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Preface

The main aim of this book, published at the time Eurocode 8 is starting its course as the
only seismic design standard in Europe, is to support its application to concrete buildings —
the most common type of structure — through education and training. It is addressed to
graduate or advanced undergraduate students who want to acquire the skills and knowledge
that are necessary for the informed use of Eurocode 8 in their career, to practitioners wish-
ing to expand their professional activity into seismic design with Eurocode 8, to instruc-
tors of such students or practitioners in University or professional training programmes, to
researchers and academics interested in seismic analysis and design of concrete buildings, to
software developers, code writers, to those with some official responsibility for the use and
application of Eurocode 8, and so on. Besides its prime aim as support document for educa-
tion and training in seismic design of concrete buildings with Eurocode 8, the book comple-
ments the currently available background documents for the present version of Eurocode
8 as far as RC buildings are concerned; as such, it will be useful for the coming evolution
process of Part 1 of Eurocode 8.

The book puts together those elements of earthquake engineering, structural dynamics,
concrete design and foundation/geotechnical engineering, which are essential for the seismic
design of concrete buildings. It is not a treatise in any of these areas. Instead, it presumes
that the reader is conversant with structural analysis, concrete design and soil mechanics/
foundation engineering, at least for the non-seismic case. Starting from there, it focuses
on the applications and extensions of these subject areas, which are necessary for the spe-
cialised, yet common in practice, seismic design of concrete buildings. Apart from these
fundamentals, which are only covered to the extent necessary for the scope of the book, the
book presents and illustrates the full body of knowledge required for the seismic design of
concrete buildings — its aim is to provide to the perspective designer of concrete buildings all
the tools he/she may need for such a practice; the reader is not referred to other sources for
essential pieces of information and tools, only for complementary knowledge.

A key component of the book is the examples. The examples presented at the end of each
chapter follow the sequence of its sections and contents, but often gradate in length and
complexity within the chapter and from Chapter 2 to 6. Their aim is not limited to illustrat-
ing the application of the concepts, methods and procedures elaborated in the respective
chapter; quite a few of them go further, amalgamating in the applications additional pieces
of information and knowledge in a thought-provoking way. More importantly, Chapter 7 is
devoted to an example of a close-to-real-life multistorey concrete building; it covers in detail
all pertinent modelling and analysis aspects, presents the full spectrum of analysis results
with two alternative methods and highlights the process and the outcomes of detailed design.
Last but not least, each chapter from 2 to 6 includes problems (questions) without giving the
answers to the reader. The questions are, in general, more challenging and complex than the
examples; on average they increase in difficulty from Chapters 2 to 6 and — like most of the

Xiii
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examples — often extend the scope of the chapter. Unlike the complete example in Chapter 7,
which relies on calculations by computer for the analysis and the detailed design, the ques-
tions — and most of the examples — entail only hand calculations, even for the analysis. They
are meant to be solved with help and guidance from an instructor, to whom the complete
and detailed answers will be available. Moreover, the questions have been formulated in a
way that provides flexibility to the instructor to tune the requirements from students to their
background and skills, and possibly to extend them according to his/her judgement.



Acknowledgements

The authors would like to acknowledge the technical contributions and support of Dr. M.
Kreslin, Dr. I. Peru$, Mr. K. Sinkovi¢ and Dr. G. Tsionis, especially to Chapters 3 and 7.
Moreover, sincere thanks are due to Ms. V. Vayenas for her editorial support.

XV






Authors

Michael N. Fardis is Professor and director of Structures Laboratory, Civil Engineering
Department, University of Patras, Greece. He is Honorary President of the International
Federation for Structural Concrete (fib), after serving as its President between 2009 and
2010, as Deputy President between 2007 and 2008 and as Presidium member between
2002 and 2012. He is vice chairman of the CEN Committee TC250 ‘Structural Eurocodes’
(2013-2016) and one of the Directors of the International Association for Earthquake
Engineering (2012-2016). He holds MSc in civil engineering (1977) and nuclear engi-
neering (1978) and a PhD in structural engineering (1979), all from the Massachusetts
Institute of Technology (MIT), where he taught at the Civil Engineering Department to
the rank of Associate Professor. As chairman of the CEN Committee for Eurocode 8:
‘Design of Structures for Earthquake Resistance’ (1999-2005), he led the development
of its six parts into European standards. He is a editorial board member of Earthquake
Spectra, Earthquake Engineering & Structural Dynamics, Structural Concrete, Bulletin
of Earthquake Engineering and Journal of Earthquake Engineering. He authored Seismic
Design, Assessment and Retrofitting of Concrete Buildings (Springer, 2009), and was
the lead author of Designers’ Guide to EN1998-1 and EN1998-5: Eurocode 8 (Thomas
Telford, 2005) and co-author of Designers’ Guide to Eurocode 8: Design of Bridges for
Earthquake Resistance (ICE Publishing, 2012). He has written seven books in Greek and
was the editor of two books published by Springer and co-editor of two more (2010-2013).
He has published more than 300 papers in international journals or conference proceedings.
He received the 1993 Wason Medal of the American Concrete Institute for the best paper
in materials.

Eduardo C. Carvalho graduated at the Technical University of Lisbon in 1974 as a civil
engineer and obtained the specialist degree in structures by the National Laboratory for
Civil Engineering (LNEC) in Lisbon in 1980. He received the Manuel Rocha Research
award in 1982. He is a member of the Portuguese Academy of Engineering. He was a prin-
cipal researcher at LNEC for 30 years, where he headed the Structural Analysis Division
between 1981 and 1995 and the Centre for Earthquake Engineering between 1994 and
2004. Since 2005, he is the chairman of the CEN committee for Eurocode 8: ‘Design of
Structures for Earthquake Resistance’ (CEN/TC250/SC8), after being its Secretary from
1990 to 2005. During this period he participated intensely in the preparation of Eurocode
8. He chairs the Portuguese mirror group for the implementation of Eurocode 8 in Portugal.
He was a member of the Administrative Council of CEB-Comité Euro-Internationale du
Béton (1995/1998) and is currently member of the Technical Council of federation inter-
nationale du béton (fib), having received the fib medal in 2009. He co-authored the book
Designers’ Guide to EN1998-1 and EN1998-5: Eurocode 8 (Thomas Telford, 2005) and

Xvii



xviii  Authors

the book Sismos e Edificios (Earthquakes and Buildings) (Edi¢cbes Orion, 2008). He was
one of the reviewers of the book Seismic Design, Assessment and Retrofitting of Concrete
Buildings (Springer, 2009) by Michael N. Fardis. He is the chairman of Gapres, a structural
design office in Lisbon.

Peter Fajfar is Professor of structural and earthquake engineering at the Faculty of Civil and
Geodetic Engineering, University of Ljubljana, Slovenia. He is a member of the Slovenian
Academy of Sciences and Arts, of the Slovenian Academy of Engineering and of the European
Academy of Sciences (Belgium). He obtained his PhD from University of Ljubljana (1974).
He was a visiting professor at McMaster University (1994), Stanford University (1995),
University of Bristol (2006) and University of Canterbury (2009). He is the editor of the
international journal Earthquake Engineering and Structural Dynamics (Wiley) since
2003 and a member of the editorial boards of four international journals. He is a honor-
ary member of the European Association of Earthquake Engineering and was one of the
Directors of the International Association of Earthquake Engineering (2004-2012). He was
the president of the Yugoslav Association of Earthquake Engineering (1984-1988) and the
founding president of the Slovenian Association of Earthquake Engineering (1988-1990).
He authored several books in Slovenian and co-authored the first comprehensive book on
earthquake engineering in former Yugoslavia. He is the co-editor of three books published
by international publishers. In journals and conference proceedings, he has published more
than 200 scientific papers. He has been active in the Technical committee TC250/SC8,
responsible for the development of Eurocode 8. He was the leader of the implementation
process of Eurocode 8 in Slovenia, the first country to implement Eurocode 8. As designer,
consultant and reviewer, he has participated in more than 100 design projects, which have
mainly dealt with static and dynamic analysis of buildings and civil engineering structures
and the determination of seismic design parameters.

Alain Pecker is the president of Géodynamique et Structure, Professor of Civil Engineering
at Ecole des Ponts ParisTech in France. He is a member of the French National Academy of
Technologies, Honorary President of the French Association for Earthquake Engineering,
former President of the French Association for Soil Mechanics and Geotechnical Engineering,
one of the former Directors of the International Association of Earthquake Engineering
(1996-2004) and is presently member of the Executive Committee of the European
Association for Earthquake Engineering. He holds a degree in civil engineering from Ecole
des Ponts ParisTech (formerly Ecole Nationale des Ponts et Chaussées) and an MSc from the
University of California at Berkeley. He is president of the French committee for the devel-
opment of seismic design codes and was a member of the drafting panel of EN 1998-5. He
is an editorial board member of Earthquake Engineering ¢& Structural Dynamics, Bulletin
of Earthquake Engineering, Journal of Earthquake Engineering and Acta Geotechnica.
He has 130 papers in international journals or conference proceedings. He has been a con-
sultant to major civil engineering projects in seismic areas worldwide, most notably the
Vasco de Gama bridge in Lisbon, the Rion Antirion bridge in Greece, the Athens metro, the
Second Severn bridge in the United Kingdom, the Chiloe bridge in Chile and several nuclear
power plants in France, South Africa and Iran. He has authored two books and co-authored
three books, including Designers’ Guide to Eurocode 8: Design of Bridges for Earthquake
Resistance (ICE Publishing, 2012). He received the Adrien Constantin de Magny award
from the French National Academy of Sciences (1994).



Chapter |

Introduction

1. SEISMIC DESIGN OF CONCRETE BUILDINGS
IN THE CONTEXT OF EUROCODES

As early as 1975, the European Commission launched an action programme for structural
Eurocodes. The objective was to eliminate technical obstacles to trade and harmonise tech-
nical specifications in the European Economic Community. In 1989, the role of Eurocodes
was defined as European standards (European Norms (EN)) to be recognised by authorities
of the Member States for the following purposes:

® Asa means for enabling buildings and civil engineering works to comply with the Basic
Requirements 1, 2 and 4 of the Construction Products Directive 89/106/EEC of 1989,
on mechanical resistance and stability, on safety in case of fire and on safety in use
(replaced in 2011 by the Construction Products EU Regulation/305/2011 (EU 2011),
which also introduced Basic Requirement 7 on the sustainable use of natural resources)

® As a basis for specifying public construction and related engineering service contracts;
this relates to Works Directive (EU 2004) on contracts for public works, public sup-
ply and public service (covering procurement by public authorities of civil engineering
and building works) and the Services Directive (EU 2006) on services in the Internal
Market — which covers public procurement of services

® As a framework for drawing up harmonised technical specifications for construction
products

It is worth quoting from EU Regulation/305/2011 of the European Parliament and the
European Union (EU) Council (EU 2011), given its legal importance in the EU, which deals
with the basic requirement for buildings and civil engineering works (called ‘Construction
works’ in the following text) which the Eurocodes address:

Construction works as a whole and in their separate parts must be fit for their intended
use, taking into account in particular the health and safety of persons involved through-
out the life cycle of the works. Subject to normal maintenance, construction works must
satisfy these basic requirements for construction works for an economically reasonable
working life.
1. Mechanical resistance and stability
Construction works must be designed and built in such a way that the loadings that
are liable to act on them during their construction and use will not lead to any of the
following;:
(a) collapse of the whole or part thereof;
(b) major deformations to an inadmissible degree;
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(c) damage to other parts of the construction work or to fittings or installed equip-
ment as a result of major deformation of the load-bearing construction;
(d) damage by an event to an extent disproportionate to the original cause.
2. Safety in case of fire
Construction works must be designed and built in such a way that in the event of an
outbreak of fire:
(a) the load-bearing capacity of the construction work can be assumed for a specific
period of time;
(b) the generation and spread of fire and smoke within the construction work are
limited;
the spread of fire to neighbouring construction works is limited;
(d) occupants can leave the construction work or be rescued by other means;
the safety of rescue teams is taken into consideration.

©
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4. Safety and accessibility in use
Construction works must be designed and built in such a way that they do not pres-
ent unacceptable risks of accidents or damage in service or in operation such as slip-
ping, falling, collision, burns, electrocution, injury from explosion and burglaries.
In particular, buildings must be designed and built taking into consideration acces-
sibility and use for disabled persons.
[...]
7. Sustainable use of natural resources
Construction works must be designed, built and demolished in such a way that the
use of natural resources is sustainable and in particular ensure the following:
(a) reuse or recyclability of the construction works, their materials and parts after
demolition;
(b) durability of the construction works;
(c) use of environmentally compatible raw and secondary materials in the construc-
tion works.

Totally, 58 EN Eurocode Parts were published between 2002 and 2006, to be adopted
by the CEN members and to be fully implemented as the sole structural design standard by
2010. They are the recommended European codes for the structural design of civil engineer-
ing works and of their parts to facilitate integration of the construction market (construction
works and related engineering services) in the European Union and enhance the competitive-
ness of European designers, contractors, consultants and material and product manufactur-
ers in civil engineering projects worldwide. To this end, all parts of the EN Eurocodes are
fully consistent and have been integrated in a user-friendly seamless whole, covering in a
harmonised way practically all types of civil engineering works.

In 2003, the European Commission issued a ‘Recommendation on the implementation
and use of Eurocodes for construction works and structural construction products’ (EC
2003). According to it, EU member states should adopt the Eurocodes as a suitable tool for
the design of construction works and refer to them in their national provisions for struc-
tural construction products. The Eurocodes should be used as the basis for the technical
specifications in the contracts for public works and the related engineering services, as well
as in the water, energy, transport and telecommunications sector. Further, according to
the ‘Recommendation’, it is up to a Member State to select the level of safety and protec-
tion (which may include serviceability and durability) offered by civil engineering works on
its national territory. To allow Member States to exercise this authority and to accommo-
date geographical, climatic and geological (including seismotectonic) differences, without



Introduction 3

sacrificing the harmonisation of structural design codes at the European level, nationally
determined parameters (NDPs) have been introduced in the Eurocodes (and have been
adopted by the Commission in its Recommendation) as the means to provide the necessary
flexibility in their application across and outside Europe. Therefore, the Eurocodes allow
national choice in all key parameters or aspects that control safety, durability, serviceability
and economy of civil engineering works designed and built by them. As a matter of fact, the
same approach has been followed when consensus could not be reached for some aspects not
related to safety, durability, serviceability or economy. The NDPs in Eurocodes are:

e Symbols (e.g. safety factors, the mean return period of the design seismic action, etc.).
e Technical classes (e.g. ductility or importance classes).
e Procedures or methods (e.g. alternative models of calculation).

Alternative classes and procedures/methods considered as NDPs are identified and
described in detail in the normative text of the Eurocode. For NDP symbols, the Eurocode
may give a range of acceptable values and will normally recommend in a non-normative
note a value for the symbol. It may also recommend a class or a procedure/method among
the alternatives identified and described in the Eurocode text as NDPs.

National choice regarding the NDPs is exercised through the National Annex, which
is published by each Member State as an integral part of the national version of the
EN-Eurocode. According to the Commission’s ‘Recommendation’, Member States should
adopt for the NDPs the choices recommended in the notes of the Eurocode, so that the
maximum feasible harmonisation across the EU is achieved (diverging only when geographi-
cal, climatic and geological differences or different levels of protection make it necessary).
National Annexes may also contain country-specific data (seismic zoning maps, spectral
shapes for the various types of soil profiles foreseen in Eurocode 8, etc.), which also con-
stitute NDPs. A decision to adopt or not to adopt an Informative Annex of the Eurocode
nationally may also be made in the National Annex. If the National Annex does not exercise
national choice for some NDPs, the choice will be the responsibility of the designer, taking
into account the conditions of the project and other national provisions.

A National Annex may also provide supplementary information, non-contradictory to
any of the rules of the Eurocode. This may include references to other national documents
to assist the user in the application of the EN. What is not allowed is modifying through the
National Annex any Eurocode provisions or replacing them with other rules, for example,
national rules. Such deviations from the Eurocode, although not encouraged, are allowed in
national regulations other than the National Annex. However, when national regulations
are used, allowing deviation from certain Eurocode rules, the design cannot be called ‘a
design according to the Eurocodes’, as by definition this term means compliance with all EN
Eurocode provisions, including the national choices for the NDPs.

A National Annex is not required for a Eurocode part, if that part is not relevant to the
Member State concerned. This is the case for Eurocode 8 in countries of very low seismicity.

The approved Eurocodes were given to the National Standardisation Bodies (NSB) in
English, French and German. NSBs have adopted one of these three official versions, or have
translated them into their national language, or have adopted the translation by another
NSB. This national version is supreme in the country over those in any other language
(including the original three-language version). NSBs have also published the National
Annexes, including the national choice for the NDPs, after calibrating them so that, for the
target safety level, structures designed according to the national version of the Eurocodes do
not cost significantly more than those designed according to National Standards that were
applicable hitherto.
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Member States are expected to inform the Commission of the national choices for the
NDPs. The impact of differences in the national choices upon the end product of the design
(the works or their parts), as far as the actual level of protection and the economy provided
is concerned, will be assessed jointly by the Member States and the Commission. According
to the European Commission’s ‘Recommendation’, on the basis of the conclusion of such an
evaluation, the Commission may ask Member States to change their choice, so that diver-
gence within the internal market is reduced.

National Standards competing or conflicting with any EN Eurocode part have been with-
drawn, and the Eurocodes have become the exclusive standards for structural design in the
European Union.

In the set of 10 Eurocodes, two cover the basis of structural design and the loadings
(‘actions’), one covers geotechnical and foundation design and five cover aspects specific
to concrete, steel, composite (steel-concrete), timber, masonry or aluminium construc-
tion. Instead of distributing seismic-design aspects to the Eurocodes on loadings, mate-
rials or geotechnical design, all aspects of seismic design are covered in Eurocode 8:
‘EN1998: Design of Structures for Earthquake Resistance’. This is for the convenience
of countries with very low seismicity, as it gives them the option not to apply Eurocode
8 at all.

Seismic design of concrete buildings is covered in EN1998-1 ‘General rules, seismic
actions, rules for buildings’, also called (including throughout this book) Part 1 of Eurocode
8. However, this part of Eurocode 8 is not sufficient for the seismic design of concrete build-
ings. Therefore, it is meant to be applied as part of a package, which includes all Eurocodes
needed for the package to be self-sufficient, namely:

e EN1990: ‘Basis of structural design’

e EN1991-1-1: ‘Actions on structures — General actions — Densities, Self-weight and
Imposed loads for buildings’

e EN1991-1-2: ‘Actions on structures — General actions — Actions on structures exposed
to fire’

e EN1991-1-3: ‘Actions on structures — General actions — Snow loads’

e EN1991-1-4: ‘Actions on structures — General actions — Wind actions’

e EN1991-1-5: ‘Actions on structures — General actions — Thermal actions’

e EN1991-1-6: ‘Actions on structures — General actions — Actions during execution’

e EN1991-1-7: ‘Actions on structures — General actions — Accidental actions’

e EN1992-1-1: ‘Design of concrete structures — General — General rules and rules for
buildings’

e EN1992-1-2: ‘Design of concrete structures — General — Structural fire design’

e EN1997-1: ‘Geotechnical design — General rules’

e EN1997-2: ‘Geotechnical design — Ground investigation and testing’

e EN1998-1: ‘General rules, seismic actions, rules for buildings’

e EN1998-3: ‘Assessment and retrofitting of buildings’

e EN1998-5: ‘Foundations, retaining structures, geotechnical aspects’

Besides Part 1 of Eurocode 8 (CEN 2004a), four other Eurocodes from the package
are important for the seismic design of concrete buildings: EN1992-1-1 (CEN 2004b),
EN 1997-1 (CEN 2003), EN1998-5 (CEN 2004c) and EN1998-3 (CEN 2005), which are
referred to in this book as Eurocode 2, Eurocode 7, and Parts 5 or 3 of Eurocode 8,
respectively.
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1.2 SEISMIC DESIGN OF CONCRETE BUILDINGS IN THIS BOOK

This work is addressed to graduate or advanced undergraduate students, researchers and
academics interested in the seismic response, behaviour or design of concrete buildings,
seismic-design professionals, software developers and other users of Eurocode 8, even code
writers. Familiarity and experience of the reader in structural dynamics, earthquake engi-
neering or seismic design are not presumed: although the book does not go in depth in each
one of these topics, it is self-sufficient in this respect. However, a background in structural
analysis and in design of concrete structures and foundations, be it without reference to seis-
mic loading, is necessary. Familiarity with the notation which has become the international
standard and is currently used in Europe is also desirable.

In order to define the target of design at the outset, according to the objective of
Chapters 2-7, this chapter presents two of the requirements of Eurocode 8 (namely pro-
tection of life in a rare earthquake and protection of property in a more frequent one)
for the performance of buildings of different material types and the way they are imple-
mented. A general overview of the physics and the mechanics of earthquakes and of their
typical effects on concrete buildings and their foundations is provided in Chapter 2,
along with an overview of the effects on other geotechnical works. Pictures and descrip-
tions of typical damage help the reader to understand and appreciate the specific objec-
tives of Eurocode 8 and the means it uses to achieve them.

Chapter 3, after presenting the fundamentals of structural dynamics, with emphasis on
dynamic loading due to seismic ground motions, gives a fairly detailed and complete descrip-
tion of the methods adopted in Eurocode 8 for the linear or non-linear analysis of buildings
under seismic loading, alongside the appropriate modelling. The fundamental concept of
the reduction of elastic forces by a factor, which derives from the deformation capacity as
well as from the ability of the structure to dissipate energy and links linear analysis with
non-linear response (‘behaviour factor’ in Eurocode 8), is introduced. Three short analysis
examples of simple structures illustrate the basic points of the chapter.

Chapter 4 covers the principles of sound conceptual seismic design of concrete buildings,
emphasising its importance and the challenges it poses. It presents the available system
choices for the superstructure and the foundation, their advantages and disadvantages,
along with ways to profit the most from the former and minimise the impact of the latter.
It then proceeds with the fundamentals of capacity design, which is the main means avail-
able to the designer according to Eurocode 8 to control the inelastic seismic response of the
building. It is to be noted that although the concept of capacity design originated and was
first introduced into seismic-design codes in New Zealand, it is in Eurocode 8 that it has
found its widest scope of application in its purest and most rigorous form, with very little
empirical additions or interventions. The specifics of practical application are described in
Chapter 5. Chapter 4 closes with the choices offered by Eurocode 8 for trading deformation
capacity and ductility for strength, alongside the values prescribed for the ‘behaviour fac-
tor’ under the various possible circumstances. A good number of short examples illustrate
various aspects of conceptual design, as well as the use of the ‘behaviour factor’ to reduce
seismic-design loads.

Chapters 5 and 6 cover all aspects of detailed design of the superstructure of concrete
buildings and their foundation. Although they deal primarily with the base case, leaving
aside special applications or cases, they go into significant depth, presenting everything a
designer may need for the complete seismic design of a concrete building. Numerous short
examples are given, with transparent hand calculations.
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The book culminates in the design of a real-life building, complete with analysis using the
two main methods as per Eurocode 8, capacity design across the board and sample detailed
design calculations for all types of elements:

¢ Design of beams (and deep foundation beams) at the ultimate limit state (ULS) in flexure
and serviceability limit state (SLS) design for crack and stress control under service loads.

¢ Check of columns for second-order effects under the factored gravity loads (‘persistent
and transient design situation’ in EN1990) and dimensioning of their vertical rein-
forcement for the ULS in flexure with axial force.

¢ Capacity design of beams and columns in shear, with ULS design of their shear rein-
forcement, including detailing for confinement.

e Dimensioning of the vertical reinforcement of walls for the ULS in flexure with axial
force and of their horizontal reinforcement for capacity-design shears, with detailing
for ductility.

¢ Capacity design of footings at the ULS in flexure, shear or punching shear, with capac-
ity-design verification of the bearing capacity of the soil.

Outcomes are illustrated through diagrams of internal forces from the two types of analy-
sis, full construction drawings of the framing and detailing, and representative examples of
all sorts of design/dimensioning calculations.

1.3 SEISMIC PERFORMANCE REQUIREMENTS
FOR BUILDINGS IN EUROCODE 8

1.3.1 Life safety under a rare earthquake: The ‘design
seismic action’ and the ‘seismic design situation’

The main concern in Eurocode 8 for buildings subjected to earthquake is safety of the
public — occupants and users of the facility. Eurocode 8 pursues safety of life under a specific
earthquake, called ‘design seismic action’, whose choice is left to the National Authorities,
as an NDP. The ‘design seismic action’ should be a rare event, with low probability of
being exceeded during the conventional design life of the building. For ‘ordinary’ buildings,
Eurocode 8 recommends setting this probability to 10% in 50 years. This is equivalent to
a mean return period of 475 years for earthquakes at least as strong as the ‘design seismic
action’. The performance requirement is then to avoid failure (‘collapse’) of structural mem-
bers or components under this ‘design seismic action’.

Member integrity under the ‘design seismic action’ is verified as for all other types of
design loadings: it is ensured that members possess a design resistance at the Ultimate Limit
State (ULS), R,, which exceeds the ‘action effect’ (internal force or combinations thereof),
E,, produced by the ‘design seismic action’, acting together with the long-term loadings
expected to act when this seismic action occurs:

R,>E, (1.1)

These long-term loadings are the arbitrary-point-in-time loads, or, in Eurocode termi-
nology, the ‘quasi-permanent combination’ of actions, ¥,G,; + X\, O, ;, that is, the loads
acting essentially all the time. The Eurocode 1990 ‘Basis of Structural Design’ (CEN 2002)
defines the quasi-permanent value of the other actions as:
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* The nominal value (subscript: k) of permanent loads, G, ; (where index j reflects the
possibility of having several types of permanent loads: dead loads, earth or water pres-
sure, etc.)

e The expected value of variable actions, such as the imposed (i.e. live) gravity loads
or snow at an arbitrary-point-in-time (‘quasi-permanent value’); if Q,; is the nomi-
nal value (i.e. the characteristic, hence the subscript k) of variable action i, its ‘quasi-
permanent value’ is taken as y, ;0, ;

The values of v, ; are given in Normative Annex A1l of Eurocode EN 1990 as an NDP,
with recommended values as follows:

e ,,;=0.3 on live loads in residential or office buildings and traffic loads from vehicles
of 30-160 kN

e ,,;=0.6on live loads in areas of public gathering or shopping, or on traffic loads from
vehicles less than 30 kN

e ,,;=0.8 on live loads in storage areas
y, ;= 0 for live loads on roofs
V, ;=0 for snow on the roof at altitudes less than 1000 m above sea level in all CEN
countries except Iceland, Norway, Sweden and Finland, or y, ;=0.2 everywhere in
these four countries and at altitudes over 1000 m above sea level everywhere else

eV, ;=0 for wind or temperature

The combination of the ‘design seismic action’ and the ‘quasi-permanent combination’ of
actions, 2.G, :+ 2\, ;O , is called ‘seismic design situation’ in the Eurocodes. In common
language, it is the design earthquake and the concurrent actions.

The ‘seismic design situation’ is the condition for which the local verifications of
Equation 1.1 are carried out; the ‘quasi-permanent combination’ comprises the loads
acting at the instant of the ‘design seismic action’ on a limited part of the building and
directly affects the local verification. These loads are always taken into account in E,,
regardless of whether they are locally favourable or unfavourable for the verification of
Equation 1.1. However, the inertia forces are considered to be produced not by the full
mass corresponding to , O, ;, but by a fraction thereof. This is because it is consid-
ered unlikely to have 100% of the ‘quasi-permanent value’ of variable action i, y, ;Q, ;,
applied throughout the building. Moreover, some masses associated to live loads may be
non-rigidly connected to the structure and can vibrate out of phase to their support, or
with smaller amplitude.

The fraction of y, ;Q, ; considered to produce inertia forces through its mass is an NDP.
Its recommended value is 0.5, for all storeys (except the roof) of residential or office use, or
those used for public gathering (except shopping), provided that these storeys are considered
as independently occupied. In storeys of these uses which are considered to have correlated
occupancies, the recommended fraction is 0.8. There is no reduction of the masses corre-
sponding to , ;Q, ; for uses other than the above, or on roofs.

The 10% probability of exceedance in 50 years, or the mean return period of 475 years
are recommended in Eurocode 8 for the ‘design seismic action’ of ‘ordinary’ buildings. To
offer better protection of life to facilities with large occupancy and to reduce damage to
facilities critical for the post-disaster period (e.g. hospitals, power stations, etc.), the ‘design
seismic action’ is multiplied by an ‘importance factor’ y; (cf. Section 4.1). By definition, for
buildings of ordinary importance y; = 1.0; for facilities other than ‘ordinary’, the importance
factor y; is an NDP, with recommended values as in Table 1.1.
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Table 1.1 Importance classes and factors for buildings in Eurocode 8

Importance Class and Type of Facility Y

I: Not occupied by people; temporary or auxiliary buildings 0.8

IIl: Ordinary 1.0

Ill: High consequences (large occupancy, congregation areas, etc.), 1.2
cultural facilities

IV: Critical, essential for civil protection (hospitals, fire stations, 1.4

power plants, etc.)

1.3.2 Limitation of damage in occasional earthquakes

In addition to life safety under the ‘design seismic action’, Eurocode 8 aims at protect-
ing property, by minimizing structural and non-structural damage in occasional, more fre-
quent, earthquakes. A specific occasional earthquake, called ‘serviceability seismic action’
or ‘damage limitation seismic action’, is selected for that purpose by national authorities, as
NDP. The recommendation in Eurocode 8 is to choose an earthquake with 10% probabil-
ity of being exceeded in 10 years, which corresponds to a mean return period of 95 years.
Specifically for buildings, Eurocode 8 introduces the ratio of the ‘serviceability seismic
action’ to the ‘design seismic action’, v, and considers it an NDP. For buildings of ordinary
or lower importance (‘Importance Classes’ I and II in Table 1.1), it recommends v = 0.5; for
importance above ordinary (‘Importance Classes’ Il and IV) a value of 0.4 is recommended
for v. In the end, this gives about the same level of property protection to Importance Classes
IT and III; property protection is 15%-20% lower for ‘Importance Class’ I and 15% higher
for Class IV, compared to Classes IT and III.

After the occurrence of the ‘serviceability seismic action’, the structure itself is meant to
be free of permanent deformations, not to need any repair and to retain its full strength and
stiffness. Non-structural elements, notably partition walls, may have suffered some damage,
which should be easily and economically repairable later.

The verification required as per Eurocode 8 for buildings is carried out in terms of the
inter-storey drift ratio (i.e. the relative horizontal displacement of the mass centres of two
successive floors due to the ‘serviceability seismic action’, Au, divided by the storey height,
h,,). For a partition wall, this corresponds to an average shear strain in the plane of a wall
panel. If the partitions are in contact or attached to the structure and follow its deforma-
tions, the limits to be met by this average shear strain are:

Aulh, < 0.5%, for brittle partitions; (1.2a)

st —

Aulh, <0.75%, for ductile partitions (uncommon in practice) (1.2b)

For buildings without partitions, or with partitions not attached to the structure in a way
that imposes on them horizontal relative deformations, the limit for the inter-storey drift
ratio is:

Aulh, < 1% (1.2¢)

Equation 1.2c¢ refers to the structure itself and aims to protect its members from large
excursions in the inelastic range under the ‘serviceability seismic action’.

If the structure is a frame, Equation 1.2 may govern the size of the cross sections of its
members.



Chapter 2

Earthquakes and their structural
and geotechnical effects

2.1 INTRODUCTION TO EARTHQUAKES

An earthquake is a sudden rupture along a fault. The slip or offset (i.e. relative displacement)
along the fault due to the rupture may reach several meters over a surface on the fault that
may exceed 10,000 km?. The sudden slip generates seismic waves which propagate in the
earth, inducing, in turn, vibration of the ground in all three directions. In addition, under
certain circumstances and close to the fault, permanent displacements of several hundreds
of millimetres to several meters may affect the ground surface. Examination of the distri-
bution of seismicity on the earth surface during the period 1900-2012 (Figure 2.1), for
instance, shows that earthquake occurrence is not uniformly distributed over the Earth’s
surface, but tends to concentrate along well-defined lines, which are known to be associated
with the boundaries of ‘plates’ of the Earth’s crust (Figure 2.2).

Plate tectonics (Wegener 1915) is nowadays recognised as the general framework to
explain the distribution of seismicity over the Earth. The elastic rebound theory (Reid
1910) provides the most satisfactory explanation for the types of earthquakes causing
potentially damaging surface motions. This concept is displayed in Figure 2.3a repre-
sents the slip that takes place over time along a fault plane; slip accumulates during long
intervals at a slow, but constant, rate until the strains and stresses that have developed
along the fault plane exhaust the material strength; a rupture will then start at a critical
location in the fault zone, producing a sudden slip jump. Figure 2.3b depicts a plan view
of the ground surface, with the fault trace and a dotted line representing a fence crossing
the fault; during the long period of slow strain accumulation the fence gently deforms, but
when the fault rupture takes place the fence breaks. Figure 2.4 shows an example of the
phase of straining at the San Andreas Fault in the town of Hollister (California). When the
rupture takes place, the accumulated strain energy is suddenly released and is converted
into heat and radiated energy carried by the elastic waves. Depending on the state of
stress in the rock that leads to the rupture, relative displacements on the fault plane may
be mainly horizontal; in that case, the fault is called a ‘strike-slip’ fault. If the relative dis-
placement on the fault is mainly vertical, the fault is called ‘normal’ or ‘reverse’, depending
on the relative movement of the two parts separated by the fault (‘walls’). Figure 2.5 shows
the different fault types.

With the development of satellite imagery (GPS, radar interferometry, etc.), it is nowadays
possible to measure ground displacement of the order of 1 mm/year and therefore to know
the slip rates along fault planes. From that information, the recurrence period of major
earthquakes can be estimated. So, slip rate measurements represent an alternative to the
more traditional estimation of earthquake recurrence intervals from historical data.
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Figure 2.1 World seismicity between 1900 and 2012. (From United State Geological Survey — USGS.)

2.1.1 Measure of earthquake characteristics: Magnitudes

Having estimated the location of a possible future earthquake, it is necessary from an engineer-
ing standpoint to characterise the strength of that earthquake. In the old days, earthquakes
were classified according to their effects on structures: depending on the amount of damage
caused to a building of a given typology (masonry structure, wooden structure, etc.), and/or
on the effects on the soil and people, the earthquake was assigned an intensity. Intensity is
usually denoted by a Roman numeral. Several intensity scales exist: the MSK scale in the USA,
the JMA scale in Japan and so on. In Europe the most recent intensity scale is the European
Macroseismic Scale (EMS): it distinguishes six classes of vulnerability for buildings and 12
degrees (I-XII) — the latest revision was in 1998. Such intensity scales are the only means to
characterise historical earthquakes for which no instrumental records are available.

In order to advance beyond the somewhat subjective characterisation of earthquakes with
intensity scales, a quantitative parameter, the magnitude M, , was introduced by Richter in
1935. It is an instrumental measurement based on the amplitude of seismic waves, intended
to quantify the energy released by the fault rupture. Since the amplitude depends not only
on the strength of the earthquake, but also on the distance of the recording station from the
source and on the recording instrument, various corrections have been introduced in the
calculation of M;. As the decay of seismic waves with distance may vary from one region
to another, different magnitude scales have been introduced, which, although still based on
the logarithm of the displacement amplitude, measure the energy radiated in different fre-
quency bands: the body wave magnitude, 715, measures the energy at 1 Hz, the surface wave
magnitude, M, measures the energy at 0.05 Hz. Other scales have been calibrated locally;
an example is the magnitude M, of the Japanese Meteorological Agency. There seems to
be a consensus, nowadays, among seismologists to use the same definition of the magnitude,
namely, one based on the seismic moment M,. The moment magnitude, M,,, is defined as

M, =

w

%Mo _6 (2.1)
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(a)

Slip

Figure 2.3 Elastic rebound theory: (a) slip as a function of time; (b) from left to right: initial stage, straining

before earthquake, after earthquake.

Strike-slip fault

"W Tectonic stresses

Reverse fault

Figure 2.5 Fault types.
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Figure 2.6 Relationship between magnitude scales.
with the seismic moment, M, defined as
M, = GuA (2.2)

where G is the material shear modulus, A is the rupture area, and # is the average slip; note
that M, has the dimension of energy.

Not all magnitude scales are equivalent; empirical correlations have been developed to
give the relationship between them. Figure 2.6, adapted from Scordilis (2006), depicts a
recent correlation based on 2000 records from around the world.

Since magnitudes are computed as the logarithm of a displacement amplitude, they can
be negative for small earthquakes, not perceived. In addition, the magnitude has no upper
bound and can theoretically reach large values. In reality, the rock strength and physical
limits of fault and rupture lengths set an upper limit on the amount of energy that can be
radiated from a source. The largest magnitude value that has been assigned so far to a seis-
mic event is 9.5, for the Chile earthquake of 1960. Table 2.1 lists the largest earthquakes
ever recorded worldwide. In Europe, the largest expected intra-plate events may reach mag-
nitudes in the order of 7.0. However, for inter-plate events in the fault between the Eurasian
and the African plates (see Figure 2.2), magnitudes may reach 8 to 8.5, as was the case of
the great Lisbon earthquake in 1755.

Note that the increase of one unit in the magnitude corresponds to an energy release
multiplied by 31.6. Hence, in terms of its energy release, a magnitude 8 event is 1.000 times
larger than a magnitude 6 event.

2.1.2 Characteristics of ground motions

Magnitude by itself is not an indicator of the damaging potential of an earthquake: damage
also depends on the distance from the rupture area to the site, on local soil conditions and
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Table 2.1 Largest seismic events by magnitude

Location Date UTC Magnitude Latitude Longitude
I.  Chile 1960 05 22 9.5 -38.29 —-73.05
2. Prince William Sound, Alaska 1964 03 28 9.2 61.02 —147.65
3. Off the west coast of northern Sumatra 2004 12 26 9.1 3.30 95.78
4.  Near the east coast of Honshu, Japan 201103 11 9.0 38.322 142.369
5. Kamchatka 1952 11 04 9.0 52.76 160.06
6.  Offshore Maule, Chile 2010 02 27 8.8 —35.846 -72.719
7.  Off the coast of Ecuador 1906 01 31 8.8 1.0 -81.5
8.  Rat Islands,Alaska 1965 02 04 8.7 51.21 178.50
9.  Northern Sumatra, Indonesia 2005 03 28 8.6 2.08 97.01
10. Assam-Tibet 1950 08 15 8.6 28.5 96.5
1. Off the west coast of northern Sumatra 201204 11 8.6 2311 93.063
12.  Andreanof Islands, Alaska 1957 03 09 8.6 51.56 —175.39
13. Southern Sumatra, Indonesia 2007 09 12 8.5 —4.438 101.367
14. Banda Sea, Indonesia 1938 02 01 8.5 —5.05 131.62
I5. Kamchatka 1923 02 03 85 54.0 161.0
6.  Chile—Argentina border 1922 11 11 85 —28.55 —-70.50
17.  Kuril Islands 1963 10 13 85 44.9 149.6

Source: United State Geological Survey (USGS).

on other less important factors. For instance, a low magnitude earthquake (M < 6) occur-
ring just below a town at shallow depth, like the Agadir earthquake in Morocco in 1960,
might well be more damaging than a large magnitude earthquake (M ~ 7.5-8.0) occurring
at large distance (~70 km).

The most direct measurement of ground motion has for long been the peak ground accel-
eration (PGA), as it was the only quantity accessible from analog records. For destructive
earthquakes, it is larger than 2 m/s?> and may reach values above 10 m/s?. However, it is
recognised that PGA is far from sufficient to characterise the response of a given struc-
ture to an earthquake. Furthermore, it is poorly correlated to the observed damage. In
order to approximately account for the spectral content of ground motions, but still preserv-
ing the simplicity of using maximum values, the peak ground velocity (PGV) or the peak
ground displacement (PGD) may be used: PGA characterises the high frequency content of
the motion (>5 Hz), PGV the intermediate frequency range (0.5 to a few Hertz) and PGD
the low frequency range (<0.1 Hz). For destructive earthquakes, PGV varies typically from
a few cm/s to more than 1 m/s. However, neither PGV nor PGD correlates well with the
observed damage (i.e. the macroseismic intensity scale). Furthermore, their determination is
less accurate than that of PGA: it requires integration of the time-history of the acceleration
record (see Figure 2.7 for examples of such records), a process which, for analog records and
even early digital ones, is sensitive to low-frequency noise.

Quantification of the frequency content can be achieved more accurately through the
Fourier response spectrum, or the single-degree-of-freedom (SDOF) response spectrum (see
Section 3.1.2). Seismologists prefer the Fourier spectra, as they are related to the physics of
wave propagation and emission of energy at the source. From an engineering standpoint,
Fourier spectra are not convenient; SDOF response spectra are commonly used instead.
However, the response spectrum does not convey all the information about a seismic motion.
For instance, it does not provide information on the duration of the motion, which may be
a key parameter when the structure behaves inelastically. For that reason, other parameters
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Figure 2.7 Records of the 1985 Michoacan Guerrero earthquake in Mexico City: (a) SCT (soft soil);
(b) Tacubaya (rock).

may be introduced to characterise a ground motion. These parameters, although still lack-
ing direct engineering applications, may be used, for instance, for the selection of natural
ground motion records representing a given seismic scenario. Two of them are

e The cumulative absolute velocity CAV = fOTf la(¢)ldt (2.3)

e The Arias intensity [, = %fOTf a*(t)dt (2.4)

with the notation:

a(t) ground motion acceleration (m/s?)
Ty total duration of ground motion (s)
g acceleration of gravity (m/s?)

¢ Duration, defined as the time interval necessary for the Arias intensity to build up
from 5% to 95% of its full value

2.1.3 Determination of ground motion parameters

Based on the statistical analyses of recorded ground motions, ground motion prediction
equations (GMPEs) have been developed that allow prediction of one of the parameters
characterising the motion as a function of several independent parameters characterising the
earthquake. GMPEs have been developed initially for PGA, but nowadays GMPEs exist for
almost every parameter listed in the previous subsection: PGV, PGD, duration, Arias inten-
sity, cumulative absolute velocity (CAV) and pseudo-spectral acceleration (PSA, ordinate of
the one-degree of freedom response spectrum). The independent parameters were originally
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the earthquake magnitude, the distance to site (epicentral or focal distance, distance to sur-
face projection of fault, etc.) and local geotechnical conditions. The first published GMPEs
exhibited a large scatter, due to the poor definition of the independent parameters: the
magnitude scale was not homogeneous, several definitions of the distance were used with-
out distinction and soil classification was rather crude (rock, stiff soil, soft soil). With the
increasing number of records, and in an attempt to reduce the scatter in the prediction,
the independent parameters are now better constrained (moment magnitude is uniformly
accepted, distances are better defined, local soil conditions are quantitatively assessed with
a measurable parameter, like shear wave velocity) and new independent parameters, which
are not always known before the earthquake, are introduced, like depth to bedrock, tectonic
environment, fault mechanism and so on.

The most popular GMPEs in use are the so-called NGA West GMPEs (Power et al. 2008),
which are valid for an active tectonic context. Such GMPEs have been recently developed
for Europe, for example, Akkar and Bommer (2010). A comprehensive overview of recent
GMPEs can be found in Douglas (2010). To illustrate the format of a typical GMPE, the one
derived by Akkar and Bommer (2010) is reproduced as follows:

log(PSA) = b, + byM + byM?* + (b4 + b5M)log1/R7-2b + b}
+b,Sg + byS, + boFy + byyFy + €0 (2.5)

where PSA is the pseudo-spectral acceleration (denoted in Chapter 3 as A), M is the
moment magnitude, R;, is the Joyner-Boore distance; S5 and S, take the value 1 for
soft (mean shear wave velocity in the upper 30 metres, V5, < 360 m/s) and stiff soil sites
(360 m/s < V5, < 750 m/s), respectively, or zero for rock sites defined by V;,> 750 m/s.
Similarly, Fy, and Fy take the value of unity for normal and reverse faulting earthquakes
respectively, otherwise, they are equal to zero; € is the number of standard deviations above
or below the mean value of log(PSA); ¢ represents the (inter-event and intra-event) variabil-
ity. All coefficients b; (i = 1-10) are period-dependent parameters, tabulated by Akkar and
Bommer for periods between 0 and 3.0 s. Users of GMPEs must realise that, although con-
siderable improvement has been achieved to better constrain the independent parameters,
there still exists a large scatter in the prediction, with typical standard deviations of 0.3 for
the logarithm of PSA (a factor of 2 for PSA).

2.1.4 Probabilistic seismic hazard analyses

Design of buildings for earthquake loading first requires quantification of the possible
ground motions that would affect the structure during its life time. The goal of probabilis-
tic seismic hazard analyses (PSHA) is to quantify the rate (or the probability) of exceeding
various ground motion levels at a site, given all possible earthquakes that can affect the site.

The approach to PSHA was first formalised by Cornell (1968) and is now commonly imple-
mented in earthquake engineering (Abrahamson 2000). Originally, PGA has been used to
quantify ground motions, but today, with the emergence of sophisticated GMPEs, PSA is pre-
ferred. In the following, the general framework of PSHA will be presented for one parameter
of the ground motion, Y. This parameter can be PGA, PGV and PSA at any period and so on.

PSHA involves three steps: (1) the definition of the seismic hazard source model(s); (2) the
specification of the GMPE(s), and (3) probabilistic calculations.
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1. Seismic hazard source model. The seismic hazard source model is a description of all
earthquake scenarios that can affect the site; each earthquake scenario has its own
magnitude, M, location, L, and annual rate of occurrence, r. There are an infinite
number of earthquake scenarios. For example, the magnitude may be a single value
associated to a specific fault (called the characteristic magnitude) or may have a
continuous distribution of possible values. Observations have shown that the dis-
tribution of magnitude usually follows a simple relationship, called the Gutenberg—
Richter law. If n(M) represents the number of events with a magnitude between
M - AM and M + AM occurring in a given area during a given time interval, z varies
with M as

log(n) = a - bM (2.6)

Coefficient a varies from one area to another and characterises the seismicity of
the area; coefficient b is always close to 1, indicating that the number of occurrences
of earthquakes with magnitude M + 1 in a region is ten times less than the number of
occurrences of earthquakes with magnitude M. The Gutenberg—Richter law for Earth
as a whole indicates that, on average, one earthquake with magnitude above 8 occurs
per year, one with magnitude at least 7 every month and two with magnitudes greater
than 6 every week.

