
��������	
���
����	��	�������	���	������	����������	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

������	����	��	

���������	�������	��	����
�� 	���������	��	!��"������	�#�����	���	$�������	
���������	�������	��	������� 	���������	��	�������	�#�����	���	$�%"�#	$�������	
�������	
��
�������
����������
������������������	��
���������	�
�����	����	����
��	����	���������
�����������
�
���	������	��	���� !������������������
���"��#�#$����%&%�

&�
��	������	�
����
��	��	�
��	������'	

���������	
����
���
&%'%�(
���&%�%�)
���
����%�&"����

�����	������������������		��
�����������	��������������������
(%�*+��

����,%�-
����.%&%��
�����
���*%&%�/�������

���	�������������������
������������������	���������
.%�%�
�	
�����%.%�-�������
���-%�%���

�0�

�������������
��
.%�'�����
���%�-	00������(%�.
�����
���%�*���
�	��(%�%�1	2	�	
�
���-%�

���������

����������	���
��	����������
��
)%�
���
����

�������� ���������
����������������34�����	�	��5�
)%��6������6��

����		�	���������
�����!��	 �������
��	����������
�����������	�
(%,%�)�7�	��(%8%�����
	��
���(%�%���
�����

��	��"����#	��������	���������
/%�8�2������
���8%��
�
�

������	������������
�����������$������������������
8%�%���
���������
���9%����
����2������

���	���������������	������� 	����������������������
&%��
������:%���7���
����%��0����7;��	�

��
���	���	� �����
�������		����
<%���2=���:%��6����:%�'�����
���:%�(
��=��7�
�������	������������"����	�����������	� 	������
���������
8%�>
7�	���

������	����!�#���������	���������%�����������
-%�&������<%�
��	2=?�0�
���8%�.��@
�

!�#����������	�����
�����
���&'�(A�
�%B9%�����/%�%�/��7���
���(%(%�&����
��	����

������	�������� ���������������
:%�%�*�����B-	���
����%'%�

�
����
/�2�	�
�	�������:����4!!C�

!�#������
�%��	�	�	
���
���.%���	
�	����
/�2�	�
�	�������:����4!!C�

���������	
����
�������
����
�
�

�������	��
��

��
����	���
���������
�
���
�
�
�
�
�
�
�
�
�
����������������

�
�
�
�
�
�
�
�
�
�
�

����

����������	
�
��
�
�����
������
��������������
���������
	�����
����������������������������������
�����������
��
�
������������ ����!�����������"#��$%&'(�������
����
���
�
�
�
�
�
��
��������)�!�
�*��
�
�������������!���
�����
�
�
�
�
�����	
��
�
� +�����������������������
�,�(�����
�,�-���
�������.�!��/��
� �����������
�������
������������0�
� %
�������������������
� �
1�������
����������
�-�
����0�
� 2('
3�
� ���#�%34(552'$5�
�
)�!�
�*��������������
�
������6��6��!���
�����
�
�
�
�
�����	
�
�
� +������������������������"�	
�
��
�
����
����
��������
�
� � �
����
�,�-���
�������.�!��/�������������
�������
������������0�
� ���������!�!�����
����
�������������
�������.
�

� �%
�������������������
��
�����������
�-�
����0��%'2(6������
�1����
������
�������
�
17(%8
2
�5$��(&&5� � � � � �
2('
366��((� (&&5&8&844�
�
���
�����1�.�!��/�������������
�������
����������������#�%$5'6((5(�

�����������
���6������
����

�
9���������6:���
��)�������(&&8 �
�

+�1)��;
�

�
����������/;�
����������������
���
�/�����1���+
��<��/������
��5�������=���� ������#
���/��
+��&%82&6(&'3���
�
�
�����>""???
�
��?��/�
����
�
��
��� �����
�*� �
��� ��
����� ���� ���� ��������� ��� ����
���� ��� ����
��� ����*�� ��� ���������� ��� �����?��
��
�����������������������*������� �������
����
����������%'33���������!���
������
�����!��������������
������� ��� ��
���������� ���
�*� ����� ��� !*�
�*� ��
���� ?���� ���� ������ ����������� ��� ?������� ��� ����
��!��������������������
�������������
���������������������
�����
����?���������������������������������
!*��������*������)��������������*
��	�@��!��
��������������!�������
�
�
1����������������������
�������
���
�/������
�����������!���
������������������*��������������
!���������
�
�����������
����������
��������
����
����.�������������������
����
?��
��������
������
������������������
���������
�����
�
�
1��� ��!������� �
/��� ��� ���������
������ �.������ ��� ��������� ?���� ���
��� ��� ����
����
�*� ��� ����
������
���������
�������������!��/�
����
�����
������
�*����
����������!����*������
!����*�����
�*��������
���������������
���
*�!���
��
���
�
'��3��8��2��4��$��5��(��� �
�

��������
����

ISBN 978-1-85233-694-3 ISBN 978-0-85729-398-5 (eBook)
DOI 10.1007/978-0-85729-398-5

ISBN 978-1-85233-694-3

Originally published by in (&&8��������6:���
��)������)������

�

To Janet
E.F.C.

To Carlos and Marta
C.B.

Series Editors’ Foreword

The topics of control engineering and signal processing continue to flourish and
develop. In common with general scientific investigation, new ideas, concepts and
interpretations emerge quite spontaneously and these are then discussed, used,
discarded or subsumed into the prevailing subject paradigm. Sometimes these
innovative concepts coalesce into a new sub-discipline within the broad subject
tapestry of control and signal processing. This preliminary battle between old and
new usually takes place at conferences, through the Internet and in the journals of
the discipline. After a little more maturity has been acquired by the new concepts
then archival publication as a scientific or engineering monograph may occur.

A new concept in control and signal processing is known to have arrived when
sufficient material has evolved for the topic to be taught as a specialised tutorial
workshop or as a course to undergraduate, graduate or industrial engineers.
Advanced Textbooks in Control and Signal Processing are designed as a vehicle
for the systematic presentation of course material for both popular and innovative
topics in the discipline. It is hoped that prospective authors will welcome the
opportunity to publish a structured and systematic presentation of some of the
newer emerging control and signal processing technologies in the textbook series.

The books of E.F. Camacho and C. Bordons on model predictive control
provide a valuable archive of the development of this particular control technology
and theoretical paradigm. In 1995 Professors Camacho and Bordons published
their monograph Model Predictive Control in the Process Industries (ISBN 3-540-
19924-1) in the Springer-Verlag London Advances in Industrial Control series. As
the title demonstrates, this monograph emphasized the widespread use of the model
predictive control technique in the process industries. It was the use of simple
models and the ability of the method easily to accommodate system constraints that
gave the method its advantage over classical control. Another feature was the
optimisation framework of the method where minimising energy and resource
usage are widely used concepts in the process industries.

The Advances in Industrial Control monograph on model predictive control
was a very successful book. Somehow the mix of introductions to Model Predictive
Control theory and the empirical practical guidelines developed by the authors was
readily absorbed by industrial engineers and academic researchers alike. So that

viii Series Editors’ Foreword

just three years later in 1998, the monograph was revised and reincarnated as a
volume in the Advanced Textbooks in Control and Signal Processing series simply
titled Model Predictive Control (ISBN 3-540-76241-8).

Now a further five years has passed and the subject of model predictive control
continues to grow along with the stature and experience of the distinguished
authors, Professors Camacho and Bordons. This second edition has three new
chapters and an up-graded applications chapter. The mix of theory and empirical
practical insight remains the same but the new chapters are on nonlinear model
predictive control, applications to hybrid systems and on fast implementation
methods. The new applications included are for an olive oil mill and a robot
problem. Thus the second edition archives recent theoretical developments to
nonlinear and hybrid systems whilst the robot application broadens the applications
archive to areas other than the process industries.

We welcome this second edition of Professors Camacho and Bordons’ Model
Predictive Control. Engineers and control researchers new to the predictive control
methods will find the early chapters of the book provide an excellent historical and
tutorial introduction to the techniques. Seasoned researchers will be interested to
add to their knowledge an assessment of the potential of predictive control methods
for nonlinear and hybrid systems. In five years’ time we may even be looking
forward to a further update of this very successful control engineering method in a
third edition of a fine Advanced Textbooks in Control and Signal Processing
volume!

M.J. Grimble and M.A. Johnson
Industrial Control Centre
Glasgow, Scotland, U.K.

October 2003

Preface

Model Predictive Control (MPC) has developed considerably over the last
two decades, both within the research control community and in industry.
This success can be attributed to the fact that Model Predictive Control is,
perhaps, the most general way of posing the process control problem in the
time domain. Model Predictive Control formulation integrates optimal con-
trol, stochastic control, control of processes with dead time, multivariable
control and future references when available. Another advantage of Model
Predictive Control is that because of the finite control horizon used, con-
straints and, in general nonlinear processes which are frequently found in in-
dustry, can be handled. Although Model Predictive Control has been found
to be quite a robust type of control in most reported applications, stability
and robustness proofs have been difficult to obtain because of the finite hori-
zon used. This has been a drawback for a wider dissemination of Model
Predictive Control in the control research community. Some new and very
promising results in this context allow one to think that this control tech-
nique will experience greater expansion within this community in the near
future. On the other hand, although a number of applications have been re-
ported in both industry and research institutions, Model Predictive Control
has not yet reached in industry the popularity that its potential would sug-
gest. One reason for this is that its implementation requires some mathemat-
ical complexities which are not a problem in general for the research control
community, where mathematical packages are normally fully available, but
which represent a drawback for the use of the technique by control engineers
in practice.

One of the goals of this text is to contribute to filling the gap between the
empirical way in which practitioners tend to use control algorithms and the
powerful but sometimes abstractly formulated techniques developed by con-
trol researchers. The book focuses on implementation issues for Model Pre-
dictive Controllers and intends to present easy ways of implementing them
in industry. The book also aims to serve as a guide to implement Model Pre-

x Preface

dictive Control and as a motivation for doing so by showing that using such
a powerful control technique does not require complex control algorithms.

The book is aimed mainly at practitioners, although it can be followed by
a wide range of readers, as only basic knowledge of control theory and sam-
ple data systems is required. A general survey of the field, and guidance in
the choice of appropriate implementation techniques, as well as many illus-
trative examples, are given for practicing engineers and senior undergrad-
uate and graduate students. The book covers most Model Predictive Con-
trol algorithms with a special emphasis on Generalized Predictive Control.
This control method uses a transfer function model of the process in terms of
gains, time constants and dead times which are well understood in industry.
This method is middle of the road between industry and academy, where
state space-based methods are more attractive because they allow easy anal-
ysis of stability and robustness.

We have not tried to give a full description of all MPC algorithms and
their properties, although the main ones and their main properties are de-
scribed. Neither do we claim this technique to be the best choice for the con-
trol of every process, although we feel that it has many advantages. Therefore
we have not tried to make a comparative study of different Model Predictive
Control algorithms amongst themselves and versus other control strategies.

The text gathers recent results and developments that have appeared in
the active field of Model Predictive Control since the first edition was pub-
lished in 1999. The text is composed of material collected from lectures given
to senior undergraduate students and articles written by the authors, and is
also based on a previous book (Model Predictive Control in the Process Industry,
Springer, 1995), written by the authors.

This second edition is not just an updated version of the previous book; it
also includes exercises and companion software. This MATLAB�-based soft-
ware package can be freely downloaded from the book’s companion web
site (http://www.esi.us.es/MPCBOOK) and allows the examples that appear
in the book to be reproduced.

E. F. Camacho and C. Bordons
Seville, March 2004

Acknowledgements

The authors would like to thank a number of people who in various ways
have made this book possible. Firstly we thank Janet Buckley, who trans-
lated part of the book from our native language to English and corrected
and polished the style of the rest. Our thanks also to Manuel Berenguel,
who implemented and tested the controllers on the solar power plant, and to
Juan Gómez-Ortega who implemented the controller on the mobile robots.
The contributions of Daniel Limón to the stability analysis in nonlinear MPC,
and of Daniel R. Ramı́rez and Teodoro Alamo for their help on robust MPC
and revising the manuscript are deeply appreciated. We also want to thank
Winston Garcı́a-Gabı́n for the discussion about transmission zeros; José R.
Cueli, Fernando Dorado, Sandra Piñón, Miguel Peña, David Muñoz and
Alfonso Cepeda who helped us with some of the examples given; Carmen
Fernández and Rafael Payseo for their help in developing the software and
Julio Normey who helped with the analysis of the effects of predictions on
robustness.

Our thanks to our colleagues, especially to Francisco R. Rubio and Javier
Aracil, and to many other colleagues and friends from the department. Part
of the material included in the book is the result of research work funded by
MCYT and EC. We gratefully acknowledge these institutions for their support.

Finally, both authors thank their families for their support, patience and
understanding of family time lost during the writing of the book.

Glossary

Notation

A(·) boldface upper case letters denote polynomial matrices.
A(·) italic and upper case letters denote polynomials.

M italic upper case letters denote real matrices.
b boldface lower letters indicate real vectors composed of elements

at different time instants.
M boldface upper case letters denote real matrices composed of other

matrices or vectors.

Symbols
s complex variable used in Laplace transform

z−1 backward shift operator
z forward shift operator and complex variable used in

z − transform
(M)ij element ij of matrix M

(v)i ith − element of vector v

(·)T transpose of (·)
diag(x1, · · · , xn) diagonal matrix with diagonal elements equal

to x1, · · · , xn

|(·)| absolute value of (·)
‖v‖2Q vT Qv

‖v‖l l − norm of v

‖v‖∞ infinity norm of v

xiv Glossary

In×n (n× n) identity matrix
I identity matrix of appropriate dimensions

0p×q (p× q) matrix with all entries equal to zero
0 matrix of appropriate dimensions with all entries equal

to zero
1n column vector of dimension n with all entries equal to one
1 column vector with all entries equal to one

< x, z > dot product of vectors x and z

E[·] expectation operator
·̂ expected value

x̂(t + j|t) expected value of x(t + j) with available information at
instant t

δ(P (·)) degree of polynomial P (·)
� 1− z−1. increment operator

det(M) determinant of matrix M

min
x∈X

J(x) the minimum value of J(x) for all values of x ∈ X

Model parameters and variables

m number of input variables
n number of output variables

u(t) input variables at instant t
y(t) output variables at instant t
x(t) state variables at instant t
e(t) discrete white noise with zero mean

d dead time of the process expressed in sampling time units
A(z−1) process left polynomial matrix for the LMFD
B(z−1) process right polynomial matrix for the LMFD
C(z−1) colouring polynomial matrix

Controller parameters and variables

N1 lower value of prediction horizon
N2 higher value of prediction horizon
N number of points of prediction horizon (N = N2 −N1)

N3 control horizon (Nu)
λ weighting factor for control increments
δ weighting factor for predicted error

Glossary xv

u vector of future control increments for the control horizon
y vector of predicted outputs for prediction horizon
f vector of predicted free response

w vector of future references
U vector of maximum allowed values of manipulated variables
U vector of minimum allowed values of manipulated variables
u vector of maximum allowed values of manipulated variable

slew rates
u vector of minimum allowed values of manipulated variable

slew rates
y vector of maximum allowed values of output variables
y vector of minimum allowed values of output variables

Ã(z−1) polynomial A(z−1) multiplied by�

Acronyms

ANN Artificial Neural Network
CARIMA Controlled Autoregressive Integrated Moving Average
CARMA Controlled Autoregressive Moving Average
CRHPC Constrained Receding Horizon Predictive Control

DMC Dynamic Matrix Control
EHAC Extended Horizon Adaptive Control

EPSAC Extended Prediction Self-Adaptive Control
FIR Finite Impulse Response

FLOP Floating Point Operation
GMV Generalized Minimum Variance
GPC Generalized Predictive Control

HIECON Hierarchical Constraint Control
IDCOM Identification and Command

KKT Karush-Kuhn-Tucker
LCP Linear Complementary Problem

LMFD Left Matrix Fraction Description
LMI Linear Matrix Inequalities

LP Linear Programming
LQ Linear Quadratic

LQG Linear Quadratic Gaussian
LRPC Long Range Predictive Control

LTR Loop Transfer Recovery
MAC Model Algorithmic Control
MILP Mixed Integer Linear Programming

MIMO Multi-Input Multi-Output
MIP Mixed Integer Programming

MIQP Mixed Integer Quadratic Programming
MLD Mixed Logical Dynamical

xvi Glossary

MPC Model Predictive Control
MPHC Model Predictive Heuristic Control

MUSMAR Multi-Step Multivariable Adaptive Control
MURHAC Multipredictor Receding Horizon Adaptive Control

NLP Nonlinear Programming
OPC Optimum Predictive Control
OUD Outside Unit Disk
PCT Predictive Control Technology
PFC Predictive Functional Control
PID Proportional Integral Derivative

PWA Piecewise Affine
QP Quadratic Programming

RMPCT Robust Model Predictive Control Technology
SCADA Supervisory Control and Data Acquisition

SCAP Adaptive Predictive Control System
SGPC Stable Generalized Predictive Control
SISO Single-Input Single-Output

SMCA Setpoint Multivariable Control Architecture
SQP Sequential Quadratic Programming
UPC Unified Predictive Control

Contents

1 Introduction to Model Predictive Control . 1
1.1 MPC Strategy . 2
1.2 Historical Perspective . 5
1.3 Industrial Technology . 8
1.4 Outline of the Chapters . 10

2 Model Predictive Controllers . 13
2.1 MPC Elements . 13

2.1.1 Prediction Model . 13
2.1.2 Objective Function . 18
2.1.3 Obtaining the Control Law . 21

2.2 Review of Some MPC Algorithms . 22
2.3 State Space Formulation . 27

3 Commercial Model Predictive Control Schemes 31
3.1 Dynamic Matrix Control . 31

3.1.1 Prediction . 32
3.1.2 Measurable Disturbances . 34
3.1.3 Control Algorithm. 34

3.2 Model Algorithmic Control . 36
3.2.1 Process Model and Prediction . 36
3.2.2 Control Law . 38

3.3 Predictive Functional Control . 39
3.3.1 Formulation . 39

3.4 Case Study: A Water Heater . 42
3.5 Exercises . 45

4 Generalized Predictive Control . 47
4.1 Introduction . 47
4.2 Formulation of Generalized Predictive Control 48
4.3 The Coloured Noise Case . 53

xviii Contents

4.4 An Example . 54
4.5 Closed-Loop Relationships . 57
4.6 The Role of the T Polynomial . 61

4.6.1 Selection of the T Polynomial . 61
4.6.2 Relationships with Other Formulations 62

4.7 The P Polynomial . 62
4.8 Consideration of Measurable Disturbances 63
4.9 Use of a Different Predictor in GPC . 66

4.9.1 Equivalent Structure . 66
4.9.2 A Comparative Example . 70

4.10 Constrained Receding Horizon Predictive Control 71
4.10.1 Computation of the Control Law . 72
4.10.2 Properties . 75

4.11 Stable GPC . 76
4.11.1 Formulation of the Control Law . 77

4.12 Exercises . 78

5 Simple Implementation of GPC for Industrial Processes 81
5.1 Plant Model . 82

5.1.1 Plant Identification: The Reaction Curve Method 82
5.2 The Dead Time Multiple of the Sampling Time Case 84

5.2.1 Discrete Plant Model . 84
5.2.2 Problem Formulation . 85
5.2.3 Computation of the Controller Parameters 87
5.2.4 Role of the Control-weighting Factor 89
5.2.5 Implementation Algorithm . 90
5.2.6 An Implementation Example . 90

5.3 The Dead Time Nonmultiple of the Sampling Time Case 93
5.3.1 Discrete Model of the Plant . 93
5.3.2 Controller Parameters . 95
5.3.3 Example . 98

5.4 Integrating Processes . 99
5.4.1 Derivation of the Control Law . 100
5.4.2 Controller Parameters . 102
5.4.3 Example . 104

5.5 Consideration of Ramp Setpoints . 105
5.5.1 Example . 108

5.6 Comparison with Standard GPC . 108
5.7 Stability Robustness Analysis . 111

5.7.1 Structured Uncertainties . 112
5.7.2 Unstructured Uncertainties . 113
5.7.3 General Comments . 116

5.8 Composition Control in an Evaporator . 117
5.8.1 Description of the Process . 117
5.8.2 Obtaining the Linear Model . 119

Contents xix

5.8.3 Controller Design . 121
5.8.4 Results . 122

5.9 Exercises . 125

6 Multivariable Model Predictive Control . 127
6.1 Derivation of Multivariable GPC . 127

6.1.1 White Noise Case . 128
6.1.2 Coloured Noise Case . 132
6.1.3 Measurable Disturbances . 135

6.2 Obtaining a Matrix Fraction Description . 138
6.2.1 Transfer Matrix Representation . 138
6.2.2 Parametric Identification . 141

6.3 State Space Formulation . 143
6.3.1 Matrix Fraction and State Space Equivalences 144

6.4 Case Study: Flight Control . 147
6.5 Convolution Models Formulation . 149
6.6 Case Study: Chemical Reactor . 152

6.6.1 Plant Description . 152
6.6.2 Obtaining the Plant Model . 154
6.6.3 Control Law . 156
6.6.4 Simulation Results . 157

6.7 Dead Time Problems . 157
6.8 Case Study: Distillation Column . 163
6.9 Multivariable MPC and Transmission Zeros 166

6.9.1 Simulation Example . 170
6.9.2 Tuning MPC for Processes with OUD Zeros 173

6.10 Exercises . 175

7 Constrained Model Predictive Control . 177
7.1 Constraints and MPC . 177

7.1.1 Constraint General Form . 183
7.1.2 Illustrative Examples . 183

7.2 Constraints and Optimization. 187
7.3 Revision of Main Quadratic Programming Algorithms 188

7.3.1 The Active Set Methods . 189
7.3.2 Feasible Direction Methods . 191
7.3.3 Initial Feasible Point . 192
7.3.4 Pivoting Methods . 193

7.4 Constraints Handling . 196
7.4.1 Slew Rate Constraints . 196
7.4.2 Amplitude Constraints . 198
7.4.3 Output Constraints . 199
7.4.4 Constraint Reduction . 199

7.5 1-norm . 201
7.6 Case Study: A Compressor . 203

xx Contents

7.7 Constraint Management . 206
7.7.1 Feasibility . 206
7.7.2 Techniques for Improving Feasibility 207

7.8 Constrained MPC and Stability . 209
7.9 Multiobjective MPC . 212

7.9.1 Priorization of Objectives . 214
7.10 Exercises . 216

8 Robust Model Predictive Control . 217
8.1 Process Models and Uncertainties . 218

8.1.1 Truncated Impulse Response Uncertainties 219
8.1.2 Matrix Fraction Description Uncertainties 220
8.1.3 Global Uncertainties . 221

8.2 Objective Functions . 224
8.2.1 Quadratic Cost Function . 225
8.2.2 ∞-∞ norm . 226
8.2.3 1-norm . 228

8.3 Robustness by Imposing Constraints . 230
8.4 Constraint Handling . 231
8.5 Illustrative Examples . 232

8.5.1 Bounds on the Output . 232
8.5.2 Uncertainties in the Gain . 232

8.6 Robust MPC and Linear Matrix Inequalities 234
8.7 Closed-Loop Predictions . 237

8.7.1 An Illustrative Example . 238
8.7.2 Increasing the Number of Decision Variables 239
8.7.3 Dynamic Programming Approach 241
8.7.4 Linear Feedback . 243
8.7.5 An Illustrative Example . 245

8.8 Exercises . 247

9 Nonlinear Model Predictive Control . 249
9.1 Nonlinear MPC Versus Linear MPC . 250
9.2 Nonlinear Models . 251

9.2.1 Empirical Models . 252
9.2.2 Fundamental Models . 261
9.2.3 Grey-box Models . 262
9.2.4 Modelling Example . 262

9.3 Solution of the NMPC Problem . 266
9.3.1 Problem Formulation . 267
9.3.2 Solution . 267

9.4 Techniques for Nonlinear Predictive Control 269
9.4.1 Extended Linear MPC . 269
9.4.2 Local Models . 270
9.4.3 Suboptimal NPMC . 271

Contents xxi

9.4.4 Use of Short Horizons . 271
9.4.5 Decomposition of the Control Sequence 272
9.4.6 Feedback Linearization . 274
9.4.7 MPC Based on Volterra Models . 274
9.4.8 Neural Networks . 277
9.4.9 Commercial Products . 277

9.5 Stability and Nonlinear MPC . 279
9.6 Case Study: pH Neutralization Process . 282

9.6.1 Process Model . 284
9.6.2 Results . 285

9.7 Exercises . 287

10 Model Predictive Control and Hybrid Systems 289
10.1 Hybrid System Modelling . 289
10.2 Example: A Jacket Cooled Batch Reactor . 292

10.2.1 Mixed Logical Dynamical Systems 293
10.2.2 Example . 296

10.3 Model Predictive Control of MLD Systems 298
10.3.1 Branch and Bound Mixed Integer Programming 299
10.3.2 An Illustrative Example . 302

10.4 Piecewise Affine Systems . 303
10.4.1 Example: Tank with Different Area Sections 307
10.4.2 Reach Set, Controllable Set, and STG Algorithm 308

10.5 Exercises . 309

11 Fast Methods for Implementing Model Predictive Control 311
11.1 Piecewise Affinity of MPC . 311
11.2 MPC and Multiparametric Programming 314
11.3 Piecewise Implementation of MPC . 316

11.3.1 Illustrative Example: The Double Integrator 317
11.3.2 Nonconstant References and Measurable

Disturbances . 320
11.3.3 Example . 321
11.3.4 The 1-norm and∞-norm Cases . 322

11.4 Fast Implementation of MPC for Uncertain Systems 326
11.4.1 Example . 329
11.4.2 The Closed-Loop Min-max MPC . 330

11.5 Approximated Implementation for MPC . 333
11.6 Fast Implementation of MPC and Dead Time Considerations . 334
11.7 Exercises . 335

12 Applications . 337
12.1 Solar Power Plant . 337

12.1.1 Selftuning GPC Control Strategy . 339
12.1.2 Gain Scheduling Generalized Predictive Control 342

xxii Contents

12.2 Pilot Plant . 352
12.2.1 Plant Description . 352
12.2.2 Plant Control . 353
12.2.3 Flow Control . 354
12.2.4 Temperature Control at the Exchanger Output 355
12.2.5 Temperature Control in the Tank . 357
12.2.6 Level Control . 358
12.2.7 Remarks . 358

12.3 Model Predictive Control in a Sugar Refinery 359
12.4 Olive Oil Mill . 362

12.4.1 Plant Description . 364
12.4.2 Process Modelling and Validation 365
12.4.3 Controller Synthesis . 366
12.4.4 Experimental Results . 368

12.5 Mobile Robot . 371
12.5.1 Problem Definition . 371
12.5.2 Prediction Model . 372
12.5.3 Parametrization of the Desired Path 374
12.5.4 Potential Function for Considering Fixed Obstacles . . . 374
12.5.5 The Neural Network Approach . 376
12.5.6 Training Phase . 378
12.5.7 Results . 379

A Revision of the Simplex Method . 381
A.1 Equality Constraints . 381
A.2 Finding an Initial Solution . 382
A.3 Inequality Constraints . 383

B Dynamic Programming and Linear Quadratic Optimal Control . . . 385
B.1 Linear Quadratic Problem . 385
B.2 Infinite Horizon . 387

References . 389

Index . 401

1

Introduction to Model Predictive Control

Model Predictive Control (MPC) originated in the late seventies and has de-
veloped considerably since then. The term Model Predictive Control does
not designate a specific control strategy but rather an ample range of con-
trol methods which make explicit use of a model of the process to obtain the
control signal by minimizing an objective function. These design methods
lead to controllers which have practically the same structure and present ad-
equate degrees of freedom. The ideas, appearing in greater or lesser degree
in the predictive control family, are basically:

• explicit use of a model to predict the process output at future time instants
(horizon);

• calculation of a control sequence minimizing an objective function; and
• receding strategy, so that at each instant the horizon is displaced towards

the future, which involves the application of the first control signal of the
sequence calculated at each step.

The various MPC algorithms (also called receding horizon Predictive
Control or RHPC) only differ amongst themselves in the model used to rep-
resent the process and the noises and cost function to be minimized. This
type of control is of an open nature, within which many works have been de-
veloped and are widely received by the academic world and industry. There
are many applications of predictive control successfully in use at the current
time, not only in the process industry but also applications to the control of
other processes ranging from robots [78] to clinical anaesthesia [127]. Appli-
cations in the cement industry, drying towers, and robot arms are described
in [54], whilst developments for distillation columns, PVC plants, steam gen-
erators, or servos are presented in [179] and [182]. The good performance of
these applications shows the capacity of the MPC to achieve highly efficient
control systems able to operate during long periods of time with hardly any
intervention.

MPC presents a series of advantages over other methods, amongst which
the following stand out:

E. F. Camacho et al., Model Predictive Control
© Springer-Verlag London Limited 2007

2 1 Introduction to Model Predictive Control

• It is particularly attractive to staff with only a limited knowledge of con-
trol because the concepts are very intuitive and at the same time the tun-
ing is relatively easy.

• It can be used to control a great variety of processes, from those with rel-
atively simple dynamics to more complex ones, including systems with
long delay times or nonminimum phase or unstable ones.

• The multivariable case can easily be dealt with.
• It intrinsically has compensation for dead times.
• It introduces feed forward control in a natural way to compensate for

measurable disturbances.
• The resulting controller is an easy-to-implement control law.
• Its extension to the treatment of constraints is conceptually simple, and

these can be systematically included during the design process.
• It is very useful when future references (robotics or batch processes) are

known.
• It is a totally open methodology based on certain basic principles which

allows for future extensions.

As is logical, however, it also has its drawbacks. One of these is that
although the resulting control law is easy to implement and requires little
computation, its derivation is more complex than that of the classical PID
controllers. If the process dynamic does not change, the derivation of the con-
troller can be done beforehand, but in the adaptive control case all the com-
putation has to be carried out at every sampling time. When constraints are
considered, the amount of computation required is even higher. Although
this, with the computing power available today, is not an essential problem,
one should bear in mind that many industrial process control computers are
not at their best regarding their computing power and, above all, that most
of the available time at the process computer normally has to be used for
purposes other than the control algorithm itself (communication, dialogues
with the operators, alarms, recording, etc.). Even so, the greatest drawback is
the need for an appropriate model of the process to be available. The design
algorithm is based on prior knowledge of the model and is independent of
it, but it is obvious that the benefits obtained will be affected by the discrep-
ancies existing between the real process and the model used.

In practice, MPC has proved to be a reasonable strategy for industrial con-
trol, in spite of the original lack of theoretical results at some crucial points
such as stability and robustness.

1.1 MPC Strategy

The methodology of all the controllers belonging to the MPC family is char-
acterized by the following strategy, represented in Figure 1.1:

1.1 MPC Strategy 3

N

y(t+k|t)^

u(t+k|t)

t t+1t-1 . . . t+N. . . t+k

y(t)

u(t)

Fig. 1.1. MPC Strategy

1. The future outputs for a determined horizon N , called the prediction
horizon, are predicted at each instant t using the process model. These
predicted outputs y(t + k | t) 1 for k = 1 . . . N depend on the known
values up to instant t (past inputs and outputs) and on the future control
signals u(t+k | t), k = 0 . . . N−1, which are those to be sent to the system
and calculated.

2. The set of future control signals is calculated by optimizing a determined
criterion to keep the process as close as possible to the reference trajec-
tory w(t + k) (which can be the setpoint itself or a close approximation
of it). This criterion usually takes the form of a quadratic function of the
errors between the predicted output signal and the predicted reference
trajectory. The control effort is included in the objective function in most
cases. An explicit solution can be obtained if the criterion is quadratic,
the model is linear, and there are no constraints; otherwise an iterative
optimization method has to be used. Some assumptions about the struc-
ture of the future control law are also made in some cases, such as that it
will be constant from a given instant.

3. The control signal u(t | t) is sent to the process whilst the next control sig-
nals calculated are rejected, because at the next sampling instant y(t + 1)
is already known and step 1 is repeated with this new value and all the
sequences are brought up to date. Thus the u(t + 1 | t + 1) is calculated
(which in principle will be different from the u(t + 1 | t) because of the
new information available) using the receding horizon concept.

1 The notation indicates the value of the variable at the instant t + k calculated at
instant t.

4 1 Introduction to Model Predictive Control

Model

Reference
trajectory

Past inputs
and outputs

+

-

Optimizer

ConstraintsCost
function

Future errors

Predicted
outputs

inputs
Future

Fig. 1.2. Basic structure of MPC

In order to implement this strategy, the basic structure shown in Figure
1.2 is used. A model is used to predict the future plant outputs, based on past
and current values and on the proposed optimal future control actions. These
actions are calculated by the optimizer taking into account the cost function
(where the future tracking error is considered) as well as the constraints.

The process model plays, in consequence, a decisive role in the controller.
The chosen model must be able to capture the process dynamics to precisely
predict the future outputs and be simple to implement and understand. As
MPC is not a unique technique but rather a set of different methodologies,
there are many types of models used in various formulations.

One of the most popular in industry is the Truncated Impulse Response
Model, which is very simple to obtain as it only needs the measurement of
the output when the process is excited with an impulse input. It is widely
accepted in industrial practice because it is very intuitive and can also be
used for multivariable processes, although its main drawbacks are the large
number of parameters needed and that only open-loop stable processes can
be described this way. Closely related to this kind of model is the Step Re-
sponse Model, obtained when the input is a step.

The State Space Model is, perhaps, more widespread in the academic
research community as the derivation of the controller is very simple even
for the multivariable case. The state space description allows for an easier
expression of stability and robustness criteria. The Transfer Function Model
is also used in the academic research community and although the derivation

1.2 Historical Perspective 5

of the controller is more difficult, it requires fewer parameters. Dead time, so
frequent in industry, can be handled easier than with other descriptions. This
type of model is better understood in industry than state space models, as
some of the concepts used in the transfer function context such as dead time,
gains, and time constants are usually employed in industry. This description
is somewhat middle of the road between academy and industry, and that is
why it has been chosen in this text as the main model description.

The optimizer is another fundamental part of the strategy as it provides
the control actions. If the cost function is quadratic, its minimum can be ob-
tained as an explicit function (linear) of past inputs and outputs and the fu-
ture reference trajectory. In the presence of inequality constraints the solution
has to be obtained by more computationally taxing numerical algorithms.
The size of the optimization problems depends on the number of variables
and the prediction horizons used and usually turns out to be a relatively
modest optimization problem which does not require solving sophisticated
computer codes. However, the amount of time needed for the constrained
and robust cases can be various orders of magnitude higher than that needed
for the unconstrained case and the bandwidth of the process to which con-
strained MPC can be applied is considerably reduced.

Notice that the MPC strategy is very similar to the control strategy used
in driving a car. The driver knows the desired reference trajectory for a finite
control horizon and by taking into account the car characteristics (mental
model of the car) decides which control actions (accelerator, brakes, steer-
ing) to take to follow the desired trajectory. Only the first control actions are
taken at each instant, and the procedure is repeated for the next control de-
cision in a receding horizon fashion. Notice that when using classical control
schemes, such as PIDs, the control actions are taken based on past errors. If
the car driving analogy is extended, as has been done by one of the commer-
cial MPC vendors (SCAP) [134] in its publicity, the PID way of driving a car
would be equivalent to driving the car just using the mirror as shown in Fig-
ure 1.3. This analogy is not totally fair with PIDs, because more information
(the reference trajectory) is used by MPC. Notice that if a future point in the
desired reference trajectory is used as the setpoint for the PID, the differences
between both control strategies would not seem so abysmal.

1.2 Historical Perspective

From the end of the 1970s various articles appeared showing an incipi-
ent interest in MPC in the industry, principally the Richalet et al. publica-
tions [181][182] presenting Model Predictive Heuristic Control (MPHC) (later
known as Model Algorithmic Control (MAC)) and those of Cutler and Ra-
makter [62] with Dynamic Matrix Control (DMC). A dynamic process model
is explicitly used in both algorithms (impulse response in the first and step
response in the second) to predict the effect of the future control actions at

6 1 Introduction to Model Predictive Control

tt-1t-2

N

t+N

Fig. 1.3. MPC analogy

the output; these are determined by minimizing the predicted error subject
to operational restrictions. The optimization is repeated at each sampling pe-
riod with up-to-date information about the process. These formulations were
heuristic and algorithmic and took advantage of the increasing potential of
digital computers at the time.

These controllers were closely related to the minimum time optimal con-
trol problem and to linear programming [211]. The receding horizon prin-
ciple, one of the central ideas of MPC, was proposed by Propoi as long ago
as 1963 [169], within the frame of ”open-loop optimal feedback”, which was
extensively dealt with in the seventies.

MPC quickly became popular, particularly in chemical process industries,
due to the simplicity of the algorithm and to the use of the impulse or step
response model which, although possessing many more parameters than the
formulations in the state space or input-output domain, is usually preferred
as being more intuitive and requiring less a priori information for its iden-
tification. A complete report of its application in the petrochemical sector
during the eighties can be found in [73]. The majority of these applications
were carried out on multivariable systems including constraints. In spite of
this success, these formulations lacked formal theories providing stability
and robustness results; in fact, the finite-horizon case seemed too difficult to
analyze except in very specific cases.

Another line of work arose independently around adaptive control ideas,
developing strategies essentially for monovariable processes formulated with
input-output models. Peterka’s Predictor-Based Self-Tuning Control [165]
can be included here. It was designed to minimize, for the most recent pre-
dicted values, the expected value of a quadratic criterion on a given con-
trol horizon (finite or asymptotically infinite) or Ydstie’s Extended Horizon
Adaptive Control (EHAC) [207]. This method tries to keep the future output
(calculated by a Diophantine equation) close to the reference at a period of
time after the process delay and permits different strategies. Extended Pre-
diction Self Adaptive Control (EPSAC) by De Keyser and Van Cuawenberghe

1.2 Historical Perspective 7

[107] proposes a constant control signal starting from the present moment2

while using a suboptimal predictor instead of solving a Diophantine equa-
tion. Generalized Predictive Control (GPC) developed by Clarke et al. in 1987
[58] also appears within this context. This uses ideas from Generalized Min-
imum Variance (GMV) [56] and is perhaps one of the most popular meth-
ods at the moment and will be the object of detailed study in the following
chapters. There are numerous predictive controller formulations based on
the same common ideas, amongst which can be included: Multistep Multi-
variable Adaptive Control (MUSMAR) [83], Multipredictor Receding Horizon
Adaptive Control (MURHAC) [121], Predictive Functional Control (PFC) [180],
or Unified Predictive Control (UPC) [194].

MPC has also been formulated in the state space context [140]. This not
only allows for the use of well known theorems of the state space theory, but
also facilitates their generalization to more complex cases such as multivari-
able processes, nonlinear processes and systems with stochastic disturbances
and noise in the measured variables. By extending the step response model
and using known state estimation techniques, processes with integrators can
also be treated. The state estimation techniques arising from stochastic opti-
mal control can be used for predictions without adding complications [116].
This perspective leads to simple tuning rules for stability and robustness: the
MPC controller can be interpreted as being a compensator based on a state
observer and its stability, performance and robustness are determined by the
poles of the observer (which can be directly fixed by adjustable parameters)
and the poles of the regulator (determined by the horizons, weights, etc.). An
analysis of the inherent characteristics of all the MPC algorithms (especially
of the GPC) from the point of view of the gaussian quadratic optimal linear
theory can be found in the book by Bitmead et al. [27].

Although the first works on GPC proved some specific stability theorems
using state space relationships and studied the influence of filter polynomials
on robustness improvement, the original lack of general stability results for
finite horizon receding controllers was recognized as a drawback. Because
of this, a fresh line of work on new predictive control methods with guar-
anteed stability appeared in the nineties. Two methods, CRHPC (Clarke and
Scattolini [61]) and SIORHC (Mosca et al. [143]), were independently devel-
oped and proven to be stable by imposing endpoint equality constraints on
the output after a finite horizon. Bearing in mind the same objective, Kou-
varitakis et al. [112] presented stable GPC, a formulation which guarantees
closed-loop stability by stabilizing the process prior to the minimization of
the objective function.

Very impressive results were obtained for what seemed to be a problem
too difficult to tackle, that of the stability of constrained receding horizon
controllers [177],[185], [213]. Even when the optimization algorithm finds a
solution, this does not guarantee closed-loop stability, that is, optimality does

2 Note that due to the receding horizon the real signal need not be kept constant.

8 1 Introduction to Model Predictive Control

not imply stability. The use of terminal penalties and/or constraints, Lya-
punov functions, or invariant sets has given rise to a family of techniques
that guarantee the stability of the system. This problem has been tackled
from different points of view and several contributions have appeared in
recent years, always analyzing the regulator problem (drive the state to zero)
in a state space framework. The main proposed formulations with guaran-
teed stability are summarized in [137] where general sufficient conditions to
design a stabilizing constrained MPC are presented.

Results have also been obtained using robust control design approaches
in the MPC context. The key idea is to take into account uncertainties about
the process in an explicit manner and to design MPC to optimize the objective
function for the worst situation of the uncertainties. These challenging results
allow one to think that MPC will experience an even greater dissemination
in both the academic world and the control practitioner community. In this
context, one of the leading manufacturers of distributed control equipment,
Honeywell, incorporated Robust Multivariable Predictive Control (RMPCTM)
into its TDC 3000 control system and announced it contains several break-
throughs in technology.

Model Predictive Control is considered to be a mature technique for lin-
ear and rather slow systems like the ones usually encountered in the process
industry. More complex systems, such as nonlinear, hybrid, or very fast pro-
cesses, were considered beyond the realm of MPC. During the last few years
some impressive results have been produced in these fields. Bemporad et al.
[23] have shown that a constrained MPC results in a piecewise affine con-
troller that can be implemented with little computational burden. Applica-
tions of MPC to nonlinear and to hybrid processes have also appeared in the
literature.

1.3 Industrial Technology

This section is focused on those predictive control technologies that have
great impact on the industrial world and are commercially available, dealing
with several topics such as a short application summary and the limitations
of the existing technology.

Although there are companies that make use of technology they have de-
veloped inhouse that is not offered externally, the following can be consid-
ered representative of the current state of the art of Model Predictive Control
technology. Their product names and acronyms are:

• AspenTech: Dynamic Matrix Control (DMC)
• Adersa: Identification and Command (IDCOM) , Hierarchical Constraint

Control (HIECON), and Predictive Functional Control (PFC)
• Honeywell Profimatics: Robust Model Predictive Control Technology

(RMPCT) and Predictive Control Technology (PCT)

1.3 Industrial Technology 9

• Setpoint Inc.: Setpoint Multivariable Control Architecture (SMCA) and
IDCOM-M (multivariable)

• Treiber Controls: Optimum Predictive Control (OPC)
• ABB: 3dMPC
• Pavillion Technologies Inc.: Process Perfecter
• Simulation Sciences: Connoisseur

Some of these algorithms will be treated in more detail in following chap-
ters. Notice that each product is not the algorithm alone, but is accompanied
by additional packages, usually identification or plant test packages.

There are thousands of applications of MPC in industry. The majority of
applications (see surveys by Qin and Badgwell [170] [171]) are in the area of
refining, one of the original application fields of MPC, where it has a solid
background. An important number of applications can be found in petro-
chemicals and chemicals. Significant growth areas include pulp and paper,
food processing, aerospace, and automotive industries. Other areas such as
gas, utility, furnaces, or mining and metallurgy also appear in the report.
Some applications in the cement industry or pulp factories can be found
in [134]. Although MPC technology has not yet penetrated deeply into ar-
eas where process nonlinearities are strong and frequent changes in opera-
tion conditions occur, the number of nonlinear MPC applications is clearly
increasing.

The existing industrial MPC technology has several limitations, as pointed
out by Muske and Rawlings [147]. The most outstanding ones are:

• Overparameterized models: most commercial products use the step or
impulse response model of the plant, that are known to be overparam-
eterized. For instance, a first-order process can be described by a trans-
fer function model using only three parameters (gain, time constant, and
dead time), whilst a step response model will require more than 30 co-
efficients to describe the same dynamics. Besides, these models are not
valid for unstable processes. These problems can be overcome by using
an auto-regressive parametric model.

• Tuning: the tuning procedure is not clearly defined since the trade-off be-
tween tuning parameters and closed loop behaviour is generally not very
clear. Tuning in the presence of constraints may be even more difficult,
and even for the nominal case, is not easy to guarantee closed-loop sta-
bility; that is why so much effort must be spent on prior simulations. The
feasibility of the problem is one of most challenging topics of MPC nowa-
days, and it will be treated in detail in Chapter 7.

• Suboptimality of the dynamic optimization: several packages provide
suboptimal solutions to the minimization of the cost function in order
to speed up the solution time. It can be accepted in high-speed appli-
cations (tracking systems) where solving the problem at every sampling
time may not be feasible, but it is difficult to justify for process control ap-

10 1 Introduction to Model Predictive Control

plications unless it can be shown that the suboptimal solution is always
very nearly optimal.

• Model uncertainty: although model identification packages provide esti-
mates of model uncertainty, only one product (RMPCT) uses this informa-
tion in the control design. All other controllers can be detuned to improve
robustness, although the relation between performance and robustness is
not very clear.

• Constant disturbance assumption: although perhaps the most reasonable
assumption is to consider that the output disturbance will remain con-
stant in the future, better feedback would be possible if the distribution
of the disturbance could be characterized more carefully.

• Analysis: a systematic analysis of stability and robustness properties of
MPC is not possible in its original finite horizon formulation. The control
law is in general time-varying and cannot be represented in the standard
closed-loop form, especially in the constrained case. Furthermore, the re-
sults obtained by the academic research community about stability and
robustness can only be applied to very small (in terms of state space and
control horizons) processes.

The technology is continually evolving and the next generation will have
to face new challenges in open topics such as model identification, unmea-
sured disturbance estimation and prediction, systematic treatment of mod-
elling error, and uncertainty or the open field of nonlinear model predictive
control.

1.4 Outline of the Chapters

The book aims to study the most important issues of MPC regarding its appli-
cation to process control. To achieve this objective, it is organized as follows.

Chapter 2 describes the main elements that appear in any MPC formula-
tion and reviews the best-known methods. A brief review of the most out-
standing methods is made. Chapter 3 focuses on commercial Model Pre-
dictive controllers. Because of its popularity, Generalized Predictive Control
(GPC) is treated in greater detail in Chapter 4. Two related methods which
have shown good stability properties (CRHPC and SGPC) are also described.

Chapter 5 shows how GPC can easily be applied to a wide variety of
plants in the process industry using some Ziegler-Nichols types of tuning
rules. By using these, the implementation of GPC is considerably simplified,
and the computational burden and time that the implementation of GPC may
bear, especially for the adaptive case, are avoided. The rules have been ob-
tained for plants that can be modelled by the reaction curve method and
plants having an integrating term, that is, most of the plants in the process
industry. The robustness of the method is studied. In order to do this, both
structured and unstructured uncertainties are considered. The closed loop is

1.4 Outline of the Chapters 11

studied, defining the uncertainty limits that preserve stability of the real pro-
cess when it is being controlled by a GPC designed for the nominal model.

The way of implementing MPC on multivariable processes, which can
often be found in industry, is treated in Chapter 6. Some examples dealing
with implementation topics such as dead times are provided.

Although in practice all processes are subject to constraints, most of the
existing controllers do not consider them explicitly. One of the advantages
of MPC is that constraints can be dealt with explicitly. Chapter 7 is dedi-
cated to showing how MPC can be implemented on processes subject to con-
straints. Although constraints play an important role in industrial practice,
they are not considered in many formulations. The minimization of the ob-
jective function can no longer be done explicitly and a numerical solution is
necessary. Existing numerical techniques are revised and some examples and
algorithms are included.

Chapter 8 deals with the robust implementation of MPC. Although a ro-
bustness analysis is performed in Chapter 5 for GPC of processes that can be
described by the reaction curve method, this chapter indicates how MPC can
be implemented by explicitly taking into account model inaccuracies or un-
certainties. The controller is designed to minimize the objective function for
the worst situation.

This new edition includes three new chapters addressing the latest devel-
opments in the field. Chapter 9 is dedicated to describing some techniques
that can be used to apply MPC to nonlinear processes. The way in which MPC
can be applied to control hybrid processes (i.e., processes containing con-
tinuous and discrete parts) is described in Chapter 10. Chapter 11 describes
strategies to implement fast MPC of constrained processes and uncertain pro-
cesses which can be used even in the case of processes requiring small sam-
pling times.

This book could not end without presenting some practical implementa-
tions of MPC. Chapter 12 presents results obtained in different plants. First,
a real application of GPC to a solar power plant is presented. This process
presents changing perturbations that make it suitable for an adaptive control
policy. The same controller is developed on a commercial distributed control
system and applied to a pilot plant. Operating results show that a technique
that has sometimes been rejected by practitioners because of its complexity
can easily be programmed in any standard control system, obtaining better
results and being as easy to use as traditional PID controllers. The applica-
tion of a GPC to a diffusion process of a sugar factory is presented as well as
a predictive strategy in the process of olive oil extraction in a mill. Finally a
nonlinear controller is implemented for path tracking of a mobile robot.

2

Model Predictive Controllers

This chapter describes the elements that are common to all Model Predic-
tive controllers, showing the various alternatives used in the different im-
plementations. Some of the most popular methods will later be reviewed to
demonstrate their most outstanding characteristics.

2.1 MPC Elements

All the MPC algorithms possess common elements, and different options can
be chosen for each element giving rise to different algorithms. These ele-
ments are:

• prediction model,
• objective function and
• obtaining the control law.

2.1.1 Prediction Model

The model is the cornerstone of MPC; a complete design should include the
necessary mechanisms for obtaining the best possible model, which should
be complete enough to fully capture the process dynamics and allow the
predictions to be calculated, and at the same time to be intuitive and per-
mit theoretic analysis. The use of the process model is determined by the
necessity to calculate the predicted output at future instants ŷ(t + k | t).
The different strategies of MPC can use various models to represent the re-
lationship between the outputs and the measurable inputs, some of which
are manipulated variables and others can be considered to be measurable
disturbances which can be compensated for by feedforward action. A dis-
turbance model can also be taken into account to describe the behaviour not
reflected by the process model, including the effect of nonmeasurable inputs,

E. F. Camacho et al., Model Predictive Control
© Springer-Verlag London Limited 2007

14 2 Model Predictive Controllers

noise and model errors. The model can be separated into two parts: the ac-
tual process model and the disturbances model. Both parts are needed for
the prediction.

Process Model

Practically every possible form of modelling a process appears in a given
MPC formulation, the following being the most commonly used:

• Impulse response. Also known as weighting sequence or convolution
model, it appears in MAC and as a special case in GPC and EPSAC. The
output is related to the input by the equation

y(t) =
∞∑

i=1

hiu(t− i)

where hi is the sampled output when the process is excited by a unitary
impulse (see Figure 2.1a). This sum is truncated and only N values are
considered (thus only stable processes without integrators can be repre-
sented), having

y(t) =
N∑

i=1

hiu(t− i) = H(z−1)u(t) (2.1)

where H(z−1) = h1z
−1+h2z

−2+· · ·+hNz−N , where z−1 is the backward
shift operator. Another inconvenience of this method is the large number
of parameters necessary, as N is usually a high value (on the order of 40
to 50). The prediction will be given by:

ŷ(t + k | t) =
N∑

i=1

hiu(t + k − i | t) = H(z−1)u(t + k | t)

This method is widely accepted in industrial practice because it is very
intuitive and clearly reflects the influence of each manipulated variable
on a determined output. Note that if the process is multivariable, the dif-
ferent outputs will reflect the effect of the m inputs in the following way:

yj(t) =
m∑

k=1

N∑
i=1

hkj
i uk(t− i)

One great advantage of this method is that no prior information about
the process is needed, so that the identification process is simplified, and
at the same time it allows complex dynamics such as nonminimum phase
or delays to be described easily.

2.1 MPC Elements 15

t t+1 t+2 . . . t+N t t+1 t+2 . . . t+N

y(t) y(t)

h

h

h

h

g

g g

1 i

i N

2

N

g 1

2

a) b)

Fig. 2.1. Impulse and step response

• Step response. Used by DMC and its variants, this is very similar to im-
pulse response except that the input signal is a step. For stable systems,
the truncated response is given by:

y(t) = y0 +
N∑

i=1

gi � u(t− i) = y0 + G(z−1)(1− z−1)u(t) (2.2)

where gi are the sampled output values for the step input and �u(t) =
u(t)− u(t− 1) as shown in Figure 2.1b. The value of y0 can be taken to be
0 without loss of generality, so that the predictor will be:

ŷ(t + k | t) =
N∑

i=1

gi � u(t + k − i | t)

As an impulse can be considered as the difference between two steps with
a lag of one sampling period, it can be written for a linear system that:

hi = gi − gi−1 gi =
i∑

j=1

hj

This method has the same advantages and disadvantages as the impulse
response method.

• Transfer function. Used by GPC, UPC, EPSAC, EHAC, MUSMAR or MURHAC
(amongst others), this uses the concept of transfer function G = B/A so
that the output is given by:

A(z−1)y(t) = B(z−1)u(t)

with

16 2 Model Predictive Controllers

A(z−1) = 1 + a1z
−1 + a2z

−2 + · · ·+ anaz−na

B(z−1) = b1z
−1 + b2z

−2 + · · ·+ bnbz
−nb

Thus the prediction is given by

ŷ(t + k | t) =
B(z−1)
A(z−1)

u(t + k | t)

This representation is also valid for unstable processes and has the ad-
vantage that it only needs a few parameters, although a priori knowledge
of the process is fundamental, especially that of the order of the A and B
polynomials.

• State space. Used in PFC, for example, it has the following representation:

x(t) = Ax(t− 1) + Bu(t− 1)
y(t) = Cx(t)

where x is the state and A, B and C are the matrices of the system, input
and output respectively. The prediction for this model is given by [11]

ŷ(t + k | t) = Cx̂(t + k | t) = C[Akx(t) +
k∑

i=1

Ai−1Bu(t + k − i | t)]

It has the advantage that it can be used for multivariable processes in
a straightforward manner. The control law is simply the feedback of a
linear combination of the state vector, although sometimes the state basis
chosen has no physical meaning. The calculations may be complicated
with the additional necessity of including an observer if the states are not
accessible.

• Others. Nonlinear models can also be used to represent the process, but
they cause the optimization problem to be more complicated. Neural nets
[198] and fuzzy logic [192] are other forms of representation used in some
applications.

Disturbances Model

The choice of the model used to represent the disturbances is as important as
the choice of the process model. A model widely used is the Controlled Auto-
Regressive and Integrated Moving Average (CARIMA) in which the distur-
bances, that is, the differences between the measured output and the output
calculated by the model, are given by

n(t) =
C(z−1)e(t)

D(z−1)

2.1 MPC Elements 17

where the polynomial D(z−1) explicitly includes the integrator� = 1− z−1,
e(t) is a white noise of zero mean and the polynomial C is normally con-
sidered to equal one. This model is considered appropriate for two types of
disturbances, random changes occurring at random instants (for example,
changes in the quality of the material) and ”Brownian motion” and it is used
directly in GPC, EPSAC, EHAC UPC and with slight variations in other meth-
ods. Note that by including an integrator an offset-free steady-state control
is achieved.

Using the Diophantine equation

1 = Ek(z−1)D(z−1) + z−kFk(z−1) (2.3)

one has

n(t) = Ek(z−1)e(t)+z−k Fk(z−1)
D(z−1)

e(t) n(t+k) = Ek(z−1)e(t+k)+Fk(z−1)n(t)

and the prediction will be

n̂(t + k | t) = Fk(z−1)n(t) (2.4)

If equation (2.4) is combined with a transfer function model (like the one
used in GPC), making D(z−1) = A(z−1)(1 − z−1), the output prediction can
be obtained:

ŷ(t + k | t) =
B(z−1)
A(z−1)

u(t + k | t) + Fk(z−1)(y(t)− B(z−1)
A(z−1)

u(t))

ŷ(t + k | t) = Fk(z−1)y(t) +
B(z−1)
A(z−1)

(1− z−kFk(z−1))u(t + k | t)

and using (2.3) the following expression is obtained for the k-step ahead pre-
dictor

ŷ(t + k | t) = Fk(z−1)y(t) + Ek(z−1)B(z−1)� u(t + k | t)
In the particular case of ARIMA the constant disturbance

n(t) =
e(t)

1− z−1

can be included whose best predictions will be n̂(t + k | t) = n(t). This
disturbance model, together with the step response model is the one used on
DMC and related methods.

An extension of this is the drift disturbance used in PFC

n(t) =
e(t)

(1− z−1)2

with n̂(t + k | t) = n(t) + (n(t) − n(t − 1))k being the optimum prediction.
Other polynomial models of high order can likewise be used.

18 2 Model Predictive Controllers

t

uc

t

uf

u

t

t

yf

t

y

t

yc

Process

Fig. 2.2. Free and forced responses

Free and Forced Response

A typical characteristic of most MPC is the use of free and forced response
concepts. The idea is to express the control sequence as the addition of the
two signals:

u(t) = uf (t) + uc(t)

The signal uf (t) corresponds to the past inputs and is kept constant and
equal to the last value of the manipulated variable in future time instants.
That is,

uf (t− j) = u(t− j) for j = 1, 2, · · ·
uf (t + j) = u(t− 1) for j = 0, 1, 2, · · ·

The signal uc(t) is made equal to zero in the past and equal to the next
control moves in the future. That is,

uc(t− j) = 0 for j = 1, 2, · · ·
uc(t + j) = u(t + j)− u(t− 1) for j = 0, 1, 2, · · ·

The prediction of the output sequence is separated into two parts, as can
be seen in Figure 2.2. One of them (yf (t)), the free response, corresponds to
the prediction of the output when the process manipulated variable is made
equal to uf (t), and the other, the forced response (yc(t)), corresponds to the
prediction of the process output when the control sequence is made equal to
uc(t). The free response corresponds to the evolution of the process due to its
present state, while the forced response is due to future control moves.

2.1.2 Objective Function

The various MPC algorithms propose different cost functions for obtaining
the control law. The general aim is that the future output (y) on the con-
sidered horizon should follow a determined reference signal (w) and, at the

2.1 MPC Elements 19

same time, the control effort (�u) necessary for doing so should be penal-
ized. The general expression for such an objective function will be:

J(N1, N2, Nu) =
N2∑

j=N1

δ(j)[ŷ(t + j | t)− w(t + j)]2 +
Nu∑
j=1

λ(j)[�u(t + j − 1)]2

(2.5)
In some methods the second term, which considers the control effort, is

not taken into account, whilst in others (UPC) the values of the control signal
(not its increments) also appear directly. In the cost function it is possible to
consider:

• parameters: N1 and N2 are the minimum and maximum prediction hori-
zons and Nu is the control horizon, which does not necessarily have to
coincide with the maximum horizon, as will be seen later. The meaning
of N1 and N2 is rather intuitive. They mark the limits of the instants in
which it is desirable for the output to follow the reference. Thus, if a high
value of N1 is taken, it is because it is of no importance if there are errors
in the first instants. This will originate a smooth response of the process.
Note that in processes with dead time d there is no reason for N1 to be
less than d because the output will not begin to evolve until instant t + d.
Also if the process is nonminimum phase, this parameter will allow the
first instants of inverse response to be eliminated from the objective func-
tion. The coefficients δ(j) and λ(j) are sequences that consider the future
behaviour; usually constant values or exponential sequences are consid-
ered. For example, it is possible to obtain an exponential weight of δ(j)
along the horizon by using:

δ(j) = αN2−j

If α is given a value between 0 and 1, the errors farthest from instant t are
penalized more than those nearer to it, giving rise to smoother control
with less effort. If, on the other hand, α > 1, the first errors are more
penalized, provoking tighter control. In PFC the error is only counted at
certain points (coincidence points); this is easily achieved in the objective
function giving value one to the elements of sequence δ(j) at said points
and zero at the others. All these values can be used as tuning parameters
to cover an ample scope of options, from standard control to a made-to-
measure design strategy for a particular process.

• reference trajectory: One of the advantages of predictive control is that
if the future evolution of the reference is known a priori, the system can
react before the change has effectively been made, thus avoiding the ef-
fects of delay in the process response. The future evolution of reference
r(t + k) is known beforehand in many applications, such as robotics, ser-
vos or batch processes; in other applications a noticeable improvement
in performance can be obtained even though the reference is constant by

20 2 Model Predictive Controllers

y(t)

r(t+k)

w (t+k) w (t+k)

t

1
2

Fig. 2.3. Reference trajectory

simply knowing the instant when the value changes and getting ahead
of this circumstance. In minimization (2.5), the majority of methods usu-
ally use a reference trajectory w(t+ k) which does not necessarily have to
coincide with the real reference. It is normally a smooth approximation
from the current value of the output y(t) towards the known reference by
means of the first-order system:

w(t) = y(t) w(t+k) = αw(t+k−1)+(1−α)r(t+k) k = 1 . . . N (2.6)

α is a parameter between 0 and 1 (the closer to 1 the smoother the ap-
proximation) that constitutes an adjustable value that will influence the
dynamic response of the system. In Figure 2.3 the form of trajectory is
shown from when the reference r(t + k) is constant and for two different
values of α; small values of this parameter provide fast tracking (w1), if
it is increased then the reference trajectory becomes w2, giving rise to a
smoother response.
Another strategy is the one used in PFC, which is useful for variable set-
points:

w(t + k) = r(t + k)− αk(y(t)− r(t))

The reference trajectory can be used to specify closed-loop behaviour; this
idea is used in GPC or EPSAC defining an auxiliary output

ψ(t) = P (z−1)y(t)

where the error in the objective function is given by ψ(t + k) − w(t + k).
The filter P (z−1) has unit static gain and the generation of a reference
trajectory with dynamics defined by 1/P (z−1) and an initial value of that
of the measured output is achieved. In [57] it is demonstrated that if a
deadbeat control in ψ(t) is achieved so that

ψ(t) = B(z−1)w(t)

2.1 MPC Elements 21

B(z−1) being a determined polynomial with unit gain, the closed-loop
response of the process will clearly be:

y(t) =
B(z−1)
P (z−1)

w(t)

In short, that is equivalent to placing the closed-loop poles at the zeros of
design polynomial P (z−1).

