) =
[
u′oi , v

′
oi , w

′
oi , θx′i , θy′i , θz′i

]T

(8.67b)

The sixth equilibrium equations for a coplanar node written in the local
axes x′, y′, z′ is

(Kθz′ )θz′ = 0 (8.68)

which gives θz′i = 0 and avoids the singularity.
The new local stiffness matrix is transformed to global axes in the stan-

dard way and the resulting global equations are not singular. Numerical
results have proved to be good and quite insensitive to the values of the
parameter Kθz′ , which is typically chosen of the order of EtA(e) [Ka,ZCh3,
ZT2]. The explanation is that the stiffness equations corresponding to θz′i
are uncoupled from the rest. The new rotation does not affect the compu-
tation of the resultant stresses either.

This procedure can be enhanced so that the computation of the local
stiffness matrix is not necessary. Eq.(8.67a) can be rewritten as

K̄
′(e)
ij =

[
K
′(e)
ij 0

0 0

]
+

[
0 0
0 Kθz′

]
= 1K

′(e)
ij +2 K

′(e)
ij (8.69)
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The new local equation requires modifying the transformation matrix
of Eq.(8.42), as

λ̂λλ
(e)

=

⎡⎣−λy′x −λy′y −λy′z
λx′x λx′y λx′z
λz′x λz′y λz′z

⎤⎦(e)

(8.70)

The global stiffness matrix is obtained using Eq.(8.47) as

K̄
(e)
ij

6×6
=

[
L
(e)
j

]T
6×6

K̄
′(e)
ij

6×6
L
(e)
i

6×6
=

[
L
(e)
i

]T [
1K

′(e)
ij +2 K

′(e)
ij

]
L
(e)
j (8.71)

It is easy to verify that[
L
(e)
i

]T
1K

′(e)
ij L

(e)
j = K

(e)
ij (8.72)

where K
(e)
ij is the global stiffness matrix given by Eq.(8.47). Similarly,[

L
(e)
i

]T
2K

′(e)
ij L

(e)
j = 2K

(e)
ij (8.73)

with

2K
(e)
ij

6×6
= Kθz′

[
0 0

0 λ̂λλ
(e)

z

]
and λ̂λλ

(e)

z =

⎡⎣(λz′x′)
2 λz′xλz′y λz′xλz′z

λz′yλz′x (λz′y)
2 λz′yλz′z

λz′zλz′x λz′zλz′y (λz′z)
2

⎤⎦(e)

(8.74)
The global element stiffness matrix is finally obtained as

K̄
(e)
ij = K

(e)
ij + 2K

(e)
ij (8.75)

The computational process is as follows:

a) the global stiffness matrix K
(e)
ij given by Eq.(8.47), is computed first

for all elements (wether they contain coplanar nodes or not), and

b) for elements containing coplanar nodes, matrix 2K
(e)
ij is added to the

previous global stiffness matrix.

8.9.3 Drilling degrees of freedom

An alternative technique is to modify the formulation so that the in-plane
rotational parameters arise naturally and have a real physical significance.
The θz′ rotation introduced in this way is called a drilling DOF, on account
of its action to the shell surface.
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A simple way for incorporating this drilling effect is by introducing a
set of rotational stiffness coefficients such that the overall equilibrium is
not disturbed in local coordinates. This can be accomplished by adding
to the virtual work expression for each element the term∫∫

A(e)

αnEtn
(
δθz′ − δθ̄z′

) (
θz′ − θ̄z′

)
dA (8.76)

where αn is a fictitious elastic parameter, n is an arbitrary number, θz′

is the drilling rotation and θ̄z′ is a mean element rotation which allows
the element to satisfy equilibrium in an average sense. For a 3-noded
triangle, the elimination of θ̄z′ leads to the following relationship between
the external moments and the nodal drilling rotations [ZT]⎧⎪⎨⎪⎩

Mz′i
Mz′j
Mz′k

⎫⎪⎬⎪⎭ = αnEtnA(e)

⎡⎣ 1 −0.5 −0.5
−0.5 1 −0.5
−0.5 −0.5 1

⎤⎦
⎧⎪⎨⎪⎩
θz′i
θz′j
θz′k

⎫⎪⎬⎪⎭ (8.77)

This procedure is essentially identical to the addition of rotational stiff-
ness coefficients proposed in [ZPK] with n = 1. Examples of application for
n = 3 (i.e. with the in-plane rotational stiffness proportional to the cubic
bending terms) can be found in [CW,GSW,MH,ZT2]. Numerical experi-
ments indicate that mesh refinement reduces the influence of the elastic
parameter αn which can take very small values (10−2 − 10−3) without
affecting the results.

A similar method is based on defining the average drilling rotation θ̄z′

in Eq.(8.76) as a mechanical rotation in terms of the in-plane displacement
gradients (Figure 4.2 of [On4]) as

θ̄z′ =
1

2
(
∂v′

∂x′
− ∂u′

∂y′
) (8.78)

Drilling DOFs are also of interest for enhancing the in-plane behaviour
of the element. The reason is the following. Many flat shell elements incor-
porate bending approximations of higher order than the membrane ones.
A typical example is the 3-noded plane stress triangle when combined with
any of the higher order bending elements of previous chapters. The accu-
racy of the linear plane stress triangle is relatively poor and, consequently,
the membrane error terms dominate the shell behaviour. This problem can
be overcome by increasing the interpolation order of the membrane field,
i.e. by using a quadratic 6-noded approximation for the in-plane displace-
ment field. An alternative, however, is the introduction of drilling DOFs.
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Willam and Scordelis [WS] used the drilling rotation technique for
studying in-plane bending of lateral girders in cellular bridges. An early
application of the drilling rotation for plane-stress analysis was reported
by Reissner [Re2] and extended to the FEM by Hughes and Brezzi [HB2].
The main difficulty is that, although the definition of θ̄z′ of Eq.(8.78) is
invariant with respect to the reference coordinate system, there is not
a unique relationship between θ̄z′ and the rotations in adjacent element
sides, and this violates the C0 continuity requirement and the patch test
in some cases [IA].

The drilling rotations lead to a displacement interpolation along the
element sides involving the in-plane rotations also. The procedure can be
interpreted as a class of linked interpolation analogous to that used for
beam and plate elements (Sections 2.8.3 and 6.10) [ZT2].

Several authors have developed successful elements based on the drilling
rotation satisfying the patch test. Membrane triangles of this type have
been proposed by Allman [Al,Al2,Al3], Carpenter et al. [CSB2] and Cook
[Co3,Co4].

Bergan and Felippa [BF,BF2] developed an accurate membrane ele-
ment incorporating drilling DOFs starting from the so called free formu-
lation [BH ,Ny]. Elements deriving from this formulation are designed so
as to reproduce arbitrary rigid body movements or constant strain fields
when interacting with adjacent elements. This condition is called the “in-
dividual element test”. The resulting elements do not require C0 continuity
and can incorporate the drilling rotation in a straightforward manner.

Other triangular and quadrilateral membrane and shell elements incor-
porating drilling rotations have been reported in [AHMS,EKE,HMH,IA2,
ITW,Je,SP,SWC]. An interesting element is the TRIC facet shell trian-
gle based on the so-called natural formulation [AHM,Ar] for analysis of
thin/thick isotropic and composite shells [ATO,ATPA,APAK].

Flat shell element with drilling DOFs typically perform well for folded
plate structures or for shells where membrane effects are dominant. Con-
versely, they are prone to membrane locking for problems where bending
effects are important [BD6,CSB2,GB,Ny]. This is due to the excessive in-
fluence of the membrane stiffness induced by the drilling rotation θz′ ver-
sus the stiffness associated to the rotations θx′ and θy′ , via the local-global
roation transformation (membrane stiffness terms are proportional to t,
while the bending ones to t3). These problems evidence the difficulties for
finding a good shell element that performs equally well for flat and curved
shells [BD6,Co5,IA]. At this point we note the excellent performance of

2
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Fig. 8.19 Normal rotation DOF at mid-side nodes. n1 and n2 are normal vectors
to elements 1 and 2. The normal rotation vector has the direction of the common
side ij

the EBST rotation-free shell triangle described in Section 8.13.2 for both
membrane and bending dominating shell problems.

8.9.4 Flat shell elements with mid-side normal rotations

Many of the assembly difficulties for flat shell element disappear if the
displacements are defined at the nodes, whereas the rotation field is defined
in terms of the normal slope at the element midsides. As the normal
rotation vector has the direction of the side, clearly full compatibility is
achieved for adjacent (coplanar or non-coplanar) elements sharing the side
(Figure 8.19). Any transformation is then unnecessary and no additional
rotational DOFs are required for assembly purposes.

Plate elements of this kind where studied in Chapters 5 and 6. A pop-
ular shell triangle is the extension of the Morley thin plate triangle (Fi-
gure 8.19) developed by Dawe [Da]. A more sophisticated shell element
of this kind was derived by Irons [IA,Ir2] under the name of semi-loof.
This element is quite accurate and it will be studied when dealing with
degenerated shell elements in Chapter 10 (Section 10.16.1).

8.9.5 Quasi-coplanar nodes in smooth shells

A typical problem in the analysis of smooth shells with flat elements is
that the degree of coplanarity depends on the size mesh. Thus, for coarse
meshes the standard check on the normal direction at nodes will identify an
artificially large number of non-coplanar nodes. This problem disappears
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Fig. 8.20 Local axes for five DOFs assembly in quasi-coplanar nodes

when the mesh is refined, as in the limit all nodes are coplanar for a
smooth surface.

This ambiguous situation can be overcome by assembling the rotational
stiffness equations in a new nodal coordinate system e1i , e2i , e3i where
e3i is a vector in the average direction of all the normals meeting at the
node (Figure 8.20), e1i is orthogonal to e3i and is contained in the plane
formed by one of the sides ij and e3i , and e2i = e3i×e1i [HB]. This allows
us to keep the following five DOFs at each node

ai = [u0i , v0i , w0i , θ1iθ2i ]
T (8.79)

where the nodal displacements are defined in global axes and θ1i and
θ2i are the rotations with axial directions along e1i and e2i , respectively.
These rotations are expressed in terms of the original local rotations θx′i ,
θy′i as follows. First, θ1i and θ2i are transformed to global axes as

θθθi = λ̄λλ
T

i θ̄θθi with θθθi =

⎧⎨⎩
θxi

θyi
θzi

⎫⎬⎭ , θ̄θθi =

{
θ1i
θ2i

}
, λ̄λλi

2×3
=

[
eT
1i

eT
2i

]
(8.80)

The sought expression is found using Eqs.(8.39) and (8.41) as

θθθ′i
2×1

=

{
θx′i
θy′i

}
= λ̂λλ

(e)
λ̄λλ

T

i θ̄θθi =
ˆ̂
λλλi
2×1

(e)

θ̄θθi (8.81)
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Matrix
ˆ̂
λλλ(e) = λ̂λλ

(e)

i λλλ
T

i substitutes now λ̂λλ
(e)

in Eq.(8.41). Note that this
matrix changes for each node.

Carpenter et al. [CSB,CSB2] have proposed an alternative transforma-
tion technique for the nodal rotation that preserves the rigid body rotation
of the element while keeping 5 DOFs per node.

8.10 CHOICE OF REISSNER-MINDLIN FLAT SHELL
ELEMENTS

Flat shell elements can be formulated by adequately combining plane
stress (membrane) and bending elements and many options are possible.
Naturally, the accuracy flat shell elements very much depends on the mer-
its of the membrane and bending approximations chosen. Some popular
Reissner-Mindlin flat shell elements are:

a) Four-noded Q4 flat shell quadrilateral obtained by combining the 4-
noded plane stress quadrilateral of Section 6.4.1 of [On4] and the Q4
plate element with selective integration of Section 6.5.1.

b) Four-noded QLLL flat shell quadrilateral combining the 4-noded plane
stress quadrilateral and the QLLL plate element of Section 6.7.1 [On3].

c) QS8 and QL9 flat shell quadrilaterals combining the 8 and 9-noded
plane stress quadrilaterals (Chapter 6 of [On4]) and the QS8 and QL9
plate elements of Sections 6.5.2 and 6.5.3, respectively.

d) QQQQ-S, QQQQ-L and QLQL flat shell quadrilateral obtained by
combining the 8 and 9-noded plane stress quadrilaterals with the cor-
responding plate elements (Sections 6.7.2–6.7.4).

e) TLQL and TLLL flat shell triangles combining the 3-noded linear plane
stress triangle (Chapter 5 of [On4]) and the corresponding plate ele-
ments of Sections 6.8.2 and 6.8.3 [On3].

f) TQQL flat shell triangle obtained by combining the 6-noded quadratic
plane stress triangle (Chapter 6 of [On4]) and the TQQL plate element
(Section 6.8.1).

The membrane behaviour of all these elements can be enhanced by
using reduced integration for the in-plane tangential terms, or else by
introducing incompatible modes or an assumed linear in-plane strain field
(see Sections 5.4.2.2–4 of [On4]). This also helps to eliminating membrane
locking as explained in the next section.

Table 8.1 shows the displacement interpolations for some of the flat
shell elements mentioned above and the number of DOFs for the “smooth”
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�����������Aproximation
Element u′, v′, w′ θx′ , θy′ γx′z′ , γy′z′ numbers of

DOFs

Q4 bilinear bilinear – 20
QS8 biquadratic biquadratic – 40
QL9 biquadratic biquadratic – 45
QLLL bilinear bilinear linear 20
QLQL bilinear quadratic linear 24
QQQQ-L biquadratic biquadratic quadratic 45
QQQQ-S biquadratic biquadratic quadratic 40
TLQL linear quadratic linear 18
TQQL quadratic quadratic linear 30
TLLL linear linear linear 15

Table 8.1 Interpolations for Reissner-Mindlin flat shell elements based on the stan-
dard displacement formulation and the assumed transverse shear strain approach

shell case. An additional rotational DOF per node should be added for
kinked or branching shells. The elements are termed after the name of the
“parent” plate element, for convenience. Examples showing the behaviour
of some of these elements are presented in Section 8.13.

8.11 SHEAR AND MEMBRANE LOCKING

Let us consider the equilibrium equations for a flat shell element written
in local axes. Assuming constant thickness Eq.(8.34) can be rewritten as[

tK′(e)
m + t3K

′(e)
b + t2K̄

′(e)
mb + tK′(e)

s

]
a′(e) − f ′(e) = q′(e) (8.82)

where the thickness has been taken out from the matrices.
Eq.(8.82) shows that the influence of the thickness is of the same order

for both the membrane and transverse shear matrices. For clarify let us
rewrite Eq.(8.82) neglecting the coupling membrane-bending matrix as[

t3K
′(e)
b + t

(
K′(e)

s +K′(e)
m

)]
a′(e) − f ′(e) = q′(e) (8.83)

Eq.(8.83) is expressed in local axes and therefore only the bending and
transverse shear terms are coupled. Consequently, if the shell degenerates
into a flat plate, the bending and membrane displacements can be obtained
in a decoupled manner as [

t3K′
b + tK′

s

]
a′b = f ′b (8.84)

tK′
ma′m = f ′m (8.85)
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where f ′b and f ′m are the equivalent nodal force vectors due to bending and
in-plane loads and

a′bi =
[
w′oi , θx′i , θy′i

]T

, ami =
[
u′oi , v

′
oi

]T
(8.86)

The solution of Eq.(8.85) will suffer from shear locking, similarly as
explained for plates in Section 6.4.1. However, no problem exists in finding
the membrane solution by solving Eq.(8.86).

The global equilibrium equation can be written after assembly as[
t3Kb + t(Ks +Km)

]
a = f (8.87)

where the membrane and flexural terms are now coupled. This equation
suffers from the same defect as Eqs.(8.85), i.e. the sum of membrane and
transverse shear terms will have an excessive influence for thin situations.
Eq.(8.87) degenerates in the thin limit case to

(Ks +Km)a = Ksma = 0 (8.88)

which requires the singularity ofKsm = Ks+Km for a non trivial solution.
The rule (5.68) indicates that a reduced quadrature is required for Ksm to

be singular. This implies that both K
(e)
m and K

(e)
s must be underintegrated

to avoid shear and membrane locking.
Above explanation shows that membrane locking very much depends

on the degree of coupling between the flexural and membrane terms,
whereas shear locking is intrinsic to the Reissner-Mindlin plate formu-
lation. For shells where bending effects are dominant, membrane lock-
ing is of little importance and only shear locking must be accounted for.
However for problems with high flexural-membrane coupling, membrane
locking can perturb the solution. This occurs for composite shells, or for
curved shell elements where coupling between the bending and membrane
stiffness terms appears at the element level (Sections 9.15 and 10.11).

Membrane locking can also be interpreted as the incapacity of the ele-
ment to reproduce a pure bending strain field without introducing spurious
membrane strains. Shell elements free of membrane locking must there-
fore be able to reproduce the condition ε̂εε′m = 0 under pure bending loads.
This condition is analogous to that of ε̂εε′s = 0, for the thin limit in shear
locking-free plate elements. These conditions can be satisfied by choosing
the adequate reduced integration rule or by using assumed strain fields.

Flat shell elements are less prone to membrane locking, as they typi-
cally satisfy individually the condition ε̂εε′m = 0 under pure bending. This
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Fig. 8.21 Recommended quadratures for some flat shell quadrilaterals

is because the flexural and membrane stiffness terms are decoupled at
element level for homogeneous or symmetric material properties. This is
not generally so for shells with composite materials or for curved shell
elements which are more sensitive to membrane locking.

Reduced/selective integration is the simplest procedure to avoid mem-
brane and shear locking. Figure 8.21 shows the quadratures recommended
for the 4, 8 and 9-noded quadrilaterals. Different checks on the singularity
rule (2.50) for these elements are shown in Figure 8.22. The conclusions are
similar to the plate bending case: the 4 and 9-noded quadrilaterals with

reduced integration for K
(e)
m and K

(e)
s satisfy the singularity rule, whereas

the 8-noded quadrilateral fails in some cases and is not recommended for
thin shell analysis. The 4 and 9-noded quadrilateral shell element with uni-
form reduced quadrature and spurious mode control are good candidates
for practical applications [BLOL,BT].

Shear and membrane locking can be consistently avoided using assumed
transverse shear and membrane strain fields. The procedure is identical to
reduced integration in some cases, as for beams and plates. The assumed
strain approach given is detailed in Chapter 10 where some locking-free
curved shell elements are presented. These elements are also applicable for
flat situations.

8.12 THIN FLAT SHELL ELEMENTS

Thin flat shell elements are based on Kirchhoff plate theory (Chapter
4). The methodology follows the steps for the Reissner-Mindlin elements
studied in previous sections. The relevant expressions are given next.
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Fig. 8.22 Singulary tests for 4, 8 and 9-noded flat shell quadrilaterals using reduced

integration for K
(e)
m and K

(e)
s . FDOF= free DOFs, NGP= No. of Gauss points,

NMS= No. of membrane and transverse shear strain components (=5)

8.12.1 Kinematic, constitutive and equilibrium equations

Kirchhoff thin shell theory assumes that the normal rotations θx′ and θy′

coincide with the mid-plane slopes ∂w′
∂x′ and

∂w′
∂y′ , respectively (Figure 8.6).

Introducing this assumption in the displacement field of Eq.(8.1) gives

u′ = u′0 − z′
∂w′

∂x′
, v′ = v′0 − z′

∂w′

∂y′
, w′ = w′0 (8.89)

It is easy to verify that the transverse shear strains γx′z′ and γy′z′ are
zero. The local strain vector is simply

εεε′ = ε̂εε′m − z′ε̂εε′b (8.90)

The membrane strain vector ε̂εε′m coincides with Eq.(8.6a) whereas the
bending strain vector is

ε̂εε′b =
[
∂2w′0
∂x′2

,
∂2w′0
∂y′2

, 2
∂2w′0
∂x′∂y′

]T

(8.91)

The stress-strain relationship is deduced from Eqs.(8.9a) and (8.4) (for
simplicity the initial stresses will be neglected hereafter) as

σσσ′ = σσσ′b = D′
p(ε̂εε

′
m − z′ε̂εε′b) (8.92)

where the bending constitutive matrix D′
p is given by Eq.(8.12).
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The resultant stress vector contains axial forces and bending moments
only. Following a process identical to that of Section 8.3.4, the relationship
between resultant stresses and generalized local strains is found as

σ̂σσ′ =
{
σ̂σσ′m
σ̂σσ′b

}
=

[
D̂′

m D̂′
mb

D̂′
mb D̂′

b

]{
ε̂εε′m
ε̂εε′b

}
= D̂′ε̂εε′ (8.93)

where D̂′
m, D̂′

b and D̂′
mb are given by Eq.(8.18a). Again D̂′

mb = 0 for
homogeneous or symmetric material properties with respect to the middle
plane. This decouples the membrane and bending effects at element level.

The PVW is obtained by neglecting the transverse shear terms in
Eq.(8.26); i.e.

∫∫
A
(δε̂εε′Tmσ̂σσ

′
m + δε̂εε′Tb σ̂σσ

′
b)dA =

∫∫
A
δu′T t′dA+

∑
i

δu′Ti p′i (8.94)

8.12.2 Derivation of thin flat shell element matrices

The second derivatives of the transverse displacement w′0 in the PVW in-
troduce the need for C1 continuity for the lateral deflection field, similarly
as for thin plates. On the other hand, the interpolation of the in-plane
displacements u′0 and v′0 requires C0 continuity only. The different conti-
nuity requirements for the local displacement components is a drawback
of thin flat shell elements [BD6,YSL,ZT2].

The displacement interpolation field can be chosen by considering the
plane stress and Kirchhoff plate bending elements studied in Chapter 5
of [On4] and Chapter 4 of this volume, respectively. We will assume for
simplicity, that both fields are defined by the same number of nodes. For
example, the 3-noded constant strain triangle (CST) (Section 5.3 of [On4])
can be used to define a linear field for the in-plane displacements while an
incompatible field can be chosen for w′0 (such as the CKZ plate element
of Section 5.5.1). Another possibility is to combine a bilinear field for u′0
and v′0 (using the 4-noded plane stress rectangle) and a cubic field for w′0
(i.e. the MZC plate element of Section 5.4.1). The local displacement field
can be written in both cases as

u′ =
n∑

i=1

Nia
′(e)
i = [N1,N2, · · · ,Nn]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a
′(e)
1

a
′(e)
2
...

a
′(e)
n

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = Na′(e) (8.95)
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where

u′ =
[
u′0, v

′
0, w

′
0,
]T

; a
′(e)
i =

[
u′0i , v

′
0i , w

′
0i , (

∂w′0
∂x′

)i, (
∂w′0
∂y′

)i

]T

(8.96)

and

Ni =

⎡⎢⎢⎢⎢⎢⎣
Ni 0

... 0 0 0

0 Ni
... 0 0 0

· · · · · · ... · · · · · · · · ·
0 0

... Pi P̄i
¯̄Pi

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Nm

i

... 0

· · · · · · ... · · · · · ·
0

... Nb
i

⎤⎥⎥⎥⎦ (8.97)

In Eq.(8.97) Ni are the C0 continuous shape functions for the mem-
brane displacements and Pi P̄i and

¯̄Pi are the shape functions expressing
the transverse deflection w′ in terms of the nodal deflections w′0i and the

slopes
(
∂w′0
∂x′

)
i
and

(
∂w′0
∂y′

)
i
(functions Pi, P̄i and ¯̄Pi coincide with Ni, N̄i

and ¯̄Ni in Eq.(5.36) (MZC element) or (5.55) (KZ element).
Substituting Eq.(8.91) into the expression for ε̂εε′ of Eq.(8.93) gives the

generalized local strain matrix as

B′ =
[
B′1,B

′
2, · · · ,B′n

]
with B′i =

{
B′mi

B′bi

}
(8.98)

where the membrane matrix B′mi is identical to (8.31) and

B′bi =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 0

∂2Pi

∂x′2
∂2P̄i

∂x′2
∂2 ¯̄Pi

∂x′2

0 0
∂2Pi

∂y′2
∂2P̄i

∂y′2
∂2 ¯̄Pi

∂y′2

0 0 2
∂2Pi

∂x′∂y′
2

∂2P̄i

∂x′∂y′
2
∂2 ¯̄Pi

∂x′y′

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(8.99)

Note that B′bi is a simple extension of the bending strain matrix for
thin plates (Eq.(5.39)).

Following a process similar to that of Section 8.4.3 yields the local
element stiffness matrix

K
′(e)
ij = K′(e)

mij
+K

′(e)
bij

+K
′(e)
mbij

+
[
K
′(e)
mbij

]T
(8.100)

The expression of above matrices is identical to Eq.(8.37). For K′
mb = 0

the element stiffness matrix can be formed by combining the plane stress
and bending stiffness matrices as shown in Eq.(8.38). The global assembly
process follows precisely the transformations of Section 8.5.
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8.12.3 Selection of thin flat shell elements

The more popular options are:

• 4-noded plane stress rectangle of Section 5.3.1 of [On4] (both in the
standard and enhanced forms) combined with the non conforming plate
MZC rectangle of Section 5.4.1. This flat shell element was first used
in references [ZCh2,3]. Arbitrary quadrilateral forms of the element are
not recommended as the patch test is not satisfied.

• The 4-noded plane stress rectangle can be combined with any of the
4-noded compatible plate quadrilaterals of Sections 5.4.2 and 5.6. Ar-
bitrary quadrilateral shapes are now possible.

• The simple 3-noded plane stress triangle (Section 4.3 of [On4]) has
been successfully combined with the CKZ incompatible plate triangle
with nine DOFs (Section 5.5.1) [Pa,ZPK].

• A Morley flat shell triangle can be derived by combining the 3-noded
plane stress triangle with the Morley plate triangle of Section 8.5.1. The
convergence of this simple shell triangle is quite poor [Mo,Mo2,ZT2].

• The 6-noded plane stress triangle can be combined with the 12 DOFs
HCT conforming plate triangle of Section 5.5.2. This element was in-
troduced by Razzaque [Raz].

• A possibility is combining plane stress triangles and quadrilaterals with
the Discrete Kirchhoff (DK) plate elements of Section 6.11. This alter-
native has been exploited by Batoz et al. [B10]. A simple and accurate
shell triangle results from combining the 3-noded plane stress triangle
and the DKT element of Section 6.11.1. Another good element of this
type is obtained by combining the 4-noded plane stress rectangle and
the DKQ plate element of Section 6.11.2.

• The rotation-free BPT and BPN plate triangles can be combined with
the 3-noded plane stress triangle to yield two interesting rotation-free
shell triangles. Details are given in Section 8.13.

• The drilling rotation technique (Section 8.9.3) can be applied to en-
hance the performance of any of the thin flat shell elements mentioned
above [Ta,ZT2].

Examples of other flat shell elements can be found in [ZT2].
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Fig. 8.23 Displacement incompatibility in 4-noded and MZC flat shell rectangle

8.12.4 Incompatibility between membrane and bending fields

Most thin flat shell elements present a displacement incompatibility along
common sides in non-coplanar situations. Let us consider, for instance,
the box girder bridge of Figure 8.23, analyzed with 4-noded MZC shell
rectangles of the type described in the previous section. The in-plane
displacements vary linearly along the sides, whereas the transverse dis-
placement is cubic. This leads to a displacement incompatibility along a
side belonging to a fold. This defficiency yields overstiff results for coarse
meshes and it is corrected by mesh refinement. An alternative is to use
special higher order plane stress elements with the same approximation as
for the bending deflection. These elements have been developed for cellular
bridges by Lim et al. [LKM] and Willam and Scordelis [WS].

8.13 BST AND BSN ROTATION-FREE THIN FLAT SHELL
TRIANGLES

Rotation-free shell elements that incorporate the three displacements as
the only nodal DOFs are very attractive for practical purposes.

We describe next the extension of the rotation-free BPT and BPN
thin plate triangles (Section 5.8) to shells. The so-called BST and BSN
rotation-free shell triangles were originally derived by Oñate and Zarate
[OZ]. The background of these elements was presented in Section 5.8.

8.13.1 BST rotation-free shell triangle

Figure 8.24 shows the patch of four shell triangles typical of the cell-
centred (CC) finite volume scheme [OCZ,ZO4]. As usual in the CC scheme



484 Analysis of shells with flat elements

Fig. 8.24 BST element. Control domain and four-element patch

Fig. 8.25 BST element. Definition of global, local and side coordinate systems

the control domain coincides with an individual element. Also in Figure
8.24 the local and global node numbering chosen is shown.

Figure 8.25 shows the local element axes x′, y′, z′ where x′ is parallel to
side 1–2 (or i−j) and in the direction of increasing local node numbers, z′

is a direction orthogonal to the element and y′ is obtained by cross product
of vectors along z′ and x′. A side coordinate system is defined with side
unit vectors t, a and n. Vector t is aligned along the side following the
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Fig. 8.26 BST element. Transformation from side to local rotations

direction of increasing global node numbers, n is the normal vector parallel
to the z′ local axis and a = n ∧ t.

The local rotations θx′ , θy′ along each side are expressed in terms of the
so called tangential and normal side rotations θt and θa by the following
transformation (Figure 8.26)

θθθ′p =
{
θpx′
θpy′

}(e)

=

[
cpjk −spjk
spjk cpjk

](e) {
θptjk
θpajk

}(e)

= T̂jkθ̂θθ
′p
jk (8.101)

where θptjk and θpajk are the tangential and normal rotations along the side

ij of element p, θx′ =
∂w′
∂x′ , θy′ =

∂w′
∂y′ and cpjk, s

p
jk are the components of

the side unit vector tpjk, i.e. t
p
jk = [cpjk, s

p
jk]

T . The sign for the rotations is
shown in Figures 8.25 and 8.26.

The definition of the curvatures follows the lines given for the BPT
element. The local curvatures over the control domain p of area Ap formed
by the triangle ijk are given by the line integral (see Eq.(5.68))

ε̂εε′pb =
1

Ap

∫
Γp

T∇∇∇′w′dΓ (8.102)

with

ε̂εε′pb =

[
∂2w′

∂x′2
,
∂2w′

∂y′2
, 2

∂2w′

∂x′∂y′

]T
, T =

[
tx′ 0 ty′

0 ty′ tx′

]T
and ∇∇∇′ =

[
∂

∂x′
,
∂

∂y′

]T
(8.103)

where tx′ , ty′ are the components of vector t in the x′, y′ coordinate system.
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Recalling that θθθ′ = ∇∇∇′w′ and using Eq.(8.101), Eq.(8.103) expressing
the curvature over the triangle ijk can be written as

ε̂εε′pb =
1

Ap
[Tp

ijT̂
p
ijθ̂θθ
′p
ijlij +Tp

jkT̂
p
jkθ̂θθ

′p
jkljk +Tp

kiT̂
p
kiθ̂θθ

′p
kilki] (8.104)

In the derivation of Eq.(8.104) we have taken advantage that the local
rotations are constant along each element side.

The tangential side rotations can be expressed in terms of the local
deflections along the sides. For instance, for side jk (Figures 8.25 and
8.26)

θptjk =
w′pk − w′pj

ljk
for k > j (8.105)

where ljk is the length of side jk.
Equation (8.105) introduces an approximation as the tangential rota-

tion vectors of adjacent elements sharing a side are not parallel. Therefore
the tangential rotations are discontinuous along element sides; hence

θptjk =
w′pk − w′pj

ljk

= w′bk − w′bj

ljk
= θbtjk (8.106)

This error has little relevance in practice and it vanishes for smooth
shells as the mesh is refined. For quasi-coplanar sides w′pk � w′bk , w

′p
j � w′bj

and, hence, θptjk � θbtjk .
A continuous tangential side rotation θtjk can be ensured if defined

as the average of the tangential side rotations contributed by the two
elements sharing the side [OZ]. The form of Eq.(8.105) is however chosen
in the derivations presented hereafter.

Vector tjk is the same for the two elements sharing a side (i.e. tpjk = tbjk
in Figure 8.26). A continuous normal rotation is enforced by defining an
average normal rotation along side jk as

θpajk =
1

2
(θpajk + θbajk) (8.107)

This average rotation is expressed in terms of the normal deflections
using the inverse of Eq.(8.101) and the fact that θθθ′ =∇∇∇′w′ as

θpajk =
1

2

(
λλλp
jk(∇∇∇′w′)pjk + λλλb

jk(∇∇∇′w′)bjk
)

(8.108)
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where

λλλp
jk = [−spjk, cpjk] (8.109)

Substituting Eqs.(8.105) and (8.108) for the three element sides into
(8.104) and choosing a linear interpolation for the displacements within
each triangle, the curvatures for the central triangle p in Figure 8.24 are
expressed in terms of the normal deflections of the nodes in the four-
element patch as

ε̂εε′pb = Spwww′p (8.110)

where
Sp = [Sp

ij ,S
p
jk,S

p
ki] (8.111)

www′p = [w′
p

i , w
′p
j , w

′p
k , w

′a
j , w

′a
i , w

′a
l , w

′b
k , w

′b
j , w

′b
m, w′

c

i , w
′c
k , w

′c
n ]

T (8.112)

The local curvature matrices Sp
ij are given in Box 8.1. The ordering of

the components of vector www′p depends on the convention chosen for the
local and global node numbers for the four-element patch (Figure 8.24).

ε̂εε′pb = Spwww′p

www′p = [w′
p

i , w′
p

j , w′
p

k , w′
a

j , w′
a

i , w′
a

l , w′
b

k , w′
b

j , w′
b

m, w′
c

i , w′
c

k , w′
c

n ]T

Sp = [Sp
ij ,S

p
jk,S

p
ki]; Sp

ij =
lij
Ap

Tp
ijT̂

p
ijA

p
ij

Ap
ij =

[
α/lij β/lij 0 0 0 0

03 03
γp
iji γp

ijj γp
ijk γ

(a)
ijj γ

(a)
iji γ

(a)
ijl

]
;

α = −1, β = 1, j > i
α = 1, β = −1, j < i

Ap
jk =

[
0 α/ljk β/ljk 0 0 0

03 03
γp
jki γp

jkj γp
jkk γb

jkk γb
jkj γb

jkm

]
;

α = −1, β = 1, k > j
α = 1, β = −1, k < j

Ap
ki =

[
β/lki 0 α/lki 0 0 0

03 03
γp
kii γp

kij γp
kik γ

(c)
kii γ

(c)
kik γ

(c)
kin

]
;

α = 1, β = −1, k > i
α = −1, β = 1, k < i

γp
ijk = 1

2
λλλp
ij∇∇∇Np

k , λλλp
ij = [−spij , cpij ], 03 =

[
0 0 0
0 0 0

]

∇∇∇Np
k =

⎡
⎢⎣
∂Nk

∂x′
∂Nk

∂y′

⎤
⎥⎦

p

= 1
2Ap

{
bi
ci

}p

; bpi = y′
p

j − y′
p

k ; cpi = x′
p

k − x′
p

j

Box 8.1 BST element. Local curvature matrix for the control domain of Figure 8.24



488 Analysis of shells with flat elements

The normal nodal deflections for each element are related to the global
nodal displacements by the following transformation

w′pi = Cp
iui with Cp

i = [cpz′x, c
p
z′y, c

p
z′z], ui = [ui, vi, wi]

T (8.113)

where e = p, a, b, c and cpz′x is the cosine of the angle between the local z′

axis of element p and the global x axis, etc.
Substituting Eq.(8.113) into (8.110) gives finally

ε̂εε′pb = Bp
bap with Bp

b = SpCp , ap =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ui

uj

uk

ul

um

un

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(8.114)

In above Bb is the curvature matrix of the p-th triangle, ap contains the 18
nodal displacements of the six nodes belonging to the four-element patch
associated to the p-th triangle andCp is the transformation matrix relating
the 12 components of the normal deflection vector w′p (Eq.(8.112)) and
the 18 global displacements of vector ap. Recall that a triangle coincides
with a standard triangle for the BST element.

The bending stiffness matrix for the p-th control domain is obtained
by

Kp
b = [Bp

b ]
T D̂′p

b B
p
bAp (8.115)

where D̂′p
b is the average bending constitutive matrix over the pth triangle

obtained as

D̂′p
b =

1

Ap

∫∫
Ap

D̂′
bdA (8.116)

with D̂′
b given by Eqs.(8.10) and (8.12) for homogeneous and composite

materials, respectively.

BST element. Membrane stiffness matrix

The membrane stiffness matrix can be obtained from the expressions for
the 3-noded plane stress triangle (Section 5.3 of [On4]). The local mem-
brane strains are defined within each triangle in terms of the local nodal
displacements as

ε̂εε′m =

3∑
i=1

B′pmi
u′

p

i = B′pma′
p

m (8.117a)
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where

ε̂εε′m =

[
∂u′

∂x′
,
∂v′

∂y′
,
∂u′

∂y′
+

∂v′

∂x′

]T
(8.117b)

B′pmi
=

⎡⎢⎢⎢⎢⎢⎢⎣

∂Np
i

∂x′
0

0
∂Np

i

∂y′
∂Np

i

∂y′
∂Np

i

∂x′

⎤⎥⎥⎥⎥⎥⎥⎦=
1

2Ap

⎡⎣bi 00 ci
ci bi

⎤⎦p

, a′
p

m =

⎧⎨⎩
u′pi
u′pj
u′pk

⎫⎬⎭ and u′
p

i = [u′
p

i , v
′p
i ]

T

(8.118)
In above u′pi and v′pi are the local in plane displacements (Figure 8.25)

and bpi , c
p
i are defined in Box 8.1.

The membrane strains within the pth triangle are expressed in terms
of the 18 global nodal displacements of the four-element patch as

ε̂εε′pm = B′pmLpap = Bp
map where Bp

m = B′pmLp (8.119)

The transformation matrix Lp is

Lp =

⎡⎣Lp 0 0
0 Lp 0 0̄
0 0 Lp

⎤⎦ with Lp =

[
cx′x cx′y cx′z
cy′x cy′y cy′z

]p
(8.120)

where 0 and 0̄ are 2× 3 and 6× 9 null matrices, respectively.
The membrane stiffness matrix associated to the p-th triangle is finally

obtained as
Kp

m = Ap[Bp
m]T D̂′p

mBp
m (8.121)

Full stiffness matrix and equivalent nodal force vector

The stiffness matrix for the BST element is obtained by adding the mem-
brane and bending contributions, i.e.

Kp = Kp
b +Kp

m (8.122)

where Kp
b and Kp

m are given by Eqs.(8.115) and (8.121), respectively.
The dimensions ofKp are 18×18 as this matrix links the eighteen global

displacements of the six nodes in the four-element patch associated to the
BST element. The assembly of the stiffness matrices Kp into the global
equation system follows the standard procedure, i.e. a control domain is
treated as a macro-triangular element with six nodes [OZ].
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The equivalent nodal force vector is obtained as for standard C0 shell
triangular elements, i.e. the contribution of a uniformly distributed load
over an element is split into three equal parts among the three element
nodes. Nodal point loads are directly assigned to a node, as usual.

Boundary conditions for the BST element

The procedure for prescribing the boundary conditions follows the lines
explained for the BPT plate triangle. The process is quite straightforward
as the side rotations are expressed in terms of the normal and tangential
values. This allows to treat naturally all the boundary conditions found
in practice.

The conditions for the normal rotations are introduced when building
the curvature matrix, whereas the conditions for the nodal displacements
and the tangential rotations are prescribed at the solution equation level.

Clamped edge (ui = uj = 0; θaij = θtij = 0). The condition ui = uj = 0
is prescribed when solving the global system of equations. The condition
θtij = 0 is automatically satisfied by prescribing the side displacements to
a zero value.

The condition θaij = 0 is imposed by making zero the second row
of matrix Ap

ij (Box 8.1) as this naturally enforces the condition of zero
normal side rotations in Eq.(8.108). The control domain in this case has
the element adjacent to the boundary side missing (Figure 5.26).

Simply supported edge (ui = uj = 0; θtij = 0). This boundary condition
is imposed by prescribing ui = uj = 0 at the equation solution level.

Symmetry edge (θaij = 0). The condition of zero normal side rotation is
imposed by making zero the second row of matrix Ap

ij as described above.

Free edge. Matrix Ap
ij is modified by ignoring the contribution from the

missing adjacent element to the boundary side ij. This is implemented by
making γaijj = γaiji = γaijl = 0 and changing the 1/2 in the definition of

γpijk to a unit value (see Figure 5.26 and Box 8.1).
Flores and Oñate [FO2,OF] have proposed to prescribe the natural

boundary condition of zero normal curvature at simply supported and free
edges. This can be done by adequately modifying the bending moment-
curvature relationship at the edge. The resulting element, called LBST,
has a slight better behaviour than the BST element [FO2].
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Fig. 8.27 EBST element. Patch of four 3-noded triangles: (a) actual geometry and
(b) geometry in natural coordinates

8.13.2 Enhanced BST rotation-free shell triangle

Flores and Oñate [FO3,OF] have proposed an enhancement for the BST
element using a non-standard quadratic interpolation for the geometry of
the shell mid-surface over patches of four elements as

x =
6∑

i=1

Ni(ξ, η)(x
0
i + ui) (8.123a)

where

x = [x, y, z]T , x0
i = [x0i , y

0
i , z

0
i ]

T , ui = [ui, vi, wi]
T (8.123b)

and
N1 = ξ3 + ξ1ξ2 , N4 =

ξ2
2
(ξ2 − 1)

N2 = ξ1 + ξ2ξ3 , N5 =
ξ3
2
(ξ3 − 1)

N3 = ξ2 + ξ1ξ3 , N6 =
ξ1
2
(ξ1 − 1)

(8.123c)

with ξ3 = 1 − ξ1 − ξ2. Figure 8.27 shows the definition of the natural
coordinates ξ1, ξ2 in the normalized space.

In Eq.(8.123a) x0
i is the coordinate vector of the shell nodes in the un-

deformed position and ui is the displacement vector of node i. Eq.(8.123a)
is the basis for computing the gradient vector, the normal vector and the
curvature tensor at any point in the patch in terms of the nodal displace-
ments of the patch nodes. The gradient vector varies linearly over the
patch and its value at the three Gauss points Gi located at the mid-side
positions in the central element M depends only on the nodes pertaining
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(a) (b)

Fig. 8.28 Cook’s membrane problem (a) Geometry (b) Results

to the two elements adjacent to the corresponding side (Figure 8.27). This
is a key difference with the BST element where the normal rotation at
the mid-side points is computed as the average of the values at the two
adjacent elements (Eq.(8.107)). The curvature field is constant over the
patch and can be obtained from the gradients at the three Gauss points.

The equivalent nodal force vector is computed as for the BST element.
The explicit expression for the membrane and bending matrices of the
so-called EBST element can be found in [FO2].

A simplified and yet very effective version of the EBST element can
be obtained by using a reduced one point quadrature for computing all
the element integrals. This element is termed EBST1. This only affects
the membrane stiffness matrix and the element performs very well for
membrane and bending dominating shell problems. Both the EBST and
EBST1 elements are free of spurious energy modes.

The good behaviour of the EBST1 element for membrane dominant
problems is shown in Figure 6.28 for the analysis of a thick tapered can-
tilever beam (the so-called Cook’s membrane test problem). Figure 8.28
shows results for the upper vertex displacement for different meshes of
EBST and EBST1 elements as well as for the standard 3-noded constant
strain (plane stress) triangle (CST), the 6-noded linear strain triangle
(LST) and the 4-noded bi-linear quadrilateral (QUAD4). The accuracy of
the EBST1 element for coarse meshes is remarkable. Examples of the excel-
lent behaviour of the EBST and EBST1 elements for linear and nonlinear
analysis of shells are given in [FO3,4,OF]. A selection of linear examples
is presented in Section 8.17.1.
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(b)

Fig. 8.29 Patch test for uniform tensile stress (a) and torsion (b)

Patch tests

The three elements considered (BST, EBST and EBST1) satisfy the mem-
brane patch test defined in Figure 8.29a. A uniform axial tensile stress is
obtained in all cases.

The element bending formulation does not allow to apply external
bending moments (there are not rotational DOFs). Hence it is not possible
to analyse a patch of elements under loads leading to a uniform bending
moment. A uniform torsion can be considered if a point load is applied
at the corner of a rectangular plate with two consecutive free sides and
two simple supported sides. Figure 8.29b shows three patches leading to
correct results both in displacements and stresses. All three patches are
structured meshes. When the central node in the third patch is shifted
from the center, the results obtained with the EBST and EBST1 elements
are not correct. This however does not seems to preclude the excellent
performance of these elements, as proved in the examples analyzed in
[FO2] and Figures 8.34–8.36. The BST element gives correct results in
all torsion patch tests if natural boundary conditions are imposed in the
formulation [FO2]. If this is not the case, incorrect results are obtained
even with structured meshes.

8.13.3 Extension of the BST and EBST elements for kinked and branching
shells

Flores and Oñate [FO3] have extended the capabilities of the BST and
EBST elements for the analysis of kinked and branching shells. The com-
putation of the curvature tensor is first redefined in terms of the angle
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change between the normals of the adjacent element sharing a common
side. This allows to deal with arbitrary large angles between adjacent el-
ements at a branch and also to treat kinked surfaces. A relative stiffness
between element is introduced to account for changing of material prop-
erties of element at a branch or a kink. Details of the formulation and
examples of application can be found in [FO3].

8.13.4 Extended EBST elements with transverse shear deformation

Both the BST and EBST elements of previous sections can be extended to
account for transverse shear deformation effects. The procedure follows the
lines explained for the BPT plate triangle in Section 6.15. Two elements
of this kind have been recently derived by Zarate and Oñate [ZO2]. The
EBST+ element has five DOFs at ecah node: the 3 displacements and the
two shear angles. A linear interpolation is used for all the DOFs.

The EBST+1 element has the standard displacement DOFs at the
nodes plus two additional DOFs per element which represent the trans-
verse shear angles. For both elements the bending and membrane stiffness
matrices are computed as for the EBST elements and the only differ-
ence is the computation of the transverse shear stiffness contribution. De-
tails of the derivation and good performance of the EBST+ and EBST+1
rotation-free shell elements can be found in [ZO2].

8.13.5 Basic shell nodal patch element (BSN)

The rotation-free BPN plate element described in Section 5.8.3 is extended
now to shell analysis. Figure 8.30 shows a typical cell-vertex control do-
main surrounding a node and the corresponding patch of BPN shell tri-
angles. The following coordinate systems are defined:

Global system: x, y, z, defining the global displacements u, v, w.

Local element system: x′, y′, z′, defining the element curvatures. This coincides
with the local system for the BST element (Figure 8.25).

Nodal system: x̄i, ȳi, z̄i, defining the constant curvature field over the control
domain. Here z̄i is the average normal direction at node i, x̄i is defined
as orthogonal to z̄i and lying on the global plane x, z (if z̄i coincides with
the global y axis, then x̄i = z) and the ȳi direction is taken as the cross
product of unit vectors in the z̄i and x̄i directions.
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Fig. 8.30 BSN element. Control domain and coordinate systems

A constant curvature field is assumed over each control domain. For
convenience the curvatures are defined in the nodal coordinate system.
From simple transformation rules we can write

ε̄εεb = R1κκκ = R1R2εεε
′
b (8.124)

In above

ε̄εεb =

[
∂2w̄

∂x̄2
,
∂2w̄

∂ȳ2
, 2

∂2w̄

∂x̄∂ȳ

]T
(8.125)

is the nodal curvature vector

εεε′b =
[
∂2w′

∂x′2
,
∂2w′

∂y′2
, 2

∂2w′

∂x′∂y′

]T
(8.126)

is the element curvature vector and κκκ is an auxiliary “global” curvature
vector used to simplify the transformation from element to nodal curva-
tures. The transformation matrices R1 and R2 are [OZ]

R1 =

⎡⎣ c2x̄x c2x̄y c2x̄z cx̄xcx̄y cx̄xcx̄z cx̄ycx̄z
c2ȳx c2ȳy c2ȳz cȳxcȳy cȳxcȳz cȳycȳz

2cx̄x2cȳx 2cx̄ycȳy 2cx̄zcȳz cx̄ycȳx + cx̄xcȳy cx̄zcȳx + cx̄xcȳz cx̄zcȳy + cx̄ycȳz

⎤⎦

R2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c2x′x c2y′x cx′xcy′x
c2x′y c2y′y cx′ycy′y
c2x′z c2y′z cx′zcy′z

2cx′xcx′y 2cy′xcy′y cx′ycy′x + cx′xcy′y
2cx′xcx′z 2cy′xcy′z cx′zcy′x + cx′xcy′z
2cx′ycx′z 2cy′ycy′z cx′zcy′y + cx′ycy′z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(8.127)
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where cx̄x is the cosine of the angle between the x̄ and x axes, etc.
Eq.(8.124) is written in average integral form for each control domain

as ∫
Ai

[ε̄εεb −R1R2ε̂εε
′
b]dA = 0 (8.128)

where Ai is the area of the i-th control domain surrounding node i. Integra-
tion by parts gives (noting that the curvatures ε̄εεb and the transformation
matrix R1 are constant within the control domain)

ε̄εεib =
1

Ai
Ri

1

∫
Γi

R2T∇∇∇′w′dΓ (8.129)

where Γi is the control domain boundary (Figure 8.30) and T is given by
Eq.(8.103) andRi

1 is the transformation matrix for the ith control domain.
The changes of matrix R2 across the element sides have been neglected in
Eq.(8.129). These changes tend to zero as the mesh is refined.

Eq.(8.129) is computed as

ε̄εεib =
1

Ai
Ri

1

ni∑
j=1

lj
2
Rj

2Tj∇∇∇′w′ (8.130)

where the sum extends over the ni elements pertaining to the i-th control
domain (for instance ni = 6 for the patch of Figure 8.30), lj is the external

side of element j and Ai is computed as Ai =
1
3

ni∑
j=1

A
(i)
j , where A

(i)
j is the

area of the j-th triangle contributing to the control domain. In Eq.(8.130)
summation numbers 1, 2, · · · , ni corresponde to actual element numbers
a, b, · · · , f (Figure 8.30).

Substituting the standard linear interpolation for the normal deflection
w′ within each triangle into Eq.(8.130) gives

ε̄εεib = Siwww
′
i with Si =

1 2 . . . ni[
Sa
i , S

b
i , . . . , Si

r
]

(8.131)

where superindexes a, b, . . . , r refer to global element numbers. Matrix S
(k)
i

is expressed as

Sk
i = Fk

i [G
k
1,G

k
2,G

k
3] with Fk

i =
lk
2Ai

Ri
1R

k
2Tk (8.132)

and

Gk
i =∇∇∇′Nk

i =
1

2Ak

{
bki

cki

}
, bki = x′

k

j − x′
k

k , cki = y′
k

k − y′
k

j (8.133)
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Vector www′i in Eq.(8.131) is

www′i =

⎧⎪⎪⎨⎪⎪⎩
www′a

www′b
...

www′r

⎫⎪⎪⎬⎪⎪⎭
1
2

pn

, www′
k
= [w′

k

1 , w
′k
2 , w

′k
3 ]

T (8.134)

where upper index k denotes the element number.
The final step is transforming vector www′i to global axes. The process is

as explained for the BST element, i.e.

www′i = Ciai (8.135)

with
aTi = [uT

i ,u
T
j ,u

T
k , . . . ,u

T
pn ]

T , ui = [ui, vi, wi]
T (8.136)

In Eqs.(8.134) and (8.136) pn is the number of nodes in the patch
associated to the i-th control domain (i.e. pn = 7 in Figure 8.30).

The transformation matrix Ci depends on the numbering of nodes in
the patch. A simple scheme is taking the central node as the first node in
the patch and the edge nodes in anticlockwise order.

The curvature matrix for the ith control domain is obtained by substi-
tuting Eq.(8.135) into (8.131) giving

ε̄εεib = Bbiai with Bbi = SiCi (8.137)

The bending stiffness matrix for the i-th control domain is obtained by

Kbi = AiB
T
bi
D̂′i

bBbi (8.138)

where D̂
′i
b is given by Eq.(8.116).

BSN element. Membrane stiffness matrix

The membrane stiffness contribution to a nodal control domain, Kmi , can
be obtained from the stiffness matrix of the CST element. This is not so
straightforward in the BSN element as cell-vertex control domains do not
coincide with triangles as for the BST element [OZ].

An alternative is to obtain directly the membrane stiffness matrix for
each control domain following a similar procedure as for the bending stiff-
ness matrix. Details are given in [OZ].

BSN element. Stiffness matrix and nodal force vector

The stiffness matrix for the ith control domain characterizing a BSN
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element is obtained by adding themembrane and bending contributions as

Ki = Kbi +Kmi (8.139)

Recall that in the BSN formulation control domains do not coincide
with individual elements as for the BST element. The stiffness matrixKi of
Eq.(8.139) assembles all the contributions to a single node. The assembly
process can be implemented on a node to node basis as explained for the
BPN rotation-free plate triangle (Section 5.8.3).

The equivalent nodal force vector can be obtained in identical form as
for the BST element, i.e. a uniformly distributed load is split into three
equal parts and assigned to each element node and nodal point loads are
directly assigned to the node at global level.

Boundary conditions for the BSN element

The prescribed displacements are imposed at the equation solution level
after the global assembly process.

The conditions on the prescribed rotations at the edges follow a sim-
ilar process as for the BPN plate element (Section 5.8.3). Free boundary
edges are treated by noting that the free edge is a part of the control
domain boundary (Figure 5.28b). The condition of zero rotation along an
edge is imposed when forming the curvature matrix by making zero the
appropriate row in matrix Gk

j of Eq.(8.133) [OZ].
The nodal definition of the curvatures allows us to prescribe a zero

bending moment at free and simply supported boundaries by making zero
the appropriate rows of the constitutive matrix, as explained for the BPN
plate element (Section 5.8.3 and [OZ]).

8.14 FLAT SHALLOW SHELL ELEMENTS

A shallow shell has surface slopes less than five degrees. Marguere the-
ory [Ma3] is used to formulate shallow shell elements in global axes. This
theory is useful for shallow roofs, curved bridges and for studying imper-
fections in steel plates.

Figure 8.31 shows a shallow shell discretized in 4-noded flat shell rect-
angles. The local x′ axis is defined by the intersection of each element with
the global xz axis. As the x′ and x direction coincide then

λx′z =
∂z

∂x
, λy′z′ =

∂z

∂y
, λx′y = λz′y = λy′x = 0

θx′ = −θy, θy′ = θx; w′0 = w0

(8.140)
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w′0 = w0, θy′ = θx, θx′ = −θy ;
∂

∂x′
� ∂

∂x
,

∂

∂y′
� ∂

∂y
,

∂

∂z′
� ∂

∂z

Fig. 8.31 Shallow shell discretized in 4-noded flat shell rectangles

The kinematics of the normal vector follow Reissner-Mindlin assump-
tions. Thus, the local strain vector of Eq.(8.3) is written in terms of the
global displacements using the transformation (8.39) and above assump-
tions as

εεε′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u0
∂x

+
∂z

∂x

∂w0

∂x
+ z′

∂θy
∂x

∂v0
∂x

+
∂z

∂y

∂w0

∂y
− z′

∂θx
∂y

∂u0
∂y

+
∂v0
∂x

+
∂z

∂y

∂w0

∂x
+

∂z

∂x

∂w0

∂y
− z′(

∂θx
∂x

− ∂θy
∂x

)

∂w0

∂x
+ θy

∂w0

∂y
− θx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(8.141)

The local generalized strain vectors are deduced from Eq.(8.141) as

ε̂εε′m =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u0
∂x

+
∂z

∂x

∂w0

∂x
∂v0
∂y

+
∂z

∂y

∂w0

∂y
∂u0
∂y

+
∂v0
∂x

+
∂z

∂y

∂w0

∂x
+

∂z

∂x

∂w0

∂y

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
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ε̂εε′b =
[
−∂θy

∂x
,
∂θx
∂y

,

(
∂θx
∂x

− ∂θy
∂x

)]T
; ε̂εε′s =

[
∂w0

∂x
+ θy,

∂w0

∂y
− θx

]T
(8.142)

The signs in the components of the generalized local strain vectors have
been chosen so as to preserve the form of the transformation matrix S of
Eq.(8.8).

A standard C0 interpolation is chosen for the global displacement vari-
ables (u0, v0, w0, θx, θy). Substituting the interpolation into (8.142) gives
the generalized strain matrix as

Bi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Bmi

· · · · · ·
Bbi

· · · · · ·
Bsi

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂x
0

∂z

∂x

∂Ni

∂x
0 0

0
∂Ni

∂y

∂z

∂y

∂Ni

∂y
0 0

∂Ni

∂y

∂Ni

∂x
(
∂z

∂y

∂Ni

∂x
+

∂z

∂x

∂Ni

∂y
) 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 −∂Ni

∂x

0 0 0
∂Ni

∂y
0

0 0 0
∂Ni

∂x
−∂Ni

∂y
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

0 0
∂Ni

∂x
0 Ni

0 0
∂Ni

∂y
−Ni 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.143)

The cartesian derivatives of the shape functions are obtained by the
standard transformation[

∂(·)
∂x

,
∂(·)
∂y

]T
=

[
J(e)

]−1 [∂(·)
ξ

,
∂(·)
∂η

]T
(8.144)

The resulting elements have five DOFs per node defined in the global
coordinate system (u0i , v0i , w0i , θxi , θyi). No singularity arises in the
global stiffness matrix as all nodes are coplanar and the contribution of
the local rotations to the in-plane rotation θz has been neglected.
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The choice of shell element follows the criteria explained in Section 8.10.
Thin (Kirchhoff) shallow shell elements can be directly derived from above
expressions simply by making θy = −∂w0

∂x and θx = ∂w0
∂y and neglecting the

contributions from the transverse shear strains ε̂εε′s. C1 continuity is now
required for the bending approximation and the same recommendations
of Section 8.12 apply now [CB,CLO].

Above expressions will be used in Chapter 8 to derive an axisymmetric
shallow shell element, also applicable to shallow arches.

8.15 FLAT MEMBRANE ELEMENTS

A membrane is a very thin shell structure with a negligible flexure resis-
tance. Typical examples of membranes are balloons, parachutes, textile
covers and inflatable structures [BA,OFM,OK,OK2].

Many shell structures such as spherical domes, cylindrical tanks, etc.
behave as quasi-membranes under specific loads (i.e. self weight, pressure
loading, etc.). Flexural effects are localized in regions such as supports
and membrane theory provides a good estimate of the overall structural
behaviour in these cases.

Membrane theory can be readily derived from flat shell theory by ne-
glecting flexural terms (bending and transverse shear) in the formulation.
The resulting kinematic, constitutive and equilibrium equations are ex-
pressed in terms of the three nodal displacements only. This explains why
membrane theory is attractive for obtaining analytical solutions approxi-
mating the behaviour of shell structures.

The formulation of flat membrane elements is straightforward. The ele-

ment stiffness matrix in local axes is given by matrix K
′(e)
m of Eq.(8.37).

The transformation to global axes follows the procedure of Section 8.5 no-
ting simply that only translational DOFs are now involved. The resulting
membrane element has three global displacement DOFs per node.

Numerical problems can however arise in the direct application of the
membrane finite element formulation. The lack of flexural stiffness makes
membrane elements not applicable in the presence of loads inducing bend-
ing behaviour. These loads can also occur, for instance, due to discretiza-
tion errors in pure membrane loading situations, such as an internal pres-
sure acting on cylindrical or spherical shells.

These problems can be overcome by adding some flexural stiffness while
preserving the translational character of the membrane formulation. A
better alternative is to introduce drilling DOFs as explained in Section



502 Analysis of shells with flat elements

8.9.3 [YY]. The drilling rotation can be expressed in terms of nodal dis-
placements leading to a displacement formulation only.

Membrane structures can be analyzed using shell elements incorporat-
ing membrane and flexural stiffness. This however has two problems. First,
the number of DOFs increases as the nodal rotations are now involved.
This problem can be overcome by prescribing all the nodal rotations to
zero.

The second problem is the ill-conditioning of the equilibrium equations
due to the large difference between the membrane and flexural stiffness
terms for small thickness in presence of loads inducing bending behaviour.
The problem is identical to that explained above for the pure membrane
formulation. Once again the use of drilling rotations overcomes the dif-
ficulty. A simpler alternative is to use an artificially large thickness to
compute the flexural stiffness terms. As the solution is mainly driven by
the membrane stiffness, the artificial flexural stiffness does not affect the
numerical results. This is, in fact, equivalent to introducing some stabiliz-
ing flexural stiffness in the original membrane formulation. Note that the
rotation DOFs are now involved leading to a larger number of variables.

An elegant solution for the analysis of both shell and membrane-type
structures is to use the rotation-free shell triangles of Section 8.13. These
elements have translational DOFs only and, therefore, their cost is similar
to that of “pure” membrane elements. The eventual ill-conditioning of
the equations for small thickness is overcome as the elements introduce
“naturally” a bending stiffness that has a stabilization effect. Examples
of the good behaviour of the BST and EBST elements for analysis of
membrane structures can be found in [OF,FO,FO2,5].

8.16 HIGHER ORDER COMPOSITE LAMINATED FLAT SHELL
ELEMENTS

Modelling of composite laminated shells can be enhanced by using higher
order approximations across the shell thickness. Here the layer-wise and
zigzag theories explained for composite laminated beams and plates (Sec-
tions 3.14 and 7.6) can be readily extended by using higher order approx-
imations for the local in-plane displacements across the thickness.
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Fig. 8.32 TLQL flat shell element with layer-wise approximation

8.16.1 Layer-wise TLQL element

The TLQL plate triangle of Section 6.8.2 can be extended to laminated
shells. The kinematics of the element are defined with respect to a local
cartesian system x′, y′, z′ (Figure 8.32). The local axes x′ and y′ define
the directions of the inplane displacements u′, v′, whereas z′ defines the
normal displacement w′. Once the stiffness matrix is obtained in this local
system, then it is transformed to global axes in the usual way.

As for plates it is possible to define nl analysis layers and n+1 interfaces
(Figure 8.32). The displacements u′, v′ in the element plane corresponding
to the k-th layer are interpolated by{

u′

v′

}
=

3∑
i=1

Ni(ξ, η)

[{
u′0i
v′0i

}
+Nk(ζ)

{
u′ki
v′ki

}
+Nk+1(ζ)

{
u′k+1

i

v′k+1
i

}]

+

6∑
i=4

Ni(ξ, η)ei−3
[
Nk(ζ)Δukti +Nk+1(ζ)Δuk+1

ti

]
(8.145)

where
(
u′0i , v

′
0i

)
are constant (rigid-body) in-plane displacements across

the laminate thickness,
(
u′ki , v

′k
i

)
are the in-plane displacements which vary
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over the thickness and Δukti are the in-plane displacement increments at
the midside nodes of the triangle in the directions defined by the tangent
side vectors e1, e2, e3 (Figure 8.32).

The normal displacement w′ is assumed to be constant across the thick-
ness. Following this hypothesis we can write

w′ =
3∑

i=1

Ni(ξ, η)w
′
i (8.146)

In Eq.(8.146)Ni are the standard linear shape functions for the 3-noded
triangle (Eq.(6.162)) and Nk(ξ) = 1−ζ

2 and Nk+1(ξ) = 1+ζ
2 .

Eqs.(8.145) and (8.146) define a quadratic interpolation over every in-
terface for the in-plane displacements u′ and v′ and a linear interpolation
for the displacement w′.

The local strains for the k-th layer are written

εεε′b =
[
∂u′

∂x′
,
∂v′

∂y′
,

(
∂u′

∂y′
+

∂v′

∂x′

)]T
= Bba

′ (8.147)

εεε′s =
[(

∂w′

∂x′
+

∂u′

∂z′

)
,

(
∂w′

∂y′
+

∂v′

∂z′

)]T
= Bsa

′ (8.148)

where εεε′b are the local strains accounting for membrane and bending effects
and εεε′s are the transverse shear strains with

Bb = [Bk
b ,B

k+1
b ,B0

b ] ; Bk
b = [Bk

b1 ,B
k
b2 ,B

k
b3 , B̄

k
b4 , B̄

k
b5 , B̄

k
b6 ] (8.149)

and
B0

bi
= B′mi

, Bk
bi
= NkB0

bi
i = 1, 2, 3

Bk
bi
= Bk

bi−3
ei−3 i = 4, 5, 6

(8.150)

In Eq.(8.150) B′mi
is given by Eq.(8.31). On the other hand,

Bs
2×33

= J−1P[Bk
s

3×12
,Bk+1

s
3×12

, Bw
3×12

] (8.151)

with

Bk
s =

⎡⎢⎢⎢⎣
a12 b12 0

... a12 b12 0
... 0 0 0

... c12 0 0

0 0 0
... a23 b23 0

... a23 b23 0
... 0 c23 0

a13 b13 0
... 0 0 0

... a32 b32 0
... 0 0 c32

⎤⎥⎥⎥⎦ (8.152)
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Bk+1
s = −Bk

s , Bw =

⎡⎢⎢⎢⎣
0 0 −1 ... 0 0 1

... 0 0 0

0 0 0
... 0 0 −1 ... 0 0 1

0 0 −1 ... 0 0 0
... 0 0 1

⎤⎥⎥⎥⎦

P =

[
1− η −η η
ξ ξ 1− ξ

]
, aij = −Cil

ij

2tk
, bij = −Sil

ij

2tk
, cij = −2lij

3tk

where lij = is the length of the side ij, tk is the thickness of the kth layer
and Ci, Si = are the components of the unit side vector ei = [Ci, Si]

T . In
Eq.(8.151) J is the Jacobian matrix.

The local displacement vector a′ is written for the k-th layer as

a′ =

⎧⎨⎩
a′k

a′k+1

a′0

⎫⎬⎭ (8.153)

where

a′k =

[
u′k1 , v

′k
1 , w

′k
1 , u

′k
2 , v

′k
2 , w

′k
2 , u

′k
3
, v′k3 , w

′k
3 , Δu′kt4, Δu′kt5, Δu′kt6

]T
a′0 =

[
u′01, v′01, w′01, u′02, v′02, w′02, u′03, v′03, w′03

]T
(8.154)

The normal displacements w′oi have been introduced a′0 to simplify
the transformation process although its contribution to the local strain
matrices is zero.

The local displacements a′ are transformed to global axes by

a′ = T̄a (8.155a)

where

a =

⎧⎨⎩
ak

ak+1

a0

⎫⎬⎭ (8.155b)

and

ak = [uk1 , v
k
1 , w

k
1 , u

k
2 , v

k
2 , w

k
2 , u

k
3 , v

k
3 , w

k
3 , Δukt4, Δukt5, Δukt6]

T

a0 = [u01, v01, w01, u02, v02, w02, u03, v03, w03]
T

(8.156)
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The transformation matrix is

T̄ =

⎡⎣T̂ 0 0

0 T̂ 0

0 0 T̂′

⎤⎦ with T̂ =

[
T̂′ 0
0 I3

]
(8.157)

where T̂ is the I3 identity 3×3 matrix and

T̂′ =

⎡⎣T 0
T

0 T

⎤⎦ , T =

⎡⎣λx′x λx′y λx′z
λy′x λy′y λy′z
λz′x λz′y λz′z

⎤⎦ (8.158)

and λx′x is the cosine of the angle between axes x′ and x etc.
The global stiffness matrix is obtained by the standard transformation

K(e) = T̄TK′(e)T̄ (8.159)

where the local stiffness matrix is given by

K(e) =

∫∫
A(e)

(
nl∑
k=1

∫
tk
BT D̂

′kBdz

)
dA (8.160)

where B =

{
Bb

Bs

}
and D̂

′k is the local constitutive matrix for the kth

(deduced from Eq.(8.18a)).
The integration across the thickness is performed explicitly, whereas

the integration over the surface of every interface is made by a three point
Gauss quadrature. For details see [BOM].

A condensation technique across the thickness can be used for reduc-
ing the amount of calculations. The procedure consists in eliminating the
global displacements at the lower interlaminar surface ak for every layer
k in terms of ak+1 and a0 by an expression similar to (7.68) [BOM].

8.16.2 Composite laminated flat shell elements based on the refined
zigzag theory

We present the derivation of composite laminated fat shell element based
on an extension of the refined zigzag theory(RZT)describedinSection7.8.

Following the arguments explained in Section 7.8 for laminated plates,
the displacements in RZ flat shell theory are expressed in the local coor-
dinate system as

u′k(x′, y′, z′) = u′0(x′, y′)− z′θx′(x′, y′) + u′k(x′, y′, z′)
v′k(x′, y′, z′) = v′0(x′, y′)− z′θy′(x′, y′) + v′k(x′, y′, z′)
w′(x, y, z) = w′0(x′, y′)

(8.161a)
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with
ū′k(x′, y′, z′) = φk

x′(z)ψx′(x
′, y′)

v̄′k(x′, y′, z′) = φk
y′(z)ψy′(x

′, y′) (8.161b)

The terms in Eq.(8.161) have the same meaning as in Eq.(7.70) for
composite laminated plates. The φk

x′ , φ
k
y′ functions represent the through-

the-thickness piecewise-linear zigzag functions and ψx′ , ψy′ are the spatial
amplitudes of the zigzag displacements. These two amplitude together
with the five standard kinematic variables (u′0, v′0, w′0, θx′ , θy′) are the prob-
lem unknowns.

The zigzag displacements u′k and v′k may be regarded as a correction
to the in-plane displacement of standard Reissner-Mindlin theory due to
the laminate heterogeneity.

The in-plane and transverse shear strains consistent with Eqs.(8.161)
are

εkx′ =
∂u0
∂x′

− z′
∂θx′

∂x′
+ φk

x′
∂ψx′

∂x′

εky′ =
∂v0
∂x′

− z′
∂θy′

∂y′
+ φk

y′
∂ψy′

∂y′

γkx′y′ =
∂u0
∂y′

+
∂v0
∂x′

− z′
(
∂θx′

∂y′
+

∂θy′

∂x′

)
+ φk

x′
∂ψx′

∂y′
+ φk

y′
∂ψy′

∂x′
γkαz′ = γα + βk

αψα , α = x′, y′

(8.162a)

where

γα =
∂w′0
∂α

− θα , βk
α =

∂φk
α

∂z′
, α = x′, y′ (8.162b)

In Eq.(8.162b) βk
α are piecewise constant functions that are uniform

through the thickness of each individual lamina and the γα represent the
average transverse shear strains through the laminate thickness and coin-
cide with the expression of standard Reissner-Mindlin flat shell theory.

The generalized Hooke law for the kth orthotropic lamina, whose prin-
cipal material directions are arbitrary with respect to the middle place
reference coordinates x′, y′ is written as (disregarding initial stresses)

σσσ′kp =

⎧⎨⎩
σx′

σy′

τx′y′

⎫⎬⎭
k

= D′k
p

⎧⎨⎩
εx′

εy′

γx′y′

⎫⎬⎭
k

= D
′k
p εεε
′k
p

σσσ′ks =

{
τx′z′

τy′z′

}k

= D′k
s

{
γx′z′

γy′z′

}k

= D′k
s εεε
′k
s

(8.163)
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Fig. 8.33 Notation for a three-layered in a flat shell laminate and φk
x′ zigzag func-

tion. Same applies for φk
y′ by interchanging x′ for y′ and u′

i by v′i

where the constitutive matrices D′k
p and D′k

s for the kth lamina are ob-
tained as explained in Section 7.2.3.

The following linear and Co continuous zigzag function within each
layer is assumed

φk
x′ =

1

2
(1− ζk)φ̄′k−1x′ +

1

2
(1 + ζk)φ̄′kx′

φk
y′ =

1

2
(1− ζk)φ̄′k−1y′ +

1

2
(1 + ζk)φ̄′ky′

(8.164a)

where (φ̄k
x′ , φ̄

k
y′) and (φ̄k−1

x′ , φ̄k−1
y′ ) are the zigzag function values at the k

and k − 1 interfaces, respectively, and

ζk =
2(z′ − z′k−1)

tk
− 1 , k = 1, · · · , nl (8.164b)

with the first layer begining at z′0 = −t/2, the last nlth layer ending at
z′nl

= t/2 and the kth layer ending at z′k = z′k−1 + tk where tk is the
layer thickness. Figure 8.33 shows the graphic representation of the zigzag
function across the thickness of a three-layered laminate.

The zigzag function values (and hence the interfacial displacements)
at the bottom and top surface of the laminate are set herein to vanish
identically, i.e.,

φ′0x′ = φ′nl
x′ = φ′0y′ = φ′nl

y′ = 0 (8.165a)
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and hence
ū′0 = ū′nl = v̄′0 = v̄′nl (8.165b)

The procedure for computing the piecewise constant functions βk
α fol-

lows precisely the arguments of Section 7.8.1.3 for composite laminate
plates giving

{
βk
x′

βk
y′

}
=

⎧⎪⎪⎨⎪⎪⎩
Gx′

D′ks11
− 1

Gy′

D′ks22
− 1

⎫⎪⎪⎬⎪⎪⎭ with

{
Gx′

Gy′

}
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
1

t

ne∑
k=1

tk

D′ks11

)−1
(
1

t

ne∑
k=1

tk

D′ks22

)−1
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

(8.166)

In Eq.(8.166) Gx′ and Gy′ are weighted-average transverse shear stiff-
ness coefficients of their respective layer level coefficients D′ks11 and D′ks22
(obtained from Eq.(8.12)). For homogeneous material Gx′ = D′ks11 and
Gy′ = D′ks22 , β

k
α = 0 and the kinematic and constitutive equations coincide

with those of standard Reissner-Mindlin theory for flat shells.
The explicit form of the zigzag function in terms of βk

α is given by
Eq.(7.88), simply interchanging the global axes x, y by x′, y′.