The rate of occurrence of earthquakes unfortunately does not obey simple rules,
although simple mechanical interpretations have been attempted, like a gradual stress
accumulation at faults with imposed displacements at boundaries. Real physics seems
more complicated, and despite the fact that sophisticated time-dependent models have
been proposed, a Poisson model, in which occurrences are random, still prevails in
PSHA. According to this model, the probability of having more than one earthquake
on a given source in T years is given by

P =1-exp(-rT) (2.7)

2. Ground motion prediction equations. GMPEs have been discussed in Section 2.1.3.
Care should be exercised to choose an appropriate GMPE for each seismic source
model.

3. Probabilistic calculations. Suppose that the seismic source model has provided N
earthquake scenarios for a particular site, each of them characterised by a given mag-
nitude M,, location and rate r;. From the scenario location one can define the distance
to the site, D,, the tectonic regime, fault mechanism, the soil conditions of the site and
so on; the GMPE then provides the value of the ground motion parameter of interest
Y=g(M,, D,, ...). The probability of Y exceeding a value Y, is then given by

1~ 1(InY - g(M,D,..)\’
_1 dy
et Ml | R 29

B(Y > Y,) =

The annual rate at which Y is exceeded due to this particular scenario is 7, P.(InY > InY;).
Summing up all possible scenarios, the annual rate of exceeding Y|, at the site is obtained as



I8 Seismic design of concrete buildings to Eurocode 8

N
R, (Y > Y,) = Enl’i(lnY > InY,) (2.9)

1=

Finally, using the Poisson distribution, the probability of exceeding the ground motion Y,
in the next T years is

P(Y > Y,,T) = 1 - exp(-R,,T) (2.10)

This result is known as a hazard curve. Examples of hazard curves at a site are depicted
in Figure 2.8 for several seismic sources: each curve corresponds to one seismic source. The
total hazard at the site is calculated using Equation 2.9.

Note that the calculations have been presented earlier, as done in numerical calculations,
for a finite number of discrete earthquake scenarios. In practice, their number is infinite:
each discrete location on the fault plane is capable of producing an earthquake of magnitude
M with a continuous distribution. Therefore, the finite discrete summations are replaced by
continuous integrals over the fault area and magnitude distribution.

In performing PSHA it is mandatory to account for uncertainties. Today’s practice clas-
sifies the uncertainties into epistemic uncertainties and aleatory ones. Epistemic uncertain-
ties arise from a lack of knowledge, and they can theoretically be reduced with additional
studies, investigations and so on. For instance, determination of the shear wave velocity
profile at a site may be improved by increasing the number of measurements; a large number
of measurements will help bracket more accurately the velocities and, therefore, reduce the
uncertainty. Aleatory uncertainties are due to the variability inherent in nature and cannot
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Figure 2.8 Hazard curves: each curve corresponds to a given seismic source.
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be reduced with additional information. For instance, the depth of an earthquake on a fault
plane can be viewed as an aleatory variable (in a given depth range). Epistemic uncertain-
ties are best handled by considering different alternatives to which different weights are
assigned; this results in a logic tree approach, while aleatory uncertainty is treated with a
distribution around the mean value. As an illustration of this concept, a set of GMPEs could
be considered viable for our PSHA; which one is the best is uncertain, until more and more
records become available; to handle this epistemic uncertainty the hazard curve is computed
for all GMPEs, each result being assigned a degree of confidence through a weight in the
logic tree. On the other hand, each GMPE has its own uncertainty reflected by the range
(mean, fractiles) of the predicted ground motion Y for a given magnitude, distance and so
on. This uncertainty shall be carried along the calculations of the hazard curve. For a more
thorough discussion of uncertainties, one can refer to Bommer and Scherbaum (2008).

2.2 EFFECTS OF EARTHQUAKES ON CONCRETE BUILDINGS

2.2.1 Global seismic response mechanisms

A structure supported on the ground follows its motion during an earthquake, developing,
as a result, inertial forces. A typical concrete building is neither stiff enough to follow the
ground motion as a rigid body, nor sufficiently flexible to stay in the same absolute position
in space, while its base adheres to the shaking ground. As we will see in Sections 3.1.1, 3.1.2
and 3.1.4, the building will respond to the seismic inertial forces by developing its own oscil-
latory motion. The amplitude, frequency content and duration of that motion depend on
both the corresponding characteristics of the ground shaking and on the dynamic properties
of the structure itself (see Section 3.1.1).

The base of the structure will follow all three translational and all three rotational compo-
nents of the motion of the ground it is supported on; accordingly, its dynamic response will
be in 3D, with displacements and rotations in all three directions. However, for a typical
concrete building, only the structural effects of the two horizontal translational components
of the ground motion are worth considering. The — by and large poorly known — rotational
components are important only for very tall and slender structures, or those with twisting
tendencies very uncommon in buildings designed for earthquake resistance. Concerning the
vertical translational component, its effects are normally accommodated within the safety
margin between the factored gravity loads (e.g. the ‘persistent and transient design situation’
of the Eurocodes, where the nominal gravity loads enter amplified by the partial factors on
actions) for which the building is designed anyway, and the quasi-permanent ones consid-
ered to act concurrently with the ‘design seismic action’ (see Section 1.3.1). Important in this
respect is the lack of large dynamic amplification of the vertical component by the vibratory
properties of the building in the vertical direction.

As we will see in detail in Chapters 3 and 4, a concrete building is expected to respond to
the horizontal components of the ground motion with inelastic displacements. It is allowed
to do so, provided that it does not put at risk the safety of its users and occupants by col-
lapsing. Very important for the possibility of collapse are the self-reinforcing second-order
(P —A) effects produced by gravity loads acting through the lateral displacements of the
building floors: if these displacements are large, the second-order moments (i.e. the overly-
ing gravity loads times the lateral displacements) are large and may lead to collapse.

Because the major part of lateral structural displacements are inelastic and, besides, they
tend to concentrate in the locations of the structural system where they first appeared, very
important for the possibility of collapse is the ‘plastic mechanism’, which may develop in the
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building under the horizontal components of the ground motion. Inelastic seismic deforma-
tions in concrete buildings are flexural; they concentrate as plastic rotations wherever mem-
bers yield in flexure (normally at member ends). Once the yield moment is reached at such
a location, a ‘plastic hinge’ forms and starts developing plastic rotations with little increase
in the acting moment. The ‘plastic hinges’ may form at the appropriate locations and in
sufficient numbers to turn the building structure into a ‘mechanism’, which can sway later-
ally under practically constant lateral forces (plastic mechanism). The two extreme types of
mechanism in concrete buildings are shown in Figure 2.9. Of the two mechanisms, the one
that can lead to collapse is the ‘column-sway’ or ‘soft-storey’ mechanism in Figure 2.9a. If the
ground storey has less masonry infills or other components with significant lateral stiffness
and strength than the storeys above, a ‘soft-storey’ mechanism is more likely to develop there.

Mixed situations are very common, with plastic hinges forming at column ends at a num-
ber insufficient for a ‘soft-storey’ mechanism, and in fewer beams than in a full-fledged
‘beam-sway’ mechanism (see Example 5.2 in Chapter 5). Strictly speaking, a mixed distri-
bution of plastic hinges does not give a ‘mechanism’ that kinematically allows sway of the
building at little additional lateral force. Therefore, normally it does not lead either to col-
lapse or to notable residual horizontal drifts. A full mechanism of the types shown in Figure
2.9 (especially the one in Figure 2.9a) may lead to collapse, or to demolition because of large,
irreversible residual drifts.

(a)
)

Figure 2.9 Side-sway plastic mechanisms in concrete buildings: (a) soft-storey mechanism in weak column—
strong beam frame; (b), (c) beam-sway mechanisms in strong column/weak beam frames; (d), (e)
beam-sway mechanisms in wall-frame systems.



Earthquakes and their structural and geotechnical effects 21

2.2.2 Collapse

Collapses of ‘open ground storey’ buildings are depicted in Figures 2.10 and 2.11. Figure
2.11 shows on the left a very common type of collapse in multi-storey concrete buildings: the
so-called ‘pancake’ collapse, with the floors falling on top of each other, trapping or killing
the occupants.

As we will see in detail in Sections 4.5.2 and 5.4.1, a stiff vertical spine of strong columns
or large concrete walls promotes ‘beam-sway’ mechanisms of the type illustrated in Figures
2.9b to 2.9¢ and helps avoid ‘soft-storey” ones per Figure 2.9a. Walls are quite effective in that
respect: in Figure 2.12a the walls in the middle of the lateral sides and at the corners with the

Figure 2.10 (a) Collapse of open ground storey building; (b) collapsed building shown at the background;
similar building at the foreground is still standing with large ground storey drift.

Figure 2.11 Typical collapses of frame buildings with open ground storey; ‘pancake’ type of collapse shown
on the right.

Figure 2.12 Role of walls in preventing pancake collapse of otherwise condemned buildings.
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back side (shown inside dark-coloured frames) have failed at the ground storey (one is shown
inside a light-coloured frame), but have prevented the collapse of columns all along the front
side from triggering ‘pancake’ collapse; in Figure 2.12b perimeter walls (shown inside dark-
coloured frames) may have failed terminally, but have prevented collapse of the building.

The dismal performance of walls in the earthquake of February 2010 in Chile has shown
that walls are not a panacea. Wall buildings were a success story in past Latin American
earthquakes, leading designers to extremes in their use in high-rise construction: in recent
practice, very narrow, long walls, bearing the full gravity loads, are used in tall buildings,
in lieu of columns and non-load bearing partitions. These walls were subjected to very high
axial stresses due to gravity loads and failed at the lowest level in flexure-cum-compression,
sometimes with lateral instability. A typical case is that of the building on the cover of this
book, depicted in more detail in Figure 2.13.

In all the examples shown so far, as well as in Figure 2.14, the ground storey was critical.
Figure 2.14c¢ depicts the typical case of a concrete frame building with masonry infills, which
have suffered heavy damage at the ground storey but may have saved the building from col-
lapse. Figures 2.10 to 2.14 may be contrasted to Figure 2.15, where the top floors or an inter-
mediate one have collapsed, but the underlying ones withstood both the earthquake and the
collapse of the floors above. Such exceptions to the rule are most often due to an abrupt reduc-
tion in the lateral resistance of a floor, because that floor and those above were thought to be
non-critical. Higher modes of vibration (see Sections 3.1.4 and 3.1.5), which are more taxing
on certain intermediate floors than on the ground storey, may have played a role as well.

Twisting of the building about a vertical axis is more often due to the horizontal eccen-
tricity of the inertia forces with respect to the ‘centre of stiffness’ of the floor(s) than to the
rotational component of the motion itself about the vertical. In such cases, twisting takes
place about a vertical axis passing through the ‘centre of stiffness’ which is closer to the
‘stiff side’ in plan and produces the maximum displacements and the most severe damage
to the perimeter elements on the opposite, ‘flexible side’. The example in Figure 2.16 is typi-
cal of such a response and its consequences — twisting about the corner of the building plan
where the stiff and strong elements were concentrated (including a wall around an elevator
shaft, the staircase, etc.) — caused the failure of the elements of the ‘flexible side’. The seis-
mic displacements on that flexible side, as increased by twisting, exceeded the — otherwise

Figure 2.13 Collapse of Alto Rio wall building in Concepcién, Chile; February 2010 earthquake (structural
walls are shown in black in the framing plan).
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(a)

Figure 2.14 Typical concentration of failures or damage in ground storey (a), (b) with role and damage to
infills shown in (c).

Figure 2.16 Collapse of flexible sides in torsionally imbalanced building with stiffness concentrated near
one corner.
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Figure 2.17 Shear failure of short columns on stiff side (inside rectangle) causes collapse of flexible side as
well.

ample — ultimate deformation of these columns. The collapse of the strongly asymmetric
one-storey building in Figure 2.17 demonstrates the opposite effect: calling the side in Figure
2.17a as front, the vertical elements of the back side were shear-critical ‘short columns’,
developing higher shear forces than the columns on the front, owing to their much larger
stiffness and short length. However, they did not have sufficient shear strength to resist these
forces. They collapsed, pushing out the columns of the front side as well.

The remark about ‘short columns’ brings up the effects of earthquakes on typical concrete
members: columns, beams, the connections between them (oints’) and walls.

2.2.3 Member behaviour and failure

Typical seismic damage or failures of columns, joints, beams and walls are shown in Figures
2.18 to 2.23 and are commented in the following.

Figure 2.18 Flexural damage (a) or failure (b, c) at column ends.
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Figure 2.19 Shear failure of columns, (a)—(e), including a captive one between the basement perimeter wall
and the beam (c) and short columns due to mid-storey constraint by a stair (d) or a landing (e)
supported on the column.

Figure 2.20 Despite complete failure of columns across the ground storey, their residual axial load capacity
still supports gravity loads.

2.2.3.1 Columns

Columns may be damaged or fail in flexure, as shown in Figure 2.18. Flexural damage or
failure phenomena are concentrated in horizontal bands at the very top or bottom of a col-
umn in a storey (where the bending moments are at maximum). Such regions are the physi-
cal manifestation of flexural ‘plastic hinges’, where the plastic rotations take place. It is clear
from Figure 2.18 that ‘plastic hinging’, although essential for the seismic design of the build-
ing for ductility and energy dissipation (see Sections 3.2.2, 3.2.3 and 4.6.3), is not painless:

Figure 2.21 Shear failure of beam—column joints.
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Figure 2.22 Typical features of beam behaviour: (a) pullout of beam bars from narrow corner column, due
to short straight anchorage there; (b) wide crack in slab at right angles to the beam at the con-
nection with the columns shows the large participation of the slab as effective flange width in
tension; (c) failure, with concrete crushing and bar buckling at bottom flange next to the column.

it implies damage, normally reparable, but sometimes not (especially if it is accompanied by
irreversible residual horizontal drifts). Flexural damage always includes a visible horizontal
crack and loss of concrete cover, often accompanied by bar buckling, opening of stirrups or
partial disintegration of the concrete core inside the cage of reinforcement; sometimes one
or more vertical bars rupture, or the concrete core completely disintegrates. The cyclic and

Figure 2.23 Typical failures of concrete walls: (a) flexural, with damage in shear; (b) in shear; (c) by sliding shear.
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reversed nature of the deformation imposed on concrete elements by the earthquake plays
an important role on its response: the opposite sides of the element are cyclically subject to
tension and compression — when in tension, transversal cracking occurs but, then, when
the force changes to compression the crack closes and the concrete cover may be lost (if the
compressive strain is too large). Additionally, if the lateral restraint of the longitudinal bars
is insufficient, the bars on the compressed face may buckle outwards, rupturing the stirrups
and accelerating the loss of the concrete cover. Note that the Bauschinger effect decreases
very sharply the buckling resistance of bars that have yielded previously in tension.

A column may fail in shear anywhere between its two ends, the end regions included
(since the shear force is essentially constant along the height of the column). The signature
of a shear failure is a diagonal crack or failure zone (Figure 2.19); sometimes such cracks
or zones form in both diagonal directions and cross each other. If the column carries a low
axial load relative to its cross-sectional area, the inclination of the shear failure plane to the
horizontal is about 45°; it is steeper, sometimes over 60°, if the column is heavily loaded.
In columns engaged in two-way frame action, the shear failure plane may be at an inclina-
tion to both transverse directions of the column. Stirrups intersected by the diagonal failure
band(s) may open or break. The concrete may disintegrate all along the diagonal failure
zone or across the full core inside the reinforcement cage (especially if failure is not due
to one-way shear, parallel to a single transverse direction of the column). For shear, the
cyclic and reversed nature of the earthquake effects on the elements is even more important
than for flexure. In fact, as the direction of the shear alternates, two ‘families’ of diagonal
cracks form, intersecting each other and leading to a very fast disintegration of the concrete.
Additionally, since the horizontal stirrups are in tension for both directions of shear, diago-
nal cracks do not close upon reversal of the force; hence, the cracks become wider ever more,
causing a very fast degradation of the lateral stiffness and strength of the column, denoting
a so-called brittle failure.

Cases (c) to (e) in Figure 2.19 are ‘short columns’, which develop very high shear force
demands and are very vulnerable to shear; the one in (c) is made ‘short’ by design: those in
(d) and (e) unintentionally, as the secondary elements supported by the column between its
two ends split its free height into two shorter ones. The back side columns in Figure 2.17,
whose failure triggered the global collapse of the building, were also short.

Except for the one in Figure 2.18a, all columns in Figures 2.18 and 2.19 have essentially
lost their entire lateral resistance and stiffness: they will not contribute at all against an
aftershock or any other future earthquake. However, except for the column in Figure 2.18¢,
they all retain a good part of their axial load capacity. Note that the ‘quasi-permanent’ grav-
ity loads normally exhaust only a small fraction of the expected actual value of the axial
load capacity of the undamaged column. Moreover, the overlying storeys, thanks, among
others, to their masonry infills, can bridge over failed columns working as deep beams. So,
buildings with many failed columns or a few key ones in a storey are often spared from
collapse. For example, very few columns were left in the building of Figure 2.20 with some
axial load capacity. Another example are the six storeys above the failed corner column in
Figure 2.21a, which survived by working as a 6-storey-deep multilayer-sandwich cantilever
beam, with the concrete floors serving as tension/compression flanges or intermediate layers
and the infills as the web connecting them.

2.2.3.2 Beam-column joints

As explained in Section 4.4.3.1 with the help of Figure 4.12, an earthquake introduces
very high shear stresses to the core of a beam—column joint. These stresses are parallel to
the plane of frame action. Effects of such shear stresses are shown in Figure 2.21: in (a),
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complete diagonal failure of an unreinforced joint; in (b), (c), diagonal cracking in reinforced
joints. These effects are clearly manifested in exterior joints, especially corner ones (Figures
2.21a and 2.21b). Interior joints profit from the confinement by the slab on all four sides and
by the beams in any direction they frame into the joint.

The joints also provide the anchorage zone of beam bars, whether they terminate there (as
in corner joints; see Figure 2.22a), or continue into the next beam span across the joint. The
next subsection addresses this issue.

2.2.3.3 Beams

Beam bars with insufficient anchorage in a joint may pull out in an earthquake. Such a fail-
ure of bond and anchorage shows up at the end section as a crack through the full depth of
the beam (Figure 2.22a). A characteristic feature of a pull-out crack is its large width, well
in excess of the residual crack width typical of yielding of the steel (which is a fraction of a
millimetre or around 1 mm). The impact of this type of bond failure on the global behaviour
is not dramatic: the beam cannot develop its full moment resistance at the end section and
the force resistance and stiffness of the frame it belongs to drops accordingly. The damage is
reparable, although the original deficiency, namely the poor anchorage of beam bars in the
joint, cannot be corrected easily.

Beams are designed to develop flexural plastic hinges at the ends and are expected to do
so in an earthquake. The loss of beam anchorage highlighted previously is part of such flex-
ural action (although it prevents a proper plastic hinge from forming). A standard feature
of a flexural plastic hinge in a beam is its through-depth crack at the face of the supporting
beam or column, with a residual width indicative of yielding of the beam bars; that crack
often extends into the slab and travels a good distance at right angles to the beam, some-
times joining up with a similar crack from a parallel beam (Figure 2.22b). The length and
the sizeable residual crack width of such an extension show that the slab fully participates
in the flexural action with its bars which are parallel to the beam, serving as a very wide
tension flange.

Flexural damage is mostly associated with cracking and spalling of concrete and yield-
ing of the reinforcement. By contrast, flexural failure comes with disintegration of concrete
beyond the cover, often with buckling (or even rupture) of bars. Such effects (demonstrated
in Figure 2.22¢) happen only at the bottom flange of a beam, because the slab provides the
top flange with abundant cross-sectional areas of concrete and steel reinforcement. Larger
amounts of top reinforcement at the supports also result from the design for the hogging
moments due to the factored gravity loads (the ‘persistent and transient design situation’ of
EN 1990 (CEN 2002)). Note that a bottom reinforcement smaller than the top one is unable
to close the crack at the top face (as it is unable to yield the top reinforcement in compres-
sion): the vertical crack at the face of the support, across the full depth of the beam, tends to
remain open and increase in width for each cycle of deformation; bottom bars may buckle
and then rupture under the large cyclic excursions of strain across the open crack.

2.2.3.4 Concrete walls

Flexural or shear damage and failure phenomena in walls (Figures 2.23a and 2.23b) are
similar to those in columns, but take place almost exclusively right above the base of the
wall, and very rarely in storeys higher up. One difference concerning flexure is that spalling
and disintegration of concrete are normally limited to the edges of the wall section (Figure
2.23a). Owing to the light axial loading of the wall section by gravity loads, diagonal planes
of shear failure are normally at about 45° to the horizontal (Figure 2.23b).



Earthquakes and their structural and geotechnical effects 29

Walls have lower friction resistance than columns, owing to their lower axial stress level
and vertical reinforcement ratio; so, they may slide at their through-cracked base section,
which happens to coincide with a construction joint (Figure 2.23c¢).

2.3 EFFECTS OF EARTHQUAKES ON GEOTECHNICAL
STRUCTURES

Earthquakes may affect geotechnical structures in several ways. The incoming motion may
be altered by the local geotechnical conditions; the subsurface or surface topography may
give rise to significant amplification of the seismic motion. These effects are known as site
effects. In addition, soil instability, like liquefaction, flow failures, lateral spreading or slope
instability, may be induced.

2.3.1 Site effects

Seismic motions may be significantly altered by the geotechnical conditions close to the
ground surface. Typical wave lengths, A, of the incoming motion vary between some meters
to few hundred meters (A = V/f where Vy is the wave velocity ranging from 100 m/s to 2 km/s
and f the predominant frequency of the motion, typically in the range 1-10 Hz); these values
are of the same order of magnitude as surface or subsurface heterogeneities. As these het-
erogeneities might be very pronounced, interference between the incoming and diffracted
wave fields may be important, possibly leading to significant modifications of the frequency
content and amplitudes of the incoming wave field. These modifications are broadly referred
to as site effects and often lead to very significant amplification or de-amplification. They
are affected by topographic reliefs, sedimentary basins and so forth.

Observations have shown that a factor of 3—4 on PGA or PGV between the crest and the
foot of a relief is common. Numerical analyses of such configurations invariably predict
amplification for convex topographic reliefs, albeit with a very high sensitivity to the incom-
ing wave field characteristics (wave type, azimuth, incidence angle). The present state of
knowledge can be summarised as follows:

e Theory and observations are qualitatively in good agreement: convex topography
induces amplification, while concave topography causes de-amplification.

e Amplification is more pronounced for the horizontal component of the motion than
for the vertical one; furthermore, for 2D geometries amplification is more important in
the component perpendicular to the slope than in the component parallel to it.

¢ The magnitude of amplification depends on the aspect ratio of the slope (height/width);
the higher the aspect ratio, the larger is the amplification.

e Amplification is strongly frequency dependent; maximum effects are associated with
wave lengths comparable to the horizontal dimensions of the relief.

However, the qualitative agreement between observations and numerical analyses is not
confirmed quantitatively: more often than not, numerical analyses overpredict amplifica-
tion, although the reverse might also be true. This explains why in engineering practice, and
especially in seismic design codes, topographic amplification is handled with a rather crude
approach. Eurocode 8, Part 5 in particular, simply gives a frequency-independent amplifica-
tion factor, ranging from 1.0 to 1.4, depending only on the slope geometry; this factor is
uniformly applied to the whole spectrum.
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For a complete description and characterisation of topographic effects, one can refer to
Bard and Riepl-Thomas (1999).

Even more important than topographic amplification, it has long been recognised that
damage is more important in sedimentary basins than on rock outcrops. One of the most
famous examples is provided by the records of the 1985 Michoacdn-Guerrero earthquake
in Mexico City. Records on stiff soil outcrops exhibit PGAs of the order of 0.04 g, while
on the lake bed deposits (very soft clay deposits) PGAs reach 0.18 g with a totally different
frequency content (Figure 2.7). Mexico City does represent a prime example; several others
are available worldwide. The physical reason for this amplification stems from the incoming
waves being trapped in the superficial layers of low rigidity. For horizontally layered pro-
files, seismic waves are reflected back and forth between the ground surface and the inter-
face located at the soil-rock interface (Figure 2.24), leading to resonance of the layer. In 2D
or 3D geometries, reflection of waves also occurs at the side boundaries, possibly giving rise
to surface waves travelling back and forth horizontally between the edges of the valley; they
not only induce resonance of the valley, but are also responsible for an increased duration of
the seismic motion (Figure 2.24).

Amplification, or de-amplification, strongly depends on the predominant frequencies
of the incoming signal and on the soil characteristics: for a given incoming motion, some
frequencies may be amplified while others are de-amplified; a deep deposit with a low
natural frequency may de-amplify a nearby, moderate earthquake with a high-frequency
content, while it will strongly amplify a long distance earthquake with a low-frequency
content. The example of the records in San Francisco during the 1957 Daly City earth-
quake (close by M =35.3 event) and the 1989 Loma Prieta earthquake (70 km distant
M = 7.1 event) illustrates this statement: although the recorded rock PGAs were similar
in San Francisco (~0.10 g), ground surface PGAs recorded at Alexander Building Station
on top of 45 m of clayey silt and sand were respectively 0.07 g (Daly City) and 0.17 g
(Loma Prieta).

Figure 2.24 lllustration of wave trapping in sedimentary basins.
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Figure 2.25 Relationship between PGA on rock and PGA at ground surface.

The interpretation and observation of site effects is further complicated by the non-linear
behaviour of soils. It is well recognised, since the pioneering work of H.B. Seed and his co-
workers in the 1970s, that soils are highly non-linear, even at very small strains (of the order
of 1073 to 10-%). This is reflected by a decrease in the apparent shear modulus and an increase
in the material energy dissipation capacity (traditionally called damping ratio). For strong
motions, the decrease in material rigidity causes a shift in the natural frequency of the soil
profile towards lower values and, as a consequence, a decrease of PGA as the rock incoming
motion increases. This is portrayed in Figure 2.25 (adapted from Idriss 1990). This figure
should not be taken at face value: it only relates to PGA, a high-frequency characteristic
parameter of the ground motion; when looking at PGD, or pseudo-spectral acceleration at
low frequencies, a reverse phenomenon is observed: ground surface PGD increases, as the
rock incoming motion increases.

2.3.2 Soil liquefaction

Liquefaction is a process by which a solid is transformed into a liquid. In saturated cohe-
sionless soils this phenomenon happens under undrained conditions, that is when the mate-
rial is loaded at a rate high enough to prevent dissipation of excess pore water pressures.
Liquefaction has been identified since the 1964 Niigata (Japan) and Valdez (Alaska) earth-
quakes as the cause of major damage. The state of the art is nowadays well developed; reli-
able predictions can be made and effective countermeasures implemented (Youd and Idriss
2001; Idriss and Boulanger 2008).

Liquefaction is caused by the tendency of dry sands to densify under cyclic loading.
Progressive densification occurs by repeated back-and-forth straining of dry sand samples;
each cycle causes further densification, at a decreasing rate, until the sand reaches a very
dense state. The densification is the result of the soil particles being rearranged during
straining. Actually, if the sand becomes dense enough, each half cycle may cause dilation
of the sand sample, as particles roll or slide upon each other, but in the end they attain a
still denser packing. Densification is mainly a function of the past history of loading, of the
current density and stresses, and of the amplitude of shear strain. If the soil sample is satu-
rated and water prevented from draining, the reduction in volume caused by cyclic loading
cannot occur (assuming incompressible water). Instead, the tendency to decrease in volume
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is counteracted by a reduction in effective stress; for a constant total stress, a decrease in
effective stress means an increase in pore water pressure. Hence, part of the applied grain-
to-grain contact stress is transferred to the water. A zero effective stress condition is eventu-
ally reached, triggering liquefaction. This corresponds to the first step in most engineering
treatments of soil liquefaction: assessment of ‘liquefaction potential’; or the risk of triggering
liquefaction.

Once it is concluded that occurrence of liquefaction is a potentially serious risk, the next
step should be the assessment of the consequences of the potential liquefaction. This involves
assessment of the available post-liquefaction strength and resulting post-liquefaction overall
stability (of a site, and/or of a structure or other built facilities, etc.). There has been con-
siderable progress in the evaluation of post-liquefaction soil strength and stability over the
past 20 years. If stability after liquefaction is found to be critical, then the deformation/
displacement potential is large; engineered remediation is typically warranted in such cases,
because the development and calibration/verification of engineering tools and methods to
estimate liquefaction-induced displacements are still at a research stage. Similarly, very few
engineering tools and guidelines are available regarding the effects of liquefaction-induced
deformations and displacements on the performance of structures and other engineered
facilities; moreover, criteria for ‘acceptable’ performance are not well established. The ongo-
ing evolution of new methods for the mitigation of liquefaction hazards provides an ever-
increasing suite of engineering options, but the efficiency and reliability of some of them
remain debatable. Accurate and reliable engineering analysis of the improved performance
provided by many of these mitigation techniques continues to be difficult. Despite these dif-
ficulties, Mitchell and Wentz (1991) provide evidence of good performance of some mitiga-
tion techniques during the Loma Prieta earthquake.

The effect of liquefaction on a site or a built environment may consist of flow failures,
where large volumes of earth are displaced over several tens of meters (as in Valdez, dur-
ing the 1964 Alaska earthquake), or lateral spreading, which is similar to flow failures but
involves much smaller volumes of soil and displacements of few meters (Figure 2.26). For
flow failure and lateral spreading to take place, gentle slopes and the presence of a free
surface, like a river bank, are necessary; in horizontal layers vertical settlements take place
upon pore water pressure dissipation (Figure 2.27). If a foundation is on top of a liquefied

Figure 2.26 Lateral spreading (El Asnam, 1980).
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Figure 2.27 Liquefaction-induced settlement in Marina district (Loma Prieta earthquake, 1989).

layer, loss of bearing capacity takes place (Figure 2.28). On the contrary, buried structures,
which are usually lighter than the surrounding soil, may float due to buoyancy.

In engineering practice, liquefaction assessment of a site is carried out using empirical
correlations between the cyclic undrained shear strength and some index parameter, like the
standard penetration test (SPT) blow count, the cone penetration test (CPT) point resistance
or the shear wave velocity. Use of laboratory tests is not recommended, except for important
civil engineering structures, because, to be meaningful, they must be performed on truly
undisturbed samples. Retrieving truly undisturbed samples from loose saturated cohesion-
less deposits is a formidable task, of a cost beyond the budget of any ‘common’ project.

Figure 2.28 Bearing capacity failure due to liquefaction (Hyogo-ken Nambu earthquake, 1995).
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Techniques for retrieving undisturbed samples may call for in-situ soil freezing, or sampling
with very large diameter samplers (of at least 300 mm).

2.3.3 Slope stability

An earthquake may cause landslides, including debris avalanches from volcanoes.
Earthquake-induced acceleration can produce additional downslope forces, causing other-
wise stable or marginally stable slopes to fail. In the 1964 Alaska earthquake, for instance,
most rockfalls and debris avalanches were associated with bedding plane failures in the
bedrock, probably triggered by this mechanism. In addition, liquefaction of sand lenses or
changes in pore pressure in sediments trigger many coastal bluff slides.

Pseudo-static analysis is used for simple slope design to account for seismic forces.
Displacement analysis is used to estimate the amount of permanent displacement suffered
by a slope due to strong ground shaking. Simplified charts are developed for displacement
analyses, to estimate the amount of permanent displacement of a slope due to strong ground
shaking.

Failure of a slope may cause damage to buildings located on the slope itself or at its foot,
but may also interrupt transportation systems: in the Loma Prieta earthquake, a large land-
slide in the Santa Cruz Mountains disrupted State Highway 17 (Figure 2.29), the only direct
high-capacity route between Santa Cruz and the San Jose area, which was closed for about
one month for repair.

Natural slope stability is difficult to assess, as it strongly depends on the initial state of
the slope before the earthquake: the water regime, pre-existing fractures, previous slides,
tectonic stresses and so on. For man-made slopes, the situation may be easier, provided that
information on the construction method and materials constituting the slope is available.

Figure 2.29 Slope failure on State Highway 17, California (Loma Prieta earthquake, 1989).
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2.4 EARTHQUAKE EFFECTS ON SHALLOW FOUNDATIONS

The discussion will be restricted to shallow foundations, although deep foundations can
also suffer from earthquakes. Most often, damage to the foundation is the result of lique-
faction of the underlying layers and the subsequent loss of bearing capacity (Figure 2.28).
However, severe damage may also occur without liquefaction, due to bearing capacity fail-
ure or excessive settlements.

Bearing capacity failures of shallow foundations were seldom observed until 1985, which
may explain why this topic did not attract much research. Furthermore, it may be difficult to
make a clear classification between bearing capacity failure and excessive settlement during
an earthquake since the loads do not act permanently. The situation changed significantly
after the 1985 Michoacan Guerrero earthquake, when several buildings founded on individ-
ual footings or basemats undoubtedly failed due to loss of bearing capacity in Mexico City
(Figure 2.30). Research carried out around and since the end of the century has shown that
the most sensitive structures are those with low initial safety factor against gravity loads,
especially if they also have large load eccentricity, which is a design deficiency.

In areas of high seismicity, the inertial forces developed in the supporting soil by the pas-
sage of the seismic waves also contribute to the reduction of the overall safety; it has been
shown that neglecting these inertial forces may lead one to conclude that the foundation
is stable, while taking them into account points to the opposite conclusion, confirmed by
observations.

The state of the art allows determining the pseudo-static foundation-bearing capacity,
taking into account the eccentricity and inclination of the load at the foundation level, as
well as the inertial forces developed in the soil. Such a verification has been included, as an
informative annex, in Eurocode 8 — Part § (see Section 6.2 in Chapter 6).

Less spectacular than bearing capacity failures, earthquake-induced settlements may also
cause damage to foundations and supported structures. Settlements mainly occur in loose,
dry, or partially saturated, cohesionless deposits as a consequence of densification under
cyclic loading (see Section 2.3.2). In cohesive soils and saturated cohesionless deposits, set-
tlements are not observed during the earthquake but may occur later on, upon dissipation

Figure 2.30 Bearing capacity failure in Mexico City (Michoacidn Guerrero earthquake, 1985).
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Figure 2.3 Earthquake-induced foundation settlement (Michoacan Guerrero earthquake, 1985).

of the earthquake-induced excess pore water pressure. Dense sands are less sensitive to
settlements. Figure 2.31 is an example of an intermediate column of a steel frame structure
of a factory in Lazaro Cardenas, which settled during the earthquake, resulting in loss of
support of the column. Poorly compacted backfill is prone to large densification and settle-
ments (Figure 2.32). Earthquake-induced settlements may reach dozens or hundreds of mil-
limetres. Predicting settlements is a challenging task: they depend on the initial density of
the soil, the amplitude of the induced shear strains, the number of cycles of loading and so
on. Empirical charts have been developed to estimate them and can be used as a guideline
(Pyke et al. 1975, see Section 6.2.3).

Figure 2.32 Settlement of a poorly compacted backfill (Moss Landing, Loma Prieta earthquake, 1989).
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2.5 EARTHQUAKE EFFECTS ON LIFELINES

Although most of this book (notably Chapters 4 to 7) is devoted to concrete buildings, this
chapter provides more general background on various aspects of earthquake engineering
and dynamics. In this context, for completeness, this section highlights the role and perfor-
mance of lifelines in earthquakes.

Unlike individual buildings, lifelines have a distinguishing characteristic: they cover large
geographical areas and are composed of many diverse components interacting with each
other. Lifelines provide cities with services and resources necessary to security, commerce
and communications. When earthquakes strike urban areas, they can disrupt lifeline sys-
tems, threatening life and property in the short term and postponing economic recovery
during post-earthquake rehabilitation (O’Rourke 1996).

A review of the lifeline performance during earthquakes reveals that electric power sys-
tems generally perform well; in the vast majority of cases, restoration requires less than a
few days. However, electric power is critical for other lifelines; power loss reflects directly
in reduced serviceability of water supplies, wastewater facilities, telecommunications and
transportation. There are many examples, including loss of sewage and water pumping
capacity, loss of rapid transit services during the Loma Prieta earthquake and loss of power
for telecommunications during the Northridge and Hyogo-ken Nambu earthquakes.
Even though power losses are of short duration, their consequences can be important; for
example, electric power affects remote control of water supply and thereby influences fire
protection.

The behaviour of buried pipelines is controlled by ground movement; therefore the geo-
technical characteristics are critically important for lifeline systems. Earthquakes, like
Northridge, have shown that damage to buried pipelines can be caused by transient motion;
however such damage is mainly related to pipeline deterioration (corrosion, characteris-
tics of welds) or past construction practices, which reduce the capacity compared to that
achieved with modern materials and procedures. Simplified analytical procedures are avail-
able for assessing such effects: they model the seismic excitation as a traveling wave and
consider that the pipeline strain is equal to the ground strain, unless slippage takes place at
the interface between the pipeline and the surrounding soil; at slippage, the pipeline stress
is limited by the frictional force that can be transmitted to it. Special detailing, like coating,
may contribute to the reduction of friction and therefore pipe stresses.

Even though modern pipelines in more or less homogeneous soil profiles are not very
sensitive to transient motions, special attention must be paid to singular points; that is, at
transitions between two layers with a sharp rigidity contrast, or at the connection with a
building, whose motion is different from the free-field motion, creating transient differen-
tial displacements. These differential displacements can usually be accommodated through
special detailing, providing enough flexibility at the connection.

Instead, buried pipelines are more sensitive to permanent ground deformation caused
by settlements, slope instability, fault offsets or liquefaction. Settlements of pipelines are
typically encountered close to buildings, where pipelines are constructed in open narrow
trenches; those trenches are backfilled afterwards; however, heavy compaction is diffi-
cult to achieve and soil densification may take place during the earthquake (Figure 2.33).
Differential settlements between the building and the pipeline may cause damage to the
connection.

Liquefaction may induce lateral spreading, but also large transient shear strain in lique-
fied layers; these strains may reach 1.5%-2%; so, when integrated over the thickness of the
liquefiable soil, they may impose large lateral deformation on the buried pipelines. As an
illustration of the complexity and interdependence of lifeline systems, Figure 2.34, adapted
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Figure 2.33 Settlement of a pipeline trench adjacent to a building (Mexico, 1985).

from O’Rourke (1996), presents a bar chart of the number of Kobe reservoirs that emptied
as a function of time after the Hyogo-ken Nambu earthquake. Only one of the 86 reservoirs
supplying Kobe was structurally damaged; in all other cases, loss of water was the result
of ruptures of water pipelines, mostly caused by liquefaction-induced ground movements.
Within 24 h after the main shock, all reservoirs were empty, impairing firefighting and con-
tributing to the destruction of part of the town by fire.
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Figure 2.34 Loss of reservoirs after the 1995 Hyogo-ken Nambu earthquake. (Modified from O’Rourke,
T.D. 1996. Lessons learned for lifeline engineering from major urban earthquakes. Paper no.
2172. Eleventh World Conference on Earthquake Engineering. Acapulco, Mexico.)
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Figure 2.35 Ground acceleration for Question 2.1.

QUESTION 2.1

Consider the pulse-like excitation depicted in Figure 2.35, with a
Calculate the CAV and the Arias intensity I,.

=0.1gand#,=0.15s.

max

QUESTION 2.2

Figure 2.8 gives the annual probability of exceedance of peak ground acceleration (PGA) at
a given site, from several individual seismic sources. Calculate the annual probability that
a PGA of 0.1 g will be exceeded for a building located at that site. For a building struc-
ture designed for a lifetime of 50 years, what is the probability that a PGA of 0.1 g will be
exceeded during the lifetime of the structure?

QUESTION 2.3

What is the mode of failure or damage of the beams in Figure 2.36? Would you characterise
the case as damage or as failure?

QUESTION 2.4

What is the mode of failure or damage of the columns in Figure 2.37? Would you character-
ise the case as damage or as failure?

(a)

Figure 2.36 (a—c) Beams of Question 2.3.
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Figure 2.37 (a—l) Columns of Question 2.4.
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QUESTION 2.5

What is the mode of failure or damage of the concrete walls in Figure 2.38? Would you
characterise the case as damage or as failure?

(a) (b)

Figure 2.38 (a—f) Walls of Question 2.5.






Chapter 3

Analysis of building structures
for seismic actions

3.1 LINEAR ELASTIC ANALYSIS

3.1.1 Dynamics of single degree of freedom systems
3.1.1.1 Equation of motion

When loads or displacements are applied very slowly to a structure, inertia forces, which
are equal to the mass times the acceleration, are negligible and may be disregarded in the
equation of force equilibrium. This corresponds to what is normally referred to as the static
response of the structure. By contrast, if the loads or displacements are applied quickly, the
inertia forces may not be disregarded in the equilibrium equation and the structure responds
dynamically to those excitations.

Furthermore, damping forces may also develop and should also be considered in the
equilibrium.

To better understand this concept, consider the very simple system shown in Figure 3.1. It
depicts a single degree of freedom (SDOF) system, with constant parameters, that is subject
to a ground displacement #,(t) and an applied force p(t) varying with time.

Under this excitation, the system deforms, developing:

e A restoring force that (in the simpler case of linear behaviour) is proportional to the
relative displacement # and the stiffness of the system &

¢ A damping force that may be assumed to be proportional to the relative velocity # (rate
of deformation of the system) and a damping constant ¢ (in which case the system is
considered to have viscous damping)

e An inertia force that is proportional to the (absolute) acceleration ' of the mass m

All these forces should be in equilibrium as is represented by Equation 3.1 where, for
simplicity, we omit the dependence on time of the acceleration, velocity and displacement of
the system as well as of the applied force:

mit' +cu + ku = p (3.1)

It should be noticed that #¢, #' and i' correspond to the absolute displacement, velocity
and acceleration, whereas u, # and i correspond to the relative (to the ground) displace-
ment, velocity and acceleration.

The response of the system is thus governed by a linear differential equation and the
system is represented by its three properties:

1. m, Mass
2. ¢, Viscous damping constant
3. k, Stiffness of the system

43
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Damping constant ¢

Stiffness k i

Figure 3.1 Single degree of freedom system.

Considering that i#' = ii, + i, Equation 3.1 may be re-written in a more convenient form,
where the excitation terms are grouped in the right-hand side of the equation:

mii + cit + ku = p — mi, (3.2)

If we divide Equation 3.2 by m, we obtain:

i+ 20w, 1 + 0iu = wiu, — i (3.3)
where we have replaced the proportionality coefficients as:

28w, = c/m

w2 = kim

u,=plk (i.e. u, is the static displacement of the system under the lateral force p).

The left-hand term of Equation 3.3 represents the characteristics of the system, whereas
the right-hand term represents the excitation (either as an applied force or as an applied
motion at the base).

In Equation 3.3 the characteristics of the system are represented by the quantities ®, and
C, which shall be discussed later.

The equation covers all cases of interest with regard to the dynamic response of the sys-
tem: free vibration; forced vibration and transient disturbance.

3.1.1.2 Free vibration

The simplest case of dynamic response corresponds to the free vibration, in which the base
is motionless (iz, = 0) and there is no external force applied (p =0).

Let us consider additionally a further simplification in which there is no damping in the
system (i.e. the system is conservative, meaning that there is no dissipation of energy associ-
ated to the motion).
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Under these assumptions, Equation 3.3 becomes:
i+ wiu =0 (3.4)
and its general solution is:

u(t) = asinfw,t - 1,)] (3.5)

where g is an arbitrary constant (with units of length) and ¢, is an arbitrary value of time ¢.
This equation represents a simple harmonic motion with amplitude @ and circular frequency
®,, which is called the undamped natural circular frequency of the system. In other words,
if such a system is displaced from its resting position and released, it will remain oscillating
indefinitely. It is worth noticing that this occurs, since there is no dissipation of energy in the
system, because the energy which is input into the system to start the motion is conserved—
hence the denomination of the system as ‘conservative’.

The undamped natural circular frequency of the system (expressed in radians per second)
may be converted into the natural frequency of the system by the expression:

fu = ©,2n (3.6)

The undamped natural frequency of the system f, is expressed in cycles per second or
the corresponding unit hertz (Hz). The inverse of [, is the undamped natural period of the
system T, which is given by:

T, = 1/f, = 2n/w, (3.7)

and is expressed in seconds. It corresponds to the duration of each cycle of oscillation.

As mentioned earlier, during the undamped free vibration, the energy in the system is kept
constant and corresponds, at each moment, to the sum of the deformation energy and the
kinetic energy.

For a harmonic motion with amplitude a the deformation energy in the system is maxi-
mal at maximum displacement (# = a) with a value of:

(3.8)

On the other hand, the maximum kinetic energy is attained when the velocity (of the mass)
is maximal. For a harmonic motion this occurs when the displacement is zero (# = 0). If the
amplitude is a and the oscillatory frequency is ®,, such maximal velocity is #,,, = aw,.
Hence the maximal kinetic energy in the system is:

2.2
B = 5" (3.9)

Equating these two maximal values of the deformation and kinetic energies, we obtain
k = mw? or w2 = k/m which is precisely the value of the square of the undamped natu-
ral circular frequency of the system as derived above. This means that the energy in the
undamped free vibration is kept constant only if the oscillation occurs with a frequency
equal to the natural frequency of the system.
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Still within the framework of the free vibration of the system, we consider now the case
where the viscous damping is not zero, that is, the system dissipates energy during the oscil-
latory motion. In such a case, Equation 3.4 is replaced by:

i+ 2Cw,u + wiu = 0 (3.10)
and its general solution is:
ult) = a exp[-Co,(t - t;)]sin[o, - #)] (3.11)

This equation represents a damped harmonic motion, but the equation is only valid if the
damping constant ¢ is smaller than a limiting value known as the critical damping given by:

¢, = 2Jkm (3.12)

If we normalise the damping constant of the system ¢ and consider the definition of {
adopted in Equation 3.3, by simple substitution, we obtain:

t=% (3.13)

This quantity is called the damping ratio and is a measure of the damping in the system.