• constraints: In practice all processes are subject to constraints. The ac-
tuators have a limited field of action and a determined slew rate, as is
the case of the valves, limited by the positions of totally open or closed
and by the response rate. Constructive reasons, safety or environmental
ones, or even the sensor scopes themselves can cause limits in the process
variables such as levels in tanks, flows in piping, or maximum temper-
atures and pressures; moreover, the operational conditions are normally
defined by the intersection of certain constraints for basically economic
reasons, so that the control system will operate close to the boundaries.
All of this makes the introduction of constraints in the function to be min-
imized necessary. Many predictive algorithms intrinsically take into ac-
count constraints (MAC, DMC) and have therefore been very successful in
industry, whilst others can incorporate them a posteriori (GPC)[38]. Nor-
mally, bounds in the amplitude and in the slew rate of the control signal
and limits in the output will be considered

umin ≤ u(t) ≤ umax ∀t
dumin ≤ u(t)− u(t− 1) ≤ dumax ∀t
ymin ≤ y(t) ≤ ymax ∀t

By adding these constraints to the objective function, the minimization
becomes more complex, so that the solution cannot be obtained explicitly
as in the unconstrained case.

2.1.3 Obtaining the Control Law

In order to obtain values u(t+k | t) it is necessary to minimize the functional
J of Equation (2.5). To do this the values of the predicted outputs ŷ(t + k | t)
are calculated as a function of past values of inputs and outputs and future
control signals, making use of the model chosen and substituted in the cost
function, obtaining an expression whose minimization leads to the looked-
for values. An analytical solution can be obtained for the quadratic criterion
if the model is linear and there are not constraints, otherwise an iterative
method of optimization should be used. Whatever the method, obtaining the
solution is not easy because there will be N2−N1 +1 independent variables,
a value which can be high (on the order of 10 to 30). In order to reduce this
degree of freedom a certain structure may be imposed on the control law.

22 2 Model Predictive Controllers

Furthermore, it has been found [105] that this structuralizing of the control
law produces an improvement in robustness and in the general behaviour of
the system, basically due to the fact that allowing the free evolution of the
manipulated variables (without being structured) may lead to undesirable
high-frequency control signals and at the worst to instability. This control
law structure is sometimes imposed by the use of the control horizon concept
(Nu) used in DMC, GPC, EPSAC and EHAC, that consists of considering that
after a certain interval Nu < N2 there is no variation in the proposed control
signals, that is:

�u(t + j − 1) = 0 j > Nu

which is equivalent to giving infinite weights to the changes in the control
from a certain instant. The extreme case would be to consider Nu equal to 1
with which all future actions would be equal to u(t)1. Another way of struc-
turing the control law is by using base functions, a procedure used in PFC
which consists of representing the control signal as a linear combination of
certain predetermined base functions:

u(t + k) =
n∑

i=1

μi(t)Bi(k) (2.7)

The Bi are chosen according to the nature of the process and the refer-
ence, they are normally polynomial type

B0 = 1 B1 = k B2 = k2 . . .

As has been indicated previously, an explicit solution does not exist in
the presence of constraints, so that quadratic programming methods have to
be used (these methods will be studied in Chapter 7). However, an explicit
solution does exist for certain types of constraints, for example, when the
condition that the output attains the reference value at a determined instant
is imposed, this method is used in Constrained Receding Horizon Predictive
Control (CRHPC) [61], which is very similar to GPC and which guarantees
stability results.

2.2 Review of Some MPC Algorithms

Some of the most popular methods will now be reviewed in order to demon-
strate their most outstanding characteristics. Comparative studies can be
found in [73],[108], [113] and [170]. The methods considered to be most rep-
resentative, DMC, MAC, GPC, PFC, EPSAC and EHAC will briefly be dealt with.
Some of them will be studied in greater detail in following chapters. Chapter
3 is devoted to DMC, MAC and PFC while GPC and its derivations are treated
in Chapter 4.
1 Remember that due to the receding horizon, the control signal is recalculated in

the following sample.

2.2 Review of Some MPC Algorithms 23

Dynamic Matrix Control

Dynamic Matrix Control uses the step response (2.2) to model the process,
only taking into account the first N terms, therefore assuming the process to
be stable and without integrators. As regards the disturbances, their value
will be considered to be the same as at instant t all along the horizon, that is,
to be equal to the measured value of the output (ym) minus the one estimated
by the model (ŷ(t | t)).

n̂(t + k | t) = n̂(t | t) = ym(t)− ŷ(t | t)
and therefore the predicted value of the output will be

ŷ(t + k | t) =
k∑

i=1

gi � u(t + k − i) +
N∑

i=k+1

gi � u(t + k − i) + n̂(t + k | t)

where the first term contains the future control actions to be calculated, the
second contains past values of the control actions and is therefore known,
and the last represents the disturbances. The cost function may consider fu-
ture errors only, or it can include the control effort, in which case it presents
the generic form (2.5). One of the characteristics of this method that makes it
very popular in the industry is the addition of constraints, in such a way that
equations of the form

N∑
i=1

Cj
yiŷ(t + k | t) + Cj

uiu(t + k − i) + cj ≤ 0 j = 1 . . . Nc

must be added to the minimization. Optimization (numerical because of the
presence of constraints) is carried out at each sampling instant and the value
of u(t) is sent to the process as is normally done in all MPC methods. The in-
conveniences of this method are, on one hand, the size of the process model
required and, on the other hand, the inability to work with unstable pro-
cesses.

Model Algorithmic Control

Also known as Model Predictive Heuristic Control, Model Algorithmic Con-
trol is marketed under the name of IDCOM (Identification-Command). It is
very similar to the previous method with a few differences. Firstly, it uses
an impulse response model (2.1) valid only for stable processes, in which the
value of u(t) appears instead of �u(t). Furthermore, it makes no use of the
control horizon concept so that in the calculations as many control signals
as future outputs appear. It introduces a reference trajectory as a first-order
system which evolves from the actual output to the setpoint according to a
determined time constant, following Expression (2.6). The variance of the er-
ror between this trajectory and the output is what one aims at minimizing

24 2 Model Predictive Controllers

in the objective function. The disturbances can be treated as in DMC or their
estimations can be carried out by the following recursive expression:

n̂(t + k | t) = αn̂(t + k − 1 | t) + (1− α)(ym(t)− ŷ(t | t))

with n̂(t | t) = 0. α is an adjustable parameter (0 ≤ α < 1) closely related
to the response time, the bandwidth and the robustness of the closed-loop
system [73]. It also takes into account constraints in the actuators and in the
internal variables or secondary outputs. Various algorithms can be used for
optimizing in the presence of constraints, from the ones presented initially
by Richalet et al. that can also be used for identifying the impulse response,
to others that are shown in [187].

Predictive Functional Control

This controller was developed by Richalet [178] for the case of fast processes.
It uses a state space model of the process and allows for nonlinear and un-
stable linear internal models. Nonlinear dynamics can be entered in the form
of a nonlinear state space model. PFC has two distinctive characteristics: the
use of coincidence points and basis functions.

The concept of coincidence points is used to simplify the calculation by
considering only a subset of points in the prediction horizon. The desired
and the predicted future outputs are required to coincide at these points, not
in the whole prediction horizon.

The controller parameterizes the control signal using a set of polynomial
basis functions, as given by Equation (2.7). This allows a relatively complex
input profile to be specified over a large horizon using a small number of
parameters. Choosing the family of basis functions establishes many of the
features of the computed input profile. These functions can be selected to fol-
low a polynomial setpoint with no lag, an important feature for mechanical
servo control applications.

The cost function to be minimized is:

J =
nH∑
j=1

[ŷ(t + hj)− w(t + hj)]2

where w(t + j) is usually a first-order approach to the known reference.
The PFC algorithm can also accommodate maximum and minimum in-

put acceleration constraints which are useful in mechanical servo control ap-
plications.

Extended Prediction Self Adaptive Control

The implementation of EPSAC is different to the previous methods. For pre-
dicting, the process is modelled by the transfer function

2.2 Review of Some MPC Algorithms 25

A(z−1)y(t) = B(z−1)u(t− d) + v(t)

where d is the delay and v(t) the disturbance. The model can be extended
by a term D(z−1)d(t), with d(t) being a measurable disturbance in order to
include feedforward effect. Using this method the prediction is obtained as
shown in [108]. One characteristic of the method is that the control law struc-
ture is very simple, as it is reduced to considering that the control signal is
going to stay constant from instant t, that is,�u(t+k) = 0 for k > 0. In short,
the control horizon is reduced to 1 and therefore the calculation is reduced to
one single value: u(t). To obtain this value a cost function is used of the form:

N∑
k=d

γ(k)[w(t + k)− P (z−1)ŷ(t + k | t)]2

where P (z−1) is a design polynomial with unit static gain and factor γ(k)
being a weighting sequence, similar to those appearing in (2.5). The control
signal can be calculated analytically (which is an advantage over the previ-
ous methods) in the form:

u(t) =

N∑
k=d

hkγ(k)[w(t + k)− P (z−1)ŷ(t + k | t)]
N∑

k=d

γ(k)h2
k

where hk is the discrete impulse response of the system.

Extended Horizon Adaptive Control

This formulation considers the process modelled by its transfer function
without taking a model of the disturbances into account:

A(z−1)y(t) = B(z−1)u(t− d)

It aims at minimizing the discrepancy between the model and the reference
at instant t + N : ŷ(t + N | t) − w(t + N), with N ≥ d. The solution to this
problem is not unique (unless N = d)[207]; a possible strategy is to consider
that the control horizon is 1, that is,

�u(t + k − 1) = 0 1 < k ≤ N − d

or to minimize the control effort:

J =
N−d∑
k=0

u2(t + k)

There is an incremental version of EHAC that allows the disturbances in the
load to be dealt with easily; it consists of considering

26 2 Model Predictive Controllers

J =
N−d∑
k=0

�u2(t + k)

In this formulation a predictor of N steps is used as follows

ŷ(t + N | t) = y(t) + F (z−1)� y(t) + whereE(z−1)B(z−1)� u(t + N − d)

E(z−1) and F (z−1) are polynomials satisfying the equation

(1− z−1) = A(z−1)E(z−1)(1− z−1) + z−NF (z−1)(1− z−1)

with the degree of E being equal to N − 1. One advantage of this method is
that a simple explicit solution can easily be obtained, resulting in

u(t) = u(t− 1) +
α0(w(t + N)− ŷ(t + N | t))

N−d∑
k=0

α2
i

where αk is the coefficient corresponding to�u(t+k) in the prediction equa-
tion. Thus the control law only depends on the process parameters and can
therefore easily be made self-tuning if it has an online identifier. As can be
seen the only parameter of adjustment is the horizon of prediction N , which
simplifies its use but provides little freedom for the design. One sees that the
reference trajectory cannot be used because the error is only considered at
one instant (t + N), neither is it possible to ponder the control efforts at each
point, so that certain frequencies in the performance cannot be eliminated.

Generalized Predictive Control

The output predictions of the Generalized Predictive Controller are based on
using a CARIMA model:

A(z−1)y(t) = B(z−1)z−d u(t− 1) + C(z−1)
e(t)
�

where the unmeasurable disturbance is given by a white noise coloured by
C(z−1). As its true value is difficult to know, this polynomial can be used for
optimal disturbance rejection, although its role in robustness enhancement is
more convincing.

The derivation of the optimal prediction is done by solving a Diophan-
tine equation whose solution can be found by an efficient recursive algo-
rithm.

This algorithm, as with all algorithms using transfer function models,
can easily be implemented in an adaptive mode using an online estimation
algorithm such as recursive least squares.

GPC uses a quadratic cost function of the form:

2.3 State Space Formulation 27

J(N1, N2, Nu) =
N2∑

j=N1

δ(j)[ŷ(t + j | t)− w(t + j)]2 +
Nu∑
j=1

λ(j)[�u(t + j − 1)]2

where the weighting sequences δ(j) and λ(j) are usually chosen constant
or exponentially increasing and the reference trajectory w(t + j) can be gen-
erated by a simple recursion which starts at the current output and tends
exponentially to the setpoint.

The theoretical basis of the GPC algorithm has been widely studied, and
it has been shown [57] that, for limiting cases of parameter choices, this algo-
rithm is stable and also that well-known controllers such as mean level and
deadbeat control are inherent in the GPC structure.

2.3 State Space Formulation

State space models can be used to formulate the predictive control problem.
The main theoretical results of MPC related to stability come from a state
space formulation, which can be used for both monovariable and multivari-
able processes and can easily be extended to nonlinear processes. The follow-
ing equations are used in the linear case to capture process dynamics:

x(t + 1) = Ax(t) + Bu(t)
y(t) = Cx(t) (2.8)

In the single-input single-output (SISO) case, y(t) and u(t) are scalars and
x(t) is the state vector. A multiple-input multiple-output (MIMO) process has
the same description but with input vectors u of dimension m and y of di-
mension n. In this section, for notation simplicity, only the SISO case is con-
sidered. The MIMO case is addressed in Chapter 6 together with other formu-
lations of MPC for MIMO processes.

An incremental state space model can also be used if the model in-
put is the control increment �u(t) instead of the control signal u(t). This
model can be written in the general state space form taking into account that
�u(t) = u(t)− u(t− 1). The following representation is obtained combining
this expression with (2.8):

[
x(t + 1)

u(t)

]
=
[

A B
0 I

] [
x(t)

u(t− 1)

]
+
[

B
I

]
� u(t)

y(t) =
[
C 0
] [x(t)

u(t− 1)

]
Defining a new state vector as x(t) = [x(t) u(t − 1)]T , the incremental

model takes the general form (2.8):

28 2 Model Predictive Controllers

x(t + 1) = Mx(t) + N � u(t)
y(t) = Qx(t) (2.9)

where the relationship between (M , N , Q) and the nonincremental form ma-
trices (A, B, C) can easily be obtained by comparing (2.8) and (2.9).

In order to minimize the objective function (2.5), output predictions over
the horizon must be computed. If the incremental model is used, predictions
can be obtained using (2.9) recursively, resulting in:

ŷ(t + j) = QM j x̂(t) +
j−1∑
i=0

QM j−i−1N � u(t + i)

Notice that the prediction needs an unbiased estimation of the state vec-
tor x(t). If the state vector is not accessible an observer must be included,
which calculates the estimation by means of

x̂(t | t) = x̂(t | t− 1) + K(ym(t)− y(t | t− 1))

where ym(t) is the measured output. If the plant is subject to white noise dis-
turbances affecting the process and the output with known covariance ma-
trices, the observer becomes a Kalman filter [11] and the gain K is calculated
solving a Riccati equation.

Now, the predictions along the horizon are given by

y =

⎡⎢⎢⎢⎣
ŷ(t + 1|t)
ŷ(t + 2|t)

...
ŷ(t + N2|t)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

QMx̂(t) + QN � u(t)

QM2x̂(t) +
1∑

i=0

QM1−iN � u(t + i)

...

QMN2 x̂(t) +
N2−1∑
i=0

QMN2−1−iN � u(t + i)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
which can be expressed in vector form as

y = Fx̂(t) + Hu (2.10)

where u = [�u(t) �u(t+1) . . . �u(t+Nu−1)]T is the vector of future control
increments, H is a block lower triangular matrix with its nonnull elements
defined by Hij = QM i−jN and matrix F is defined as

F =

⎡⎢⎢⎢⎣
QM
QM2

...
QMN2

⎤⎥⎥⎥⎦
Notice that (2.10) is composed of two terms: the first depends on the

current state and therefore is known at instant t, while the second depends on

2.3 State Space Formulation 29

the vector of future control actions, which is the decision variable that must
be calculated. The control sequence u is calculated minimizing the objective
function (2.5), that (in the case of δ(j) = 1 and λ(j) = λ) can be written as:

J = (Hu + Fx̂(t)−w)T (Hu + Fx̂(t)−w) + λuT u

If the are no constraints, an analytical solution exists that provides the
optimum as:

u = (HT H + λI)−1HT (w − Fx̂(t))

As a receding horizon strategy is used, only the first element of the control
sequence,�u(t), is sent to the plant and all the computation is repeated at the
next sampling time. Notice that a state observer is needed, since the control
law depends on x̂(t).

It must be noted that when the control and the maximum prediction hori-
zons approach infinity and there are no constraints, the predictive controller
becomes the well-known linear quadratic regulator (LQR) problem (see Ap-
pendix B). The optimal control sequence is generated by a static state feed-
back law where the feedback gain matrix is computed via the solution of an
algebraic Riccati equation. This equivalence allows the theoretical study of
MPC problems based on results coming from the optimal control field, as in
the case of closed-loop stability (see Section 9.5).

If the state space model of Equation (2.8) is used, the predictions are com-
puted in a slightly different manner, as shown by Maciejowski [131]. Now

y =

⎡⎢⎢⎢⎣
CA
CA2

...
CAN2

⎤⎥⎥⎥⎦ x̂(t) +

⎡⎢⎢⎢⎢⎢⎣
CB

CA2B
...

N2−1∑
i=0

CAiB

⎤⎥⎥⎥⎥⎥⎦u(t− 1)

+

⎡⎢⎢⎢⎢⎢⎣
B . . . 0

C(AB + B) . . . 0
...

. . .
...

N2−1∑
i=0

CAiB . . .
N2−Nu∑

i=0

CAiB

⎤⎥⎥⎥⎥⎥⎦u

which can be expressed in vector form as

y = Ψx̂(t) + Υu(t− 1) + Θu

Notice that a new term has appeared that depends on u(t − 1) and does
not affect the optimization since it does not depend on the decision variable
u. Therefore, the control action is calculated as

u = (ΘT Θ + λI)−1ΘT (w −Ψx̂(t)−Υu(t− 1))

30 2 Model Predictive Controllers

Whatever kind of model is used, the control law is a static state feedback
law that needs a state observer. In the case where constraints must be taken
into account, the solution must be obtained by a Quadratic Programming
(QP) algorithm, as will be studied in Chapter 7.

3

Commercial Model Predictive Control Schemes

As has been shown in previous chapters, there is a wide family of predictive
controllers, each member of which is defined by the choice of the common
elements such as the prediction model, the objective function and obtaining
the control law.

This chapter is dedicated to an overview of some MPC algorithms widely
used in industry. The first two belong to a major category of predictive con-
trol approaches, those employing convolutional models, also called non-
parametric methods. These approaches are based on step response or im-
pulse response models; the most representative formulations are Dynamic
Matrix Control (DMC) and Model Algorithmic Control (MAC). The third MPC
algorithm presented in this chapter is Predictive Functional Control (PFC),
which uses a set of basis functions to form the future control sequence.

It should be clear that the descriptions given here are necessarily incom-
plete, since only the general characteristics of each method are presented and
each controller has proprietary features which are not known.

3.1 Dynamic Matrix Control

DMC was developed at the end of the seventies by Cutler and Ramaker [62]
of Shell Oil Co. and has been widely accepted in the industrial world, mainly
by petrochemical industries [170].

Nowadays DMC is something more than an algorithm, and part of its
success is due to the fact that the commercial product covers topics such as
model identification and global plant optimization. In this section only the
standard algorithm is analyzed, without addressing technical details such as
software and hardware compatibilities, user interface requirements, person-
nel training or configuration and maintenance issues. The great success of
DMC in industry comes from its ability to deal with multivariable processes.
In this chapter, only the Single-Input Single-Output (SISO) case is addressed,

E. F. Camacho et al., Model Predictive Control
© Springer-Verlag London Limited 2007

32 3 Commercial Model Predictive Control Schemes

leaving the Multiple-Input Multiple-Output (MIMO) case for Section 6.5. Fun-
damentals of this controller can be more easily understood in the SISO; the
extension of the method to MIMO plants is basically a matter of notation.

3.1.1 Prediction

The process model employed in this formulation is the step response of the
plant, while the disturbance is considered to be constant along the horizon.
The procedure to obtain the predictions is as follows.

As a step response model is employed:

y(t) =
∞∑

i=1

gi � u(t− i)

the predicted values along the horizon will be:

ŷ(t + k | t) =
∞∑

i=1

gi � u(t + k − i) + n̂(t + k | t) =

k∑
i=1

gi � u(t + k − i) +
∞∑

i=k+1

gi � u(t + k − i) + n̂(t + k | t)

Disturbances are considered to be constant, that is, n̂(t + k | t) = n̂(t |
t) = ym(t)− ŷ(t | t). Then it can be written that:

ŷ(t + k | t) =
k∑

i=1

gi � u(t + k − i) +
∞∑

i=k+1

gi � u(t + k − i) + ym(t)

−
∞∑

i=1

gi � u(t− i) =
k∑

i=1

gi � u(t + k − i) + f(t + k)

where f(t + k) is the free response of the system, that is, the part of the re-
sponse that does not depend on the future control actions, and is given by:

f(t + k) = ym(t) +
∞∑

i=1

(gk+i − gi)� u(t− i) (3.1)

If the process is asymptotically stable, the coefficients gi of the step re-
sponse tend to a constant value after N sampling periods, so it can be con-
sidered that

gk+i − gi ≈ 0, i > N

and therefore the free response can be computed as:

3.1 Dynamic Matrix Control 33

f(t + k) = ym(t) +
N∑

i=1

(gk+i − gi)� u(t− i)

Notice that if the process is not asymptotically stable, then N does not exist
and f(t+k) cannot be computed (although a generalization exists in the case
of the instability being produced by pure integrators).

Now the predictions can be computed along the prediction horizon (k =
1, . . . , p), considering m control actions:

ŷ(t + 1 | t) = g1 � u(t) + f(t + 1)
ŷ(t + 2 | t) = g2 � u(t) + g1 � u(t + 1) + f(t + 2)

...

ŷ(t + p | t) =
p∑

i=p−m+1

gi � u(t + p− i) + f(t + p)

Defining the system’s dynamic matrix G as

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1 0 · · · 0
g2 g1 · · · 0
...

...
. . .

...
gm gm−1 · · · g1

...
...

. . .
...

gp gp−1 · · · gp−m+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
it can be written that

ŷ = Gu + f (3.2)

Observe that G is made up of m (the control horizon) columns of the sys-
tem’s step response appropriately shifted down in order. ŷ is a p-dimensional
vector containing the system predictions along the horizon, u represents the
m-dimensional vector of control increments and f is the free response vector.

This is the expression that relates the future outputs with the control in-
crements, so it will be used to calculate the necessary action to achieve a
specific system behaviour.

Notice that f depends on the state vector x(t), which in this case is given
by x(t)T = [ym(t) u(t− 1) u(t− 2) . . . u(t−N − 1)] and can be expressed as
f = Fx(t), and consequently the prediction can be written as:

ŷ = Gu + Fx(t)

34 3 Commercial Model Predictive Control Schemes

3.1.2 Measurable Disturbances

Measurable disturbances can easily be added to the prediction equations,
since they can be treated as system inputs. Expression (3.2) can be used to
calculate the predicted disturbances

ŷd = Dd + fd

where ŷd is the contribution of the measurable disturbance to the system
output, D is a matrix similar to G containing the coefficients of the system
response to a step in the disturbance, d is the vector of disturbance increment
and fd is the part of the response that does not depend on the disturbance.

In the most general case of measurable and nonmeasurable disturbances,
the complete free response of the system (the fraction of the output that does
not depend on the manipulated variable) can be considered as the sum of
four effects: the response to the input u(t), to the measurable disturbance
d(t), to the nonmeasurable disturbance and to the actual process state:

f = fu + Dd + fd + fn

Therefore the prediction can be computed by the general known expres-
sion:

ŷ = Gu + f

3.1.3 Control Algorithm

The industrial success of DMC has mainly come from its application to high-
dimension multivariable systems with the use of constraints. This section
describes the control algorithm starting from the simpler case of a monovari-
able system without constraints; later it is extended to the general multivari-
able and constrained cases.

The objective of a DMC controller is to drive the output as close to the
setpoint as possible in a least-squares sense with the possibility of the in-
clusion of a penalty term on the input moves. Therefore, the manipulated
variables are selected to minimize a quadratic objective that can consider the
minimization of future errors alone

J =
p∑

j=1

[ŷ(t + j | t)− w(t + j)]2

or it can include the control effort, in which case it presents the generic form

J =
p∑

j=1

[ŷ(t + j | t)− w(t + j)]2 +
m∑

j=1

λ[�u(t + j − 1)]2

If there are no constraints, the solution to the minimization of the cost
function J = eeT + λuuT , where e is the vector of future errors along the

3.1 Dynamic Matrix Control 35

Safe

Optimal
operating point

zone 2

Safe zone 1

Operating point 1

Operating point 2

Constraint

Constraint

Fig. 3.1. Economic operating point of a typical process

prediction horizon and u is the vector composed of the future control incre-
ments �u(t), . . . ,�u(t + m), can be obtained analytically by computing the
derivative of J and making it equal to 0, which provides the general result:

u = (GT G + λI)−1GT (w − f)

Remember that, as in all predictive strategies, only the first element of
vector u (�u(t)) is really sent to the plant. It is not advisable to implement
the entire sequence over the next m intervals in automatic succession. This is
because is impossible to perfectly estimate the disturbance vector, and there-
fore it is impossible to anticipate precisely the unavoidable disturbances that
cause the actual output to differ from the predictions used to compute the
sequence of control actions. Furthermore, the setpoint can also change over
the next m intervals.

The Constrained Problem

Though computationally more involved than simpler algorithms, the flexible
constraint-handling capabilities of the method (and MPC in general) are very
attractive for practical applications, since the economic operating point of a
typical process unit often lies at the intersection of constraints [168], as shown
in Figure 3.1. It can be seen that, due to safety reasons, it is necessary to keep
a safe zone around the operating point, since the effect of perturbations can
make the process violate constraints. This zone can be reduced, and therefore
the economic profit improved, if the controller is able to handle constraints
(operating point 1).

Constraints in both inputs and outputs can be posed in such a way that
equations of the form

N∑
i=1

Cj
yiŷ(t + k | t) + Cj

uiu(t + k − i) + cj ≤ 0 j = 1 . . . Nc

36 3 Commercial Model Predictive Control Schemes

must be added to the minimization. As future projected outputs can be re-
lated directly back to the control increment vector through the dynamic ma-
trix, all input and output constraints can be collected into a matrix inequality
involving the input vector, Ru ≤ c (for further details see Chapter 7). There-
fore the problem takes the form of a standard Quadratic Programming (QP)
formulation. The optimization is now numerical because of the presence of
constraints and is carried out by means of standard commercial optimiza-
tion QP code at each sampling instant, and then the value of u(t) is sent to
the process, as is normally done in all MPC methods. In this case the method
is known as QDMC, due to the Quadratic Programming algorithm employed.

3.2 Model Algorithmic Control

Maybe the simplest and most intuitive formulation of Predictive Control is
the one based on the key ideas of Richalet et al. [182], known as MAC and
Model Predictive Heuristic Control (MPHC), whose software is called IDCOM
(Identification-Command). This method is very similar to DMC with a few
differences. It makes use of a truncated step response of the process and pro-
vides a simple explicit solution in the absence of constraints. This method has
clearly been accepted by practitioners and is extensively used in many con-
trol applications [70] where most of its success is due to the process model
used. It is known that transfer function models can give results with large
errors when there is a mismatch in the model order. On the other hand, the
impulse response representation is a good choice, since the identification of
impulse responses is relatively simple.

3.2.1 Process Model and Prediction

The system output at instant t is related to the inputs by the coefficients of
the truncated impulse response as follows:

y(t) =
N∑

j=1

hju(t− j) = H(z−1)u(t)

This model predicts that the output at a given time depends on a linear com-
bination of past input values; the weights hi are the impulse response coeffi-
cients. As the response is truncated to N elements, the system is assumed to
be stable and causal. Using this internal model, a k-step ahead predictor can
be written as

ŷ(t + k | t) =
N∑

j=1

hju(t + k − j) + n̂(t + k | t)

where the sum can be divided into two terms

3.2 Model Algorithmic Control 37

fr(t + k) =
N∑

j=k+1

hju(t + k − j) fo(t + k) =
k∑

j=1

hju(t + k − j)

such that fr represents the free response, being the expected value of y(t+ j)
assuming zero future control actions, and fo is the forced response, that is, the
additional component of output response due to the proposed set of future
control actions. It is now assumed that the disturbances will remain constant
in the future with the same value as at instant t, that is, n̂(t + k | t) = n̂(t | t),
which is the measured output minus the output predicted by the nominal
model:

n̂(t + k | t) = n̂(t | t) = y(t)−
N∑

j=1

hju(t− j)

Then the prediction is given by:

ŷ(t + k | t) = fr + fo + n̂(t | t)

If M is the horizon and u+ the vector of proposed control actions (not
increments), u− of past control actions, y the predicted outputs, n the dis-
turbances, and the reference vector w is a smooth approach to the current
setpoint

u+ =

⎡⎢⎢⎢⎣
u(t)

u(t + 1)
...

u(t + M − 1)

⎤⎥⎥⎥⎦ u− =

⎡⎢⎢⎢⎣
u(t−N + 1)
u(t−N + 2)

...
u(t− 1)

⎤⎥⎥⎥⎦ y =

⎡⎢⎢⎢⎣
ŷ(t + 1)
ŷ(t + 2)

...
ŷ(t + M)

⎤⎥⎥⎥⎦

n =

⎡⎢⎢⎢⎣
n̂(t + 1)
n̂(t + 2)

...
n̂(t + M)

⎤⎥⎥⎥⎦ w =

⎡⎢⎢⎢⎣
w(t + 1)
w(t + 2)

...
w(t + M)

⎤⎥⎥⎥⎦
and defining the matrices

H1 =

⎡⎢⎢⎢⎣
h1 0 · · · 0
h2 h1 · · · 0

· · · · · · . . . · · ·
hM hM−1 · · · h1

⎤⎥⎥⎥⎦H2 =

⎡⎢⎢⎢⎣
hN · · · hi · · · h2

0 · · · hj · · · h3

· · · . . . · · · · · · · · ·
0 · · · hN · · · hM+1

⎤⎥⎥⎥⎦
the predictor can be written as

y = H1 u+ + H2 u− + n

38 3 Commercial Model Predictive Control Schemes

α decreases

Setpoint

Reference trajectory

System output

t

Fig. 3.2. Influence of α on the reference tracking

3.2.2 Control Law

The primary objective of the controller is to determine the sequence of control
moves that will minimize the sum of the squared deviations of the predicted
output from the reference trajectory.

The reference trajectory used in MAC is normally a smooth approxima-
tion from the current value of the system output towards the known refer-
ence by means of a first-order system of the form:

w(t + k) = αw(t + k− 1) + (1−α)r(t + k) k = 1 . . . N, with w(t) = y(t)

It is important to note that the shape of the reference trajectory (which
depends on the choice of α) determines the desired speed of approach to the
setpoint. This is of great interest in practice because it provides a natural way
to control the aggressiveness of the algorithm: increasing the time constant
leads to a slower but more robust controller (see Figure 3.2). Therefore this
is an important tuning parameter for this controller, and its choice is very
closely linked to the robustness of the closed-loop system [159]. Parameter
α is a more direct and more intuitive tuning parameter than factors such as
weighting sequences or horizon lengths employed by other formulations.

The objective function minimizes the error as well as the control effort. If
future errors are expressed as

e = w − y = w −H2u− − n−H1u+ = w − f −H1u+

where vector f contains the terms depending on known values (past inputs,
current output and references). Then the cost function can be written as

J = eT e + λu+
T u+

where λ is the penalization factor for the input variable variations. If no con-
straints are considered, the solution can be obtained explicitly, giving:

u+ = (HT
1 H1 + λI)−1H1

T (w − f) (3.3)

3.3 Predictive Functional Control 39

As it is a receding horizon strategy, only the first element of this vector u(t)
is used, rejecting the rest and repeating the calculations at the next sampling
time.

The calculation of the control law (3.3) is relatively simple compared to
other formulations, although it requires the inversion of an M ×M matrix.
Notice that if the number of future inputs to be calculated is chosen as a value
P < M , then this matrix is of dimension P × P , since H1 is of dimension
M × P , hence reducing the necessary calculations.

The simplicity of the algorithm, as well as the possibility of including
constraints, has converted this formulation into one of the most frequently
used in industry nowadays.

3.3 Predictive Functional Control

The Predictive Functional Controller PFC was proposed by Richalet [178] for
fast processes and is characterized by two distinctive features: the control
signal is structured as a linear combination of certain predetermined basis
functions and the concept of coincidence points to evaluate the cost function
along the horizon.

3.3.1 Formulation

Consider the following state space model

x(t) = Mx(t− 1) + Nu(t− 1)
y(t) = Qx(t)

as representing the process behaviour. The prediction is obtained adding an
autocompensation term calculated as a function of the observed differences
between the model and the past outputs:

ŷ(t + k | t) = y(t + k) + ê(t + k | t)
The predicted plant-model error is assumed to have the form

ê(t + k | t) = ym(t)− ŷ(t | t− 1) +
r∑

j=1

ejk
j

where ym(t) is the output measured value and coefficients ej are obtained by
a least-squares fit to previous errors.

The future control signal is structured as a linear combination of the basis
functions Bi, which are chosen according to the nature of the process and the
reference:

u(t + k) =
nB∑
i=1

μi(t)Bi(k) (3.4)

40 3 Commercial Model Predictive Control Schemes

Coincidence Points

Fig. 3.3. Coincidence points

Normally these functions are polynomial type: steps (B1(k) = 1), ramps
(B2(k) = k), or parabolas (B3(k) = k2), as the majority of references can be
expressed as combinations of these functions. With this strategy a complex
input profile can be specified using a small number of unknown parameters.

The choice of basis functions defines the input profile and can assure
a predetermined behaviour (smooth signal, for instance). This can result in
an advantage when controlling nonlinear systems. An important feature for
mechanical servo applications is that if a polynomial basis is chosen, then the
order can be selected to follow a polynomial setpoint.

The cost function to be minimized is:

J =
nH∑
j=1

[ŷ(t + hj)− w(t + hj)]2

where w(t + j) is usually a first-order approach to the known reference, as in
(2.6) or

w(t + k) = r(t + k)− αk(r(t)− y(t))

In order to smooth the control signal, a quadratic factor of the form λ[�u(k)]2

can be added to the cost function.
The predicted error is not considered all along the horizon, only in cer-

tain instants hj , j = 1, . . . , nH called coincidence points (see figure 3.3). These
points can be considered tuning parameters and must be chosen taking into
account their influence on the stability and robustness of the control system.
Their number must be at least equal to the selected number of basis func-
tions.

Calculation of the Control Law

The calculation of the control law implies computing the values of μi(t) of
Equation (3.4). Notice that these coefficients are chosen to be optimal at each
instant t and therefore they are different at each step.

3.3 Predictive Functional Control 41

In the case of SISO processes without constraints, the control law can be
obtained as follows. First, the output is decomposed into free and forced
outputs, and the structure of the control signal is employed to give

y(t + k) = QMkx(t) +
nB∑
i=1

yBi
(k)μi(t)

where yBi
is the system response to the basis function Bi.

Now the cost function can be written as

J =
nH∑
j=1

[ŷ(t + hj)− w(t + hj)]2 =
nH∑
j=1

[yB(hj)μ− d(t + hj)]2

where

μ = [μ1(t) . . . μnB(t)]T

yB(hj) = [yB1(hj) . . . yBnB
(hj)]

d(t + hj) = ω(t + hj)−QM jx(t)− e(t + hj)

The cost function can be written in vector form defining d = [d(t+h1) . . . d(t+
hnH

)]T as the term which contains values that are known at time t and where
YB is a matrix whose rows are the vectors yB at the coincidence points hj ,
j = 1, . . . nh, giving:

J = (YBμ− d)T (YBμ− d)

Minimizing J with respect to the coefficients μ:

∂J

∂μ
= 0 ⇒ YT

BYBμ−YT
Bd = 0

and therefore the vector of the weights of the basis functions is given by the
solution of

YBμ = d

Then the control signal, taking into account the receding horizon strat-
egy, is given by:

u(t) =
nB∑
i=1

μi(t)Bi(0)

This algorithm can only be used for stable models, since the pole can-
cellations can lead to stability problems when unstable or high-oscillatory
modes appear. In this case, a procedure that decomposes the model into two
stable ones can be employed [178]. The method can be used for nonlinear
processes using nonlinear state space models.

42 3 Commercial Model Predictive Control Schemes

Inlet Outlet

Control valve

Hot waterCold water

Fig. 3.4. Water heater

3.4 Case Study: A Water Heater

This example shows the design of a DMC to control the outlet temperature of
a water heater. Notice that a MAC can be designed following the same steps.

Consider a water heater where the cold water is heated by means of a gas
burner. The outlet temperature depends on the energy added to the water
through the gas burner (see Figure 3.4). Therefore this temperature can be
controlled by the valve which manipulates the gas flow to the heater.

The step response model of this process must be obtained to design the
controller. The step response is obtained by applying a step in the control
valve. Coefficients gi can be obtained directly from the response shown in
figure 3.5. It can be seen that the output stabilizes after 30 periods, so the
model is given by

y(t) =
30∑

i=1

gi � u(t− i),

where the coefficients gi are shown in the following table:

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

0 0 0.271 0.498 0.687 0.845 0.977 1.087 1.179 1.256
g11 g12 g13 g14 g15 g16 g17 g18 g19 g20

1.320 1.374 1.419 1.456 1.487 1.513 1.535 1.553 1.565 1.581
g21 g22 g23 g24 g25 g26 g27 g28 g29 g30

1.592 1.600 1.608 1.614 1.619 1.623 1.627 1.630 1.633 1.635

The response shown in Figure 3.5 corresponds to a system with a transfer
function given by:

G(z) =
0.2713z−3

1− 0.8351z−1

Notice that although the gi coefficients are obtained in practice from real
plant tests, for this example, where the response has been generated with
a simple model, the step response coefficients can easily be obtained from
the transfer function by the expression

3.4 Case Study: A Water Heater 43

0 5 10 15 20 25 30 35 40 45 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Samples

Fig. 3.5. Step response

gj = −
j∑

i=1

aigj−i +
j−1∑
i=0

bi gk = 0 for k ≤ 0 (3.5)

where ai and bi are the coefficients of the denominator and numerator of the
discrete transfer function respectively (starting from i = 0).

In this example the first two coefficients of the step model are zero since
the system has a dead time of two sampling periods.

Considering a prediction horizon of 10 and a control horizon of 5, the
dynamic matrix is obtained from the coefficients of the step response and is
given by:

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0

0.271 0 0 0 0
0.498 0.271 0 0 0
0.687 0.498 0.271 0 0
0.845 0.687 0.498 0.271 0
0.977 0.845 0.687 0.498 0.271
1.087 0.977 0.845 0.687 0.498
1.179 1.087 0.977 0.845 0.687
1.256 1.179 1.087 0.977 0.845

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Taking λ = 1, matrix (GT G + λI)−1GT is calculated and therefore the

control law is given by the product of the first row of this matrix (K) times
the vector that contains the difference between the reference trajectory and
the free response

�u(t) = K(w − f)

with

K = [0 0 0.1465 0.1836 0.1640 0.1224 0.0780 0.0410 0.0101 − 0.0157]

where the free response is easily calculated using equation (3.1):

44 3 Commercial Model Predictive Control Schemes

0.0 20.0 40.0 60.0 80.0 100.0 120.0
Samples

-0.5

0.0

0.5

1.0

1.5

Ou
tpu

t a
nd

 R
efe

re
nc

e

λ=1 λ=0.1

α=0 α=0.7 α=0 α=0.7

0.0 20.0 40.0 60.0 80.0 100.0 120.0
Samples

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Co
ntr

ol
Si

gn
al

λ=1 λ=0.1

Fig. 3.6. Controller behaviour

f(t + k) = ym(t) +
30∑

i=1

(gk+i − gi)� u(t− i)

Figure 3.6 shows the system response to a change in the outlet temper-
ature setpoint for different shapes of the control weighting factor and the
reference trajectory. The first setpoint change is made with a value of λ = 1
and α = 0. In the second change α is changed to 0.7 and later the control
weighting factor is changed to 0.1 for the same values of α. It can be seen
that a small value of α makes the system response faster with a slight oscilla-
tion, while a small value of λ gives bigger control actions. The combination
λ = 0.1, α = 0 provides the fastest response, but the control effort seems to
be too vigorous.

The inlet temperature can become a disturbance, since any change in its
value will disturb the process from its steady-state operating point. This tem-
perature can be measured and the controller can take into account its value in
order to reject its effect before it appears in the system output. That is, it can
be treated by DMC as a measurable disturbance and explicitly incorporated
into the formulation. To do this, a model of the effect of the inlet temperature
changes on the outlet temperature can easily be obtained by a step test.

3.5 Exercises 45

In this example the disturbance is modelled by

y(t) =
30∑

i=1

di � u(t− i)

with
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

0 0 0.050 0.095 0.135 0.172 0.205 0.234 0.261 0.285
d11 d12 d13 d14 d15 d16 d17 d18 d19 d20

0.306 0.326 0.343 0.359 0.373 0.386 0.397 0.407 0.417 0.425
d21 d22 d23 d24 d25 d26 d27 d28 d29 d30

0.433 0.439 0.445 0.451 0.456 0.460 0.464 0.468 0.471 0.474

which corresponds to the transfer function:

G(z) =
0.05z−3

1− 0.9z−1

Notice that the first ten di coefficients are used to build matrix D in the
same way as matrix G.

Figure 3.7 shows a simulation where a disturbance occurs from t = 20
to t = 60. In case the controller explicitly considers the measurable distur-
bances, it is able to reject them, since the controller starts acting when the
disturbance appears, not when its effect appears in the outlet temperature.
On the other hand, if the controller does not take into account the measur-
able disturbance, it reacts later, when the effect on the output is considerable.

3.5 Exercises

3.1. If the cost function of a predictive controller is J = eeT + λuuT , with
e = Gu + f − w, demonstrate that the minimum is given by u = (GT G +
λI)−1GT (w − f) in the unconstrained case.

3.2. For the water heater of Section 3.4:

1. Obtain the impulse response model.
2. Create matrices H1 and H2 for the MAC controller with P = 3 and M = 5.
3. Calculate the control law and simulate the same experiments as in the

example.

3.3. Given a process described by

x(t + 1) =
[

0.8 0.1
0.1 0.9

]
x(t) +

[
0.1
0

]
u(t), y(t) =

[
0.1 0.9

]
x(t)

simulate a PFC to move the process output from 0 to 1, with N = 30. Compare
the effect of using one or three basis functions.

46 3 Commercial Model Predictive Control Schemes

0.0 20.0 40.0 60.0 80.0 100.0 120.0
Samples

-0.5

0.0

0.5

1.0

1.5

2.0

Ou
tpu

ts
an

d D
ist

ur
ba

nc
e

Controller #1
Controller #2
Disturbance

0.0 20.0 40.0 60.0 80.0 100.0 120.0
Samples

-0.2

0.0

0.2

0.4

0.6

Co
ntr

ol
sig

na
ls

Controller #1
Controller #2

Fig. 3.7. Disturbance rejection with (Controller #1) and without (Controller #2) con-
sidering measurable disturbances

3.4. Change the number of model elements of the water heater from N = 30
to N = 10 and simulate the effect on the closed-loop behaviour.

3.5. For the same example, change the values of m, p and λ and see the re-
sults.

3.6. Obtain a state space model for the water heater, design a PFC controller
and compare the results with those obtained with DMC.

3.7. Design a DMC for the process G(s) = 225(s−1)
(s+1)(s2+30s+225) . In order to do

this:

1. Obtain the discrete equivalent when sampling at T = 0.2 second.
2. Compute the step response model by performing a unitary step at the

input.
3. Calculate the control law with N = 40, p = 15, m = 2 and λ = 1.
4. Simulate the response to a setpoint change of 1.

4

Generalized Predictive Control

This chapter describes one of the most popular predictive control algorithms:
Generalized Predictive Control (GPC). The method is developed in detail,
showing the general procedure to obtain the control law and its most out-
standing characteristics. The original algorithm is extended to include the
cases of measurable disturbances and change in the predictor. Close deriva-
tions of this controller such as CRHPC and Stable GPC are also treated here,
illustrating the way they can be implemented.

4.1 Introduction

The GPC method was proposed by Clarke et al. [58] and has become one of the
most popular MPC methods in both industry and academia. It has been suc-
cessfully implemented in many industrial applications [54], showing good
performance and a certain degree of robustness. It can handle many differ-
ent control problems for a wide range of plants with a reasonable number
of design variables, which have to be specified by the user depending upon
prior knowledge of the plant and control objectives.

The basic idea of GPC is to calculate a sequence of future control signals
in such a way that it minimizes a multistage cost function defined over a pre-
diction horizon. The index to be optimized is the expectation of a quadratic
function measuring the distance between the predicted system output and
some predicted reference sequence over the horizon plus a quadratic func-
tion measuring the control effort. This approach was used in [118] and [119]
to obtain a generalized pole placement controller which is an extension of
the well-known pole placement controllers [4], [205] and belongs to the class
of extended horizon controllers.

Generalized Predictive Control has many ideas in common with the pre-
dictive controllers previously mentioned since it is based upon the same con-
cepts but it has some differences. As will be seen, it provides an analytical

E. F. Camacho et al., Model Predictive Control
© Springer-Verlag London Limited 2007

48 4 Generalized Predictive Control

solution (in the absence of constraints), it can deal with unstable and non-
minimum phase plants and it incorporates the concept of control horizon as
well as the consideration of weighting control increments in the cost func-
tion. The general set of choices available for GPC leads to a greater variety
of control objectives compared to other approaches, some of which can be
considered as subsets or limiting cases of GPC.

4.2 Formulation of Generalized Predictive Control

Most single-input single-output (SISO) plants, when considering operation
around a particular setpoint and after linearization, can be described by

A(z−1)y(t) = z−dB(z−1)u(t− 1) + C(z−1)e(t)

where u(t) and y(t) are the control and output sequences of the plant and
e(t) is a zero mean white noise. A, B and C are the following polynomials in
the backward shift operator z−1:

A(z−1) = 1 + a1z
−1 + a2z

−2 + ... + anaz−na

B(z−1) = b0 + b1z
−1 + b2z

−2 + ... + bnbz
−nb

C(z−1) = 1 + c1z
−1 + c2z

−2 + ... + cncz
−nc

where d is the dead time of the system. This model is known as a Con-
troller Auto-Regressive Moving-Average (CARMA) model. It has been ar-
gued [58] that for many industrial applications in which disturbances are
non-stationary an integrated CARMA (CARIMA) model is more appropriate.
A CARIMA model is given by

A(z−1)y(t) = B(z−1)z−d u(t− 1) + C(z−1)
e(t)
� (4.1)

with

� = 1− z−1

For simplicity in the following, the C polynomial is chosen to be 1. Notice
that if C−1 can be truncated it can be absorbed into A and B. The general case
of a coloured noise will be treated later.

The Generalized Predictive Control (GPC) algorithm consists of applying
a control sequence that minimizes a multistage cost function of the form

J(N1, N2, Nu) =
N2∑

j=N1

δ(j)[ŷ(t + j | t)− w(t + j)]2 +
Nu∑
j=1

λ(j)[�u(t + j − 1)]2

(4.2)

4.2 Formulation of Generalized Predictive Control 49

where ŷ(t+ j | t) is an optimum j step ahead prediction of the system output
on data up to time t, N1 and N2 are the minimum and maximum costing
horizons, Nu is the control horizon, δ(j) and λ(j) are weighting sequences
and w(t + j) is the future reference trajectory, which can be calculated as
shown in (2.6).

The objective of predictive control is to compute the future control se-
quence u(t), u(t + 1), . . . in such a way that the future plant output y(t + j) is
driven close to w(t + j). This is accomplished by minimizing J(N1, N2, Nu).

In order to optimize the cost function the optimal prediction of y(t + j)
for j ≥ N1 and j ≤ N2 will be obtained. Consider the following Diophantine
equation:

1 = Ej(z−1)Ã(z−1) + z−jFj(z−1) with Ã(z−1) = �A(z−1) (4.3)

The polynomials Ej and Fj are uniquely defined with degrees j − 1 and
na, respectively. They can be obtained by dividing 1 by Ã(z−1) until the re-
mainder can be factorized as z−jFj(z−1). The quotient of the division is the
polynomial Ej(z−1) .

If Equation (4.1) is multiplied by�Ej (z−1) zj ,

Ã(z−1)Ej(z−1)y(t + j) = Ej(z−1)B(z−1)� u(t + j − d− 1)
+ Ej(z−1)e(t + j) (4.4)

Considering (4.3), Equation (4.4) can be written as

(1−z−jFj(z−1))y(t+ j) = Ej(z−1)B(z−1)�u(t+ j−d−1)+Ej(z−1)e(t+ j)

which can be rewritten as:

y(t+j) = Fj(z−1)y(t)+Ej(z−1)B(z−1)�u(t+j−d−1)+Ej(z−1)e(t+j) (4.5)

As the degree of polynomial Ej(z−1) = j−1, the noise terms in Equation
(4.5) are all in the future. The best prediction of y(t + j) is therefore

ŷ(t + j | t) = Gj(z−1)� u(t + j − d− 1) + Fj(z−1)y(t)

where Gj(z−1) = Ej(z−1)B(z−1).
It is very simple to show that the polynomials Ej and Fj can be obtained

recursively. The recursion of the Diophantine equation has been demon-
strated in [58]. A simpler demonstration is given in the following. There are
other formulations of GPC not based on the recursion of the Diophantine
equation [2].

Consider that polynomials Ej and Fj have been obtained by dividing 1
by Ã(z−1) until the remainder of the division can be factorized as z−jFj(z−1).
These polynomials can be expressed as:

Fj(z−1) = fj,0 + fj,1z
−1 + . . . + fj,naz−na

Ej(z−1) = ej,0 + ej,1z
−1 + . . . + ej,j−1z

−(j−1)

50 4 Generalized Predictive Control

Suppose that the same procedure is used to obtain Ej+1 and Fj+1, that
is, dividing 1 by Ã(z−1) until the remainder of the division can be factorized
as z−(j+1)Fj+1(z−1) with

Fj+1(z−1) = fj+1,0 + fj+1,1z
−1 + . . . + fj+1,naz−na

It is clear that only another step of the division performed to obtain the
polynomials Ej and Fj has to be taken in order to obtain the polynomials
Ej+1 and Fj+1. The polynomial Ej+1 will be given by

Ej+1(z−1) = Ej(z−1) + ej+1,jz
−j

with ej+1,j = fj,0

The coefficients of polynomial Fj+1 can then be expressed as:

fj+1,i = fj,i+1 − fj,0 ãi+1 i = 0 . . . na− 1

The polynomial Gj+1 can be obtained recursively as follows:

Gj+1 = Ej+1B = (Ej + fj,0z
−j)B

Gj+1 = Gj + fj,0z
−jB

That is, the first j coefficient of Gj+1 will be identical to those of Gj and
the remaining coefficients will be given by:

gj+1,j+i = gj,j+i + fj,0 bi i = 0 . . . nb

To solve the GPC problem the set of control signals u(t), u(t + 1), ..., u(t +
N) has to be obtained in order to optimize Expression (4.2). As the system
considered has a dead time of d sampling periods, the output of the system
will be influenced by signal u(t) after sampling period d + 1. The values N1,
N2 and Nu defining the horizon can be defined by N1 = d + 1, N2 = d + N
and Nu = N . Notice that there is no point in making N1 < d + 1 as terms
added to expression (4.2) will only depend on the past control signals. On
the other hand, if N1 > d + 1 the first points in the reference sequence, being
the ones guessed with most certainty, will not be taken into account.

Now consider the following set of j ahead optimal predictions:

ŷ(t + d + 1 | t) = Gd+1 � u(t) + Fd+1y(t)
ŷ(t + d + 2 | t) = Gd+2 � u(t + 1) + Fd+2y(t)

...
ŷ(t + d + N | t) = Gd+N � u(t + N − 1) + Fd+Ny(t)

which can be written as:

y = Gu + F(z−1)y(t) + G′(z−1)� u(t− 1) (4.6)

4.2 Formulation of Generalized Predictive Control 51

where

y =

⎡⎢⎢⎢⎣
ŷ(t + d + 1 | t)
ŷ(t + d + 2 | t)

...
ŷ(t + d + N | t)

⎤⎥⎥⎥⎦ u =

⎡⎢⎢⎢⎣
�u(t)

�u(t + 1)
...

�u(t + N − 1)

⎤⎥⎥⎥⎦

G =

⎡⎢⎢⎢⎣
g0 0 ... 0
g1 g0 ... 0
...

...
...

...
gN−1 gN−2 ... g0

⎤⎥⎥⎥⎦

G′(z−1) =

⎡⎢⎢⎢⎣
(Gd+1(z−1)− g0)z

(Gd+2(z−1)− g0 − g1z
−1)z2

...
(Gd+N (z−1)− g0 − g1z

−1 − · · · − gN−1z
−(N−1))zN

⎤⎥⎥⎥⎦

F(z−1) =

⎡⎢⎢⎢⎣
Fd+1(z−1)
Fd+2(z−1)

...
Fd+N (z−1)

⎤⎥⎥⎥⎦
Notice that the last two terms in Equation (4.6) only depend on the past

and can be grouped into f leading to:

y = Gu + f

Notice that if all initial conditions are zero, the free response f is also
zero. If a unit step is applied to the input at time t; that is,

�u(t) = 1,�u(t + 1) = 0, . . . ,�u(t + N − 1) = 0

the expected output sequence [ŷ(t + 1), ŷ(t + 2), . . . , ŷ(t + N)]T is equal to
the first column of matrix G. That is, the first column of matrix G can be
calculated as the step response of the plant when a unit step is applied to the
manipulated variable. The free response term can be calculated recursively
by

fj+1 = z(1− Ã(z−1))fj + B(z−1)� u(t− d + j)

with f0 = y(t) and�u(t + j) = 0 for j ≥ 0.
Expression (4.2) can be written as

J = (Gu + f −w)T (Gu + f −w) + λuT u (4.7)

where

w =
[
w(t + d + 1) w(t + d + 2) · · · w(t + d + N)

]T

52 4 Generalized Predictive Control

+

K Process

-

Free response
calculation

w

f

Δ u(t) y(t)

Fig. 4.1. GPC control law

Equation (4.7) can be written as

J =
1
2
uT Hu + bT u + f0 (4.8)

where

H = 2(GT G + λI)
bT = 2(f −w)T G

f0 = (f −w)T (f −w)

The minimum of J , assuming there are no constraints on the control sig-
nals, can be found by making the gradient of J equal to zero, which leads
to:

u = −H−1b = (GT G + λI)−1GT (w − f) (4.9)

Notice that the control signal that is actually sent to the process is the first
element of vector u, given by:

�u(t) = K(w − f) (4.10)

where K is the first row of matrix (GT G+λI)−1GT . This has a clear meaning
that can easily be derived from Figure 4.1: if there are no future predicted er-
rors, that is, if w−f = 0, then there is no control move, since the objective will
be fulfilled with the free evolution of the process. However, in the other case,
there will be an increment in the control action proportional (with a factor
K) to that future error. Notice that the action is taken with respect to future
errors, not past errors, as is the case in conventional feedback controllers.

Notice that only the first element of u is applied and the procedure is re-
peated at the next sampling time. The solution to the GPC given involves the

4.3 The Coloured Noise Case 53

inversion (or triangularization) of an N×N matrix which requires a substan-
tial amount of computation. In [58] the concept of control horizon is used to
reduce the amount of computation needed, assuming that the projected con-
trol signals are going to be constant after Nu < N . This leads to the inversion
of an Nu ×Nu matrix which reduces the amount of computation (in particu-
lar, if Nu = 1 it is reduced to a scalar computation, as in EPSAC), but restricts
the optimality of the GPC. A fast algorithm to implement self-tuning GPC for
processes that can be modelled by the reaction curve method is presented
in the next chapter. The use of Hopfield neural networks has also been pro-
posed [172] to obtain fast GPCs.

4.3 The Coloured Noise Case

When the noise polynomial C(z−1) of Equation (4.1) is not equal to 1 the pre-
diction changes slightly. In order to calculate the predictor in this situation,
the following Diophantine equation is solved:

C(z−1) = Ej(z−1)Ã(z−1) + z−jFj(z−1) (4.11)

with δ(Ej(z−1)) = j − 1 and δ(Fj(z−1)) = δ(Ã(z−1))− 1.
Multiplying equation (4.1) by�Ej(z−1)zj and using (4.11)

C(z−1)(y(t+j)−Ej(z−1)e(t+j)) = Ej(z−1)B(z−1)�u(t+j−1)+Fj(z−1)y(t)

As the noise terms are all in the future, the expected value of the left-hand
side of this equation is:

E[C(z−1)(y(t + j)− Ej(z−1)e(t + j))] = C(z−1)ŷ(t + j|t)

The expected value of the output can be generated by the equation:

C(z−1)ŷ(t + j|t) = Ej(z−1)B(z−1)� u(t + j − 1) + Fj(z−1)y(t) (4.12)

Notice that this prediction equation could be used to generate the predic-
tions in a recursive way. An explicit expression for the optimal j step ahead
prediction can be obtained by solving the Diophantine equation

1 = C(z−1)Mj(z−1) + z−kNj(z−1) (4.13)

with δ(Mj(z−1)) = j − 1 and δ(Nj(z−1)) = δ(C(z−1))− 1.
Multiplying Equation (4.12) by Mj(z−1) and using (4.13),

ŷ(t+j|t) = MjEj(z−1)B(z−1)�u(t+j−1)+Mj(z−1)Fj(z−1)y(t)+Nj(z−1)y(t)

which can be expressed as

54 4 Generalized Predictive Control

ŷ(t + j|t) = G(z−1)� u(t + j − 1) + Gp(z−1)� u(t + j − 1)
+ (Mj(z−1)Fj(z−1) + Nj(z−1))y(t)

with δ(G(z−1)) < j. These predictions can be used in the cost function which
can be minimized as in the white noise case.

Another way of computing the prediction is by considering the filtered
signals from the plant input/output data

yf (t) =
1

C(z−1)
y(t) uf (t) =

1
C(z−1)

u(t)

so that the resulting overall model becomes

A(z−1)yf (t) = B(z−1)uf (t) +
e(t)
�

and the white noise procedure for computing the prediction can be used. The
predicted signal ŷf (t + j|t) obtained this way has to be filtered by C(z−1) in
order to get ŷ(t + j|t).

4.4 An Example

In order to show how a Generalized Predictive Controller can be imple-
mented, a simple example is presented. The controller will be designed for a
first-order system for the sake of clarity.

The following discrete equivalence can be obtained when a first-order
continuous plant is discretized

(1 + az−1)y(t) = (b0 + b1z
−1)u(t− 1) +

e(t)
�

In this example the delay d is equal to 0 and the noise polynomial C(z−1) is
considered to be equal to 1.

The algorithm to obtain the control law described in the previous section
will be used on the preceding system, obtaining numerical results for the
parameter values a = −0.8, b0 = 0.4 and b1 = 0.6, the horizons being N1 = 1
and N2 = Nu = 3. As has been shown, predicted values of the process output
over the horizon are first calculated and rewritten in the form of Equation
(4.6), and then the control law is computed using Expression (4.9).

Predictor polynomials Ej(z−1), Fj(z−1) from j = 1 to j = 3 will be cal-
culated solving the Diophantine Equation (4.3), with

Ã(z−1) = A(z−1)(1− z−1) = 1− 1.8z−1 + 0.8z−2

In this simple case where the horizon is not too long, the polynomials can be
directly obtained by dividing 1 by Ã(z−1) with simple calculations. As has

4.4 An Example 55

been explained earlier, they can also be computed recursively, starting with
the values obtained at the first step of the division, that is:

E1(z−1) = 1 F1(z−1) = 1.8− 0.8z−1

Whatever the procedure employed, the values obtained are:

E2 = 1 + 1.8z−1 F2 = 2.44− 1.44z−1

E3 = 1 + 1.8z−1 + 2.44z−2 F3 = 2.952− 1.952z−1

With these values and the polynomial B(z−1) = 0.4 + 0.6z−1, the values of
Gi(z−1) are

G1 = 0.4 + 0.6z−1

G2 = 0.4 + 1.32z−1 + 1.08z−2

G3 = 0.4 + 1.32z−1 + 2.056z−2 + 1.464z−3

and so the predicted outputs can be written as:⎡⎣ ŷ(t + 1 | t)
ŷ(t + 2 | t)
ŷ(t + 3 | t)

⎤⎦ =

⎡⎣0.4 0 0
1.32 0.4 0
2.056 1.32 0.4

⎤⎦⎡⎣ �u(t)
�u(t + 1)
�u(t + 2)

⎤⎦
+

⎡⎣ 0.6� u(t− 1) + 1.8y(t)− 0.8y(t− 1)
1.08� u(t− 1) + 2.44y(t)− 1.44y(t− 1)

1.464� u(t− 1) + 2.952y(t)− 1.952y(t− 1)

⎤⎦
︸ ︷︷ ︸

f

The following step is to calculate H−1b. If λ is taken as equal to 0.8

(GT G + λI)−1GT =

⎡⎣ 0.133 0.286 0.147
−0.154 −0.165 0.286
−0.029 −0.154 0.1334

⎤⎦
As only �u(t) is needed for the calculations, only the first row of the matrix
is used, obtaining the following expression for the control law:

�u(t) = −0.604� u(t− 1)− 1.371y(t) + 0.805y(t− 1)
+ 0.133w(t + 1) + 0.286w(t + 2) + 0.147w(t + 3)

where w(t + i) is the reference trajectory which can be considered constant
and equal to the current setpoint or a first-order approach to the desired
value. Then the control signal is a function of this desired reference and of
past inputs and outputs and is given by:

u(t) = 0.396u(t− 1) + 0.604u(t− 2)− 1.371y(t) + 0.805y(t− 1)
+ 0.133w(t + 1) + 0.286w(t + 2) + 0.147w(t + 3) (4.14)

56 4 Generalized Predictive Control

0 2 4 6 8 10 12
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Discrete time

y(t)

u(t)

0 2 4 6 8 10 12
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Discrete time

y(t)

u(t)

Fig. 4.2. System response

Simulation results show the behaviour of the closed-loop system. In the
first graph of Figure 4.2 the reference is constant and equal to 1, and in the
second one there is a smooth approach to the same value, obtaining a slightly
different response, slower but without overshoot.