The PVW for a distributed load fz (expressed in global axes) is written
as ∫∫

A
δε̂εεT σ̂σσ dA =

∫∫
A
δw0fz dA (8.167)

where

ε̂εε′ =

⎧⎨⎩
ε̂εε′m
ε̂εε′b
ε̂εε′t

⎫⎬⎭ , σ̂σσ′ =

⎧⎨⎩
σ̂σσ′m
σ̂σσ′b
σ̂σσ′t

⎫⎬⎭ (8.168)

are the local generalized strain vector and the local resultant stress vector,
respectively.

In Eqs.(8.168) the membrane strain vector ε̂εε′m and the membrane stress
vector σ̂σσ′m coincide with the expressions given in Eqs.(8.69) and (8.16),
respectively and

ε̂εε′b =
[
∂θx′

∂x′
,
∂θy′

∂y′
,

(
∂θx′

∂y′
+

∂θy′

∂x′

)
,
∂ψx′

∂x′
,
∂ψx′

∂y′
,
∂ψy′

∂y′
,
∂ψy′

∂x′

]T
ε̂εε′t =

[
∂w

∂x′
− θx′ ,

∂w

∂y′
− θy′ , ψx′ , ψy′

]T
σ̂σσ′b = [Mx′ ,My′ ,Mx′y′ ,M

φ
x′ ,M

φ
x′y′ ,M

φ
y′ ,M

φ
y′x′ ]

T

σ̂σσ′t = [Qx′ , Qy′ , Q
φ
x′ , Q

φ
y′ ]

T

(8.169)
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The resultant constitutive equations are expressed in matrix form as

⎧⎨⎩
σ̂σσ′m
σ̂σσ′b
σ̂σσ′t

⎫⎬⎭ =

⎡⎢⎢⎣
D̂′

m D̂′
mb 0

D̂′T
mb D̂′

b 0

0 0 D̂′
t

⎤⎥⎥⎦
⎧⎨⎩
ε̂εε′m
ε̂εε′b
ε̂εε′t

⎫⎬⎭ (8.170)

Matrices D̂′
m, D̂′

mb, D̂
′
b and D̂′

t are deduced from Eqs.(7.93) simply sub-
stituting the global coordinates x, y, z by x′, y′, z′.

Composite laminated flat shell elements based on the RZT can be de-
rived by adding functions ψx′ and ψy′ to the standard five local kinematic
variables (u′0, v′0, w′, θx′ , θy′). The expressions for the generalized strain
matrices for a general C0 continuous flat shell element are deduced from
Eqs.(7.99) changing the shape functions derivatives ∂Ni

∂x and ∂Ni
∂y by ∂Ni

∂x′

and ∂Ni
∂y′ , respectively.

The nodal displacement vector is

a
(e)
i = [u′0i , v

′
0i , w

′
0i , θx′i , θy′i , ψx′i , ψy′i ]

T (8.171a)

The stiffness matrix is obtained as explained in Section 7.8.16. The dif-
ferent matrices are integrated with the same quadratures as for Reissner-
Mindlin flat shell elements. Transformation of the local stiffness ma-
trix to global axes follows the rules explained in Section 8.5. The nodal
zigzag displacement ψx′i , ψy′i are expressed in terms of global components
(ψxi , ψyi , ψzi) as{

ψx′i
ψy′i

}
= λ̄λλ

(e)

⎧⎨⎩
ψxi

ψyi

ψzi

⎫⎬⎭ with λ̄λλ
(e)

=

[
λx′x λx′y λx′z
λy′x λy′y λy′z

]
(8.171b)

Shear and membrane locking can be avoided using any of the techniques
explained in Section 8.11.

QLRZ flat shell element for composite laminated shell analysis based
on the RZT can be derived as explained in Section 7.8.2.

The expression of the equivalent nodal force vector for a distributed
load fz is

f (e) =

∫∫
Ae

Nifz[0, 0, 1, 0, 0, 0, 0]
TdA (8.172)

The global stiffness equations are assembled in the standard manner.
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The boundary conditions for the new global nodal rotation variables
ψxi , ψyi , ψzi are

ψai = 0 at a clamped edge (α = x, y, z)
ψαi = 0 if α is a symmetry axis
ψyi = 0 if x is a SS edge (likewise for ψxi)

(8.173)

8.17 EXAMPLES

8.17.1 Comparison of different flat shell elements

The performance of a selected number of flat shell elements is tested in
the analysis of three problems of the so-called “shell obstacle course” pro-
posed by Belytschko et al. [BSL+]. These problems include a cylindrical
shell (Figure 8.34), an open spherical dome (Figure 8.35) ) and a pinched
cylinder (Figure 8.36). Details of the geometrical, mechanical and loading
conditions are given in the figures. The elements studied are the TLQL,
TLLL, QLQL and QLLL from the Reissner-Mindlin family (Table 8.1)
and the rotation-free BST and EBST1 triangles from the Kirchhoff thin
shell family (Sections 8.13.1 and 8.13.2). Results show the convergence
of a characteristic displacement value with the mesh size. Some resultant
stress diagrams along specific lines are also plotted for a fixed mesh. Note
the accuracy of all the elements considered. In particular, the simplest tri-
angular and quadrilateral elements of the Reissner-Mindlin family (TLLL
and QLLL) give excellent results, even for relatively coarse meshes. It is
also remarkable the good behaviour of the rotation-free BST and EBST1
triangles which have a considerable less number of DOFs. This makes
these elements very attractive for practical purposes.

More examples of the performance of different triangular and quadrilat-
eral shell elements can be found in [BBH,BBt,BD2,BD6,Bel,BSL+,Hu2,
MH2, SBCK,SFR,ZT2].

8.17.2 Adaptive mesh refinement of analysis cylindrical shells

We present two examples of the analysis of cylindrical shells using adap-
tive mesh refinement (AMR). The problems were solved using two AMR
criteria. The first one is based on the equidistribution of the global energy
error in the mesh (criterion A) and the second one is based on the equidis-
tribution of the error density (criterion B). The description of these AMR
criteria can be found in [OB] and in Section 9.9.4 of [On4]. The resultant
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Fig. 8.34 Cylindrical shell under uniform load. Convergence of vertical displace-
ment wB (in) at the center and diagrams of Nx′ (lb/in), My′ (lb×in/in) and Qy′

(lb/in) along line A−B. Results for TLQL, QLQL and QLLL elements
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θ

θ θ

Fig. 8.34 (Continued). Cylindrical shell under uniform load. Results for TLLL,
BST and EBST1 elements

stresses have been smoothed in order to obtain nodal values using a local
coordinate system for each node common to all the elements sharing the
node [OCK]. A permissible error η = 10% was taken for both problems
which are solved using TLQL flat shell triangles.

The first example is the analysis of a classical cylindrical dome sup-
ported at the two ends under self weight loading. Figure 8.37 shows the
initial mesh of 48 TLQL elements. The global error parameter for the
initial mesh is ξg = 6.2295.

Figure 8.37 shows the sequence of the meshes generated using the two
AMR criteria A and B considered. Criterion B based on the error density
concentrates more elements in the zones where higher gradients of the
axial force Nx′ exist, while larger elements are generated in the upper
part of the cylinder where the gradients are smaller.
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Fig. 8.35 Open spherical dome under radial point loads. Convergence of radial
displacement at point A, uA (in), and diagrams of Mθ and Mφ (lb×in/in) and
Qφ (lb/in) along different lines. Results for TLQL, QLQL and QLLL elements



Examples 515

ϕ

ϕ

θ

θ

ϕ

ϕ

Fig. 8.35 (Continued). Open spherical dome under radial point loads. Results for
TLLL, BST and EBST1 elements

The second example shown in Figure 8.38 is the analysis of a cylindrical
shell with a central hole. The shell is supported along the two vertical sides
and it is loaded by equal and opposite traction forces acting on the upper
and lower edges. A quarter of the geometry has been analyzed due to
symmetry. The global error parameter for the initial mesh of 96 TLQL
elements is 1.776. Both mesh adaption criteria A and B lead to a higher
density of elements in the vicinity of the central hole where the stress
gradients are higher. Once again, the number of elements generated using
the AMR criterion B based on the error density is larger than for criterion
A based on the equal distribution of the global error. The same conclusion
was found in other problems solved with the two AMR criteria [OB,OCK].
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Fig. 8.36 Cylinder under central point load. Convergence of vertical displacement
wA (in) at the center and diagrams of My′ (lb×in/in), Qy′ (lb/in) and Nx′y′

(lb/in) along different lines. Results for TLQL, QLQL and QLLL elements
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θ

θ θ

Fig. 8.36 (Continued). Cylinder under central point load. Results for TLLL, BST
and EBST1 elements

8.17.3 Examples of application

Figures 8.39–8.43 show examples of application of the QLLL flat shell
element to cellular structures including a bogie of train car, a ship hull
and a car body. Figures 8.44–8.47 show examples of application of the
rotation-free EBST element to the analysis of a sheet stamping problem,
an inflatable pavilion, an aircraft wing structure and the hull and ap-
pendages of a racing sailboat. Figures 8.48 and 8.49 show finally results
of the analysis of a parachute and the sails of a sailboat with 3-noded
membrane triangles.
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A B

NE = 1043
ξg = 0.877

NE = 821
ξg = 1.113

NE = 749
ξg = 1.007

NE = 1594
ξg = 1.183

NE = 736
ξg = 1.006

NE = 1.878
ξg = 0.991

Fig. 8.37 Cylindrical shell under self weight. Sequence of meshes obtained with
mesh adaption strategies based on: a) Uniform distribution of global error; b)
Uniform distribution of error density; Target error: η = 10%,; NE = number of
elements. Dimensions in inches
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E = 3.0× 106, ν = 0.0
Initial mesh of 96 TLQL flat shell elements
Initial global error parameter ξg = 1.776

A B

NE = 234
ξg = 1.078

NE = 262
ξg = 0.959

NE = 266
ξg = 0.968

NE = 393
ξg = 0.993

NE = 593
ξg = 0.991

NE = 729
ξg = 0.979

Fig. 8.38 Cylindrical shell with central hole under traction load. Sequence of
meshes obtained with mesh adaption strategies based on: a) Uniform distribu-
tion of the global error; b) Uniform distribution of the error density; Target error:
η = 5%; NE = number of elements. Dimensions in inches, E in psi and line load
in lb/in
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(a) (b) (c)

Fig. 8.39 Cellular structure under distributed load acting on interior plates. (a)
Mesh of QLLL flat shell elements. Contours of (b) Mx′ and (c) My′

(a) (b)

Fig. 8.40 Cellular structure under pressure acting on the interior. (a) Mesh of
QLLL flat shell elements. (b) Contours of displacement vector modulus

(a) (b)

(c)

Fig. 8.41 Bogie of train car. (a) Mesh of QLLL flat shell elements. (b) and (c)
Amplified deformation under point load acting at one end keeping the other
three ends fixed
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Fig. 8.42 Discretization of ship hull structure using QLLL flat shell elements.
Courtesy of Compass Ingenieŕıa y Sistemas SA (www.compassis.com)

�

Fig. 8.43 Car body discretized with QLLL flat shell triangles and 2-noded beam
elements�

�

 

Relative thickness 

distribution map 

Fig. 8.44 Discretization of the backdoor of a car using rotation-free EBST shell
triangles. Results of sheet stamping analysis [OFN]. Courtesy of Quantech ATZ
SA (www.quantech.es)

http://www.Proofcompassis.com
http://www.Proofcompassis.com
http://www.quantech.es
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�

�

Fig. 8.45 Inflatable pavilion discretized using rotation-free EBST shell triangles.
Courtesy of BuildAir SA (www.buildair.com) [OFM]

 

(a) 

(b) 

Fig. 8.46 Discretization of helicopter body and blades (a) and aircraft
wing (b) using rotation-free EBST shell triangles (Courtesy of GiD team,
www.gidhome.com)

�

�

�

Fig. 8.47 Underwater view of racing sail boat hull and appendages discretized with
rotation-free EBST shell triangles. Courtesy of Compass Ingenieŕıa y Sistemas
SA (www.compassis.com) [GO,OG,OGI]

http://www.buildair.com
http://www.gidhome.com
http://www.compassis.com
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� �

Fig. 8.48 Parachute discretized with 3-noded membrane triangles. Displacement
modulus contours [FOO]

�

�

�

�

�

Fig. 8.49 Discretization of sails of sailboat with 3-noded membrane triangles.
Stresses on sails from aerodynamic analysis. Wind particles around sails [POM]
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8.18 CONCLUDING REMARKS

Flat shell elements can be understood as a blending of plane stress and
plate elements. A variety of thick and thin flat shell elements can be
derived by combining plane stress triangles and quadrilaterals with the
adequate plate elements using Reissner-Mindlin or Kirchhoff theories. The
behaviour of flat shell elements depends in most cases on the accuracy of
the individual plane stress and plate elements selected.

The practical use of flat shell elements requires good knowledge of con-
cepts such as membrane-bending coupling for composite laminated mate-
rial, local-global stiffness transformation, the treatment of coplanar nodes,
shear and membrane locking, and the incompatibility between membrane
and bending fields for thin situations.

Flat shell elements are simpler than curved shell elements (Chapter 10)
and can be used to analyze any shell structure.



9

AXISYMMETRIC SHELLS

9.1 INTRODUCTION

Many shell structures of practical interest have axisymmetric forms.
Examples are water and oil tanks, grain silos, cooling towers, nuclear con-
tainment shells, spherical and conical roofs and other structures outside
the civil construction industry such as pressure vessels, missiles, airplane
and spacecraft fuselages, etc. (Figure 9.1).

An axisymmetric shell is a particular case of an axisymmetric solid and,
therefore, it can be analyzed using the procedures described in Chapter
6 of [On4]. It is also possible to perform a full three-dimensional (3D)
analysis using 3D solid elements (Chapter 7 of [On4]), or flat or curved
shell elements (Chapters 8 and 10). However, the coincidence of axial
symmetry and thin thickness allows axisymmetric shell elements to be
employed. These elements are one-dimensional (1D) and this simplifies
the discretization process and reduces the computational cost.

This chapter deals with axisymmetric shells under axisymmetric load-
ing . The computations can be simplified by analyzing the deformation of
the “middle” line of a meridional section only (hereafter termed generating
line or generatrix ). The 1D nature of the problem can still be preserved for
arbitrary loading by expanding the loads and the displacements in Fourier
series in the circumferential direction. The non-symmetric response is ob-
tained by superposing a number of axisymmetric solutions. This problem
will be studied in Chapter 11.

The simplest way for analysing axisymmetric shells with the FEM is to
discretize the generatrix using conical fustrum shell elements (also called
troncoconical shell elements). The process is analogous to the analysis of
curved shells by flat elements (Chapter 8). Troncoconical elements were
the first choice for analysis of axisymmetric shells under symmetric and
arbitrary loading in the early 1960’s [GS,PPL] and have become very
popular since then. Curved elements are also available and can be useful

E. Oñate, Structural Analysis with the Finite Element Method. Linear Statics:  
Volume 2: Beams, Plates and Shells, Lecture Notes on Numerical Methods  
in Engineering and Sciences, DOI 10.1007/978-1-4020-8743-1_9,  
© International Center for Numerical Methods in Engineering (CIMNE), 2013 
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Fig. 9.1 Examples of axisymmetric shell structures

in some cases [JS]. A comprehensive list of references of axisymmetric shell
analysis by the FEM can be found in [AG,Ga,Ga2,Go,JS2,ZT].

In this chapter both troncoconical shell elements and curved axisym-
metric shell elements will be studied. Elements which do not satisfy the
normal orthogonality condition will be considered first. These elements
basically follow the assumptions of Reissner-Mindlin theory for plates and
flat shells and, hence, account for shear deformation effects. We will find
that troncoconical shell elements have many similarities with Timoshenko
beam elements (Chapter 2). Here again the use of reduced integration
and assumed shear fields are essential to ensure their good performance
for both thick and thin situations. Axisymmetric thin shell elements based
in Kirchhoff thin shell theory will also be presented and two families of
rotation-free troncoconical thin shell elements will be described.

The axisymmetric shell formulation will be simplified for the analysis
of axisymmetric plates, shallow axisymmetric shells and arches. An axi-
symmetric plate can be viewed as a particular axisymmetric shell with a
horizontal generatrix and the finite element formulation is simply derived
by neglecting membrane effects in the general theory. The formulation for
arches also emerges from the axisymmetric case by ignoring meridional
effects. The subsequent study of shallow axisymmetric shells will allow us
to reinterprete some concepts of membrane locking.
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Fig. 9.2 Geometrical description of an axisymmetric shell

The chapter concludes with the formulation of axisymmetric shell el-
ements by degeneration of axisymmetric solid elements and a description
of some higher order theories for axisymmetric shells with composite lam-
inated material. Here we will detail the formulation of a simple 2-noded
axisymmetric shell element based on the refined zigzag theory.

9.2 GEOMETRICAL DESCRIPTION

Let us consider an axisymmetric shell defined in a global cartesian system

x, y, z with associated unit vectors
−→
i ,
−→
j ,
−→
k , respectively (Figure 9.2). A

section in a plane rz, where r is an arbitrary radial direction, containing
the axis of symmetry is termed a “meridional section”. A generatrix is
therefore the middle line of the meridional section.

A meridional cartesian coordinate system r, z is defined so that the
plane rz contains the meridional section. The unit vector

−→
ir is associ-

ated to the radial direction r (Figure 9.3). In the following, coordinates
x and r will be indistinguishably used for the global horizontal axis in the
meridional section.

A local coordinate system x′, y′, z′ is defined at each point of the gene-
ratrix. The x′ axis defines the direction of the unit tangent vector

−→
t , z′ is

the direction across the thickness defining the unit normal vector −→n and
y′ is a direction orthogonal to the meridional plane. The unit vector −→a
along y′ is obtained by the cross product of −→n and

−→
t (Figure 9.3a). The
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Fig. 9.3 Axisymmetric shell. Geometrical parameters
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global components of the triad
−→
t ,−→a ,−→n are expressed as

−→
t =

∂x′

∂x

−→
i +

∂x′

∂y

−→
j +

∂x′

∂z

−→
k = cosφ cosα

−→
i + cosφ sinα

−→
j + sinφ

−→
k

−→a =
∂y′

∂x

−→
i +

∂y′

∂y

−→
j +

∂y′

∂z

−→
k = − sinα

−→
i + cosα

−→
j

−→n =
∂z′

∂x

−→
i +

∂z′

∂y

−→
j +

∂z′

∂z

−→
k = − sinφ cosα

−→
i − sinφ sinα

−→
j + cosφ

−→
k

(9.1)
where φ is the angle formed by the tangent direction x′ with the radial
direction

−→
ir and α is the angle between vector

−→
ir and the global x axis

(Figure 9.3a).
The positive direction of arches is defined so that

ds = Rsdφ ds̄ = rdα = (Rα sinφ)dα (9.2)

where Rs and Rα are the curvature radii of the curves defined by the
generatrix and the circumferential line respectively and s and s̄ are arch
length parameters along these lines (Figure 9.3a).

Let us consider a point P on the meridional section. Its position can
be expressed as −→r = −→r0 +OP−→n (9.3)

where vector −→r0 defines the position of point O on the generatrix and
OP is the distance between points O and P (Figure 9.3b). As OP is an
arbitrary distance along the normal direction, in the following we will take
OP ≡ z′.

Let us compute the derivative ∂−→r /∂s at point P . Making use of
Eqs.(9.1)–(9.3) gives (with OP ≡ z′)

∂−→r
∂s

=
∂−→r0
∂s

+ z′
∂−→n
Rs∂φ

=

(
1− z′

Rs

)−→
t (9.4)

where
−→
t = ∂−→r0/∂s is the tangent vector at point O. Eq.(9.4) allows the

following derivative to be computed

∂x′

∂s
=

∂x′

∂x

∂x

∂s
+

∂x′

∂y

∂y

∂s
+

∂x′

∂z

∂z

∂s
=
−→
t · ∂

−→r
∂s

= (1− z′

Rs
) ≡ Cs (9.5)

i.e.

dx′ = Csds with Cs = 1− z′

Rs
(9.6)
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The derivative ∂−→r /∂s̄ is obtained using Eqs.(9.1)–(9.3) as

∂−→r
∂s̄

=
∂−→r0
∂s̄

+ z′
∂−→n

Rα sinφ∂α
= (1− z′

Rα
)−→a (9.7)

where the definition −→a = ∂−→r0/∂s̄ has been used. Also

∂y′

∂s̄
=

∂y′

∂x

∂x

∂s̄
+

∂y′

∂y

∂y

∂s̄
+

∂y′

∂z

∂z

∂s̄
= −→a · ∂

−→r
∂s̄

= (1− z′

Rα
) ≡ Cα (9.8)

i.e.

dy′ = Cαds̄ with Cα = 1− z′

Rα
= 1− z′ sinα

r
(9.9)

where the relationship r = Rα sinφ has been used (Figure 9.3c).
Eqs.(9.5) and (9.8) will be useful for deriving the expressions for the

strains in the next section.
For shallow or thin shells t � Rm, with m = s, α and Cs = Cα = 1,

which implies dx′ = ds and dy′ = ds̄. These equations are accepted for
many practical cases.

9.3 AXISYMMETRIC SHELL THEORY BASED ON
REISSNER–MINDLIN ASSUMPTIONS

The axisymmetric shell theory derived next is based in the main following
assumptions:

1. Loads are axisymmetric.
2. The thickness does not change with deformation.
3. The normal stress σz′ is zero.
4. Lines normal to the generatrix before deformation remain straight but

not necessarily orthogonal to the generatrix after deformation.

These assumptions are identical to those used in Reissner-Mindlin the-
ory for plates and flat shells (Chapters 6 and 8). In a later section the
Kirchhoff orthogonality condition for the rotation of the normal will be
assumed.

9.3.1 Displacement field

Due to the axial-symmetry only the deformation of a meridional section
needs to be considered. The movement of a point in the meridional plane
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Fig. 9.4 Definition of the displacement vector of a point

is perfectly defined by the displacements u and w in the radial and vertical
directions v and z, respectively.

Let us consider a point O over the generatrix and a point P on the
normal direction at O and at a distance z′p = OP from O. Points O and
P move to the position O′ and P ′′, respectively (Figure 9.4).

The displacement vector −→u joining points P and P ′′ can be split as
the sum of the (rigid body) translation vector −→u 0 (joining points O and
P to O′ and P ′ respectively) and a rotation vector −→u 1 (joining point P ′

and P ′′) induced by the angle θ rotated by the normal −→n (Figure 9.4).
Using assumption 4 for the rotation of the normal we can write

−→u (s, z′) = −→u 0(s) +
−→u 1(s, z

′) = −→u 0(s) + z′p
−→u n(s) (9.10)

where −→un is the vector defining the displacement of the end of the normal
vector −→n and z′p is the distance OP .

The components of the displacement vectors of Eq.(9.10) are written
in the local axes x′, z′ as

−→u = u′−→t + w′−→n , −→u0 = u′0
−→
t + w′0

−→n , −→un = −θ−→t (9.11)
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where θ is the rotation of the normal vector (defined as positive in the
anticlockwise direction) and (·)′ denotes local displacement components.
Combining Eqs.(9.10) and (9.11) and noting that z′p is an arbitrary dis-
tance (i.e. z′p ≡ z′) gives

u′(s, z′) = u′0(s)− z′θ(s)

w′(s, z′) = w′0(s)
(9.12)

Eqs.(9.12) are the one-dimensional version of Eqs.(8.1) for flat shells.
Note that the tangent displacement u′ is the sum of the in-plane contri-
bution u′0 plus the bending term z′θ due to the rotation of the normal.
The normal displacement w′ is constant across the thickness.

The local displacement vector of a point on the generatrix is

u′ = [u′0, w
′
0, θ]

T (9.13)

The global displacement vector u = [u0, w0, θ]
T is related to the local

displacements u′ by the following transformation

u = LTu′ with L =

⎡⎣ cosφ sinφ 0
− sinφ cosφ 0

0 0 1

⎤⎦ (9.14)

Recall that u0 and w0 are displacement components along the global
axes r and z, respectively and φ is the angle formed by the tangent and
radial vectors (Figure 9.3).

Eq.(9.14) allows us to relate the local and global displacements of an
arbitrary point P giving (using Eq.(9.12))

u = u′ cosφ− w′ sinφ = u′0 cosφ− w′0 sinφ− z′θ cosφ (9.15a)

w = u′ sinφ− w′ cosφ = u′0 sinφ+ w′0 cosφ− z′θ sinφ (9.15b)

The above expression of u is useful for deriving the circumferential
strain.

9.3.2 Strain vector

Let us obtain the strains referred to the local axes. The tangential strains
γx′y′ and γy′z′ are zero due to axial symmetry. Additionally σz′ = 0 due
to assumption 3 of Section 9.3 and, therefore, εz′ does not contribute to
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the internal work, similarly as it happens for plates and flat shells. The
significant local strains are

εx′ =
∂u′

∂x′
, εy′ =

∂v′

∂y′
, γx′z′ =

∂u′

∂z′
+

∂w′

∂x′
(9.16)

The local strain vector is defined as

εεε =

⎧⎪⎪⎨⎪⎪⎩
εx′

εy′

· · ·
γx′z′

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎨⎩
εεε′p
· · ·
ε′s

⎫⎬⎭ (9.17)

where εεε′p = [εx′ , εy′ ]
T is the in-plane strain vector containing the axial

strain εx′ and the circumferential strain εy′ , and ε′s = γx′z′ is the transverse
shear strain.

From Eqs.(9.5) and (9.8) we deduce

εx′ =
∂u′

∂x′
=

∂s

∂x′
∂u′

∂s
=

1

Cs

∂u′

∂s

εy′ =
∂v′

∂y′
=

∂s̄

∂y′
∂v′

∂s̄
=

1

Cα

∂v′

∂s̄

γx′z′ =
∂u′

∂z′
+

∂s

∂x′
∂w′

∂s
=

∂u′

∂z′
+

1

Cs

∂w′

∂s

(9.18)

The derivatives ∂u′/∂s and ∂w′/∂s are defined as the tangential and
normal components of vector ∂−→u /∂s. Using Eqs.(9.1), (9.2), (9.10) and

(9.11) yields (noting that
∂
−→
t

∂s
=

1

Rs

−→n and
∂−→n
∂t

= − 1

Rs

−→
t )

∂−→u
∂s

=
∂

∂s
(−→u0 + z′−→un) = ∂

∂s
(u′0
−→
t + w′0

−→n )− ∂

∂s
(z′θ)−→t =

=

(
∂u′0
∂s

− w′0
Rs
− z′

∂θ

∂s

)−→
t +

(
∂w′0
∂s

+
u′0
Rs
− z′

θ

Rs

)
−→n (9.19)

which gives

∂u′

∂s
=

∂u′0
∂s

− w′0
Rs
− z′

∂θ

∂s
and

∂w′

∂s
=

∂w′0
∂s

+
u′0
Rs
− z′

θ

Rs
(9.20)

Similarly, the derivative ∂u′/∂z′ is defined as the tangential component
of vector ∂−→u /∂z′. From Eqs.(9.10) and (9.11)

∂−→u
∂z′

= −θ−→t and therefore
∂u′

∂z′
= −θ (9.21)
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Fig. 9.5 Circumferential changes after deformation

Substituting Eqs.(9.20) and (9.21) into the expression of εx′ and γx′z′

of (9.18) and noting that ∂v′/∂s̄ = u/r (Figure 9.5), gives

εx′ =
1

Cs

(
∂u′0
∂s

− w′0
Rs
− z′

∂θ

∂s

)
(9.22)

εy′ =
1

Cα

(
u′0 cosφ− w′0 sinφ− z′θ cosφ

r

)
(9.23)

γx′z′ =
1

Cs

(
∂w′0
∂s

+
u′0
Rs
− θ

)
(9.24)

The expression of u in Eq.(9.15a) has been used in the derivation of
Eq.(9.23). The local strain vector is split as

εεε′ =

⎧⎪⎪⎨⎪⎪⎩
εx′

εy′

· · ·
γx′z′

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

Cs

(
∂u′0
∂s

− w′0
Rs

)
u′0 cosφ− w′0 sinφ

rCα
· · · · · · · · · · · · · · · · · ·

0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− z′

Cs

∂θ

∂s

−z′θ cosφ
rCα

· · · · · · · · · · · · · · · · · ·
1

Cs

(
∂w′0
∂s

+
u′0
Rs
− θ

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

=

⎧⎨⎩
Sε̂εε′m
· · ·
0

⎫⎬⎭+

⎧⎨⎩
−z′Sε̂εε′b
· · · · · ·
1
Cs

ε̂′s

⎫⎬⎭ = S1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ε̂εε′m

ε̂εε′b

ε̂′s

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = S1ε̂εε
′ (9.25)
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where

S1 =

⎡⎣S −z′S 0

0 0
1

Cs

⎤⎦ and S =

⎡⎢⎣ 1

Cs
0

0
1

Cα

⎤⎥⎦ (9.26)

In Eq.(9.25)

ε̂εε′m =

⎧⎪⎪⎨⎪⎪⎩
∂u′0
∂s

− w′0
Rs

u′0 cosφ− w′0 sinφ
r

⎫⎪⎪⎬⎪⎪⎭ (9.27a)

is the membrane strain vector and

ε̂εε′b =

⎧⎨⎩
∂θ
∂s

θcosφ
r

⎫⎬⎭ , ε̂′s =
{
∂w′0
∂s

+
u′0
Rs
− θ

}
(9.27b)

are the bending and transverse shear strain vectors respectively. Vector

ε̂εε′ =

⎧⎨⎩
ε̂εε′m
ε̂εε′b
ε̂′s

⎫⎬⎭ (9.28)

is the generalized local strain vector containing the membrane, bending
and transverse shear contributions.

The two components of ε̂εε′m are the meridional (axial) and circumfe-
rential elongations of the generatrix, respectively. The components of ε̂εε′b
are the curvatures of this line along the meridional and circumferential
directions.

The relationship between the local in-plane and transverse shear strains
and the generalized strains is deduced from Eq.(9.25) as

εεε′p = [ε′x, ε
′
y]

T = S(ε̂εε′m − z′ε̂εε′b) ; ε′s = γx′z′ =
1

Cs
ε̂′s (9.29)

Eqs.(9.25) and (9.29) simplify for t
Rα

and t
Rs
� 1 as then Cs = Cα = 1

and S is the 2× 2 unit matrix.

9.3.3 Stresses and resultant stresses

The local stress vector is

σσσ′ =

⎧⎪⎪⎨⎪⎪⎩
σx′

σy′

. . .
τx′z′

⎫⎪⎪⎬⎪⎪⎭ =

⎧⎨⎩
σσσ′p
. . .
σ′s

⎫⎬⎭ (9.30)
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Fig. 9.6 Sign convention for local stresses and local resultant stresses in an ax-
isymmetric shell

where σσσ′p = [σx′ , σy′ ]
T is the local in-plane stress vector containing the

radial stress σx′ and the circumferential stress σy′ and σ′s = τx′z′ is the
transverse shear stress. For sign convention see Figure 9.6.

9.3.3.1 Constitutive equations

The stress-strain constitutive relationship is obtained from that of 3D
elasticity expressed in local axes x′, z′, by imposing that the normal stress
σz′ and the shear strains γx′y′ and γx′z′ are zero. The result is

σσσ′p = D′
pεεε
′
p , σ′s = Gsz′ε

′
s (9.31a)

In compact form

σσσ′ = D′εεε′ with D′ =
[
D′

p 0

0 Gsz′

]
(9.31b)

If s, z′ and s̄ are directions of material orthotropy (with 1 ≡ s and 2 ≡ α),
then

D′
p =

[
d′1 ν21d

′
1

ν12d
′
2 d′2

]
; with d′1 =

E1

1− ν12ν21
, d′2 =

E2

1− ν12ν21

(9.32)
In the above E1 and E2 are the Young moduli in the principal directions

1≡s, 2≡θ, ν12 and ν21 are the corresponding Poisson ratios (with ν12E2=
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ν21E1) and Gsz′ is the shear modulus in the transverse direction. For
isotropic material

D′
p =

E

1− ν2

[
1 ν
ν 1

]
, Gsz′ =

E

2(1 + ν)
(9.33)

The local resultant stresses are defined by

σ̂σσ′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
σ̂σσ′m
. . .
σ̂σσ′b
. . .
σ̂′s

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nx′

Ny′

. . .
Mx′

My′

. . .
Qz′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

∫ t
2

− t
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cασx′

Csσy′

. . .
−z′Cασx′

−z′Csσy′

. . .
Cατx′z′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
dz′ =

∫ t
2

− t
2

ST
1 σσσ

′CsCαdz
′

(9.34)
Subscripts m, b and s in Eq.(9.34) denote the axial (membrane) forces

Nx′ , Ny′ , the bending moments Mx′ ,My′ and the transverse shear force
Qz′ , respectively. For sign convention see Figure 9.6.

The curvature terms Cs and Cα in Eq.(9.34) are a consequence of Nx′ ,
Mx′ and Qz′ being defined per unit circumferential length, whereas Ny′

and My′ are defined per unit meridional length. For instance (Figure 9.7)

Nx′ds̄=Nx′rdα=

∫ t
2

− t
2

σx′ds̄pdz
′=

∫ t
2

− t
2

σx′rpdαdz
′=

(∫ t
2

− t
2

σx′Cαdz
′
)
rdα

(9.35a)
and, as ds̄ = rdα

Nx′ =

∫ t
2

− t
2

σx′Cαdz
′ (9.35b)

Similarly for the meridional force (Figure 9.7)

Ny′ds =

∫ t
2

− t
2

σy′dspdz
′ =

(∫ t
2

− t
2

σy′Csdz
′
)
ds (9.36a)

and, thus

Ny′ =

∫ t
2

− t
2

σy′Csdz
′ (9.36b)

Substituting the expression for σσσ′ of Eq.(9.31b) into (9.34) and using
Eq.(9.25) yields the relationship between the local resultant stresses and



538 Axisymmetric shells

Fig. 9.7 Axial resultant stresses Nx′ (left) and Ny′ (right)

the generalized local strains as

σ̂σσ′ = D̂′ε̂εε′ with D̂′ =
∫ t

2

− t
2

ST
1 D

′S1CsCαdz
′ (9.37)

In expanded form

D̂′=
∫ t

2

− t
2

⎡⎢⎢⎢⎢⎣
D̄′

p −z′D̄′
p 0

−z′D̄′
p z′2D̄′

p 0

0 0 Cα
Cs

Gsz′

⎤⎥⎥⎥⎥⎦ dz′=

⎡⎢⎢⎢⎢⎣
D̂′

m D̂′
mb 0

D̂′
mb D̂′

b 0

0 0 D̂′s

⎤⎥⎥⎥⎥⎦ (9.38a)

with

D̄′
p =

⎡⎢⎣Cα

Cs
d′1 ν21d

′
1

ν12d
′
2

Cα

Cα
d′2

⎤⎥⎦ (9.38b)

From simple observation of Eq.(9.38a) we deduce

(D̂′
m, D̂′

mb, D̂
′
b) =

∫ t
2

− t
2

(
D̄′

p,−z′D̄′
p, z

′2D̄′
p

)
dz′ (9.38c)
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D̂′s =
∫ t

2

− t
2

Cα

Cs
Gsz′dz

′ = Ĝsz′ (9.38d)

where d′1 and d′2 are given in Eq.(9.32). For Cs=Cα=1, then D̄′
p=D′

p (see
Eqs.(9.32) and (9.38b) like for plates and flat shells. If, in addition, the
material properties are homogeneous or they are symmetrical with respect
to the generatrix, then D̂′

mb = 0 and

D̂′
m = tD′

p, D̂′
b =

t3

12
D′

p, D̂′s = tGsz′ (9.39)

The resultant stress Nx′ of Eq.(9.35b) is undefined for r → 0 (if α 
= 0)
as Cα → ∞ in this case (Eq.(9.9)). This problem can be overcome by
defining Nx′ by unit radian and introducing r within the integral of (9.35a)
[BD6]. In practice Nx′ = Ny′ is taken at r = 0, due to symmetry.

9.3.3.2 Shear correction factor

The constant distribution for the transverse shear stress across the thick-
ness assumed in the previous theory does not satisfy the condition τx′z′ = 0
on the shell surface. A shear correction factor is introduced to take into
account the “exact” thickness distribution for the transverse shear stresses
τx′z′ in a similar way as for beams and plates. This correction is introduced
by modifying the shear rigidity D̂′s as

D̂′s = kĜsz′ (9.40)

with Ĝsz′ defined by Eq.(9.38d).
The shear correction factor k is usually taken equal to 5/6 for ho-

mogeneous material and t/Rmin � 1. A more accurate expression for k
involving the curvature radii can be found in [BD6].

9.3.3.3 Layered composite material

For an axisymmetric shell formed by a layered composite material (Figu-
re 9.8) matrix D̂′ can be obtained from Eq.(9.37) as

D̂′ =
nl∑
i=1

∫ z′i+1

z′i
ST
1iD

′
iS1iCsCαdz

′ (9.41a)

where nl es the number of layers and subscript i refers to the properties
of the ith layer defined by z′i ≤ z′ ≤ z′i+1. The following explicit form for
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Fig. 9.8 Layered composite axisymmetric shell

the submatrices in Eq.(9.41a) is obtained for constant material properties
within each layer and Cs = Cα = 1

D̂′
m =

nl∑
i=1

Dp′iΔz′i, D̂′
b =

1

3

nl∑
i=1

D′
piΔz′3i ,

D̂′
mb = −

1

2

nl∑
i=1

D′
piΔz′2i , D̂′s =

nl∑
i=1

D̂′siΔz′i , Δz′i = z′i+1 − z′i

(9.41b)
Details of the FEM analysis of laminated axisymmetric shells are given

in [BD6,Go,NP,PN].

9.3.3.4 Initial stresses

The effect of initial stresses can be taken into account by modifying the
stress-strain relationship (9.31b) as

σσσ′ = D′εεε′ + σσσ′0 (9.42a)

where σσσ′0 = [σ0
x′ , σ

0
y′ , σ

0
x′y′ ]

T is the initial stress vector. If these stresses are
due to thermal effects, then (for orthotropic material)

σσσ′0 = −Δt
[
d′1(α

t
1 + αt

2ν21), d
′
2(α

t
1ν12 + αt

2), 0
]T

where Δt is the temperature increment, αt
1 and αt

2 are the coefficients
of thermal expansion in the orthotropy directions 1(≡ s) and 2(≡ α),
respectively and d′1 and d′2 are defined in Eq.(9.32).
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For isotropic material αt
1 = αt

2 = αt, and

σσσ′0 = −EαtΔt

(1− ν)
[1, 1, 0]T (9.42b)

The relationship between resultan stresses and generalized strains
(Eq.(9.37)) is modified for the case of initial stresses as

σ̂σσ′ = D̂′ε̂εε′ + σ̂σσ′0 (9.43a)

where

σ̂σσ′0 =
[
N0

x′ , N
0
y′ ,M

0
x′ ,M

0
y′ ,M

0
z′
]T

=

=

∫ t
2

− t
2

[
Cασ

0
x′ , Csσ

0
y′ ,−z′Cασ

0
x′ ,−z′Csσ

0
y′ , Cατ

0
x′z′

]T
dz′ (9.43b)

For initial thermal stresses τ0x′z′ = 0 in the above expression.

9.3.4 Principle of virtual work

The PVW is written as∫∫∫
V
δεεε′Tσσσ′dV =

∫∫∫
V
δuTbdV +

∫∫
A
δuT tdA+

∑
i

∮
l
δuT

i pids (9.44a)

where V and A are the shell volume and the area of the meridional section,
respectively and l is the length of the generatrix.

The virtual internal work is expressed in terms of the local stresses and
strains, while all other vectors are written in global axes for convenience.
In the above, u = [u0, w0, θ]

T is the global displacement vector and

b = [bx, bz,m]T , t = [fx, fz,ms]
T , pi = [Pxi , Pzi , Mi]

T (9.44b)

are axisymmetric body force, distributed load and point load vectors, re-
spectively, defined in global axes and per unit circumferential length (Figu-
re 9.9). In Eq. (9.44b), m and ms are distributed couples per unit volume
and per unit surface, respectively. Initial stresses and strains have been
neglected here for simplicity.

Eq.(9.44a) is simplified by expressing

dV = dx′dy′dz′ = CsCα ds̄ ds dz
′ = rCsCα dα ds dz′ (9.45a)
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Fig. 9.9 External forces in axisymmetric shells: a) body forces (gravity), b) point
loads, c) distributed loads

dA = dx′dy′ = CsCαds̄ dα = rCsCα dα ds

dΓ = dy′ = Cα ds̄ = rCα dα

Integrating over a circumference gives

2π

∫∫
A
δεεε′Tσσσ′CsCαr ds dz

′ = 2π

∫∫
A
δuTbCsCαr ds dz

′+

+2π

∫
l
δuT tCsCαr ds+ 2π

∑
i

riCαiδu
T
i qi

(9.45b)
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Like we do for axisymmetric solids (Chapter 6 of [On4]) we retain the
2π factor on both sides of Eq.(9.45b). This will remind us that the forces
are defined per circumferential length.

The internal work can be expressed in terms of the resultant stresses
and the generalized strains using Eqs.(9.25) and (9.34) as

2π

∫∫
A
δεεε′Tσσσ′CsCαr ds dz

′ = 2π

∫
l
δε̂εε′T

[∫ t
2

− t
2

ST
1 σσσ

′CsCαdz
′
]

︸ ︷︷ ︸
σ̂σσ′

r ds =

= 2π

∫
l
δε̂εε′T σ̂σσ′r ds

(9.45c)
The PVW is finally written in terms of curvilinear integrals as

2π

∫
l
δε̂εε′T σ̂σσ′r ds = 2π

[∫
l
δuT b̄r ds+

∫
l
δuT tCsCαr ds+

∑
i

riCαiδu
T
i qi

]
(9.46)

where b̄ contains generalized body forces acting on the generatrix and is
given by

b̄ = [b̄r, b̄z, m̄]T =

∫ t
2

− t
2

bCsCαdz
′ (9.47)

Eq.(9.46) simplifies for Cs=Cα=1. If the body forces are constant then
b̄= tb.

Surface loads t(e) due to an internal pressure typically require a trans-
formation to global axes (Figure 9.12). The contribution of a point load
acting on the axis of symmetry is simply given by the value of the force
(i.e. the 2πri factor is not required in this case).

The effect of initial stresses can be simply taken into account by sub-
stituting the expression of σ̂σσ′ of Eq.(9.43b) into the l.h.s. of Eq.(9.46).

The integrals in Eq.(9.46) contain first derivatives of the displacements
only. This allows C0 continuous axisymmetric shell elements to be used. A
simple choice are the troncoconical elements studied in the next section.

9.4 TRONCOCONICAL REISSNER-MINDLIN ELEMENTS

Figures 9.10 and 9.11 show the discretization of an axisymmetric shell
in troncoconical elements. The discretization process is extremely simple
and it merely involves dividing the generatrix into straight segments, as
is done for a plane frame or an arch.
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Fig. 9.10 Discretization of an axisymmetric shell in troncoconical shell elements

Fig. 9.11 Troncoconical shell elements: a) linear (2-noded) and b) quadratic (3-
noded). Letters in brackets denote global node numbers

9.4.1 Displacement and strain interpolation

The local displacement field within a troncoconical element with n nodes
is written as

u′ =

⎧⎪⎨⎪⎩
u′0
w′0
θ

⎫⎪⎬⎪⎭ =
n∑

i=1

Ni a
′(e)
i = N a′(e) (9.48)
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with

N = [N1,N2, . . . ,Nn]; a′(e) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a
′(e)
1

a
′(e)
2

...

a
′(e)
n

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(9.49)

where

Ni =

⎡⎢⎣Ni(ξ) 0 0

0 Ni(ξ) 0

0 0 Ni(ξ)

⎤⎥⎦ , a
′(e)
i =

⎧⎪⎨⎪⎩
u′0i
w′0i
θi

⎫⎪⎬⎪⎭ (9.50)

and Ni(ξ) are the shape functions of 1D Lagrange elements (Chapter 2 of
[On4]).

Since the element is straight, Rs=∞ and Cs=1 which implies ∂/∂s =
∂/∂x′. For simplicity we will also assume in the following Cα=1. The
generalized local strain vector is found as (Eqs.(9.27-9.28))

ε̂εε′ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ε̂εε′m
. . .

ε̂εε′b
. . .

ε̂′s

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u′0
∂s

u′ocosφ− w′osenφ
r

. . .

∂θ
∂s

θcosφ
r
. . .

∂w′0
∂s

− θ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.51)

The generalized local strain vector includes the axial stretching
∂u′0
∂s ,

the (pseudo) curvature ∂θ
∂s and the shear angle

(
∂w′0
∂s −θ

)
, as for a plane

frame or an arch. It also incorporates the circumferential stretching u0
r

and the circumferential curvature θ cosφ
r .

Substituting Eq.(9.48) into (9.51) gives

ε̂εε′ =
n∑

i=1

B′i a
′(e)
i = B′ a′(e) (9.52)

with
B′ = [B′1,B

′
2, . . . ,B

′
n] (9.53)
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and

B′i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
B′mi

−−−
B′bi
−−−
B′si

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni
∂s

0 0

Nicosφ
r −Nisenφ

r 0
— — — — — — — — — — — —

0 0 ∂Ni
∂s

0 0
Nicosφ

r
— — — — — — — — — — — —

0 ∂Ni
∂s

−Ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.54)

where subscriptsm, b and s denote the membrane, bending and transverse
shear strain matrices, respectively.

9.4.2 Local stiffness matrix

Substituting Eqs.(9.43a), (9.48) and (9.52) into the PVW (Eq.(9.46)) gives
the equilibrium equation for the element as

K′(e)a′(e) − f ′(e) = q′(e) (9.55)

where

K
′(e)
ij = 2π

∫
l(e)

B′Ti D̂ B′jr ds , i, j = 1, n (9.56)

is a typical contribution to the local stiffness matrix of a troncoconical shell
element of length l(e), f (e) is the equivalent nodal force vector and q′(e) is
the equilibrating nodal forces vector. For convenience, the components of
both force vectors are expressed in local axes.

Making use of Eqs.(9.38a) and (9.54) the local stiffness matrix for the
troncoconical element is written as

K
′(e)
ij = 2π

∫
l(e)

[
B′Tmi

D̂′
mB′mj︸ ︷︷ ︸

(1)

+B′Tbi D̂
′
bB
′
bj︸ ︷︷ ︸

(2)

+B′Tsi D̂
′
sB

′
sj︸ ︷︷ ︸

(3)

+

+
(
B′Tmi

D̂′
mb B

′
bj
+B′Tbi D̂′

mb B
′
mj︸ ︷︷ ︸

(4)

)]
r ds =

= K′(e)
mij︸ ︷︷ ︸
(1)

+K
′(e)
bij︸ ︷︷ ︸
(2)

+K′(e)
sij︸ ︷︷ ︸
(3)

+K
′(e)
mbij

+ [K
′(e)
mbij

]T︸ ︷︷ ︸
(4)

(9.57)

where subscripts m, b, s and mb denote the stiffness contributions due
to membrane, bending, shear and coupled membrane-bending effects.
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Eq.(9.57) is analogous to (8.36) for flat shell elements. The coupling of the

local membrane and bending stiffness at element level via matrix K
′(e)
mb is a

distinct feature of composite laminated axisymmetric shells. For D̂′
mb=0,

which occurs for particular cases, such as symmetric laminates or homo-

geneous material, then K
′(e)
mb =0 and the membrane and bending stiffness

are uncoupled at element level. Membrane-bending coupling invariably oc-
curs at structural level when the local stiffness equations of non coplanar
elements are assembled in global axes, as for flat shell elements.

9.4.3 Transformation to global axes

The stiffness transformation process is very similar to that explained for
flat shells in Section 8.5 and the details will not be repeated here. The
global stiffness matrix for the element is

K(e) = [T(e)]TK(e)T(e) with T(e) =

⎡⎢⎢⎢⎣
L
(e)
1 0

L
(e)
2

. . .

0 L
(e)
n

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (9.58)

A typical submatrix is given by

K
(e)
ij =

[
L
(e)
i

]T
K
′(e)
ij L

(e)
j (9.59)

where L
(e)
i coincides with matrix L of Eq.(9.14). The nodal transformation

matrices are identical for all the element nodes as the element is straight.
As explained in Section 8.5, it is generally more convenient to transform

first the local strain matrix B′i as

Bi =

⎧⎨⎩
Bmi

Bbi

Bsi

⎫⎬⎭ = B′i
[
L
(e)
i

]T
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂s
cosφ

∂Ni

∂s
senφ 0

Ni

r
0 0

— — — — — — — — — — —

0 0
∂Ni

∂s

0 0
Ni cosφ

r
— — — — — — — — — — —

−∂Ni

∂s
senφ

∂Ni

∂s
cosφ −Ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Bmi

Bbi

Bsi

(9.60)
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The global stiffness matrix is now directly obtained as

K
(e)
ij = 2π

∫
l(e)

BT
i D̂

′Bjrds = K(e)
mij

+K
(e)
bij

+K(e)
sij +K

(e)
mbij

+ [K
′(e)
mbij

]T

(9.61)
where the different stiffness matrices are obtained by substituting Bmi ,
Bbi and Bsi of Eq.(9.60) into (9.57).

The element equilibrium equation in global axes is

K(e)a(e) − f (e) = q(e) (9.62)

The equivalent nodal force vector is given in global axes by

f
(e)
i = 2π

∫
l(e)

NT
i btrds+ 2π

∫
l(e)

NT
i trds+ 2πrip

(e)
i − 2π

∫
l(e)

B′Ti σ̂σσ′0rds

(9.63)
where the last integral accounts for the effect of initial stresses.

Figure 9.12 shows the transformation required to obtain the global
components of the distributed load vector t for an internal pressure acting
on a mesh of 2-noded troncoconical elements.

Matrix K
(e)
ij is computed numerically with a 1D Gauss quadrature as

K
(e)
ij = 2π

∫ +1

−1
BT

i D̂
′ BjrJ

(e)dξ =

nq∑
q=1

(
BT

i D̂
′ BjrJ

(e)
)
q
Wq =

=

nm∑
qm=1

(
I(e)m

)
qm

Wqm +

nb∑
qb=1

(
I
(e)
b

)
qb
Wqb +

+

ns∑
qs=1

(
I(e)s

)
qs
Wqs +

nmb∑
qmb=1

(
I
(e)
mb

)
qmb

Wqmb
(9.64)

where J (e) = ds
dξ and

I(e)a = 2πBT
aiD̂

′
aiBajrJ

(e), a = m, b, s (9.65)

I
(e)
mb = 2π

(
BT

mi
D̂′

mbBbj +BT
bi
D̂′

mbBmj

)
rJ (e)

Typically J (e) = l(e)

2 for straight elements (see Section 2.3.2 and Chapter
3 of [On4]).

In Eq.(9.64) ni, Wqi , i = m, b, s,mb are the number of integration
points and the corresponding weights for computing the membrane, bend-
ing, shear and membrane-bending stiffness matrices. The selection of the
quadrature order is discussed later.
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Fig. 9.12 Internal pressure acting on an axisymmetric shell discretized with 2-
noded troncoconical element. Transformation to global axes

A similar quadrature is used for integrating the equivalent nodal forces.
Grouping terms in Eq.(9.63) gives

f
(e)
i =2π

nq∑
q=1

[
NT

i (bt+ t)−B′Ti σ̂σσ′0
]
rJ (e)Wq + 2πrip

(e)
i (9.66)

9.5 SHEAR AND MEMBRANE LOCKING

9.5.1 Transverse shear locking

Let us write the global stiffness equation for an axisymmetric shell with
constant thickness as

[t(K̄m + K̄s) + t3K̄ba] = f (9.67)

where (·) denotes the membrane, transverse shear and bending stiffness
matrices once the thickness has been taken out as shown. For simplicity
the coupling membrane-bending stiffness matrix Kmb has been ignored.
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Let us consider a circular plate under lateral loading only. Now the
membrane and bending effects are decoupled and Eq.(9.67) simplifies to

[tK̄s + t3K̄b]a = f (9.68)

The exact analytical solution in this case is proportional to 1/t3

[BD6,Go]. Dividing Eq.(9.68) by t3 gives

[αK̄s +Kb]a =
1

t3
f = f̄ (9.69)

where α=1/t2 and f̄ is a vector of the order of magnitude of the exact
solution. For t → ∞ then α → 0 and the bending stiffness plays no role
in Eq.(9.69). Thus, the solution tends to the following limit value

K̄sa =
1

α
f → 0 (9.70)

Clearly as the thickness reduces, the solution stiffness (locks) at a rate
proportional to t2 with respect to the exact value, giving zero displace-
ments in the limit thin case (t = 0). Eq.(9.70) shows that the existance
of a non-trivial solution requires Ks to be singular. Here the singularity
rule of Eq.(2.50) applies again. This singularity can be achieved by using
reduced integration for Ks.

9.5.2 Membrane locking

Membrane terms can contribute to increase locking behaviour in axisym-
metric shells. High membrane stiffness values relative to the bending ones
can introduce a “parasitic” membrane stiffness leading to membrane lock-
ing. This effect, is generally of less importance than shear locking and can
be understood by observing Eq.(9.67). Dividing by t3 gives

[α(K̄m + K̄s) + K̄b]a = f̄ (9.71a)

For the limit case of t→ 0 and α→∞ we have

(K̄m + K̄s)a =
1

α
f̄ → 0 (9.71b)

Clearly the existence of a non-zero solution requires the singularity
of the sum of the transverse shear and membrane matrices. In practice

this implies using reduced integration for K
(e)
s and K

(e)
m . However, this

condition is less strict than that required for K
(e)
s to avoid transverse shear
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locking. This is so because in shells the coupling between membrane and
flexural effects is generally weaker than that between shear and bending
effects.

Membrane locking can be fully avoided if the displacement approxi-
mation can reproduce a null membrane strain field without modifying the
bending approximation. The so called “inextensional mode” (zero mem-
brane strains under a pure bending state) does not exist in axisymmetric
shells, as the circumferential strains are always non-zero. Membrane lock-
ing is less severe when the displacement approximation allows a zero radial

membrane strain
∂u′0
∂s −

w′0
Rs

to be represented without constraining the flex-
ural approximation [Cr].

In troncoconical Reissner-Mindlin shell elements 1/Rs = 0 and, hence,
the radial membrane strain is fully decoupled from the bending and shear
strains at element level. This practically eliminates membrane locking in
troncoconical elements, as the membrane-bending coupling is induced by
the transformation of the stiffness equations to global axes only. This is
not so for curved axisymmetric shell elements for which membrane and
bending effects are coupled at element level and hence they require a
compatible approximation for u′o and w′o, or reduced integration for the
membrane stiffness (Section 9.15).

This situation worsens if coupling between transverse shear, membrane
and bending behaviour exists. Eq.(9.71) reads in this case

[α(K̄m + K̄s) + βK̄mb + K̄b]a = f̄ (9.72)

where β = 1/t.

Eq.(9.72) shows that matrix K
(e)
mb introduces a coupling between mem-

brane and bending effects at element level than can also induce locking

as t → 0. The effect of K
(e)
mb is less relevant in terms of locking than that

of K
(e)
s and K

(e)
m . It is however recommended in practice to use reduced

integration for K
(e)
mb in order to prevent membrane locking in composite

shells.

9.5.3 Other techniques to avoid locking in Reissner-Mindlin troncoconical
shell elements

Shear locking can also be avoided by combining an assumed transverse
shear strain field with adequate (compatible) approximations for displace-
ments and rotations. The application of this technique follows the lines
detailed for Timoshenko beam elements (Chapter 2).
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Fig. 9.13 Application of the singularity rule (2.50) for K
(e)
s in 2 and 3-noded

Reissner-Mindlin troncoconical shell elements
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For the 2-noded troncoconical element, combining an assumed constant
field for γx′,z′ with a linear approximation for u′0, w′0 and θ is equivalent

to using one-point reduced quadrature for K
(e)
s in the original element.

The same equivalence is found between the two-point reduced integra-
tion for the quadratic 3-noded troncoconical element and using an assumed
linear shear strain field. This is similar to what happens for the 2-noded
Timoshenko beam element (Example 2.9).

Similar techniques can be devised to avoid membrane locking. However,
their interpretation is less obvious. See Section 9.11 for more details.

9.6 INTEGRATION RULES FOR THE LINEAR AND QUADRATIC
REISSNER-MINDLIN TRONCOCONICAL ELEMENTS

9.6.1 Quadrature for the 2-noded Reissner-Mindlin troncoconical element

Shear locking in the linear (2-noded) Reissner-Mindlin troncoconical ele-

ment can be avoided by using a one point reduced quadrature for K
(e)
s .

Examples are shown in Figure 9.13.
The one-point quadrature for the all the stiffness terms preserves the

correct rank in the overall element stiffness matrix and leads to a simple
expression as

K
(e)
ij = 2πB̄i

¯̂
D′B̄j r̄l

(e) (9.73)

where (̄·) denotes element midpoint values. Figure 9.14 shows the explicit
form for the stiffness matrix neglecting coupled membrane-bending ef-
fects. The reduced one-point quadrature for all the stiffness matrix terms
eliminates membrane and shear locking (Figure 9.15).

The equivalent nodal force vector is integrated with a two-point quadra-
ture for the general case of arbitrary loading (Eq.(9.66)). A simple ana-
lytical expression for constant body forces, uniformly distributed loading
and zero initial stresses is found as

f
(e)
i =

πl(e)ci
3

[tb+ t] + 2πxip
(e)
i , i = 1, 2 (9.74)

with c1 = 2r
(e)
1 + r

(e)
2 , c2 = 2r

(e)
2 + r

(e)
1 where r

(e)
1 , r

(e)
2 are the radial

coordinates of the two element nodes. Due to the axial-symmetry, nodes
at a greater distance from the axis have larger nodal force values.

The 2-noded Reissner-Mindlin troncoconical element with a single in-
tegrating point was originally developed by Zienkiewicz et al. [ZBMO] and
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Fig. 9.14 Stiffness matrix for the 2-noded Reissner-Mindlin troncoconical shell
element with uniform one-point reduced integration. Coupled membrane-bending
effects are neglected

it is the simplest and most popular axisymmetric shell element. Examples
of its good performance are given in the next section.
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Fig. 9.15 Applications of the singularity rule (2.50) for 2- and 3-noded troncocon-

ical elements using reduced integration for K
(e)
m and K

(e)
s

9.6.2 Quadrature for the 3-noded Reissner-Mindlin troncoconical element

The 3-noded (quadratic) Reissner-Mindlin troncoconical element requires

a reduced two-point quadrature for K
(e)
s to avoid shear locking. The sin-
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gularity rule (2.50) is satisfied using a three-point quadrature for K
(e)
s

in some cases (Figure 9.13). The rest of the stiffness terms can be also
integrated with the reduced two-point rule without perturbing the cor-
rect rank of the element stiffness matrix. The two-point quadrature is also
typically used for integrating vector f (e) (Eq.(9.66)).

The reduced quadrature for both K
(e)
m and K

(e)
s satisfies the singularity

rule (2.50) for the sum of the two matrices. This ensures that membrane
and transverse shear locking is avoided (Figure 9.15).

9.7 APPLICATIONS OF THE TWO-NODED REISSNER-MINDLIN
TRONCOCONICAL ELEMENT

9.7.1 Clamped spherical dome under uniform pressure

Figure 9.16 shows the geometry of the dome, the material properties and
the loading. A uniform mesh of ten 2-noded troncoconical elements is used.

Figure 9.16 displays the diagrams of radial bending moment Mx′ and
circumferential force Ny′ . Very good agreement is obtained with the theo-
retical values [TW] as well as with numerical results using curved axisym-
metric elements based on Kirchhoff thin shell theory [Del].

9.7.2 Toroidal shell under internal pressure

The geometry of the toroidal shell is shown in Figure 9.17, where details of
the material properties and the loading are given. One half of the merid-
ional section has been analyzed due to symmetry. A mesh of eighteen
2-noded troncoconical shell elements has been used.

Results for the distribution of the radial displacement and the diagrams
of axial forces Nx′ and Ny′ are compared in Figure 9.17 with alternative
axisymmetric solutions obtained using Kirchhoff theory [ChF,Del,GM].
Good agreement is found in all cases despite the relative coarseness of the
mesh. Other FE solutions to this problem can be found in [JO,SL].

9.7.3 Cylindrical tank with spherical dome under internal pressure

This example coincides with the cylindrical concrete tank studied in Sec-
tion 7.7.2 of [On4] using axisymmetric solid elements. The geometry and
the material properties can be seen in Figure 7.9 of [On4]. A constant
internal pressure of 1 T/m2 acts on the cylindrical wall and the dome.
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Fig. 9.16 Spherical dome under uniform pressure. Diagrams of Mx′ and Ny′ ob-
tained with a mesh of ten 2-noded Reissner-Mindlin troncoconical elements

A mesh of thirty nine 2-noded troncoconical elements has been used
as shown in Figure 9.18. The axial forces and bending moments diagrams
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Fig. 9.17 Toroidal shell under internal pressure. Diagrams of wr, Nx′ and Ny′
using eighteen 2-noded Reissner-Mindlin troncoconical shell elements

are displayed in the figure. The reader can verify that the distribution of
circumferential stresses σy′ shown in Figure 7.9 of [On4] is obtained from
the diagramas of Ny′ and My′ computed in this example.

9.7.4 Elevated water tank

The last example is the analysis of the elevated water tank shown in
Figure 9.19. The tank is supported by a central cylindrical thin wall and
lateral columns. The effect of the discrete columns has been modeled by
an equivalent cylindrical wall of 2 mm thickness. The tank is loaded by
the weight of internal water as shown in the figure. Two different analysis
with meshes of forty and eighty 2-noded troncoconical elements for the
discretization of the tank and the central cylinder were performed. The
side wall and the lateral cylindrical wall were discretized in both cases
with one and ten elements, respectively.
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Fig. 9.18 Cylindrical tank with spherical dome analyzed with 39 2-noded Reissner-
Mindlin troncoconical elements. Diagrams of axial force Ny′ and bending moment
My′ . Details of the geometry are shown in Figure 7.9 of [On4]

Figures 9.19a and b show the deformed shape of the tank and the
diagrams of axial forces Nx′ and Ny′ for the two meshes. Note the coin-
cidence of the results which indicates the accuracy of the solution. The
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Fig. 9.19 Elevated water tank analyzed with two meshes of 40 and 80 2-noded
Reissner-Mindlin troncoconical elements. (a) Geometry and deformed shape. (b)
Diagrams of axial forces Nx′ and Ny′ . (c) Diagram of bending moment Mx′
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Fig. 9.20 Discretization of axisymmetric shell using 3-noded curved elements

radial bending moment Mx′ diagram is plotted in Figure 9.19c. This mo-
ment takes large values in the vicinity of the lower folded part and at the
joints with the cylindrical supports. The difference in the local bending
moments obtained with the two meshes indicates that finer refirement is
required in these zones. Details of this example can be found in [ZBMO].

9.8 CURVED AXISYMMETRIC SHELL ELEMENTS OF THE
REISSNER-MINDLIN FAMILY

Curved axisymmetric elements following Reissner-Mindlin theory can be
derived starting from the generalized strains and resultant stresses of
Eqs.(9.27), (9.28) and (9.34) including the curvature terms. These terms
have also an influence on the virtual work of the nodal forces (Eq.(9.46)).

Figure 9.20 shows the discretization of the generatrix using curved
elements. The lower member of the C◦ continuous family is the 3-noded
quadratic axisymmetric shell element.

9.8.1 Displacement and load generalized strain fields

The local displacement field is expressed by Eq.(9.48) as for troncoconical
elements. The element geometry is expressed in isoparametric form as

x =
n∑

i=1

Ni(ξ)xi, z =

n∑
i=1

Ni(ξ)zi (9.75)
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where n is the number of element nodes.
The standard relationship between local generalized strains and local

displacements (Eq.(9.52)) is obtained by substituting Eq.(9.48) into (9.27)
and (9.28), giving the generalized strain matrix as

B′i =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B′m
−−−
B′b

−−−
B′s

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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(9.76)

where the terms contributed by the shell curvature have been framed.

9.8.2 Computation of curvilinear derivatives and curvature radius

The isoparametric expression (9.75) yields

∂x

∂ξ
=

n∑
i=1

dNi

dξ
xi;

d2x

dξ2
=

n∑
i=1

d2Ni

dξ2
xi

dz

dξ
=

n∑
i=1

dNi

dξ
zi;

d2z

dξ2
=

n∑
i=1

d2Ni

dξ2
zi

(9.77)

Angle φ defining the tangent direction at each point of the generatrix
(Figure 9.21) is obtained from the expression

tanφ =
dz

dx
=

dz/dξ

dx/dξ
=

n∑
i=1

dNi
dξ

zi

dNi
dξ xi

(9.78)

The curvature radius Rα is computed as (Figure 9.21 and Eq.(9.2))

Rα =
r

sinφ
(9.79)
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Fig. 9.21 Geometric description of a curved 3-noded Reissner-Mindlin axisymme-
tric shell element

The curvature radius Rs is computed as (Eq.(9.2))

1

Rs
=

dφ

ds
=

dφ/dξ

ds/dξ
(9.80)

From Eq.(9.77) we have

ds

dξ
=

√
dx2 + dz2

dξ
=

[(dx
dξ

)2

+
(dz
dξ

)2]1/2
=

=

n∑
i=1

[(
dNi

dξ
xi

)2

+

(
dNi

dξ
yi

)2
]1/2

= J (e)

(9.81)

Substituting Eq.(9.81) and the derivative of φ from Eq.(9.80) into
(9.79) gives finally

1

Rs
=

d2z
dξ2

dx
dξ
− dz

dξ
d2x
dξ2

[(
dx
dξ

)2
+

(
dz
dξ

)2]3/2 =

n∑
i=1

(
d2Ni

dξ2
zi

)(
dNi
dξ

xi

)
−

(
dNi
dξ

zi

)(
d2Ni

dξ2
xi

)

[(
dNi
dξ

xi

)2
+

(
dNi
dξ zi

)2]3/2

(9.82)
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The curvilinear derivative of the shape function Ni is computed by

dNi

ds
=

dNi
dξ
ds
dξ

=
1

J (e)

dNi

dξ
(9.83)

The global stiffness matrix and the load vector are computed by ex-
pressions identical to Eqs.(9.64) and (9.66) with J (e) given by Eq.(9.81).

The transformation matrix L
(e)
i of Eq.(9.59) is now different for each node

and is computed by Eq.(9.14) with φ deduced from Eq.(9.78). The effect
of the curvature makes it difficult to derive simple explicit forms for the
element matrices and numerical integration is needed.

Locking in curved axisymmetric Reissner–Mindlin elements can be
avoided by similar techniques to those explained for troncoconical ele-
ments. The simplest remedy for the quadratic 3-noded element is the
uniform two-point reduced quadrature.

9.9 AXISYMMETRIC THIN SHELL ELEMENTS BASED ON
KIRCHHOFF ASSUMPTIONS

9.9.1 Introduction

Most analytical solutions for axisymmetric shells are based on Kirchhoff
assumption for the orthogonality of the normal rotation [Kr,TW,WOK].
This hypothesis, though only acceptable for thin shell situations, can be
applied to many problems of practical interest and analytical solutions are
available for cylindrical reservoirs, spherical and conical domes, circular
plates etc. [TW].

The early applications of the FEM to axisymmetric shells were also
based on Kirchhoff theory [AG,Ga,Go,GS,Jor,JS,JS2,ZT2] and many ele-
ments of this kind are found in commercial FE codes. This alone justifies
the study of Kirchhoff axisymmetric thin shell elements which have his-
toric, didactic and practical interest. In addition, they are an excellent
introduction to the analysis of thin circular plates and slender arches.

Kirchhoff assumptions are also the starting point for deriving a family
of rotation-free thin troncoconical element following a similar approach as
for rotation-free beam elements in Chapter 1, as shown in a next section.
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9.9.2 Basic formulation

The key difference between Kirchhoff and Reissner-Mindlin theories is
the assumption made for the rotation of the normal. Kirchhoff theory
establishes that, as the thickness is small, the normals to the generatrix
remain straight and orthogonal to the generatrix after deformation. Hence,
the normal rotation coincides with the slope of the generatrix at each
point.

In mathematical form we can write

θ =
∂w′

∂s

∣∣
z′=0

(9.84)

Substituting the expression for ∂w′
∂s of Eq.(9.20) into (9.84) gives

θ =
∂w′0
∂s

+
u′0
Rs

(9.85)

Introducing this equation into (9.24) yields

γx′z′ =
1

Cs

(
∂w′0
∂s

+
u′0
Rs
−

(
∂w′0
∂s

+
u′0
Rs

))
= 0 (9.86)

i.e. the Kirchhoff orthogonality condition is equivalent to neglecting the
effect of transverse shear deformation, as expected.

The local displacement vector is now defined as

u′ =
[
u′0, w

′
0,
∂w′0
∂s

]T
(9.87)

The expressions for the axial and circumferential strains are deduced
by substituting Eq.(9.85) into Eqs.(9.22) and (9.23) to give

εx′ =
1

Cs

[
∂u′0
∂s

− w′0
Rs

− z′
(
∂2w′0
∂s2

+
∂

∂s

(
u′0
Rs

))]

εy′ =
1

Cα

[
u′0 cosφ− w′0 sinφ

r
− z′ cosφ

r

(
∂w′0
∂s

+
u′0
Rs

)] (9.88)

The generalized strain vector is

ε̂εε′ = S2

⎧
⎨
⎩
ε̂εε′m

ε̂εε′b

⎫
⎬
⎭ ; S2 =

[
S,−z′S] (9.89)
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where S is given by Eq.(9.26) and the membrane and bending generalized
strains are

ε̂εε′m =

⎧
⎪⎨
⎪⎩

∂u′0
∂s

− w′0
Rs

u′0cosφ− w′0sinφ
r

⎫
⎪⎬
⎪⎭

; ε̂εε′b =

⎧
⎪⎨
⎪⎩

∂2w′0
∂s2 + ∂

∂s
(
u′0
Rs

)

cosφ
r

(
∂w′0
∂s

+
u′0
Rs

)

⎫
⎪⎬
⎪⎭

(9.90)

The local resultant stresses σσσ′m and σσσ′b are given by Eq.(9.34) after sub-
stitution of S1 by S2. The transverse shear forces do not contribute to the
internal work and must be computed “a posteriori” from the equilibrium
equation, as for thin plates (Section 4.2.6)). The PVW is obtained by ne-
glecting the transverse shear terms in Eq.(9.46). The internal virtual work
now contains second derivatives of the normal displacement w′0. Hence, C1

continuity is needed for the approximation of w0.

9.9.3 Troncoconical shell elements based on Kirchhoff theory

Troncoconical elements have Rs = ∞ and the generalized strain vectors
of Eq.(9.90) simplify to

ε̂εε′m =

⎧⎪⎨
⎪⎩

∂u′0
∂s

u′0cosφ− w′0sinφ
r

⎫⎪⎬
⎪⎭

; ε̂εε′b =

⎧⎪⎨
⎪⎩

∂2w′0
∂s2

cosφ
r

∂w′0
∂s

⎫⎪⎬
⎪⎭

(9.91)

As mentioned above, a C1 continuous interpolation must be used for
the normal displacement w′0 to satisfy element conformity. A simpler C◦

continuous Lagrange approximation can however be employed for the tan-
gential displacement u′0.

Also as the element is straight ∂w′0/∂s = ∂w′0/∂x
′ and ∂2w′0/∂s

2 =
∂2w′0/∂x

′2.