If ¢ is smaller than c_,, the system, when released from a displaced position, tends to the
resting position, oscillating with a circular frequency o, which is called the damped natural
circular frequency of the system and is given by:

Op = w, /1 -2 (3.14)

For the values of damping normally applicable in structural dynamics, the difference
between the damped (®,) and the undamped (®,) natural frequencies is very small. For
instance, for 5% damping ({=0.05) the difference is negligible (0.1%), whereas for 20%
damping ({=0.20) the difference is still only 2%.

It is apparent that the pace at which the oscillation tends to the resting position increases
with the damping ratio. To illustrate this effect, in Figure 3.2 the free vibration oscillation
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Figure 3.2 Free vibration of systems with different damping ({ = 2%, 5% and 10%).
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of systems with different damping is depicted. The influence of the damping ratio is clear:
after 5 cycles of oscillation, the system with 2% damping is still presenting amplitude of the
order of one-half the initial amplitude, whereas the system with 10% damping is practically
at rest showing just a residual amplitude of oscillation.

If ¢ is equal to or greater than c_, (i.e. {=1), the system does not oscillate when it is
released after having been displaced from its resting position. In that case, the system comes
back to the resting position always with the displacement on the same side and taking infi-
nite time to rest.

3.1.1.3 Forced vibration

We consider now the case in which the ground is at rest and there is a dynamic excitation
of the system caused by the application of a force varying harmonically with a circular fre-
quency ® and amplitude p,. This corresponds to introducing i, = 0 and p = p, sin ot in the
general Equation 3.2. In this case, the (homogeneous) equation has a general solution given
by Equation 3.11 and a particular solution given by:

u = u, B;sin(wt - ¢) (3.15)

where u,, = py/k (i.e. u, is the static displacement of the system under the lateral force at its
maximum p,) and

2 2 2
B, = (1-2’)%) +(2Cu%) ] (3.16)
_ 4 2Cow/w,)
¢ = tan 171 o) (3.17)

B, is a dimensionless response factor, equal to the ratio of the dynamic to the static dis-
placement amplitudes and ¢ is a phase shift between the excitation and the response.

The variation of the response factor B, with o/m, is depicted in Figure 3.3 for five val-
ues of the damping ratio { (notice that the vertical axis is in logarithmic scale). Immediately
apparent from Figure 3.3 is the fact that the response factor is influenced by the value of the
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Figure 3.3 Values of the response factor B, for systems with different damping ({ = 0.5%, 2%, 5%, 10% and
20%) acted by a dynamic force.



48 Seismic design of concrete buildings to Eurocode 8

damping ratio only in the vicinity of @/, = 1. As we depart from this value (either descending
or ascending), the response factor becomes practically independent of the damping ratio C.

When o/®, is close to zero, the value of B, is close to unity. This means that, in such a
case, there is practically no dynamic amplification. In fact, ®/m, close to zero means that the
frequency of excitation ® is so small (with regard to the natural frequency of the system ®,)
that the system takes it as a static action.

For o/m, = 1, the response factor is B, = 1/(2L), which is very close to its maximum that
occurs at resonance, as described below.

For large values of w/w, the value of B, tends to zero, meaning that there is very little
deformation in the system and the system equilibrates the external force with the inertia
force in its mass. In fact large values of ®/®, indicate that the excitation is very fast in com-
parison with the natural frequency of the system ®, and so it is the mass (by its inertia) that
fully resists the applied force.

In what concerns the phase angle ¢, it is apparent from Equation 3.17 that it goes from ¢ =0
at 0/, =0 to ¢ =71/2 at ®/®, =1 and then tends to ¢ =7 as w/w, tends to infinity. This means
that for excitations that are ‘slow” with regard to the natural frequency of the system, the
response is practically in phase with the excitation (and with very little amplification as seen
before). The response is essentially static and the dynamic effects are negligible. By contrast, for
‘fast’ excitations (i.e. for large values of w/w,) the displacement response is opposite to the exci-
tation, that is, the direction of the displacement is contrary to the direction of the applied force.

It should be noticed that in such case, as seen before, the deformation of the system is
very small and thus the force resulting from its stiffness is very small. The external force is
resisted essentially by the inertia of the mass and hence the phase of the displacement is not
really very relevant.

At o/m, =1 the phase shift is ¢ = /2, meaning that in that case the external force is essen-
tially equilibrated by the damping force developed in the system.

The case where the response factor is maximal is normally called resonance. If we con-

sider the response factor for displacement B,, the maximum occurs for o = w,/1 - 222
with a value of B, = (1/28)(1 — £2)7'/2.

For the small values of £ normally associated to structural dynamics (damping ratios in
the range of 0.01 to 0.2) this value is practically equal to the value indicated before (B, =
1/(2Q)) for the excitation with a frequency equal to the undamped natural frequency (® = ®,).
It may also be noticed that for damping ratios up to { = 0.1, the difference is less than 0.5%.
Likewise, for small damping, the excitation frequency leading to resonance is practically
equal to the undamped natural frequency (up to { = 0.1, the difference is less than 1%).

We consider now the other case of forced excitation, in which there is no external force
applied and the ground moves harmonically with a circular frequency ® and amplitude a.
In this case the ground displacement is described by #, = a sin ® ¢, which in terms of ground
acceleration is described by i, = —a ®*sinwt. Moreover, in this case we have p = 0. Then
the (homogeneous) equation has a general solution given by Equation 3.11 and a particular
solution given by:

u = aB,sin(wt — ) (3.18)
with
-4
(/o) ( m3)2 ®, }
B, = 7 =11 +|2¢ (3.19)
[(1 - (@02)) + (2;<m/m,,))2]/ o* ( @ )
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Figure 3.4 Values of the response factor B, for systems with different damping ({ = 0.5%, 2%, 5%, 10% and
20%) acted by ground motion.

In this case B, is a dimensionless response factor equal to the ratio of the relative dis-
placement in the system to the amplitude of the base motion. It is worth noticing that the
response factor is then equal to the one for the force excitation case (Equation 3.16) but with
o and o, interchanged. The phase shift ¢ between the excitation and the response is given
by Equation 3.17.

The variation of the response factor B, for ground excitation with ®/®, is depicted in
Figure 3.4 for five values of the damping ratio { (notice that the vertical axis is in logarithmic
scale).

As for the force excitation case, it is apparent from Figure 3.4 that the response factor is
influenced by the value of the damping ratio only in the vicinity of o/®, = 1.

When o/w, is close to zero, the value of By is very small. In such case the frequency of
excitation  is very small and there is practically no deformation of the system. Hence the
relative displacement in the system (i.e. its deformation) is negligible and the system moves
essentially as a rigid body. By contrast, for large values of ®/®, the value of B, tends to one.
In that case the system is so flexible (in relation to the frequency of excitation) that the mass
remains motionless. Hence the relative displacement in the system (i.e. its deformation) is
equal to the amplitude of the ground motion.

3.1.1.4 Numerical evaluation of dynamic response

In the case of earthquake ground motion, which represents a transient disturbance, the
equation of motion, Equation 3.2, can be solved only by numerical step-by-step methods
for integration of differential equations. A large number of methods have been presented in
the literature. Only a very brief presentation of one of them is presented here for illustration.
The method is usually called the Average acceleration method, also known as Newmark’s
method with y=0.5 and B =0.25.

In the equation of motion, Equation 3.2, we will consider, for convenience, only the
applied force p(¢) on the right-hand side. (It will be easy to replace it with the ground
motion at the end of the derivation). The full duration of the motion is divided into a
number of short-time intervals Az, taken to be constant, although this is not necessary.
In each interval, it is assumed that the acceleration is constant and equal to the average
value of the accelerations at the beginning and at the end of the interval. This is the only
assumption in the integration of the equation of motion; on the basis of it, it is possible to
transform the differential equation of motion into a number of algebraic equations, which
can be easily solved.
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The assumption of constant acceleration is an approximation which violates the principles
of physics, since it requires a sudden jump in acceleration at the boundaries of the time inter-
vals. Nevertheless, it produces quite accurate results, provided that the time step is short
enough, as discussed later in this Section.

Constant acceleration implies a linear variation of the velocity and a quadratic variation
of displacements within the time interval. The following relations between the quantities at
the end and at the beginning of the interval are obtained:

U = s + (U4 + 72141)% (3.20)
2
Uy = u; + it AL+ (it + am)% (3.21)

where the index i applies to the beginning of the interval and index i + 1 to its end. Equations
3.20 and 3.21 can be rearranged into the form:

.. 4 4 . .

Uy = F(“iu =) = p = (3.22)
b= 2 —u) - (3.23)
i+1 = At i+1 i i .

Introducing Equations 3.22 and 3.23 into the equation of motion at the end of the interval
Mili g + Citq + Rty = Py (3.24)

the following equation is obtained, after some rearrangement:

4 2 4 4 .. 2 .
(Fm MV k) U1 = P + (Fu, ot uz-)m + (A—tu,— + u,—) c (3.25)
or
ki) = Py (3.26)

where the effective stiffness & is defined as

- 2

k=—m+-—c+k (3.27)
and the effective applied force p;,, as

_ 4 4 . . 2 .
Pis1 = Piv1 + (F“: oAt “i) m + (E”z + “i)C (3.28)
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In order to apply the above procedure to the integration of the equation of motion, the
following computational steps are needed:

1. The initial displacement #, and the initial velocity #, are known. The initial accelera-
tion #, is calculated from the equation of motion at the beginning of the first step.

2. The effective stiffness k is determined from Equation 3.27.
At each time step:

3. The initial values of the displacement, velocity and acceleration, u;, #; and #,, respec-
tively, are either the initial values determined in step 1 (only at the beginning of the
calculation), or the values determined in the previous step (at the end of the interval).

. The effective applied force p;,, is determined from Equation 3.28.

. The displacement at the end of the interval #;,, is determined from Equation 3.26.

. The velocity #,,, is determined from Equation 3.23.

. The acceleration i, is determined from Equation 3.22, or from the equation of
motion (Equation 3.24).

AN I N

Equation 3.26 is equivalent to the equilibrium equation used in statics. Formally, the step-
by-step integration procedure transforms the dynamic problem into several static ones. For
each time-step, the equilibrium equation, Equation 3.26, has to be solved. Dynamic effects

are included in the effective stiffness k and the effective loading p;,, ;.

In the case of the excitation in the form of ground motion, the applied force p,,, is replaced
by -mii;, ;.

Note that in the case of multiple degrees of freedom (MDOF) systems, the same procedure
can be used for the numerical integration of a system of differential equations. The same
equations apply, only the scalar values are replaced by matrices.

The developed method for step-by-step integration of the equation of motion can be for-
mulated also in another form, where instead of displacements the incremental displacements
Au;=u,,, —u, are calculated. Both forms are equivalent in the case of elastic analysis, whereas
in the case of inelastic structural behaviour only the second form is applicable. For the devel-
opment of equations in this form, the equation of motion at the beginning of the interval

mit; + cig; + Ru; = p; (3.29)

is subtracted from the equation of motion at the end of the interval (Equation 3.25) resulting
in

4 2 4 . . .
(Fm v /e) (Ui — 1) = Py — i + (A—tui + Zu,»)m +2cu, (3.30)
or
kAu, = p,., (3.31)

where k is the same as in the first variant (Equation 3.27) and p,,, is defined as:

_ 4 . .. .
Pis1 = Dis1 —Di + (E”i + 2“;‘)”" +2cu; (3.32)
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Computational errors occur in all numerical methods. In the case of time-stepping pro-
cedures for the solution of the equation of motion, the error decreases when the size of
the time interval is reduced. When using the average acceleration method presented in this
Section (and other similar methods), reasonable accuracy can be achieved if the time interval
is not larger than one-tenth of the period of the structure (At < 0.1T,). In the case of MDOF
systems, this condition applies to all modes that exhibit a significant contribution to the
structural response. Of course, in the case of earthquake ground motion, the time interval
should not be shorter than the interval of the input acceleration data, which is usually 0.01 s
or 0.005 s. This condition is typically decisive in the case of SDOF systems subjected to
earthquake ground motion.

The average acceleration method is an unconditionally stable procedure and leads to
bounded solutions regardless of the length of the time interval.

In the case of non-linear analysis, the linear force—deformation relation does not apply.

The stiffness k depends on the displacement and changes with time. Consequently, k is not
a constant as in the case of elastic analysis, but changes with the time steps.

3.1.2 Seismic response of SDOF systems — Response spectrum
3.1.2.1 Response spectra

The seismic response of SDOF systems can be obtained by solving Equation 3.2 by means of
a numerical procedure, for example, the method presented in Section 3.1.1.4. The analysis
which determines the structural response as a function of time is called ‘time-history’ or
‘response-history’ analysis. Several numerical methods and computer codes are available in
the literature on structural dynamics, which provide a numerical solution in terms of the
displacement # as a function of time. In practice, the whole response history is usually not
needed. In most cases, the analyst is interested only in the maximum response values, which
may be obtained from a ‘response spectrum’.

A response spectrum gives, by definition, the maximum absolute values of a response
quantity (in seismic analyses this is typically acceleration, velocity and/or displacement)
as a function of the period, T, (or a related quantity such as the frequency ®,), for a fixed
damping ratio and for a given ground motion. An example of response spectrum is shown
in Figure 3.5. It shows the maximum (relative) displacements, #,, of an SDOF system sub-
jected to a ground motion recorded at Ulcinj (Albatros, N-S direction) during the 1979
Montenegro earthquake. The spectrum was obtained by performing a response-history
analysis of several SDOF systems with different natural periods, but always with the same
accelerogram (Figure 3.5). The damping ratio { was in all cases equal to 0.05 (i.e. 5%).

The displacement spectrum #, represents the absolute values of the maximum (relative)
displacements. In a similar way, spectra for the (relative) velocity, #,, and the (absolute)
acceleration i, which represent the absolute values of the maximum relative velocity and
absolute acceleration, respectively, can be obtained.

The spectral values are defined as

u,(T,, ©) = maxju(t, T,, C) (3.33)
i,(T,, ©) = maxlu(t, T,, T) (3.34)

iit (T, €) = max|ii' (¢, T,, )| (3.35)
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The spectra for the relative displacement u,, relative velocity #, and absolute acceleration
i#! for the Ulcinj — Albatros ground motion and 5% damping are shown in Figure 3.6.

If the analyst is only interested in the maximum response of a structure subjected to a specific
ground motion, and the displacement response spectrum #, (T, {) is known, the maximum
displacement #, can be obtained as the ordinate of the spectrum (corresponding to damping )
at the natural period of the system T,. The same applies to the velocity and acceleration spectra.

— Absolute acceleration, uf)

=== Pseudo-acceleration, A

0.0 0.5 1.0 1.5 2.0 2.5 3.0

— Relative velocity, i,
-=== Pseudo-velocity, V'

V, i, (m/s)

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

16

14

12

10.32 cm

10

D=u,(cm)
o)
4.60 cm

1.41 cm

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Period, T, (s)

Figure 3.6 Spectra for the relative displacement u, = D, relative velocity i, and absolute acceleration iz,
as well as the pseudo-velocity V and pseudo-acceleration spectra A for the Ulcinj (Albatros, N—-S
direction) ground motion and 5% damping.
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3.1.2.2 Pseudo-spectra and seismic force

In seismic analyses, the velocity spectrum and the acceleration spectrum are, for con-
venience, usually replaced by the so-called pseudo-velocity spectrum, V, and pseudo-
acceleration spectrum, A. They are defined as (using the notation D = u,):

V =0,D = T D (3.36)
4n?
A=0}D="5D (3.37)
or
V- ui _ 2%‘4 (3.38)
D= % - 47;';22 A (3.39)

For small damping values, the pseudo spectra are very similar to the actual spectra, with
the exception of pseudo-velocity spectra for very flexible structures with a long natural
period, T,.

A ®ii! (3.40)
V @, (3.41)

For zero damping, the pseudo-acceleration spectrum becomes exactly equal to the accel-
eration spectrum.

A comparison of pseudo-velocity and pseudo-acceleration spectra with actual spectra
is shown in Figure 3.6. It can be seen that, for small damping, the pseudo-acceleration
spectrum is practically equal to the acceleration spectrum. Some differences between the
pseudo-velocity and velocity spectra occur in the intermediate and long-period ranges.

The use of pseudo-spectra instead of actual spectra simplifies the analysis. First, the
three spectra (D, V and A) are related by simple equations. So, seismic standards typi-
cally provide only one spectrum, that is, the pseudo-acceleration spectrum, A, whereas
the other two spectra can be determined, if needed, from Equations 3.38 and 3.39. Using
Equations 3.36 to 3.39, it is also possible to plot several spectra in a single plot, for exam-
ple, in the acceleration—displacement (AD) format, in which spectral accelerations are plot-
ted against spectral displacements, with the periods T, represented by radial lines (Figure
3.7). Secondly, the pseudo-acceleration spectrum is directly related to the seismic force, as
shown next.

The absolute maximum value of the elastic force in the spring, also called the restoring
force, is defined as:

fso = kuy = kD = mw2D = mA (3.42)
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Figure 3.7 Spectrum for the Ulcinj (Albatros, N—S direction) ground motion and 5% damping in AD format.

Equation 3.42 shows that the maximum restoring force can be calculated either as the
product of stiffness and maximum displacement (i.e. the value in the displacement spectrum
D), or as the product of mass and the value in the pseudo-acceleration spectrum A. The lat-
ter option is simpler in the case of MDOF systems and is typically used in seismic standards
for the determination of seismic actions.

The idea of a typical seismic analysis according to standards is to perform a usual elastic
static analysis (as for the other types of actions). This idea can be realised by using an equiv-
alent static loading, which can be called ‘seismic forces’. The equivalent static loading must,
in the static analysis, produce the same displacements as those determined in the dynamic
analysis. In the case of an SDOF system, the maximum displacement can be obtained from
the displacement spectrum. Moreover, in static analyses the external force is equal to the
internal force, that is, the elastic force in the spring (the restoring force). Consequently,
considering Equation 3.42, the seismic force, that is, the equivalent static external force, f,,
which produces the maximum dynamic displacement in a static analysis, is defined as

fu = m (3.43)

In an SDOF system, f,, is equal to the seismic base shear force V,,.

Equation 3.43 shows that the seismic force (i.e. the seismic action) can be determined as the
product of the mass and the value in the pseudo-acceleration spectrum, A(T,,£), which depends
on the natural period and the damping of the system. Static analysis of a system subjected to the
seismic force will produce the same displacement as obtained in a dynamic analysis of the same
system, when subjected to a ground motion represented by the pseudo-acceleration spectrum.
The same concept can be used for MDOF systems, as shown in Section 3.1.5.

The values of the acceleration and displacement spectra at periods T,,=0 and T, =« fol-
low physical constraints. For infinitely rigid structures (T, =0), the spectral acceleration
A(T, =0) is equal to the peak ground acceleration PGA, whereas the spectral displacement
D(T,=0) is equal to zero. The structure moves with the ground without any deformation.
For infinitely flexible structures, however, the spectral acceleration is equal to zero, whereas
the spectral displacement is equal to the maximum ground displacement PGD. The support
moves with the ground but the mass remains at rest (Figure 3.8).
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Figure 3.8 Seismic response of structures with different natural periods of vibration. Limit cases of infinitely
rigid and infinitely flexible structures.

In the following, pseudo-acceleration spectra will be used. It is assumed that the pseudo-
acceleration is equal to the acceleration and the prefix ‘pseudo’ is omitted.

3.1.3 Elastic response spectra according to Eurocode 8

Seismic standards and codes use highly idealised spectra, which follow the physical con-
straints and the characteristic features of actual spectra and are intended to represent
average characteristics of ground motions in the region where the standard and/or code is
implemented.

The shape of spectra in codes follows the typical characteristics of spectra. The spectral
accelerations are the largest in the short-period range, the spectral velocities are the largest
in the medium period range and the spectral displacements are the largest in the long-period
range. The three ranges are also called acceleration-, velocity- and displacement-controlled
regions. Typically, with the exception of the extreme cases, the absolute elastic spectral
accelerations (and forces) decrease with increasing period (and flexibility) of the structure,
whereas the relative spectral displacements increase.

In order to define the design seismic action according to Eurocode 8, the following param-
eters need to be defined:

—_

. The reference return period for the design seismic action.

2. PGA on rock, defined as a material with an equivalent shear wave velocity larger than
800 m/s.

. The Importance Class of the building.

. The representative ground type.

5. The predominant surface wave magnitude of earthquakes that contribute to the seis-

mic hazard.

S W

The reference return period is typically chosen by the National Authorities (see Section
1.3). The importance classification results from the use and occupancy of the building (see
Section 1.3, Table 1.1). PGA on rock and the earthquake magnitude are results of a proba-
bilistic seismic hazard analysis (PSHA - see Section 2.1.4); the ground type depends on the
local soil conditions.

In Eurocode 8, the ground type is defined in terms of the average shear wave veloc-
ity, V30, in the top 30 m below the ground surface. When Vj ;, is not available, other
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Table 3.1 Ground type classification per EC8

Parameters
Ground type Description V30 (mls) Ngpr blows/0.3 m ¢, (kPa)
A Rock or similar geological formation, with at most  >800 _ _
5 m of weaker material at the surface.
B Deposits of very dense sand, gravel, or very stiff 360-800 >50 >250

clay, at least several tens of m thick, with gradual
increase of mechanical properties with depth.

C Deep deposits of dense or medium-dense sand, 180-360 15-50 70-250
gravel or stiff clay, from several tens to many
hundreds metres thick.

D Deposits of loose-to-medium cohesionless soil <180 <I5 <70
(with or without some soft cohesive layers), or
of predominantly soft-to-firm cohesive soil.
E A 5-20 m thick surface alluvium layer with V;
values of type C or D, underlain by stiffer
material with V, > 800 m/s

S Deposits consisting, or containing an at least I0m <100 _ 10-20
thick layer of soft clays/silts with high plasticity (indicative)
index (Pl > 40) and high water content

S, Deposits of liquefiable soils, sensitive clays, or any

other soil profile not included in types A to E or S,

parameters like the Standard Penetration Test (SPT) blow count, N, or the soil undrained
shear strength, c,, may be used as proxies. Modelling the top 30 m of the soil profile as a
stack of horizontal layers, each with thickness »; and shear wave velocity Vi, the average
shear wave velocity is defined as:

ww=2MM=TMI (3.44)
3oV Y Vs

Table 3.1 presents the different ground types defined in Eurocode 8.

For soil types S, and S,, special studies for the definition of the seismic action shall be
undertaken as too few sites entering that category are available to define a design response
spectrum. For the other site categories, the horizontal component of the seismic action, the
(pseudo-) acceleration elastic response spectrum A, which in Eurocode 8 is denoted as S,(T),
is defined by the following equations:

0sT =T, &aw=%sp+%\1ﬁp44
B
T, <T =T S,(T) = 2.5a,5n
3.45
T.<T =T, Mﬂ=lhgﬂ?] (3.43)

T, =T < 4s S.(T) = Z.SagSn[T%’fD]
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where:

e T is the vibration period of a linear SDOF oscillator (denoted as T, in other parts of
this book)

* a,is the design acceleration on rock (equal to the reference peak ground acceleration

on rock times the importance factor)

Ty is the lower limit of the constant acceleration branch

T, is the upper limit of the constant acceleration branch

T, is the value defining the beginning of the constant displacement branch

S is the soil factor

e 1 is the damping correction factor given by n = 10/(5 + ?;) = 0.55 with the damping
ratio of the structure ({) expressed as a percentage

Values of S, Ty, T and T, are given in Table 3.2. Because statistical analyses of
recorded events show that the spectral shape is magnitude-dependent and practically
distance-independent (from source to site), the parameters are defined for two different
spectral shapes that depend on the seismicity of the area: Type 1 defines areas of high
intensity characterised by earthquakes with a surface wave magnitude larger than 5.5;
Type 2 defines areas of low intensity characterised by earthquakes with a surface wave
magnitude (see Section 2.1.1) smaller than 5.5.

The shape of the acceleration spectrum according to Eurocode 8, normalised to 1 g peak
ground acceleration, is shown in Figure 3.9 for soil categories A to E and both earthquake
types. The displacement spectrum is defined by Equation 3.39, but only for periods T < T},
where T depends on the soil type (T; =4.5 s for soil type A). For periods T > Ty, where
Ty:=10s, the values in the Eurocode 8 displacement spectrum are equal to an estimate of
the maximum ground displacement #, = PGD (see also Figure 3.8).

The spectral shapes defined by Equation 3.45 are valid so long as no near source effects
are expected; base-isolated structures are very sensitive to near source effects, which cre-
ate a large velocity pulse in the motion. Therefore, Eurocode 8 requires the development
of a site-specific response spectrum for base-isolated structures of importance category IV
(the highest one) located within 15 km of an active fault that can generate an earthquake
with a magnitude larger than 6.5. The resulting spectrum shall not, however, fall below the
Eurocode 8 spectrum.

Since observations of recorded motions have shown that the frequency content of the
vertical component is different from the frequency content of the horizontal motion, the
traditional way of defining the vertical spectrum as a fraction of the horizontal one is
abandoned and the vertical component of the seismic action is defined independently.

Table 3.2 Values of horizontal elastic spectrum parameters recommended in EC8

Spectrum Type | Spectrum Type 2
Ground type S Ts (s) Tc(s) To(s) S Ty (s) Tc(s) To(s)
A 1.00 0.15 0.4 2.0 1.0 0.05 0.25 1.2
B 1.20 0.15 0.5 2.0 1.35 0.05 0.25 1.2
C I.15 0.20 0.6 2.0 1.50 0.10 0.25 1.2
D 1.35 0.20 0.8 2.0 1.80 0.10 0.30 1.2
E 1.40 0.15 0.5 2.0 1.60 0.05 0.25 1.2
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Figure 3.9 Elastic spectral shapes according to Eurocode 8; (a) generic shape of acceleration spectrum; (b)
recommended 5%-damped horizontal acceleration spectrum of type | or 2.

The pseudo-acceleration vertical elastic response spectrum S,,(T) is defined by the fol-
lowing equations:

0<T =T, S.(T)=a |1+ @3.0m-1)
g TB

Ty

A

T<T, S,(T) = 3.0a,,m

3.46
T.<T=<T, S,.(T) = 3.Oaugn[TC] (3.46)

T, <T

IA
A

4s S,.(T) = 3.angn[TcTD]

where a,, is the vertical acceleration defined as a fraction of the horizontal one. The recom-

mended value of a,, and those of the controlling periods T, T and T, are:

e T,=0.05s

e T,=0.15s

e T,=1.0s

* a,=0.9a, if the Type 1 spectrum is used
[ ]

a,,=0.45a,, if the Type 2 spectrum applies

Note that the spectral shape no longer depends on the ground classification; the rationale
behind this comes from the fact that vertical motions are mainly induced by the propagation
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of P-wave (dilatational waves), while horizontal motions are mainly induced by propagation
of S-waves (shear waves); S-wave velocities are much more sensitive to ground type than
P-wave velocities.

3.1.4 Dynamics of multiple degrees of freedom systems
3.1.4.1 Equation of motion

Very rarely, real structures may be described by an SDOF system: the ways in which a real
structure may deform are very complex and cannot be described by a single coordinate.
The complexity of the deformation of a structure depends on the distribution of its mass
and stiffness, as well as on the characteristics of the loading (distribution in space and
variation in time); in most cases, the response includes a variation with time of the shape
and amplitude. Hence, the response of the structure may only be described well if the
deformation is defined by more than one degree of freedom. Hence, the need to consider
MDOF systems.

The degrees of freedom in a discrete parameter system may be the displacements of cer-
tain selected points of the structure. In principle, these points may be chosen arbitrarily in
the structure; in reality, it is convenient to choose the points in connection to the specific
features of the structure, so that they are appropriate to best describe the way in which the
structure deforms in response to the loading.

In many cases of discretisation of engineering structures, it is acceptable, without major
loss of accuracy, to consider the mass of the system lumped at the points where the degrees
of freedom are defined.

In a spatial system, at each discretisation point there are six degrees of freedom, three
corresponding to translations and three to rotations; however, in many cases the structural
model may be simplified and the number of degrees of freedom may be reduced. This is, for
instance, the case of the so-called ‘rigid diaphragm’ buildings where the in-plane stiffness
of the floor slabs is much higher than the stiffness of the lateral resisting elements. In such
cases the deformation of the building under earthquake loading may be described just by
two horizontal degrees of freedom at each storey, plus the twisting rotation around a verti-
cal axis, with normally the discretisation point at each storey established at the centroid of
the storey mass (see Section 3.1.10).

In any case, the configuration of the system (displacements and rotations) is described by
as many linearly independent quantities as there are degrees of freedom. These quantities
are called generalised displacements, denoted here by u,. We may regard the generalised dis-
placement as the product of a vector by a scalar, the former being a generalised coordinate.
Then the modification of the amplitude of the displacement corresponds to modification of
the scalar. In general we may choose as coordinates at each lumped mass the three displace-
ments of the centroid of the mass and the rotation around the principal axis of inertia.

The displacements scalars describe the configuration of the system and may be arranged
in a column (in any order). For a system with N degrees of freedom, the displacements sca-
lars constitute an N-dimensional column vector, denoted by # and called the generalised
configuration of the system.

In a similar way we may organise the internal and external generalised forces (forces and
moments) in column vectors. Each term in the vector stands for the component of the force
(or moment) on the corresponding coordinate, arranged in the same order as used for the
terms describing the generalised configuration.

As in SDOF systems, the dynamic equilibrium condition requires that at each degree of
freedom the restoring force, the damping force and the inertia force equilibrate the applied
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external force. This corresponds to an N-dimensional set of equations that may be expressed

by:

f +f, +f5 = p() (3.47)

where
f, is the vector of the inertia forces
f}, is the vector of the damping forces
f, is the vector of the restoring (stiffness) forces
p(#) is the vector with the external (applied) forces (varying with time)

Let’s consider first the case in which there is no motion of the ground, meaning that
absolute and relative displacements, velocities and accelerations are the same. The restoring
forces (in a linearly elastic system) depend on the generalised displacements u through the so-
called stiffness matrix k with an N x N dimension, where each coefficient k; is defined as the
force corresponding to coordinate i due to a unit displacement of coordinate j. Accordingly
the vector of the restoring (stiffness) forces may be expressed by:

f, = ku (3.48)

Now, if we assume, as before, that the damping forces are proportional to the velocity a
at each coordinate (i.e. the viscous damping assumption) we may express the damping forces
vector through the damping matrix ¢ as:

fy, =cu (3.49)

Similarly to the definition of the stiffness matrix coefficients, the coefficients ¢; of the
damping matrix are defined as the force corresponding to coordinate i due to a unit velocity
of coordinate j.

Finally, the inertia forces depend on the acceleration at each coordinate and the corre-
sponding mass. In matrix form this is expressed by:

f = mii (3.50)

where the coefficients 72, of the mass matrix m are defined as the force corresponding to
coordinate 7 due to a unit acceleration of coordinate ;.

Replacing Equations 3.48 to 3.50 in Equation 3.47, the complete dynamic equilibrium of
the system is given by a set of equation represented in matrix form by:

mii + cu + ku = p (3.51)

where, for simplicity, we have omitted again the dependence on time of the accelerations,
velocities and displacements of the system, as well as of the applied forces.

Let’s consider now the case where the base is not fixed but moves, as for earthquake
action. In that case, for the computation of the restoring and the damping forces we have to
consider the relative displacements and the relative velocities, whereas for the computation
of inertia forces the absolute accelerations apply.
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The simplest case is when the base is rigid and hence all points of the system fixed to the
base have the same motion u,, 1, and ii,. In that case the relations between relative and
absolute displacements, velocities and accelerations are given by:

u=u-.u, (3.52)
u=u-u, (3.53)
=1 -, (3.54)

where 1 is the influence vector representing the displacements of the masses resulting from
static application of a unit ground displacement in the direction of ground excitation. In
a special case of a planar system with all degrees of freedom in the same direction as the
ground motion (e.g. a planar model of a multi-storey building with concentrated masses at
the floor levels) the influence vector becomes a unit column vector 1.

Considering that inertial forces are determined as the mass matrix m multiplied by the
vector of absolute accelerations ii* and using Equation 3.54, Equation 3.51 becomes:

mii + ci + ku = p - mui, (3.55)

This is the basic equation for MDOF systems; it is similar to the basic Equation 3.2 pre-
sented before, with regard to SDOF systems.

3.1.4.2 Free vibration

Let’s consider the simplest case of dynamic response of the MDOF system that corresponds
to its free vibration response when the base is still (i, = 0) and there is no external force
applied (p = 0). Additionally, neglecting the term of damping in Equation 3.55 the equation
representing free vibration is:

mii + ku = 0 (3.56)

To solve this equation, let us assume that the system vibrates harmonically with a circular
frequency ®,. Such motion is given by:

u = @,sinfo,(t - t,)] (3.57)

where u is a vector with the shape of the deformed configuration of the system ®,
(which does not change with time) and ¢, is an arbitrary value of time ¢. Taking the
second derivative of time of this expression and replacing in Equation 3.56, we obtain
successively:

—o2m®,sinfo,(t - t,)] + k®,sin[o, -£,)] = 0 (3.58)

(k - 2m)®, = 0 (3.59)
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Besides the trivial solution of Equation 3.59, ®, = 0, non-trivial solutions are possible only
when:

det(k - w2m) = 0 (3.60)

For a system with N degrees of freedom, this is an Nth degree equation in w2, called the
characteristic equation of the system. Its solution corresponds to the determination of the
eigenvalues and eigenvectors of the system.

The square roots of the eigenvalues are the natural frequencies of the system ®,. Replacing
w2 in Equation 3.59 and solving the resulting matrix equation provides the shape of the nth
natural mode ®,. It should be noticed that the vector ®, may have any arbitrarily chosen
scale, that is, what matters is the configuration of the mode and not its size.

In any case, usually the mode shapes are normalised according to certain criteria, one of
the most common being choosing the scale of ®, so that ®I m®, = 1.

Conventionally, the results are ordered in increasing order of the natural frequencies ®,,,
with 7 varying from 1 to N and the lowest frequency, that is, ®,, called fundamental fre-
quency of the system.

The natural modes form a complete orthogonal set with m or k as weighting matrix. This
implies that:

OTmd, =0 ifw, = o, (3.61)
and

OTkd, =0 ifw, =, (3.62)

where the superscript T indicates that the matrix or vector is transposed.

The orthogonality between mode shapes means that the inertia forces associated with the
mth mode of vibration do not perform work when displaced with the configuration of the
nth mode.

On the other hand, the fact that the natural modes constitute a complete set means that
any deformed configuration u of the system may be represented by a linear combination of
the natural mode shapes.

u = Eqncpn (3.63)

In Equation 3.63 g, are (dimensionless) weighting coefficients of the contribution of each
mode to the global deformed configuration.

Note that the calculation of eigenvalues and eigenvectors by solving the characteristic
equation of the system, Equation 3.60, is practical for two or mostly three degrees of free-
dom. In the literature, a number of numerical methods are available for solving the eigen-
value problem (see, e.g. Chopra 2007).

As pointed out before, Equation 3.57 is a solution of the general free vibration, Equation
3.56, provided that o, is one of the natural frequencies of the system. Hence, considering
the linearity of the system, any linear combination of the modal vibration

u = Zq,ﬁb,, sin[wn(t - t,,)] (3.64)
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is also a solution of Equation 3.56 for the free vibration motion of the system.

This means that the system, when disturbed from its resting position, will respond with
an oscillatory motion, that is, a combination of all of its natural modes. The relative impor-
tance of the different modes for the global response is reflected by the values of the weight-
ing coefficients q,,.

Also, the relation in time of the response of the various modes is reflected by the values
of the time shift ¢,. Both g, and #, depend on the initial conditions that trigger the motion
of the system.

In the case of damped systems the free vibration equation becomes:

mi+ca+ku=0 (3.65)

In such case, only under particular conditions the system possesses classical natural
modes (i.e. in the real domain). The necessary and sufficient condition for the existence of
natural modes in the real domain is that the transformation that diagonalises the mass and
stiffness matrices m and k also diagonalises the damping matrix c. In this case the natural
modes of the damped system are the same as those for the corresponding undamped system.
The condition above is satisfied if the damping matrix is a linear combination of the mass
and stiffness matrices:

¢ = am+ bk (3.66)

In this case, the damping ratios of the various natural modes are given by:

? (3.67)

From Equation 3.67 it is apparent that the damping ratio shall be different for the various
natural modes. In fact, in line with that equation, it is only possible to fix damping ratio for
two natural modes considering (from Equation 3.67) a system of two linear equations and
solving it for a and b.

In spite of this limitation, that only allows us to use in damped systems the classical natu-
ral modes if severe restrictions on the values of the damping of different modes are accepted,
this is not, in practice, an important limitation for the evaluation of the dynamic response
of structural systems. In most cases, it is acceptable, with no significant loss of accuracy, to
assume the system as undamped and perform the modal analysis and then correct the results
reducing the response of each mode based on approximate coefficients that reflect the effect
of the damping ratio assigned to each mode.

The concept of vibration modes of MDOF systems and their features are illustrated in
Example 3.1 at the end of this chapter, for an oscillator with 3 degrees of freedom.

3.1.5 Modal response spectrum analysis
3.1.5.1 Modal analysis

The system of coupled differential equations, Equation 3.55, can be solved by so-called modal
analysis. This approach is based on a transformation into a new coordinate system defined by:

u(t) = O q(2) (3.68)
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where q is the vector of generalised displacements in the new coordinate system and ® is
the matrix of eigenvectors whose columns are the eigenvectors corresponding to individual
modes ®@,. u and q are functions of time, whereas @ is independent of time. Equation 3.68
can be written also in the form of Equation 3.63, which is repeated here for convenience

N

u(t) = Ecbnqn (3.63)

n=1

This shows the physical meaning of the transformation defined by Equation 3.68: the vector
of displacements u is expressed as a linear combination of N mode shapes ®@,. The elements of
the vector of the generalised displacements q, g, represent the amplitudes of the mode shapes.

An approximation can be made which can substantially reduce the computational effort.
Usually, the influence of different vibration modes decreases with increasing number of the
mode. From a certain mode, for example, from mode M upwards, the influence becomes
negligible. In such a case, only the first M modes can be taken into account in Equation 3.63:

M
u(t) = Eqn,, g, M<N (3.69)

n=1

In the simplest case, it is sufficient to consider only the fundamental mode (Section 3.1.9).
Note that, among the relevant response parameters, displacements are the least susceptible
to the effects of higher modes. The contribution of higher modes is greater in the case of
more local quantities, for example, storey drifts or deformations at the element level, and
internal forces.

Using Equation 3.68, the system of coupled equations Equation 3.55 can be transformed
into a system of N uncoupled equations:

MGg+Cq+Kq=P@) (3.70)
where

M = ®'m & (3.71)

C=0"cd (3.72)

K="k ® (3.73)

P = ®"(p - muii,) (3.74)

Thanks to the orthogonality of the mode shapes (Equations 3.61 and 3.62), the transformed
mass matrix M given by Equation 3.71 and the transformed stiffness matrix, K, given by
Equation 3.73, are diagonal. The damping matrix C, given by Equation 3.72 is, in general, not
diagonal, since the mode shapes (eigenvectors) are determined for the undamped and not for
the damped system (see also Section 3.1.4.2). Nevertheless, for practice, it can be assumed that
the transformed damping matrix C is also diagonal. An example of a damping matrix ¢, which
becomes diagonal after the transformation as per Equation 3.72, is shown in Equation 3.66.
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With all three matrices on the left-hand side of Equation 3.70 being diagonal, the system
of equations (Equation 3.70) becomes uncoupled. Each of the N equations can be written in
terms of the diagonal terms of matrices M, C and K as:

M, g, +C, q, + K,q, = P,(t) (3.75)

The differential equation, Equation 3.75, has the same form as Equation 3.2 of the case
of SDOF systems. To each vibration mode corresponds one equation and can be treated
independently. If only the first M vibration modes are taken into account (the approximation
represented by Equation 3.69), the number of independent equations is reduced to M. In the
extreme case, when only the fundamental mode is considered, there is only one equation.

After dividing by M,, (see Equation 3.80, below), Equation 3.75 becomes

4, + 28, 0,4, + 03, = 20

(3.76)

n

Neglecting the applied forces p, that is, considering only excitation by ground motion, the
right-hand side of Equation 3.76 can be transformed as follows:

e . . ®m. . . L,

T —ug(t)Tn = —il,(t) MT -it (1) T, (3.77)
where
r - AL/I (3.78)
I = ®'m (3.79)

and (see Equation 3.71)

M, = ®'md, (3.80)

n

T, is called modal participation factor. It is a measure of the degree to which the #th mode
participates in the response.

In order to determine the coefficients in Equation 3.76, the results of free vibration analy-
sis, that is, the dynamic characteristics of the structure defined by the frequencies ®, and the
mode shapes @, have to be known for all vibration modes which will be taken into account,
in addition to the dimensionless damping coefficients {, and the mass matrix of the system m.

By solving the differential equation, Equation 3.76, the generalised displacement g, is
obtained as a function of time. It is related to vibration in the #th mode, which represents a
part of the total response. Any method, appropriate for the solution of the differential equa-
tion for an SDOF system, can be used.

3.1.5.2 Elaboration for the seismic action

If one is interested only in the maximum value of g,, that is, g,,, it can be obtained from the
response spectrum, similarly as in the case of an SDOF system. By comparing Equation 3.76
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and its counterpart for the SDOF system, Equation 3.3, it can be seen that for the MDOF
system the ground acceleration on the right-hand side of the equation is multiplied by T,.
Consequently, when determining the maximum response by using the response spectrum,
the spectra for ground motion are multiplied by the participation factor T, for the vibration
corresponding to the #th mode of the MDOF system. Thus, g, can be obtained as

qno = rn D(Tnatm) = Fn Dn (381)

where T, is defined by Equation 3.78 and D(T,, {,) =D, is the value in the displacement
spectrum at the period of the nth vibration mode, T,, for the damping in this mode .

The next step in the computational procedure is back-transformation from the generalised
displacements g, to the displacements in the original coordinate system u,, which is per-
formed by means of Equation 3.63, by considering only one vibration mode, that is, mode #:

T2

un0=q)nqn0=¢)nrnDn=chrn A

A (3.82)

Equation 3.82 is the expression for the determination of the maximum displacements
for vibration in the nth mode. In Equation 3.82, A, represents the value in the pseudo-
acceleration spectrum at the period of the nth vibration mode, T, considering the damping
in this mode, {,.

Knowing the displacements, all other relevant quantities, that is, local deformations and
internal forces, can be obtained, with the methods of static analysis. However, for conve-
nience, it is usual to perform static analysis by applying equivalent external forces, called
seismic forces (see also Section 3.1.2.2), rather than by imposing displacements. Moreover,
the mathematical model used in static analysis for the determination of internal forces is
typically much more complex than the condensed model used for dynamic analysis. Seismic
forces (representing the seismic action), f,, are the external forces which, in the case of
a static analysis, produce the displacements u,,, determined in the dynamic analysis via
Equation 3.82. In static analysis the following equation applies:

f, = ku, (3.83)

Considering Equations 3.82 and 3.60, the right-hand side of Equation 3.83 can be trans-
formed into a form which can be used for the determination of the seismic forces corre-
sponding to vibration mode 7:

f, =k®,T,D, =w2m®,T,D, =md,TA, (3.84)

Equation 3.84 shows that the seismic forces corresponding to an individual vibration
mode are proportional to the shape of this mode, weighted by the masses. A comparison of
Equations 3.84 and 3.82 reveals that the displacements are less influenced by vibration in
higher modes than the forces. The period T,, which enters in Equation 3.82 squared, has the
largest value in the first (fundamental) mode and decreases with increasing mode.

The shear force at the base of a structure (V,,, called the base shear force) in the direction
of the applied excitation is equal to the sum of all the lateral seismic forces for the vibration
mode 7 in this direction. It can be calculated as:

L,

L p _Luy _pra, (3.85)

_ T, — ®T
Vbn = fn L (I)nmLMn n Mn
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where M,, is the effective modal mass for vibration mode 7, defined as:

oo b (3.86)

The effective mass has dimensions of mass, and can be interpreted as the part of the total
mass responding to the ground excitation in mode 7. In general, the effective mass of a mode
has different values for different directions of application of the seismic action. Indeed, its
value is a good indicator of the ‘direction’ of the mode shape or, in other words, the direc-
tion of the seismic action that excites this mode most. The sum of the effective modal masses
for all modes in a given direction is equal to the total mass of the structure. This is a very
important feature of the effective modal masses, which can be used to determine the con-
tribution of different vibration modes to the total response. Sometimes, the effective modal
mass is presented normalised by the total mass of the structure excited in the relevant direc-
tion. Then it is denoted as the participating mass ratio. The sum of the participating mass
ratios (for all modes and for a given direction) is equal to 1.

Equation 3.85 shows that the base shear corresponding to the vibration mode 7 can be
determined as the product of the effective modal mass and the spectral acceleration corre-
sponding to this vibration mode.

Equations 3.82, 3.84 and 3.85 are general equations, based on the dynamics of struc-
tures, explicitly or implicitly included in seismic guidelines, standards and codes, including
Eurocode 8, where this type of analysis is called Modal response spectrum analysis. The
equations are general and apply to any structural model. The base shear notion is common
mostly in the analysis of building structures.

3.1.5.3 Combination of modal responses

Equations 3.82, 3.84 and 3.85 apply to vibration mode 7. In general, several vibration modes
contribute to the structural response. The question is how to determine the peak value of the
response which is represented by the combined contribution of all relevant vibration modes.
Equation 3.63 can be used if a time-history analysis is performed. In the analysis by means of
response spectra, only the maximum values of the response for individual modes are known,
whereas the time at which these maxima occur is not known. However, it is highly improba-
ble that the maximums would occur simultaneously in all vibration modes. Thus, if Equation
3.63 is used in response spectrum analysis to combine the maximum values for different
modes, the result represents an upper limit and would be typically highly conservative.

Several other approaches for the combination of responses in different vibration modes
exist, providing more realistic results than the sum of maximum values according to
Equation 3.63. Among them, the most widely used is the Square Root of the Sum of Squares
(SRSS) combination rule. According to the SRSS rule, the resulting value of any response
quantity E is obtained as the square root of the sum of the squared values of this response
quantity for all the relevant modes:

(3.87)

The SRSS combination rule is based on random vibration theory and is intended to repre-
sent the expected value of the peak response for a set of ground motions, which are typically
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defined by a smooth response spectrum. The SRSS combination rule does not take into
account the correlation between different modes of vibration. It provides very close esti-
mates of peak responses if the natural frequencies of the relevant modes are well separated.
However, in the case of closely spaced frequencies, the SRSS combination rule is not appli-
cable. According to Eurocode 8, the SRSS rule can be used if the periods of two relevant
vibration modes T, and T, satisfy (with T, < T) the condition T, " 0.9 T,.