The GPC control law can also be calculated without the use of the Dio-
phantine equation.

To obtain the control law it is necessary to know matrix G and the free
response f, to compute u = (GT G+λI)−1GT (w− f). Matrix G is composed
of the plant step response coefficients, so that the elements of the first column
of this matrix are the first N coefficients, that can be computed as

gj = −
j∑

i=1

aigj−i +
j−1∑
i=0

bi with gk = 0 ∀k < 0

where bi and ai are the parameters of the numerator and denominator of the
transfer function.

Therefore, as the prediction horizon is 3, A = 1 − 0.8z−1 and B = 0.4 +
0.6z−1

4.5 Closed-Loop Relationships 57

g0 = b0 = 0.4
g1 = −a1g0 + b0 + b1 = 1.32
g2 = −a1g1 − a2g0 − a3g0 + b0 + b1 = 2.056

and the matrix is given by

G =

⎡⎣0.4 0 0
1.32 0.4 0
2.056 1.32 0.4

⎤⎦
which logically coincides with the one obtained by the previous method.

The free response can also be calculated without the use of the Diophan-
tine equation, just noting that it is the response of the plant assuming that
future controls equal the previous control u(t − 1) and that the disturbance
is constant. Thus, using the transfer function

y(t) = 0.8y(t− 1) + 0.4u(t− 1) + 0.6u(t− 2)
y(t + 1) = 0.8y(t) + 0.4u(t) + 0.6u(t− 1)

If both equations are added and y(t + 1) is extracted

y(t + 1) = 1.8y(t)− 0.8y(t− 1) + 0.4� u(t) + 0.6� u(t− 1)

Now, considering that in the free response only the control increments before
instant t appear:

f(t + 1) = 1.8y(t)− 0.8y(t− 1) + 0.6� u(t− 1)
f(t + 2) = 1.8f(t + 1)− 0.8y(t) = 2.44y(t)− 1.44y(t− 1) + 1.08� u(t− 1)
f(t + 3) = 1.8f(t + 2)− 0.8f(t + 1)

= 2.952y(t)− 1.952y(t− 1) + 1.464� u(t− 1)

Vector f obtained this way is the same as the one previously obtained, so
the control law is the one given by Equation (4.14).

4.5 Closed-Loop Relationships

Closed-loop relations can be obtained for the unconstrained GPC. The closed-
loop system can be posed in the classical pole-placement structure of Figure
4.3

The control law can be stated as

R(z−1)� u(t) = T (z−1)w(t)− S(z−1)y(t) (4.15)

58 4 Generalized Predictive Control

+

-
T B

AR

S

T

Δ
u(t)e(t)w(t) y(t)

Fig. 4.3. Classical pole-placement structure

where R, S and T are polynomials in the backward shift operator. This con-
trol law can be considered as composed of a feedforward term (T/R) and a
feedback part (S/R). In this situation it is possible to obtain the closed-loop
transfer function and derive some properties such as stability and robust-
ness. First, the general GPC control scheme of figure 4.3 must be rearranged
to take the form of Equation (4.15).

The control law of Equation (4.9) gives the future control sequence u.
As a receding strategy is being used, only the first element of that sequence
�u(t | t) is actually sent to the process, therefore the control action is given
by

�u(t) = K(w − f) =
N2∑

i=N1

ki[w(t + i)− f(t + i)] (4.16)

where K is the first row of matrix (GT G + λI)−1GT .
The general case in which the C(z−1) polynomial is not equal to zero will

be considered to obtain the free response. In many situations this polyno-
mial is not identified, since identification is not easy due to its time-varying
characteristics and the difficulty of the CARIMA model to describe general
deterministic disturbances. In these cases it is substituted by the so-called T
polynomial that can be regarded as a fixed observer or a prefilter, as will be
discussed later.

Then the plant model is given by:

A(z−1)y(t) = B(z−1) u(t− 1) + T (z−1)
e(t)
�

The Diophantine equation that must be solved now includes the T polyno-
mial:

T (z−1) = Ej(z−1)�A(z−1) + z−jFj(z−1) (4.17)

Using this equation and the plant model, the future output value is given by

y(t + j) =
B(z−1)
A(z−1)

u(t + j − 1) + Ej(z−1)e(t + j) +
Fj(z−1)
A(z−1)�e(t)

4.5 Closed-Loop Relationships 59

replacing the e(t) from the plant model and using (4.17):

y(t + j) =
Fj

T
y(t) +

EjB

T
� u(t + j − 1) + Eje(t + j)

The best prediction is obtained by replacing e(t + j) by its expected value
(zero):

ŷ(t + j | t) =
Fj

T
y(t) +

EjB

T
� u(t + j − 1)

This expression is a function of known values and future control actions. The
control actions can be separated into past ones (those taken before instant
t) and future ones (which must be calculated by the controller) using the
Diophantine equation1

Ej(z−1)B(z−1) = Hj(z−1)T (z−1) + z−jIj(z−1) (4.18)

that leads to the prediction equation:

ŷ(t + j | t) = Hj � u(t + j) +
Ij

T
� u(t− 1) +

Fj

T
y(t)

= Hj � u(t + j) + Ij � uf (t− 1) + Fjy
f (t) (4.19)

Using the filtered variables yf (t) = y(t)
T and�uf (t− 1) = �u(t−1)

T , this equa-
tion provides the same prediction along the horizon as given by (4.6) when
T (z−1) = 1, where the coefficients of Hj are the elements of matrix G and Ij

are the rows of vector G′.
Now the free response of the system (the one needed for the control law)

is given by:

f = I(z−1)� uf (t− 1) + F(z−1)yf (t) = I(z−1)
�u(t− 1)
T (z−1)

+ F(z−1)
y(t)

T (z−1)

Once the free response has been obtained when the T polynomial is con-
sidered, it can be included in the expression of the control law given by (4.16):

�u(t) = K(w − f) =
N2∑

i=N1

ki[w(t + i)− f(t + i)]

=
N2∑

i=N1

kiw(t + i)−
N2∑

i=N1

ki
Ii(z−1)
T (z−1)

� u(t− 1)−
N2∑

i=N1

ki
Fi(z−1)
T (z−1)

y(t)

Omitting the term z−1 and reordering the last equation[
T + z−1

N2∑
i=N1

kiIi

]
� u(t) = T

N2∑
i=N1

kiw(t)−
N2∑

i=N1

kiFiy(t)

1 Notice that this equation with T (z−1) = 1 is implicitly used to derive G and G’ in
(4.6).

60 4 Generalized Predictive Control

where it has been considered that the future reference trajectory keeps con-
stant along the horizon or its evolution is unknown and therefore w(t + i)
is taken as equal to w(t). In the other case, the first term of the right hand
side should be expressed as T

∑N2
i=N1

kiz
iw(t) and therefore the following

relations could change slightly.
The values of polynomials R and S can be obtained by comparing the

last equation with (4.15), and are given by:

R(z−1) =
T (z−1) + z−1

∑N2
i=N1

kiIi∑N2
i=N1

ki

S(z−1) =

∑N2
i=N1

kiFi∑N2
i=N1

ki

The closed-loop characteristic equation comes from inclusion of the con-
trol action given by (4.15) in the plant model expressed as:

A� y(t) = B � u(t− 1) + Te(t)

Therefore, if the control action

�u(t) =
T

R
w(t)− S

R
y(t)

is replaced in the plant model, the following expression is obtained:

A� y(t) = Bz−1(
T

R
w(t)− S

R
y(t)) + Te(t)

Extracting y(t) from this equation provides the closed-loop relation that gives
the output as a function of the reference and the disturbance

y(t) =
BTz−1

RA�+BSz−1
w(t) +

TR

RA�+BSz−1
e(t) (4.20)

and consequently the characteristic equation is given by:

RA�+BSz−1 = 0

With a few manipulations and using (4.18), the characteristic polynomial can
be decomposed as:

RA�+BSz−1 =
1∑N2

i=N1
ki

(TÃ + T

N2∑
i=N1

kiz
i−1(B − ÃHi)) = TPc

Therefore Equation (4.20) turns to

y(t) =
Bz−1

Pc
w(t) +

R

Pc
e(t)

4.6 The Role of the T Polynomial 61

where it is shown that the T polynomial is cancelled in the closed-loop trans-
fer function between output and reference, as is the case in any observer,
and that stability and performance are driven by the roots of polynomial
Pc. However, it is difficult to establish clear dependencies of these roots
on the tuning parameters N1, N2, Nu and λ. It is interesting to note that
Pc(1) = B(1), which guarantees offset-free response since the static gain of
the transfer function between output and reference is always one.

When the GPC is written in the general pole-placement structure, some
stability properties can be derived from the transfer function. A paper by
Clarke and Mohtadi [57] presents some properties related to stability. It is
proven that stability can be guaranteed if the tuning parameters (horizons
and control-weighting factor) are correctly chosen. In the following sections,
two formulations related to GPC with guaranteed stability will be treated in
more detail.

4.6 The Role of the T Polynomial

Although the T polynomial does not appear in the transfer function between
the output and the reference, this is not the case for the transfer function be-
tween the output and the disturbance. From Equation (4.19) it can be seen
that both the output y(t) and the control move �u(t) appear in the predic-
tion, and therefore in the control law, filtered by 1/T . Thus, from a practical
point of view, it means that the T polynomial can be treated as a filter. By
ensuring that the degree of T is big enough, the roll-off of the filter attenu-
ates the component of prediction error caused by model mismatch, which is
particularly important at high frequencies. Notice that low-frequency distur-
bances can be removed by the� term that appears in the prediction.

The high-frequency disturbances are mainly due to the presence of high-
frequency unmodelled dynamics and unmeasurable load disturbances. If
there are no unmodelled dynamics, the effect of T is the rejection of distur-
bances, with no influence on reference tracking. In this case T can be used
to detune the response to unmeasurable high-frequency load disturbances,
preventing excessive control actions.

On the other hand, T is used as a design parameter that can influence
robust stability. In this case the predictions will not be optimal but robustness
in the face of uncertainties can be achieved, in a similar interpretation to that
used by Ljung [128]. Then this polynomial can be considered as a prefilter
as well as an observer. The effective use of observers is known to play an
essential role in the robust realization of predictive controllers (see [57] for
the effect of prefiltering on robustness).

4.6.1 Selection of the T Polynomial

The selection of the filter polynomial T is not a trivial matter. Although some
guidelines are given in [183] for mean-level and deadbeat GPC, a systematic

62 4 Generalized Predictive Control

design strategy for the T filter has not been completely established. Usually
it is assumed that the stronger filtering (considered as stronger that filtering
with smaller bandwidth or bigger slope if the bandwidth is the same) has
better robustness properties against high-frequency uncertainties. But this
is not always true, as is shown with some counterexamples in [210]. In this
paper and in [209] Yoon and Clarke present guidelines for the selection of
T . These guidelines are based upon the robustness margin improvement at
high frequencies and conclude stating that, for open-loop stable processes,
the best choice is

T (z−1) = A(z−1)(1− βz−1)N1−δ(P)

Where β is close to the dominant root of A, N1 is the minimum prediction
horizon and δ(P) is the degree of polynomial P (the filter used to generate a
reference trajectory with specified dynamics, see Section 2.1.2).

Notice that this idea of filtering for improving robustness also lies in In-
ternal Model Control (IMC)[141] where, once the controller that provides the
desired performance is obtained, it is detuned with a filter to improve ro-
bustness.

4.6.2 Relationships with Other Formulations

The prefiltering with T can be compared to H∞ optimization based on the
Q parameterization [141], obtaining equivalent robustness results [208]. It
implies that prefiltering with polynomial T is an alternative to the optimal Q
whose computation is demanding, especially in the adaptive case.

Robustness is improved by the introduction of polynomial T but, on the
other hand, this fact implies that the prediction is no longer optimal. In a
certain way, this idea is similar to the one used in the Linear Quadratic Gaus-
sian (LQG) regulator to recover the good robustness properties that the Lin-
ear Quadratic Regulator (LQR) loses with the inclusion of the observer. This
recovery is achieved by means of the LQG/LTR method, that consists of the
Loop Transfer Recovery, (LTR), in such a way that it approaches the open-
loop transfer function of the LQR method. This can be done by acting on
the Kalman filter parameters, working with fictitious covariances (see [81]).
In this way robustness is gained although prediction deteriorates. In both
cases, the loss of optimality in the prediction or estimation is not considered
a problem, since the controller works and is robust.

4.7 The P Polynomial

In the presentation of Generalized Predictive Control Clarke [58] points out
the possibility of the use of an additional polynomial P (z−1) as a design
element in a similar way as employed in the Minimum Variance Controller
[55] as a weighting polynomial that would be used for model following.

4.8 Consideration of Measurable Disturbances 63

The P (z−1) polynomial can appear when defining an auxiliary output as
happens, for instance, in EPSAC (see Chapter 2)

ψ(t) = P (z−1)y(t)

in such a way that it affects the output. This polynomial allows the control
objectives to expand by using its roots as design parameters. In this way
deadbeat, pole-placement or LQ control can be achieved.

This can easily be incorporated into the standard GPC formulation by
considering the augmented plant

A� P (z−1)y(t) = BA� P (z−1)u(t− 1)

with P(1)=1 to guarantee ψ(t) = y(t) in steady state.
This is equivalent to defining filtered auxiliary signals ν(t) = P (z−1)u(t)

and ψ(t) = P (z−1)y(t). Thus the plant is given by:

A� ψ(t) = BA� ν(t− 1)

Now the error that appears in the cost function is defined by w(t + j) −
ψ(t + j), which is equivalent to considering a reference trajectory generated
by 1/P (z−1). A deadbeat control of ψ(t) can be achieved by acting on ν(t),
whose closed-loop transfer function is given by:

ψ(t) =
B(z−1)
B(1)

w(t)

This means that

y(t) =
B(z−1)

B(1)P (z−1)
w(t) (4.21)

and the GPC algorithm is solved to provide the auxiliary control increment
�ν(t), from which the system input is calculated as:

u(t) = u(t− 1) +
�ν(t)
P (z−1)

As can be observed (4.21) is the typical response of a pole-placement method,
with poles placed at zeros of the chosen P (z−1). That is, the output is made
to track the dynamics specified by P (z−1).

4.8 Consideration of Measurable Disturbances

Many processes are affected by external disturbances caused by the variation
of variables that can be measured. This situation is typical in processes whose
outputs are affected by variations of the load regime. Consider, for instance, a

64 4 Generalized Predictive Control

cooled jacket continuous reactor where the temperature is controlled by ma-
nipulating the water flow entering the cooling jacket. Any variation of the
reactive flows will influence the reactor temperature. These types of pertur-
bations, also known as load disturbances, can easily be handled by the use
of feedforward controllers. Known disturbances can be taken explicitly into
account in MPC, as will be seen in the following.

Consider a process described by the following In this case the CARIMA
model must be changed to include the disturbances:

A(z−1)y(t) = B(z−1)u(t− 1) + D(z−1)v(t) +
1
�C(z−1)e(t) (4.22)

where the variable v(t) is the measured disturbance at time t and D(z−1) is a
polynomial defined as:

D(z−1) = d0 + d1z
−1 + d2z

−2 + . . . + dnd
z−nd

Multiplying Equation (4.22) by�Ej(z−1)zj :

Ej(z−1)Ã(z−1)y(t + j) = Ej(z−1)B(z−1)� u(t + j − 1)
+ Ej(z−1)D(z−1)� v(t + j) + Ej(z−1)e(t + j)

By using (4.3), and after some manipulation, we get:

y(t + j) = Fj(z−1)y(t) + Ej(z−1)B(z−1)� u(t + j − 1)
+ Ej(z−1)D(z−1)� v(t + j) + Ej(z−1)e(t + j)

Notice that because the degree of Ej(z−1) is j−1, the noise terms are all in the
future. By taking the expectation operator and considering that E[e(t)] = 0,
the expected value for y(t + j) is given by:

ŷ(t + j|t) = E[y(t + j)] = Fj(z−1)y(t) + Ej(z−1)B(z−1)� u(t + j − 1)
+ Ej(z−1)D(z−1)� v(t + j)

By making the polynomial Ej(z−1)D(z−1) = Hj(z−1)+z−jH ′
j(z

−1), with
δ(Hj(z−1)) = j − 1, the prediction equation can now be written as:

ŷ(t + j|t) = Gj(z−1)� u(t + j − 1) + Hj(z−1)� v(t + j)
+G′j(z

−1)� u(t− 1) + H ′
j(z

−1)� v(t) + Fj(z−1)y(t) (4.23)

Notice that the last three terms of the right-hand side of this equation de-
pend on past values of the process output, measured disturbances and input
variables and correspond to the free response of the process considered if the
control signals and measured disturbances are kept constant; while the first
term only depends on future values of the control signal and can be inter-
preted as the forced response, that is, the response obtained when the initial
conditions are zero y(t− j) = 0,�u(t− j − 1) = 0,�v(t− j) for j > 0.

4.8 Consideration of Measurable Disturbances 65

The second term of Equation (4.23) depends on the future deterministic
disturbances. In some cases, when they are related to the process load, future
disturbances are known. In other cases, they can be predicted using trends or
other means. If this is the case, the term corresponding to future deterministic
disturbances can be computed. If the future load disturbances are supposed
to be constant and equal to the last measured value (i.e., v(t+ j) = v(t)), then
�v(t + j) = 0 and the second term of this equation vanishes.

Equation (4.23) can be rewritten as

ŷ(t + j|t) = Gj(z−1)� u(t + j − 1) + Hj(z−1)� v(t + j) + fj

with fj = G′j(z
−1)� u(t− 1) + H ′

j(z
−1)� v(t) + Fj(z−1)y(t).

Let us now consider a set of N j ahead predictions:

ŷ(t + 1|t) = G1(z−1)� u(t) + Hj(z−1)� v(t + 1) + f1

ŷ(t + 2|t) = G2(z−1)� u(t + 1) + Hj(z−1)� v(t + 2) + f2

...
ŷ(t + N |t) = GN (z−1)� u(t + N − 1) + Hj(z−1)� v(t + N) + fN

Because of the recursive properties of the Ej polynomial, these expressions
can be rewritten as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŷ(t + 1|t)
ŷ(t + 2|t)

...
ŷ(t + j|t)

...
ŷ(t + N |t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g0 0 · · · 0 · · · 0
g1 g0 · · · 0 · · · 0
...

...
. . .

...
...

...

gj−1 gj−2 · · · g0

... 0
...

...
...

...
. . .

...
gN−1 gN−2 · · · · · · · · · g0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�u(t)
�u(t + 1)

...
�u(t + j − 1)

...
�u(t + N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h0 0 · · · 0 · · · 0
h1 h0 · · · 0 · · · 0
...

...
. . .

...
...

...

hj−1 · · · h1 h0

... 0
...

...
...

.
...

hN−1 · · · · · · · · · h1 h0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�v(t + 1)
�v(t + 2)

...
�v(t + j − 1)

...
�v(t + N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

f2

...
fj

...
fN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where Hj(z−1) =

∑j
i=1 hiz

−i and hi are the coefficients of the system step
response to the disturbance.

By making f ′ = Hv + f , the prediction equation is now

y = Gu + f ′

which has the same shape as the general prediction equation used in the
case of zero measured disturbances. The future control signal can be found

66 4 Generalized Predictive Control

in the same way, simply using as free response the process response due
to initial conditions (including external disturbances) and future ”known”
disturbances.

4.9 Use of a Different Predictor in GPC

In this section it is shown that a GPC is equivalent to a structure based on
an optimal predictor plus a classical two-degree-of-freedom controller. If the
optimal predictor is replaced by a Smith predictor [193], a new controller
with similar nominal performance and more robust properties is obtained.
This has great interest in the case of time-delay systems. The controller uses
the same procedure to compute the control signal, although future outputs
are calculated using the Smith predictor instead of the optimal predictor.

4.9.1 Equivalent Structure

In order to show the equivalence between the GPC and a structure composed
of an optimal predictor and a classical controller, a CARIMA model with white
integrated noise is used to compute the prediction. Let us consider a process
with a dead time d, T (z−1) = 1, N1 = d + 1, N2 = d + N , Nu = N , and the
weighting sequences δ(j) = 1, λ(j) = λ. Thus it is possible to write:

ŷ(t + d + j | t) = (1− a1)ŷ(t + d + j − 1 | t)
+(a1 − a2)ŷ(t + d + j − 2 | t) + . . . + anaŷ(t + d + j − na − 1 | t)
+b0 � u(t + j − 1) + . . . + bnb � u(t + j − 1− nb) (4.24)

If this equation is applied recursively for j = 1, 2, · · · , N we get

⎡⎢⎢⎢⎣
ŷ(t + d + 1 | t)
ŷ(t + d + 2 | t)

...
ŷ(t + d + N | t)

⎤⎥⎥⎥⎦ = G

⎡⎢⎢⎢⎣
�u(t)

�u(t + 1)
...

�u(t + N − 1)

⎤⎥⎥⎥⎦+ H

⎡⎢⎢⎢⎣
�u(t− 1)
�u(t− 2)

...
�u(t− nb)

⎤⎥⎥⎥⎦

+ S

⎡⎢⎢⎢⎣
ŷ(t + d | t)

ŷ(t + d− 1 | t)
...

ŷ(t + d− na | t)

⎤⎥⎥⎥⎦
where G, H and S are constant matrices of dimension N × N , N × nb and
N × na + 1, respectively. This equation can be written in a vector form as
follows:

ŷ = Gu + Hu′ + Sy′ = Gu + f

4.9 Use of a Different Predictor in GPC 67

where it is clear that f = Hu′ + Sy′ is composed of the terms in the past and
correspond to the free response of the system.

If ŷ is introduced in the cost function, J(N) is a function of y′, u, u′ and
the reference sequence. Minimizing J(N) with respect to u, that is, �u(t),
�u(t + 1) ...�u(t + N − 1)) leads to

M

⎡⎢⎢⎢⎣
�u(t)

�u(t + 1)
...

�u(t + N − 1)

⎤⎥⎥⎥⎦ = P0

⎡⎢⎢⎢⎣
ŷ(t + d | t)

ŷ(t + d− 1 | t)
...

ŷ(t + d− na | t)

⎤⎥⎥⎥⎦+ P1

⎡⎢⎢⎢⎣
�u(t− 1)
�u(t− 2)

...
�u(t− nb)

⎤⎥⎥⎥⎦

+ P2

⎡⎢⎢⎢⎣
w(t + d + 1)
w(t + d + 2)

...
w(t + d + N)

⎤⎥⎥⎥⎦
where M = GT G + λI and R = GT are of dimension N ×N , P0 = −GT S
of dimension N × na + 1 and P1 = −GT H of dimension N × nb. As in a
receding horizon algorithm only the value of �u(t) is computed, if q is the
first row of matrix M−1,�u(t) is given by:

�u(t) = qP0

⎡⎢⎢⎢⎣
ŷ(t + d | t)

ŷ(t + d− 1 | t)
...

ŷ(t + d− na | t)

⎤⎥⎥⎥⎦+ qP1

⎡⎢⎢⎢⎣
�u(t− 1)
�u(t− 2)

...
�u(t− nb)

⎤⎥⎥⎥⎦

+ qP2

⎡⎢⎢⎢⎣
w(t + d + 1)
w(t + d + 2)

...
w(t + d + N)

⎤⎥⎥⎥⎦
Therefore the control increment�u(t) can be written as:

�u(t) = qP0y′ + qP1u′ + qP2w

The resulting control scheme (see Figure 4.4) is a linear feedback of pre-
dictions ŷ(t + d | t), ..., ŷ(t + d − na | t) generated by an optimal predictor.
That is, prediction over a time horizon equal to the process dead time. The
controller coefficients are computed for each choice of N and λ.

The block diagram presented in Figure 4.4 can easily be transformed into
the one shown in Figure 4.5, which shows that a GPC is equivalent to a classi-
cal controller plus an optimal predictor. This classical controller is composed
of a reference filter and a cascade block. If the plant can be modelled by a
first-order system with a dead time then the classical controller results in a

68 4 Generalized Predictive Control

1

predictor

Optimal

u’

y(t)
Process

u(t)u(t)Δ

y’

w

qP

qP

z

+

+ +

-nb

-1

1

0

z

...

1 - z -1qP
2

Fig. 4.4. Control scheme

+

+
-11 - z

Process
1

u(t)
y(t)

Optimal

predictor

filter
Reference Cascade

controller

y(t+d)

w(t)
Δu(t)

Fig. 4.5. Equivalent control structure of the GPC

simple PI [153]. In general, the primary controller is of the same order as the
model of the plant.

This relation can be used to study how to improve the robustness of the
GPC using a different predictor structure. Note that the computation of the
classical controller is done independently of the predictor structure, so dif-
ferent predictors can be compared using the same controller parameters of
the GPC.

The prediction can be obtained directly from polynomials A and B and
the delay d considering Equation (4.24) for j = 1:

ŷ(t+1 | t) = (1−Ã(z−1))zy(t)+B̃(z−1)u(t−d) with B̃(z−1) = (1−z−1)B(z−1)

Using the same procedure for j = 2, . . ., ŷ(t + j | t) is computed as:

ŷ(t+ j | t) = ((1− Ã(z−1))z)jy(t)+
j∑

i=1

(1− Ã(z−1))i−1B̃(z−1)u(t−d+ j− 1)

4.9 Use of a Different Predictor in GPC 69

filter
Reference

e

+
-

Cascade
controller

Process

 u(t)
q1(t) q2(t)

+
+ +

+
y(t)

ŷ(t+d)

w(t)

R(z)
+

+

+
-

z -ddz P(z)

Fig. 4.6. Equivalent structure for the OP in the GPC

The predicted output at instant t + d is therefore

ŷ(t + d | t) = ((1− Ã(z−1))z)dy(t) + (1− (1− Ã(z−1))d)zdPu(t)

where P (z) = B(z−1)z−1

A(z−1) z−d is the plant model.

Defining R(z) = (1− Ã(z−1))dzd, the prediction can be written as:

ŷ(t + d | t) = R(z)y(t) + (zd −R(z))P (z)u(t)

The closed-loop block diagram of the whole control system is shown in
Figure 4.6. Now it is clear that the GPC has a structure similar to the well-
known dead-time compensators like the Smith predictor (obtained when
R(z) = 1) and that in the absence of a dead time the final control law is a
classical two-degree-of-freedom controller.

The theoretical comparative results about the robustness and perfor-
mance of GPC and the GPC which uses a Smith predictor can be found in
[155], where it is shown that for stable processes, the Smith predictor (SP)
based control structure has similar performance and more robustness than
the one based on the optimal predictor (OP) when using the same primary
controller. An application of this controller to mobile robot path tracking can
be found in [157].

It is easy to show that the norm-bound uncertainty of the controller is:

| δP |≤
∣∣∣∣1 + C(z)zdP (z)

C(z)R(z)

∣∣∣∣
Notice that the norm-bound uncertainty is inversely proportional to | R(z) |
and that for the GPC the block R(z) has high pass characteristics, so the con-
troller has low values of the norm-bound uncertainty at high frequencies.
On the other hand, the Smith predictor based controller has R(z) = 1 and
consequently a higher robustness index.

70 4 Generalized Predictive Control

As has been mentioned in this chapter, the robustness of the GPC can
be improved by the use of a prefilter in the prediction equations. The effect
of this filter (the T polynomial) can also be analyzed in Figure 4.6 because,
when T is included in the predictor R(z) is a function of T (z). If T is chosen
appropriately then R(z) could have low pass characteristic and the robust-
ness of the controller could be increased. On the other hand, the disturbance
rejection response deteriorates when the robustness increases [8]. Note that
for the Smith predictor based controller a filter F (z) could also be included,
but in this case the tuning of F is simpler than the tuning of T in the GPC case
as for the new structure R(z) = F (z). Note that to improve the robustness F
must be chosen as a low pass filter [156].

For the computation of the controller the following steps must be taken:

• compute the prediction of the output (from t to t+d) using the open-loop
model of the plant without considering disturbances

• correct each open-loop prediction adding the mismatch between the out-
put and the prediction:

ŷ(t + d− i | t) = ŷ(t + d− i | t) + y(t− i)− ŷ(t− i)

• compute the control law as in the normal GPC using the coefficients of q,
P0, P1 and P2.

Note that to compute the control law it is also possible to use the forced
and free response concepts used in standard GPC. In this case the forced re-
sponse can be computed as done in GPC but the free response must be com-
puted using the Smith predictor from t to t + d and the optimal predictor
from t + d + 1 to t + N .

4.9.2 A Comparative Example

In order to illustrate the robustness properties of the proposed GPC an ex-
ample comparing the SPGPC and the GPC is presented. It corresponds to a
temperature control of a heat exchanger, where the model used in the pre-
dictor is a first-order system with dead time, such as the one presented in
[154]. This system represents a typical industrial process, and because of this
it is normally used to evaluate the performance of industrial controllers. In
the example ARIMA disturbances are considered.

The relation between the output temperature and the input flow in the
heat exchanger was obtained using the reaction curve method and is given
by:

P (s) =
0.12e−3s

1 + 6s

Using a sample time Ts = 0.6s the obtained discrete plant is

4.10 Constrained Receding Horizon Predictive Control 71

P (z) =
bz−1

1− az−1
z−d

where the nominal values of the parameters are dn = 5, an = 0.905 and
bn = 0.0114. In practice there are errors in the estimation of all parameters but
for this example only dead time uncertainty is considered, with a maximum
value of δd = 2.

The GPC is computed in order to obtain (for the nominal case) a step re-
sponse faster than the open-loop one. Thus, the GPC parameters were chosen
as N = 15, λ = 0.8. The SPGPC has the same parameters.

The closed-loop behaviour of the GPC and the SPGPC for the nominal
case are shown in Figure 4.7(a). At t = 0 a step change in the reference is
performed and at t = 100 samples a 10% step load disturbance is applied to
the system. The noise is generated with an ARIMA model with uniform dis-
tribution in ±0.005. As can be observed, both systems have similar setpoint
tracking and disturbance rejection behaviour for the nominal case.

In the next simulation the delay of the plant is set to d = 7 and again a
step change in the reference is considered at t = 0. Figure 4.7(b) shows that
the SPGPC based control system is stable and the GPC one is unstable.

It must be stated that the comparison has been made with a GPC without
T polynomial and the introduction of this in the formulation could improve
its response when the dead time uncertainty appears, but at the same time
the nominal disturbance rejection response will be deteriorated.

4.10 Constrained Receding Horizon Predictive Control

In spite of the great success of GPC in industry, there was an original lack
of theoretic results about the properties of predictive control and an initial
gap in important questions such as stability and robustness. In fact, the ma-
jority of stability results are limited to the infinite horizon case and there is
a lack of a clear theory relating the closed-loop behaviour to design parame-
ters, such as horizons and weighting sequences.

Bearing in mind the need to solve some of these drawbacks, a varia-
tion of the standard formulation of GPC appears developed by Clarke and
Scattolini called Constrained Receding-Horizon Predictive Control (CRHPC)
[61], [144],[151], which allows stability and robustness results to be obtained
for small horizons. The idea basically consists of deriving a future control
sequence so that the predicted output over some future time range is con-
strained to be at the reference value exactly, as shown in Figure 4.8. Some
degrees of freedom of the future control signals are employed to force the

72 4 Generalized Predictive Control

0 20 40 60 80 100 120 140 160 180 200
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time(samples)

ou
tpu

t fo
r th

e n
om

ina
l d

ela
y (

d=
5),

 S
M(

−−
), O

P(
−)

10% step disturbance at t=100

(a)

0 50 100 150
−2

−1

0

1

2

3

4

time(samples)

ou
tpu

t o
f th

e p
lan

t fo
r (

d=
7),

 S
M(

−−
), O

P(
−)

(b)

Fig. 4.7. Behaviour of the GPC(solid) and SPGPC (dashed) based control systems: (a)
nominal case, (b) dead time uncertainty case

output, whilst the rest is available to minimize the cost function over a cer-
tain interval.

4.10.1 Computation of the Control Law

The computation of the control law is performed in a similar way to GPC,
although the calculations become a little more complicated. Control signals
must minimize the objective function

J(Ny, Nu) =
Ny∑
i=1

μ(i)[ŷ(t + i | t)− yo(t + i)]2 +
Nu∑
i=0

λ(i)[�u(t + j)]2 (4.25)

where yo(t + i) is the reference, subject to constraints

4.10 Constrained Receding Horizon Predictive Control 73

t

y(t+i)
y(t-i)

u(t+i)

N

N my

oy

u

t

Fig. 4.8. Constrained Receding Horizon Predictive Control

y(t + Ny + i) = yo(t + Ny + 1) i = 1 . . . m
�u(t + Nu + j) = 0 j > 0 (4.26)

The design parameters are the values of the horizons, the weighting se-
quences μ(i) and λ(i) and the value of m, which defines the instants of coin-
cidence between output and reference. The system is modelled by:

�A(z−1)y(t) = B(z−1)� u(t− d) (4.27)

In order to solve the optimization problem, it is necessary to calculate the
output prediction, which is done by defining polynomials Ei(z−1), Fi(z−1)
and Gi(z−1) where Ei is of degree i− 1 such that

1 = Ei(z−1)�A(z−1) + z−iFi(z−1)

z−dEi(z−1)B(z−1) =
i∑

h=1

shz−h + z−i+1Gi(z−1)

where sh are the coefficients of the process step response.
Multiplying Equation (4.27) by Ei(z−1) and taking the last equations into

account leads to:

74 4 Generalized Predictive Control

y(t + i) =
i∑

h=1

sh � u(t + i− h) + f(t + i)

f(t + i) = Fi(z−1)y(t) + Gi(z−1)� u(t− 1)

Now defining the following sequences of future variables

Y (t) = [y(t + 1) y(t + 2) . . . y(t + Ny)]T

Y o(t) = [yo(t + 1) yo(t + 2) . . . yo(t + Ny)]T

�U(t) = [�u(t) � u(t + 1) . . . � u(t + Nu)]T

F (t) = [f(t + 1) f(t + 2) . . . f(t + Ny)]T

Y (t) = [y(t + Ny + 1) y(t + Ny + 2) . . . y(t + Ny + m)]T

Y
o
(t) = [yo(t + Ny + 1) yo(t + Ny + 2) . . . yo(t + Ny + m)]T

F
o
(t) = [f(t + Ny + 1) f(t + Ny + 2) . . . f(t + Ny + m)]T

the following matrices, of dimension Ny× (Nu +1) and m× (Nu +1), respec-
tively;

G =

⎡⎢⎢⎢⎣
s1 0 0 ... 0
s2 s1 0 ... 0
...

...
...

...
...

sNy sNy−1 sNy−2 ... sNy−Nu

⎤⎥⎥⎥⎦

G =

⎡⎢⎢⎢⎣
sNy+1 sNy ... sNy−Nu+1

sNy+2 sNy+1 ... sNy−Nu+2

...
...

...
...

sNy+m sNy+m−1 ... sNy−Nu+m

⎤⎥⎥⎥⎦
and the weighting sequences

M(t) = diag {μ(1), μ(2), . . . μ(Ny)}
Λ(t) = diag {λ(0), λ(1), . . . λ(Nu)}

the following relations hold:

Y (t) = G � U(t) + F (t)
Y (t) = G � U(t) + F (t)

Then the cost function (Equation 4.25) and the constraints (4.26) can be writ-
ten as:

4.10 Constrained Receding Horizon Predictive Control 75

J = [Y (t)− Y o(t)]T M(t) [Y (t)− Y o(t)] +�UT (t) Λ(t) � U(t)
G� U(t) + F (t) = Y

o
(t)

The solution can be obtained by the use of Lagrange multipliers. If the
common case of constant weighting sequence is considered, that is, M(t) =
μI , Λ(t) = λI , the solution can be written as:

�U(t) = (μGT G + λI)−1[μGT (Y o(t)− F (t)) + G
T
(G(μGT G + λI)−1G

T
)−1

×(Y
o
(t)− F (t)− μG(μGT G + λI)−1GT (Y o(t)− F (t)))] (4.28)

As it is a receding horizon strategy, only the first element of vector�U(t)
is used, repeating the calculation at the next sampling time. This method
provides an analytical solution that, as can be observed in (4.28) proves to be
more complex than the standard GPC solution. Computational burden can
be considerable since various matrix operations, including inversion, must
be made, although some calculations can be optimized knowing that G is
triangular and the matrices to be inverted are symmetrical. This factor can
be decisive in the adaptive case, where all vectors and matrices can change
at every sampling time.

Obtaining the control signal requires inversion of matrix G(μGT G +
λI)−1G

T
). ¿From the definition of matrix G , it can be derived that condi-

tion m ≤ Nu + 1 must hold, which can be interpreted as the number m of
output constraints cannot be bigger than the number of control signal vari-
ations Nu + 1. Another condition for invertibility is that m ≤ n + 1, since
the coefficient si of the step response is a linear combination of the previous
n + 1 values (where n is the system order). Notice that this last condition
constrains the order of the matrix to invert (m ×m) to relative small values,
as in the majority of situations the value of m will not be bigger than two or
three.

4.10.2 Properties

As has been stated, one of the advantages of this method is the availabil-
ity of stability results for finite horizons, compensating in a certain way the
computational burden it carries. The following results present the outstand-
ing properties of CRHPC, whose demonstration can be found in [151], based
upon a state-space formulation of the control law (4.28). The fact that the
output follows the reference over some range guarantees the monotonicity
of the associated Riccati equation and in consequence stability, based upon
the results by Kwon and Pearson [115].

Property 1. If Ny = Nu > n + d + 1 and m = n + 1 then the closed-loop
system is asymptotically stable.

Property 2. If Nu = n+d and m = n+1 the control law results in a stable
dead-beat control.

76 4 Generalized Predictive Control

Property 3. If the system is asymptotically stable, μ = 0, m = 1 and there
exists ν such that either

sν ≤ sν+1 ≤ . . . ≤ s∞, sν > s∞/2, s∞ > 0

or
sν ≥ sν+1 ≥ . . . ≥ s∞, sν < s∞/2, s∞ < 0

Then, for any Ny = Nu ≥ ν − 1 the closed-loop system is asymptotically
stable.

Property 4. Under the latter conditions, the closed-loop system is asymp-
totically stable for Nu = 0 and Ny ≥ ν − 1.

Property 5. If the open-loop system is asymptotically stable, μ = 0, m =
1, Nu = 0 and constants K > 0 and 0 < η < 1 exist such that

| si − s∞ |≤ Kηi, i ≥ 0

Then, for any Ny such that

| sNy+1 |> K
1 + η

1− η
ηNy+1

the closed-loop system is asymptotically stable.
So it is seen that the method is able to stabilize any kind of process, such

as unstable or nonminimum phase ones. As in GPC, the use of filtered inputs
and outputs can result in a pole-placement control. Using the P (z−1) poly-
nomial introduced in [59] shows the close relationship between predictive
control and pole placement [61]. This polynomial appears when defining an
auxiliary output ψ(t) = P (z−1)y(t), which substitutes y(t) in (4.25) and (4.26)
in such a way that the desired closed-loop poles are the roots of zn+1P (z−1).

4.11 Stable GPC

To overcome the lack of stability results for GPC, a new formulation has been
developed by Rossiter and Kouvaritakis which ensures that the associated
cost function is monotonically decreasing, guaranteeing closed-loop sta-
bility. For this reason, this algorithm is called Stable Generalized Predictive
Control SGPC [112], [186] and it is based on stabilizing the loop before the
application of the control strategy. Now the control actions that must be cal-
culated are the future values of the reference that are sent to the closed loop,
instead of the system inputs, which are functions of these. The stabilizing
inner-loop controller is designed to obtain a finite closed-loop impulse re-
sponse; this fact simplifies the implementation of the algorithm at the same
time as ensuring the monotonicity of the cost function.

4.11 Stable GPC 77

zu

Y(z)

1

Δ a(z)

b(z)

X(z)

yc

+ -

-1

Fig. 4.9. Stable loop

4.11.1 Formulation of the Control Law

The model considered for obtaining the control law is:

G(z) =
z−1b(z)

a(z)
=

b1z
−1 + b2z

−2 + . . . + bnz−n

1 + a1z−1 + a2z−2 + . . . + anz−n
(4.29)

where, for the sake of simplicity and without any loss of generality, the order
of numerator and denominator is considered to be the same; if the delay is
bigger than one, it is enough to set the first terms of b(z) to zero. As has been
stated, before optimizing the cost function, the loop is stabilized by means of
polynomials X(z) and Y (z) as shown in Figure 4.9. Signal c is the closed-loop
reference and is the value that will appear in the cost function.

Polynomial X(z) and Y (z) satisfy the following relations:

a(z)Y (z)� (z) + z−1b(z)X(z) = 1

K(z) =
X(z)

Y (z)� (z)

with �(z) = 1 − z−1 and K(z) the overall feedback controller. With these
relations, it can be deduced that:

y(z) = z−1b(z)c(z)
�u(z) = A(z)c(z)

where A(z) = a(z)�.
The cost function that, like standard GPC, measures the discrepancies be-

tween future outputs and reference as well as the necessary control effort
can be obtained making use of these relations. The cost must be expressed as
a function of the future values of c in such a way that the reference signals
for the stabilized system can be obtained from its minimization. In order to
achieve this objective, the following vectors are considered:

y+ = [y(t + 1) y(t + 2) . . . y(t + ny)]T

c+ = [c(t + 1) c(t + 2) . . . c(t + nc)]T

�u+ = [�u(t) � u(t + 1) . . . � u(t + ny − 1)]T

c− = [c(t) c(t− 1) . . . c(t− n)]T

78 4 Generalized Predictive Control

where ny and nc are the output and reference horizons.
Simulating Equation (4.29) forward in time it can be written

y+ = Γbc
+ + Hbc

− + Mbc
∞

�u+ = Γac+ + HAc− + MAc∞

where the last terms of each equation represent the free response yf and�uf

of y and�u, respectively. Matrices ΓA, Γb, HA, Hb, MA and Mb can easily be
derived as shown in [112] while c∞ is the vector of ny−nc rows that contains
the desired future values of the command input c. The elements of this vector
are chosen to ensure offset-free steady state.

Usually, if r(t + i), i = 1, . . . , ny is the setpoint to be followed by the
system output, c∞ is chosen to be [1, 1, . . . , 1]T×r(t+ny)/b(1). If step setpoint
changes are assumed, c∞ can be chosen as the vector of future references pre-
multiplied by a matrix E formed out of the last ny − nc rows of Iny .

Then the cost function can be written as:

J = ‖r+ − y+‖2 + λ‖ � u+‖2 = [c+ − co]T S2[c+ − co] + γ

where

S2 = ΓT
b Γb + λΓT

A ΓA

co = S−2[ΓT
b (r+ − yf)− λΓT

A � uf]
γ = ‖r+ − yf‖2 + λ‖ � uf‖2 − ‖co‖2

As γ is a known constant, the control law of SGPC comes from the mini-
mization of cost J = ‖S(c+ − co)‖, and is defined by

�u(t) = A(z)c(t) c(t) =
pr(z)
pc(z)

r(t + ny)

where pr(z) and pc(z) are polynomials defined as:

pr = eT T [ΓT
b (I −MbE)− ΓT

b ΓAE]
pc = eT T [ΓT

b Hb + λΓbHA]

and T = (ΓT
b Γb + λΓAΓA)−1; e is the first standard basis vector and the

polynomials are in descending order of z.
The stability of the algorithm is a consequence of the fact that y and �u

are related to c by means of finite impulse response operators (z−1b(z) and
A(z)), which can be used to establish that the cost is monotonically decreas-
ing [186] and can therefore be interpreted as a Lyapunov function guarantee-
ing stability.

4.12 Exercises

4.1. Given the process

4.12 Exercises 79

y(t)− 1.5y(t− 1) + 0.56y(t− 2) = 0.9u(t− 1)− 0.6u(t− 2)

and N1 = 1 and N2 = 3:

1. Solve the Diophantine equation.
2. Compute Gi(z−1) for i = 1, 2 and 3.
3. Write the elements of the prediction vector as functions of �u(t − 1),

y(t− 1), y(t− 2) and the future control signals.
4. Simulate the response when the setpoint changes from 0 to 1.

4.2. Given the system G(s) = 0.5
1+10se−2s:

1. Obtain the discrete model for a sampling time of 1 second.
2. Use a GPC to steer the output from 0 to 1.5.
3. Consider that there is a model mismatch and the model used by the con-

troller has a time constant of 12 seconds (that is, the first model is used
to simulate the process and the second is used to design the controller).
Simulate the results with the nominal controller.

4. Add a T polynomial and simulate the results.
5. Use a Smith predictor and simulate the results.

4.3. Design a GPC for the system described by

(0.6445− 0.7176z−1 − 0.0906z−2)z−2

1− 0.9183z−1 + 0.084z−2 − 0.002z−3

Try different values for the tuning parameters (horizons and weights) and
simulate the results for a setpoint change of 1 unit and a step disturbance at
the output of 0.2.

4.4. A DC motor can be modelled by

0.00489z−1 + 0.00473z−2

(1− z−1)(1− 0.935z−1)

where the input is the voltage applied to the motor and the output is the
shaft angle.

1. Design a GPC and simulate a setpoint move from 0 to 3.
2. Try to obtain the same results with a DMC. Justify the results.

4.5. Design a GPC for the system described by

G(z) =
−1 + 1.2592z−1

1− 0.7408z−1

with N1 = 1, N2 = 30, Nu = 10 and λ = 0.1. Change the value of λ to 0 and
see the results (for the justification see Section 6.9).

4.6. Given an oscillatory system G(s) = 50
s2+25 , find the parameters of a GPC

such that the overshoot is less than 20%. Is it possible to control this process
with a MAC?

5

Simple Implementation of GPC for Industrial
Processes

One of the reasons for the success of the traditional PID controllers in indus-
try is that PID are very easy to implement and tune using heuristic tuning
rules such as the Ziegler-Nichols rules frequently used in practice. A Gen-
eralized Predictive Controller, as shown in the previous chapter, results in a
linear control law which is very easy to implement once the controller param-
eters are known. The derivation of the GPC parameters requires, however,
some mathematical complexities such as recursively solving the Diophantine
equation, forming the matrices G,G′ and f and then solving a set of linear
equations. Although this is not a problem for people in the research control
community where mathematical packages are normally available, it may be
discouraging for practitioners used to much simpler ways of implementing
and tuning controllers.

The previously mentioned computation has to be carried out only once
when dealing with processes with fixed parameters, but if the process pa-
rameters change, the GPC’s parameters have to be derived again, perhaps in
real time, at every sampling time if a self-tuning control is used. This may be
difficult because, on one hand, some distributed control equipment has only
limited mathematical computation capabilities for the controllers, and, on
the other hand, the computation time required for the derivation of the GPC
parameters may be excessive for the sampling time required by the process
and the number of loops implemented.

The goal of this chapter is to show how a GPC can very easily be imple-
mented and tuned for a wide range of processes in industry. It will be shown
that a GPC can be implemented with a limited set of instructions, available
in most control systems, and that the computation time required, even for
tuning, is very short. The method to implement the GPC is based on the fact
that a wide range of processes in industry can be described by a few param-
eters and that a set of simple Ziegler-Nichols type of functions relating GPC
parameters to process parameters can be obtained. By using these functions
the implementation and tuning of a GPC is almost as simple as the imple-
mentation and tuning of a PID.

E. F. Camacho et al., Model Predictive Control
© Springer-Verlag London Limited 2007

82 5 Simple Implementation of GPC for Industrial Processes

The influence of modelling errors is also analyzed in this chapter, with a
section dedicated to performing a robustness analysis of the method when
modelling errors are taken into account.

5.1 Plant Model

Most processes in industry, when considering small changes around an oper-
ating point can be described by a linear model of, normally, very high order.
This is because most industrial processes are composed of many dynamic el-
ements, usually first order, so the full model is of an order equal to the num-
ber of elements. In fact, each mass or energy storage element in the process
provides a first-order element in the model. Consider, for instance, a long
pipe used for heat exchanging purposes, as the case of a cooler or a steam
generator. The pipe can be modelled by breaking it into a set of small pieces,
each of which can be considered a first-order system. The resulting model
will have an order equal to the number of pieces used to model the pipe, that
is, a very high-order model. These very high-order models would be difficult
to use for control purposes but, fortunately, it is possible to approximate the
behaviour of such high-order processes by a system with one time constant
and a dead time.

As shown in [63], we may consider a process having N first-order ele-
ments in series, each having a time constant τ/N . That is, the resulting trans-
fer function will be

G(s) =
1

(1 + τ
N s)N

Changing the value of N from 1 to∞ the response shifts from exact first
order to pure dead time (equal to τ). When a time constant is much larger
than the others (as in many processes) the smaller time constants work to-
gether to produce a lag that acts as pure dead time. In this situation the dy-
namical effects are mainly due to this larger time constant, as can be seen in
Figure 5.1. It is therefore possible to approximate the model of a very high-
order, complex, dynamic process with a simplified model consisting of a first-
order process combined with a dead time element. This type of system can
then be described by the following transfer function:

G(s) =
K

1 + τs
e−sτd (5.1)

where K is the process static gain, τ is the time constant or process lag, and
τd is the dead time or delay.

5.1.1 Plant Identification: The Reaction Curve Method

Once the model structure is defined, the next step is to choose the correct
value for the parameters. In order to identify these parameters, a suitable

5.1 Plant Model 83

0.0 10.0 20.0 30.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N first-order systems
Resulting system
First-order system

Fig. 5.1. System response

Time

63.2 %

t2

d

28.3 %

t1

τ τ

Fig. 5.2. Reaction curve

stimulus must be applied to the process input. In the Reaction Curve Method
a step perturbation, that is, an input with a wide frequency content, is ap-
plied to the process and the output is recorded to fit the model to the data.

The step response or reaction curve of the process looks like Figure 5.2.
Here, a step of magnitude �u is produced in the manipulated variable and
the time response of the process variable y(t) is shown. The process param-
eters of Equation (5.1) can be obtained by measuring two times: t1, the time
when the output reaches 28.3 % of its steady-state value�y, and t2, when the
output reaches 63.2 %. Using these values, the process parameters are given
by:

84 5 Simple Implementation of GPC for Industrial Processes

K =
�y

�u
τ = 1.5(t2 − t1)
τd = 1.5(t1 − 1

3 t2)

A similar and perhaps more intuitive way of obtaining the process parame-
ters consists of finding the inflection point of the response and drawing the
line that represents the slope at that point [95]. The static gain is obtained
by the former expression and the times τ and τd come directly from the re-
sponse, as can be seen in the figure. The values obtained are similar in the
two approaches.

The Reaction Curve method is probably one of the most popular meth-
ods used in industry for tuning regulators, as in the Ziegler-Nichols method
for tuning PIDs, and it is used in the pretune stage of some commercial adap-
tive and auto-tuning regulators.

5.2 The Dead Time Multiple of the Sampling Time Case

5.2.1 Discrete Plant Model

When the dead time τd is an integer multiple of the sampling time T (τd =
dT), the corresponding discrete transfer function of Equation (5.1) has the
form

G(z−1) =
bz−1

1− az−1
z−d (5.2)

where discrete parameters a, b and d can easily be derived from the continu-
ous parameters by discretization of the continuous transfer function, result-
ing in the following expressions:

a = e−
T
τ b = K(1− a) d =

τd

T

If a CARIMA (Controlled Auto-Regressive and Integrated Moving Aver-
age) model is used to model the random disturbances in the system and the
noise polynomial is chosen to be 1 , the following equation is obtained

(1− az−1)y(t) = bz−du(t− 1) +
ε(t)
�

where u(t) and y(t) are the control and output sequences of the plant, ε(t) is
a zero mean white noise and� = 1− z−1. This equation can be transformed
into:

y(t + 1) = (1 + a)y(t)− ay(t− 1) + b� u(t− d) + ε(t + 1) (5.3)

5.2 The Dead Time Multiple of the Sampling Time Case 85

5.2.2 Problem Formulation

As was shown in the previous chapter, the Generalized Predictive Control
(GPC) algorithm consists of applying a control sequence that minimizes a
multistage cost function of the form

J(N1, N2) =
N2∑

j=N1

δ(j)[ŷ(t + j | t)− w(t + j)]2

+
N2−d∑
j=1

λ(j)[�u(t + j − 1)]2 (5.4)

Notice that the minimum output horizon N1 should be set to a value
greater than the dead time d as the output for smaller time horizons cannot be
affected by the first action u(t). In the following N1 and N2 will be considered
to be N1 = d + 1 and N2 = d + N , where N is the control horizon.

If ŷ(t + d + j − 1 | t) and ŷ(t + d + j − 2 | t) are known, it is clear, from
Equation (5.3) that the best expected value for ŷ(t + d + j | t) is given by:

ŷ(t + d + j | t) = (1 + a)ŷ(t + d + j − 1 | t)− aŷ(t + d + j − 2 | t)
+ b� u(t + j − 1) (5.5)

If Equation (5.5) is applied recursively for j = 1, 2, . . . , i, we get

ŷ(t + d + i | t) = Gi(z−1)ŷ(t + d | t) + Di(z−1)� u(t + i− 1) (5.6)

where Gi(z−1) is of degree 1 and Di(z−1) is of degree i−1. Notice that when
δ(i) = 1 and λ(i) = λ, the polynomials Di(z−1) are equal to the polynomials
Gi(z−1) given in [58] for the case of d = 0 and the terms f(t+ i) given in that
reference are equal to Gi(z−1)y(t) of equation (5.6).

If ŷ(t + d + i | t) is introduced in Equation (5.4), J(N) is a function of
ŷ(t + d | t), ŷ(t + d− 1 | t), �u(t + N2 − d− 1), �u(t + N2 − d− 2) ... �u(t)
and the reference sequence.

Minimizing J(N) with respect to�u(t),�u(t+1) ...�u(t+N −1) leads
to

M u = P y + R w (5.7)

where

u = [�u(t) � u(t + 1) · · · � u(t + N − 1)]T

y = [ŷ(t + d | t) ŷ(t + d− 1 | t)]T
w = [w(t + d + 1) w(t + d + 2) · · · w(t + d + N)]T

M and R are matrices of dimension N × N and P of dimension N × 2. Let
us call q the first row of matrix M−1. Then�u(t) is given by

86 5 Simple Implementation of GPC for Industrial Processes

1 - a z

l
l

1-a yr

+

+

+

+

y

y

Predictor

Identification

Adaptation

-1

z

ba

-1

l l l

b

b z-1 -dzΔ u
k

z-1

Δuk-1

k+d

k+d-1

k
ku

y1

y2

l r1

y1 y2 r1

Fig. 5.3. Control Scheme

�u(t) = q P y + q R w (5.8)

When the future setpoints are unknown, w(t + d + i) is supposed to be
equal to the current reference r(t). The reference sequence can be written as:

w = [1 · · · 1]r(t)

The control increment�u(t) can be written as

�u(t) = ly1ŷ(t + d | t) + ly2ŷ(t + d− 1 | t) + lr1r(t) (5.9)

where q P = [ly1ly2] and lr1 =
N∑

i=1

qi

N∑
j=1

rij . The coefficients ly1, ly2 and lr1

are functions of a, b, δ(i) and λ(i). If the GPC is designed considering the
plant to have a unit static gain, the coefficients in (5.9) will only depend on
δ(i) and λ(i) (which are supposed to be fixed) and on the pole of the plant
which will change for the adaptive control case. Notice that by doing this, a
normalized weighting factor λ is used and it should be corrected for systems
with different static gains.

The resulting control scheme is shown in Figure 5.3. The estimated plant
parameters are used to compute the controller coefficients (ly1, ly2, lr1). The
values ŷ(t+d | t), ŷ(t+d−1 | t) are obtained by the use of the predictor given
by equation (5.5). The control signal is divided by the process static gain in
order to get a system with a unitary static gain.

Notice that the controller coefficients do not depend on the dead time d
and for fixed values of δ(i) and λ(i) they will be a function of the estimated

5.2 The Dead Time Multiple of the Sampling Time Case 87

pole (â). The standard way of computing the controller coefficients would
be by computing the matrices M, P and R and solving Equation (5.7) fol-
lowed by the generation of the control law of Equation (5.9). This involves
the triangularization of an N×N matrix, which could be prohibitive for some
real-time applications.

As suggested in [43], the controller coefficients can be obtained by in-
terpolating in a set of previously computed values as shown in Figure 5.4.
Notice that this can be accomplished in this case because the controller coef-
ficients only depend on one parameter. The number of points of the set used
depends on the variability of the process parameters and on the accuracy
needed. The set does not need to be uniform and more points can be com-
puted in regions where the controller parameters vary substantially in order
to obtain a better approximation or to reduce the computer memory needed.

The predictor needed in the algorithm to calculate ŷ(t+d | t), ŷ(t+d−1 |
t) is obtained by applying Equation (5.5) sequentially for j = 1 − d · · · 0.
Notice that it basically consists of a model of the plant which is projected
towards the future with the values of past inputs and outputs, and it only
requires straightforward computation.

5.2.3 Computation of the Controller Parameters

The algorithm just described can be used to compute controller parameters
of GPC for plants which can be described by Equation (5.2) (most industrial
plants can be described this way) over a set covering the region of interest.

Notice that the sampling time of a digital controller is chosen in practice
according to the plant time response. Sampling time between 1/15 and 1/4
of T95 (the time needed by the system to reach 95 % of the final output value)
is recommended in [95]. The pole of the discrete form of the plant transfer
function is therefore going to vary between 0.5 and 0.95 for most industrial
processes when sampled at appropriate rates.

The curves shown in Figure 5.4 correspond to the controller parameters
(ly1, ly2, lr1) obtained for δ(i) = δi and λ(i) = λi with δ = 1, λ = 0.8 and
N = 15. The pole of the system has been changed with a 0.0056 step from
0.5 to 0.99. Notice that due to the fact that the closed-loop static gain must be
equal to 1, the sum of the three parameters equals zero. This result implies
that only two of the three parameters need to be known.

By looking at Figure 5.4 it can be seen that the functions relating the con-
troller parameters to the process pole can be approximated by functions of
the form:

lyi = k1i + k2i
a

k3i − a
i = 1, 2 (5.10)

The coefficients kji can be calculated by a least squares adjustment using
the set of known values of lyi for different values of a. Equation (5.10) can be
written as:

88 5 Simple Implementation of GPC for Industrial Processes

0.50 0.60 0.70 0.80 0.90 1.00
System Pole

-10.0

-5.0

0.0

5.0

10.0

l y1

l y2

l r1

Fig. 5.4. Controller parameters

alyi = lyik3i − k1ik3i + a(ki1a− k2i)

Repeating this equation for the Np points used to obtain the approxima-
tion, we get

⎡⎢⎢⎢⎣
a1l1yi

a2l2yi
...

aNp l
Np

yi

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
l1yi 1 a1

l2yi 1 a2

...
...

...
l
Np

yi 1 aNp

⎤⎥⎥⎥⎦
⎡⎣x1

x2

x3

⎤⎦+

⎡⎢⎢⎢⎣
e1

e2

...
eNp

⎤⎥⎥⎥⎦ (5.11)

where lji , aj , ej , j = 1...Np are the Np values of the system pole, the precalcu-
lated parameters, and the approximation errors, x1 = k3i, x2 = −k1ik3i and
x3 = k1i − k2i.

Equation (5.11) can be written in matrix form

Y = M X + E

In order to calculate the optimum values of X we minimize ET E obtaining

X = (MT M)−1 MT Y

The desired coefficients can now be evaluated as:

k3i = x1

k1i = −x2/k3i

k2i = k1i − x3

5.2 The Dead Time Multiple of the Sampling Time Case 89

0.50 0.60 0.70 0.80 0.90 1.00
System Pole

0.20

0.40

0.60

0.80

1.00
Bi

gg
es

t C
los

ed
-L

oo
p

Po
le

 λ=0.8
 λ=0.6
 λ=0.4
 λ=0.2

Fig. 5.5. Influence of the control-weighting factor

In the case of λ = 0.8 and for a control horizon of 15, the controller coeffi-
cients are given by:

ly1 = −0.845− 0.564
a

1.05− a
ly2 = 0.128 + 0.459

a

1.045− a
lr1 = −ly1 − ly2

These expressions give a very good approximation to the true controller
parameters and fit the set of computed data with a maximum error of less
than 1 % of the nominal value for the range of interest of the open-loop pole.