9.9.3.1 Two-noded Kirchhoff troncoconical element

The simplest troncoconical element based on Kirchhoff theory has two
nodes (Figure 9.22). The tangential displacement is linearly interpolated
as

u′0 =
2∑

i=1

Nu
i u′oi with Nu

i =
1 + ξξi

2
(9.92)
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B′ =

⎧⎨
⎩
B′m
· · ·
B′f

⎫⎬
⎭ =

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1

l(e)
0 0 | 1

l(e)
0 0

1− ξ′

2x
C(e) (−Nw

1 )
S(e)

4r
(−N̄w

1 )
S(e)

4r
| 1 + ξ′

2r
C(e) (−Nw

2 )
S(e)

4r
(−N̄w

2 )
S(e)

4r

|
— — — — — — — — — — — — — — — — — — — — — — — — — — — — —

|
0

6ξ

(l(e))
2

2(−1 + 3ξ)

(l(e))2
| 0

−6ξ
(l(e))

2
−2(1 + 3ξ)

(l(e))2

0 (ξ2 − 1)
3C(e)

2rl(e)
H1

C(e)

2rl(e)
| 0 (1− ξ2)

3C(e)

2rl(e)
H2

C(e)

2rl(e)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

C(e) = cosφ(e) , S(e) = sinφ(e)

Nw
i =

1

4
(2 + 3ξξi − ξ3ξi) , N̄w

i =
1

4
(ξ3 + ξ2ξi − ξ − ξi) , Hi = (3ξ2 + 2ξξi − 1)

Fig. 9.22 Two-noded Kirchhoff troncoconical element. Local strain matrix

The following C1 continuous approximation is chosen for w′0

w′0 =
2∑

i=1

[
Nw

i w′oi + N̄w
i

(∂w′0
∂s

)
i

]
(9.93)

where Nw
i and N̄w

i are the cubic 1D Hermite shape functions (Eq.(1.11)).
The local generalized strain matrix is written as

ε̂εε′ = [B′1,B
′
2]a

′(e) = B′ a′(e) (9.94)
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with

B′i =

⎧
⎨
⎩

B′mi

−−−
B′bi

⎫
⎬
⎭ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Nu
i

∂s
0 0

Nu
i cosφ
r

−Nw
i sinφ
r

−N̄w
i sinφ
r

— — — — — — — — — — — —

0
∂2Nw

i

∂s2
∂2N̄w

i

∂s2

0
cosφ
r

∂Nw
i

∂s
cosφ
r

∂N̄w
i

∂s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.95)

The explicit form for B′ is shown in Figure 9.22.
The local stiffness matrix is obtained by eliminating the contribution

of the transverse shear stiffness terms in Eq.(9.57) giving

K
′(e)
ij = K′(e)

mij
+K

′(e)
bij

+K
′(e)
mbij

+ [K
′(e)
mbij

]T (9.96)

where all matrices have identical expressions to those given in Eq.(9.57).
A two-point quadrature is recommended for computing the integrals con-
taining rational terms. A more accurate expression for the stiffness matrix
using a seven-point quadrature can be found in [Kl]. Good results are ob-
tained however with the simplest reduced one-point quadrature. This is
equivalent to making ξ = 0 and r = rm in B′ of Figure 9.22. A finer mesh
is then needed in zones where the stress gradients are high. Details and
examples are given in [GS,ZT2].

The stiffness transformation to global axes follows the rules of Section
9.4.3. The Hermite approximation for w′0 introduces bending moments in
the equivalent nodal force vector, like for Euler-Bernoulli beam elements
(Section 1.2.2).

9.9.3.2 Curved Kirchhoff axisymmetric shell elements

Much work has been done since the early 1960’s on the derivation of curved
axisymmetric shell elements based on Kirchhoff theory [AG,As,ASR,Bat2,
BD6,CC,Da3,Del,DG,Ga,Ga2,JS,JS2,SNP,ZT2]. The main difficulty is find-
ing compatible approximations for the geometry and the displacement field
so that C1 continuity is preserved. Delpak [Del] proposed a Hermite ap-
proximation for the coordinates and the displacements in global axes for
2-noded elements as

x =

{
x
z

}
=

2∑
i=1

[
Ni xi + N̄i

(∂x
∂s

)
i

]
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u =

{
u
w

}
=

2∑
i=1

[
Ni ui + N̄i

(∂u
∂s

)
i

]
(9.97)

where Ni and N̄i are the cubic Hermite polynomials of Eq.(1.11). Both dis-
placement components now vary as a cubic. This introduces an additional
nodal variable

(
∂u
∂s

)
i
which contributes to the continuity of the slope of the

generatrix. A difficulty arises for obtaining the local strain matrix where
the derivatives of the local displacements are needed and the curvature
radius varies from point to point. This element is described in [Del,ZT2].

Curved Kirchhoff axisymmetric shell elements typically suffer from
membrane locking. The reason is that the displacement approximation
can not usually represent a zero membrane strain state without pollut-
ing the bending approximation. Elimination of membrane locking requires
compatible (higher order) approximations for the tangential and normal
displacements, or reduced integration as explained in Section 9.5.2.

Different locking–free curved axisymmetric thin shell elements have
been reported in [BD6,Cr,Cr4,Del,SNP,ZT2].

9.10 AXISYMMETRIC MEMBRANE ELEMENTS

A membrane analysis can be applied in cases when bending and transverse
shear effects are negligible, or if these effects are concentrated in zones near
the support and/or point loads. Examples of pure axisymmetric membrane
situations are found in water bags, thin tubes under internal pressure and
inflatable structures such as balloons, inflatable pavilions, air-supported
domes and air-beams (see examples in www.buildair.com). The differential
equations for an axisymmetric membrane are simple and many analytical
solutions are available. Typical examples are the analysis of hydrostatic
tanks under water load or spherical domes under self-weight where the
amount of reinforcing steel and the prestressing can be estimated from
the membrane solution. A full bending analysis is typically performed at
the end of the design process for verification purposes and for defining the
lay-out of steel reinforcement near the supports.

The formulation of axisymmetric membrane elements is straightfor-
ward as they are a particular case of the general axisymmetric shell for-
mulation. The displacement field is expressed in terms of the two local
displacements as

u′0 = [u′0, w′0] (9.98)

http://www.buildair.com
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The local strain vector is given by the elongation vector ε̂εε′m of Eq.(9.27a)
while the axial force–elongation relationship is deduced from Eq.(9.34).
The PVW coincides with Eq.(9.46), neglecting the bending and shear
contributions.

The displacement field is discretized using a standard C0 continuous
approximation as

u′ =
n∑

i=1

Niu
′
i (9.99)

The local membrane strain matrix is deduced from Eq.(9.76) as

B′mi
=

⎡
⎣

∂Ni
∂s

−Ni
Rs

Nicosφ
r

−Nisinφ
r

⎤
⎦ (9.100)

The curvature term −Ni
Rs

is zero for troncoconical membrane elements.

The local stiffness matrix contains membrane contributions only, i.e.

K
′(e)
ij ≡ K′(e)

mij
= 2π

∫

l(e)
B′Tmi

D̂′
m B′mj

r d s (9.101)

The transformation to global axes follows the procedure explained in
Section 9.4.3. The global stiffness matrix is given by

K(e)
mij

= 2π

∫

l(e)
BT

mi
D̂′

m Bmj r d s (9.102a)

where

Bmi = B′mi
L̂i; L̂i =

[
cosφ sinφ
− sinφ cosφ

]
(9.102b)

The stiffness matrix is computed using numerical integration. Three-
and two-point quadratures are typically used for the quadratic (3-noded)
and linear (2-noded) axisymmetric membrane elements, respectively.

Note that an axisymmetric membrane can only analyzed with the
present formulation if subject to tension axial forces only.

Troncoconical membrane elements may suffer from numerical instabil-
ities due to undesirable flexural loads arising from discretization errors.
The solution to this problem, also discussed in Section 8.14 for flat mem-
brane elements, is to introduce a fictitious bending stiffness. This, however,
increases in one rotation the nodal DOFs.

General purpose axisymmetric shell elements preserving two displace-
ment DOFs per node and applicable to thin axisymmetric membrane and
shell structures can be derived via the rotation-free formulation described
in the following section.
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Fig. 9.23 Computation of average meridional curvature in cell-centred and cell-
vertex troncoconical domains

9.11 ROTATION-FREE AXISYMMETRIC SHELL ELEMENTS

Rotation-free axisymmetric thin (Kirchhoff) shell elements can be derived
as explained for rotation-free beam elements in Section 1.4. The radial
(constant) curvature over a control domain is expressed in terms of the
displacements at selected points in the vicinity of the control domain. For
simplicity we will consider troncoconical elements only in the following.

The average meridional curvature over a control domain in a thin tron-
coconical shell can be estimated as (in the following we will take s ≡ x′

and skip index 0 in u′0 and w′0, for simplicity)

κs =

(
∂2w′

∂x′2

)e

� 1

le

[(
∂w′

∂x′

)

b

−
(
∂w′

∂x′

)

a

]
(9.103)

where le is the length of the ith control domain and (·)j , j = a, b denotes
values computed at the end points of the domain (Figure 9.23).

Eq.(9.103) is analogous to Eq.(1.28) defining the curvature in a beam
segment from the difference of the slopes at the segment ends.

Eq.(9.103) yields the curvature ∂2w′
∂x′2

in terms of the derivative ∂w′
∂x′ at

the end points of the control domain. If a C0 interpolation is chosen for w′,
then ∂w′

∂x′
is not continuous at the element ends and this poses a problem if

the control domain coincides with an element. This difficulty is overcome
by computing ∂w′

∂x′ at a node using the average value of the derivatives
contributed by the two elements meeting at the node.
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Fig. 9.24 Cell-centred rotation-free troncoconical element (ACC). Computation of
average meridional curvature

Two options for choosing the control domain leading to two different
rotation-free troncoconical elements are described next.

9.11.1 Cell-centred rotation-free troncoconical element (ACC)

9.11.1.1 ACC element matrices

The control domain coincides with a typical 2-noded C◦ troncoconical ele-
ment (Figure 9.24). A linear interpolation for the two local displacements
is used. Application of Eq.(9.103) gives

κs =

(
∂2w′

∂x′2

)e

=
1

le

[(
∂w′

∂x′

)

i+1

−
(
∂w′

∂x′

)

i

]
=

=
1

le

[
1

2

(
w′e+1
i+2 − we+1

i+1

le+1
+

we
i+1− we

i

le

)
− 1

2

(
w′ei+1− w′ei

le
+

w
′e−1
i −w

′e−1
i−1

le−1

)]

=
1

2lele−1le+1
[le+1,−le+1,−le−1, le−1]

⎧⎪⎪⎨
⎪⎪⎩

w′e−1i−1
w′e−1i

w′e+1
i+1

w′e+1
i+2

⎫⎪⎪⎬
⎪⎪⎭

= Bb1w
′e (9.104a)

where

B′b1 =
1

2lele−1le+1

[
le+1,−le+1,−le−1, le−1] , w′e=

[
w′e−1i−1 , w′e−1i , w′e+1

i+1 , w′e+1
i+2

]T
(9.104b)



Rotation-free axisymmetric shell elements 573

The transformation of the deflection w′ei to global axes is written as

w′ei = −ui sinφe + wi cosφ
e (9.105)

where ui, wi are the global displacements of node i and φe is the angle
between the x′ and x axis for element e (Figure 9.24).

Transformation of the r.h.s. of Eq.(9.104a) to global axes gives

κs = Bb1a
e with Bb1 = B′b1T (9.106)

where

T =

⎡⎢⎢⎣
ne−1 0 0 0
0 ne−1 0 0
0 0 ne+1 0
0 0 0 ne+1

⎤⎥⎥⎦ , ne = [− sinφe, cosφe] , 0 = [0, 0]

(9.107a)
and

ae =

⎧⎪⎪⎨
⎪⎪⎩

ai−1
ai
ai+1

ai+2

⎫⎪⎪⎬
⎪⎪⎭

with ai =

{
ui
wi

}
(9.107b)

The (constant) circumferential curvature for element e is computed as

κθ =
cosφe

r

∂w′

∂x′
=

cosφe

rle
[−1, 1]

{
w′ei
we
i+1

}
=

=
cosφe

rle
[0,−ne,ne,0]

︸ ︷︷ ︸
Bb2

ae = Bb2a
e (9.108)

with ne and 0 hereonwards defined as in Eq.(9.107a).
The meridional membrane strain is expressed as

λs =
∂u′

∂x′
=

1

le
[−1, 1]

{
u′ei
u′ei+1

}
=

1

le
[0,−te, te,0]

︸ ︷︷ ︸
Bm1

ae = Bm1a
e (9.109)

with te = [cosφe, sinφe].
Finally, the circumferential membrane strain is computed as

λθ =
u

r
=

ui + ui+1

2rc
=

1

2rc
[0, 0, 1, 0, 1, 0, 0, 0]

︸ ︷︷ ︸
Bm2

ae = Bm2a
e (9.110)
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where rc is the radius of the element mid-point, rc =
ri+ri+1

2 (Figure 9.24).
The generalized strain matrix is expressed as

B =

⎧⎨
⎩
Bm

· · ·
Bb

⎫⎬
⎭ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Bm1

Bm2

· · ·
Bb1

Bb2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9.111)

The global element stiffness matrix is computed as

K(e) = K(e)
m +K

(e)
b +K

(e)
mb + [K

(e)
mbij

]T (9.112a)

where
K(e)

α = 2πBT
αD̂

′
αBαrcl

(e) , α = m, b,mb (9.112b)

The size of K(e) is 8×8, as it involves the eight displacements of nodes
i− 1, i, i+ 1 and i+ 2 (two displacements per node).

The expression for the equivalent nodal force vector for a uniformly
distributed loading is simply

f
(e)
i =

lerc
2

t with t =

{
tx
ty

}
(9.113)

Nodal point loads are directly assembled into the global expression of
f as usual.

9.11.1.2 Boundary conditions for the ACC element

The conditions on prescribed nodal displacements are imposed in the stan-
dard manner when solving the global equations systemKa = f . The condi-
tions on simply supported (SS), clamped or symmetry nodes involving the
nodal rotation are implemented when building up the generalized strain
matrix Bb1 , as it is usual in rotation-free elements. The form of matrix
B′m1

for each boundary condition is given next.

Free or SS node

Let us consider a SS or free node i placed at the left-hand end of a mesh
(Figure 9.25a). The curvature at the prescribed node is zero. Hence the
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Fig. 9.25 Cell-centred rotation-free troncoconical element (ACC). Control do-
mains (in shadow) in elements with boundary node. (a) SS or free end node.
(b) Clamped or symmetry node

average curvature at the element adjacent to the prescribed node is com-
puted as

κs =
2

le

[(
∂w′

∂x′

)

i+1

−
(
∂w′

∂x′

)

i

]
(9.114)

with
(
∂w′
∂x′

)
i+1

computed as in Eq.(9.104a) and
(
∂w′
∂x′

)
i
=

w′ei+1−w′ei
le .

Substituting these expressions for ∂w′
∂x′ into Eq.(9.114) gives

κs =
1

(le)2le+1
[le+1,−le+1,−le, le]

︸ ︷︷ ︸
B′b1

⎧
⎪⎪⎨
⎪⎪⎩

w′ei
w′ei+1

w′e+1
i+1

w′e+1
i+2

⎫
⎪⎪⎬
⎪⎪⎭

= B′b1w
′e = Bb1a

e (9.115a)

where vector ae has the form of Eq.(9.107b) and Bb1 is obtained as

Bb1 = B′b1T with T =

⎡⎢⎢⎣
0 ne 0 0
0 0 ne 0
0 0 ne+1 0
0 0 0 ne+1

⎤⎥⎥⎦ (9.115b)

The terms of K
(e)
b involving K

(e)
b1

are computed over half the element

length
(
le

2

)
in Eq.(8.112b).

For a SS node the global vertical displacement wi is prescribed to zero.
Note finally that ai−1 are “ghost” displacements in vector ae as node i−1
has been introduced simply for preserving the dimensions of matrices Bb1

and K(e). Consequently ai−1 is prescribed to zero when solving the system
of equations.

A right-hand SS or free node is treated in a similar manner [JO].
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Clamped or symmetry node

Let us consider a clamped or symmetry node i placed at the left-hand end
of a mesh where the rotation is prescribed to a zero value (Figure 9.25b)).

The meridional bending stiffness matrix for the element adjacent to
the prescribed node is computed as the sum of the contributions from the
meridional curvature fields κs and κ̄s shown in Figure 9.25b.

The meridional curvature at the element adjacent to the prescribed
node is computed as

κs =
2

le

[
w′ei+1 − w′ei

le

]
=

2

(le)2
[−1, 1]

︸ ︷︷ ︸
B′b1

{
w′ei
we
i+1

}
= B′b1w

′(e) = Bb1a
e

(9.116)
with ae is given by Eq.(9.107b) and

Bb1 = B′b1T with T =

[
0 ne 0 0
0 0 ne 0

]
(9.117)

The meridional curvature κ̄s is computed as

κ̄s =
2

le

[(
∂w′

∂x′

)

i+1

− w′ei+1 − w′ei
le

]
(9.118)

with
(
∂w′
∂x′

)
i+1

computed as in Eq.(9.104). After small algebra we obtain

κ̄s =
2

(le)2le+1
[le+1,−le+1,−le, le]

︸ ︷︷ ︸
B̄′b1

⎧⎪⎪⎨
⎪⎪⎩

w′ei
w′ei+1

w′e+1
i+1

w′e+1
i+2

⎫⎪⎪⎬
⎪⎪⎭

= B̄′b1w
′
= B̄b1a

e (9.119)

with B̄b1 = B̄′b1T, and T as in Eq.(9.115b).
The rest of the generalized strain matrices have the same expressions

as in Eq.(9.111). The displacements at a clamped node are prescribed to
zero, as usual.

The element stiffness matrix is obtained as

K(e) = K
(e)
1 + K̄

(e)
1 (9.120)

where K
(e)
1 and K̄

(e)
1 are given by Eq.(9.112a) using Bb1 and B̄b1 in K

(e)
b ,

respectively. The terms involving Bb1 and B̄b1 are computed over le

2 .
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In addition, the displacements of the “ghost node” (ai−1) are prescribed
to zero for the same reasons explained for the free or SS node.

A clamped or symmetry node placed at the right-hand end of the mesh
is treated in the same manner [JO].

9.11.2 Cell-vertex rotation-free troncoconical element

9.11.2.1 ACV element matrices

The stiffness matrix for the so-called ACV element is expressed as the
sum of the stiffness contributions from the two subdomains 1 and 2 which
form the element (Figures 9.23 and 9.26), i.e.

K(e) = πle
[
BT

i D̂
′Bir1 +BT

i+1D̂
′Bi+1r2

]
(9.121)

The meridional curvature at node i is

κsi =
2

le + le−1

[(
∂w′

∂x′

)

B

−
(
∂w′

∂x′

)

A

]
=

=
2

le + le−1

[
w′ei+1 − w′ei

le
− w′e−1i − w′e−1i−1

le−1

]
= (9.122a)

=
1

lele−1(le + le−1)
[le,−le,−le−1, le−1]

︸ ︷︷ ︸
B̄′bi

⎧⎪⎪⎨
⎪⎪⎩

w′e−1i−1
w′e−1i

w′ei+1

w′ei+1

⎫⎪⎪⎬
⎪⎪⎭

= B′biw
′
= Bbia

e

where ae is given by Eq.(9.107b) and

Bbi = B′biT with T =

⎡⎢⎢⎣
ne−1 0 0 0
0 ne−1 0 0
0 0 ne 0
0 0 0 ne

⎤⎥⎥⎦ (9.122b)

Similarly for node i+ 1

κsi+1 =
2

le + le+1

[(
∂w′

∂x′

)

C

−
(
∂w′

∂x′

)

B

]
=

=
2

le + le+1

[
w′e+1
i+2 − w′ei+1

le+1
− w′ei+1 − w′ei

le

]
= (9.123a)
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Fig. 9.26 Cell-vertex rotation-free troncoconical element (ACV). Control domains
for computing the average radial curvature. A, B and C are element mid-points

=
2

lele+1(le + le+1)
[le+1,−le+1,−le, le]

︸ ︷︷ ︸
B̄bi+1

⎧⎪⎪⎨
⎪⎪⎩

w′ei
w′ei+1

w′e+1
i+1

w′e+1
i+2

⎫⎪⎪⎬
⎪⎪⎭

= B′bi+1
w
′
= Bbi+1

ae

with
Bbi+1

= B′bi+1
T (9.123b)

and T as in Eq.(9.115b).
Matrices Bi and Bi+1 are

Bi =

⎧⎪⎪⎨
⎪⎪⎩

Bm1

Bm2

Bbi

Bb2

⎫⎪⎪⎬
⎪⎪⎭

, Bi+1 =

⎧⎪⎪⎨
⎪⎪⎩

Bm1

B̄m2

Bbi+1

Bb2

⎫⎪⎪⎬
⎪⎪⎭

(9.124)

with Bm1 and Bb2 given by Eqs.(9.109) and (9.108). The circumferential
membrane strain matrices at points 1 and 2 (Figure 9.26)are obtained by

λθ1 =
u1
r1

=
1

r1

[
3

4
ui +

1

4
ui+1

]
=

[
0, 0,

3

4r1
, 0,

1

4r1
, 0, 0,

]

︸ ︷︷ ︸
Bm2

ae (9.125)
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Fig. 9.27 Cell-vertex rotation-free troncoconical element (ACV). Control domains
for elements with boundary node. (a) SS or free end node. (b) Clamped or sym-
metry node

λθ2 =
u2
r2

=
1

r2

[
ui
4

+
3

4
ui+1

]
=

[
0, 0,

1

4r2
, 0,

3

4r2
, 0, 0,

]

︸ ︷︷ ︸
B̄m2

ae (9.126)

The size of K(e) for the ACV element is 8× 8 as it involves the DOFs
of nodes i− 1, i, i+ 1 and i+ 2, similarly as for the ACC element.

The assembly process follows the general rule. We note that the assem-
bled stiffness matrix for the whole mesh can be directly obtained from the
nodal expression of the generalized strain matrices, as explained for the
CVB beam element in Section 1.4.2 and Example 1.6.

9.11.2.2 Boundary conditions for the ACV element
Free or SS end node

The radial curvature κs is zero at a free or simply supported (SS) end
node i. This is simply enforced by making matrix Bbi equal to zero in
Eq.(9.124). Similarly Bbi+1

is made zero if node i+ 1 is prescribed.

Clamped or symmetry edge

Let us consider a clamped or symmetry node at the left-end of a mesh
(Figure 9.27b) where the rotation is prescribed to a zero value.

The radial curvature at node i is obtained as

κsi =
2

le

[
w′ei+1 − w′ei

le

]
=

2

(le)2
[0,−1, 1, 0]

⎧⎪⎪⎨
⎪⎪⎩

w′e−1i−1
w′e−1i

w′ei
w′ei+1

⎫⎪⎪⎬
⎪⎪⎭

= B′biw
′
= Bbia

e

(9.127a)
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where

Bbi = B′biT (9.127b)

and T as in Eq.(9.122b).
Matrix Bbi+1

has the same expression as in Eq.(9.123b).
A similar process is followed for a clamped or symmetry node at the

right-hand end, leading to a modification of Bbi+1
.

As usual, the global displacements ai at clamped node (or the vertical
displacement wi at a SS node) are prescribed to zero when solving the
global system of equations.

9.11.3 Example. Analysis of a dome under internal pressure

Figures 9.28 shows the performance of the rotation-free ACC and ACV
elements in the analysis of a dome under uniform pressure. The same prob-
lem was solved with the 2-noded troncoconical Reissner-Mindlin element
in Figure 9.16.

The figures show the better performance of the ACV element for the
same number of elements. This is consistent with the higher accuracy of
the cell-vertex rotation-free beam element (Section 1.4.3).

Both ACC and ACV elements are useful for solving practical problems
were axisymmetric shell elements need to be coupled to 2D axisymmetric
solid elements. The lack of rotational DOFs simplifies the coupling of the
stiffness equations involving displacement DOFs only.

9.12 AXISYMMETRIC PLATES

An axisymmetric plate is a particular case of an axisymmetric shell with
an horizontal generatrix. The formulation of axisymmetric plate elements
is deduced from that of axisymmetric shells by making the angle φ = 0
and ignoring the membrane contributions (we will assume that the in-
plane forces are zero). Let us consider, for instance, an axisymmetric plate
element with n nodes based on Reissner-Mindlin theory. The displacement
field is expressed in terms of the deflection and the rotation as

u =

{
w
θ

}
=

n∑
i=1

Ni I
2×2

a
(e)
i ; a

(e)
i =

{
wi

θi

}
(9.128)
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Fig. 9.28 Spherical dome under uniform pressure. Diagrams of Nx′ and Ny′ for
different meshes of rotation-free troncoconical elements ACC and ACV

The generalized strain matrix is deduced from Eqs.(9.51) and (9.54) as

ε̂εε =

⎧
⎨
⎩

ε̂εεb
. . .
ε̂s

⎫
⎬
⎭ =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂θ
∂r
θ
r

. . . . . .
∂w0

∂r
− θ

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

n∑
i=1

Bi a
(e)
i (9.129)

with

Bi =

⎧
⎨
⎩

Bbi

−−−
Bsi

⎫
⎬
⎭ =

⎡⎢⎢⎢⎢⎢⎣
0 ∂Ni

∂r

0 Ni
r

−−−
∂Ni
∂r

−Ni

⎤⎥⎥⎥⎥⎥⎦ (9.130)

Since the element is horizontal, the displacement and strain fields can
be directly expressed in global axes. Note that the local coordinate s has
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ai =

{
wi

θi

}

K
(e)
ij = 2πl(e)x̄

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(−1)i+j

(l(e))2
d33 − (−1)i

2l(e)
d33

− (−1)j

2l(e)
d33

⎡⎢⎢⎣ d11

(−1)i+j

(l(e))2
+

d22

4x̄2
+

+ d12

2x̄l(e)
[(−1)i + (−1)j ] + d33

4

⎤⎥⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎦
i, j = 1, 2

dij : components of D̂′=
[
D̂′

b 0

0 D̂′
s

]
(Eq.(9.39)) evaluated at the element center

Fig. 9.29 Two–noded Reissner-Mindlin axisymmetric plate element. Stiffness ma-
trix using uniform reduced one-point integration

been replaced by r. The global element stiffness matrix is obtained from
Eq.(9.57) as

K
(e)
ij = 2π

∫

l(e)

[
BT

bi
D̂b Bbj +BT

si D̂s Bsj

]
r d r = K

(e)
b +K(e)

s (9.131)

Shear locking is avoided by any of the techniques mentioned in Section
9.5. Figure 9.29 shows the stiffness-matrix for the 2-noded axisymmetric
plate element using one-point uniform reduced integration.

The equivalent nodal force vector for a distributed loading fz and point
loads pi = [Pzi, Mi]

T is

f (e)
i

= 2π

∫

l(e)
Ni

{
fz
0

}
r d r + 2πripi (9.132)

The above integral can be computed exactly for a uniform loading
fz = q to give

f (e)
i

=
qπl(e)

3

[
(2r

(e)
1 + r

(e)
2 ), 0, (2r

(e)
2 + r

(e)
1 ), 0

]T
(9.133)
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Example 9.1: Obtain the deflection and radial bending moment in a clamped
circular plate under uniform distributed loading fz = q (Figure 9.30), using
meshes of 1, 2, 4, 8 and 16 2-noded Reissner-Mindlin axisymmetric plate
elements with one-point reduced integration.

- Solution- Solution

One–element mesh

The only unknown in this case is the central deflection w1 (as θ1 = w2 = θ2 =
0). The equilibrium equation is deduced from Figure 9.29 and Eq.(9.133) as

2πlr̄
d33
l2

w1 =
πlq

3
(2r1 + r2)

and

w1 =
ql2

6d33r̄
(2r1 + r2)

substituting r1 = 0, r2 = 10.0 m, l = 10 m, r̄ = 5 m, q = −1.0 T /m2 and
d33 =

αET
2(1+ν) , with α = 5/6, E = 107 T/m2 and ν = 0.3 gives

w1 = −0.104× 10−3 m

The solution is a far from the analytical value of -0.171 m [TW] due to the
simplicity of the mesh leading to an over–stiff result. A zero bending moment
field is obtained, as the rotations are zero.

Two–element mesh

Assembling the stiffness matrices and eliminating the constrained DOFs at
the clamping end (w3 = θ3 = 0) gives

⎡⎢⎣K(1)
11 | K

(1)
12

|
K

(1)
21 | K(1)

22 +K
(2)
11

⎤⎥⎦
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w1

θ1

−−−
w2

θ2

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎨
⎩

f (1)
1

−−−
f (1)
2 + f (2)

1

⎫⎬
⎭

Substituting the dimensions, material properties and load values gives

105

⎡⎢⎢⎢⎢⎢⎢⎣

10.1 2.52 | −10.1 25.2
25.2 63.0 | −25.2 62.9

|
— — — — — — — — — — — —|
−10.1 −25.2 | 40.0 50.3
25.2 62.9 | 50.3 252.0

⎤⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎨
⎪⎪⎩

w1

θ1

w2

θ2

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

−26.17
0.0

−157.16
0.0

⎫⎪⎪⎬
⎪⎪⎭
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Fig. 9.30 Clamped circular plate under uniform loading. Deflection and radial
bending moment distribution using 1, 2, 4, 8 and 16 2-noded Reissner-Mindlin
axisymmetric plate elements

Making θ1 = 0 and solving for w1, w2 and θ2 yields

w1 = −0.170 m, w2 = −0.0853 m and θ2 = 0.03 rad

The error in the central deflection with respect to to the exact solution [TW]
is only 0.6 %. The bending moment Mr at the element midpoints are

Element 1 : Mx = 8.124 T×m/m

Element 2 : Mx = −5.62 T× m/m

The moments are in good agreement with the theoretical values as shown in
Figure 9.30. Results for meshes of 4, 8 and 16 elements are also plotted.
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Fig. 9.31 Description of a plane arch

Axisymmetric plate elements based on Kirchhoff theory can be for-
mulated by direct simplification of the corresponding axisymmetric shell
element. This includes the ACC and ACV rotation-free troncoconical el-
ements of Section 9.11. The reader is invited to develop one of these ax-
isymmetric plate elements as an exercise.

9.13 PLANE ARCHES

The finite element formulation for plane arches is developed here as a
particular case of axisymmetric shells ignoring circumferential effects.

Figure 9.31 shows a plane arch defined by the middle line of the trans-
verse sections. The displacement field of a point is defined by the tangential
and normal displacements and the rotation of the normal vector. The gen-
eral case of non-orthogonal rotation of the normal will be considered first.
The local generalized strain vector contains the elongation of the middle
line λ, the curvature κ and the transverse shear strain γ defined as

ε̂εε′ =

⎧⎨
⎩
λ
κ
γ

⎫⎬
⎭ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u′0
∂s

− w′0
Rs

−∂θ
∂s

∂w′0
∂s

+
u′0
Rs

− θ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(9.134)

Eq.(9.183) is obtained by ignoring the circumferential effects in Eqs.(9.27).
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For straight elements

ε̂εε′ =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u′0
∂s

−∂θ
∂s

∂w′0
∂s

− θ

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

elongation: axial strain

curvature

transverse shear

}
bending
strains

(9.135)

Vector ε̂εε′ of Eq.(9.135) contains the axial strain of a bar element [On4]
and the two flexural strains of the Timoshenko beam element of Chapter
2. For the homogeneous material case considered here, axial and flexural
effects are uncoupled at element level. Coupling occurs after the global
assembly of the local element stiffness matrices.

The discretization follows standard procedures. For a n-noded element

u = [u′0, w
′
0, θ]

T =
n∑

i=1

Nia
(e)
i (9.136a)

ε̂εε′ =
n∑

i=1

B′i a
′(e)
i = B′a′(e) (9.136b)

with

B′i =

⎡⎢⎢⎣
∂Ni
∂s

0 0

0 0 −∂Ni
∂s

0 ∂Ni
∂s

−Ni

⎤⎥⎥⎦ ; a
′(e)
i =

⎧⎨
⎩
u′oi
w′oi
θi

⎫⎬
⎭ (9.137)

The constitutive equation for homogeneous isotropic material is

σ̂σσ′ =

⎧⎨
⎩
N
M
Q

⎫⎬
⎭ =

⎡
⎣
EA 0 0
0 EIy′ 0
0 0 kGA

⎤
⎦ ε̂εε′ = D̂′ ε̂εε′ (9.138)

where A is the area of the transverse cross section and Iy′ the moment
of inertia with respect to the transverse coordinate axis y′ (Figure 9.31).
The sign convenion for the resultant stresses coincides with that of Nx′ ,
Mx′ and Qz′ of Figure 9.6.

The local stiffness matrix is

K
′(e)
ij =

∫

l(e)
B′Ti D̂′ B′j dx′ (9.139)
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An alternative expression is

K
′(e)
ij =

⎡⎢⎢⎢⎣
K

(e)
ABij

0

1×1
0 K

(e)
TBij

2×2

⎤⎥⎥⎥⎦ (9.140)

where K
(e)
ABij

and K
(e)
TBij

are the stiffness matrices of the axial bar element

and the Timoshenko beam element of Chapters 2 of [On4] and Chapter 2
of this book, respectively.

The stiffness transformation to global axes follows the rules of Section
9.4.3 giving

K
(e)
ij =

∫

l(e)
BT

i D̂′ Bj dx (9.141)

with Bi = B′i
[
L
(e)
i

]T
and L

(e)
i = L is given by Eq.(9.14).

Shear locking is avoided by the same techniques as for Reissner-Mindlin
axisymmetric shell elements or Timoshenko beam elements. The simplest
plane arch element is the 2-noded arch element with one-point uniform
reduced integration. The global stiffness matrix is given by

K
(e)
ij = B̄T

i
¯̂
D′B̄jl

(e) (9.142)

where (·) denotes values at the element mid-point. The explicit form of
the stiffness matrix is shown in Figure 9.32.

The equivalent nodal force vector is

f (e)
i

=

∫

l(e)
Nit

(e)dx′ + p
(e)
i (9.143)

where t(e) and p
(e)
i are distributed load and point load vectors given by

t
(e)
i = [fx, fz,m]T and p

(e)
i = [Pxi , Pzi ,Mi]

T . If the load t(e) is uniformly
distributed, Eq.(9.143) simplifies to

f (e)
i

=
l(e)

2
t(e) + p

(e)
i (9.144)

Curved arch elements can be derived following the arguments given in
Section 9.8. The generalized strain matrix now includes the effect of the
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K
(e)
ij = l(e)

⎡
⎢⎢⎢⎢⎢⎢⎣

(−1)i+j

(l(e))2
(d11C

2 + d33S
2) (−1)i+j

(l(e))2
SC(d11 − d33)

(−1)i

2l(e)
Sd33

(−1)i+j

(l(e))2
SC(d11 − d33)

(−1)i+j

(l(e))2
(d11S

2 + d33C
2) − (−1)i

2l(e)
d33

(−1)j

2l(e)
Sd33 − (−1)j

2l(e)
Cd33

d33

4 + (−1)i+j

l(e)
d44

⎤
⎥⎥⎥⎥⎥⎥⎦

S = sinφ(e), C = cosφ(e)

dij = elements of D̂′ of Eq. (9.138) computed
at the element mid-point.

Fig. 9.32 Two-noded plane arch element with transverse shear deformation. Global
stiffness matrix using uniform one-point reduced integration

arch curvature, i.e.

B′i =

⎡⎢⎢⎢⎢⎢⎣
∂Ni

∂s
−Ni

Rs
0

0 0
−∂Ni

∂s
Ni

Rs

∂Ni

∂s
−Ni

⎤⎥⎥⎥⎥⎥⎦ (9.145)

The computation of Rs and the curvilinear derivatives follow the steps
of Section 9.8.2.

Imposing the orthogonality of the normals leads to the more classical
formulation for thin arches. The transverse shear strain is then zero and
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the generalized strain vector (for the curved case) is

ε̂εε′ =

⎧
⎪⎪⎨
⎪⎪⎩

∂u′0
∂s

− w′0
Rs

−∂2w′0
∂s2

− ∂

∂s
(
u′0
Rs

)

⎫
⎪⎪⎬
⎪⎪⎭

(9.146)

Many authors have proposed thin curved arch elements using specific
approximations for u′0 and w′0. Some of these elements are described in
[AG,BFS2,CB,Da2,Da3,DG,Ga2,Go,Ya].

If 2-noded straight elements are used, Rs = ∞ and the local stiffness
matrix can be simply written as a contribution of the axial and bending
stiffness in a form identical to Eq.(9.140), where KTB is substituted by
KEB, this now being the stiffness matrix for the Euler-Bernoulli beam
element of Chapter 1.

Arch elements can be applied directly to the analysis of plane frame
structures.

9.14 SHALLOW AXISYMMETRIC SHELLS AND ARCHES

The simpler shallow axisymmetric shell theory [Ma3] is applicable when
the curvature of the generatrix is small (i.e. Rs is large and t/Rs � 0).
The advantage is that all variables are expressed in the global coordinate
system. The main assumption is that the tangent angle φ ≤ 5◦ (Figure
9.33) and, thus, cosφ � 1, sinφ � ∂z

∂x , w
′
0 � w0 and ∂

∂x′ � ∂
∂x , where x

denotes the global horizontal axis (i.e. the radial axis). This formulation
is a particular case of that presented in Section 8.14 for shallow flat shell
elements.

Using these simplifications and Reissner-Mindlin assumptions, the local
strain vector is deduced from Eq.(9.25) as (taking Cs = Cα = 1)

εεε′ =

⎧⎨
⎩

εx′

εy′

γx′z′

⎫⎬
⎭ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u0

∂x
+

∂z

∂x

∂w0

∂x
+ z′

∂θ

∂x
u0

x
+ z′

θ

x
∂w0

∂x
− θ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(9.147)

The membrane, bending and transverse shear strain vectors are

ε̂εε′m =

⎧⎪⎨
⎪⎩

∂u0

∂x
+

∂z

∂x

∂w0

∂x
u0

x

⎫⎪⎬
⎪⎭

, ε̂εε′b =

⎧⎪⎨
⎪⎩

∂θ

∂x
θ

x

⎫⎪⎬
⎪⎭

, ε̂εε′s =
{
∂w0

∂x
− θ

}
(9.148)
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cosφ � 1, w′ � w,
∂

∂x′
� ∂

∂x
, sinφ � tanφ � ∂z

∂x

Fig. 9.33 Description of an axisymmetric shallow shell (or arch)

The generatrix can be discretized into straight or curved elements. The
generalized strain matrix is expressed in terms of the global displacements
in both cases by

ε̂εε′ =

⎧
⎨
⎩
ε̂εε′m
ε̂εε′b
ε̂εε′s

⎫
⎬
⎭ =

n∑
i=1

Bia
(e)
i , a

(e)
i =

⎧
⎨
⎩
u0
w0

θ

⎫
⎬
⎭ (9.149a)

Bi =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Bmi

−−−
Bbi

−−−
Bsi

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂x

(
∂z

∂x

∂Ni

∂x

)
0

Ni

x
0 0

— — — — — — — — —

0 0
∂Ni

∂x

0 0
Ni

x
— — — — — — — — —

0
∂Ni

∂x
−Ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9.149b)

The derivatives ∂z
∂x and ∂Ni

∂x are computed from the isoparametric de-
scription as

∂Ni

∂x
=

∂Ni

∂x

∂ξ

∂x
=

[
n∑

i=1

∂Ni

∂x
xi

]−1
∂Ni

∂ξ
(9.150)
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The computations are simplified if 2-noded troncoconical elements are
chosen. For this case

∂z

∂x
=

z
(e)
2 − z

(e)
1

l(e)
;

∂Ni

∂x
=

2

l(e)
(−1)i (9.151)

The global stiffness matrix is given by Eq.(9.61) for the general case
and by Eq.(9.73) for 2-noded troncoconical elements.

The equivalent formulation for shallow arches is readily derived by
ignoring circumferential terms in the previous expressions. The local ge-
neralized strain vector and the corresponding Bi matrix are

ε̂εε′ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u0

∂x
+

∂z

∂x

∂w0

∂x
∂θ

∂x
∂w0

∂x
− θ

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

; Bi =

⎡⎢⎢⎢⎢⎢⎣
∂Ni

∂x

(
∂z

∂x

∂Ni

∂x

)
0

0 0
∂Ni

∂x

0
∂Ni

∂x
−Ni

⎤⎥⎥⎥⎥⎥⎦ (9.152)

The global stiffness matrix is given by Eq.(9.141) for the general case
and by Eq.(9.142) for 2-noded arch elements.

This formulation can be particularized for Kirchhoff theory by making
θ = ∂w0

∂x and eliminating the transverse shear deformation term. This

introduces the second derivative term ∂2w0
∂x2 which requires C1 a continuous

interpolation, for w0 as explained in Section 9.9.

9.15 MORE ABOUT MEMBRANE LOCKING

The arguments given in Section 9.5.2 to explain membrane locking can be
clarified by considering the case of shallow axisymmetric shells and arches
of previous section.

Let us consider an arch subjected to loads giving a pure bending state.
Obviously the axial strain should be zero in this case. The analogous
axisymmetric shell situation will require zero meridional membrane strains
under a bending field (note that the circumferential strains are always non-
zero). Let us take for the sake at simplicity a shallow arch or a shallow
axisymmetrix shell based on Reissner-Mindlin theory. The reproduction
of the situation as described previously requires in both cases that the
elements satisfy the following condition

ε̂′m =
∂u0

∂x
+

∂w0

∂x
sinφ = 0 ,with sinφ =

dz

dx
(9.153)
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Naturally, elements giving ε̂′m 
= 0 in a bending situation will intro-
duce spureous parasitic membrane strains. These strains can have a big
influence on the overall element stiffness (recall that membrane terms are
proportional to the thickness t whereas the bending terms vary as t3) and
this leads to an overstiff solution (membrane locking).

The condition ε̂′m = 0 is analogous to that of the zero transverse shear
strain in the Reissner-Mindlin formulation. Similar procedures can there-
fore be used to satisfy both conditions.

Satisfaction of Eq.(9.153) in displacement–based elements requires that
the polynomial terms contained in ∂u0

∂x equal those in ∂w0
∂x sinφ. This is

automatically satisfied for straight elements using equal interpolations for
u0 and w0, as sinφ = ∂z

∂x is constant. However, angle φ varies from point to
point for curved elements and different approximations for u0 and w0 are
then required in order to match the polynomial terms in ∂u0

∂x and ∂w0
∂x sinφ.

The approximations for u0 and w0 will naturally depend on that used for
the geometry. Some examples are given next.

Consider, for instance, a quadratic isoparametric element where both
the displacements and the geometry are approximated quadratically.
Eq.(9.153) can now be written as

ε̂′m = A+Bξ + Cξ2 (9.154)

where the coefficients A and B are functions of ui, wi, zi and C of the
products wizj , i, j = 1, 2, 3.

It can be checked that ε̂′m is zero for a rigid body displacement [Cr].
Also, coefficients A and B vanish for a “pure” bending state. Unfortu-
nately, the coefficient C is not zero in this case and this introduces unde-
sirable membrane strains and leads to membrane locking.

The solution to this problem follows the lines explained previously to
treat transverse shear locking. A two-point reduced quadrature for the
axial strain leads to a linear variation of ε̂′m within the element which is
able to satisfy the condition ε̂′m = 0. The axial forces are also sampled
at these quadrature points for higher accuracy. An alternative procedure
is assuming a compatible polynomial axial field for ε̂′m with coefficients
defined as linear functions of u0 and w0. These coefficients can vanish
to satisfy ε̂′m = 0 by adequate contributions of both displacement vari-
ables. This technique will be used in the next chapter to derive membrane
locking-free curved shell elements of arbitrary shape.

Membrane locking can be even more severe for Kirchhoff elements as
the compatibility between the polynomials defining ∂u0

∂x and ∂w0
∂x sinφ is
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more difficult in this case. Take, for instance, a straight element (φ =
constant) with a linear C0 approximation for u0 and a cubic (Hermite)
one for w0. The expression for ε̂′m now reads [Cr]

ε̂′m = A(u0i
, w0i

) +B

(
w0i

,
∂w0i

∂x

)
ξ + C

(
w0i

,
∂w0i

∂x

)
ξ2 = 0 (9.155)

Coefficient A vanishes for a pure bending state; however coefficients B
and C do not. The spurious terms Bξ and Cξ2 can be eliminated by using
a one-point reduced quadrature to compute the axial membrane stiffness.
This is equivalent to assuming a constant membrane strain field ε̂′m = A
within the element.

Let us finally consider a 2-noded curved element with an Hermite ap-
proximation for w0 and z. The term ∂w0

∂x sinφ is now a quartic polynomial
and hence the satisfaction of condition (9.153) requires that uo varies as a
quintic polynomial [Cr,Da2,Da3,Del]. Fortunately, the two-point reduced
integration alleviates this problem, allowing a lower order quadratic inter-
polation for u0 [Cr].

Further information on membrane locking in shells can be found in
[CBS,CP,Cr,Cr4,Mo3,Mo5,MS,SB,SBCK,ZT2].

9.16 AXISYMMETRIC SHELL ELEMENTS OBTAINED FROM
DEGENERATED AXISYMMETRIC SOLID ELEMENTS

A family of axisymmetric shell elements can be derived by a consistent
modification (degeneration) of axisymmetric solid elements using the as-
sumptions of shell theory. This class of shell elements are typically called
“degenerated shell elements”. The derivation of 3D degenerated shell ele-
ments is presented in Chapter 10. Figure 9.34 shows an axisymmetric solid
element and the corresponding “degenerated” axisymmetric shell element.

The degeneration steps are the following: a) a reference line is defined;
b) the normals to this line are assumed to remain straight during defor-
mation, and c) the normal stress σz′ is taken as zero (plane stress). The
element geometry is defined by the coordinates of the n nodes on the
reference line and the normal distance ζ as

x =

{
x
z

}
=

n∑
i=1

Ni(ξ)

(
xi + ζ

ti
2
v3i

)
(9.156)

where xi = [xi, zi]
T and i; ti are the coordinates vector and the thick-

ness of node i; Ni(ξ) is the 1D (Lagrange) shape function and v3i =
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[− sinφi, cosφi]
T is the unit nodal vector at a node (Figure 9.34). Vectors−→v1i and −→v3i coincide with vectors

−→
t and −→n as defined in Figure 9.3.

Let us consider now the case of axisymmetric loading only. The ax-
isymmetric displacement field is written as

u =

{
u
w

}
=

n∑
i=1

Ni(ξ)(u0i −
ti
2
ζv1iθi) (9.157)

where u0i = [u0i , w0i ]
T contains the global cartesian components of the

ith node and θi is the nodal rotation. Eq.(9.157) is rewritten as

u =
n∑

i=1

Ni a
(e)
i (9.158)

with

a
(e)
i =

⎧⎨
⎩
u0i
w0i

θi

⎫⎬
⎭ ; Ni = Ni[I2,−ζti

2
v1i ] (9.159)

where I2 is the 2× 2 unit matrix.
The strains in local axes x′, z′ are related to their global components

by

εεε′ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u′

∂x′
u

r
∂u′

∂z′
+

∂v′

∂x′

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎡⎢⎢⎣
(vx1 )

2 (vz1)
2 0 vx1v

z
1

0 0 1 0

2vx1v
x
3 2vz1v

z
3 0 vz1v

x
3 + vx1v

z
3

⎤⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x
∂w

∂z
u

r
∂u

∂z
+

∂w

∂x

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= Q εεε

(9.160)
where upper indexes x, z denote the components of vectors −→v1 and −→v2 in
global axes.

The derivation of the strain matrix follows the steps given below. The
curvilinear derivatives of the displacements are first computed as

∂u

∂ξ
=

n∑
i=1

∂Ni

∂ξ
[I2,−ζti

2
v1i ]a

(e)
i

∂u

∂ζ
=

n∑
i=1

Ni[0,− ti
2
v1i ]a

(e)
i

(9.161)
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Fig. 9.34 Axisymmetric shell element (b) obtained by consistent modification (de-
generation) of an axisymmetric solid element (a)

The global cartesian and curvilinear derivatives are related by the stan-
dard expression

⎧
⎪⎨
⎪⎩

∂

∂x
∂

∂z

⎫
⎪⎬
⎪⎭

= [J(e)]−1

⎧
⎪⎨
⎪⎩

∂

∂ξ
∂

∂ζ

⎫
⎪⎬
⎪⎭

, J(e) =

⎡⎢⎣
∂x

∂ξ

∂y

∂ξ
∂x

∂ζ

∂y

∂ζ

⎤⎥⎦ (9.162)

The terms of the jacobian matrix J(e) are computed using Eq.(9.156)
as

∂x

∂ξ
=

n∑
i=1

∂Ni

∂ξ

[
(xi + ζ

ti
2
v3i

]

∂x

∂ζ
=

n∑
i=1

Ni
ti
2
v3i

(9.163)

Combining now Eqs.(9.161)–(9.163) gives

∂u

∂xj
=

n∑
i=1

[N j
i I2,g

j
i ]a

(e)
i with j = 1, 2 (x1 = x, x2 = z) (9.164a)

with

N j
i = J−1j1

∂Ni

∂ξ
and gj

i = −
ti
2

(
ζN j

i + J−1j2
Ni

)
v1i (9.164b)

where J−1

ij is the inverse element ij of the jacobian matrix.
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εεε =

n∑
i=1

Biai = [B1,B2, · · · ,Bn]a
(e) = Ba(e)

Bi =

{
Bpi· · ·
Bsi

}
=

⎡⎢⎢⎢⎣
N1

i 0 (g1
i )11

0 N2
i (g2

i )21
N2

i

x 0 ḡi
— — — — — — — — —
N1

i N2
i (g1

i )21 + (g2
i )11

⎤⎥⎥⎥⎦
N j

i = J−1j1

∂Ni

∂ξ
, ḡi = −ζtiNi

2x
cosφi

gj
i = − ti

2

(
ζJ−1j1

.
∂Ni

∂ξ
+ J−1j2

Ni

)
v1i

Box 9.1 Global strain matrix for a degenerated axisymmetric shell element

Eqs.(9.164) can be used to obtain the terms of the global strain matrix
B relating global strains and global displacements which expression is
shown in Box 9.1. Substituting this expression into Eq.(9.160) gives finally

εεε′ = Q εεε = Q Ba(e) = B′a(e) (9.165)

The local strain matrix is

B′ = Q B =

{
B′p
B′s

}
with B′p = Q1B, B′s = Q2 B (9.166)

In Eq.(9.166) B′p and S′s are the in-plane and transverse shear strain
matrices and Q1 and Q2 contain the first two rows and the last row of the
strain transformation Q of Eq.(9.160), respectively.

The constitutive equation relating the three non-zero stresses σx′ , σz′ ,
τx′z′ and their conjugate local strains is defined by Eq.(9.31a). The local
constitutive matrix coincides with that given in Eq.(9.31b). The resultant
stresses Nx′ , Ny′ ,Mx′ ,My′ , Qx′can be computed “a posteriori” from the
local stresses by Eq.(9.34).

The expressions for the global element stiffness matrix and the global
equivalent nodal force vector (in absence of initial stresses) are

K
(e)
ij = 2π

∫∫

A(e)

B′Ti D′B′jx dx dz =

= 2π

∫∫

A(e)

(B′TpiD
′
pB

′
pj +B′Tsi Gsz′B

′
sj )x dx dz =

= K(e)
pij +K(e)

sij (9.167a)
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f
(e)
i = 2π

∫∫

A(e)

NT
i br dx

′ dz′ + 2π

∫

l(e)
NT

i tr dz
′ + 2πripi (9.167b)

where K
(e)
p and K

(e)
s are the in-plane and transverse shear stiffness ma-

trices, respectively. Vectors b, t and pi denote the standard body force,
distributed load and point load vectors. Recall that all loads are assumed
to be axisymmetric.

The stiffness matrix is computed via an integral over the 2D domain
of the original parent solid element. The explicit thickness integration
is difficult except for straight element sides and constant thickness. In
practice all integrals are computed using a 2D Gauss quadrature as

K
(e)
ij = 2π

nξ∑
p=1

nζ∑
q=1

(B′Ti D′ B′j x|J(e)|)p,qWpWq

f
(e)
i = 2π

nξ∑
p=1

nζ∑
q=1

(NT
i b x|J(e)|)p,qWpWq

(9.168)

where nξ and nζ are the integration points in directions ξ and ζ, re-
spectively. Typically, nζ = 2 is taken, except for laminate shells. These
elements suffer from transverse shear locking, as well as from membrane
locking (in their curve form). Shear locking can be avoided by using a

reduced quadrature for K
(e)
s . Membrane locking can also be alleviated

by underintegrating K
′(e)
p at the expense of underevaluating the bending

stiffness too. A more precise selective integration technique would involve
splitting the membrane and bending contribution following the lines ex-
plained in Section 10.14 for 3D degenerated shell elements. Both shear
and membrane locking can also be avoided by assumed strain procedures.

The simplest degenerated axisymmetric shell elements are the 2-noded
troncoconical and the curved 3-noded elements with linear and quadratic
shape functions, respectively (Figure 9.35). For homogeneous material
nξ = 1 and nζ = 2 for the 2-noded element, and nξ = nζ = 2 for the
3-noded element are recommended.

These elements are an alternative to standard Reissner–Mindlin ax-
isymmetric shell elements. In the later, the internal virtual work is ex-
pressed in terms of magnitudes resulting from the a priori integration in
the thickness direction, such as resultant stresses and generalized strains.
In degenerated axisymmetric shell elements the PVW is expressed in terms
of stresses and strains and the thickness integration is performed numer-
ically when computing the stiffness matrix. Which formulation to choose
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Fig. 9.35 Linear (2-noded) and quadratic (3-noded) axisymmetric shell elements
obtanied by degeneration of the corresponding axisymmetric solid element

is a question of taste and basically depends on the experience of the user.
The two approaches share the same basic assumptions and even the el-
ement expressions are the same in some cases, such as for the 2-noded
linear element with constant thickness.

9.17 HIGHER ORDER COMPOSITE LAMINATED
AXISYMMETRIC SHELL ELEMENTS

9.17.1 Layer-wise theory

An enhancement in the prediction of the correct shear and axial stresses
for composite laminated axisymmetric shells can be achieved by using
layer-wise theory. As explained in Section 3.15, in layer-wise theory the
thickness coordinate is split into a number of analysis layers that may
or not coincide with the number of laminate plies. The kinematics are
independently described within each layer and certain physical continuity
requirements are enforced.

For laminated axisymmetric shells the local displacement field in layer-
wise theory is described as

u′(s, z′) =
N∑
j=0

Nj(z
′)u′j(s)

w′(s, z′) = w′0(s)

(9.169)
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where N is the number of analysis layers, u′ and w′ are the axial and
lateral displacements respectively and Nj are linear shape functions for
each layer.

A well known drawback of layer-wise theory is that the number of
kinematic variables depends on the number of analysis layers. The layer
displacements u′j can be however condensed at each section in terms of the
axial displacement for the top layer during the equation solution process,
as described in Section 7.7.3 for laminated plates.

9.17.2 Zigzag theory

Zigzag theories assume a zigzag pattern for the axial displacements across
the laminate depth. Importantly, the number of kinematic variables in
zigzag theories is independent of the number of layers.

In this section we will derive a two-noded axisymmetric shell element
based on an extension of the refined zigzag theory (RZT) presented in
Section 3.17. This theory was used in Sections 3.18, 7.8 and 8.16.2 for
deriving zigzag beam, plate and flat shell elements, respectively.

9.17.2.1 Displacement, strain and stress fields

The kinematic field in the RZT for axisymmetric shells is written as

u′k(s, z′) = u′0(s)− z′θ(s) + ū′k(s, z′)

w′(s, z′) = w′0(s)
(9.170a)

with
ū′k(s, z′) = φk(z′)Ψ(s) (9.170b)

is the zigzag displacement. In above equations superscript k indicates
quantities within the kth layer with z′k ≤ z′ ≤ z′k+1 and z′k is the thickness
coordinate of the kth interface. In Eq.(9.170) the uniform axial displace-
ment u′0(x), the rotation θ(x) and the transverse deflection w′0(x) are
the primary kinematic variables of the underlying equivalent single-layer
Reissner-Mindlin axisymmetric theory studied in the previous sections.
Function φk(z′) denotes a piecewise linear zigzag function and Ψ(s) is a
primary kinematic variable that defines the amplitude of the zigzag func-
tion along the generatrix. The interfacial axial displacement field has the
zigzag distribution as shown in Figure 9.36.
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Fig. 9.36 Notation for a three-layered laminate and zigzag function in an axisym-
metric shell

Assuming that elements are troncoconical we write the local strain-
local displacement relationship using Eqs.(9.18), (9.25) and (9.170a) as

εx′ =
∂u′

∂x′
=

∂u′0
∂s

− z′
∂θ

∂s
+ φk ∂Ψ

∂s

εy′ =
∂v′

∂y′
=

u′0 cosφ− w′0 sinφ
r

− z′θ cosφ
r

+
φk cosφ

r
Ψ

γx′z′ =
∂u′

∂z′
+

∂w′

∂x′
=

∂w′0
∂s

− θ + βkΨ

(9.171)

where βk = ∂φk

∂z′ .
The local strains and the local generalized strains are related as

εεε′ =

⎧
⎨
⎩

εεεx′

εεεy′

εεεx′z′

⎫
⎬
⎭ =

⎡
⎣
1 0 −z′ 0 φk 0 0 0
0 1 0 −z′ 0 φk 0 0
0 0 0 0 0 0 1 βk

⎤
⎦
⎧
⎨
⎩
ε̂εε′m
ε̂εε′b
ε̂εε′s

⎫
⎬
⎭ = Sε̂εε′ (9.172)

when ε̂εε′m is deduced from Eq.(9.51) and

ε̂εε′b =
[
∂θ

∂s
,
θ cosφ

r
,
∂Ψ

∂s
,
Ψ cosφ

r

]T
, ε̂εε′s =

[
∂w′0
∂s

− θ, Ψ

]T
(9.173)

The local resultant stresses are defined as

σ̂σσ′ =

⎧
⎨
⎩
σ̂σσ′m
σ̂σσ′b
σ̂σσ′s

⎫
⎬
⎭ =

∫ t/2

−t/2
STσσσ′dz′ (9.174)



Higher order composite laminated axisymmetric shell elements 601

The axial force vector σ̂σσ′m has the standard form of Eq.(9.34) while

σ̂σσ′b = [Mx′ ,My′ ,M
φ
x′ ,M

φ
y′ ]

T , σ̂σσ′s = [Qz′ , Q
φ]T (9.175)

where Qz′ is the standard shear force andMφ
x′ ,M

φ
y′ , Q

φ are additional local
resultant stresses emanating from the zigzag theory.

A convenient form of matrix S is

S =

[
I2 Sφ 0
0 0 Sβ

]
with Sφ =

[−z′ 0 φk 0
0 −z′ 0 φk

]
, Sβ = [1, βk] (9.176)

and I2 is the 2 × 2 unit matrix. The form of the null matrices in S is
deduced from the observation of Sφ and Sβ .

Substituting Eqs.(9.31b) and (9.172) into (9.174) gives the generalized
constitutive expression as

σ̂σσ′ = D̂′ε̂εε′ with D̂′ =
∫ t/2

−t/2
STD′kSdz′ (9.177)

A simpler form of the generalized constitutive matrix D̂′ can be ob-
tained using the expression for D′ of Eq.(9.31b) and Eq.(9.176) as

D̂′ =

⎡⎢⎢⎣
D̂′

m D̂′
mb 0

[D̂′
mb]

T D̂′
b 0

0 0 D̂′s

⎤⎥⎥⎦ (9.178)

where D̂′
m coincides with the expression of Eq.(9.38a) and

D̂′
mb =

∫ t/2

−t/2
D′

pSφdz
′ , D̂′

b =

∫ t/2

−t/2
ST
φD

′
pSφdz

′ , D̂′s =
∫ t/2

−t/2
Gsz′S

T
βSβdz

′

(9.179)
where D′

p is given in Eq.(9.32a). Note that a shear correction factor is not
needed, as it usual in zigzag theory [OEO2,TDG,TDG2].

If zigzag effects are neglected, then φk = 0 and βk = 0 and the con-
stitutive expressions of classical Reissner-Mindlin laminated axisymmetric
shell theory are recovered (see Eqs.(9.37) and (9.38)).

9.17.2.2 Computation of the zigzag function

Within each layer the zigzag function is expressed as

φk =
1

2
(1− ζk)φ̄k−1 +

1

2
(1 + ζk)φ̄k =

φ̄k + φ̄k−1

2
+

φ̄k − φ̄k−1

2
ζk (9.180)
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where φ̄k and φ̄k−1 are the zigzag function values of the k and k − 1

interface, respectively with φ̄0 = φ̄N = 0 and ζk = 2(z′−z′k−1)
tk

− 1 where tk

is the thickness of the kth layer.
The above form of φk is identical to that used in Section 3.17.1 for

composite laminated beams.
From Eq.(9.180) and the conditions φ̄0 = φ̄N = 0 we deduce

βk =
∂φk

∂z′
=

φ̄k − φ̄k−1

tk
and

∫ t/2

−t/2
βkdz′ = 0 (9.181)

The computation of function βk follows precisely the arguments given
for composite laminated beams in Section (3.17). The result is

βk =
G

Gk
sz′
− 1 with G =

[
1

t

∫ t/2

−t/2

dz′

Gk
sz′

]−1
=

[
t

nl∑
k=1

tk

Gk
sz′

]−1
(9.182)

From Eqs.(9.181) the following recursion relation for the zigzag function
value at the layer interface is obtained

φ̄k =
k∑

i=1

hiβi with φ̄0 = φ̄N = 0 (9.183)

Introducing Eq.(9.183) into (9.180) gives the expression for the zigzag
function as

φk =
tkβk

2
(ξk − 1) +

k∑
i=1

tiβi (9.184)

Function Ψ can be interpreted as a weighted-average shear strain quan-
tity [TDG] and acts as an additional rotation. Ψ should therefore be pre-
scribed to zero at a clamped edge and left unprescribed at a free edge.

For homogeneous material Gk
sz′ = G, βk = 0, the zigzag function φk

vanishes and we recover the kinematic and constitutive expression of the
Reissner-Mindlin axisymmetric shell theory previously studied.

9.17.2.3 Two-noded zigzag axisymmetric shell element

The kinematic variables are u′0, w′0, θ and Ψ . They can be discretized using
C◦ linear 2-noded axisymmetric shell elements in the standard form as

u =
[
u′0, w

′
0, θ, Ψ

]T
=

2∑
i=1

Niai with ai =
[
u′0i , w

′
0i , θi, Ψi

]T
(9.185)
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The local generalized strain matrix is

B′ = [B′1,B
′
2] (9.186a)

B′i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂s
0 0 0

Ni cosφ

r
−Ni sinφ

r
0 0

· · · · · · · · · · · ·
0 0

∂Ni

∂s
0

0 0
Ni cosφ

r
0

0 0 0
∂Ni

∂s

0 0 0
Ni cosφ

r
· · · · · · · · · · · ·
0

∂Ni

∂z′
−Ni 0

0 0 0 Ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎧
⎨
⎩
Bmi

Bbi

Bsi

⎫
⎬
⎭ (9.186b)

where indexes m, b and s denote as usual the contribution form the local
generalized strains vectors ε̂εε′m, ε̂εε′b and ε̂εε′s, respectively.

The local element stiffness matrix is obtained by Eq.(9.57) with Bi

and D̂′ given by Eqs.(9.186b) and (9.178), respectively. One single point
quadrature is used to compute all the terms of Kij and this eliminates
shear locking. Transformation to global axes follows precisely the steps of

Section 9.4.3 with the transformation matrix L
(e)
i given by

L
(e)
i =

[
L 0
0 1

]
(9.187)

where L is given in Eq.(9.14) and the additional row and column take into
account the “rotational” DOF ψi emanating from the zigzag theory.

Applications of the two-noded zigzag axisymmetric shell element to
composite laminated shells can be found in [OEO4].

9.18 FINAL REMARKS

The formulation of axisymmetric shell elements based on Reissner-Mindlin
and Kirchhoff assumptions has been studied in some detail. The 2-noded
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troncoconical element based on Reissner-Mindlin theory with just one
integration point is the simplest choice for practical purposes.

The simplification of the general axisymmetric shell theory for mem-
branes, circular plates, plane arches and shallow shells has shown the
possibilities of the general methodology. Here again the 2-noded Reissner-
Mindlin troncoconical element is very competitive for the analysis of the
different structures considered.

Particular emphasis has been put on explaining the reasons for trans-
verse shear and membrane locking and the different alternatives to elimi-
nate these spurious effects. The ideas presented will be useful when study-
ing 3D shell elements of arbitrary shape in the next chapter.

The ACC and ACV rotation-free troncoconical elements are an inter-
esting option for analysis of thin axisymmetric shells and membranes using
the displacements as the only nodal variables.

Axisymmetric shell elements obtained from the degeneration of 2D
solid elements are an alternative to the standard shell formulation. The
approach will be generalized for developing a family of 3D degenerated
shell elements in the next chapter.

The refined zigzag theory opens new possibilities for a more accurate
analysis of axisymmetric shells with composite laminated material.



10

CURVED 3D SHELL ELEMENTS AND
SHELL STIFFNERS

10.1 INTRODUCTION

This chapter studies the derivation of curved shell elements for analysis
of shells of arbitrary shape. Curved shell elements are an alternative to
the “flat” shell elements studied in Chapter 8 and their formulation is
interesting both from the theoretical and practical points of view.

Considerable literature exists on the topic of general shell analysis
[Cal,Cas,Go2,Mo6,Ni,No,Ug,Vi,We,We2,We3,WOK,ZT2]. As early as in
1989, Noor [No2] compiled 411 books, 98 conference proceedings and 23
synthesis papers on different topics related to the analytical and numeri-
cal analysis of shells including a number of relevant publications dedicated
to finite element shell analysis only. A review of shell theories and finite
element models can be found in [BWBR,JS2,SBL].

An “ideal” curved shell element should be capable to model complex
curved shell geometries and also account for both membrane and flexural
effects. It should be able to satisfy the rigid body and constant strain patch
tests, be free of membrane and shear locking as well as of spureous internal
mechanisms, be easily combined with other element types and also give
accurate results for coarse meshes. Finally, the element formulation should
be simple, avoiding whenever possible displacement derivatives as nodal
variables. The satisfaction of all these conditions is still a major and,
to some extent, unsolved challenge. Nevertheless, this chapter presents
a finite element formulation for analysis of shells of arbitrary geometry
fulfilling a large number of these ideal requirements.

There are basically three options for analysis of arbitrary shape shells
with curved elements:

1. To develop curved shell elements based on classical shell theory.

E. Oñate, Structural Analysis with the Finite Element Method. Linear Statics:  
Volume 2: Beams, Plates and Shells, Lecture Notes on Numerical Methods  
in Engineering and Sciences, DOI 10.1007/978-1-4020-8743-1_10,  
© International Center for Numerical Methods in Engineering (CIMNE), 2013 
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606 Curved 3D shell elements and shell stiffners

2. To use 3D solid elements of small thickness.
3. To develop curved shell elements by degeneration of solid elements.

Option 1 faces the intrinsic complexity and diversity of the shell the-
ories proposed by different authors [BS2,CC,Fl,Ko,Kr,Na,Ni,No,SF,SFR,
TW,Vl2]. A possibility is to use the simpler shallow shell theory [Ma3], the
drawback being now that this is only applicable to small curvature shells.

Option 2 eliminates most problems associated to classical shell theories.
It has only three drawbacks in practice. First, the thickness discretization
introduces additional nodal variables which increase the computational
cost. However, for the simplest linear interpolation through the thickness
the cost is basically the same as for shell elements (6 nodal DOFs for 3D
solid elements versus 5 DOFs per node for shell elements). Second, the
thickness stiffness can be substantially smaller than the rest of stiffness
terms for very thin shells and this can lead to ill-conditioning of the global
equation system. This problem can be overcome by using double precision
in the computation and very thin shells (a/t = 102, 103) have been an-
alyzed with this simple remedy. Smaller thicknesses can be treated by
choosing the relative displacements between the upper and lower element
faces as nodal variables [WTDG,WZ]. The third drawback of solid ele-
ments is the difficulty in generating 3D meshes versus the simpler option
of generating surface meshes only.

General 3D elasticity theory does not benefit from the simplifications
intrinsic to shell theory, such as the inextensible straight normals and
zero normal stress. These assumptions can be adequately introduced in
the formulation of solid elements to yield the so-called “degenerated shell
elements” [AIZ2]. Elements of this type where introduced in the previous
chapter for deriving a particular class of axisymmetric shell elements (Sec-
tion 8.16). 3D degenerated shell elements have enjoyed much popularity
in past decades [Ah,AIZ,AIZ2,BD6,BR,ChR,FV,Ga,Ga2,HL,Ka,Pa2,Paw,
ZT2]. These elements can be considered as a generalization of Reissner–
Mindlin shell theory regarding the non–orthogonality of the surface nor-
mals and, therefore, they suffer from transverse shear locking. In their
curved shapes they can also suffer from membrane locking. Shear and
membrane locking in degenerated shell elements can be eliminated by us-
ing selective/reduced integration or assumed strain fields.

The name “degenerated shell element” is somehow misleading as, in
fact, the degeneration process effectively occurs in the parent 3D solid
element. We will however retain the denomination to distinguish degener-
ated shell elements from curved shell elements derived from shell theory.
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Buechter and Ramm [BR] have shown that there is a practical coin-
cidence between degenerated shell elements and those based on standard
Reissner-Mindlin/Naghdi type shell theory. This favours using the former
for practical purposes as their formulation is generally simpler.

The organization of the chapter is as follows. The first part focuses
on the derivation of degenerated shell elements from 3D solid elements.
We will find that the PVW in these shell elements is written in terms of
stresses and strains, as for standard 3D solid elements, and the element
stiffness is computed by integrals over the 3D solid element volume.

In the second part of the chapter we present first the development
of “truly” curved shell elements based on the so-called continuum-based
resultant (CBR) shell theory. CBR theory introduces simplifications in
degenerated shell elements, so that the PVW can be expressed in terms of
resultant stresses and generalized strains and the element stiffness matrix
can be computed by integrals over the shell surface only.

After that we present an overview of curved shell elements based on
the Discrete-Kirchhoff assumptions. Then we briefly describe the pros and
cons of shell elements based on a 6 and 7 parameters formulation. This
is followed an introduction to the so-called isogeometric shell analysis
[CHB,HCB].

In the last part of the chapter we present a finite element formulation
for analysis of arbitrary shaped shells stiffened with 3D beams.

10.2 DEGENERATED SHELL ELEMENTS. BASIC CONCEPTS

Figure 10.1 shows a 20-noded quadratic hexahedron and the correspond-
ing degenerated shell element. The upper, middle and lower surfaces are
curved whereas the transverse sections are limited by straight lines (fibers).
The degeneration process implies the definition of a reference surface (ge-
nerally coinciding with the shell middle surface) with respect to which all
displacements of the shell points are defined.

The displacement field is specified assuming that the fibers remain
straight and inextensible after deformation. In addition, the stress normal
to the reference surface is ignored (plane stress condition). The first as-
sumption introduces transverse shear deformation and it also allows using
a C0 continuous interpolation for all the kinematic variables (displace-
ment and rotations). It is interesting that this formulation is identical to
Reissner-Mindlin plate theory when particularized for flat surfaces.
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Fig. 10.1 Modification of a 20-noded hexahedron into a 8-noded degenerated shell
element. Global, nodal and curvilinear coordinate systems

The reference surface is discretized into C0 continuous curved shell
elements with n nodes. Each node typically has five DOFs: three cartesian
displacements and two rotations defining the motion of the normal to the
shell surface. A third rotation may be necessary in folded shells, similarly
as explained for flat shell elements.

Before proceeding any further we will define the different coordinate
systems necessary for the analysis.
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10.3 COORDINATE SYSTEMS

10.3.1 Global cartesian coordinate system x,y, z

The geometry of the shell is defined with respect to a global cartesian coor-

dinate system x, y, z with associated unit vectors
−→
i ,
−→
j ,
−→
k (Figure 10.1).

This system defines the directions for the global displacements u, v, w as-
sociated with the axes x, y, z, respectively; the global stiffness matrix K(e)

and the global equivalent nodal force vector f (e) for each element.

10.3.2 Nodal coordinate system v1i , v2i , v3i

A cartesian coordinate system formed by unit vectors −→v 1i ,
−→v 2i ,

−→v 3i is
defined at each node on the reference surface (Figure 10.1). This system
is used to define the nodal rotations (Section 10.5). The fiber (or pseudo-
normal) vector −→v 3i can be chosen in one of the following three ways:

a) The components of vector
−→
V 3i (with associated unit vector −→v 3i) in the

global coordinate system are obtained from the coordinates of the two
nodes placed on the upper and lower surfaces of the fiber associated
with node i lying on the reference surface (Figure 10.2), i.e.

−→
V 3i =

−→r up
i −−→r lo

i (10.1)

where −→r i = xi
−→
i + yi

−→
j + zi

−→
k (10.2)

In cartesian component form

ri = [xi, yi, zi]
T , V3i =

[
V x
3i , V

y
3i
, V z

3i

]T
(10.3)

Vector V3i defines the fiber or thickness direction of node i while its
modulus defines the nodal thickness. The fiber direction is not neces-
sarily normal to the reference surface at i. This definition guarantees
geometrical compatibility between folded elements (Figure 10.3). The
drawback is that the coordinates of two points are necessary. Alter-
natively, the coordinates of node i, the fiber direction and the nodal
thickness are required.

b) For shells with a smooth surface and uniform thickness it is simpler to
define V3i as a vector in the normal direction at node i with a modulus
equal to the shell thickness. The direction of V3i can be obtained by
the cross product of two vectors which are tangent to the reference
surface at i (see Eq.(10.16)).



610 Curved 3D shell elements and shell stiffners

Fig. 10.2 Definition of the fiber vector V3i

c) A third alternative is to define the fiber vector V3i as the average of
all the normal vectors at node i corresponding to the elements sharing
node i. This ensures geometric compatibility for coarse meshes and
folded shells (Figure 10.3).

Vector V1i is defined as perpendicular to V3i and contained within a
plane parallel to the global plane xz. Thus

V1i = j ∧V3i = V z
3ii− V x

3ik (10.4)

If V3i coincides with the global y axis then V x
3i

= V z
3i

= 0 and V1i is
taken in the direction of the x axis, i.e.