One of the combination rules, which does take into account the correlation between dif-
ferent vibration modes and is applicable also for closely spaced natural frequencies, is the
Complete Quadratic Combination (CQC) (Der Kiureghian 1981; Wilson et al. 1981):

M M

EE = E Epnr EEn EEr (3'88)
n=1 r=

where 7 and r are indexes of vibration modes. The value of the correlation coefficient p,, is
between 0 and 1. In a special case, where the damping ratio { is the same in all vibration
modes, p,, can be determined as:

8c2 (1 7
o - 22 (1+B..,) B2 5.89)

(1-p2) + 422 B, (1+8,)

where B, is the ratio of the frequencies of the modes 7 and r:

e

n_

Bnr = -

w,

(3.90)

==

Equation 3.89 cannot be used in the case of zero damping and equal frequencies ({ =0,
B,,=1). In this limit case: p,, = 1.

Note that in the case of well-separated natural frequencies the CQC rule reduces to the
SRSS combination rule.

The question arises, however, as to how many vibration modes have to be taken into
account, in order to obtain reasonably accurate results. In seismic analyses, the influence
of higher modes is typically small for displacements and increases for more local response
quantities. According to Eurocode 8, ‘the response of all modes of vibration contributing
significantly to the global response shall be taken into account’. Eurocode 8 further consid-
ers that this principle is deemed to be satisfied if either the sum of the effective modal masses
for the modes taken into account amounts to at least 90% of the total mass of the structure,
or all the modes with effective modal masses greater than 5% of the total mass are taken
into account. The effective modal mass is defined according to Equation 3.86.

It is important to emphasise that the combination rule should be applied to the final
response quantities, that is, to the deformations and internal forces in structural elements,
and not to intermediate quantities, like seismic forces. In a usual procedure, the seismic
forces are first determined for each relevant mode. A static analysis of the structure is then
performed separately for each vector of seismic forces, that is, for each relevant mode.
Finally, the results of static analyses for each mode are combined by a combination rule.

The procedure would be simplified if the combination rule were applied at the level of
forces because, in such a case, only one static analysis would be necessary. However, the
results of such an analysis would be (overly) conservative. For illustration, let us consider
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a planar building structure. For such a structure, the seismic forces corresponding to the
higher modes change sign along the height of the building. These changes have a beneficial
effect on the amplitude of the response quantities. When combining the seismic forces, for
example, by the SRSS method, the beneficial effect is lost, since the negative signs are lost
by squaring.

The modal analysis of the example building of Chapter 7, complete with the periods and
participating mass ratios of the 10 natural modes that are needed to capture at least 90% of
the total mass in both horizontal directions, and the shapes of the three lower modes, can be
found in Section 7.3.5, Table 7.2 and Figure 7.6. Moreover, Example 3.2 at the end of this
chapter, extends Example 3.1 to compute the participating masses and participation factors
of the same oscillator with 3 degrees of freedom.

3.1.5.4 Special case: Planar building models

If a building structure is doubly symmetrical in plan, there is no torsional effect and two
planar (two-dimensional, 2D) models can be used for the analysis, one in each horizontal
direction. According to Eurocode 8, a planar model can be used as an approximation, for
all structures that are regular in plan. In the case of a planar model (see Section 3.1.10), the
equations presented in the previous chapter can be simplified. The masses are concentrated
at the levels of individual storeys, j. The N degrees of freedom correspond to the horizontal
displacements of the masses. For such a model, the mass matrix m is diagonal, with the floor
masses 71; along the diagonal, and all the elements of the influence vector 1 are equal to 1
(t=1). Equations 3.79 and 3.80 can be written as:

L, = Zopm. m, (3.91)

= 2. .
M, = Zcpm m, (3.92)

where 7 stands for the vibration mode and j for the storey. From Equations 3.82 and 3.84
the expressions for the displacement #,; and seismic force f,; in storey j are obtained

Mn/' = njtntn = nj 7Dn (3'93)
Ei‘bﬁ, i

E .(I)nj m;

fuy = ®@ym; T, A, =@, m J——— A, (3.94)
D2 m
g

The base shear force V,, is the sum of the seismic forces in all the storeys
( 2
D, m) 2
Vbn = Efn/ = — A, = Ln An = M:l An (395)

; E D7 m M,
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Considering Equation 3.95, another form of Equation 3.94 can be obtained:

foy,
nj bn E/(I)n/ mi (3.96)

3.1.6 Lateral force method

The lateral force method of analysis is a simplified approach widely used for simple struc-
tures in seismic standards and codes. It is based on the assumption that the influence of
higher vibration modes is negligible. According to Eurocode 8, ‘this type of analysis may
be applied to buildings whose response is not significantly affected by contributions from
modes of vibration higher than the fundamental mode in each principal direction’. Eurocode
8 considers that this requirement is deemed to be satisfied in buildings that are regular in
elevation and do have a fundamental period less than 2 s and four times the corner period
T, of the applicable design spectrum (see Section 3.1.3 and Table 3.2).

In the lateral force method, the starting point is the base shear force, determined as follows:

V, = M A, (3.97)

where M is the total mass of the structure and A, is the spectral acceleration for the period
of the fundamental mode of vibration. Equation 3.97 is the same as Equation 3.43 of SDOF
systems. In the modal analysis of MDOF systems, a similar equation, namely Equation 3.85,
applies. However, the base shear force in Equation 3.97 is determined using the total mass,
whereas according to Equation 3.85 the base shear force is related to the effective mass M*.
As stated earlier, the sum of effective masses for all the vibration modes is equal to the sum
of all the masses. Thus, the effective mass for a single mode is always less than the total mass
(except in a SDOF system, where it is the same). So, the base shear force in the lateral force
method according to Equation 3.97 is always greater than the base shear force for the first
mode in modal analysis, Equation 3.85. This conservatism of the approximate lateral force
method can be considered as a reasonable compensation, usual when simplified methods are
used. However, in Eurocode 8 the conservatism has been intentionally removed by multiply-
ing the base shear force according to Equation 3.97 with a correction factor A equal to 0.85,
except in buildings with up to two storeys or flexible ones (those with a fundamental period
longer than twice the corner period, T, of the design spectrum), for which A = 1.0.

If the simple lateral force method of analysis is used, it is reasonable to determine also
the fundamental period of vibration by a simplified method, rather than performing a rigor-
ous free eigenvalue analysis. A practical approach, which yields quite accurate values of the
fundamental period, is the Rayleigh method (described in Section 3.1.9). Some standards
and codes, including Eurocode 8, also allow the use of purely empirical formulas for the
estimation of the fundamental period.

The base shear force, which represents the sum of all lateral seismic forces, has to be
distributed along the height of the building. This can be done by means of Equation 3.96
(n=1), provided that the mode shape of the fundamental mode ®, is known from free
vibration analysis. If not, an approximation can be used for the first mode shape. Eurocode
8 allows a height-wise linear one; then, the seismic force acting at floor j is determined as:

zj m;

=V 89— — (3.98)
E/z,- "
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where z; is the height of storey j above the base, that is, the distance from a rigid base to
storey j.

The analysis of the example building of Chapter 7 with the lateral force method and
the estimation of the fundamental period in the two horizontal directions can be found in
Section 7.3.4 and Table 7.2.

3.1.7 Combination of seismic action components

All of the analyses so far presented apply to ground excitation in one direction. Typically, the
analysis is carried out also for the seismic excitation in the orthogonal direction (rarely also
in the vertical direction). Since the analyses are linear, the superposition law applies and the
results can be superposed in order to obtain the total response for the structure when sub-
jected to ground motion in two (or three) directions. In response spectrum analysis, where
only peak response values are known, a problem similar to the combination of the peak effects
of different vibration modes arises in the combination of the peak effects of different direc-
tions of ground motion. It is highly improbable that peak values from different directions will
occur at the same time. A good approximation of the final value of any response quantity E
can be obtained (Smebby and Der Kiureghian 1985) by using the SRSS combination rule:

E; = E} + E} (+E2) (3.99)

where Ey, Ey and E, represent the total values (considering all the relevant modes) of the
response quantity of interest due to the application of the seismic action along the chosen
horizontal axes x and y, and the vertical axis z of the structure, respectively. (E is in brack-
ets, since the vertical direction is only exceptionally taken into account.)

According to Eurocode 8, as an alternative to Equation 3.99, the action effects due to
combination of the three components of the seismic action may be computed using all of the
following combinations:

Ey 4’ AE,+” AE, (3.100a)
AEy‘+ Ey*+’ AE, (3.100b)
AEy‘+> MEy*+’E, (3.100¢)

where A=0.3 and ‘“+’ means ‘to be combined with’, but in this case with the same sign.
Again, the vertical component is used only exceptionally.

Equation 3.99 captures in a single load combination all seismic action components. As a
matter of fact, when modal response spectrum analysis is used, computationally this com-
bination can be carried out in the same phase as the SRSS or CQC combination of modal
response as per Section 3.1.2.3. By contrast, when Equation 3.100 is used, two separate com-
binations are needed for the two horizontal components, or three, when the vertical one is
considered as well. These separate combinations should be superimposed separately with the
gravity load effects in the ‘seismic design situation’, each combination with alternating sign.

An example of application of the combination rules, Equations 3.99 and 3.100, is presented
in Figure 3.10, where plan views of two simple single-storey building structures are shown. In
both cases, only the horizontal components are taken into account. The structure with three
walls is symmetric with respect to the x-axis and asymmetric with respect to the y-axis.
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Figure 3.10 lllustration of the use of different combination rules for the effects of the two seismic action
components.

In the two walls in the x-direction, action effects (e.g. shear forces, moments) are present for
seismic action in the x-direction and also, due to torsion, in the y-direction. Any response
quantity in each of the walls in the x-direction can be obtained by using the SRSS combina-
tion rule, Equation 3.99. Alternatively, according to Eurocode 8, the combination rules in
Equation 3.100 can also be used. In the frame structure on the right-hand side of Figure 3.10,
we consider one of the columns. In the corner column, there are two bending moments: one
with respect to the y-axis due to seismic action in the x-direction, E,,, and one around the
x-axis due to loading in the y-direction, E,,. For dimensioning (or checking) of the column,
both bending moments have to be taken into account, but not with their maximum values.
In this case, it is not possible to use the SRSS combination for the two bending moments rep-
resenting two different response quantities; it is possible to use the combination according to
Equation 3.100 and to dimension the column with the maximum bending moment around
one axis and, simultaneously, 30% of the maximum bending column around the other axis
(see also Section 5.8.1 and Example 5.12).

Figures 7.8 to 7.25 depict the moment, shear, and axial force diagrams of the example
building, from modal analysis and the SRSS combination of the effects of the two horizon-
tal components, Equation 3.99; they also compare them to the outcome of the lateral force
method, this time using Equations 3.100a and 3.100b for the combination. Discussion and
comments on these results are summarised in Section 7.5.1.

3.1.8 Accidental torsion

3D structural models take into account coupling between translational and torsional vibra-
tions. If a building is plan-wise fully symmetric with respect to both axes, the horizontal
components of the ground motion do not produce any torsional response. However, con-
ventional seismic response analysis cannot capture possible variations in the stiffness and/or
mass (and/or strength in the case of non-linear analysis) distributions from their nominal
values. Moreover, there are possible components of torsional ground motion, which are not
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taken into account in the seismic analyses. Such effects may produce torsional response even
in nominally fully symmetric buildings. In order to account for all these uncertainties, and
to ensure a minimum of torsional resistance and stiffness, as well as to limit the possible
consequences of an unforeseen torsional response, the concept of ‘accidental eccentricity’
has been used in seismic codes, including Eurocode 8.

Accidental torsional effects can be introduced by shifting the masses from their nominal
positions by a distance equal to the accidental eccentricity, e,;, which, in Eurocode 8, is
taken to be equal to 5% of the dimension of the floor in storey j:

¢, =+0.05L, (3.101)

where L, is the floor dimension perpendicular to the direction of the seismic action.

In Eurocode 8, the accidental eccentricity takes twice the value from Equation 3.101, if
it is considered in a simplified way on a separate 2D model for each horizontal component
of the seismic action, or if masonry infills have a moderately irregular and asymmetric dis-
tribution in plan.

Shifting the masses is possible in dynamic analyses of 3D structural models (either modal
response spectrum or response-history analysis). However, such an approach requires, in
general, four different models and is very inconvenient for practical application. For this
reason, the accidental torsional effects are usually taken into account through a static analy-
sis of a 3D structural model subjected to storey torsional moments about the vertical axis.
These torsional moments are equal to the storey lateral loads due to the horizontal com-
ponent in question multiplied by the accidental eccentricity at the storey. In such a way,
the accidental eccentricity of the masses from their nominal positions is replaced by an
accidental eccentricity of the lateral seismic forces with respect to the nominal position of
the masses. The resulting action effects are then superimposed to those determined by an
analysis, which does not take into account accidental torsion.

The approach with torsional moments does not, in general, produce the same results as
the shifting of masses. However, it is much more convenient for application. It does not
make sense to try to ‘accurately’ predict the effects of accidental torsion, which is a highly
uncertain phenomenon, while the magnitude of accidental eccentricities as per Equation
3.101 is just postulated. For a more detailed description of the treatment of accidental tor-
sion in the different analysis procedures in Eurocode 8, see Fardis (2009).

Section 7.3.6 highlights the analysis of the example building of Chapter 7 for the acciden-
tal eccentricities in X and Y.

3.1.9 Equivalent SDOF systems

If the structural response is dominated by vibration in the fundamental mode, which is often
the case for simple, not very flexible structures, the seismic analysis can be simplified by
transforming an MDOF system into an equivalent SDOF system, and performing dynamic
analyses on this SDOF system. In the present Section, a planar model is used and only the
determination of the natural frequency based on the equivalent SDOF system is discussed.

Development of the procedure can start from Equation 3.70. It is assumed that the struc-
ture vibrates in the fundamental mode and that the influence of all the higher vibration
modes is negligible. In such a case, the number of modes is N=M =1 and Equations 3.71
and 3.73 can be written as:

M =@ md, = Ed>%,-m,~ (3.102)
]
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K, = ® k@, (3.103)

Knowing M, and K, the exact value of the fundamental (first mode) frequency can be
calculated as w? = K;/M,. A problem is that the equivalent SDOF system approach is
typically used in order to avoid free vibration analysis; thus the mode shape ®, needed for
the determination of M, and K, is not known. The solution is to replace the fundamental
mode shape @, with an approximation, ¥, which is close to the actual shape. In such a case,
by analogy with Equations 3.102 and 3.103, the equivalent mass 2, and stiffness k,, are
obtained as:

My, = WTmW = Ellf,lm,.
]

(3.104)
ky = WTkW = Elp,?k,. (3.105)
7
and the approximate value of the fundamental natural frequency is:
0 = % (3.106)

eq

The equivalent stiffness k,, can be obtained also by an alternative approach. We take the
displacements due to arbitrary lateral forces f as the approximate mode shape W. Then the
equation:

kW = f (3.107)

applies. By multiplying both sides of Equation 3.107 from the left by W7, the alternative
formula for k,, can be written as:

ke = W = E‘I‘fﬂ- (3.108)
]

Note that Equation 3.108 can be applied only in the special case of the assumed approxi-
mate mode shape ¥, that is, for the displacements resulting from a static analysis. In this
case, the absolute magnitude of displacements and not only the shape (i.e. the relative mag-
nitude) should be used for ¥, both in Equation 3.104 and in Equation 3.108. On the other
hand, Equation 3.105 applies with any V.

Using Equation 3.106, and denoting the lateral forces and the corresponding displace-
ments in storey  as f; and u,, respectively, an approximation to the fundamental period can
be obtained as:

(3.109)

It is worth noting that this way of computing (approximately) the value of T; is usually
referred to as the Rayleigh’s method. The period T, from Equation 3.109 (and from similar
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formulas based on Equation 3.106) is always a little shorter than the exact value of the fun-
damental period. Accuracy depends on the quality of the approximation. However, the
approach is robust; even for relatively poor approximations reasonable results are obtained.
For instance, in buildings, just using lateral forces proportional to the masses of each storey
as the arbitary loads to start the process, gives in most cases a very good approximation to T;.

3.1.10 Modelling

In Eurocode 8 it is stated that, in the case of elastic analysis, ‘the model of the building
shall adequately represent the distribution of stiffness and mass in it so that all significant
deformation shapes and inertia forces are properly accounted for under the seismic action
considered’. It is difficult, however, to provide guidelines for the construction of mathemati-
cal models, which is a prime task of engineers.

Models of different levels of complexity can be used for the elastic analysis of buildings.
At one end of the range, very sophisticated structural models with a very large number
of degrees of freedom can be constructed by means of finite elements. Whereas columns
and beams are typically modelled as one-dimensional (1D) elements, walls and slabs can
be modelled by means of a large number of 2D or even three-dimensional (3D) finite ele-
ments. A number of computer programs are available for the elastic analysis of structures
modelled with finite elements. However, taking into account the uncertainties related to the
input data, especially to the characteristics of ground motion, even the most sophisticated
structural models are able to predict only an approximation of the structural response to
future earthquake ground motions. Moreover, it should be noted that ordinary buildings are
expected to respond in the inelastic range during strong earthquakes, and that linear elastic
analysis can, with the appropriate corrections, provide only rough estimates of the inelastic
response. Finally, it is not easy to check the results of analyses obtained from sophisticated
models. Thus, in seismic analyses it is reasonable to use simplified models, which repre-
sent an appropriate compromise between complexity and accuracy. These simplified models
should take into account the most dominant characteristics that control the seismic response
of typical building structures. The simplest possible model is an SDOF model, which may
provide, in some cases, a reasonable approximation to the real behaviour.

In a typical building structure, a large proportion of the mass is concentrated at the levels
of the floor diaphragms and at the roof. This means that it is appropriate to lump the masses
at the floor levels. Horizontal concrete diaphragms are typically very stiff in a horizon-
tal plane; so the assumption of infinitely rigid diaphragms is a reasonable one. Moreover,
considering that the thickness of a typical diaphragm slab is much smaller than the cross-
sectional dimensions of vertical elements, and therefore its flexural stiffness is much smaller
than that of vertical elements, it is reasonable to assume that the diaphragms have no out-
of-plane stiffness. These assumptions greatly simplify the model of the building structure.

In the majority of cases, there is no need to model structural walls with 2D finite elements.
Since the height of a wall is typically much larger than its cross-sectional length, it is reason-
able to model walls with 1D elements, possibly with shear deformation included.

Modelling of infills is not an easy task. According to Eurocode 8, ‘infill walls which con-
tribute significantly to the lateral stiffness and resistance of the building should be taken
into account’. Infill walls can have an important effect especially in the case of frame struc-
tures, where they typically increase the initial stiffness and strength. However, the seismic
response of infilled frames when subjected to strong ground motion is highly non-linear.
After the failure of the infills, their influence disappears, whereas the basic frame structure
continues to carry lateral loads. Quite frequently infills may even have detrimental effects. If
not distributed in a regular way in plan and elevation of the building, they can cause a large
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torsional effect or a soft storey, respectively. Another possible adverse local effect is shear
failure of columns due to the increased shear forces induced by the frame-infill interaction.

In linear elastic analysis, it is impossible to take into account all the effects of infills. A
viable approach may be to use two models, one with infills and the other without them. A
simple but effective model for infills is an equivalent diagonal strut which only carries com-
pressive forces.

Soil-structure interaction may have either a beneficial or a detrimental effect on the
behaviour of a structure. According to Eurocode 8, ‘the deformability of the foundation
shall be taken into account in the model, whenever it may have an adverse overall influence
on the structural response’. The simplest way of modelling the influence of soil-structure
interaction is the use of equivalent soil springs at the foundation (see Sections 6.1 and 7.2.2).

Actual building structures are three-dimensional, so that a spatial (three-dimensional,
3D) model is theoretically correct. Many building structures are not symmetrical in plan.
In such a case, translational and torsional (about the vertical axis) vibrations are coupled,
and a 3D model cannot be avoided. However, if the structure has two-way symmetry in
plan, the vibrations in the two horizontal directions are uncoupled and the 3D model can be
replaced by two 2D models, one in each horizontal direction.

Two-way symmetry is an idealised situation, which cannot be achieved in practice. For this
reason seismic standards and codes have introduced the ‘accidental eccentricity’ of Section
3.1.8, to account for uncertainties in the location of masses and in the spatial variation of
the seismic motion. As the nominal centre of mass at each floor is displaced from its nominal
location in each direction by the accidental eccentricity, even a symmetric structure becomes
asymmetric and, in principle, requires a 3D model. Nevertheless, standards and codes, includ-
ing Eurocode 8, allow in some cases, as an approximation, the application of two 2D models
instead of a 3D one. According to Eurocode 8, linear-elastic analysis may be performed using
two planar models, one for each of the main horizontal directions, if the criteria for regular-
ity in plan are satisfied. Depending on the importance of the building, two planar models can
be used even if the criteria for regularity in plan are not satisfied, provided that a number of
special regularity conditions are met (see Section 4.3.3.1). It should be noted, however, that it
is rather impractical to check the in-plan regularity as required by Eurocode 8.

Not all of the degrees of freedom that are used in a static analysis need to be considered
also as degrees of freedom in a dynamic analysis. Degrees of freedom can be separated in
two groups: those with an assigned mass and those with zero mass. The degrees of freedom
with an assigned mass can be called ‘essential’; only these degrees of freedom have to remain
in the model used for dynamic analysis. The other group of degrees of freedom, those with-
out an assigned mass, can be eliminated by static condensation (Chopra 2007).

In a model with lumped masses at the floor levels and rigid floor diaphragms, the num-
ber of essential degrees of freedom is reduced to only three per floor diaphragm, corre-
sponding to rigid-body motion in its (horizontal) plane: two horizontal translations and
one (torsional) rotation (Figure 3.11). The total number of degrees of freedom of a model
for dynamic analysis is thus equal to three times the number of storeys, irrespectively of the
number of degrees of freedom of the model for static analysis. In the case of a planar model,
the number of degrees of freedom is further reduced and is equal to the number of storeys:
one displacement per storey (Figure 3.11).

An additional approximation, which allows simplification of the modelling for the major-
ity of building structures, is the so-called pseudo-3D model. This is a spatial model of the
whole structure, consisting of planar models of individual lateral load resisting systems
(macro-elements or substructures, e.g. planar frames and walls) connected together by rigid
diaphragms that are flexible (i.e. with zero stiffness) in their out-of-plane direction. So, a
pseudo-3D model of a spatial frame is composed of separate planar frames in two directions



Analysis of building structures for seismic actions 79

.
l

kK
11

l

Figure 3.11 Essential degrees of freedom for dynamic analysis of a spatial (3D) and a planar (2D) model
subjected to horizontal ground motion.

(Figure 3.12). In reality, two frames in two directions have common columns at the cross-
ing line. In the pseudo-3D model, these columns are independently included in both planar
frames. Compatibility of the axial deformations of these columns is not achievable. This is
the approximation of the pseudo-3D model, which, in the majority of cases, does not have
an important influence on the results.

The two sub-sections to follow address two particular aspects in linear elastic modelling
that deserve special attention.

3.1.11 Elastic stiffness for linear analysis

The real force—deformation relation for reinforced concrete elements and structures is not
linear, even in the case of a relatively small loading. The question is how the stiffness should

Figure 3.12 3D and pseudo-3D model composed of separate planar frames.
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be determined for a linear elastic analysis. The upper bound for the stiffness of the elements
is represented by the stiffness of the uncracked elements, whereas the lower bound is repre-
sented by the secant stiffness, which corresponds to the initiation of yielding of the reinforce-
ment. The stiffness of the model influences both the seismic action and the displacements.
A smaller stiffness means a longer period of vibration and a larger displacement, whereas
the seismic action (acceleration, seismic loading) depends on the period and on the shape of
the response spectrum. With the exception of structures whose fundamental period is in the
very short-period range, the seismic loading typically decreases with decreasing stiffness,
or does not change (this corresponds to the plateau of the Eurocode 8 acceleration spec-
trum). Since the expected behaviour of building structures subjected to strong earthquakes
is non-linear, and since in the inelastic range deformations are more important than forces,
it is required by Eurocode 8 that the effect of cracking on stiffness is taken into consider-
ation, that is, a lower bound of stiffness which corresponds to the initiation of yielding of
the reinforcement (see Section 3.3.3 and Equation 3.146). Details about the reinforcement,
which are needed for the determination of the stiffness of cracked elements, are typically not
known when the analysis starts. So, an iterative procedure is needed. According to Eurocode
8, such an impractical procedure may be avoided by assuming that the elastic flexural and
shear stiffness properties of concrete elements are equal to one-half of the corresponding
stiffness of the uncracked element.

3.1.12 Second-order effects in linear analysis

Seismic design codes require taking into account second-order (P-A) effects in buildings,
whenever in the vertical members of any storey they exceed 10% of the total first-order ones.
The criterion is the inter-storey drift sensitivity coefficient, 6, defined for storey i as:

9. = N ror,i AU,

iV b

tot,i"’i

(3.110)

where

N,,.; is the total gravity load in the seismic design situation at and above storey 1.

tot,i
Vioui 1s the total seismic shear at storey 7.
b, is the height of storey i.
Au; is the inter-storey drift at storey i, that is, the difference of the lateral displace-
ments at the top and bottom of the storey, #; and u, ,, at the floor’s centre of mass. In
Eurocode 8 it is the inelastic drift, estimated with the equal displacement rule accord-
ing to Equation 3.116 in Section 3.2.2.2, via back-multiplying by the behaviour factor

q the values of u;, u, | from the linear analysis for the design spectrum.

Second-order effects may be neglected, if the value of 6; does not exceed 0.1 at any storey.
They should be taken into account for the entire structure, if at any storey 6, exceeds 0.1.
If 6, does not exceed 0.2 at any storey, Eurocode 8 allows taking these effects into account
without a full-fledged geometrically non-linear second-order analysis by multiplying by
1/(1-6,) all first-order action effects from a linear elastic analysis for the seismic action. For
concrete buildings, in the very uncommon case that 6, exceeds 0.2 at any storey, an accurate
second-order analysis is required by Eurocode 8.

Section 7.4.2 and Table 7.4 present the values of the inter-storey drift sensitivity coeffi-
cient of the example building of Chapter 7.
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3.2 BEHAVIOUR FACTOR

3.2.1 Introduction

Experience has shown that the great majority of well-designed and constructed buildings
survive strong ground motions, even if they were in fact designed for only a fraction of the
forces that would develop if the structure behaved entirely as linearly elastic. As will be
shown in the following sections, a reduction of seismic forces is possible thanks to the ben-
eficial effects of energy dissipation in ductile structures and to inherent overstrength. This
fact is taken into account in seismic design standards and codes, which use force reduction
factors (e.g. the ‘behaviour factor’ g in Eurocode 8, or the ‘response modification factor’ R
in US codes) to determine the seismic design loads. Such reduction factors are predominantly
based on empirical observations of the behaviour of common structural systems during
earthquakes. Consequently, on average they yield acceptable results. More recently, many
numerical studies have also been performed aimed at determining appropriate values of
reduction factors (e.g. FEMA 2009). Reduction factors are used in conjunction with linear
analysis and, therefore, present a very simple and practical tool for seismic design. However,
it is necessary to bear in mind that describing a complex phenomenon of response reduc-
tion for a particular structure, by means of a single average number, can be confusing and
misleading. For this reason, the reduction factor approach, although it is very convenient
for practical applications and has served the professional community well over decades, is
able to provide only very rough answers to the problems encountered in seismic analysis
and design. For a more realistic estimate of structural response during strong earthquakes,
non-linear analysis is needed.

An illustration of the reduction of maximum acceleration in an inelastic SDOF system
compared to its elastic counterpart with the same stiffness and mass (T,=1 s) is shown
in Figure 3.13. The structural response in terms of absolute accelerations and relative dis-
placements to the Ulcinj — Albatros N-S ground motion clearly demonstrates a substantial
reduction in the maximum acceleration of the inelastic system compared to the elastic one,
whereas the maximum displacements of both systems are approximately equal. Note that, at
the end of the vibration, the whole input energy in the elastic system is dissipated by viscous
damping, whereas in the case of the inelastic system both viscous damping and hysteretic
behaviour contribute to the dissipation of energy.

3.2.2 The physical background of behaviour factors

Let us consider two idealised SDOF structural systems with the same mass and stiffness,
that is, with the same natural period. One system shows an unlimited elastic behaviour,
whereas the other one has a limited strength. The yielding point of the latter, inelastic
system is defined by the yield strength f, and the yield displacement #,. The corresponding
idealised force—displacement relationships are shown in Figure 3.14a.

Extensive research has shown that, for many systems with natural periods in the medium-
and long-period range, the seismic demand in terms of displacements, #, is independent of
the strength of the system and is approximately equal to the displacement demand, #,, of an
elastic system with the same natural period. This is the so-called equal displacement rule,
which was stated by Veletsos and Newmark (1960), and has been used successfully for more
than half a century. Many statistical studies have confirmed the applicability of the rule
to structures on firm sites with fundamental periods in the medium- or long-period range,
with relatively stable and full hysteretic loops. A discussion on the applicability of the equal
displacement rule is provided, for example, in Fajfar (2000).
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Figure 3.14 ldealised force—displacement relationships. (a) Equal displacement rule applies. (b) Equal dis-
placement rule does not apply.

The system in Figure 3.14a can accommodate the imposed seismic demand either by large
strength £, (elastic system), or by a combination of smaller strength £, and inelastic deforma-
tion capacity, defined by a ductility factor u =u/u, (yielding system). Note, however, that
the reduction of strength may be conditioned not only by the available inelastic deformation
capacity but also by the intent to limit damage in more frequent earthquakes (Section 1.3.2).
The following relation applies:

Qu = ]]% = =u (3.111)

where g, is a reduction factor which determines the extent of possible reduction of the
strength due to the inelastic deformation capacity. If the equal displacement rule is assumed
to apply, it is equal to the ductility factor p.

The problem can also be stated in a different way. Assuming that an inelastic deforma-
tion capacity defined by the ductility factor  is provided (or, in the case of a serviceability
limit state, an inelastic deformation is tolerated), the strength of the system should be equal
at least to the required strength £, which represents the inelastic strength demand. This
approach is actually used in design and can be written in the form:

fy=-*% (3.112)

where £, is the elastic strength demand, that is, the strength required for a structure which
would remain in the elastic region during earthquake ground motion with a displacement
demand #,. The displacement demand and the related elastic strength demand can be
obtained from the elastic acceleration spectrum as described in Section 3.1.2.2.

Expressions similar to Equation 3.112 can be found in various seismic standards and
codes. However, an important difference should be noted between Equation 3.112 and the
expressions in the standards and codes. In Equation 3.112, f, represents the actual strength,
whereas the seismic forces in standards and codes correspond to the design strength f; which
is, as a rule, lower than the actual strength. This difference reflects what is usually denoted
as overstrength, which is an inherent property of properly designed, detailed, constructed
and maintained highly redundant structures.
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Taking into account the overstrength factor:

qs = liy (3.113)
d

the following relation applies:
= f: = ]TE = qu 9;s (3.114)
y

Thus, the total force reduction factor g, which is equal to the elastic strength demand f,
divided by the code prescribed seismic design action (force), f;, can be defined as the product
of the ductility-dependent factor g, and the overstrength factor g,. The factors g and g, are
discussed in more detail in the next sections.

The seismic design force f, can be obtained from the elastic strength demand as:

fa = % (3.115)

where ¢ is the reduction factor defined in Equation 3.114.

In code procedures, including Eurocode 8, an elastic analysis is performed using the seis-
mic design force, f;. The resulting displacement is #, (Figure 3.14). It should be emphasised
that u, is not the correct displacement to be used in design calculations. The actual displace-
ment is # = u,, which can be obtained as:

u=quy (3.116)

The concept of reduction factors can be used also in the more general case when the equal
displacement rule does not apply (Figure 3.14b), for example, for short-period structures.
All the equations developed above still apply, except Equations 3.111 and 3.116. A relation
between the elastic and inelastic displacement demand #, and #u, respectively, has to be
known. Based on such a relation, a more general relation between the ductility factor p and
the reduction factor g, can be developed. Such a relation is typically dependent on the period
T, and is often called the g, —u — T relation. Several proposals based on statistical studies
are available in the literature (see Section 3.2.3).

Using Figure 3.14b and the relations u = uu, and f,/f, = q, = u,/u,, the inelastic displace-
ment demand can be determined as:

w
u=-—u, 3.117
a ( )

where #, is the maximum relative displacement of the system with unlimited elastic behav-
iour subjected to the ground motion defined by the elastic acceleration spectrum A. An
alternative form of Equation 3.117 is:

u=Wq, u (3.118)
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where u, is the maximum relative displacement of the system obtained by linear analysis
under the design loads f;.

Equation 3.118 is a more general form of Equation 3.116. The equal displacement rule is
a special case with g, =, resulting in u =u,=q u,,.

3.2.3 The ductility-dependent factor q,

The ductility-dependent reduction factor g, has been the subject of extensive research. An
overview of early proposals was presented by Miranda and Bertero (1994). Generally, the
reduction factor g, is, in the medium-period (velocity-controlled) and long-period (displace-
ment-controlled) regions, only slightly dependent on the period T,, and is roughly equal to
the prescribed target ductility p (indicating the validity of the equal displacement rule). In the
short-period (acceleration-controlled) region, however, the g, factor depends strongly on both
T, and W. In the limit case of an infinitely rigid structure (T, = 0), there is no reduction due to
ductility (g, = 1). Moderate influence of hysteretic behaviour and damping can be observed
in the whole period region. The transition period from the period-dependent part to the,
more or less, period-independent part of the g, spectrum is roughly equal to the transition
period between the acceleration-controlled, short-period region and the velocity-controlled
medium-period region T¢. This period is an important characteristic of the ground motion
and is often referred to as the characteristic period or the ‘predominant’ period. It roughly
corresponds to the period at which the largest amount of energy is imparted to the structure.

In the basic variant of the N2 method which has been adopted in Eurocode 8 as the
method for non-linear pushover-based analysis, and is presented in Section 3.3, simple bilin-
ear g, spectra, representing a simplified form of the relations proposed by Vidic et al. (1994),
are used

go= -1 el T, ST (3.119)

g =n T, =T (3.120)

According to Equations 3.119 and 3.120, in the medium- and long-period ranges, the
equal displacement rule applies, that is, the displacement of the inelastic system is assumed
to be equal to the displacement of the corresponding elastic system with the same period.

3.2.4 The overstrength factor q,

Strength exceeding that required by codes (overstrength) is a major factor contributing to
the seismic resistance of structures. The overstrength factor is defined at the level of the
whole structure, as the ratio between the actual strength and the code-prescribed strength
demands arising from the application of prescribed loads and forces. It results from the fol-
lowing groups of sources:

a. Redistribution of internal forces in the inelastic range in ductile, statically indeter-
minate (redundant) structures; difference between the design level and the required
member strength (e.g. allowable vs. yield stresses, partial factors on resistance or mate-
rial strengths); member oversize (due to discrete member sizes and/or desired unifor-
mity of members for easier construction); minimum requirements according to code
provisions regarding dimensioning and detailing; design for multiple combinations of
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actions (e.g. factored gravity loads); deformation constraints on system performance;
architectural considerations.
b. Conservatism in mathematical models; effects of structural elements that are not con-
sidered as a part of the lateral load resisting system; effects of non-structural elements.
c. Higher material strength than the nominal one specified in design, strain hardening
and strain rate effects.

The influence of the majority of (a) group factors can easily be at least approximately
quantified by a non-linear pushover analysis; the (b) group sources are less reliable or require
sophisticated mathematical modelling and may be neglected in practical design. The (c)
group factors are uncertain and difficult to be quantified. They are typically not taken into
account in deterministic analyses.

It is clear that overstrength may have its origin in a variety of sources, and that, in real
structures, it varies widely, depending on the material and the type of the structural system,
the structural configuration, the number of storeys, the detailing and the kind and date of
the code to which the structure was designed.

3.2.5 Implementation in Eurocode 8

In order to avoid explicit inelastic structural analysis in design, the capacity of a structure to
dissipate energy, through mainly ductile behaviour of its elements and/or other mechanisms,
is taken into account by performing a linear elastic analysis based on a response spectrum
which is reduced with respect to the elastic one, henceforth called a ‘design spectrum’. This
reduction is accomplished by introducing the behaviour factor g.

The code-suggested values of g-factors are essentially of an empirical origin. Thus, in
addition to ductility, they generally automatically imply overstrength, although this is usu-
ally not explicitly realised. According to Eurocode 8, the behaviour factor ¢ is a ‘factor used
for design purposes to reduce the forces obtained from a linear analysis, in order to account
for the non-linear response of a structure, associated with the material, the structural system
and the design procedures’. Furthermore, according to Eurocode 8, ‘the behaviour factor g
is an approximation of the ratio of the seismic forces that the structure would experience if
its response was completely elastic with §% viscous damping, to the seismic forces that may
be used in the design, with a conventional elastic analysis model, still ensuring a satisfactory
response of the structure’.

The g-factors in Eurocode 8 take into account both ductility and overstrength. In the
majority of cases, a single value is prescribed, which includes both contributions to the
reduction of the design forces. In some cases both contributions are taken into account
explicitly, with the overstrength factor defined as o, /o, where o, is the value by which
the horizontal seismic design action is multiplied in order to form the first plastic hinge
in the structure, while all the other design actions remain constant, and o, is the value by
which the horizontal seismic design action is multiplied, in order to form plastic hinges in
a number of sections sufficient for the development of an overall plastic mechanism, while
all other design actions remain constant (see Section 4.6.3 and Figure 4.13). Note that this
definition is different from the definition of overstrength in Section 3.2.2 (see Figure 3.14),
where the increase in the horizontal resistance is calculated with respect to the horizontal
seismic design action (i.e. with o, = 1), rather than with respect to the first plastic hinge in
the structure.

The o, /0, overstrength factor can be determined by non-linear static analysis (see Section
3.3). If such an analysis is not performed, conservative approximate values of o,/a,, pro-
vided in Eurocode 8, can be used (see Section 4.6.3).
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The reduction of forces is realised by using a design acceleration spectrum S, which rep-
resents the elastic acceleration spectrum S, for 5% damping, divided by the behaviour
factor g. This reduction applies for periods longer than T}j. For short-period structures, the
reduction due to ductility decreases. As stated before, for infinitely rigid structures (T = 0),
there is no reduction due to ductility. However, it is assumed that an overstrength factor
of at least 1.5 exists. Consequently, for T=0, S;=S,/1.5. The design spectrum is linear
between T=0and T =Tj.

For the horizontal components of the seismic action, the design spectrum, S,(T), is
defined by the following expressions, using the Eurocode 8 notation for the natural period,
T (whereas in the other parts of this book the natural period is denoted as T,):

0<T=<Ty: Sd(T)=ag-S-[§+£'(26']5—§” (3.121a)
Ty<T=T. Sd(T)=ag-S-%5 (3.121b)
g 25 [T
T.<T=<Ty: S(T) 1 ¢ q |T (3.121¢)
2B a,
g 25 [TeT
T, <T: S,(T) 1 ¢ q | T (3.121d)
zf-a,

where the parameters have the same meaning as in the case of the elastic spectrum defined
in Section 3.1.3. Additionally, g is the behaviour factor and B is a lower-bound factor for
the horizontal design spectrum, which is a nationally determined parameter (NDP) with a
recommended value of 0.2.

Note that there is a discrepancy between Equation 3.121 and Equation 3.119, which indi-
cates that the magnitude of reduction due to ductility starts decreasing at the period T, (towards
T=0) rather than at T. On the other hand, the overstrength factor typically increases in the
short-period region; this effect may counterbalance the smaller reduction due to ductility and
justify the use of the full reduction also in the period range between Ty and T..

The values of the behaviour factor g are given in the relevant parts of Eurocode 8. They
are in the range from 1.5 to 8 (6.75 in the case of reinforced concrete buildings), result-
ing in a factor of more than 5 between the design seismic action for two extreme cases of
structures of the same Importance Class and at the same location. As a limiting case, for the
design of structures classified as low-dissipative, no account is taken of any hysteretic energy
dissipation; the smallest value g = 1.5, which is considered to account for overstrength, is
used. For dissipative structures, the g-factors are larger, accounting for the hysteretic energy
dissipation that mainly occurs in specifically designed zones, called dissipative zones. The
g-values depend on the structural material, on the type and the regularity of the structural
system and on the detailing. For example, since steel is a more ductile material than, say,
masonry, the g-factors for steel structures are larger than for masonry structures. A stati-
cally determinate structure, for example, an inverted pendulum, has less overstrength than
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a statically indeterminate one, for example, a moment resisting frame; so, the former has
smaller g-value than the latter. Obviously, a larger g-value corresponds to structures detailed
for high ductility than that applying to those detailed for medium ductility (Ductility Class
High, DC H, vs. Medium, DCM, see Sections 4.6.2 and 4.6.3).

For the vertical component of the seismic action, the design spectrum is given by Equations
3.121, with the design ground acceleration in the vertical direction, a,,, replacing a,, and §
taken as equal to 1.0, and the other parameters as defined for the elastic vertical spectrum
in Section 3.1.3. For the vertical component of the seismic action, a behaviour factor g up
to 1.5 should generally be adopted for all materials and structural systems. The adoption of
values for g greater than 1.5 in the vertical direction should be justified through an appro-
priate analysis.

For the calculation of displacements, the displacement determined by the linear elastic
analysis based on design seismic action is multiplied by the displacement behaviour factor,
g4, which is assumed to be equal to g, unless otherwise specified. Thus, generally, Equation
3.116, based on the equal displacement rule, is applied. The fact that in the short-period
range the equal displacement rule does not apply is recognised in a note in Eurocode 8,
which states that: ‘in general g, is larger than g if the fundamental period of the structure
is less than T

For the calculation and the magnitude of storey drifts and inter-storey drifts of the exam-
ple building of Chapter 7, see Section 7.4.1, Table 7.3 and Figure 7.7.

3.2.6 Use of reduction factors for MDOF structures

The principle of the reduction of forces and the derivation of relevant equations, shown in
the previous sections, is based on an SDOF system. Nevertheless, this approach has been
widely used in standards and codes for any structure which is expected to deform in the
inelastic range when subjected to strong ground motions, that is, also for multi-storey build-
ings modelled as MDOF systems. The application to MDOF systems raises some additional
problems, as discussed below.

In the case of real structures, mostly MDOF models are used. The response spectrum
approach, presented in previous chapters, is, by definition, not applicable to inelastic MDOF
systems. However, the seismic behaviour of a large class of MDOF structural systems can
be closely approximated by equivalent SDOF models. In such cases, all considerations of
the previous sections of Chapter 3 can, with small modifications, be also applied to MDOF
systems.

The starting point is a force—displacement relationship of the MDOF system obtained
by a pushover analysis (i.e. a static analysis under monotonically increasing lateral loads).
In the case of building structures, it is usually the base shear and the lateral displacement
at the roof level which are, respectively, considered to represent the force and displacement.
The force—displacement relationship of the equivalent SDOF system is obtained by a simple
transformation of forces and displacements. From there onwards, all the equations derived
for SDOF systems apply.

The relationship between the local and the global deformation quantities is very important
for the behaviour of the structure, since the local quantities correspond to individual struc-
tural members and the global quantities to the structure as a whole. A suitable local deforma-
tion quantity is the chord rotation at a member end, defined as the angle between the normal
to the member section at the member end and the chord connecting the two member ends
(Fardis 2009). The most convenient global deformation quantity is the maximum displace-
ment at the level of the roof of the building, #,. The relationship between the local and global
deformations depends significantly on the plastic mechanism. As an example, let us consider
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Figure 3.15 ldealised deformation shapes corresponding to (a) global and (b) local (storey) plastic mecha-
nisms. Relations between the displacement at the roof and chord rotation in columns for dif-
ferent plastic mechanisms.

the three-storey frame structure of Figure 3.15. Depending on how the frame was designed,
a favourable global plastic mechanism, with plastic hinges in all the beams and at the bottom
of the ground storey columns (Figure 3.15a, see also Figure 2.9b and ¢), can form, or an unfa-
vourable local storey mechanism, with plastic hinges at both ends of the columns in a single
storey (Figures 3.15b and 2.9a). The idealised deformation shapes depicted in Figure 3.15,
showing only plastic deformations, indicate that the same roof displacement #, corresponds
to different deformations of the individual members. In the favourable mechanism of Figure
3.15a, the chord rotations of all the beams and at the bottom of the columns in the ground
storey amount, approximately, to #,/H, where H is the total height of the frame. In the storey
plastic mechanism (Figure 3.15b), however, the chord rotations at both ends of the columns
amount, in the critical storey, to approximately #,/b; (i.e. to the storey drift), where b; is the
height of the storey. In the first case, the local chord rotations are about equal to the average
drift ratio of the building, whereas in the second case they are much larger, depending on the
number of storeys, according to the following approximate relationships between the local
chord rotation ductility factor p, and the global ductility factor p:

H
w =1+ h—i(ug -1) (3.122)
1 b 1 (3.123)
Ug = 1+ ﬁ(ul -1) .

The local chord rotation ductility factor y, is defined as the maximum chord rotation
divided by the chord rotation at yielding. The global ductility factor u, is defined as the
maximum roof displacement divided by the roof displacement at the yield point of the ide-
alised pushover curve. It is related to the reduction factor due to ductility (see, e.g. Equations
3.119 and 3.120). Equation 3.123 indicates that, in medium or high-rise buildings, the local
ductility demand could be much larger than the global ductility demand, which is related
to the reduction factor. For example, in a five-storey building with »;=0.2H and a global
ductility factor of u, =4, the local ductility factor from Equation 3.122 is as high as y, = 16.
Such a ductility capacity is difficult to attain, even with special detailing.