5.2.4 Role of the Control-weighting Factor

The control-weighting factor λ affects the control signal in Equation (5.9).
The bigger this value is, the smaller the control effort is allowed to be. If it
is given a small value, the system response will be fast since the controller
tends to minimize the error between the output and the reference, forgetting
about control effort. The controller parameters ly1, ly2 and lr1 and therefore
the closed-loop poles depend on the values of λ.

Figure 5.5 shows the value of the modulus of the biggest closed-loop
pole when changing λ from 0 to 0.8 by increments of 0.2. As can be seen, the
modulus of the biggest closed-loop pole decreases with λ, indicating faster
systems. For a value of λ equal to 0, the closed-loop poles are zero, indicating
deadbeat behaviour.

A set of functions was obtained by making λ change from 0.3 to 1.1 by
increments of 0.1. It was found that the values of the parameters kij(λ) of

90 5 Simple Implementation of GPC for Industrial Processes

Equation (5.10) obtained could be approximated by functions with the form:
sgn(kij)ec0+c1λ+c2λ2

.
By applying logarithm the coefficients c1, c2 and c3 can be adjusted using

a polynomial fitting procedure. The following expressions were obtained for
the grid of interest:

k11 = −e0.3598−0.9127λ+0.3165λ2

k21 = −e0.0875−1.2309λ+0.5086λ2

k31 = 1.05
k12 = e−1.7383−0.40403λ

k22 = e−0.32157−0.8192λ+0.3109λ2

k32 = 1.045

(5.12)

The values of the control parameters ly1 and ly2 obtained when introduc-
ing the kij given in Equation (5.10) are a very good approximation to the real
ones. The maximum relative error for 0.55 < a < 0.95 and 0.3 ≤ λ ≤ 1.1 is
less than 3 %.

5.2.5 Implementation Algorithm

Once the λ factor has been decided, the values kij can very easily be com-
puted by Expressions (5.12) and the approximate adaptation laws given by
Equation (5.10) can easily be employed. The proposed algorithm in the adap-
tive case is:

0. Compute kij with Expressions (5.12).
1. Perform an identification step.
2. Make li = k1i + k2i

â
k3i−â for i = 1, 2 and lr1 = −ly1 − ly2.

3. Compute ŷ(t + d | t) and ŷ(t + d− 1 | t) using equation (5.5)
recursively.

4. Compute control signal u(t) with
�u(t) = ly1ŷ(t + d | t) +ly2ŷ(t + d− 1 | t) + lr1r(t)

5. Divide the control signal by the static gain.
6. Go to step 1.

Notice that in a fixed-parameter case the algorithm is simplified since
the controller parameters need to be computed only once (unless the control-
weighting factor λ is changed) and only steps 3 and 4 have to be carried out
at every sampling time.

5.2.6 An Implementation Example

In order to show the straightforwardness of this method, an application to
a typical process such as a simple furnace is presented. First, identification

5.2 The Dead Time Multiple of the Sampling Time Case 91

62.26

55.49

5.9 9.6

69.41
y(t)

Time

Fig. 5.6. Outlet temperature response

by means of the Reaction Curve method is performed and then the precal-
culated GPC is applied. The process basically consists of a water flow being
heated by fuel which can be manipulated by a control valve. The output vari-
able is the coil outlet temperature whereas the manipulated variable is the
fuel flow.

The stationary values of the variables are: inlet temperature 20 oC, outlet
temperature 50 oC and fuel valve at 18.21 %. Under these conditions, the
fuel rate is changed to a value of 30 % and the outlet temperature response
is shown in Figure 5.6, reaching a final value of y = 69.41 oC. The plant
parameters can be obtained directly from this response as was explained in
Section 3.1.1. First, the times t1 (when the response reaches 28.3 % of its final
value) and t2 (63.2 %) are obtained, resulting in t1 = 5.9 and t2 = 9.6 seconds.
Then the plant parameters are

K =
�y

�u
=

69.411− 50
30− 18.21

= 1.646

τ = 1.5(t2 − t1) = 1.5(9.6− 5.9) = 5.55
τd = 1.5(t1 − 1

3 t2) = 1.5(5.9− 9.6
3) = 4.05

with these values, and a sampling time of one second, the equivalent discrete
transfer function results in

G(z−1) =
0.2713z−1

1− 0.8351z−1
z−4

As the process is considered to have fixed parameters, the controller coef-
ficients ly1, ly2 and lr1 can be calculated offline. In this case, choosing λ = 0.8,
the coefficients are obtained from Equation (5.12).

92 5 Simple Implementation of GPC for Industrial Processes

/* Predictor */ for (i=2; i<=5; i++)
y[i]=1.8351*y[i-1]-0.8351*y[i-2]+0.2713*(u[5-i]-u[6-i]);

/* Control Law */
u[0]=u[1]+(-3.0367*y[5]+1.9541*y[4]+1.08254*r)/1.646;

/* Updating */ for (i=5; i>0; i--) u[i] = u[i-1];
y[0] = y[1];

Fig. 5.7. C code of implementation algorithm

k11 = −0.845
k21 = −0.564
k31 = 1.05
k12 = 0.128
k22 = 0.459
k32 = 1.045

In consequence the controller coefficients are:

ly1 = −3.0367 ly2 = 1.9541 lr1 = 1.0826

Therefore, at every sampling time it will only be necessary to com-
pute the predicted outputs and the control law. The predictions needed are
ŷ(t + 4 | t) and ŷ(t + 3 | t), that will be calculated from the next equation with
i = 1 · · · 4

ŷ(t + i | t) = (1 + a)ŷ(t + i− 1 | t)− aŷ(t + i− 2 | t) + b� u(t + i− 5)

and the control law, where G is the static gain

u(t) = u(t− 1) + (ly1 ŷ(t + 4 | t) + ly2 ŷ(t + 3 | t) + lr1 r)/G

The implementation of the controller in a digital computer will result in
a simple program, a part of whose code written in C is shown in Figure 5.7.
Two arrays, u and y, are used. The first is used to store the past values of
the control signal and the second to store the values of the outputs. In this
process with a dead time of 4, the arrays are:

y = [y(t− 1), y(t), ŷ(t + 1), ŷ(t + 2), ŷ(t + 3), ŷ(t + 4)]
u = [u(t), u(t− 1), u(t− 2), u(t− 3), u(t− 4), u(t− 5)]

Notice that y contains the predicted outputs and the outputs in t and
t − 1, because these last two values are needed in the first two predictions
ŷ(t + 1), ŷ(t + 2).

5.3 The Dead Time Nonmultiple of the Sampling Time Case 93

10.0 30.0 50.0 70.0 90.0 110.0 130.0
Time

5.0

15.0

25.0

35.0

45.0

55.0

65.0

Output

Set Point

Control Action

Fig. 5.8. System response

The closed-loop response to a setpoint change of +10 0C is plotted in
Figure 5.8, where the evolution of the control signal can also be seen . Ad-
ditionally, the control-weighting factor λ was changed at t = 60 from the
original value of 0.8 to a smaller 0.3; notice that the control effort increases
and the output tends to be faster. On the other hand, if λ takes a bigger value,
such as 1.3, the behaviour tends to be slower; this change was performed at
t = 100.

5.3 The Dead Time Nonmultiple of the Sampling Time Case

5.3.1 Discrete Model of the Plant

When the dead time τd of the process is not an integer multiple of the sam-
pling time T (dT ≤ τd ≤ (d + 1)T), Equation (5.2) cannot be employed. In
this case the fractional delay time can be approximated [66] by the first two
terms of the Padé expansion and the plant discrete transfer function can be
written as:

G(z−1) =
b0z

−1 + b1z
−2

1− az−1
z−d (5.13)

As can be seen this transfer function is slightly different from the previ-
ous model (Equation(5.2)), presenting an additional zero; a new parameter

94 5 Simple Implementation of GPC for Industrial Processes

appears in the numerator. Using the same procedure as in the previous case,
a similar implementation of GPC can be obtained for this family of processes.

To obtain the discrete parameters a, b0 and b1, the following relations
can be used [66]: first, the dead time is decomposed as τd = dT + εT with
0 < ε < 1. Then the parameters are:

a = e−
T
τ b0 = K(1−a)(1−α) b1 = K(1−a)α α =

a(a−ε − 1)
1− a

Since the derivation of the control law is very similar in this case to the
case in the previous section, some steps will be omitted here for simplicity.

The function J to be minimized is also that of Equation (5.4). Using the
CARIMA model with the noise polynomial equal to 1, the system can be writ-
ten as

(1− az−1)y(t) = (b0 + b1z
−1)z−du(t− 1) +

ε(t)
�

which can be transformed into:

y(t+1) = (1+a)y(t)−ay(t−1)+b0�u(t−d)+b1�u(t−d−1)+ε(t+1) (5.14)

If ŷ(t + d + i − 1 | t) and ŷ(t + d + i − 2 | t) are known, it is clear, from
Equation (5.14), that the best expected value for ŷ(t + d + i | t) is given by:

ŷ(t + d + i | t) = (1 + a)ŷ(t + d + i− 1 | t)− aŷ(t + d + i− 2 | t)
+ b0 � u(t + i− 1) + b1 � u(t + i− 2)

If ŷ(t + d + i | t) is introduced in the function to be minimized, J(N) is a
function of ŷ(t + d | t), ŷ(t + d− 1 | t),�u(t + N2− d− 1),�u(t + N2− d− 2)
...�u(t),�u(t− 1) and the reference sequence.

Minimizing J(N) with respect to�u(t),�u(t+1) ...�u(t+N −1) leads
to

M u = P y + R w + Q � u(t− 1) (5.15)

where

u = [�u(t) � u(t + 1) · · · � u(t + N − 1)]T

y = [ŷ(t + d | t) ŷ(t + d− 1 | t)]T

w = [w(t + d + 1) w(t + d + 2) · · · w(t + d + N)]T

M and R are matrices of dimension N ×N , P of dimension N × 2 and Q of
N × 1.

5.3 The Dead Time Nonmultiple of the Sampling Time Case 95

l
l

y

y

y

Predictor

k

k+d

k+d-1

u
k

z-1

r
l +

+

+ +

z-1l

1-a
b 1+b 0

Δ z-1

Δu

uk-1

k-2

Δuk

1-a z -1

Identification

Adaptation

l l l l

a b b0 1

r1

y1

y2

y1 y2 u1 r1

u1

z-d0 1
b z + b z

-1 -2

Fig. 5.9. Control scheme

Notice that the term Q � u(t − 1) did not appear in the simpler plant
because of the different plant parameters; hence the control law will not be
the same. Let us call q the first row of matrix M−1. Then�u(t) is given by

�u(t) = q P y + q R w + q Q � u(t− 1) (5.16)

If the reference sequence is considered to be w = [1 · · · 1]r(t), the control
increment�u(t) can be written as:

�u(t) = ly1 ŷ(t + d | t) + ly2 ŷ(t + d− 1 | t) + lr1 r(t) + lu1 � u(t− 1) (5.17)

where q P = [ly1 ly2], lr1 =
N∑

i=1

qi

N∑
j=1

rij and lu1 = q Q. The resulting control

scheme is shown in Figure 5.9, where the values ŷ(t + d | t), ŷ(t + d − 1 | t)
are obtained by use of the predictor previously described. Notice that the
predictor basically consists of a model of the plant projected towards the
future with the values of past inputs and outputs.

5.3.2 Controller Parameters

The plant estimated parameters can be used to compute the controller coef-
ficients (ly1, ly2, lr1 and lu1). These coefficients are functions of the plant pa-
rameters a, b0, b1, δ(i) and λ(i). If the GPC is designed considering the plant
to have a unit static gain, there exists a relationship between the plant pa-
rameters

1− a = b0 + b1

96 5 Simple Implementation of GPC for Industrial Processes

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1
-8

-6

-4

-2

0

2

4

6

am

Ly
1

Ly
2

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

-0.6

-0.4

-0.2

0

am

Lu
1

Fig. 5.10. Controller parameters ly1, ly2 and lu1 as functions of a and m

so that only two of the three parameters will be needed to calculate the coef-
ficients in (5.17). One parameter will be the system pole a and the other will
be:

m =
b0

b0 + b1

Parameter m indicates how close the true dead time is to parameter d in
the model used in Equation (5.13). That is, if m = 1 the plant dead time is d
and if m = 0 it is d + 1; so a range of m between 1 and 0 covers the fractional
dead times between d and d + 1.

Once the values of δ(i) and λ(i) have been chosen and the plant parame-
ters are known, the controller coefficients can easily be derived. The control
signal is divided by the process static gain in order to get a system with a
unitary static gain and reduce the number of parameters.

In order to avoid the heavy computational requirements needed to com-
pute matrices M, P, R and Q and solve Equation (5.15), the coefficients can
be obtained by interpolating in a set of previously computed values as shown
in Figure 5.10. Notice that this can be accomplished in this case because the
controller coefficients only depend on two parameters. As they have been
obtained considering a unitary static gain, they must be corrected dividing
the coefficients ly1, ly2 and lr1 by this value.

The algorithm just described can be used to compute controller param-
eters of GPC for plants which can be described by Equation (5.13) over a set
covering the region of interest. This region is defined by values of the pole in
the interval [0.5, 0.95] and the other plant parameter m that will vary between
0 and 1.

The curves shown in Figure 5.10 correspond to the controller parameters
ly1, ly2 and lu1 for δ(i) = δi and λ(i) = λi with δ = 1, λ = 0.8 and N = 15.
Notice that because the closed-loop static gain must equal the value 1, the
sum of parameters ly1, ly2 and lr1 equals zero. This result implies that only
three of the four parameters need to be known.

5.3 The Dead Time Nonmultiple of the Sampling Time Case 97

The expressions relating the controller parameters to the process param-
eters can be approximated by functions of the form:

k1i(m) + k2i(m)
a

k3i(m)− a
(5.18)

The coefficients kji(m) depend on the value of m and can be calculated
by a least squares fitting using the set of known values of lyi for different
values of a and m. Low-order polynomials that give a good approximation
for kji(m) have been obtained by Bordons [30].

In the case of m = 0.5, λ = 0.8 and for a control horizon of 15, the con-
troller coefficients are given by:

ly1 = −0.9427− 0.5486
a

1.055− a
ly2 = 0.1846 + 0.5082

a

1.0513− a
lu1 = −0.3385 + 0.0602

a

1.2318− a
lr1 = −ly1 − ly2

These expressions give a very good approximation of the true controller
parameters and fit the set of computed data with a maximum error of less
than 2 % of the nominal values for the range of interest of plant parameters.

The influence of the control-weighting factor λ on the controller parame-
ters can also be taken into account. For small values of λ, the parameters are
bigger so that they produce a bigger control effort, thus this factor has to be
considered in the approximate functions. With a procedure similar to that in
previous sections, the values of kij(m) in Expressions (5.18) can be approxi-
mated as functions of λ, obtaining a maximum error of around 3 % (with the
worst cases at the limits of the region).

The algorithm in the adaptive case will consider the plant parameters
and the control law and can be seen here:

1. Perform an identification step.
2. Compute kij(m, λ) .
3. Calculate ly1, ly2 and lu1. Make lr1 = −ly1 − ly2.
4. Compute ŷ(t + d | t) and ŷ(t + d− 1 | t) using

equation (5.5) recursively.
5. Compute u(t) with:
�u(t) = (ly1 ŷ(t + d | t) +ly2 ŷ(t + d− 1 | t)
+lr1 r(t))/G + lu1 � u(t− 1)

6. Go to step 1.

98 5 Simple Implementation of GPC for Industrial Processes

5.3.3 Example

This example is taken from [196] and corresponds to the distillate compo-
sition loop of a binary distillation column. The manipulated variable is the
reflux flow rate and the controlled variable is the distillate composition. Al-
though the process is clearly nonlinear, it can be modelled by a first-order
model plus a dead time of the form G(s) = Ke−sτd /(1 + τs) at different op-
erating points. Notice that this is a reasonable approach since, in fact, a dis-
tillation column is composed of a number of plates, each being a first-order
element.

As the process is nonlinear, the response varies for different operating
conditions, so different values for the parameters K, τ and τd were obtained,
changing the reflux flow rate from 3.5 to 4.5 mol/min (see Table 5.1). By these
tests, it was seen that variations in the process parameters as 0.107 ≤ K ≤
0.112, 15.6 ≤ τd ≤ 16.37, and 40.49 ≤ τ ≤ 62.8 should be considered (where
τ and τd are in minutes).

Considering a sample time of five minutes the dead time is not an integer
and the discrete transfer function must be that of equation (5.13). The discrete
parameters can be seen in the same table. The system pole can vary between
0.8838 and 0.9234, while parameter m is going to move between 0.7381 and
0.8841.

Table 5.1. Process parameters for different operating conditions

Flow K τ τd a b0(×10−3) b1(×10−3) d

4.5 0.107 62.8 15.6 0.9234 7.2402 0.9485 3
4 0.112 46.56 15.65 0.8981 9.9901 1.4142 3

3.5 0.112 40.49 16.37 0.8838 9.6041 3.4067 3

To cope with the variations of the system dynamics depending on the
operating point, a gain-scheduling predictive controller can be developed.
To do this, a set of controller parameters is obtained for each operating point,
and depending on the reflux flow, the parameters in each condition will be
calculated by interpolating in these sets.

For a fixed value of λ, the coefficients kij(m) are used to calculate the
values li(a, m). For λ = 0.8, the following expressions can be used:

5.4 Integrating Processes 99

k11 = 0.141 ∗m2 − 0.125 ∗m− 0.920
k21 = −0.061 ∗m2 + 0.202 ∗m− 0.625
k31 = −0.015 ∗m + 1.061
k12 = −0.071 ∗m2 + 0.054 ∗m + 0.180
k22 = −0.138 ∗m + 0.575
k32 = −0.015 ∗m + 1.058
k14 = −0.115 ∗m2 + 0.847 ∗m− 0.729
k24 = −0.113 ∗m + 0.112
k34 = −0.071 ∗m2 + 0.091 ∗m + 1.181

The GPC parameters for the different operating conditions are given in
Table 5.2.

Table 5.2. GPC parameters for different operating conditions

Flow ly1 ly2 lr1 lu1

4.5 -4.577 3.629 0.948 -0.035
4 -3.881 2.954 0.927 -0.039

3.5 -3.637 2.745 0.892 -0.091

As the dead time is of three sampling periods, the predictor is

ŷ(t+i | t) = (1+a)ŷ(t+i−1 | t)−aŷ(t+i−2 | t)+b0�u(t+i−3)+b1�u(t+i−4)

and the control law is

u(t) = u(t− 1) + (ly1ŷ(t + 3 | t) + ly2ŷ(t + 2 | t) + lr1r)/G + lu1 � u(t− 1)

where G is the static gain and the controller and predictor parameters are
obtained by interpolating the flow, once filtered by a low-pass filter, in Table
5.2.

To show the system behaviour, changes of the setpoint covering the com-
plete region are produced, and it can be observed in Figure 5.11 that the
output follows the reference, in spite of the changes in the system dynamics
due to the changing operating point.

5.4 Integrating Processes

In industrial practice it is easy to find some processes including an integral
effect. The output of one of these processes grows infinitely when excited by
a step input. This is the case of a tank where the level increases, provided
there is an input flow and a constant output. Also the angle of an electrical

100 5 Simple Implementation of GPC for Industrial Processes

20.0 60.0 100.0 140.0 180.0 220.0
Time

0.65

0.70

0.75

0.80

0.85

0.90

Di
st

illa
te

 C
om

po
sit

io
n

(%
)

Re
flu

x
Fl

ow
 (m

ol
/m

in
)

4

4.5

3

3.5

Fig. 5.11. Changes in operating conditions

motor shaft grows while being powered until the torque equals the load. The
behaviour of these processes differs drastically from that of those considered
up to now in this chapter.

These processes cannot be modelled by a first-order-plus-delay transfer
function, but they need the addition of an 1/s term to model the integrating
effect. Hence, the transfer function for this kind of process will be:

G(s) =
K

s(1 + τs)
e−τds (5.19)

In the general case of dead time being nonmultiple of the sampling time
the equivalent discrete transfer function when a zero-order hold is employed
is given by:

G(z) =
b0z

−1 + b1z
−2 + b2z

−3

(1− z−1)(1− az−1)
z−d (5.20)

In the simpler case of the dead time being an integer multiple of the sampling
time, the term b2 disappears.

The GPC control law for processes described by (5.19) will be calculated
in this section. Notice that some formulations of MPC are unable to deal with
these processes since they use the truncated impulse or step response, which
is not valid for unstable processes. As GPC makes use of the transfer function,
there is no problem about unstable processes.

5.4.1 Derivation of the Control Law

The procedure for obtaining the control law is analogous to the one used in
previous sections, although logically the predictor will be different and the
final expression will change slightly.

5.4 Integrating Processes 101

Using a CARIMA model with the noise polynomial equal to 1, the system
can be written as

(1− z−1)(1− az−1)y(t) = (b0 + b1z
−1 + b2z

−2)z−du(t− 1) +
ε(t)
�

which can be transformed into:

y(t + 1) = (2 + a)y(t)− (1 + 2a)y(t− 1) + ay(t− 2)
+ b0 � u(t− d) + b1 � u(t− d− 1) + b2 � u(t− d− 2) + ε(t + 1)

If the values of ŷ(t+ d+ i− 1 | t), ŷ(t+ d+ i− 2 | t) and ŷ(t+ d+ i− 3 | t)
are known, then the best predicted output at instant t + d + i will be:

ŷ(t + d + i | t) = (2 + a)ŷ(t + d + i− 1 | t)− (1 + 2a)ŷ(t + d + i− 2 | t) +
aŷ(t + d + i− 3 | t) + b0 � u(t + i− 1) + b1 � u(t + i− 2) + b2 � u(t + i− 3)

With these expressions of the predicted outputs, the cost function to be
minimized will be a function of ŷ(t+ d | t), ŷ(t+ d− 1 | t) and ŷ(t+ d− 2 | t),
as well as the future control signals�u(t+N−1),�u(t+N−2) ...�u(t), and
past inputs�u(t−1) and�u(t−2) and, of course, of the reference trajectory.

Minimizing J(N1, N2, N3) leads to the following matrix equation for cal-
culating u

M u = P y + R w + Q1 � u(t− 1) + Q2 � u(t− 2)

where M and R are matrices of dimension N × N , P of dimension N × 2
and Q1 and Q2 of N × 1. As in the previous section, u are the future input
increments and y the predicted outputs.

The first element of vector u can be obtained by

�u(t) = q P y + q R w + q Q1 � u(t− 1) + q Q2 � u(t− 2)

where q is the first row of matrix M−1.
If the reference is considered to be constant over the prediction horizon

and equal to the current setpoint

w = [1 . . . 1]r(t + d)

the control law results as
�u(t) = ly1ŷ(t + d | t) + ly2ŷ(t + d− 1 | t) + ly3ŷ(t + d− 2 | t)

+lr1r(t + d) + lu1 � u(t− 1) + lu2 � u(t− 2) (5.21)

where q P = [ly1 ly2 ly3], lr1 =
N∑

i=1

(qi

N∑
j=1

rij), lu1 = q Q1 and lu2 = q Q2.

Therefore the control law results in a linear expression depending on six
coefficients which depend on the process parameters (except on the dead
time) and on the control-weighting factor λ. Furthermore, one of these co-
efficients is a linear combination of the others, since the following relation
must hold to get a closed loop with unitary static gain:

ly1 + ly2 + ly3 + lr1 = 0

102 5 Simple Implementation of GPC for Industrial Processes

5.4.2 Controller Parameters

The control law (5.21) is very easy to implement provided the controller pa-
rameters ly1, ly2, ly3, lr1, lu1 and lu2 are known. The existence of available
relationships of these parameters with process parameters is of crucial im-
portance for a straightforward implementation of the controller. In a similar
way to the previous sections, simple expressions for these relationships will
be obtained.

As the process can be modelled by (5.20) four parameters (a, b0, b1 and
b2) are needed to describe the plant. Expressions relating the controller coef-
ficients to these parameters can be obtained as earlier, although the resulting
functions are not as simple, due to the number of plant parameters involved.
As the dead time can often be considered as a multiple of the sampling time,
simple functions will be obtained for this case from now on. Then b2 will be
considered equal to 0.

In a similar way to the process without integrator case, the process can
be considered to have (b0 + b1)/(1−a) = 1 in order to work with normalized
plants. Then the computed parameters must be divided by this value that
will not equal 1 in general.

The controller coefficients will be obtained as a function of the pole a and
a parameter:

n =
b0

b0 + b1

This parameter has a short range of variability for any process. As b0 and b1

are related to the continuous parameters by (see [11])

b0 = K(T + τ(−1 + e−
T
τ)) b1 = K(τ − e−

T
τ (T + τ))

then
n =

a− 1− log a

(a− 1) log a

that for the usual values of the system pole is going to vary between n =
0.5 and n = 0.56. Therefore the controller parameters can be expressed as
functions of the system pole, and n for a fixed value of λ.

The shape of the parameters is displayed in Figure 5.12 for a fixed value
of λ = 1. It can be seen that the coefficients depend mainly on the pole a,
being almost independent of n except in the case of lu1. Functions of the
form

f(a, n, λ) = k1(n, λ) + k2(n, λ)
a

k3(n, λ)− a

where ki can be approximated by

5.4 Integrating Processes 103

0.5
0.6

0.7
0.8

0.9
1

0.5

0.52

0.54

0.56

0.58
-20

-15

-10

-5

0

an

Ly
1

0.5
0.6

0.7
0.8

0.9
1

0.5

0.52

0.54

0.56

0.58
0

5

10

15

20

25

30

an

Ly
2

0.5
0.6

0.7
0.8

0.9
1

0.5

0.52

0.54

0.56

0.58
-12

-10

-8

-6

-4

-2

0

an

Ly
3

0.5
0.6

0.7
0.8

0.9
1

0.5

0.52

0.54

0.56

0.58
-0.5

-0.45

-0.4

-0.35

-0.3

-0.25

an

Lu
1

Fig. 5.12. Controller coefficients ly1, ly2, ly3 and lu1

ky1,1 = −e0.955−0.559λ+0.135λ2

ky1,2 = −e0.5703−0.513λ+0.138λ2

ky1,3 = 1.0343
ky2,1 = e0.597−0.420λ+0.0953λ2

ky2,2 = e1.016−0.4251λ+0.109λ2

ky2,3 = 1.0289
ky3,1 = −e−1.761−0.422λ+0.071λ2

ky3,2 = −e0.103−0.353λ+0.089λ2

ky3,3 = 1.0258
ku1,1 = 1.631n− 1.468 + 0.215λ− 0.056λ2

ku1,2 = −0.124n + 0.158− 0.026λ + 0.006λ2

ku1,3 = 1.173− 0.019λ

(5.22)

provide good approximations for ly1, ly2, ly3, lr1 and lu1 in the usual range of
the plant parameter variations. Notice that an approximate function for lr1
is not supplied since it is linearly dependent on the other coefficients. The
functions fit the set of computed data with a maximum error of less than 1.5
% of the nominal values. Notice that closer approximations can be obtained
if developed for a concrete case where the range of variability of the process
parameters is smaller.

104 5 Simple Implementation of GPC for Industrial Processes

5.4.3 Example

The control law (5.21) will be implemented in an extensively used system as
a direct-current motor. When the input of the process is the voltage applied
to the motor (U) and the output is the shaft angle (θ) it is obvious that the pro-
cess has an integral effect, given that the position grows indefinitely whilst
it is fed by a certain voltage. In order to obtain a model that describes the
behaviour of the motor the inertia load (proportional to the angular accelera-
tion) and the dynamic friction load (proportional to angular speed) are taken
into account. Their sum is equal to the torque developed by the motor, which
depends on the voltage applied to it. It is a first-order system with regards to
speed but a second-order one if the angle is considered as the output of the
process:

J
d2θ

dt2
+ f

dθ

dt
= Mm

and the transfer function will be:

θ(s)
U(s)

=
K

s(1 + τs)

where K and τ depend on electromechanical characteristics of the motor.
The controller is going to be implemented on a real motor with a feed

voltage of 24 V and nominal current of 1.3 A, subjected to a constant load.
The Reaction Curve Method is used to obtain experimentally the parameters
of the motor, applying a step in the feed voltage and measuring the evolution
of the angular speed (which is a first-order system). The parameters obtained
are

K = 2.5 τ = 0.9 second

and zero dead time. Taking a sampling time of T = 0.06 second one gets the
discrete transfer function:

G(z) =
0.004891z−1 + 0.004783z−2

(1− z−1)(1− 0.935507z−1)

If a high value of the control-weighting factor is taken to avoid overshooting
(λ = 2) the control parameters (5.21) can be calculated using expressions
(5.22):

ly1 = −11.537
ly2 = 19.242
ly3 = −8.207
lu1 = −0.118
lr1 = 0.502

The evolution of the shaft angle when some steps are introduced in the
reference can be seen in Figure 5.13. It can be observed that there is no over-
shooting due to the high value of λ chosen. The system has a dead zone such

5.5 Consideration of Ramp Setpoints 105

0 100 200 300 400 500 600
Samples

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Ou
tpu

t a
nd

 Re
fer

en
ce

0 100 200 300 400 500 600
Samples

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Co
ntr

ol
Sig

na
l

Fig. 5.13. Motor response for setpoint changes

that it is not sensitive to control signals less than 0.7 V; in order to avoid this
a nonlinearity is added.

It is important to remember that the sampling time is very small (0.06 sec-
ond) which could make the implementation of the standard GPC algorithm
impossible. However, due to the simple formulation used here, the imple-
mentation is reduced to the calculation of Expression (5.21) and hardly takes
any time in a computer.

The process is disturbed by the addition of an electromagnetic break that
changes the load and the friction constant. The model parameters used for
designing the GPC do not coincide with the process parameters, but in spite
of this, as can be seen in Figure 5.14, GPC is able to control the motor reason-
ably well even though a slight overshoot appears.

5.5 Consideration of Ramp Setpoints

It is usual for a process reference signal to keep a certain constant value for
a time and to move to other constant values by step changes during nor-
mal plant operation. This is what has been considered up to now, that is,

106 5 Simple Implementation of GPC for Industrial Processes

0 100 200 300 400 500 600
Samples

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Ou
tpu

t a
nd

 Re
fer

en
ce

0 100 200 300 400 500 600
Samples

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Co
ntr

ol
Sig

na
l

Fig. 5.14. Motor response with electromagnetic break

w(t + d + 1) = w(t + d + 2) . . . = r(t), where r(t) is the setpoint at instant t
which is going to maintain a fixed value.

But the reference evolution will not behave like this in all circumstances.
On many occasions it can evolve as a ramp, which changes smoothly to an-
other constant setpoint. In general it would be desirable for the process out-
put to follow a mixed trajectory composed of steps and ramps.

This situation frequently appears in different industrial processes. In the
food and pharmaceutical industries some thermal processes require the tem-
perature to follow a profile given by ramps and steps. It is also of interest that
in the control of motors and in robotics applications, the position or velocity
follows evolutions of this type.

GPC will be reformulated when the reference is a ramp, defined by a pa-
rameter α indicating the increment at each sampling time. The reference tra-
jectory is therefore:

5.5 Consideration of Ramp Setpoints 107

w(t + d + 1) = r(t + d) + α

w(t + d + 2) = r(t + d) + 2α

.

w(t + d + N) = r(t + d) + Nα

Employing the procedure used throughout this chapter, and for first-
order systems with dead time, we get

M u = P y + R w + Q � u(t− 1)

If q is the first row of matrix M−1 then�u(t) can be expressed as

�u(t) = q P y + q R w + q Q � u(t− 1)

By making h = q R the term of the preceding expression including the
reference (h w) takes the form:

h w =
N∑

i=1

hi r(t+d+i) =
N∑

i=1

hi (r(t+d)+α i) =
N∑

i=1

hi r(t+d)+α
N∑

i=1

hi i

Therefore
h w = lr1 r(t + d) + α lr2

The control law can now be written as

�u(t) = ly1ŷ(t + d | t) + ly2ŷ(t + d− 1 | t) + lr1r(t + d) + α lr2 + lu1�u(t− 1)
(5.23)

where q P = [ly1 ly2], lu1 = q Q, lr1 =
N∑

i=1

(qi

N∑
j=1

rij) and lr2 = α
N∑

i=1

hi i.

The control law is therefore linear. The new coefficient lr2 is due to the
ramp. It can be noticed that when the ramp becomes a constant reference, the
control law coincides with the one developed for the constant reference case.
The only modification that needs to be made because of the ramps is the
term lr2α. The predictor is the same and the resolution algorithm does not
differ from the one used for the constant reference case. The new parameter
lr2 is a function of the process parameters (a, m) and of the control weighting
factor (λ). As in the previous cases an approximating function can easily be
obtained. Notice that the other parameters are exactly the same as in the
constant reference case, meaning that the previously obtained expressions
can be used.

In what has been seen up to now (nonintegrating processes, integrating
processes, constant reference, ramp reference), a new coefficient appeared in
the control law with each new situation. All these situations can be described
by the following control law:

108 5 Simple Implementation of GPC for Industrial Processes

Table 5.3. Coefficients that may appear in the control law. The × indicates that the
coefficient exists

Process Reference ly1 ly2 ly3 lu1 lu2 lr1 lr2
k

1+τs
e−τds Constant × × 0 0 0 × 0

τd integer Ramp × × 0 0 0 × ×
k

1+τs
e−τds Constant × × 0 × 0 × 0

τd non integer Ramp × × 0 × 0 × ×
k

s(1+τs)
e−τds Constant × × × × 0 × 0

τd integer Ramp × × × × 0 × ×
k

s(1+τs)
e−τds Constant × × × × × × 0

τd non integer Ramp × × × × × × ×

�u(t) = ly1ŷ(t + d | t) + ly2ŷ(t + d− 1 | t) + ly3ŷ(t + d− 2 | t)
+ lr1r(t + d) + α lr2 + lu1 � u(t− 1) + lu2 � u(t− 2)

Table 5.3 shows which coefficients of this control law may be zero de-
pending on the particular situation.

5.5.1 Example

As an application example, a GPC with ramp following capability is going
to be designed for the motor described earlier. The reference trajectory is
composed of a series of steps and ramps defined by the value of α (α = 0 for
the case of constant reference).

The same controller parameters as in the previous example are used,
with the addition of the new parameter lr2 = 2.674. Considering that
(b0 + b1)/(1− a) = 0.15, the control law is given by:

�u(t) = −76.92 y(t) + 128.29 y(t− 1)− 54.72 y(t− 2)
+ 3.35r(t) + 17.82 α− 0.12� u(t− 1)

As the dead time is zero, the predicted outputs are known at instant t.
The results obtained are shown in Figure 5.15, where it can be seen that

the motor is able to follow the ramp reference quite well.

5.6 Comparison with Standard GPC

The approximations made in the method can affect the quality of the con-
trolled performance. Some simulation results are presented that compare the
results obtained with the proposed method with those when the standard
GPC algorithm as originally proposed by Clarke et al. [58] is used.

5.6 Comparison with Standard GPC 109

0 100 200 300 400 500 600
Samples

-4.0

-2.0

0.0

2.0

4.0

Ou
tpu

t a
nd

 Re
fer

en
ce

α = 0.03 α=−0.02

0 100 200 300 400 500 600
Samples

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Co
ntr

ol
Sig

na
l

Fig. 5.15. Combined steps and ramps setpoint

Two indices are used to measure the performance: ISE (sum of the square
errors during the transient) and ITAE (sum of the absolute error multiplied
by discrete time). Also the number of floating-point operations and the com-
puting time needed to calculate the control law are analyzed.

First, the performance of the proposed algorithm is compared with that
of the standard GPC with no modelling errors. In this situation the error is
only caused by the approximative functions of the controller parameters. For
the system G(s) = 1.5

1+10se−4s with a sampling time of one second, the values
for the proposed algorithm when the process is perturbed by a white noise
uniformly distributed in the interval ±0.015 are ISE= 7.132, ITAE= 101.106
and for the standard controller ISE= 7.122, ITAE=100.536. The plot comparing
the two responses is not shown because there is practically no difference.

The plant model is supposed to be first-order plus deadtime. If the pro-
cess behaviour can be reasonably described by this model, there will not be a
substantial loss of performance. Consider, for instance, the process modelled
by:

Gp(z) =
0.1125z−1 − 0.225z−2

1− z−1 + 0.09z−2
z−3

110 5 Simple Implementation of GPC for Industrial Processes

0.0 50.0 100.0 150.0
Time

-0.5

0.0

0.5

1.0

1.5

Standard GPC
Precalculated d=3
Precalculated d=2

Fig. 5.16. System performance. Standard GPC: ISE = 6.809, ITAE = 395.608; proposed
algorithm d = 3 ISE = 6.987, ITAE = 402.544; proposed algorithm d = 2 ISE = 7.064,
ITAE = 503.687

For control purposes, it is approximated by the following first-order
model, obtained from data generated by the process Gp:

Gm(z) =
0.1125z−1

1− 0.8875z−1
z−3

That is, the precomputed GPC is working in the presence of unmodelled dy-
namics. From the previous studies of robust stability, it can be deduced that
the closed-loop system is going to be stable. The performance in this situa-
tion is shown in Figure 5.16 where the system response for both controllers
is shown; notice that for t = 100 a disturbance is added to the output. The
figure also shows the behaviour of the precomputed GPC when an addi-
tional deadtime mismatch is included, that is, the controller uses a model
with d = 2 instead of the true value d = 3.

Logically, there is a slight loss of performance due to the uncertainties,
that must be considered in conjunction with the benefits in the calculation.
Besides, consider that in a real case the uncertainties (such as deadtime mis-
match) can also affect the standard GPC since high-frequency effects are usu-
ally very difficult to model.

The computational requirements of the method are compared with the
standard in Table 5.4 for this example, working with a control horizon of
N = 15 and λ = 0.8. The table shows the computation needed for the calcu-

5.7 Stability Robustness Analysis 111

lation of the control law in both floating-point operations and CPU time on a
personal computer.

Table 5.4. Computational requirements for the standard and precalculated GPC

Algorithm Calculation Operations
(flops)

Build matrices 1057
Compute GT G + λI 10950

Standard Inversion 7949
Rest 1992

TOTAL 21948

Proposed TOTAL 79

As can be seen, these examples show that although a little performance
is lost, there is a great improvement in real-time implementability, reaching
a computing effort around 275 times smaller. This advantage can represent a
crucial factor for the implementation of this strategy in small controllers with
low computational facilities, considering that the impact on the performance
is negligible. The simulations also show the robustness of the controller in
the presence of structured uncertainties.

5.7 Stability Robustness Analysis

The elaboration of mathematical models of processes in real life requires sim-
plifications to be adopted. In practice no mathematical model capable of ex-
actly describing a physical process exists. It is always necessary to bear in
mind that modelling errors may adversely affect the behaviour of the control
system. The aim is that the controller should be insensitive to these uncer-
tainties in the model, that is, that it should be robust. The aim here is to deal
with the robustness of the controller presented. In any case, developments of
predictive controller design using robust criteria can be found, for instance,
in [44] and [208].

The modelling errors, or uncertainties, can be represented in different
forms, reflecting in certain ways the knowledge of the physical mechanisms
which cause the discrepancy between the model and the process as well as
the capacity to formalize these mechanisms so that they can be handled. Un-
certainties can, in many cases, be expressed in a structured way, as expres-
sions in function of determined parameters which can be considered in the
transfer function [69]. However, there are usually residual errors particularly
dominant at high frequencies which cannot be modelled in this way, which

112 5 Simple Implementation of GPC for Industrial Processes

constitute unstructured uncertainties [65]. In this section a study of the pre-
calculated GPC stability in the presence of both types of uncertainties is made;
that is, the stability robustness of the method will be studied.

This section aims to study the influence of uncertainties on the behaviour
of the process working with a controller which has been developed for the
nominal model. That is, both the predictor and the controller parameters are
calculated for a model which does not exactly coincide with the real process
to be controlled. The following question is asked: what discrepancies are per-
missible between the process and the model for the controlled system to be
stable?

The controller parameters ly1, ly2, lr1 and lu1 that appear in the control
law

�u(t) = ly1ŷ(t + d | t) + ly2ŷ(t + d− 1 | t) + lr1r(t) + lu1 � u(t− 1)

have been precalculated for the model (not for the process as this is logically
unknown). Likewise the predictor works with the parameters of the model,
although it keeps up to date with the values taken from the output produced
by the real process.

5.7.1 Structured Uncertainties

A first-order model with pure delay, in spite of its simplicity, describes the
dynamics of most plants in the process industry. However, it is fundamental
to consider the case where the model is unable to completely describe all the
dynamics of the real process. Two types of structured uncertainties are con-
sidered: parametric uncertainties and unmodelled dynamic uncertainties. In
the first case, the order of the control model is supposed to be identical to the
order of the plant but the parameters are considered to be within an uncer-
tainty region around the nominal parameters (these parameters will be the
pole, the gain, and the coefficient m = b0/(b0 + b1) that measures the frac-
tional delay between d and d+1). The other type of uncertainty will take into
account the existence of process dynamics not included in the control model
as an additional unmodelled pole and delay estimation error. This will be
reflected in differences between the plant and model orders.

The uncertainty limits have been obtained numerically for the range of
variation of the process parameters (0.5 < a < 0.98, 0 ≤ m ≤ 1) with a delay
0 ≤ d ≤ 10 obtaining the following results (for more details, see [44]):

• uncertainty at the pole: for a wide working zone (a < 0.75) and for nor-
mal values of the delay an uncertainty of more than±20% is allowed. For
higher poles the upper limit decreases due almost exclusively to the fact
that the open loop would now be unstable. The stable area only becomes
narrower for very slow systems with large delays. Notice that this uncer-
tainty refers to the time constant (τ) uncertainty of the continuous process
(a = exp(−T/τ)) and thus the time constant can vary around 500% of the
nominal one in many cases.

5.7 Stability Robustness Analysis 113

• gain uncertainty: When the gain of the model is Ge and that of the pro-
cess is γ × Ge, γ will be allowed to move between 0.5 and 1.5, that is,
uncertainties in the value of the gain of about 50% are permitted. For
small delays (1, 2) the upper limit is always above the value γ = 2 and
only comes close to the value 1.5 for delays of about 10. It can thus be
concluded that the controller is very robust when faced with this type of
error.

• uncertainty in m: The effect of this parameter can be ignored since a vari-
ation of 300% is allowed without reaching instability.

• unmodelled pole: The real process has another less dominant pole (k×a)
apart from the one appearing in the model (a), and the results show that
the system is stable even for values of k close to 1; stability is only lost for
systems with very large delays.

• delay estimation error: From the results obtained in a numerical study, it
is deduced that for small delays stability is guaranteed for errors of up to
two units through the range of the pole, but when bigger poles are dealt
with this only happens for small values of a, and even for delay 10 only
a delay mismatch of one unit is permitted. It can be concluded, therefore,
that a good delay estimation is fundamental to GPC, because for errors of
more than one unit the system can become unstable if the process delay
is high.

5.7.2 Unstructured Uncertainties

In order to consider unstructured uncertainties, it will be assumed from now
on that the dynamic behaviour of a determined process is described not by
an invariant time linear model but by a family of linear models. Thus the real
possible processes (G) will be in a vicinity of the nominal process (G̃), which
will be modelled by a first-order-plus-delay system.

A family F of processes in the frequency domain will therefore be de-
fined which in the Nyquist plane will be represented by a region about the
nominal plant for each ω frequency. If this family is defined as

F = {G :| G(iω)− G̃(iω) |≤ la(ω)}

the region consists of a disc with its centre at G(iω) and radius la(ω). There-
fore any member of the family fulfils the condition

G(iω) = G̃(iω) + la(iω) | la(iω) |≤ la(ω)

This region will change with ω because la does and, therefore, in order
to describe family F we will have a zone formed by the discs at different fre-
quencies. If one wishes to work with multiplicative uncertainties the family
of processes can be described by

114 5 Simple Implementation of GPC for Industrial Processes

F = {G :

∣∣∣∣∣G(iω)− G̃(iω)

G̃(iω)

∣∣∣∣∣ ≤ lm(ω)} (5.24)

simply considering

lm(iω) = la(iω)/G̃(iω) lm(iω) = la(ω)/ | G̃(iω) |

Therefore any member of family F satisfies

G(iω) = G̃(iω)(1 + lm(iω)) | lm(iω) |≤ lm(iω)

This representation of uncertainties in the Nyquist plane as a disc around
the nominal process can encircle any set of structured uncertainties, although
some times it can result in a rather conservative attitude [141].

The measurement of the robustness of the method can be tackled using
the robust stability theorem [141], that for discrete systems states:

Suppose that all processes G of family F have the same number of unstable poles,
which do not become unobservable for the sampling, and that a controller C(z)
stabilizes the nominal process G̃(s). Then the system has robust stability with
controller C if and only if the complementary sensitivity function for the nominal
process satisfies the following relation:

| T̃ (eiωT) | lm(ω) < 1 0 ≤ ω ≤ π/T (5.25)

Using this condition the robustness limits will be obtained for systems
that can be described by (5.13), and for all the values of the parameters that
describe the system (a, m and d). For each value of the frequency ω the limits
can be calculated as:

lm =

∣∣∣∣∣1 + G̃C

G̃C

∣∣∣∣∣ la = lm | G̃ |

In Figure 5.17 the form taken by the limits in function of ωT can be seen
for some values of a, and fixed values of m and d. Both limits are practically
constant and equal to unity at low frequencies and change (the additive limit
la decreases and the multiplicative lm increases) at a certain point. Notice that
these curves show the great degree of robustness that the GPC possesses since
lm is relatively big at high frequencies, where multiplicative uncertainties are
normally smaller than unity, and increases with frequency as uncertainties
do. The small value of la at high frequencies is due to the fact that the process
itself has a small gain at those frequencies; remember that both limits are
dependent and related by la = lm | G̃ |.

Figure 5.18 shows the frequency response of the nominal process alone
and with the controller, as well as the discs of radius la and lm | G̃C | for a
certain frequency. All the G processes belonging to the F family maintaining

5.7 Stability Robustness Analysis 115

10
-2

10
-1

10
0

10
1

Frequency ωΤ

10
-1

10
0

10
1

Lim
its

a

m

l

l

Fig. 5.17. General shape of la and lm

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

~
G

l ()ωa

GC
~

lm
~
GC ω ()

Fig. 5.18. Polar diagram of the process G̃ and G̃C showing the limits for a given
frequency

the stability of the closed loop can be found inside the disc of radius la. The
shape of the frequency response leads to limits la and lm. Thus, G̃C(ω) has a
big modulus (due to the integral term) at low frequencies, leading to a value

116 5 Simple Implementation of GPC for Industrial Processes

0.01
0.03

0.09
0.3

0.9
2.9

0.5

0.6

0.72

0.85

0.98

0.1

1

al

ω T
a

Fig. 5.19. Limit la for dead time 1

of lm close to unity. When ω increases, G̃C(ω) separates from −1 (without
decreasing in modulus) and therefore the limit can safely grow.

It can be seen that the most influential parameters are pole a and delay
d. The evolution of limit la with frequency (ωT) for parameter a changing
between 0.5 and 0.98 is presented in Figure 5.19 for a concrete value of delay,
d = 1, and for an average value of m, m = 0.5. As was to be expected, the
limit decreases for greater poles because with open-loop poles near the limit
of the unit circle the uncertainty allowed is smaller, as it would be easier to
enter the open-loop unstable zone.

5.7.3 General Comments

The results obtained for both types of uncertainties are qualitatively the
same. It can be concluded that the factor that mainly affects robustness is
delay uncertainty, because of its effect at high frequencies. The robustness
zone decreases when the open-loop pole increases whilst the parameter m
hardly has any influence. As the analysis has been performed based on a
particular choice of parameters in the GPC formulation the conclusions de-
pend on these values. The influence of the choice of these parameters on the
closed-loop stability is studied in [153].

In any case, the GPC algorithm presented has shown itself to be very
robust against the types of uncertainties considered. For small delays the
closed loop is stable for static gain mismatch of more than 100% and time
constant mismatch of more than 200%.

5.8 Composition Control in an Evaporator 117

The stability robustness of GPC can be improved with the use of an ob-
server polynomial, the so-called T (z−1) polynomial. In [57] a reformulation
of the standard GPC algorithm including this polynomial can be found. In
order to do this, the CARIMA model is expressed in the form:

A(z−1)y(t) = B(z−1)u(t− 1) +
T (z−1)
� ξ(t)

Up to now the T (z−1) has been considered equal to 1, describing the most
common disturbances or as the colouring polynomial C(z−1). But it can also
be considered as a design parameter. In consequence the predictions will not
be optimal but on the other hand robustness in the face of uncertainties can
be achieved, in a similar interpretation as that used by Ljung [128]. Then
this polynomial can be considered as a prefilter as well as an observer. The
effective use of observers is known to play an essential role in the robust
realization of predictive controllers (see [57] for the effect of prefiltering on
robustness and [209] for guidelines for the selection of T).

This polynomial can easily be added to the proposed formulation, com-
puting the prediction with the values of inputs and outputs filtered by
T (z−1). Then, the predictor works with yf (t) = y(t)/T (z−1) and uf (t) =
u(t)/T (z−1). The actual prediction for the control law is computed as ŷ(t + d)
= T (z−1)ŷf (t + d).

5.8 Composition Control in an Evaporator

This chapter ends with an application of the method to a typical process. An
evaporator, a very common process in industry, has been chosen as a testing
bed for the GPC. This process involves a fair number of interrelated variables
and although it may appear to be rather simple compared to other processes
of greater dimension, it allows the performance of any control technique to
be checked. The results presented in this section have been obtained by sim-
ulation on a nonlinear model of the process.

5.8.1 Description of the Process

The process in question is a forced circulation evaporator in which the raw
material is mixed with an extraction of the product and pumped through
a vertical heat exchanger through which water steam is circulating, which
condenses in the tubes. The mix evaporates and passes through a separating
vessel where the liquid and the vapour are separated. The former is made
to recycle and a part is extracted as the final product whilst the vapour is
condensed with cooling water. Figure 5.20 shows the diagram of this process,
used in many production sectors, such as the sugar industry.

The process behaviour can be modelled by a series of equations obtained
from the mass and energy balance equations, as well as by making some

118 5 Simple Implementation of GPC for Industrial Processes

L

F T

P

F

F

1V

1 X1 T1

F3

V3

X 2 T22

6

6

6

F

2V

T7 7

T8

F
4

T
3

1

F
5P

1

Steam

Evaporator

Separator

Condenser

waterCooling

Condensate

Pump Product

Feed

Fig. 5.20. Diagram of the evaporator

realistic assumptions. The equations describing the process behaviour can
be found in [149]. The main variables, together with their values at the point
of operation, are grouped in table 5.5.

Table 5.5. Process variables and values at operating point

Variable Description Value Units
F1 Feed flow rate 10.0 kg/min
F2 Product flow rate 2.0 kg/min
F4 Vapour flow rate 8.0 kg/min
F5 Condensate flow rate 8.0 kg/min
X1 Feed composition 5.0 %
X2 Product composition 25.0 %
L1 Separator level 1.0 m
P1 Operating pressure 50.5 kPa
P6 Steam pressure 194.7 kPa
F6 Steam flow rate 9.3 kg/min
F7 Cooling water flow rate 208.0 kg/min

5.8 Composition Control in an Evaporator 119

The system dynamics are mainly dictated by the differential equations
modelling the mass balances:

• mass balance in the liquid:

ρA
dL1

dt
= F1 − F4 − F2 (5.26)

where ρ is the density of the liquid and A the section of the separator,
whose product can be considered constant.

• mass balance in the solute:

M
dX2

dt
= F1X1 − F2X2 (5.27)

where M is the total quantity of liquid in the evaporator.
• mass balance in the process vapour, the total amount of water vapour can

be expressed in a function of the pressure existing in the system according
to

C
dP1

dt
= F4 − F5 (5.28)

where C is a constant that converts the steam mass into an equivalent
pressure.

The dynamics of the interchanger and the condenser can be considered
very fast compared to previous ones.

Degrees of Freedom

Twelve equations can be found for twenty variables so there are eight degrees
of freedom. Eight more equations must therefore be considered to close the
problem; these will be the ones which provide the values of the manipulated
variables and the disturbances:

• three manipulated variables: the steam pressure P6, which depends on
the opening of valve V1, the cooling water flow rate F7, controlled by
valve V2 and the product flow rate F2 with V3.

• five disturbances: feed flow rate F1, circulating flow rate F3, composition
and temperature of feed X1 and T1, and cooling water temperature T7.

A single solution can be obtained with these considerations which allows
the value of the remaining variables to be calculated.

5.8.2 Obtaining the Linear Model

As can be deduced from Equations (5.26)-(5.28) the process is a nonlinear sys-
tem with a strong interrelationship amongst the variables. Even so, a linear
model with various independent loops will be used to design the controller.

120 5 Simple Implementation of GPC for Industrial Processes

0 10 20 30 40 50
Time (min)

X2

F7

F2

L1

Fig. 5.21. Evaporator response to step input

It is clear that these hypotheses of work are incorrect, as will be made obvi-
ous when putting the control to work. The control of the evaporator includes
maintaining certain stable working conditions as well as obtaining a product
of a determined quality. To achieve the first objective it is necessary to con-
trol the mass and energy of the system, which can be achieved by keeping
the level in the separator L1 and the process pressure P1 constant . In order
to do this, two PI-type local controllers will be used, so that the level L1 is
controlled by acting on the product flow rate F2 and the process pressure P1

is controlled by the cooling water F7. The justification of the choice of the
couplings and the tuning of these loops can be found in [149].

The other objective is to obtain a determined product composition. This
is achieved by acting on the remaining manipulated variable, the steam
pressure which supplies the energy to the evaporator, P6. The interaction
amongst the variables is very strong, as can be seen by using Bristol method
[36] and it would even be possible to have coupled X2 with F7 and P1 with
P6. To obtain the linear model of the composition loop, a step is applied at
the input (P6) and the effect on the output (X2) is studied. As was expected
and as can be seen from Figure 5.21 which shows the evolution of the more
significant variables for a 10% step, the interaction amongst the variables is
considerable.

The evolution of the composition does not therefore follow the pattern
of a first-order system, due mainly to the fact that the experiment was not
done in open loop because the level and pressure regulators are functioning
which, as has been indicated, need to be activated for stable functioning of
the evaporator and indirectly affect the composition. The approximation of
loop X2 − P6 to that of a first-order model with delay of the form

G(s) =
K

1 + τs
e−τds

5.8 Composition Control in an Evaporator 121

that, as is known, in spite of its simplicity is much used in practice, will be
attempted. The reaction curve method will be used to obtain the model pa-
rameters; this provides the values of K, τ and τd starting from the graph of
the system response at a step input. Due to the nonlinearity the system be-
haviour will be different for inputs of different value and different sign. By
conducting various experiments for steps of different signs and magnitudes
the following parameters can be considered to be appropriate:

K = 0.234 %/KPa τ = 4.5 min τd = 3.5 min

By taking a sampling time of one minute the delay is not integer so that the
discrete transfer function about the working point will be (see conversion
expressions in Chapter 3):

G(z−1) =
0.02461z−1 + 0.02202z−2

1− 0.8007374z−1
z−3

This transfer function will be used for the design of the controller in spite
of its limitations because of the existence of the previously mentioned phe-
nomena.

5.8.3 Controller Design

Once a linear model of the process is obtained, the design of the controller
is direct if the precalculated GPC is used. It is only necessary to calculate the
parameters which appear in the control law:

�u(t) = (ly1ŷ(t+d | t)+ ly2ŷ(t+d−1 | t)+ lr1r(t))/K + lu1�u(t−1) (5.29)

If one wants to design a fixed (nonadaptive) regulator, it is only neces-
sary to calculate these parameters once. In the case of the evaporator with
a = 0.8007374, m = b0/(b0 + b1) = 0.528 and for a value of λ of 1.2 one has:

ly1 = −2.2748
ly2 = 1.5868
lr1 = 0.6879
lu1 = −0.1862

The control signal at each instant is therefore

u(t) = 0.814u(t− 1) + 0.186u(t− 2)− 9.721ŷ(t + d | t)
+6.781ŷ(t + d− 1 | t) + 2.939r(t)

In order to complete the computations of the control law (5.29) the pre-
dicted values of the output at instants t + d and t + d− 1 are necessary. This

122 5 Simple Implementation of GPC for Industrial Processes

computation is easy to do given the simplicity of the model. It is enough to
project the equation of the model towards the future

ŷ(t + i) = (1 + a)ŷ(t + i− 1)− aŷ(t + i− 2)
+b0(u(t− d + i− 1)− u(t− d + i− 2))
+b1(u(t− d + i− 2)− u(t− d + i− 3)) i = 1 . . . d

where the elements ŷ(t) = y(t) and ŷ(t − 1) = y(t − 1) are known values at
instant t. Note that if one wanted to make the controller adaptive it would
be enough to just calculate the new value of li when the parameters of the
system change. The simplicity of the control law obtained is obvious, being
comparable to that of a digital PID, and it is therefore easy to implant in any
control system.

5.8.4 Results

In the following, some results of applying the previous control law to the
evaporator are presented (simulated to a nonlinear model). Even though the
simplifications which were employed in the design phase (monovariable sys-
tem, first-order linear model) were not very realistic, a reasonably good be-
haviour of the closed-loop system is obtained.

In Figure 5.22 the behaviour of the process in the presence of changes in
the reference of the composition is shown. It can be observed that the output
clearly follows the reference although with certain initial overshoot. It should
be taken into account that the loops considered to be independent are greatly
interrelated amongst themselves and in particular that the composition is
very disturbed by the variations in the cooling water flow rate F7, which is
constantly changing to keep the process pressure constant.

In spite of the overshoot, the behaviour can be considered good. It can be
compared to that obtained with a classical controller such as PI. Some good
values for adjusting this controller are those calculated in [149]:

K = 1.64 kPa/% TI = 3.125 min

In Figure 5.23 both regulators are compared for a change in the reference
from 28 to 25 %. The GPC is seen to be faster and overshoots less than the
PI and does not introduce great complexity in the design, as was seen in
the previous section. The responses of both controllers in the presence of
changes in the feed flow rate are reflected in Figure 5.24, where at instant
t = 50 the feed flow rate changes from 10 to 11 kg/min and at t = 200 the
composition at the input brusquely changes from 5 to 6 %. It can be seen
that these changes considerably affect the composition of the product and
although both controllers return the output to the reference value, the GPC
does it sooner and with less overshoot, reducing the peaks by about 30%.

Tests can also be made with regard to the study of robustness. It is al-
ready known that the model used does not correspond to the real one (which

5.8 Composition Control in an Evaporator 123

0 100 200 300 400 500 600 700
Time

20

21

22

23

24

25

26

27

28

29

30

Ou
tpu

t a
nd

 se
t-p

oin
t (

%)

0 100 200 300 400 500 600 700
Time

170

180

190

200

210

220

Co
ntr

ol
sig

na
l u

(t)
kP

a

Fig. 5.22. GPC behaviour in the evaporator

200 210 220 230 240 250 260 270 280 290 300
Time

24

25

26

27

28

29

Co
mp

os
itio

n (
%)

PI
GPC

Fig. 5.23. Comparison of GPC and PI for a setpoint change

is neither first order nor linear) and therefore the controller already pos-
sesses certain robustness. However, to corroborate the robustness results
previously presented, instead of using the linear model that best fits the
nonlinear process as a control model , a model with estimation errors is
going to be used. For example, when working in a model with an error
on the pole estimation of the form that â = α × a with α = 0.9, that is

124 5 Simple Implementation of GPC for Industrial Processes

0 100 200 300
Time

20

21

22

23

24

25

26

27

28

29

30

Co
mp

os
itio

n (
%)

GPC
PI

Fig. 5.24. Comparison of GPC and PI for feed changes

0 100 200 300
Time

24

25

26

27

28

29

Pro
du

ct
Co

mp
os

itio
n (

%)

Nominal model
Pole uncertainty
Gain uncertainty

Fig. 5.25. Influence of errors on the estimation of gain and delay

an error of 10%, it is necessary to calculate the new li parameters using
â = 0.9 × a = 0.9 × 0.8007374 = 0.7206 (supposing that a = 0.8007374 is
the real value). Thus, by recalculating the control law (including the predic-
tor) for this new value and leaving the gain unaltered, the response shown
in Figure 5.25 is obtained. As can be seen, the composition is hardly altered
by this modelling error and similar response to the initial model is obtained.
The same can be done by changing the system gain. For the model values
considered to be good, uncertainties of up to 100% in the gain can be seen to
be permissible without any problem. Thus by doubling the gain of the model
used and calculating the new control law, slower but not less satisfactory be-
haviour is obtained, as is shown in the same figure.

Knowledge of delay is a fundamental factor of model based predictive
methods, to such an extent that large errors in estimation can give rise to
instability. Whilst for a difference of one unit the response hardly varies, the
same is not true if the discrepancy is two or more units. Figure 5.26 shows the
effect of using a model with delay 1 the real being equal to 3. The response is

5.9 Exercises 125

0 100 200 300
Time (min)

24

25

26

27

28

29

Co
mp

os
itio

n (
%)

Fig. 5.26. Influence of error on the estimation of delay

defective but does not reach instability. It should be noted that once a mistake
in the value of the delay is detected it is very easy to correct as it is enough to
calculate higher or lower values of ŷ(t + d) using the model equation whose
other parameters are unchanged. Furthermore, it is not necessary to change
the values of the li coefficients as they are independent of the delay.