V1i = − V y
3i
i (10.5)

Finally, vector V2i is obtained by the cross product of V3i and V1i as

V2i = V3i ∧V1i (10.6)

The above definition of V2i and V3i ensures the coincidence of these
vectors for adjacent elements sharing node i in smooth shells. This defines
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Fig. 10.3 Geometric compatibility in a folded shell. Computation of unit
pseudonormal (fiber) vector at a node

the nodal rotations uniquely and avoids the global transformation of the
rotations for assembly purposes (Section 10.10).

The unit vectors associated to V1i , V2i and V3i are v1i , v2i and v3i ,
respectively.

10.3.3 Curvilinear parametric coordinate system ξ, η, ζ

A normalized curvilinear system ξ, η, ζ is defined such that ζ is a linear
coordinate in the thickness direction at each point on the reference surface
(Figures 10.1 and 10.2). ζ takes the values +1 and −1 at the upper and
lower surfaces, respectively and zero at the middle surface. The thickness
direction at a point is obtained by standard interpolation of the nodal
thickness (fiber) directions. Clearly, the direction of ζ coincides with that
of V3i at each node (Figures 10.4 and 10.5). ξ and η are curvilinear para-
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Fig. 10.4 (a) Lamina and curvilinear coordinate systems across the shell thickness.
(b) Tapered shell with skew edges. (c) Quasi-uniform thickness (mild taper) shell
with normal edges

metric coordinates describing the element surface as

x = x(ξ, η)i+ y(ξ, η)j+ z(ξ, η)k (10.7)
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Fig. 10.5 Local coordinate system at a point P across the shell thickness

The direction for ξ is defined by the numbering of the first three nodes
of the element (Figures 10.1 and 10.4). The relationship between the curvi-
linear and global coordinates is governed by the isoparametric description
of the element geometry (Section 10.4).

A new thickness coordinate z̄ in the direction of ζ is defined as

z̄ = (ζ − ζ0)
t

2
(10.8)
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where t is the shell thickness and ζ0 is the value of ζ at the reference surface
(ζ0 = 0 if the reference surface coincides with the shell middle surface,
as usually happens). Coordinate z̄ measures the distance of a point to
the reference surface along the thickness direction ζ. If the thickness is
constant across the shell (mild taper, Figure 10.4c), then ζ coincides with
the local axis z′ and then z̄ = z′.

10.3.4 Lamina (local) coordinate system x′,y′, z′

A cartesian coordinate system x′, y′, z′ is chosen at each shell point defining
the direction for the local displacements u′, v′, w′. The so called lamina
(or local) coordinate system changes from point to point in the shell. The
local system is used for defining and computing the local strain and stress
fields. The unit vectors associated to directions x′, y′, z′ are l, m, n,
respectively. Direction z′ is perpendicular to the surface ξ = constant
(Figure 10.4). The normal vector z′ is obtained as the cross product of
two tangent vectors to the curves ξ = constant and η = constant at each
point, i.e.

z′ζ=ζ̄ =

(
∂r

∂ξ

)

ζ̄,η=η̄

∧
(
∂r

∂η

)

ζ̄,ξ=ξ̄

(10.9)

where r = [x, y, z]T is the position vector of a shell point (Figure 10.2).
The unit normal vector n is obtained as

n =
1

|z′|z
′ (10.10)

The direction of x′ is taken as tangent to the curvilinear coordinate
ξ = constant at each point (Figures 10.4 and 10.5). Thus

x′ =
(
∂r

∂ξ

)

η=η̄

=

[
∂x

∂ξ
,
∂y

∂ξ
,
∂z

∂ξ

]T
η=η̄

(10.11)

and the associated unit vector is l = 1
|x′|x

′.
The unit vector m′ associated to y′ is obtained by the cross product of

vectors n and l, i.e. m = n ∧ l. Note that the y′ direction is not tangent
to the curvilinear coordinate η defined by ξ = constant (Figure 10.5).

The local coordinate system changes at each point. If the shell thickness
is constant, then the x′, y′, z′ system is also constant across the thickness.
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Fig. 10.6 Definition of covariant and contravariant systems at a shell point P

10.3.5 Covariant and contravariant coordinate systems

Two additional coordinate systems are usually defined for shell analysis.
The covariant system a1, a2, n where a1 = dr

∂ξ and a2 = dr
∂η are vectors

tangent to the lines η = constant and ξ = constant, respectively and n is
the normal vector. Note that a1 coincides with the local vector x′ (Figure
10.6). In general a1 and a2 are not orthogonal.

The contravariant system (or dual system) a1, a2, n with

a1 =
1

a
(a22a1 − a12a2) ; a2 =

1

a
(−a21a1 − a11a2) (10.12)

where a = a11a22 − a12a21 and aij are the components of vectors a1 and
a2. Vector a

1 and a2 satisfy

aiaj = 0 i 
= j
= 1 i = j i, j = 1, 2

(10.13a)

i.e. a1 and a2 are orthogonal to a1 and a2, respectively (Figure 10.6). Also
[BD6,Cal,No]

dξ = [a1]Tdr, dη = [a2]Tdr (10.13b)

The covariant and contravariant systems are useful for developing con-
sistent expressions for the shell curvatures and the equilibrium equations
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in classical shell theory. Some authors have used these coordinate sys-
tems to formulate curved shell elements [BD6,BD,DB,JP,JP2]. Their use
in this text will be limited to a few particular cases, such as the definition
of assumed transverse shear strain fields for some shell elements.

10.4 GEOMETRIC DESCRIPTION

The position of a point within an element can be obtained by the standard
isoparametric interpolation of the nodal coordinates [On4] as

r =
n∑

i=1

Ni(ξ, η)
1 + ζ

2
rupi +

n∑
i=1

Ni(ξ, η)
1− ζ

2
rloi (10.14)

where rupi and rloi are the position vectors for the upper and lower surfaces
at each node i; Ni(ξ, η) is the 2D shape function of node i (Figure 10.2;
ζ defines the position of the point in the thickness direction and n is
the number of element nodes. If the geometry is defined by the reference
surface (as it is the usual case) Eq.(10.14) is changed to (Figure 10.7)

−→r = −→r 0 + z̄p
−→v 3 (10.15a)

where −→r 0 defines the position vector of a point on the reference surface,−→v 3 is the pseudo-normal vector at O and z̄p is the coordinate of point P
across the shell thickness. The first term in the r.h.s. in Eq.(10.15a) defines
the position of a point on the reference surface, whereas the second defines
the position of the point in the thickness direction. Recall that v3i is not
necessarily normal to the reference surface (Section 10.3.2).

Vectors −→r 0 and the product z̄p
−→v 3 can be interpolated from the nodal

values to give (in component form)

r =

n∑
i=1

Ni(ξ, η)ri =

n∑
i=1

Ni(ξ, η) [r0i + z̄iv3i ] (10.15b)

where r0i is the vector defining the position of node i, v3i is the unit
normal nodal vector at the node and

z̄i = (ζ − ζ0)
ti
2

(10.15c)

with ti being the nodal thickness (Figures 10.5 and 10.7).
The computation of the normal direction z′ at each point is easily

performed combining Eqs.(10.9) and (10.15b). In particular, the normal
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Fig. 10.7 Position vector of an arbitrary point P (r) on a normal direction V3 and
of a point Pi on the thickness direction at node i (ri)

vector to the reference surface at a node (z̄i = 0) is obtained by

z′0i =
n∑

j=1

(
∂Nj(ξi, ηi)

∂ξ
r0j ∧

∂Nj(ξi, ηi)

∂η
r0j

)
(10.16)

This expression is particularly useful if the fiber vector V3i is taken to
coincide with z′0i (Section 10.3.2).

10.5 DISPLACEMENT FIELD

The three global displacements of a 3D shell point can be expressed in
terms of the displacements of the reference surface and the rotation of the
normal vector. Let us take, for instance, point A of Figure 10.8 located
on the normal direction v3i at a distance z̄i from node i (z̄i ≡ iA). The
displacement vector of point A can be written as

ui = u0i + z̄iuni (10.17)

where

ui = [ui, vi, wi]
T , u0i = [u0i , v0i , w0i ]

T (10.18)

are the displacement vectors of point A and node i, respectively, with
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Fig. 10.8 Displacement vector of a point and sign convention for nodal rotations

components in the global coordinate system, i.e.

−→u i = ui
−→
i + vi

−→
j + zi

−→
k , −→u 0i = u0i

−→
i + v0i

−→
j + w0i

−→
k (10.19)

Index 0 in the above expression denotes points on the reference surface.
Vector uni in Eq.(10.17) defines the displacement of the end point of
the unit normal vector v3i . Thus z̄iuni is the vector defining the relative
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displacement of point A with respect to node i. For simplicity we express
the components of uni in the nodal coordinate system. From Figure 10.8
it is deduced

uni = −θ1iv1i − θ2iv2i (10.20)

where θ1i and θ2i are the two local rotations of the normal vector at node i.
Rotations θ1i and θ2i are taken as positive if they rotate in an anticlockwise
direction in the planes v1i − v3i and v2i − v3i , respectively, i.e. when the
normal end point moves in the opposite direction to the nodal vectors
v1i and v3i . This criterion is the same one as for the rotations in beams,
plates and shells in previous chapters.

Vector u0i in Eq.(10.17) can be also interpreted as a rigid body trans-
lation of the element, so that the original fiber iA at a node i moves to
the position iA′ (Figure 10.8). Vector z̄iuni provides the additional dis-
placement so that the point A′ reaches the final position A′′.

The displacements of an arbitrary point P within an element (Figure
10.8) are expressed in terms of the nodal displacements by a standard
interpolation. From Eqs.(10.17) and (10.20) we write

u =

⎧⎨
⎩
u
v
w

⎫⎬
⎭ =

n∑
i=1

Niui =
n∑

i=1

Ni

[
u0i − z̄i[v1i ,v2i ]

{
θ1i
θ2i

}]
=

n∑
i=1

Nia
(e)
i

(10.21a)
where

a
(e)
i = [u0i , v0i , w0i , θ1i , θ2i ]

T (10.21b)

is the displacement vector of node i containing the three cartesian displace-
ments u0i , v0i and w0i and the two local rotations θ1i and θ2i defined in
the nodal coordinate system,

Ni = [I3,−z̄iCi] (10.22a)

where I3 is the 3× 3 unit matrix, and

Ci = [v1i ,v2i ] (10.22b)

contains the cartesian components of vectors v1i and v2i .

10.6 LOCAL STRAIN MATRIX

The plane stress assumption (σz′ = 0) allows us to simplify the constitutive
equation for 3D elasticity written in the local axes x′, y′, z′ by eliminating
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the normal strain εz′ (similarly as for flat shell elements). The local strain
vector has the following five significant components

εεε′ =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εx′

εy′

γx′y′

· · · · · ·
γx′z′

γy′z′

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u′

∂x′
∂v′

∂y′
∂u′

∂y′
+

∂v′

∂x′
· · · · · · · · · · · ·
∂u′

∂z′
+

∂w′

∂x′
∂v′

∂z′
+

∂w′

∂y′

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎨
⎩

εεε′p
· · · · · ·
εεε′s

⎫⎬
⎭ (10.23)

where u′, v′, w′ are the displacements in the local directions x′, y′, z′,
respectively and εεε′p and εεε′s are the in-plane strain vector and the transverse
shear strain vector, respectively. Vector εεε′p includes both membrane and
bending strains which are difficult to decouple for curved shells.

The components of εεε′ are expressed in terms of the nodal displacements
as follows. First, the local derivatives of Eq.(10.23) are written in terms
of the derivatives of the global displacements u, v, w with respect to the
global coordinates x, y, z using the chain derivative rule as

∂u′

∂x′
=

∂u′

∂x

∂x

∂x′
+

∂u′

∂y

∂y

∂x′
+

∂u′

∂z

∂z

∂x′
=

∂u′

∂x
lx +

∂u′

∂y
ly +

∂u′

∂z
lz (10.24)

where lx, ly, lz are the global components of the local vector l (Section
10.3.4). As usual lx is the cosine of the angle formed by axes x′ and x etc.

Also

∂u′

∂x
=

∂u

∂x

∂u′

∂u
+

∂v

∂x

∂u′

∂v
+

∂w

∂x

∂u′

∂w
=

∂u

∂x
lx +

∂v

∂x
ly +

∂w

∂x
lz (10.25)

Performing similar transformations for ∂u′
∂y and ∂v′

∂z gives, after substi-
tuting in (10.24)

∂u′

∂x′
=

∂u

∂x
(lx)2 +

∂u

∂y
(ly)2 +

∂u

∂z
(lz)2 +

(
∂u

∂y
+

∂v

∂x

)
lxly+

+

(
∂u

∂z
+

∂w

∂x

)
lxlz +

(
∂v

∂z
+

∂w

∂y

)
lylz

(10.26)



Local strain matrix 621

Following the same procedure for all the terms in εεε′ gives

εεε′ = Qεεε (10.27)

where

εεε =
[
εx, εy, εz, γxy, γxz, γyz

]T
=

[
∂u

∂x
,
∂v

∂y
,
∂w

∂z
,
∂u

∂y
+

∂v

∂x
,
∂u

∂z
+

∂w

∂x
,
∂v

∂z
+

∂w

∂y

]T

(10.28)
is the global strain vector and

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(lx)2 (ly)2 (lz)2 lxly lxlz lylz

(mx)2 (my)2 (mz)2 mxmy mymz nynz

2lxmx 2lymy 2lzmz (lxmy + lymx) (lzmx + lxmz) (lymz + lzmy)

2lxnx 2lyny 2lznz (lxny + lynx) (lxnz + lznx) (lynz + lzny)

2mxnx 2myny 2mznz (mxny +mynx) (mxnz +mznx) (mynz +mzny)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(10.29)

Note that the global strain εz is non zero in Eq.(10.28).
The global cartesian derivatives in vector εεε are next expressed in terms

of the curvilinear derivatives of the displacement by

⎡⎢⎢⎢⎢⎢⎢⎣

∂u

∂x

∂v

∂x

∂w

∂x

∂u

∂y

∂v

∂y

∂w

∂y

∂u

∂z

∂v

∂z

∂w

∂z

⎤⎥⎥⎥⎥⎥⎥⎦ =
[
J(e)

]−1

⎡⎢⎢⎢⎢⎢⎢⎣

∂u

∂ξ

∂v

∂ξ

∂w

∂ξ

∂u

∂η

∂v

∂η

∂w

∂η

∂u

∂ζ

∂v

∂ζ

∂w

∂ζ

⎤⎥⎥⎥⎥⎥⎥⎦ (10.30)

where J(e) is the jacobian matrix (sometimes simply called “the Jacobian”)

J(e) =

⎡⎢⎢⎢⎢⎢⎣
∂x

∂ξ

∂y

∂ξ

∂z

∂ξ
∂x

∂η

∂y

∂η

∂z

∂η
∂x

∂ζ

∂y

∂ζ

∂z

∂ζ

⎤⎥⎥⎥⎥⎥⎦ (10.31)

The derivation of the local strain matrix therefore includes the follow-
ing steps:

1. Compute the derivatives of the global displacements with respect to
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the curvilinear coordinates ξ, η, ζ. From Eq.(10.21a) we obtain

∂u

∂ξ
=

[
∂u

∂ξ
,
∂v

∂ξ
,
∂w

∂ξ

]T

=

n∑
i=1

∂Ni

∂ξ
[I3,−z̄iCi]a

(e)
i

∂u

∂η
=

[
∂u

∂η
,
∂v

∂η
,
∂w

∂η

]T

=

n∑
i=1

∂Ni

∂η
[I3,−z̄iCi]a

(e)
i

∂u

∂ζ
=

[
∂u

∂ζ
,
∂v

∂ζ
,
∂w

∂ζ

]T

=

n∑
i=1

Ni

[
0,− ti

2
Ci

]
a
(e)
i (10.32)

2. Compute the terms in J(e). From Eq.(10.15b)

∂r

∂ξ
=

[
∂x

∂ξ
,
∂y

∂ξ
,
∂z

∂ξ

]T

=

n∑
i=1

∂Ni

∂ξ
[r0i + z̄iv3i ]

∂r

∂η
=

[
∂x

∂η
,
∂y

∂η
,
∂z

∂η

]T

=

n∑
i=1

∂Ni

∂η
[r0i + z̄iv3i ]

∂r

∂ζ
=

[
∂x

∂ζ
,
∂y

∂ζ
,
∂z

∂ζ

]T

=

n∑
i=1

Ni
ti
2
v3i (10.33)

3. Compute the global cartesian derivatives. From Eqs.(10.32) and (10.33)

∂u

∂xj
=

n∑
i=1

[
N j

i I3,G
j
i

]
a
(e)
i (10.34)

with xj = x, y, z for j = 1, 2, 3, respectively and

N j
i = J−1j1

∂Ni

∂ξ
+ J−1j2

∂Ni

∂η
; Gj

i = −
(
ti
2
J−1j3

Ni + z̄iN
j
i

)
Ci

(10.35)
where J−1ij is the element ij of the inverse of the Jacobian J(e). The
global strain vector is expressed in terms of the global displacements
as

εεε =
n∑

i=1

Bia
(e)
i = Ba(e) (10.36)

where B is the global strain matrix. Box 10.1 shows the explicit form
for Bi.

4. Compute the local strain vector. Substituting Eq.(10.36) into the
transformation (10.27) gives finally

εεε′ = Qεεε =

n∑
i=1

QBia
(e)
i =

n∑
i=1

B′ia
(e)
i = B′a(e) (10.37)
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B = [B1,B2, · · · · · · · · · ,Bn]

Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1
i 0 0 (G1

i )11 (G1
i )12

0 N2
i 0 (G2

i )21 (G2
i )22

0 0 N3
i (G3

i )31 (G3
i )32

N2
i N1

i 0
[
(G2

i )11 + (G1
i )21

] [
(G2

i )12 + (G1
i )22

]
N3

i 0 N1
i

[
(G3

i )11 + (G1
i )31

] [
(G3

i )12 + (G1
i )32

]
0 N3

i N2
i

[
(G3

i )21 + (G2
i )31

] [
(G3

i )22 + (G2
i )32

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N j
i = J−1

j1

∂Ni

∂ξ
+ J−1

j2

∂Ni

∂η
; Gj

i = −(
ti
2
J−1
j3

Ni + z̄iN
j
i )Ci

Box 10.1 Global strain matrix for 3D degenerated shell elements

B′ is the local strain matrix with

B′i = QBi (10.38a)

B′i
5×5

=

{
B′pi
B′si

}
; B′pi

3×5
= Q1

3×6
Bi
6×5

; B′si
2×5

= Q2
2×6

Bi
6×5

(10.38b)

where B′pi and B′si are the in-plane and transverse shear contributions
to the local strain matrix, respectively. In Eq.(10.38b) Q1 and Q2

contain the first three files and the last two files of the transformation
matrix Q of Eq.(10.29), respectively. Matrix Q must be constructed at
each point where the strains are evaluated using the global components
of the local vectors l, m and n at the point.

10.7 STRESS VECTOR AND CONSTITUTIVE EQUATION

The stress vector at a shell point is written in the local coordinate system
x′, y′, z′, taking into account the plane stress assumption (σz′ = 0) as

σσσ′ =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σx′

σy′

τx′y′

· · · · · ·
τx′z′

τy′z′

⎫
⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎨
⎩

σσσ′p
· · · · · ·
σσσ′s

⎫
⎬
⎭ (10.39)
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Fig. 10.9 Definition of local stresses at a shell point

where vectors σσσ′p and σσσ′s contain the in-plane and transverse shear stresses,
respectively (Figure 10.9).

The relationship between the local stresses and strains can be written
in the usual form

σσσ′ = D′εεε′ + σσσ′0 (10.40)

where εεε′ was defined in Eq.(10.23) and σσσ′0 is an initial stress vector. For
initial stresses due to thermal effects and isotropic material [On4]

σσσ′0 = −
EαΔT

1− ν2
[1, 1, 0, 0, 0]T (10.41)

where α is the thermal expansion coefficient and ΔT is the temperature
increment at each point. The local constitutive matrix D′ for an isotropic
material coincides with that given in Section 8.3.3.

Let us consider a composite laminated shell formed by a number of
orthotropic layers of variable thickness (Figure 10.10). It is assumed for
each layer that the material is orthotropic with orthotropy axes 1,2,3 with
z′ ≡ 3 and satisfies the plane anisotropy conditions [BD6]. Consequently
the membrane/bending effects are decoupled from the transverse shear
effects on the plane x′, y′. Under these assumptions the constitutive equa-
tion at a point of each layer is written in the orthotropy axes 1,2,3 as

σσσI = DIεεεI (10.42)

where

σσσI =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ1
σ2
τ12
. . .
τ13
τ23

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎨
⎩
σσσ1

. . .
σσσ2

⎫⎬
⎭ ; εεεI =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε1
ε2
γ12
. . .
γ13
γ23

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎨
⎩
εεε1
. . .
εεε2

⎫⎬
⎭ (10.43)
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Fig. 10.10 Laminated shell (four layers). Orthotropy axes 1,2,3 and local axes
x′, y′, z′ with z′ ≡ 3 at a point P

and
DI =

[
D1 0
0 D2

]
(10.44)

The orthotropy constitutive matrix DI coincides with that of Eq.(7.8b)
for composite plates. Transformation of DI to the local coordinate system
x′, y′, z′ follows the rules explained in Section 7.3.3 leading to

D′ =
[
D′

p 0

0 D′
s

]
(10.45)

where
D′

p = TT
1 D1T1 and D′

s = TT
2 D2T2 (10.46)

with T1 and T2 given by Eq.(6.15b).
The initial stress vectors σσσ′0p and σσσ′0s for an orthotropic material can be

directly deduced from Eqs.(7.14a).
The transverse shear stresses obtained using Eq.(10.40) do not allow

to satisfy the condition σσσ′s = 0 at the upper and lower faces of the shell or
the continuity conditions at the interfaces of a composite laminated shell.
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Transverse shear correction factors are introduced in D′
s, similarly as in

thick plates and flat shells for improving the representation of the trans-
verse shear stresses. A simple approach is to neglect the influence of the
curvature and to use the shear correction factors kij derived for composite
laminated plates in Section 7.3. A further simplification is to assume cylin-
drical bending along x′ and y′ to define the two coefficients k11 and k22
that weight the diagonal terms of D′

s. For an homogeneous shell we will
use the classical coefficient k11 = k22 = k = 5/6 [BD6,Co1HO,NB,OF2].

10.8 STIFFNESS MATRIX AND EQUIVALENT NODAL FORCE
VECTOR

The PVW for a 3D shell element is written as [On4,ZT2]

∫∫∫

V (e)

δεεε′Tσσσ′ dV =

∫∫∫

V (e)

δuTb dV +

∫∫

A(e)

δuTt dA+

n∑
i=1

[
δa

(e)
i

]T

q(e)

(10.47)
where the internal virtual work is expressed in terms of the local stresses
and strains and

b = [bx, by, bz]
T , t = [tx, ty, tz]

T (10.48a)

q
(e)
i = [Xi, Yi, Zi,M1i ,M2i ]

T (10.48b)

are the standard body forces, surface loads and equilibrating nodal force
vectors, respectively. The load components are expressed in the global
axes except the nodal bending moments M1i and M2i which are expressed
in the local axes as they are conjugate to the local nodal rotations θ1i and
θ2i . V

(e) and A(e) in Eq.(10.47) denote the element volume and the area
of the surface where body forces and distributed loads t act, respectively.

Substituting Eqs.(10.21a), (10.37) and (10.40) into (10.47) and follow-
ing the usual process of expressing the virtual strains in terms of the
virtual displacements yields, after standard algebra, the element stiffness
matrix and the equivalent nodal force vectors as

K
(e)
ij =

∫∫∫

V (e)

B′Ti D′B′j dV (10.49a)

f
(e)
i =

∫∫∫

V (e)

NT
i b dV +

∫∫

A(e)

NT
i t dA−

∫∫∫

V (e)

B′Ti σσσ′0dV (10.49b)
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The element stiffness matrix can be expressed in terms of the global
strain matrix B of Eq.(10.36). Substituting Eq.(10.38a) into (10.49a) gives

K
(e)
ij =

∫∫∫

V (e)

BT
i DBj dV wid D = QTD′Q (10.50)

Eq.(10.49a) is quite convenient as it avoids the double matrix product
for computing the “global” constitutive matrix D.

Matrix B′ is also useful for computing “a posteriori” the local stresses

in terms of the global displacement vector a
(e)
i . Substituting Eq.(10.37)

into (10.40) gives

σσσ′ = D′
n∑

i=1

B′ia
(e) + σσσ′0 (10.51)

The element integrals contain rational polynomials in ξ, η, ζ. The
dependence on ζ is inherent to degenerated shell theory, whereas the de-
pendence on ξ, η depends on the element type.

The element stiffness matrix can be split into membrane-bending and
transverse-shear contributions as

K(e) =

∫∫∫

V (e)

[B′Tp D′
pB

′
p +B′Ts D′

sB
′
s]dV = K(e)

p +K(e)
s (10.52)

This allows us using a reduced quadrature for K
(e)
s to avoid transverse-

shear locking.
The computation of the element matrices is performed using Gauss

quadratures for 3D solid elements [Hu2,On4,ZT2,ZTZ] as follows.

Quadrilateral degenerated shell elements

Kij =

nξ∑
p=1

nη∑
q=1

nζ∑
r=1

Iij(ξp, ηq, ζr)WpWqWr (10.53)

Triangular degenerated shell elements

Kij =

np∑
p=1

nζ∑
r=1

Iij(ξp, ηp, ζr)WpWr (10.54a)

where

Iij = B′Ti D′B′j |J(e)| (10.54b)

In above |J(e)| is the jacobian determinant nξ, nη (np for triangles)
are the number of integration points on the element surface, nζ are the
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integration points along the thickness direction andWi are the correspond-
ing weights. As a general rule, the surface integration requires the same
quadrature as for the analogous Reissner–Mindlin plate elements (Section
10.11.1 and Table 10.1). For homogeneous isotropic material a two–point
quadrature is typically chosen for the thickness integration.

Composite laminated shells

Composite laminated shells require an independent quadrature for each
layer. If ζl and ζl+1 define the thickness position of the lth layer (Figure
10.11) then

ζ = ζl +
tl
t
(1 + ζ ′); dζ =

tl
t
dζ ′ (10.55)

where tl is the layer thickness and −1 ≤ ζ ′ ≤ 1 for ζl ≤ ζ ≤ ζl+1.
The element stiffness matrix is written as

K(e) =

nl∑
l=1

∫

A
(e)
r

∫ +1

−1

(
B′TD′B′

tl
t
dζ ′

)
dξ dη (10.56)

where A
(e)
r is the area of the reference surface of the element.

Expression (10.56) is integrated over each layer using a 2D Gauss
quadrature. One integration point for each layer suffices if the number
of layers is large and the material properties are constant within the layer.

The form of Eq.(10.56) for this case with ζ ′ = 0 and Wζ′ = 2 is

K(e) =

nl∑
l=1

∫

A
(e)
r

(
B′TD′B′

)
ζ′=0

2
tl
t
dξ dζ (10.57)

where nl is the number of layers.
The numerical integration over the reference surface gives finally

Quadrilaterals

K
(e)
ij =

nl∑
l=1

nq∑
p=1

nq∑
q=1

Iij

(
ξp, ηq, ζl +

tl
t

)
2
tl
t
WpWq (10.58a)

Triangles

K
(e)
ij =

nl∑
l=1

np∑
p=1

Iij

(
ξp, ηp, ζl +

tl
t

)
2
tl
t
Wp (10.58b)

where np and nq are the integration points over the reference surface and
Iij is defined in Eq.(10.54b).
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Fig. 10.11 Coordinate axes for layer integration

Surface quadratures for several degenerated shell quadrilateral ele-
ments are given in Section 10.11.1.

The numerical integration of the volume integrals in the equivalent
nodal force vector is performed by an identical expression to Eqs.(10.54b)
with Iij given now by NT

i b|J(e)| and −B′Tσσσ′0|J(e)| for body forces and
initial stresses, respectively.

Distributed loads acting on element faces are treated as for 3D solid
elements (Section 7.10 of [On4]).

10.9 COMPUTATION OF STRESS RESULTANTS

The (local) resultant stress vector is obtained from the local stresses as

σ̂σσ′ =

⎧⎨
⎩
σ̂σσ′m
σ̂σσ′b
σ̂σσ′s

⎫⎬
⎭ =

∫ t+

t−

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σσσ′p
. . .
z̄σσσ′p
. . .
σσσ′s

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

dz̄ (10.59)

where t+ and t− are the thickness coordinates of the upper and lower
surfaces of the shell (Figure 10.11) and

σ̂σσ′m =

⎧⎨
⎩

Nx′

Ny′

Nx′y′

⎫⎬
⎭ , σ̂σσ′b =

⎧⎨
⎩

Mx′

My′

Mx′y′

⎫⎬
⎭ , σ̂σσ′s =

{
Qx′

Q′y′

}
(10.60)
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Fig. 10.12 Sign convention for stress resultants in a curved shell

The sign convention for the resultant stresses coincides with that given
in Figure 8.9 for flat shells and it is again shown in Figure 10.12. Typi-
cally the resultant stresses are first computed at the Gauss points which
are optimal for evaluation of the stresses [On4,ZTZ]. The nodal resultant
stresses can be simply obtained by extrapolation of the Gauss point values
using any of the smoothing techniques explained in Chapter 9 of [On4].

Expression (10.57) is only approximate since it neglects the effects of
the shell curvature. A more precise (and complex) expression for the stress
resultants can be found in [BD6].

The integral in Eq.(10.59) is usually computed numerically at each
Gauss point over the surface at ξ = ξ̄, η = η̄ as

[σ̂σσ′]ξ̄η̄ =

∫ +1

−1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σσσ′p
. . .
z̄σσσ′p
. . .
σσσ′s

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

ξ̄η̄

t

2
dζ =

nζ∑
r=1

t

2
Wr

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

D′
pB

′
p

. . .
z̄D′

pB
′
p

. . .
D′

sB
′
s

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

ξ̄η̄

a(e) (10.61)

In practice, nζ = 2 is taken. For composite laminated shells an inte-
gration over the number of the thickness layers should be performed.

10.10 FOLDED CURVED SHELLS

Folded curved shells with kinks and/or branching surfaces containing non-
coplanar elements can be also treated with the five nodal DOFs formula-
tion (three global displacements and two rotations per node) presented.
This requires that the nodal fiber vector v3i is defined so as to ensure ge-
ometric compatibility as described in options b) and c) of Section 10.3.2.
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Otherwise, if the nodal coordinate system varies between adjacent ele-
ments, then the nodal rotations must be transformed to a common co-
ordinate system. This introduces a third in-plane rotational variable as
described in Section 8.9 for flat shell elements. The transformation of the
displacements and forces to the global cartesian system x, y, z is written
as

a
(e)
i

5×1
= Li

5×6
ā
(e)
i

6×1
; f

(e)
i
5×1

= Li
5×6

f̄
(e)
i
6×1

(10.62)

where (̄·) denotes displacements and forces with rotations and moments
expressed now in global axes and

L
(e)
i =

[
I3 0

0 λ̂λλ
(e)

i

]
(10.63a)

where I3 is the 3× 3 unit matrix and

λ̂λλ
(e)

i =

[−vT
2i

vT
1i

]
(10.63b)

The global stiffness matrix is written after transformation as

K̄
(e)
ij =

[
L
(e)
i

]T

K
(e)
ij L

(e)
j (10.64)

The nodal transformation matrix L
(e)
i is different for each node due to

the curvature of the element.
The computation of K̄

(e)
ij can be simplified by combining Eqs.(10.49a)

and (10.64) to give

K̄ij =

∫∫∫

V (e)

B̄iD
′B̄jdV with B̄i = B′iLi (10.65)

A similar procedure can be used if K
(e)
ij is computed using Eq.(10.50).

The above stiffness transformation is recommended for non-coplanar
nodes only to avoid stiffness singularities of the kind described in Section
8.9 for flat shells. Otherwise these singularities can be overcome using the
techniques there explained.

10.11 TECHNIQUES FOR ENHANCING THE PERFORMANCE
OF DEGENERATED SHELL ELEMENTS

Degenerated shell elements suffer from the same defects as thick Reissner–
Mindlin type plate and curved shell elements, i.e.
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a) It is difficult to reproduce the thin shell conditions (zero transverse
shear strains). This leads to over-stiff shear dominated solutions (shear
locking). This defect can be overcome using selective/reduced integra-
tion [OHG,ZTT] and assumed transverse shear strain fields [DB,HH3].

b) It is difficult to reproduce a pure bending solution without introducing
spureous membrane strains (membrane locking). This defect leads to
additional stiffening of the solution. Elimination of membrane locking
is possible via reduced integration of the membrane terms in K(e) and
also by using assumed membrane strain fields [BWS,HH4,HH5].

10.11.1 Selective/reduced integration techniques

Transverse shear locking defects can be alleviated by using a reduced
quadrature for the transverse shear stiffness terms. This requires splitting
the element stiffness matrix

K(e) = K(e)
p +K(e)

s (10.66)

where K
(e)
p and K

(e)
s contain the in-plane (membrane–bending) and trans-

verse shear contributions, respectively. The number of reduced integra-

tion points for K
(e)
s is chosen so that condition (2.50) is satisfied. The

performance of the Serendipity and Lagrange degenerated shell elements
with respect to transverse shear locking is very similar to the analogous
Reissner–Mindlin plate elements of Chapter 6.

It is difficult to avoid membrane locking in degenerated shell elements
via selective integration due to the complexity of splitting the membrane

and bending contributions inK
(e)
p . A possibility is using a reduced integra-

tion rule for K
(e)
p . Unfortunately, a uniform reduced integration for K

(e)
p

and K
(e)
s introduces spurious mechanisms in most elements (with the ex-

ception of the QL12, see Table 10.1) and it should be handled with extreme

care. An alternative is to use a formulation where K
(e)
p is split into the

sum of membrane (K
(e)
m ), bending (K

(e)
m ) and coupled membrane-bending

(K
(e)
mb) matrices (Section 10.14). A reduced quadrature for K

(e)
m , K

(e)
mb and

K
(e)
s can be chosen in these cases while preserving the full integration for

K
(e)
b , as for flat shell elements (Section 8.11).
Table 10.1 shows the typical (nξ × nη) quadratures over the surface

for various degenerated shell quadrilaterals. The spurious mechanisms in-
troduced by each integration rule elements are shown in the last three
columns of Table 10.1.
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Full Reduced Selective Spurious
integration integration integration Mechanics

(FI) (RI) (SI) (FI) (RI) (SI)

K
(e)
p K

(e)
s K

(e)
p K

(e)
s K

(e)
p K

(e)
s

2× 2 2× 2 1× 1 1× 1 2× 2 1× 1 0 6 2

3× 3 3× 3 2× 2 2× 2 3× 3 2× 2 0 2 0

3× 3 3× 3 2× 2 2× 2 3× 3 2× 2 0 7 1

4× 4 4× 4 3× 3 3× 3 4× 4 3× 3 0 0 0

4× 4 4× 4 3× 3 3× 3 4× 4 3× 3 0 4 1

Table 10.1 Full, reduced and selective integration quadratures over the surface
(np × nq) for degenerated shell quadrilaterals. The last three columns show the
spurious mechanics induced by each integration rule

As a general rule:

The 4-noded quadrilateral (Q4) with 2 × 2 full integration (FI) presents
severe shear locking. The uniform one-point reduced integration (RI)
introduces six spureous mechanisms. The uniform selective integration

(SI), 2 × 2 for K
(e)
p and 1 × 1 for K

(e)
s , brings the number of mech-

anisms down to two. These mechanisms can be eliminated by using
stabilization techniques [BT,BTL].

The 8-noded Serendipity quadrilateral (QS8) presents shear and mem-
brane locking with 3×3 FI. The 2×2 RI eliminates locking in most sit-
uations although it introduces two spureous mechanisms. Fortunately,
these mechanisms disappear after assembly of the global stiffness ma-
trix and the element can be considered safe for practical purposes. SI
is free of mechanisms although shear and membrane locking occur in
some situations as the singularity rule (2.50) is not always satisfied.
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The 9-noded lagrangian quadrilateral (QL9) satisfies the singularity rule
with RI and SI. However, RI introduces seven spureous mechanisms
and it should be avoided. SI still induces one internal mechanism which
can pollute the solution in some situations. Unless this mechanism is
stabilized the QL9 element can not be considered safe for practical
purposes [Pa].
Oñate et al. [OHG] developed a stable and locking–free version of the
QL9 element by adding hierarchical nodes to the QS8 element as we
did as for the QHG plate element (Section 6.5.5). Similar elements can
be obtained using the Heterosis approximation (Section 6.5.6) [HL,Hu]
although the element still has an internal spureous mode with RI in
this case [Cr,Cr2].

The 12-noded Serendipity quadrilateral (QS12) is free of spureous mech-
anisms with both RI and SI rules, although it does not always satisfy
the singularity rule (2.50) and the absence of locking can not be fully
guaranteed [ZT2].

The 16-noded lagrangian quadrilateral (QL16) has four spurious and
propagable mechanisms with RI and one with SI. The singularity rule
is satisfied for both quadratures, but the element is not robust for
practical purposes [ZT2].

10.11.2 Assumed fields for the transverse shear and membrane strains

Assumed strain fields have been successfully used for developing robust
locking–free curved shell elements. The first applications were aimed to
deriving Discrete-Kirchhoff degenerated shell elements by imposing the
condition of zero transverse shear strains at a number of element points
[BD6,Dh,Dh2,DMM,Mo3,We,WOK]. An example is the semi-Loof ele-
ment developed by Irons [He,IA,Ir2,Mo3] which has enjoyed much popu-
larity despite its relative complexity (Section 10.12.5). Assumed transverse
shear and membrane strain fields were first introduced in the late 1980’s to
develop shear-locking free versions of the Q4, QS8 and QL9 degenerated
shell elements [BD,DB,HH4,HH5,HL2,JP,JP2]. These techniques can be
viewed as an extension of the assumed strain procedures for beams and
plates explained in previous chapters (Sections 2.8.4 and 6.6).

In the next section we present a extension of the Q4 degenerated shell
element using an assumed linear transverse shear strain field. The deriva-
tion of an enhanced QL9 degenerated shell element with assumed trans-
verse shear and membrane fields will be presented in Section 10.15.
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10.11.3 4-noded degenerated shell quadrilateral (Q4) with assumed linear
transverse shear strain field

Due to the element curvature it is convenient to express the assumed
transverse shear strain field in the covariant components γξζ and γηζ and
then transform the resulting expressions to the lamina coordinate system.

The definition of the assumed transverse shear strain field follows the
same arguments as for Reissner-Mindlin plate elements in Section 6.6. The
aim is to ensure the compatibility between the derivatives of the normal
displacement with respect to the curvilinear coordinates ξ and η and the
local rotations so that the thin shell conditions of vanishing transverse
shear strains are satisfied. In practice, this means that the assumed trans-
verse shear strain field must contain just the polynomial terms emanating
from the approximation of the curvilinear derivatives of the deflection.

For the bi-linear 4-noded element this implies that the transverse shear
strains γξζ and γηζ should vary linearly with η and ξ, respectively.

In consequence, the following interpolation for the transverse shear
strains expressed in the covariant system a1,a2,n (Figure 10.6) is used

γξζ =
1− η

2
γ1ξζ +

1− η

2
γ3ξζ

γηζ =
1 + ξ

2
γ2ηζ +

1− ξ

2
γ4ηζ

(10.67)

The above interpolation coincides with that used for the QLLL Reissner-
Mindlin plate element (Section 6.7.1 and Eq.(6.93)). Points 1, 2, 3, 4 on the
element sides are shown in Figure 6.16. Note that due to the mild taper
assumption (Figure 10.4c) the normal direction and the ζ direction co-
incide. The values γ1ξζ , γ

3
ξζ , γ

2
ηζ and γ4ηζ are transformed to the lamina

system by

γγγk =

{
γkξζ

γkηζ

}
= Lk

{
γkx′z̄

γky′z̄

}
= Lk[B′s]

ka(e) (10.68a)

with

Lk = [ak1, a
k
2] and k = 1, 2, 3, 4 (10.68b)

Eq.(10.67) can therefore be written as

γγγ =

{
γξζ
γηζ

}
= Bγa(e) (10.69)
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where

Bγ =
1

2

[
(1− η)[B′s]1 + (1 + η)[B′s]3

(1− η)[B′s]2 + (1 + η)[B′s]4

]
(10.70)

The final transformation of the transverse shear strains from the co-
variant to the lamina system yields

εεε′s = L̂Tγγγ = L̂TBγa(e) = B̄′sa
(e) , B̄′s = L̂TBγ (10.71a)

where
L̂ = [a1,a2] (10.71b)

Eq.(10.71a) accounts for the fact that the transverse shear strains
transform as a vector, since it is assumed that the covariant and lam-
ina (local) bases are coplanar.

Matrix B̄′s substitutes matrix B′s in the computation of the transverse

shear strain stiffness matrix K
(e)
s in Eq.(10.52). This matrix is computed

using a 2× 2 Gauss quadrature.

The membrane and bending strains and the stiffness matrix K
(e)
p are

computed as explained in Sections 10.6 and 10.8, respectively.

10.12 EXPLICIT THICKNESS INTEGRATION OF THE
STIFFNESS MATRIX

Degenerated shell elements are typically formulated in terms of strains and
stresses as it is the case 3D solid elements. This is a difference with flat
shell elements where the PVW is expressed in terms of generalized strains
and resultant stresses resulting from a pre-integration across the thickness
direction. This allows to identify the membrane and flexural contributions
to the element stiffness matrix. However, the stiffness matrix terms in
degenerated shell elements depend on the thickness coordinate and, hence
an integration over the element volume is required. This can be quite
expensive, specially for composite laminated shells, which often require
many integration points through the thickness. It is therefore desirable
to convert the volume integrals to surface integrals via pre-integration
through the thickness. This is however not straightforward and different
attempts have been reported [BD6,CMPW,Cr,Cr4,MSch,PC,Sta,Vl3].

To better understand the difficulties for the explicit integration let us
list the type of thickness dependencies of the stiffness terms.
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a) Dependence with z′ of the local coordinate system.

The orientation of the local coordinate system changes across the thick-
ness (except for constant thickness) (Figures 10.4 and 10.5). Hence,
matrix Q of Eq.(10.29) is a function of the thickness coordinate ζ

b) Strain z′-dependence The dependence of the strains with ζ comes from

the derivatives of the global displacements with respect to the natural
coordinate system (Eq.(10.32)) and from the terms of the jacobian
(Eq.(10.33)). The jacobian matrix depends linearly on ζ. Hence, the
jacobian determinant is quadratic on ζ and its inverse is a rational
algebraic function.

c) Surface area z′-dependence The expression for the differential of volume

in curvilinear coordinates is

dV = dx′ dy′ dz′ = |J(e)| dξ dη dζ (10.72)

Clearly dV depends quadratically on ζ through the jacobian determi-
nant.

d) z′-dependence of the material properties The constitutive matrix for

heterogeneous material or a composite laminated shell varies across
the thickness.

In the following section we present a continuum-based resultant shell
formulation based on a pre-integration across the thickness of the degen-
erated shell equations, under certain assumptions which are acceptable for
most thin and moderately thick shells. The process basically follows the
ideas proposed by Stanley et al. [Sta,SPH].

10.13 CONTINUUM-BASED RESULTANT (CBR) SHELL
THEORY

To facilitate thickness pre-integration of the degenerated shell equations
the following simplifying assumptions are made:

Assumption 1: Mild Taper. Variations in the shell thickness, t, with re-
spect to the surface coordinates (ξ, η) (Figure 10.4c) may be neglected for
purposes of spatial differentiation and in the expression of the zero nor-
mal stress hypothesis. Thickness changes need not be neglected for the
purposes of integration.
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The mild taper assumption is mathematically equivalent to the follow-
ing three statements

n(z′) ≡ n(0) ≡ v3 (10.73a)

∂z′

∂ξ
=

∂z′

∂η
= 0 (10.73b)

∂z̄

∂ξ
=

∂z̄

∂η
= 0 (10.73c)

The first statement (10.73a) arbitrary fixes the definition of the lam-
ina basis at the reference surface. The second statement (10.73b) implies
that the covariant basis vectors a1 and a2 which are tangent to ξ and η,
respectively (Figure 10.6), are also tangent to the reference surface, that
is

aT1 n
∣∣∣
z̄=0

= 0 , aT2 n
∣∣∣
z̄=0

= 0 (10.74)

It is obvious from Figure 10.4c that this is true only if taper is neglected.
Finally, (10.73c) follows from (10.73a), since derivatives of z̄ with respect
to ξ, η are proportional to the derivatives of the thickness t, which are
neglected by the assumption made.

A justification for the mild taper assumption is that taper is easily
circumvented computationally by the use of a piecewise-constant (element-
by-element) thickness variation. Thus, even areas of severe taper may be
accommodated through local grid refinement.

The mild taper assumption also implies

∂(·)
∂z′

=
∂(·)
∂z̄

, dz′ = dz̄ and z′ ≡ z̄ (10.75)

These expressions are useful for computing the strain and stress resul-
tants.

Assumption 2: Normality. The shell pseudo-normal vectors v3 may be
approximated as perfectly normal to the reference surface when evaluating
the Jacobian matrix.

The normality assumption, in conjunction with Eqs.(10.73), is mathe-
matically equivalent to the following statements

∂x′

∂ξ
=

∂y′

∂η
= 0 ,

∂z′

∂η
=

t

2
(10.76)

which follows by noting that
(
∂x′
∂ξ ,

∂y′
∂η ,

∂z′
∂η

)
are just the lamina-based com-

ponents of the pseudo-normal vector, −→v 3, which can be viewed as normal
to the reference surface. Clearly, v3 ≡ n in this case.
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10.13.1 Geometric and kinematic description

The position vector of a point is expressed in the lamina (local) coordinate
system x′, y′, z′ as

r′ = r′0 + z̄v′3 (10.77)

where

r′ = [x′, y′, z′]T , r′0 = [x′0, y
′
0, z

′
0]
T , v′3 = [x̄′0, ȳ

′
0, z̄

′
0]
T (10.78)

define the components of vectors −→r ,−→r 0 and −→v 3 in the lamina coordinate
system.

For simplicity of the notation the components of r′0 and v′3 are written
with similar symbols.

The displacement of a point is expressed as

u′ = u′0 + z̄u′n (10.79)

where

u′ = [u′, v′, w′]T , u′0 = [u′0, v
′
0, w

′
0]
T , u′n = [ū′n, v̄

′
n, w̄

′
n]

T (10.80)

define the components of vectors −→u ,−→u 0 and −→u n in the lamina system.

10.13.2 Computation of the CBR shell Jacobian

The Jacobian is simplified using Eqs.(10.76) as

J =

⎡⎢⎢⎢⎢⎢⎣
∂x′

∂ξ

∂y′

∂ξ

∂z′

∂ξ
∂x′

∂η

∂y′

∂η

∂z′

∂η
∂x′

∂ζ

∂y′

∂ζ

∂z′

∂ζ

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
∂x′

∂ξ

∂y′

∂ξ
0

∂x′

∂η

∂y′

∂η
0

0 0 t
2

⎤⎥⎥⎥⎥⎦ =

[
Js 0

0
t

2

]
(10.81)

where the CBR hypothesis has eliminated all coupling between in-plane
and out-of-plane differentials. The 2 × 2 surface Jacobian Js can be de-
composed using Eqs.(10.79) as

Js = J0 + z̄J1 (10.82)

where

J0 =

⎡⎢⎣
∂x′0
∂ξ

∂y′0
∂ξ

∂x′0
∂η

∂y′0
∂η

⎤⎥⎦ , J1 =

⎡⎢⎣
∂x̄′0
∂ξ

∂ȳ′0
∂ξ

∂x̄′0
∂η

∂ȳ′0
∂η

⎤⎥⎦ (10.83)
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The inverse of J in (10.81) is

J−1 =

[
J−1s 0

0
t

2

]
(10.84)

From Eqs.(10.82) and (10.83)

J−1s =
1

J(z̄)

[
J−10 +

z̄

J0
J−11

]
(10.85)

with

J−10 =
1

J0

⎡⎢⎣
∂y′0
∂η

−∂y′0
∂ξ

−∂x′0
∂η

∂x′0
∂ξ

⎤⎥⎦ , J−11 =

⎡⎢⎣
∂ȳ′0
∂η

−∂ȳ′0
∂ξ

−∂x̄′0
∂η

∂x̄′0
∂ξ

⎤⎥⎦ (10.86)

The quantity J(z̄) in Eq.(10.85) is the normalized determinant of the
surface Jacobian, i.e.

J(z̄) =
|Js|
J0

= 1 +

(
J1
J0

)
z̄ +

(
J2
J0

)
z̄2 (10.87)

where
J0 = |J0| , J2 = |J1| (10.88)

and

J1 =

(
∂x̄′0
∂ξ

∂y′0
∂η

− ∂x̄′0
∂η

∂y′0
∂ξ

)
+

(
∂x′0
∂ξ

∂ȳ′0
∂η

− ∂x′0
∂η

∂ȳ′0
∂ξ

)
(10.89)

Note that the coefficients J0, J1 and J2 are all independent of z̄.

10.13.3 CBR Strains

10.13.3.1 Displacement derivatives

Using the new Jacobian-inverse (Eq.(10.84)), the lamina based displace-
ment derivatives may be re-rewritten such that the z̄-dependence is ex-
plicit. For instance

∂u′

∂x′
=

⎧⎪⎨
⎪⎩

∂u′

∂x′p
∂u′

∂z′

⎫⎪⎬
⎪⎭

=
1

J(z̄)

⎧⎪⎨
⎪⎩

∂u′0
∂x′p

+ z̄

(
∂u′k
∂x′p

+
∂̂u′0
∂x′p

)
+ z̄2

∂̂u′n
∂x′p

u′nJ(z̄)

⎫⎪⎬
⎪⎭

(10.90a)
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with

x′p = [x′, y′]T and
∂(·)
∂x′p

=

⎧
⎪⎪⎨
⎪⎪⎩

∂(·)
∂x′
∂(·)
∂y′

⎫
⎪⎪⎬
⎪⎪⎭

(10.90b)

Similar expressions are found for ∂v′
∂x′ and

∂w′
∂x′ .

The wide bars and hats in Eq.(10.90a) indicate association with J0 and
J1, respectively, i.e.

∂(·)
∂x′p

:= J−10

∂(·)
∂ξξξp

,
∂̂(·)
∂x′p

=
1

J0
J−11

∂(·)
∂ξξξp

(10.91)

with ξξξp = [ξ, η]T .

10.13.3.2 Generalized strains

The local strain vector can be written in the lamina basis (using Eqs.(10.23)
and (10.90)) as

εεε′ =
{
εεε′p
εεε′s

}
=

1

J(z̄)

{
εεεp0 + z̄εεεp1 + z̄2εεεp2

εεεs0 + z̄εεεs1 + z̄2εεεs2 + J(z̄)εεεs3

}
(10.92)

where εεε′p = [εx′ , εy′ , γx′y′ ]
T and εεε′s = [γx′z′ , γy′z′ ]

T are in-plane and
transverse-shear strain components, respectively and the z̄-independent
quantities εεεpi and εεεsi , i = 0, 1, 2 are defined as

εεεp0 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂u′0
∂x′
∂v′0
∂y′

∂v′0
∂y′

+
∂u′0
∂x′

⎫
⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

, εεεs0 =

⎧
⎪⎪⎨
⎪⎪⎩

∂w′0
∂x′
∂w′0
∂y′

⎫
⎪⎪⎬
⎪⎪⎭

εεεp1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u′n
∂x′

+
∂̂u′0
∂x′

∂v′n
∂y′

+
∂̂v′0
∂y′(

∂v′n
∂x′

+
∂u′n
∂y′

)
+

(
∂̂v′0
∂x′

+
∂̂u′n
∂y′

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, εεεs1 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∂w′n
∂x′

+
∂̂w′0
∂x′

∂w′n
∂y′

+
∂̂w′0
∂y′

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭
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εεεp2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂̂u′n
∂x′

∂̂v′n
∂y′

∂̂u′n
∂y′

+
∂̂v′n
∂x′

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, εεεs2 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∂̂w′n
∂x′

∂̂w′n
∂y′

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

, εεεs3 =

{
u′n
v′n

}
(10.93)

It is useful to factor out the z̄ dependence in Eq.(10.92) and re-write
it as

εεε′ = Sε̂εε′ (10.94)

where ε̂εε′ can be viewed as a resultant strain vector with partitions

ε̂εε′ =

{
ε̂εε′p
ε̂εε′s

}
where ε̂εε′p =

⎧⎪⎪⎨
⎪⎪⎩

ε̂εεp0

ε̂εεp1

ε̂εεp2

⎫⎪⎪⎬
⎪⎪⎭

, ε̂εε′s =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ε̂εεs0

ε̂εεs1

ε̂εεs2

ε̂εεs3

⎫
⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(10.95)

and S is a sparse matrix containing all the z̄ dependence terms, i.e.

S =

[
Sp 0

0 Ss

]
(10.96a)

Sp =
1

J(z̄)
[I3, z̄I3, z̄

2I3] , Ss =
1

J(z̄)
[I2, z̄I2, z̄

2I2, J(z̄)I2] (10.96b)

10.13.4 PVW, stress resultants and generalized constitutive matrix

By substituting the resultant strains into the PVW expression (10.47)
and noting that dV = J(z̄)dAdz̄, where dA is the differential surface area
at the shell reference surface, we obtain the following expression for the
virtual internal work

∫∫∫

V
δεεε′σσσ′dV =

∫∫

A
[δε̂εε′]T

[∫ t/2

−t/2
STσσσ′J(z̄)dz̄

]
dA =

∫∫

A
[δε̂εε′]T σ̂σσ′dA

(10.97)
where

σ̂σσ′ =
{
σ̂σσ′p
σ̂σσ′s

}
=

∫ t/2

−t/2
STσσσ′J(z̄)dz̄ (10.98)
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is the local stress resultant vector with

σ̂σσ′p =

⎧
⎨
⎩
σ̂σσ′m
σ̂σσ′b
σ̂σσ′b1

⎫
⎬
⎭ =

∫ t/2

−t/2

⎧
⎨
⎩

σσσ′p
z′σσσ′p
z′2σσσ′p

⎫
⎬
⎭ dz′

σ̂σσ′s =

⎧
⎪⎪⎨
⎪⎪⎩

σ̂σσ′s
σ̂σσ′s1
σ̂σσ′s2
σ̂σσ′s3

⎫
⎪⎪⎬
⎪⎪⎭

=

∫ t/2

−t/2

⎧
⎪⎪⎨
⎪⎪⎩

σσσ′s
z′σσσ′s
z′2σσσ′s
J(z̄)σσσ′s

⎫
⎪⎪⎬
⎪⎪⎭

dz′

(10.99)

In Eq.(10.99) σ̂σσ′m, σ̂σσ′b and σ̂σσ′s can be interpreted as the standard vectors
of axial forces, bending moments and shear forces (in local axes) studied
in flat shell theory (Chapter 8). The other vectors in Eq.(10.99) contain
additional resultant stresses that have no direct physical meaning.

Note that the initial volume integral in Eq.(10.97) has been trans-
formed into a surface integral (over the reference surface area) and all
z̄-dependence is embodied in the definition of the stress resultants.

A constitutive relationship between the stress and strain resultants is
obtained as

σ̂σσ =

∫ t/2

−t/2
STσσσ′J(z̄)dz̄ =

∫ t/2

−t/2
STD′εεε′J(z̄)dz̄ =

[∫ t/2

−t/2
STD′SJ(z̄)dz̄

]
ε̂εε′= D̂′ε̂εε′

(10.100)
where the generalized constitutive matrix D̂′ is

D̂′ =
[
D̂′

p 0

0 D̂′
s

]
=

∫ t/2

−t/2
STD′SJ(z̄)dz̄ (10.101)

with

D̂′
p =

∫ t/2

−t/2
ST
pD

′
pSpJ(z̄)dz̄ =

∫ t/2

−t/2
1

J(z̄)

⎡
⎣

D′
p z̄D′

p z̄2D′
p

z̄2D′
p z̄

3D′
p

Sym. z̄4D′
p

⎤
⎦ dz̄

D̂′
s =

∫ t/2

−t/2
ST
s D

′
sSsJ(z̄)dz̄ =

∫ t/2

−t/2

1

J(z̄)

⎡⎢⎢⎣
D′

s z̄D′
s z̄2D′

s JD′
s

z̄2D′
s z̄

3D′
s z̄JD′

s

Sym. z̄4D′
s z̄

2JD′
s

J2D′
s

⎤⎥⎥⎦ dz̄

(10.102)
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10.13.5 Enhanced transverse shear deformation matrix

Shear correction factors may be introduced in order to improve the repre-
sentation of the transverse shear deformations, specially for thick shells.
This can be simply accomplished by replacing Ss in Eq.(10.96a) by

Ss = [k]Ss (10.103)

with

[k] =

[
kx′(z̄) 0

0 ky′(z̄)

]
(10.104)

where kx′ and ky′ are transverse shear correction parameters for γx′z′ and
γy′z′ , respectively. For thick monocoque shells the following parabolic pro-
file can be chosen [DZ,SPH,St]

kx′ = ky′ = 1− 4(z̄ − z̄0)
2

t2
(10.105)

A simpler alternative is to choose the conventional constant parameters
kx′ = ky′ = k =

√
5/6. This simply implies substituting D′

s in Eq.(10.102)
by k2D′

s. This option is exact for analysis of thick homogeneous plates with
uniform thickness.

10.13.6 CBR shell elements

The shell surface is discretized into standard isoparametric elements sim-
ilarly as described for degenerated shell elements.

The lamina displacements are interpolated from the nodal values as

u′0 =
n∑

i=1

Ni(ξ, η)u
′
0i , u′n =

n∑
i=1

Ni(ξ, η)u
′
ni

(10.106)

where
u′0i = [u′0i , v

′
0i , w

′
0i ]

T , u′ni
= [u′ni

, v′ni
, w′ni

]T (10.107)

Grouping terms we have

d′ =
{
u′0
u′n

}
=

n∑
i=1

Nid
′
i with d′i =

{
u′0i
u′ni

}
(10.108a)

The lamina displacement components are related to their global Carte-
sian components by

d′i = L

{
u′0i
u′ni

}
= Ldi where L = [l,m,n]T (10.108b)
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Substituting Eq.(10.108a) into (10.95) gives the relationship between
the local generalized strains and the nodal lamina displacement compo-
nents in the global axes as

ε̂εε′ =
{
ε̂εε′p
ε̂εε′s

}
= B′d(e) (10.109)

where

d(e) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

d1

d2
...
dn

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

; B′ = [B′1,B
′
2 · · · ,B′n] with B′i =

{
B′pi
B′si

}

(10.110)
and

B′pi
9×6

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ni,x′l
T 0

Ni,y′m
T 0

Ni,y′l
T +Ni,x′m

T 0
· · · · · · · · · · · · · · · · · · · · · · · · · ·

̂Ni,x′l
T Ni,x′l

T

N̂i,y′m
T Ni,y′m

T

(N̂i,y′l
T + ̂Ni,x′m

T ) (Ni,y′l
T +Ni,x′m

T )
· · · · · · · · · · · · · · · · · · · · · · · · · ·

0 Ni,x′l
T

0 Ni,y′m
T

0 (N̂i,y′l
T + ̂Ni,x′m

T )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
B′p0i
· · ·
B′p1i
· · ·
B′p2i

⎤⎥⎥⎥⎥⎦ (10.111)

B′si
8×6

=

⎡⎢⎢⎢⎢⎢⎣
∇∇∇Nin

T 0

∇̂∇∇Nin
T ∇∇∇Nin

T

0 ∇̂∇∇Nin
T

0 Ni

{
lT

mT

}

⎤⎥⎥⎥⎥⎥⎦ (10.112)

where

∇∇∇Ni =

{
Ni,x′

Ni,y′

}
= J−10

{
Ni,ξ

Ni,η

}
, ∇̂∇∇Ni =

{
̂Ni,x′

N̂i,y′

}
=

1

J0
J−11

{
Ni,ξ

Ni,η

}

(10.113)
and

(·)x′ = ∂(·)
∂x′

, (·)y′ = ∂(·)
∂y′

(10.114)
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Recall that in above derivations we have assumed that vectors v1,v2,v3

are coincident with l,m,n (mild taper assumption; Figure 10.4c).
The local strains are related to the global nodal displacements u′0i and

the local nodal rotations θθθi = [θ1i , θ2i ]
T by the following transformation

di =

{
u0i

uni

}
=

[
I3 0
0 −Ci

]{
u0i

θθθi

}
= Tiai (10.115)

with

Ti =

[
I3 0
0 −Ci

]
and ai =

{
u0i

θθθi

}
(10.116)

where Ci is given by Eq.(10.22b) and I3 is the 3× 3 unit matrix.
In the previous derivation we have used Eq.(10.20) relating the dis-

placements of the end of the normal vector and the local rotations (Figure
10.8).

It is important to note that matrix L relating the displacement com-
ponents in the lamina and global coordinate systems is defined at each
integration point, whereas matrix Ci is defined at each node.

Substituting Eq.(10.115) into (10.109) gives

ε̂εε′ = Ba(e) (10.117)

where

a(e) =

⎧⎪⎨
⎪⎩

a1
...
an

⎫⎪⎬
⎪⎭

, B = [B1,
...,Bn] and Bi = B′iTi (10.118)

Matrix Bi can be split as

Bi =

{
Bp

i

Bs
i

}
with Bp

i = B
′p
i Ti , Bs

i = B
′s
i Ti (10.119)

with B
′p
i and B

′s
i given by Eqs.(10.111) and (10.112), respectively.

10.13.6.1 CBR element stiffness matrix and equivalent nodal force vectors

The element stiffness matrix for the CBR element is obtained in the global
coordinate system as

K
(e)
ij =

∫∫

A(e)

BT
i D̂

′BjdA=

∫∫

A(e)

[
[Bp

i ]
T D̂′

pB
p
j + [Bs

i ]
T D̂′

sB
s
j

]
dA = K(e)

pij+K(e)
sij

(10.120)
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where A(e) is the element reference surface area and i, j = 1, n.
The equivalent nodal force vector is expressed by surface integrals as

f
(e)
i =

∫∫

A(e)

Nib̄dA+

∫∫

A(e)

Nit̄dA (10.121)

where the resultant body forces b̄ and surface loads t̄ are

b̄ =

∫ t/2

−t/2

{
b
z̄b

}
J(z̄)dz , t̄ =

{
t
z̄∗t

}
(10.122)

with b = [bx, by, bz]
T , t = [tx, ty, tz]

T , J(z̄) is given by Eq.(10.87) and z̄∗

is the thickness coordinate of the loaded (top or bottom) surface.
Computation of the element stiffness matrix terms requires selective

integration to avoid transverse shear/membrane locking. As a general rule

the terms of K
(e)
pij generated by rows 1–3 of the in-plane submatrix B̄′pi

(Eq.(10.111)) and the entire transverse shear stiffness matrix K
(e)
sij are

integrated by a reduced quadrature.

Full integration can be used for the rest of the terms in K
(e)
pij . The

full and reduced quadratures for CBR shell elements coincide with those
defined in Table 10.1 for degenerated shell elements.

An alternative to selective integration is the assumed strain technique
described in Section 10.15.

10.14 CBR-S SHELL ELEMENTS

The CBR shell formulation can be simplified by assuming that the shell
is thin enough with respect to the current radii of curvature so that the
through-thickness variation of the Jacobian may be neglected. The sim-
plified CBR shell elements will be termed CBR-S.

The CBR-S assumption eliminates the z̄-dependence in the surface
Jacobian Js, via the approximation

Js(ξ, η, z̄) ∼= J0(ξ, η) (10.123)

Hence the inverse Jacobian is now both uncoupled and constant, i.e.

J−1 =

[
J−10 0

0 2/t

]
(10.124)

The formulation is now very similar to that presented for flat shell
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elements in Chapter 8. The generalized strains are defined as

ε̂εε′ =

⎧
⎨
⎩
ε̂εε′m
ε̂εε′b
ε̂εε′s

⎫
⎬
⎭ = Sεεε′ (10.125)

with

ε̂εε′m =

[
∂u′0
∂x′

,
∂v′0
∂y′

,
∂u′0
∂y′

+
∂v′0
∂x′

]T
; ε̂εε′b =

[
∂u′n
∂x′

,
∂v′n
∂y′

,
∂u′n
∂y′

+
∂v′n
∂x′

]T

ε̂εε′s =
[
∂w′0
∂x′

+ u′n,
∂w′0
∂y′

+ v′n

]T
; S =

[
I3 z̄I3 0
0 0 [k]

]

(10.126)
where ε̂εε′m, ε̂εε′b and ε̂εε′s are local membrane, bending and transverse shear
strain vectors and [k] is a diagonal matrix of transverse correction param-
eters (Eq.10.104)).

The resultant stress vector is

σ̂σσ′ =

⎧
⎨
⎩
σ̂σσ′m
σ̂σσ′b
σ̂σσ′s

⎫
⎬
⎭ =

∫ t/2

−t/2

⎧
⎨
⎩

σσσ′p
zσσσ′p
σσσ′s

⎫
⎬
⎭ dz (10.127)

where σσσ′p and σσσ′s are given in Eq.(10.39).
The generalized constitutive matrix is

D̂′ =

⎡
⎣
D̂m D̂′

mb 0

D̂′
mb D̂′

b 0

0 0 D̂′
s

⎤
⎦ =

∫ t/2

−t/2
STD′Sdz (10.128)

and

(D̂′
m, D̂′

mb, D̂
′
b, D̂

′
s) =

∫ t/2

−t/2
(D′

p, z̄D
′
p, z̄

2D′
p,D

′
s)dz̄ (10.129)

The discretization follows the procedure explained for the CBR element
in the previous section. The lamina-based strain matrix is now written as

B′i =

⎧
⎨
⎩
B′mi

B′bi
B′si

⎫
⎬
⎭ with B′mi

=

⎡⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂x′
lT 0

∂Ni

∂y′
mT 0

(
∂Ni

∂y′
lT +

∂Ni

∂x′
mT

)
0

⎤⎥⎥⎥⎥⎥⎥⎦ (10.130)
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B′bi =

⎡⎢⎢⎢⎢⎢⎢⎣
0

∂Ni

∂x′
lT

0
∂Ni

∂y′
mT

0

(
∂Ni

∂y′
lT +

∂Ni

∂x′
mT

)

⎤⎥⎥⎥⎥⎥⎥⎦ , B′si =

⎡⎢⎣
∂Ni

∂x′
nT Nil

T

∂Ni

∂y′
nT Nim

T

⎤⎥⎦
The “global” generalized strain matrix is

Bi = B′iTi (10.131)

with

Bi =

⎧
⎨
⎩
Bmi

Bbi

Bsi

⎫
⎬
⎭ , Bmi = B′mi

Ti , Bbi = B′biTi , Bsi = B′siTi

(10.132)
The element stiffness matrix is finally computed as

K
(e)
ij =

∫∫

Ae

BT
i D̂

′BjdA = K(e)
mij

+K
(e)
bij

+K(e)
sij +K

(e)
mbij

+ [K
(e)
mbij

]T

(10.133)
with

K
(e)
aij = BT

aiD̂
′
aBaj , a = m, b, s

K
(e)
mbij

= BT
mi

D̂′
mb

Bbi

(10.134)

For homogeneous or symmetric material properties in the thickness
direction, then the coupling membrane-bending matrix Kmb is zero as
usual. The expression for the equivalent nodal force vector coincides with
Eq.(10.121).

For very curved thick shells the CBR-S formulation is approximate. It is
however accurate for moderately curved and shallow thick/thin shells and
thin curved shells [Sta,SPH]. We note finally that for flat shell surfaces the
CBR-S formulation coincides with that for flat shell elements presented in
Chapter 8.

10.15 QL9 CBR-S SHELL ELEMENT WITH ASSUMED
MEMBRANE AND TRANSVERSE SHEAR STRAINS

Membrane locking in curved shell elements is characterized by the incapac-
ity of the element to reproduce pure bending modes without introducing
spureous membrane strains. This problem is similar to the inability of
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some elements to satisfy the condition of zero transverse shear strains in
the thin limit which leads to shear locking. We present here a locking-free
9-noded quadrilateral shell element based on the assumed strain technique
and the CBR-S formulation of the previous section.

10.15.1 Assumed quadratic membrane strain field

A way to ensure the satisfaction of the condition of zero membrane strains
is to assume “a priori” a polynomial membrane strain field with coefficients
expressed as a linear combination of the nodal displacements. The diffi-
culty in curved shell elements is splitting the membrane strains from the
bending strains. A way to do this is to adopt the CBR-S shell formulation
described in Section 10.14 where a local membrane strain vector, ε̂εε′m, is
defined (see Eq.(10.126)).

From the shape functions of the 9-noded Lagrange quadrilateral ele-
ments [On4] we can find the polynomial terms included in the derivatives
of the displacement with respect to the parametric coordinates ξ, η as

∂u′0
∂ξ

: (1, ξ, η, ξη, ξη2, η2)

∂v′0
∂η′

: (1, ξ, η, ξη, ηξ2, ξ2)

∂u′0
∂η

+
∂v′0
∂ξ

: (1, ξ, η, ξη, ξη2, ηξ2, ξ2, η2)

(10.135)

The assumed membrane strain field should include these polynomial
terms. Consequently, we choose the following interpolation for the com-
ponents of ε̂εε′m

∂u′0
∂x′

=

3∑
i=1

2∑
j=1

Lj(ξ) Hi(η)

(
∂u′0
∂x′

)

ij

∂v′0
∂y′

=
3∑

i=1

2∑
j=1

Hi(ξ) Lj(η)

(
∂v′0
∂y′

)

ij

∂u′0
∂y′

+
∂v′0
∂x′

=
1

2

3∑
i=1

2∑
j=1

Lj(ξ) Hi(η)

(
∂u′0
∂y′

)

ij

+

+
1

2

3∑
i=1

2∑
j=1

Hi(ξ) Lj(η)

(
∂v′0
∂x′

)

ij

(10.136)
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Fig. 10.13 Sampling points for interpolating the membrane strains in the QL9
CBR-S shell element. The same points are used for interpolating the transverse
shear strains for b = 1

where (·)ij and (·)ij denote values at the i, j sampling point, and

H1(z) = z

(z
b
+ 1

)

2b
, H2(z) = 1−

(z
b

)2
, H3(z) = z

(z
b
− 1

)

2b

L1(z) =

(
1 +

z

a

)

2
, L2(z) =

(
1− z

a

)

2
z = ξ, η

(10.137)

Note that
∂u′0
∂x′ varies linearly in x′ and quadratically in y′; ∂v′0

∂y′ is linear

in y′ and quadratic in x′ and
(
∂u′0
∂y′ +

∂v′0
∂x′

)
is quadratic in both directions.

Figure 10.13 shows the sampling points for each membrane strain.

The relation between the derivatives
(
∂u′0
∂x′

)
ij
, etc and the nodal dis-

placements is deduced from Section 10.14 (Eqs.(10.130) and (10.131)) as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
∂u′0
∂x′

)
ij(

∂v′0
∂y′

)
ij(

∂u′0
∂y′

)
ij(

∂v′0
∂x′

)
ij

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

9∑
k=1

⎡⎢⎢⎣
Nk,x′l

T 0
Nk,y′m

T 0
Nk,y′l

T 0
Nk,x′m

T 0

⎤⎥⎥⎦
ij

dk = Gijd
(e) (10.138)

Combining Eq.(10.138) and (10.136) yields

ε̂εε′m = B̄′mi
d(e) (10.139)
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B̄′mi
=

3∑
i=1

2∑
j=1

⎡
⎣
[Lj(ξ)Hi(η)] 0 0 0

0 [Hi(ξ)Lj(η)] 0 0
0 0 1

2 [Lj(ξ)Hi(η)]
1
2 [Hi(ξ)Lj(η)]

⎤
⎦Gij

(10.140)

Matrix B̄′mi
substitutes B′mi

in Eq.(10.130).
A similar procedure can be followed for deriving an enhanced mem-

brane strain matrix B̄′p0i for the CBR element.

10.15.2 Assumed quadratic transverse shear strain field

The transverse shear strains in the covariant system for the 9-noded La-
grange quadrilateral element contain the following terms

γξζ : f1(1, ξ, η, ξη, η
2, ξη2,u′0,u

′
n) + f2(ξ

2η, ξ2η2,u′n)

γηζ : g1(1, ξ, η, ξη, ξ
2, ξ2η,u′0,u

′
n) + g2(ξη

2, η2, ξ2η2,u′n)
(10.141)

The spurious terms in f2 and g2 involving the rotational displacements
u′n only are eliminated by assuming the following quadratic interpolations
for the transverse shear strains

γξζ =
3∑

i=1

2∑
j=1

Lj(ξ)Hi(η)γ
ij
ξζ ; γηζ =

3∑
i=1

2∑
j=1

Hi(ξ)Lj(η)γ
ij
ηζ (10.142)

The sampling points i, j for the transverse shear strains are the same as
for the QQQQ-L element (Section 6.7.3). The points coincide with those
shown in Figure 10.13 for b = 1. Functions Li(ξ), Hi(η) are deduced from
Eqs.(10.137) making b = 1.