The discussion in this section demonstrates that, for MDOF systems, the approach with
reduction factors usually represents a reasonable approximation for new buildings designed
according to capacity design (see Section 4.5), which are expected to form a full-fledged,
global plastic mechanism. By contrast, the g-factor approach is not appropriate for a storey
plastic mechanism, which is typical of the majority of existing frame buildings. For this
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reason, in Eurocode 8, Part 3, which applies to existing buildings, the applicability of the
g-factor approach is severely limited.

Example 3.3 at the end of this chapter illustrates the use of the concepts described in
Sections 3.1 and 3.2 for the linear elastic analysis of a 3-storey pre-fabricated industrial
building as per Eurocode 8.

3.3 NON-LINEAR ANALYSIS

Non-linear analysis is generally more complex than linear analysis. It is not mandatory in
Eurocode 8. However, it is often the only reasonable choice when dealing with existing
buildings in accordance with Eurocode 8, Part 3. Non-linear methods include time-history
(also called response-history) analysis (Section 3.3.1) and pushover-based methods (Section
3.3.2). The use of non-linear analysis for practical applications is still evolving, and there
are many areas where details of the implementation are open to judgment and alternative
interpretations.

3.3.1 Equation of motion for non-linear structural systems
and non-linear time-history analysis

The equation of motion for an MDOF system developed in Section 3.1.4 (Equation 3.55)
is based on the assumption of linear elastic structural behaviour. When subjected to strong
ground motion, most buildings are expected to deform into the inelastic range, where the
relationship between restoring forces and deformations is non-linear. Equation 3.48, which
was used for the determination of restoring forces in the case of linear elastic behaviour, is
not valid in the inelastic range. It has to be replaced by a more general relationship between
restoring forces and deformations, fg(u) (hysteretic rules). Accordingly, Equation 3.55 is, in
the case of an inelastic building, replaced by:

mil + cu + f5 = —-muii, (3.124)

where only the excitation due to the ground motion is considered.

Since the superposition rule does not apply in the non-linear range, the equation of
motion, Equation 3.124 can only be solved by means of a numerical step-by-step integration
method of differential equations (see Section 3.1.1.4). Such an analysis is called a non-linear
time-history analysis. It is the most advanced analysis method and represents an approach
which is perfectly correct from the standpoint of theory. However, due to its complexity,
non-linear time-history analysis has, in practice, for the time being, only rarely been used. It
is not only computationally demanding (a problem becoming less important with the devel-
opment of advanced hardware and software), but also requires additional data, which are
not needed in pushover-based non-linear analysis: a suite of accelerograms and data about
the hysteretic behaviour of structural members (i.e. member response under large ampli-
tude reversed loading). A consensus about a proper way to model viscous damping in the
inelastic response of reinforced concrete structures has not yet been reached. Moreover, the
complete analysis procedure is less transparent than in simpler methods. It is expected that,
at some time in the future, non-linear time-history analysis will become the main analytical
procedure in earthquake engineering. However, for all the reasons mentioned above, it is
presently most rational to use simplified approximate procedures of non-linear analysis, for
example, a pushover-based analysis, such as that described in Section 3.3.2.
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3.3.2 Pushover-based methods

Pushover-based methods combine a non-linear static (i.e. pushover) analysis with the
response spectrum approach. Seismic demand can be determined for an equivalent SDOF
system from an inelastic response spectrum. A transformation of the MDOF system to an
equivalent SDOF system is needed. This transformation represents the main limitation of
the applicability of pushover-based methods. It is straightforward, if the structure vibrates
in a single mode with a deformation shape that does not change over time (Section 3.1.9).
These conditions are fulfilled only for a linear elastic structure with negligible influence
of higher modes. Nevertheless, the assumption of a single time-invariant mode is used in
pushover-based methods for inelastic structures, as an approximation.

Several variants of the pushover-based analysis have been proposed, and are available in
the literature. In this book, the method implemented in Eurocode 8, that is, the N2 method,
will be presented. The method was originally proposed in the late eighties (Fajfar and
Fischinger 1987, 1989). Later, it was formulated in the acceleration—displacement (AD) for-
mat (Fajfar 1999, 2000) included in Eurocode 8. A further development of the N2 method is
presented in Section 3.3.2.6. In the following sections, the steps of pushover-based analysis
will be discussed with special consideration of the N2 method.

3.3.2.1 Pushover analysis

A non-linear static (pushover) analysis is performed by subjecting a structure to a mono-
tonically increasing pattern of lateral forces, representing the inertial forces which would
be experienced by the structure when subjected to ground shaking. Gravity loads are kept
constant. Under incrementally increasing lateral loads, various structural elements yield
sequentially. Consequently, at each event, the structure experiences a loss of stiffness.

Using a pushover analysis, a characteristic non-linear force—displacement relation-
ship of the MDOF system can be determined. In the case of buildings, base shear and
roof (top) displacement are usually chosen as representative forces and displacements,
respectively.

The selection of an appropriate vertical distribution of lateral load is an important step
in pushover analysis. A unique solution does not exist. Fortunately, the range of reason-
able assumptions is usually relatively narrow and, within this range, different assump-
tions produce similar results. One practical possibility is to use two different displacement
shapes (load patterns), and to envelope the results. According to Eurocode 8, the two load
patterns are:

1. A ‘uniform’ pattern, where lateral forces are proportional to mass regardless of
elevation.

2. A ‘modal’ pattern, consistent with the lateral force distribution determined in an elas-
tic analysis.

The vector of lateral loads f is determined as:
f= am®d (3.125)

where m is the mass matrix. The magnitude of the lateral loads is controlled by the scale
factor o.. The distribution of lateral loads is related to the assumed displacement shape @,
that is, it represents the displacement shape weighted by the masses. (Note that the displace-
ment shape @ is needed only for the transformation from the MDOF to the equivalent SDOF
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system, see Section 3.3.2.2). Consequently, the assumed load and displacement shapes are
not mutually independent, as in some other approaches using pushover analysis. The pro-
cedure can start either by assuming the displacement shape ® and determining the lateral
load distribution according to Equation 3.125, or by assuming the lateral load distribution
and determining the displacement shape ® from Equation 3.125. Note that Equation 3.125
does not present any restriction regarding the distribution of lateral loads. In the derivation
of formulas we use a planar structural model (see Section 3.1.5.4); the approach will later
be extended to a 3D model. We further assume that the displacement shape @ represents the
fundamental vibration mode shape of the linear elastic structure. However, the developed
expressions can be applied for any displacement shape and/or for any related distribution
of lateral loads.

If the fundamental mode shape is used as the assumed displacement shape, and if it
remains constant during ground shaking, that is, if the structural behaviour is linear elastic,
then the distribution of lateral forces is the same as the distribution of ‘seismic forces’ that
correspond to the fundamental mode (see Equation 3.84), so that Equation 3.1235 is ‘exact’.
In the inelastic range, the displacement shape changes over time; Equation 3.125 represents
an approximation of the ‘seismic forces’. Nevertheless, by assuming lateral forces and dis-
placements related according to Equation 3.125, the transformation from the MDOF to the
equivalent SDOF system and vice-versa (Section 3.3.2.2) follows from simple mathematics,
not only in the elastic but also in the inelastic range. No additional approximations are
required, as in some other simplified procedures.

3.3.2.2 Transformation to an equivalent SDOF system

In the N2 method, seismic demand is determined by using response spectra. Inelastic behav-
iour is taken into account explicitly. Consequently, the structure should, in principle, be
modelled as an SDOF system. Different procedures have been used to determine the charac-
teristics of an equivalent SDOF system. One of them, used in the N2 method, is described
below.

The starting point is the equation of motion for an MDOF system, Equation 3.124. For
convenience, damping forces are not included. Damping will be taken into account later in
the response spectrum. A planar MDOF model that explicitly includes only lateral (transla-
tional) degrees of freedom is used. With these assumptions, the equation of motion can be
written as:

mii + fy = -m1ii, (3.126)

where u and f; are vectors representing the displacements and the internal forces, i, is the
ground acceleration as a function of time and 1 is a vector with all elements equal to 1, that
is, it represents the influence vector t for a planar building model.

We define the displacement vector u as:

u=ou, (3.127)

where u, is the time-dependent roof displacement and ® is the displacement shape, nor-
malised in such a way that the component at the roof is equal to 1.

By introducing Equation 3.127 into Equation 3.126, and by multiplying from the left-
hand side with ®7, we obtain:

O m®ii, + O f= DT mli, (3.128)
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By analogy with Equations 3.78 through 3.80 and Equations 3.91 and 3.92, we define the
parameters M, L and T as:

M= o"md = Ecb% m; (3.129)
]
L=oTml = Ecb,- m,; (3.130)
]
L2
r- L. : (3.131)
E/CD" i
Furthermore, we define:
fo= @7 f (3.132)

By taking into account Equations 3.129 through 3.132, Equation 3.128 becomes:
Mii, + fs = —Lii, (3.133)
which can be transformed into the equation of motion of the equivalent SDOF system:
Liig+ fs = —Lii, (3.134)

where the displacement of the equivalent SDOF system, #g, and the displacement at the roof
of the MDOF system, u,, which is representative of the deformations in the MDOF system,
are related by:

u,=Tug (3.1395)

A comparison of Equation 3.134 and Equation 3.2 shows that L represents the mass of
the equivalent SDOF system, that is, L = in the Eurocode 8 notation.

It will be shown that the same transformation with the T" factor applies also to forces. The
force in the equivalent SDOF system is f,, whereas the base shear force V, is representative of
the forces in an MDOF system. In a static analysis, the external forces are equal to the inter-
nal forces (a pushover, i.e. a static analysis is being performed). Thus, the restoring forces f
can be replaced by the lateral forces defined in Equation 3.125, resulting in:

fo= @ f= OTom® = oM (3.136)

The base shear force V, can be computed as the sum of the lateral forces:
V, = Ef, = {71 = a®™ml = al (3.137)

By comparing Equations 3.136 and 3.137, the relation between the base shear in the
MDOF system, V,, and the force in the equivalent SDOF system, f, can be written as:

V, =T, (3.138)
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' controls the transformation from the MDOF to the SDOF model and vice-versa. The
same I value applies in the transformation of both displacements and forces, Equations
3.135 and 3.138. Thus, the force—displacement relationship determined for the MDOF sys-
tem (the V,—u, diagram) also applies to the equivalent SDOF system (the fs—ug diagram),
provided that both the forces and the displacements are divided by I'. This can be visualised
by changing the scale on both axes of the force-displacement diagram. The initial stiffness
of the equivalent SDOF system remains the same as that defined by the base shear vs. roof
displacement diagram of the MDOF system.

Equation 3.134 shows that L, determined from Equation 3.130, represents the mass of the
equivalent SDOF system. Note a difference in the formulation from the equivalent mass in
the case of linear elastic analysis in Section 3.1.

All equations presented in this section apply to a planar model for any assumed displace-
ment shape ® and, thus, for any related distribution of lateral loads. In a special case, the
assumed displacement shape ® represents the fundamental vibration mode shape of the
linear elastic structure. This case corresponds to the ‘modal’ distribution of lateral forces
in Eurocode 8. In such a case, L and M are the same as the corresponding values for the
fundamental mode, developed in Section 3.1, and the transformation factor I represents the
mode participation factor, Equation 3.78.

The same equations can also be used for a 3D building model (Section 3.1.10), with the
only change that the influence vector 1 of the planar model is replaced by a general influence
vector L. Separate analyses are performed in each of the two horizontal directions. The pro-
cedure can be substantially simplified if the lateral loads, determined according to Equation
3.125, are applied in one direction only. This is a special case, which requires that the
assumed displacement shape, too, has non-zero components in one direction only. In such a
case, all the equations derived for the planar system can be directly used for the 3D system,
by considering only the direction under investigation. Lateral loads are applied at the mass
centres of different storeys, only in the investigated direction. Note that even in this special
case of uncoupled assumed displacement shape, the displacements determined by pushover
analysis of an asymmetric structure will be coupled, that is, they have components in three
directions.

Static torsional effects are included. The dynamic torsional effects may, however, be quite
different from the static ones. They can be estimated by performing a linear modal response
spectrum analysis (see the extended N2 method in Section 3.3.2.6).

3.3.2.3 Idealisation of the pushover curve

Idealisation of the pushover curve can be performed either at the level of the MDOF system
or at that of the SDOF system. In order to determine a simplified (elastic—perfectly plastic)
force—displacement relationship, engineering judgement has to be used. In regulatory docu-
ments, some guidelines may be given. In Eurocode 8, the bilinear idealisation is based on
the equal-energy principle and is performed at the SDOF level. The yield force f;,, which
also represents the strength of the idealised equivalent SDOF system, is equal to the lateral
force at the formation of the plastic mechanism. The initial stiffness of the idealised system is
determined in such a way that the areas under the actual and the idealised force—deformation
curves, up to the displacement at the formation of a plastic mechanism, are equal. Note that
the displacement demand depends on the equivalent stiffness which, in the case of the equal-
energy approach, depends on the target displacement. In principle, an iterative approach is
needed. If the displacement at the formation of a plastic mechanism is used for the determi-
nation of the equivalent stiffness based on equal energy, as in Eurocode 8, a conservative
estimate of displacement demand will, generally, be obtained. If the displacement demand is
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expected to be much lower than that corresponding to the plastic mechanism, it is reason-
able to apply an iterative procedure (optional in Eurocode 8), and to base the equal energies
on a smaller displacement, which leads to a higher equivalent stiffness. If, for a nearly elastic
structure, the equivalent stiffness is based on the displacement corresponding to the forma-
tion of a plastic mechanism, the deformation quantities would be grossly overestimated.

The graphical procedure used in the basic N2 method requires a post-yield stiffness equal
to zero. This is because the reduction factor g, is defined as the ratio of the required elastic
strength to the yield strength. The influence of moderate strain hardening is incorporated
in the demand spectra. It should be emphasised that moderate strain hardening does not
have a significant influence on displacement demand, and that the proposed spectra apply
approximately to systems with zero or small strain hardening.

The elastic period of the idealised bilinear system T* can be determined as:

T won | EM Jon [T (3.139)
fSy fSy

where fg, and ug, are the yield strength and displacement of the equivalent SDOF system,
respectively, and L is the mass of the equivalent SDOF system. Note that Eurocode 8 uses
a different notation: m* instead of L. In the following text, the Eurocode 8 notation, m*, is
adopted for the mass of the equivalent SDOF system.

The so-called capacity diagram in AD format is obtained by dividing the forces in the
force—deformation (f—u,) diagram by the equivalent mass m*, that is, as fg/m*. Note that
fs/m* can be transformed into V,/M*, where M* is, by analogy with Equation 3.86, the
effective mass for the fundamental mode: M* = L2/M.

3.3.2.4 Seismic demand

Seismic demand is, in principle, represented by an inelastic response spectrum, which can be
obtained from the elastic spectrum, if the appropriate q,~u-T relation is known.

Starting from the usual acceleration spectrum (acceleration vs. period), inelastic spectra
in acceleration—displacement (AD) format can be determined. For an elastic SDOF system,
Equation 3.39 applies, repeated here for convenience:

(3.140)

where A, and D, are the values in the elastic acceleration and displacement spectrum, respec-
tively, at the period T~ for a fixed viscous damping ratio.

For an inelastic SDOF system with a bilinear force—deformation relationship, the acceler-
ation spectrum (A,;,) and the displacement spectrum (D,,) can be determined from Equations
3.112 and 3.117 by replacing forces with accelerations:

A
Ay = (3.141)
w
T2 T2
Din - %De - % 43'52 Ae = “‘ 43_52 Ain (3'142)
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where L is the ductility factor defined as the ratio between the maximum displacement and
the yield displacement and g, the reduction factor due to ductility, that is, due to the hys-
teretic energy dissipation of ductile structures. Note that g, is not the same as the reduction
factor used in seismic codes. The code reduction factor, called in Eurocode 8 as behaviour
factor g, takes into account both energy dissipation and overstrength (see Section 3.2).

Any inelastic spectrum can be employed in the analysis. In the basic version of the N2
method, implemented in Eurocode 8, a bilinear spectrum for the reduction factor g, is used,
Equations 3.119 and 3.120; in the medium- and long-period ranges, this bilinear spectrum
is based on the equal displacement rule, stating that the displacement of the inelastic system
is equal to the displacement of the corresponding elastic system with the same period.

Starting from the elastic design spectrum, and using Equations 3.141, 3.142, 3.119 and
3.120, the demand spectra for the constant ductility factors i in AD format can be obtained.
The inelastic demand spectra corresponding to the Eurocode 8 elastic response spectrum for
ground type B are shown in Figure 3.16. Note that construction of inelastic spectra is not,
in fact, needed in the computational procedure. These spectra just help visualisation of the
procedure.

The procedure for determining seismic demand for the equivalent SDOF system is illus-
trated in Figure 3.17. Figures 3.17a and 3.17b apply to short-period and to medium- or long-
period structures, respectively. Both the demand spectra and the capacity diagram appear
in the same graph. The intersection of the radial line corresponding to the elastic period of
the idealised bilinear system, T*, with the elastic demand spectrum in AD format defines
the acceleration demand A,, that is, the capacity required for elastic behaviour, and the
corresponding elastic displacement demand, D,. The yield acceleration represents both the
acceleration demand, A,,, and the capacity of the inelastic system, f¢/m*. The reduction fac-
tor g, can be determined as the ratio between the accelerations corresponding to the elastic
and inelastic systems (Equation 3.111):

(3.143)

Figure 3.16 Inelastic demand spectra for constant ductility ratios in AD format normalised to 1.0 g peak
ground acceleration, for elastic response spectrum of Type | as per Eurocode 8 for ground
type B.
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w =1 (elastic)
W =1 (elastic)

D, ug

e~ in

Figure 3.17 Determination of the seismic demand for an SDOF system with the period in the short- (T* < T¢)
(a) and medium/long-period range (T* > T¢) (b).

If the period T* is longer than or equal to the characteristic period of the ground motion
T¢, the equal displacement rule, Equation 3.120, applies and the ductility demand is equal
to the reduction factor due to ductility:

w=gq, T*=Tg (3.144)

The inelastic displacement demand D;, is equal to the elastic displacement demand D,
(Equation 3.142 and Figure 3.17b).

If the period of the system is shorter than T, the ductility demand can be calculated from
the rearranged Equation 3.119:

w=(q, -1 ;i +1 T < T, (3.145)

The inelastic displacement demand can be determined either from the definition of ductil-
ity or from Equations 3.142 and 3.145 as:

D, T
D,, = yug, = ?(1 +(q, - 1)T§) (3.146)
w

In both cases (i.e. T* < T and T* 2 T) the inelastic demand in terms of accelerations
and displacements corresponds to the intersection point of the capacity diagram with the
demand spectrum corresponding to the ductility demand . At this point, the ductility fac-
tor determined from the capacity diagram and the ductility factor associated with the inter-
secting demand spectrum are equal.

All the steps in the procedure can be performed numerically without using a graph.
However, visualisation of the procedure may help in better understanding the relations
between the basic quantities.

At this stage, the displacement demand can be modified if necessary, for example, to take
into account larger displacements in the case of systems with narrow hysteresis loops or
negative post-yield stiffness.
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The displacement demand for MDOF systems (i.e. the target displacement), #,, is obtained
from Equation 3.135 by multiplying the displacement demand of the equivalent SDOF sys-
tem, D,, = u , with the transformation factor I. Under monotonically increasing lateral loads
with a fixed pattern as per Equation 3.124, the structure is pushed to the target displace-
ment, u,. It is assumed that the distribution of deformations throughout the structure in the
static (pushover) analysis approximately corresponds to that which would be obtained in the
dynamic analyses.

In the case of a 3D model, separate pushover analyses are performed in two horizontal
directions. The relevant results (i.e. the displacements, storey drifts, joint rotations, and
forces in brittle elements which should remain in elastic region), obtained by two indepen-
dent pushover analyses in two orthogonal directions, are combined through the SRSS rule.
In this way, torsional effects are included. Note, however, that these effects may be severely
underestimated, especially in the case of torsionally flexible structures. For better estimation
of torsional effects, the extended N2 method can be used (Section 3.3.2.6).

The target displacement u, represents a mean value for the applied earthquake loading.
There is a considerable scatter about that mean. Consequently, it is appropriate to investigate
the likely building performance under extreme load conditions that exceed the design values,
for example, to carry out the analysis to at least 150% of the calculated top displacement.

According to Eurocode 8, Part 3, the demands on both the ‘ductile’ and the ‘brittle’ com-
ponents shall be those obtained from the non-linear analysis, using mean value properties
of the materials.

3.3.2.5 Performance evaluation (damage analysis)

The expected performance can be assessed by comparing the seismic demands, determined
in the previous section, with the capacities for the relevant performance level. Comparisons
can be made both at the global and at the local level. In the case of inelastic behaviour, the
relevant quantities are the roof displacement and the storey drifts, whereas at the local level
a convenient quantity is member chord rotation. Forces and accelerations are relevant for
brittle elements and for equipment which is sensitive to accelerations.

Collapse prevention is the main objective of any design. An adequate safety margin against
collapse under the expected maximum seismic load needs to be assured. However, it is
extremely difficult to predict a physical collapse which involves large deformations, significant
second-order effects and complex material degradation due to localised phenomena. In spite
of considerable research efforts, methods for the reliable assessment of collapse are not yet
available. In practice, the near collapse (NC) limit state is often used as a conservative approxi-
mation of structural collapse. In Eurocode 8, Part 3, the NC limit state is defined as follows:

“The structure is heavily damaged, with low residual lateral strength and stiffness,
although vertical elements are still capable of sustaining vertical loads. Most non-struc-
tural components have collapsed. Large permanent drifts are present. The structure is
near collapse and would probably not survive another earthquake, even of moderate
intensity.’

However, no guidance is provided as to how capacity at the NC limit state could be
determined. The NC limit state of an individual structural element is usually defined as
the point on its pushover curve at which the horizontal resistance drops by 20%, relative
to the maximum previously attained. At the level of the structure, a commonly accepted
quantitative definition of the NC limit state does not exist. An option is a similar definition
as in the case of individual elements, for example, at a 20% drop of the lateral resistance of
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the structure. However, this definition, which seems to be the most appropriate, cannot be
applied in non-linear dynamic analysis, or in pushover analyses with simplified models, for
example, in the case of models without strength degradation. A more practical definition is
based on the assumption that the NC limit state of the structure is reached when the first
important vertical element (i.e. a column or a wall) reaches the NC limit state. Note, how-
ever, that this definition may be non-conservative in the case of a structure with significant
second-order (P-A) effects.

The capacities of structural elements (beams, columns, walls) are empirically based. In
Eurocode 8, information for the quantification of the capacity of components and/or mecha-
nisms is provided in the relevant material-related Informative Annexes to its Part 3. Annex
A applies to reinforced concrete structures. Expressions for the flexural deformation capac-
ity and the deformation-dependent cyclic shear resistance given in Annex A are based on the
results of statistical analyses using a very large database of test results (Biskinis et al. 2004;
Biskinis and Fardis 2010a, 2010b).

In the case of ductile components and/or mechanisms, that is, beams, columns and walls
under flexure with and without an axial force, the deformation capacity is defined in terms
of the chord rotation 0, which is defined in Part 3 of Eurocode 8 as:

‘the angle between the tangent to the axis at the yielding end and the chord connecting
that end with the end of the shear span (L, = M/V = moment/shear at the end section),
that is the inflection point. The chord rotation is also equal to the element drift ratio,
that is, the deflection at the end of the shear span with respect to the tangent to the axis
at the yielding end, divided by the shear span.’

Expressions are provided in Annex A for the chord rotation capacity at the component
NC limit state, that is, the ultimate chord rotation capacity, for primary and secondary ele-
ments, corresponding to the mean-minus-sigma and the mean value, respectively, as fitted
to the test results (Biskinis and Fardis 2010b). Expressions from (Biskinis and Fardis 2010a)
are provided also for the chord rotation at yielding, which can be used, together with the
ultimate chord rotation, to determine the chord rotation ductility capacity. In the case of
‘brittle’ mechanisms, that is, the shear mechanism of beams, columns or walls, the capacity
is provided in terms of the cyclic shear resistance, which decreases with increasing plastic
part of the ductility demand (Biskinis et al. 2004).

Note that the seismic demand to be compared with the capacity corresponding to the NC
limit state, discussed in this section, is not the demand under the design seismic action as
per Part 1 of Eurocode 8, whose recommended mean return period is 475 years (10% prob-
ability of being exceeded in 50 years, see Section 1.3). As pointed out in Part 3 of Eurocode
8, the limit state associated with the ‘No Collapse’ requirement of Part 1 of Eurocode 8 for
the purposes of Life Safety is roughly equivalent to what is defined in Eurocode 8, Part 3,
as limit state of Significant Damage. Instead, the demand corresponding to the NC limit
state is typically based on a mean return period of 2475 years (2% probability of being
exceeded in 50 years).

3.3.2.6 Influence of higher modes

The main assumption in basic pushover-based methods is that the structure vibrates pre-
dominantly in a single mode. This assumption is sometimes not fulfilled, especially in high-
rise buildings and/or torsionally flexible, plan-asymmetric buildings. For such buildings, the
contributions to the response from modes of vibration higher than the fundamental one in
each principal direction should be taken into account.
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At the time when Part 1 of Eurocode 8 was finalised, the extended version of the N2
method for plan-asymmetric buildings had not been fully developed yet. Nevertheless, based
on the preliminary results, the clause ‘Procedure for the estimation of torsional effects’ was
added, in which it is stated that:

‘pushover analysis may significantly underestimate deformations at the stiff/strong side
of a torsionally flexible structure’.

It is also stated that

‘For such structures, displacements at the stiff/strong side shall be increased, compared
to those in the corresponding torsionally balanced structure’

and that

‘this requirement is deemed to be satisfied if the amplification factor to be applied to the
displacements of the stiff/strong side is based on the results of an elastic modal analysis
of the spatial model.

Eurocode 8, Part 3, states that the approach in Part 1 (see previous paragraph) applies
for the estimation of torsional effects. Furthermore, for buildings with a long fundamental
period and for buildings irregular in elevation, it requires that:

‘the contributions to the response from modes of vibration higher than the fundamental
one in each principal direction should be taken into account’. Furthermore:

‘this requirement may be satisfied ... through special versions of the non-linear static
analysis procedure that can capture the effects of higher modes on global measures of the
response (such as interstorey drifts) to be translated then to estimates of local deforma-
tion demands (such as member hinge rotations). The National Annex may contain refer-
ence to complementary, non-contradictory information for such procedures.’

Such a procedure is the extended N2 method (Kreslin and Fajfar 2012), which combines
two earlier approaches, taking into account higher mode effects in plan (Fajfar et al. 2005)
and in elevation (Kreslin and Fajfar 2011), into a single procedure, enabling analysis of plan-
asymmetric medium- and high-rise buildings. The extension is based on the assumption that
the structure remains in the elastic range in higher modes. The seismic demand in terms of dis-
placements and storey drifts can be obtained by combining the results of basic pushover analy-
sis and those of elastic modal response spectrum analysis (RSA), which are both standard
analyses, already present in Eurocode 8 and implemented in most commercial computer pro-
grams. Thus, the approach is conceptually relatively simple, straightforward and transparent.

In the elastic range, the vibration in different modes can be decoupled, with the analysis
performed for each mode and seismic action component separately, according to the modal
response spectrum analysis (RSA) of Section 3.1.5. The results obtained for different modes
using design spectra are then combined through approximate combination rules, like the
‘Square Root Sum of Squares’ (SRSS) rule. This approach is widely accepted and used in
practice, in spite of the approximations involved in the combination rules.

In the inelastic range, the superposition rule theoretically does not apply. However, the
coupling between vibrations in different modes is usually weak (Chopra 2007); thus, for the
majority of structures, some kind of superposition can be applied as an approximation in
the inelastic range, too.
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It has been observed that higher mode effects depend considerably on the magnitude of
the plastic deformations. In general, higher mode effects in plan and in elevation decrease
with increasing ground motion intensity. Thus, conservative estimates of amplification due
to higher mode effects in plan and in elevation can usually be obtained by elastic analysis.
The results of elastic analysis, properly normalised, mostly represent an upper bound to the
results obtained for different intensities of ground motion in those parts of the structure
where higher mode effects are important, that is, in the upper part of medium- or high-rise
buildings, at the flexible sides of plan-asymmetric buildings and at the stiff sides of torsion-
ally flexible plan-asymmetric buildings. One exception is the case of torsional de-amplifica-
tion, which usually decreases with increasing plastic deformations.

The extended N2 method has been developed based on the above observations. It is
assumed that an (in most cases conservative) estimate of the distribution of seismic demand
throughout the structure can be obtained by combining (enveloping) the pushover results
and the normalised results of elastic modal analysis. The target displacement may be deter-
mined as in the basic N2 method, or by any other procedure.

In principle, higher modes influence all quantities that are relevant for design. Torsional
rotations affect displacements and, as a consequence, also affect storey drifts and local
quantities. On the other hand, analyses have shown that, in elevation, the effect of higher
modes is generally negligible for displacements, but should be taken into account when com-
puting storey drifts and local quantities.

In the extended N2 method, it is assumed that the higher mode effects in the inelastic
range are the same as in elastic range. Higher mode effects are determined by standard
elastic modal response spectrum analysis in the form of correction factors, for the adjust-
ment of results obtained by the usual pushover analysis. It is assumed that the structure
remains in the elastic range when vibrating in higher modes, and that the seismic demands
at different locations at the roof and at the mass centres along the height of the building
can be estimated by combining the demands determined by a pushover analysis, which
neglects higher mode effects, and the normalised demands from an elastic modal analysis
which includes higher mode effects. Typically, the pushover analysis controls the response
of those parts of the structure where the major plastic deformations occur; the elastic
analysis determines the seismic demands at those parts in elevation where higher mode
effects are important.

Higher mode effects in plan and in elevation can be considered simultaneously by two sets
of correction factors. Possible de-amplification is not taken into account, thus the correction
factors are not less than 1.0.

In order to predict the response of a building with a non-negligible effect of higher modes,
the following procedure may be applied:

1. Perform the basic N2 analysis. In the case of a plan-asymmetric building, either two
2D (planar) models are used, one per horizontal direction, or a single model in 3D.
Loading is applied at the mass centres (CM), independently in each of the two hori-
zontal directions and with the + and — sign in each direction. The target displacement
(displacement demand at the CM at roof level) is determined in each one of the two
horizontal directions, as the larger of two values, for the + and — sign. It is assumed
that the effect of higher modes on the target roof (top) displacement is negligible.

2. Perform the standard elastic modal response spectrum analysis of the 3D model inde-
pendently, for excitation in two horizontal directions, considering all relevant modes
(using, e.g. the CQC rule) and combine the results for both directions according to the
SRSS rule. Determine the displacements and storey drifts at the CM of each storey.
Determine the roof displacements for each frame or wall in plan. Normalise the results
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in such a way that the roof displacement at the CM is equal to the target displacement

(i.e. the roof displacement determined by the basic N2 method).

3. Determine the seismic demand using the results of steps 1 and 2. This can be achieved
by applying two sets of correction factors, one in plan for displacements and another
for storey drifts (in elevation). The set determined for displacements (in plan) also
applies to the storey drifts. So, the resulting correction factor for the storey drift in a
particular storey, and at a particular position in plan, is obtained as the product of two
correction factors. These factors are defined for each horizontal direction separately
and applied to the relevant results of the pushover analyses:

a. The correction factor for displacements due to torsion is defined as the ratio of the
normalised roof displacements from elastic modal analysis (step 2), to those from
pushover analysis (step 1). The normalised roof displacement is the roof displace-
ment at an arbitrary location divided by that at the CM. If the normalised roof
displacement from elastic modal analysis is less than 1.0, then the value 1.0 is used,
that is, no de-amplification due to torsion is taken into account. These correction
factors depend on the location in plan.

b. The correction factor for storey drifts due to higher mode effects in elevation is
defined as the ratio between the normalised storey drifts from elastic modal analy-
sis (step 2) and those from pushover analysis (step 1). As in the case of torsion, no
de-amplification is taken into account, that is, if the ratio is less than 1.0, the value
1.0 is used. One correction factor is determined for each storey in the two horizon-
tal directions.

The resulting correction factors for storey drifts (obtained as the product of two correc-
tion factors as described above) apply to all local deformation quantities (e.g. total joint
rotations consisting of both elastic and plastic part). They also apply to the internal forces,
provided that the resulting internal force does not exceed the force capacity of the structural
member. If that capacity is exceeded, internal forces can be estimated from the deformations
using the relevant force—deformation relationship. For more details on the determination of
internal forces, see the procedure elaborated by Goel and Chopra (2005).

In the case of a planar (2D) structural model, the results obtained by the extended N2
method represent an envelope of the pushover results and the normalised RSA results. In a
plan-asymmetric 3D model, the seismic demands at different locations at the roof and at the
mass centres along the elevation, determined according to the procedure above, represent
such an envelope. At other locations, they are mostly close to the envelope. If convenient
from the computational point of view, the envelope of pushover results and RSA results,
normalised to the target displacement of the mass centre at the roof, can simply be used in
practice for all relevant quantities.

Two independent approximations determine the accuracy of the N2 method and other
simplified pushover-based methods: the determination of the target displacement, and the
distribution of seismic demand throughout the structure. The extended N2 method aims at
providing an improved distribution of seismic demand, whereas the determination of the
target displacement is the same as in the basic N2 method. Note, however, that the proposed
distribution can be used in conjunction with any procedure for the determination of the
target displacement.

3.3.2.7 Discussion of pushover-based methods

A pushover-based analysis represents a rational practice-oriented tool for the seismic analy-
sis of structures. Compared to traditional elastic analyses, it provides a wealth of additional
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important information about the expected structural response, as well as insight into the
structural aspects that control performance during severe earthquakes. Pushover-based
analysis provides data on the strength and ductility of a structure, which cannot be obtained
by elastic analysis. Furthermore, it exposes design weaknesses that could remain hidden in
an elastic analysis, for example, in most cases it is able to detect the most critical parts of a
structure.

Compared to non-linear response-history analysis, which usually provides the most reli-
able information on structural response (if performed correctly), pushover-based methods
are a much simpler and transparent tool, requiring much simpler input data: an average
spectrum is used, instead of a suite of accelerograms, and detailed data on the hysteretic
behaviour of structural elements are not needed. There are no problems with the modelling
of damping. The amount of computation time is only a fraction of that required by non-
linear response-history analysis, and the use of the analysis results is straightforward. Of
course, these advantages of pushover-based methods have to be weighed against their lower
accuracy compared to non-linear response-history analysis.

For practical applications and educational purposes, graphical displays of the procedure
are extremely important, even when all the results can be obtained numerically. Pushover-
based methods achieved a breakthrough when the acceleration—displacement (AD) format
was implemented, permitting visualisation of important demand and capacity parameters.
A pushover-based analysis presented graphically in AD format helps to better understand
the basic relations between seismic demand and capacity, and between the main structural
parameters determining the seismic performance, that is, stiffness, strength, deformation
and ductility. It permits visualisation of the response and its progression from low load lev-
els to levels associated with the target displacement and beyond. It is a very useful tool for
understanding the general seismic behaviour.

According to Eurocode 8, pushover-based analysis may be applied to verify the structural
performance of newly designed or existing buildings for the following purposes:

1. The verification or revision of overstrength ratio values

2. The estimation of the expected plastic mechanisms and the distribution of damage

3. The assessment of structural performance of existing or retrofitted buildings

4. As an alternative to design based on linear-elastic analysis using the behaviour factor ¢

Like any approximate method, pushover-type methods are based on a number of assump-
tions. Their limitations should be observed. It cannot be expected that they will accurately
predict the seismic demand for any structure and any ground motion. The basic pushover
analysis is based on a very restrictive assumption, that is, a time-independent displacement
shape. Thus, it is, in principle, inaccurate for structures where higher mode effects are sig-
nificant, and it may not detect structural weaknesses that may be generated when the struc-
ture’s dynamic characteristics change after formation of the first local plastic mechanism.
Several different approaches have been proposed to improve the accuracy of pushover-based
analyses in structures where the higher modes make important contributions. Some of them
require quite complex analysis, defeating the purpose of using such methods.

The limitations of pushover-based methods have been discussed, for example, by
Krawinkler and Seneviratna (1998), Fajfar (2000) and Krawinkler (2006).

Pushover-based methods are usually applied for the performance evaluation of a known
structure, that is, an existing structure or a newly designed one. However, other types of analy-
sis can also be applied and visualised in the AD format. Four quantities define the seismic
performance: strength, displacement, ductility and stiffness. Design and/or performance evalu-
ation begins by fixing one or two of them; the others are determined by calculations. Different
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approaches differ in the quantities that are chosen at the beginning of the design or evaluation.
Let’s assume that the approximate mass is known. In the case of seismic performance evalua-
tion, stiffness (period) and strength of the structure have to be known; the displacement and
ductility demands are calculated. In direct displacement-based design, the starting points are
typically the target displacement and/or ductility demands. The quantities to be determined are
stiffness and strength. The usual force-based design typically starts from the stiffness (which
defines the period) and the approximate global ductility capacity. The seismic forces (defining
the strength) are then determined, and finally displacement demand is calculated.

Note that, in all cases, the strength is the actual one and not the design base shear accord-
ing to seismic codes, which is in all practical cases less than the actual strength. Note also
that stiffness and strength are usually related quantities.

All these approaches can be easily visualised with the help of Figure 3.17.

3.3.3 Modelling

A model for inelastic analysis is, in principle, an extended model for linear elastic analy-
sis, which additionally includes the strength of structural elements and their post-elastic
behaviour.

Inelastic structural component models can be differentiated by the way in which plasticity
is distributed through the cross sections of the members and along their lengths. The sim-
plest models concentrate the inelastic deformations at the ends of the elements, by placing
an inelastic spring there. The part of a member between the two inelastic springs remains
fully elastic. All inelastic deformations are assumed to occur in these springs. The most
complex models discretise the continuum along the member length and through the cross
sections into small (micro) finite elements, with non-linear hysteretic constitutive properties
and often numerous input parameters. Different models are used for the concrete and the
reinforcement, and possibly also for bond. Somewhere in between these two extremes are
the fibre models, which distribute plasticity by numerical integration through the member
cross sections and along the member length. Details about different models are provided in
Fardis (2009).

The most complex finite element models are, due to their severe computational require-
ments and numerous input parameters, appropriate only for studying details, for example,
for the simulation of experiments on individual members or sub-assemblies. Even fibre mod-
els can be prohibitively complex for the simulation of whole realistic structures.

At present, the simplest model, that is, the one-component model with concentrated plas-
ticity, proposed by Giberson (1967), seems to provide the best option for practical non-
linear seismic response analysis. Several good reasons give support to this statement.

By concentrating the plasticity in zero-length springs with moment-rotation model
parameters, such elements have a numerically efficient formulation. The model can work
directly with chord rotations, so it can be directly related to experimental results obtained
for RC members, which are typically given as force—deflection (or moment—chord rotation)
relationships. Moreover, straightforward comparison of demand and capacity at the mem-
ber level is possible. Inelastic member-end rotation depends solely on the moment acting at
the end, so that any moment-rotation hysteretic model can be assigned to the spring, for
example, an experimentally observed hysteretic behaviour. This decoupling of the inelastic
behaviour between the two ends is possible if the inflection point stays steady after the
first inelastic excursion of the member. In frame members (columns and beams), normally
a skew-symmetric moment distribution along a member, with an inflection point at mid-
span, is assumed. With one-component models, the modelling effort and the computational
requirement are reasonable even in large 3D structures.
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On the other hand, the simple one-component model with concentrated plasticity does
have some shortcomings. In reality, the inelastic deformation of a reinforced concrete
member is not concentrated at a critical location, but spreads along part of the member.
Assuming a zero-length is thus an idealisation. The model does not take into account any
coupling between the bending moments and the axial forces, nor between the two directions
of bending. Fluctuation of the inflection point is also neglected.

In spite of these shortcomings, the performance of the one-component model with con-
centrated plasticity is usually good. Simulations of full-scale experiments have demonstrated
that quite good agreement can be obtained with experimental results provided that the basic
input data are appropriately chosen (e.g. Fajfar et al. 2006; Kosmopoulos and Fardis 2008;
Dolsek 2010).

The one-component model with rigid plastic hinges or with inelastic springs is imple-
mented in the majority of available computer programs that allow non-linear analysis. For
the formation of the tangent flexibility and stiffness matrices of the model, see Fardis (2009).

For each hinge/spring model, it is necessary to determine the moment-rotation relation-
ship. For non-linear dynamic analysis, the whole hysteretic behaviour has to be modelled,
whereas for a pushover analysis only the cyclic envelope is needed. The relationship can be
determined based on principles of mechanics and/or experimental data. As a minimum that
would be sufficient as per Eurocode 8, the initial (elastic) stiffness, the strength and rotation
capacity are needed, which determine a bilinear moment-rotation relation. A zero post-yield
stiffness may be assumed. The corner point of the bilinear relation is the yield point of the
member. The yield moment, M,, can be determined from the principles of mechanics, based
on the characteristics of the cross-section and the material characteristics of concrete and
steel. Its value depends on the axial force N, which changes during the seismic response.

The axial forces due to gravity loads should be taken into account when determining moment—
rotation relations for structural elements. Fluctuation of N, which usually does not have a large
effect, cannot be considered in the one-component model. If the axial force varies considerably,
as, for example, the axial force in coupled walls, a post-analysis check is suggested.

Determination of the yield chord rotation 6, is tricky, since the actual non-linear force—
deformation relation has to be replaced, in the case of a reinforced concrete member, by
an equivalent linear relation. According to Eurocode 8, in reinforced concrete elements
the elastic stiffness of the bilinear force—deformation relation should correspond to that
of cracked sections and, indeed, to the initiation of yielding of the reinforcement. Unless a
more accurate analysis of the cracked elements is performed, the elastic flexural and shear
stiffness properties of concrete elements may be taken equal to one-half of the correspond-
ing stiffness of the uncracked element. The relation between the yield rotation and the effec-
tive stiffness, EI g, is defined in Part 3 of Eurocode 8 as:

M, L,

Eleff = 7363’

(3.147)

where the shear span Ly is the moment-to-shear ratio at the member end. A problem is
that the secant stiffness to the yield point is usually much smaller than one-half of the
stiffness of the uncracked elements. Thus, in a non-linear analysis of a structure, whose
inelastic response is controlled by a single cross-section, for example, a column modelled
as a cantilever beam, the deformation demand, which depends on the elastic stiffness, may
be severely underestimated if one-half of the uncracked gross section stiffness is used. In
Part 3 of Eurocode 8, expressions from Biskinis and Fardis (2010a) are provided for 6,, and
can be used in Equation 3.147 for the determination of a more realistic effective stiffness
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of members. On the other hand, in a more complex structure, for example, a frame, where
some structural members yield, whereas others do not, a uniformly reduced stiffness to one-
half of that corresponding to the uncracked gross sections may provide acceptable results at
the global level. At the element level, however, the ductilities may be overestimated, due to
underestimated yield rotations. This problem can be bypassed by evaluating performance in
terms of the ultimate rotations rather than in terms of ductilities.

The end point of the bilinear moment-rotation diagram is the ultimate chord rotation,
0,. In Eurocode 8, Part 3, empirical expressions, as per Biskinis and Fardis (2010b), are
provided for 6,. The ultimate chord rotation corresponds to a 20% drop in strength, and
is intended to represent the NC limit state. It may be assumed that it represents the flex-
ural deformation capacity of a member. Actually, a member has additional capacity beyond
the NC limit state. So, in principle, it is possible to model the moment-rotation relation
beyond 6,. However, there is a lack of data on the descending branch of the moment-rotation
curve. Moreover, simulating the behaviour beyond the NC limit state usually has only a very
limited practical value.

Ductile flexural behaviour is possible only if the member shear strength exceeds its flexural
strength (cf. Section 5.5). If this is not the case, brittle shear failure occurs before a plastic hinge
can develop. Unless shear effects are included in the model by using a non-linear shear spring
in series with the flexural springs, the shear force demand to capacity ratio has to be checked,
to make sure that shear failure does not occur. If it does, the results of analysis beyond that
point are not valid. Similarly, it is necessary to check the bond of the longitudinal bars.

In a deterministic inelastic analysis, it is reasonable to use a best estimate approach and to
apply safety factors taking into account uncertainties only at the end. In such a case element
properties should be based on mean values of the properties of the materials, as required by
Eurocode 8. A safety factor is included in the Eurocode expressions for ultimate chord rota-
tion and shear strength in the form of a factor v,, which addresses model uncertainty and
depends on the standard deviation of test results.

Example 3.4, at the end of this chapter, illustrates non-linear modelling and pushover
analysis for an idealised 4-storey frame.

EXAMPLE 3.1

To illustrate the concept and features of the vibration modes of MDOF systems, consider
the oscillator with 3 degrees of freedom depicted in Figure 3.18. Assume that the mass
matrix and stiffness matrix are given by:

.<_3|‘ ’*

=@ 1st mode
=@ 2nd mode
3rd mode

T
U

-1.0-08-0.6-04-02 00 02 04 06 08 10

Figure 3.18 Oscillator of Example 3.1 with 3 horizontal degrees of freedom and corresponding mode shapes.
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S = O
- O O

and

18,461.5 -10,615.4 2769.2
k = [-10,615.4 10,153.8 -3692.3
2769.2  -3692.3 1615.4

For these matrices the three eigenvalues are:

w? = 85.5
w} = 3667
w? = 26,480

hence, the natural frequencies of the oscillator are:
®, =9.25 rad/s

fu = w,2n

®; =163 rad/s

With the values of w? we can obtain (using Equation 3.59) the shape of each of the three
natural modes @, of the oscillator:

0.1368 0.5743 -0.8072
P, =|0.4650| P, =|0.6822 | @; =|0.5642
0.8747 -0.4525 -0.1737

These shapes are depicted in Figure 3.18.
The orthogonality of the first and second mode shapes with respect to m is easily illus-

trated performing the product ®F m ®,;

1.0 0] [0.5743
[0.1368 0.4650 0.8747]-10 1 0|-|0.6822
0 0 1| [-0.4525

0.5743
=[0.1368 0.4650 0.8747]-|0.6822 (=0
-0.4525

resulting in a zero value, as foreseen by Equation 3.61.
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Likewise, performing the products around & would also illustrate the orthogonality of
the mode shapes with respect to the stiffness matrix.
Additionally, performing the product ®] m®,:

1.0 0] [0.1368
[0.1368 0.4650 0.8747]-|0 1 0|-|0.4650
0 0 1| [0.8747

0.1368
=[0.1368 0.4650 0.8747]-10.4650|= 1
0.8747

we obtain a non-zero value. In fact, it results in a value equal to 1, indicating that the shape
of the first mode is normalised with respect to the mass matrix, as is commonly done.