5.9 Exercises

5.1. Given a system described by a static gain K = 0.25, a time constant
τ = 10.5 and a dead time of τd = 10, compute ly1, ly2 and lr1 with the given
formula and simulate the process output to a step setpoint change:

1. Compare the results with those obtained by the standard algorithm.
2. Simulate the response to a setpoint composed of a ramp with slope 0.5

unit/second until time t = 50 and constant from this time to t = 100.
3. Add a white noise of mean 0.005 and compute the results.

5.2. Use the general procedure described in Chapter 3 to compute the values
of ly1, ly2 and lr1 for the system G(z) = 0.4z−1

1−0.8z−1 with N = 3 and λ = 0.8.

5.3. Use the method described in this chapter to simulate the response of the
process G(s) = 0.41e−50s

s(1+50s) to a setpoint change from 0 to 2 when the sampling
time is 10 seconds. Try different values for λ.

5.4. Control the following process G(s) = 1.12e−45s

1+87s when the sampling time
is 10 seconds and when it is sampled every 5 seconds. Compare the control
law and results in the two cases.

5.5. Consider that the distillation column in Example 5.3.3 can work in a
new operating regime at 5 mol/min. In this situation, K = 0.102, τ = 65.3
and τd = 16.7 (time in minutes).

126 5 Simple Implementation of GPC for Industrial Processes

1. Obtain the discrete model when T = 5 minutes.
2. Obtain the controller parameters for λ = 0.8.
3. Simulate the response to a setpoint that takes the value 0.1 at time t = 20,

0 at time t = 120 and −0.1 at time t = 220 (values taken around the
nominal values of the variables).

6

Multivariable Model Predictive Control

Most industrial plants have many variables that have to be controlled (out-
puts) and many manipulated variables or variables used to control the plant
(inputs). In certain cases a change in one of the manipulated variables mainly
affects the corresponding controlled variable, and each the input-output pair
can be considered as a single-input single-output (SISO) plant and controlled
by independent loops. In many cases, when one of the manipulated vari-
ables is changed, it not only affects the corresponding controlled variable
but also upsets the other controlled variables. These interactions between
process variables may result in poor performance of the control process or
even instability. When the interactions are not negligible, the plant must be
considered to be a process with multiple inputs and outputs (MIMO) instead
of a set of SISO processes. The control of MIMO processes has been extensively
treated in literature; perhaps the most popular way of controlling MIMO pro-
cesses is by designing decoupling compensators to suppress or diminish the
interactions and then designing multiple SISO controllers. This requires first
determining how to pair the input and output variables, that is, which ma-
nipulated variable will be used to control which output variables, and that
the plant have the same number of manipulated and controlled variables.
Total decoupling is very difficult to achieve for processes with complex dy-
namics or exhibiting dead times.

One of the advantages of Model Predictive Control is that multivariable
processes can be handled in a straightforward manner [191], [204]. This chap-
ter is dedicated to showing how MPC can be implemented on MIMO pro-
cesses. The controllers that are obtained when transfer function matrices,
state space models or convolution models are used are analyzed here.

6.1 Derivation of Multivariable GPC

A CARIMA model for an n-output, m-input multivariable process can be ex-
pressed as

E. F. Camacho et al., Model Predictive Control
© Springer-Verlag London Limited 2007

128 6 Multivariable Model Predictive Control

A(z−1)y(t) = B(z−1)u(t− 1) +
1
�C(z−1)e(t) (6.1)

where A(z−1) and C(z−1) are n× n monic polynomial matrices and B(z−1)
is an n×m polynomial matrix defined as:

A(z−1) = In×n + A1z
−1 + A2z

−2 + · · ·+ Ana
z−na

B(z−1) = B0 + B1z
−1 + B2z

−2 + · · ·+ Bnb
z−nb

C(z−1) = In×n + C1z
−1 + C2z

−2 + · · ·+ Cnc
z−nc

The operator � is defined as � = 1− z−1. The variables y(t), u(t) and e(t)
are the n× 1 output vector, the m× 1 input vector and the n× 1 noise vector
at time t. The noise vector is supposed to be a white noise with zero mean.

Let us consider the following finite horizon quadratic criterion

J(N1, N2, N3) =
N2∑

j=N1

‖ŷ(t+ j | t)−w(t+ j)‖2R +
N3∑
j=1

‖�u(t+ j− 1)‖2Q (6.2)

where ŷ(t+ j | t) is an optimum j step ahead prediction of the system output
on data up to time t; that is, the expected value of the output vector at time
t if the past input and output vectors and the future control sequence are
known. N1 and N2 are the minimum and maximum prediction horizons and
w(t + j) is a future setpoint or reference sequence for the output vector. R
and Q are positive definite weighting matrices.

6.1.1 White Noise Case

We shall first consider the most usual case when matrix C(z−1) = In×n. The
reason for this is that the colouring polynomials are very difficult to estimate
with sufficient accuracy in practice, especially in the multivariable case. In
fact, many predictive controllers use colouring polynomials as design pa-
rameters. The optimal prediction for the output vector can be generated as
in the monovariable case as follows:

Consider the following Diophantine equation:

In×n = Ej(z−1)Ã(z−1) + z−jFj(z−1) (6.3)

where Ã(z−1) = A(z−1)�, Ej(z−1) and Fj(z−1) are unique polynomial ma-
trices of order j − 1 and na respectively. If (6.1) is multiplied by�Ej(z−1)zj :

Ej(z−1)Ã(z−1)y(t + j) = Ej(z−1)B(z−1)� u(t + j − 1) + Ej(z−1)e(t + j)

By using (6.3) and after some manipulation we get:

y(t+j) = Fj(z−1)y(t)+Ej(z−1)B(z−1)�u(t+j−1)+Ej(z−1)e(t+j) (6.4)

6.1 Derivation of Multivariable GPC 129

Notice that because the degree of Ej(z−1) is j−1, the noise terms of equation
(6.4) are all in the future. By taking the expectation operator and considering
that E[e(t)] = 0, the expected value for y(t + j) is given by:

ŷ(t + j|t) = E[y(t + j)] = Fj(z−1)y(t) + Ej(z−1)B(z−1)� u(t + j − 1) (6.5)

Notice that the prediction can easily be extended to the nonzero mean noise
case by adding vector Ej(z−1)E[e(t)] to prediction ŷ(t + j|t).

Recursion of the Diophantine Equation

Let us consider that a solution (Ej(z−1), Fj(z−1)) for the Diophantine equa-
tion has been obtained. That is,

In×n = Ej(z−1)Ã(z−1) + z−jFj(z−1) (6.6)

with

Ã(z−1) = A(z−1)� = In×n+Ã1z
−1+Ã2z

−2+· · ·+Ãna
z−na +Ãna+1z

−(na+1)

= In×n+(A1−In×n)z−1+(A2−A1)z−2+· · ·+(Ana
−Ana−1)z−na−Ana

z−(na+1)

Ej(z−1) = Ej,0 + Ej,1z
−1 + Ej,2z

−2 + · · ·+ Ej,j−1z
j−1

Fj(z−1) = Fj,0 + Fj,1z
−1 + Fj,2z

−2 + · · ·+ Fj,na
z−na

Now consider the Diophantine equation corresponding to the prediction
for ŷ(t + j + 1|t)

In×n = Ej+1(z−1)Ã(z−1) + z−(j+1)Fj+1(z−1) (6.7)

Let us subtract Equation (6.6) from equation (6.7)

0n×n = (Ej+1(z−1)−Ej(z−1))Ã(z−1)+z−j(z−1Fj+1(z−1)−Fj(z−1)) (6.8)

Matrix (Ej+1(z−1)−Ej(z−1)) is of degree j. Let us make

(Ej+1(z−1)−Ej(z−1)) = R̃(z−1) + Rjz
−j

where R(z−1) is an n × n polynomial matrix of degree smaller or equal to
j − 1 and Rj is an n× n real matrix. By substituting in Equation (6.8):

0n×n = R̃(z−1)Ã(z−1) + z−j(RjÃ(z−1) + z−1Fj+1(z−1)− Fj(z−1)) (6.9)

As Ã(z−1) is monic, it is easy to see that R̃(z−1) = 0n×n. That is, matrix
Ej+1(z−1) can be computed recursively by:

Ej+1(z−1) = Ej(z−1) + Rjz
−j

130 6 Multivariable Model Predictive Control

The following expressions can easily be obtained from (6.9):

Rj = Fj,0

Fj+1,i = Fj,i+1 −RjÃi+1 for i = 0 · · · δ(Fj+1)

It can easily be seen that the initial conditions for the recursion equation are
given by:

E1 = I

F1 = z(I − Ã)

By making the polynomial matrix Ej(z−1)B(z−1) = Gj(z−1)+z−jGjp(z−1),
with δ(Gj(z−1)) < j, the prediction equation can now be written as:

ŷ(t+j|t) = Gj(z−1)�u(t+j−1)+Gjp(z−1)�u(t−1)+Fj(z−1)y(t) (6.10)

Notice that the last two terms of the right-hand side of equation (6.10) de-
pend on past values of the process output and input variables and corre-
spond to the free response of the process considered if the control signals are
kept constant, while the first term depends only on future values of the con-
trol signal and can be interpreted as the forced response. That is, the response
obtained when the initial conditions are zero y(t− j) = 0, �u(t− j) = 0 for
j = 0, 1 · · · . Equation (6.10) can be rewritten as:

ŷ(t + j|t) = Gj(z−1)� u(t + j − 1) + fj

with fj = Gjp(z−1)� u(t− 1) + Fj(z−1)y(t). Let us now consider a set of N
j ahead predictions:

ŷ(t + 1|t) = G1(z−1)� u(t) + f1
ŷ(t + 2|t) = G2(z−1)� u(t + 1) + f2

...
ŷ(t + N |t) = GN (z−1)� u(t + N − 1) + fN

(6.11)

Because of the recursive properties of the Ej polynomial matrix described
earlier, Expressions (6.11) can be rewritten as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŷ(t + 1|t)
ŷ(t + 2|t)

...
ŷ(t + j|t)

...
ŷ(t + N |t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G0 0 · · · 0 · · · 0
G1 G0 · · · 0 · · · 0

...
...

. . .
...

...
...

Gj−1 Gj−2 · · · G0

... 0
...

...
...

...
. . .

...
GN−1 GN−2 · · · · · · · · · G0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�u(t)
�u(t + 1)

...
�u(t + j − 1)

...
�u(t + N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1
f2
...
fj
...

fN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

6.1 Derivation of Multivariable GPC 131

where Gj(z−1) =
∑j−1

i=0 Giz
−i. The predictions can be expressed in con-

densed form as:
y = Gu + f

Notice that if all initial conditions are zero, the free response f is also zero. If
a unit step is applied to the first input at time t; that is,

�u(t) = [1, 0, · · · , 0]T ,�u(t + 1) = 0, · · · ,�u(t + N − 1) = 0

the expected output sequence [ŷ(t+1)T , ŷ(t+2)T , · · · , ŷ(t+N)T]T is equal to
the first column of matrix G or the first columns of matrices G0, G1, · · · , GN−1.
That is, the first column of matrix G can be calculated as the step response
of the plant when a unit step is applied to the first control signal. Column i
can be obtained in a similar manner by applying a unit step to the i input. In
general, matrix Gk can be obtained as follows

(Gk)i,j = yi,j(t + k + 1)

where (Gk)i,j is the (i, j) element of matrix Gk and yi,j(t + k + 1) is the i-
output of the system when a unit step has been applied to control input j at
time t.

The free response term can be calculated recursively by:

fj+1 = z(I − Ã(z−1))fj + B(z−1)� u(t + j)

with f0 = y(t) and�u(t + j) = 0 for j ≥ 0.
Notice that if matrix A(z−1) is diagonal, matrices Ej(z−1) and Fj(z−1)

are also diagonal matrices and the problem is reduced to the recursion of n
scalar Diophantine equations, which are much simpler to program and re-
quire less computation. The computation of Gj(z−1) and fj is also consider-
ably simplified.

If the control signal is kept constant after the first N3 control moves, the
set of predictions affecting the cost function (6.2) yN12 = [ŷ(t+N1|t)T · · · ŷ(t+
N2|t)T] can be expressed as

yN12 = GN123uN3 + fN12

where uN3 = [�u(t)T · · · � u(t + N3 − 1)T]T , fN12 = [fT
N1
· · · fT

N2
]T and GN123

is the following submatrix of G

GN123 =

⎡⎢⎢⎢⎣
GN1−1 GN1−2 · · · GN1−N3

GN1 GN1−1 · · · GN1+1−N3

...
.

...
GN2−1 GN2−2 · · · GN2−N3

⎤⎥⎥⎥⎦
with Gi = 0 for i < 0. Equation (6.2) can be rewritten as

J = (GN123uN3 + fN12 −w)T R(GN123uN3 + fN12 −w) + uT
N3

QuN3

132 6 Multivariable Model Predictive Control

where R = diag(R, · · · , R) and Q = diag(Q, · · · , Q).
If there are no constraints, the optimum can be expressed as:

u = (GT
N123

RGN123 + Q)−1GT
N123

R(w − fN12)

Because of the receding control strategy, only �u(t) is needed at instant t.
Thus only the first m rows of (GT

N123
RGN123 + Q)−1GT

N123
R, say K, have to

be computed. This can be done beforehand for the nonadaptive case. The
control law can then be expressed as�u(t) = K(w− f). That is a linear gain
matrix that multiplies the predicted errors between the predicted references
and the predicted free response of the plant.

In the case of adaptive control, matrix GN123 has to be computed ev-
ery time the estimated parameters change and the way of computing the
control action increment would be by solving the linear set of equations:
(GT

N123
RGN123 + Q)u = GT

N123
R(w − fN12). Again only the first m compo-

nents of u have to be found and as matrix (GT
N123

RGN123 + Q) is positive
definite, Cholesky’s algorithm [197] can be used to find the solution.

6.1.2 Coloured Noise Case

When the noise is coloured, C(z−1) �= I , and provided that the colouring
matrix C(z−1) is stable, the optimal predictions needed can be generated as
follows [80].

First solve the Diophantine equation

C(z−1) = Ej(z−1)Ã(z−1) + z−jFj(z−1) (6.12)

where Ej(z−1) and Fj(z−1) are unique polynomial matrices of order j − 1
and na, respectively. Note that the Diophantine Equation (6.12) can be solved
recursively. Consider the Diophantine equations for j and j + 1:

C(z−1) = Ej(z−1)Ã(z−1) + z−jFj(z−1)

C(z−1) = Ej+1(z−1)Ã(z−1) + z−(j+1)Fj+1(z−1)

By differentiating them we get Equation (6.8), hence Ej+1(z−1) and Fj+1(z−1)
can be computed recursively by using the same expressions obtained in the
case of C(z−1) = I with initial conditions E1(z−1) = I and F1(z−1) =
z(C(z−1)− Ã(z−1)).

Define the polynomial matrices Ej(z−1) and Cj(z−1) such that

Ej(z−1)C(z−1) = Cj(z−1)Ej(z−1) (6.13)

with E0 = I and det(Cj(z−1)) = det(Cj(z−1)). Note that

Ej(z−1)−1Cj(z−1) = C(z−1)Ej(z−1)−1

6.1 Derivation of Multivariable GPC 133

and thus matrices Ej(z−1) and Cj(z−1) can be interpreted (and computed) as
a left fraction matrix description of the process having a right matrix fraction
description given by matrices E(z−1) and C(z−1). Define

Fj(z−1) = zj(Cj(z−1)−Ej(z−1)Ã(z−1)) (6.14)

Premultiplying Equation (6.1) by Ej(z−1)�,

Ej(z−1)Ã(z−1)y(t + j) = Ej(z−1)B(z−1)� u(t + j − 1) + Ej(z−1)e(t + j)

Using Equations (6.13) and (6.14) we get

Cj(z−1)(y(t+j)−Ej(z−1)e(t+j)) = Ej(z−1)B(z−1)�u(t+j−1)+Fj(z−1)y(t)

By taking the expected value E[Cj(z−1)y(t+j)−Ej(z−1)e(t+j)] = ŷ(t+j|t).
The optimal predictions ŷ(t + j|t) can be generated by the equation:

Cj(z−1)ŷ(t + j|t) = Ej(z−1)B(z−1)� u(t + j − 1) + Fj(z−1)y(t)

Now solving the Diophantine equation

I = Jj(z−1)Cj(z−1) + z−jKj(z−1) (6.15)

with δ(J(z−1)) < j. Multiplying by Jj(z−1)−1 and using Equation (6.15)

(I − z−jKj(z−1))y(t + j|t) = Jj(z−1)Ej(z−1)B(z−1)� u(t + j − 1)

+Jj(z−1)Fj(z−1)y(t)

or

y(t+j|t) = Jj(z−1)Ej(z−1)B(z−1)�u(t+j−1)+(Kj(z−1)+Jj(z−1)Fj(z−1))y(t)

If Jj(z−1)Ej(z−1)B(z−1) = Gj(z−1) + z−jGpj(z−1), with δ(Gj(z−1)) <
j, the optimal j-step ahead prediction can be expressed as:

y(t + j|t) = Gj(z−1)� u(t + j − 1) + Gpj(z−1)� u(t− 1) + (Kj(z−1)

+Jj(z−1)Fj(z−1))y(t)

The first term of the prediction corresponds to the forced response due
to future control increments, while the last two terms correspond to the free
response fcj and are generated by past input increments and past output.

The set of pertinent j ahead predictions can be written as: yN12 =
GN123uN3 +fcN12 generated as before.

The objective function can be expressed as:

J = (GN123uN3 + fcN12 −w)T R(GN123uN3 + fcN12 −w) + uT
N3

QuN3

134 6 Multivariable Model Predictive Control

And the optimal solution can be found by solving a set of linear equations
as in the white noise case but notice that the computation required is more
complex.

It is in reality very difficult to obtain the colouring polynomial matrix
C(z−1), and in most cases this matrix is chosen arbitrarily by the user in order
to gain robustness. If matrices C(z−1) and A(z−1) are chosen to be diagonal,
the problem is transformed into generating a set of optimal predictions for a
series of multi-input single-output processes, which is an easier problem to
solve and the computation required can be substantially simplified.

Consider a CARIMA multivariable process with A(z−1) = diag(Aii(z−1))
and C(z−1) = diag(Cii(z−1)). The model equation corresponding to the ith-
output variable can be expressed as:

Aii(z−1)yi(t) =
m∑

j=1

Bij(z−1)uj(t− 1) + Cii(z−1)
ei(t)
� (6.16)

Solve the scalar Diophantine equation

Cii(z−1) = Eik
(z−1)Ãii(z−1) + z−kFik

(z−1) (6.17)

with δ(Eik
(z−1)) = k − 1 and δ(Fik

(z−1)) = δ(Ãii(z−1)) − 1. Multiplying
Equation (6.16) by�Eik

(z−1) and using (6.17),

Cii(z−1)(yi(t + j)− Eik
(z−1)ei(t + j)) =

= Eik
(z−1)

m∑
j=1

Bij(z−1)� uj(t + j − 1) + Fik
(z−1)yi(t)

As the noise terms are all in the future, the expected value of the left-
hand side of this equation is: E[Cii(z−1)(yi(t + k) − Eik

(z−1)ei(t + k))] =
Cii(z−1)ŷi(t + k|t).

The expected value of the output can be generated by the equation:

Cii(z−1)ŷi(t + k|t) = Eik
(z−1)

m∑
j=1

Bij(z−1)� uj(t + k − 1) + Fik
(z−1)yi(t)

(6.18)
Notice that this prediction equation could be used to generate the predic-

tions in a recursive way. An explicit expression for the optimal k step ahead
prediction can be obtained by solving the Diophantine equation

1 = Cii(z−1)Mik
(z−1) + z−kNik

(z−1) (6.19)

with δ(Mik
(z−1)) = k − 1 and δ(Nik

(z−1)) = δ(Cii(z−1))− 1.
Multiplying Equation (6.18) by Mik

(z−1) and using (6.19),

6.1 Derivation of Multivariable GPC 135

ŷi(t + k|t) = Mik
Eik

(z−1)
m∑

j=1

Bij(z−1)� uj(t + k − 1)

+Mik
(z−1)Fik

(z−1)yi(t) + Nik
(z−1)yi(t)

which can be expressed as

ŷi(t + k|t) =
m∑

j=1

Gij(z−1)� uj(t + k − 1) +
m∑

j=1

Gpij(z−1)� uj(t + k − 1)

+ (Mik
(z−1)Fik

(z−1) + Nik
(z−1))yi(t)

with δ(Gij(z−1)) < k. These predictions can be substituted in the cost func-
tion which can be minimized as previously. Note that the amount of com-
putation required has been considerably reduced in respect to the case of a
nondiagonal colouring matrix.

6.1.3 Measurable Disturbances

The measurable disturbances can be handled for the MIMO case in the same
way as for SISO processes. It will be seen that only the free response has to
be changed to take into account the measurable disturbances. Consider a
multivariable process described by the following CARIMA model

A(z−1)y(t) = B(z−1)u(t) + D(z−1)v(t) +
1
�C(z−1)e(t) (6.20)

where the variable v(t) is an n× 1 vector of measured disturbances at time t
and D(z−1) is an n× n polynomial matrix defined as:

D(z−1) = D0 + D1z
−1 + D2z

−2 + · · ·+ Dnd
z−nd

Multiplying Equation (6.20) by�Ej(z−1)zj :

Ej(z−1)Ã(z−1)y(t + j) = Ej(z−1)B(z−1)� u(t + j − 1)

+Ej(z−1)D(z−1)� v(t + j) + Ej(z−1)e(t + j)

Using (6.3) and after some manipulation we get:

y(t + j) = Fj(z−1)y(t) + Ej(z−1)B(z−1)� u(t + j − 1)

+Ej(z−1)D(z−1)� v(t + j) + Ej(z−1)e(t + j) (6.21)

Notice that because the degree of Ej(z−1) is j−1, the noise terms of equation
(6.4) are all in the future. By taking the expectation operator and considering
that E[e(t)] = 0, the expected value for y(t + j) is given by:

136 6 Multivariable Model Predictive Control

ŷ(t + j|t) = E[y(t + j)] = Fj(z−1)y(t) + Ej(z−1)B(z−1)� u(t + j − 1)
+Ej(z−1)D(z−1)� v(t + j)

By making the polynomial matrix

Ej(z−1)D(z−1) = Hj(z−1) + z−jHjp(z−1),

with δ(Hj(z−1)) = j − 1, the prediction equation can now be written as:

ŷ(t+ j|t) = Gj(z−1)�u(t+ j−1)+Hj(z−1)�v(t+ j)+Gjp(z−1)�u(t−1)

+Hjp(z−1)� v(t) + Fj(z−1)y(t) (6.22)

Notice that the last three terms of the right-hand side of Equation (6.22) de-
pend on past values of the process output measured disturbances and input
variables and correspond to the free response of the process considered if the
control signals and measured disturbances are kept constant, while the first
term depends only on future values of the control signal and can be inter-
preted as the forced response. That is, the response obtained when the initial
conditions are zero y(t− j) = 0,�u(t− j − 1) = 0,�v(t− j) for j > 0.

The second term of Equation (6.22) depends on the future deterministic
disturbances. In some cases, when they are related to the process load, future
disturbances are known. In other cases, they can be predicted using trends or
other means. If this is the case, the term corresponding to future deterministic
disturbances can be computed. If the future load disturbances are supposed
to be constant and equal to the last measured value (i.e., v(t+ j) = v(t)), then
�v(t + j) = 0 and the second term of this equation vanishes.

Equation (6.22) can be rewritten as

ŷ(t + j|t) = Gj(z−1)� u(t + j − 1) + Hj(z−1)� v(t + j) + fj

with fj = Gjp(z−1)� u(t− 1) + Hjp(z−1)� v(t) + Fj(z−1)y(t).
Let us now consider a set of N j ahead predictions:

ŷ(t + 1|t) = G1(z−1)� u(t) + Hj(z−1)� v(t + 1) + f1
ŷ(t + 2|t) = G2(z−1)� u(t + 1) + Hj(z−1)� v(t + 2) + f2

...
ŷ(t + N |t) = GN (z−1)� u(t + N − 1) + Hj(z−1)� v(t + N) + fN

(6.23)

Because of the recursive properties of the Ej polynomial matrix described
earlier, Expressions (6.23) can be rewritten as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ŷ(t + 1|t)
ŷ(t + 2|t)

...
ŷ(t + j|t)

...
ŷ(t + N |t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G0 0 · · · 0 · · · 0
G1 G0 · · · 0 · · · 0
...

...
. . .

...
...

...

Gj−1 Gj−2 · · · G0

... 0
...

...
...

...
. . .

...
GN−1 GN−2 · · · · · · · · · G0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�u(t)
�u(t + 1)

...
�u(t + j − 1)

...
�u(t + N − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

6.1 Derivation of Multivariable GPC 137

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0 0 · · · 0 · · · 0
H1 H0 · · · 0 · · · 0

...
...

. . .
...

...
...

Hj−1 · · · H1 H0

... 0
...

...
...

.
...

HN−1 · · · · · · · · · H1 H0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�v(t + 1)
�v(t + 2)

...
�v(t + j − 1)

...
�v(t + N)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1
f2
...
fj
...

fN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where Hj(z−1) =

∑j
i=1 Hiz

−i. The predictions can be expressed in con-
densed form as:

y = Gu + Hv + f

Notice that if all initial conditions and future control moves are zero, the free
response f and force response are also zero. If a unit step is applied to the
first disturbance at time t + 1; that is,

�v(t + 1) = [1, 0, · · · , 0]T ,�v(t + 2) = 0, · · · ,�v(t + N) = 0

the expected output sequence [ŷ(t+2)T , ŷ(t+3)T , . . . , ŷ(t+N)T]T is equal to
the first column of matrix H or the first columns of matrices H1, . . . , HN−1.
That is, the first columns of matrix H can be interpreted as the step response
of the plant when a unit step is applied to the first disturbance signal. Col-
umn i can be obtained in a similar manner by applying a unit step to the i
disturbance. In general, matrix Hk could be obtained as follows

(Hk)i,j = yi,j(t + k + 1)

where (Hk)i,j is the (i, j) element of matrix Hk and yi,j(t + k + 1) is the i-
output of the system when a unit step has been applied to the disturbance
input j at time t+1. Notice that to do this test in practice external determinis-
tic variables need to be manipulated, and this is not the usual case. However,
they can be computed from the nominal model of the plant by simulation.

Notice that if matrix A(z−1) is diagonal, matrices Ej(z−1) and Fj(z−1)
are also diagonal matrices and the problem is reduced to the recursion of n
scalar Diophantine equations which are much simpler to program and re-
quire less computation. The computation of Gj(z−1), Hj(z−1) and fj is also
considerably simplified.

By making f ′ = Hv + f , the prediction equation is now

y = Gu + f ′

which has the same shape as the prediction equation used for the case of
zero external measured disturbances. The future control signal can now be
found in the same way, but using as free response the response of the process
due to initial conditions (including external disturbances) and future known
disturbances.

138 6 Multivariable Model Predictive Control

6.2 Obtaining a Matrix Fraction Description

6.2.1 Transfer Matrix Representation

The transfer matrix is the most popular representation of multivariable pro-
cesses. The reason for this is that transfer matrices can very easily be obtained
by a frequency analysis or by applying pulses or steps to the plant, as in the
case of the Reaction Curve method. For most plants in the process industry,
any column of the plant transfer matrix can be obtained by applying a step
to the corresponding input and measuring the static gain, time constant and
equivalent delay time for each output. If the process is repeated for all the
inputs, the full transfer matrix is obtained.

The input-output transfer matrix of the CARIMA multivariable model de-
scribed by Equation (6.1) is given by the following n×m rational matrix:

T(z−1) = A(z−1)−1B(z−1)z−1 (6.24)

Given a rational matrix T(z−1), the problem consists of finding two poly-
nomial matrices A(z−1) and B(z−1) so that Equation (6.24) holds. The sim-
plest way of accomplishing this task is by making A(z−1) a diagonal matrix
with its diagonal elements equal to the least common multipliers of the de-
nominators of the corresponding row of T(z−1). Matrix B(z−1) is then equal
to B(z−1) = A(z−1)T(z−1)z.

Matrices A(z−1) and B(z−1) obtained this way do not have to be left
coprime in general. A left coprime representation can be obtained [80] as
follows.

Find a right matrix fraction description T(z−1) = NR(z−1)DR(z−1)−1 by
making DR(z−1) a diagonal matrix with its diagonal elements equal to the
least common denominator of the corresponding column and form NR(z−1)
accordingly. Note that these polynomial matrices do not have to be right co-
prime in general.

Find a unimodular matrix U(z−1) such that[
U11 U12

U21 U22

] [
DR(z−1)
NR(z−1)

]
=
[
R(z−1)

0

]
(6.25)

where R(z−1) is the greatest right common divisor of DR(z−1) and NR(z−1).
That is, R(z−1) is a right divisor of DR(z−1) and NR(z−1) (DR(z−1) =
D′

R(z−1)R(z−1), NR(z−1) = N′
R(z−1)R(z−1)) and if there is another right

divisor R′(z−1) then R(z−1) = W(z−1)R′(z−1) where W(z−1) is a polyno-
mial matrix.

The greatest right common divisor can be obtained by using the follow-
ing algorithm (Goodwin and Sin [80]):

1. Form matrix

P(z−1) =
[
DR(z−1)
NR(z−1)

]

6.2 Obtaining a Matrix Fraction Description 139

2. Make zero by elementary row transformation all the elements of the first
column of P(z−1) below the main diagonal as follows: Choose the en-
try of the first column with smallest degree and interchange the cor-
responding rows to leave this element in position (1, 1) of the matrix
(now P̃(z−1)). Obtain gi1(z−1) and ri1(z−1) for all the elements of the
first column such that P̃i1(z−1) = P̃11(z−1)gi1(z−1) + ri1(z−1), with
δ(ri1(z−1)) < δ(P̃i1(z−1)). For all rows below the main diagonal subtract
the first row multiplied by gi1(z−1), leaving ri1(z−1). Repeat the proce-
dure until all the elements below the main diagonal are zero.

3. For the remaining columns use the same procedure described in step 2
to make zero all the elements below the main diagonal using the element
(i, i) and at the same time reducing the order of elements on the right of
the main diagonal as much as possible.

4. Apply the same elementary transformations to an identity matrix, the
resulting unimodular matrix will be matrix U(z−1).

The submatrices U21(z−1) and U22(z−1) are left coprime, and U22(z−1) is
nonsingular and from (6.25) NR(z−1)DR(z−1)−1 = −U22(z−1)−1U21(z−1).

That is, A(z−1) = U22(z−1) and B(z−1) = −U21(z−1). Although A(z−1)
and B(z−1) do not have to be left coprime for implementing a GPC, they will
in general have higher degrees and may in some cases result in a less efficient
algorithm.

Example

In order to illustrate how to obtain a matrix fraction description and how to
apply GPC to a MIMO process given by its transfer matrix, consider the small
signal model of a stirred tank reactor (Figure 6.1) described by the following
transfer matrix (the time constants are expressed in minutes)

[
Y1(s)
Y2(s)

]
=

⎡⎢⎢⎢⎣
1

1 + 0.7s

5
1 + 0.3s

1
1 + 0.5s

2
1 + 0.4s

⎤⎥⎥⎥⎦
[

U1(s)
U2(s)

]

where the manipulated variables U1(s) and U2(s) are the feed flow rate and
the flow of coolant in the jacket, respectively. The controlled variables Y1(s)
and Y2(s) are the effluent concentration and the reactor temperature, respec-
tively.

The discretized model for a sampling time of 0.03 minute is

[
y1(t)
y2(t)

]
=

⎡⎢⎢⎢⎣
0.0420z−1

1− 0.9580z−1

0.4758z−1

1− 0.9048z−1

0.0582z−1

1− 0.9418z−1

0.1445z−1

1− 0.9277z−1

⎤⎥⎥⎥⎦
[

u1(t)
u2(t)

]

140 6 Multivariable Model Predictive Control

Coolant

Reactor

Feed

Effluent

Fig. 6.1. Stirred tank reactor

A left matrix fraction description can be obtained by making matrix
A(z−1) equal to a diagonal matrix with diagonal elements equal to the least
common multiple of the denominators of the corresponding row of the trans-
fer function, resulting in:

A(z−1) =
[

1− 1.8629z−1 + 0.8669z−2 0
0 1− 1.8695z−1 + 0.8737z−2

]
B(z−1) =

[
0.0420− 0.0380z−1 0.4758− 0.4559z−1

0.0582− 0.0540z−1 0.1445− 0.1361z−1

]
For a prediction horizon N2 = 3, a control horizon N3 = 2 and a control

weight λ = 0.05, matrix GN123 results in:

GN123 =

⎡⎢⎢⎢⎢⎢⎢⎣
0.0420 0.4758 0 0
0.0582 0.1445 0 0
0.0821 0.9063 0.0420 0.4758
0.1131 0.2786 0.0582 0.1445
0.1206 1.2959 0.0821 0.9063
0.1647 0.4030 0.1131 0.2786

⎤⎥⎥⎥⎥⎥⎥⎦
The evolution of the reactor temperature and of the effluent concentra-

tion obtained when the GPC is applied without prior knowledge of the ref-
erences can be seen in Figure 6.2. The setpoints were increased by 0.5 and
0.3 at the beginning of the simulation. Once the variables reached the initial
setpoint, a change in the setpoint of the effluent concentration from 0.5 to 0.4
was introduced.

6.2 Obtaining a Matrix Fraction Description 141

0.0 20.0 40.0 60.0 80.0 100.0
Samples

0.00

0.10

0.20

0.30

0.40

0.50

Ou
tpu

ts
an

d R
efe

ren
ce

s

y
y

1

2

0.0 20.0 40.0 60.0 80.0 100.0
Samples

-0.2

0.0

0.2

0.4

0.6

0.8

Inp
uts

u
u

1

2

Fig. 6.2. Evolution of reactor temperature and effluent concentration

As can be seen, both variables reach their setpoint in a very short time
exhibiting a very small overshoot. It can also be observed that the interac-
tions are relatively small for the closed-loop system when the setpoint of one
of the variables is changed. This is because the control action produced by
the GPC in both variables acts simultaneously on both manipulated variables
as soon as a change in the reference of any of them is detected. See [139] for
a study about frequency response characteristics and interaction degree of
MIMO GPC.

6.2.2 Parametric Identification

System identification can be defined as the process of obtaining a model for
the behaviour of a plant based on plant input and output data. If a particular
model structure is assumed, the identification problem is reduced to obtain-
ing the parameters of the model. The usual way of obtaining the parameters
of the model is by optimizing a function that measures how well the model,
with a particular set of parameters, fits the existing input-output data. When

142 6 Multivariable Model Predictive Control

process variables are perturbed by noise of a stochastic nature, the identifica-
tion problem is usually interpreted as a parameter estimation problem. This
problem has been extensively studied in literature for the case of processes
which are linear on the parameters to be estimated and perturbed with a
white noise. That is, processes that can be described by:

zk = Θ Φk + ek (6.26)

where Θ is the vector of parameters to be estimated, Φk is a vector of past
input and output measures, zk is a vector of the latest output measures and
ek is a white noise.

A multivariable CARIMA model described by Equation (6.1) can easily be
expressed as (6.26). Multiply Equation (6.1) by�

Ã(z−1)y(t) = B(z−1)� u(t− 1) + e(t)

which can be rewritten as

y(t) = Ã′(z−1)y(t− 1) + B(z−1)� u(t− 1) + e(t)

with
Ã′(z−1) = (In×n − Ã(z−1))z

= −Ã1 − Ã2z
−2 − · · · − Ãna

z−(na−1) − Ãna+1z
−na

This can be expressed as (6.26), by making

Θ =
[
Ã1 Ã2 · · · Ãna

Ãna+1 B0 B1 · · ·Bnb

]

Φk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−y(t− 1)
−y(t− 2)

...
−y(t− na)
�u(t− 1)
�u(t− 2)

...
�u(t− nb)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The parameter can be identified by using a least squares identification

algorithm [128],[215].
Notice that estimated parameters correspond to the coefficient matrices

of polynomial matrices Ã(z−1) and B(z−1) which are used for the recur-
sion of the Diophantine equation and for the prediction of forced and free
responses.

Notice that if some knowledge about the structure of matrices A(z−1)
and B(z−1) is available, the number of parameters to be identified can be
reduced substantially, resulting in greater efficiency of the identification al-
gorithms. For example, if matrix A(z−1) is considered to be diagonal, only
the parameters of the diagonal elements need to be identified and thus ap-
pear in Θ. The form of vectors Θ and Φk has to be changed accordingly.

6.3 State Space Formulation 143

6.3 State Space Formulation

Let us consider a multivariable process with n outputs and m inputs de-
scribed by the following state space model:

x(t + 1) = Mx(t) + N � u(t) + Pv(t)
y(t) = Qx(t) + w(t) (6.27)

where x(t) is the state vector, v(t) and w(t) are the noises affecting the process
and the output, respectively, and are assumed to be white stationary random
processes with E[v(t)] = 0, E[w(t)] = 0, E[v(t)v(t)T] = Γv , E[w(t)w(t)T] =
Γw, and E[v(t)w(t)T] = Γvw.

The output of the model for instant t+j, assuming that the state at instant
t and future control increments are known, can be computed by recursively
applying Equation (6.27), resulting in:

y(t + j) = QM jx(t) +
j−1∑
i=0

QM j−i−1N � u(t + i)

+
j−1∑
i=0

QM j−i−1Pv(t + i) + w(k + j)

Taking the expected value:

ŷ(t + j|t) = E[y(t + j)] = QM jE[x(t)] +
j−1∑
i=0

QM j−i−1N � u(t + i)

+
j−1∑
i=0

QM j−i−1PE[v(t + i)] + E[w(k + j)]

As E[v(t+i)] = 0 and E[w(t+j)] = 0, the optimal j ahead prediction is given
by:

ŷ(t + j|t) = QM jE[x(t)] +
j−1∑
i=0

QM j−i−1N � u(t + i)

Let us now consider a set of N2 j ahead predictions

y =

⎡⎢⎢⎢⎣
ŷ(t + 1|t)
ŷ(t + 2|t)

...
ŷ(t + N2|t)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

QME[x(t)] + QN � u(t)

QM2E[x(t)] +
1∑

i=0

QM1−iN � u(t + i)

...

QMN2E[x(t)] +
N2−1∑
i=0

QMN2−1−iN � u(t + i)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
which can be expressed as:

144 6 Multivariable Model Predictive Control

y = Fx̂(t) + Hu (6.28)

where x̂(t) = E[x(t)], H is a block lower triangular matrix with its non-null
elements defined by (H)ij = QM i−jN and matrix F is defined as:

F =

⎡⎢⎢⎢⎣
QM
QM2

...
QMN2

⎤⎥⎥⎥⎦
The prediction equation (6.28) requires an unbiased estimation of the state
vector x(t). If the state vector is not accessible, a Kalman filter [11] is required.

Let us now consider a set of j ahead predictions affecting the cost func-
tion: yN12 = [ŷ(t+N1|t)T · · · ŷ(t+N2|t)T]T and the vector of N3 future control
moves uN3 = [�u(t)T · · · � u(t + N3 − 1)T]T . Then

yN12 = FN12 x̂(t) + HN123uN3

where matrices FN12 and HN123 are formed by the corresponding submatri-
ces in F and H respectively. Equation (6.2) can be rewritten as:

J = (HN123uN3 + FN12 x̂(t)−w)T R(HN123uN3 + FN12 x̂(t)−w) + uT
N3

QuN3

If there are no constraints, the optimum can be expressed as:

u = ((HT
N123

RHN123) + Q)−1HT
N123

R(w − FN12 x̂(t))

6.3.1 Matrix Fraction and State Space Equivalences

The output signal of processes described by Equations (6.27) and (6.1), with
zero initial conditions, can be expressed as:

y(t) = Q(zI −M)−1N � u(t) + Q(zI −M)−1Pv(t) + w(t)
y(t) = Ã(z−1)−1B(z−1)z−1 � u(t) + Ã(z−1)−1C(z−1)e(t)

By comparing these equations, it is clear that both representations are equiv-
alent if

Q(zI −M)−1N = Ã(z−1)−1B(z−1)z−1

Q(zI −M)−1Pv(t) + w(t) = Ã(z−1)−1C(z−1)e(t)

This can be achieved by making w(t) = 0, v(t) = e(t) and finding a left matrix
fraction description of Q(zI −M)−1N and Q(zI −M)−1P with the same left
matrix Ã(z−1)−1.

The state space description can be obtained from the matrix fraction de-
scription of Equation (6.1), used in the previous section, as follows

6.3 State Space Formulation 145

Consider the state vector x(t) = [y(t)T · · · y(t − na)T � u(t − 1)T · · · �
u(t − nb)T e(t)T · · · e(t − nc)T] and the noise vector v(t) = e(t + 1). Equation
(6.1) can now be expressed as Equation (6.27) with:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ã′1 · · · Ã′na
Ã′na+1 B1 · · · Bnb−1 Bnb C1 · · · Cnc−1 Cnc

I · · · 0 0 0 · · · 0 0 0 · · · 0 0

0
. . .

...
...

...
...

...
...

...
...

...
...

0 · · · I 0 0 · · · 0 0 0 · · · 0 0

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0
0 · · · 0 0 I · · · 0 0 0 · · · 0 0
...

...
...

... 0
. . .

...
...

...
...

...
...

0 · · · 0 0 0 · · · I 0 0 · · · 0 0

0 · · · 0 0 0 · · · 0 0 0 · · · 0 0
0 · · · 0 0 0 · · · 0 0 I · · · 0 0
...

...
...

...
...

...
...

... 0
. . .

...
...

0 · · · 0 0 0 · · · 0 0 0 · · · I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N =
[

BT
0 0 · · · 0 I 0 · · · 0 0 · · · 0 0

]T
P = [I 0 · · · 0 0 0 · · · 0 I 0 · · · 0]T

The measurement error vector w(t) has to be made zero for both de-
scriptions to coincide. If the colouring polynomial matrix is the identity ma-
trix, the state vector is only composed of past inputs and outputs x(t) =
[y(t)T . . . y(t − na)T � u(t − 1)T . . .� u(t − nb)T] and only the first two col-
umn blocks of matrices M , N and P and the first two row blocks of matrix
M have to be considered.

Notice that no Kalman filter is needed to implement the GPC because the
state vector is composed of past inputs and outputs. However, the descrip-
tion does not have to be minimal in terms of the state vector dimension. If
there is a big difference in the degrees of the polynomials (Ã(z−1))ij and
(B(z−1))ij it is better to consider only the past inputs and outputs that are
really needed to compute future output signals. To do this, consider the i
component of the output vector

yi(t + 1) = −Ãi1(z−1)y1(t)− Ãi2(z−1)y2(t)− · · · − Ãin(z−1)yn(t)

+Bi1(z−1)� u1(t) + Bi2(z−1)� u2(t) + · · ·+ Bim(z−1)� um(t)

+Ci1(z−1)e1(t + 1) + Ci2(z−1)e2(t + 1) + · · ·+ Cin(z−1)en(t + 1)

where Ãij(z−1), Bij(z−1) and Cij(z−1) are the ij entries of polynomial ma-
trices Ã(z−1), B(z−1) and C(z−1), respectively.

146 6 Multivariable Model Predictive Control

The state vector can be defined as

x(t) = [y1(t) · · · y1(t− ny1), y2(t) · · · y2(t− ny2), · · · , yn(t) · · · yn(t− nyn
),

�u1(t− 1) · · · � u1(t− nu1),�u2(t− 1) · · · � u2(t− nu2), · · · ,

�um(t− 1) · · · � um(t− num
),

e1(t) · · · e1(t− ne1), e2(t) · · · e2(t− ne2), · · · , en(t) · · · en(t− nen
)]T

where nyi
= maxj δ(Ãij(z−1)), nuj

= maxi δ(Bij(z−1)) and
nej

= maxj δ(Cij(z−1)). Matrices M , N and P can be expressed as:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Myy11 · · · Myy1n Myu11 · · · Myu1m Mye11 · · · Mye1n

...
...

...
...

...
...

...
...

...
Myyn1 · · · Myynn Myun1 · · · Myunm Myen1 · · · Myenn

0 · · · 0 Muu11 · · · Muu1m 0 · · · 0
...

...
...

...
...

...
...

...
...

0 · · · 0 Muum1 · · · Muumm 0 · · · 0

0 · · · 0 0 · · · 0 Mee11 · · · Mee1n

...
...

...
...

...
...

...
...

...
0 · · · 0 0 · · · 0 Meen1 · · · Meenn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N =
[

NyT
1 · · · NyT

n NuT
1 · · · NuT

m 0 · · · 0
]T

P =
[

PyT
1 · · · PyT

n 0 · · · 0 0 · · · 0
]T

where the submatrices Myyij , Myuij , Myeij , Muuij and Nyi have the fol-
lowing form:

Myyij =

⎡⎢⎢⎢⎢⎢⎣
−ãij1 −ãij2 · · · · · · −ãijnyi

1 0 · · · · · · 0
0 1 0 · · · 0
...

.
...

0 · · · · · · 1 0

⎤⎥⎥⎥⎥⎥⎦Myuij =

⎡⎢⎢⎢⎣
bij1 · · · bijnuj

0 · · · 0
...

...
...

0 · · · 0

⎤⎥⎥⎥⎦

Myeij =

⎡⎢⎢⎢⎣
cij1 · · · cijnuj

0 · · · 0
...

...
...

0 · · · 0

⎤⎥⎥⎥⎦Muuij =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

.
...

0 0 · · · 1 0

⎤⎥⎥⎥⎥⎥⎦

Nyi =

⎡⎢⎢⎢⎣
bi10 · · · bim0

0 · · · 0
...

...
...

0 · · · 0

⎤⎥⎥⎥⎦

6.4 Case Study: Flight Control 147

Matrix Meeij has the same form as matrix Muuij . Matrices Nuj and Pyj

have all elements zero except the j element of the first row which is 1. The
noise vectors are v(t) = e(t + 1) and w(t) = 0.

This state space description corresponds to the one used in [160] for the
SISO case. Other state space descriptions have been proposed in literature in
the MPC context. In [2] a state space description involving an artificial sam-
pling interval equal to the prediction horizon multiplied by the sampling
time is proposed. The vectors of predicted inputs and outputs over the con-
trol horizon are used as input and output signals. The GPC costing function,
for the noise-free case, is then transformed into a one-step performance in-
dex. A state space description based on the step response of the plant has
been proposed in [116]. Models based on the step response of the plant are
widely used in industry because they are very intuitive and require less a pri-
ori information to identify the plant. The main disadvantages are that more
parameters are needed and only stable processes can be modelled, although
the description proposed in [116] allows for the modelling of processes con-
taining integrators.

6.4 Case Study: Flight Control

This section shows an application of MPC to the control of climb rate/airspeed
of an aircraft model. The model is taken from [37] and it corresponds to the
longitudinal motion of a Boeing 747 airplane. The multivariable process is
controlled using a predictive controller based on the state space model of the
aircraft.

The autopilot will fly the airplane to the desired flight condition specified
by the pilot. Two of the usual command outputs that must be controlled are
airspeed, that is, velocity (or Mach number) with respect to air, and climb
rate.

We will focus on the longitudinal motion of the aircraft, which can be
controlled acting on elevator (e) and throttle (t). The aircraft longitudinal
motion can be represented [37] by means of u (velocity in the longitudinal
body axis, x), w (velocity in the y-axis), q (component of the angular velocity)
and θ (angle of the x-axis with respect to the horizontal). Figure 6.3 shows
the nomenclature for aircraft longitudinal motions.

The perturbation equations that model the dynamics of a 747 airplane
cruising in level flight at an altitude of 40,000 ft and a velocity of 774 ft/sec
(Mach number 0.80) can be written in continuous time as

148 6 Multivariable Model Predictive Control

q
w

θ

x

V

u

e

Fig. 6.3. Nomenclature for aircraft longitudinal motions

⎡⎢⎢⎣
u̇
ẇ
q̇

θ̇

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−0.003 0.039 0 −0.322
−0.065 −0.319 7.74 0
0.020 −0.101 −0.429 0

0 0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

u− uw

w − ww

q
θ

⎤⎥⎥⎦

+

⎡⎢⎢⎣
0.010 1
−0.18 −0.04
−1.16 0.598

0 0

⎤⎥⎥⎦[et
]

where uw and ww are perturbations in wind velocity components. Ve-
locities are given in ft/sec, the angles in crad and the angular velocity q in
crad/sec.

The two outputs to be controlled are airspeed, u − uw, and climb rate
ḣ = −w +u0θ, with u0 = 774 ft/sec. In order to use the state space predictive
controller depicted in Section 6.3, the model must be converted to discrete
time. If a sampling time of 0.1 second is used, the model turns to⎡⎢⎢⎣

u(t + 1)
w(t + 1)
q(t + 1)
θ(t + 1)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0.9996 0.0383 0.0131 −0.0322
−0.0056 0.9647 0.7446 0.0001
0.0020 −0.0097 0.9543 0
0.0001 −0.0005 0.0978 1

⎤⎥⎥⎦
⎡⎢⎢⎣

u(t)− uw(t)
w(t)− ww(t)

q(t)
θ(t)

⎤⎥⎥⎦

+

⎡⎢⎢⎣
0.0001 0.1002

−0.0615 0.0183
−0.1133 0.0586
−0.0057 0.0029

⎤⎥⎥⎦[e(t)t(t)

]

and the outputs are given by

[
y1(t)
y2(t)

]
=
[

1 0 0 0
0 −1 0 7.74

]⎡⎢⎢⎣
u(t)− uw(t)
w(t)− ww(t)

q(t)
θ(t)

⎤⎥⎥⎦
The time evolution of the system with the predictive controller is shown

in Figure 6.4. The figure shows the outputs evolution when the weighting

6.5 Convolution Models Formulation 149

0 20 40 60 80 100 120 140 160 180 200
−2

0

2

4

6

8

10

12

Samples

O
ut

pu
ts

0 20 40 60 80 100 120 140 160 180 200
−10

−5

0

5

10

15

20

C
on

tr
ol

 a
ct

io
ns

Airspeed

Climb rate

Elevator Throttle

Fig. 6.4. Setpoint changes

matrices are R = diag(5, 5), Q = diag(1, 1), the control horizon is 10 and
the prediction horizon is set to 30. A setpoint change from 0 to 10 ft/sec
in airspeed is performed at the beginning of the simulation and a change
from 0 to 5 ft/sec in climb rate is done 10 seconds later. It can be seen how
the airplane responds to the commands and that some degree of interaction
exists between the variables.

It can be observed that, since the process is multivariable, the climb rate is
slightly affected by the change in airspeed and both control actions (elevator
and throttle) act simultaneously to keep the outputs at the desired values. If,
for instance, airspeed is to be given higher importance than the other output,
the effect of climb rate changes on airspeed can be reduced by changing the
error weighting matrix to R = diag(10, 1). In this case, Figure 6.5 shows how
the controller keeps the first output almost unaffected by a change in the
second output setpoint.

6.5 Convolution Models Formulation

Step response and impulse response models can be easily extended to deal
with multivariable processes. For a plant with nu inputs each output j will
reflect the effect of all the inputs in the following way

150 6 Multivariable Model Predictive Control

0 20 40 60 80 100 120 140 160 180 200
−2

0

2

4

6

8

10

12

Samples

O
ut

pu
ts

0 20 40 60 80 100 120 140 160 180 200
−10

−5

0

5

10

15

20

C
on

tr
ol

 a
ct

io
ns

Airspeed

Climb rate

Throttle Elevator

Fig. 6.5. Change in weights

yj(t) =
nu∑

k=1

Nk∑
i=1

gkj
i uk(t− i)

where gkj
i is the response of output j to a step (or an impulse if an impulse

response model is being used) in input k.
The Dynamic Matrix Controller shown in Section 3.1 can be easily ex-

tended to the case of a process modelled by a multivariable step response
model. The basic scheme of DMC already discussed extends to systems with
multiple inputs and multiple outputs. The basic equations remain the same,
except that the matrices and vectors become larger and appropriately parti-
tioned.

Based upon model linearity, the superposition principle can be used to
obtain the predicted outputs provoked by the system inputs. The vector of
predicted outputs is now defined as

ŷ = [y1(t + 1 | t), . . . , y1(t + p1 | t), . . . , yny(t + 1 | t), . . . , yny(t + pny | t)]T

the array of future control signals as

u = [�u1(t), . . . ,�u1(t + m1 − 1), . . . ,�unu(t), . . . ,�unu(t + mnu − 1)]T

and the free response as

6.5 Convolution Models Formulation 151

Inputs

Outputs Outputs

Inputs

Inputs

Outputs plant
Square

Flat plant plant
Thin

Fig. 6.6. Typical process transfer matrix shapes

f = [f1(t + 1 | t), . . . , f1(t + p1 | t), . . . , fny(t + 1 | t), . . . , fny(t + pny | t)]T

taking into account that the free response of output i depends on both the
past values of yi and the past values of all control signals.

With the vector defined earlier, the prediction equations are the same as
(3.2) simply considering matrix G to be:

G =

⎡⎢⎢⎢⎣
G11 G12 · · · G1nu

G21 G22 · · · G2nu

...
...

. . .
...

Gny1 Gny2 · · · Gnynu

⎤⎥⎥⎥⎦
Each matrix Gij contains the coefficients of the ith step response corre-

sponding to the jth input.
In case that an impulse response model is used, the extension to the mul-

tivariable case is exactly the same as that of DMC, so no more attention will
be paid to the equations. However, some implementation issues of the re-
sulting controller (Model Algorithmic Control) and the commercial product
IDCOM-M (multivariable) will be addressed in this section.

The IDCOM-M algorithm [85] uses two separate objective functions, one
for the outputs and if there are extra degrees of freedom one for the inputs.
The degree of freedom available for the control depends on the plant struc-
ture. Figure 6.6 shows the shape of the process transfer matrix for three gen-
eral cases.

The square plant case, which is rare in real situations, occurs when the
plant has as many inputs as outputs and leads to a control problem with a
unique solution. The flat plant case is more common (more inputs than out-
puts) and the extra degrees of freedom available can be employed in different
objectives, such as moving the plant closer to an optimal operating point. In
the last situation (thin plant case, where there are more outputs than inputs)
it is not possible to meet all of the control objectives, and some specifications
must be relaxed.

Thus, for flat plants, IDCOM-M incorporates the concept of Ideal Resting
Values (IRV) for the inputs. In this case, in addition to the primary objective
(minimize the output errors), the controller also tries to minimize the sum

152 6 Multivariable Model Predictive Control

of squared deviations of the inputs from their respective IRVs, which may
come from a steady-state optimizer (by default the IRV for a given input is
set to its current measured value). So the strategy involves a two-step opti-
mization problem that is solved using a quadratic programming approach:
the primary problem involves the choice of the control sequence required to
drive the controlled variables close to the setpoints, and the second involves
optimizing the use of control effort in achieving the objective of the primary
problem.

The input optimization makes the most effective use of available degrees
of freedom without influencing the optimal output solution. Even when
there are no excess inputs, the ideal resting values concept is of great interest
when, for operational or economic reasons, there is a benefit in maintaining
a manipulated variable at a specific steady-state value.

6.6 Case Study: Chemical Reactor

This section illustrates the application of a multivariable DMC. The chosen
system is a chemical jacket reactor. The results have been obtained on a sys-
tem simulation using the nonlinear differential equations which model its
behaviour. The model used is taken from [7] and can be considered to be a
very precise representation of this type of process.

6.6.1 Plant Description

The decomposition of a product A into a product B is produced in the re-
actor (see Figure 6.7). This reaction is exothermic and therefore the interior
temperature must be controlled by means of cold water circulating through
the jacket around the tank walls.

The variables which come into play are:

• A: feed product arriving at the reactor,
• B: product arising from the transformation of product A in the tank inte-

rior,
• Ca0: concentration of product A arriving at the reactor,
• Tl0: temperature of liquid containing product A,
• Fl : flow of liquid passing through the reactor (at the inlet it only contains

product A and at the outlet it contains A and B),
• Tl: temperature of the liquid at the outlet of the reactor,
• Cb: concentration of product B at the outlet of the reactor and in the inte-

rior,
• Ca: concentration of A (the inequality Ca < Ca0 is always fulfilled and at

stationary state Ca + Cb = Ca0),
• Tc0: temperature of coolant on entering the jacket,

6.6 Case Study: Chemical Reactor 153

F Tc co
T

A B
C

Product A

Coolant

c

C F T

C C F T

a

l

a b l l

C b

cT F

ao l lo

Products A and B

Fig. 6.7. Chemical jacket reactor

• Tc: temperature of coolant in the interior and at the outlet of the jacket,
and

• Fc: coolant flow.

The concentrations are given by kmol/m3, the flows by m3/h and the
temperatures in ◦C.

By applying the conservation laws of mass and energy the differential
equations defining the dynamics of the system can be obtained. To do this,
it is presumed that there is no liquid accumulated in the reactor, that the
concentrations and temperature are homogeneous and that the energy losses
to the exterior are insignificant.

The mass balance equations are as follows

d(VlCa)
dt

= FlCa0 − VlkCa − FlCa

d(VlCb)
dt

= VlkCa − FlCb

and the energy balance equations are:

d(VlρlCplTl)
dt

= FlρlCplTl0 − FlρlCplTl −Q + VlkCaH

d(VcρcCpcTc)
dt

= FcρcCpc(Tc0 − Tc) + Q

Table 6.1 gives the meaning and nominal value of the parameters appear-
ing in the equations.

154 6 Multivariable Model Predictive Control

Table 6.1. Process variables and values at operating point

Variable Description Value Unit
k Speed of reaction k = αe−Ea/R(272+Tl) h−1

α Coefficient of speed of reaction 59.063 h−1

R Constant of ideal gas 8.314 kJ/kg kmol
Ea Activation energy 2100 kJ/kmol
H Enthalpy of reaction 2100 kJ/kmol
Q Heat absorbed by coolant kJ
U Global heat transmission coefficient 4300 kJ/(h m2 K)
ρl Liquid density 800 kg/m3

ρc Coolant density 1000 kg/m3

Cpl Specific heat of liquid 3 kJ/(kg K)
Cpc Specific heat of coolant 4.1868 kJ/(kg K)

S Effective heat interchange surface 24 m2

Vl Tank volume 24 m3

Vc Jacket volume 8 m3

The aim is to regulate the temperature in the tank interior (Tl) and the
concentration at the reactor outlet of product B (Cb), the control variables
being the flows of the liquid (Fl) and the cooling fluid (Fc). It is, therefore, a
system with two inlets and two outlets.

6.6.2 Obtaining the Plant Model

The design of the controller calls for knowledge of the system dynamics to
be controlled. To achieve this, step inputs are produced in the manipulated
variables and the behaviour of the process variables is studied.

On the left-hand side of Figure 6.8 the response to a change in the feed
flow from 25 to 26 m3/h is shown. It can be seen that the concentrations
present a fairly fast response of opposite sign. The temperatures, however,
vary more slowly. The right-hand column of Figure 6.8 shows the effect of a
step change of 1 m3/h in the cooling flow. Due to thermic inertia the vari-
ation in temperatures is slow and dampened, presenting opposite in sign
those corresponding to feeding and cooling fluids. A great deal of interac-
tion is observed, therefore, between the circuits for feeding and cooling and
the dynamics of the controlled variables are different depending on the con-
trol variable operating, to which is added slight effects of the nonminimum
phase. All of this justifies the use of a multivariable controller instead of two
monovariables ones.

Although the system is nonlinear it is possible to work with a model lin-
earized about the operating point. The model is obtained from the response
to steps shown in figure 6.8.

One has that

6.6 Case Study: Chemical Reactor 155

0.0 1.0 2.0
Time (h)

7.08

7.09

7.10

7.11

7.12

C
b

(k
g

m
ol

/m
3)

0.0 1.0 2.0
Time (h)

7.08

7.09

7.10

7.11

7.12

C
b

(k
g

m
ol

/m
3)

0.0 1.0 2.0
Time (h)

31.0

32.0

33.0

34.0

T
l (

C
)

0.0 1.0 2.0
Time (h)

31.0

32.0

33.0

34.0

T
l (

C
)

0.0 1.0 2.0
Time (h)

0.870

0.880

0.890

0.900

0.910

0.920

C
a

(k
g

m
ol

/m
3)

0.0 1.0 2.0
Time (h)

0.870

0.880

0.890

0.900

0.910

0.920

C
a

(k
g

m
ol

/m
3)

0.0 1.0 2.0
Time (h)

28.0

28.5

29.0

29.5

30.0

30.5

31.0

31.5

T
c

(C
)

0.0 1.0 2.0
Time (h)

28.0

28.5

29.0

29.5

30.0

30.5

31.0

31.5

T
c

(C
)

Fig. 6.8. System response to changes in the feed flow (left) and coolant flow (right)

156 6 Multivariable Model Predictive Control

y1(t) =
N11∑
i=1

g11
i � u1(t) +

N12∑
i=1

g12
i � u2(t)

y2(t) =
N21∑
i=1

g21
i � u1(t) +

N22∑
i=1

g22
i � u2(t)

where y1 and y2 correspond to the concentration of product B and the tem-
perature in the interior of the reactor and u1 and u2 correspond to the flow
of the liquid and the cooling fluid, respectively.

The sampling time is chosen as T = 2.4 minutes and the corresponding
values of Nij for this process are:

N11 = 40 N12 = 50 N21 = 55 N22 = 60

6.6.3 Control Law

In order to calculate the control law it is necessary to form matrix G and
calculate the free response, as seen in Chapter 3.