The transverse shear strains γijξζ , γijηζ at the sampling point i, j are
expressed in terms of the nodal displacement as

γγγij =

{
γijξζ

γijηζ

}
= L̂ij

{
γijx′z′

γijy′z′

}
= L̂ij [B′s]

ijd(e) (10.143)

with L̂ and B′s given in Eqs.(10.71b) and (10.130), respectively.
The lamina-Cartesian components of the transverse shear strains at

the integration points are obtained from the covariant components as

ε̂εε′s =

{
γx′z′

γy′z′

}
= L̂T

{
γξζ

γηζ

}
= B̄′sd

(e) (10.144)
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where the substitute shear strain matrix is

B̄′s =
3∑

i=1

2∑
j=1

[
Lj(ξ)Hi(η)
Hi(ξ)Lj(η)

]
L̂ij [B′s]

ij (10.145)

B̄′s replaces B′s in Eq.(10.130) for computing the shear stiffness matrix
for the CBR-S element.

A similar procedure can be followed for deriving the substitute trans-
verse shear strain matrix for the CBR element in Section 10.13.

10.16 DK CURVED SHELL ELEMENTS

Several authors have derived Discrete Kirchhoff (DK) thin curved shell el-
ements [Dh,Dh2,DMM,DMMT,DV,IA,Ir2,MG,We,WOK]. The procedure
is very similar to that explained in Section 5.10 for DK plate elements, i.e.
the transverse shear strains are constrained to a zero value at a number
of points within the element. In this manner the element can effectively
approximate the thin shell conditions of zero transverse shear strain. A
popular DK curved shell element was derived by Irons [IA,Ir4] and named
semi-Loof . The element is briefly presented next.

10.16.1 Semi-Loof curved shell element

The starting point is the 43 DOFs degenerated shell element of Figure
10.14. The eight tangent rotations at the side nodes and the three central
DOFs are eliminated using the following conditions:

a) The tangential shear stress is constrained to zero at the eight mid-side
nodes marked with a circle in Figure 10.14a (eight conditions)

b) ∫∫

A(e)

(v19)
Tγγγ dA =

∫∫

A(e)

(v29)
Tγγγ dA

with
γγγ = [γxz, γyz]

T (2 conditions) (10.146)
c) ∮

l(e)
γnds = 0 (1 condition) (10.147)

In above v19 and v29 are the nodal vectors of the central node; γn is
the transverse shear strain normal to a side and l(e) is the side length.
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Fig. 10.14 Semi-Loof shell element. Initial (a) and final (b) nodal variables

Figure 10.14a shows the final 32 DOFs semi-loof element (3-nodal dis-
placements at the eight square nodes and the normal rotation at the
side nodes). The semi-Loof element has an excellent performance for thin
shells. Further details of the element formulation and its application can
be found in [He,IA,Ir4].

10.17 PERFORMANCE OF DEGENERATED SHELL ELEMENTS
WITH ASSUMED STRAIN FIELDS

The Q4 degenerated shell element based on a linear assumed transverse
shear strain and 2× 2 full integration (Section 10.11.3) is an accurate and
robust element for shell analysis. Its only drawback is its incapacity to
model exactly curved geometries. The flat version of this element coincides
with the QLLL plate/flat shell element presented in previous chapters. A
selection of examples showing the good performance of this element can
be found in [DB].

The QL9 CBR-S shell element with assumed quadratic membrane and
transverse strain fields (Section 10.15) performs well for curved shell anal-
ysis. The assumed membrane strain field enhances the accuracy of the
element for coarse meshes as shown for two standard shell test problems:
a cylindrical roof under self weight and a pinched cylinder (Figure 10.15).
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Fig. 10.15 Performance of QL9 CBR-S shell element. a) Cylindrical shell under
uniform loading (Figure 8.34). b) Pinched cylinder (Figure 8.22)

Figure 10.16 shows the good performance of the Q4 degenerated shell
element and the QL9 CBR-S shell element for analysis of an hyperbolic
shell under uniform pressure.

Huang and Hinton [HH5] studied the membrane behaviour of an ele-
ment very similar to the QL9 CBR-S shell element for two different po-
sitions of the sampling points for the assumed membrane field: a = 1√

3

and b = 1, and a = 1√
3
and b =

(
3
5

) 1
2 (Figure 10.13). Good performance
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Fig. 10.16 Clamped hyperbolic shell under uniform pressure. Vertical deflection
along central line (y = 0) obtained with the Q4 degenerated shell element and
the QL9 CBR-S shell element using an assumed strain approach

was found for both cases. It is interesting that the effect of the assumed
membrane strain field is equivalent to using a 2 × 3 reduced quadrature
in the original CBR-S formulation (Section 10.14) for the stiffness matrix

terms emanating from
∂u′0
∂x′ and

1
2

(
∂u′0
∂y′ +

∂v′0
∂x′

)
, and a 3× 2 quadrature for

those stiffness terms emanating from
∂v′0
∂y′ and

1
2

(
∂u′0
∂y′ +

∂v′0
∂x′

)
.
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A similar technique was introduced in [HH4] for enhancing the mem-
brane and transverse shear behaviour of the QS8 CBR-S shell element
using a five point quadratic membrane strain interpolation with the same
sampling points chosen for the assumed transverse shear strains in the
QQQQ-S plate element of Section 6.7.2.

The performance of the QS8 element with assumed membrane and
transverse shear strain fields has been found to be poorer than the QL9
element [HH4,HH5].

More information on the behaviour of degenerated and “truly” shell
elements can be found in [BR,DB,FV,HH4,HH5,HL2,Hu2,JP2,OHG,ZT2].

10.18 DEGENERATED FLAT SHELL AND PLATE ELEMENTS

Degenerated shell elements can be easily particularized for folded plate
structures discretized with flat shell elements. Thickness integration is
straightforward and the resulting elements are identical to the Reissner-
Mindlin flat shell elements of Chapter 8. Also, when particularized for
plates the formulation coincides with that described for Reissner-Mindlin
plate elements in Chapter 6.

10.19 SHELL ELEMENTS BASED ON SIX AND SEVEN
PARAMETER MODELS

In the shell theory studied in this and the previous chapters the 3D-
constitutive equations have been considered by employing the assumption
of vanishing stress in the thickness direction (the so-called plane stress
condition, σz′ = 0). The thickness stretch (i.e. the deformation εz′) is not
involved in the PVW and it can be computed a posteriori. However, this
procedure is not satisfactory in certain cases that require to resort to a
complete unmodified 3D constitutive relationship. An example is when
local effects are relevant in shell structures, as the accurate prediction
of stresses and strains in the thickness direction is important in those
cases. This is typical for reinforced concrete shells under concentrated
loading, or in the prediction of delamination in composite shells. Another
reason might be that for certain constitutive models (i.e. for non linear
material models) the condensation of εz′ cannot be done explicitly or
renders elaborate strain equations.



658 Curved 3D shell elements and shell stiffners

A way to circumvent this problem, thereby allowing the use of full 3D
constitutive laws, is to account for the thickness stretch and stress in the
shell equations.

This is the basis of the 6-parameter shell formulation that leads to
shell elements with 6 DOF per node: the three displacements and the
three components of vector ΔV3i = Vr

3i −Vc
3i where V3i is the normal

vector defined in Section 10.3.2 and upper indices r and c denote the
reference and current configuration of the shell geometry, respectively.

A problem of the 6-parameter shell theory is that the displacement field
is linear in the thickness direction and, hence, the εz′ strain is constant
across the thickness. This introduces errors in the solution of the order of
ν2 for bending dominated cases [BRR,SR2].

The deficiency of the 6-parameter shell formulation can be overcome
by introducing an additional nodal displacement DOF which originates a
quadratic displacement field in the thickness direction and, consequently,
yields a linear distribution of the thickness strain (and stress). This is the
basis of the 7-parameter shell formulation that has been successfully used
by different authors [BR3,San2].

An interesting alternative for removing the deficiency of the 6-parameter
formulation while still preserving 6 DOF in the final shell element, is to
enrich the strain field of the 6-parameter theory by an additional linear
component of the thickness strain. This extra strain can be introduced
via the so-called enhanced assumed strain approach and then it can be
eliminated at the element level after discretization [SR2]. This procedure
has been used by different authors for deriving 3D shell elements compat-
ible with 3D constitutive equations for a variety of non linear problems
[BBR,BR2,BRR,SR2].

10.20 ISOGEOMETRIC SHELL ANALYSIS

10.20.1 Isogeometric analysis

The name isogeometric refers to using the same basis functions for repre-
senting the geometry in computer-aided design (CAD), computer graphics
(CG) and animation as for the shape functions in finite element computa-
tions. Thus, the FE analysis works on a geometrically exact model and no
meshing is necessary [CHB,HCB]. For the first application of the isopara-
metric methodology, non-uniform rational B-Splines (NURBS) were cho-
sen as the basis function, due to their relative simplicity and ubiquity in
the world of CAD, CG and animation.
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NURBS and isogeometric analysis fundamentals

Non-uniform rational B-splines (NURBS) are a standard tool for describ-
ing and modeling curves and surfaces in computer aided design and com-
puter graphics [CRE,PT2,Ro]. The aim of this section is to introduce
NURBS briefly and to present an overview of isogeometric analysis, for
which an extensive account has been given in [CHB,HCB].

A B-spline is a non-interpolating, piecewise polynomial curve. It is de-
fined by a set of control points Pi, i = 1, 2 · · · , n, the degree p of the
B-spline polynomial (also called the order of the B-spline) and a so-called
knot vector. A knot vector is a set of non-decreasing real numbers repre-
senting coordinates in the parametric [0,1] space, written as

Ξ :== {ξ1, ξ2, · · · , ξn+p+1} (10.148)

where ξi is the ith knot and i is the knot index ranging from one to the
number of knots nk = n+p+1. The interval [ξ1, ξn+p+1] is called a patch.

A B-spline basis function is C∞ continuous inside a knot span region
(i.e. between two distinct knots) and Cp−1 continuous at a single knot. A
knot value can appear more than one time and is called a multiple knot.
At a knot of multiplicity k the continuity is Cp−k.

If the first and the last knot have the multiplicity p + 1, the knot
vector is called open [CHB,CRE,DJS,HCB]. In a B-spline with an open
know vector the first and the last control points are interpolated and the
curve is tangential to the control polygon at the start and the end of
the curve. Open knot vectors are standard in CAD applications and are
assumed for the remainder of this section.

Basis functions

Given a knot vector, B-spline basis functions are defined recursively by the
Cox-de Boor formula [Co,DeB] starting with p = 0 (piecewise constants):

Nj,0(ξ) =

{
1 if ξj ≤ ξ < ξj+1

0 otherwise
(10.149)

For p = 1, 2, 3, · · · , the basis is defined by the following recursion for-
mula

Nj,p(ξ) =
ξ − ξj

ξj+p − ξj
Nj,p(ξ) +

ξj+p+1 − ξ

ξj+p+1 − ξj+1
Nj+1,p−1(ξ) (10.150)

Figure 10.17 shows an example of cubic B-spline basis functions with
an open knot vector.
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Fig. 10.17 Cubic B-spline basis functions with open knot vector Ξ =
[0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1]

Fig. 10.18 Cubic B-spline with the open knot vector of Figure 10.17. The dashed
lines represent the control polygon; the small crosses are the knots on the curve.
The first and the last control point are interpolated and the curve is tangential
to the control polygon at its start and end [KBLW]

B-spline curves

A B-spline curve of degree p is computed by the linear combination of
control points and the respective basis function

C(ξ) =
n∑

i=1

Ni,p(ξ)Pi (10.151)

Figure 10.18 shows an example of a cubic B-spline with the open knot
vector of Figure 10.17. Due to the open knot vector the first and last
control point (P1 and P7) are interpolated and it can be seen that the
curve is tangential to the control polygon at its start and end.
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B-spline surfaces

Using tensor products, B-spline surfaces can be constructed starting from
knot vectors Ξ = {ξ1, ξ2, · · · , ξn+p+1} and a H = {η1, η2, · · · , ηm+q+1}
and a n×m net of control points Pjk, also called the control mesh. One-
dimensional basis functions Nj,p and Mk,q (with j = 1, · · · , n and k =
1, · · · ,m) of order p and q, respectively, are defined from the corresponding
knot vectors, and the B-spline surface is constructed as:

S(ξ, η) =

n∑
j=1

m∑
k=1

Nj,pMk,q(η)Pjk (10.152)

The patch for the surface is now the domain [ξ1, ξn+p+1]× [η1, ηm+q+1].
Identifying the logical coordinates (j, k) of the B-spline surface with the
traditional notation of a node i and the Cartesian product of the associated
basis functions with the shape function Ni(ξ, η) = Nj,p(ξ)Mk,q(η) the
standard finite element notation is recovered, namely,

S(ξ, η) =
nm∑
i=1

Ni(ξ, η)Pi with nm = n×m (10.153)

Non-uniform rational B-splines (NURBS) are obtained by augment-
ing every point in the control mesh Pi with the homogenous coordinate
wi, then dividing the Eq.(10.153) by the weighting function w(ξ, η) =
nm∑
i=1

Ni(ξ, η)wi, giving the final spatial surface definition,

S(ξ, η) =

nm∑
i=1

Ni(ξ, η)wipi

w(ξ, η)
=

nm∑
i=1

N̄i(ξ, η)Pi (10.154)

In Eq.(10.154), N̄i(ξ, η) = Ni(ξ, η)wi/w(ξ, η) are the rational basis
functions. These functions are pushed forward by the surface mapping
S(ξ, η) to form the approximation space for NURBS-based shell analysis.
The wi′s are not treated as solution variables; they are data coming from
the description of the NURBS surface.

Figures 10.19 and 10.20 show examples of NURBS surfaces.
The detailed description of NURBS falls outside the objective of this

text and it can be found in many specialized books [CRE,HCB,PT2,Ro].
A challenge in the definition of surfaces with NURBS is the treatment

of isolated surface patches (the so-called trimmed surfaces) obtained by in-
tersection of the original surface with polyhedra (Figures 10.19 and 10.21).
Details on this topic can be found in CAD publications [CRE,PT2,Ro].
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Fig. 10.19 (a) NURBS line with 7 control points (squares), order = 3 (cubic) and
knot vector (KV) : {0, 0, 0, 0, 0.3, 0.58, 0.8, 1, 1, 1, 1}. (b) Cubic-quadratic NURBS
surface created by revolving the curve (a) around an axis. (c) Trimmed surface
obtained by cutting the NURBS surface (b) with a pentagonal prism. Crosses
show the position of knots on the (parametrized) lines and define “elements” (4
elements in (a) and 4× 1 elements in (b)). Courtesy of GiD team [GiD]

�

�

(a)

�

�

�

�

(b)
�

(c)

Fig. 10.20 Ellipse defined by NURBS (a) using 6 control points (squares) and (b)
using 9 and 12 control points (knot insertion). (c) Cylinder with elliptical (lower)
and circular (upper) faces defined by a NURBS surface created by extruding the
ellipse of (b) to a circle. Courtesy of GiD team [GiD]

10.20.2 NURBS as a basis for isogeometric FE shell analysis

The shell is represented by a collection of NURBS patches. Each NURBS
patch defines a subdomain on the shell surface and the elements are de-
fined by the knot spans of this patch (i.e. the regions between two dif-
ferent knot values). This means that each basis function has support on
a small number of elements (depending on the polynomial degree). Fig-
ures 10.19, 10.22 and 10.23 show examples of control points, knot vectors
and elements for several lines and surface modelled with NURBS of dif-
ferent order. The isoparametric concept [Hu,On4,ZTZ] is adopted, i.e. the
NURBS basis functions chosen for representing the shell geometry are
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(b)

Fig. 10.21 Trimmed surface obtained by interesting the cylinder of Figure 10.24c
with a pentagon prism. (a) View of cylinder and intersecting prism. (b) Trimmed
surface (in shadow). Courtesy of GiD team [GiD]

used as shape functions for describing the displacement field in the shell.
A Gauss quadrature is used for the numerical integration of the element
stiffness matrix and the equivalent nodal force vector [HRS].

The formulation of a degenerated isogeometric shell element simply
implies replacing the standard shape functions Ni (i.e. in Eq.(10.15b)) by
the NURBS functions N̄i of Eq.(10.154). The rest of the element formula-
tion follows as explained in Sections 10.6–10.8. The same technique would
apply for the formulation of CBR and CBR-S isogeometric shell elements.

It is important to note that the “nodes” in the FEM are replaced now
by the control points and these do not necessarily lay on the shell surface.
The displacement of the control points are the degrees of freedom of the
structure. The computation of the actual displacements of the shell surface
requires the interpolation of the control point values via Eq.(10.21a) with
N̄i replacing the standard displacement shape functions Ni.

Mesh refinement

There are two ways of mesh refinement analogous to standard FE, namely
knot insertion and order elevation.

The knot spans can be divided into smaller ones by inserting new knots
[CHB,DJS,HCB]. This introduces new and smaller elements and it corre-
sponds to h-refinement in classical FE analysis [ZTZ]. Inserting knots does
neither change the geometry nor the parametrization (i.e. the polynomial
order is maintained with Corder −1 continuity between “elements”).
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(a)
KV: {0, 0, 0, 1, 1, 1}

3 control points. 1 quadratic element

(b)
KV: {0, 0, 0, 0, 1, 1, 1, 1}

4 control points. 1 cubic element

(c)
KV: {0, 0, 0, 0.5, 1, 1, 1}

4 control points. 2 quadratic elements

(d)
KV: {0, 0, 0, 0.33, 0.66, 1, 1, 1}

5 control points. 3 cubic elements

Fig. 10.22 Quadratic line modelled with 1D NURBS. (a) One quadratic element,
3 control points. (b) One cubic element, 4 control points. (c) Two quadratic
elements, 4 control points. (d) Three cubic elements, 5 control points. The knot
vector (KV) is shown for each case. Crosses show element divisions

Analogous to p-refinement [ZTZ] the polynomial degree of the basis
functions can be increased. While increasing the order, existing knots have
to be repeated so that the continuity between them remains unchanged.
Increasing the order does not necessarily increase the member of elements
(knot spans). Also, similarly to knot insertion, order elevation does neither
change the geometry nor the parametrization.

For both knot insertion and order elevation new control points have to
be introduced in accordance to the relationship nk = n + p + 1. In both
cases the computation of the refined NURBS curve has to be done in the
projective space with homogeneous coordinates. For details see [PT2].

Figures 10.22 and 10.23 show examples of h and p-refinement. For more
details see [CHB].
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(a)
KV ξ : {0, 0, 0, 1, 1, 1}
KV η : {0, 0, 1, 1}

One quadratic-linear element
3× 2 control points

(b)
KV ξ : {0, 0, 0, 0, 0, 1, 1, 1, 1}
KV η : {0, 0, 0, 0, 1, 1, 1, 1}
One quartic-quartic element

5× 5 control points

(c)
KV ξ : {0, 0, 0, 0.5, 1, 1, 1}

KV η : {0, 0, 1, 1}
2× 1 quadratic-linear elements

4× 2 control points

(d)
KV ξ : {0, 0, 0, 0.5, 1, 1, 1}
KV η : {0, 0, 0.5, 1, 1}

2× 2 quadratic-quadratic elements
4× 3 control points

Fig. 10.23 Cylindrical surfaces modelled with 2D NURBS obtained by extruding
a quadratic NURBS curve along a line. (a) One quadratic-linear element, 3 × 2
control points. (b) One quartic-quartic element, 5× 5 control points. (c) Two ×
one quadratic-linear elements, 4 × 2 control points. (d) Two × two quadratic-
quadratic elements, 4×4 control points

Benson et al. [BBHH] have presented a degenerated isogeometric shell
element based on the degenerated shell formulation proposed by Hughes
and Liu [HL]. The good performance of the elements is demonstrated for
a set of linear elastic and nonlinear elastoplastic shell problems.

Kiendl et al. [KBLW] have derived isogeometric thin shell elements
based on Kirchhoff thin shell theory. The C1 continuity requirement typ-
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Fig. 10.24 Pinched cylinder analyzed with isogeometric degenerated shell elements
[BBHH]. (a) Geometry and load. (b) Mesh 1, 2 and 3. (c) Convergence of vertical
displacement under load

ical of thin shell formulations is overcome by the smooth, higher order
NURBS basis functions. Examples of the good performance of this ele-
ment for linear and geometrically non-linear shell analysis are presented
in [KBLW].

10.20.3 Example. Pinched cylinder

We present an example of the accuracy and convergence of the isogeo-
metric shell approach in the linear elastic analysis of the so-called pinched
cylinder problem [BSL+]. The problem set up is illustrated in Figure 10.24
and also in Figure 8.36 where the same problem was solved using different
flat shell elements. The displacement under the point loads acting at the
diametrically opposite location on the cylinder surface is the quantity of
interest in this case.

This problem has been solved by Benson et al. [BBHH] using an iso-
geometric degenerated shell formulation and by Kiendl et al. [KBLW]
with isogeometric shell elements based on Kirchhoff-Love thin shell the-
ory. Other isogeometric-type solutions to this problem were reported by
Hughes et al. [HCB] using volumetric NURBS and Bazilevs et al. [BCC+]
using T-splines.

Figure 10.24 shows the results for the vertical displacement under the
load reported in [BBHH]. A sequence of five meshes obtained by global h-
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Fig. 10.25 Ship hull stiffened with straight beams

refinement were used. The first, third and fifth mesh form the sequence are
shown. Quadratic through quintic NURBS are employed in each case. One
eight of the geometry is modelled with symmetry boundary conditions.

Figure 10.24 shows that quadratic NURBS exhibit locking which is
gradually alleviated with the increasing order and continuity of NURBS
[BBHH]. These results are essentially identical to those reported in [BCC+,
HCB,KBLW].

10.21 SHELL STIFFENERS

Shell stiffeners are used to increase the strength of shell structures. Ex-
amples of stiffened shells are common in the fusselage of airplanes and
aircrafts, in ship hulls and in structural elements of land transport vehi-
cles. Figure 10.25 shows an example of a ship hull stiffened with 3D beams.
Earlier formulation of stiffened plate elements can be found in [MS2,PF].

In this section we will derive a stiffened shell element by coupling a
3D beam element and a degenerated shell element The same procedure
applies for flat shell elements (Chapter 8).

Let us consider for generality a curve degenerated shell element and a
3D beam element connected to the former at a nodal line. The beam can
be placed at the upper or lower shell surfaces as shown in Figure 10.26.
The two following simplifying assumptions are made:

a) The stiffener is rigidly connected to the shell. This implies that the
transverse section of the beam Ai rotates precisely as the shell node i
to which it is linked, and

b) The thickness nodal vector V3i intersects point O of the beam defining
the position of the neutral axis. The local axes x′, y′ of the beam
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Fig. 10.26 3D beam element acting as a shell stiffener

section need not to coincide with the nodal vectors V2i and V3i of the
shell nodes.

The global displacements of point Oi in the beam can now be expressed
in terms of the global DOFs of node i in the shell element as

uGi = ui + θi × αiv3i = ui +Aiθθθi
θGi = θi

(10.155)

with

uGi = [uGi , vGi , wGi ]
T ; ui = [ui, vi, wi]

T ; Ai = αi

⎡
⎣

0 vz3i −vy3i
−vz3i 0 vx3i
vy3i −vx3i 0

⎤
⎦

θθθGi = θθθi = [θxi , θyi , θzi ]
T (10.156)

and

αi =

⎧⎪⎪⎨
⎪⎪⎩

(
ti
2 + h1i

)
- if the stiffener is at the
upper shell surface

− (
ti
2 + h2i

)
- if the stiffener is at the

lower shell surface

(10.157)

In above ti is the shell thickness at node i and h1i and h2i are the dis-
tances of the beam axis position Gi to the upper and lower shell surfaces,
respectively (Figure 10.26).
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Eq.(10.148) allows us to define the movement of a beam section in
terms of the corresponding shell node as

aBi =

{
u0i

θθθGi

}
=

[
I Ai

0 I

]{
ui

θθθi

}
= Ria

S
i (10.158)

where upper indexes B and S denote displacement vectors of the beam
and shell nodes, respectively.

The local generalized strains in the beam stiffener can be expressed in
terms of the shell DOFs. From Eqs.(4.77), (4.87a) and (10.158) we find

ε̂εε′ =
n∑

i=1

Bia
B
i =

n∑
i=1

BiRia
S
i =

n∑
i=1

BB
i a

S
i (10.159)

The global stiffness matrix for the stiffener element is obtained by
substituting matrix Bi by BB

i = BiRi in Eqs.(4.87b). This can also be
interpreted as computing the stiffness matrix of the stiffener element as

KR
ij = RT

i K
(e)
ij Rj (10.160)

where K
(e)
ij is given by Eq.(4.87b). This allows us to assemble the stiffness

equation for the beam stiffener and shell elements without increasing the
number of nodal variables.

This formulation requires working with the global rotations at the shell
nodes which are linked to the beam stiffener nodes. This does not pose any
problem, even if the shell nodes are originally co-planar, since the stiffener
contributes the necessary rotational stiffness to avoid singularity of the
global stiffness matrix. In fact, shell nodes linked to the beam stiffener
nodes behave as non-coplanar nodes.

Arbitrarily oriented beam stiffeners with respect to the shell surface
are treated similarly. The only difficulty is the definition of the relative
position of pointGi in each beam section with respect to the corresponding
ith shell node, the distance hGi between points i and Gi and the unit
vector eGi linking points i and Gi (Figure 10.27). hGi and eGi substitute
the distance αi and the normal vector v3i in Eq.(10.155), respectively. The
rest of the assembly process follows the lines explained above.

The procedure holds for Euler-Bernouilli beam elements linked to
Kirchhoff flat shell elements. A displacement incompatibility leading to
errors in the numerical solution may arise if the axial displacement in
the beam varies linearly and a cubic Hermite approximation (giving a
quadratic rotation field) is chosen for the flat shell element [Cr,ZT2]. This
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Fig. 10.27 Arbitrarily oriented stiffener with respect to the shell surface

problem is similar to that discussed for folded plate elements in Section
8.12.4. This error can be eliminated by introducing additional DOFs in
the beam so as to ensure a quadratic variation of the axial displacement
[Cr].

10.22 SLAB-BEAM BRIDGES

The formulation described previously can be particularized for bridges
formed by assembly of a flat slab and a number of beams. Figure 10.28
shows the discretization of a rectangular slab into 4-noded flat shell ele-
ments. Simple 2-noded straight beam elements are chosen to model the
excentric rectangular beam stiffeners which are assumed to be placed at
the lower surface of the slab.

The movement of each beam section is expressed in terms of the dis-
placements of the associated slab node as

uGi = ui − 1

2
(ti + hi)θyi ; vGi = vi +

1

2
(ti + hi)θxi

wGi = wi ; θxGi
= θxi ; θyGi

= θyi ; θzGi
= θzi

(10.161)

Matrix Ai of Eq.(10.156) is now

Ai =

⎡
⎣

0 −1
2(ti + hi) 0

1
2(ti + hi) 0 0

0 0 0

⎤
⎦ (10.162)

The signs in Ai should be reversed if the beam stiffeners are located
at the upper slab surface.
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Fig. 10.28 Assembly of plate and beam elements. (a) Excentric beam. (b) The
beam eccentricity is neglected

The computation of the beam stiffness matrix follows the steps ex-
plained in the previous section.

The process requires the definition of the nodal rotations at the slab
nodes in global axes. The local definition of the rotation can still be kept
at the “free” co-planar slab nodes to avoid singularity.

A further simplification is possible by neglecting the effect of beam
excentricity. Standard plate elements can be used to model the slab be-
haviour, whereas simple beam elements involving the deflection w, the
bending rotation θy′ and the torsional rotation θx′ are only needed (Fig-
ure 10.28b).

Above procedure is applicable irrespectively of the formulation chosen
for the slab and beam elements.

Figure 10.29 shows an example of a slab-beam bridge simply supported
at four points of two opposite edges. A uniform vertical distributed loading
q = 10 kN/m2 is considered. E = 107 kN/m2 and ν = 0.3 are assumed for
the beam and the slab. A quarter of the structure is analyzed only due to
the double symmetry using the following three element choices:

1. Four-node QLLL flat shell elements (Section 8.10) discretizing both the
slab and the beams. The 32 element mesh is shown in Figure 10.29a.
The thickness and width have been taken equal to 0.2 m and 0.3 m
for the slab and the beam elements, respectively.

2. A mesh of 24 QLLL flat shell elements for the slab stiffened with off-
centered 2-noded Timoshenko beam elements (Figure 10.29b).
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Fig. 10.29 Slab-beam bridge simply supported at eight points under uniformly
distributed loading: a) Discretization of one fourth of the structure into 32 QLLL
flat shell elements. b) Detail of central section for flat shell analysis using QLLL
elements and off-centered 2-noded Timoshenko beam stiffeners. c) Idem using
QLLL plate elements stiffened with 2-noded Timoshenko beam elements

3. 24 QLLL plate elements (Section 6.7.1) stiffened with 2-noded Timo-
shenko beam elements including torsional effects (Figure 10.29c).

Figure 10.30 shows the distribution of the axial stress σx in the central
section obtained with each of above three procedures. The stresses in the
stiffeners and the compression stresses in the upper surface of the slab
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Fig. 10.30 SS slab beam bridge. Distribution of axial stress σx (N/mm
2
) in the

central section using: a) QLLL flat shell elements. b) QLLL flat shell elements
stiffened with off-centered 2-noded Timoshenko rod stiffeners. c) QLLL plate
elements stiffened with 2-noded Timoshenko beam elements

obtained with the simplest third procedure do not exceed in 20 % the
values given by the more precise first two options. The distribution of
stresses at the lower surface of the slab is less accurate with the simpler
plate model (option 3) giving considerably higher tension stresses in some
zones. Further information on this example can be obtained in [PF].
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In conclusion, the stiffened plate model is adequate for pre-dimensioning
purposes. More accurate stress values and the precise design of the rein-
forcing steel requires using the shell-stiffener formulation.

10.23 FINAL REMARKS

The 3D degenerated shell elements studied in the first part of this chapter
can be considered as a particular case of solid elements under kinematic
(straight normals) and plane stress constraints. The internal virtual work
is expressed in terms of the stresses and strains and the element matrices
involve volume integrals like solid elements do. Magnitudes resulting from
a thickness integration such as resultant stresses are computed “a posteri-
ori”, whereas they are the natural unknowns in classical shell theory. 3D
degenerated shell elements share the basic non–orthogonality condition for
the normal rotation of Reissner–Mindlin theory. As a consequence, they
include transverse shear deformation effects and, consequently, they suffer
from shear locking. They are also affected by membrane locking in their
curve forms. Both shear and membrane locking can be alleviated by se-
lective/reduced integration techniques and by using assumed strain fields.
The more popular 3D degenerated shell element is probably the 4-noded
quadrilateral with a linear assumed transverse shear strain field.

The derivation of 3D shell elements based on a continuum-based re-
sultant (CBR) shell formulation allows one the explicit integration of the
element stiffness terms across the thickness. The stiffness matrix for the
simpler CBR-S element can be split into the membrane, bending and shear
contributions, which facilitates using selective integration techniques.

A procedure for deriving curved shell elements based on assumed mem-
brane and transverse shear strains fields has also been detailed.

A finite element formulation for analysis of stiffened shells can be im-
plemented by coupling 3D beam elements and degenerated or flat shell
elements, as explained in the last part of the chapter.

The isogeometric shell theory opens new possibilities for integrating
curved shell elements with CAD data.



11

PRISMATIC STRUCTURES. FINITE
STRIP AND FINITE PRISM
METHODS

11.1 INTRODUCTION

Many structures have uniform geometry in a particular “prismatic” direc-
tion. Examples are plates and bridges with rectangular or curved plant.
Also the meridional section of an axisymmetric shell does not change along
the circumference (Figure 11.1). The name prismatic structure will refer
hereonwards to a structure with uniform geometrical and material proper-
ties in the prismatic direction, while the loads can act at any point of the
structure. The analysis of prismatic structures can be greatly simplified
using finite elements and Fourier expansions to model the transverse and
longitudinal behavior, respectively.

The combination of FEM and Fourier series goes back to the 1960’s, fol-
lowing the semi-analytical method proposed by Kantorovitch and Krylov
[KK] and used for studying of arbitrarily loaded axisymmetric shells and
solids by Grafton and Strone [GS], Ahmad et al. [AIZ] and Wilson [Wi].

The extension to the analysis of prismatic thin (Kirchhoff) plates and
shells was first developed by Cheung [Ch–Ch6] and termed the finite strip
method. The finite strip method based on Reissner-Mindlin plate/shell
theory was developed by Oñate [On] and Suárez [Su], Many refinements of
the finite strip method for structural analysis have been reported and the
main contributions are listed in [Ch6,Ch7,ChT,Fra,LC,OS,OS2,OS3]. A
bibliography of finite stripmethods up to the year 2000 can be found in [Fri].

Zienkiewicz and Too [ZT] applied the same ideas to the analysis of
prismatic solids in structural and geotechnical engineering problems which
they termed the finite prism method. Here 2D solid elements are used to
discretize the transverse cross section, whereas the longitudinal behavior
is modeled by Fourier expansions.

Finite strip and finite prism methods just require to discretize the
transverse cross section of a structure using simple 1D and 2D elements

E. Oñate, Structural Analysis with the Finite Element Method. Linear Statics:  
Volume 2: Beams, Plates and Shells, Lecture Notes on Numerical Methods  
in Engineering and Sciences, DOI 10.1007/978-1-4020-8743-1_11,  
© International Center for Numerical Methods in Engineering (CIMNE), 2013 
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Fig. 11.1 Examples of straight and curved prismatic structures

only, which simplifies the preparation of analysis data enormously. The
problem is solved by adding up a number of standard finite element solu-
tions for each harmonic term of the Fourier expansions chosen, each one
involving the DOFs of the transverse section only. This allows engineers
solving complex 3D structures with very small computational effort.

Finite strip and finite prism methods fail in the category of the so-
called reduction methods. These methods have become very popular for
solving complex problems in mechanics using a reduced set of variables
over the original geometry or simplified forms of it [ChLC,HTF,OA].

In this chapter, the finite strip formulation for rectangular plates will
be considered first as an introduction to the general formulation for folded
shell structures. It will be shown that the finite strip formulation for right
folded plates and axisymmetric shells can be derived as a special case of
the formulation for folded plates with curved platforms.

The last part of the chapter presents the finite prism formulation for
the analysis of prismatic 3D solids and axisymmetric solids under arbi-
trary loading. Extensions of the finite strip and finite prism methods to
a wider class of prismatic structures are also briefly described. Finally
the possibilities of finite strip and finite prism methods are shown in the
analysis of different structures.

Before discussing the basis of the finite strip method, we will introduce
the key concepts of Fourier series for structural analysis. This is done in
the next section for the simple case of a beam.

11.2 ANALYSIS OF A SIMPLY SUPPORTED BEAM BY
FOURIER SERIES

Consider the simply supported beam shown in Figure 11.2 under arbitrary
loading fz(y). The Total Potential Energy (TPE) for a beam in bending
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Fig. 11.2 Simple supported beam analyzed by Fourier series. Convergence of cen-
tral deflection and central moment with the number of non zero harmonic terms
for central point load and uniform load

is written using Euler-Bernoulli theory (Chapter 1) as [ZT2]

Π(w) =
EI

2

∫ b

0
(
d2w

dy2
)
2

dy −
∫ y1

yo

fzw dy (11.1)
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where E and I are the Young modulus and the modulus of inertia of the
beam cross-section with respect to the x axis, respectively, and w is the
lateral deflection which must satisfy the following boundary conditions

w =
d2w

dy2
= 0 at y = 0 and y = b (11.2)

The above conditions are satisfied by the following Fourier series

w =
∞∑
l=1

wlsinl
πy

b
(11.3)

where b is the beam length, l refers to a particular harmonic term, i.e.
l = 1, 2, 3, etc. And wl is the unknown deflection amplitude for the l-th
harmonic (also called the modal deflection amplitude).

The loading fz(y) is also expanded in Fourier series as

fz(y) =

∞∑
l=1

f l
zsin

lπ

b
y (11.4)

where f l
z is the loading amplitude for the l-th harmonic term. This can be

obtained using Euler formula for Fourier series by

f l
z =

∫ y1

yo

fz(y)sin
lπ

b
y dy

∫ b

0
sin2

lπ

b
y dy

(11.5)

where the load is applied in the zone from y = b0 to y = b1, as shown in
Figure 11.2.

The value of f l
z is easily obtained if the product fz(y) sin

lπy
b is inte-

grable. Thus, for a given load harmonic the problem is one of finding the
unknown amplitude wl, which uniquely describes the deflected beam pro-
file for that harmonic. Substituting Eqs.(11.3) and (11.4) into (11.1) we
can write

π(w) =
∞∑
l=1

(EI

4
(wl)

2 l4π4

b3
− b

2
f l
zw

l
)

(11.6)

The value of wl is obtained by minimizing the TPE with respect to wl,
i.e.

∂Π

∂wl
= 0 which leads to wl =

f l
zb

4

EIl4π4
(11.7)
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The deflection profile is obtained by performing the summation of
Eq.(11.3). The beam curvature, and hence the bending moment distri-
bution, may be calculated from the deformed shape of the beam as

M = EI
d2w

dy2
= −EI

(π
b

)2
∞∑
l=1

wll2sin
lπ

b
(11.8)

An alternative to the TPE approach is the Principle of Virtual Work
used throughout this book. In this chapter, however, the TPE method
[ZT,ZTZ] will be chosen for deriving the finite strip and finite prism equa-
tions.

As an example of application we consider the beam shown in Figure
11.2 for two loading cases: a uniformly distributed loading of intensity
fz = q acting along the whole beam length (i.e. y0 = 0 and y1 = b in
Eq.(11.5)) and a vertical point load P acting at the mid-span. The Fourier
coefficient f l

z, the vertical deflection and the bending moment distribution
for each loading case are:

Uniform loading Central point load

f l
z =

2q

lπ
(1− coslπ) f l

z =
2P

b
sin

lπ

2

w =
2qb4

EIπ5

∞∑
l=1

1− coslπ

l5
sin

lπ

b
y w =

2Pb3

EIπ4

∞∑
l=1

1

l4
sin

lπ

2
sin

lπ

b
y

M = −2qb2

π3

∑ 1

l3
(1− coslπ)sin

lπ

b
y M = −2πb

π2

∑ 1

l2
sin

lπ

2
sin

lπ

b
y

(11.9)
Note that in Eq.(11.9) the even harmonic terms are zero. This is due

to the symmetry of the loading about the center of the beam.
Figure 11.2 shows the percentage of error versus the exact solution for

the vertical deflection and the bending moment at the mid-span taking
different non-zero harmonic terms are shown in Figure 11.2. The following
conclusions can be drawn:

a) Convergence to the theoretical value [Ti2] for the deflection and the
bending moment is much faster for uniform loading than for the point
load.

b) Convergence of the bending moment is slower than the vertical deflec-
tion for both loading cases.

The convergence of the solution is therefore loading dependent. As a
rule, solutions for uniform loads converge more rapidly than those for point
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loads. Also, the number of harmonic terms needed for achieving a degree
of accuracy for the bending moments is larger than for the displacements.

These practical rules, deduced for a simple case, apply to the general
finite strip and finite prism formulations described in the following sec-
tions.

11.3 BASIC CONCEPTS OF FINITE STRIP AND FINITE PRISM
METHODS

Finite strip and finite prism methods share many basic concepts, which
can be summarized as follows.

The first step in both procedures is to expand the displacements in
Fourier series along the prismatic direction. For a generic displacement
w(x, y) for 2D problems, or w(x, y, z) for 3D problems, we write

w(x, y) =

m∑
l=1

(
wl(x)sin

lπ

b
y + w̄l(x)cos

lπ

b
y
)

for 2D

w(x, y, z) =

m∑
l=1

(
wl(x, z)sin

lπ

b
y + w̄l(x, z)cos

lπ

b
y
)

for 3D

(11.10)

where y is the prismatic direction, wl and w̄l are the l-th modal displace-
ment amplitudes and m is the number of harmonic terms chosen for the
analysis. The sine and cosine functions are chosen such that the displace-
ment field satisfies “a priori” the boundary conditions at the end sections
y = 0 and y = b, where b is the length of the structure in the prismatic
direction. Eqs.(11.10) can be generalized as

u(x, y, z) =
m∑
l=1

Sl(y)ul(x, z) (11.11)

where u is the displacement vector, ul is the corresponding l-th modal
displacement amplitude and Sl contains trigonometric functions.

The second step is the interpolation of the modal displacement am-
plitude field ul across the transverse cross section. This is performed by
discretizing the transverse section into finite elements. This allows us to
write the standard interpolations within each n-noded element as

ul(x, z) =

n∑
i=1

Ni(x, z)a
l
i (11.12)
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where ali is the modal displacement amplitude vector of node i for the l-th
harmonic term. Substituting Eq.(11.12) into (11.11) gives

u(x, y, z) =
m∑
l=1

n∑
i=1

Sl(y)Ni(x, z)a
l
i for 3D (11.13)

Eq.(11.13) can be interpreted as splitting the displacement function
u(x, y, z) into the product of the shape function Ni(x, z) defining the
interpolation for the displacements in the transverse cross section, the
analytical function Sl(y) describing the behavior in the prismatic direction

and the modal parameters a
(e)
i . This explains why finite strip and finite

prism procedures are termed semi-analytical methods.
In the finite strip method the transverse section is discretized in sim-

ple 1D finite elements, while 2D elements are used for discretizing the
transverse section in the finite prism method.

Figure 11.3 shows an example of above discretization steps for the
analysis of a rectangular plate using 2-noded finite strips.

Substituting Eq.(11.13) into the expression for the strain vector gives

εεεεεεεεεεεεεε(x, y, z) = Lu =
m∑
l=i

n∑
i=1

Ŝl(y)Bl
i(x, z)a

l
i (11.14)

where L is the strain operator, Bl
i is the nodal strain matrix for the l-th

harmonic term and Ŝl contains trigonometric functions.
The constitutive equation is written as

σσσσσσσσσσσσσσ(x, y, z) = Dεεεεεεεεεεεεεε = D
m∑
l=1

n∑
i=1

Ŝl(y)Bl
i(x, z)a

l
i (11.15)

The loads are also expanded in Fourier series using the same expansions
as for the displacement field, i.e.

b(x, y, z) =
m∑
l=1

Sl(y)bl(x, z) (11.16)

where the modal force amplitudes bl are obtained from the external force
values as

bl(x, z) =

∫ y2

y1

Sl(y)b(x, z) dy

∫ b

0
[Sl(y)]

2
dy

(11.17)
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Fig. 11.3 Discretization steps for the finite strip analysis of a rectangular plate
using 2-noded strips
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Substituting Eqs.(11.13)-(11.16) into the TPE (or the PVW) and ac-
counting for the orthogonal properties of the trigonometric functions, i.e.

∫ b

0
sin

lπ

b
y sin

mπ

b
y dy

∫ b

0
cos

lπ

b
y cos

mπ

b
y dy

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

=

b

2
for l = m

0 for l 
= m

(11.18)

the following system of equations is obtained

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11

K22 0
. . .

Kll

. . .

0 Kmm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1

a2

...
al

...
am

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1

f2

...
f l

...
fm

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.19)

where al and f l respectively contain the modal displacement amplitudes
and the equivalent modal force amplitudes for all the nodes discretizing
the transverse sections and the lth harmonic term.

Note that the solution for each harmonic term is decoupled from the
rest. Consequently, the nodal modal displacement amplitude vectors for
the different harmonics can be independently computed as

Kllal = f l ; l = 1, 2, . . . ,m (11.20)

where Kll is the stiffness matrix for the l-th harmonic term. Kll and f l

and obtained by the standard assembly of the contributions from each of
the strip (or prism) elements as

[Kll
ij ]

(e)
=

b

2

∫

Ω(e)

[Bl
i]
T
DBl

j dΩ (11.21)

[f li ]
(e)

=
b

2

∫

Ω(e)

NT
i b

l dΩ (11.22)

where Ω(e) is the area or length of the prism or strip element, respectively.
Once the nodal modal displacement amplitude vectors al have been ob-

tained, the displacements, strains and stress at any point of the structure
can be computed using Eqs.(11.13), (11.14) and (11.15), respectively.

These concepts will be detailed in the chapter for analysis of different
prismatic structures with the finite strip and the finite prism methods.



684 Prismatic structures. Finite strip and finite prism methods

11.4 FINITE STRIP METHOD FOR RECTANGULAR
REISSNER-MINDLIN PLATES

The finite strip formulation for Reissner-Mindlin plates follows similar
steps to those explained for the simple beam problem of previous sec-
tion. The displacements are expanded in truncated Fourier series along
the prismatic direction y, along which both the material and geometrical
properties of the plate are uniform, i.e.

w(x, y) =
m∑
l=1

wl(x) sinγy

θx(x, y) =

m∑
l=1

θlx(x) sin γy with γ =
lπ

b

θy(x, y) =

m∑
l=1

θy(x) cosγy

(11.23)

where b is the plate length, wl, θlx and θly are the modal amplitudes for
the vertical deflection and the rotations for the l-th harmonic term and m
is the number of harmonic terms chosen for the analysis.

The harmonic expansions satisfy the following boundary conditions

w = θx = 0

∂w

∂x
=

∂θx
∂x

=
∂θy
∂y

= 0

⎫
⎪⎬
⎪⎭

for y = 0 and y = b (11.24)

Eqs.(11.24) imply that the plate is simply supported at the two ends along
the prismatic direction. Other boundary conditions can be reproduced by
appropriate selection of the expansions in Eq.(11.23) [CH6,ChT,Fra,LC].

The next step is to discretize the modal displacement amplitudes
(which are a function of the x coordinate only) using a standard 1D fi-
nite element interpolation along the transverse direction of the plate. The
modal displacement amplitudes are expressed within an element as

[wl(x), θlx(x), θ
l
y(x)] =

n∑
i=1

Ni(x)[w
l
i, θ

l
xi
, θlyi ] (11.25)

where wl
i, θ

l
xi and θlyi are the modal displacement amplitudes for the i-th

node, Ni(x) is the 1D shape function of node i and n is the number of
nodes in the element.
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The above process is equivalent to dividing the plate into longitudinal
elements (or strips) so that each strip has a certain number of nodes (or
more precisely, nodal lines). The displacement field is defined longitudi-
nally by the Fourier expansion of Eq.(11.23) and transversely by the finite
element discretization of Eq.(11.25) (Figure 11.3).

Substituting Eq.(11.25) into (11.23) gives

u(x, y) =
m∑
l=1

n∑
i=1

Sl(y)Ni(x)a
l
i (11.26)

where

u(x, y) = [w(x, y), θx(x, y), θy(x, y)]
T ; ali = [wl

i, θ
l
xi
, θlyi ]

T

Ni = Ni(x)I3 ; Sl =

⎡
⎣
Sl 0

Sl

0 C l

⎤
⎦ ;

Sl(y) = sinγy
C l = cosγy

(11.27)

The generalized strains and the resultant stresses in a strip are obtained
substituting Eq.(11.27) into the expressions of ε̂εεεεεεεεεεεεε and σ̂σσσσσσσσσσσσσ of Reissner-Mindlin
plate theory (Section 6.2.2). This gives

ε̂εεεεεεεεεεεεε(x, y) =
m∑
l=1

n∑
i=1

Ŝl(y)Bl
i(x)a

l
i , σ̂σσσσσσσσσσσσσ(x, y) = D̂

m∑
l=1

n∑
i=1

Ŝl(y)Bl
i(x)a

l
i

(11.28)
where D̂ is the generalized constitutive matrix of Eq.(6.23),Bl

i is the nodal
strain-displacement matrix for the l-th harmonic term given by

Bl
i(x) =

⎧⎨
⎩
Bl

bi
· · ·
Bl

si

⎫⎬
⎭ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −∂Ni

∂x
0

0 0 Niγ

0 −Niγ −∂Ni

∂x
. . . . . . . . .
∂Ni

∂x
−Ni 0

Niγ 0 −Ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11.29)

and

Ŝl(y) =

⎡⎢⎢⎣
Sl

Sl 0
C l

0 Sl

C l

⎤⎥⎥⎦ (11.30)
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Bl
bi
and Bl

si in Eq.(11.29) are the contributions to the nodal strain matrix
due to bending and shear, respectively for the l-th harmonic term.

Matrix D̂ can account for a layered composite material as described in
Section 7.2.4. Recall that the finite strip formulation requires a uniform
distribution of the material properties along the prismatic (longitudinal)
direction.

The loads are expanded along the longitudinal direction similarly as
for the displacements. A uniformly distributed load fz=q is represented by

q(x, y) =
m∑
l=1

Sl(y)ql (11.31)

The (constant) modal amplitudes for the load are obtained by

ql =

∫ y1

yo

q sinγy dy

∫ b

o
sin2γy dy

=
2q

lπ
[cosγyo − cosγy1] (11.32)

In Eq.(11.32) y0 and y1 are the limits of application of the load along
the longitudinal direction (Figure 11.4). If the load acts over the whole
plate then y0 = 0, y1 = b and

ql =
2q

lπ
(1− coslπ) (11.33)

Note that ql is equal to zero for the even harmonic terms in Eq.(11.33),
which simplifies the computations.

The uniform loading q in Eq.(11.31) can represent the value of the
self-weight per unit area wit q = ρgt, where ρ is the density, g the gravity
constant and t the plate thickness.

The discretized equations can be obtained from the PVW in the usual
manner. The alternative procedure chosen here is starting from the TPE as
for the beam example of Section 11.2. The TPE is written for a distributed
loading fz as [ZT2]

Π =
1

2

∫∫

A
ε̂εεεεεεεεεεεεεT σ̂σσσσσσσσσσσσσ dA−

∫∫

A
wfz dA (11.34)

Substituting Eqs.(11.27), (11.29) and (11.32) into (11.34) gives

Π =

ne∑
e=1

Πe (11.35a)
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Fig. 11.4 Distributed load and point load for a 2-noded strip

where Πe is the potential energy for a strip element given by

Πe =
1

2

m∑
l=1

m∑
q=1

n∑
i=1

n∑
j=1

[ali]
T [Kll

ij ]
(e)amj −

m∑
l=1

n∑
i=1

[ali]
T [f li ]

(e) (11.35b)

Minimizing Eq.(11.35a) with respect to the modal displacement am-
plitudes of all the nodes leads to the standard stiffness equation system

∂Π

∂ali
= 0 ⇒ Ka = f (11.36)

The system of equations (11.36) is uncoupled for each harmonic term
due to the orthogonality properties of the trigonometric functions cho-
sen (Eq.(11.18)). The decoupled system is identical to that shown in
Eq.(11.19). The stiffness matrix and the equivalent nodal modal force
vector can be assembled from the individual strip contributions for each
harmonic term given by

[Kll
ij ]

(e)
=

b

2

∫

a(e)
[Bl

i]
T
D̂Bl

j dx (11.37)

[f li ]
(e)

=
b

2

∫

a(e)
NT

i [f
l
z, 0, 0]

T
dx (11.38)

where a(e) is the strip width (Figure 11.4). The evaluation of the integrals
requires a simple 1D Gauss quadrature. The exact analytical integration
is possible for many cases.
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Point loads are treated in the same manner and the expression of vector
f li is now simply

f li =

⎧
⎨
⎩

Fzisinγyi
Mxisinγyi
Myicosγyi

⎫
⎬
⎭ (11.39)

where Fzi , Mxi and Myi are respectively the intensities of the point load
and the two bending moments acting at node i at a distance yi from the
simple supported end (Figure 11.4).

Solution of Eq.(11.20) yields the nodal modal displacement amplitudes
al, l = 1, 2, 3, . . . ,m. The displacements at any point in the plate are
computed by Eq.(11.26), while the generalized strains and the resultant
stresses are obtained by Eq.(11.28).

The decoupling of the stiffness equation depends on the Fourier expan-
sions chosen in Eq.(11.23). The reproduction of other boundary conditions
different from the simple supported case typically leads to terms as SlCm

in the stiffness matrix which do not satisfy the orthogonality conditions
(11.18) [Ch6,LC]. The global stiffness matrix is then a full matrix and the
solution of the stiffness equations (11.36) requires iterative techniques for
preserving the competitiveness of the finite strip method versus the FEM
[SMO,Su].

11.4.1 Reduced integration for Reissner-Mindlin plate strips

Plate strip elements derived in the previous section suffer from the shear
locking defect inherent to Reissner-Mindlin plate elements (Chapter 6).
Hence, erroneous results are obtained for thin plates unless some precau-
tions are taken.

Similarly as for plates, the simplest remedy for avoiding shear locking
in plate strip elements is the reduced integration of the shear stiffness
terms leading to the singularity of the shear stiffness matrix. The strip
stiffness matrix can be split into the bending and shear contributions
using Eqs.(6.23), (11.29) and (11.37) as

[Kll
ij ]

(e)
= [Kll

bij
]
(e)

+ [Kll
sij ]

(e)
(11.40)

where

[Kll
bij
]
(e)

=
b

2

∫

a(e)
Bl

bi

T
D̂b B

l
bj
dx

[Kll
sij ]

(e)
=

b

2

∫

a(e)
Bl

si

T
D̂sB

l
sj dx

(11.41)
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Integration Full Selective Reduced

Strip Kll
b Kll

s Kll
b Kll

s Kll
b Kll

s

2 2 2 1 1 1

3 3 3 2 2 2

4 4 4 3 3 3

Fig. 11.5 Linear, quadratic and cubic Reissner-Mindlin plate strip elements. Full,
selective and reduced integration quadratures

Figure 11.5 shows the full, selective and reduced integration quadra-
tures for computing the bending and the shear stiffness matrices for linear,
quadratic and cubic plate strip elements.

Oñate and Suárez [OS] have verified that the required singularity of
Kll

s for the plate strip elements of Figure 11.5 is guaranteed if reduced
or selective integration is used. Full integration is also applicable for the
cubic strip element, although the selective and reduced integration rules
are recommended in practice.

The simplest Reissner-Mindlin plate strip element is the linear 2-noded
strip with a uniform one point reduced integration. The stiffness matrix of
Eq.(11.37) is then simply computed as

[Kll
ij ]

(e)
=

ba(e)

2
[B̄l

i]
T ¯̂
DB̄l

j (11.42)

where (̄·) denotes values at the strip mid-point. Matrix B̄l
i is obtained

from Eq.(11.29) substituting dNi
dx by (−1)i

ae and Ni by
1
2 . The strip stiffness

matrix with uniform one point integration is shown in Figure 11.6.
This formulation can be readily extended for composite laminated

plates if the material properties have a uniform distribution along the
prismatic direction. This requires taking into account the in-plane dis-
placements in the element kinematics and introducing the effect of mem-
brane and membrane-bending effects in the element stiffness matrix as
described in Chapter 7. The composite-laminated plate strip formulation
can be also derived as a particular case of the folded plate strip element
presented in the following section.
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K
(e)
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

(
aiajd44 +

γ2

4 d55

)
−aid44

2 −γ
4 d55

−ajd44

2

(
aiajd11 +

γ2

4 d33 +
d44

4

) (
γaj

2 d33 − γai

2 d12

)

−γ
4 d55

(
γai

2 d33 − γaj

2 d12

) (
aiajd33 +

γ2

4 d22 +
d55

4

)

⎤
⎥⎥⎥⎥⎥⎥⎦

ak =
(−1)k

a(e) , γ = lπ
b

dij = element ij of matrix D̂ (Eq.(6.23)) computed at the strip mid-point

Fig. 11.6 Two-noded linear Reissner-Mindlin plate strip element. Stiffness matrix
with uniform one point reduced integration

11.5 FINITE STRIP METHOD FOR STRAIGHT PRISMATIC
FOLDED PLATE STRUCTURES

11.5.1 General formulation

We will extend the plate strip formulation of the previous section to the
analysis of straight prismatic folded plate structures with simply sup-
ported ends. Examples of application include bridges with cellular cross
section and prismatic shells discretized by flat strip elements (Figure 11.7).

The Reissner-Mindlin theory for flat shell analysis used here was pre-
sented in Chapter 8. The finite strip formulation follows the same steps
as explained for plates in the previous sections.

The first step is to divide the structure in longitudinal strips as shown
in Figure 11.7. The local displacement vector (in axes x′, y′, z′) within a
strip with n nodes is expressed as

u′(x′, y) =
m∑
l=1

n∑
i=1

Sl(y)Ni(x
′)a′li (11.43)

with

u′(x′, y) = [u′0i , v
′
0i , w

′
0i , θx′ , θy′ ]

T
, ali

′
= [u′l0i , v

′l
0i , w

′l
0i , θ

l
x′i
, θly′i

]
T
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Fig. 11.7 Discretization of straight prismatic shells using 2-noded strips

Ni(x
′) = Ni(x

′)I5 and Sl(y) =

⎡⎢⎢⎢⎢⎣
Sl

C l 0
Sl

Sl

0 C l

⎤⎥⎥⎥⎥⎦ (11.44)

where functions Sl, C l were defined in Eq.(11.27) and Ni(x
′) are the stan-

dard 1D Lagrange shape functions which depend on the local coordinate
x′ (Figure 11.8). Subscript “0” in Eqs.(11.44) denotes the displacements
of the strip mid-plane as usual.

The harmonic functions chosen satisfy the condition of zero movement
on the planes y = 0 and y = b. This formulation therefore holds for simply
supported folded plates with rigid diaphragms at the two ends. This is a
typical boundary condition in cellular bridges [Ch6,CT,LC].

The local generalized strains are expressed in terms of the modal dis-
placement amplitudes of the nodes. Substituting Eq.(11.43) into ε̂εεεεεεεεεεεεε′ in
Eq.(8.8) gives

ε̂εεεεεεεεεεεεε′(x′, y) =
m∑
l=1

n∑
i=1

Ŝl(y)B′li (x
′)a′li (11.45)

Figure 11.9 shows the local generalized strain matrix B′li and the har-
monic matrix Ŝl.

The local resultant stresses are obtained from Eq.(8.17) (neglecting
initial stresses) as

σ̂σσσσσσσσσσσσσ′(x′, y) = D̂′ε̂εεεεεεεεεεεεε′ = D̂′
m∑
l=1

n∑
i=1

Ŝl(y)B′li(x
′)a′li (11.46)

The constitutive matrix D̂′ is given in (8.18). The sign convention for
the local resultant stresses is shown in Figure 11.13.

Composite laminated materials can also be analyzed with the present
finite strip method using the correct expression for D̂′ (Section 8.3.4), as
long as the material properties are uniform in the prismatic direction.
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Fig. 11.8 Discretization of a box girder bridge in 2-noded strips. Local and global
axes and boundary conditions at the end sections

The derivation of the stiffness equations follows the same process as
for plates. The harmonic expansions chosen guarantee the decoupling of
the stiffness equations for the different harmonic terms. Consequently, the
global stiffness matrix for the l-th harmonic term is obtained by assembling
the individual contributions from the strips. The stiffness matrix for the
strip in local axes is

[K′ll
ij ]

(e)
=

b

2

∫

a(e)
[B′li ]

T
D̂′B′lj dx

′ (11.47)

The membrane, bending and shear contribution to the local stiffness
matrix can be identified in the usual manner as explained in Section 8.4.3.
For homogeneous or symmetric material properties we obtain

[K′ll
ij ]

(e) =
b

2

∫

a(e)

(
[B′lmi

]
T
D̂′

mB′lmjj + [B′lbi]
T
D̂′

bB
′l
bj
+ [B′lsi ]

T
D̂′

sB
′l
sj

)
dx′ =

= [K′ll
mij

]
(e)

+ [K′ll
bij
]
(e)

+ [K′ll
sij ]

(e)
(11.48)
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ε̂εεεεεεεεεεεεε′ =

m∑
l=1

n∑
i=1

Ŝl B′li al
i

ε̂εεεεεεεεεεεεε′ =

⎧⎨
⎩
ε̂εεεεεεεεεεεεε′m
ε̂εεεεεεεεεεεεε′b
ε̂εεεεεεεεεεεεε′s

⎫⎬
⎭ ;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε̂εεεεεεεεεεεεε′m =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u′0
∂x′

∂v′0
∂y′

∂u′0
∂y′

+
∂v′0
∂x′

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

ε̂εεεεεεεεεεεεε′f =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂θx′

∂x′

∂θy′

∂y′(
∂θx′

∂y′
+

∂θy′

∂x′

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

ε̂εεεεεεεεεεεεε′s =

⎧⎪⎪⎨
⎪⎪⎩

∂w′0
∂x′

− θx′

∂w′0
∂y′

− θy′

⎫⎪⎪⎬
⎪⎪⎭

B′li =

⎧⎨
⎩
B′lmi

B′lbi
B′lsi

⎫⎬
⎭ ;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B′lmi
=

⎡
⎢⎢⎢⎢⎣

∂Ni

∂x′
0 0 0 0

0 −Niγ 0 0 0

Niγ
∂Ni

∂x′
0 0 0

⎤
⎥⎥⎥⎥⎦

B′lbi =

⎡
⎢⎢⎢⎢⎣
0 0 0

∂Ni

∂x′
0

0 0 0 0 Niγ

0 0 0 Niγ
∂Ni

∂x′

⎤
⎥⎥⎥⎥⎦

B′lsi =

⎡
⎣0 0

∂Ni

∂x′
−Ni 0

0 0 Niγ 0 −Ni

⎤
⎦

Ŝl =

⎡
⎣Sl

m 0

Sl
b

0 Sl
s

⎤
⎦ ; Sl

m = Sl
b =

⎡
⎣Sl 0

Sl

0 Cl

⎤
⎦ ; Sl

s =

[
Sl 0

0 Cl

]

Sl = sinγy ; Cl = cosγy, with γ =
lπ

b

Fig. 11.9 Local generalized strain matrix for a flat strip element for straight pris-
matic folded plate structures
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For composite laminated material the membrane-bending coupling stiff-
ness matrix [K′ll

mb]
(e) and its transpose must be added to Eq.(11.48) (Sec-

tion 8.4.3). Recall again that the finite strip analysis requires uniform
material properties along the prismatic direction.

Similarly as for flat shell elements the local stiffness matrix (11.48) (for
homogeneous material) can be formed by assembling directly the mem-
brane and flexural stiffness terms as

[K′ll
ij ]

5×5

(e)
=

⎡⎢⎣K
′ll
PSij

2×2
0

0 K′ll
RM ij

3×3

⎤⎥⎦
(e)

(11.49)

where Kll
RM ij

coincides with the stiffness matrix of the Reissner-Mindlin

plate strip element (Eq.(11.37)) and Kll
PSij

is the stiffness matrix of the
plane stress strip element given by

[K′ll
PSij

]
(e)

=
b

2

∫

a(e)
B̄′lTmi

D̂′
m B̄′mj

dx′ (11.50)

where

B̄′mi
=

⎡⎢⎢⎢⎣
∂Ni

∂x′
0

0 − Niγ

Niγ
∂Ni

∂x′

⎤⎥⎥⎥⎦ (11.51)

and D̂′
m is the membrane constitutive matrix of Eq.(8.18a).

11.5.2 Assembly of strip equations. Transformation to global axes

The assembly of the stiffness equations in folded plate structures requires
transforming the local vectors and matrices to a global coordinate system.
The process is as explained for flat shell elements in Section 8.5. The
transformation of the local modal displacement amplitudes is written as

a′li = L
(e)
i ali (11.52)

where
ali = [ul0i , vl0i , wl

0i , θlxi
, θlyi , θlzi ] (11.53)

is the global modal displacement amplitude vector for the l-th harmonic
term where the rotations are defined in vector form along the global axes
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x, y, z and the transformation matrix L
(e)
i is

L
(e)
i =

⎡⎢⎢⎢⎢⎢⎢⎣
C 0 S

...
0 1 0

... 0
−S 0 C

...
. . . . . . . . .

... . . . . . . . . .... 0 −1 0
0

... C 0 S

⎤⎥⎥⎥⎥⎥⎥⎦ (11.54)

with S = sinφ(e) and C = cosφ(e) and φ(e) is the angle between the strip
and the global x axis (Figure 11.8). Note that the global rotation θlzi has
been included in Eq.(11.53). This is necessary for assembly of the stiffness
equation in non-coplanar nodes (Section 8.5).

The global stiffness matrix for the strip is obtained by

[Kll
ij ]

6×6

(e)
= [L

(e)
i ]

6×5

T
K′ll

ij
5×5

L
(e)
j

5×6
(11.55)

As the element is flat, then L
(e)
i = L

(e)
j .

A simpler expression for the global stiffness matrix is found by obser-
vation of Eqs.(11.46) and (11.55) as

[Kll
ij ]

(e)
=

b

2

∫

a(e)
[Bl

i]
T
D̂′Bl

j dx′ (11.56)

where
Bl

i = B′li L
(e)
i (11.57)

Matrix Bl
i allows us to compute the local resultant stresses from the

global displacement as

σ̂σσσσσσσσσσσσσ′ = D̂′
m∑
l=1

n∑
i=1

ŜlB′li a
′l
i = D̂′

m∑
l=1

n∑
i=1

ŜlBl
ia

l
i (11.58)

Some problems might arise in the assembly process for coplanar nodes
leading to the singularity of the global stiffness equations. This problem
can be overcome using any of the techniques explained in Section 8.9 for
flat shell elements.

11.5.3 Equivalent nodal force vector

The equivalent nodal modal force amplitude vector for the strip for a
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distributed loading is given (in global axes) by

[f li ]
(e)

=
b

2

∫

a(e)
Ni t

l dx′ i = 1, 2 (11.59a)

where tl is the amplitude vector for a distributed load for the l-th harmonic
term given by

tl=
2

lπ

[
fx(C

l
0− C l

1), fy(S
l
1− Sl

0), fz(C
l
0− C l

1),mx(C
l
0− C l

1),my(S
l
1− Sl

0), 0
]T

(11.59b)
For a point load acting at a node with global number i we have

f li = pl
i with pl

i =
2

b

{
Fxi S

l
i, Fyi C

l
i , Fzi S

l
i,Mxi S

l
i,Myi C

l
i , 0

]T
(11.60)

In Eqs.(11.60)

C l
0 = cosγy0 ; C l

1 = cosγy1 ; C l
i = cosγyi

Sl
0 = sinγy0 ; Sl

1 = sinγy1 ; Sl
i = sinγyi

(11.61)

Coordinates y0, y1 and yi coincide with those of Figure 11.4.

11.5.4 Flat shell strips. Two-noded strip with reduced integration

Flat shell strips elements based on Reissner-Mindlin theory suffer from
shear locking as the shell finite elements of Chapter 8 do. The simpler
procedure to avoid shear locking is the reduced/selective quadrature. Here
again the rules of Figure 11.5 apply for the linear, quadratic and cubic
strips. The reduced integration of the membrane stiffness terms improves
the in-plane behaviour and it also eliminates membrane locking that may
appear in same special cases (i.e. for composite laminated shells). This
requires integrating Kll

m with one, two and three point quadratures for
linear, quadratic and cubic strips, respectively.

The 2-noded strip with a single point quadrature is the simplest one
and the stiffness matrix is directly obtained by Eq.(11.42). Figure 11.10
shows the generalized strain matrix computed at the element mid-point.

The equivalent nodal modal force vector for the 2-noded strip for uni-
formly distributed loading and the lth harmonic term is

[f li ]
(e)

=
ba(e)

4
tl (11.62)

where tl is obtained by Eq.(11.59b). Nodal point loads contribute directly
to the global equivalent nodal force vector via Eq.(11.60).
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[K′llij ]
(e) =

ba(e)

2
[B̄l

i]
T ¯̂′
DB̄l

j

(̄·) ≡ values at the strip mid-point.

B̄l
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B̄l
mi

−−−−
B̄l

bi

−−−−
B̄l

si

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AiC 0 AiS 0 0 0
0 − γ

2
0 0 0 0

γ
2
C Ai

γ
2
S 0 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 0 −Ai 0
0 0 0 − γ

2
C 0 − γ

2
S

0 0 0 AiC − γ
2

−AiS
. . . . . . . . . . . . . . . . . .
AiS 0 AiC 0 1

2
0

− γ
2
S 0 − γ

2
C − 1

2
C 0 − 1

2
S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ai =
(−1)i

a(e)
; S = sinφ(e) ; C = cosφ(e) ; γ =

lπ

b

Fig. 11.10 Two-noded flat shell strip element. Stiffness matrix computed using one
single point reduced integration

11.5.5 Simplification for composite laminated plate strip element

The formulation of strip elements for composite laminated plates can be
simply derived from the flat shell strip element formulation previously
presented for the particular case of φ(e) = 0, i.e. all elements lay on the
same horizontal plane.

11.6 ANALYSIS OF CURVED PRISMATIC SHELLS BY THE
FINITE STRIP METHOD

11.6.1 General formulation

The flat shell strip formulation of previous section can be extended for
prismatic shells with circular plant defined by the angle α. The Fourier
expansions are written now in terms of the angle β defining the position
of the points over the circular arch along the circular prismatic direc-
tion (Figure 11.11). Examples of these structures are found in plates and
bridges of circular plant and in troncoconical shells.

The finite strip formulation follows the same steps as for rectangu-
lar plates and flat shells. The basic expressions are derived starting from
Reissner-Mindlin troncoconical shell theory. This is an extension of the
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Fig. 11.11 Discretization of a circular box girder bridge using 2-noded troncocon-
ical strips. Local and global axes and boundary conditions at the end sections

axisymmetric shell theory studied in Chapter 9 for arbitrary loading
[BD6,No,Su]. For simplicity the assumption t/Rα << 1 will be made;
(i.e. Cα = 1 in Eq.(9.9) (see Rα in Figure 9.3).

Figure 11.11 shows a circular box girder bridge discretized in 2-noded
troncoconical strips. A typical strip is shown together with the local
(s, t, n) and global (x, y, z) axes. Note that the prismatic direction t and
the global direction y coincide.

The local displacements are expanded in Fouries series along the cir-
cular (circumferential) direction. 1D finite elements are used to discretize
the transversal (meridional) direction. The local displacement vector is
written as

u′(s, β) =
m∑
l=1

n∑
i=1

Sl(β)Ni(s)a
′l
i (11.63)
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where

u′(s, β) = [u′0, v
′
0, w

′
0, θs, θt]

T
, a′li = [u′l0i , v

′l
0i , w

′l
oi , θ

l
si , θ

l
ti ]

T
(11.64)

In (11.63) Sl(β) and Nl(β) coincide with expressions (11.44) for
straight folded plate structures simply interchanging the local coordinate
x′ by s and the prismatic coordinate y and the length b by the angles β
and α, respectively (Figures 11.8 and 11.11).

θs and θt in Eq.(11.64) are the rotations of the normal vector contained
in the planes sn and st, respectively (see sign convention in Figure 11.11).

The discretization process leads to the following relationship between
the local generalized strains and the nodal modal displacement amplitudes

ε̂εεεεεεεεεεεεε′(s, β) =
m∑
l=1

n∑
i=1

Ŝl(β)B′li (β)a
′l
i (11.65)

The components of ε̂εεεεεεεεεεεεε′ and of matrix B′li are shown in Figure 11.12.
The harmonic transformation matrix Ŝl coincides with that given in Fig-
ure 11.9 for b = α. By making γ = rγ, s = x′ and the coordinate r equal
to a large number (so that 1

r
∼= 0) matrix B′li coincides with that for

the straight case (Figure 11.9). The resultant stresses and the constitu-
tive equation are written as in Eq.(11.46) for the straight case. The only
difference is that the resultant stresses are referred now to the local axes
s, t, n (Figure 11.13).

Following the standard discretization procedure, the uncoupled sys-
tem of stiffness equations is obtained. The local stiffness matrix and the
equivalent nodal modal force amplitude vector for distributed loading for
a troncoconical strip are

[K′ll
ij ]

(e)
=

α

2

∫

a(e)
[B′li ]

T
D̂′B′lj rds (11.66)

[f li ]
(e)

=
α

2

∫

a(e)
Nit

lrds (11.67)

The only difference with the expressions for the straight case is that
the radius r appears within the integrals, similarly as for axisymmetric
solids and shells. Nodal point loads are directly assembled in the global
equivalent nodal modal force vector in the standard manner.