The reader may check that, for the other mode shapes, Equations 3.61 and 3.62 also
hold. It is worth noticing that, with the mode shapes normalised with respect to the mass
matrix, the products around the stiffness matrix result in: ®Tk®, = w2.

This example also serves to show that any deformed configuration u of the oscillator
may be represented by a linear combination of the natural mode shapes. Consider, for
instance, a deformed shape of the oscillator corresponding to a straight line. Such shape
is described in the generalised coordinates of the system by:

0.333
u = |0.667
1.000

It is easily verifiable that this configuration is a linear combination of the three mode
shapes:

u=q® +q,P, +q;P;

In fact, taking as weighting coefficients, g, = 1.2304, g, = 0.1938 and q; = —0.0662 and
inserting the configurations of the three mode shapes ®, we obtain:

0.1368 0.5743 -0.8072 0.333
1.2304-10.4650| + 0.1938 - | 0.6822 | - 0.0662 - | 0.5642 | = |0.667
0.8747 -0.4525 -0.1737 1.000

(the intended deformed configuration).

It is interesting to note that, by and large, the largest weighing coefficient is the one for
the first mode (g, = 1.2304), as it would be expected, since the chosen straight deformed
shape is mostly akin to the shape of the first mode.

EXAMPLE 3.2

For the oscillator with three degrees of freedom in Example 3.1, the effective modal
masses of each mode are M; =2.18, M;=0.646 and M;=0.174, giving a total sum of 3,
which is the mass of the oscillator, as expected. The participating mass ratios are 0.727,
0.215 and 0.058 with a total sum of 1. These values illustrate the dominant contribution
of the first mode to the shear at the base of the oscillator, when subjected to an excitation
at the base.
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According to the two conditions of Eurocode 8 concerning the number of modes to be
taken into account in the analysis, referred in Section 3.1.5.3, it can be observed that,
with regard to the first condition, consideration of the two first modes in the evaluation of
the seismic response would be sufficient (since the sum of the corresponding participating
mass ratios exceeds 0.90). However, the second condition makes it necessary to also take
into account the third mode (since its participating mass ratio exceeds 0.05).

EXAMPLE 3.3: ELASTIC ANALYSIS OF A THREE-STOREY STRUCTURE

In this example linear elastic analysis of a three-storey prefabricated industrial building as
per Eurocode 8 is performed. As typical of prefabricated buildings, beam-to-column con-
nections are considered as hinged. The building is symmetric in plan and all columns are
the same; so, it is sufficient to analyse one column, modelled as a cantilever, with the cor-
responding floor masses and three degrees of freedom, namely the horizontal translations
of the lumped masses. Storey height is 5 m at the first storey and 3.5 m at the upper two.
The masses are 30 t, 28 t and 24 t, in the first, second and third storeys, respectively. The
column is 0.8 m square, with axial forces corresponding to the masses. The Importance
Class is II. The structure is located on type B ground (soil factor S = 1.2) at a location with
reference peak ground acceleration a,=0.25 g. Thus, for an importance factor y; of 1.0,
the design ground acceleration at the top of type B ground is 1.2 x 0.25 g=0.3 g. Design
takes place with a behaviour factor g = 3 (as in Ductility Class Medium as per Eurocode 8,
see Section 4.6.3). The elastic and the design spectrum are shown in Figure 3.19. Concrete
class is C 30/37, with Elastic Modulus E,= 33,000 MPa.

Answer

The mass matrix m (in tons) is:

30 0 0
m=|0 28 0
0 0 24

The easiest way to determine the stiffness matrix k is by inversion of the flexibility matrix
d. An individual element of the flexibility matrix, dj, is the horizontal displacement of
storey i due to a unit horizontal force at storey j. For cross-section constant along the
height and neglecting shear deformations, d;; can be calculated as:

2

ke . .
dif = 6EI (SZ/' - zi) ] =1

where the element stiffness is taken equal to one-half of the corresponding stiffness of
the uncracked element: EI = 0.5E_bh3/12=0.5 % 33,000,000 x 0.0341 = 563,200 kNm?2.
The distance from the base to storeys i and j is denoted as z; and z;, respectively. The flex-
ibility matrix (in m/kN) is then:

0.7384-10"* 0.1514-10° 0.2289-1073
d=10.1514-10"° 0.3628-10 0.5868-1073
0.2289-107 0.5868-10° 0.1021-10

The stiffness matrix (in kN/m) is:

0.1406 -10° -0.1095 - 10° 0.3141-10°
k =d!=1-0.1095-10° 0.1246 -10° -0.4709 - 10°
0.3141-10° -0.4709 -10° 0.2101-10°
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Figure 3.19 Example 3.3: (a) three degrees of freedom model; (b) elastic and design acceleration spectra; (c)
natural modes and periods; (d) storey forces and base shears in the three modes and for lateral
force method, LFM (kN); (e), (f) displacements, storey drift ratios, shear forces (kN), bending
moments (kNm) from modal analysis with one or three modes and from the lateral force method.
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Table 3.3 Results for the three modes of vibration

Mode | Mode 2 Mode 3
,(rad/s) 5.28 329 94.3
T, (s) 1.19 0.191 0.067
L, 47.69 31.50 —-10.63
M, 35.48 61.86 59.87
r, 1.344 0.509 —0.178
M, (t) 64.1 16.0 1.9
M /e m; 0.78 0.20 0.02
S«(T,)=A.(g) 0.105 0.250 0.222

By solving the eigenvalue problem (Equation 3.59), the three natural frequencies, o,
and natural mode shapes, ®,, given in Table 3.3 and in part (c) of Figure 3.19 are obtained.

L, and M,, are computed from Equations 3.91 and 3.92, respectively, T, from Equation
3.78 and the effective modal mass M, from Equation 3.86. These results are summarised
in Table 3.3. Considering the effective modal masses, at least two vibration modes have
to be taken into account, to comply with the Eurocode 8 requirements: sum of the effec-
tive modal masses of the modes included larger than 90% of the total mass, or all modes
with effective modal masses greater than 5% of the total mass.

From the Eurocode 8 design acceleration spectrum in Equation 3.121, the spectral
accelerations S,(T,) = A, are obtained for the three vibration modes and are listed in the
last row of Table 3.3. The seismic forces f, are computed from Equation 3.94. They are
shown in part (d) of Figure 3.19, alongside the corresponding base shears.

The modal displacements u,, are obtained as static displacements due to seismic forces,
multiplied by the behaviour factor g =3, see Equation 3.116. Practically the same dis-
placements are obtained from Equation 3.93, with modal displacements, D,, from the
elastic spectrum. The floor displacements, the storey drift ratios (defined as the storey-
relative displacement, i.e. inter-storey drift, divided by the storey height), the shear forces
and the bending moments along the height of the column are presented in parts (e) and (f)
of Figure 3.19: for the first mode separately and the SRSS combination values (Equation
3.87) of the three modes; the three periods are well-separated and the SRSS rule gives
practically the same results as the CQC combination rule, Equation 3.88. These results
show that higher modes have a substantial influence only on the shear forces in the upper
and lowest storey and on the bending moment in the upper part.

It is allowed to apply the lateral force method, as the building is regular in elevation,
and its fundamental period is less than 2.0s. An approximation to the fundamental
period can be obtained from Equation 3.109; selecting as lateral loads the gravity forces

(fi=mg):
f1=294 kN, f, =275 kN, f; =235 kN,

the following displacements are obtained by static analysis:
uy;=0.117 m, u, =0.282 m, u;=0.469 m,

yielding T, =1.19 s, that is, the same value (rounded to 2 decimal places) as obtained
from the ‘exact’ eigenvalue analysis. The total mass is M = 82 t and the base shear from
Equation 3.97 is 84.4 kN. With the Eurocode 8 reduction factor A = 0.835, the design base
shear is V, = 71.7 kN. The seismic forces can be obtained from Equation 3.98, with z, 2,
and z; equal to 5 m, 8.5 m and 12 m, respectively, and are shown at the last diagram of
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Part (d) of Figure 3.19. The resulting displacements, storey drift ratios, shear forces, and
bending moments are compared in Parts (e) and (f) of Figure 3.19 to the modal analy-
sis results (displacements and storey drifts obtained by static analysis are multiplied by
q = 3). With the exception of the shear forces, very good agreement is observed. Note,
however, that, in general, the agreement is not as good.

As pointed out in Section 1.3.2, the damage limitation requirement of Eurocode 8 is
checked by comparing the demand in terms of the inter-storey drifts to a limit which
depends on the type of non-structural elements. For Importance Class II, Eurocode 8 rec-
ommends taking the damage limitation earthquake as 50% of the design seismic action.
A new analysis is not needed: the seismic demands (inter-storey drifts) for this earthquake
are one-half of those for the design seismic action. The storey drift ratios resulting from
modal analysis with three modes amount to 0.36%, 0.75% and 0.87% in the first, second
and third storeys, respectively. As shown in Part (e) of Figure 3.19, these values differ very
little from those obtained by other approaches. Most critical is the upper storey, where
the drift ratio is less than the allowable value as per Eurocode 8 only when the non-
structural elements do not interfere with the structure, or there are no non-structural
elements (corresponding limit: 1%). The second storey respects the 0.75% limit for build-
ings with ductile non-structural elements attached to the structure, and the ground storey
respects the 0.5% limit for brittle partitions.

As the building is flexible, second order (P-A) effects have to be checked through the
inter-storey drift sensitivity coefficient 6 (see Equation 3.110 in Section 3.1.12). It is the
top (i.e. third) storey which is critical. Considering Ny =m;g =235 kN and » = 3.5 m, and
the values obtained by modal analysis with three modes: d; =0.061 m and V;=41.4 kN,
the value of the coefficient 6 at that storey is 0.097, that is, smaller than the threshold
value of 0.1, above which second order effects have to be taken into account according
to Eurocode 8.

EXAMPLE 3.4: NON-LINEAR ANALYSIS OF A FOUR-STOREY
FRAME STRUCTURE

As an example of non-linear analysis, an idealised 4-storey frame representative of an
existing structure built before the Eurocodes and depicted in Figures 3.20a and 3.20b
is analysed in accordance with Eurocode 8. Smooth (plain) longitudinal bars are used,
with a mean yield stress of 370 MPa. The mean value of concrete strength used in
the analysis is 33 MPa and the modulus of elasticity is E =32,000 MPa. According
to Part 1 of Eurocode 8, a cracked element stiffness of one-half of the correspond-
ing uncracked element stiffness is used in the mathematical model. The analyses are
performed with the program ETABS (CSI 2002). Zero-length flexural plastic hinge
elements are used at the ends of each elastic beam and column element, with bilinear
moment—rotation relationships and zero hardening. The yield moments, M,, of the end
sections of the elements are determined by first principles. The M, values of the beams
are: M, =163 kNm, M, = 66 kNm for moment inducing tension or compression at the
top flange, respectively. Those of columns depend on the axial load due to gravity
loading, hence on the position of the column. Assuming that the masses are uniformly
distributed along the beams, the axial forces range from 70 kN in the exterior column
of the top storey to 536 kN in the central column at the first storey; the correspond-
ing mean axial stresses range from 0.58 to 4.47 MPa, and the resulting yield moments
from M, =61 to 124 kNm. In the hinges, only plastic deformations occur. Before the
yield rotation is attained, linear deformations take place only in the frame element.
The yield rotation in the element, 6,, is not part of the input data for the hinge, but
determined automatically by the program as:

M,Ly,
v T 3EI

(]
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Figure 3.20 Example 3.4: (a) Geometry and lumped masses; (b) cross-sections and reinforcement of col-
umns and beams; (c) pushover curves corresponding to two patterns of lateral loads; (dI and
d2) deformed configurations, plastic hinges and total rotations in plastic hinges, for two pat-
terns of lateral loads, at the NC limit state; (e) determination of seismic demand and capacity—
demand comparison for the equivalent SDOF system.
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where M, is the yield moment, Ly the shear span, E the modulus of elasticity of concrete
and I the moment of inertia corresponding to a cracked section (taken as 50% of the value
for the uncracked section). Plastic rotation beyond the yield point occurs in the hinge,
in addition to the elastic rotation in the element. The deformation capacity of the col-
umns and beams in terms of total (elastic plus inelastic part) chord rotation is determined
from Equation A.1 in Part 3 of Eurocode 8. For the primary elements, it is divided by a
conversion factor y,,=1.5 from mean to the mean—-minus-sigma values of capacity. For
a structure without detailing for earthquake resistance and with smooth reinforcement
bars, the capacity from Equation A.1 in Part 3 of Eurocode 8 is reduced by a factor of
0.8/1.2 =2/3. The resulting capacities, 8,, range from 1.98% to 2.28% in the columns
(at the first storey, the values are 2.10% and 2.28% for the central and exterior column,
respectively). In the beams, they are 2.19% for tension at the top and 1.86% for tension
at the bottom. These capacities are used for the assessment of the seismic performance
at the Near Collapse (NC) limit state as per Part 3 of Eurocode 8. For pushover analysis,
unlimited ductility is assumed; the results are then valid only up to the failure of the first
element.

The elastic structure (with cracked sections) has a fundamental period of T; = 0.8 s and
a first vibration mode of: ®] =[0.466 0.719 0.899 1.000].

The effective modal mass (Equation 3.86) of the first mode amounts to 93.5% of the
total mass.

For pushover analysis, two vectors of lateral loads are applied, as required by Eurocode
8, based on the ‘modal’ and the ‘uniform’ displacement shape. The ‘modal’ pattern uses
the first mode shape from the elastic free vibration analysis. The lateral loads f are deter-
mined from Equation 3.125 as product of the assumed displacements ® and the cor-
responding masses. ® and normalised f are presented in Table 3.4. Second-order (P-A)
effects are not taken into account.

Keeping the gravity loads constant and monotonically increasing the lateral forces,
while maintaining a constant distribution of forces along the height of the structure, we
obtain the deformed configurations of the frame in Figure 3.20c and the pushover curves
in (d1) and (d2), representing the relationship between the base shear force V, and the dis-
placement at the roof u,, for the two patterns of lateral loads. Some important events are
marked: (a) yielding in the first beam and column, (b) formation of the plastic mechanism
and (c) attainment of the NC limit state in the first column, namely in the central column
of the first storey (assumed to represent also the NC limit state of the whole structure).

The difference between the pushover curves for the two lateral load patterns is small.
The roof displacements at the NC limit state, #y, are 10.7 and 9.4 cm for the modal and
the uniform lateral load patterns, respectively. The corresponding first-storey drift ratio
is 1.9% in both cases. The presented results correspond to the lateral loads with a positive
sign; a mirror image applies to the lateral loads with the opposite sign. An envelope of
the results for both signs of the lateral loads should be taken into account. The results in
Figure 3.20c demonstrate an unfavourable local mechanism in the first storey, typical of
existing buildings: major damage is concentrated mostly in the columns of the first storey.
This feature is more pronounced in the case of the uniform lateral load pattern.

The pushover analyses were performed assuming that shear failure of members does
not occur. To confirm this assumption, the shear strength of all members should be larger

Table 3.4 Assumed displacement shapes and normalised lateral loads for the two

load patterns in example 3.4

Pattern Storey / 2 3 4
Modal (o) 0.466 0.719 0.899 1.000
Modal f 0.44 0.68 0.85 1.00
Uniform o} 1.000 1.000 1.000 1.000
Uniform f 0.95 0.95 0.95 1.00
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Table 3.5 Properties of the equivalent SDOF system and seismic demand values

Paten T T*() fy(kN) D,(m) L=m*@ D.=D,m) A A(e g,
Modal 1.209 0.86 142 3.2 844 8.1 0.43 0.17 2.5
Uniform 1.000 0.92 171 34 109.5 8.6 041 0.16 2.5

than the shear force corresponding to the yield moment. Indeed the shear strength from
Equation A.12 in Part 3 of Eurocode 8 for primary elements is in all cases larger than the
shear force corresponding to the respective yield moment.

For the NC limit state, Eurocode 8, Part 3 notes the use of a ground motion with a
mean return period of 2475 years, corresponding to a probability of exceedance of 2%
in 50 years. In this example, it is assumed that, for such a ground motion, the Eurocode
8 Type 1 acceleration spectrum for type B soil (T.= 0.5 s) applies, with a peak ground
acceleration of 0.3 g (Figure 3.20e). In order to determine the seismic demand for this
structure as per Section 3.3.2.4, the MDOF system is transformed into an equivalent
SDOF system (see Section 3.3.2.2) and the pushover curve is idealised as a bilinear force—
deformation relationship (see Section 3.3.2.3). The results are plotted in Figure 3.20e;
values of some of the quantities are summarised in Table 3.5. Note that T* > T, and the
equal displacement rule applies.

The seismic demand in terms of the roof displacement of the MDOF system (target dis-
placement) #, is obtained by multiplying the seismic demand of the equivalent SDOF system
with the transformation factor I (Equation 3.135, where D is denoted as uy). It is equal to
9.7 and 8.6 cm for the modal and the uniform lateral load patterns, respectively. The seismic
demand for all other response quantities can be obtained from the results of the pushover
analysis corresponding to a roof displacement equal to the target displacement. The seismic
demand in terms of the first storey drift ratio is 1.7% for both lateral load patterns.

A comparison of demand and capacity at the level of the MDOF system (Figure 3.20c¢)
and the SDOF system (Figure 3.20e) shows that the capacity is somewhat larger than the
demand and the structure does not reach the NC limit state under the chosen ground
motion. However, it should be pointed out that the structure is very near this limit state
and that serious simplifications are involved in the analysis.

With a plot such as Figure 3.20e, it is easy to determine the ground motion at which the
NC limit state would be attained, that is, the capacity of the structure in terms of elastic
spectral accelerations. In such a case, the target displacement is equal to the displacement
at the NC limit state. The seismic demand in terms of elastic spectral acceleration is rep-
resented by the crossing point of the vertical line through the NC displacement and the
radial line representing the period of the structure. This crossing point represents a point
on the elastic acceleration spectrum defining the ground motion at which the NC limit
state is attained. It is estimated that this structure would attain the NC limit state under
a ground motion with a peak ground acceleration of 0.33 g.

QUESTION 3.1

The lateral load-resisting system of a two-storey reinforced concrete building, 30 x 30 m
in plan, is symmetric in both horizontal directions; it consists of a spatial frame with 36
0.4 m square columns (6 lines of 6 columns each) and four walls (0.2 X 2.5 m, two in the
x-direction and two in the y-direction). To support the vertical loading, the beams are much
stiffer than the columns. Both storey levels have rigid horizontal diaphragms. The height of
both storeys is 3.5 m. The effective floor weight for the calculation of the mass is 8 kN/m?2.

Perform a modal response spectrum seismic analysis for a ground motion with design
ground acceleration a, = 0.25 g and Eurocode 8 type 1 spectrum for soil type B, and behav-
iour factor g = 3.6. Determine the seismic shear forces at the base of a wall and of a frame.

Concrete grade is C20/25, with an elastic modulus of E = 30,000,000 kPa.
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Modelling and calculation procedure: Perform a planar analysis of a 2-DOF model (with
the horizontal displacements of the two floors representing the two degrees of freedom),
using half of the structural system consisting of one wall (modelled as a cantilever column)
and three planar frames (with 6 columns each). You may assume that the beams are infi-
nitely rigid and neglect the shear deformations of the wall.

QUESTION 3.2

An SDOF structural system has an elastic—perfectly plastic bilinear pushover curve (zero
post-yield stiffness), total weight W =4000 kN, lateral strength F, = 500 kN, natural period
T,=1.0 s and can accommodate a five-time larger displacement than the yield displacement
(ductility factor w=235). The seismic demand is defined by the Eurocode 8 Type 1 elastic
spectrum on rock (ground type A), with a,=0.25 g and 5% damping. Is the system able to
survive this ground motion? What is the maximum intensity of ground motion (expressed
in terms of a,, for the same spectral shape), which the system can survive? Assume that the
equal displacement rule applies.

QUESTION 3.3

A 24 x 48 m industrial hall is covered with a space truss roof, 28 x 52 m in plan (Figure
3.21), supported along a perimeter of 24.6 X 48.6 m on 12 elastomeric bearings, at 12.3 m
centres along the two short sides in plan, or at 12.15 m centres at the two long ones. The
bearings are on top of an RC frame surrounding the hall; the frame has four 0.4 m-square

Roof outline
A

Beam cross-section: - 0.6 m — 1.0m »

Figure 3.21 Question 3.3: Perimeter frame supporting the roof on bearings and cross-section of cap beam.
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corner columns, seven intermediate ones on each long side in plan (eight spans of 6 m)
and a single intermediate column on each short side (two spans of 12 m). The intermedi-
ate columns are 0.5 m-deep in the plane of the frame. The columns have a clear height
of 7.5 m, are fixed at the base and have their tops connected along the perimeter by a
1 m-deep, 0.4 m-wide perimeter beam, which supports the roof on the bearings. The beam
has a 0.2 m-thick top flange, protruding outwards from the web by 0.6 m. On the inside,
the beam has a 0.6 m-wide, 0.2 m-thick bottom flange, which serves as the runway of an
overhead crane or supports others types of equipment. The total permanent weight of this
equipment (including the crane) is 200 kN. The quasi-permanent weight of the roof (includ-
ing self-weight) is 1 kN/m? of plan area. The lateral stiffness of each bearing in seismic load-
ing is 700 kN/m. Concrete grade is C20/25, with an Elastic modulus of 30,000,000 kPa.
The structure may be considered as a system with 6 DOFs:

a. Three DOFs for the space frame roof (two horizontal displacements, #,+, #,y in X and
Y, and a rotation, 0,, about the vertical).

b. Similar DOFs, u,y, u,y, 6, at the top of the perimeter RC frame (with the top and
bottom flanges of the cap beam assumed to provide sufficient stiffness in a horizon-
tal plane to consider the cap beam as a rigid diaphragm). The entire mass, M,, of
the perimeter beam, the upper-third of the columns and the 200 kN of equipment is
lumped at the horizontal level at mid-depth of the cap beam.

The perimeter frames have in-plane lateral stiffness of:

3(n,+ 1)(EI) (12k + 1)/[(3k + 1)H?3], where k= (EI),/(EI) (H/L), with (EI), denoting the
effective rigidity of the beam, (EI), that of an interior column for bending in the plane of
the frame (strong axis), L, H, the theoretical bay length and the column height, respectively,
and 7, the number of interior columns in the frame (as the outer columns of the frame have
one-half the in-plane rigidity of the interior ones).

Set up the eigenvalue problem and solve it to determine the six periods, the corresponding
mode shapes, the participation factors and the participating masses for excitation in direc-
tions X and Y. Note that DOFs of the roof and the top of the frame, which are in the same
direction (i.e. the two translational ones in X, those in Y and the two rotations with respect
to the vertical), are coupled, but, thanks to the two-way symmetry of the system, DOFs of
different types are uncoupled. Calculate the modal displacements and seismic forces for the
two DOFs of each horizontal direction due to an earthquake with a PGA on rock of 0.15 g,
if the structure is supported on soil type C and the Type 1 Eurocode 8 spectrum applies.
Combine modal results with the SRSS rule.






Chapter 4

Conceptual design of concrete
buildings for earthquake resistance

4.1 PRINCIPLES OF SEISMIC DESIGN: INELASTIC
RESPONSE AND DUCTILITY DEMAND

For the majority of buildings in seismic regions, the ground motion due to a nearby strong
earthquake causes the most severe load among all loading conditions to which a building
can possibly be subjected. On the other hand, the probability that such a ground motion
will occur within the service life of the building is low. For example, we have already seen
in Section 1.3 that, according to Eurocode 8, a building of ordinary importance is designed
and constructed to withstand, without life-threatening local or global collapse, a ‘design seis-
mic action’ associated with a recommended probability of exceedance of 10% in 50 years,
which corresponds to a mean return period of 475 years. Since the probability is small, it is
a common belief that for economic reasons it is not rational to build structures which would
survive a strong earthquake without damage, that is, in the elastic range of behaviour.

The purpose of seismic design standards and codes, including Eurocode 8, is to ensure
that in the event of a strong earthquake human lives are protected, meaning the structure
does not suffer local, partial or overall collapse. It is not required that after a low-probability
strong earthquake buildings remain undamaged and continue to perform their function
immediately afterwards (with the exception of structures important for civil protection
which should remain operational). In Eurocode 8, it is explicitly stated that the purpose of
the standard is to limit (and not to prevent) damage.

However, as also pointed out in Section 1.3.2, Eurocode 8 (and other seismic design stan-
dards and codes) requires that, in case of an earthquake with larger probability of occur-
rence than the design seismic action, there should be no damage or associated limitations
of use with costs disproportionately high compared to the overall cost of the building. This
damage limitation requirement applies, according to Eurocode 8, to a seismic action with a
recommended value of 10% probability of being exceeded in 10 years, which corresponds
to a mean return period of 95 years.

Based on these seismic design requirements, it is expected that under the ‘design seismic
action’ a building will deform in the inelastic range. In order to survive several inelastic
deformation cycles, structures should have adequate capacity to dissipate energy without
substantial reduction of the overall resistance against horizontal and vertical loading, also
called ductility.

From the point of view of energy balance, input seismic energy is imparted to a structure
and has to be dissipated by hysteretic behaviour and some non-yielding mechanisms, usually
represented by viscous damping. Dissipation of energy by hysteretic behaviour is possible
only in ductile structures, whereas it is very limited in brittle ones. Structures designed for
earthquake resistance resist the seismic action thanks to a combination of strength and duc-
tility. Assuming that the equal displacement rule applies, then, starting from a given seismic
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demand in terms of displacements #,,, it is possible to think of different structures, having
the same mass and stiffness, but different idealised force—deformation relations represent-
ing different combinations of strength and ductility, as illustrated in Figure 4.1, but all of
them able to accommodate the seismic demand, #,,,.. The extreme case is a structure with a
very high strength, which is able to accommodate the imposed seismic demand in the elastic
range. Such design is used for very important structures, like those in nuclear power plants,
where damage related to inelastic deformations should be prevented even under a very strong
ground motion. For more common structures, where damage is tolerated, the strength may
be reduced. Nevertheless, the structure can only accommodate the seismic demand provided
that it has adequate ductility capacity (i.e. capability to deform in the inelastic range).

The smaller the strength, the larger ductility is required. As elaborated in Section 4.6,
Eurocode 8 leaves a certain choice of the ductility level to the designer. With increasing
ductility capacity, various design requirements that have to be fulfilled increase in severity,
but the required strength for a given level of seismic action decreases. It should be noted
that structural damage is related to ductility. Therefore, design for high ductility may result
in extensive structural damage under strong ground motions. Non-structural damage is
related either to accelerations or to relative displacements, depending on the non-structural
element. Since accelerations are related to forces, a design for high ductility is generally
beneficial for acceleration-sensitive elements. As shown in Figure 4.1, displacements do not
depend on the variant of design. It should be noted, however, that Figure 4.1 represents an
idealised example. In practice, stiffness and strength are related to a certain extent: larger
strength usually means larger stiffness and smaller displacements, which means less damage
to deformation-sensitive non-structural elements.

Structures important for civil protection should remain operational after strong earth-
quakes too. In order to fulfil this requirement, only minor damage is allowed. So, they
should be designed with an importance factor greater than 1.0, resulting in a larger strength
than ordinary structures.

In seismic design standards and codes, the decrease of the seismic strength demand on
account of inelastic action is achieved by using reduction factors (behaviour factor g in
Eurocode 8, see Section 3.2) in conjunction with linear analysis. The use of reduction fac-
tors allows an approximate consideration of the inelastic behaviour of the structure in linear
elastic analysis and has been widely adopted in seismic design standards and codes world-
wide. However, for a more realistic estimate of the structural response during strong earth-
quakes, a non-linear analysis is needed.

The reader should be cautioned that the design seismic action is not intended to represent the
strongest ground motion that can possibly occur at the site of the structure. In order to ensure

Figure 4.1 Structure resists seismic action through different combinations of strength and ductility.
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that the structure does not collapse under a ground motion larger than the design earthquake,
certain measures are taken to enhance its global ductility and eliminate pre-emptively the
more dangerous collapse mechanisms. One of those measures is capacity design, described in
detail in Section 4.5 and elaborated further in Sections 5.4.1, 5.5.1, 5.6.2.1 and 6.3.2.

4.2 GENERAL PRINCIPLES OF CONCEPTUAL SEISMIC DESIGN

4.2.1 The importance of conceptual design

It is very often said that in any human process the sooner an error is made, the greater
is its potential for detrimental consequences. Translating this into a construction process,
this means that an error made at the conceptual design phase, which precedes all other
activities leading to the completion of the construction of a facility, may have severe future
consequences. This is particularly true for seismic design. In fact, earthquakes being rare,
they may spare a certain constructed facility for long; but when one strikes, it will unveil all
defects that the structure may hide, particularly those due to inadequate seismic conceptual
design. Such defects will be exposed in a dramatic fashion within a matter of a few sec-
onds. This is why Eurocode 8 gives great importance to conceptual design aspects, as there
is plenty of evidence from damage observation after earthquakes that simple and regular
buildings tend to behave much better than irregular ones. Such favourable features should
be incorporated at the earliest stages of design, when the interaction between the architect
and the structural engineer is close. Only if they both understand the design requirements
set out by the other, is it possible to achieve a solution that satisfies these requirements in a
balanced and cost-effective manner. It is at this stage that a structural system appropriate
for the specific conditions of the building and of the site needs to be chosen, so that architec-
tural features are incorporated naturally into the design from the outset.

To support the conceptual design of buildings, Eurocode 8 lists a set of guiding principles
that should be applied by the structural designer as a first step to achieve a building with
good seismic response. The following subsections elaborate these principles.

4.2.2 Structural simplicity

Structural simplicity is characterised by the existence of clear and direct paths for the trans-
mission of the inertial forces produced by the seismic excitation to the foundations of the
building. It is an important objective, because the seismic response of simple structures
is inherently less uncertain. Moreover, because the modelling, analysis, dimensioning and
detailing of simple structures are subject to much less uncertainty, the prediction of the seis-
mic behaviour thereof is more easily achievable. Hence the result is more reliable structures.

4.2.3 Uniformity, symmetry and redundancy

Uniformity in plan is characterised by an even distribution of the structural elements, allow-
ing short and direct transmission of the inertial forces produced in the distributed masses of
the building. In some cases, plan-wise uniformity may be realised by subdividing the entire
building by seismic joints into dynamically independent units. Short and direct paths for the
transmission of the inertial forces are achieved more easily if the distribution of stiffness and
resistance closely resembles that of masses.

Another favourable feature is symmetry. If the building configuration is symmetrical or
quasi-symmetrical, a symmetrical, well-distributed in-plan layout of structural elements is
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appropriate to achieve uniformity. Symmetry should be sought both in what concerns the
plan-wise distribution of stiffness and strength, but also that of mass distribution, to avoid
eccentricities that entail torsional response (twisting around a vertical axis), which tends to
increase the horizontal displacements in some parts of the periphery of the building plan
(the ‘soft’ or ‘flexible’ side) and hence is unfavourable.

The use of many evenly distributed structural elements increases the redundancy of the
structure, that is, the structure becomes more reliable to resist the earthquake effects by
accommodating the loss of some structural elements before becoming unstable. Redundancy
also allows a more favourable distribution of the action effects in the non-linear range and
widespread energy dissipation across the entire structure. Figure 4.2 illustrates schemati-
cally the concepts of uniformity, symmetry and redundancy of the in-plan structural layout.

Uniformity along the height of the building is possibly one of the most important features
that should be pursued at the conceptual design stage. This is so because uniformity in
height tends to eliminate transition zones up the building where concentrations of stresses
or large ductility demands may prematurely cause collapse.

A frequent (and dangerous) situation of non-uniformity in height corresponds to the
existence of a so-called soft storey at the ground floor of a building. This may occur in
several cases:

e When the first floor height is significantly taller than those above, hence its stiffness is
significantly smaller. This is particularly so in framed structures, as the lateral stiffness
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Figure 4.2 Uniformity in plan, symmetry and redundancy.
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of columns varies with the cube of the clear height: for example, a 50% larger inter-
storey height at the ground floor with regard to the storeys above results in that storey
being three times more flexible than the others.

e When some of the vertical structural elements are discontinued from the second storey
down, in view of obtaining an architecturally more open ground floor.

¢ Finally, although not strictly a structural feature, when stiff and strong non-structural
elements (normally facade elements, but also partitions) are placed above an open
ground floor. In view of the relevance of this situation, Eurocode 8 has some spe-
cific clauses intended to control possible negative effects of infills in masonry-infilled
frames.

In all these cases, the horizontal stiffness (and normally the horizontal resistance as well)
of the ground storey is much smaller than that of the storeys above, leading to the concen-
tration of horizontal displacement in the ground storey (inter-storey drifts are very large
in the first floor and very small in the ones above, see Figure 2.9a). As a result, collapse of
the first storey is very likely (e.g. see Figures 2.10 and 2.11), due to the very high deforma-
tion demands and because the load-bearing capacity of the storey in such a deformed shape
is very much decreased by second-order (or P — A) effects in comparison with its original
(undeformed) condition with vertical columns.

Note that a soft or weak storey may only exist if the lateral resisting system is mainly com-
posed of a frame structure: structural walls, continuous along the full height of the building,
normally preclude soft storey behaviour (see Figures 2.9d and 2.9¢).

A soft storey at ground level is certainly the most severe situation, because therein the
inter-storey seismic shear force is at its maximum and that storey supports the whole build-
ing. However, a soft storey at any other height of a building, for instance due to interrup-
tion of a shear wall at an intermediate height, may be extremely detrimental to the seismic
response as well (see Figure 2.15 right).

4.2.4 Bi-directional resistance and stiffness

Horizontal seismic motion is by nature a bi-directional phenomenon and thus the building
structure must be able to resist horizontal actions in any direction. Hence, the structural
elements should be arranged in an in-plan orthogonal structural pattern, so that the build-
ing structure is able to direct the seismic action to these main structural directions. Having
similar resistance and stiffness characteristics in both main directions is also a desirable
feature, enabling essentially in-plane seismic response with little orthogonal response, that
is, for a given direction of the seismic action, the response of the structure will be in that
same direction; the structure responds in an uncoupled manner.

The choice of the stiffness characteristics of the structure should also aim at limiting the
development of excessive displacements that might lead to instabilities due to second-order
effects or lead to excessive damage of non-structural elements.

4.2.5 Torsional resistance and stiffness

In addition to lateral resistance and stiffness, building structures should possess adequate
torsional resistance and stiffness, in order to limit the development of twisting motions
around a vertical axis, which tend to stress the different structural elements in a non-
uniform way. In this respect, arrangements in which the main elements resisting the seismic
action are distributed close to the periphery of the building present clear advantages, since
this increases the torsional stiffness of the structure (see Example 4.1).
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4.2.6 Diaphragmatic behaviour at storey level

In buildings, floors play a very important role in the overall seismic behaviour of the struc-
ture. They act as horizontal diaphragms that collect and transmit the inertial forces to the
vertical structural systems and ensure that those systems act together in resisting the hori-
zontal seismic action.

The action of floors as diaphragms is especially relevant in cases of complex and non-uniform
layouts of vertical structural systems, or when systems with different horizontal deformability
characteristics are used together (e.g. in dual or mixed systems) in the same direction.

In-plane stiffness and in-plane resistance of floors are different issues, but both are impor-
tant for the seismic response of the building.

Diaphragms should have sufficient in-plane stiffness for the distribution of horizontal
inertial forces to the vertical structural systems, mobilising them with fairly similar dis-
placements. If the in-plane stiffness of the floor system is small (in relation to the stiffness
of the vertical systems), it will be unable to fulfil such an objective: similar structural sys-
tems placed at different positions in plan may suffer different horizontal displacements (see
Figure 4.3). Horizontal displacements that differ across the building result in larger maxi-
mum displacements, which by default lead to a worse or less-controlled response.

Figure 4.3 Effect of diaphragm stiffness. (a) Flexible diaphragm: uneven distribution of forces among the
vertical elements. (b) Rigid diaphragm: uniform distribution of forces among the vertical elements.
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In the past, when structural analysis capabilities were much more limited, the objective
of having a so-called rigid diaphragm solution was sought, not only in view of its beneficial
effects, but also and possibly primarily for the sake of simplifying the structural modelling
and analysis. Nowadays, it is possible to model adequately the in-plane deformability of
floor systems, hence the ‘rigid diaphragm’ assumption is not required anymore; yet it still is
considered useful for simplifying the analysis. In any case, the key point is that the modelling
assumptions in this respect should be adequate for the structural solution at hand, so that
the analysis captures with accuracy the way in which the inertial forces are transferred to the
vertical resisting systems. The need to include diaphragm deformability is particularly impor-
tant in non-compact or very elongated in-plan shapes, or when there are significant changes
in stiffness or offsets of vertical elements above and below the diaphragm (see Figure 4.4).

Very elongated in plan
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Overtressing of the connection of
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Diaphragmatic effect for the
distribuition of the horizontal forces
among the vertical elements below
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Figure 4.4 Irregular/unfavourable plan configurations for effective diaphragmatic action. Importance of dia-
phragmatic effect in case of vertical setbacks.
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Another important aspect regarding diaphragmatic action is the in-plan resistance of
floor systems, as well as the resistance of their connection to the vertical structural systems.
In this respect, it must be emphasised that the resistance of diaphragms may be reduced sig-
nificantly by large floor openings, especially if the latter are located in the vicinity of main
vertical structural elements. This hinders the effective connection between the vertical and
horizontal structure and limits the capability of transmitting the horizontal forces to the
vertical elements, as intended (see Figure 4.4).

4.2.7 Adequate foundation

With regard to the seismic action, the design and construction of the foundation and of the
connection to the superstructure should ensure that the whole building is subjected to a uni-
form seismic excitation. For structures composed of a discrete number of structural walls,
likely to differ in width and stiffness, a rigid, box-type or cellular foundation, comprising a
foundation slab and a cover slab, should generally be chosen (see Section 6.3.1). For build-
ings with individual foundation elements (footings or piles), Eurocode 8 requires to use a
foundation slab or tie-beams between these elements in both main directions (Section 6.3.1
and Figures 4.11 and 6.12).

4.3 REGULARITY AND IRREGULARITY OF BUILDING STRUCTURES

4.3.1 Introduction

Despite the general principles of good conceptual design presented above, a precise defini-
tion of what is a regular or irregular structure in the context of the seismic response of build-
ings has eluded many attempts to achieve it. It is intuitive to classify the building shown in
Figure 4.5 as irregular. However, there are so many variables and structural characteristics

Figure 4.5 Example of an irregular building.
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that may (or should) be considered to establish, in abstract terms, the definition of regularity
or irregularity of a building that, finally, the classification in each specific case has to rely
mostly on the engineering experience and judgement of the structural designer.

In a certain way, Part 1 of Eurocode 8 recognises this difficulty and does not attempt to
establish very strict rules for the distinction between regular and irregular buildings. It pro-
vides a relatively loose set of characteristics that a building should possess to be classified as
regular. Such a classification essentially has the purpose of establishing some distinction in
what concerns the more- or less-simplified structural model and the method of analysis to
be used, as well as the value of the behaviour factor.

With this approach, Eurocode 8 does not forbid the design and construction of non-
regular structures, but attempts to give incentive to choose regular structures, by making
them easier to design and more economical, thanks to higher values of the behaviour factor.
However, in most cases it is not possible to deter the architect from seeking original forms.
It is in these cases that the interaction between the architect and the structural designer from
the very beginning of the design process is essential. For this interaction to be successful, the
structural engineer should be open-minded with regard to the architect’s intention but, at
the same time, be able to convey to the architect the structural implications of the intended
irregular forms. Likewise, the architect should be able to understand these implications and
be capable of accommodating into his/her architectural form the additional structural needs
(e.g. the need for additional members or increased cross-sectional dimensions).

Out of the many possible irregularities in building structures, the final structural design
should, in absolute terms, avoid the two most dangerous irregular situations: soft storeys
and extremely flexible structures in torsion. Both cases correspond to extremely irregular
stiffness distributions: the former regarding the distribution in height with a very weak sto-
rey and the latter regarding the distribution in plan, with the concentration of the stiffness
at the centre or at a corner.

As in most other modern seismic design codes, in Part 1 of Eurocode 8 the concept of
building regularity is presented separately for regularity in plan and regularity in elevation.
Moreover, regularity in elevation is considered separately in the two main orthogonal direc-
tions in which the horizontal components of the seismic action are applied, meaning that the
structural system may be characterised as regular in one of these two horizontal directions,
but not in the other. Nonetheless, a building assumes a single characterisation (the most
demanding) for regularity in plan, independent of direction.

In order to reduce stresses due to deformations associated with volumetric changes (ther-
mal expansion and/or concrete shrinkage), buildings that are long in plan often have their
structure divided by means of expansion joints into parts that can be considered as separate
and structurally independent above the level of the foundation. The same practice is recom-
mended in buildings with a plan shape consisting of several (close-to-) rectangular parts
(L-, C-, H-, I- or X-shaped plans), for reasons of clarity and predictability of their seismic
response (as well as for modelling and analysis simplification). Although this recommenda-
tion for compact in-plan shapes still holds nowadays, it must be recognised that its roots
were laid in times when modelling and analysis capabilities were modest. At present, this
objective should be somewhat balanced with the fact that too many independent units in
the same building may be inconvenient, not only for reasons directly related to the seismic
response (pounding between these units) but also for other reasons (maintenance of expan-
sion joints and potential water leakage). The parts in which the structure is divided through
such joints are considered as ‘dynamically independent’. Structural regularity is defined
and checked at the level of each individual ‘dynamically independent’ part of the building
structure, regardless of whether these parts are analysed separately or together (the latter
might be the case if they share a common foundation and are modelled together, or if the
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designer considers a single analysis as convenient for comparing the relative displacements
of adjacent units to the width of the joint between them).

Eurocode 8 introduces primarily qualitative criteria for regularity, which can mostly be
checked at the preliminary design stage by inspection, or through simple calculations, without
doing the analysis of the building. This makes sense, as the main purpose of the regularity clas-
sification is to determine what type of modelling and linear analysis may be used for the design:

¢ 3D using a spatial model, or 2D using two separate planar models, depending on the
regularity in plan

e Static, with the lateral force method, or modal response spectrum analysis, depending
on the regularity in elevation

Moreover, regularity affects the value of the behaviour factor g that determines the design
spectrum used in linear analysis.

It is generally more difficult to verify without analyses that a building is regular in plan
than in elevation (unless this is clear by inspection). So, in case of doubt, the designer may
very well presume that the building is irregular in plan and bears the very light penalties
foreseen in Eurocode 8 (cf. Section 4.3.3), instead of carrying out the analyses necessary for
the verification of regularity.

Irregularity in plan or elevation is the subject of Examples 4.2 to 4.4, where the implica-
tions for design and the suitability of the structural system for earthquake resistance are
also discussed.

4.3.2 Criteria for irregularity or regularity in plan

For the structure of a building to be considered as regular in plan, six conditions have to be
fulfilled at all storey levels:

CONDITION 1

The distribution in plan of the lateral stiffness and mass are approximately symmetrical
with respect to two orthogonal horizontal axes. Normally, the horizontal components of the
seismic action are applied along these two axes. As absolute symmetry is not required, it is
up to the designer to judge whether this condition is met or not.

CONDITION 2

EN1998-1 states that ‘the plan configuration shall be compact, that is, each floor shall be
delimited by a polygonal convex line’. There is some tolerance with regard to this requirement:
it is further stated that, if there are in-plan setbacks (re-entrant corners or edge recesses), we
may still consider the structure as regular in plan under the following conditions:

e These setbacks do not affect the floor in-plane stiffness.
e For each setback, the area between the outline of the floor and a convex polygonal line
enveloping the floor does not exceed 5% of the floor area.

In Figure 4.6, various plan configurations are presented illustrating the application of
Condition 2 for in-plan regularity with regard to compactness; they show that edge recesses
are more severely penalised by this condition in comparison with re-entrant corners. This is
so because edge recesses disturb the horizontal force paths of the diaphragmatic effect more
than re-entrant corners.
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Figure 4.6 Regular and irregular plan configurations.
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Figure 4.7 Irregular in-plan configurations due to the structural outline.

It should be also emphasised that this condition of Part 1 of Eurocode 8 includes two con-
ditions to be checked, meaning that, even in cases where the 5% ratio of areas is fulfilled, the
condition that the setbacks do not affect the in-plane stiffness may be controlling. An exam-
ple of such a case is presented in Figure 4.7. The issue of in-plane stiffness is also addressed in
Condition 3 for regularity in plan, related to floor stiffness and presented below.

Finally, it should be noted that, besides the compactness of the floor configuration, the
outline of the structure in plan should also have a compact configuration. This means that
the structure, as defined in plan by its vertical elements, should have an envelope (outline) of
its exterior elements defining a convex polygonal line. Similar to the in-plan configuration,
there is some tolerance with regard to this convexity requirement. So, it is acceptable that for
each setback (of the structure) the area between the outline of the structure and the convex
polygonal line enveloping does not exceed 5% of the outline area. The check for the struc-
tural outline compactness may be the conditioning factor for the regularity classification, as
is illustrated in Figure 4.7, which presents two examples where the compactness check for
the floor configuration is satisfied, whereas the structural outline does not satisfy it.

CONDITION 3

It should be possible to consider the floors as rigid diaphragms, in the sense that their in-
plane stiffness is sufficiently large, so that the floor in-plane deformation due to the seismic
action is negligible compared to the inter-storey drifts, and it has a minor effect on the dis-
tribution of seismic shears among the vertical structural elements.

Conventionally, a rigid diaphragm is defined as one in which, when it is modelled with
its actual in-plane flexibility, its horizontal displacements due to the seismic action do
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not exceed anywhere by more than 10% the corresponding absolute horizontal displace-
ments that would result from a rigid diaphragm assumption. Essentially, this conven-
tional definition of a rigid diaphragm in the context of checking the in-plan regularity of
building structures indicates that the use of a simpler modelling approach (i.e. a rigid dia-
phragm) is acceptable, provided that it does not induce differences in the distribution of
the seismic load into the various lateral resisting systems larger than 10%. Nonetheless,
it is neither required nor expected that fulfilment of this conventional definition is com-
putationally checked, because this would require the analysis of the structure with the
actual in-plane flexibility of the floors, making the rigid diaphragm assumption of no
practical interest.