As there are two inputs and two outputs, the free responses for Cb (f1)
and Tl (f2) are given by:

f1(t + k) = ym1(t) +
N11∑
i=1

(g11
k+i − g11

i)� u1(t− i) +
N12∑
i=1

(g12
k+i − g12

i)� u2(t− i)

f2(t + k) = ym2(t) +
N21∑
i=1

(g21
k+i − g21

i)� u1(t− i) +
N22∑
i=1

(g22
k+i − g22

i)� u2(t− i)

Choosing the prediction and control horizons as p = 5, m = 31, matrix G
is:

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
−0.0145 0 0 0.0064 0 0
−0.0201 −0.0145 0 0.0074 0.0064 0
−0.0228 −0.0201 −0.0145 0.0068 0.0074 0.0064
−0.0244 −0.0228 −0.0201 0.0058 0.0068 0.0074

0 0 0 0 0 0
−0.3073 0 0 −0.3066 0 0
−0.5282 −0.3073 0 −0.5449 −0.3066 0
−0.6946 −0.5282 −0.3073 −0.7351 −0.5449 −0.3066
−0.8247 −0.6946 −0.5282 −0.8904 −0.7351 −0.5449

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The control law is obtained from the minimization of the cost function

where, since this is a multivariable process, the errors and control increments
are weighted by matrices R and Q:
1 Notice that better results can be obtained for bigger values of the horizon, although

these small values have been used in this example for the sake of simplicity.

6.7 Dead Time Problems 157

J =
p∑

j=1

‖ŷ(t + j | t)− w(t + j)‖2R +
m∑

j=1

‖ � u(t + j − 1)‖2Q

and R and Q are diagonal matrices of dimension 2p × 2p and 2m × 2m, re-
spectively. In this application the first m elements of R are taken equal to 1
and the second part is equal to 10 to compensate for the different range of
values in temperature and concentration. The control weights are taken as
0.1 for both manipulated variables.

The solution is given by

u = (GT RG + Q)−1GT R(w − f)

and the control increment at instant t is calculated multiplying the first row
of (GT RG + Q)−1GT R by the difference between the reference trajectory
and the free response

�u(t) = l(w − f)

with

l = [0 −0.1045 −0.1347 −0.1450 −0.1485 0 −1.3695 −0.1112 −0.1579 0.1381]

6.6.4 Simulation Results

In this section some results of applying the controller to a nonlinear model
of the reactor are presented. Although the controller was designed using a
linear model and the plant is nonlinear, the results obtained are satisfactory.

The charts on the left of Figure 6.9 show the behaviour of the process
in the presence of changes in the composition reference (Cb). As can be ob-
served, the output follows the reference by means of the contribution of the
two manipulated variables Fl and Fc. It can also be seen that any change
affects all the variables, such as the concentration of A (Ca) and the coolant
temperature (Tc), and the other output Tl, which is slightly moved from its
reference during the transient stage.

The response to a change in the temperature reference is drawn in the
charts on the right of Figure 6.9. As can be seen, the temperature reference is
followed satisfactorily but the concentration is affected and separated from
its setpoint.

6.7 Dead Time Problems

Most plants in industry, especially in the process industry, exhibit input-
output delays or dead times. That is, the effect of a change in the manipulated
variable is not felt on the process output until the dead time has elapsed.
Dead times are mainly caused by transport delays or sometimes as the result

158 6 Multivariable Model Predictive Control

0.0 20.0 40.0 60.0
Time (h)

7.00

7.10

7.20

7.30

7.40

C
b

(k
g

m
ol

/m
3)

0.0 20.0 40.0 60.0
Time (h)

7.00

7.10

7.20

7.30

7.40

C
b

(k
g

m
ol

/m
3)

0.0 20.0 40.0 60.0
Time (h)

30.00

31.00

32.00

33.00

34.00

35.00

36.00

T
l (

C
)

0.0 20.0 40.0 60.0
Time (h)

30.0

31.0

32.0

33.0

34.0

35.0

36.0

T
l (

C
)

0.0 20.0 40.0 60.0
Time (h)

15.0

18.0

21.0

24.0

27.0

30.0

F
l (

 m
3/

h)

0.0 20.0 40.0 60.0
Time (h)

15.0

18.0

21.0

24.0

27.0

30.0

F
l (

m
3/

h)

0.0 20.0 40.0 60.0
Time (h)

0.0

2.0

4.0

6.0

8.0

10.0

F
c

(m
3/

h)

0.0 20.0 40.0 60.0
Time (h)

0.0

2.0

4.0

6.0

8.0

10.0

F
c

(m
3/

h)

Fig. 6.9. Controller response to changes in concentration reference (left) and liquid
temperature reference (right)

6.7 Dead Time Problems 159

of processes with dynamics composed of multiple chained lags. The difficul-
ties of controlling processes with significant dead time are well known and
are due to the fact that a dead time produces a phase lag that deteriorates the
phase margin. As a result, low gain controllers producing sluggish responses
(which have to be added to the dead time of the process) have to be used in
order to avoid high oscillations. There are different techniques to cope with
delays. The most popular is, perhaps, the Smith predictor [193] which ba-
sically consists of getting the delay out of the closed loop by generating a
prediction of the process output and designing a controller for the process
minus the dead time. The error between process output and predictions is
fed back to the controller to cope with plant and model mismatch.

Because of the predictive nature of model predictive controllers, time de-
lays are inherently considered by them. Process input-output dead times are
reflected in the polynomial matrix B(z−1). The dead time from the j-input
to the i-output, expressed in sampling time units, is the maximum integer
dij such that the entry (B(z−1))ij of polynomial matrix B(z−1) can be ex-
pressed as (B(z−1))ij = z−dij (B′(z−1))ij . Let us define dmin = mini,j dij ,
and dmax = maxi,j dij . Although process dead time is implicitly considered
in the previous section by the first coefficient matrices of polynomial matrix
B(z−1) being zero, the computation will not be efficient if precautions are
not taken.

The natural extension of the dead time to multivariable processes is the
interactor matrix [80] which represents the time delay structure of a multi-
variable process. The interactor matrix always exists if the transfer matrix
T(z) is strictly proper with det(T(z)) �= 0 for almost all z. It is defined as a
polynomial matrix ξ(z) such that

det(ξ(z)) = zk

lim
z→∞ ξ(z)T(z) = K

where k is an integer and K is a nonsingular matrix. The interactor ma-
trix can be made to have the following structure: ξ(z) = M(z)D(z) where
D(z) =diag(zd1 · · · zdn) and M(z) is a lower triangular matrix with the ele-
ments on the main diagonal equal to unity and the elements below the main
diagonal either zero or divisible by z. The interactor matrix can be used to
design precompensators as indicated in [201] by making the control signal
u(t) = ξr(z−1)z−dv(t), with ξr(z−1) equal to the right interactor matrix. The
output vector is then equal to

y(t) = T(z−1)u(t) = T(z−1)ξr(z−1)z−dv(t)
= [T′(z−1)ξr(z−1)−1]ξr(z−1)z−dv(t) = T′(z−1)z−dv(t)

The process can now be interpreted as a process with a common delay d for
all the variables. Notice that the precompensator consists of adding delays
to the process. Model predictive control, as pointed out in [191], does not

160 6 Multivariable Model Predictive Control

require the use of this type of pre- or postcompensation and the unwanted
effects caused by adding extra delays at the input or output are avoided.

In most cases the interactor matrix will take a diagonal form, one corre-
sponding to a single delay dmin for every output and the other with a delay
di for each output. These two cases will be discussed in the following.

First consider the case where there is not much difference between dmax

and dmin and a single delay dmin is associated to all output variables. The
output of the process will not be affected by �u(t) until the time instant
t+dmin +1; the previous outputs will be a part of the free response and there
is no point in considering them as part of the objective function. The lower
limit of the prediction horizon N1 can therefore be made equal to dmin + 1.
Note that there is no point in making it smaller, and furthermore if it is made
bigger, the first predictions, the ones predicted with greater certainty, will
not be considered in the objective function. If the difference between dmax

and dmin is not significant, and there is not much difference in the dynamics
of the process variables, a common lower (N1 = dmin + 1) and upper (N2 =
N1 + N − 1) limit can be chosen for the objective function. Computation can
be simplified by considering B(z−1) = z−dminB′(z−1) and computing the
predictions as:

ŷ(t + N1 + j|t) = EN1+j(z−1)B(z−1)� u(t + N1 + j − 1) + FN1+j(z−1)y(t)

= EN1+j(z−1)B′(z−1)� u(t + N1 + j − 1− dmin) + FN1+j(z−1)y(t)

= EN1+j(z−1)B′(z−1)� u(t + j) + FN1+j(z−1)y(t)

By making the polynomial matrix

EN1+j(z−1)B′(z−1) = GN1j
(z−1) + z−(j+1)GpN1j

(z−1)

the prediction equation can now be written as:

ŷ(t + N1 + j|t) = GN1j
(z−1)� u(t + j)

+GpN1j
(z−1)� u(t− 1) + FN1+j(z−1)y(t) (6.29)

Notice that the last two terms of the right-hand side of Equation (6.29) de-
pend on past values of the process output and process input and correspond
to the free response of the process when the control signals are kept constant,
while the first term depends only on the future values of the control signal
and can be interpreted as the forced response, that is, the response obtained
when the initial conditions are zero. Equation (6.29) can be rewritten as:

ŷ(t + N1 + j|t) = GN1j
(z−1)� u(t + j) + fN1+j

If there is a significant difference between dmax and dmin, there will be a lot
of zero entries in the coefficient matrices of polynomial matrix B(z−1) re-
sulting in low computational efficiency. Costing horizons should be defined
independently in order to obtain higher efficiency.

6.7 Dead Time Problems 161

Let us consider the polynomial matrix A(z−1) to be diagonal (this can
easily be done from the process transfer matrix and, as shown previously,
has many advantages). The minimum delay from the input variables to the
i output variable di is given by: di = minj dij . The minimum meaningful
value for the lower limit of the prediction horizon for output variable yi is
N1i

= di + 1. The upper limit N2i
= N1i

+ Ni − 1 will mainly be dictated
by polynomial Aii(z−1). Let us define the pertinent set of optimal j ahead
output predictions y = [yT

1 yT
2 · · ·yT

n]T with

yi = [ŷi(t + N1i
|t) ŷi(t + N1i

+ 1|t) . . . ŷi(t + N2i
|t)]T

Notice that the set of optimal j ahead predictions for the i output variable
can be computed by solving a one-dimension Diophantine equation

1 = Eik(z−1)Ãii(z−1) + z−kFik(z−1)

with Ãii(z−1) = Aii(z−1)�. The optimum prediction for the i component of
the output variable vector is then given by

yi(t+N1i
+k|t) =

m∑
j=1

Eik(z−1)Bij(z−1)�uj(t+N1i
+k− 1)+Fik(z−1)yi(t)

If we make Bij(z−1) = z−diB′ij(z
−1)

yi(t + N1i
+ k|t) =

m∑
j=1

Eik(z−1)B′ij(z
−1)� uj(t + k) + Fik(z−1)yi(t)

which can be expressed as

yi(t + N1i
+ k|t) =

m∑
j=1

Gijk
(z−1)� uj(t + k) +

m∑
j=1

Gpijk
(z−1)� uj(t− 1)

+Fik(z−1)yi(t)

where
Eik(z−1)B′ij(z

−1) = Gijk
(z−1) + z−(k+1)Gpijk

(z−1)

Let us define fi as the free response of yi(t):

fi = [fi(t + N1i
) · · · fi(t + N2i

)]T

with

fi(t + N1i
+ k) =

m∑
j=1

Gpijk
(z−1)� uj(t− 1) + Fik(z−1)yi(t)

The output prediction affecting the objective function can be expressed
as

162 6 Multivariable Model Predictive Control⎡⎢⎢⎢⎣
y1

y2

...
yn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
G11 G12 · · · G1m

G21 G22 · · · G2m

...
...

. . .
...

Gn1 Gn2 · · · Gnm

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

u1

u2

...
um

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
f1
f2
...
fn

⎤⎥⎥⎥⎦
with uj = [�uj(t) �uj(t+1) . . .�uj(t+Nuj)]T and Nuj = maxi(Ni−dij−1).
The Ni ×Nuj block matrix Gij has the following form

Gij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · 0 0 · · · 0
gij0 0 · · · 0 0 · · · 0

gij1 gij0

. . . 0 0 · · · 0

· · · · · · . . .
...

...
...

...
gijl

gijl−1 · · · gij0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where the number of leading zero rows of matrix Gij is dij − N1i

and the
number of trailing zero columns is Nuj −Ni + dij . Note that the dimension

of matrix G is (
i=n∑
i=1

Ni)× (
m∑

j=1

maxi(Ni − dij − 1)), while for the single delay

case it is (N × n) × ((N − dmin − 1) × m) with N ≥ Ni and dmin ≤ dij in
general. The reduction of the matrix dimension, and hence the computation
required depends on how the delay terms are structured.

In spite of the problems related to dead time management that may ap-
pear when using a CARIMA model to represent plant dynamics, worse prob-
lems appear when other types of models are used. In the case of convolution
models, a delay of d sampling periods is represented by the inclusion of d
zero elements in the model, that is, the first d elements (gi for step response
models or hi for impulse response models) are zero. It means that a lot of
zero elements must be stored, which can lead to ill-conditioned problems.

In the case of a state space model, delays have to be addressed by aug-
menting the state vector in such a way that it contains all the necessary past
inputs. If the nondelayed process can be represented by a state vector x(t),
the new state vector is now:

xT (t) = [xT (t) uT (t− 1) uT (t− 2) . . . uT (t− d)]

Note that the input vector at each sampling time contains all the plant inputs
and therefore the new model is much bigger than the original. In order to
show the size increase of delayed state space models, consider a very simple
case: a first-order monovariable plant with a delay of the order of magnitude
of the time constant. It is clear that if no delay exists the dimension of the state
vector is 1. If the plant is sampled at an adequate sampling rate (one-tenth
of the time constant, for instance), inputs that happened 10 sampling times

6.8 Case Study: Distillation Column 163

before have influence on the current state, and therefore u(t − 1), u(t − 2),
up to u(t − 10) are now part of the augmented vector, whose dimension is
11. Notice that this is a considerable increment for this extremely simple case
and that the extrapolation to multivariable processes with different delays
associated to the outputs can drive to very high-dimension models.

6.8 Case Study: Distillation Column

In order to illustrate the problem of controlling multivariable processes with
different dead times for the output variables we are going to consider the
control of a distillation column.

The model chosen corresponds to a heavy oil fractionator and is referred
to in literature as the Shell Oil’s heavy oil fractionator [10], [50]. The model
was first described by Prett and Morari [167] and has been widely used to
try different control strategies for distillation columns.

The process, shown in Figure 6.10, has three variables that have to be
controlled: the top and side product compositions, which are measured by
analyzers, and the bottom temperature. The manipulated variables are the
top draw rate, the side draw rate and the bottom reflux duty. The feed pro-
vides all heat requirements for the column. Top and side product specifica-
tions are fixed by economic and operational goals and must be kept within
0.5 % of their setpoint at steady state. The bottom temperature must be con-
trolled within limits fixed by operational constraints. The top endpoint must
be maintained within the maximum and minimum values of −0.5 and 0.5.
The manipulated variables are also constrained as follows: all draws must
be within hard minimum and maximum bounds of −0.5 and 0.5. The bot-
tom reflux duty is also constrained by −0.5 and 0.5. The maximum allowed
slew rates for all manipulated variables is 0.05 per minute. The dynamics of
the process can be described by the following

⎡⎢⎢⎢⎢⎣
Y1(s)

Y2(s)

Y3(s)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.05e−27s

1 + 50s

1.77e−28s

1 + 60s

5.88e−27s

1 + 50s

5.39e−18s

1 + 50s

5.72e−14s

1 + 60s

6.9e−15s

1 + 40s

4.38e−20s

1 + 33s

4.42e−22s

1 + 44s

7.2
1 + 19s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣
U1(s)

U2(s)

U3(s)

⎤⎥⎥⎥⎥⎦

where U1(s), U2(s) and U3(s) correspond to the top draw, side draw and bot-
tom reflux duties and Y1(s), Y2(s) and Y3(s) correspond to the top endpoint
composition, side end point compositions and bottom reflux temperature,
respectively.

Notice that the minimum dead time for the three output variables are 27,
14 and 0 minutes, respectively.

164 6 Multivariable Model Predictive Control

Upper
Reflux

Intermediate

Feed Bottoms

Side
Draw

Top

PC

Bottoms
Reflux

Reflux

Stripper

Side

Draw

T
LC

FC

A

T

A

LC

F T

T
T

T

LC
FC

Fig. 6.10. Heavy oil fractionator

The discrete transfer matrix for a sampling time of 4 minutes is:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.08(z−1 + 2.88z−2)

1 − 0.923z−1
z−6 0.114z−1

1 − 0.936z−1
z−7 0.116(z−1 + 2.883z−2)

1 − 0.923z−1
z−6

0.211(z−1 + 0.96z−2)

1 − 0.923z−1
z−4 0.187(z−1 + 0.967z−2)

1 − 0.936z−1
z−3 0.17(z−1 + 2.854z−2)

1 − 0.905z−1
z−3

0.5z−1

1 − 0.886z−1
z−5 0.196z−1 + 0.955z−2

1 − 0.913z−1
z−5 1.367z−1

1 − 0.81z−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
A left matrix fraction description can be obtained by making matrix A(z−1)

equal to a diagonal matrix with diagonal elements equal to the least com-
mon multiple of the denominators of the corresponding row of the transfer
function, resulting in:

6.8 Case Study: Distillation Column 165

A11(z−1) = 1− 1.859z−1 + 0.8639z−2

A22(z−1) = 1− 2.764z−1 + 2.5463z−2 − 0.7819z−3

A33(z−1) = 1− 2.609z−1 + 2.2661z−2 − 0.6552z−3

B11(z−1) = (0.08 + 0.155z−1 − 0.216z−2)z−6

B12(z−1) = (0.114− 0.105z−1)z−7

B13(z−1) = (0.116 + 0.226z−1 − 0.313z−2)z−6

B21(z−1) = (0.211− 0.186z−1 − 0.194z−2 + 0.172z−3)z−4

B22(z−1) = (0.187− 0.161z−1 − 0.174z−2 + 0.151z−3)z−3

B23(z−1) = (0.17 + 0.169z−1 − 0.755z−2 + 0.419z−3)z−4

B31(z−1) = (0.5− 0.8615z−1 + 0.369z−2)z−5

B32(z−1) = (0.196 + 0.145z−1 − 1.77z−2 + 0.134z−3)z−5

B33(z−1) = 1.367− 2.459z−1 + 1.105z−2

The minimum pure delay time for each of the output variables expressed
in sampling time units are 6, 3 and 0, respectively. The results obtained when
applying the multivariable GPC can be seen in Figure 6.11 for the case of
a common prediction horizon of 30 and a control horizon of 5 for all the
variables. The weighting matrices were chosen to be Q = I and R = 2 I .
The reference trajectories are supposed to be equal to the actual setpoints:
0.5, 0.3 and 0.1, respectively. A change was produced in the setpoint of the
top endpoint composition from 0.5 to 0.4 in the middle of the simulation.

The control increments needed could be, however, too big to be ap-
plied in reality and all the manipulated variables were saturated to the hard
bounds described earlier. As can be seen, all the variables reach the setpoint
quite rapidly and only the bottom reflux temperature exhibits a significant
overshoot. The perturbations produced in the side endpoint composition and
on the bottom reflux temperature due to the setpoint change of the top end-
point composition are quite small, indicating a low closed-loop interaction
degree between the setpoint and controlled variables, in spite of the highly
coupled open-loop dynamics.

The upper and intermediate reflux duties are considered to act as unmea-
surable disturbances. The small-signal dynamic load model for the upper
reflux duty is given by the following transfer functions:

⎡⎣Y p1(s)
Y p2(s)
Y p3(s)

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.44e−27s

1 + 40s

1.83e−15s

1 + 20s

1.26
1 + 32s

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
U(s)

166 6 Multivariable Model Predictive Control

0.0 20.0 40.0 60.0 80.0 100.0
Samples

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60
Ou

tpu
ts

an
d R

efe
ren

ce
s

TEP
SEP
BTR

0.0 20.0 40.0 60.0 80.0 100.0
Samples

-0.4

-0.2

0.0

0.2

0.4

Inp
uts

TDR
SDR
BRD

Fig. 6.11. Multivariable control of the distillation column

A step perturbation of 0.5 is introduced in the upper reflux duty, keeping
all the setpoints at zero. The results obtained when applying the GPC with
the previous weighting matrices are shown in Figure 6.12.

As can be seen, the perturbations are very rapidly cancelled in spite of
the high load perturbations (the steady-state value for the load perturbation
in the side endpoint composition is 0.91).

6.9 Multivariable MPC and Transmission Zeros

It is well known by control engineers that precautions have to be taken to
avoid instability when controlling processes with unstable zeros2, i.e. zeros
outside the unit disk (OUD). Instability arises when, in order to achieve high
performance, the controller contains an inverse of the process model. The
OUD zeros are cancelled by OUD controller poles resulting in an internally
unstable system. Model Predictive Control is one of those controllers which
aims to achieve high performance, specially when the penalization of the
2 Poles and not zeros are the cause of instability. However we are going to refer to

unstable zeros as those zeros outside the unit circle.

6.9 Multivariable MPC and Transmission Zeros 167

0.0 10.0 20.0 30.0 40.0 50.0
Samples

-0.2

0.0

0.2

0.4

0.6

0.8

Ou
tpu

ts TEP
SEP
BRT

0.0 10.0 20.0 30.0 40.0 50.0
Samples

-0.4

-0.2

0.0

0.2

0.4

Inp
uts

TDR
SDR
BRD

Fig. 6.12. Effect of a perturbation in the upper reflux duty

control effort is zero (aiming for perfect control whatever the cost in moving
the manipulated variable). MPC can be considered an extension of minimum
variance control (in fact, minimum variance control is a particular form of
MPC when N1 = N2 = d, Nu = 1 and λ = 0). It is well known that minimum
variance controllers cannot be applied to SISO nonminimum phase systems
because an unstable closed loop is obtained. The reason is that nonminimum
phase systems have OUD zeros which appear as unstable poles of the mini-
mum variance controller. The idea of penalizing the control effort (extended
minimum variance) came out to cope with this problem.

The instability problems arising when applying GPC to SISO systems with
OUD zeros have been reported in literature. It was shown in [58] and [131]
that nonminimum phase systems produce instability when N2 = 1, Nu = 1.
Instability in GPC has also been reported in [84], [123] and [194] when it is
applied to nonminimum phase systems. A common practice to avoid this
problem is increase the control weight as suggested in [27] and [59]. The way
in which OUD transmission zeros affect the MPC behaviour is less understood
in the Multiple Input Multiple Output (MIMO) case. In [141] the control limi-
tations on closed-loop behaviour imposed by the process zeros are analyzed.

168 6 Multivariable Model Predictive Control

Extending the SISO concept of a zero to the MIMO case is not a trivial
problem. In fact many definitions of MIMO zeros exist in literature. The defi-
nition that we are going to use throughout the text is that transmission zeros
correspond to the poles of the inverse system. For square open-loop stable
MIMO systems the transmission zeros are the complex values that makes the
determinant of the system process matrix equal to zero. While the zeros of
SISO processes can be detected by a simple inspection of the process transfer
function, this cannot be done for the MIMO processes, where transmission ze-
ros are not the zeros of the individual transfer functions. Transmission zeros
of MIMO systems are, from that point of view, hidden dynamics. That is, it
is not possible to detect transmission zeros of MIMO processes by a simple
inspection of the transfer matrix.

Furthermore, in the case of step response models, widely used by indus-
try, unstable transmission zeros are even more difficult to detect. A typical
step response will contain around 50 terms. For a 5 × 5 MIMO system, the
determinant of the transfer matrix will consist of a polynomial with degree
equal to 250 which will have to be solved to determine its transmission zeros.

This section shows why the instability problem can be present for any
MIMO system with OUD transmission zeros, when the control horizon has
the same value as the prediction horizon and the control weight is equal to
zero [76]. The section also indicates how can the problem be solved using
an adequate predictive horizon, control horizon and the control weight as
shown in [76].

In order to analyze how transmission zeros affect the closed-loop poles,
consider a GPC controlling an (n-input × n-output) MIMO plant. The vector
of future control moves, as seen, before can be computed as

u = K(w − f) (6.30)

with K = (GT G + λI)−1GT .
The j component fj of the free response f can be computed as fj =

Gjp(z−1)�u(t − 1) + Fj(z−1)y(t). To compute the first control move Δu(t),
only the n first rows of K (6.30) are needed. Let us consider the matrices αi

(n× n) composing the first n rows of matrix K in (6.30). Then

Δu(t) =
N2∑
i=1

αiz
−N2+iw(t + N2)

−
N2∑
i=1

αiGipΔu(t− 1)−
N2∑
i=1

αiFiy(t) (6.31)

Substituting Δu(t) into the CARIMA model equation, the closed-loop rela-
tionship can be obtained

6.9 Multivariable MPC and Transmission Zeros 169

(Ã + B
∑N2

i=1 αiGipz
−1B−1Ã + B

∑N2
i=1 αiFiz

−1)y(t)

= B
∑N2

i=1 αiz
−N2+iw(t + N2 − 1)

(I + B
∑N2

i=1 αiGipz
−1B−1)ξ(t) (6.32)

which shows that the closed-loop ÃCL matrix is given by

ÃCL = Ã + B
N2∑
i=1

αiΓiz
−1B−1Ã + B

N2∑
i=1

αiFiz
−1 (6.33)

When the control weight is zero (λ = 0), (6.30) can be written as

u = (GT G)−1GT (w − f) (6.34)

Also, if the prediction horizon and the control horizon have the same value,
Nu = N2 −N1 + 1, (GT G)−1GT is given by G−1, whose first n rows are:[

G−1
0 , 0, 0, . . . , 0

]
(6.35)

That is, α1 = G−1
0 and αi = 0 for i �= 1. Consequently, using (6.33) and

(6.35)

ÃCL = Ã + BG−1
0 Gipz

−1B−1Ã + BG−1
0 F1z

−1 (6.36)

Recalling from Section 6.1.1 that F1 = z(I−Ã), E1 = I, G1 = G0+G1pz
−1 ⇒

G1pz
−1 = B−G0 and introducing them in (6.36):

ÃCL = Ã + BG−1
0 (B−G0)B−1Ã + BG−1

0 z(I− Ã)z−1

= Ã + BG−1
0 BB−1Ã− BG−1

0 G0B−1Ã + BG−1
0 z(I− Ã)z−1

= BG−1
0 (6.37)

The reference to output closed-loop dynamic is given by:

B(z−1)G−1
0 y(t) = B(z−1)G−1

0 w(t) (6.38)

which shows that the relationship between outputs and references is the
identity matrix; consequently there will be internal instability due to the can-
cellation of the OUD zeros of the process with the OUD poles of the controller.

Using the polynomial matrices R(z−1), S(z−1) and T(z−1) as shown in
Figure 6.13, Equation (6.31) can be written as

RΔu(t) = −Sy(t) + Tw(t) (6.39)

The closed-loop equation from e(t) to u(t) is given by

RΔu(t) = Te(t) (6.40)

170 6 Multivariable Model Predictive Control

w(t) + e(t) u(t) y(t)

T S-1

R T-1

A B
-1

-

Fig. 6.13. Closed-loop block diagram

The polynomial matrix R(z−1) contains the poles of the controller; when λ =
0 and Nu = N2 −N1 + 1 this can be written as

R = (I +
N2∑
i=1

αiΓiz
−1) = G−1

0 B(z−1) (6.41)

Consequently, matrix B(z−1) containing the OUD zero of plant model (2.4) is
included in R and, therefore, the controller is unstable because some of its
poles are outside the unit disc.

In the case of convolution models, which are frequently employed in in-
dustry in the MPC context, the OUD transmission zeros will appear as con-
troller poles when λ = 0 and the prediction horizon and the number of con-
trol moves are equal.

Let us consider an (n-input × n-output) MIMO plant. When the control
weight is zero (λ = 0), the future control move sequence can be,

u+ = (HT
1 H1)−1HT

1 (w − f) (6.42)

Recall that the prediction equations are y = H1u+ + H2u− + y(t). The
free response f can be calculated as f = H2u− + y(t). By substituting (6.42)
into the process model and considering equal control and cost horizons Nu =
N2 −N1 + 1 (and H1 is non singular),

u+ = H−1
1 (w−H2u−−y(t)) = H−1

1 (w−y+H1u+) ⇒ H−1
1 w = H−1

1 y (6.43)

which shows that the relationship between outputs and references is the
identity matrix and consequently it will be internally unstable due to can-
cellation of unstable transmission zeros of the process.

6.9.1 Simulation Example

As an example we are going to consider a nonlinear quadruple-tank process
[100] shown in Figure 6.14. The target is to control the level of the two lower

6.9 Multivariable MPC and Transmission Zeros 171

tanks with two pumps. The process inputs are v1 and v2 and the process
outputs are y1 and y2. The model based on mass balances and Bernoulli’s
law is given by

dh1

dt
= − a1

A1

√
2gh1 +

a3

A1

√
2gh3 +

γ1k1

A1
v1

dh2

dt
= − a2

A2

√
2gh2 +

a4

A2

√
2gh4 +

γ2k2

A2
v2

dh3

dt
= − a3

A3

√
2gh3 +

(1− γ2)k2

A3
v2

dh4

dt
= − a4

A4

√
2gh4 +

(1− γ1)k1

A4
v1 (6.44)

where Ai is the cross section of the tank, ai is the cross section of the hole, hi

is the water level and g is the acceleration of gravity. The control signals are
voltages (vi) applied to pumps i and the corresponding flows are kivi. The
parameters γ1, γ2 ∈ (0, 1) are how the valves are set. The flow to tank 1 is
γ1k1v1 and the flow to tank 4 is (1 − γ1)k1v1 and similarly for tanks 2 and
3. The measured level signals y1 and y2 are kch1 and kch2. The parameter
values of the process are given in Table 6.2.

Table 6.2. Parameter values of the process

A1, A2 cm2 28.000
A2, A4 cm2 32.000
a1, a3 cm2 0.071
a2, a4 cm2 0.057

kc
V

cm 0.500
g cm

s2 981.000

The nonlinear process is studied at two operating points: P− at which the
system has all its transmission zeros inside the unit disk and P+ at which the
process has unstable transmission zeros. The initial conditions of the chosen
operating points are shown in Table 6.3. After linearizing the model (6.44)
about the operating points P− and P+, the physical model gives the two
following transfer matrices:

G−(s) =

⎡⎢⎢⎢⎣
2.6

62s + 1
1.5

(23s + 1)(62s + 1)

1.4
(30s + 1)(90s + 1)

2.8
90s + 1

⎤⎥⎥⎥⎦ (6.45)

and

172 6 Multivariable Model Predictive Control

Pump 2Pump 1

Tank 1 Tank 2

Tank 3 Tank 4

y2y1

v2v1

Fig. 6.14. Schematic diagram of the quadruple-tank process

Table 6.3. Initial conditions

P− P+

h0
1, h

0
2 cm (12.4, 12.7) (12.44, 13.17)

h0
3, h

0
4 cm (1.8, 1.4) (4.73, 4.98)

v0
1 , v0

2 V (3.00, 3.00) (3.15, 3.15)

k1, k2
cm3

Vs (3.33, 3.35) (3.14, 3.29)

γ1, γ2 (0.70, 0.60) (0.43, 0.34)

G+(s) =

⎡⎢⎢⎢⎣
1.5

63s + 1
2.5

(39s + 1)(63s + 1)

2.5
(56s + 1)(91s + 1)

1.6
91s + 1

⎤⎥⎥⎥⎦ (6.46)

The discretization has been made with a sampling rate Ts = 2s. At first
sight, systems (6.45) and (6.46) are quite similar and the control engineer can
expect transmission zeros in both systems to be close; however, the two oper-
ating points P− and P+ have the transmission zeros showed in Table 6.4. The
presence of the OUD zeros is not a rare situation in multivariable processes.
In order to illustrate the problem, Figure 6.15 shows the performance of the

Table 6.4. Transmission zeros

P− P+

Zeros(s) (−0.0595,−0.0173) (−0.0565, 0.0130)
Zeros(z) (0.8878, 0.9660) (0.8932, 1.0263)

6.9 Multivariable MPC and Transmission Zeros 173

0 50 100 150 200
6

6.5

7

7.5

8

Time [s]

O
ut

pu
t y

1

0 50 100 150 200

6.5

7

7.5

Time [s]

O
ut

pu
t y

2

0 50 100 150 200
3

4

5

6

7

Time [s]

C
on

tr
ol

 s
ig

na
l u

1

0 50 100 150 200
2

3

4

5

6

7

Time [s]

C
on

tr
ol

 s
ig

na
l u

2

Fig. 6.15. Output process with stable zeros G−

GPC at operating point P−. The control level of tanks y1 and y2 have a good
response without oscillations for changes in the level set points. That is, the
GPC can control the four tanks without problems at this operating point.

Let us now consider that the operating point is changed to P+, where
the process linear model exhibits OUD transmission zeros. Figure 6.16 shows
the GPC at operating point P+, the controller has been tuned with the same
parameters used in P−: N1 = 1, N2 = 40, Nu = 10 and λ = 0.1 and a perfect
linear model. It can be seen how a transmission zero outside the unit circle
in (6.46) deteriorates the performance considerably, making the controller
in Figure 6.16 unstable. A new tuning around the usual parameters of the
Generalized Predictive Controller such as was used at operating point P−
cannot achieve a stable behaviour in MIMO systems with OUD zeros.

6.9.2 Tuning MPC for Processes with OUD Zeros

It would seem that the obvious way of avoiding the cancellation of the OUD
zeros would be by increasing the control weight λ. However, it has been
shown that the zero does not get cancelled exactly by a controller pole when
λ �= 0, however, poles close to the process zeros appear. By increasing λ the
poles start shifting into the unit circle but the price that has to be paid is a

174 6 Multivariable Model Predictive Control

0 50 100 150 200
6

6.5

7

7.5

8

Time [s]

O
ut

pu
t y

1

0 50 100 150 200
6

6.5

7

7.5

8

Time [s]

O
ut

pu
t y

2

0 50 100 150 200
3

4

5

6

7

Time [s]

C
on

tr
ol

 s
ig

na
l u

1

0 50 100 150 200
3

4

5

6

7

Time [s]

C
on

tr
ol

 s
ig

na
l u

2

Fig. 6.16. Output process with OUD zeros G+

very high λ and a very sluggish controller, as shown in [75], where it is also
shown that more effective results are obtained for MIMO systems with OUD
zeros by setting a big predictive horizon and a short control horizon.

An important characteristic of OUD transmission zeros of MIMO systems
is that they are hidden. It is not possible to detect an OUD zero by a simple
inspection. The poles of MIMO systems have a clear relationship with the
pole of each transfer function but the zeros of multivariable processes are
more subtle characteristics of the systems that are not easy to discern. This
is even more difficult with convolution models extensively used in industry.
Models that may look very simple (see Exercise 6.1) may have this hidden
trap inside.

In order to achieve stable behaviour for MPC, the rule of thumb is to tune
the GPC with a big predictive horizon more than twice the time constant of
the OUD zero, the control horizon must be smaller than the predictive hori-
zon, and the difference between the predictive and the control horizon helps
avoid the situation shown in [74]. Control weight λ must be big enough to
ensure soft control signals. Figure 6.17 shows a GPC with the process at op-
erating point P+ and the following tuning parameters: N1 = 1, N2 = 78,
Nu = 20 and λ = 25. It can be seen how the new parameters achieve stable
behaviour, though the performance is quite slow compared to the response
obtained at operating point P−.

6.10 Exercises 175

0 100 200 300
6

6.5

7

7.5

8

8.5

Time [s]

O
ut

pu
t y

1

0 100 200 300
6.5

7

7.5

Time [s]

O
ut

pu
t y

2

0 100 200 300
2.6

2.8

3

3.2

3.4

3.6

Time [s]

C
on

tr
ol

 s
ig

na
l u

1

0 100 200 300
3

3.5

4

4.5

Time [s]

C
on

tr
ol

 s
ig

na
l u

2

Fig. 6.17. Output process with OUD zeros G+

Control engineers should be aware of the presence of OUD transmission
zeros in MIMO plants. This kind of system deteriorates the performance of
MPC, and instability problems may arise when MPC tries to achieve its per-
formance by cancelling the OUD zeros with OUD poles. Increasing the control
weight, as frequently proposed in literature, may help to avoid instability but
the price to be paid is a sluggish controller. Using other stabilization tech-
niques such a terminal weight or using a cost horizon much higher than the
control horizon (which is somewhat similar to using a terminal weight) has
proven to be more effective.

6.10 Exercises

6.1. Consider the stirred tank reactor (Figure 6.1) where the manipulated
variables U1(s) and U2(s) are the feed flow rate and the flow of coolant in
the jacket, respectively. The controlled variables Y1(s) and Y2(s) are the efflu-
ent concentration and the reactor temperature, respectively.

The continuous model is:[
y1(t)
y2(t)

]
=

⎡⎣ 1
1+0.1s

5
1+s

1
1+0.5s

2
1+0.4s

⎤⎦[u1(t)
u2(t)

]

176 6 Multivariable Model Predictive Control

1. Choose an appropriate sampling time (5 times smaller than the fastest
time constant) and appropriate control horizons. Control the reactor with
control weight λ = 0 and add a little noise. Use a long simulation time
and comment on the results.

2. Compute the transmission zeros by solving |G(s)| = 0. Comment on the
results obtained in the previous point.

3. Change λ and the rest of the GPC parameters and discuss the simulated
results.

6.2. Obtain a step response model of the previous plant and apply a DMC
with λ = 0. Comment on the results.

6.3. For the same plant: apply the tuning rules given at the end of Section
6.9.2 and comment on the results.

6.4. The continuous model of a 747 at landing configuration (weight of
564,000 lb and u0 = 221 ft/sec) is given by:⎡⎢⎢⎣

u̇
ẇ
q̇

θ̇

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−0.021 0.122 0 −0.322
−0.209 −0.530 2.21 0
0.017 −0.164 −0.412 0

0 0 1 0

⎤⎥⎥⎦
⎡⎢⎢⎣

u − uw

w − ww

q
θ

⎤⎥⎥⎦ +

⎡⎢⎢⎣
0.010 1

−0.064 −0.44
−0.378 0.544

0 0

⎤⎥⎥⎦ [et
]

1. Obtain the discrete model for a sampling time of 0.1 second.
2. Use the state space controller to simulate the effect of a change in the

airspeed setpoint from 0 to 10 ft/sec (without changes in the climb rate
setpoint).

3. Use the state space controller to simulate the effect of a change in the
climb-rate setpoint from 0 to 5 ft/sec without changes in the airspeed
setpoint).

4. Compare the results with those obtained in Section 6.4.

6.5. Given the airplane model of Section 6.4:

1. Obtain the step response to both inputs and calculate the gkj
i coefficients.

2. Use the companion software to implement a DMC and repeat the experi-
ments done in Section 6.4.

3. Repeat the experiments when the setpoint for climb-rate is a ramp of 10
ft/sec per second from t = 0 to 60 samples and is kept constant until the
end of the experiment. The airspeed setpoint remains 0 all the time.

7

Constrained Model Predictive Control

The control problem was formulated in the previous chapters considering
all signals to possess an unlimited range. This is not very realistic because
in practice all processes are subject to constraints. Actuators have a limited
range of action and a limited slew rate, as is the case of control valves limited
by a fully closed and fully open position and a maximum slew rate. Con-
structive or safety reasons, as well as sensor range, cause bounds in process
variables, as in the case of levels in tanks, flows in pipes, and pressures in
deposits. Furthermore, in practice, the operating points of plants are deter-
mined to satisfy economic goals and lie at the intersection of certain con-
straints. The control system normally operates close to the limits and con-
straint violations are likely to occur. The control system, especially for long-
range predictive control, has to anticipate constraint violations and correct
them in an appropriate way. Although input and output constraints are ba-
sically treated in the same way, as is shown in this chapter, the implications
of the constraints differ. Output constraints are mainly due to safety reasons
and must be controlled in advance because output variables are affected by
process dynamics. Input (or manipulated) variables can always be kept in
bound by the controller by clipping the control action to a value satisfying
amplitude and slew rate constraints.

This chapter concentrates on how to implement generalized predictive
controllers for processes with constrained input (amplitude and/or slew
rate) and output signals.

7.1 Constraints and MPC

Recall that the MPC control actions were calculated by computing vector u of
future control increments to minimize a quadratic objective function given
by:

J(u) =
1
2

uT Hu + bu + f0 (7.1)

E. F. Camacho et al., Model Predictive Control
© Springer-Verlag London Limited 2007

178 7 Constrained Model Predictive Control

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

u(t+1)

maxu

u max u(t)

u(t+1)

maxu

u max u(t)

cu u uc u

(a) (b)

Fig. 7.1. Constraints on the control signal

The optimal solution of this problem is found by solving the linear equa-
tion:

Hu = −b

In practice, the normal way of using an MPC is to compute u(t) as previ-
ously described and apply it to the process. If u(t) violates the constraint it is
saturated to its limits, by either the control program or the actuator. The case
of u(t + 1), · · · , u(t + N) violating the constraints is not even considered, as
in most cases these signals are not even computed.

This way of operating does not guarantee that the optimum will be ob-
tained when constraints are violated. The main purpose of GPC, which is to
apply the best possible control signal by minimizing expression (7.1), will not
be achieved.

To illustrate this point, consider the cases of constraint violations shown
in Figure 7.1 of an MPC problem with a control horizon of two. Figure 7.1(a)
shows the case where u(t) > umax. In this case the normal way of operat-
ing would be to apply umax to the process instead of uc where the minimum
of J is reached when restrictions are considered. In the case shown in fig-
ure 7.1(b), u(t) does not violate the constraints, and it would be applied to
the system instead of the optimum signal uc that should be applied when
constraints are taken into account.

Not considering constraints on manipulated variables to their full extent
may result in higher values of the objective function and thus in poorer per-
formance. However, manipulated variables can always be kept to their limits
by either the control program or the actuator, and this is not the main reason
for treating constraints in an appropriate way.

Violating the limits on the controlled variables may be more costly and
dangerous as it could cause damage to equipment and losses in production.
For example, in most batch reactors the quality of the production requires

7.1 Constraints and MPC 179

some of the variables to be kept within specified limits; violating these limits
may create a bad-quality product and in some cases the loss of the whole
batch. When the limits have been set because of safety reasons, the viola-
tion of these limits could cause damage to equipment, or spillage, or in most
cases the activation of the emergency system which will normally produce
an emergency stop of the process, losing, or delaying production, and a nor-
mally costly startup procedure.

Constraint violations on the output variables are not contemplated when
the only way of handling constraints is by clipping the manipulated vari-
ables. One of the main advantages of MPC, its prediction capabilities, is not
used to its full potential by this way of operating. Control systems, espe-
cially long-range predictive control, should anticipate constraint violations
and correct them in an appropriate way.

The constraints acting on a process can originate from amplitude limits
in the control signal, slew rate limits of the actuator and limits on the output
signals, and can be described, respectively, by:

U ≤ u(t) ≤ U ∀t
u ≤ u(t)− u(t− 1) ≤ u ∀t

y ≤ y(t) ≤ y ∀t

For an m-input n-output process with constraints acting over a receding
horizon N, these constraints can be expressed as:

1 U ≤ Tu + u(t− 1) 1 ≤ 1 U
1 u ≤ u ≤ 1 u

1 y ≤ Gu + f ≤ 1 y

where l is an (N × n)×m matrix formed by N m×m identity matrices and
T is a lower triangular block matrix whose nonnull block entries are m ×m
identity matrices. The constraints can be expressed in condensed form as:

R u ≤ c

with:

R =

⎡⎢⎢⎢⎢⎢⎢⎣
IN×N

−IN×N

T
−T
G
−G

⎤⎥⎥⎥⎥⎥⎥⎦ c =

⎡⎢⎢⎢⎢⎢⎢⎣

l u
−l u

l U − lu(t− 1)
−l U + lu(t− 1)

l y − f
−l y + f

⎤⎥⎥⎥⎥⎥⎥⎦
The constraints on the output variables of the type y ≤ y(t) ≤ y are

normally imposed because of safety reasons. Other types of constraint can

180 7 Constrained Model Predictive Control

be set on the process-controlled variables to force the response of the process
to have certain characteristics, as shown in [114], and can also be expressed
in a similar manner.

Band Constraints

Sometimes one wishes the controlled variables to follow a trajectory within
a band. In the food industry, for example, it is very usual for some opera-
tions to require a temperature profile that has to be followed with a specified
tolerance.

This type of requirement can be introduced in the control system by forc-
ing the output of the system to be included in the band formed by the speci-
fied trajectory plus or minus the tolerance. That is:

y(t) ≤ y(t) ≤ y(t)

These constraints can be expressed in terms of the increments of the ma-
nipulated variables as follows:

Gu ≤ y − f

Gu ≥ y − f

Overshoot Constraints

In some processes overshoots are not desirable for different reasons. In the
case of manipulators, for example, an overshoot may produce a collision
with the workplace or with the piece it is trying to grasp.

Overshoot constraints have been treated in [114] and are very easy to
implement. Every time a change is produced in the setpoint, which is con-
sidered to be kept constant for a sufficiently long period, the following con-
straints are added to the control system

y(t + j) ≤ w(t) for j = No1 · · ·No2

where No1 and No2 define the horizon where the overshoot may occur (No1

and No2 can always be made equal to 1 and N if this is not known). These
constraints can be expressed in terms of the increments of the manipulated
variables as follows:

Gu ≤ 1w(t)− f

Monotonic Behaviour

Some control systems tend to exhibit oscillations, known as kickback, on the
controlled variables before they have gone over the setpoints. These oscilla-
tions are not desirable in general because, amongst other reasons, they may

7.1 Constraints and MPC 181

cause perturbations in other processes. Constraints can be added to the con-
trol system to avoid this type of behaviour by imposing a monotonic be-
haviour on the output variables. Each time a setpoint changes and is again
considered to be kept constant for a sufficiently long period, new constraints
with the following form are added to the control system:

y(t + j) ≤ y(t + j + 1) if y(t) < w(t)
y(t + j) ≥ y(t + j + 1) if y(t) > w(t)

These type of constraints can be expressed in terms of the manipulated vari-
ables as follows

Gu + f ≤
[
0T

G′

]
u +
[

y(t)
f ′

]
where G′ and f ′ result from clipping the last n rows (n is the number of
output variables) of G and f . These constraints can be expressed as⎡⎢⎢⎢⎣

G0 0 · · · 0
G1 −G0 G0 · · · 0

...
...

. . .
...

GN−1 −GN−2 GN−2 −GN−3 · · · G0

⎤⎥⎥⎥⎦u ≤

⎡⎢⎢⎢⎣
y(t)− f1
f1 − f2

...
fN−1 − fN

⎤⎥⎥⎥⎦
Nonminimum Phase Behaviour

Some processes exhibit a type of nonminimum phase behaviour. That is,
when the process is excited by a step in its input the output variable tends
to first move in the opposite direction prior to moving to the final position.
This kind of behaviour may not be desirable in many cases.

Constraints can be added to the control system to avoid this type of be-
haviour. The constraints take the form

y(t + j) ≥ y(t) if y(t) < w(t)
y(t + j) ≤ y(t) if y(t) > w(t)

These constraints can be expressed in terms of the increments of the ma-
nipulated variables as follows:

Gu ≥ 1y(t)− f

Actuator Nonlinearities

Most actuators in industry exhibit dead zones and other type of nonlineari-
ties. Controllers are normally designed without taking into account actuator

182 7 Constrained Model Predictive Control

nonlinearities. Because of the predictive nature of MPC, actuator nonlineari-
ties can be dealt with as suggested in [53].

Dead zones can be treated by imposing constraints on the controller in
order to generate control signals outside the dead zone, say (ud, ud) for a
dead zone on the slew rate of actuators and (Ud, Ud) for the dead zone on
the amplitude of actuators. That is:

1 Ud ≥ Tu + u(t− 1) 1 ≥ 1 Ud

1 ud ≥ u ≥ 1 ud

The feasible region generated by this type of constraint is nonconvex and
the optimization problem is difficult to solve as pointed out in [53].

Terminal State Equality Constraints

These types of constraints appear when applying CRHPC [61] where the
predicted output of the process is forced to follow the predicted reference
during a number of sampling periods m after the costing horizon Ny . The
terminal state constraints can be expressed as a set of equality constraints
on the future control increments using the prediction equation for ym =
[y(t + Ny + 1)T · · · y(t + Ny + m)T]T :

ym = Gmu + fm

If the predicted response is forced to follow the future reference setpoint wm,
the following equality constraint can be established:

Gmu = wm − fm

It will be seen later in this chapter that the introduction of this type of con-
straint simplifies the problem reducing the amount of computation required.

All constraints treated so far can be expressed as Ru ≤ c and Au = a.
The MPC problem when constraints are taken into account consists of mini-
mizing Expression (7.1) subject to a set of linear constraints; that is, the op-
timization of a quadratic function with linear constraints, what is usually
known as a quadratic programming problem (QP).

Terminal Set Constraints

In some cases, the final state (i.e. the state at the end of the predicting hori-
zon) of the MPC problem is forced to belong to a terminal set. Terminal set
constraints can be imposed by operational conditions or as a way of guaran-
teeing stability (see Section 9.5). The terminal set induces a set of constraints
over the vector of control moves. Let us consider that the terminal region is
defined by the polyhedron:

7.1 Constraints and MPC 183

RT x(t + N) ≤ rT (7.2)

The vector of predicted states can be expressed as

x = Guu + Fxx(t) (7.3)

taking the last n rows (n = dim(x(t))) of (7.3) x(t + N) = guN
u + fxN

x(t),
where guN

and fxN
are the last n rows of Gu and Fx, respectively. Introducing

x(t + N) in (7.2)
RT RT (guN

u + fxN
x(t)) ≤ rT (7.4)

which shows that a polytopic terminal region induces a set of linear con-
straints in the vector of control moves.

7.1.1 Constraint General Form

All the constraints seen so far in this chapter, except for the dead zones of the
actuators, can be described by

Ru ≤ r + Vz

where z is a vector composed of present and past signals. In the case of state
space representation, z is x(t), in the case of the CARIMA or CARMA models z
is composed of the present output and finite series of past inputs and outputs
(a way of representing the state). In the case of step or impulse response
models, z is composed of the present output and a finite series of past inputs
(another representation of the process state). In all cases, since the past output
and output signals can be considered as a representation of the state, the
constraints can be expressed by the general form:

Ru ≤ r + Vx(t) (7.5)

Notice that R, r, and V depend on process parameters and signal bounds
and have to be recomputed only when they change (not very frequently).
The right-hand side of the inequality constraints (7.5) depends on the pro-
cess state that changes, in general, every sampling time, and it has to be re-
computed accordingly.

7.1.2 Illustrative Examples

Constraints can be included in Generalized Predictive Control to improve
performance, as demonstrated in [114]. Ordys and Grimble [161] have indi-
cated how to analyze the influence of constraints on the stochastic charac-
teristics of signals for a system controlled by a GPC algorithm. In order to
illustrate how constraints can be used to improve the performance of differ-
ent types of processes some simple illustrative examples are presented.

184 7 Constrained Model Predictive Control

0.0 20.0 40.0 60.0 80.0 100.0
Samples

0.00

0.10

0.20

0.30

0.40

0.50

Ou
tpu

ts
an

d R
efe

ren
ce

s

y
y

1

2

0.0 20.0 40.0 60.0 80.0 100.0
Samples

-0.10

0.00

0.10

0.20

0.30

0.40

Inp
uts

u
u

1

2

Fig. 7.2. Constraints in the manipulated variables

Input Constraints

In order to show the influence of constraints on the slew rate and on the
amplitude of the manipulated variable, consider the reactor described in the
previous chapter given by the following left fraction matrix description:

A(z−1) =
[

1− 1.8629z−1 + 0.8669z−2 0
0 1− 1.8695z−1 + 0.8737z−2

]
B(z−1) =

[
0.0420− 0.0380z−1 0.4758− 0.4559z−1

0.0582− 0.0540z−1 0.1445− 0.1361z−1

]
The constraints considered are maximum slew rate for the manipulated

variables of 0.2 per sampling time and maximum value of -0.3 and 0.3.

The results obtained are shown in Figure 7.2. If we compare the results
with the ones obtained in Chapter 6 (unconstrained manipulated variables)
we can observe how the introduction of the constraints on the manipulated
variables has produced a slower closed-loop response than was expected.

7.1 Constraints and MPC 185

0.0 50.0 100.0 150.0
Samples

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ou
tpu

ts

Unconstrained
Overshoot constraints

Fig. 7.3. Overshoot constraints

Overshoot Constraints

The system considered for this example corresponds to a discretized version
of an oscillatory system G(s) = 50/(s2 + 25), taken from [114]. The discrete
transfer function for a sampling time of 0.1 second is:

G(z−1) =
0.244835(z−1 + z−2)
1− 1.75516z−1 + z−2

The results obtained when applying an unconstrained GPC with a pre-
diction horizon and a control horizon of 11 and a weighting factor of 50 are
shown in Figure 7.3. As can be seen, the output shows a noticeable overshoot.
The response obtained when overshoot constraints are taken into account is
shown in the same figure. As can be seen, the overshoot has been eliminated.

Monotonic Behaviour

Although the overshoot has been eliminated from the process behaviour in
the previous example by imposing the corresponding constraint, the sys-
tem exhibits oscillations prior to reaching the setpoints (kickback). In order
to avoid this type of behaviour, monotonic behaviour constraints were im-
posed. The results obtained for a prediction horizon and a control horizon of
11 and a weighting factor of 50 are shown in Figure 7.4. As can be seen, the
oscillations have practically been eliminated. Notice that the prediction and
control horizon used are quite large. The reason for this is that the oscilla-
tory mode of the open-loop system has to be cancelled and a large number
of control moves has to be considered to obtain a feasible solution.

Nonminimum Phase Process

In order to illustrate how constraints may be used to shape the closed loop
behaviour consider the nonminimum phase system given by the following
transfer function:

186 7 Constrained Model Predictive Control

0.0 50.0 100.0 150.0
Samples

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Output
Reference
Input

Fig. 7.4. Monotonic behaviour constraints

0.0 50.0 100.0 150.0
Samples

-1.0

0.0

1.0

2.0

Output
Input

Fig. 7.5. Nonminimum phase behaviour

G(s) =
1− s

1 + s

If the system is sampled at 0.3 second, the discrete transfer function is given
by

G(z−1) =
−1 + 1.2592z−1

1− 0.7408z−1

The response obtained for step changes in the reference when a GPC with a
prediction horizon of 30 a control horizon of 10 and a weighting factor of 0.1
is applied to the system is shown in figure 7.5. As can be seen, the closed-loop
behaviour exhibits the typical nonminimum phase behaviour with an initial
peak in the opposite direction to the setpoint change. The responses obtained
when the inverse peaks are limited by 0.05 are shown in Figure 7.6. As can
be seen, the system is slower but the peaks have been eliminated. Figure
7.6 also shows how the control signal generated grows slowly to avoid the
inverse peaks.

7.2 Constraints and Optimization 187

0.0 50.0 100.0 150.0
Samples

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

Output
Input

Fig. 7.6. Nonminimum phase constraints

7.2 Constraints and Optimization

The implementation of MPC in industry is not a trivial matter and is certainly
a more difficult task than the commissioning of classical control schemes
based on PID controllers. An MPC application is more costly, time consuming
and requires personnel with a better training in control than implementing
classical control schemes. For a start, a model of the process has to be found,
and this requires a significant number of plant tests, which in most cases
implies taking the plant away from its nominal operating conditions. The
control equipment needs, in some cases, a more powerful computer and bet-
ter instrumentation, and commercial MPC packages are expensive. Further-
more, control personnel need appropriate training for commissioning and
using MPC.

In spite of these difficulties MPC has proven itself to be economically prof-
itable by reducing operating costs or increasing production and is one of the
most successful advanced control techniques used in industry. The reasons
for this success depend on the particular application but are related to the
abilities of MPC to optimize cost functions and treat constraints. The follow-
ing reasons can be mentioned:

• optimization of operating conditions: MPC optimizes a cost function which
can be formulated to minimize operating costs or any objective with eco-
nomic implications.

• optimization of transitions: The MPC objective function can be formulated
to optimize a function which measures the cost of taking the process from
one operating point to another, with faster process start-up or commis-
sioning times.

• minimization of error variance: An MPC can be formulated to minimize
the variance of the output error. A smaller variance will produce econom-
ical benefits for the following reasons:
– A smaller variance may increase the quality of the product as well as

its uniformity.

188 7 Constrained Model Predictive Control

Pmax

P

P

P

QQ Q

1

2

1 2
t

Fig. 7.7. Optimal operating point and constraints

– A smaller variance will allow the process to operate closer to the op-
timal operating conditions. As most processes are constrained, the
optimal operating points usually lie at the intersection of some con-
straints. Processes operating with a smaller error variance can operate
closer to the optimal operating points. Let us, as an example, consider
a process where the production (flow) is related to the operating pres-
sure as illustrated in Figure 7.7. Because of operating constraints, the
pressure is limited to pmax which is the optimal operating point con-
sidering production. It is obvious that the process cannot operate at
its limit because, due to perturbations, the process would be continu-
ously violating the pressure limits and in most cases emergency sys-
tems would shut down the process. If the control system is able to
keep the variance small, the setpoint can be established much closer
to the optimal operating point as shown in Figure 7.7.

• The explicit handling of constraints may allow the process to operate
closer to constraints and optimal operating conditions.

• The explicit considerations of constraints may reduce the number of con-
straint violations reducing the number of costly emergency shutdowns.

7.3 Revision of Main Quadratic Programming Algorithms

As was indicated in the previous section, the implementation of Gen-
eralized Predictive Controllers for processes with bounded signals requires
the solution of a quadratic programming (QP) problem; that is, an optimiza-
tion problem with a quadratic objective function and linear constraints. This
section is dedicated to revising some of the main QP techniques. It is not in-
tended to be an exhaustive description of all QP methods. There are other
techniques, such as the ones based on decreasing ellipsoid volume methods
that have been used in the GPC context [102] which are not described here.

7.3 Revision of Main Quadratic Programming Algorithms 189

7.3.1 The Active Set Methods

Equality Constraints

Although a set of inequality constraints is obtained when the GPC control
problem is formulated, the first part of the section is dedicated to equality
constraints because some of the methods for treating inequality constraints
reduce the problem to an equality constraint problem and because in some
cases, as in CRHPC [151], some equality constraints appear when the predic-
tion of the future process output is forced to follow exactly the future refer-
ence.

The equality constrained QP problem can be stated as

minimize
1
2
uT Hu + bT u + f0

subject to: Au = a

where A is an m × n matrix and a is an m vector. It is assumed that m < n
and that rank(A) = m.

A direct way of solving the problem is to use the constraints to express
m of the u variables as a function of the remaining n−m variables and then
to substitute them in the objective function. The problem is reduced to mini-
mizing a quadratic function of n−m variables without constraints.

Usually a generalized elimination method is used instead of a direct
elimination procedure. The idea is to express u as a function of a reduced
set of n−m variables: u = Ya+Zv, where Y and Z are n×m and n× (n−m)
matrices such that AY = I , AZ = 0 and the matrix [Y Z] has full rank. No-
tice that matrix Y can be interpreted as a generalized left inverse of AT and
that Zv is the null column space of AT .

If this substitution is made, the equality constraints hold and the objec-
tive function

J(v) =
1
2
[Ya + Zv]T H[Ya + Zv] + bT [Ya + Zv] + f0

=
1
2
vT ZT HZv + [bT + aT YT H]Zv + [

1
2
aT YT H + bT]Ya + f0

that is, an unconstrained QP problem of n−m variables. If the matrix ZT HZ
is positive definite, there is only one global optimum point that can be found
solving the linear set of equations

ZT HZv = −ZT (b + HYa)

Notice that if uk is a point satisfying the constraints Auk = a, any other
point u satisfying the constraints can be expressed as u = uk + Zv. Thus the
vector Ya can be made equal to any point satisfying the constraints. Vector v
can be expressed as the solution of the following linear equation

190 7 Constrained Model Predictive Control

ZT HZv = −ZT g(uk)

where g(uk) = Huk + b is the gradient of J(u) at uk.
A general way of obtaining appropriate Y and Z matrices is to choose an

(n−m)×n matrix W such that the matrix
[

A
W

]
is nonsingular. The inverse

can then be expressed as: [
A
W

]−1

= [Y Z]

It then follows that AY = I and AZ = 0.
If matrix W is chosen as [0 I], the method coincides with the direct elim-

ination method. Another way of choosing W is related to the active set
method that will be described later. The idea is to use inactive constraints
(ai) as the rows of W. If an inactive constraint present in W becomes active
(the rows of R where riu = ci), the corresponding row of W is transferred
to A. When an active constraint becomes inactive, the corresponding row of

A is transferred to W. By doing this, the inverse of matrix
[

A
W

]
need not be

recomputed to calculate Y and Z.

Inequality Constraints

As shown at the beginning of this chapter, the GPC of processes with bounded
signals results in a QP problem with linear inequality constraints.

The main idea of the active set method is to reduce the inequality con-
straint QP problem to a sequence of equality constraint QP problems that can
be solved using the techniques described previously.