The nodal modal amplitude vectors for distributed forces tl and point
loads pl are computed by Eqs.(11.59) and (11.60) simply substituting the
prismatic coordinate y and the length b by angles β and α, respectively.
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ε̂εεεεεεεεεεεεε′ =
m∑
l=1

n∑
i=1

ŜlB′li a
l
i

ε̂εεεεεεεεεεεεε′ =

⎧⎪⎪⎨
⎪⎪⎩
ε̂εεεεεεεεεεεεε′m

ε̂εεεεεεεεεεεεε′b

ε̂εεεεεεεεεεεεε′s

⎫⎪⎪⎬
⎪⎪⎭ ;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε̂εεεεεεεεεεεεε′m =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u′0
∂s

1

r

∂v0

∂β
+

u′0
r
C − w′0

r
S

∂v′0
∂s

− 1

r

∂u′0
∂β

− v′0
r
C

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

ε̂εεεεεεεεεεεεε′b =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂θs
∂s

1

r

∂θt
∂β

+
θs
r
C

∂θt
∂s

+
1

r

∂θs
∂β

− θt
r
C

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

ε̂εεεεεεεεεεεεε′s =

⎧⎪⎪⎨
⎪⎪⎩

∂w′0
∂s

− θs

1

r

∂w′0
∂β

+
v′0
r
S − θt

⎫⎪⎪⎬
⎪⎪⎭

B′li =

⎧⎪⎪⎨
⎪⎪⎩
B′lmi

B′lbi

B′lsi

⎫⎪⎪⎬
⎪⎪⎭ ;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B′lmi
=

⎡
⎢⎢⎢⎢⎢⎣

∂Ni

∂s
0 0 0 0

Ni

r
C −Ni

r
γ −Ni

r
S 0 0

Ni

r
γ (

∂Ni

∂s
− Ni

r
C) 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

B′lbi =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
∂Ni

∂s
0

0 0 0
Ni

r
C −Ni

r
γ

0 0 0
Ni

r
γ

[
∂Ni

∂s
− Ni

r
C

]

⎤
⎥⎥⎥⎥⎥⎥⎦

B′lsi =

⎡
⎢⎣0 0

∂Ni

∂s
−Ni 0

0
Ni

r
S

Ni

r
γ 0 −Ni

⎤
⎥⎦

S = sinφ(e), C = cosφ(e);

Ŝl as in Figure 11.9 for straight prismatic shells with γ =
lπ

α
and y = β

Fig. 11.12 Local generalized strain vectors and matrices for a troncoconical strip

The transformation of the strip equations to global axes follows the
steps of Section 11.5.2 for straight structures. The global stiffness matrix
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Fig. 11.13 Sign convention for resultant stresses in a troncoconical shell. For
straight prismatic shells change s, t, n by x′, y′, z′

is computed as

[Kll
ij ]

(e)
=

α

2

∫

a(e)
[Bl

i]
T
D̂′Bl

jrds (11.68)

with
Bl

i = B′iL
(e)
i (11.69)

where L
(e)
i is the transformation matrix of Eq.(11.54). Matrix Bl

i is useful
for computing the local resultant stresses in terms of the global displace-
ment by Eq.(11.58). The problems associated to coplanar nodes are treated
as explained for flat shell elements in Section 8.8.

The 2-noded troncoconical strip with a uniform reduced one-point
quadrature has an excellent performance for thin and moderately thick
curved folded plate structures [On,OS2,OS3,Su]. The stiffness matrix and
the equivalent nodal modal force amplitude vector for uniformly dis-
tributed loading for the 2-noded strip and the lth harmonic term are
given by

[Kll
ij ]

(e)
=

αa(e)

2
[B̄l

i]
T ¯̂′
DB̄l

jr̄ (11.70)

[f li ]
(e)

=
αr̄a(e)

4
tl (11.71)

where again (̄·) denotes values at the strip mid-point.
Figure 11.14 shows matrix B̄l

i. Note that by making γ = r̄γ and 1
r = 0

the expression of B̄l
i for straight prismatic shell structures is obtained (see

Figure 11.10).
Above coincidences make it easy to organize the finite strip computa-

tions for straight and curved prismatic shell structures in a single code.
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B̄l
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B̄l
mi

−−−
B̄l

bi

−−−
B̄l

si

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AiC 0 AiS 0 0 0
1

2r̄
− γ

2r̄
0 0 0 0

γC

2r̄
(Ai − C

2r̄
)

γS

2r̄
0 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 0 −Ai 0

0 0 0 −γC

2r̄
− C

2r̄
−γS

2r̄

0 0 0

(
Ai − C

2r̄

)
C − γ

2r̄

(
Ai − C

2r̄

)
S

. . . . . . . . . . . . . . . . . .
−AiS 0 AiC 0 1/2 0

−γS

2r̄

S

2r̄

γC

2r̄
−C

2
0 −S

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ai =
(−1)i

a(e)
;S = sinφ(e);C = cosφ(e); γ =

lπ

α

Fig. 11.14 Matrix B̄l
i for explicit computation of the stiffness matrix for the 2-

noded troncoconical strip element

11.6.2 Circular plate strips

Circular plate strips can be derived as a simplification of the troncoconical
strips (Figure 11.15a) by making φ = 0◦ and neglecting the membrane
terms. The circular strip stiffness matrix is given by Eq.(11.68) with

Bl
i =

⎧⎨
⎩
Bl

bi
. . .
Bl

si

⎫⎬
⎭ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −∂Ni

∂x
0

0 −Ni

r

Ni

r
γ

0 −Ni

r
γ (

Ni

r
− ∂Ni

∂x
)

. . . . . . . . .

∂Ni

∂s
−Ni 0

Ni

r
γ 0 −Ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11.72)

and D̂′ given by Eq.(8.18a) for a general composite laminated material.
The equivalent nodal modal force amplitude vector is given by Eq.(11.67).

Note that only vertical forces and moments Mx and My are involved.
Making γ = r̄γ and 1

r = 0 in Eq.(11.72) yields the generalized strain
matrix for rectangular plates. The explicit form of B̄l

i in Eq.(11.70) for the
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Fig. 11.15 Discretization of circular plate and axisymmetric shell in 2-noded strips

2-noded circular plate strip with one point reduced quadrature is obtained
by making ∂Ni/∂x = (−1)i/a(e), Ni = 1/2 and r = r̄ in Eq.(11.72).

11.7 AXISYMMETRIC SHELLS UNDER ARBITRARY LOADING

The troncoconical shell formulation can be extended for analysis of ax-
isymmetric shells under arbitrary loading. The expressions for the dis-
placements, generalized strains and resultant stresses are identical to those
given in Section 11.6. The only difference is that the “length” of the struc-
ture is a whole circumference and, therefore, angle α is replaced by 2π.

Figure 11.15b shows an axisymmetric shell discretized in circular strips.
The displacements are expanded in Fourier series along the circumferential
direction. It is convenient for this purpose to split the displacement field in
symmetric and anti-symmetric components with respect to the meridional
plane at β = 0. For a n-noded strip with n nodes we have

u′ =
m∑
l=0

n∑
i=1

Ni(S̄
lā′li + ¯̄S

l
¯̄a′li ) (11.73)

where u′ is the displacement vector of Eq.(11.64) (see also Figure 11.11)
and (̄·) and (̄̄·) denote the symmetric and anti-symmetric components of

the displacements, respectively. It is interesting that ¯̄S
l
coincides with

matrix Sl of Eq.(11.44), while S̄l is obtained from ¯̄S
l
simply interchanging

Sl by C l and viceversa. Also γ = l is taken in all equations. Finally, the
components of ā′li and ¯̄a′li coincide with those of a′li in Eq.(11.64).
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Eq.(11.73) indicates that the out of plane displacement v′ and the
rotation θt are zero for a symmetric displacement field. Conversely, the
displacement components u′, w′ and the rotation θs contained in the sym-
metry plane are zero for an anti-symmetric mode.

The zero harmonic term in Eq.(11.73) corresponds to an axisymmetric
deformation where all the meridional sections (β = constant) have the
same displacement components u′, w′ and θs.

The loads are expanded in Fourier series using the same harmonic
functions as for the displacements, i.e.

t =

m∑
l=0

(S̄lt̄l + ¯̄S
l¯̄t

l
) (11.74)

where S̄l and ¯̄S
l
correspond to symmetric and anti-symmetric loads, re-

spectively. The load amplitudes t̄l and ¯̄t
l
are obtained from expressions as

shown in Section 11.5.3 [On,OS2,OS3,Su].
The analysis can be simplified by computing independently the sym-

metric and anti-symmetric solutions. The symmetric results are found
first by retaining the terms (̄·) from Eq.(11.73) and (11.74) only. The anti-
symmetric field can be obtained next by considering the terms (̄̄·) in those
equations.

The finite strip formulation for the symmetric and anti-symmetric cases
can be treated in a unified manner. The local generalized strain matrix
is identical for both cases and given by the expression of Figure 11.12 for
the troncoconical strip simply interchanging

γ by − l for the symmetric case

γ by l for the anti-symmetric case

The constitutive matrix D̂′ relating the local resultant stresses and the
generalized strains is the same as for the troncoconical case. Once again a
decoupled system of equations for the different harmonic terms is found.
The local stiffness matrix for an axisymmetric strip element is given by

[K′ll
ij ]

(e)
= C

∫

a(e)
[B′li ]

T
D̂′B′lj rds (11.75)

where

C =

{
2π for l = 0

π for l 
= 0
(11.76)

Transformation to global axes follows the steps of Section 11.5.2. The
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Fig. 11.16 Equivalent nodal modal force amplitude vectors for 2-noded troncocon-
ical strip

global stiffness matrix is obtained as

[Kll
ij ]

(e)
= C

∫

a(e)
[Bl

i]
T
D̂′Bl

jrds (11.77)

where Bi = B′li L
(e)
i and L

(e)
i is the transformation matrix of Eq.(11.54).

Axisymmetric strip elements based on Reissner-Mindlin theory require
reduced/selective quadratures to prevent locking. The linear, quadratic
and cubic strips use the quadratures shown in Figure 11.5. We note the
simplicity of the 2-noded axisymmetric strip with one integration point.
Its stiffness matrix is obtained by computing the integrant of Eq.(11.77)
at the strip mid-point. The final expression is identical to Eq.(11.70) if α

2
is substituted by C. Matrix B̄l

i is obtained by Figure 11.14 substituting γ
by −l and l for the symmetric and anti-axisymmetric cases, respectively.

Figure 11.16 shows the expression for the equivalent nodal force vector
for the 2-noded strip for different symmetric loads. Other loading types
can be found in [On,OS2,OS3,Su].

In conclusion, the troncoconical formulation of Section 11.6 yields all
the strip matrices and vectors for curved and straight prismatic shells and
plates and axisymmetric shells in a unified form [OS3]. This is useful for
the organization of a computer code for analysis of all these structures.

Note finally that the stiffness and loading expressions for l = 0 (full
axisymmetric solution) coincide with those obtained for Reissner-Mindlin
troncoconical shell elements in Chapter 9.
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11.8 TRONCOCONICAL STRIP ELEMENTS BASED ON
KIRCHHOFF SHELL THEORY

Kirchhoff troncoconical strip elements can be derived by introducing the
normal orthogonality condition in the kinematic field. This leads, as usual,
to neglecting the effect of the transverse shear strains in the analysis. The
formulation is therefore applicable to thin shell problems only. Making
ε̂εεεεεεεεεεεεε′s = 0 in Figure 11.12 we obtain

θs =
∂w′0
∂s

, θt =
1

r

∂w′0
∂β

+
v′0
r
S (11.78)

Substituting these rotations into vector ε̂εεεεεεεεεεεεε′b of Figure 11.12 gives the
expression for the local curvatures (Figure 11.17). Note that the second
derivative of the w′0 with respect to the local coordinate s is now involved.
This introduces the need for C1 continuity for the interpolation of w′0
along s.

The Fourier expansions for u′0, v′0 and w′0 are the same as for the
Reissner-Mindlin formulation (Eq.(11.63)). Figure 11.17 shows the gen-
eralized strain matrix where Ni are the C0 continuous Lagrange shape
functions and Hi and H̄i are C1 continuous Hermite shape functions
for 1D elements. The local displacement vector has four components:

ali = [u′l0i , v
′l
0i , w

′l
0i ,

∂w′l0
∂s ]T .

The derivation of the stiffness matrix and the equivalent nodal force
vector follows the same process as for Reissner-Mindlin troncoconical ele-
ments. The 2-noded Kirchhoff strip is again the simplest option. The shape
functions Ni are standard linear functions, while Hi and H̄i are cubic Her-
mite polynomials (Eq.(8.11a)), respectively. The integration of the mem-
brane and bending stiffness terms requires a two-point quadrature.

Full details on the formulation of troncoconical strip elements using
Kirchhoff thin shell theory can be found in [Ch6,LC].

11.9 THE FINITE PRISM METHOD

Zienkiewicz and Too [ZT] extended the finite strip method to the analysis
of prismatic solids. The so-called finite prism method combines Fourier
expansions along the prismatic direction and 2D solid elements for dis-
cretizing the transverse cross section (Figure 11.18). The finite prism
method is useful for analysis of prismatic solid structures, such as thick
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ε̂εεεεεεεεεεεεε′ =
m∑
l=1

n∑
i=1

ŜlB′li a
′l
i , a′li =

[
u′loi , v

′l
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′l
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∂w′lo
∂s
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}
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⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

ε̂εεεεεεεεεεεεε′b =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2w′0
∂s2

1

r2
∂2w′0
∂β2

+
S

r2
∂v′0
∂β

+
C

r

∂w′0
∂s

2

r

∂2w′0
∂s∂β

− 2CS

r2
v′0 − 2C

r2
∂w′0
∂β

+
S

r

∂v′0
∂s

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

B′li =

⎧⎨
⎩
B′lmi

B′lbi

⎫⎬
⎭ ;

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B′lmi
=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂s
0 0 0

Ni

r
C −Ni

r
γ −H ′

i

r
S − H̄i

r
S

Ni

r
γ

(
∂Ni

∂s
− Ni

r
C

)
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

B′lbi =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
∂2Hi

∂s2
∂2H̄i

∂s2

0
Ni

r2
Sγ

[
C

r

∂Hi

∂s
−
(γ
r

)2
Hi

] [
C

r

∂H̄i

∂s
−
(γ
r

)2
H̄i

]

0

(
S

r

∂Ni

∂s
− 2Ni

r2
CS

) (
2γ

r

∂Hi

∂s
− 2Hi

r2
Cγ

) (
2γ

r

∂H̄i

∂s
− 2H̄i

r2
Cγ

)

⎤
⎥⎥⎥⎥⎥⎥⎦

Ni: Lagrange shape functions; Hi, H̄i: Hermite shape functions

Fig. 11.17 Local generalized strain vectors and matrices for the Kirchhoff tronco-
conical strip

box girder bridges, ground foundations and other soil deformation prob-
lems in geotechnics [ChT]. Wong and Vardy [WV] have applied the finite
prism method to thick plates and shells with beam stiffners.

Let us consider a prismatic solid as shown in Figure 11.18. The solid is
discretized in a number of prisms. The 3D displacement field is expressed
within each prism as

u(x, y, z) =

⎧⎨
⎩
u
v
w

⎫⎬
⎭ =

m∑
l=1

n∑
i=1

Sl(y)Ni(x, z)a
l
i (11.79)
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Fig. 11.18 Prismatic solids discretized in straight and circular prisms

with
ali = [uli, v

l
i, w

l
i]
T (11.80)

Ni(x, z) = Ni(x, z)I3 , Sl(y) =

⎡
⎣
Sl 0

C l

0 Sl

⎤
⎦ ,

Sl = sinγy
C l = cosγy

where γ = lπ
b for straight prisms; γ = lπ

α , y = β for circular prisms.
In Eq.(11.80) Ni(x, z) are the shape functions of the 2D solid elements

with n nodes discretizing the transverse cross section.
Eq.(11.79) satisfies the following boundary conditions

u = w =
dv

dy
= 0 at y = 0 and y = b (11.81)

Above conditions correspond to simply supported end sections with a
rigid diaphragm in the plane x, z. For curved prisms y = β and b = α
(Figure 11.18).

An alternative definition of matrix Sl is

Sl(y) =

⎡
⎣
C l 0

Sl

0 C l

⎤
⎦ (11.82)

This reproduces the “quasi” plane strain conditions at the two-end

sections of the solid (i.e. v =
(
∂u
∂y + ∂v

∂x

)
=

(
∂v
∂x + ∂w

∂y

)
= 0 at y = 0 and
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Fig. 11.19 Application of the finite prism method to a soil mechanics problem

y = b). This is of interest for many soil mechanics problems (Figure 11.19).
The strain vector is deduced from 3D elasticity theory [On4,ZTZ] as

εεεεεεεεεεεεεε(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

εx
εy
εz
γxy
γxz
γyz

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂x

∂v

∂y

∂w

∂z

∂u

∂y
+

∂v

∂x

∂u

∂z
+

∂w

∂x

∂v

∂z
+

∂w

∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

m∑
l=1

n∑
i=1

Ŝl(y)Bl
i(x, z)a

l
i (11.83)
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MatricesBl
i and Sl are deduced from the displacement field in Eq.(11.79)

as

Bl
i(x, z) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂x
0 0

0 −γNi 0

0
∂Ni

∂z

γNi
∂Ni

∂x
0

∂Ni

∂z
0

∂Ni

∂x

0
∂Ni

∂z
γNi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; Ŝl(y) =

⎡⎢⎢⎢⎢⎢⎢⎣

Sl

Sl 0
Sl

C l

0 Sl

C l

⎤⎥⎥⎥⎥⎥⎥⎦ (11.84)

Using matrix Sl given by Eq.(11.82) for the “quasi” plane strain case
simply implies interchanging γ for −γ and Sl by C l in Eq.(11.84).

Figure 11.20 shows the 3D strain vector and matrix Bl
i for circular

prisms. By making γ = rγ and Ni
r = 0 in Figure 11.20, the strain matrix

of Eq.(11.84) for straight prisms is recovered (with r = z).
The stress-strain relationship deduced from elasticity theory is

σσσσσσσσσσσσσσ = [σx, σy, σz, τxy, τxz, τyz]
T = D

m∑
l=1

n∑
i=1

ŜlBl
ia

l
i (11.85)

where D is the constitutive matrix of 3D elasticity theory [On4,ZTZ].
Indexes x, y, z are substituted by r, β, z, respectively for circular

prisms.
Substituting Eqs.(11.75)-(11.85) into the 3D expression of the TPE (or

the PVW) [On4,ZTZ] and using the orthogonal properties of the harmonic
functions yields the decoupled system of equations (11.19) for the different
harmonic terms with

[Kll
ij ]

(e)
= C

∫∫

A(e)

[Bl
i]
T
DBl

jdA (11.86)

[f li ]
(e)

= C

∫∫

A(e)

Ni
TbldA+ C

∮

S(e)

Ni
T tldA+ pl

i (11.87)

where

straight prisms

⎧⎨
⎩

C =
b

2
dA = dxdz

(11.88)

circular prisms

{
C =

α

2
dA = rdrdz

(11.89)
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εεεεεεεεεεεεεε =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
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=
m∑
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n∑
i=1

ŜlBl
ia

l
i

Bl
i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ni

∂x
0 0

Ni

r
−γNi

r
0

0 0
∂Ni

∂z
γNi

r
(
∂Ni

∂r
− Ni

r
) 0

∂Ni

∂z
0

∂Ni

∂r

0
∂Ni

∂z

γNi

r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ŝl as in Eq.(11.84) for rectangular prisms with γ =
lπ

α

Fig. 11.20 Strain vector and matrix for a circular prism

and bl, tl and pl
i are the nodal modal amplitudes for body forces, dis-

tributed forces and point loads, respectively. Typical expressions are:

Self-weight

bl =
2ρ

lπ
(1− (−1)l)[gx, gy, gz]T (11.90)

where ρ is the density and gi the intensity of the gravity in the direction
of the ith axis.

Uniformly distributed loading

tl =
2

lπ
[fx(C0 − C1), fy(S1 − S0), fz(C0 − C1)]

T (11.91)

C0 = cosγy0, C1 = cosγy1

S0 = sinγy0, S1 = sinγy1
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where y0 and y1 are the limits of the distributed loading along the pris-
matic direction.

Point loads
pl
i =

2

b
[Fxisinγyi, Fyicosγyi, Fzisinγyi]

T (11.92)

where yi is the prismatic coordinate of the point of application of the load.
For circular prisms the coordinates x and y are substituted by r and

β, respectively and distance b by angle α.
If the loads are symmetric with respect to the center of the prism, then

the contribution from the even harmonic terms is zero in Eqs.(11.90)–
(11.92), as for the finite strip method.

The computation of the element matrices and vectors in Eqs.(11.86)
and (11.87) typically requires a Gauss quadrature. The exception is the
simple 3-noded triangular prism for which analytic forms of the integrals
can be easily found. This case is shown in the following example.

Example 11.1: Compute the stiffness matrix and the self-weight equivalent nodal
modal force amplitude vector for a 3-noded triangular straight prism.

- Solution- Solution

The faces of the prism are linear triangles (Figure 11.21). The shape functions
are

Ni =
1

2A(e)
[ai + bix+ ciz]

where ai, bi and ci are given by Eq.(4.32b) of [On4] with x, z for x, y.
The element strain matrix is

Bl
i =

1

2A(e)

⎡⎢⎢⎢⎢⎢⎢⎣
bi 0 0
0 −γNi 0
0 0 ci

γNi bi 0
ci 0 bi
0 ci γNi

⎤⎥⎥⎥⎥⎥⎥⎦ conγ =
lπ

b

The product Bl
i
T
DBl

j contains terms such as Ni and NiNj . Analytical inte-
gration leads to

[Kll
ij ]

(e)
=

b

8A(e)
×
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Fig. 11.21 Three-noded triangular prism

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(d11bibj + d55cicj+
γA(e)

3 (−d12bi + d44bj) (d13bicj + d55cibj)
+d44αij)

γA(e)

3 (−d21bj + c44bi) (d44bibj + d66cicj+
γA(e)

3 (d66ci − d23cj)
+d22αij)

(d31cibj + d55bicj)
γA(e)

3 (d66cj − d32ci) (d33cicj + d55bibj+
+d66αij)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
with

αij =
γ2A(e)

6
if i = j or

γ2A(e)

12
if i 
= j

The equivalent nodal modal force amplitude vector for self-weight is obtained
from Eqs.(11.87)–(11.90). For ρ = constant, gx = gy = 0 and gz = −g,

f li =
b

2
bl

∫∫

A(e)

Ni
T dA =

bA(e)

6
bl =

bρg

3lπ
[1− (−1)l]

⎧⎨
⎩

0
0
−1

⎫⎬
⎭

11.10 AXISYMMETRIC SOLIDS UNDER ARBITRARY LOADING

An axisymmetric solid can be viewed as a circular prism describing a circle.
Axisymmetric solids under arbitrary loading can be therefore analyzed via
a simple extension of the finite prism formulation of the previous section.
The problem is analogous to the analysis of axisymmetric shells under
arbitrary loading using troncoconical strips studied in Section 11.7.

The displacement field in an axisymmetric solid can be written in ge-
neral form as

u =

⎧
⎨
⎩
u
v
w

⎫
⎬
⎭ =

m∑
l=0

n∑
i=1

Ni(S̄
lāli +

¯̄S
l
¯̄ali) (11.93)
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where (̄·) and (̄̄·) denote the symmetric and anti-symmetric components

of the displacement field with respect to a meridional plane. Matrix ¯̄S
l

coincides with Sl of Eq.(11.82) for γ = l, and S̄l is obtained from ¯̄S
l
simply

by interchanging Sl for C l. The term l = 0 represents an axisymmetric
displacement field.

Loads are expanded in Fourier series by an expression similar to
Eq.(11.93). The symmetric and anti-symmetric contributions are analyzed
separately as explained in Section 11.7. The strain matrix for both cases
is deduced from the expression in Figure 11.20 for circular prisms making

γ = −l for symmetric loads

γ = l for anti-symmetric loads
(11.94)

The stiffness matrix for the axisymmetric prism is given by an expres-
sion identical to Eq.(11.86) with

C =

{
2π for l = 0

π for l 
= 0
(11.95)

The equivalent nodal modal force vector is given by Eq.(11.87) with
C given by Eq.(11.95). For l = 0 the loading terms involving Sl are zero.
Hence, for symmetric loads and l = 0 the problem reduces to the fully
axisymmetric case and the unknowns are the meridional displacements u
and w [On4,ZTZ]. For anti-symmetric loads and l = 0 the only unknown
is the tangential displacement v. This problem is equivalent to torsion in
circular bars, traditionally solved in elasticity theory using stress functions
[ZTZ].

11.11 INTERMEDIATE SUPPORTS WITH RIGID DIAPHRAGMS

Intermediate supports in prismatic structures can be analyzed using a
flexibility approach. Practical examples are multi-span bridges where rigid
diaphragms are typically placed at the support cross-section to prevent in-
plane displacements.

The flexibility method is schematically described in Figure 11.22. First
the displacement constraints are released at the support points and the
diaphragms points. The resulting isostatic structure is then analyzed un-
der the external loads by the finite strip or the finite prism methods. The
displacements at the released points are grouped in vector a∗.
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Fig. 11.22 Analysis of a three-span beam by the flexibility method

In the second step, the isostatic structure is analyzed under unit point
loads (or unit moments) acting at each of the released points in the direc-
tion of the constrained displacements or rotations. A single load is con-
sidered at a time as shown in Figure 11.22. The computed displacements
in the direction of the constraint movement are grouped in the flexibility
matrix F [Li]. The geometry compatibility conditions are written as

Fr+ a∗ = ā (11.96)

where r is the vector or constraint forces and/or bending moments and ā
are the prescribed displacements at the support points (usually ā = 0).

Following the computation of r from Eq.(11.96) the displacements,
strains and stresses at any point of the structure are computed by

a = a∗ +
nc∑
j=1

ajrj ; ε̂εεεεεεεεεεεεε = ε̂εεεεεεεεεεεεε∗ +
nc∑
j=1

ε̂εεεεεεεεεεεεεjrj ; σ̂σσσσσσσσσσσσσ = σ̂σσσσσσσσσσσσσ∗ +
nc∑
j=1

σ̂σσσσσσσσσσσσσjrj (11.97)
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where (·)∗ denotes the values computed in the isostatic structure under
the external loads, (·)j are the values induced by a unit point load or a
unit moment corresponding to the j-th constraint and nc is the number
of constraints.

Eq.(11.96) is built-up in finite strip and finite prism methods by adding-
up the contributions from the different harmonics. Each element of F cor-
responds to a displacement (rotation) induced by a point load (or a bend-
ing moment). Consequently, a considerable number of harmonic terms has
to be taken for computing F and r with enough accuracy [On]. The same
number of harmonic terms should be taken to compute the displacements
a∗ for consistency.

The displacements, strains and stresses in (11.97) are obtained by
adding up the contributions of the harmonic terms chosen as it is usual in
finite strip and finite prism methods [On].

11.12 EXTENSION OF FINITE STRIP AND FINITE PRISM
METHODS

A number of procedures have been proposed for overcoming the difficulties
of the finite strip method in dealing with multi-span or column supported
structures, or with structures with variables thickness along the prismatic
direction. A popular option is to use spline functions to replace the trigono-
metric series. The so-called spline finite strip originally developed by Fan
[Fa] uses B-3 spline functions to approximate the longitudinal behaviour
and hyperbolic series in the interpolation function across the transverse
direction of the structure. This allows us to achieving a higher order of
continuity (C2 continuity) which is useful in some cases. The spline finite
strip method has been successfully applied to the analysis of plates, shells,
bridges and tall buildings [ChT,Fa].

The greater versatility of the spline finite strip method is compensated
by the loss of the decoupled form of the assembled system of equations.
Despite of this drawback the method allows to solve complex shell and
bridge structures with a smaller number of degrees of freedom than the
standard FEM. A detailed description of the spline finite strip method
and many applications are reported in [ChT].

The application of the finite strip method to structures with variable
thickness along the longitudinal directions is possible by using the so-
called computed shape functions [ChT]. These functions are defined along
the longitudinal direction analyzing a unit width strip as a beam with
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the same variation of the longitudinal rigidity as the original strip. The
approximation along the transverse direction is chosen as in the standard
finite strip method. An alternative for introducing for a variable thickness
in the longitudinal (prismatic) direction is to expand the thickness in
Fourier series in terms of the longitudinal coordinate. This leads to a full
stiffness matrix where the contribution of the different harmonic terms
are coupled. The coupled terms can be introduced in the l.h.s. of the
equilibrium equations and the problem can be still solved independently
for each harmonic term in an iterative manner [SMO].

Applications of the finite strip method and the spline finite strip
method to the non linear analysis of structures have been reported by
a number of authors. Clearly, the uncoupled structure of the equation is
now lost, although the approach is still competitive with the FEM in some
cases. A comprehensive list of references can be found in [ChT].

Some authors have modified the finite prism method by introducing
a second series approximation across the thickness of the structure. This
is the basis of the finite layer method which reduces the computation of
a 3D problem to a 1D one. Applications include the analysis of layered
plates of uniform thickness [ChC,ChC2], layered pavements and founda-
tions [ChF2,LS], soil consolidation problems [BS3,BS4] and pollutant ir-
rigation in soil [RB]. More details can be found in [ChT].

The finite prism and finite strip methods have been successfully com-
bined for the analysis of multi-layer sandwich plates and panels of non-
uniform thickness. Applications of the so-called finite-prism-strip method
are reported in [ChTC,TChC].

11.13 EXAMPLES

11.13.1 Simply supported square plate under uniformly distributed loading

The geometry of the plate and the material properties are shown in Figure
11.23. The solution is found using different meshes of 2-noded Reissner-
Mindlin plate strips with uniform one point integration. Figure 11.23
shows the convergence of the vertical deflection and the bending moment
Mx at the place center with the number of harmonic terms for a mesh of
15 strips. A non-zero harmonic term suffices to obtain an accurate solution
(recall that the even harmonic terms are zero due to symmetry). Figure
11.23 also shows the convergence of the central displacement and the cen-
tral bending moment Mx with the number of strips using 15 non-zero
harmonic terms. 1 % error in both magnitudes is obtained using eight
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Fig. 11.23 Simple supported plate under uniformly distributed load q. Convergence
of central deflection wc and central bending moment Mxc with the number of non

zero harmonic terms (NH) and the number of 2-noded strips. D =
Et3

12(1− ν2)

linear strips. The dimensions of the stiffness matrix for each harmonic
solution is just 27× 27 in this case [OS].

11.13.2 Curved simply supported plate

The curved thin plate analyzed is simply supported at the two ends and
has a point load acting at three points in the mid-span section. Both
experimental and numerical results are available for this problem.

The geometry of the plate, material properties, loading position and
finite strip mesh used are given in Figure 11.24. Results for the mid-
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VERTICAL DEFLECTION (IN.)

Load Rad. Coull & Das Finite strip Finite elements

position inc. Exp. Theor. Thorpe Benson 2-noded Sawko Fam
strip

13 0.876 0.752 0.882 0.995 0.874 0.851 0.880
11 0.578 0.500 0.582 0.624 0.581 0.559 0.577

A 9 0.353 0.300 0.356 0.388 0.357 0.344 0.353
7 0.194 0.180 0.195 0.206 0.194 0.192 0.193

13 0.457 0.470 0.459 0.441 0.460 0.445 0.446
11 0.342 0.370 0.343 0.329 0.348 0.333 0.342

B 9 0.241 0.250 0.242 0.222 0.247 0.236 0.241
7 0.155 0.170 0.156 0.147 0.158 0.154 0.154

13 0.195 0.150 0.195 0.180 0.195 0.192 0.193
11 0.163 0.135 0.165 0.152 0.167 0.162 0.163

C 9 0.157 0.125 0.153 0.149 0.155 0.151 0.151
7 0.169 0.145 0.170 0.173 0.170 0.170 0.169

Reference [CD] [Tho] [BH] [OS2] [SM] [FT]

Fig. 11.24 Curved simply supported (SS) plate under vertical point load. Results
for the deflection along the central line ABC for three positions of the load

span deflection obtained with the 2-noded Reissner-Mindlin plate strip
with uniform one point integration using six non-zero harmonic terms
[OS,OS2] are compared in Figure 11.24 with experimental and theoretical
results obtained by Coull and Das [CD], Kirchhoff finite strip solutions
[BH,Tho] and finite element solutions [FT,SM]. Results obtained with the
2-noded plate strip are very accurate.
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Fig. 11.25 Clamped circular plate under eccentric point load. Distribution of de-
flection and radial bending moment Mr along several diametral lines using ten
2-noded strips and 15 non-zero harmonic terms

11.13.3 Circular plate under eccentric point load

The next two examples show the possibilities of the 2-noded troncoconical
Reissner-Mindlin strip with uniform one point integration for analysis of
axisymmetric shells under arbitrary loading.

The first example presented in this section is the study of a clamped
circular plate under a point load acting at a distance from the plate center.
The geometry and the material properties are shown in Figure 11.25. The
analysis is carried out with a mesh of ten 2-noded strips and 15 non-
zero harmonic terms. A symmetric solution taking as symmetry axis the
diameter containing the load suffices in this case.

Figure 11.25 shows the distribution of the deflection and the radial
bending moments Mr along several diametral lines. Results compare very
well with a solution obtained with a fine mesh of 4-noded QLLL plate
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Fig. 11.26 Pinched cylinder. Distribution of displacements u and w and axial forces
Nθ and Ns along several lines

elements (Section 6.7.1) [PHZ]. The deflection under the load also agrees
with the theoretical solution [TW].

11.13.4 Pinched cylinder

This example was studied with flat and curved shell elements in Chapters
8 and 10 (Figures 8.36 and 10.15). The definition of the problem is shown
in Figure 11.26. The analysis is performed with twenty 2-noded strips
and 15 non-zero harmonic terms. Symmetry conditions with respect the
horizontal meridional plane were imposed.

Figure 11.26 shows the distribution of the vertical and longitudinal
displacements and the axial forces Ns and Nθ along different lines. The
finite strip results are undistinguishable from the analytical solution [Fl].

11.13.5 Simply supported curved box girder-bridge

The geometry of the bridge and the material properties are shown in Fi-
gure 11.27. A point load acting at the center of the mid-span section is
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Fig. 11.27 SS circular box girder bridge under central point load. Distribution of
vertical deflection and bending moment Mθ at mid-span section using eighteen
2-noded strips and fifteen non-zero harmonic terms [OS2,OS3]

considered. A mesh of eighteen 2-noded troncoconical Reissner-Mindlin
strip with reduced integration has been used. Figure 11.27 displays the
distribution of the vertical deflection and the circumferential bending mo-
ment Mθ at the mid-span section. All results have been obtained using
15 (odd) harmonic terms (for symmetry reasons). Numerical results agree
with those obtained by Cheung [Ch3,Ch6,ChC3,ChT] using a Kirchhoff
strip formulation. Further information can be obtained in [OS3,Su].
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11.13.6 Two-span cellular bridge

The geometry of the bridge, the material properties and the loading is
shown in Figure 11.28. A rigid diaphragm is placed at the mid-span section
over the support. Figure 11.28 also displays the mesh of fifteen 3-noded
quadratic Reissner-Mindlin flat shell strips with selective integration used
(Section 11.5.4) and the points of the upper and lower slabs of the mid-
span section where the vertical displacement is constrained to zero in order
to model a rigid cross section. Note that only two points are constrained at
the upper slab next to the points of application of the loads where higher
bending effects are expected. This suffices to model the rigid behaviour of
the mid-span section.

The analysis was performed using 30 non-zero (odd) harmonic terms
[On]. Figure 11.28 shows the distribution of the longitudinal axial force Ny

for a cross section under the loads and for a section adjacent to the mid-
span. Numerical results compare well with a Kirchhoff flat shell solution
[KS].

11.13.7 Simple supported slab-beam bridge over a highway

This example shows the usefulness of the 2-noded strip for the analysis
of a reinforced concrete bridge formed by a thick slab and cellular beams.
The bridge was built in the early 1980s as part of the highway Nueve de
Julio in the city of Buenos Aires (Argentina).

The geometry of the bridge, loading position, material properties and
finite strip discretization are shown in Figure 11.29. Results for the vertical
deflection, the transverse bending moment Mx and the longitudinal axial
forceNy in the slab at the mid-section obtained with 15 non-zero harmonic
terms are plotted in Figure 11.29. The diagrams shown are extrapolated
from the finite strip results. The validity of the numerical solution was
verified by an equilibrium check comparing the total longitudinal bending
moment at the mid-span section with the value obtained using simple
beam theory. The percentage of error was less than 5% which can be
considered good for practical design purposes [OS,Su].

11.13.8 Circular bridge analyzed with finite strip and finite prism methods

This example compares the finite strip and finite prism methods for the
analysis of a simple supported cellular bridge under two point loading
cases. The definition of the bridge and the loading are shown in Fig-
ure 11.30. The finite strip analysis is performed using fourteen 3-noded
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Fig. 11.28 Two-span cellular bridge. a) Geometry and loading; b) Discretization in
fifteen 3-noded quadratic strips; c) Constrained points to model the rigid support
cross section; d) Distribution of the axial force Ny in two sections [On]
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Fig. 11.29 Simply supported slab-beam highway bridge. Distribution of deflections,
transversal bending moment Mx and longitudinal axial force Ny at the mid-span
section using 58 2-noded strips and 15 non-zero harmonic terms

quadratic strips. Twenty 8-noded quadrilateral prisms have been chosen
for the finite prism solution. 20 non-zero odd harmonic terms were used
in both cases.

Figure 11.30 shows the deformation of the mid-span cross section for
the two loading cases considered. Results for the finite strip and finite
prism solutions compare well and also agree with those obtained with a
finite element solution using Kirchhoff flat shell elements [On].

Figure 11.30 also shows the distribution of the longitudinal axial force
Ny at the mid-span section. Results forNy for the finite prism method have
been obtained by integrating over the thickness the longitudinal stress σy.
The agreement between of the finite strip and finite prism results is also
very good.

The cost of the finite strip solution is clearly inferior to any other
method. Assuming the cost to be proportional to the square of the num-
ber of DOFs gives that the finite strip solution is

(
168
300

)2 ∼= 31 % more
economical than the finite prism solution.
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Fig. 11.30 SS box girder bridge analyzed with finite strip and finite prism methods.
Both solutions agree with a finite element flat shell solution [On]

The finite strip solution for this problem can be simplified using 2-
noded linear strips.

11.13.9 Simply supported thick box girder-bridge analyzed with the finite
prism method

This example shows an application of the finite prism method to the anal-
ysis of a straight simply supported thick box girder bridge. The geometry
of the cross section and the two meshes of 8-noded quadrilateral prisms
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Fig. 11.31 SS thick bock girder bridge analyzed with the finite prism method

used are shown in Figure 11.31. A point local acting eccentrically at the
mid-span section is considered. Figure 11.31 also shows the distribution
of the longitudinal stresses for the finer mesh. Note that the finite prism
method allows to capture the stress concentration in the vicinity of point
loads and this is an adavantage versus the finite strip method. Further
details on this example can be found in [ZT].

11.14 FINAL REMARKS

We have studied in this chapter the analysis of prismatic structures by
combining the finite element method and Fourier series expansions. The
finite strip method is adequate for thin-walled prismatic structures such
as plates, shells and bridges with straight and circular plan. The finite
strip method is also a competitive procedure for analysis of axisymmetric
shells under arbitrary loading. The general finite strip equations for a wide
range of prismatic thin-walled structures can be derived as a particular
case of the general troncoconical strip formulation. The simple 2-noded
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strip element with uniform one point integration is the best candidate for
analysis of prismatic thin-walled structures.

The finite prism method is applicable to prismatic solids which are
typical in structural and geotechnical engineering. The finite prism formu-
lation can be derived as a particular case of the circular prism theory. The
finite prism method is adequate for studying local effects, such as stresses
under point loads in slabs and bridges, foundations and other prismatic
solids and structures. A competitive application of the finite prism method
is the analysis of axisymmetric solids under arbitrary loading.
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PROGRAMMING THE FEM FOR
BEAM, PLATE AND SHELL
ANALYSIS IN MAT-fem

written by Francisco Zárate1

12.1 INTRODUCTION

We present in this chapter the implementation of several of the ele-
ments for beam, plate and shell analysis studied in this book in the
MAT-fem code environment written using the MATLAB� and GiD pro-
gramming tools [On4]. MAT-fem includes several codes for FEM anal-
ysis of different structures. These codes can be freely downloaded from
www.cimne.con/MAT-fem.

MATLAB� has been designed to work with matrices, facilitating the
matrix algebra operations from the numerical and storage points of view,
while providing a simple and easy way to handle complex routines.

Having an efficient analysis code is not the only requirement to work
with the FEM. It is necessary to rely on a suitable interface to prepare
the analysis data, to generate meshes in a simple and fast manner and to
display the results so that their interpretation is clear. An ideal comple-
ment to MATLAB� for these purposes is the pre/postprocessor program
GiD (www.gidhome.com and Appendix D of [On4]).

GiD allows users to treat any geometry via Computer Aided Design
(CAD) tools and to easily assign to it the data needed for FE computa-
tions, i.e. material properties, boundary conditions, loads, etc. Different
tasks, such as the mesh generation and data writing levels in a pre-defined
format become a transparent task for the user with GiD.

The easy visualization of the analysis data and the numerical results
with GiD allows users concentrating on their interpretation.

1 Dr. F. Zárate can be contacted at zarate@cimne.upc.edu

E. Oñate, Structural Analysis with the Finite Element Method. Linear Statics:  
Volume 2: Beams, Plates and Shells, Lecture Notes on Numerical Methods  
in Engineering and Sciences, DOI 10.1007/978-1-4020-8743-1_12,  
© International Center for Numerical Methods in Engineering (CIMNE), 2013 
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Structural type Code name GiD interface

Slender beams Beam EulerBernoulli MAT-fem Beams

Thick/slender beams Beam Timoshenko MAT-fem Beams

Thin plates Plate MZC MAT-fem Plates

Thick/thin plates Plate QLLL MAT-fem Plates

Thick/thin plates Plate Q4 Rect MAT-fem Plates

Thick/thin plates Plate Q4 Iso MAT-fem Plates

Thick/thin plates Plate TQQL MAT-fem Plates

3D shells with flat elements Shell QLLL MAT-fem Shells

Axisymmetric shells Troncoconical RM Shell MAT-fem AxiShells

Table 12.1 Definition of the problem type, name of code and GiD interface

MAT-fem has been written thinking on the close interaction of GiD
with MATLAB� for FEM analysis. GiD allows manipulating geometries
and discretizations for writing the input data files required by MATLAB�.
The calculation program is executed in MATLAB� without losing any of
the MATLAB� advantages. Finally GiD gathers the output data files for
graphical visualization and interpretation of results.

This scheme allows us understanding the development of a FEM pro-
gram in detail, following each one of the code lines if desired, and making
possible for users to solve examples that due to their dimensions would
fall outside the capabilities of any program with educational aims.

We have chosen to write a different MATLAB� code for the analysis
of the different structures considered, as shown in Table 12.1. The same
programming strategy is followed and the variables have the same mean-
ing in all cases. This simplifies the learning process and facilitates the
modification of a specific code without introducing errors in the rest.

In the following sections the different MAT-fem codes for beam, plate
and shell analysis are described in some detail. The description starts with
the general input data file instructions, automatically generated by GiD,
and follows with the information to understand the particular features of
each code within MAT-fem.

Finally, the user interface implemented in GiD for each code is briefly
described by means of examples of application.

12.2 MAT-fem

As already mentioned, MAT-fem contains several codes for analysis of
beams, plates and shells (Table 12.1). All codes share the same program-
ming philosophy and the differences are in the DOFs the constitutive
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Start 

Read input data *.m 

Compute K(e) and f(e)  

Update f with point loads and 
distributed loads along a side 

Solve Ka=f 

Compute nodal reactions 

� � ��� �� 

Compute smoothed 

stresses at nodes 

Write results for GiD 

Assembly of K(e) and f(e) 

Compute �	   

Loop over elements 

End 

Fig. 12.1 MAT-fem flow chart for a typical problem type

matrix D̂, the generalized strain matrix B and the expressions for the
element stiffness matrix and the equivalent nodal force vector.

MAT-fem is a top-down execution program. The program flow chart is
shown in Figure 12.1. The input data module is implemented in the same
file were the data is defined, as described in the next sections.

We consider that all elements have the same material properties. Hence,
the constitutive matrix is evaluated outside the loop over the elements
within which the element stiffness matrix and the equivalent nodal force
vector are computed.

To save memory the stiffness matrix and the equivalent nodal force
vector are assembled immediately after they are evaluated for each ele-
ment.

Outside the element loop the equivalent nodal force vector is updated
with the nodal point forces and the distributed loads acting along a side.
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% 
% Material Properties 
% Beams 
% 
  young  =   4.761904762e+04 ; 
  poiss  =   5.820105800e-02 ; 
  denss  =   0.000000000e+00 ; 
  area   =   1.600000000e-01 ; 
  inertia=   2.133330000e-03 ; 

% 
% Material Properties 
% Plates and Shells 
% 
  young  =   2.100000000e+11 ; 
  poiss  =   3.000000000e-01 ; 
  denss  =   0.000000000e+00 ; 
  thick  =   1.000000000e-01 ; 

(b) (a) 

Fig. 12.2 Input data file. Example of definition of material properties. a) Beams.
b) Plates and shells

Once the unknown DOFs are found, the program evaluates the nodal
reactions at the prescribed nodes and the smoothed stresses at the nodes.
The final step is the writing of the numerical results to visualize them in
GiD (Figure 12.1).

12.3 DATA FILES

Before executing MAT-fem it is necessary to feed it with information on
the nodal coordinates, the mesh topology, the boundary conditions, the
material properties and the loading.

The input data file uses MATLAB� syntax. The program variables are
defined directly in that file. The name of the file will take the MATLAB�

extension .m.
Inside the data file we distinguish three groups of variables: those asso-

ciated to the material properties, those defining the topology of the mesh
and those defining the boundary conditions.

12.3.1 Material data

With the intention of simplifying the code, an isotropic linear elastic ma-
terial is used for all problems. Hence the material data appears only once
in the data file.

Figure 12.2 shows the variables associated to the material data for each
one of the structures considered. The definition of each variable is shown
in Table 12.2.

We note that the program is free of data validation mechanisms. Hence
it does not check up aspects such the Poisson’s ratio rank (0 <= poiss <
0.5) and others. The reason is that these details, although they are im-
portant in practice, would hide the core of the FEM algorithm.
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Variable Description Beams Plates 3D Shells Axisym. Shell

young Young modulus
√ √ √ √

poiss Poisson’s ratio
√ √ √ √

dens Density
√ √ √ √

area Cross section area
√

inertia Cross section inertia moment
√

thick Thickness
√ √ √

Table 12.2 Material parameters for each structure

% 
% Coordinates 
% 
global coordinates 
coordinates = [ 
  0.00 ; 
  0.50 ; 
 
  2.00 ; 
  2.50 ]; 
% 
% Elements 
% 
elements = [ 
    1,   2 ; 
    2,   3 ; 
 
   17,  16 ; 
   18,  17 ]; 

% 
% Coordinates 
% 
global coordinates 
coordinates = [ 
  0.00 , 0.00 ; 
  0.50 , 0.00 ; 
 
  2.00 , 2.50 ; 
  2.50 , 2.50 ]; 
% 
% Elements 
% 
elements = [ 
    1,   2,   5,   6 ; 
    2,   3,   7,   5 ; 
 
   17,  16,  20,  21 ; 
   18,  17,  22,  20 ]; 

(a) (b) 

Fig. 12.3 Input data file. Topology definition. a) Beam. b) Plate

12.3.2 Mesh topology

The variable group that describes the mesh topology is defined with the
attribute of a global variable that is accessible within the code by any
subroutine. Figure 12.3 shows the definition of the coordinates and the
nodal connectivities for a beam and a plate by means of the variables
coordinates and elements.

coordinates is a matrix with as many rows as nodes in the mesh
(npnod) and columns as the number of dimensions of the problem (1 for
beams, 2 for plates and 3 for shells). For a beam the dimensions of the
coordinates matrix are npnod×1. For a plate the coordinates x and y
of each node are needed and coordinates has the dimensions npnod×3.
For a shell, coordinates is a npnod×3 matrix. The number of a node
corresponds to the position that its coordinates have in the coordinates
matrix, i.e. node number 25 has the position 25 in coordinates.
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Structure type /  

Code name 
Element 

nnode = 2 

nnode = 3 nnode = 4 

Slender beams
Beam_EulerBernoulli

2-noded Euler 
Bernoulli  

beam element 
  

Thick/slender beams
Beam_Timoshenko 

2-noded Timoshenko 
beam element 

Thin plates  
Plate_MZC 

  MZC plate element

Thick/thin plates 
Plate_QLLL 
Plate_Q4_Rect  
Plate_Q4_Iso 
Plate_TQQL TQQL

QLLL 

Q4 Rectangle 
Q4 (Isoparametric)

3D shells with flat elements 
Shell_QLLL 

QLLL + Q4 
(plane stress) 

Axisymmetric shells 
Troncoconical_RM_Shell

2-noded  
Reissner-Mindlin 

troncoconical element
  

 
 

 
 

 
 

  

Table 12.3 Element type for each structure

The elements matrix defines the number of elements and their nodal
connectivities. elements has as many rows as the number of elements in
the mesh and columns as the number of nodes on each element (nelem ×
nnode). Table 12.3 shows the number of nodes for the elements considered
in MAT-fem. The number of an element corresponds with the row number
where its nodes are stored in elements.

12.3.3 Boundary conditions

The last group of variables defines the boundary conditions of the problem,
as shown in Figure 12.4.

The fixnodes matrix defines the DOFs prescribed for the particular
problem to be solved. The number of rows in fixnodes corresponds to the
number of prescribed DOFs and the number of columns describes in the
following order: the prescribed node number, the fixed DOF parameter (1
if the node is fixed in the x direction and 2 if it is fixed in the y direction,
etc.) and the prescribed DOF value. Hence, if a node is prescribed in both
the x and y directions two lines are necessary to define this condition.

Table 12.4 shows the parameters associated to each prescribed DOF
for the different problems considered.



Data files 735

�

% 
% Prescribed nodes 
% 
fixnodes = [ 
    1, 1, 0.0 ; 
    1, 2, 0.0 ; 

   13, 1, 0.0 ; 
   13, 2, 0.0 ]; 
% 
% Point loads 
% 
pointload = [ 
              6, 2, -1.0 ; 

             18, 2, -1.0 ]; 
% 
% Side loads 
% 
uniload = sparse ( 24,1 ); 
uniload ( 1 ) =  -1.0000e+00  ; 
uniload ( 2 ) =  -1.0000e+00  ; 
uniload ( 3 ) =  -1.0000e+00  ; 
uniload ( 4 ) =  -1.0000e+00  ; 

Fig. 12.4 Input data file. Boundary conditions definition

DOF u v w dw/dx θ θx θy θx′ θy′

Associated point force Fx Fy Fz M M Mx My Mx′ My′

Slender beams 1 2
Thick/slender beams 1 2
Thin plates 1 2 3
Thick/thin plates 1 2 3
3D shells with flat elements 1 2 3 4 5
Axisymmetric shells 1 2 3

Table 12.4 Parameters for the prescribed DOF and the associated point forces

12.3.4 Point and surface loads

The pointload matrix defines the point loads acting at a node. This is
a matrix where the number of rows is the number of point loads acting
on the structure and each of the three columns defines the number of the
loaded node, the associated DOF and the magnitude of the load (Figure
12.4). Displacement DOFs are associated to point loads, while rotations
are associated to bending moments. Point loads are defined in the global
coordinate system. If there are no point loads, pointload is defined as an
empty matrix by means of the command pointload = [];
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%% MAT-fem 
% 
% Clear memory and variables. 
  clear 

  file_name = input('Enter the file name :','s'); 

  tic;                   % Start clock 
  ttim = 0;              % Initialize time counter 
  eval (file_name);      % Read input file 

% Finds basic dimentions 
  npnod  = size(coordinates,1);        % Number of nodes 
  nelem  = size(elements,1);           % Number of elements 
  nnode  = size(elements,2);          % Number of nodes per element
  dofpn  = 3;                       % Number of DOF per node
  dofpe  = nnode*dofpn;                % Number of DOF per element
  nndof  = npnod*dofpn;              % Number of total DOF

  ttim = timing('Time needed to read the input file',ttim);  

Fig. 12.5 Program initialization and data reading

Finally, uniload is a sparse matrix that contains the information for
uniformly distributed loads acting on the normal direction to each ele-
ment. The distributed load is assumed to be constant for each element.
Hence only the value of the load is needed for each element and the dimen-
sion of uniload is equal to nelem. If no uniform load acts, the uniload

matrix remains empty with no memory consumption.
Figure 12.4 shows an example of the definition of uniform loads.
The name of the data file is up to the user. Nevertheless, the extension

must be .m so that MATLAB� can recognize it.

12.4 START

MAT-fem begins by making all variables equal to zero with the clear

command. Next it asks the user the name of the input data file that
he/she will use (the .m extension in not included in the filename). Figure
12.5 shows the first lines of the code corresponding to the variables boot
as well as the clock set up, which stores the total execution time in ttim.

Data reading, as previously said, is a direct variable allocation task in
the program. From the data matrices it is possible to extract the basic
dimensions of the problem, such as the number of nodal points, npnod,
which corresponds to the number of lines in the coordinates matrix and
the number of elements nelem which is equal to the number of lines in
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% Dimension the global matrices. 
  StifMat  = sparse ( nndof , nndof ); % Create the global stiffness matrix
  force    = sparse ( nndof , 1 );     % Create the global equivalent nodal force vector
  reaction = sparse ( nndof , 1 );     % Create the global reaction vector
  Str      = zeros  ( nelem , 2 );     % Create array for stresses 
  u        = sparse (nndof, 1);        % Nodal variables 

Fig. 12.6 Initialization of global stiffness matrix and equivalent nodal force vector

the elements matrix. The number of nodes for each element (Table 12.3)
(nnode) is the number of columns in elements.

The total number of DOFs per element (dofpe) is equal to nnode

multiplied by the number of DOFs for each node (dofpn).
Finally, the number of equations in the problem (nndof) is computed

by multiplying the total number of nodes (npnod) by dofpn.
Note that these variables are defined in the data structure, which sim-

plifies the code interpretation.
Throughout the program the timing routine is used to calculate the

run time between two statements in the code. In this way the user can
check the program modules that require higher computational effort. In-
side timing the tic and toc MATLAB� commands are used.

12.5 STIFFNESS MATRIX AND EQUIVALENT NODAL FORCE
VECTOR FOR SELF-WEIGHT AND DISTRIBUTED LOAD

12.5.1 Generalities

The code lines shown in Figure 12.6 define the global stiffness matrix
(stifMat) and the equivalent nodal force (force) vector as a sparse ma-
trix and vector, respectively. The reactions at the prescribed nodes are
stored in reaction. Matrix Str and vector u are respectively used for
storing the resultant stresses (at element level) and the nodal displace-
ments. Table 12.5 shows the resultant stresses for each problem.

MAT-fem uses sparse matrices to optimize the memory using MATLAB�

tools. In this manner and without additional effort, MAT-fem uses very
powerful algorithms without losing its simplicity.

As the program’s main purpose is to demonstrating the implementation
of the FEM, some simplifications are made like using a single material
for the whole structure. Consequently, the constitutive matrix does not
vary between adjacent elements and it is evaluated before initiating the
computation of the element stiffness matrix (Figure 12.1).
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Structural type/
program name

No of resultant Resultant stresses
stresses

Slender beams
Beam EulerBernoulli

1 M

Thick/slender beams
Beam Timoshenko

2 M Q

Thin plates
Plate MZC

3 Mx My Mxy

Thick/thin plates
Plate QLLL

Plate Q4 Rect

Plate Q4 Iso

Plate TQQL

5 Mx My Mxy Qx Qy

3D shells with flat
elements
Shell QLLL

6 Nx′ My′ Nx′y′ Mx′ My′ Mx′y′

Axisymmetric shells
Troncoconical RM Shell

5 Nx′ Ny′ Mx′ My′ Qz′

Table 12.5 Resultant stresses for each problem

The generalized constitutive matrix is typically split in the membrane
(D matm), bending (D matb) and transverse shear (D mats) components.

MAT-fem recalculates the values for each variable instead of storing
them. The recalculation is performed in a fast manner and does not reduce
significantly the code’s efficiency. This leaves more memory for solving
larger problems.

The definition of the Gauss point coordinates and weights is performed
before entering the element loop for computing the element stiffness matrix
K(e) and the equivalent nodal force vector f (e).

Figure 12.7 shows the element loop within which K(e) and f (e) are
computed and assembled for uniformly distributed load and self-weight.
The loop begins recovering the geometrical properties for each element.
Vector lnods stores the nodal connectivities for the element. For 3D shells,
the variables coor x, coor y and coor z store the x, y, z coordinates for
the nodes. For plates only the variables coor x and coor y are needed,
while for beams just coor x is used.

The next step is the computation of the element stiffness matrix. The
same subroutine evaluates the equivalent nodal force vector for self-weight
and uniformly distributed load for the element. The use of the same inte-
gration quadrature for integrating K(e) and f (e) allows us the organization
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%  Element loop. 
  for ielem = 1 : nelem 

%Recover the element geomety 
    lnods(1:nnode) = elements(ielem,1:nnode);
   
    coor_x(1:nnode) = coordinates(lnods(1:nnode),1); % Nodal X coordinate
    coor_y(1:nnode) = coordinates(lnods(1:nnode),2); % Nodal Y coordinate
    coor_z(1:nnode) = coordinates(lnods(1:nnode),3); % Nodal Z coordinate 

% Finds the equation number list for the i-th element 
    for i=1:nnode 
     ii = (i-1)*dofpn; 
     for j =1:dofpn 
       eqnum(ii+j) = (lnods(i)-1)*dofpn+j; % Build the equation number list
     end 
    end 

% Assemble the equivalent nodal force vector 
    for i = 1 : dofpe 
      ipos = eqnum(i); 
      force (ipos) = force(ipos)  + ElemFor(i); 

% Assemble the stiffness matrix 
      for j = 1 : dofpe 
         jpos = eqnum(j); 
         StifMat (ipos,jpos) = StifMat (ipos,jpos) + K_elem(i,j); 
      end 
    end 

  end  % End element loop 

Element geometry 

Equation numbers 

Assembly process 

Fig. 12.7 Loop for computation and assembly of the stiffness matrix and the equi-
valent nodal force vector (uniform load and self-weight) for the element

of the code in this manner. The computation of K(e) and f (e) for each of
the elements considered is detailed in the following sections.

Vector eqnum is defined before the assembly of the global equations.
It contains the global number for each of the equations in the element
stiffness matrix. This involves a loop over the number of nodes (nnode)
and a second loop over the DOFs of each node (dofpn) (see Figure 12.7).
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%  Add point loads to the equivalent nodal force vector 
  for i = 1 : size(pointload,1) 
    ieqn = (pointload(i,1)-1)* dofpn + pointload(i,2);   % Finds eq. number
    force(ieqn) = force(ieqn) + pointload(i,3);          % adds point load 
 end

Fig. 12.8 Computation of the equivalent nodal force vector for point loads

�

%  Applies the Dirichlet conditions and adjusts the right-hand side. 

  for i = 1 : size(fixnodes,1)  
    ieqn = (fixnodes(i,1)-1)*dofpn+fixnodes(i,2);        % Finds eq. number 
    u(ieqn) = fixnodes(i,3);                   % store the solution for u 
    fix(i) = ieqn;                         % mark the eq as a fix value 
  end 

  force = force - StifMat * u;       % adjust the rhs with the known values 

Fig. 12.9 Update the equivalent nodal force vector for prescribed nodes

The assembly process is implemented by means of two loops from 1

to dofpe (number of equations for each element). In the first loop the
equivalent nodal force vector is assembled and in the second one the ele-
ment stiffness matrix is assembled. This scheme avoids storing the element
matrices temporarily.

12.5.2 Point loads

Point loads acting at nodes (either forces or moments) are directly assem-
bled in the global equivalent nodal force vector stored in the data file.
This involves a loop over the number of loads contained in the poinload

variable, finding the equations number associated to the load and adding
the load value to the force vector (Figure 12.8).

12.6 PRESCRIBED DISPLACEMENTS

Figure 12.9 shows the loop over the prescribed DOFs and how their values,
defined by the fixnodes matrix, are assigned to the nodal displacement
vector u. Also the fix vector is defined to store the equation numbers for
the prescribed DOFs.

Finally the force vector is updated with the product of the StifMat

matrix and the u vector following the standard procedure [Chapter 1 of
[On4]]. Vector u at this moment contains the values of the prescribed
DOFs only.
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%  Compute the solution by solving StifMat * u = force for the  
%  unknown values of u. 
  FreeNodes = setdiff ( 1:nndof, fix ); % Finds the free node list and 
                                        % solve for it. 
  u(FreeNodes) = StifMat(FreeNodes,FreeNodes) \ force(FreeNodes); 

Fig. 12.10 Solution of the equations system

�

%  Compute the reactions at fixed nodes as R = StifMat * u - F 

  reaction(fix) = StifMat(fix,1:nndof) * u(1:nndof) - force(fix); 

Fig. 12.11 Computation of nodal reactions

12.7 SOLUTION OF THE EQUATIONS SYSTEM

The strategy used in MAT-fem basically consists in solving the global
equation system without considering those DOFs whose values are known
(i.e. prescribed). The FreeNodes vector contains the list of the equations
to be solved (Figure 12.10).

The FreeNodes vector is used as a DOF index and allows us to write
the solution of the equations system in a simple way. MATLAB� takes
care of choosing the most suitable algorithm to solve the system. The rou-
tines implemented in MATLAB� nowadays compete in speed and memory
optimization with the best existing algorithms.

12.8 NODAL REACTIONS

The solution of the equations system is stored in the u vector containing
the nodal displacements (Figure 12.11). Nodal reactions at the prescribed
nodes are computed by means of the expression: reaction = StifMat*u

- force [On4]. In order to avoid unnecessary calculations we use vector
fix which contains the list of the equations associated to the prescribed
DOFs as shown in Figure 12.11.

12.9 RESULTANT STRESSES

12.9.1 Generalities

Once the nodal displacements have been found it is possible to evaluate
the resultant stresses in the elements by means of the D̂Bu expression. Since
the generalized strain matrix B was previously computed at the integration
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% Compute the stresses for QLLL plate element 
  
  Strnod = Stress_Plate_QLLL(D_matb,D_mats,gauss_x,gauss_y,u); 
  
 ttim = timing('Time to  solve the  nodal stresses',ttim); %Reporting time

Fig. 12.12 Call the subroutine for computing the resultant stresses for the 4-noded
Reissner-Mindlin QLLL plate element

points, the resultant stresses are also computed at these points which are
also optimal for evaluation of stresses (Section 6.7 of [On4]). The next
step is to transfer the values of the stresses from the integration points to
the element nodes. This step is treated in the next section. Figure 12.12
shows the call for the subroutine for computing the resultant stresses for
the QLLL plate element which are stored in the Strnod matrix.

12.9.2 Computation of the stresses at the nodes

Every element has it own subroutine for computing the resultant stresses.
Typically, this subroutine requires the generalized constitutive matrix, the
coordinates of the integration points and the nodal displacements.

Figure 12.13 shows the general form of the subroutine for computing
the resultant stresses. The resultant stresses are first computed at the
Gauss integration points within each element and then they are extrapo-
lated to the nodes following a particular stress projection and smoothing
scheme. The resultant stress computation starts with the definition of the
variables nelem, nnode, npnod, dofpn and dofpe, as it was done at the
beginning of the program (Figure 12.5). This avoids the transfer of these
variables as arguments when the subroutine is called and preserves the
clarity in the code. Similarly, the Strnod and eqnum matrices are dimen-
sioned. Strnod contains the smoothed resultant stresses at the nodes and
an additional parameter that defines the number of elements that surround
each node that is required to perform the smoothing.

Next a loop over all the elements is performed for recovering the nodal
connectivities (lnods), the nodal coordinates and the equation number
associated to each DOF of the element nodes (eqnum). These operations
were already performed for computing the element stiffness matrices and
they are repeated here in order to save storing the data. Repeating some
computations is typically a more efficient and faster procedure than storing
the previously computed values in memory.
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function Strnod = Stress_Plate (D_matb,D_mats,gauss_x,gauss_y,u)% 
% Compute resultant stresses 

global coordinates; 
global elements; 
% Basic variables definition 
nelem  = size(elements,1);          % Number of elements 
nnode  = size(elements,2);          % Number of nodes per element 
npnod  = size(coordinates,1);       % Number of nodes 
Strnod = zeros(npnod , 6 );         % Create array for stresses 
dofpn  = 3;                         % Number of DOF per node 
dofpe  = dofpn*nnode;               % Number of DOF per element 
eqnum  = zeros(dofpe);              % Equation number list 
  
%  Element loop. 
for ielem = 1 : nelem 
    

%Recover the element geomety 
  lnods(1:nnode) = elements(ielem,1:nnode); 
  
  coor_x(1:nnode) = coordinates(lnods(1:nnode),1); % Elem. X coordinate 
  coor_y(1:nnode) = coordinates(lnods(1:nnode),2); % Elem. Y coordinate 
  
  % Finds the equation number list for the i-th element 
  for i=1:nnode 
   ii = (i-1)*dofpn; 
   for j =1:dofpn 
     eqnum(ii+j) = (lnods(i)-1)*dofpn+j; % Build the equation number list 
   end 
  end 
     
  % Recover the nodal displacements for the i-th element 
  u_elem =u(eqnum); 
  

  for i = 1 : npnod 
    Strnod(i,1:5) = Strnod(i,1:5)/Strnod(i,6); 
  end 
end 

Recover 
basic 

variables 

Element geometry 

Equation numbers 

Nodal displacements 

Nodal averaging 

Fig. 12.13 Computation of resultant stresses

An important step is to identify the nodal displacements for the ele-
ment. This is a simple task as the number of the equations associated to
the element DOFs stored in eqnum allows us to recover the nodal displace-
ment values in the u elem vector.

The computation of the resultant stresses requires building the gener-
alized strain matrix B at each Gauss point of the element. The resultant
stresses are computed at each Gauss point as σ̂σσ = D̂Ba(e) and are stored
in Strnod.

The next step is to extrapolate the resultant stresses from the Gauss
points to the nodes.
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Fig. 12.14 Extrapolation of the Gauss point stresses to the nodes for a 4-noded
quadrilateral

For the 3-noded triangle the resultant stresses are constant over the
element and nodal extrapolation is trivial. This is not the case for 4-
noded quadrilateral where the resultant stresses typically have a bilinear
variation over the element and the extrapolation to the nodes is performed
using the shape functions as explained in Section 9.8.2 of [On4].

For instance, for the 4-noded quadrilateral the nodal value of each
resultant stress component σ is obtained as

σj =
IV∑
i=I

Ni(sj , tj)σi j = 1, 4 (12.1)

where σj is the value of the stress at the jth node (j is the local number
of the node), σi is the value of the stress component at each Gauss point
and the coordinates s and t range from 1/p to −1/p for the four element
nodes as shown in Figure 12.14. For more details see [On4].

Once the resultant stresses have been extrapolated from the Gauss
point to the nodes, an averaging of the nodal values contributed from each
element sharing the node is performed to compute a smoothed resultant
stress field at each node.

12.10 POSTPROCESSING STEP

Once the nodal displacements, the reactions and the resultant stresses
have been calculated, their values are transferred to the postprocessing
files from where GiD will be able to display them in graphical form. This
is performed in the subroutine ToGiD (Figure 12.15).



Graphical User Interface 745

 

% Graphic representation. 
  ToGiD (file_name,u,reaction,Strnod); 

Fig. 12.15 Call for the postprocessing step via GiD

� Fig. 12.16 GUI for MAT-fem-Beams

12.11 GRAPHICAL USER INTERFACE

12.11.1 Preprocessing

In this section the Graphical User Interface (GUI) implemented in GiD
is described. In order to access the GUI it is necessary to select from the
GiD’s Data menu the adequate module for each of the MAT-fem codes.
When selected, an image similar to that shown in Figure 12.16 appears.

All the GiD capabilities are part of MAT-fem. These include geometry
generation, import and handling, as well as a variety of meshing, input
data and results visualization techniques. All this provides MAT-fem with
capacities difficult to surpass for an educational code.

There is plenty of information on GiD available in Internet. We recom-
mend visiting the GiD web site at www.gidhome.com.

Solving a problem with MAT-fem is very simple once the geometry has
been defined. Just follow the icons of the MAT-fem graphical menu that
appears when MAT-fem is activated (Figure 12.17).

The first button ������

�

in Figure 12.17 works to identify the geometrical
entities (point or lines) that have nodes with prescribed displacements.
When pressing on, an emergent window will appear to select the points
or lines where the displacements are prescribed (Figure 12.18) The check

http://www.gidhome.com
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����� ����� ����� ����� ����� ����� �

� Fig. 12.17 MAT-fem graphical menu

(a) 

 

(b) 

(c) 

 

Fig. 12.18 Assign conditions at prescribed nodes. a) Beams. b) Plates. c) Shells

boxes identify the prescribed directions. Also it is possible to assign a
non-zero value to the constraint.

The second button����� ����

�

in Figure 12.17 is used for point loads allocation.
When selected, an emergent window (Figure 12.19) allows introducing the
point load values in the global coordinate system. Then it is necessary to
select the nodes were the point load is applied.

Point loads act normal to the beam axis and the plate surface, or in
an arbitrary direction for a 3D shell. Point bending moments are defined
as positive if they act in an anti-clockwise sense.

The third button��������������� ������������������������

�

in Figure 12.17 is associated to uniformly dis-
tributed loads along the element sides and permits to assign this condition
on geometry lines. The emergent window (Figure 12.20) allows introduc-
ing the value of the side load per unit length (or area). Uniform loads are
assumed to act normal to the element surface (or the beam axis).

Material properties

The material properties are defined with the fourth button������������������������������ ���������������������������������������

�

in Figure
12.17. This leads to the emergent window shown in Figure 12.21 which
allows users defining the material parameters associated to each structure
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(a) (b) (c) 

 

 
 

�

Fig. 12.19 Assign point load. a) Beams. b) Plates. c) Shells

(a) (b) 

 
  

 

Fig. 12.20 Assign uniformly distributed load. a) Beams. b) Plates and shells

Fig. 12.21 Definition of material properties. a) Beams. b) Plates and shells

like the Young modulus, the Poisson’s ratio, the density, the thickness,
the transverse cross section, the inertia modulus, etc. It is necessary to
assign these properties over the geometry entities that define the analysis
domain (lines for beams and axisymmetric shells and surfaces for plates
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(a) Problem title (b) Data file 

�

�

�

Fig. 12.22 (a) General title of the problem. (b) Writing of data file

and 3D shells). As mentioned earlier, only one type of material is allowed
in MAT-fem for the sake of simplicity.

The general properties button (the fifth button��������������� �����������of Figure 12.17)
allows users to access the window shown in Figure 12.22a were the title of
the problem is defined as well as the problem type (plane stress or plane
strain) and the self-weight load option.

Once the boundary conditions and the material properties have been

defined it is necessary to generate the mesh. The sixth button��� ������of Figure
12.17 is used to create the mesh with GiD.

The writing of the data file is made when pressing the last button��� ������of
Figure 12.17. All the geometrical and material properties of the problem,
as well as the boundary conditions and the loads are written on the data
file in the specific reading format for MAT-fem. Recall that the file name
needs the .m extension as shown in Figure 12.22b.

It is important to remark that the file extension .m can be set only
when the box Files of type is set to All files (*) (Figure 12.22b).

12.11.2 Program execution

The problem calculation is performed with MATLAB� by using the ap-
propriate code (i.e. Beam EulerBernoulli, Plate MZC, Shell QLLL, etc.).
The code execution does not have other complications than knowing the
directory where the output file will be written. A good practice is to set
this directory as the working directory were the postprocessing file will be
also written.

During the code execution the total time used by the code will appear
in the MATLAB� console as well as the time consumed in each subrou-
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Fig. 12.23 Postprocessing file reading

tine. The largest time consumption in the academic problems solved with
MAT-fem is invested in the calculation and assembly of the global stiffness
matrix, while the solution of the equations system represents a small per-
centage of the consumed time. The opposite happens when solving larger
structural problems.

Once the code execution is finished, the variables are still recorded
inside MATLAB�, thus allowing users experiment with the collection of
internal functions available.

12.11.3 Postprocessing

Once the problem execution in MATLAB� is concluded it is necessary
to return to GiD for the postprocessing step in order to analyze the re-
sults. The next step is to open any of the generated files that contain the
extension *.flavia.msh or *.flavia.res (Figure 12.23).

The results visualization step is performed using the GiD graphical
possibilities which permit to visualize the results by means of iso-lines, cuts
and graphs. This facilitates the interpretation of the MAT-fem results.

The spy(StifMat) command of MATLAB� displays the profile of the
global stiffness matrix (see Figure 12.29b). Other MATLAB� commands
allow users to find out the properties of this matrix, such as its rank,
eigenvectors, determinant, etc.

In the following sections we describe the particular features of the dif-
ferent Mat-fem codes implemented.
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%  Material properties (Constant over the domain). 
  D_matb = young*inertia; 

  ttim = timing('Time needed to  set initial values',ttim); %Reporting time

Fig. 12.24 Constitutive matrix for 2-noded Euler Bernoulli beam element

�

    len = coor_x(2) – coor_x(1);
    const = D_matb/len^3; 
     
    K_elem = [ 12    , 6*len  , -12    ,  6*len  ; 
                6*len, 4*len^2,  -6*len,  2*len^2; 
              -12    ,-6*len  ,  12    , -6*len  ; 
                6*len, 2*len^2,  -6*len,  4*len^2];
             
    K_elem = K_elem * const; 
         
    f       = (-denss*area + uniload(ielem))*len/2;
    ElemFor = [ f, f*len/6, f,-f*len/6]; 

Fig. 12.25 Stiffness matrix and equivalent nodal force vector for 2-noded Euler-
Bernoulli beam element

12.12 2-NODED EULER-BERNOUILLI BEAM ELEMENT

The formulation of this beam element can be found in Section 1.3.
We present next the parts of the Beam EulerBernoulli code for com-

puting the constitutive matrix, the stiffness matrix, the equivalent nodal
force vector (for uniformly distributed load) and the bending moments.
The rest of the code is identical to that explained in the previous section.