It is up to the designer to decide whether the rigid diaphragm assumption is justified,
but it may be noted that, for instance, a solid reinforced concrete slab (or cast-in-place
topping connected to a precast floor or roof through a clean, rough interface or shear
connectors) may be considered as a rigid diaphragm, if its thickness and reinforcement
(in both horizontal directions) are above the minimum thickness of 70 mm and the mini-
mum slab reinforcement of Eurocode 2, as required in Part 1 of Eurocode 8 for concrete
diaphragms.

It should also be emphasised that for a diaphragm to be considered rigid, it should also
be free of large openings, especially in the vicinity of the main vertical structural elements.
Anyway, if the designer does not feel confident about the rigid diaphragm assumption due
to the large size of such openings and/or due to the small thickness of the concrete slab, then
he/she may check it by applying the above conventional definition of a rigid diaphragm.

CONDITION 4

The aspect ratio or slenderness of the floor plan, =L, /L., where L . and L, are,
respectively, the larger and smaller in-plan dimension of the floor measured in any two
orthogonal directions, should be no more than 4. This limit is complementary to Condition 3,
which requires the in-plane rigidity of the diaphragm, and is intended to ensure that, inde-
pendently of the result of Condition 3, in case of very slender floor plans, its deformability
is explicitly considered in the structural model and conditions the distribution of the seismic
forces among the vertical structural elements.

CONDITION 5

In approximately symmetrical buildings, according to Condition 1 above, in each of the
two orthogonal horizontal directions, x and y, the ‘static’ eccentricity, e,, between the floor
centre of mass (C,;) and the storey centre of lateral stiffness (Cy), as illustrated in Figure 4.8,
is not greater than 30% of the corresponding storey torsional radius r, that is:

€0, <0.37;¢€y,<0.3r, 4.1)

The torsional radius r, in Equation 4.1 is defined as the square root of the ratio of the
torsional stiffness K, of the storey with respect to the centre of lateral stiffness, to the storey
lateral stiffness K, in direction y (orthogonal to x), as depicted in Figure 4.8; similarly for
the torsional radius 7,:

r. = JKJK,, = JKJK, (4.2)

For single-storey buildings, Part 1 of Eurocode 8 allows to determine the centre of lateral
stiffness and the torsional radius by considering the translational stiffness represented by
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Figure 4.8 Centre of lateral stiffness, static eccentricities and lateral and torsional stiffness.

the moments of inertia of the cross-sections of the vertical elements, neglecting the effect of
beams. Hence the position of the centre of lateral stiffness is given by:

Xck = 22% Yek = EE% (4.3)

with x, y defining the position of the various vertical elements, measured from the origin of
any arbitrary plan reference (and xx and yqx being also referred to such reference). In this
context it is worth noting that if the origin of the plan reference is set at the centre of mass
(C,) of the floor, then the values computed with Equation 4.3 are the static eccentricities, ¢,
and e, referred to in Equation 4.1. It follows that the torsional radii in the two orthogonal
directions are given by:

D = xePEL + (v - yexPEL) V¥ (¢ = xexPEL + (v - yox*EL)

T El, T El
2 2

(4.4)
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In Equations 4.3 and 4.4, EI, and EI, denote the section flexural rigidities for bending
within a vertical plane parallel to horizontal directions x or y, respectively (i.e. about an axis
parallel to axis y or x, respectively).

To illustrate the meaning of the condition expressed by Equation 4.1, in Figure 4.9 three
schematic examples of the same floor configuration with different distributions of the lateral
stiffness are presented, and its regularity is assessed in accordance to this condition. All
cases are symmetric in relation to the x axis, and we observe only the situation regarding
the asymmetry of stiffness in the y direction (i.e. only the ratio e, /r,).

1. In the first case, the system at the extreme left has a lateral stiffness twice that of the
other three systems. The eccentricity is ey, = 0.1L and the torsional radius r, = 0.528L,
leading to: e, /r, = 0.189 < 0.3, which means that, in this respect, the building is regular.

2. The second case is similar to the first one, but the stiffness asymmetry in the y direction
is larger, since the stiffness of the extreme left system is three times that of the others.

Case 1 YA
k-2
€0y =| 0.1}
[a\] — X L — x
0.8L| n 1] + o n_1 . =K =5
2 & C—'M_«P‘ -~ y
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} L }
Case 2 YA
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k=2
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] e, = 0.167L
on
s R So7 Sk M- WL
= Py C Y Py
= = M= = K =4
Ky =1.52912
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Case 3
x
e I(y =6
K,=8
Ky =2.169L*

Figure 4.9 Three schematic distributions of stiffness and its effect on the ratio eg,/r,.
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In this case we have a larger eccentricity, ey, = 0.167L, and a slightly smaller torsional
radius (essentially due to the increase of the translational stiffness): r,=0.505L, lead-
ing to e, /r.=0.33 > 0.3, which means that the building is irregular in plan.

3. Finally, the third case illustrates that it is possible to counteract this situation of irregu-
larity in plan by increasing the stiffness of the systems in the orthogonal direction.
In fact, doubling the stiffness of the orthogonal systems significantly increases the
torsional stiffness, leading to a larger torsional radius r, = 0.601L. Since the eccentric-
ity remained unchanged at ¢, = 0.167L, the controlling ratio is e, /r,=0.277 < 0.3,
which means that, in this respect, the building is regular again.

The examples presented refer to a one-storey building, where it is possible to define pre-
cisely the centre of lateral stiffness. In these cases, the centre of stiffness is the point where
the application of a horizontal force produces only translation without any rotation around
a vertical axis (see Figure 4.8). For multi-storey buildings, the centre of lateral stiffness is
defined as the point in plan with the property that any set of horizontal forces applied at
floor levels through that point produce only translation of the individual storeys, without
any rotation with respect to the vertical axis. Conversely, any set of storey torques (i.e. of
moments with respect to the vertical axis, z) produce only rotation of the floors about the
vertical axis that passes through the centre of lateral stiffness, without horizontal displace-
ment of that point in x and y at any storey. If such a point exists, the torsional radius, 7,
defined as the square root of the ratio of torsional stiffness with respect to the centre of lat-
eral stiffness to the lateral stiffness in one horizontal direction, is unique and well-defined.
It can be computed by applying to the building a set of storey torques, T;, and, separately, a
set of storey forces in the horizontal direction of interest but through the (unique) centre of
lateral stiffness, with magnitudes proportional to those of the corresponding storey torques,
F,=T,/c, with the lever arm, c, being arbitrary. The torsional stiffness is defined then as the
ratio of: (a) the storey torsional moment (the torsional moment in this case being the sum
of all storey torques applied above and at storey i) to (b) the corresponding storey twist (the
twist being taken with respect to the base of the building). Similarly, the lateral stiffness is
defined as the ratio of (a) the storey shear to (b) the corresponding horizontal displacement
of the storey with respect to the base. Irrespective of the exact distribution of storey torques,
T,, and of storey forces, F;= T/c, a unique value of r is computed.

Unfortunately, as already mentioned, the centre of lateral stiffness with this general defi-
nition, and with it the torsional radius, 7, are unique and independent of the lateral loading
only in single-storey buildings (because, by nature, in this case the lateral load is composed
by just one force). In buildings of two storeys or more the result of such definition is not
unique and depends on the distribution of lateral loading with height. This is especially so
if the structural system consists of (planar) sub-systems, which develop different height-wise
patterns of horizontal displacements under the same set of storey forces. In this context, it
is appropriate to recall that moment frames exhibit a shear-beam type pattern of horizontal
displacements, whereas walls behave more like vertical cantilevers. Part 1 of Eurocode 8 rec-
ognises this fact, stating that ‘In multi-storey buildings only approximate definitions of the
centre of stiffness and of the torsional radius are possible’. In spite of this, for buildings with
all lateral-load-resisting systems running from the foundation to the top and having similar
deformation patterns under lateral loads, it accepts approximate definitions of the centre
of stiffness and torsional radius, 7. Moreover, Eurocode 8 accepts that ‘In frames and in
systems of slender walls with prevailing flexural deformations, the position of the centres of
stiffness and the torsional radius of all storeys may be calculated as those of the moments of
inertia of the cross-sections of the vertical elements’, meaning that, in such cases, Equations
4.3 and 4.4 may be applied independently at the different storeys.
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For other cases, Eurocode 8 just indicates that the National Annex may provide guidance
on the definition of the centre of stiffness and the torsional radius. For those cases, a proce-
dure to determine these quantities which is fairly satisfactory is the following;:

1. A set of storey horizontal forces, F,, is selected as that of the (equivalent) lateral forces
in the lateral force method of analysis (i.e. proportional to the product of storey mass,
m;, times its elevation from the base, z;) and, as a first step, the building structure is
analysed under a set of storey torques proportional to these forces: F,= T, (with the
lever arm taken equal to ¢ =1).

2. The centres of twist at each floor due to these storey torques are geometrically deter-
mined and the horizontal projection of the centre of twist at the elevation of 80% of the
total height of the building H (i.e. z=0.8H) may be considered as the centre of lateral
stiffness of the whole building. In fact, the application of the set of horizontal forces, F,,
at this point at the different floor levels will produce translation of the individual storeys
with minimum (in a least-squares-sense) rotation with respect to the vertical axis (twist).

3. Once this point is determined, a second analysis is performed, for each one of the two
orthogonal horizontal directions, this time under the set of storey horizontal forces,
F,; (or F;), numerically equal to T; of the first analysis and applied through the centre
of lateral stiffness determined for the building as a whole.

4. Then, for the calculation of the torsional radius 7., the torsional stiffness and the lat-
eral stiffness are computed as follows:

a. Torsional stiffness: ratio of the total applied torsional moment, T,,, = 3, T; to the
resulting rotation, 0, g, at z=0.8H

b. Lateral stiffness: ratio of the total applied shear (in direction y), F, . = 3, F; to
the resulting displacement 8, g, at 2= 0.8H

As a matter of fact, with length units taken as those of the unit lever arm (c = 1), 7, is given by:

r, = \léy,o.SH 18 51 (4.5)

Likewise, the other torsional radius 7, is calculated considering the displacement &, 34
resulting from the application of the horizontal forces in the x direction:

n = \léx,o.gH 18051 (4.6)

It is worth noting that the results of the analysis performed for the seismic design of the
structure cannot be used directly to determine the value of 7, (and 7,) according to the proce-
dure outlined in the previous steps, because in the analyses for design, the horizontal forces,
F,;(and F_)), are applied at the storey centre of mass, whereas for the determination of 8, g,
(and &, gp), the storey horizontal forces should be applied through the centre of lateral stiff-
ness determined for the building as a whole. Therefore, two different sets of analysis (with
forces applied at the centre of mass or forces applied through the stiffness centre) have to be
performed, unless the stiffness centre coincides with the centre of mass at all storeys.

CONDITION 6

The torsional radius of the storey in each of the two orthogonal horizontal directions, x and
y, of near-symmetry according to Condition 1 above is not less than the radius of gyration
I, of the floor mass:

rezlgr, 21 4.7)
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The radius of gyration of the floor mass in plan is defined as the square root of the ratio
of the polar moment of inertia of the floor mass in plan with respect to the centre of mass
of the floor to the floor mass. If the mass is uniformly distributed over a rectangular floor
area with dimensions L and B (that include the floor area outside the outline of the vertical
elements of the structural system), the radius of gyration [, is:

I, = J(I? + B*)/12 (4.8)

The value of [ is mostly controlled by the longer dimension L of the floor shape. In par-
ticular, for rectangular shapes the value of [, is:

0.408 L for B/L =1 (square plan)

0.370 L for B/L.=0.8

0.323 L for B/L=0.5

0.298 L for B/L =0.25 (slenderness limit in Condition 4)

lS
lS
lS
lS

The factor on L does not change very much across quite different slenderness values (in fact
for a rectangular shape, [, tends asymptotically to /,=0.289L as the slenderness increases).

The condition expressed by Equation 4.7 ensures that the fundamental frequency of the
(primarily) torsional mode about the vertical axis z is higher than the fundamental (pri-
marily) translational modes in each of the two horizontal directions, x and y (see Example
4.5 for a proof of this statement in an idealised, single-storey system) and prevents strong
coupling of the torsional and translational response, which is considered uncontrollable and
potentially very dangerous.

As a matter of fact, since the radius of gyration [, is defined with respect to the centre of
mass of the floor in plan, the ‘torsional radii’ 7, and 7, that should be used in Equation 4.7
to ensure this intended ranking of the frequencies of the three modes mentioned earlier are
those defined with respect to the storey centre of mass, 7,,, and 7,,. These are related to the
‘torsional radii’ 7, and 7, defined with respect to the storey centre of lateral stiffness as:

2 2 2 2
Tox = \Te + €5xs Ty = A1y + €5, (4.9)

The greater the ‘static’ eccentricities e,, and e,, between the centres of mass C,; and stiff-
ness Cy, the larger the margin provided by Equation 4.7 against a torsional mode becoming
predominant.

Observing the value of I, =0.37L for B/L = 0.8, which is the slenderness of the schematic
cases presented in Figure 4.9, and correcting the values of the torsional radius according to
Equation 4.9 we obtain:

1. First case: 7,,, = 0.538L leading to r,,./[. = 1.45
2. Second case: 7,,, = 0.532L leading to r,,, /I, = 1.44
3. Third case: 7,,, = 0.624L leading to r,, /[, = 1.69

mx""s

From these results it is clear that all those cases pass easily the condition expressed by
Equation 4.7.

If the elements of the lateral-load-resisting system are distributed in plan as uniformly as
the mass, then the condition of Equation 4.7 is satisfied (be it marginally) and does not need
to be checked explicitly (see Example 4.6 for the proof), whereas if the main lateral-load-
resisting elements, such as strong walls or frames, are concentrated near the plan centre, this
condition may not be met and Equation 4.7 needs to be checked.
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Finally, it is clear that if the natural frequencies of the structure are determined with a
modal analysis, their values may be used directly to determine whether or not Condition 6 is
satisfied for the building as a whole. In fact, if the frequency of the first (primarily) torsional
mode of vibration is higher than the frequencies of the (primarily) translational modes in
the two horizontal directions, x and y, then this condition for regularity in plan may be
considered as satisfied.

In Example 4.7, the torsional radii of a frame building, the radius of gyration and the
eccentricities of the centre of stiffness with respect to the mass centre are determined and
the implications for the regularity in plan and for earthquake resistance are discussed. These
properties are determined in Section 7.3.3 for the example building of Chapter 7, and used
to characterise the regularity in plan and establish the g-factor value of that building.

4.3.3 Implications of irregularity in plan
4.3.3.1 Implications of regularity for the analysis model

For buildings regular in plan, the analysis for each one of the two horizontal components
of the seismic action may be carried out using an independent 2D (planar) model for each
one of the two horizontal directions of (near-) symmetry, x and y (see Section 3.1.5.4). The
2D model for each direction is geometrically similar to the ‘pseudo-3D model’ described
in Section 3.1.10 with reference to Figure 3.12: the structure is considered to consist of a
number of plane frames and/or walls (some of which may actually belong in a plane frame
together with co-planar beams and columns). However, unlike the ‘pseudo-3D model’ of
Section 3.1.10, where twisting of each rigid floor diaphragm around a vertical axis is con-
sidered, all parallel 2D frames or walls are constrained to have the same horizontal displace-
ment at floor levels; that is, they are connected in series, with axially rigid links connected
through hinges to the floors. The 2D model is analysed for the horizontal component of the
seismic action parallel to it and gives internal forces and other seismic action effects only
within vertical planes parallel to that of the analysis. The analysis does not give internal
forces for beams or walls, which are in vertical planes orthogonal to the horizontal compo-
nent of the seismic action considered. Bending in columns and walls is uniaxial, with axial
force only due to the horizontal component of the seismic action, which is parallel to the
plane of the analysis. The internal force results in columns that are common to two orthogo-
nal plane frames are obtained from the two separate 2D analyses for the two horizontal
components of the seismic action and are then combined via the 1:0.3 combination rule of
Equation 3.100.

A 2D model according to the above does not take into account any eccentricity between
the centres of mass and stiffness. However, even in buildings with zero eccentricities, the
effects of the accidental eccentricities as per Section 3.1.8 should be taken into account. For
buildings that are doubly symmetric in plan but are analysed with a 3D model, Eurocode 8
allows taking into account the accidental eccentricities of Section 3.1.8 in a very simple way.
This is done by amplifying the results of the linear analysis for each translational component
of the seismic action by (1 + 0.6x/L), where x is the distance of the member in question to the
mass centre in plan and L is the plan dimension, both are at right angles to the horizontal
component of the seismic action. This factor is derived assuming that:

e Torsional effects are fully resisted by the stiffness of the structural elements in the
direction of the horizontal component in question, without any contribution from any
element stiffness in the orthogonal horizontal direction.

o The stiffness of the members resisting the torsional effects is uniformly distributed in plan.
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The term 0.6/L is indeed equal to the storey torque due to the ‘accidental eccentricity’ of
0.05L acting on the storey seismic shear, V, divided by the moment of inertia of a uniform
lateral stiffness, kj, per unit floor area parallel to side B in plan, kzBL3/12, and further
divided by the normalised storey shear, V/(kyBL). Normally there is also lateral stiffness,
k, = kg, per unit floor area parallel to side L in plan; so, k; LB3/12 should be added to
kyBL3/12 before dividing the storey torque 0.05LV. The contribution of k, is neglected and
therefore the term 0.6x/L is safe-sided by an average factor of 2. Moreover, if it is analysed
with a separate 2D analysis for each horizontal component according to the present section,
because it meets the criteria in Section 4.3.3 for regularity in plan, the amplification factor
of the simplified approach becomes (1 + 1.2x/L) to cover the effect of the neglected static
eccentricity, e, no matter whether there is actually one. Note that this eccentricity meets
Condition 5 and Equation 4.1 in Section 4.3.2, that is, it cannot be large.

Eurocode 8 allows analysis with the lateral force method using two independent 2D mod-
els even in buildings that do not meet all conditions of Section 4.3.2 for regularity in plan,
if they meet the following instead:

a. Partitions and claddings are well-distributed vertically and horizontally, so that any
potential interaction with the structural system does not affect its regularity.

b. The height is less than 10 m.

c. In-plane stiffness of the floors is large enough to justify the rigid diaphragm assumption.

d. The storey centres of mass and stiffness lie approximately on (two) vertical lines.

e. The torsional radius 7, is at least equal to \I* + e,> and 7, to J[> + e .

If conditions (a) to (c) are met, but not (d) and (e), then two separate 2D models may still
be used, provided that, for design purposes, all seismic action effects from the 2D analyses
are increased by 25%.

The aim of the above relaxation of the regularity conditions so as to use two independent
2D models is to help the designers of small buildings. For this reason, the extent of the
application of this option is determined nationally: a note invites the National Annex to
select the importance classes for which this relaxation applies; no recommendation is given
for the selection.

Computer programs for linear analysis in 3D, static or modal, are presently ubiquitous
in every-day seismic design practice. Therefore, the possibility of using two independent 2D
models for linear analysis of regular buildings is of little practical interest. Nonetheless, this
possibility is quite important for non-linear analysis, either static (pushover) or dynamic
(response-history). Reliable, widely accepted and numerically stable non-linear constitutive
models (including the associated failure criteria) are available only for members in uniaxial
bending with (constant or little-varying) axial force; their extension to biaxial bending for
widespread use in 3D analysis belongs to the future. So, in order to use non-linear analysis,
the characterisation of a building structure as regular or irregular in plan is very important.

4.3.3.2 Implications of irregularity in plan for the behaviour factor q

As we will see in detail in Section 4.6.3, Eurocode 8 may reduce the behaviour factor of
buildings designed for ductility owing to irregularity in plan. Moreover, we will see in the
same section that if, at any floor, one or both conditions in Equation 4.7 is not met (i.e. if
the radius of gyration of the floor mass exceeds the torsional radius in one or both of the
two main directions of the building in plan), then the structural system is characterised as
torsionally flexible and the behaviour factor g (apart from any reduction due to potential
irregularity in elevation, as discussed below) is reduced to a relatively low value.
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4.3.4 Irregularity and regularity in elevation

Eurocode 8 considers a building as regular in elevation if the building itself and its structure
satisfy simultaneously the following five conditions:

CONDITION 1

The lateral-force-resisting systems (frames and walls) of the building are continuous from
the foundation to the top of the building. Naturally, if there are in-plan setbacks along the
height of the building, this rule requires that, in the zones of the building that do not extend
to its total height, the lateral-force-resisting systems located therein should extend to the full
height of such a zone. In fact, abrupt termination of lateral resisting systems at a certain
level, particularly in the case of stiff walls, normally causes a lateral deformation pattern
with a kink at that level. This deformation pattern deviates from the simple linear pattern
as per Equation 3.98, which may be assumed for regular buildings. On the other hand, such
a kinked deformation pattern produces stress concentrations and large ductility demands
in adjacent elements. Moreover, at that level the transfer of forces from the different lateral
resisting systems (due to the abrupt termination of one of them) may overstress the dia-
phragms close to that level (see Figure 4.4). This means that the modelling and dimensioning
of the diaphragm at the design stage requires particular attention.

CONDITION 2

The storey mass and the lateral stiffness are constant along the height or decrease gradu-
ally and smoothly from the foundation (or ground level) to the top of the building. More
precisely, what matters is that the ratio between storey mass and stiffness remains constant
along the height. This condition is met if the mass and stiffness are constant along the height
and also if the changes in mass and stiffness occur in a regular way for both quantities.
This latter situation is normally found in buildings with structural systems well-distributed
across the floor plan, because in those cases the progressive decrease of the storey mass
associated with the decrease of the floor dimensions also corresponds to the progressive
termination of those structural systems. By contrast, if the lateral resisting system is only
composed of a small number of (stiff) elements, it may become more difficult to ensure that
the progressive decrease of the floor dimensions (and hence its mass) does not entail abrupt
changes of stiffness due to the termination, at some point, of those stiff elements.

CONDITION 3

In buildings with framed structures, there is no abrupt variation of the overstrength of
the individual storeys relative to the design storey shear resulting from the analysis. For
the verification of this condition, the contribution of masonry infills to the storey shear
strength should be taken into account. For these purposes, the shear capacity of the sto-
rey can be computed as the sum, over all vertical elements, of the flexural resistance of
each element (at the storey bottom) divided by the corresponding shear span (moment-to-
shear ratio). In columns, the shear span may be considered as half the clear storey height,
whereas in walls it may be considered as half the distance from the storey bottom to the
top of the building.

Additionally, in case infill walls are used, their shear strengths (roughly equal to the mini-
mum area of the horizontal section of the wall panel times the shear strength of bed joints)
must be added to the storey shear capacity. It is the ratio of this actual shear force capacity of
each storey to the storey shear force resulting from the analysis that should not have abrupt
variations along the building height, for the building to be classified as regular in elevation.
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L, -1,<02L, (b L, -L,<0.1L;and

L-1,<03L

L +1,<02L, L, +L1,<050L,

Figure 4.10 Criteria for regularity in elevation in buildings with setbacks: (a) symmetric setbacks; (b) asym-
metric setbacks; (c) and (d) single setback at the lower part.

CONDITION 4

In buildings with symmetrical setbacks (along the height), the setback in each side and at
any floor should not exceed 10% of the parallel dimension of the underlying storey. This
condition applies both to buildings with gradual setbacks, as illustrated in Figure 4.10a, as
well as to those with a tower and a podium as illustrated in Figure 4.10c. This condition is
somewhat relaxed if the setback occurs within the bottom 15% of the total height of the
building, H. In such a case it is accepted, still considering the building as regular, that this
setback may reach up to 50% of the parallel dimension at the base of the building, as illus-
trated in Figure 4.10d. However, in this particular case there should be no undue reliance on
the podium for transferring to the ground the seismic shears that develop in the tower. These
shears should be transferred mainly through the vertical continuation to the ground of the
structural systems of the tower; the podium should mainly transfer to the ground its own
seismic shear. In other words, what is intended is that there is no need for the floors in the
podium to transfer, through diaphragmatic action, an important part of the lateral forces
coming from above to structural systems not placed within the vertical projection of the
tower. The relevant clause of Eurocode 8 requires that the tower be designed for a seismic
base shear at least equal to 75% of the base shear in a similar building without the podium.

CONDITION 5

In buildings with asymmetrical setbacks, any setback at any floor should not exceed 10% of
the parallel dimension of the underlying storey. Additionally, the total setback at the top of
each side of the building should not exceed 30% of the parallel dimension at the base of the
building. These conditions are illustrated in Figure 4.10b.

4.3.5 Design implications of irregularity in elevation

4.3.5.1 Implications of regularity for the analysis method

Eurocode 8 allows different seismic analysis options or values of the behaviour factor g,
depending on whether the building is regular or irregular in elevation.
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If there is irregularity in elevation, it is unlikely to have a first mode shape that varies
almost linearly from the base of the building to the roof. So, as such a mode shape underlies
the lateral-load pattern of the lateral-force method of analysis (Equation 3.98), this method
is not considered applicable to buildings characterised as irregular in elevation. The modal
response spectrum method is, by contrast, capable of capturing well the effects of structural
irregularity in elevation on the linear elastic response, but also, to a large extent, on the non-
linear response as well. So, Eurocode 8 makes the application of modal response spectrum
analysis mandatory for buildings which are irregular in elevation. This is not a penalty: in
global terms, the results of modal response spectrum analysis are not more safe-sided over-
all than those of the lateral force method. However, the modal response method estimates
much better the peak dynamic response at the level of member internal forces and deforma-
tions, especially for structures irregular in elevation.

4.3.5.2 Implications of regularity in elevation for the behaviour factor q

It is more difficult to achieve a uniform distribution of inelastic deformations throughout
the height of the structure as per Figures 2.9b to 2.9¢ in a height-wise irregular building. In
fact, at the elevation(s) where the irregularity takes place, for example:

e At a large setback

e Where a lateral-force-resisting system is vertically discontinued

e When a storey has mass, lateral stiffness or overstrength higher than that in the storey
below

it is likely to have a local concentration of inelasticity beyond the predictions of a linear anal-
ysis, even if it were a modal response spectrum analysis. Such a concentration will locally
increase the deformation demands, above the building-average value that corresponds to
the value of the g-factor used in the design. A possible way of tackling this problem would
be to adopt stricter detailing in the regions likely to be affected by the structural irregular-
ity, in order to enhance their ductility capacity to the level of the locally increased ductility
demands. Instead, Eurocode 8 imposes a reduction of 20% to the value of the behaviour
factor g used in the analysis, without relaxing the detailing requirements anywhere in the
structure. The resulting 25% increase in the required resistance throughout the building is a
serious disincentive to adopting a structural system which is irregular in elevation.

4.4 STRUCTURAL SYSTEMS OF CONCRETE
BUILDINGS AND THEIR COMPONENTS

4.4.1 Introduction

The raison d’étre of concrete buildings is to create horizontal surfaces for use/occupancy
(floors) or protection (the roof). Most of the mass generating the inertial forces in an earth-
quake resides on these horizontal elements. Gravity loads are transferred from there to the
ground via vertical elements, typically columns. Beams or girders span between columns, to
facilitate the collection of gravity loads from the horizontal surfaces and facilitate their trans-
fer to the columns (Figure 4.11a). Concrete walls are often used to resist horizontal forces and
to brace the building laterally against second-order (P — A) effects (Figure 4.11b, see Section
5.2.3.4 and Equation 5.11 for the bracing role of walls under factored gravity loads).
Concrete walls can resist a horizontal earthquake very efficiently, working as vertical
cantilevers. However, unlike in masonry buildings, it is not cost-effective to collect from



142 Seismic design of concrete buildings to Eurocode 8

(b)
(| LLLLTPNeTa | |
[

lI__ = —
=] 3

~—

Figure 4.11 Structural systems: (a) frame resisting both gravity loads and lateral actions, on footings with
two-way tie-beams; (b) wall-frame lateral-load-resisting system on two-way foundation beams.

the floors and transfer to the ground all gravity loads through what is called in Eurocode
8 ‘ductile’ concrete walls. Note, though, that it may be cost-effective to use both for seis-
mic and gravity actions only ‘large, lightly reinforced walls’ per Eurocode 8, highlighted
in Section 4.4.2.1 but not covered in detail in this book. Ductile walls normally comple-
ment a combination of columns and floor beams, whose main role is to support the gravity
loads acting on the horizontal surfaces of the building (Figure 4.11b). Normally, the beams
are directly and rigidly connected to the columns. The resulting moment-resisting beam—
column frame is also efficient in resisting horizontal or vertical earthquake forces within its
plane. Therefore, besides their main role as a gravity-load-resisting system, frames of beams
and columns double as earthquake-resisting systems; in fact, frames are the most common
type of such a system in concrete buildings.

Inertial forces should find their way to the foundation via a smooth and continuous path
in the structural system. From that point of view, cast-in-situ concrete is better for earth-
quake-resistant buildings than prefabricated elements of concrete, steel or timber that are
assembled on site: the connections between such elements create discontinuities and poten-
tially weak points in the flow of forces. So, cast-in-situ construction is the technique of
choice for earthquake-resistant concrete buildings, at least in high seismicity regions.

4.4.2 Ductile walls and wall systems
4.4.2.1 Concrete walls as vertical cantilevers

A wall differs from a column in that, under lateral loading, it works as a vertical can-
tilever. A column, by contrast, needs to be combined with beams into a frame, in order
to resist lateral loads efficiently: its moment resistance at the base is too small to make a
meaningful contribution to the base shear of the building, if divided by the shear span
(moment-to-shear ratio) of a vertical cantilever. Moreover, its lateral stiffness as a vertical
cantilever is too low to be effective in reducing inter-storey drifts for damage limitation
(see Section 1.3.2) or P — A (second-order) effects (see Section 3.1.12). To play its role as a
vertical cantilever, the wall must be much stiffer than any beams it may be connected to
at floor levels, so that these beams act only as parts of the horizontal diaphragm through
which the wall receives the lateral forces from the floor, and not as horizontal elements
of a frame encompassing both the wall and these beams. So, the wall’s bending moment
diagram under lateral loading looks like that of a vertical cantilever (see Figure 5.6 and
Figures 7.17, 7.19, 7.24 and 7.25 in the example building of Chapter 7): the moment does
not change sign within a storey (except possibly near the top of wall-frame systems); the
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moments decrease considerably from the wall base to the top, much more than the shears
do. Besides, if beams frame into the wall at floor levels, the wall bending moment is nor-
mally larger right above a floor than right below it; as the same vertical bars cross these
two sections and the increase in axial compression enhances the wall moment resistance,
plastic hinges can form in the wall only above floor levels. Multiple plastic hinging may
well develop up the height of the wall, if the wall moment resistance at floor levels and at
the connection to the foundation is tailored to the elastic seismic moment demands. Even
then, a soft-storey mechanism cannot form in the wall itself, as it requires plastic hinging
in counter-flexure at two different locations up the height of the wall (cf. Figures 2.9a,
2.9d, 2.9¢ and 2.12).

To ensure that a wall plays the role of a stiff and strong vertical spine of the building and
prevents a soft-storey mechanism, Eurocode 8 promotes localisation of the wall inelastic
deformations at its base. A wall designed and detailed to dissipate energy in a single flex-
ural plastic hinge at the base and remains elastic throughout the rest of its height is called
in Eurocode 8 ‘ductile wall’. It is the main wall type addressed in Eurocode 8, but not the
only one. An alternative is allowed, termed ‘large lightly reinforced wall’, where flexural
overstrength over the seismic demands from the analysis is intentionally avoided anywhere
up the height of the wall, in order to promote plastic hinging at several floor levels above the
base and translate the global displacement demand into small rotational demands at several
locations up the wall. The inelastic deformational demand at the base of the wall is thus
reduced; it may even be eliminated, by allowing rocking of the wall’s footing, instead of fix-
ing the base of the wall against rotation — a prerequisite for plastic hinging at the base of a
‘ductile wall’. In this way, the cumbersome and expensive detailing of the wall base region
for ductility is avoided.

Large, lightly reinforced walls have certain advantages that ductile walls lack; for instance,
rocking of a long footing and/or rotation of a long wall section about a neutral axis close
to the compression edge of the wall raise the centroid of the wall section and, with it, the
weights supported by the wall, cyclically (but temporarily) converting part of the vibration
energy into recoverable and harmless potential energy of these weights, instead of inelastic
deformation energy in plastic hinges, associated with permanent deformations and damage.
Therefore, systems of large lightly reinforced walls designed according to their own special
rules in Eurocode 8 may be more cost-effective under certain conditions than systems of
ductile walls per Eurocode 8. However, as the use of large lightly reinforced walls is not
common vyet, this book covers only ductile walls.

4.4.2.2 What distinguishes a wall from a column?

Design codes define a wall as a vertical element with an elongated cross-section: a lower
limit of 4 for the aspect ratio (long-to-short dimension) of a rectangular cross-section is used
in Eurocode 2 for a vertical element to be considered as a wall. If the cross-section consists
of rectangular parts, one of which has an aspect ratio greater than 4, the element is also clas-
sified as a wall. With this definition on the basis of the cross-sectional shape alone, a wall
differs from a column in that it resists lateral forces mainly in one direction (parallel to the
long side of the section) and can be designed for such a unidirectional resistance by assigning
the flexural resistance to the two edges of the section (‘flanges’, or ‘tension and compression
chords’) and the shear resistance to the ‘web’ between them, as in a beam. So, for the pur-
poses of moment resistance and deformation capacity, the designer may concentrate the ver-
tical reinforcement and provide concrete confinement only at the two edges of the section.
Note that, if the cross-section is not elongated, the vertical element has to develop significant
lateral-force resistance in both horizontal directions; so, it is meaningless to distinguish the



144 Seismic design of concrete buildings to Eurocode 8

‘flanges’, where the vertical reinforcement is concentrated and the concrete confined, from
the ‘web’, where they are not.

The above definition of a ‘wall’ is appropriate for dimensioning and detailing at the level
of the cross-section, but meaningless for the intended role of a wall in the lateral-load-
resisting system and for the usual practice to design, dimension and detail the wall as an
entire element and not just at the cross-sectional level. Seismic design often relies on walls
for the prevention of a storey-mechanism in the plane parallel to the wall’s long direction,
without checking if plastic hinges form in beams rather than in columns. However, walls can
impose a beam-sway mechanism only if they act as vertical cantilevers (i.e. if their bending
moment has the same sign throughout, at least in the lower storeys) and develop a plastic
hinge only at the base. Whether a wall, as defined above, will indeed act as a vertical canti-
lever and form a plastic hinge only at its base does not depend on the aspect ratio of its sec-
tion, but on how stiff and strong the wall is relative to the beams it is connected to at storey
levels; if these beams are almost as stiff and strong as the wall, then the wall works as a frame
column rather than as a vertical cantilever. For a wall to play its intended role, the length
dimension of its cross-section, [, should be large, not just relative to its thickness, b, but in
absolute terms. To this end, and for the beam sizes commonly found in buildings, a value of
at least 1.5 m for low-rise buildings or 2 m for medium- or high-rise ones is recommended for
1. In fact, it can be shown (Fardis 2009) that the optimal value of [, for moment and shear
resistance, stiffness and ductility is about one-sixth of the total height of the wall, H,.,.

4.4.2.3 Conceptual design of wall systems

The walls of a wall system should be arranged in two orthogonal horizontal directions with
as much two-way symmetry as possible. If the individual walls are all similar and symmetri-
cally placed, they will be subjected at every storey to fairly uniform seismic force and defor-
mation demands, minimising the uncertainty about the seismic response. In a system with
(very) dissimilar walls, the stronger and stiffer ones will yield first, imposing on the rest their
inelastic deflection pattern, notably one where storey drifts increase almost linearly to the
top owing to the rotation of the plastic hinge at the base, while the walls that are still elastic
tend to deflect as vertical cantilevers. In that case, besides the increased uncertainty of the
post-elastic response, the floor diaphragms will be stressed hard to iron out the differences in
height-wise deflection patterns between the stiffer walls, which have gone inelastic, and the
more flexible ones, which remain elastic. Note, though, that the price of complete uniformity
is poor redundancy: plastic hinges will develop almost simultaneously at all wall bases, and
there will be little overstrength or redistribution of forces from certain walls to others.
Almost all our knowledge of the cyclic behaviour of concrete walls concerns walls with a
two-way-symmetric rectangular or quasi-rectangular section (barbelled section, i.e. rectan-
gular with each edge widened into a rectangular or square ‘column’ or compact flange — with
an aspect ratio less than 4 — to enhance the moment resistance and prevent lateral instability
of the compression zone). Such walls are modelled and dimensioned as prismatic elements
having an axis through the centroid of the section. Lacking a better alternative, the same
practice is applied when a rectangular wall runs into or crosses another wall at right angles,
to create a wall with a composite cross-section of more than one rectangular parts — each
part with an aspect ratio greater than 4 (L-, T-, U-, H-shaped walls, etc.). Such walls have
high stiffness and strength in both horizontal directions, hence are subjected to biaxial
bending and bi-directional shears during the earthquake. They are more cost-effective than
the combination of their constituent parts as individual rectangular walls. However, pres-
ent-day knowledge of their behaviour under cyclic biaxial bending and shear is very limited,
and the rules used for their dimensioning and detailing still lack a sound basis. Moreover,
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their detailing for ductility is complex and difficult to implement on site. For this reason, it
is recommended to make limited use of such walls in practical design. If non-rectangular
walls are chosen, they should have a fairly simple section (e.g. one-way-symmetric U, or
two-way-symmetric H).

Large openings should be avoided in ductile walls, especially near the base, where the
plastic hinge forms. If they are necessary for functional reasons (doors or windows), they
should not be staggered vertically, but should be arranged at every floor in a regular pattern,
creating a coupled wall, with the lintels between the openings serving as coupling beams
and designed as such. According to Eurocode 8, two walls are considered as coupled, if they
are connected together (normally at each floor) through regularly spaced beams meeting
special ductility conditions (‘coupling beams’) and this coupling reduces by at least 25% the
sum of the bending moments at the base of the individual walls (the ‘piers’), compared to
that of the two ‘piers’ working independently.

4.4.2.4 Advantages and disadvantages of walls for earthquake resistance

Structural systems dominated by ductile walls have many advantages for earthquake
resistance:

e The high lateral stiffness of walls reduces inter-storey drifts and structural or non-
structural damage; it also overshadows the contribution of masonry infills to the lat-
eral stiffness of the building and reduces the adverse effects: global ones, due to their
potential irregularity in plan (eccentric placement) or elevation (open storey(s)), or
local, notably shearing off weak columns, the creation of captive, squat columns, etc.

¢ Soft-storey mechanisms are precluded by the absence of wall counter-flexure within a
storey.

¢ Rocking of the wall’s footing or of the part of the wall above a plastic hinge raises the
supported weights and is favourable for seismic performance.

e Overall, systems of walls are more cost-effective for earthquake-resistance than beam-
column frames.

There also are drawbacks:

e Walls are inherently less ductile than beams or columns, more sensitive to shear and
harder to detail for ductility.

¢ The small number of walls required for earthquake resistance leads to smaller redun-
dancy and fewer alternative load paths.

e It is difficult to place several long walls without compromising the architectural func-
tion of the building, producing large eccentricities in plan, or creating a torsionally
sensitive building (i.e. one with more lateral stiffness closer to the centre in plan than
to the perimeter).

e It is not cost-effective to support the building’s gravity loads with walls alone; certain
beams and columns are needed anyway for that and may efficiently serve for earth-
quake resistance as well.

e It is hard to provide an effective foundation to a wall, especially with isolated footings.
Because of the large bending moment and the relatively low vertical load of walls, the
development of tensile forces in the foundation is often inevitable. A more favour-
able situation is to have the wall continue downwards from the ground floor into a
basement (see Sections 4.4.5, 6.3.1 and 7.1). In such a case, the wall bending moment
decreases within the basement from its maximum value at ground level (see Figures
7.17,7.24 and 7.25), owing to the lateral restraint (horizontal forces) that the basement
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floors provide; hence the moment applied at the foundation level may be substan-
tially smaller, and vertical tension forces are avoided. The downside is that the sharp
decrease of the wall’s bending moment below the ground floor entails development of
large shear forces in the wall (see Figures 7.17, 7.24 and 7.25).

e There is some uncertainty concerning certain features of the seismic response of walls
and their systems: the cyclic behaviour and seismic performance of individual walls
(which is more difficult to study experimentally or analytically than in the case of beams
or columns); the rocking response and the associated lifting of the weight supported by
the wall, the increase of wall shears after plastic hinging at the base (see Section 5.6.2.1),
etc. Moreover, modelling for analysis, and dimensioning/detailing of walls is more chal-
lenging compared to frame columns (especially for non-rectangular walls).

4.4.3 Moment-resisting frames of beams and columns

4.4.3.1 Special features of the seismic behaviour of frames:
The role of beam-column connections

In a lateral-load-resisting system comprising only uncoupled walls, the sum of the wall seis-
mic shears at the base is equal to the resultant of the lateral seismic forces applied at storey
levels (seismic ‘base shear’ of the building); the resultant moment of these storey lateral
seismic forces with respect to the base (seismic ‘overturning moment’ at the base) is equal to
the sum of bending moments at the base of the walls. So, walls resist the seismic overturn-
ing moments and shears directly, through bending moments and shears, respectively, in
the walls themselves. In contrast, frames resist the seismic overturning moment not by the
column moments, but through their axial forces (tensile at the windward side of the plan,
compressive at the opposite, leeward one, see Figures 7.10, 7.13, 7.16, 7.20 and 7.23). The
column bending moments resist indirectly the seismic storey shears: the algebraic difference
of bending moments at the top and bottom of each column produces its contribution to the
seismic shear of the storey. So, the seismic response of frame members is governed by flex-
ure, or strictly speaking by normal action effects: bending moments and axial forces.
Elastic moment, shear and axial force diagrams due to the seismic action in the frames
of the example building of Chapter 7 are depicted in Figures 7.8 to 7.16 and 7.20 to 7.23.
Among other features, the seismic moment diagrams from the ‘lateral force method’ exhibit
an abrupt change in the algebraic value of the seismic moment across any beam—column con-
nection: the beam or column moment turns from large and positive at one face of a joint into
large but negative at the opposite face. If the joint, being of finite dimensions, is considered
as a part of the beam within the column, this abrupt change in the beam moment across the
joint means that a large vertical shear force develops inside it, which is equal to the sum of
the absolute values of beam moments at the joint faces divided by the column width in the
plane of the frame (Figure 4.12a). By the same token, if the joint is considered as a part of the
column between adjacent beam spans, the abrupt change in column moments across the joint
implies a large horizontal shear force in it, which is equal to the sum of absolute values of col-
umn moments at the joint faces divided by the beam depth (Figure 4.12b). So, the core of the
joint is subjected to very high shear stresses, equal to the sum of (the absolute values of) the
beam or column seismic moments at opposite faces of the joint divided by the volume of this
core (see Figure 2.21). Another repercussion of the rapid change in the algebraic value of seis-
mic moments across any beam—column connection is that any beam or column longitudinal
bars crossing the joint are under high tensile stresses on one side of the joint and under high
compressive stresses on the other. This means that very high bond stresses develop all along
the stretch of such bars within the joint; if plastic hinges form in the beam or the column at
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Figure 4.12 Seismic moments and shears in the beams and columns connected at a joint and seismic
shears in the joint core: (a) joint considered as part of the beams; (b) joint considered as
part of the column.

both sides of the joint, the value of these bond stresses may exceed the bar yield force divided
by the lateral surface of the bar inside the joint (as a matter of fact, along the bottom bars,
bond stresses may approach twice that value). Because the beams, rather than the columns,
are expected to develop plastic hinges, to accommodate these bond stresses the column width
should exceed a certain multiple of the beam bar diameter, as specified in Section 5.2.3.3 of
Chapter 5. This often turns out to be a major constraint on the column size or the beam bar
diameter. If the relevant rule in Eurocode 8 is not met, the bars may slip through the joint,
thus increasing the apparent flexibility of the members framing into it and preventing them
from plastic hinging next to it (Figure 2.22a). Although this will not have catastrophic con-
sequences, it prevents the frame members connected to that joint from contributing to the
strength, stiffness and energy dissipation capacity of the frame to their full potential.

4.4.3.2 Conceptual design of RC frames for earthquake resistance

The general layout and certain details of the geometry of an individual plane frame have
a major impact on its seismic behaviour. Very important also is the overall layout of the
frames in a frame structural system. The location of frames in plan and their span lengths
are normally governed by architectural and functional considerations, while beam depths
may be controlled by design for factored gravity loads (for the ‘persistent and transient
design situation” of EN 1990). Nevertheless, the structural designer is essentially free to
choose the all-important geometric details of individual plane frames and has certain free-
dom concerning their overall geometry and location in plan.

Any single plane frame should run continuously from one side of the building plan to
the other, without offsets, interruptions (i.e. missing beams between adjacent columns in a
floor), or indirect supports of beams on other beams:

e If a beam does not continue straight from span to span, but its axis is offset at the
column between them, there is no smooth flow of beam internal forces through a
proper beam—column joint, neither continuity of the beam longitudinal bars across the
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column from one span to the next: these bars have to terminate there and be separately
anchored at the joint.

¢ Even when the beam axis is not offset from span to span, the smooth flow of internal
forces from the beam(s) to the column is impaired by a large eccentricity between
the axis of the beam and the supporting column. The behaviour of strongly eccentric
beam—column joints is, by-and-large, unknown. For that reason, Eurocode 8 sets an
upper limit on the eccentricity, e, between the axis of the beam and the column at their
connection:

e<b/4 (4.10)

where b, is the largest cross-sectional dimension of the column at right angles to the
beam axis. Note that, if one lateral side of the beam is flush with one face of the col-
umn, this condition restricts the ratio of b, to the beam width, b,, not to be greater
than 2.0. This is the case at the corner columns of the example building in Chapter 7
(see Figure 7.2).

e If a beam terminates at an (indirect) support on another beam, there is large uncer-
tainty concerning its rotational restraint by the supporting beam via torsion in the
latter. In approximation, an indirect support may be considered as a simple support;
the indirectly supported beam is less effective in frame action than one connected to
columns at both ends.