Consider a feasible point u0; that is, Ru0 ≤ c and the set of active con-
straints (all the equality constraints and the rows of R where riu = ci). Form
matrix A and vector a by adding these rows (ri) and corresponding limits
(ci) and the equality constraints.

The problem can now be solved with the method described previously.
Suppose that u1 is the solution to the equally constrained QP problem. If u1

is feasible with respect to the inactive constraints, a test for optimality has
to be performed to check if the global optimum has been found. This can
be accomplished by verifying that the Lagrange multipliers for all equality
constraints λi ≥ 0. If this is not the case, the constraint with the most neg-
ative Lagrange multiplier is dropped from the active constraint set and the
previous steps are repeated.

If point u1 is not feasible with respect to the inactive constraints, the near-
est intersection from u0 of the line joining points u0 and u1 and the inactive
constraints is computed. The corresponding constraint is added to the active
set and the previous steps are repeated.

Notice that the method requires an initial feasible point. Procedures to
find a feasible point will be described later in this chapter.

7.3 Revision of Main Quadratic Programming Algorithms 191

7.3.2 Feasible Direction Methods

The key idea of feasible direction methods is to improve the objective func-
tion by moving from a feasible point to an improved feasible point until the
optimum is reached. Given a feasible point uk, an improving feasible direc-
tion dk is determined such that by taking a sufficiently small step along dk

the new point will be feasible and will have a smaller value for the objective
function.

There are various ways of generating feasible directions, one of the most
popular ones in terms of simplicity is the gradient projection method of
Rosen which is based on the following

Definition 7.1. An n × n matrix P is called a projection matrix if P = PT and
PP = P.

Consider the problem of minimizing J(u) subject to Au ≤ a and a fea-
sible point uk such that A1uk = a1 and A2uk < a2, where the matrices A1

and A2 and vectors a1 and a2 correspond to the active constraint and inactive
constraint sets, respectively.

Lemma 7.1. [15]: A nonzero direction d is an improving feasible direction if and
only if A1d ≤ 0 and ∇J(u)T d < 0.

Lemma 7.2. [15]: If P is a projection matrix such that P∇J(uk) �= 0 then d =
−P∇J(uk) is an improving direction of J at uk. Furthermore, if A1 has full rank
and if P is of the form P = I −AT

1 (A1AT
1)−1A1, then P is an improving feasible

direction.

The proof is straightforward:

∇J(u)T d = −∇J(u)T P∇J(u) = −∇J(u)T PT P∇J(u) = − |P∇J(u)|2 < 0

That is, d is an improving direction. Moreover, A1d = −A1P∇J(uk) =
−A1(I − AT

1 (A1AT
1)−1A1)∇J(uk) = 0; that is, A1d = 0 showing that d

is a feasible direction.
Once a nonnull improving feasible direction d has been found, function

J(u) is minimized along d. This can be done by making:

uk+1 = uk + λkd

The value of λk is computed as λk = min(λ∗, λmax), where λ∗ is the value
of λ which minimizes J(uk + λd) and λmax is the maximum value of λ such
that A2(uk + λd) ≤ a2.

Because J(u) is a quadratic function, these values can easily be com-
puted:

192 7 Constrained Model Predictive Control

J(uk + λd) =
1
2
(uk + λd)T H(uk + λd) + bT (uk + λd) + f0

=
1
2
dT Hdλ2 + (dT Huk + bT d)λ + J(uk)

The optimum can be found for:

λ∗ = −dT Huk + bT d
dT Hd

(7.6)

The value of λmax can be found as the minimum value of
cj−aT

j uk

aT
j d

for all j

such that aT
j and cj are the rows of the inactive constraint set and respective

bound, and such that aT
j d > 0.

The algorithm can be summarized as follows:

1. If the active constraint set is empty then let P = I; otherwise let P =
I−AT

1 (A1AT
1)−1A1, where A1 corresponds to the matrix formed by the

rows of A corresponding to active constraints.
2. Let dk = −P(Huk + b).
3. If dk �= 0 go to step 4; else:

3.1 If the active constraint set is empty then STOP else:

3.1.1 Let w = −(A1AT
1)−1A1(Huk + b)

3.1.2 If w ≥ 0 STOP, otherwise choose a negative component of w,
say wj and remove the corresponding constraint from the active
set. That is, remove row j from A1. Go to step 1.

4. Let λk = min(λ∗, λmax) and uk+1 = uk + λkdk. Replace k by k + 1 and
go to step 1.

7.3.3 Initial Feasible Point

Some of the QP algorithms discussed earlier start from a feasible point. If
the bounds on the process only affect the control signals, a feasible point can
very easily be obtained by making the control signal u(k + j) = u(k − 1)
(supposing that u(k − 1) is in the feasible region and that u ≤ 0 ≤ u). This
may not be a good starting point and may reflect in the efficiency of the
optimization algorithm. A better way of obtaining a starting solution could
be to use the feasible solution found in the previous iteration shifted one
sampling time and adding a last term equal to zero. That is, if uk−1 = [�u(k−
1),�u(k), · · · ,�u(k+n−2),�u(k+n−1)], the initial solution is made equal
to [�u(k),�u(k + 1), · · · ,�u(k + n− 1), 0].

If the reference has changed at instant k, this may not be a good starting
point and a better solution may be found by computing the unconstrained
solution and clipping it to fit the constraints.

7.3 Revision of Main Quadratic Programming Algorithms 193

If more complex constraints are present, such as output constraints, the
problem of finding an initial feasible solution cannot be solved as previously
described because just clipping the input signal may not work and a proce-
dure to find an interior point of a polytope has to be used. One of the simplest
way of finding an initial solution is by using the following algorithm:

1. Fix any initial point u0.
2. Let r = Ru0 − c.
3. If r ≤ 0 STOP. (u0 is feasible).
4. rmax=max(r).
5. Solve the following augmented optimization problem using an active set:

min
u′

J ′(u′) = min
u′

[0 0 · · · 0 1]u′

R′u′ ≤ c

with

u′ =
[
u
z

]
R′ = [R − 1]

and the starting point

u′ =
[

u0

rmax

]
.

Notice that this starting point is feasible for the augmented problem.
6. If J(u′) ≤ 0 for the solution, a feasible solution has been found for the

original problem; otherwise the original problem is unfeasible.

7.3.4 Pivoting Methods

Pivoting methods such as the Simplex have been widely used in linear pro-
gramming because these algorithms are simple to program and they finish
in a finite number of steps finding the optimum or indicating that no feasi-
ble solution exists. The minimization of a quadratic function subject to a set
of linear constraints can be solved by pivoting methods and they can be ap-
plied to MPC as shown by Camacho [38]. One of the most popular pivoting
algorithms is based on reducing the QP problem to a linear complementary
problem.

The Linear Complementary Problem

Let q and M be a given m vector and a given m×m matrix respectively. The
linear complementary problem (LCP) consists of finding two m vectors s and
z so that:

194 7 Constrained Model Predictive Control

s−Mz = q sz ≥ 0 < s, z >= 0 (7.7)

A solution (s, z) to this system is called a complementary basic feasible so-
lution if for each pair of the complementary variables (si, zi) one of them is
basic for i = 1, · · · ,m, where si and zi are the i entries of vectors s and z,
respectively.

If q is nonnegative, a complementary feasible basic solution can be found
by making s = q and z = 0. If this is not the case, Lemke’s algorithm [120]
can be used. In this algorithm an artificial variable z0 is introduced, leading
to:

s−Mz− l z0 = q, s, z, z0 ≥ 0, < s, z >= 0 (7.8)

We obtain a starting solution to the above system by making z0 = max(−qi),
z = 0, and s = q + l z0. If by a sequence of pivoting, compatible with the
system, the artificial variable z0 is driven to zero, a solution to the linear
complementary problem is obtained. An efficient way of finding a sequence
of pivoting that converges to a solution in a finite number of steps under
some mild assumptions on matrix M is by using Lemke’s algorithm from
the following tableau:

s z z0

s Im×m −M −l q

Other advantages of using Lemke’s algorithm are that the solution can
be traced out as the parameter z0 ↓ 0, no special techniques are required to
resolve degeneracy, and when applied to LCP generated by QP problems, the
unconstrained solution of the QP problem can be used as the starting point,
as will be shown later.

Transforming the GPC into an LCP

The constrained GPC problem can be transformed into an LCP problem as
follows:

Make u = l u + x. Constraints can then be expressed in condensed form
as

x ≥ 0 (7.9)
R x ≤ c

with

R =

⎡⎢⎢⎢⎢⎣
IN×N

T
−T
G
−G

⎤⎥⎥⎥⎥⎦ c =

⎡⎢⎢⎢⎢⎣
l (u− u)

l u− T l u− u(t− 1)l
−l u + T l u + u(t− 1)l

l y − f −G l u
−l y + f + G l u

⎤⎥⎥⎥⎥⎦ (7.10)

7.3 Revision of Main Quadratic Programming Algorithms 195

Equation (7.1) can be rewritten as

J =
1
2
xT H x + a x + f1 (7.11)

where a = b + u lT H and f1 = f0 + u2 lT H l + b u.
Denoting the Lagrangian multiplier vectors of the constraints x ≥ 0 and

Rx ≤ c by v and v1, respectively, and denoting the vector of slack variables
by v2, the Karush-Kuhn-Tucker conditions (KKT) [15] can be written as

R x + v2 = c (7.12)
−H x−RT v + v1 = a

xT v1 = 0, vT v2 = 0
x,v,v1,v2 ≥ 0

These expressions can be rewritten as:

[
Im×m 0m×N 0m×m R
0N×m IN×N −RT −H

] ⎡⎢⎢⎣
v2

v1

v
x

⎤⎥⎥⎦ =
[
c
a

]
(7.13)

The Kuhn-Tucker conditions can be expressed as a linear complementary
problem s−Mz = q, sT z = 0, s, z ≥ 0 with:

M =
[

0 −R
RT H

]
q =
[
c
a

]
s =
[
v2

v1

]
z =
[
v
x

]
(7.14)

This problem can be solved using Lemke’s algorithm by forming the fol-
lowing tableau

v2 v1 v x z0

v2 Im×m 0m×N 0m×m R −l c
v1 0N×m IN×N −RT −H −l a

Although the algorithm will converge to the optimum solution in a finite
number of steps as matrix H is positive definite [15], it needs a substantial
amount of computation. One of the reasons for this is that the x variables in
the starting solution of Lemke’s algorithm are not part of the basis. That is,
the algorithm starts from the solution x = 0 which may be far away from
the optimum solution. The efficiency of the algorithm can be increased by
finding a better starting point.

If Equation (7.13) is multiplied by
[
Im×m R H−1

0N×m −H−1

]
, we have:

[
Im×m RH−1 −RH−1RT 0m×N

0N×m −H−1 H−1RT IN×N

] ⎡⎢⎢⎣
v2

v1

v
x

⎤⎥⎥⎦ =
[
c + RH−1a
−H−1a

]
(7.15)

196 7 Constrained Model Predictive Control

The vector on the right-hand side of Equation (7.15) corresponds to the
vector of slack variables for the unconstrained solution and to the uncon-
strained solution, respectively. Furthermore, Equation (7.15) shows that if
Lemke’s algorithm is started from this point, all the x variables are in the
basis. In most cases only a few constraints will be violated for the uncon-
strained solution of the GPC problem. Thus, the constrained solution will be
close to the initial condition and the number of iterations required should
decrease.

The algorithm can be described as follows:

1. Compute the unconstrained solution xmin = −H−1a.
2. Compute v2 min = c − Rxmin. If xmin and v2 min are non negative then

stop with u(t) = x1 + u + u(t− 1).
3. Start Lemke’s algorithm with x and v2 in the basis with the following

tableau:
v2 x v v1 z0

v2 Im×m 0m×N RH−1RT RH−1 −l v2min

x 0N×m IN×N H−1RT −H−1 −l xmin

4. If x1 is not in the first column of the tableau, make it zero. Otherwise give
it the corresponding value.

5. u(t) = u(t− 1) + u + x1.

7.4 Constraints Handling

In some cases, depending on the type of constraints acting on the process,
some advantages can be obtained from the particular structure of the con-
straint matrix R. This section deals with the way in which this special type
of structure can be used to improve the efficiency of the QP algorithms.

7.4.1 Slew Rate Constraints

When only slew rate constraints are taken into account, the constraints can
be expressed as: [

I
−I

]
u ≤
[

u
−u

]

Active Set Methods

It can be seen that the active constraint matrix A can be expressed, after ap-
propriate permutations to keep the active bounds on the m first variables,
as

AT = Y =
[
I
0

]
m

n−m
Z = V =

[
0
I

]
m

n−m

7.4 Constraints Handling 197

Matrix H can be partitioned, after reordering, as

H
[
H11H12

H21H22

]
where H11 is an m×m matrix. The linear system to be solved is

ZT HZv = −ZT (b + HYa) = H22v = −b2 −H22a2

that is, no calculations are needed for the generalized elimination method
other than reordering the variables and corresponding matrices.

Rosen’s Gradient Projection Method

The active constraint matrix A1 will have m rows, corresponding to the m
values of �u(k + j) which are bounded. Each of the rows of A1 will have
all its elements equal to zero except element j which will be equal to 1 if the
bound corresponds to the upper limit or -1 if it is bounded by the lower limit.
The product A1AT

1 is then:

(A1AT
1)ij =

N∑
l=1

ailajl =
{

= 1 if i = j and constraint j is active
= 0 otherwise

That is, an m×m identity matrix. The projection matrix P is then:

P = I−AT
1 A1

It can then easily be seen [194] that the projection matrix can now be ex-
pressed by:

pij =
{

= 0 when i �= j or one of the bounds on variable � u(k + j) is active
= 1 when i = j and neither bound on variable � u(k + j) is active

The search direction is given by:

di =
{

= 0 when one of the bounds on variable � u(k + j) is active
= −gi when i = j and neither bound on variable � u(k + j) is active

The value of λmax can easily be found by:

λmax = min
[
min

j

(
u−�u(k + j)

dj

∣∣∣∣ dj > 0
)

,min
j

(
u−�u(k + j)

dj

∣∣∣∣ dj < 0
)]

The computation of vector w, which is necessary to check the Kuhn-
Tucker condition, can be written as w = −A1g. The stopping criterion is
also considerably simplified, and it can be stated as: for all active constraints
j check that gj ≤ 0 if j corresponds to an upper bound otherwise check that
gj ≥ 0.

198 7 Constrained Model Predictive Control

7.4.2 Amplitude Constraints

When the only constraints present are the maximum and minimum value of
the control signals u(k + j), the constraints can be expressed as

1u ≤ Tu− 1u(k − 1)) ≤ 1u

or
1(u− u(k − 1)) ≤ Tu ≤ 1(u− u(k − 1))

where matrix T is a lower triangular matrix whose entries are ones, and 1 is
a vector composed of ones the constraint matrix takes the form:

R =
[

T
−T

]
Although some advantages can be gained from the particular shape of

the constraint matrix, the GPC can be reformulated to reduce the case to the
much simpler one seen in the previous section.

Recall from Chapter 4 that the optimal predictions for the process output
can be expressed as: y = Gu + f . The vector of future control increments is
given by

u =

⎡⎢⎢⎢⎣
u(k)− u(k − 1)
u(k + 1)− u(k)

...
u(k + N)− u(k + N − 1)

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

u(k)
u(k + 1)

...
u(k + N)

⎤⎥⎥⎥⎦−
⎡⎢⎢⎢⎣

u(k − 1)
0
...
0

⎤⎥⎥⎥⎦ = DU− f1

If this substitution is made in the equation of future predictions we get

y = G(DU− f1) + f0 = G′U + f2

where G′ is a lower triangular matrix with all its diagonal elements equal to
g0 and its secondary diagonal elements are given by gi − gi−1. Vector f2 can
be expressed as (f2)i = (f0)i − giu(k − 1).

The objective function can now be expressed as a function of the future
control actions U:

J(U) = (G′U + f2 −w)T (G′U + f2 −w) + λ(DU− f1)T (DU− f1)

= UT (G′T G + DT D)U + 2[(f2 −w)T G′ − fT
1 D]U

+(f2 −w)T (f2 −w) + fT
1 f1

7.4 Constraints Handling 199

that is a quadratic form

J(U) =
1
2
UT H′U + b′ + f ′

where

H′ = 2(G′T G+DT D), b′ = 2[(f2−w)T G′−fT
1 D], f ′ = (f2−w)T (f2−w)+fT

1 f1

Notice that fT
1 f1 = u(k − 1)2 and DT D is a tridiagonal matrix with the

elements of the main diagonal equal to 2 and the elements of the other two
accompanying subdiagonals equal to -1.

The problem has been reduced to optimizing a quadratic form with the
constraint matrix R = [I − I]T and the efficiency of the optimization proce-
dure can be increased as shown in the previous section.

7.4.3 Output Constraints

When the only constraints present are the maximum and minimum value of
the output signals y(k + j), the constraints can be expressed as

ymin ≤ Gu + f ≤ ymax

which can also be expressed as:[
G
−G

]
u ≤
[
ymax − f
ymin − f

]
Notice that all the blocks of the constraint matrix are lower triangular

blocks and some advantages may be gained from that as will be shown in
the following.

7.4.4 Constraint Reduction

The computational requirements of the QP algorithms depend heavily on the
number of constraints considered. Only those constraints which limit the fea-
sible region of the space need to be taken into account. The efficiency of the
algorithms can be increased if the superfluous constraints; that is, those con-
straints not limiting the feasible region, are eliminated. There are a number
of algorithms for determining the minimum set of limiting constraints, or
what is the same, the convex hull or polytope, corresponding to the feasi-
ble region of space. Although elimination of all superfluous constraints may
reduce the amount of computation needed, the procedure itself requires a
substantial amount of computation. The fact that in this case the constraint
matrices are lower triangular can be used to detect nonlimiting constraints.
Some constraints can easily be eliminated as follows.

200 7 Constrained Model Predictive Control

By making u = 1u + x, constraints on the slew rate and amplitude of
actuators and on the process output signals can be expressed as

0 ≤ x ≤ c1 (7.16)
c3 ≤ Tx ≤ c2

c5

g0
≤ G

g0
x ≤ c4

g0

with cT = [cT
1 cT

2 cT
3 cT

4 cT
5]

Now consider the first row for each constraint in (7.16); that is, the con-
straint affecting only x1,

x1 ≤ c11, x1 ≤ c21, x1 ≤ c41

g0
(7.17)

x1 ≥ 0, x1 ≥ c31, x1 ≥ c51

g0

where cij is the j entry of vector ci.
Notice that of the first three constraints in (7.17) only that with a smaller

right-hand side has to be kept; the other two can be eliminated because they
do not limit the feasible region. The same applies to the last three constraints.
Thus, four constraints can be eliminated in this first step. The x1 variable will
be bounded by l1 ≤ x1 ≤ r1, where r1 is the smallest of all right-hand side
terms of the first row of constraints in (7.17) and l1 is the biggest of all right-
hand side terms of the second row.

Let us now consider the constraints in (7.16) limiting x1 and x2; that is,
the second row of each constraint block in (7.16). These constraints can be
written as:

x2 ≤ c12, x2 ≤ c22 − x1, x2 ≤ c42

g0
− g1

g0
x1 (7.18)

x2 ≥ 0, x2 ≥ c32 − x1, x2 ≥ c52

g0
− g1

g0
x1

The right-hand sides of these constraints depend, in general, on x1. As
x1 is bounded by l1 ≤ x1 ≤ r1, the right-hand side of each constraint in(7.18)
will be bounded by two limits. Consider, for example, the second of the first
row of constraints in (7.18). The minimum of the right-hand side of this in-
equality is given by min(c22 − x1) = c22 −max(x1) = c22 − r1. The same con-
siderations can be applied to the maximum. The right-hand side will there-
fore be limited by r22 min = c22 − r1 and r22 max = c22 − l1, where the first
subindex in rkij refers to variable xk, the second refers to constraint i and
the last subindex indicates whether it is the minimum or maximum limit.
Notice that r23 min and r23 max can be computed in a similar manner and that
rk1 min = rk1 max.

7.5 1-norm 201

A right boundary for x2 can be defined by r2 = min(r2j max) for j =
1, 2, 3. Notice that variable x2 must always be smaller than r2, thus any con-
straint j having r2 < r2j min can be eliminated as it will not be limiting the
feasible region.

A left boundary l2 can be obtained for variable x2 from the last three con-
straints in (7.18). For each of these constraints a minimum l2j min and maxi-
mum l2j max limit can be found in the same way. A left boundary for variable
x2 can now be given by l2 = max(l2j min) for j = 1, 2, 3. Constraint j can now
be eliminated if l2 > l2j max.

After this step, variables x1 and x2 will be bound by (l1, r1) and (l2, r2),
respectively. As the constraint matrices are lower triangular, the same proce-
dure can be applied to obtain the boundaries (and eliminate the superfluous
restrictions) for x3 and then recursively for the remaining variables.

Notice that constraints of the type xk ≥ 0 do not appear in the con-
straint matrix R in the algorithm described earlier. As the algorithm con-
siders all variables to be positive, these constraints are implicitly taken into
account. If any left bound li is positive, the constraint xi ≥ 0 can be elim-
inated. In order to do this, the following substitution can be made: xj =
l(x1, x2, · · · , xj−1) + zj , where l(x1, x2, · · · , xj−1) is the right hand side of
one of the remaining constraints of type xi ≥ l(x1, x2, · · · , xj−1). This con-
straint can now be substituted by zj ≥ 0. The constraint matrices have to be
changed accordingly.

Notice that the procedure described does not guarantee a minimum
number of constraints; further reductions could be achieved but it would
require more computation and a more complex algorithm.

7.5 1-norm

Although quadratic programming algorithms are very efficient, the MPC
problem can be solved by a much more efficient linear programming method
if a 1-norm type of function is used.

The objective function is now

J(u) =
N2∑

j=N1

n∑
i=1

|yi(t + j)− wi(t + j)|+ λ

Nu∑
j=1

m∑
i=1

| � ui(t + j − 1)| (7.19)

where N1 and N2 define the costing horizon and Nu defines the control hori-
zon. The absolute values of the output tracking error and the absolute values
of the control increments are taken instead of the square of them, as is usual
in GPC.

If a series of μi ≥ 0 and βi ≥ 0 such that

202 7 Constrained Model Predictive Control

−μi ≤ (yi(t + j)− wi(t + j)) ≤ μi i = 1, . . . n j = 1, . . . N
−βi ≤ �ui(t + j − 1) ≤ βi i = 1, . . . m j = 1, . . . Nu

0 ≤∑n×N
i=1 μi + λ

∑m×Nu

i=1 βi ≤ γ

then γ is an upper bound of J(u). The problem is now reduced to minimizing
the upper bound γ.

When constraints on the output variables (y,y), the manipulated vari-
ables (U,U), and the slew rate of the manipulated variables (u,u) are taken
into account, the problem can be interpreted as an LP problem with:

minγ,μ,β,u γ
subject to: μ ≥ Gu + f −w

μ ≥ −Gu− f + w
y ≥ Gu + f
−y ≥ −Gu− f
β ≥ u
β ≥ −u
u ≥ u
−u ≥ u
U ≥ Tu + 1u(t− 1)
−U ≥ −Tu− 1u(t− 1)
γ ≥ 1T μ + λ1β

The problem can be transformed into the form:

min
x

cT x subject to Ax ≤ b, x ≥ 0

with

x =

⎡⎢⎢⎣
u− u

μ
β
γ

⎤⎥⎥⎦ c =

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G −I 0 0
−G −I 0 0

G 0 0 0
−G 0 0 0

I 0 −I 0
−I 0 −I 0

I 0 0 0
T 0 0 0

−T 0 0 0
0 1T 1T λ −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
bi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Gu− f + w
Gu + f −w
y −Gu− f
−y + Gu + f

−u
u

u− u
U− Tu− 1u(t− 1)
−U + Tu + 1u(t− 1)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The number of variables involved in the linear programming problem is

2×m×Nu + n×N + 1, while the number of constraints is 4× n×N + 5×

7.6 Case Study: A Compressor 203

m × Nu + 1. For a process with 5 input and 5 output variables with control
horizon Nu = 10 and costing horizon N = 30, the number of variables for
the LP problem is 251 and the number of constraints would be 851, which
can be solved by any LP algorithm. As the number of constraints is higher
than the number of decision variables, solving the dual LP problem should
also be less computationally expensive. The number of constraints can be
reduced because of the special form of the constraint matrix A by applying
the constraint reduction algorithm.

7.6 Case Study: A Compressor

Compressed air is used in most industrial plants for different purposes. Air
compressors supplying compressed air to the different processes of a plant
can frequently be found in industry. The example studied in this section cor-
responds to a large air compressor (Figure 7.8) supplying air to a plant. The
outlet pressure is controlled by manipulating the guide vanes of the com-
pressor. A blow-off valve is installed to prevent a surge. When the blow-off
valve is closed, the compressor is a single-input single-output process that
can be controlled appropriately using standard control techniques. When the
blow-off valve opens, the compressor is a multivariable process with two in-
puts and two outputs. The manipulated variables are the guide vane angle
(u1) and the position of the valve (u2), and the controlled variables are the
air pressure (y1) and the airflow rate (y2). The process model is given by the
following transfer matrix [46]:

[
Y1(s)
Y2(s)

]
=

⎡⎢⎢⎢⎣
0.1133e−0.715s

1 + 4.48s + 1.783s2

0.9222

1 + 2.071s

0.3378e−0.299s

1 + 1.09s + 0.361s2

−0.321e−0.94s

1 + 2.463s + 0.104s2

⎤⎥⎥⎥⎦
[

U1(s)
U2(s)

]

The compressor can be controlled as shown in [46] by decoupling the
process at zero frequency and using a PI controller for the first loop and
a proportional controller for the second. These controllers were obtained
with the help of the Inverse Nyquist Array (INA). The simulated closed-loop
responses of the process to successive step changes in both references are
shown in Figure 7.9(a). It can be seen that the responses are quite oscillatory.
The evolution of the manipulated variables can be seen in Figure 7.9(b). As
can be seen, the valve position exhibits high peaks for each change in the
pressure setpoint.

A sampling time of 0.05 is chosen. The process can be approximated by
the following discrete transfer matrix:⎡⎢⎢⎣

10−4(0.7619z−1 + 0.7307z−2)

1 − 1.8806z−1 + 0.8819z−2
z−14 0.022z−1

1 − 0.9761z−1

10−2(0.1112z−1 + 0.1057z−2)

1 − 1.8534z−1 + 0.8598z−2
z−6 10−2(−0.2692z−1 − 0.1821z−2)

1 − 1.2919z−1 + 0.306z−2
z−19

⎤⎥⎥⎦

204 7 Constrained Model Predictive Control

U
1

F c

cP

Guide vanes Compressor

Flow - y 2

U2

Vent to

atmosphere

To plant

Pressure - y 1

Inlet

Fig. 7.8. Compressor

0.0 10.0 20.0 30.0 40.0 50.0
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0 Pressure
Flow

Ou
tpu

ts

Time in seconds

(a)

0.0 10.0 20.0 30.0 40.0 50.0
-27.5

-22.5

-17.5

-12.5

-7.5

-2.5

2.5

7.5

12.5

17.5

22.5

27.5

Vanes angle
Valve

Time in seconds

Inp
uts

(b)

Fig. 7.9. Closed loop responses of compressor: INA controller

The process can be controlled with a multivariable GPC with the follow-
ing design parameters: N1 = 20, N2 = 23, N3 = 3, and λ = 0.8. The be-
ginning of the costing horizon has been chosen as the maximum of the dead

7.6 Case Study: A Compressor 205

0.0 10.0 20.0 30.0 40.0 50.0
-0.1

0.1

0.3

0.5

0.7

0.9

1.1
Pressure
Flow

Time in seconds

Ou
tpu

ts

(a)

0.0 10.0 20.0 30.0 40.0 50.0
-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

4.5 Vanes angle
Valve

Time in seconds

Inp
uts

(b)

Fig. 7.10. Closed-loop responses of compressor: unconstrained GPC

times. The behaviour of the process can be seen in Figure 7.10(a). As can be
seen, both controlled variables reach their setpoint rapidly and without os-
cillations. The perturbations caused in each of the controlled variables by a
step change in the reference of the other variable are very small.

The evolution of the manipulated variables are shown in Figure 7.10(b).
As can be seen, a high peak in the valve position is observed (although much
smaller than the peaks observed when controlling the compressor with the
INA controller).

To reduce the manipulated variable peak, a constrained GPC can be used.
The manipulated variables are restricted to being in the interval [−2.75, 2.75].
The evolution of the controlled variables are shown in Figure 7.11(a). As can
be seen, the response of the pressure to a step change in the reference is a bit
slower than in the unconstrained case, but the manipulated variable is kept
within the desired limits as shown in Figure 7.11(b).

206 7 Constrained Model Predictive Control

0.0 10.0 20.0 30.0 40.0 50.0
-0.1

0.1

0.3

0.5

0.7

0.9

1.1
Pressure
Flow

Time in seconds

Ou
tpu

ts

(a)

0.0 10.0 20.0 30.0 40.0 50.0
-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

Vanes angle
Valve

Time in seconds

Inp
uts

(b)

Fig. 7.11. Closed-loop responses of compressor: constrained GPC

7.7 Constraint Management

7.7.1 Feasibility

Sometimes, during the optimization stage, the region defined in the decision
variables by the set of constraints is empty. In these conditions, the optimiza-
tion algorithm cannot find any solution and the optimization problem is said
to be infeasible. Unobtainable control objectives or perturbations that take
the process away from the operating point may cause infeasibility. An op-
timization problem is feasible when the objective function is bounded and
there are points in the space of decision variables that satisfy all constraints.

Infeasibility may appear in the steady-state regime and during tran-
sients. The infeasibility problems of the steady-state regime are usually
caused by hyphenationun-obtainable unobtainable control objectives. This
occurs, for example, when the setpoints cannot be reached because the ma-
nipulated variables are constrained. In general, if the manipulated variables
are constrained to be in a hypercube, the reachable set-points are in a poly-
tope in the controlled variable space whose vertices are defined by multi-
plying the vertex of the hypercube by the process DC gain matrix. These

7.7 Constraint Management 207

unfeasibilities can be easily handled during the design phase by eliminating
these types of objectives.

Infeasibility can appear in the transitory regime, even when the imposed
constraints seem to be reasonable. Constraints that do not cause problems
in normal operation can cause problems under certain circumstances. A per-
turbation or large reference change may force a variable outside its limits so
that it is impossible to introduce it into its permitted zone again using limited
energy control signals. In these circumstances the constraints become tem-
porarily incompatible. Infeasibility may also be produced when the operator
redefines the operational variable limits while the process is in operation, as
mentioned in [6]. If the variables are already outside the new limits, the prob-
lem will be unfeasible. These unfeasible solutions are more common in those
cases where the optimum is close to the constraints and the system is subject
to disturbances, taking the outlet to forbidden areas.

Feasibility is of great importance to constrained MPC not only because, as
will be discussed in the following section, the stability proofs of constrained
MPC strategies require feasibility, but also because if the optimization prob-
lem is not feasible the MPC will not work as it will not be able to compute the
next control moves. Since unfeasibility is likely to arise in constrained MPC,
some precautions have to be taken.

7.7.2 Techniques for Improving Feasibility

Constraint management methods try to recover feasibility by acting on the
constraints according to varying criteria that depend on the type of limits im-
posed on process variables. The following types of limits can be considered:

• physical limits: These can never be exceeded because of the equipment
construction itself and are usually associated to actuators.

• security limits: These limits should never be violated because their vio-
lation could be dangerous to process security or could induce a costly
shutdown of the process by emergency equipment. These limits are usu-
ally associated to process-controlled variables.

• operational limits: These are fixed by the operators as bounds that should
not be exceeded by the process variables to maintain appropriate operat-
ing conditions. They can be exceeded in certain circumstances.

• real limits: These are limits used by the control algorithm at each instance.
They are provided by the constraint manager, who should calculate them
in such a way that they never exceed the physical limits.

Possible solutions to this problem can be classified into the following
groups:

1. disconnection of the controller: The easiest way of solving this type of
problem is to pass the controller to a backup value or backup controller

208 7 Constrained Model Predictive Control

when constraint incompatibilities arise and return to automatic opera-
tion when the admissibility of the solution is recovered. As can be under-
stood, this method has serious disadvantages. Normally, when constraint
incompatibility problems arise it is because the closed-loop system is at
a critical stage where the operator usually has very little experience. Fur-
thermore, if the constraints have to do with safety or economic aspects,
then any decisions taken when constraint compatibility problems arise
are usually critical because in these cases some of the control objectives
cannot be satisfied. This method is usually used when constraint incom-
patibility problems are not frequent.

2. constraint elimination: Feasibility is analyzed at each sampling period
and thus the elimination of constraints is temporary. The feasibility is
checked periodically to be able to reinsert eliminated constraints. Notice
that given a point in the decision variable space, the constraints that are
violated can be computed easily, but optimization methods, in general,
do not specify which constraints are causing infeasibility. When some of
the constraints are dropped, the optimization algorithm has to be run
again with the remaining constraints to check for feasibility.
It is necessary to eliminate a group of constraints in those cases where the
complete set of constraints imposed on the system is incompatible. Each
time a constraint incompatibility problem arises, a set of inadmissible
constraints is formed which is not taken into account in the optimization
process. Various types can be distinguished in the constraint elimination
methodology:
• indiscriminate elimination: With this strategy all constraints are

eliminated every time a feasible solution arises. This is not the best
method to solve the problem, but it is the quickest. This method
should not be used in cases where the constraints are directly related
to safety.

• hierarchical elimination: During the design stage, a priority is given
to each constraint. Every time feasibility problems arise the controller
eliminates, in an orderly manner, the lower priority constraints until
the feasibility of the solution is reestablished. This is checked at every
sampling period to reinsert those constraints that were temporarily
dropped.

3. constraints relaxation: This method consists in temporarily relaxing the
bounds (i.e., increasing their values) or changing hard constraints (Ru < a)
to soft constraints (Ru < a + ε), adding a term εT Tε to the cost function,
so that any violation of the constraint is penalized. In the long run, the
penalizing term in the objective function will take the auxiliary variable
to zero.

4. changing the constraint horizons: Most of the constraint unfeasibility
arises in the first part of the cost horizon, because sudden perturba-
tions may take the process to an infeasible region. The main idea of this
method is not to take into account the constraints during the first part

7.8 Constrained MPC and Stability 209

of the horizon. Some commercial MPCs use the concept of a constraint
window.

7.8 Constrained MPC and Stability

Infinite horizon optimal controllers, such as the well-known Linear Quadratic
Gaussian (LQG) optimal controller, are easy to implement and guarantee
a stable closed-loop for linear processes under general assumptions. How-
ever, infinite horizon control problems can only be solved when all process
variables are unconstrained. The main difficulty for using infinite horizons
with processes with constrained variables comes from the fact that numeri-
cal methods, with a necessarily finite number of decision variables, have to
be used to solve the optimization problem involved. The stability analysis of
finite horizon controllers is a much more difficult task, especially if the vari-
ables are constrained giving rise to a nonlinear control law. Furthermore, no
explicit functional description of the control law can be found, making the
problem even more difficult. A breakthrough has been made in the last few
years in this field. As pointed out by Morari [140], the recent work has removed
this technical and to some extent psychological barrier (people did not even try) and
started widespread efforts to tackle extensions of this basic problem with the new
tools.

The basic idea of the new approaches is that infinite horizon cost func-
tions can be shown to be monotonically decreasing, if there is a feasible solu-
tion, and thus can be interpreted as a Lyapunov function which guarantees
stability. In order to find a numerical solution to the infinite costing horizon
control problem, the number of decision variables has to be finite. Two basic
approaches have been used for this: in the first one, the objective function
is considered to be composed of two parts; one with a finite horizon and
constrained, and the other with an infinite horizon and unconstrained. The
second approach is essentially equivalent [61]; it consists of imposing termi-
nal state constraints and using a finite control horizon.

The first type of approach has originated the following results obtained
by Rawlings and Muske [177], who demonstrated asymptotic stability for
processes described by

x(t + 1) = Mx(t) + Nu(t)

with u(t) generated by minimizing:

Jj =
∞∑

j=t

(x(j)tRx(j) + u(j)tSx(j)) with R,S > 0

and subject to

210 7 Constrained Model Predictive Control

Du(i) ≤ d for i = t, t + 1, · · · t + Nu

Hx(i) ≤ h for i = t, t + 1, · · ·∞
for stabilizable pairs (M,N) with r unstable modes and Nu ≥ r if the mini-
mization problem is feasible.

The central idea is that if the minimization problem is feasible at sam-
pling time t, then Jt is finite and Jt+1 ≤ Jt +x(t)tRx(t)+u(t)tSu(t). The cost
function Jt can then be interpreted as a monotonically decreasing Lyapunov
function and asymptotic stability is therefore guaranteed. Notice that the
problem at t + 1 is also feasible (for the noise-free case without external per-
turbations). Also note that the infinite and unconstrained part of the objective
function can be solved by a Riccati equation and that a cost function depend-
ing on the state can be obtained. This cost function is introduced in the finite
horizon optimization problem which is solved by numerical methods.

The second type of approach has been developed in the GPC context fol-
lowing Clarke and Scattolini [61] CRHPC. The main idea is to impose state
terminal constraints or, in the input-output context, to force the predicted
output to exactly follow the reference during a sufficiently large horizon m
after the costing horizon. The problem can be stated as:

min
u

N2∑
j=N1

‖ŷ(t + j | t)− w(t + j)‖2R +
Nu∑
j=1

‖ � u(t + j − 1)‖2Q

subject to �u(t + Nu + j − 1) = 0
y(t + N2 + m + j) = w(t + N2 + m + 1)

Stability results for CRHPC have been obtained [61],[60] for the uncon-
strained case. Scokaert and Clarke [188] have demonstrated the stability
property CRHPC in the presence of constraints. The principal idea is that if
a feasible solution is found and the settling horizon Ny is large enough to
cover the transient of the output variables, the cost function is monotonically
decreasing (if there are no external disturbances and the process is noise-free)
and can be interpreted as a Lyapunov function which will guarantee stability.
It can also be shown that the problem will be feasible in the next iteration.

Stability results for constrained SGPC have also been obtained by Rossiter
and Kouvaritakis [112], [186], who found that for any reference w(t) which
assumes a constant value w∗ after a number (N) of sampling periods, if the
constrained SGPC is feasible for sufficiently large values of the horizons (de-
pending on N), the closed loop will be stable and the output will asymp-
totically go to w∗. The stability has been also demonstrated in [184] without
imposing the terminal state conditions implicitly used in SGPC. The work is
based on characterizing all stable predictions which are not necessarily of a
finite impulse response type as in standard SGPC. This allows for more de-
grees of freedom and increases the feasibility of the problem.

All stability results require the feasibility of the control law. If no feasible
solution is found, one can always use the unconstrained solution and clip

7.8 Constrained MPC and Stability 211

it to the manipulated variable bounds, but this way of operating would not
guarantee the stability of the closed loop (for the nominal plant). Note that
input constraints can always be satisfied by saturating the control signals,
but this is not the case of output or state constraints which are the real cause
of infeasibility. Some suggestions have been made in the literature to cope
with infeasibility.

Rawlings and Muske [177] proposed dropping the state constraints dur-
ing the initial portion of the infinite horizon to make the problem feasible.
Zheng and Morari [213] proposed changing the hard constraints on the state
(Hx(i) ≤ h) for soft constraints (Hx(i) ≤ h + ε with ε ≥ 0) to ensure fea-
sibility, adding the term εtQε to the costing function to penalize constraint
violation and thus obtain better performance. They also demonstrated that
any stabilizable system can be asymptotically stabilized by the MPC with soft
constraints and state feedback if Nu is chosen to be sufficiently large and that
it stabilizes any open-loop stable system with output feedback (state vec-
tor computed by an observer). Muske et al. [146] have shown that an infi-
nite horizon MPC with output feedback which does not enforce state con-
straints during the first stages produces a stable closed-loop when control-
ling open-loop stable systems and that it also stabilizes unstable processes
provided that the initial process and observer states are inside the feasible
region. Scokaert and Clarke [188] have proposed a way of removing con-
straints when no feasible solutions are found. Their idea is to increase the
lower constraint horizon until a feasible solution has been found. They also
suggest that another possible way of removing constraints would be to have
them organized in a hierarchical way with the critical ones at one end and
the less important ones at the other. This ordering may be used to drop the
constraints when no feasible solution is found.

An idea is proposed in [82] to ensure the feasibility of constrained SGPC
in the presence of bounded disturbances that could take the process away
from the constrained region. The idea is to determine the minimum required
control power to reject the worst perturbations in the future. To implement
this idea, tighter constraints than the physical limits are imposed on the ma-
nipulated variables. The difference between the physical limits and the new
constraints is the minimum control effort required to maintain the feasibility
of the constrained optimization problem to guarantee stability.

Model predictive control schemes for nonlinear systems which guaran-
tee stability have also been proposed in [135] and [136]. The main idea is to
solve the constrained MPC in a finite horizon driving the state to zero or in-
side a region W where control is transferred to a linear stabilizing controller.
The main problem with this idea is that region W is very difficult to com-
pute and that, in general, the resulting optimization problem is nonconvex.
This makes the optimization problem much more difficult to solve and the
optimality of the solution cannot be assured. Fortunately, stability is guar-
anteed when the optimization problem is feasible and does not require op-
timality for this type of controller, although the performance may suffer by

212 7 Constrained Model Predictive Control

using local minima. These ideas have been extended by Chen and Allgöwer
[48], who proposed a quasi-infinite constrained MPC. The idea of the termi-

nal region and linear stabilizing controller is used, but only for computing
the terminal cost. In quasi-infinite horizon nonlinear MPC the control signal
is determined by solving the optimization problem online and the control
is never transferred to the linear stabilizing controller even when inside the
terminal region.

Another way to achieve closed-loop stability of nonlinear predictive con-
trol proposed by Yang and Polak [206] is by imposing contraction constraints
on the state. The idea is to impose the following constraint ||x(t + 1)|| <
α||x(t)||with α ∈ [0, 1). Stability is guaranteed if the optimization problem is
feasible. The main advantage of the algorithm is that if it is feasible the closed
loop is exponentially stable. Imposing the contraction constraints is, however,
very restrictive for many control problems, and unfeasibility is encountered
in many situations.

There have been many formulations to guarantee MPC stability. Most of
the formulations have two key ingredients, a terminal state penalization and
a terminal set where the final state is forced (see Section 9.5). The terminal
set conditions can be translated into a set of constraints on the manipulated
variables, as seen in Section 7.1. Stability is therefore linked to a constraint
satisfaction problem.

7.9 Multiobjective MPC

All the MPC strategies analyzed previously are based on optimizing a sin-
gle objective cost function, which is usually quadratic, in order to determine
the future sequence of control moves that makes the process behave best.
However, in many control problems the behaviour of the process cannot be
measured by a single objective function, but most of the time, there are differ-
ent, and sometimes conflicting, control objectives. The reasons for multiple
control objectives are varied:

• Processes have to be operated differently when they are at different oper-
ating stages. For example, at the startup phase of the process, a minimum
startup time may be desired, but once the process has reached the oper-
ating regime, a minimum variance of the controlled variables may be the
primary control objective.

• Even if the process is working at a particular operating stage, the control
objective may depend on the value of the variables. For example the con-
trol objective when the process is working at the nominal operating point
may be to minimize the weighted sum of the square errors of the con-
trolled variables with respect to their prescribed values. But if the value
of one of the variables is too high, because of a sudden perturbation, for
example, the main control objective may be to reduce the value of this
variable as soon as possible.

7.9 Multiobjective MPC 213

Furthermore, in many cases, the control objective is not to optimize the
sum of the squared errors but rather to keep some variables within specified
bounds. Notice that this situation is different to the constraint control MPC,
as the objective is to keep the variable there, although excursions of the vari-
able outside this region, though not desirable, are permitted. In constrained
MPC the variables should be kept within the prescribed region because of
physical limitations, plant safety, or other considerations. Constraints which
cannot be violated are referred to as hard constraints, while those which can
are known as soft constraints. These types of objectives can be expressed by
penalizing the amount by which the offending variable violates the limit.
Consider, for example, the process with a controlled variable y(t) where the
control objective is to keep yl ≤ y(t) ≤ yh. The control objective may be
formulated as

J = p(y(t + j)− yh)
N2∑

j=N1

(y(t + j)− yh)2 + p(yl− y(t + j))
N2∑

j=N1

(y(t + j)− yl)2

where function p is a step function. That is, p takes the value 1 when its argu-
ment is greater than or equal to zero and the value zero when its argument
is negative.

Notice that the objective function is no longer a quadratic function and
QP algorithms cannot be used. The problem can be transformed into a QP
problem by introducing slack variables εh(j) and εl(j). That is

y(t + j) ≤ yh + εh(j)
y(t + j) ≥ yl − εl(j)

The manipulated variable sequence is now determined by minimizing:

J =
N2∑

j=N1

εh(j)2 +
N2∑

j=N1

εl(j)2

subject to εl(j) ≥ 0 and εh(j) ≥ 0 and the rest of the constraints acting on the
problem. Notice that the problem has been transformed into a QP problem
with more constraints and decision variables.

Sometimes all control objectives can be summarized in a single objective
function. Consider, for example, a process with a series of control objectives
J1, J2, ..., Jm. Some of the control objectives may be to keep some of the con-
trolled variables as close to their references as possible, while other control
objectives may be related to keeping some of the variables within specified
regions. Consider all objectives to have been transformed into minimizing
a quadratic function Ji, subject to a set of linear constraints on the decision
variables Riu ≤ ai . The future control sequence can be determined by min-
imizing the following objective function

214 7 Constrained Model Predictive Control

J =
m∑

i=1

βiJi

subject to: Riu ≤ ai for i = 1, · · · ,m

The importance of each objective can be modulated by appropriate set-
ting of all βi. This is, however, a nontrivial matter in general as it is very
difficult to determine the set of weights which will represent the relative im-
portance of the control objectives. Furthermore, practical control objectives
are sometime qualitative, making the task of determining the weights even
more difficult.

7.9.1 Priorization of Objectives

In some cases, the relative importance of the control objectives can be estab-
lished by priorization. That is, the objectives of greater priority, for example,
objectives related to security, must be accomplished before other objectives of
lower priority are considered. Objectives can be prioritized by giving much
higher values to the corresponding weights. However, this is a difficult task
which is usually done by a trial-and-error method.

In [202] a way of introducing multiple prioritized objectives into the MPC
framework is given. Consider a process with a series of m prioritized control
objectives Oi. Suppose that objective Oi has a higher priority than objective
Oi+1 and that the objectives can be expressed as:

Riu ≤ ai

The main idea consists of introducing integer variables Li which take the
value 1 when the corresponding control objective is met and zero otherwise.
Objectives are expressed as

Riu ≤ ai + Ki(1− Li) (7.20)

where Ki is a conservative upper bound on Riu− ai. If objective Oi is satis-
fied, Li = 1 and the reformulated objective coincides with the original con-
trol objective. By introducing Ki , the reformulated objective (constraint) is
always satisfied even when the corresponding control objective Oi is not met
(L1 = 0).

The priorization of objectives can be established by imposing the follow-
ing constraints:

Li − Li+1 ≥ 0 for i = 1, · · · ,m− 1

The problem is to maximize the number of satisfied control objectives:

m∑
i=1

Li

7.9 Multiobjective MPC 215

If the process model is linear, the problem can be solved with a Mixed Integer
Linear Programming (MILP) algorithm. The number of integer variables can
be reduced as indicated in [202]. The idea is to use the same variable Li for
constraints that cannot be violated at the same time, as is the case of upper
and lower bounds on the same control or manipulated variable.

The set of constraints in (7.20) can be modified [202], to improve the de-
gree of the constraint satisfaction of objectives that cannot be satisfied. Sup-
pose that not all objectives can be satisfied at a particular instance. Suppose
that objective Of is the first objective that failed. In order to come as close as
possible to satisfying this objective, a slack variable α satisfying the following
set of constraints is introduced

Riu ≤ ai + α + Ki

⎛⎝(i− 1) + (1− Li)−
i−1∑
j=1

Lj

⎞⎠ (7.21)

and the objective function to be minimized is

J = −Kα

m∑
i=1

Li + f(α) (7.22)

where f is a penalty function of the slack variable α (positive and strictly
increasing) and Kα is an upper bound on f . The optimization algorithm will
try to maximize the number of satisfied objectives (Li = 1) before attempting
to reduce f(α) because the overall objective function can be made smaller by
increasing the number of nonzero Li variables than by reducing f(α). As all
objectives Oi for i < f are satisfied (Li = 1), the constraints in (7.21) will also
be satisfied. As Of is the first objective that failed,

i−1∑
i=1

Li = f − 1 for i ≥ f

That is, the term multiplying Ki of constraint (7.21) is zero for i = f , while
for i > f this term is greater than one. This implies that all constraints in
(7.21) will be satisfied for i > f . The only active constraint is:

Rfu ≤ af + α

That is, the optimization method will try to optimize the degree of satis-
faction of the first objective that failed only after all higher priority objectives
have been satisfied. Notice that Li = 0 does not imply that objective Oi is not
satisfied, it only indicates that the corresponding constraint has been relaxed.

If the process is linear and function f is linear, the problem of maximiz-
ing (7.22) can be solved by a MILP. If f is a quadratic function, the problem
can be solved by a Mixed Integer Quadratic Programming (MIQP) algorithm.
Although there are efficient algorithms to solve mixed integer programming

216 7 Constrained Model Predictive Control

problems, the amount of computation required is much greater than that re-
quired for LP or QP problems. The number of objectives should be kept small
to implement the method in real time.

7.10 Exercises

7.1. Consider the system described by y(t + 1) = ay(t) + bu(t) with −0.2 ≤
�u(t) ≤ 0.2, −1 ≤ u(t) ≤ 1, and −3 ≤ y(t) ≤ 3:

1. Formulate the MPC control problem (determining the constraint matri-
ces) with N = 3 using a quadratic objective function.

2. Repeat the exercise considering a 1-norm type of objective function.
3. Simulate the previous problems and check that constraints are fulfilled.

7.2. Consider the system described by y(t+1) = 1.75y(t)−y(t−1)+0.25u(t)+
0.25u(t− 1):

1. Formulate an MPC with N = 2 and a quadratic objective and imposing
overshoot constraints.

2. Repeat the previous exercise with an ∞-norm imposing monotonic con-
straints.

3. Simulate the resulting controllers and comment on the results.
4. Increase the control horizon and control weighting to N = 11 and λ = 50

and comment on the results.

7.3. For the system described by x(t + 1) = Ax(t) + Bu(t) with

A =
[

0 1
1 1

]
B =
[

1
1

]
formulate an MPC with N = 3 and a quadratic objective function and:

1. a terminal region described by ‖x(t + N)‖∞ ≤ 0.1.
2. a terminal region described by ‖x(t + N)‖1 ≤ 0.1.
3. a terminal region described by x(t + N)T x(t + N) ≤ 0.1. Comment on

the type of optimization problem encountered.
4. a terminal region described by x(t + N)T x(t + N) ≤ x(t)T x(t).

7.4. Repeat the experiments of Section 6.4 in the case that the airplane has
the following operational constraints:

1. | u1 |≤ 10 and | u2 |≤ 5.
2. | �u1 |≤ 10 and | �u2 |≤ 5.
3. both sets of constraints at the same time.

8

Robust Model Predictive Control

Mathematical models of real processes cannot contemplate every aspect of
reality. Simplifying assumptions have to be made, especially when the mod-
els are going to be used for control purposes, where models with simple
structures (linear in most cases) and sufficiently small size have to be used
due to available control techniques and real-time considerations. Thus, math-
ematical models, especially control models, can only describe the dynamics
of the process in an approximative way.

Most control design techniques need a control model of the plant with
fixed structure and parameters (nominal model), which is used throughout
the design. If the control model were an exact, rather than an approximate,
description of the plant and there were no external disturbances, processes
could be controlled by an open-loop controller. Feedback is necessary in pro-
cess control because of the external perturbations and model inaccuracies
in all real processes. The objective of robust control is to design controllers
which preserve stability and performance in spite of the modelling inaccu-
racies or uncertainties. Although the use of feedback contemplates the in-
accuracies of the model implicitly, the term of robust control is used in the
literature to describe control systems that explicitly consider the discrepan-
cies between the model and the real process [130].

There are different approaches for modelling uncertainties depending
mainly on the type of technique used to design the controllers. The most
extended techniques are frequency response uncertainties and transfer func-
tion parametric uncertainties. Most of the approaches assume that there is a
family of models and that the plant can be exactly described by one of the
models belonging to the family. That is, if the family of models is composed
of linear models, the plant is also linear. The approach considered here is the
one relevant to the key feature of MPC which is to predict future values of the
output variables. The uncertainties can be defined about the prediction ca-
pability of the model. It will be shown that no assumptions have to be made
regarding the linearity of the plant in spite of using a family of linear models
for control purposes.

E. F. Camacho et al., Model Predictive Control
© Springer-Verlag London Limited 2007

218 8 Robust Model Predictive Control

8.1 Process Models and Uncertainties

Two basic approaches are extensively used in the literature to describe mod-
elling uncertainties: frequency response uncertainties and transfer function
parametric uncertainties. Frequency uncertainties are usually described by
a band around the nominal model frequency response. The plant frequency
response is presumed to be included in the band. In the case of paramet-
ric uncertainties, each coefficient of the transfer function is presumed to be
bounded by the uncertainties limit. The plant is presumed to have a transfer
function, with parameters within the uncertainty set.

Both ways of modelling uncertainties consider that the exact model of the
plant belongs to the family of models described by the uncertainty bounds.
That is, the plant is linear with a frequency response within the uncertainty
band for the first case and the plant is linear and of the same order as that of
the family of models for the case of parametric uncertainties.

Control models in MPC are used to predict what is going to happen: fu-
ture trajectories. The appropriate way of describing uncertainties in this con-
text seems to be by a model or a family of models that, instead of generating
a future trajectory, may generate a band of trajectories in which the process
trajectory will be included when the same input is applied, in spite of the
uncertainties. One should expect this band to be narrow when a good model
of the process is available and the uncertainty level is low and to be wide
otherwise.

The most general way of posing the problem in MPC is as follows: con-
sider a process whose behaviour is dictated by the following equation

y(t+1) = f(y(t), · · · , y(t−ny), u(t), · · · , u(t−nu), z(t), · · · , z(t−nz), ψ) (8.1)

where y(t) ∈ Y and u(t) ∈ U are n and m vectors of outputs and inputs,
ψ ∈ Ψ is a vector of parameters possibly unknown, and z(t) ∈ Z is a vector
of possibly random variables.

Now consider the model or family of models, for the process described
by

ŷ(t + 1) = f̂(y(t), · · · , y(t− nna
), u(t), · · · , u(t− nnb

), θ) (8.2)

where ŷ(t + 1) is the prediction of output vector for instant t + 1 generated
by the model; f̂ is a vector function, usually a simplification of f ; nna

and
nnb

are the number of past outputs and inputs considered by the model; and
θ ∈ Θ is a vector of uncertainties about the plant. Variables that although
influencing plant dynamics are not considered in the model because of the
necessary simplifications or for other reasons are represented by z(t).

The dynamics of the plant in (8.1) are completely described by the family
of models (8.2) if for any y(t), · · · , y(t − ny) ∈ Y, u(t), · · · , u(t − nu) ∈ U,
z(t), · · · , z(t − nz) ∈ Z and ψ ∈ Ψ, there is a vector of parameters θi ∈ Θ
such that

8.1 Process Models and Uncertainties 219

f(y(t), · · · , y(t− ny), u(t), · · · , u(t− nu), z(t), · · · , z(t− nz), ψ)

= f̂(y(t), · · · , y(t− nna
), u(t), · · · , u(t− nnb

), θi)

The way in which the uncertainties parameter θ and its domain Θ are defined
mainly depends on the structures of f and f̂ and on the degree of certainty
about the model. In the following the most used model structures in MPC
will be considered.

8.1.1 Truncated Impulse Response Uncertainties

For an m-input n-output MIMO stable plant the truncated impulse response
is given by N real matrices (n × m) Ht. The (i, j) entry of Ht corresponds
to the ith output of the plant when an impulse has been applied to input
variable uj .

The natural way of considering uncertainties is by supposing that the
coefficients of the truncated impulse response, which can be measured ex-
perimentally, are not known exactly and are a function of the uncertainty
parameters. Different types of functions can be used. The most general way
will be by considering that the impulse response may be within a set defined
by (Ht)ij ≤ (Ht)ij ≤ (Ht)ij ; that is, (Ht)ij(Θ) = (Hmt)ij + Θtij

, with Θ de-
fined by (Hmt)ij − (Ht)ij ≤ Θtij

≤ (Ht)ij − (Hmt)ij and Hmt is the nominal
response. The dimension of the uncertainty parameter vector is N × (m×n).
For the case of N = 40 and a 5-input 5-output MIMO plant, the number of
uncertainty parameters is 1000, which will normally be too high for the min-
max problem involved.

This way of modelling does not take into account the possible structures
of the uncertainties. When these are considered, the dimension of the uncer-
tainty parameter set may be considerably reduced.

In [47] and [162] a linear function of the uncertainty parameters is sug-
gested:

Ht =
q∑

j=1

Gtj
θj

The idea is that the plant can be described by a linear combination of q
known stable linear time-invariant plants with unknown weighting θj . This
approach is suitable in the case when the plant is nonlinear and linear models
are obtained at different operating regimes. It seems plausible that a linear
combination of linearized models can describe the behaviour of the plant
over a wider range of conditions than a single model.

As will be seen, considering the impulse response as a linear function
of the uncertainty parameters is of great interest for solving the robust MPC
problem. Furthermore, note that the more general description of uncertain-
ties (Ht)ij(Θ) = (Ht)ij + Θtij

can also be expressed this way by considering

220 8 Robust Model Predictive Control

Ht(θ) =
n∑

i=1

m∑
j=1

(Ht)ij + Θtij
Hij

where Hij is a matrix with entry (i, j) equal to one and the remaining entries
are zero.

The predicted output can be computed as

y(t + j) =
N∑

i=1

(Hmi + θi)u(t + j − i)

while the predicted nominal response is

ym(t + j) =
N∑

i=1

Hmiu(t + j − i)

The prediction band around the nominal response is then limited by:

min
θ∈Θ

N∑
i=1

θiu(t + j − i) and max
θ∈Θ

N∑
i=1

θiu(t + j − i)

8.1.2 Matrix Fraction Description Uncertainties

Let us consider the following n-output m-input multivariable discrete-time
model

A(z−1)y(t) = B(z−1) u(t− 1) (8.3)

where A(z−1) and B(z−1) are polynomial matrices of appropriate dimen-
sions.

Parametric uncertainties about the plant can be described by (Ak)ij ≤
(Ak)ij ≤ (Ak)ij and (Bk)ij ≤ (Bk)ij ≤ (Bk)ij . That is, (Ak)ij = (Ak)ij+Θakij

(Bk)ij = (Bk)ij + Θbkij
.

The number of uncertainty parameters for this description is na × n × n
+(nb + 1) × n ×m. Note that uncertainties about actuators and dead times
will mainly reflect on coefficients of the polynomial matrix B(z−1), while un-
certainties about the time constants will mainly affect the polynomial matrix
A(z−1). Note that if the parameters of the polynomial matrices A(z−1) and
B(z−1) have been obtained via identification, the covariance matrix indicates
how big the uncertainty band for the coefficients is.

The most frequent case in industry is that each of the entries of the trans-
fer matrix has been characterized by its static gain, time constant, and equiv-
alent dead time. Bounds on the coefficients of matrices A(z−1) and B(z−1)
can be obtained from bounds on the gain and time constants. Uncertainties
about the dead time are, however, difficult to handle. If the uncertainty band

8.1 Process Models and Uncertainties 221

about the dead time is higher than the sampling time used, it will translate
into a change in the order of the polynomial or coefficients that can change
from zero and to zero. If the uncertainty band about the dead time is smaller
than the sampling time, the pure delay time of the discrete-time model does
not have to be changed. The fractional delay time can be modelled by the
first terms of a Padé expansion and the uncertainty bound of these coeffi-
cients can be calculated from the uncertainties of the dead time. In any case
dead time uncertainty bounds tend to translate into a very high degree of
uncertainty about the coefficients of the polynomial matrix B(z−1).

The prediction equations can be expressed in terms of the uncertainty
parameters. Unfortunately, for the general case, the resulting expressions are
too complicated and of little use because the involved min-max problem
would be too difficult to solve in real time. If the uncertainties only affect
polynomial matrix B(z−1), the prediction equation is an affine function of
the uncertainty parameter and the resulting min-max problem is less com-
putationally expensive, as will be shown later in the chapter. Uncertainties
on B(z−1) can be given in various ways. The most general way is by con-
sidering uncertainties on the matrices (Bi = Bni + θi). If the plant can be
described by a linear combination of q known linear time invariant plants
with unknown weighting θj , polynomial matrix B(z−1) can be expressed as:

B(z−1) =
q∑

i=1

θiPi(z−1)

The polynomial matrices Pi(z−1) are a function of the polynomial matrices
Bi(z−1) and Ai(z−1) corresponding to the matrix fraction description of each
plant. For the case of diagonal Ai(z−1) matrices, the polynomial matrices
Pi(z−1) can be expressed as:

Pi(z−1) =
q∏

j=1,i	=j

Aj(z−1)Bi(z−1)

Note that the general case of uncertainties on the coefficient parameters
could have also been expressed this way but with a higher number of un-
certainty parameters. Using prediction Equation (6.5)

y(t + j|t) = Fj(z−1)y(t) + Ej(z−1)B(z−1)� u(t + j − 1)
= Fj(z−1)y(t) + Ej(z−1)(

∑q
i=1 θiPi(z−1))� u(t + j − 1)

that is, an affine function in θi.