12.12.1 Stiffness matrix and equivalent nodal force vector

The constitutive matrix for the 2-noded Euler-Bernoulli beam element
contains the bending stiffness (EIy) only (Figure 12.24).

The element stiffness matrix is given explicitly in Eq.(1.20). The ex-
pression for the equivalent nodal force vector for a uniformly distributed
loading is shown in Eq.(1.21b).

The computation of K(e) (K elem) and f (e) (ElemFor) is shown in Fi-
gure 12.25.

12.12.2 Computation of bending moment

The bending moment within each element is first computed at the two
Gauss points that integrate exactly the element stiffness matrix. The ben-
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 % Two gauss point for bending moment evaluation 
  gaus1 =-1/sqrt(3);  % Gauss Point 1 
  gaus2 = 1/sqrt(3);  % Gauss Point 2 

  a = (1+sqrt(3))/2;
  b = (1-sqrt(3))/2; 

  len2 = len^2; 

 % Bmat and bending moment at Gauss point 1  
bmat_1=[6*gaus1/len2,(-1+3*gaus1)/len,-6*gaus1/len2,(1+3*gaus1)/len]; 
    Str_g1(ielem,1) = D_matb*(bmat_1*transpose(u_elem)); 

 % Bmat and bending moment at Gauss point 2  
bmat_2=[6*gaus2/len2,(-1+3*gaus2)/len,-6*gaus2/len2,(1+3*gaus2)/len]; 
    Str_g2(ielem,2) = D_matb*(bmat_2*transpose(u_elem));% 

    Strnod(lnods(1),1) = Strnod(lnods(1),1 +a*Str_g1+b*Str_g2; 
    Strnod(lnods(2),1) = Strnod(lnods(2),1)+b*Str_g1+a*Str_g2; 
    Strnod(lnods(1),2) = Strnod(lnods(1),2)+1; 
    Strnod(lnods(2),2) = Strnod(lnods(2),2)+1;

Fig. 12.26 Computation of the bending moment at the two Gauss points for the
2-noded Euler-Bernoulli beam element

ding moment at each Gauss point is computed as

Mi = EIyBia
(e) , i = 1, 2

where B
(e)
i is the curvature matrix of Eq.(1.16a) computed at the ith

Gauss point. The bending moment at the Gauss points is stored in Str g1

and Str g2 for the subsequent nodal smoothing and visualization.
The computation of the bending moment is shown in Figure 12.26.

12.12.3 Example. Clamped slender cantilever beam under end point load

Figure 12.27 shows the beam geometry, the material properties and the
load. The section is square and the beam slenderness ratio is r = L

h = 100.
The exact solution is a unit displacement at the free end and a bending

moment of 50 N/m at the clamped end.
Figure 12.27 also shows the menus for defining the boundary condi-

tions, the load and the material properties. The discretization and the
writing of the input data file is carried out using the last two bottoms of
the menu of Figure 12.17.

The problem has been solved with meshes of 2, 4, 8, 16, 32 and 64 2-
noded Euler-Bernoulli beam elements. Figure 12.28 shows the numbering
of elements and nodes for the 8 element mesh. This mesh is taken as the
reference for the input data file also shown in Figure 12.28.
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Fig. 12.27 Slender clamped cantilever beam (r = 100) under end point load. Defi-
nition of (a) boundary conditions, (b) loads, (c) materials and (d) problem char-
acteristics

The code is executed within MATLAB� using the Beam EulerBernoulli
command, once the directory file where this code is located is selected. The
total execution time for this problem (8 element mesh) is 0.010 sec.

Note that the assembly of the stiffness matrix takes most of the total
execution time, as the internal indices of the sparse matrix need to be
updated (Figure 12.29a).

Figure 12.29b shows the profile of the global stiffness matrix, as dis-
played by MATLAB�.

Figure 12.30 shows the deformed shape of the beam and the bending
moment distribution. The vertical displacement under the force is “exact”
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%======================================================================= 
% MAT-fem_Beams 1.0  - MAT-fem is a learning tool for undestanding  
%                      the Finite Element Method with MATLAB and GiD 
%======================================================================= 
% PROBLEM TITLE = Slender cantilever beam under end point load. Analysis  
%                 with eight 2-noded Euler-Bernoulli beam elements 
%  Material Properties 
  young  =   2.000000000e+08 ; 
  poiss  =   2.000000000e-01 ; 
  denss  =   0.000000000e+00 ; 
  area   =   1.000000000e-02 ; 
  inertia=   8.333330000e-06 ;
% Coordinates 
global coordinates 
coordinates = [ 
   0.000000000e+00   ; 
   1.250000000e+00   ; 
   2.500000000e+00   ; 
   3.750000000e+00   ; 
   5.000000000e+00   ; 
   6.250000000e+00   ; 
   7.500000000e+00   ; 
   8.750000000e+00   ; 
   1.000000000e+01   ] ; 
% Elements 
global elements 
elements = [ 
      1   ,      2   ;  
      2   ,      3   ;  
      3   ,      4   ;  
      4   ,      5   ;  
      5   ,      6   ;  
      6   ,      7   ;  
      7   ,      8   ;  
      8   ,      9   ] ;  
% Fixed Nodes 
fixnodes = [ 
      1  , 1 ,   0.000000000e+00  ; 
      1  , 2 ,   0.000000000e+00  ] ; 
% Point loads 
pointload = [ 
      9  , 1 ,  -5.000000000e+00  ; 
      9  , 2 ,   0.000000000e+00  ] ; 
% Distributed loads 
uniload = sparse ( 8,1 ); 

�Fig. 12.28 Slender cantilever beam (r = 100) under end point load. Input data file
for eight element mesh of 2-noded Euler-Bernoulli beam elements

for all the meshes considered. This is a particular feature of this problem,
as explained in Section 1.3.4 (p. 19).

The bending moment at the clamped node is 50.0 Nxm. This value
has been obtained from the reaction at that node which yields the exact
solution for all meshes.

12.13 2-NODED TIMOSHENKO BEAM ELEMENT

The formulation of this beam element can be found in Section 2.3.
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(a) (b)

�

>> Beam_EulerBernoulli 
Enter the file name:cant_pun_008 
Time needed to read the input file    0.003935  
Time needed to set initial values     0.000072  
Time to assemble the global system    0.000774  
Time for apply side and point loads   0.000033  
Time to solve the stiffness equations 0.000262 
Time to solve the nodal reactions     0.000045 
Time to solve the nodal stresses      0.000267  
Time used to write the solution       0.005371  

Total running time                   0.010758 

�

Fig. 12.29 Slender cantilever beam under end point load. (a) Execution time for
eight element mesh. (b) Profile of stiffness matrix for the eight element mesh

�

��� ���

Fig. 12.30 Slender cantilever under end point load analized with eight 2-noded
Euler-Bernoulli beam elements. a) Deformed shape. b) Moment distribution

 

 

 

 

 

 

 

 

%  Material properties (Constant over the domain). 
  D_matb = young*inertia; 
  D_mats = young/(2*(1+poiss))*area*5/6; 

  ttim = timing('Time needed to  set initial values',ttim); %Reporting time

Fig. 12.31 2-noded Timoshenko beam element. Constitutive matrices

The structure of the code is very similar to that for the 2-noded Euler-
Bernoulli beam element described in the previous section.

12.13.1 Stiffness matrix and equivalent nodal force vector

The constitutive matrix has been split in two parts: the bending term D̂b

(D matb) and the transverse shear term D̂s (D mats). The shear correction
factor has been taken equal to 5/6 (rectangular section). The computation
of the constitutive matrices D matb and D mats are shown in Figure 12.31.

Figure 12.32 shows the explicit computation of the element stiffness
matrix by sum of the bending and transverse shear contributions using a
single integration point (see Eq.(2.25)).
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    len = coor_x(2) – coor_x(1); 
    const = D_matb/len; 
     
    K_b   = [ 0 ,  0 ,  0 ,  0 ; 
              0 ,  1 ,  0 , -1 ; 
              0 ,  0 ,  0 ,  0 ; 
              0 , -1 ,  0 ,  1 ]; 
             
    K_b  = K_b * const; 
       
    const =   D_mats/len; 
     
    K_s = [   1   ,   len/2 ,   -1   ,   len/2 ; 
            len/2 , len^2/3 , -len/2 , len^2/6 ; 
             -1   ,  -len/2 ,    1   ,  -len/2 ; 
           len/2 , len^2/6 , -len/2 ,  len^2/3 ]; 
             
    K_s = K_s * const; 
     
    K_elem = K_b + K_s; 
     
 % Equivalent nodal force vector 
    
    f       = (-denss*area + uniload(ielem))*len/2;
    ElemFor = [ f, 0, f, 0];

Bending stiffness matrix 

Shear stiffness matrix 

Fig. 12.32 2-noded Timoshenko beam element. Computation of stiffness matrix
and equivalent nodal force vector for self-weight and uniform load

The last lines of Figure 12.32 show the computation of the equiv-
alent nodal force vector for a uniform load (uniload) and self-weight
(denss*area) using a single integration point.

12.13.2 Computation of bending moment and shear force

Figure 12.33 shows the computation of the bending moment M and the
shear force Q at the element center via Eq.(2.17).

The bending moment and the shear force are stored in Strnod for the
subsequent representation.

12.13.3 Example. Thick cantilever beam under end-point load

Figure 12.34 shows the beam geometry of the cantilever, the material
properties and the load. The section is square and the beam slenderness
ratio is r = L

h = 25.
Table 12.6 shows the convergence of the deflection under the load and

the bending moment and the shear force at the clamped end with the
number of elements. The values for M1 and Q1 reported are the extrapo-
lation of the values at the elements center. Note that M1 and Q1 can be
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% One Gauss point for resultant stresses evaluation  
    gaus0 =  0.0;     
    bmat_b=[ 0, -1/len, 0, 1/len]; 
    bmat_s1=[-1/len,-(1-gaus0)/2, 1/len,-(1+gaus0)/2]; 

 % Resultant stresses at Gauss points   
    Str1_g0 = D_matb*(bmat_b *transpose(u_elem)); 
    Str2_g0 = D_mats*(bmat_s1*transpose(u_elem)); 

�% Nodal extrapolation of resultant stresses 
    Strnod(lnods(1),1) = Strnod(lnods(1),1)+Str1_g0; 
    Strnod(lnods(2),1) = Strnod(lnods(2),1)+Str1_g0; 
    Strnod(lnods(1),2) = Strnod(lnods(1),2)+Str2_g0; 
    Strnod(lnods(2),2) = Strnod(lnods(2),2)+Str2_g0; 
    Strnod(lnods(1),3) = Strnod(lnods(1),3)+1; 
   Strnod(lnods(2),3) = Strnod(lnods(2),3)+1;

Fig. 12.33 2-noded Timoshenko beam element. Computation of bending moment
M and shear force Q at the element center and the element nodes
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Fig. 12.34 Thick cantilever beam (r = 25) under end point load

Thick cantilever beam under end point load
2-noded Timoshenko beam element

Elements Nodes DOF ωN M1 Q1

2 3 6 -0,00007 -0,68 5.00
4 5 10 -0,00027 -3,00 5.00
8 9 18 -0,00089 -10,68 5.00
16 17 34 -0,00212 -26,21 5.00
32 33 66 -0,00323 -40,61 5.00
64 65 130 -0,00371 -47,11 5.00
128 129 258 -0,00386 -49,15 5.00

Exact [Ti2]: -0,00391 -50.00 5.00

Table 12.6 Thick cantilever beam (r = 25) under end point load analyzed with
2-noded Timoshenko beam elements. Convergence of free end deflection (wN )
and bending moment (M1) and shear force (Q1) at the clamped node

directly computed as the reactions at the clamped node which would yield
the exact solution for all meshes.
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�

%  Material properties (constant over the domain). 

   aux0 = thick^3 / 12 ; 
   aux1 = aux0*young/(1-poiss^2); 
   aux2 = poiss*aux1; 
   aux3 = aux0*young/2/(1+poiss); 
    
   D_matb  = [aux1,aux2,   0; 
              aux2,aux1,   0; 
                 0,   0,aux3]; 

Fig. 12.35 Bending constitutive matrix for thin plate elements

�

    gauss_x(1) =-1/sqrt(3); 
    gauss_y(1) =-1/sqrt(3); 
    gauss_x(2) = 1/sqrt(3); 
    gauss_y(2) =-1/sqrt(3); 
    gauss_x(3) = 1/sqrt(3); 
    gauss_y(3) = 1/sqrt(3); 
    gauss_x(4) =-1/sqrt(3); 
    gauss_y(4) = 1/sqrt(3); 

Fig. 12.36 Local coordinates of Gauss points

12.14 4-NODED MZC THIN PLATE RECTANGLE

This plate element was studied in Section 5.4.1.

12.14.1 Element stiffness matrix and equivalent nodal force vector

Figure 12.35 shows the subroutine for computing the constitutive matrix
for thin plate elements (Eq.(5.15b)) including bending terms only.

The Gauss point coordinates in the local axes s, t are shown in Figure
12.36. Recall that the weights for this quadrature are the unity.

Figure 12.37 shows the subroutine for computing K(e) and f (e) for the
MZC plate rectangle. A 2×2 Gauss quadrature is used for the integration
of K(e). The computation of the bending strain matrix is shown in Figure
12.38.

Indeed, for this element the analytical expressions for the bending stiff-
ness matrix shown in Box 5.1 could have been used directly. For didactic
reasons, however, we have preferred to implement the numerical integra-
tion of K(e) using a 2× 2 Gauss quadrature.

The last lines of Figure 12.37 show the computation of the equiva-
lent nodal force vector for self-weight (denss*thick) and a uniformly dis-
tributed load (uniload). The expression of f (e) coincides with Eq.(5.47a).
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    a  = (coor_x(2) - coor_x(1))/2; 
    a2 = (coor_x(3) - coor_x(4))/2; 
    b  = (coor_y(4) - coor_y(1))/2; 
    b2 = (coor_y(3) - coor_y(2))/2; 
     
    if((a ~= a2) || (b ~= b2) ) 
       fprintf(1,'\n WARNING Only rectangular elements allowed \n'); 
    end 
    if(a == 0) 
       fprintf(1,'\n WARNING Wrong connectivities \n'); 
    end 
    if (a < 0) % adjust the nodal conectivities
        a = abs(a); 
        b = abs(b); 
        lnods(1) = elements(ielem,3); 
        lnods(2) = elements(ielem,4); 
        lnods(3) = elements(ielem,1); 
        lnods(4) = elements(ielem,2); 
    end 
     
    K_elem = zeros(dofpe,dofpe); 
  
    for igaus=1:4 
      x = gauss_x(igaus); 
      y = gauss_y(igaus); 
  
      bmat_b = B_mat_Plate_MZC(a,b,x,y);  
  
      K_elem  = K_elem + transpose(bmat_b)*D_matf*bmat_b*a*b; 
       
    end 
     

 f    = 4*(-denss*thick + uniload(ielem))*a*b; 
 ElemFor = f*[1/4,a/12,b/12,1/4,-a/12,b/12,1/4,-a/12,-b/12,1/4,a/12,-b/12]; 

1 2

34

s

t

2a

2b

Stiffness matrix using 

2×2 numerical 
integration 

Rectangular shape test 

Equivalent nodal force vector 

Fig. 12.37 4-noded MZC thin plate rectangle. Stiffness matrix and equivalent nodal
force vector

12.14.2 Computation of bending moments

Figure 12.39 shows the subroutine for computing the bending moments
for the 4-noded MZC plate rectangle. The moments are computed at the
2×2 Gauss point in Str1 and then are stored in Strnod for the subsequent
nodal smoothing.

12.14.3 Example. Clamped thin square plate under uniform loading

Figure 12.40 shows the plate geometry, the material properties and the
uniform load value. The analytical values for the deflection and the bend-
ing moments at the center are −0.12653 and −2.31, respectively. Units
are in the International System (SI).

Figure 12.41 show the menus for introducing the boundary conditions,
the material properties and the load.
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 function bmat = B_mat_Plate_MZC(a,b,x,y) 

      d2N(1,1) = 3*( x - x*y )/(4*a^2); 
      d2N(2,1) = 3*(-x + x*y )/(4*a^2); 
      d2N(3,1) = 3*(-x - x*y )/(4*a^2); 
      d2N(4,1) = 3*( x + x*y )/(4*a^2); 
      d2N(1,2) = 3*( y - x*y )/(4*b^2); 
      d2N(2,2) = 3*( y + x*y )/(4*b^2); 
      d2N(3,2) = 3*(-y - x*y )/(4*b^2); 
      d2N(4,2) = 3*(-y + x*y )/(4*b^2); 
      d2N(1,3) = 2*(  1/2 - 3*x^2/8 - 3*y^2/8)/(a*b); 
      d2N(2,3) = 2*( -1/2 + 3*x^2/8 + 3*y^2/8)/(a*b); 
      d2N(3,3) = 2*(  1/2 - 3*x^2/8 - 3*y^2/8)/(a*b); 
      d2N(4,3) = 2*( -1/2 + 3*x^2/8 + 3*y^2/8)/(a*b); 

      d2NN(1,1) = ( (3*a*x - 3*a*x*y - a + a*y)/4 )/a^2; 
      d2NN(2,1) = ( (3*a*x - 3*a*x*y + a - a*y)/4 )/a^2; 
      d2NN(3,1) = ( (3*a*x + 3*a*x*y + a + a*y)/4 )/a^2; 
      d2NN(4,1) = ( (3*a*x + 3*a*x*y - a - a*y)/4 )/a^2; 
      d2NN(1,2) = 0; 
      d2NN(2,2) = 0; 
      d2NN(3,2) = 0; 
      d2NN(4,2) = 0; 
      d2NN(1,3) = 2*( -3/8*a*x^2 + a*x/4 + a/8 )/(a*b); 
      d2NN(2,3) = 2*( -3/8*a*x^2 - a*x/4 + a/8 )/(a*b); 
      d2NN(3,3) = 2*(  3/8*a*x^2 + a*x/4 - a/8 )/(a*b); 
      d2NN(4,3) = 2*(  3/8*a*x^2 - a*x/4 - a/8 )/(a*b); 

      d2NNN(1,1) = 0; 
      d2NNN(2,1) = 0; 
      d2NNN(3,1) = 0; 
      d2NNN(4,1) = 0; 
      d2NNN(1,2) = ( (3*b*y - 3*b*x*y - b + b*x)/4 )/b^2; 
      d2NNN(2,2) = ( (3*b*y + 3*b*x*y - b - b*x)/4 )/b^2; 
      d2NNN(3,2) = ( (3*b*y + 3*b*x*y + b + b*x)/4 )/b^2; 
      d2NNN(4,2) = ( (3*b*y - 3*b*x*y + b - b*x)/4 )/b^2; 
      d2NNN(1,3) = 2*( -3/8*b*y^2 + b*y/4 + b/8 )/(a*b); 
      d2NNN(2,3) = 2*(  3/8*b*y^2 - b*y/4 - b/8 )/(a*b); 
      d2NNN(3,3) = 2*(  3/8*b*y^2 + b*y/4 - b/8 )/(a*b); 
      d2NNN(4,3) = 2*( -3/8*b*y^2 - b*y/4 + b/8 )/(a*b); 

      bmat_1  = [ -d2N(1,1),-d2NN(1,1),-d2NNN(1,1)  ; 
                  -d2N(1,2),-d2NN(1,2),-d2NNN(1,2)  ; 
                  -d2N(1,3),-d2NN(1,3),-d2NNN(1,3)] ; 
      bmat_2  = [ -d2N(2,1),-d2NN(2,1),-d2NNN(2,1)  ; 
                  -d2N(2,2),-d2NN(2,2),-d2NNN(2,2)  ; 
                  -d2N(2,3),-d2NN(2,3),-d2NNN(2,3)] ; 
      bmat_3  = [ -d2N(3,1),-d2NN(3,1),-d2NNN(3,1)  ; 
                  -d2N(3,2),-d2NN(3,2),-d2NNN(3,2)  ; 
                  -d2N(3,3),-d2NN(3,3),-d2NNN(3,3)] ; 
      bmat_4  = [ -d2N(4,1),-d2NN(4,1),-d2NNN(4,1)  ; 
                  -d2N(4,2),-d2NN(4,2),-d2NNN(4,2)  ; 
                  -d2N(4,3),-d2NN(4,3),-d2NNN(4,3)] ; 
  
      bmat = [bmat_1,bmat_2,bmat_3,bmat_4]; 

Evaluation of second derivatives 

of shape functions N 

Evaluation of second derivatives 

of shape functions   

Evaluation of second derivatives 

of shape functions   

Assembly of  

matrix 

Fig. 12.38 Bending strain matrix for the MZC plate rectangle
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�

% Shape function matrix for extrapolation of bending moments to nodes 
  aa = 1 + sqrt(3); 
  bb = 1 - sqrt(3); 
  mstres = [ aa*aa , aa*bb , bb*bb , aa*bb ; 
             bb*aa , aa*aa , aa*bb , bb*bb ; 
             bb*bb , aa*bb , aa*aa , bb*aa ; 
             aa*bb , bb*bb , bb*aa , aa*aa ]/4; 

% Bending moments at Gauss point 
    for igaus=1:4 
      x = gauss_x(igaus); 
      y = gauss_y(igaus); 

      bmat = B_mat_Plate_MZC(a,b,x,y);  

      Str1=D_matb*bmat*transpose(u_elem); 

      Strx(igaus)  = Str1(1); 
      Stry(igaus)  = Str1(2); 
      Strxy(igaus) = Str1(3); 

    End 

% Nodal extrapolation of bending moments 
    Str1 = mstres * transpose(Strx) ; 
    Strnod(lnods(1:4),1) = Strnod(lnods(1:4),1)+ Str1(1:4); 
    Str1 = mstres * transpose(Stry) ; 
    Strnod(lnods(1:4),2) = Strnod(lnods(1:4),2)+ Str1(1:4); 
    Str1 = mstres * transpose(Strxy) ; 
    Strnod(lnods(1:4),3) = Strnod(lnods(1:4),3)+ Str1(1:4); 
   Strnod(lnods(1:4),4) = Strnod(lnods(1:4),4)+ 1;

Fig. 12.39 Computation of bending moments for the MZC plate rectangle
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Fig. 12.40 Clamped thin square plate under uniformly distributed loading.Units
are in the SI system

The discretization and the writing of the data file is performed with
the last two bottoms of the MAT-fem-Plates menu. The problem has been
solved with several meshes ranging from 2× 2 to 20× 20 MZC elements.

Figure 12.42 shows the input data file for the 2× 2 mesh.
Table 12.7 shows the convergence of the central deflection and the

bending moment Mx at the plate center with the number of elements. No
advantage has been taken of the symmetry of the problem.

Figure 12.43 shows the contour plots for the vertical deflection and the
bending moment Mx on the plate for a 10× 10 element mesh.
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Fig. 12.41 MZC Definition of boundary conditions (a), material properties and
distributed load (b) for the clamped thin square plate

Thin clamped square plate under uniform loading

Mesh of MZC Nodes ωc Mxc

elements

2 × 2 9 -0.15625 -4.88
4 × 4 25 -0.14077 -2.80
6 × 6 49 -0.13333 -2.50
8 × 8 81 -0.13043 -2.41

10 × 10 121 -0.12904 -2.36
12 × 12 169 -0.12828 -2.34
14 × 14 225 -0.12782 -2.33
16 × 16 289 -0.12752 -2.32
18 × 18 361 -0.12731 -2.31
20 × 20 441 -0.12716 -2.31

Exact [TW]: -0.12653 -2.31

Table 12.7 Thin clamped square plate under uniform load. Convergence of central
deflection ωc and central bending moment Mxc using the MZC plate rectangle
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%======================================================================= 

% MAT-fem_Plates 1.0  - MAT-fem is a learning tool for undestanding  
%                      the Finite Element Method with MATLAB and GiD 
%======================================================================= 
% PROBLEM TITLE = Clamped square plate analyzed with 2×2 MZC plate rectangles 
%  Material Properties 
 young  = 1.092e+12 ; 
 poiss  = 0.3 ; 
 thick  = 0.001; 
 denss  = 0.00; 
% Coordinates 
global coordinates 
coordinates = [ 
    0.0,     10.0 ; 
    5.0,     10.0 ; 
    0.0,      5.0 ; 
    5.0,      5.0 ; 
    0.0,      0.0 ; 
   10.0,     10.0 ; 
    5.0,      0.0 ; 
   10.0,      5.0 ; 
   10.0,      0.0 ]; 
% Elements 
global elements 
elements = [ 
      5,  7,  4,  3; 
      7,  9,  8,  4; 
      3,  4,  2,  1; 
      4,  8,  6,  2]; 
% Fixed nodes 
global fixdesp 
fixdesp  = [ 
    1, 1,  0.0; 
    1, 2,  0.0; 
    1, 3,  0.0; 
    2, 1,  0.0; 
    2, 2,  0.0; 
    2, 3,  0.0; 
... 
    9, 1,  0.0; 
    9, 2,  0.0; 
    9, 3,  0.0]; 
% Point loads 
pointload = [ ]; 
% Distributed load 
uniload = sparse ( 4 , 1 ); 
uniload (      1  ) =  -1.000000000e+00  ; 
uniload (      2  ) =  -1.000000000e+00  ; 
uniload (      3  ) =  -1.000000000e+00  ; 
uniload (      4  ) =  -1.000000000e+00  ; 
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Fig. 12.42 Input data for clamped square plate analyzed with 2 × 2 MZC plate
rectangles

12.15 Q4 REISSNER-MINDLIN PLATE RECTANGLE

We present the key subroutines for the 4-noded Q4 Reissner-Mindlin (RM)
plate element of Section 6.5.1 in its rectangular form. The stiffness matrix
is computed with selective integration, i.e. a 2 × 2 quadrature for the
bending stiffness terms and a reduced one point quadrature for the shear
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a) b) 

Fig. 12.43 Thin clamped square plate under uniform load. Contours of vertical
deflection w (a) and Mx (b) for a mesh of 10× 10 MZC plate rectangles

�

   aux4 = (5/6)*thick*young/2/(1+poiss); 
    
   D_mats = [aux4,   0 ; 
               0,aux4];

Fig. 12.44 Shear constitutive matrix for Reissner-Mindlin plate elements

stiffness terms. These subroutines can be easily extended for programming
higher order RM plate rectangles based on selective integration techniques,
as described in Section 6.5. The extension to non-rectangular shapes is
straightforward using an isoparametric formulation. An isoparametric Q4
RM plate quadrilateral has been implemented in the Plate Q4 Iso code.

12.15.1 Stiffness matrix and equivalent nodal force vector

The bending terms in the constitutive matrix coincide with those of Figure
12.35. The shear constitutive matrix D̂s of Eq.(6.24) is shown in Figure
12.44.

Figure 12.45 shows the subroutine for computing the stiffness matrix
and the equivalent nodal force vector for the Q4 RM plate rectangle. Note
the two loops for computing the bending and shear stiffness matrices using
selective integration.

Figure 12.46 shows the computation of the generalized bending and
shear strain matrices.

The last two rows of Figure 12.45 show the computation of the equiva-
lent nodal force for self-weight (dense*thick) and a uniformly distributed
load (uniload). As the element is a rectangle the nodal forces are simply
computed as one fourth of the total force acting over the element.
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�

    % Local Gauss point coordinates    

    gauss_x(1) =-1/sqrt(3); 
    gauss_y(1) =-1/sqrt(3); 
    gauss_x(2) = 1/sqrt(3); 
    gauss_y(2) =-1/sqrt(3); 
    gauss_x(3) = 1/sqrt(3); 
    gauss_y(3) = 1/sqrt(3); 
    gauss_x(4) =-1/sqrt(3); 
    gauss y(4) = 1/sqrt(3);

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    a  = (coor_x(2) - coor_x(1))/2; 
    a2 = (coor_x(3) - coor_x(4))/2; 
    b  = (coor_y(4) - coor_y(1))/2; 
    b2 = (coor_y(3) - coor_y(2))/2; 
     
    if((a ~= a2) || (b ~= b2) ) 
       fprintf(1,'\n WARNING Only rectangular elements allowed \n'); 
    end 
    if(a == 0) 
       fprintf(1,'\n WARNING Wrong connectivities \n'); 
    end 
    if (a < 0) % adjust the nodal conectivities
        a = abs(a); 
        b = abs(b); 
        lnods(1) = elements(ielem,3); 
        lnods(2) = elements(ielem,4); 
        lnods(3) = elements(ielem,1); 
        lnods(4) = elements(ielem,2); 
    end 
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    K_elem = zeros(dofpe,dofpe); 

     for igaus=1:4 
      x = gauss_x(igaus); 
      y = gauss_y(igaus); 
  
      [bmat_b, ~] = B_mat_Plate_Q4_v2_3(a,b,x,y); 
      K_b  = transpose(bmat_b)*D_matb*bmat_b*a*b; 
      K_elem  = K_elem + K_b; 
    end 
     
    % One gauss point for shear 
    x = 0; 
    y = 0; 
    [~,bmat_s] = B_mat_Plate_Q4_v2_3(a,b,x,y); 
    K_s  = transpose(bmat_s)*D_mats*bmat_s*4*a*b; 
    K_elem  = K_elem + K_s; 
     
     f      = 4*(-denss*thick + uniload(ielem))*a*b; 
    ElemFor = f*[1/4,0,0,1/4,0,0,1/4,0,0,1/4,0,0]; 

Numerical integration 

of stiffness matrix 

Equivalent nodal 
force vector 

Fig. 12.45 Q4 Reissner-Mindlin plate rectangle. Stiffness matrix and equivalent
nodal force vector

12.15.2 Computation of resultant stresses

Figure 12.47 shows the subroutine for computing the resultant stresses for
the Q4 RM plate rectangle. The bending moment (Str1) are computed
at the 2× 2 Gauss points, while the shear forces (Str2) are computed at
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 function [bmat_b,bmat_s] = B_mat_Plate_Q4(a,b,x,y) 

      x = x*a; 
      y = y*b; 
       
      N(1) = (1 - x/a)*(1 - y/b)/4; 
      N(2) = (1 + x/a)*(1 - y/b)/4; 
      N(3) = (1 + x/a)*(1 + y/b)/4; 
      N(4) = (1 - x/a)*(1 + y/b)/4; 
  
      dxN(1) = -( b - y )/(4*a*b); 
      dxN(2) =  ( b - y )/(4*a*b); 
      dxN(3) =  ( b + y )/(4*a*b); 
      dxN(4) = -( b + y )/(4*a*b); 
  
      dyN(1) = -( a - x )/(4*a*b); 
      dyN(2) = -( a + x )/(4*a*b); 
      dyN(3) =  ( a + x )/(4*a*b); 
      dyN(4) =  ( a - x )/(4*a*b); 
  
 Bending strain matrix 

      bmat_b1  = [ 0,-dxN(1),     0  ; 
                   0,      0,-dyN(1) ; 
                   0,-dyN(1),-dxN(1)]; 
                
      bmat_b2  = [ 0,-dxN(2),     0  ; 
                   0,      0,-dyN(2) ; 
                   0,-dyN(2),-dxN(2)]; 
                
      bmat_b3  = [ 0,-dxN(3),     0  ; 
                   0,      0,-dyN(3) ; 
                   0,-dyN(3),-dxN(3)]; 
                
      bmat_b4  = [ 0,-dxN(4),     0  ; 
                   0,      0,-dyN(4) ; 
                   0,-dyN(4),-dxN(4)]; 

      bmat_b = [bmat_b1,bmat_b2,bmat_b3,bmat_b4]; 

 Transverse shear strain matrix 

      bmat_s1  = [ dxN(1), -N(1),    0  ; 
                   dyN(1),     0, -N(1)]; 
                
      bmat_s2  = [ dxN(2), -N(2),    0  ; 
                   dyN(2),     0, -N(2)]; 
                
      bmat_s3  = [ dxN(3), -N(3),    0  ; 
                   dyN(3),     0, -N(3)]; 
                
      bmat_s4  = [ dxN(4), -N(4),    0  ; 
                   dyN(4),     0, -N(4)]; 

Fig. 12.46 Q4 Reissner-Mindlin plate rectangle. Generalized bending and trans-
verse shear strain matrices

the element center. The resultant stresses are accumulated in Strnod for
the subsequent nodal smoothing.

12.15.3 Example. Thick clamped square plate under uniformly load

The plate geometry, load and material properties are identical to those of
Figure 12.40, with the exception of the thickness that now is t = 1.0.
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�

% Shape Function matrix for extrapolation of resultant stresses to nodes 
  aa = 1 + sqrt(3); 
  bb = 1 - sqrt(3); 
  mstres = [ aa*aa , aa*bb , bb*bb , aa*bb ; 
             bb*aa , aa*aa , aa*bb , bb*bb ; 
             bb*bb , aa*bb , aa*aa , bb*aa ; 
             aa*bb , bb*bb , bb*aa , aa*aa ]/4; 

    a  = (coor_x(2) - coor_x(1))/2; 
    b  = (coor_y(4) - coor_y(1))/2; 

% Resultant stresses at Gauss point 
    for igaus=1:4 
      x = gauss_x(igaus); 
      y = gauss_y(igaus); 
      [bmat_b, ~] = B_mat_Plate_Q4_v2_3(a,b,x,y); 
  
      Str1=D_matb*bmat_b*transpose(u_elem); 
         
      Strx(igaus)  = Str1(1); 
      Stry(igaus)  = Str1(2); 
      Strxy(igaus) = Str1(3); 
    end 
  
% Resultant stresses at nodes 
    x = 0; 
    y = 0; 
    [~,bmat_s] = B_mat_Plate_Q4_v2_3(a,b,x,y); 
    Str2=D_mats*bmat_s*transpose(u_elem); 
    StrQx(1:4) = Str2(1); 
    StrQy(1:4) = Str2(2); 
  
    Str1 = mstres * transpose(Strx) ; 
    Strnod(lnods(1:4),1) = Strnod(lnods(1:4),1)+ Str1(1:4); 
    Str1 = mstres * transpose(Stry) ; 
    Strnod(lnods(1:4),2) = Strnod(lnods(1:4),2)+ Str1(1:4); 
    Str1 = mstres * transpose(Strxy) ; 
    Strnod(lnods(1:4),3) = Strnod(lnods(1:4),3)+ Str1(1:4); 
    Str2 = mstres * transpose(StrQx) ; 
    Strnod(lnods(1:4),4) = Strnod(lnods(1:4),4)+ Str2(1:4); 
    Str2 = mstres * transpose(StrQy) ; 
    Strnod(lnods(1:4),5) = Strnod(lnods(1:4),5)+ Str2(1:4); 
   Strnod(lnods(1:4),6) = Strnod(lnods(1:4),6)+ 1;

Fig. 12.47 Q4 Reissner-Mindlin plate rectangle. Computation of bending moments
and shear forces

The reference solution for this problem is: central deflection, wc =
−0.1505 × 10−9, central bending moment Mxc = −2.31 and maximum
shear force at the clamped edge Qym = 4.12 [TW].

The data input process is the same as for the MZC rectangle (Section
12.4). The input data file is similar as that shown in Figure 12.42.

Table 12.8 lists the results for wc, Mxc and Qym for different meshes of
Q4 RM plate rectangles.

12.16 QLLL REISSNER-MINDLIN PLATE QUADRILATERAL

We present the main parts of the Mat-fem code for the 4-noded QLLL
Reissner-Mindlin plate quadrilateral studied in Section 6.7.1. The element
is derived using an isoparametric formulation and, therefore, is not re-
stricted to rectangular shapes.



QLLL Reissner-Mindlin plate quadrilateral 767

Q4 Reissner Mindlin plate rectangle

Mesh Nodes wc Mxc Qym

2 × 2 9 -0.3571E-09 -0.00 1.250
4 × 4 25 -0.1458E-09 -2.262 2.524
6 × 6 49 -0.1486E-09 -2.408 3.159
8 × 8 81 -0.1494E-09 -2.339 3.374

10 × 10 121 -0.1498E-09 -2.337 3.526
12 × 12 169 -0.1500E-09 -2.331 3.626
14 × 14 225 -0.1501E-09 -2,329 3.700
16 × 16 289 -0.1502E-09 -2,327 3.753
18 × 18 361 -0.1502E-09 -2,325 3.796
20 × 20 441 -0.1503E-09 -2,324 3.830

Exact [TW]: -0.1504E-09 -2.310 4.120

Table 12.8 Thick clamped square plate under uniform load. Central deflection wc,
central bending moment Mxc and maximum shear force at the clamped edge
Qym for different meshes of Q4 Reissner-Mindlin plate rectangles

12.16.1 Stiffness matrix and equivalent nodal force vector

The constitutive matrix includes the bending and shear contributions as
defined in Figures 12.35 and 12.44.

Figure 12.48 shows the subroutine for computing the bending and
shear stiffness matrices (termed K b and K s, respectively). A 2 × 2 Gauss
quadrature is used for the numerical integration.

The expression for the bending stiffness coincides precisely with K
(e)
b

given in Eq.(6.39). The computation of the bending strain matrix is shown
in Figure 12.49.

The shear stiffness matrix is obtained by substituting matrix Bs by B̄s

in the expression of K
(e)
s of Eq.(6.39b). The derivation of the substitute

shear strain matrix B̄s for the QLLL element is detailed in Section 6.7.1.
The subroutine for computing B̄s is shown in Figure 12.50.

12.16.2 Computation of resultant stresses

Figure 12.51 shows the subroutine for computing the bending moments
(Str1) and the shear forces (Str2) at the 2 × 2 Gauss point in the QLLL
RM plate quadrilateral.

The resultant stresses are accumulated in Strnod for the subsequent
smoothing.
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    K_elem = zeros(dofpe,dofpe); 
  
    for igaus=1:4 
      x = gauss_x(igaus); 
      y = gauss_y(igaus); 
  
      [bmat_b,bmat_s,area] = B_mat_Plate_QLLL(x,y,coor_x,coor_y);  
  
      K_b  = transpose(bmat_b)*D_matb*bmat_b*area; 
      K_s  = transpose(bmat_s)*D_mats*bmat_s*area; 
       
      K_elem  = K_elem + K_f + K_s; 
    end 
     
     f      = 4*(-denss*thick + uniload(ielem))*area; 
    ElemFor = f*[1/4,0,0,1/4,0,0,1/4,0,0,1/4,0,0]; 

Numerical integration 

of stiffness matrix 

Equivalent nodal 

force vector 

Fig. 12.48 4-noded QLLL Reissner-Mindlin plate quadrilateral. Computation of
the stiffness matrix and the equivalent nodal force vector

QLLL plate quadrilateral

Mesh Nodes wc Mxc Qym

2 × 2 9 -0.026E-09 -0.000 1.875
4 × 4 25 -0.143E-09 -2.364 3.253
6 × 6 49 -0.147E-09 -2.367 3.331
8 × 8 81 -0.148E-09 -2.343 3.494

10 × 10 121 -0.149E-09 -2.334 3.602
12 × 12 169 -0.149E-09 -2.330 3.680
14 × 14 225 -0.149E-09 -2.327 3.740
16 × 16 289 -0.150E-09 -2,325 3.786
18 × 18 361 -0.150E-09 -2,324 3.822
20 × 20 441 -0.150E-09 -2,323 3.852

Exact [TW]: -0.150E-09 -2.31 4.55

TQQL plate triangle

Mesh Nodes wc Mxc Qym

2 × 2 25 -0.63E-09 -0.97 3.62
4 × 4 81 -0.202E-09 -1.11 5.40
6 × 6 169 -0.197E-09 -1.84 4.65
8 × 8 289 -0.182E-09 -2.07 4.32

10 × 10 441 -0.173E-09 -2.16 4.21
12 × 12 625 -0.167E-09 -2.21 4.16
14 × 14 841 -0.163E-09 -2.24 4.14
16 × 16 1089 -0.160E-09 -2,26 4.13
18 × 18 1369 -0.158E-09 -2,27 4.12
20 × 20 1681 -0.157E-09 -2,28 4.11

Exact [TW]: -0.150E-09 -2.31 4.55

Table 12.9 Thick clamped square plate under uniform loading. Results for deflec-
tion wc and bending moment Mxc at the plate center and maximum shear force
Qym at the clamped edge for different meshes of QLLL and TQQL plate elements

12.16.3 Example. Thick clamped plate under uniform distributed load

The example coincides with that used in Section 12.15.3 for testing the
Q4 RM plate rectangle.

Table 12.9 shows the results for the deflection wc and the bending
moment Mxc at the plate center and the maximum shear force Qym at
the clamped edge for different meshes of QLLL elements. Results for the
same problem solved with TQQL elements are presented.

Note the excellent accuracy for the deflection and bending moment
values for relatively coarse meshes.
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 function [bmat_b,bmat_s,area] = B_mat_Plate_QLLL(xgs,ygs,x,y)

  dxNl(1) = (-1+ygs)/4; 
  dxNl(2) = ( 1-ygs)/4; 
  dxNl(3) = ( 1+ygs)/4; 
  dxNl(4) = (-1-ygs)/4; 
  
  dyNl(1) = (-1+xgs)/4; 
  dyNl(2) = (-1-xgs)/4; 
  dyNl(3) = ( 1+xgs)/4; 
  dyNl(4) = ( 1-xgs)/4; 

  xjacm(1,1) = x(1)*dxNl(1) + x(2)*dxNl(2) + x(3)*dxNl(3) + x(4)*dxNl(4); 
  xjacm(1,2) = y(1)*dxNl(1) + y(2)*dxNl(2) + y(3)*dxNl(3) + y(4)*dxNl(4); 
  xjacm(2,1) = x(1)*dyNl(1) + x(2)*dyNl(2) + x(3)*dyNl(3) + x(4)*dyNl(4); 
  xjacm(2,2) = y(1)*dyNl(1) + y(2)*dyNl(2) + y(3)*dyNl(3) + y(4)*dyNl(4); 
   
  xjaci = inv(xjacm); 
       
  area = abs(xjacm(1,1)*xjacm(2,2) - xjacm(2,1)*xjacm(1,2)); 
   
  dxN(1) = xjaci(1,1)*dxNl(1)+xjaci(1,2)*dyNl(1); 
  dxN(2) = xjaci(1,1)*dxNl(2)+xjaci(1,2)*dyNl(2); 
  dxN(3) = xjaci(1,1)*dxNl(3)+xjaci(1,2)*dyNl(3); 
  dxN(4) = xjaci(1,1)*dxNl(4)+xjaci(1,2)*dyNl(4); 
  
  dyN(1) = xjaci(2,1)*dxNl(1)+xjaci(2,2)*dyNl(1); 
  dyN(2) = xjaci(2,1)*dxNl(2)+xjaci(2,2)*dyNl(2); 
  dyN(3) = xjaci(2,1)*dxNl(3)+xjaci(2,2)*dyNl(3); 
  dyN(4) = xjaci(2,1)*dxNl(4)+xjaci(2,2)*dyNl(4); 
%================== 
      bmat_b1  = [ 0,-dxN(1),     0  ; 
                   0,      0,-dyN(1) ; 
                   0,-dyN(1),-dxN(1)]; 
      bmat_b2  = [ 0,-dxN(2),     0  ; 
                   0,      0,-dyN(2) ; 
                   0,-dyN(2),-dxN(2)]; 
      bmat_b3  = [ 0,-dxN(3),     0  ; 
                   0,      0,-dyN(3) ; 
                   0,-dyN(3),-dxN(3)]; 
      bmat_b4  = [ 0,-dxN(4),     0  ; 
                   0,      0,-dyN(4) ; 
                   0,-dyN(4),-dxN(4)]; 
  
      bmat_b = [bmat_b1,bmat_b2,bmat_b3,bmat_b4]; 

=================== 

Cartesian 
derivatives of the 

shape functions 

Bending strain 

matrix Bb 

Fig. 12.49 Computation of the bending strain matrix for the 4-noded QLLL plate
quadrilateral

12.17 TQQL REISSNER-MINDLIN PLATE TRIANGLE

The TQQL 6-noded plate element was studied in Section 6.8.1. We present
next the main subroutines for programming the element using an isopara-
metric formulation.

12.17.1 Stiffness matrix and equivalent nodal force vector

Figure 12.52 shows the local coordinates of the 3-point Gauss quadrature
used for the numerical integration of all the element matrices.



770 Programming the FEM for beam plate and shell analysis in MAT-fem

 

  cx = [ 0 , 1 , 0 , -1 ]; 
 cy = [-1 , 0 , 1 ,  0 ]; 
  
 c     = zeros(8,8); 
 b_bar = []; 
 for i = 1 : 4 
    N(1) = (1-cx(i))*(1-cy(i))/4 ; 
    N(2) = (1+cx(i))*(1-cy(i))/4 ; 
    N(3) = (1+cx(i))*(1+cy(i))/4 ; 
    N(4) = (1-cx(i))*(1+cy(i))/4 ; 
   
    dxNl(1) = (-1+cy(i))/4; 
    dxNl(2) = ( 1-cy(i))/4; 
    dxNl(3) = ( 1+cy(i))/4; 
    dxNl(4) = (-1-cy(i))/4; 
  
    dyNl(1) = (-1+cx(i))/4; 
    dyNl(2) = (-1-cx(i))/4; 
    dyNl(3) = ( 1+cx(i))/4; 
    dyNl(4) = ( 1-cx(i))/4; 
  
    xjacm(1,1) = x(1)*dxNl(1) + x(2)*dxNl(2) + x(3)*dxNl(3) + x(4)*dxNl(4); 
    xjacm(1,2) = y(1)*dxNl(1) + y(2)*dxNl(2) + y(3)*dxNl(3) + y(4)*dxNl(4); 
    xjacm(2,1) = x(1)*dyNl(1) + x(2)*dyNl(2) + x(3)*dyNl(3) + x(4)*dyNl(4); 
    xjacm(2,2) = y(1)*dyNl(1) + y(2)*dyNl(2) + y(3)*dyNl(3) + y(4)*dyNl(4); 
  
    jpos = [ i*2-1 , i*2 ]; 
    c(jpos,jpos) = xjacm; 

    bmat_s1  = [ dxN(1), -N(1),    0  ; 
                 dyN(1),     0, -N(1)]; 
              
    bmat_s2  = [ dxN(2), -N(2),    0  ; 
                 dyN(2),     0, -N(2)]; 
                
    bmat_s3  = [ dxN(3), -N(3),    0  ; 
                 dyN(3),     0, -N(3)]; 
                
    bmat_s4  = [ dxN(4), -N(4),    0  ; 
                 dyN(4),     0, -N(4)]; 
  
    bmat_s = [bmat_s1,bmat_s2,bmat_s3,bmat_s4]; 
   
    b_bar = [ b_bar ; 
              bmat_s]; 
 end 
  
 T_mat = [ 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ; 
           0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ; 
           0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ; 
           0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ]; 

 P_mat = [ 1 , -1 ,  0 ,  0 ; 
           0 ,  0 ,  1 ,  1 ; 
           1 ,  1 ,  0 ,  0 ; 
           0 ,  0 ,  1 , -1 ]; 

 A_mat = [ 1 , ygs , 0 ,   0 ; 
           0 ,   0 , 1 , xgs ];  
       
 bmat_s = xjaci * A_mat * inv(P_mat) * T_mat * c * b_bar; 

Shear strain matrix at 
each collocation point 

Coordinates for shear collocation points 

Local shape functions and derivatives 
at shear collocation points 

T matrix 

P matrix 

A matrix 

Sustitutive transverse shear 

strain matrix  

Fig. 12.50 4-noded QLLL plate quadrilateral. Computation of the substitute trans-
verse shear strain matrix B̄s
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�

�% Shape Function matrix for extrapolation of resultant stresses to nodes
  aa = 1 + sqrt(3); 
  bb = 1 - sqrt(3); 
  mstres = [ aa*aa , aa*bb , bb*bb , aa*bb ; 
             bb*aa , aa*aa , aa*bb , bb*bb ; 
             bb*bb , aa*bb , aa*aa , bb*aa ; 
             aa*bb , bb*bb , bb*aa , aa*aa ]/4; 

% Resultant stresses at Gauss points 
    for igaus=1:4 
      x = gauss_x(igaus); 
      y = gauss_y(igaus); 

      [bmat_b,bmat_s,area] = B_mat_Plate_QLLL(x,y,coor_x,coor_y);  

      Str1=D_matb*bmat_b*transpose(u_elem); 
      Str2=D_mats*bmat_s*transpose(u_elem); 

      Strx(igaus)  = Str1(1); 
      Stry(igaus)  = Str1(2); 
      Strxy(igaus) = Str1(3); 
      StrQx(igaus) = Str2(1); 
      StrQy(igaus) = Str2(2); 
    end 

% Resultant stresses at nodes 
    Str1 = mstres * transpose(Strx) ; 
    Strnod(lnods(1:4),1) = Strnod(lnods(1:4),1)+ Str1(1:4); 
    Str1 = mstres * transpose(Stry) ; 
    Strnod(lnods(1:4),2) = Strnod(lnods(1:4),2)+ Str1(1:4); 
    Str1 = mstres * transpose(Strxy) ; 
    Strnod(lnods(1:4),3) = Strnod(lnods(1:4),3)+ Str1(1:4); 
    Str2 = mstres * transpose(StrQx) ; 
    Strnod(lnods(1:4),4) = Strnod(lnods(1:4),4)+ Str2(1:4); 
    Str2 = mstres * transpose(StrQy) ; 
    Strnod(lnods(1:4),5) = Strnod(lnods(1:4),5)+ Str2(1:4); 
    Strnod(lnods(1:4),6) = Strnod(lnods(1:4),6)+ 1;

    for i = 1 : npnod 
      Strnod(i,1:5) = Strnod(i,1:5)/Strnod(i,6); 
    end 

Nodal averaging of 
resultant stresses 

Fig. 12.51 Computation of resultant stresses for the QLLL plate quadrilateral

Figure 12.52 shows also the subroutine for computing the bending and
shear stiffness matrices and the equivalent nodal force vector (ElemFor)
for self-weight (denss*thick) and uniformly distributed load (uniload).

The bending stiffness matrix (K b) is computed by Eq.(6.39). The com-
putation of the bending strain matrix (bmat b) is detailed in Figure 12.53.

The transverse shear stiffness matrix is obtained by using the substitute

transverse shear strain matrix B̄s (Section 6.8.1) in the expression of K
(e)
s

of Eq.(6.39b). The computation of B̄s is shown in Figure 12.54.

12.17.2 Computation of stress resultants

The bending moments (Str1) and the shear forces (Str2) are computed
first at the 3 Gauss point used for the numerical integration of the stiffness
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  % Local coordinate of Gauss point    
    xg(1) = 1.0/6.0; 
    xg(2) = 2.0/3.0; 
    xg(3) = 1.0/6.0; 
    yg(1) = 1.0/6.0; 
    yg(2) = 1.0/6.0; 
    yg(3) = 2.0/3.0; 

    K_elem = zeros(dofpe,dofpe); 
    f   = zeros(1,6); 
    f_e = -denss*thick + uniload(ielem); 
    for igaus=1:3 
  
      [bmat_b,bmat_s,N,area] =              
 B_mat_Plate_TCCL_v1_0(x,y,xg(igaus),yg(igaus));  
  
      K_b  = transpose(bmat_b)*D_matb*bmat_b*area*wg(igaus); 
      K_s  = transpose(bmat_s)*D_mats*bmat_s*area*wg(igaus); 
       
      K_elem  = K_elem + K_b + K_s; 
       
      f = f + f_e* area*wg(igaus)* N; 
       
    end 

ElemFor = [f(1),0,0,f(2),0,0,f(3),0,0,f(4),0,0,f(5),0,0,f(6),0,0];

Numerical integration 
of stiffness matrix 

Equivalent nodal force vector 

Fig. 12.52 TQQL plate triangle. Computation of stiffness matrix and equivalent
nodal force vector

matrix. The Gauss point values for the resultant stresses are accumulated
in Strnod for the subsequent nodal smoothing (Figure 12.55).

12.17.3 Example. Thick clamped square plate under uniform load

The example coincides with that used in Section 12.15.3 for testing the
performance of the Q4 plate rectangle.

Table 12.9 in p. 768 shows the results for the deflection wc and the
bending moment Mxc at the plate center and the maximum shear force
Qym at the clamped edge for different meshes of TQQL elements.

Note the excellent accuracy for the deflection and the bending moment
values for relatively coarse meshes.

12.18 4-NODED QLLL FLAT SHELL ELEMENT

We present the key parts of the Mat-fem code for the 4-noded QLLL
flat shell element. This element was studied in Chapter 8 (Sections 8.3–
8.11). The element can be used for analysis of any 3D shell structure by
discretizing the shell surface into 4-noded quadrilaterals.

The programming of other flat shell elements follows very similar steps
as those described for the 4-noded QLLL flat shell element.
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 function [bmat_b,bmat_s,Ngp,area] = B_mat_Plate_TCCL_v1_0(x,y,xgs,ygs) 
%================== 
  L1=1.0-xgs-ygs; 
  L2=xgs; 
  L3=ygs; 
  
  dxNloc(1)=1.0-4.0*L1;  
  dxNloc(2)=4.0*(L1-L2); 
  dxNloc(3)=4.0*L2-1.0;  
  dxNloc(4)=4.0*L3;      
  dxNloc(5)=0.0;         
  dxNloc(6)=-4.0*L3;     
  
  dyNloc(1)=1.0-4.0*L1;  
  dyNloc(2)=-4.0*L2;     
  dyNloc(3)=0.0;         
  dyNloc(4)=4.0*L2;      
  dyNloc(5)=4.0*L3-1.0;  
  dyNloc(6)=4.0*(L1-L3); 
  
  xjacm(1,1) = x*dxNloc'; 
  xjacm(1,2) = y*dxNloc'; 
  xjacm(2,1) = x*dyNloc'; 
  xjacm(2,2) = y*dyNloc'; 
   
  xjaci = inv(xjacm); 
  
  area2 = abs(xjacm(1,1)*xjacm(2,2) - xjacm(2,1)*xjacm(1,2)); 
  area  = area2/2; 

  dxN(1) = xjaci(1,1)*dxNloc(1)+xjaci(1,2)*dyNloc(1); 
  dxN(2) = xjaci(1,1)*dxNloc(2)+xjaci(1,2)*dyNloc(2); 
  dxN(3) = xjaci(1,1)*dxNloc(3)+xjaci(1,2)*dyNloc(3); 
  dxN(4) = xjaci(1,1)*dxNloc(4)+xjaci(1,2)*dyNloc(4); 
  dxN(5) = xjaci(1,1)*dxNloc(5)+xjaci(1,2)*dyNloc(5); 
  dxN(6) = xjaci(1,1)*dxNloc(6)+xjaci(1,2)*dyNloc(6); 
  
  dyN(1) = xjaci(2,1)*dxNloc(1)+xjaci(2,2)*dyNloc(1); 
  dyN(2) = xjaci(2,1)*dxNloc(2)+xjaci(2,2)*dyNloc(2); 
  dyN(3) = xjaci(2,1)*dxNloc(3)+xjaci(2,2)*dyNloc(3); 
  dyN(4) = xjaci(2,1)*dxNloc(4)+xjaci(2,2)*dyNloc(4); 
  dyN(5) = xjaci(2,1)*dxNloc(5)+xjaci(2,2)*dyNloc(5); 
  dyN(6) = xjaci(2,1)*dxNloc(6)+xjaci(2,2)*dyNloc(6); 

  bmat_b1  = [ 0,-dxN(1),     0  ; 
               0,      0,-dyN(1) ; 
               0,-dyN(1),-dxN(1)]; 
  bmat_b2  = [ 0,-dxN(2),     0  ; 
               0,      0,-dyN(2) ; 
               0,-dyN(2),-dxN(2)]; 
  bmat_b3  = [ 0,-dxN(3),     0  ; 
               0,      0,-dyN(3) ; 
               0,-dyN(3),-dxN(3)]; 
  bmat_b4  = [ 0,-dxN(4),     0  ; 
               0,      0,-dyN(4) ; 
               0,-dyN(4),-dxN(4)]; 
  bmat_b5  = [ 0,-dxN(5),     0  ; 
               0,      0,-dyN(5) ; 
               0,-dyN(5),-dxN(5)]; 
  bmat_b6  = [ 0,-dxN(6),     0  ; 
               0,      0,-dyN(6) ; 
               0,-dyN(6),-dxN(6)]; 

  bmat_b = [bmat_b1,bmat_b2,bmat_b3,bmat_b4,bmat_b5,bmat_b6];

Local derivatives of 
the quadratic shape 

functions 

Bending strain 
matrix Bb 

Cartesian 
derivatives of the 

shape functions. 

Jacobian matrix 
definition 

Fig. 12.53 TQQL plate triangle. Computation of bending strain matrix
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   r3 = 1/sqrt(3);   ap = 0.5 - r3; 
   cx = [ 0.5-r3 , 0.5+r3,     ap,   1-ap ,     0 ,     0  ]; 
   cy = [      0 ,     0 , 1.0-ap,     ap ,  0.5+r3, 0.5-r3]; 

   c     = zeros(12,12); 
   b_bar = []; 

   for i = 1 : 6 
     L1=1.0-cx(i)-cy(i); 
     L2=cx(i); 
     L3=cy(i); 
     N(1) = (2*L1-1)*L1;  
     N(2) = 4*L1*L2;      
     N(3) = (2*L2-1)*L2;  
     N(4) = 4*L2*L3;      
     N(5) = (2*L3-1)*L3;  
     N(6) = 4*L1*L3;      
     dxNloc(1)=1.0-4.0*L1;     dyNloc(1)=1.0-4.0*L1;  
     dxNloc(2)=4.0*(L1-L2);    dyNloc(2)=-4.0*L2;     
     dxNloc(3)=4.0*L2-1.0;     dyNloc(3)=0.0;         
     dxNloc(4)=4.0*L3;         dyNloc(4)=4.0*L2;      
     dxNloc(5)=0.0;            dyNloc(5)=4.0*L3-1.0;  
     dxNloc(6)=-4.0*L3;        dyNloc(6)=4.0*(L1-L3); 

     xjacm(1,1) = x*dxNloc'; 
     xjacm(1,2) = y*dxNloc'; 
     xjacm(2,1) = x*dyNloc'; 
     xjacm(2,2) = y*dyNloc'; 
    
     xjacip = inv(xjacm); 
  
     dxN(1) = xjacip(1,1)*dxNloc(1)+xjacip(1,2)*dyNloc(1); 
     dxN(2) = xjacip(1,1)*dxNloc(2)+xjacip(1,2)*dyNloc(2); 
     dxN(3) = xjacip(1,1)*dxNloc(3)+xjacip(1,2)*dyNloc(3); 
     dxN(4) = xjacip(1,1)*dxNloc(4)+xjacip(1,2)*dyNloc(4); 
     dxN(5) = xjacip(1,1)*dxNloc(5)+xjacip(1,2)*dyNloc(5); 
     dxN(6) = xjacip(1,1)*dxNloc(6)+xjacip(1,2)*dyNloc(6); 
  
     dyN(1) = xjacip(2,1)*dxNloc(1)+xjacip(2,2)*dyNloc(1); 
     dyN(2) = xjacip(2,1)*dxNloc(2)+xjacip(2,2)*dyNloc(2); 
     dyN(3) = xjacip(2,1)*dxNloc(3)+xjacip(2,2)*dyNloc(3); 
     dyN(4) = xjacip(2,1)*dxNloc(4)+xjacip(2,2)*dyNloc(4); 
     dyN(5) = xjacip(2,1)*dxNloc(5)+xjacip(2,2)*dyNloc(5); 
     dyN(6) = xjacip(2,1)*dxNloc(6)+xjacip(2,2)*dyNloc(6); 

     jpos = [ i*2-1 , i*2 ]; 
     c(jpos,jpos) = xjacm; 
    
     bmat_s1  = [ dxN(1), -N(1),    0  ; 
                  dyN(1),     0, -N(1)]; 
     bmat_s2  = [ dxN(2), -N(2),    0  ; 
                  dyN(2),     0, -N(2)]; 
     bmat_s3  = [ dxN(3), -N(3),    0  ; 
                  dyN(3),     0, -N(3)]; 
     bmat_s4  = [ dxN(4), -N(4),    0  ; 
                  dyN(4),     0, -N(4)]; 
     bmat_s5  = [ dxN(5), -N(5),    0  ; 
                  dyN(5),     0, -N(5)]; 
     bmat_s6  = [ dxN(6), -N(6),    0  ; 
                  dyN(6),     0, -N(6)]; 
     bmat_s = [bmat_s1,bmat_s2,bmat_s3,bmat_s4,bmat_s5,bmat_s6]; 
     b_bar = [ b_bar ; 
               bmat_s]; 
   end 

Coordinates for shear collocations points 

Local shape functions and their derivates 

Jacobian definition and global 

shape function derivates 

Shear strain matrix at 

each collocation point 

 

 

  a = sqrt(2)/2; 
   
  T_mat = [  1,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0 ; 
             0,  0,  1,  0,  0,  0,  0,  0,  0,  0,  0,  0 ; 
             0,  0,  0,  0, -a,  a,  0,  0,  0,  0,  0,  0 ; 
             0,  0,  0,  0,  0,  0, -a,  a,  0,  0,  0,  0 ; 
             0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  0,  0 ; 
             0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  1 ]; 

  P_mat = [ 1,   cx(1),   cy(1),  0,       0,      0  ; 
            1,   cx(2),   cy(2),  0,       0,      0  ; 
           -a,-a*cx(3),-a*cy(3),  a, a*cx(3), a*cy(3) ; 
           -a,-a*cx(4),-a*cy(4),  a, a*cx(4), a*cy(4) ; 
            0,       0,       0,  1,   cx(5),   cy(5) ; 
            0,       0,       0,  1,   cx(6),   cy(6) ]; 
        
 A_mat = [ 1 , xgs, ygs, 0 ,  0 ,   0 ; 
           0 ,   0,   0, 1 , xgs, ygs ];  
        
 bmat_s = xjaci * A_mat * inv(P_mat) * T_mat * c * b_bar; 

T matrix 

P matrix 

A matrix 

Substitutive shear strain matrix 

Fig. 12.54 Computation of the substitute transverse shear strain matrix B̄s for
the TQQL plate triangle
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% Shape function matrix for extrapolation of resultant stresses to nodes 
  mstres = [ 5 , -1 , -1 ; 
            -1 ,  5 , -1 ; 
            -1 , -1 ,  5 ]/3; 
  g_or = [1,3,5]; % Vertex nodes

% Resultant stresses at Gauss points 
    for igaus=1:3 
  
      [bmat_b,bmat_s] = B_mat_Plate_TCCL_v1_0(x,y,xg(igaus),yg(igaus));  
  
      Str1=D_matb*bmat_b*transpose(u_elem); 
      Str2=D_mats*bmat_s*transpose(u_elem); 
       
      Strx(igaus)  = Str1(1); 
      Stry(igaus)  = Str1(2); 
      Strxy(igaus) = Str1(3); 
      StrQx(igaus) = Str2(1); 
      StrQy(igaus) = Str2(2); 
    end 

% Resultant stresses at nodes 
    Str1 = mstres * transpose(Strx) ; 
    Strnod(lnods(g_or(1:3)),1) = Strnod(lnods(g_or(1:3)),1)+ Str1(1:3); 
    Str1 = mstres * transpose(Stry) ; 
    Strnod(lnods(g_or(1:3)),2) = Strnod(lnods(g_or(1:3)),2)+ Str1(1:3); 
    Str1 = mstres * transpose(Strxy) ; 
    Strnod(lnods(g_or(1:3)),3) = Strnod(lnods(g_or(1:3)),3)+ Str1(1:3); 
    Str2 = mstres * transpose(StrQx) ; 
    Strnod(lnods(g_or(1:3)),4) = Strnod(lnods(g_or(1:3)),4)+ Str2(1:3); 
    Str2 = mstres * transpose(StrQy) ; 
    Strnod(lnods(g_or(1:3)),5) = Strnod(lnods(g_or(1:3)),5)+ Str2(1:3); 
    Strnod(lnods(g_or(1:3)),6) = Strnod(lnods(g_or(1:3)),6)+ 1; 

    for i = 1 : npnod 
       Strnod(i,1:5) = Strnod(i,1:5)/Strnod(i,6); 
    end 

Nodal averaging of 
resultant stresses 

Fig. 12.55 Computation of resultant stresses for the TQQL plate triangle

12.18.1 Generalized constitutive matrix

The local generalized constitutive matrix contains the membrane, bend-
ing and transverse shear contributions (Eqs.(8.18)). For simplicity, the
coupling membrane-bending constitutive matrix D̂′

mb will be neglected.
The computation of the generalized constitutive matrix is shown in

Figure 12.56.

12.18.2 Stiffness matrix and equivalent nodal force vector

The first step in the computation of the element stiffness matrix is the
definition of the local coordinate system x′, y′, z′.

The normal vector vz′ is computed as the cross product of vectors
joining nodes 1,2 and 1,3. Vector vx′ is found by intersecting the element
plane with the global xz plane as described in Section 8.8.2. Vector vy′ is
finally found by cross product of vx′ and vz′ .
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  aux1 = thick*young/(1-poiss^2); 
  aux2 = poiss*aux1; 
  aux3 = thick*young/2/(1+poiss); 
    
  D_matm  = [aux1,aux2,   0; 
             aux2,aux1,   0; 
                0,   0,aux3]; 

  D_matb = D_matm*(thick^2/12); 

  aux4 = (5/6)*thick*young/2/(1+poiss); 
  D_mats = [aux4,   0 ; 
              0,aux4];

Membrane 

Bending 

Transverse shear 

Fig. 12.56 4-noded QLLL flat shell element. Local generalized constitutive matrices

Figure 12.57 shows the computation of vectors vx′ , vy′ , vz′ . These
vectors are grouped in matrix Te.

All of the stiffness matrix terms are computed with by a 2 × 2 Gauss
quadrature. The computation requires first transforming the global coor-
dinates of the nodes to the local axes. The membrane and bending stiff-
ness matrices are computed using matrices B′m and B′b of Eqs.(8.31). The
transverse shear stiffness matrix is computed using the substitute trans-
verse shear strain matrix B̄′s following the procedure explained for the
QLLL plate element and shown in Figure 12.50.

The global stiffness matrix for the element is directly found by trans-
forming the local generalized strain matrices to global axes as shown in
Eqs.(8.47) and (8.48).

Figures 12.58 and 12.59 respectively show the steps for computing of
the membrane and bending strain matrices and the substitute transverse
shear strain matrix in global axes.

12.18.3 Computation of local resultant stresses

The computation of the local resultant stresses at the 2× 2 Gauss points
within an element follows the procedure explained in Eqs.(8.49).

The extrapolation of the Gauss point values to the nodes can be per-
formed using Eq.(12.1). However, the nodal averaging of the local resultant
stresses is not straightfogrward as the local axes of adjacent elements are
not necessarily the same. An alternative is to transform the nodal resul-
tant stresses contributed by each element to global axes, perform the nodal
averaging and then transform back to a nodal coordinate system.

Figure 12.60 shows the nodal averaging of the local stresses assuming
a negligible change of the local axes between adjacent elements.
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Fig. 12.57 QLLL flat shell element. Definition of local axes

12.18.4 Examples

12.18.4.1 Clamped hyperbolic shell under uniform loading

We present results for the analysis of a thick hyperbolic shell clamped at
the four edges under a vertical uniformly distributed load. The geometry,
material properties and the load are shown in Figure 12.61a.

The problem has been solved with different meshes of QLLL flat shell
elements. No advantage of the symmetry of the problem has been taken.
Figures 12.61b show snapshots of the data input menus. The general struc-
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   function [bmat_b,bmat_m,bmat_s,area]=B_mat_Shell_CLLL(xgs,ygs,x,y,Te) 
   
    dxNl(1) = (-1+ygs)/4;  dyNl(1) = (-1+xgs)/4; 
    dxNl(2) = ( 1-ygs)/4;  dyNl(2) = (-1-xgs)/4; 
    dxNl(3) = ( 1+ygs)/4;  dyNl(3) = ( 1+xgs)/4; 
    dxNl(4) = (-1-ygs)/4;  dyNl(4) = ( 1-xgs)/4; 

    xjacm(1,1) = x(1)*dxNl(1) + x(2)*dxNl(2) + x(3)*dxNl(3) + x(4)*dxNl(4); 
    xjacm(1,2) = y(1)*dxNl(1) + y(2)*dxNl(2) + y(3)*dxNl(3) + y(4)*dxNl(4); 
    xjacm(2,1) = x(1)*dyNl(1) + x(2)*dyNl(2) + x(3)*dyNl(3) + x(4)*dyNl(4); 
    xjacm(2,2) = y(1)*dyNl(1) + y(2)*dyNl(2) + y(3)*dyNl(3) + y(4)*dyNl(4); 
   
    xjaci = inv(xjacm); 
       
    area = abs(xjacm(1,1)*xjacm(2,2) - xjacm(2,1)*xjacm(1,2)); 
   
    dxN(1) = xjaci(1,1)*dxNl(1)+xjaci(1,2)*dyNl(1);
    dxN(2) = xjaci(1,1)*dxNl(2)+xjaci(1,2)*dyNl(2);
    dxN(3) = xjaci(1,1)*dxNl(3)+xjaci(1,2)*dyNl(3);
    dxN(4) = xjaci(1,1)*dxNl(4)+xjaci(1,2)*dyNl(4);
    dyN(1) = xjaci(2,1)*dxNl(1)+xjaci(2,2)*dyNl(1);
    dyN(2) = xjaci(2,1)*dxNl(2)+xjaci(2,2)*dyNl(2);
    dyN(3) = xjaci(2,1)*dxNl(3)+xjaci(2,2)*dyNl(3);
    dyN(4) = xjaci(2,1)*dxNl(4)+xjaci(2,2)*dyNl(4);
   
      bmat_b1  = [ 0, 0, 0,-dxN(1),     0  ; 
                   0, 0, 0,      0,-dyN(1) ; 
                   0, 0, 0,-dyN(1),-dxN(1)]; 
      bmat_b2  = [ 0, 0, 0,-dxN(2),     0  ; 
                   0, 0, 0,      0,-dyN(2) ; 
                   0, 0, 0,-dyN(2),-dxN(2)]; 
      bmat_b3  = [ 0, 0, 0,-dxN(3),     0  ; 
                   0, 0, 0,      0,-dyN(3) ; 
                   0, 0, 0,-dyN(3),-dxN(3)]; 
      bmat_b4  = [ 0, 0, 0,-dxN(4),     0  ; 
                   0, 0, 0,      0,-dyN(4) ; 
                   0, 0, 0,-dyN(4),-dxN(4)]; 
  
      bmat_b = [bmat_b1,bmat_b2,bmat_b3,bmat_b4]; 
  
      bmat_m1d  = [ dxN(1),     0,  0 ; 
                         0, dyN(1), 0 ; 
                    dyN(1), dxN(1), 0]; 
      bmat_m2d  = [ dxN(2),      0, 0 ; 
                         0, dyN(2), 0 ; 
                    dyN(2), dxN(2), 0]; 
      bmat_m3d  = [ dxN(3),      0, 0 ; 
                         0, dyN(3), 0 ; 
                    dyN(3), dxN(3), 0]; 
      bmat_m4d  = [ dxN(4),      0, 0 ; 
                         0, dyN(4), 0 ; 
                    dyN(4), dxN(4), 0]; 
  
      bmat_mir  = [ 0, 0 ; 
                    0, 0 ; 
                    0, 0]; 
                  
      bmat_m1 = [bmat_m1d*Te,bmat_mir]; 
      bmat_m2 = [bmat_m2d*Te,bmat_mir]; 
      bmat_m3 = [bmat_m3d*Te,bmat_mir]; 
      bmat_m4 = [bmat_m4d*Te,bmat_mir]; 
  
      bmat_m = [bmat_m1,bmat_m2,bmat_m3,bmat_m4]; 

�

Shape function derivatives 

in local coordinate system 

Isoparametric 

transformation 

Bending strain matrix 

Membrane strain matrix 

Fig. 12.58 QLLL flat shell element. Computation of membrane and bending strain
matrices in global axes
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    %== Colocation points: 
  
      cx = [ 0 , 1 , 0 , -1 ]; 
      cy = [-1 , 0 , 1 ,  0 ]; 
  
      c     = zeros(8,8); 
      b_bar = []; 
      for i = 1 : 4 

        . . . 

        bmat_s1  = [ dxN(1), -N(1),    0  ; 
                     dyN(1),     0, -N(1)]; 
        bmat_s2  = [ dxN(2), -N(2),    0  ; 
                     dyN(2),     0, -N(2)]; 
        bmat_s3  = [ dxN(3), -N(3),    0  ; 
                     dyN(3),     0, -N(3)]; 
        bmat_s4  = [ dxN(4), -N(4),    0  ; 
                     dyN(4),     0, -N(4)]; 
  
        bmat_s = [bmat_s1,bmat_s2,bmat_s3,bmat_s4];
   
        b_bar = [ b_bar ; 
                   bmat_s]; 
      end 
  
      T_mat = [ 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ; 
                0 , 0 , 0 , 1 , 0 , 0 , 0 , 0 ; 
                0 , 0 , 0 , 0 , 1 , 0 , 0 , 0 ; 
                0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ]; 
      P_mat = [ 1 , -1 ,  0 ,  0 ; 
                0 ,  0 ,  1 ,  1 ; 
                1 ,  1 ,  0 ,  0 ; 
                0 ,  0 ,  1 , -1 ]; 
      A_mat = [ 1 , ygs , 0 ,   0 ; 
                0 ,   0 , 1 , xgs ];  
       
      bmat_ss = xjaci * A_mat * inv(P_mat) * T_mat * c * b_bar; 
  
      bmat_s1 = [0 , 0 ,bmat_ss(1, 1); 
                 0 , 0 ,bmat_ss(2, 1)]; 
      bmat_s2 = [0 , 0 ,bmat_ss(1, 4); 
                 0 , 0 ,bmat_ss(2, 4)]; 
      bmat_s3 = [0 , 0 ,bmat_ss(1, 7); 
                 0 , 0 ,bmat_ss(2, 7)]; 
      bmat_s4 = [0 , 0 ,bmat_ss(1,10); 
                 0 , 0 ,bmat_ss(2,10)]; 
  
      bmat_s1 = [bmat_s1*Te,bmat_ss(:, 2: 3)]; 
      bmat_s2 = [bmat_s2*Te,bmat_ss(:, 5: 6)]; 
      bmat_s3 = [bmat_s3*Te,bmat_ss(:, 8: 9)]; 
      bmat_s4 = [bmat_s4*Te,bmat_ss(:,11:12)]; 
  
      bmat_s = [bmat_s1,bmat_s2,bmat_s3,bmat_s4]; 
  

 

 

Coordinates for shear collocation points 

Shear strain matrix at 

each collocation point 

T matrix 

P matrix 

A matrix 

Sustitutive shear strain matrix 
for global displacements and 

local rotations 

Fig. 12.59 QLLL flat shell element. Computation of substitute transverse shear
strain matrix in global axes

ture of the input data file for the 4 × 4 element mesh is shown in Figure
12.62.