The ideal plane frame has:

1. Constant beam depth in all bays of a storey

2. Constant size of each column in all storeys

3. Approximately uniform spans

4. Interior columns of approximately the same size
5. Approximately the same height in all storeys

Note that, if points 1 to 4 above are met, and the exterior columns have one-half the
stiffness of the interior ones, then, if the effect of column axial deformations is negligible,
all beams in the storey will develop the same elastic seismic shears and bending moments
(which will be equal at the two beam ends); all interior columns will also have the same
elastic seismic shears and moments while their elastic seismic axial forces will be zero; the
two exterior columns will develop half the seismic elastic shears and moments of interior
ones and will resist the full seismic overturning moment, via seismic axial forces equal to
the seismic overturning moment at storey mid-height divided by the distance between the
axes of the two exterior columns. If all members of such a frame are dimensioned to resist
exactly the elastic seismic moments, all beam ends in a storey will be subjected to (about) the
same inelastic chord rotation demands; all columns, interior or exterior, will also develop
(about) the same inelastic rotation demands at storey bottoms; the same at column tops.
Such uniformity reduces uncertainty concerning the distribution of seismic action effects
among frame members. If the two exterior columns have more than one-half the stiffness of
interior ones, their share of storey elastic seismic shears will increase (alongside their elastic
moments, as well as those at the two outer beam ends), but less than proportionally; seismic
axial forces in interior columns will be non-zero, but small.

Beams with long span may have their top reinforcement at the supports governed by fac-
tored gravity loads (the ‘persistent and transient design situation’ as per EN 1990), rather
than by the ‘seismic design situation’. This will result in beam overstrength, My, ,, relative
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to the moment demand, M, in the ‘seismic design situation’. The overstrength is carried
over to the capacity design of columns around joints (per Equation 5.31 in Section 5.4.1 of
Chapter 5) and to the capacity design shears of beams and columns (per Equations 5.42 and
5.44, respectively, in Section 5.5.1), penalising them and creating some uncertainty whether
plastic hinges will form in the beams or the columns. Besides, the large hogging moments
due to quasi-permanent gravity loads at the ends of long span beams may prevent reversal
of yielding in sagging flexure at any plastic hinges that may form there. As a result, inelas-
tic elongations accumulate in the top reinforcement and the beam gradually grows longer,
pushing out the supporting columns and possibly forcing exterior ones to separate from the
exterior beams which are at right angles to the elongating one(s).

Beams with low span-to-depth ratio have to be dimensioned for high shear forces, from
the seismic analysis or from capacity design in shear (see Equations 5.42 in Section 5.5.1).
At the ends of such beams the shear due to quasi-permanent gravity loads is small (see
last term in Equations 5.42) and a reversal of the seismic action will also cause an almost
full reversal of the sign of the acting shear (cf. Equation 5.43 in Section 5.5.1), exhaust-
ing the shear capacity of the beam in both diagonal directions or causing sliding shear
failure along through-depth cracks at the end section(s) of the beam. To resist such effects,
diagonal reinforcement or stirrups at £45° are needed at the ends of short beams (see
Equations 5.42 and 5.43 in Section 5.5.1 and Equations 5.49 to 5.51 in Section 5.5.3).
Moreover, unless diagonally reinforced, short beams have low deformation capacity and
poor ductility.

For the reasons detailed above, short beam spans should be avoided, while spans of 4 to
5 m should be preferred over longer ones, at least for the storey heights and gravity loads
commonly encountered in buildings.

In frame systems (with the frames preferably having an individual geometry according to
the above), frames should be arranged in two orthogonal horizontal directions in a way that
maximises two-way symmetry and minimises irregularities in plan of the type highlighted
in Section 4.3.2. If such frames are all similar and symmetrically placed, they will be sub-
jected at every storey to fairly uniform seismic force and deformation demands, without
undue concentration in a single frame, member or location thereof and risk of early failure.
Whatever has been said in the first paragraph of Section 4.4.2.3 concerning dissimilar walls
in a wall system applies by analogy to systems of frames with very different strength and
stiffness: the stronger and stiffer ones will yield earlier during the response, imposing on the
rest a deflection pattern where storey drifts increase almost linearly to the top, instead of fol-
lowing the storey shear force pattern. The floors will be subjected to larger in-plane forces,
to bridge the differences between the drift patterns of the stiffer and already inelastic frames
and those of the more flexible ones, which remain elastic. Complete uniformity will again
result, though, in a less progressive formation of the overall plastic mechanism, and plas-
tic hinges will develop almost simultaneously in the various frames, be it where expected.
Moreover, the storeys have little overstrength after the first plastic hinge formation and can-
not redistribute forces from certain locations to others.

4.4.3.3 Advantages and drawbacks of frames for earthquake resistance

The advantages of RC frames for earthquake resistance may be summarised as follows:

e Frames place few constraints on a building’s architectural design, including the facade.

e Frames may be cost-effective for earthquake resistance, because beams and columns
are placed anyway for gravity loads; so, they may also provide earthquake resistance
in both horizontal directions, if their columns are large.
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e Two-way frame systems, comprising several multi-bay plane frames per horizontal
direction, are highly redundant, offering multiple load paths.

e Thanks to their geometry (notably their slenderness), beams and columns are inher-
ently ductile, less prone to (brittle) shear failure than walls.

e Frames with concentric connections and regular geometry have well-known and
understood seismic performance, thanks to the numerous experimental and analytical
studies carried out in the past; moreover, they are rather easy to model and analyse for
design purposes.

e It is easier to design an earthquake-resistant foundation element for a smaller vertical
member than for a larger one (i.e. for a column in comparison to a wall).

There also are disadvantages:

e Frames are inherently flexible; the cross-section of their members may be governed by
the inter-storey drift limitation under the moderate earthquake for which limitation of
damage to structural and non-structural elements is desired (see Section 1.3.2).

e Column counter-flexure in the same storey allows soft-storey mechanisms (Figure
2.9a), which lead to collapse.

e Earthquake-resistance requirements on frames lead to large columns.

e The reinforcement detailing of frames for ductility requires workmanship of high
level for its execution and good supervision on site (especially to fix the dense rein-
forcement and place/compact the concrete through the beam—column joints in two-
way frames).

e Sizing and detailing of beam-column joints for bond and anchorage of beam bars
crossing them is quite challenging. Difficulties increase with the use of higher strength
materials, as the size of joints made of higher concrete strength is smaller, while higher
steel strength implies higher bond stresses.

e There is still some uncertainty concerning the seismic response and performance of
frames:

e The effects of eccentric connections or strongly irregular layouts in 3D.

e The size of the effective slab width in tension (see Figure 2.22b) and the extent
to which slab bars in it and parallel to the beam increase its flexural capacity for
hogging moment, Mg,,, hence the beam capacity design shears per Equations
5.42 in Section 5.5.1 of Chapter 5 and the likelihood of plastic hinging in the
columns, despite meeting the capacity design rule around joints per Equation 5.31
in Section 5.4.1.

e The behaviour of columns of two-way frames under cyclic biaxial bending with
varying axial force, which may even cause plastic hinging in columns which meet
the capacity design rule of Equation 5.31 in separate uniaxial bending per hori-
zontal direction.

4.4.4 Dual systems of frames and walls
4.4.4.1 Behaviour and classification per Eurocode 8

Walls and frame systems each have their advantages and disadvantages as lateral-load-
resisting systems. Walls seem to have a better balance of advantages against drawbacks;
nevertheless, a concrete building always has beams and columns to support the gravity
loads; it is a waste not to use them for earthquake resistance. Therefore, frames and walls
may well be cost-effectively combined in a single lateral-load-resisting system.
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Eurocode 8 uses the fraction of the elastic seismic base shear taken by all the system’s
frames according to linear analysis for the seismic action, to distinguish whether frames or
walls dominate the lateral-load-resisting system:

e When frames or walls take at least 65% of the seismic base shear, we have a ‘frame
system’ or a ‘wall system’, respectively.

e When the percentage of the seismic base shear taken by frames or walls is between
35% and 65%, the frame-wall system is called ‘dual’; if the fraction of elastic base
shear taken by the walls is from 50% to 65%, the system is a ‘wall-equivalent dual’; if
it is between 35% and 50%, it is a ‘frame-equivalent’ one.

Eurocode 8 considers a wall system as a ‘coupled wall system’, if coupled walls, as defined
at the end of Section 4.4.2.3, provide more than 50% of the total wall resistance.

The building in Chapter 7 is classified as a ‘wall-equivalent dual’ in the X-direction and
as a ‘wall system’ one in Y (see Section 7.3.1).

Dual systems combine the strength, stiffness and immunity to soft-storey effects of wall
systems with the ductility, deformation capacity and redundancy of frames. The walls pre-
vent non-structural damage in frequent, moderate earthquakes, helping the building meet
the inter-storey drift limits of Eurocode 8 under the damage limitation earthquake (Section
1.3.2). The frames serve as a second line of defence in strong earthquakes, in case the
deformation capacity of the less ductile walls is exhausted and some walls lose part of their
strength and stiffness.

The way frames and walls share the horizontal seismic action comes out of their different
horizontal deflection pattern under lateral loading:

e Frames have a shear-beam-type of lateral displacement pattern, in which inter-storey
drifts follow the height-wise pattern of the storey seismic shears: they decrease from
the base to the top.

e Walls fixed at the base deflect like vertical cantilevers: their inter-storey drifts increase
from the base to the roof.

If frames and walls are combined in the same structural system, the floor diaphragms
impose on them common floor displacements. As a result, the walls restrain the frames
at lower floors, taking the full inertia loads of these floors, while near the top the frame
is called upon to resist the full floor inertia loads and, in addition, to hold back the walls,
which - if alone — would have developed a large deflection at the top. So, in rough approxi-
mation, the walls of dual systems may be considered to be subjected to:

e The full inertia loads of all floors
* A concentrated force at roof level, in the reverse direction with respect to the peak
seismic response and the floor inertia loads

The concentrated force at the top exceeds the resultant inertia loads in the upper floors,
that is, the storey seismic shear there. So, the walls are often in reverse bending and shear
in the upper storeys with respect to the storeys below (see Figures 7.17, 7.24 and 7.25). If
the frame is considered to be subjected to just the concentrated force at the top, equal and
opposite to the one it applies there to the wall(s) and in the same sense as the floor inertia
loads, then it has in all storeys a roughly constant seismic shear and about the same bend-
ing moments (see Figures 7.8, 7.9, 7.11, 7.12, 7.14, 7.15, 7.21 and 7.22). Thus, even when
the cross-sectional dimensions of frame members are kept the same in all storeys, their
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reinforcement requirements for the seismic action do not decrease from the base to the top.
As a matter of fact, the reinforcement required in the columns may even decrease in the
lower storeys, thanks to the favourable effect of the higher axial load on flexural strength.
Therefore, in dual systems column size may never decrease in the upper storeys.

4.4.4.2 Conceptual design of dual systems

Dual systems have a more complicated seismic response than pure frame or wall ones. The
resulting larger uncertainty concerning their seismic behaviour and performance may be their
only drawback as a system. They are a quintessential example of systems of dissimilar subsys-
tems; hence, whatever has been said in the first paragraph of Section 4.4.2.3 and the last one
of Section 4.4.3.2 applies to them as well. Their conceptual design should aim to reduce the
uncertainties arising from this feature. For instance, floor diaphragms should be thicker and
stronger within their plane than what is required in pure frame systems. Another uncertainty
arises from any rocking of the walls at the base, which will shift part of the storey shear from
the walls to the frames. Rocking of wall footings with uplift is an intrinsically complex phe-
nomenon, not reliably modelled in the context of seismic design practice. Its underestimation
will lead to unsafe design of the frames, while its overestimation is unsafe for the walls.

Note that in a system consisting only of walls, the distribution of seismic shear between
them will be practically unaffected by the rotation of the walls at the foundation level:
rotations will mainly increase the absolute magnitude of storey drifts. The effect of footing
rotation is even smaller in pure frame systems, practically affecting the seismic action effects
only in the ground storey; moreover, such rotation is much smaller than in wall footings,
because the higher axial load of the column resists uplift; more importantly, the smaller
the cross-section of a vertical element compared to the plan dimensions of its footing, the
smaller its rotation. So, it is dual systems that suffer from the increased uncertainty due to
the rotations of footings with respect to the ground.

A prudent design of a dual system would reduce differential rocking. Ideally, this could
be achieved by providing full fixity of walls and columns at the foundation level. However,
full fixity is unfeasible, except at the top of a rigid basement (as in the example building
of Chapter 7). In all other cases, great attention should be paid in the analysis phase to
the modelling of soil compliance under the foundation elements, especially those of walls.
Moreover, sensitivity studies should be carried out concerning the assumptions made and
the values of properties used in the analysis.

Tall buildings often have a strong wall near the centre in plan, for example, around a service
core housing elevators, stairways, vertical piping, etc., and stiff and strong perimeter frames. In
such systems outrigger beams may be used to advantage, increasing the global lateral stiffness
and strength and mobilising the perimeter frames against the seismic overturning moment.

4.4.5 Foundations and foundation systems for buildings

Foundations are used to transfer the gravity loads from the structure to the ground. During
earthquakes they should also be capable of transferring horizontal loads and overturning
moments developed by the inertial forces acting on the building masses. In addition, founda-
tions may be subjected to differential movements imposed by the soil: for example, along the
height of deep embedded foundations, across wide raft foundations or between foundations
belonging to the same building unit, etc. During earthquakes, foundations have a tendency
to settle, slide or possibly uplift.

Different types of foundation systems may be encountered in buildings: shallow isolated
or spread footings, box-type foundations, rafts, caissons and piles.
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Caissons and piles are typically used when either the surface soil layers have poor mechan-
ical characteristics and the bearing resistance should be sought deeper, or when large tensile
forces are developed and the foundations must be ‘tied-down’ to the ground. This type of
deep foundations systems is not covered in this book.

e An isolated footing is defined as a single concrete element placed underneath the verti-
cal element to transfer directly its axial force due to gravity loads to the ground. It may
be square, rectangular or even circular in plan.

e A spread footing is defined as an isolated footing with a large plan dimension, extend-
ing under several columns. It is especially appropriate under closely spaced columns or
a long concrete wall.

* A box-type foundation is a box extending throughout the building footprint area and
comprising a wall all around the perimeter, working as a deep spread footing, plus two
rigid horizontal diaphragms: one at the top level of the perimeter wall and another at
the bottom. Such a system is very convenient for buildings with a basement.

¢ A raft foundation is a slab extending across the whole building footprint and support-
ing all its columns or walls.

As a general rule, deformations of shallow foundations during earthquake must remain
limited, because they take place below the ground surface and are therefore difficult to
inspect and repair after an earthquake. Furthermore, inelastic deformations of soils and
foundations are hard to predict accurately, although it is recognised that they may provide
a significant source of energy dissipation. Foundations should, therefore, be stiff enough to
ensure a uniform transmission to the ground of the actions from the superstructure; to this
end, special attention should be paid to the effects of horizontal differential displacements
between vertical elements. To avoid such displacements, all individual footings are usually
placed at the same level and interconnected through tie-beams. As the seismic action acts
in both horizontal directions, a two-way tie-beam system is necessary. The main role of tie-
beams is to reduce the magnitude and impact of differential settlements and/or horizontal
movements between adjacent footings, due to large unbalanced vertical loads and/or varia-
tions in the underlying soil. By having all footings at the same level, one avoids attracting
forces to one of them located deeper, which may act as a skirt.

If the contact pressures are too large compared to the foundation bearing capacity or, if
despite of the tie-beams, large differential settlements cannot be ruled out, isolated footings
are often replaced by a raft, which acts as a single footing under the entire building, trans-
ferring vertical loads to the ground throughout its plan area. As for individual footings, it is
strongly recommended to have the raft over a horizontal surface, instead of different levels.

The conceptual design of shallow foundation systems for buildings is revisited in more
detail in Section 6.3.1.

The choice of a foundation system and of a structural system of the superstructure that suits
the layout of the building and the foundation conditions is the subject of Examples 4.8 and 4.9.

4.5 THE CAPACITY DESIGN CONCEPT

4.5.1 The rationale

The fundamental period of concrete buildings, T, is normally in the constant spectral pseu-
dovelocity part of the response spectrum or beyond that part: T>T.. As pointed out in
Sections 3.2.2 and 3.2.3, in that range inelastic seismic displacements are roughly equal to the
elastic ones (‘equal displacement rule’). A prime target of seismic design is to apportion the
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given total seismic displacement demand to the various elements of the building, entrusting
inelastic deformations only to those elements that can reliably withstand them, while keeping
in the elastic range those which cannot. The tool for such a control of the inelastic seismic
response is ‘capacity design’. This tool establishes a strength hierarchy among the individual
elements which ensures that, along the full load path of the inertial forces to the foundation
ground, the strength of the structural system is governed by ductile elements, not brittle ones.
Although capacity design is implemented during the detailed design phase, its effectiveness
depends strongly on the structural layout and member sizes chosen during conceptual design.

The elements to which the global displacement demands are channelled via capacity
design are chosen using the following criteria:

1. The inherent ‘ductility’ of the element: its capacity to sustain large inelastic deforma-
tions and dissipate energy in cyclic loading, without material loss of force-resistance,
or the lack thereof, i.e., the inherent brittleness of the element.

2. Importance for the stability of other elements and the integrity of the whole: vertical
elements are more important than horizontal; the foundation is the most important
part of the system; so, they must be shielded from inelastic deformations which may
jeopardise their integrity.

3. Accessibility and convenience to inspect and repair.

On the basis of these criteria, a hierarchy of elements is established, which determines if
and in which order they may enter the inelastic range during the seismic response. ‘Capacity
design’ is the tool to enforce this hierarchy. It works as follows:

The elements higher in the hierarchy are identified; their required design resistance is
then determined not from the analysis, but via ‘capacity design’, that is, using only equilib-
rium and the force capacities of those elements which are ranked as less important, more
accessible or inherently more ‘ductile’ (hence the term ‘capacity design’), so that these latter
elements exhaust their force resistance (yield) before the former do and indeed shield them
from yielding.

4.5.2 The role of a stiff and strong vertical spine in the building

A prime aim of ‘capacity design’ is to prevent a ‘storey-sway’ plastic mechanism, in which
inelastic deformations concentrate in a single storey (Figure 2.9a) and may lead to failure
and collapse of its vertical elements, triggering overall collapse. As, for given fundamental
period T, the global inelastic displacement demand at roof level is roughly given (‘equal
displacement rule’), it should be uniformly spread to all storeys, instead of a single one. For
this to be kinematically possible, the beam—column nodes along any vertical element should
stay on the same line during the seismic response. To this end, vertical elements should (see
Figure 2.9b to 2.9e):

¢ Stay in the elastic range up their full height

¢ Rotate about their base, either at a flexural ‘plastic hinge’ they form just above their
connection to the foundation (Figures 2.9b and 2.9d), or by rigid-body rotation of
their individual footings relative to the ground (Figures 2.9¢ and 2.9¢)

Such a side-sway plastic mechanism is kinematically possible, only if plastic hinges also
form at both ends of every single beam of the system (‘beam-sway’ mechanisms). This pro-
duces the widest possible spreading of the global displacement demand through the structural
system and minimises the local deformation demands on individual members or locations.
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If the intended distributed plastic hinging in Figures 2.9b to 2.9e takes place simultane-
ously throughout the structure, beam ends and the bases of vertical elements will develop a
chord rotation (angle between the normal to the member section at a member end and the
chord connecting the two member ends) approximately equal to the roof displacement, 9,
divided by the total building height, H, , (i.e. to the average drift ratio of the building,
0/H,,,). Besides, the chord rotation ductility factor demand at member ends (peak chord
rotation demand during the response, divided by the chord rotation at yielding of that end)
is roughly equal to the demand value of the top displacement ductility factor, y;. Under the
design seismic action, Ui is about equal to g, (see Equation 3.120), that is, well within the
capacity of concrete members with end regions detailed for ductility per Section 5.7. So, in
the context of protecting life and fulfilling the no-collapse requirement, the ‘beam-sway’
mechanisms of Figures 2.9b to 2.9¢ allow to achieve, relatively easily and economically,
fairly high g-factor values.

In the ‘storey-sway’ mechanism of Figure 2.9a, all inelastic deformations take place in the
single ‘soft-storey’, with plastic hinging at both ends of all vertical elements in the storey in
counter-flexure. The chord rotation demands at the ends of these vertical elements approach
the ratio of the roof displacement, 8, to the soft-storey height, b,. So, they are H, /b, times
larger than those of a ‘beam-sway’ mechanism. The chord rotation ductility factor is about
equal to H,,/h; times the global displacement ductility factor, y;, derived from the g,-factor
via Equations 3.119 and 3.120 (cf. Equations 3.122 and 3.123 and Figure 3.15 in Section
3.26). No mid- or high-rise building can withstand such demands in its columns.

To spread the global inelastic deformation demands to the entire structural system and
prevent a ‘soft-storey’, the building needs a strong and stiff spine of vertical elements,
which by virtue of their geometry and/or design will stay elastic above their base under
any earthquake. This is achieved by overdesigning them (except at the base section) rela-
tive to the horizontal ones and/or the action effects from the analysis. Sections 5.4.1 and
5.6.1.1 present in detail how this is pursued through ‘capacity design’ of columns or walls,
respectively.

In addition to their vital role in spreading the total deformation and energy dissipation
demands to the entire structural system, vertical elements also meet prioritisation criteria 1
and 2 of Section 4.5.1 for choosing which elements to capacity-design; compared to beams,
they are:

e Inherently less ‘ductile’, because axial compression adversely affects ductility
® More important for the stability and integrity of the whole structure

However, concerning criterion 3, columns are easier to repair than beams, as they are
accessible from all sides.
Eurocode 8 promotes beam-sway mechanisms through multiple means, direct or indirect:

¢ In frame- or frame-equivalent dual systems: by capacity design of the columns to be
stronger in flexure than the beams and, therefore, be spared from plastic hinging (see
Section 5.4.1)

¢ In wall- and wall-equivalent dual systems: by overdesigning them above the base, to
remain elastic in flexure (see Section 5.6.1.1) and by entitling them to g-factor values
comparable to those of frame- or frame-equivalent dual systems (see Section 4.6),
despite their poorer redundancy and the inherently lower ductility of walls

¢ Through the Eurocode 8 limits on inter-storey drifts (computed for elastic response to
the damage limitation seismic action, using the cracked stiffness of concrete members,
see Section 1.3.2): these limits cannot be met without walls or good-size columns
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4.5.3 Capacity design in the context of detailed

design for earthquake resistance

Capacity design is applied as follows in the context of detailed seismic design using linear
analysis with the g-factor (cf. Section 5.1.1):

1. Detailed design starts with dimensioning for the ultimate limit state (ULS) in flexure

(for the bending moment and axial force pairs from the analysis for all applicable ULS

design situations) and detailing of the longitudinal reinforcement at those locations

which are considered as appropriate/convenient to detail for cyclic ductility and energy

dissipation and where flexural plastic hinges are foreseen/allowed in a ‘beam-sway’

plastic mechanism (called ‘dissipative zones’ in Eurocode 8):

a. All beam ends connected to vertical elements (see Sections 5.3.1, 5.3.2, 5.7.1, 5.7.3
and 5.7.4).

b. The base section of all vertical elements (at the connection to the foundation, see
Sections 5.4.2 for columns, 5.6.1 for walls).

c. The top and bottom regions of those columns which Eurocode 8 exempts from
capacity design (see Sections 5.4.1 and 5.4.2).

. All elements in shear and the regions of vertical elements outside ‘dissipative zones’

in flexure are dimensioned to stay elastic after flexural yielding of the ‘dissipative
zones’. To this end, they are overdesigned with respect to the relevant action effects
from the analysis, normally through ‘capacity design’, employing equilibrium and
the overstrength flexural capacities, Y My, Of the already dimensioned ‘dissipative
zones’.

. ‘Dissipative zones’ are detailed to provide ductility capacity according to the deforma-

tion demands imposed on them by force-based design with the chosen g-factor.

. The ground, and normally the foundation elements themselves, are normally capacity-

designed to stay elastic when the ‘dissipative zones’ in the superstructure reach their
overstrength flexural capacities (Section 6.3.2); Eurocode 8 allows also the option
to dimension and detail foundation elements for ductility, as in the superstructure,
despite the difficulty of repairing them.

4.6 DUCTILITY CLASSIFICATION

4.6.1 Ductility as an alternative to strength

According to Equations 3.119 and 3.120, the design seismic forces are approximately
inversely proportional to the global displacement ductility factor, ;. Therefore, increasing
the available global ductility reduces the internal forces for the dimensioning of structural
members, hence possibly their cost (see also Section 4.1 and Figure 4.1). Apart from any cost
benefits, ductility has several advantages as a substitute for strength:

A high g-factor makes it feasible, or easier, to verify the foundation soil, which is nor-
mally done on the basis of strength, not of deformation capacity.

Reduced strength serves as a physical upper limit on the inertial forces and the response
accelerations that can develop in the structure, ‘isolating’ from them, hence protecting,
any contents of the building and non-structural parts that are sensitive to acceleration.
An ample ductility supply enhances robustness and resilience of the building to earth-
quakes stronger than the design seismic action and its sensitivity to the uncertain
details of the ground motion.
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However, high lateral force resistance, in lieu of enhanced ductility, offers other advantages:

* By helping the structure to stay elastic under more frequent, moderate earthquakes,
higher strength reduces structural damage and improves usability after the event.
Structural damage is also reduced under the design seismic action.

¢ Detailing of members just for strength, instead of ductility, is easier and simpler. It can be
done more reliably, especially when the technical level of workmanship is not very high.

e Force-based design against non-seismic actions (including wind) provides certain lat-
eral strength for free, to be used for earthquake resistance as well, without costly and
demanding detailing of members for ductility.

e If the structural layout is unusually complex and irregular, outside the scope of seis-
mic design standards addressing mainly ordinary layouts, the designer may feel more
confident for his/her design by narrowing the gap between the results of linear analysis
used to dimension the members and the non-linear seismic response to the design seis-
mic action, through a lower g value.

In view of the different advantages of both possible design choices (ductility vs. strength),
it is up to the designer to decide what is the best option for each specific situation at hand.
In this context, and as explained in detail in the next section, Eurocode 8 introduces three
different ‘Ductility Classes’, leaving the choice to the designer. However, national authori-
ties may set some limitations to such a choice.

4.6.2 Ductility Classes in Eurocode 8

Eurocode 8 allows trading ductility for strength by providing rules for three alternative
ductility classes (DCs):

1. Ductility Class Low (DC L)
2. Ductility Class Medium (DC M)
3. Ductility High (DC H)

4.6.2.1 Ductility Class L (low): Use and behaviour factor

Buildings of DC L are not designed for ductility; only for strength. Except certain minimum
conditions for the ductility of reinforcing steel (see Table 5.6 in Section 5.7.2), they have to
follow just the dimensioning and detailing rules specified in Eurocode 2 for non-seismic
actions, for example, wind. Although they are expected to stay elastic under the combina-
tion of the design seismic action and the concurrent gravity loads (the ‘seismic design situa-
tion’), they can use a behaviour factor value of g = 1.5 instead of g = 1.0, thanks to member
overstrength due to (cf. Section 3.2.4):

e The difference between the mean strength of steel and in-situ concrete and the design
values (5%-fractile strengths divided by partial material factors, see Section 5.1.2)

e The possible control of the amount of reinforcement in some critical sections by the
requirements for non-seismic actions or by minimum reinforcement

e The use of the same reinforcement at the cross-sections of a beam or column across
a joint, determined by the most demanding of these two sections; rounding-up of the
number and/or diameter of bars, etc.

DC L buildings are not cost-effective for moderate or high seismicity. Moreover, lack-
ing engineered ductility, they may also lack a reliable safety margin against earthquakes
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stronger than the design seismic action. So, they are not considered suitable for moderate or
high seismicity regions. Eurocode 8 recommends using DC L only for ‘low seismicity cases’,
but leaves this decision to the National Annex, along with the definition of what is a ‘low
seismicity case’: its recommendation is to consider it as such, if the design ground accelera-
tion on rock, a, (including the importance factor, y;), does not exceed 0.08 g, or the design
acceleration on the ground, 4,S, is not more than 0.1 g (see Section 3.1.3 for 4, and §).
Eurocode 8 allows also to use DC L if the seismic design base shear at the level of the
foundation or the top of a rigid basement for g = 1.5 is less than the base shear due to the

design wind, or any other lateral action for which design is based on linear analysis.

4.6.2.2 Ductility Classes M (medium) and H (high) and their use

Seismic design for lateral strength alone without engineered ductility is an extreme, for
use only in the special cases highlighted in Section 4.6.2.1. In the prime case of seismic
design, that is, based on ductility and energy dissipation, Eurocode 8 gives the option to
design for more strength and less ductility or vice-versa, by choosing between Ductility
Class M or H.

Buildings of DC M or H have g-factor values higher than the default value of 1.5 used for
DC L and considered as due to overstrength alone. DC H buildings enjoy higher values of g
than DC M ones; in return, they are subject to stricter detailing rules (see Tables 5.1 to 5.5)
and have higher safety margins in capacity design against shear (see Sections 5.5 and 5.6).
However, unlike DC L, DC M does not systematically require more steel than DC H: the
total quantities of materials are essentially the same; in DC H, transverse reinforcement and
vertical members have a larger share of the total quantity of steel than in DC M.

DC M and H are expected to achieve about the same performance under the design seis-
mic action, but DC M is slightly easier to design and implement and may give better perfor-
mance in moderate earthquakes. DC H may provide larger safety margins than M against
collapse under earthquakes (much) stronger than the design seismic action and may be more
economic for high seismicity, especially if there is a strong local tradition and expertise in
seismic design and on-site implementation of complex detailing.

Eurocode 8 does not relate the choice between DC M and H to seismicity or the impor-
tance of the structure, nor puts limits to their application. Countries are free to choose for
the various parts of their territory and types of construction. They would better, though,
leave this choice to the designer, depending on the specifics of the project.

4.6.3 Behaviour factor of DC M and H buildings
In Eurocode 8, the value of the behaviour factor, g, of DC M and H buildings depends on:

¢ The Ductility Class
e The type of lateral-force-resisting-system
e The regularity or lack thereof of the structural system in elevation

The value of the g-factor is linked, indirectly (through the ductility classification) or
directly (see Section 5.7.3), to the local ductility and detailing requirements for members.

Table 4.1 lists the values of the g-factor for buildings which are regular in elevation per the
Eurocode 8 criteria in Section 4.3. These values are called basic values, g,, of the g-factor
and are the ones linked to local ductility demands and member detailing (see Section 5.7.3).
The value of g used for the calculation of the seismic action effects from linear analysis is
reduced with respect to g,
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Table 4.1 Basic value, q,, of behaviour factor per EC8 for height-wise regular buildings

Lateral-load-resisting structural system: DCM DCH

| Inverted pendulum 1.5 2

2 Torsionally flexible 2 3

3 Uncoupled wall system, not in one of 3 40,/0,
the two categories above

4 Any structural system other than the 3o/, 4.50, /01
above

1. In buildings irregular in elevation per Eurocode 8 (see Sections 4.3.4 and 4.3.5): to
q=0.8q,.

2. In wall, wall-equivalent dual or ‘torsionally flexible’ systems, to (1+a,)g/3 = 0.5q,
where g may be reduced per 1 above if there is irregularity in elevation, and o, (<2) is
the mean aspect ratio of the walls in the system (sum of wall heights, b,,;, divided by the
sum of wall cross-sectional lengths, /,,); this last reduction reflects the adverse effect of
low shear span ratio on wall ductility for o, < 2 (a value corresponding to a mean shear
span ratio of the walls in the system less than about 1.65, which are non-ductile).

The above reductions of g notwithstanding, DC M and H buildings are entitled to a final
g-factor value of 1.5, considered to be always available thanks to overstrength alone.

An ‘inverted pendulum system’ is, per Eurocode 8, a building with at least 50% of the
mass in the top third of its height, or with energy dissipation possible only at the base of
one element (Eurocode 8 excludes from this category one-storey frame systems having all
columns connected at the top through beams in both horizontal directions and a maximum
value of normalised axial load, v,, among all combinations of the design seismic action with
the concurrent gravity loads, which is less or equal to 0.3). The low g-factors of ‘inverted
pendulum system’ in row 1 are due to poor redundancy and sensitivity to P — A effects or
overturning moments.

According to Eurocode 8, a system is ‘torsionally flexible’ if, at any floor, the radius of
gyration of the floor mass exceeds the torsional radius in one or both of the two main direc-
tions in plan. As pointed out in Section 4.3.2, it is also considered in Eurocode 8 as plan-
wise irregular. Its low g-factor value in row 2 of Table 4.1 reflects the increased likelihood
of twisting about the vertical, to which the perimeter elements of the building are sensitive.

The types of system in rows 3 and 4 of Table 4.1 have been defined in Section 4.4.4.1.
Except for uncoupled wall systems of DC M, their g-factor includes explicitly an over-
strength factor o,/0, due to redundancy of the structural system. This is in addition to the
factor of 1.5 due to overstrength of materials and elements (as in DC L), which is hidden
in the DC M or H g-factor values. o, /0, is the ratio of: a) the seismic action that turns the
building into a full side-sway plastic mechanism, to b) the seismic action at formation of
the first plastic hinge in the system (with the quasi-permanent gravity loads acting together
with both these seismic actions); o, is the lowest value of (M, — M)/M among all members
(Mg, is the design value of moment resistance at the member end and M, M, the bending
moments there from elastic analysis for the design seismic action and the quasi-permanent
gravity loads, respectively); o, may be computed as the ratio of:

1. The seismic base shear causing a full plastic mechanism according to non-linear static
(‘pushover’) analysis per Section 3.3.2, to
2. The base shear due to the design seismic action
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Figure 4.13 Definition of factors o, and o, on the basis of a base shear vs. top displacement diagram from
pushover analysis.

For consistency with o, pushover analysis should use the design values, My , of moment
resistance at member ends (Figure 4.13).

A practitioner is unlikely to carry out iterations of: (a) pushover analyses and (b) design
based on elastic analysis, just to compute o, /0, for the g-factor. So, Eurocode 8 gives default
values of o, /0. For buildings regular in plan, the default values increase with the redun-
dancy of the system, as follows:

o, /o, = 1.0 for wall systems with only two uncoupled walls per horizontal direction
o, /o, = 1.1 for

® One-storey frame systems or frame-equivalent dual ones

e Wall systems with two or more uncoupled walls in the horizontal direction considered
o, /o, =1.2 for

® One-bay multi-storey frame systems and frame-equivalent dual ones

e Wall-equivalent dual systems

e Coupled wall systems

o, /o, = 1.3 for multi-storey multi-bay frames or frame-equivalent dual systems

In a building which is irregular in plan per Eurocode 8 (see Section 4.3.2), the default
value of o, /0, is the average of:

e 1.0
¢ The default value given above for buildings regular in plan

Values higher than the default may be used for o, /0, but up to a maximum of 1.5, pro-
vided that the value used is confirmed by pushover analysis, after design with the resulting
g-factor.

Buildings in rows 3 and 4 of Table 4.1 may use different g-factors in the two main hori-
zontal directions, depending on the structural system and its vertical regularity or not in
these two directions, but not by virtue of Ductility Class, which is the same for the entire
building.

The relative magnitude of the values of g highlighted in the present section reflects
the position of Eurocode 8 on the effects of the type and regularity of the lateral-force-
resisting-system on its earthquake resistance. This is an aspect to keep in mind during
conceptual design.

Examples 4.10 to 4.12 at the very end of this chapter illustrate some implications of the
choice of Ductility Class, and of the corresponding value of the behaviour factor, for the design.
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4.7 THE OPTION OF ‘SECONDARY SEISMIC ELEMENTS’

Eurocode 8, like other seismic codes, distinguishes the structural members that have a
secondary role and contribution to earthquake resistance from the rest, calling them ‘sec-
ondary seismic’ and ‘primary seismic’ members, respectively (henceforth called ‘secondary’
and ‘primary’ members). The contribution of ‘secondary’ members to the lateral stiffness
and earthquake resistance of the building is not taken into account in the analysis for the
seismic action. The building structure is considered to rely for its earthquake resistance only
on ‘primary’ members: ‘secondary’ members are not considered as part of the lateral-load-
resisting system.

Only ‘primary’ members are designed and detailed for earthquake resistance following
the rules of Eurocode 8. By contrast, ‘secondary’ members follow the rules of Eurocode 2
and are fully considered and designed only for the non-seismic combinations of actions.
The only requirement of Eurocode 8 on them is to maintain support of gravity loads
under the most adverse displacements and deformations imposed on them in the seismic
design situation, that is, by the design seismic action and the concurrent gravity loads
(see Section 5.9).

The designer is free to choose which members, if any, he/she may consider as ‘secondary’,
subject to two restrictions introduced in Eurocode 8:

1. The total contribution to lateral stiffness of all ‘secondary’ members may not exceed

15% of that of all ‘primary’ ones.

2. The characterisation of some of members as ‘secondary’ may not change the classifica-
tion of the structure from irregular to regular.
So:

a. If a frame, a column or a wall does not continue through the full height of the
relevant part of the building, it cannot be classified as ‘secondary’.

b. If there is an abrupt change in the storey stiffness or (in infilled frame buildings)
in the storey overstrength, this variation cannot be smoothened out by classifying
some vertical elements as ‘secondary’.

c. The eccentricity between any storey’s centres of mass and stiffness may not be
reduced from over 30% of the storey’s torsional radius to less, and the torsional
radius in any direction may not increase from less than the radius of gyration of
the masses to more, by classifying some vertical elements as ‘secondary’, etc.

The main reason to consider as ‘secondary’ some of the members of a building designed
for DC M or H is if they do not fall within the scope of Eurocode 8 for seismic design based
on energy dissipation and ductility: flat slab frames and post-tensioned girders are prime
examples. So, if the designer wants to use these types of concrete elements ina DC M or DC
H building, he/she may have to rely for the seismic action only on walls or strong frames
(usually along the perimeter), designating flat slabs, post-tensioned girders and their sup-
porting columns as ‘secondary’ members. As a matter of fact, in frame or frame-equivalent
dual systems, columns supporting post-tensioned girders had better be taken as ‘secondary’
anyway: normally the large size of prestressed girders makes it unfeasible to satisfy the
strong-column/weak-beam capacity design rule, Equation 5.31; moreover, such columns
should have a cross-section sufficient for the support of gravity loads, but otherwise as small
as feasible, in order to reduce the ‘parasitic’ shears developing in these columns upon post-
tensioning at the expense of the axial force in the girder.
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The designer may also want to consider as ‘secondary’ those members which — owing to
architectural constraints — do not conform to the rules for geometry, dimensioning or detail-
ing for energy dissipation and ductility, for example, beams which:

e Are connected to columns at an eccentricity violating Equation 4.10

¢ Are supported on columns which are not large enough to satisfy the Eurocode 8 rule
for bond and maximum diameter of the top bars of the beam within the joint (see
Section 5.2.3.3); or

e Connect closely-spaced columns and hence develop a high seismic shear force (e.g. a
large capacity-design shear from Equations 5.42, owing to the short clear span, [ )) that
cannot be verified for the ULS in shear.

Unlike the cases which are outside the scope of Eurocode 8’s design rules for energy dis-
sipation and ductility, those cases mentioned earlier should preferably be accommodated
through proper selection of the local structural layout, instead of resorting to ‘secondary’
members. There are two good reasons for doing so:

1. The earthquake ‘perceives’ the structure as built, neither ‘knowing’ much nor ‘caring’
about the considerations and assumptions made in its design calculations. So, the ‘pri-
mary’ members may perform well thanks to their ductility, but the ‘secondary’ ones
may suffer serious damage.

2. A structural system that cannot be utilised in its entirety for the engineered earthquake
resistance of the building is a waste of resources. This is more so, given the conserva-
tism of the special design requirements for ‘secondary members’ (see Section 5.9).

That said, the option of designing the entire structural system for strength instead of duc-
tility (see Section 4.6.2.1) may be worth considering. In the framework of Eurocode 8, this
means selecting DC L (Low) and g = 1.5. Then it is not necessary to make a distinction between
‘secondary’ and ‘primary’ members, as all members can be designed and detailed according
to Eurocode 2, both for seismic and for non-seismic actions, without any regard to the special
detailing and dimensioning rules of Eurocode 8 for energy dissipation and ductility.

EXAMPLE 4.1

The building shown in Figure 4.14, 20 x 35 m in plan, has columns on a 5 x5 m grid
and shear walls (with dimensions shown in m, 250 mm in thickness) in three alternative
arrangements, (a), (b), (c), all with the same total cross-sectional area of the shear walls.
Compare the three alternatives, taking into account the restraint of floor shrinkage, the
lateral stiffness and the torsional one with respect to the vertical axis, the vertical rein-
forcement required for the same total flexural capacity at the base, the static eccentricity,
the system’s redundancy, etc.

2.5 2.5
2.5 2.5 5.0 5.0
Y
T 5.0 50| |00
X
2.5 2.5 2.0 5.0
2.5 2.5

Figure 4.14 Example 4.1.
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Answer

The volume of concrete is the same in all three options. At first sight, option (a) seems to
make better use of it, because all four walls have biaxial strength and stiffness and are
well placed to maximise the overall torsional stiffness with respect to the vertical axis.
However, the walls of the two other options provide larger total lateral stiffness to both
horizontal directions, as well as torsional stiffness with respect to the vertical. For the
same vertical reinforcement ratio, they also give larger flexural resistance than those in
option (a) thanks to their geometry and, secondarily, their larger axial load (due to their
larger tributary floor area). Moreover, in option (a) the walls restrain shrinkage of the
floors and may lead to cracking. It is also difficult to provide an effective foundation to
a wall at a corner in plan, as in option (a). Compared to (b), option (c) provides larger
total lateral stiffness and flexural resistance in horizontal direction Y, as well as torsional
stiffness with respect to the vertical axis. It has very large eccentricity of the centre of
mass with respect to those of stiffness and resistance (which are almost at the centre of
the 10 m long wall); this large eccentricity is less of a problem than it seems at first sight,
because it is partly resisted by the contribution to torsion about the vertical axis of the
two walls in X (similarly to case 3 in Figure 4.9). The main handicap of option (c) is its
lack of redundancy in direction Y and the lack of a load path other than through the 10 m
long wall. For these reasons, the ideally balanced option (b) seems better. However, its
two walls per direction still provide poor redundancy.

EXAMPLE 4.2

In the structural systems sketched in elevation as (a) and (b) (Figure 4.15), cross-hatched
regions denote walls and vertical lines are columns. Compare the two systems with regard
to: (i) regularity in elevation and (ii) suitability for earthquake resistance.

Answer

Regularity in elevation: System (a) is irregular in elevation, because the wall, which is its
main source of lateral force resistance, does not continue to the top. If the criterion for
irregularity in elevation is storey lateral stiffness and resistance, system (b) may nominally
be less irregular than (a), because these properties are nominally not so much affected by
the offset in the wall at floor 4, as by the termination of the wall there in case (a).
Suitability for earthquake resistance: System (b) has a very severe discontinuity in the
load path at floor 4, which will lead to more adverse and uncertain response than the
termination of the wall at that floor in system (a). In principle, system (a) can be designed
and detailed for the concentration of inelastic deformation demands at the bottom of the

(@) (b)

Elevation

Figure 4.15 (a—b) Example 4.2.
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fifth storey columns and can be capacity-designed against a soft-storey mechanism at
that storey. System (b) cannot be reliably designed for predictable seismic response; it is
absolutely unsuitable for earthquake resistance.

EXAMPLE 4.3

Compare the two systems (a) and (b) (Figure 4.16) concerning earthquake resistance.

Answer

Both systems are irregular in elevation, owing to the drastic change of the horizontal
dimension at floor 2. However, system (b) is much more adverse for earthquake resistance
for many reasons: (1) The outer columns do not continue to the ground; at the second
floor their action effects need to be transferred to the central columns, which continue to
the ground, via the horizontal elements and the floor diaphragm at that level; (2) above
floor 2, only the central part of the frame is engaged in inelastic action for earthquake
resistance; the outer ones follow its displacements, staying in the elastic regime; (3) the
central part of the frame, which provides almost all of the earthquake resistance, has
less redundancy and a smaller number of possible load paths; and (4) the resultant of
lateral forces is applied higher up, while the width of the base (distance between the outer
columns) is much smaller; this combination increases very much the seismic axial forces
at the base of the outer columns and the footings underneath, making the verification of
these columns at the ULS in flexure with axial load very difficult, as well as that of their
footings for the corresponding seismic action effects.

EXAMPLE 4.4

Comment on the layout of the framing plan shown in Figure 4.17 concerning earthquake
resistance in the two horizontal directions X or Y (dots are columns, lines depict beams).

Answer

The building is characterised by perfect symmetry and uniformity in plan. At each cor-
ner, the area between the outline of the floor and the convex polygonal line enveloping
the floor is about 2% of the floor area, well below the 5% limit set in Eurocode 8 for regu-
larity in plan. In direction X, all the frames are continuous from one side to the opposite.
However, in Y, all interior frames are one-bay; there is no continuous frame from one side
to the other, except for the two 3-bay exterior ones. So, the building suffers in that direc-
tion from lower redundancy and multiplicity of load paths, fewer plastic hinges in beams
(56 per storey in direction X and 36 per storey in direction Y) and less cost-effective use
of the concrete in the frames.

(a) (b)

Elevation

Figure 4.16 (a—b) Example 4.3.
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Figure 4.17 Example 4.3.

EXAMPLE 4.5

A system, whose centres of mass and lateral stiffness coincide in plan, has three uncoupled
DOFs: the translations in the two orthogonal horizontal directions, X and Y, and twisting
about the vertical axis, Z. Show that the torsional rigidity conditions of Eurocode 8 (i.e.
torsional radii greater than the radius of gyration of the mass) imply that the period of the
twisting mode, Ty, is shorter than those of the translational ones in X, Ty, and Y, T.

Answer

Ty =2m(M/Ky), Ty=2m(M/K,), Ty =2m\(Is/K), where: Ky, Ky, Kq: lateral stiffness in X,
Y, torsional stiffness about a vertical axis through the centre of mass and stiffness, M, I,:
mass and rotary moment of inertia about vertical axis th