The reference solutions found with a mesh of 100×100 QLLL flat shell
elements yield a central deflection of wc = −0.0245, a bending moment at
the center of Mx′ = 0.39 and a shear force and the center of the clamped
edge of Qz′ = 0.15 (units in International System).
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  % Shape Function matrix for extrapolation of resultant stresses to nodes 
  aa = 1 + sqrt(3); 
  bb = 1 - sqrt(3); 
  mstres = [ aa*aa , aa*bb , bb*bb , aa*bb ; 
             bb*aa , aa*aa , aa*bb , bb*bb ; 
             bb*bb , aa*bb , aa*aa , bb*aa ; 
             aa*bb , bb*bb , bb*aa , aa*aa ]/4; 
  % Resultant stresses at Gauss points 
  for igs = 1 : 4 
    x = gauss_x(igaus); 
    y = gauss_y(igaus); 
    [bmat_b,bmat_m,bmat_s,area]=B_mat_Shell_QLLL_v1_1(x,y,coor_x,coor_y,Te); 
  
    Str1=D_matb*bmat_b*transpose(u_elem); 
    Str2=D_matm*bmat_m*transpose(u_elem); 
    Str3=D_mats*bmat_s*transpose(u_elem); 

    StrMx(igaus)  = Str1(1); 
    StrMy(igaus)  = Str1(2); 
    StrMxy(igaus) = Str1(3); 
    StrNx(igaus)  = Str2(1); 
    StrNy(igaus)  = Str2(2); 
    StrNxy(igaus) = Str2(3); 
    StrQx(igaus) = Str3(1); 
    StrQy(igaus) = Str3(2); 
    
  end 
  % Resultant stresses at nodes 
  Str1 = mstres * transpose(StrMx) ; 
  Strnod(lnods(1:4),1) = Strnod(lnods(1:4),1)+ Str1(1:4); 
  Str1 = mstres * transpose(StrMy) ; 
  Strnod(lnods(1:4),2) = Strnod(lnods(1:4),2)+ Str1(1:4); 
  Str1 = mstres * transpose(StrMxy) ; 
  Strnod(lnods(1:4),3) = Strnod(lnods(1:4),3)+ Str1(1:4); 
  Str2 = mstres * transpose(StrNx) ; 
  Strnod(lnods(1:4),4) = Strnod(lnods(1:4),4)+ Str2(1:4); 
  Str2 = mstres * transpose(StrNy) ; 
  Strnod(lnods(1:4),5) = Strnod(lnods(1:4),5)+ Str2(1:4); 
  Str2 = mstres * transpose(StrNxy) ; 
  Strnod(lnods(1:4),6) = Strnod(lnods(1:4),6)+ Str2(1:4); 
  Str3 = mstres * transpose(StrQx) ; 
  Strnod(lnods(1:4),7) = Strnod(lnods(1:4),7)+ Str3(1:4); 
  Str3 = mstres * transpose(StrQy) ; 
  Strnod(lnods(1:4),8) = Strnod(lnods(1:4),8)+ Str3(1:4); 
  Strnod(lnods(1:4),9) = Strnod(lnods(1:4),9)+ 1; 
   
  for i = 1 : npnod 
       Strnod(i,1:5) = Strnod(i,1:5)/Strnod(i,6); 
  end 

Nodal averaging of 
resultant stresses 

Fig. 12.60 Computation of local resultant stresses at the Gauss points for the
QLLL flat shell element

Table 12.10 shows the values for these three results for different meshes
of QLLL flat shell elements.

Figure 12.63 shows contours of the vertical deflection and the bending
moment Mx′ for the 16× 16 mesh.
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(a)

 

 

E = 28500 

Q = 0.01 

ν = 0.4  

t = 2.0 

(b)
 

 

 

 

 

 

Fig. 12.61 Clamped hyperbolic shell under uniform distributed load. (a) Geometry,
material properties and load. (b) Snapshots of data input menus

12.18.5 Scordelis roof

We present results for the analysis of a cylindrical shell with end di-
aphragms under uniform load (the so called Scordelis roof ). The general
description of the problem is shown in Figures 12.64 and 8.34.

Table 12.11 shows the results for the vertical displacement of point B
using different meshes of QLLL flat shell elements.
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%======================================================================= 
% MAT-fem_Shells 1.0 - MAT-fem is a learning tool for undestanding  
%                      the Finite Element Method with MATLAB and GiD 
%======================================================================= 
% PROBLEM TITLE = Clamped hyperbolic shell under uniform load 

%  Material Properties 
  young  =   2.850000000e+04 ; 
  poiss  =   4.000000000e-01 ; 
  denss  =   0.000000000e+00 ; 
  thick  =   2.000000000e+00 ; 
% 
% Coordinates 
global coordinates 
coordinates = [ 
   0.000000000e+00   ,   1.000000000e+02   ,  -1.000000000e+01  ; 
   5.000000000e+01   ,   1.000000000e+02   ,   0.000000000e+00  ; 
.... 
   1.000000000e+02   ,   5.000000000e+01   ,   0.000000000e+00  ; 
   1.000000000e+02   ,   0.000000000e+00   ,  -1.000000000e+01  ] ; % 
% Elements 
global elements 
elements = [ 
      2   ,      6   ,      8   ,      4   ;  
      3   ,      1   ,      2   ,      4   ;  
      7   ,      5   ,      3   ,      4   ;  
      8   ,      9   ,      7   ,      4   ] ; % 
% Fixed Nodes 
fixnodes = [ 
      1  , 1 ,   0.000000000e+00  ; 
      1  , 2 ,   0.000000000e+00  ; 
      1  , 3 ,   0.000000000e+00  ; 
      1  , 4 ,   0.000000000e+00  ; 
      1  , 5 ,   0.000000000e+00  ; 
... 
      9  , 1 ,   0.000000000e+00  ; 
      9  , 2 ,   0.000000000e+00  ; 
      9  , 3 ,   0.000000000e+00  ; 
      9  , 4 ,   0.000000000e+00  ; 
      9  , 5 ,   0.000000000e+00  ] ; 
% 
% Point loads 
% 
pointload = [ ] ; 
% 
% Side loadsss 
% 
uniload = sparse ( 4 , 1 ); 
uniload (      1  ) =   1.000000000e-02  ; 
uniload (      2  ) =   1.000000000e-02  ; 
uniload (      3  ) =   1.000000000e-02  ; 
uniload (      4  ) =   1.000000000e-02  ; 

 

 Fig. 12.62 Clamped hyperbolic shell under uniform load. Example of data input
for a 8-element mesh

Figure 12.67 shows results of Ny′ , Mx′ and Qx′ along the line CB
obtained with a mesh of 32 × 32 QLLL flat shell elements. Figure 8.34
shows results for the same problem obtained with other flat shell elements.
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Clamped hyperbolic shell

QLLL Mesh Nodes wc Mx′ Qy′

2 × 2 9 -1,068E-03 0,000 0.112
4 × 4 25 -1,751E-03 0,050 0.109
8 × 8 81 -1,266E-03 -0,093 -0.041

16 × 16 289 -1,655E-03 -0,108 -0.043
32 × 32 1089 -2,018E-03 -0,083 -0.047
64 × 64 4225 -2,212E-03 -0,065 -0.052

Reference [CB] -2,451E-02

Table 12.10 Clamped hyperbolic shell under uniform load. Results for deflection
wc and bending moment Mx′ at the center and shear force Qy′ at the center of
the clamped edge using different meshes of QLLL flat shell elements

 

(a) (b) 

  

 Fig. 12.63 Clamped hyperbolic shell. Contours of vertical deflection (a) and Mx′
(b)

  

 

E = 4.32x108 

Q = 90.0 

ν = 0.0 
t = 0.25 

Fig. 12.64 Scordelis roof. Geometry, material properties and boundary conditions

12.19 2-NODED REISSNER-MINDLIN TRONCOCONICAL
SHELL ELEMENT

This element was studied in Sections 9.4 and 9.6.1.
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(b) (c) 

Fig. 12.65 Scordelis roof. (a) Boundary conditions. (b) Displacement contour. (c)
Bending moment Mx′ contour for a 8× 8 mesh of QLLL flat shell elements

Scordelis roof

QLLL Mesh Nodes wB % Error
elements

4 2× 2 9 -0.3573 18.15
16 4× 4 25 -0.2832 -6.34
64 8× 8 81 -0.2943 -2.67
256 16× 16 289 -0.3005 -0.63
1024 32× 32 1089 -0.3026 -0.07

Reference [BSC+,MH2] -0.3024

Table 12.11 Scordelis roof shell under uniform load. Results for the vertical deflec-
tion of point B for different meshes of QLLL flat shell elements

12.19.1 Generalized constitutive matrix

Figure 12.67 shows the membrane (D matm), bending (D matb) and trans-
verse shear (D mats) generalized constitutive matrices of Eq.(9.39) and
(9.40).
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�

Fig. 12.66 Scordelis roof. Distribution of Ny′ , Mx′ and Qx′ along line CB for a
mesh of 32× 32 QLLL flat shell elements (see also Figure 8.34)

�

  aux1 = thick*young/(1-poiss^2); 
  aux2 = poiss*aux1; 
  aux3 = thick*young/2/(1+poiss); 
  aux4 = (5/6)*thick*young/2/(1+poiss); 
    
  D_matm  = [aux1,aux2; 
             aux2,aux1]; 
  
  D_matb = D_matm*(thick^2/12); 
             
  D_mats = [aux4]; 

  ttim = timing('Time needed to  set initial values',ttim); %Reporting time

Fig. 12.67 2-noded RM troncoconical shell element. Membrane, bending and trans-
verse shear generalized constitutive matrices

12.19.2 Stiffness matrix and equivalent nodal force vector

Figure 12.68 shows the computation of the transformation matrix L re-
lating the global and the local nodal displacements (Eq.(9.14)).

The computation of the stiffness matrix and the equivalent nodal force
vector for a uniform pressure is performed explicitly using a single inte-
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�

�

function  Te = Rotation_system_RS (cxy) 

  x = cxy(2,1) - cxy(1,1); 
  y = cxy(2,2) - cxy(1,2); 
  len = sqrt(x^2+y^2); 
   
  co = x / len ; 
  se = y / len ; 
   
  Te = [  co, se, 0 ; 
         -se, co, 0 ; 
           0,  0, 1]; 

Fig. 12.68 2-noded troncoconical RM shell element. Displacement transformation
matrix

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    cxy(1:nnode,:) = coordinates(lnods(1:nnode),:); % Element coordinates
  
    Te = Rotation_system_RS(cxy); 
     
    r = (cxy(1,1)+cxy(2,1))/2; % Radius of the element
  
     
    [bmat_b,bmat_s,bmat_m,len] = B_mat_Rev_Shell(cxy,Te);  
  
    K_b  = transpose(bmat_b)*D_matb*bmat_b*2*pi*r*len;
    K_s  = transpose(bmat_s)*D_mats*bmat_s*2*pi*r*len; 
    K_m  = transpose(bmat_m)*D_matm*bmat_m*2*pi*r*len; 
  
    K_elem  = K_elem + K_f + K_s + K_m; 
  
    c1 = 2*cxy(1,1)+  cxy(2,1); 
    c2 =   cxy(1,1)+2*cxy(2,1); 
     
    fx1 = uniload(ielem)* Te(2,1)*pi*len*c1/3; 
    fx2 = uniload(ielem)* Te(2,1)*pi*len*c2/3; 
     
    fy1 = (uniload(ielem) * Te(1,1) - denss*thick)*pi*len*c1/3; 
    fy2 = (uniload(ielem) * Te(1,1) - denss*thick)*pi*len*c2/3; 

    ElemFor =  [fx1,fy1,0,fx2,fy2,0]; 

Stiffness matrix 
using 1 Gauss point 

Equivalent nodal 

force vector 

Fig. 12.69 2-noded troncoconical RM shell element. Computation of stiffness ma-
trix and equivalent nodal force vector

gration point, following Eqs.(9.73) and (9.74). The computation steps are
shown in Figure 12.69. The membrane (K m), bending (K b) and transverse
shear stiffness (K s) matrices are computed separately and then added to-
gether in K elem.

Figure 12.70 shows the subroutine for computing the membrane, bend-
ing and transverse shear generalized strain matrices.

12.19.3 Resultant stresses

The local resultant stresses are computed at the element center and then
they are extrapolated to the nodes.
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    function [bmat_b,bmat_s,bmat_m,len] = B_mat_Troncoconical_RM_Shell(cxy,Te) 

     x = cxy(2,1) - cxy(1,1); 
     y = cxy(2,2) - cxy(1,2); 
     len = sqrt(x^2+y^2); 
     
     r = (cxy(1,1) + cxy(2,1)) / 2;  
     N(1) = 0.5 ;   % Shape functions and derivates at the gauss pt. = 0
     N(2) = 0.5 ; 
  
     dxN(1) = -1/len; 
     dxN(2) =  1/len; 
   
     bmat_m1  = [          dxN(1),                0,  0 ; 
                  N(1)*Te(1,1)/r , -N(1)*Te(1,2)/r ,  0]; 
     bmat_m2  = [          dxN(2),                0,  0 ; 
                  N(2)*Te(1,1)/r , -N(2)*Te(1,2)/r ,  0]; 
     bmat_m = [bmat_m1*Te,bmat_m2*Te]; 

     bmat_b1  = [ 0, 0,          -dxN(1)  ; 
                  0, 0, -N(1)*Te(1,1)/r  ]; 
     bmat_b2  = [ 0, 0,          -dxN(2)  ; 
                  0, 0, -N(2)*Te(1,1)/r  ]; 
     bmat_b = [bmat_b1*Te,bmat_b2*Te]; 

     bmat_s1  = [ 0, dxN(1), -N(1)]; 
     bmat_s2  = [ 0, dxN(2), -N(2)]; 
     bmat_s = [bmat_s1*Te,bmat_s2*Te]; 

�

Shape functions and their derivatives 

in local coordinate system 

Shear strain matrix 

Membrane strain 
matrix 

Bending strain matrix 

Fig. 12.70 2-noded troncoconical RM shell element. Computation of Bm, Bb and
Bs

�

 [bmat_b,bmat_s,bmat_m,len] = B_mat_Troncoconical_RM_Shell(cxy,Te);

% Resultant stresses at element mid-point 
   Str1=D_matb*bmat_b*u_elem; 
   Str2=D_mats*bmat_s*u_elem; 
   Str3=D_matm*bmat_m*u_elem; 
 %  
   Mx(ielem) =Str1(1); 
   Mf(ielem) =Str1(2); 
   Qz(ielem) =Str2(1); 
   Nx(ielem) =Str3(1); 
   Nf(ielem) =Str3(2); 

Fig. 12.71 2-noded troncoconical RM shell element. Computation of resultant
stresses at the element mid-point

Figure 12.71 shows the steps for computing the bending moment Mx′

and My′ (stored in Str1), the transverse shear force Q (stored in Str2)
and the axial forces Nx′ and Ny′ (stored in Str3).

12.19.4 Example. Thin spherical dome under uniform external pressure

Figure 12.72 shows the geometry of the dome, the material properties and
the external pressure values. Further details are given in Section 9.7.1.
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Fig. 12.72 2-noded troncoconical shell element. Data input menus for boundary
conditions, pressure load, material properties and mesh

E = 2×10
6
 lb/in

2
 

v = 1/6 

t = 3 in 

P = 1 lb/i n
2
 

r = 90 

θ = 35° 

Spherical dome under external pressure

Elements Nodes wc Mx′ Ny′

2 3 -1,444E-03 8,183 18,920
4 5 -9,137E-04 14,648 12,662
8 9 -8,384E-04 22,354 8,493
16 17 -8,189E-04 28,351 6,681
32 33 -8,137E-04 32,109 6,150
64 65 -8,124E-04 34,204 6,051
128 129 -8,121E-04 35,306 6,024

Reference [Del,TW] -8,121E-04 39,00 5,00

Table 12.12 Spherical dome under uniform external pressure analyzed with 2-
noded troncoconical RM shell elements. Deflection at the symmetry node and
radial bending moment and circumferential axial force at the center of the ele-
ment adjacent to the clamped end for different meshes (see also Figure 8.16)
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%======================================================================= 
% MAT-fem_RevShells 1.0  - MAT-fem is a learning tool for undestanding  
%                         the Finite Element Method with MATLAB and GiD 
%======================================================================= 
% PROBLEM TITLE = Thin spherical dome under uniform external pressure  
%                 analyzed with 28 2-noded troncoconical RM shell elements 
%             
%  Material Properties 
  young   =   2.000000000e+06 ; 
  poiss   =   1.666666660e-01 ; 
  denss   =   0.000000000e+00 ; 
  thikness=   3.000000000e+00 ; 
% 
% Coordinates 
global coordinates 
coordinates = [ 
   5.162187927e+01   ,   7.372368399e+01  ; 
   4.994083848e+01   ,   7.487264288e+01  ; 
... 
   0.000000000e+00   ,   9.000000000e+01  ] ;  
% 
% Elements 
global elements 
elements = [ 
     28   ,     27   ;  
     27   ,     26   ;  
... 
      2   ,      1   ] ;  
% 
% Fixed nodes 
fixnodes = [ 
      1  , 1 ,   0.000000000e+00  ; 
      1  , 2 ,   0.000000000e+00  ; 
      1  , 3 ,   0.000000000e+00  ; 
     28  , 1 ,   0.000000000e+00  ; 
     28  , 3 ,   0.000000000e+00  ] ; 
% 
% Point loads 
pointload = [ ] ; 
% 
% Side loads 
uniload = sparse ( 27 ); 
uniload (      1  ) =  -1.000000000e+00  ; 
uniload (      2  ) =  -1.000000000e+00  ; 
.. 
uniload (     27  ) =  -1.000000000e+00  ; 

 

 

Fig. 12.73 Data input file for analysis of a thin spherical dome under uniform
external pressure using 28 2-noded troncoconical RM elements

The reference solution has been obtained with a mesh of 60000 4-
noded cubic troncoconical elements giving a deflection at the center of
wc = 81211 × 10−4 in, a radial bending moment at the clamped end
Mx′ = 39 lb×in/in and a circumferential axial force also at the clamped
end Ny′ = 5.0 lb/in. Other solution to this problem can be found in
[Del,TW].

Figure 12.72 shows some of the data input menus corresponding to the
boundary conditions, the pressure load, the material properties and the
definition of the mesh.

The data input file for a 28 element mesh is shown in Figure 12.73.
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Table 12.12 shows the convergence of the deflection at the symmetry
node and the radial bending moment and the circumferential force at the
center of the element adjacent to the clamped end for different meshes.

12.20 FINAL REMARKS

We have presented the basic concepts and the structure of the MAT-fem
code environment for analysis of beams, plates and shells using some of
the elements studied in the book.

Each element has been programmed as a separate code to facilitate the
follow-up of the programming steps and the use of the code.

Each of the codes presented in this chapter, and other codes for several
of the elements studied in the book, together with examples of applica-
tions, can be downloaded from www.cimne.com/MAT-fem.

For general questions about the use of MAT-fem please contact Dr.
Francisco Zárate at zarate@cimne.upc.edu.

http://www.cimne.com/MAT-fem
mailto:zarate@cimne.upc.edu


Appendix A

BASIC PROPERTIES OF MATERIALS

E (GPa) ν ρ α× 105 Limit tensile ε failure
Kg/m3 ◦ C−1 stress MPa %

Concrete 20-40 0.15 2400 2.0 4
Carbon steel 207 0.30 7810 1.3 400-1600 1.8
Nickel stell 207 0.30 7750 1.3 400-1600 -
Stainless steel (18-8) 190 0.31 7750 1.6 400-1600 -
Alluminium (all alloys) 70 0.33 2710 2.2 140-600 -
Copper 110 0.33 8910 1.7 - -
Cast iron gray 100 0.21 7200 1.1 - -
Glass 46 0.25 2600 0.8 35-175
Lead 37 0.43 11380 2.9 -
Magnesium 45 0.35 1800 2.6 -
Phosphor bronze 111 0.35 8170 1.8 -
Wood (sense of fibers) 15 0.45 - - 100
Wood (transverse sense) 1 - - - 3.5
Granit 60 0.27 - - 4
Diamant 1200 - - -

Table A.1 CONVENTIONAL MATERIALS

E ν
MPa

Unconsolidated sand 1034 0.3
Carbonates 2206 0.1
Shale 2413 0.1

Table A.2 SOILS

E. Oñate, Structural Analysis with the Finite Element Method. Linear Statics:  
Volume 2: Beams, Plates and Shells, Lecture Notes on Numerical Methods  
in Engineering and Sciences, DOI 10.1007/978-1-4020-8743-1,  
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E (GPa) ν ρ α× 10−5 Limit tensile ε failure
Kg/m3 ◦ C−1 stress MPa %

E-Glass 72 0.25 2550 0.5 3400 4.5
S-Glass 86 0.20 2500 0.3 4600 1.5
Graphite 390 - 1900 - 2100 -
Boron 400 - 2600 0.4 3400 0.8
(φ 0.1mm)
Aramid 130 - 1450 - 2700 -
(Kplar 49)
Nylon 1.4 - - - 1000 -
Carbon 190 0.3 6 1410 0.05 1700 0.5
Carbon HR 230 0.3 1750 0.02 3200 1.3
(high resistance)
Carbon HM 390 0.35 1800 0.08 2500 0.6
(high modulus)

Table A.3 FIBERS

E (GPa) ν ρ α× 10−5 Limit tensile ε failure
Kg/m3 ◦ C−1 stress MPa %

Epoxy resin 4-5 0.4 1200 9-13 130 3-6
Phelonic resin 3 0.4 1300 9-13 40 3-6
Polyester resin 4 0.4 1200 2 50-100 2.5
Polypropylene 1.1-1-4 0.4 900 - 25 -
Polycarbonate 2.4 0.1 1200 - 60 -
Polystyrene 0.020 0.4 280 - - -
Rubber 0.002-0.007 0.5 - - - -

Table A.4 RESINS AND POLYMERS

E (GPa) ν Limit tensile stress
MPa

Phoetal cranial bone
E1 = 3.8
E2 = 1.0

0.22 -

Adult cranial bone 4.46 0.22
Fresh bone 2.1 0.25 110
Human cartilage 0.024 - 3
Human tendon 0.6 - 82

Table A.5 BIOLOGICAL MATERIALS

The mechanical properties of other materials can be found in [Co2,PP4].
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EQUILIBRIUM EQUATIONS FOR A
SOLID

Let us consider the equilibrium of forces in a differential of area of a 2D
solid under body forces (bx, by) (Figure B.1a)

∑
Fx = 0 : (σx + dσx)dy + (τyx + dτyx)dx+ bxdxdy − σxdy − τyxdx = 0

∑
Fy = 0 : (σy + dσy)dx+ (τxy + dτxy)dy + bydxdy − σydx− τxydy = 0

(B.1)

Noting that

dσx =
∂σx
∂x

dx , dσy =
∂σy
∂y

dy , dτxy =
∂τxy
∂x

dx , dτyx =
∂τyx
∂y

dy

(a) Interior domain (b) Boundary domain

Fig. B.1 Equilibrium of forces in an infinitesimal domain at the interior (a) and
the boundary (b) of a 2D solid

E. Oñate, Structural Analysis with the Finite Element Method. Linear Statics:  
Volume 2: Beams, Plates and Shells, Lecture Notes on Numerical Methods  
in Engineering and Sciences, DOI 10.1007/978-1-4020-8743-1,  
© International Center for Numerical Methods in Engineering (CIMNE), 2013 
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τxy = τyx (B.2)

Substituting Eqs.(B.2) into (B.1) gives after small algebra

∂σx
∂x

+
∂τxy
∂y

+ bx = 0

∂σy
∂y

+
∂τxy
∂x

+ by = 0
(B.3)

B.1 EQUILIBRIUM AT A BOUNDARY SEGMENT

Let us consider the equilibrium of forces at an infinitesimal boundary
segment AB of length L of a 2D solid under a traction force t = [tx, ty]

T

acting in the normal direction n = [nx, ny]
T (Figure B.1b)

∑
Fx = 0 : txL− σxdy − τyxdx = 0∑
Fy = 0 : tyL− σydx− τxydy = 0

(B.4)

Nothing that τyx = τxy and dx = Lny, dy = Lnx with nx = cosα and
ny = sinα and substituting these expressions into (B.4) yields

tx = σxnx + τxyny

ty = σyny + τxynx
(B.5)

which are the sought equilibrium equations at the boundary.
Eqs.(B.3) and (B.5) can be readily extended to 3D solids as [ZT]

Equilibrium at the interior

∂σx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

+ bx = 0

∂τxy
∂x

+
∂σy
∂y

+
∂τyz
∂z

+ by = 0

∂τxz
∂x

+
∂τyz
∂y

+
∂σz
∂z

+ bz = 0

(B.6)

Equilibrium at the boundary

tx = σxnx + τxyny + τxznz

ty = τxynx + σyny + τyznz

tz = τxznx + τyzny + σznz

(B.7)



Appendix C

NUMERICAL INTEGRATION

C.1 1D NUMERICAL INTEGRATION

Let us assume that the integral of a function f(x) in the interval [-1,1] is
required, i.e.

I =

∫ +1

−1
f(ξ) dξ (C.1)

The Gauss integration rule, or Gauss quadrature, expresses the value
of the above integral as a sum the function values at a number of known
points multiplied by prescribed weights. For a quadrature of order q

I � Iq =

q∑
i=1

f(ξi)Wi (C.2)

where Wi is the weight corresponding to the ith sampling point located
at ξ = ξi and q the number of sampling points. A Gauss quadrature of qth
order integrates exactly a polynomial function of degree 2q − 1 [Ral]. The
error in the computation of the integral is of the order 0(�2q), where � is
the spacing between the sampling points. Table C.1 shows the coordinates
of the sampling points and their weights for the first eight 1D Gauss
quadratures.

Note that the sampling points are all located within the normalized do-
main [-1,1]. This is useful for computing the element integrals expressed
in terms of the natural coordinate ξ. The Gauss quadrature requires the
minimum number of sampling points to achieve a prescribed error in
the computation of an integral. Thus, it minimizes the number of times
the integrand function is computed. The reader can find the details in
[Dem,PFTV,Ral,WR].

E. Oñate, Structural Analysis with the Finite Element Method. Linear Statics:  
Volume 2: Beams, Plates and Shells, Lecture Notes on Numerical Methods  
in Engineering and Sciences, DOI 10.1007/978-1-4020-8743-1,  
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q ξq Wq

1 0.0 2.0

2 ±0.5773502692 1.0

3
±0.774596697
0.0

0.5555555556
0.8888888889

4
±0.8611363116
±0.3399810436

0.3478548451
0.6521451549

5
±0.9061798459
±0.5384693101
0.0

0.2369268851
0.4786286705
0.5688888889

6
±0.9324695142
±0.6612093865
±0.2386191861

0.1713244924
0.3607615730
0.4679139346

7

±0.9491079123
±0.7415311856
±0.4058451514
0.0

0.1294849662
0.2797053915
0.3818300505
0.4179591837

8

±0.9602898565
±0.7966664774
±0.5255324099
±0.1834346425

0.1012285363
0.2223810345
0.3137066459
0.3626837834

Table C.1 Coordinates and weights for 1D Gauss quadratures

C.2 NUMERICAL INTEGRATION IN 2D

C.2.1 Numerical integration in quadrilateral domains

The integral of a term g(ξ, η) over the normalized isoparametric quadri-
lateral domain can be evaluated using a 2D Gauss quadrature by

∫ +1

−1

∫ +1

−1
g(ξ, η) dξ dη =

∫ +1

−1
dξ

[ nq∑
q=1

g(ξ, ηq)Wq

]
=

np∑
p=1

nq∑
q=1

g(ξp, ηq)WpWq

(C.3)
where np and nq are the number of integration points along each natural
coordinate ξ and η respectively; ξp and ηq are the natural coordinates of
the pth integration point and Wp,Wq are the corresponding weights.

The coordinates and weights for each natural direction are directly
deduced from those given in Table C.1 for the 1D case. Let us recall that
a 1D quadrature of qth order integrates exactly a polynomial of degree
q ≤ 2n−1. Figure C.1 shows the more usual quadratures for quadrilateral
elements.
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Fig. C.1 Gauss quadratures over quadrilateral elements, a) 1×1, b) 2×2, c) 3×3,
d) 4× 4 integration points

(a) Area coordinate (b) Natural coordinate

Fig. C.2 Triangular element. (a) Area coordinates. (b) Natural coordinates

C.2.2 Numerical integration over triangles

The Gauss quadrature for triangles is written as
∫ 1

0

∫ 1−L3

0
f(L1, L2, L3) dL2 dL3 =

np∑
p=1

f(L1p , L2p , L3p) Wp (C.4)

where np is the number of integration points: L1p , L2p , L3p and Wp are the
area coordinates (Figure C.2a) and the corresponding weights for the pth
integration point [On4].

Figure C.3 shows the more usual coordinates and weights. The term
“accuracy” in the figure refers to the highest degree polynomial which is
exactly integrated by each quadrature. Figure C.3 is also of direct appli-
cation for computing the integrals defined in terms of the natural coordi-
nates for triangles α and β (Figure C.2b) defined as L2 = α,L3 = β and
L1 = 1− α− β [On4].
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Figure n Accuracy Points L1 L2 L3 Wi

(a) 1 Linear a 1/3 1/3 1/3 1/2

a 1/2 1/2 0 1/6
(b) 3 Quadratic b 0 1/2 1/2 1/6

c 1/2 0 1/2 1/6

a 1/3 1/3 1/3 γ1

(c) 4 Cubic b 0.6 0.2 0.2 γ2

c 0.2 0.6 0.2 γ2

d 0.2 0.2 0.6 γ2

a α1 β1 β1 γ3

b β1 α1 β1 γ3

(d) 6 Quartic c β1 β1 α1 γ3

d α2 β2 β2 γ4

e β2 α2 β2 γ4

f β2 β2 α2 γ4

α1 = 0.8168475730 ; β1 = 0.0915762135 ; γ1 = −27

96
; 2γ3 = 0.1099517437

α2 = 0.1081030182 ; β2 = 0.4459484909 ; γ2 =
25

96
; 2γ4 = 0.2233815897

Fig. C.3 Coordinates and weights for the Gauss quadrature in triangular elements

The weights in Figure C.3 are normalized so that their sum is 1/2.
In many references this value is changed to the unity and this requires
the sum of Eq.(D.4) to be multiplied by 1/2 so that the element area is
correctly computed in those cases [On4].

The quadrature of Figure C.2 can be extended for tetrahedral elements.
For details see [On4].

C.3 NUMERICAL INTEGRATION OVER HEXAEDRA

Let us consider the integration of a function f(x, y, z) over a hexahedral
isoparametric element. The following transformations are required

∫∫∫

V (e)

f(x, y, z) dx dy dz =

∫ 1

−1

∫ 1

−1

∫ 1

−1
f(ξ, η, ζ)

∣∣∣J(e)
∣∣∣ dξ dη dζ =
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Fig. C.4 Gauss quadratures of 1×1×1 and 2×2×2 points in hexahedral elements

=

∫ +1

−1

∫ +1

−1

∫ +1

−1
g(ξ, η, ζ) dξ dη dζ (C.5)

Gauss quadrature over the normalized cubic domain leads to

∫ +1

−1

∫ +1

−1

∫ +1

−1
g(ξ, η, ζ) dξ dη dζ =

∫ +1

−1

∫ +1

−1

np∑
p=1

Wp g(ξp, η, ζ) dη dζ =

=

∫ +1

−1

nq∑
q=1

np∑
p=1

WpWqg(ξp, ηq, ζ) dζ =

nr∑
r=1

nq∑
q=1

np∑
p=1

WpWqWrg(ξp, ηq, ζr)

(C.6)
where np, nq and nr are the integration points via the ξ, η, ζ directions,
respectively, ξp, ηq, ζr are the coordinates of the integration point (p, q, r)
and Wp,Wq,Wr are the weights for each natural direction.

The local coordinates and weights for each quadrature are deduced
from Table D.3 for the 1D case. We recall that a qth order quadrature
integrates exactly a 1D polynomial of degree 2q − 1. This rule helps us
to identify the number of integration points in each natural direction.
Figure C.4 shows the sampling points for the 1 × 1 × 1 and 2 × 2 × 2
quadratures.
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COMPUTATION OF THE SHEAR
CORRECTION PARAMETER FOR
BEAMS

Let us consider the bending of a beam in the xz plane. The shear correction
parameter kz can be determined by comparing the transverse shear strain
energy Us associated to the theoretical (exact) distribution of the shear
stresses τxz and τxy and the transverse shear strain UT

s associated to the
Timoshenko’s model corrected by the coefficient kz, i.e.

Us =
1

2

∫∫

A

[
τ2xy
Gxy

+
τ2xz
Gxz

]
dA (D.1)

UT
s =

1

2

Q2
z

kzḠxz
, with Qz =

∫∫

A
τxzdA and Ḡxz =

∫∫

A
Gxz(y, z)dA

(D.2)
If Us = UT

s , then

kz =
1

2

Q2
z

ḠxzUs
(D.3)

The “exact” transverse strain energy Us can be estimated as follows.
The shear stresses satisfy the equilibrium equations (Eqs.(B.6) and (B.7)
of Appendix B)

∂σx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

= 0 in A

τxn = τxyny + τxznz = 0 in ΓA

(D.4)

In Eq.(D.4) ΓA represents the boundary of the section of area A where
both σx and tx are zero (Eq.(B.7)).
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D Computation of the shear correction parameter for beams 801

The constitutive equations for a non homogeneous beam can be written
for the general case as (see Eqs.(3.10) and (3.11))

N = D̂a
∂u0
∂x

+ D̂ab
∂θ

∂x

M = D̂ab
∂u0
∂x

+ D̂b
∂θ

∂x

(D.5)

with

D̂a =

∫∫

A
EdA , D̂ab = −

∫∫

A
EzdA , D̂b =

∫∫

A
Ez2dA (D.6)

Inverting Eq.(D.5) gives

∂u0
∂x

=
1

D̂
[D̂bN − D̂abM ] ;

∂θ

∂x
=

1

D̂
[−D̂abN + D̂aM ] (D.7)

with
D̂ = D̂aD̂b − D̂2

ab (D.8)

The axial stress σx is given by

σx = Eεx = E

[
∂u0
∂x

− z
∂θ

∂x

]
(D.9)

Substituting (D.7) into (D.9) gives

∂σx
∂x

=
E

D̂

[
D̂b

∂N

∂x
− D̂ab

∂M

∂x
− z

(
−D̂ab

∂N

∂x
+ D̂a

∂M

∂x

)]
(D.10)

Assuming that ∂N
∂x = 0 using

∂My

∂x = −Q (Figure 1.7) then

∂σx
∂x

=
E

D̂
[D̂ab + zD̂a]Q = f(y, z) (D.11)

Let us assume now the following displacement field

u(x, y, z) = u0(x)− zθ(x) + ut(y, z)
v(x, y, z) = 0 , w(x, y, z) = w(x)

(D.12)

where ut(y, z) is the warping displacement due to torsion. Then

τxy = Gxy

(
∂u

∂y
+

∂v

∂x

)
= Gxy

∂ut
∂y

τxz = Gxz

(
∂u

∂z
+

∂w

∂x

)
= Gxz

[
γxz +

∂ut
∂z

] (D.13)

where γxz =
∂w
∂x −θ is a function of the x coordinate only. From Eqs.(D.13)

we deduce
∂τxy
∂t

− ∂τxz
∂y

= 0 (D.14)
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Eq.(B.14) can be satisfied by introducing a function φ such that

τxy = Gxy
∂φ

∂y
and τxz = Gxz

∂φ

∂z
(D.15)

The equilibrium equations (D.4) can be written using (D.11) and
(D.14) as

∂

∂y

(
Gxy

∂φ

∂y

)
+

∂

∂z

(
Gxz

∂φ

∂z

)
+ f = 0 in A

Gxy
∂φ

∂y
ny +Gxz

∂φ

∂z
nz = 0 in ΓA

(D.16)

Eqs.(D.15) define a Laplace problem of the same type that for the
Saint-Venant torsion [OR]. These equations can be solved analytically
(for simple sections) or numerically by the FEM for the values of φ(y, z)
at each point of the section [ZTZ]. The expression of Us to be used in
Eq.(D.3) for the value of kz can be computed in terms of φ as

Us =
1

2

∫∫

A

[
Gxy

(
∂φ

∂y

)2

+Gxz

(
∂φ

∂z

)2
]
dA =

1

2

∫∫

A
φfdA (D.17)

Figure 2.3 shows the values of kz for some cross sections using the
procedure described above.

The same procedure can be followed for computing the shear parameter
ky for bending in the xy plane.



Appendix E

PROOF OF THE SINGULARITY
RULE FOR THE STIFFNESS MATRIX

Let us consider the system of algebraic equations representing the equi-
librium of a structure discretized with the FEM

f = Ka =
[∫

A
BT D B dA

]
a (E.1)

where a =

⎧
⎪⎨
⎪⎩

a1
...
an

⎫
⎪⎬
⎪⎭

is a vector of j = N×d−r DOFs, N is the total number

of nodes in the mesh, d is the number of DOFs per node and r the number
of restrained DOFs.

The generalized strain matrix B in Eq.(E.1) can be written as B =
[B1,B2, · · · ,BN ] where Bi is the generalized strain matrix of node i
that includes the global shape functions Ng

i . Functions N
g
i coincide with

the standard shape functions N
(e)
i within element e containing node i

[ZT2,On4].
The equilibrium equations for the ith node reads

fi = Ki1a1 +Ki2a2 + · · ·+Knan (E.2)

Let us assume that the stiffness matrix is computed numerically using
a Gauss quadrature with p points. Eq.(E.2) can be written in this case as

fi =
{∑p

m=1[B
T D B |J|]mWm

}
a =

= W̄ (1)
[
B

(1)
i

]T [{DB
(1)
1 a1}+ {DB

(1)
2 a2}+ · · ·+ {DB

(1)
n an}

]
+

+W̄ (2)
[
B

(2)
i

]T [{DB
(2)
1 a1}+ {DB

(2)
2 a2}+ · · ·+ {DB

(2)
n an}

]
+

+ · · ·+ W̄ (p)
[
B

(p)
i

][
{DB

(p)
1 a1}+ {DB

(p)
2 a2}+ · · ·+ {DB

(p)
n an}

]

(E.3)
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804 Proof of the singularity rule for the stiffness matrix

where W̄ (j) is the product of the integration weight and the Jacobian
determinant at the jth integration point. From Eq.(E.3) we deduce that
if s is the number of rows in Bi (i.e. the number of generalized strains),
vector fi is a combination of k× p linear relationships in a1,a2, · · · ,an. It
can be proven that these relationship are independent among themselves
if p is less or equal to the minimum number of integration point that yields
the exact expression for K.

Eq.(E.3) can be rewritten in terms of the free DOFs, a1, a2, · · · , aj ,
after eliminating the prescribed DOFs, as

C1
1 (α

1
1a1+ · · · +α1

jaj) + C1
2 (α

2
1a1+ · · · +α2

jaj) + · · ·+ C1
sp(α

j
1a1+ · · · +αj

jaj) = f1

C2
1 (α

1
1a1+ · · · +α1

jaj) + C2
2 (α

2
1a1+ · · · +α2

jaj) + · · ·+ Cq
sp(α

j
1a1+ · · · +αj

jaj) = f2
...

...
...

Cq
1(α

1
1a1+ · · · +α1

jaj) + Cq
2(α

2
1a1+ · · · +α2

jaj) + · · ·+ Cq
sp(α

j
1a1+ · · · +αj

jaj) = fq
...

...
...

Cj
1(α

1
1a1+ · · · +α1

jaj) + Cj
2(α

2
1a1+ · · · +α2

jaj) + · · ·+ Cj
sp(α

j
1a1+ · · · +αj

jaj) = fj
(E.4)

where kp = k × p.
The matrix multiplying the variables a1, a2, · · · , aj will be singular if

the coefficients Ci
1, C

i
2, · · · , Ci

kp
of any of the above equations are a linear

combination of the coefficients of any of the other rows. This is mathe-
matically expressed as

Ci
1 = β1 C1

1+ β2 C2
1+ · · ·+ βr Cm

1

Ci
2 = β1 C1

2+ β2 C2
2+ · · ·+ βr Cm

2
...

...
...

...
...

Ci
sp = β1 C1

sp+ β2 C2
sp+ · · ·+ βm Cr

sp

(E.5)

with r < j. This system of equations can be solved for the unknowns
β1, β2, · · · , βr, if the number of unknowns is greater or equal to the avail-
able equations. Hence, the sought singularity rule is

r ≥ s× p or j − s× p > 0 (E.6)

Eq.(E.6) coincides with Eq.(2.50).



Appendix F

COMPUTATION OF THE SHEAR
CENTER AND THE WARPING
FUNCTION IN THIN-WALLED OPEN
COMPOSITE BEAM SECTIONS

We present a procedure for computing the shear center in beams with
a thin-walled open section. The constrained torsion generates axial and
shear stresses σx′ and τx′s such that

σx′(x, s, ζ) = Eεx′(x
′, s, ζ)

τx′s(x, s
′, ζ) = Gγx′s(x

′, s, ζ)
(F.1)

with εx′ and γx′s given by Eqs.(10.104).
The shear stresses due to torsion should only induce a torque Mx̂′ .

Also, the axial stresses σx′ due to torsion must satisfy that the axial force
N and the bending moments My′ and Mz′ are zero, i.e.

N =

∫∫

A
σx′ dA =

∂2θx̂′

∂x′2

∫∫

A
Eω dA = 0 (F.2a)

My′ =

∫∫

A
z′σx′ dA =

∂2θx̂′

∂x′2

∫∫

A
z′Eω dA = 0 (F.2b)

Mz′ = −
∫∫

A
y′σx′ dA = −∂2θx̂′

∂x′2

∫∫

A
y′Eω dA = 0 (F.2c)

where dA =
(
1− ζ

R

)
ds dζ and ω is defined by Eq.(10.101).

Above conditions are satisfied if
∫∫

Ω
Eω dA =

∫∫

A
z′Eω dA =

∫∫

Ω
y′Eω dA = 0 (F.3)

E. Oñate, Structural Analysis with the Finite Element Method. Linear Statics:  
Volume 2: Beams, Plates and Shells, Lecture Notes on Numerical Methods  
in Engineering and Sciences, DOI 10.1007/978-1-4020-8743-1,  
© International Center for Numerical Methods in Engineering (CIMNE), 2013 

805



806 Computation of the shear center and the warping function

If C(y′c, z′c) is not known, we can compute ωD and the coordinates of
C as follows. Taking C as a reference point, the coordinate vector of an
arbitrary point p over the section middle line is

c = rp − rc (F.4)

with rp = [y′p, z′p]T and rc = [y′c, z′c]T . From Eqs.(10.108), (10.90) and
(10.91)

ct = cT t = c0t −
(
y′c
∂y′p
∂s

+ z′c
∂z′p
∂s

)
(F.5a)

cn = cTn = c0n −
(
−y′c

∂z′p
∂s

+ z′c
∂y′p
∂s

)
(F.5b)

with

c0t = y′p
∂y′p
∂s

+ z′p
∂z′p
∂s

(F.6a)

r0n = −y′p
∂z′p
∂s

+ z′p
∂y′p
∂s

(F.6b)

Substituting (10.113b) into (10.99) gives

ωs = ω0
s(s) + y′cz

′
p(s)− z′cy

′
p(s) (F.7)

with

ω0
s(s) =

∫ s

0
r0nds =

∫ p

D
(−y′pdz′p + z′pdy

′
p) (F.8)

where D is the end point of the section with s = 0.
Substituting Eq.(10.111) into (10.101a) and this into (10.106) gives

∫∫

A
E[(ω0

s + y′cz
′
p + z′cy

′
p) + ωD − ctζ] dA = 0 (F.9a)

∫∫

A
z′E[(ω0

s + y′cz
′
p + z′cy

′
p) + ωD − ctζ] dA = 0 (F.9b)

∫∫

A
y′E[(ω0

s + y′cz
′
p + z′cy

′
p) + ωD − ctζ] dA = 0 (F.9c)

In above equations, z′ and y′ are given by Eq.(10.93) and ct by
Eq.(10.109a).

The system of Eqs.(10.125) allows us to compute ωD and the coordi-
nates y′c, z′c of the shear center C for thin-walled open composite beam.



F Computation of the shear center and the warping function 807

For very thin walls 1 − ξ
R = 1, dA = dsdξ and the terms in ζ can be

neglected in above integrals.
If the material is homogeneous the constant ωD can be computed from

Eqs.(10.125a) as

ωD = − 1

A

∫

ls

ωs(s)t(s)ds (F.10)

where t is the wall thickness, ls is the length of the wall member and ωs

is given by Eq.(10.111). ωD can therefore be interpreted as the average
sectorial coordinate (with opposite sign) over the wall member.

If in addition y′, z′ are the principal axes of inertia, we can compute
y′c, z′c from Eqs.(10.125b,c) as

y′c = −
Iωy′

Iy′
, z′c =

Iωz′

Iz′
(F.11)

with

Iωy′ =

∫∫

A
ω0
sz
′ dA �

∫

ls

tω0
sz
′
p ds

Iωz′ =

∫∫

A
ω0
sy
′ dA �

∫

ls

tω0
sy
′
p ds

(F.12)

In the derivation of Eqs.(10.115) we have used the fact that ωD is a
constant and, hence,

∫∫

A
z′ωDdA = ωD

∫∫

A
z′dA = 0 (same for y′) (F.13)

In summary, the steps for computing the coordinates of the shear center
C(y′c, z′c) for an homogeneous section are:

- Define O and the principal inertia axes Iy′ , Iz′ (Section 4.2.4).
- Define the coordinates yp(s) and zp(s) of a point on the middle line.
- Define ds (Section 4.10.1).
- Compute ω0

s (Eq.(C.8)).
- Compute Iωy′ and Iωz′ and then y′z and z′c (Eqs.(C.11)).

Once the coordinates of the shear center y′c and z′c are known, we can
compute ωs by (C.7) and then ωD by Eq.(C.10) and gs by Eq.(4.127).



Appendix G

STABILITY CONDITIONS FOR
REISSNER-MINDLIN PLATE
ELEMENTS BASED ON ASSUMED
TRANSVERSE SHEAR STRAINS

Let us consider the governing equations for a Reissner-Mindlin (RM) plate
written in the form [ZL,ZT2]

Definition of bending moments : m = D̂b L θθθ (G.1)

Equilibrium of bending moments : LT m+ s = 0 (G.2)

Definition of shear forces :
1

β
s− γγγ = 0 (G.3)

Definition of shear strains : γγγ + θθθ −∇∇∇w = 0 (G.4)

Equilibrium of shear forces : ∇∇∇T s+ q = 0 (G.5)

with

β = αGt , m = [Mx,My,Mxy]
T , s = [Qx, Qy]

T

θθθ = [θx, θy]
T , γγγ = [γx, γy]

T , ∇∇∇ = [
∂

∂x
,
∂

∂y
]T

and

L =

⎡⎢⎣−
∂

∂x
0 − ∂

∂y

0 − ∂

∂y
− ∂

∂x

⎤⎥⎦
T

(G.6)

We retain the displacements (w,θθθ), the shear forces s and the transverse
shear strains γγγ as the prime variables. Hence, substituting Eq.(G.1) into
(G.2) gives

LT (D̂f L θθθ) + s = 0 (G.7)

The resulting equations (G.1), (G.3), (G.4), (G.5) and (G.7) can be
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G Stability conditions for Reissner-Mindlin plate elements 809

written in integral form using the weighted residual method [ZTZ,ZT2] as

∫∫

A
WT

1 [L
T (D̂b Lθθθ) + s]dA+

∫∫

A
WT

2

[
1

β
s− γγγ

]
dA+

+

∫∫

A
WT

3 (γγγ + θθθ −∇∇∇w)dA+

∫∫

A
W4T [∇T s+ q]dA = 0 (G.8)

The following FE approximation is used for the prime variables

θθθ = Nθθ̄θθ , w = Nw w̄ww , s = Ns s̄ , γγγ = Nγγ̄γγ (G.9)

where Nθ, Nw, Ns and Nγ are shape function matrices and (̄.) denotes
nodal values.

The number of total “free” variables in the mesh for the rotations, the
deflection, the transverse shear stresses and the transverse shear strains
(after eliminating the prescribed DOFs) is nθ, nw, ns and nγ , respectively

Integrating by parts the first and the last integral in (G.7) and using
the Galerkin method [ZTZ,ZT2] with W1 = Nθ, W2 = Ns, W3 = Nγ

and W4 = Nw yields the following system of equations

⎡⎢⎢⎣
A B 0 0
0 −E 1

βS 0

BT H C
0 0 CT 0

⎤⎥⎥⎦
⎧
⎪⎪⎨
⎪⎪⎩

θ̄θθ
γ̄γγ
s̄
w̄ww

⎫
⎪⎪⎬
⎪⎪⎭

=

⎧
⎪⎪⎨
⎪⎪⎩

f1
0
0
f2

⎫
⎪⎪⎬
⎪⎪⎭

(G.10)

where

A =

∫∫

A
[LNθ]

T D̂bLNθdA ; B =

∫∫

A
NT

θ NγdA ; S =

∫∫

A
NT

s NsdA

E =
∫∫

ANT
s NγdA ; H =

∫∫

A
NT

γNγdA ; C = −
∫∫

A
NT

γ∇NwdA

(G.11)
and f1 and f2 depend on the external forces. In Eq.(G.10) we have elimi-
nated the rows and columns associated to the prescribed DOFs.

The transverse shear strains γ̄γγ can be expressed in terms of the trans-
verse shear stresses s̄ using the second row of Eq.(G.10) as

γ̄γγ =
1

β
E−1Ss̄ (G.12)

Substituting this expression into the third row of Eq.(G.10) gives

BT θ̄θθ +
1

β
Ĥs̄+Cw̄ww = 0 (G.13a)
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with
Ĥ = HE−1S (G.13b)

Matrix E is invertible only if the number of transverse shear stress
variables s̄ coincides with that of the transverse shear strains γ̄γγ (i.e. ns =
nγ). In this case Ns = Nγ and, hence, H = E, S = H and Ĥ = H.

The system (G.10) can be therefore expressed in terms of the θ̄θθ, s̄ and
w̄ww variables as ⎡

⎣
A B 0
BT 1

βH C

0 CT 0

⎤
⎦
⎧
⎨
⎩
θ̄θθ
s̄
w̄ww

⎫
⎬
⎭ =

⎧
⎨
⎩
f1
0
f2

⎫
⎬
⎭ (G.14)

The shear parameter β = αGt is much larger than the bending parame-
ter Et3 for a thin plate (Section 0). In the thin limit the terms multiplying
1/β are irrelevant and Eq.(G.14) is equivalent to

⎡
⎣
A B 0
BT 0 C
0 CT 0

⎤
⎦
⎧
⎨
⎩
θ̄θθ
s̄
w̄ww

⎫
⎬
⎭ =

⎧
⎨
⎩
f1
0
f2

⎫
⎬
⎭ (G.15)

The above system of equations can be regularized by adding βC times
the third equation to the second one, where β is an arbitrary constant.
This gives ⎡

⎣
A B 0
BT βCCT C
0 CT 0

⎤
⎦
⎧
⎨
⎩
θ̄θθ
s̄
w̄ww

⎫
⎬
⎭ =

⎧
⎨
⎩

f1
βCf2
f2

⎫
⎬
⎭ (G.16)

After elimination of θ̄θθ we obtain
[
[βCCT −BTA−1B] C

CT 0

]{
s̄
w̄ww

}
=

{
βCf2 −BTA−1f1

f2

}
(G.17)

If the number of rows in vector w̄ww (nw) was greater than that in s (ns),
then the s variables could be directly obtained by the second row of (G.17)
which would lead to infinity solutions for system. Hence, this system has
a unique solution if

ns ≥ nw (G.18)

We rewrite now (G.15) as

⎡
⎣
A 0 BT

0 0 CT

BT C 0

⎤
⎦
⎧
⎨
⎩
θ̄θθ
w̄ww
s̄

⎫
⎬
⎭ =

⎧
⎨
⎩
f1
f2
0

⎫
⎬
⎭ (G.19)
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This matrix can be regularized similarly as explained above by multi-
plying the last row by βB and βCT and adding the result to the first and
second rows, respectively. This gives

⎡⎢⎣A+ βBBT βBC | B
βCTBT βCTC | CT

— — — — — — — — —
BT C | 0

⎤⎥⎦
⎧
⎨
⎩
θ̄θθ
w̄ww
s̄

⎫
⎬
⎭ =

{
f1
f20

}
(G.20)

Splitting the matrix in the form shown above, and using the same
arguments used for obtaining Eq.(G.18) yields the condition for a unique
solution as

nθ + nw ≥ ns (G.21)

which is the second condition sought.
Conditions (G.18) and (G.21) coincide with those of Eqs.(2.79) and

(6.61) by making ns = nγ .

Demonstration of the singularity rule for Ks

Let us consider the substitute transverse shear strain matrix for the whole
mesh written as

B̂s
2×j

= J−1
2×2

A
2×nγ

P−1
nγ×nγ

T
nγ×2nγ

⎧
⎪⎨
⎪⎩

B1
s
...

B
Nγ
s

⎫
⎪⎬
⎪⎭

2nγ×j

= [JAP ]
2×nγ

⎧
⎪⎪⎨
⎪⎪⎩

◦
Bs1
...

◦
BsNγ

⎫
⎪⎪⎬
⎪⎪⎭

nγ×j

= [JAP ]
◦
Bs

(G.22a)
with ◦

Bsi = TBi
s (G.22b)

where nγ is the total number of assumed transverse shear strains and
j = nθ + nw is the total number of displacement DOFs in the mesh (after
eliminating the prescribed values). The transverse shear strain matrix is
obtained as

Ks
j×j

=

∫∫

A
B̂T

s D̂sB̂sdA =

∫∫

A

◦
BT

s [JAP ]T D̂s[JAP ]
◦
BsdA =

=
◦
B

T

s

(∫∫

A
[JAP ]T D̂s[JAP ]dA

)

︸ ︷︷ ︸
◦
Ds

◦
Bs =

◦
BT

s
j×nγ

◦
Ds

nγ×nγ

◦
Bs
nγ×j

(G.23)
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where
◦
Ds represents the “exact” value of the integral shown.

The global equilibrium equations of a node (accounting only for the
transverse shear stiffness contribution) is written as

fi =

N∑
k=1

Ksik ak =
◦
BT

si

[ ◦
Ds

◦
Bs1a1 +

◦
Ds

◦
Bs2a2 + · · ·+

◦
Ds

◦
BsNaN

]

(G.24)
From Eq.(G.24) we deduce that vector fi is a combination of nγ linear

relationships in a1,a2, · · · ,aN where nγ is the number of rows in
◦
Bsi

and N is the number of nodes in the mesh. Following the arguments of
Appendix E we can conclude that the combination will yield a singular
matrix if

j = nθ + nw > nγ (G.25)

Recalling that ns = nγ , it is therefore concluded that the singularity
condition (G.21) incorporates the singularity condition for the transverse
shear stiffness matrix.



Appendix H

ANALYTICAL SOLUTIONS FOR
ISOTROPIC THICK/THIN
CIRCULAR PLATES

H.1 GOVERNING EQUATIONS

The governing equations for an isotropic thick/thin circular plate of radius
R under uniform loading q (Reissner-Mindlin theory) can be written as
[BD5,TW]

d

dr
(Qr) + qr = 0 ;

d

dr
(rMr)−Mθ − rQ = 0 (H.1)

with

Q = Ds

(
dω0

dr
− θ

)
, Mr = D

(
dθ

dr
+ ν

θ

r

)
, Mθ = D

(
ν
dθ

dr
+

θ

r

)

(H.2)
and

D =
Et3

12(1− ν2)
, Ds = k

Et

2(1 + ν)
, k = 5/6 (H.3)

These equations, with the appropriate conditions, can be integrated to
give the following solutions.

H.2 CLAMPED PLATE UNDER UNIFORM LOADING q

Boundary conditions
Q = 0, θ = 0 at r = 0
w = θ = 0, at r = R

Analytical solution

w =
qR4

64D
(1− ξ2)[(1− ξ2) + φ] ; θ =

1

16

q

D
r(R2 − r2)
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814 Analytical solutions for isotropic thick/thin circular plates

with

φ =
16D

R2Ds
=

16

5

(
t

R

)2 1

1− ν
and ξ =

r

R

The deflection at the plate center is wc =
qR4

64D (1 + φ).
The Kirchhoff solution is found for φ = 0.
The resultant stresses are

Mr =
qR2

16
(1 + ν)

(
1− 3 + ν

1 + ν
ξ2

)

Mθ =
qR2

16
(1 + ν)

(
1− 1 + 3ν

1 + ν
ξ2

)
, Q = −rq

2

Note that Mr,Mθ and Q are independent of φ.

H.3 SIMPLY SUPPORTED PLATE UNDER UNIFORM LOAD q

Boundary conditions (soft support)

Q = 0 and θ = 0 at r = 0
w = 0 and Mr = 0 at r = R

Analytical solution

w =
qR4

64D
(1− ξ2)

[
2(3 + ν)

1 + ν
− (1 + ξ2) + φ

]
; θ =

qR3

16D

(
3 + ν

1 + ν
ξ − ξ3

)

The deflection at the center is wc =
qR4

64D

(
5+ν
1+ν + φ

)
.

For φ = 0 (thin plate) then wc =
qR4

64D

(
5+ν
1+ν

)
.

The maximum rotation is

θ(r = R) =
qR3

8D

1

(1 + ν)

The resultant stresses are

Mr =
qR2

16
(3 + ν)(1− ξ2)

Mφ =
qR2

16
(3 + ν)

(
1− 1 + 3ν

3 + ν
ξ

)
, Q = −q

2
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H.4 CLAMPED PLATE UNDER POINT LOAD AT THE CENTER

The equilibrium equation for the vertical load P is [BD5,TW]

2n
∂(rQ)

∂r
+ Pδ(r = 0) = 0

The boundary conditions are given in Section H.2.
The analytical solution is

w =
PR2

16πD

(
1− ξ2 + 2ξ2 ln ξ − 1

2
φ ln ξ

)
; θ =

P

4πD
r ln

R

r

The resultant stresses are

Mr = − P

4π
[1+ (1+ ν) ln ξ] , Mθ = − P

4π
[ν+(1+ ν) ln ξ] , Q = − P

2πr

Note that Mr,Mθ and Q are theoretically infinite under the load. Also
w tends toward the infinite as r tends to zero. This happens only due to
the influence of the transverse shear term. The Kirchhoff solution at the
center (φ = r = 0) is finite

(
wc =

PR2

46πD

)
. This shows that we should not

consider plates under point loads for comparison with elements derived
from Reissner-Mindlin plate theory.

H.5 SIMPLY SUPPORTED PLATE UNDER CENTRAL POINT
LOAD

The boundary conditions are given in Section H.3.
The displacement solution is

w =
PR2

16πD

[
(1− ξ2)

3 + ν

1 + ν
+ 2ξ2 ln ξ − 1

2
φ ln ξ

]

θ =
PR

4πD
ξ

(
1

1 + ν
− ln ξ

)
, Q = − P

2πr

The resultant stresses are

Mr = − P

4π
(1 + ν) ln ξ , Mθ = − P

4π
[(1 + ν) ln ξ − 1 + ν]

For φ = 0 and ξ = 0 (thin plate solution) we obtain wc =
PR2

16πD

(
3+ν
1+ν

)
.
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Fig. H.1 Circular plate under uniform loading. Influence of the ratio R/t on the
ratio between the central deflection values obtained with Reissner-Mindlin (w)
and Kirchhoff (wk) theories

H.6 INFLUENCE OF THICKNESS IN THE SOLUTION FOR
UNIFORM LOADED PLATE

Figure H.1 shows the influence of the ratio R
t on the ratio w

wk
at the plate

center for isotropic circular plates under uniform loading q, ν = 0.3 and
k = 5/6. The analytical expressions are:

Clamped:

(
w

wk

)

c

= 1 + 4.57

(
R

t

)−2
with wk =

qR4

64D

Simply supported:

(
w

wk

)

c

= 1 + 1.121

(
R

t

)−2
with wk =

qR4

64D

(
5 + ν

1 + ν

)

The central deflection for the thick (Reissner-Mindlin) solution is al-
ways greater that the thin (Kirchhoff) one. This is due to the higher
deformation capacity of the thick plate formulation (as it accounts for
transverse shear strain deformation), which leads to a more flexible solu-
tion than the traditional thin plate theory.



Appendix I

SHAPE FUNCTIONS FOR SOME C0

CONTINUOUS TRIANGULAR AND
QUADRILATERAL ELEMENTS

I.1 TRIANGULAR ELEMENTS

I.1.1 3-noded triangle

Ni =
1

A(e)
(ai + bix+ ciy) (I.1)

ai = xjyk − xkyj , bi = yj − yk

ci = xk − xj i, j, k = 1, 2, 3

ai, bi and ci are obtained by cyclic permutation of indexes i, j, k.

I.1.2 6-noded triangle (straight sides)

N1 = (2L1 − 1)N1 , N2 = (2L2 − 1)L2

N3 = (2L3 − 1)L3 , N4 = 4L1L2

N5 = 4L2L3 , N6 = 4L1L3 (I.2)

Li =
1

A(e)
(ai + bix+ ciy) i = 1, 2, 3

ai, bi and ci as in Eq.(I.1).
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818 Shape functions for some C0 continuous triangular and quadrilateral elements

I.2 QUADRILATERAL ELEMENTS

I.2.1 4-noded rectangle

Ni =
1

4
(1 + ξξi)(1 + ηηi) , i = 1, 2, 3, 4 (I.3)

I.2.2 8-noded Serendipity rectangle

Ni =
1

2
(1 + ξξi)(1− η2) , i = 4, 8

Ni =
1

2
(1 + ηηi)(1− ξ2) , i = 2, 6 (I.4)

Ni =
1

4
(1 + ξξi)(1 + ηηi)(ξξi + ηηi − 1)

i = 1, 3, 5, 7

I.2.3 9-noded Lagrangian rectangle

Ni =
1

4
(ξ2 + ξξi)(η

2 + ηηi) , i = 1, 3, 5, 7

Ni =
1

2
η2i (η

2 − ηηi)(1− ξ2)

+
1

2
ξ2i (ξ

2 − ξξi)(1− η2) , i = 2, 4, 6, 8

N9 = (1− ξ2)(1− η2) (I.5)

More information on the shape functions of 2D C◦ triangular and
quadrilateral elements can be found in Oñate [On4].
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[Al] Allman, D.L., A compatible triangular element including vertex rotations
for plane elasticity analysis. Computers and Structures, 19, 1–8, 1984.

[Al2] Allman, D.L., A quadrilateral finite element including vertex rotations for
plane elasticity analysis. Int. J. Numer. Meth. Engng., 26, 717–730, 1988.

[Al3] Allman, D.L., Evaluation of the constant strain triangle with drilling ro-
tations. Int. J. Numer. Meth. Engng., 26, 2645–2655, 1988.

[AL] Auricchio, F. and Lovadina, C., Analysis of kinematic linked interpolation
methods for Reissner-Mindlin plate problems. Comput. Methods Appl. Mech.
Engrg., 190, 2465–2482, 2001.

[AMR] Alfano, G., Marotti de Sciarra, F. and Rosati, L., Automatic analysis
of multicell thin-walled sections. Computers and Structures, 59(4), 641–655,
1996.

[APAK] Argyris, J.H., Papadrakakis, M., Apostolopoulou, C. and Koutsoure-
lakis, S., The TRIC shell element: theoretical and numerical investigation.
Comput. Methods Appl. Mech. Engrg., 182, 217–245, 2000.

[Ar] Argyris, J.H., Matrix displacement analysis of anisotropic shells by trian-
gular elements. J. Roy. Aero. Soc., 69, 801–5, 1965.

[Ar2] Argyris, J.H., Continua and discontinua. In Proc. 1st Conf. Matrix Meth-
ods in Structural Mechanics. Volume AFFDL-TR-66-80, pp. 11–189, Wright
Patterson Air Force Base, Ohio, October 1966.

[AR] Alwar, R.S. and Ramachandran, K.N., Theorical and photoelastic analysis
of thick slabs subjected to highly localised loads. Building Science, 7, 159–66,
1972.

[As] Ashwell, D.G., Strain elements with applications to arches, rings and cylin-
drical shells, en Finite elements for thin shells and curved members. D.G.
Ashwell and R.H. Gallagher (eds.), John Wiley, 91–111, 1976.

[AS] Abramowitz, M. and Stegun, I.A. (eds.), Handbook of Mathematical Func-
tions. Dover Publications, New York, 1965.

[ASR] Ashwell, D.G., Sabir, A.B. and Roberts, T.M., Further studies in the
application of curved finite elements to circular arches. Int. J. Mech. Science,
13, 6, 507–17, 1971.



References 821

[AT] Auricchio, F. and Taylor, R.L., A shear deformable plate element with an
exact thin limit. Comput. Methods Appl. Mech. Engrg., 118, 393–412, 1994.

[AT2] Auricchio, F. and Taylor, R.L., A triangular thick plate finite element
with an exact thin limit. Finite Elements in Analysis and Design, 19, 57–68,
1995.

[ATO] Argyris, J.H., Tenek, L. and Olofsson, L., TRIC: a simple but sophis-
ticated 3-node triangular element based on six rigid-body and 12 straining
modes for fast computational simulations of arbitrary isotropic and laminated
composite shells. Comput. Methods Appl. Mech. Engrg., 145, 11–85 ,1997.

[ATPA] Argyris, J.H., Tenek, L., Papadrakakis, M., Apostolopoulou, C., Post-
buckling performance of the TRIC natural mode triangular element for
isotropic and laminated composite shells. Comput. Methods Appl. Mech. En-
grg., 166, 211–231, 1998.

[AU] Alam, N.M. and Upadhyay, N.Kr., Finite element analysis of laminated
composite beams for zigzag theory using MATLAB. Int. J. of Mechanics and
Solids, 5(1), 1–14, 2010.

[Av] Averill, R.C., Static and dynamic response of moderately thick laminated
beams with damage. Composites Engineering, 4(4), 381–395, 1994.

[AY] Averill, R.C. and Yuen Cheong Yip, Development of simple, robust finite
elements based on refined theories for thick laminated beams. Computers and
Structures, 59(3), 529–546, 1996.

[BA] Build Air Engineering and Architecture SA (www.buildair.com).
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transversal losa. Ph.D. Thesis, E.T.S. de Ingenieros de Caminos, Univ.
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[FO2] Flores, F. and Oñate, E., A basic thin shell triangle with only translational
DOFs for large strain plasticity. Int. J. Numer. Meth. Engng., 51, 57–83,
2001.
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[OTZ] Oñate, E., Taylor, R.L. and Zienkiewicz, O.C., Consistent formulation
of shear constrained Reissner-Mindlin plate elements. In C. Kuhn and H.
Mang (Eds.), Discretization Methods in Structural Mechanics, pp. 169–180.
Springer-Verlag, Berlin, 1990.
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[ZO] Zienkiewicz, O.C. and Oñate, E., Finite elements versus finite volumes. Is
there really a choice? In Nonlinear Computation Mechanics. State of the Art,
Wriggers, P. and Wagner, W. (Eds.), Springer, Berlin, 1991.



850 References
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Kröplin, B. 501, 840
Kross, D.A. 349, 564, 605, 634, 653, 848
Krylov, V.I. 675, 835
Ladeveze, P. 676, 828

Lam, D. 478, 824
Lamain, L.G. 63, 327, 332, 334, 829
Lardeur, P.A. 355, 356, 404, 823, 836
Laurent, H. 274, 843
Lee, C.Y. 717, 837
Lee, J.H. 219, 273, 836, 844, 849
Lee, S. 219, 836
Lee, S.-H. 605, 844
Lee, S.W. 634, 657, 833
Lefebvre, D. 322, 346, 380, 808, 849
Li, X. 118, 405, 836
Li, Z.H. 118, 409, 840
Liaw, D.G. 480, 849
Liepins, A. 556, 844
Lim, P.T.K. 483, 836
Lindberg, G.M. 270, 289, 501, 826
Linhard, J. 274, 660, 665, 666, 667, 835,
837
Lipton, S. 666, 822
Liu, D. 118, 405, 836
Liu, W.K. 312, 313, 478, 511, 606, 633,
634, 666, 784, 824, 825, 833
Liu, Z.A. 525, 842
Livesley, R.K. 1, 10, 151, 456, 460, 715,

836
Long, Y.Q. 348, 844
Long, Z.F. 348, 844
Loo, Y.C. 675, 684, 688, 691, 706, 836
Lopez-Anido, R. 196, 823
Lovadina, C. 348, 820
Lynn, P.P. 348, 832, 836
Lyons, L.P.R. 353, 837
Mac Cutchen, H. 111, 829
MacNeal, R.H. 63, 313, 327, 338, 511,
784, 837
Malkus, D.S. 270, 289, 292, 296, 310, 316,

323, 471, 636, 826, 837
Mancusi, G. 219, 830
Marcipar, J. 501, 522, 839
Marcotte, L. 349, 634, 653, 829
Marguerre, K. 498, 589, 606, 837
Marotti de Sciarra, F. 175, 820
Marshall, A. 382, 390, 837
Massa, J.C. 151, 837
Masud, A. 472, 833
Matte, Y. 349, 634, 653, 829
Mattone, M. 412, 847
Mebane, P.M. 593, 838
Melosh, R.J. 248, 249, 261, 837



Author index 855

Merriman, Y.P.A. 719, 845
Miles, G.A. 556, 832
Milford, R.V. 636, 838
Militello, C. 290, 830
Mindlin, R.D. 233, 291, 837
Miquel, J. 118, 274, 290, 384, 406, 409,

506, 688, 717, 523, 824, 839, 842,
845

Mlejnek, H.P. 290, 472, 819
Moan, T. 667, 838
Moffatt, K.R. 483, 836
Mollmann, H. 605, 838
Morgan, K. 553, 561, 849
Morley, L.S.D. 267, 379, 482, 593, 634,
837, 838
Morris, A.J. 593, 838
Murakami, H. 120, 838, 847
Murthy, S.S. 653, 837
Naghdi, P.M. 606, 838
Nakazawa, S. 69, 322, 850
Natarajan, R. 540, 842
Navaratna, D.R. 568, 569, 845
Nay, R.A. 273, 838
Neamtu, L 274, 290, 521, 840
Niordson, F.I. 439, 605, 606, 838
Noor, A.K. 439, 540, 605, 626, 838
Novozhilov, V.V. 605, 606, 615, 698, 838
Nygard, M.K. 266, 290, 472, 824, 838
Obinata, G. 676, 839
Oden, J.T. 151, 172, 175, 196, 203, 204,

206, 349, 564, 605, 634, 653, 840,
848

Oller, S. 121, 130, 138, 146, 155, 216, 420,
433, 434, 601, 603, 830, 839, 840,
848

Olofsson, L. 290, 472, 821
Olson, D.M. 270, 289, 501, 826
Ong, J.S.J. 478, 511, 666, 824, 825
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