8.1.3 Global Uncertainties

The key idea of this way of modelling the uncertainties is to assume that all
modelling errors are globalized in a vector of parameters, such that the plant
can be described by the following family of models

222 8 Robust Model Predictive Control

ŷ(t + 1) = f̂(y(t), · · · , y(t− nna
), u(t), · · · , u(t− nnb

)) + θ(t)

with dim(θ(t))=n.
Notice that global uncertainties can be related to other types of uncer-

tainties. For the impulse response model, the output at instant t + j with
parametric and temporal uncertainties description is given by:

ŷ(t + j) =
N∑

i=1

(Hmi + θi)u(t + j − i)

ŷ(t + j) =
N∑

i=1

(Hmi)u(t + j − i) + θ(t + j)

Therefore θ(t+j) =
∑N

i=0 θiu(t+j− i) and the limits for the i component
(θi, θi) of vector θ(t + j) when u(t) is bounded (in practice always) are given
by:

θi = min
u(·)∈U,θi∈Θ

N∑
i=0

θti
u(t + j − i)

θi = max
u(·)∈U,θi∈Θ

N∑
i=0

θti
u(t + j − i)

The number of uncertainty parameters is reduced from N × (m× n) to n
but the approach is more conservative because the limits of the uncertainty
parameter domain have to be increased to contemplate the worst global situ-
ation. The way of defining the uncertainties is, however, much more intuitive
and directly reflects how good the j step ahead prediction model is.

For the left matrix fraction description, the uncertainty model is defined
by

Ã(z−1)y(t) = B(z−1)� u(t− 1) + θ(t) (8.4)

with θ(t) ∈ Θ defined by e(t) ≤ θ(t) ≤ e(t).
Notice that with this type of uncertainty one does not have to presume

the model to be linear, as is the case of parametric uncertainty or frequency
uncertainty modelling. Here it is only assumed that the process can be ap-
proximated by a linear model in the sense that all trajectories will be in-
cluded in bands that depend on θ(t) and θ(t). It may be argued that this
type of global uncertainties are more disturbances than uncertainties because
they seem to work as external perturbations. However, the only assumption
made is that they are bounded; in fact θ(t) may be a function of past inputs
and outputs. If the process variables are bounded, the global uncertainties
can also be bounded.

8.1 Process Models and Uncertainties 223

The model given by Expression (8.4) is an extension of the integrated
error concept used in CARIMA models. Because of this, the uncertainty band
will grow with time. To illustrate this point consider the system described by
the first-order difference equation

y(t + 1) = ay(t) + bu(t) + θ(t + 1) with θ ≤ θ(t) ≤ θ

that is, a model without integrated uncertainties. Let us suppose that the
past inputs and outputs and future inputs are zero, thus producing a zero
nominal trajectory. The output of the uncertain system is given by

y(t + 1) = θ(t + 1)
y(t + 2) = a θ(t + 1) + θ(t + 2)

...

y(t + N) =
N−1∑
j=0

ajθ(t + N − j)

The upper bound will grow as |a|(j−1)θ and the lower bound as |a|(j−1)θ. The
band will stabilize for stable systems to a maximum value of θ/(1− |a|) and
θ/(1 − |a|). This type of model will not incorporate the possible drift in the
process caused by external perturbations.

For the case of integrated uncertainties defined by the following model

y(t + 1) = ay(t) + bu(t) +
θ(t)
�

the increment of the output is given by

�y(t + k) =
k−1∑
j=0

ajθ(t + k − j)

and

y(t + N) =
N∑

k=1

�y(t + j) =
N∑

k=1

k−1∑
j=0

ajθ(t + k − j)

indicating that the uncertainty band will grow continuously. The rate of
growth of the uncertainty band stabilizes to θ/(1 − |a|) and θ/(1 − |a|) af-
ter the transient caused by process dynamics.

In order to generate the j step ahead prediction for the output vector, let
us consider the Bezout identity:

I = Ej(z−1)Ã(z−1) + Fj(z−1)z−j (8.5)

Using Equations (8.4) and (8.5) we get

224 8 Robust Model Predictive Control

y(t+j) = Fj(z−1)y(t)+Ej(z−1)B(z−1)�u(t+j−1)+Ej(z−1)θ(t+j) (8.6)

Notice that the prediction will be included in a band around the nominal
prediction ym(t+ j) = Fj(z−1)y(t)+Ej(z−1)B(z−1)�u(t+ j−1) delimited
by

ym(t+j)+ min
θ(·)∈Θ

Ej(z−1)θ(t+j) ≤ y(t+j) ≤ ym(t+j)+ max
θ(·)∈Θ

Ej(z−1)θ(t+j)

Because of the recursive way in which polynomial Ej(z−1) can be obtained,
when e(t) and e(t) are independent of t, the band can also be obtained recur-
sively by increasing the limits obtained for y(t + j − 1) by

max
θ(t+j)∈Θ

Ej,j−1θ(t + 1) and min
θ(t+j)∈Θ

Ej,j−1θ(t + 1)

where Ej(z−1) = Ej−1(z−1) + Ej,j−1z
−(j−1).

Consider the set of j ahead optimal predictions y for j = 1, · · · , N , which
can be written in condensed form as

y = Guu + Gθθ + f (8.7)

where θ = [θ(t+1), θ(t+2), · · · , θ(t+N)]T is the vector of future uncertainties,
y is the vector of predicted outputs, f is the free response, that is, the response
due to past outputs (up to time t) and past inputs and vector u corresponds
to the present and future values of the control signal.

8.2 Objective Functions

The objective of predictive control is to compute the future control sequence
u(t), u(t + 1), . . . , u(t + Nu) in such a way that the optimal j step ahead
predictions y(t + j | t) are driven close to w(t + j) for the prediction hori-
zon. The way in which the system will approach the desired trajectories will
be indicated by a function J which depends on the present and future con-
trol signals and uncertainties. The usual way of operating, when considering
a stochastic type of uncertainty, is to minimize function J for the most ex-
pected situation; that is, supposing that the future trajectories are going to
be the future expected trajectories. When bounded uncertainties are consid-
ered explicitly, bounds on the predictive trajectories can be calculated and it
would seem that a more robust control would be obtained if the controller
tried to minimize the objective function for the worst situation; that is, by
solving

min
u∈U

max
θ∈Θ

J(u, θ)

The function to be minimized is the maximum of a norm that measures how
well the process output follows the reference trajectories. Different types of
norms can be used for this purpose.

8.2 Objective Functions 225

8.2.1 Quadratic Cost Function

Let us consider a finite horizon quadratic criterion

J(N1, N2, Nu) =
N2∑

j=N1

[ŷ(t + j | t)− w(t + j)]2 +
Nu∑
j=1

λ[�u(t + j − 1)]2 (8.8)

If the prediction Equation (8.7) is used, Equation (8.8) can now be written
as

J = (Guu + Gθθ + f −w)T (Guu + Gθθ + f −w) + λuT u (8.9)
= uT Muuu + Muu + M + Mθθ + θtMθθθ + θtMeuu

where w is a vector containing the future reference sequences
w = [w(t + N1), · · · , w(t + N2)]T

The function J(u, θ) can be expressed as a quadratic function of θ for
each value of u

J(u, θ) = θtMθθθ + M ′
e(u)θ + M ′u (8.10)

with M ′
θ = Mθ + utMθ and M ′ = M + Muu + utMuuu.

Let us define:
Jm(u) = max

θ∈Θ
J(u, θ)

Matrix Mθθ = Gt
θGθ is a positive definite matrix because Gθ is a lower tri-

angular matrix having all the elements on the principal diagonal equal to
one. Since matrix Mθθ is positive definite, the function is strictly convex ([15]
theorem 3.3.8) and the maximum of J will be reached in one vertex of the
polytope Θ ([15] theorem 3.4.6).

For a given u the maximization problem is solved by determining which
of the 2(N×n) vertices of the polytope Θ produces the maximum value of
J(u, θ).

It can easily be seen that function Jm(u) is a piecewise quadratic function
of u. Let us divide the u domain U in different regions Up such that u ∈ Up if
the maximum of J(u, θ) is attained for the polytope vertex θp. For the region
Up the function Jm(u) is defined by

Jm(u) = utMuuu + M∗
u(θp)u + M∗θp

with M∗
u = Mu + θt

pMu and M∗ = M + Mθθp + θt
pMθθθp.

Matrix Muu, which is the Hessian matrix of function Jm(u), can be as-
sured to be positive definite by choosing a value of λ > 0. This implies that
the function is convex ([15] theorem 3.3.8) and that there are no local optimal
solutions different from the global optimal solution ([15] theorem 3.4.2).

One of the main problems of nonlinear programming algorithms, local
minima, is avoided, and any nonlinear programming method can be used to
minimize function Jm(u). However, and because the evaluation of Jm(u)

226 8 Robust Model Predictive Control

implies finding the minimum at one vertex of the polytope Θ, the computa-
tion time can be prohibitive for real-time applications with long costing and
control horizons. The problem gets even more complex when the uncertain-
ties on the parameters of the transfer function are considered. The amount of
computation required can be reduced considerably if other types of objective
functions are used, as will be shown in the following sections.

8.2.2 ∞-∞ norm

Campo and Morari [47], showed that by using an∞-∞ type of norm the min-
max problem involved can be reduced to a linear programming problem that
requires less computation and can be solved with standard algorithms. Al-
though the algorithm proposed by Campo and Morari was developed for
processes described by the truncated impulse response, it can easily be ex-
tended to the left matrix fraction descriptions used throughout the text.

The objective function is now described as

J(u, θ) = max
j=1···N

‖ŷ(t+j|t)−w(t)‖∞ = max
j=1···N

max
i=1···n

|ŷi(t+j|t)−wi(t)| (8.11)

Note that this objective function will result in an MPC which minimizes the
maximum error between any of the process outputs and the reference trajec-
tory for the worst situation of the uncertainties; the control effort required to
do so is not taken into account.

By making use of the prediction equation y = Guu+Gθθ+f and defining
g(u, θ) = (y −w), the control problem can be expressed as

min
u∈U

max
θ∈Θ

max
i=1···n×N

|gi(u, θ)|

Define μ∗(u) as
μ∗(u) = max

θ∈Θ
max

i=1···n×N
|gi(u, θ)|

If there is any positive real value μ satisfying −μ ≤ gi(u, θ) ≤ μ, ∀θ ∈ Θ and
for i = 1 · · ·n×N it is clear that μ is an upper bound of μ∗(u). The problem
can now be transformed into finding the smallest upper bound μ and some
u ∈ U for all θ ∈ Θ. When constraints on the controlled variables (y,y) are
taken into account, the problem can be expressed as

min
μ,u

μ

subject to:
−μ ≤ gi(u, θ) ≤ μ

y
i
−wi ≤ gi(u, θ) ≤ yi −wi

}
for i = 1, · · · , n×N
∀θ ∈ Θ

The control problem has been transformed into an optimization problem
with an objective function which is linear in the decision variables (μ,u)
and with an infinite (continuous) number of constraints. If g(u, θ) is an affine

8.2 Objective Functions 227

function of θ, ∀u ∈ U, the maximum and minimum of g(u, θ) can be ob-
tained at one of the extreme points of Θ [47]. Let us call E the set formed by
the 2n×N vertices of Θ. If constraints are satisfied for every point of E they
will also be satisfied for every point of Θ. Thus the infinite, and continuous,
constraints can be replaced by a finite number of constraints.

When the global uncertainty model is used and constraints on the ma-
nipulated variables (U,U) and on the slew rate of the manipulated variables
(u,u) are also taken into account, the problem can be stated as

min
μ,u

μ

subject to

1μ ≥ Guu + Gθθ + f −w
1μ ≥ −Guu−Gθθ − f + w
y ≥ Guu + Gθθ + f

−y ≥ −Guu−Gθθ − f

⎫⎪⎪⎬⎪⎪⎭ ∀θ ∈ E
u ≥ u

−u ≥ −u
U ≥ Tu + 1u(t− 1)

−U ≥ −Tu− 1u(t− 1)

where l is an (N × n)×m matrix formed by N m×m identity matrices and
T is a lower triangular block matrix whose non null block entries are m×m
identity matrices. The problem can be transformed into the usual form

min
x

ctx subject to Ax ≤ b, x ≥ 0

with

x =
[
u− u

μ

]
ct = [

m×Nu︷ ︸︸ ︷
0, · · · , 0, 1] At = [At

1, · · · , At
2N , At

u] bt = [bt
1, · · · ,bt

2N ,bt
u]

The block matrices have the form:

Ai =

⎡⎢⎢⎣
Gu −1

−Gu −1
Gu 0

−Gu 0

⎤⎥⎥⎦ Au =

⎡⎣ I 0
T 0
−T 0

⎤⎦ bi =

⎡⎢⎢⎣
−Guu−Gθθi − f + w
Guu + Gθθi + f −w
y −Guu−Gθθi − f
−y + Guu + Gθθi − f

⎤⎥⎥⎦

bu =

⎡⎣ u− u
U + Tu + 1u(t− 1)
−U− Tu− 1u(t− 1)

⎤⎦
where θi is the ith vertex of E .

228 8 Robust Model Predictive Control

The number of variables involved in the linear programming problem is
m×Nu+1 while the number of constraints is 4×n×N×2n×N+3m×Nu. As the
number of constraints is much higher than the number of decision variables,
solving the dual LP problem should be less computationally expensive, as
pointed out by Campo and Morari [47].

The number of constraints can, however, be dramatically reduced be-
cause of the special form of matrix A. Consider the jth row for each of the
constraint blocks Aix ≤ bi. As A1 = A2 = · · · = A2N

, the only constraint
limiting the feasible region will be the one with the smallest value on the jth
element of vector bi. Therefore, all the other (2N −1) constraints can be elim-
inated and the number of constraints can be reduced to 4×n×N +3m×Nu.
Notice that any uncertainty model giving rise to an affine function g(u, θ)
can be transformed into an LP problem as shown by Campo and Morari [47].
The truncated impulse response uncertainty model or uncertainties in the
B(z−1) polynomial matrix produce an affine function g(u, θ). However, the
constraint reduction mechanism described earlier cannot be applied and the
number of constraints would be very high.

8.2.3 1-norm

Although the type of ∞-∞ norm used earlier seems to be appropriate in
terms of robustness, the norm is only concerned with the maximum devia-
tion and the rest of the behaviour is not taken explicitly into account. Other
types of norms are more appropriate for measuring the performance. All-
wright [5] has shown that this method can be extended to the 1-norm for
processes described by their truncated impulse response. The derivation for
the left matrix representation is also straightforward

The objective function is

J(u, θ) =
N2∑

j=N1

n∑
i=1

|yi(t+j | t, θ)−wi(t+j)|+λ

Nu∑
j=1

m∑
i=1

|�ui(t+j−1)| (8.12)

where N1 and N2 define the prediction horizon and Nu defines the control
horizon. If a series of μi ≥ 0 and βi ≥ 0 such that for all θ ∈ Θ,

−μi ≤ (yi(t + j)− wi(t + j)) ≤ μi

−βi ≤ �ui(t + j − 1) ≤ βi

0 ≤∑n×N
i=1 μi + λ

∑m×Nu

i=1 βi ≤ γ

then γ is an upper bound of

μ∗(u) = max
θ∈E

n∑
j=1

∑
i=1

|yi(t + j, θ)− wi(t + j)|+ λ

Nu∑
j=1

m∑
i=1

| � ui(t + j − 1)|

The problem is reduced to minimizing the upper bound γ.

8.2 Objective Functions 229

When the global uncertainty model is used and constraints on the output
variables, the manipulated variables (U,U), and the slew rate of the manip-
ulated variables (u,u) are taken into account, the problem can be interpreted
as an LP problem with:

min
γ,μ,β,u

γ

subject to

μ ≥ Guu + Gθθ + f + w
μ ≥ −Guu−Gθθ − f + w
y ≥ Guu + Gθθ + f

−y ≥ −Guu−Gθθ − f

⎫⎪⎪⎬⎪⎪⎭ ∀θ ∈ E
β ≥ u
β ≥ −u
u ≥ u

−u ≥ u
U ≥ T u + 1u(t− 1)

−U ≥ −Tu− 1u(t− 1)
γ ≥ 1tμ + λ1β

The problem can be transformed into the usual form

min
x

ctx subject to Ax ≤ b, x ≥ 0

with

x =

⎡⎢⎢⎣
u− u

μ
β
γ

⎤⎥⎥⎦ ct = [

m×Nu︷ ︸︸ ︷
0, · · · , 0,

n×N︷ ︸︸ ︷
0, · · · , 0,

m×Nu︷ ︸︸ ︷
0, · · · , 0, 1]

At = [At
1, · · · , At

2N , At
u] bt = [bt

1, · · · ,bt
2N ,bt

u]

where the block matrices take the following form

Ai =

⎡⎢⎢⎣
Gu −I 0 0

−Gu −I 0 0
Gu 0 0 0

−Gu 0 0 0

⎤⎥⎥⎦ bi =

⎡⎢⎢⎣
−Guu−Gθθi − f + w
Guu + Gθθi + f −w
y −Guu−Gθθi − f
−y + Guu + Gθθi + f

⎤⎥⎥⎦

Au =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 0 0
I 0 −I 0

−I 0 −I 0
T 0 0

−T 0 0 0
0 1, · · · , 1︸ ︷︷ ︸

n×N

1, · · · , 1︸ ︷︷ ︸
m×Nu

−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
bu =

⎡⎢⎢⎢⎢⎢⎢⎣

u− u
−u
u

U− Tu− 1u(t− 1)
−U + Tu + 1u(t− 1)

0

⎤⎥⎥⎥⎥⎥⎥⎦

230 8 Robust Model Predictive Control

and θi is the ith vertex of E . The number of variables involved in the linear
programming problem is 2×m×Nu + n×N + 1, while the number of con-
straints is 4×n×N ×2n×N +5×m×Nu +1. As the number of constraints is
much higher than the number of decision variables, solving the dual LP prob-
lem should also be less computationally expensive than the primal problem.

The number of constraints can be reduced considerably as in the ∞-∞
norm case because of the special form of the constraint matrix A. Consider
the jth row for each constraint block Aix ≤ bi. As A1 = A2 = · · · = A2N

;
the only constraint limiting the feasible region will be the one with the small-
est value on the jth element of vector bi. Therefore, all the other (2N − 1)
constraints can be eliminated. The number of constraints can be reduced to
4× n×N + 5m×Nu + 1.

8.3 Robustness by Imposing Constraints

A way of guaranteeing robustness in MPC is to impose that stability condi-
tions are satisfied for all possible realizations of the uncertainties. The stabil-
ity conditions (see Section 9.5) were summarized in [137]. The key ingredi-
ents of the stabilizing MPC are a terminal set and a terminal cost. The terminal
state (i.e. the state at the end of the prediction horizon) is forced to reach a
terminal set that contains the steady state. An associated cost denoted as ter-
minal cost, which is added to the cost function, is associated to the terminal
state.

The robust MPC consists of finding a vector of future control moves such
that it minimizes an objective function (including a terminal cost satisfying
the stability conditions [137]) and forces the final state to reach the terminal
region for all possible value of the uncertainties; that is

min
u

J(x(t),u) (8.13)

subject to
Ru ≤ r + Vx(t)
x(t + N) ∈ ΩT

}
∀θ ∈ Θ

where the terminal set ΩT is usually defined by a polytope ΩT � {x : RT x ≤
rT }. The inequalities Ru ≤ r + Vx(t) contain the operating constraints. If
there are operating constraints on the process output and/or state, vector r
is an affine function of the uncertainties θ; i.e., r = r0 + Rθθ. The vector of
predicted state can be written as:

x = Guu + Gθθ + fxx(t) (8.14)

Taking the rows corresponding to x(t + N) and substituting them into the
inequality defining the terminal region

RT (guN
u + gθN

θ + fxN
x(t)) ≤ rT (8.15)

8.4 Constraint Handling 231

where guN
, gθN

, and fxN
are the last n rows of Gu,Gθ, and Fx respectively,

with n = dim(x). The left-hand side of Inequalities (8.15) are affine func-
tions of the uncertainty vector θ. Problem (8.13) results in a QP or LP problem
(depending on the type of the objective function) with an infinite number of
constraints. As in the previous cases, because the constraints are affine ex-
pressions of the uncertainties, if the inequalities hold for all extreme points
(vertices) of Θ they also hold for all points inside Θ; that is, the infinite con-
straints can be replaced by a finite number (although normally very high) of
constraints and the problem is solvable. The problem can be expressed as

min
u

J(x(t),u) (8.16)

subject to
Ru ≤ r0 + Rθθi + Vx(t)
RT (guN

u + gθN
θi + fxN

x(t)) ≤ rT

}
∀θi ∈ ε

where ε is the finite set of extreme points (vertices) of Θ.

8.4 Constraint Handling

As seen in the previous sections, when uncertainties are additive, the robust
MPC consists of solving at each sampling step a problem of the form

min
u

J(x(t),u) (8.17)

subject to Ruu ≤ r + Rθθi + Rxx(t) ∀θi ∈ ε (8.18)

where function J(x(t),u) can be a linear, quadratic, or piecewise quadratic
objective function. The number of constraints in (8.18) is equal to the num-
ber of rows of Ru times the number of vertices of the polytope defining the
uncertainties along the prediction horizon. The number of constraints can be
reduced dramatically as indicated in Sections 8.2.2 and 8.2.3. Consider the j
rows of all the constraints in (8.18)

ruj
u ≤ rj + rθj

θi + rxj
x(t) ∀θi ∈ ε (8.19)

where ruj
, rθj

, and rxj
are the j rows of matrices Ru, Rθ, and Rxx(t), respec-

tively. The scalar rj is the j entry of vector r. Let us define mj � minθi∈ε rθj
θi.

Now consider the inequality:

ruj
u ≤ rj + mj + rxj

x(t) (8.20)

It is easy to see that if Inequality (8.20) is satisfied, all constraints in (8.19) will
also be satisfied. Furthermore, if any constraints in (8.19) is not satisfied then
constraint (8.20) will not be satisfied. Problem (8.17) can be expressed with a
considerably smaller number of constraints:

232 8 Robust Model Predictive Control

min
u

J(x(t),u) (8.21)

subject to Ruu ≤ r + m + Rxx(t) (8.22)

where m is a vector with its j entry equal to minθi∈ε rθj
θi. Notice that these

quantities are constant and can be computed offline.

8.5 Illustrative Examples

8.5.1 Bounds on the Output

The setpoint of many processes in industry is determined by an optimization
program to satisfy economic objectives. As a result, the optimal setpoint is
usually on the intersection of some constraints. This is, for example, the nor-
mal situation when maximizing the throughput, which normally results in
operating the process at extreme conditions as near as possible to the safety
or quality constraints. Consideration of uncertainties may be of great inter-
est for this type of situation. If an MPC that takes into account the constraints
is used, the MPC will solve the problem, keeping the expected values of the
output signals within the feasible region, but, because of external perturba-
tions or uncertainties, this does not guarantee that the output is going to be
bound. When uncertainties are taken into account, the MPC will minimize the
objective function for the worst situation and keep the value of the variables
within the constraint region for all possible cases of uncertainties.

To illustrate this point, consider the process described by the following
difference equation

y(t + 1) = −1.4y(t) + 0.42y(t− 1) + 0.1u(t) + 0.2u(t− 1) +
θ(t + 1)
�

with −0.03 ≤ θ(t) ≤ 0.03, y(t) ≤ 1, and −1 ≤ �u(t) ≤ 1. A 1-norm MPC is
applied with a weighting factor of 0.2, and predictions and control horizon
of 3 and 1, respectively. The setpoint is set at the output constraint value.
The uncertainties are randomly generated within the uncertainty set with a
uniform distribution. The results obtained are shown in Figure 8.1(a). Note
that the output signal violates the constraint because the MPC only checked
the constraints for the expected values.

The results obtained when applying a min-max algorithm are shown in
Figure 8.1(b). As can be seen, the constraints are always satisfied because the
MPC checked all possible values of the uncertainties.

8.5.2 Uncertainties in the Gain

The next example is the frequently found case of uncertainties in the gain.
Consider a second-order system described by the following difference equa-
tion

8.5 Illustrative Examples 233

0.0 20.0 40.0 60.0
Samples

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Ou

tpu
t

(a)

0.0 20.0 40.0 60.0
Samples

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ou
tpu

t

(b)

Fig. 8.1. (a) Output bound violation and (b) output with min-max algorithm

y(t+1) = 1.97036y(t)− 0.98019y(t− 1)+0.049627 K (u(t)+0.99335u(t− 1))

where 0.5 ≤ K ≤ 2. That is, the process static gain can be anything from
half to twice the nominal value. A quadratic norm is used with a weighting
factor of 0.1 for the control increments, a control horizon of 1, and a predic-
tion horizon of 10. The control increments were constrained between −1 and
1. Figure 8.2(a) shows the results obtained by applying a constrained GPC
for three different values of the process gain (nominal, maximum and mini-
mum). As can be seen, the results obtained by the GPC deteriorate when the
gain takes the maximum value giving rise to an oscillatory behaviour.

The results obtained when applying a min-max GPC for the same cases
are shown in Figure 8.2b. The min-max problem was solved in this case by
using a gradient algorithm in the control increments space. For each point
visited in this space the value of K maximizing the objective function had
to be determined. This was done by computing the objective function for
the extreme points of the uncertainty polytope (two points in this case). The

234 8 Robust Model Predictive Control

0.0 20.0 40.0 60.0 80.0 100.0
Samples

0.0

0.5

1.0

1.5

K = 1
K = 0.5
K = 2

(a)

0.0 20.0 40.0 60.0 80.0 100.0
Samples

0.0

0.5

1.0

1.5

K = 1
K = 0.5
K = 2

(b)

Fig. 8.2. (a) Uncertainty in the gain for constrained GPC (b) and min-max GPC

responses of the min-max GPC, which takes into account the worst case, are
acceptable for all situations as can be seen in Figure 8.2(b).

A simulation study was carried out with 600 cases varying the process
gain uniformly in the parameter uncertainty set from the minimum to max-
imum value. The bands limiting the output for the constrained GPC and the
min-max constrained GPC are shown in Figure 8.3. As can be seen, the uncer-
tainty band for the min-max constrained GPC is much smaller than the one
obtained for the constrained GPC.

8.6 Robust MPC and Linear Matrix Inequalities

Linear matrix inequalities (LMI) are becoming very popular in control and
have also been used in the MPC context.

A linear matrix inequality is an expression of the form

8.6 Robust MPC and Linear Matrix Inequalities 235

0.0 20.0 40.0 60.0 80.0 100.0
Samples

0.0

0.5

1.0

1.5

Constrained GPC
Min-max

Fig. 8.3. Output limiting bands

F (x) = F0 +
m∑

i=1

xiFi > 0 (8.23)

where Fi are symmetrical real n× n matrices, xi are variables and F (x) > 0,
means that F (x) is positive definite. The three main LMI problems are:

1. the feasibility problem: determining variables x1,x2,...,xm so that In-
equality (8.23) holds.

2. the linear programming problem: finding the optimum of
∑m

i=1 cixi sub-
ject to F (x) > 0.

3. the generalized eigenvalue minimization problem: finding the minimum
λ such that: λA(x)−B(x) > 0, A(x) > 0, B(x) > 0

Many problems can be expressed as LMI problems [35], even inequality
expressions that are not affine in the variables. This is the case of quadratic in-
equalities, frequently used in control, which can be transformed into an LMI
form using Schur complements: Let Q(x), R(x), and S(x) depend affinely on
x and be Q(x), R(x) symmetrical. Then the LMI problem[

Q(x) S(x)
S(x)T R(x)

]
> 0

is equivalent to

R(x) > 0, Q(x)− S(x)R(x)−1S(x)T > 0
and Q(x) > 0, R(x)− S(x)T Q(x)−1S(x) > 0

There are efficient algorithms to solve LMI problems which have been
applied to solve control problems such as robust stability, robust pole place-
ment, optimal LQG, and robust MPC. In this last context, Kothare et al. [109]
proposed a robust constrained model predictive control as follows

Consider the linear time-varying system:

236 8 Robust Model Predictive Control

x(k + 1) = A(k)x(k) + B(k)x(k)
y(k) = Cx(k)

[A(k)B(k)] ∈ Ω (8.24)
Rxx(k) ≤ ax

Ruu(k) ≤ au

and the following cost function

J(k) =
∞∑

i=0

(
x̂(k + i|k)T Q1x̂(k + i|k) + u(k + i)T Ru(k + i)

)
(8.25)

The robust optimization problem is stated as

min
u(k+i|k),i≥0

max
[A(k+i),B(k+i)]∈Ω,i≥0

J(k) (8.26)

Define a quadratic function V (x) = xT Px with P > 0 such that V (x) is
an upper bound on J(k):

max
[A(k+i),B(k+i)]∈Ω,i≥0

J(k) ≤ V (x(k|k)) (8.27)

The problem is solved by finding a linear feedback control law u(k + i|k)
= Fx(k + i|k) such that V (x(k|k)) is minimized. Suppose that there are no
constraints in the state and inputs and that the model uncertainties are de-
fined as follows

Ω = Co{[A1, B1], [A2, B2], · · · , [AL, BL]} (8.28)

where Co denotes the convex hull defined by vertices [Ai, Bi]. That is, any
plant [A,B] ∈ Ω can be expressed as

[A,B] =
L∑

i=1

λi[Ai, Bi]

with λi ≥ 0 and
∑L

i=1 λi = 1
In these conditions, the robust MPC can be transformed into the following

LMI problem
min

γ,Q,Y
γ (8.29)

subject to [
1 x(k|k)T

x(k|k) Q

]
≥ 0 (8.30)

8.7 Closed-Loop Predictions 237⎡⎢⎢⎣
Q QAT

j + Y T BT
j QQ

1/2
1 Y T R1/2

AjQ + BjY Q 0 0
Q

1/2
1 Q 0 γI 0

R1/2Y 0 0 γI

⎤⎥⎥⎦ ≥ 0 , j = 1, · · · , L (8.31)

Once this LMI problem is solved, the feedback gain can be obtained by:

F = Y Q−1

Kothare et al. [109] demonstrated that constraints on the state and ma-
nipulated variables and other types of uncertainties can also be formulated
and solved as LMI problems.

The main drawbacks of this method are:

• Although LMI algorithms are supposed to be numerically efficient, they
are not as efficient as specialized LP or QP algorithms.

• The manipulated variables are computed as a linear feedback of the state
vector satisfying constraints, but when constraints are present, the opti-
mum does not have to be linear.

• Feasibility problems are more difficult to treat as the physical meaning of
constraints is somehow lost when transforming them into the LMI format.

8.7 Closed-Loop Predictions

When solving min-max MPC in the presence of output or state constraints,
the solution has to fulfill the constraints for all possible realisations of the
uncertainties. That is, the uncertainty bounds of the evolution of the trajec-
tories have to be included in the polytopes defined by constraints along the
prediction horizon. In many cases, the uncertainty bounds of the predictions
grow to such an extent with the prediction horizon that a feasible solution
cannot be found. Furthermore, even if a feasible solution can be found, it
tends to be too conservative, giving rise to an overcautious controller. This
excessive conservatism is caused by the open-loop nature of the predictions
in conventional MPC, which does not take into account the moving horizon
principle and the real closed-loop nature of MPC. That is, the prediction is
made at time t for the whole control horizon in an open-loop mode with-
out taking into account that in future sampling times the controller will have
more information about the process.

Another way of illustrating the closed-loop prediction idea is by consid-
ering control in the presence of uncertainties as a game problem (min-max
algorithms are used extensively in game problems). The robust control prob-
lem can be considered as a game, say chess, with two players. The first player
(control action) will try to make a move that minimises a cost function (the
lower the cost function the better for the first player), the second player (un-
certainty) will then make a move trying to maximise the cost function. When

238 8 Robust Model Predictive Control

the first player has to make his second move, the moves made at the first
stage by both players are known and a more informed decision can be made.
That is, the problem can be posed as

min
u(t)

[max
θ(t)

[min
u(t+1)

[max
θ(t+1)

· · · min
u(t+N−1)

[max
θ(t+N−1)

J(.)]] · · ·] (8.32)

instead of the conventional open-loop formulation:

min
u(t),u(t+1),··· ,u(t+N−1)

max
θ(t),θ(t+1),··· ,θ(t+N−1)

J(.) (8.33)

The control action at time t should be computed supposing the receding
horizon principle is going to be used and that control action at future time in-
stants will be computed minimizing the cost function and, at the same time,
the uncertainties will do their best to maximize the cost function. It is easy
to see that because of the receding horizon principle, this turns into a recur-
sive strategy that leads in fact to an infinite horizon unless a winning (losing)
position is found (checkmate or terminal region in MPC) for all possible real-
izations of uncertainties in a finite number of moves. If the prediction horizon
is N and the real closed-loop situation is considered, at time t + 1 the com-
putation will be made with a horizon of N and so on, leading to a min-max
problem of infinite dimension.

As in most games, the real closed-loop strategy can be approximated by
considering that the control horizon will diminish at each sampling instant
and by introducing a function that evaluates (estimates) the merit of the final
position reached.

8.7.1 An Illustrative Example

Consider a process given by

y(t + 1) = ay(t) + bu(t) + θ(t) (8.34)

with a = 0, 9, b = 1, |u(t)| ≤ 10, |y(t)| ≤ 2, and bounded uncertainties
|θ(t)| ≤ 1. Let us suppose that the problem is to maintain y(t) as close to
zero as possible and bounded by |y(t + j)| ≤ 2 for all possible values of
uncertainties in the following N steps of the control horizon. If yn(t + j) are
the nominal predictions, that is, the predictions made when no uncertainties
are present, the output is given by:

y(t + j) = yn(t + j) +
j∑

i=1

aj−iθ(t + i− 1)

Given any possible combination of the control moves (u(t), . . . u(t +
N − 1)), it is always possible to find a combination of the uncertainties
(θ(t), . . . θ(t + N − 1)) that will make the process violate the constraint

8.7 Closed-Loop Predictions 239

|y(t)| ≤ 2. Notice that if the uncertainties take one of the extreme values
θ(t + j) = 1 or θ(t + j) = −1 and θ(t + j) = sign(yn(t + j)) is chosen then:

|y(t + j)| = |yn(t + j)|+ |(1 + a + . . . + aj−i)| ≥ 2 for j > 2

That is, there is no sequence of the control moves that guarantees that process
variables will be within bounds for all possible realizations of uncertainties.

However, if the manipulated variable is chosen as u(t+j) = −ay(t+j)/b,
the prediction equations are now:

y(t + 1) = ay(t) + b(−ay(t)/b) + θ(t) = θ(t)
...

y(t + j) = θ(t + j)

Then |y(t + j)| = |θ(t + j − 1)| ≤ 1 ≤ 2; that is, the constraints are fulfilled
with this simple control law for all possible values of the uncertainties. The
difference is that u(t + j) is now computed with θ(t), . . . θ(t + j − 1) known
while in the previous case, u(t + j) was computed with no knowledge of
θ(t) . . . θ(t + j − 1).

8.7.2 Increasing the Number of Decision Variables

The previous example has shown that the traditional (open-loop) prediction
strategy used in min-max MPC results in an infeasible problem. The reason
is that a single control profile cannot handle all possible future uncertainties.
The example also shows that a simple linear controller can find a feasible so-
lution to the problem by using feedback. This is the key issue: the open-loop
MPC tries to find a solution to the control problem (u(t), u(t + 1), · · · , u(t +
N − 1)) with the information available at sampling time t but the reality is
that because of the receding control strategy, at time t + 1 the information
about the process state (and therefore the uncertainties) at time t + 1 will be
available. By using the open-loop prediction, the future control moves are
computed as

[u(t), u(t + 1), · · · , u(t + N − 1)] = [f0(x(t)), f1(x(t)), · · · , fN−1(x(t))]

that is, u(t + j) is computed as a function of the state at time t, while in the
second case, a control law is given (u(t + j) = −ay(t + j)/b, in the example)
by a function of the state at t + j:

[u(t), u(t+1), · · · , u(t+N−1)] = [g0(x(t)), g1(x(t+1)), · · · , gN−1(x(t+N−1))]

240 8 Robust Model Predictive Control

In an MPC framework, this will translate into optimizing over the possi-
ble control laws: the decision variables now are not u(t+j) but all the possible
functions gt+j(x(t + j)). The optimizer will have to search in the space of all
possible functions of x(t + j). This is a much harder problem to solve.

Another approach to the problem is to consider different variables for
each possible realization of the perturbations (uncertainties) as proposed in
[189]. Suppose that the realization of the perturbation and uncertainties are
known. This would be the ideal situation from a control point of view: no un-
certainty in the model or disturbances. The process could be controlled in an
open loop manner applying a previously computed control law optimizing
some operational criteria. Suppose that we compute the optimum for every
possible realization of the perturbations. We would have for each particular
realization of the perturbations, the initial state and the possible realization
of the reference (notice that if no future references are known they can be
considered uncertainties)

[u(t), . . . , u(t + N − 1)] = f(x(t), θ(t + 1), . . . , θ(t + N), r(t + 1), · · · , r(t + N))
(8.35)

Notice that u(t) can be different for each realization of the uncertainties.
However, we would like to have a u(t) which depends only on state x(t). If
this u(t) is applied to the process, the next possible states will be given by

x(t + 1) = f(x(t), u(t), θ(t)) with θ(t) ∈ Θ (8.36)

where θ(t) is the vector of all possible uncertainties (including the reference
if necessary) at time t. Let us consider for the sake of simplicity that θ(t) is
either θ− or θ+ and that t = 0. Then we will have two next possible states

x+
1 = f(x0, u0, θ

+)
x−1 = f(x0, u0, θ

−)

In either of these two states we would like to apply a control law which
depends only on the state. That is, we have two more variables, u+

1 and u−1 ,
associated to each possible realization of the uncertainty. We now have the
following set of possible states for the next time instant:

x++
2 = f(x+

1 , u+
1 , θ+)

x+−
2 = f(x+

1 , u+
1 , θ−)

x−+
2 = f(x−1 , u−1 , θ+)

x−−2 = f(x−1 , u−1 , θ−)

We can now associate the following decision variables to the next step:
u++

2 , u+−
2 , u−+

2 , u−−2 . If the process uncertainties can take only two possible

8.7 Closed-Loop Predictions 241

values (or when these two values are the only two values which are rele-
vant to the max problem), the number of decision variables added at each
sampling instant j is 2j . In general, at each sampling instant, the number of
decision variables added is mj , where m is the number of possible uncertain-
ties to be considered at sampling time j. The number of decision variables for
the min problem is

∑N
j=1 mj .

In a multivariable case with four states and only one uncertainty param-
eter for each state and two possible values of interest for each uncertainty
parameter, the number of possible realizations of the uncertainties at the ex-
treme points is m = 16. In this case, if the control horizon is N = 10, the num-
ber of decision variables for the minimization problem would be 7.3 × 1010.
By using causality arguments the number of decision variables decreases but
the problem gets more complex because additional constraints have to be
added. The method is regarded as impractical except for very small prob-
lems.

8.7.3 Dynamic Programming Approach

Another approach to closed-loop MPC proposed in the literature is based on
Dynamic Programming (see Appendix B). The idea of Dynamic Program-
ming is intimately related to closed-loop control. Let us consider a system
described by x(t + 1) = f(x(t), u(t), θ(t)) and the cost function defined as:

Jt(x(t),u, θ) �
N−1∑
j=0

L(x(t + j), u(t + j)) + F (x(t + N))

Define J t(x(t),u) � maxθ∈Θ Jt(x(t),u, θ). Suppose we want to optimize the
closed-loop nested problem:

min
u(t)

[max
θ(t)

[min
u(t+1)

[max
θ(t+1)

· · · min
u(t+N−1)

[max
θ(t+N−1)

J(·)]] · · ·] (8.37)

The key idea in Dynamic Programming is to solve Problem (8.37) from
the inner bracket outward, that is, first the inner most problem:

J∗t+N−1(x(t + N − 1)) � min
u(t+N−1)

J t+N−1(x(t + N − 1), u(t + N − 1)) (8.38)

with J t+N−1(x(t + N − 1), u(t + N − 1)) � maxθ(t+N−1) L(x(t + N − 1),
u(t + N − 1)) + F (x(t + N)).

Notice that F (x(t + N)) measures the merit of the last position, and this
is the way to avoid entering an infinite loop.

Suppose we are able to solve Problem (8.38) explicitly, i.e., determining
J∗t+N−1(x(t+N−1)) as a function of x(t+N−1). This is the cost of going from
x(t + N − 1) to the end. At the next stage we would encounter the following
problem:

242 8 Robust Model Predictive Control

J∗t+N−2(x(t + N − 2)) � min
u(t+N−2)

J t+N−2(x(t + N − 2), u(t + N − 2)) (8.39)

with
J t+N−2(x(t + N − 2), u(t + N − 2)) � max

θ(t+N−2)
L(x(t + N − 2), u(t + N − 2))

+J∗t+N−1(f(x(t + N − 2), u(t + N − 2), θ(t + N − 2)))

Again, if Problem (8.39) could be solved explicitly, we would obtain
J∗t+N−2(x(t + N − 2)) and so forth until we arrive at

J∗t (x(t)) � min
u(t)

J t(x(t), u(t)) (8.40)

with

J t(x(t), u(t)) � max
θ(t)

L(x(t), u(t)) + J∗t+1(f(x(t), u(t), θ(t)))

The closed-loop min-max MPC control move u∗(t) for a particular value
of x(t) is the minimum of J t(x(t), u(t)). The key factor in Dynamic Program-
ming is finding the functions J∗t+j(x(t + j)). If we include constraints in the
min-max MPC, each of the steps taken earlier can be described as

J∗t (x(t)) � min
u(t)

J t(x(t), u(t)) (8.41)

s.t. Rxx(t) + Ruu(t) ≤ r

f(x(t), u(t), θ(t)) ∈ X (t + 1)
with θ(t) ∈ Θ

Jt(x(t), u(t)) � max
θ(t)∈Θ

L(x(t), u(t)) + J∗t+1(x(t + 1)) (8.42)

Notice that constraints are not taken into account in the optimization
Problem (8.42) because keeping the process within constraints is the mis-
sion of the input variables, while the object of uncertainties, in this game,
is to maximize the problem regardless of constraint fulfillment, as indi-
cated in [21]. Here it has also been demonstrated that if the system is linear
x(t + 1) = A(ω(t))x(t) + B(ω(t))u(t) + Ev(t), with the uncertainty vector
θ(t)T = [ω(t)T v(t)T], and the stage cost of the objective function defined as:
L(x(t + j), u(t + j)) � ‖Qx(t + j)‖p + ‖Ru(t + j)‖p with the terminal cost
defined as J∗t+N (x(t + N)) � ‖Px(t + N)‖p, the solution is a piecewise affine
function of the state. This will be seen in Chapter 11.

Another way of solving the problem is to approximate functions J∗t (x(t+
j)) in a grid over the state as suggested in [117]. The idea is to impose a grid
on the state space and then to compute J∗t+N−1(x(t + N − 1)) for all points
in that grid. At the next stage function J∗t+N−2(x(t + N − 2)) is computed for

8.7 Closed-Loop Predictions 243

v u x y
C

K

Plant

-
+

min-max
MPC

w

Fig. 8.4. Min-max with a linear feedback structure

the points in the grid using an interpolation of J∗t+N−1(x(t + N − 1)) when
x(t+N−1) = f(x(t+N−2), u(t+N−2), θ(t+N−2)) does not coincide with
one of the points in the grid. The main drawback of this method is that only
problems with a small dimension of the state space can be implemented as
the number of one-stage min-max problems to be solved will be N ×N

dim(x)
G

8.7.4 Linear Feedback

An approach used to reduce the uncertainty prediction bands is to consider
that the future controller is going to perform some kind of controlling action
based on the future process state. That is, that the controller in the future
will have information about the uncertainties (or the effects on the process
output or state) that have already occurred. A simple way of considering
the reaction of the closed-loop system to the uncertainties in the prediction
is to add a stabilizing regulator in a cascade fashion [17],[52]. Hence, the
control actions of the MPC controller are the increments to the input provided
by the stabilizing regulator. Let us consider, for the sake of simplicity, that
the control objective is to take the state to zero; this can be accomplished by
making

u(t + k) = −Kx(t + k | t) + v(t + k) (8.43)

where K is a linear feedback gain that stabilizes the system and the auxiliary
variable v(t) is the reference signal for the inner loop controller, as can be
seen in Figure 8.4. Consider a process described by:

x(t + 1) = Ax(t) + Bu(t) + ϑ(k) (8.44)
y(t) = Cx(t)

If the linear feedback is introduced, the new equations are

x(t + 1) = AKx(t) + Bv(t) + ϑ(t) (8.45)
y(t) = Cx(t)

with AK = A−BK. That is, we have a new system with a new manipulated
variable v(t) instead of the previous manipulated variable u(t) and a new

244 8 Robust Model Predictive Control

matrix AK . The prediction equations for both systems can be obtained by
recurring expression (8.44) and (8.45):

x(t + k) = Akx(t) +
k−1∑
j=0

Ak−1−jBu(t + j) +
k−1∑
j=0

Ak−1−jϑ(t + j) (8.46)

x(t + k) = AK
kx(t) +

k−1∑
j=0

AK
k−1−jBv(t + j) +

k−1∑
j=0

AK
k−1−jϑ(t + j)

The first two terms of the right-hand side of Expressions (8.46) correspond
to the nominal trajectory (i.e., when the uncertainties are zero). The error
caused by uncertainties in the open-loop (x̃o(t+k)) and closed-loop (x̃c(t+k))
structures are given by:

x̃o(t + k) =
k−1∑
j=0

Ak−1−jϑ(t + j)

x̃c(t + k) =
k−1∑
j=0

AK
k−1−jϑ(t + j)

Let us consider that the uncertainties are bounded by ‖ϑ(t)‖p ≤ 1. Therefore:

‖x̃o(t + k)‖p ≤
k−1∑
j=0

‖Ak−1−j‖p

‖x̃c(t + k)‖p =
k−1∑
j=0

‖AK
k−1−j‖p

Notice that if the feedback gain is chosen such that ‖AK‖p < ‖A‖p, the uncer-
tainty bounds for predictions of the closed-loop systems will also be smaller
than the corresponding bounds for the open loop.

Another interpretation of this is that by introducing a stabilizing regu-
lator in a cascade fashion we have reduced the reaction of the closed-loop
system to the uncertainties in the prediction. The effect of this controller can
be seen as a reduction of the Lipschitz constant of the system. The Lipschitz
constant is a gauge of the effect of the uncertainty on the prediction of the
state at the next sample time. As shown in [125], the discrepancy between
the nominal predicted trajectory and the uncertain evolution of the system is
reduced if the Lipschitz constant is lower. Consequently, the predictions, and
therefore the obtained MPC controller, are less conservative than the open-
loop ones.

Notice that if there are some constraints on u(t), these constraints have
to be translated into the new manipulated variables v(t). Let us consider that
the original problem constraints were expressed by:

8.7 Closed-Loop Predictions 245

Ruu + Rϑϑ ≤ r + Rxx(t) (8.47)

The manipulated variable is computed as: u(t + k) = −Kx(t + k | t)
+v(t+k). The manipulated variable vector u for the complete control horizon
can be expressed as

u = Mxx(t) + (I + Mv)v + Mϑϑ (8.48)

with

u =

⎡⎢⎢⎢⎣
u(t)
u(t + 1)
...
u(t + N − 1)

⎤⎥⎥⎥⎦ Mx = −

⎡⎢⎢⎢⎣
K
KA∗
...
KA∗N−1

⎤⎥⎥⎥⎦

Mv = −

⎡⎢⎢⎢⎣
0 0 · · · 0
KB 0 · · · 0
...

...
. . .

...
KA∗N−2B KA∗N−3B · · · 0

⎤⎥⎥⎥⎦ v =

⎡⎢⎢⎢⎣
v(t)
v(t + 1)
...
v(t + N − 1)

⎤⎥⎥⎥⎦

Mϑ = −

⎡⎢⎢⎢⎣
0 0 · · · 0
K 0 · · · 0
...

...
. . .

...
KA∗N−2 KA∗N−3 · · · 0

⎤⎥⎥⎥⎦ ϑ =

⎡⎢⎢⎢⎣
ϑ(t)
ϑ(t + 1)
...
ϑ(t + N − 1)

⎤⎥⎥⎥⎦
By introducing (8.48) into (8.47) we get the constraints expressed as a

function of v:

Ru(I + Mv)v + (RuMϑ + Rϑ)ϑ ≤ r + (Rx −RuMx)x

8.7.5 An Illustrative Example

Consider the system described by x(t + 1) = ax(t) + bu(t) + ϑ(t) with
ϑ ≤ ϑ(t) ≤ ϑ, u ≤ u(t) ≤ u, and x ≤ x(t) ≤ x. Let us consider a control
horizon N = 3 and an objective function J =

∑N
j=1 x(t+j | t)2+λu(t+j−1)2.

The prediction equations are⎡⎣x(t + 1)
x(t + 2)
x(t + 3)

⎤⎦ =

⎡⎣a
a2

a3

⎤⎦x(t) +

⎡⎣ b 0 0
ab b 0
a2b ab b

⎤⎦⎡⎣u(t)
u(t + 1)
u(t + 2)

⎤⎦+

⎡⎣1 0 0
a 1 0
a2 a 1

⎤⎦⎡⎣ϑ(t)
ϑ(t + 1)
ϑ(t + 2)

⎤⎦
(8.49)

which can be expressed in a more compact way as:

x = Gxx(t) + Guu + Gϑϑ (8.50)

The constraints can be expressed as (8.47) with:

246 8 Robust Model Predictive Control

Ru =

⎡⎢⎢⎣
I
−I
Gu

−Gu

⎤⎥⎥⎦ Rϑ =

⎡⎢⎢⎣
0
0

Gϑ

−Gϑ

⎤⎥⎥⎦ r =

⎡⎢⎢⎣
1u
−1u
1x
−1x

⎤⎥⎥⎦ Rx =

⎡⎢⎢⎣
0
0

−Gx

Gx

⎤⎥⎥⎦ (8.51)

The min-max MPC is reduced to solving the problem:

min
u

max
ϑ

xT x + λuT u (8.52)

s.t.
x = Gxx(t) + Guu + Gϑϑ
Ruu + Rϑϑ ≤ r + Rxx(t)

}
∀ϑ ∈ Θ

Notice that the constraints of Problem (8.52) have to be fulfilled ∀ϑ ∈ Θ
which would represent an infinite number of constraints (one for each point
inside Θ). However, if the constraints are satisfied at the vertices of Θ they
will also be satisfied in the interior of Θ and therefore it is sufficient to satisfy
a finite number of constraints.

If the process model parameters are a = 0.95, b = 0.1, −20 ≤ u(t) ≤ 20,
−1.2 ≤ x(t) ≤ 1.2, r(t) = 0, λ = 2, and −0.5 ≤ ϑ(t) ≤ 0.5, the constraint
matrices are defined as in (8.51) with:

Gx =

⎡⎣0.9500
0.9025
0.8574

⎤⎦ Gu =

⎡⎣0.1 0 0
0.095 0.1 0
0.0902 0.095 0.1

⎤⎦ Gϑ =

⎡⎣1 0 0
0.95 1 0
0.9025 0.95 1

⎤⎦ (8.53)

It can easily be seen that if x(t) = 0, for any control sequence, the error due to
the uncertainty at t+3 is given by: x̃(t+3) = 0.9025ϑ(t)+0.95ϑ(t+1)+ϑ(t+2).
By making ϑ(t) = ϑ(t+1) = ϑ(t+2) = ϑ, or ϑ(t) = ϑ(t+1) = ϑ(t+2) = ϑ, we
can see that by using these uncertainty values, the error band can be made
as big as 2.8525ϑ = 1.4263 and 2.8525ϑ = −1.4263. That is, if the nominal
trajectory makes x̂(t + 3) ≥ 0, just by choosing the uncertainties to be ϑ, the
state vector will be higher than the admissible value (x(t) ≤ 1.2). The same
situation happens when x̂(t + 3) ≤ 0, where choosing the uncertainties to be
ϑ will cause the state vector to have a lower value than allowed. That is, the
problem is not feasible for any point in the state space.

Now suppose that the following linear feedback is considered:
u(t) = −8.5x(t)+ v(t). The resulting system dynamics are now described by:
x(t + 1) = 0.95x(t) + 0.1(−8.5x(t) + v(t)) + ϑ(t) = 0.1x(t) + 0.1v(t) + ϑ(t).
The error due to uncertainties can be computed as:⎡⎣ x̃(t + 1)

x̃(t + 2)
x̃(t + 3)

⎤⎦ =

⎡⎣1 0 0
0.1 1 0
0.01 0.1 1

⎤⎦⎡⎣ϑ(t)
ϑ(t + 1)
ϑ(t + 2)

⎤⎦ (8.54)

The uncertainty band at t + 3 is given by x̃(t + 3) = 0.01ϑ(t) + 0.1ϑ(t + 1)
+ϑ(t+2). It can be seen that the errors are bounded by−0.5 ≤ x̃(t+1) ≤ 0.5,
−0.55 ≤ x̃(t + 2) ≤ 0.55, and −0.555 ≤ x̃(t + 3) ≤ 0.555. Therefore, the

8.8 Exercises 247

problem is feasible for any initial state, such that a nominal trajectory can be
computed separated from the bounds by 0.5, 0.55, and 0.555. That is, −0.7 ≤
x̂(t + 1) ≤ 0.7, −0.65 ≤ x̂(t + 2) ≤ 0.65, and −0.645 ≤ x̂(t + 3) ≤ 0.645. In
this case, a feasible solution exists for all x(t) ∈ [−1.2, 1.2].

In conclusion, when open-loop MPC was used, no feasible solution could
be found such that constraints would be fulfilled in spite of future uncertain-
ties or perturbations. When we consider that information about the future
process state will be taken into account (by a linear feedback in this exam-
ple), the problem is feasible for any admissible value of x(t).

8.8 Exercises

8.1. Consider the second-order system described by the following equation

y(t + 1) = y(t)− 0.09y(t− 1) + 0.09u(t) + ε(t)

with −1 ≤ u(t) ≤ 1,−1 ≤ y(t) ≤ 1, 0.01 ≤ ε(t) ≤ 0.01. The system is
modelled by the following first-order model:

y(t + 1) = ay(t) + bu(t) + θ(t)

1. If the model parameters are chosen as a = 0.9, b = 0.1, determine a
bound θ for the uncertainty such that −θ ≤ θ(t) ≤ θ.

2. Explain how you would find θ experimentally if you did not know the
equations of the real system but you could experiment on the real system
itself.

3. Find a bound for the output prediction trajectory; i.e., y(t + j) such that
|y(t + j|t)| ≤ y(t + j).

4. Explain how you would calculate a and b so that the uncertainty bound
θ is minimized. Find the minimizing model parameters a and b and the
minimal bound θ.

5. Find a bound for the output prediction trajectory with these new bounds
and model. Compare the results with those obtained in number 3.

6. Formulate a min-max MPC using different types of objective functions
(quadratic, 1-norm,∞-norm).

7. Solve the min-max MPC problems of number 6 and simulate the re-
sponses with different control horizons.

8.2. Given the system y(t + 1) = ay(t) + bu(t) + θ(t) with a = 0.9, b = 0.1,
−1 ≤ u(t) ≤ 1, −1 ≤ y(t) ≤ 1, the uncertainty θ(t) bounded by: −0.05 ≤
θ(t) ≤ 0.05 and a terminal region defined by the following box around the
origin −0.1 ≤ y(t + N) ≤ 0.1.

1. Formulate a robust min-max MPC with N = 3 that takes the system to the
terminal region for any realization of the uncertainties with different ob-
jective functions (quadratic, 1-norm, ∞-norm). Comment on the nature
and difficulties of the optimization problems encountered.

248 8 Robust Model Predictive Control

2. Repeat the exercise of number 1 for a robust MPC but minimizing the
objective function for the nominal system instead of the min-max MPC.

3. Solve the problems of numbers 1 and 2 for N = 1, N = 2 and N = 3.
Discuss the feasibility of each.

4. Formulate the problems of numbers 1 and 2 for N = 3 but use a linear
feedback as indicated in Section 8.7.4. Discuss the feasibility.

8.3. Given the system

x(t + 1) = Ax(t) + Bu(t) + Dθ(t)

with

A =
[

1 1
0 1

]
, B =

[
0
1

]
, D =

[
1 0
]
, −0.1 ≤ θ(t) ≤ 0.1, −1 ≤ u(t) ≤ 1

The control objective consists of taking (and maintaining) the state vector as
close to zero as possible by solving the following min-max problem.

min
u∈[−1,1]

max
θ∈[−0.1,0.1]

N∑
j=1

x(t + j)T x(t + j) + 10u(t + j − 1)2

1. Formulate a robust min-max MPC with N = 3.
2. Repeat the exercise of number 1 for a robust MPC minimizing the objec-

tive function for the nominal system instead of the min-max MPC.
3. Repeat the exercises in numbers 1 and 2 considering the following termi-

nal region: ‖x(t + N)‖∞ ≤ 0.2.
4. Solve and simulate the MPC of numbers 1, 2, and 3 for N = 1 and N = 2.

Discuss the feasibility of each.

9

Nonlinear Model Predictive Control

In general, industrial processes are nonlinear, but, as has been shown in this
book, most MPC applications are based on the use of linear models. There are
two main reasons for this: on one hand, the identification of a linear model
based on process data is relatively easy and, on the other hand, linear models
provide good results when the plant is operating in the neighbourhood of the
operating point. In the process industries, where linear MPC is widespread,
the objective is to keep the process around the stationary state rather than
perform frequent changes from one operation point to another and, there-
fore, a precise linear model is enough. Besides, the use of a linear model
together with a quadratic objective function gives rise to a convex problem
(Quadratic Programming) whose solution is well studied with many com-
mercial products available. The existence of algorithms that can guarantee
a convergent solution in a time shorter than the sampling time is crucial in
processes where a great number of variables appear.

However, the dynamic response of the resulting linear controllers is un-
acceptable when applied to processes that are nonlinear to varying degrees
of severity. Although in many situations the process will be operating in the
neighbourhood of a steady state, and therefore a linear representation will
be adequate, there are some very important situations where this does not
occur. On one hand, there are processes for which the nonlinearities are so
severe (even in the vicinity of steady states) and so crucial to the closed-loop
stability that a linear model is not sufficient. On the other hand, there are
some processes that experience continuous transitions (startups, shutdowns,
etc.) and spend a great deal of time away from a steady-state operating re-
gion or even processes which are never in steady-state operation, as is the
case of batch processes, where the whole operation is carried out in transient
mode. For these processes a linear control law will not be very effective, so
nonlinear controllers will be essential for improved performance or stable
operation.

Although the number of applications of Nonlinear Model Predictive
Control (NMPC) is still very limited (see [14], [171]), its potential is really

E. F. Camacho et al., Model Predictive Control
© Springer-Verlag London Limited 2007

250 9 Nonlinear Model Predictive Control

great since nonlinear MPC has to make headway in those areas where pro-
cess nonlinearities are strong and market demands require frequent changes
in operation regimes.

This chapter is dedicated to NMPC, showing recent developments and
new trends, in both theoretical and practical aspects. Notice that both as-
pects are important since there are open theoretical issues such as modelling
or stability that are as important as practical ones such as identification or
computational complexity.

9.1 Nonlinear MPC Versus Linear MPC

It is evident that the main advantage of NMPC with respect to MPC is the
possibility of dealing with nonlinear dynamics. As new tools that facilitate
attainment and representation of nonlinear models, either from first princi-
ples or from experimental data, appear on the market, interest in their use in
NMPC is growing.

There is nothing in the basic concepts of MPC against the use of a non-
linear model. Therefore, the extension of MPC ideas to nonlinear processes is
straightforward, at least conceptually. However, this is not a trivial matter,
and there are many difficulties derived from the use of this kind of model
such as:

• The availability of nonlinear models from experimental data is an open
issue. There is a lack of identification techniques for nonlinear processes.
The use of Neural Networks or Volterra series does not seem to solve the
problem in a general form. On the other hand, model attainment from
first principles (mass and energy balances) is not always feasible.

• The optimization problem is nonconvex, its resolution is much more diffi-
cult than the QP problem. Problems relative to local optimum appear, not
only influencing control quality but also deriving in stability problems.

• The difficulty of the optimization problem translates into an important
increase in computation time. This can constrain the use of this technique
to slow processes.

• The study of crucial subjects such as stability and robustness is more com-
plex in the case of nonlinear systems. It constitutes an open field of great
interest for researchers.

Some of these problems are partially being solved, and NMPC is becom-
ing a field of intense research and will become more common as users de-
mand higher performance.

As an introductory example, consider the nonlinear system

y(t + 1) = 0.9y(t) + u(t)
1
4

with 0 ≤ u(t) ≤ 1. Figure 9.1 shows the response obtained when controlled
with a linear MPC and a nonlinear MPC with λ = 0 and N = 10.

9.2 Nonlinear Models 251

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 9.1. Linear and nonlinear controller

For the linear case, the system is approximated by the linear model:

y(t + 1) = 0.9y(t) + u(t)

In the nonlinear case it is easy to see that by making v(t) = u(t)
1
4 , a linear

system is obtained, and it can be solved using any linear MPC tool with this
new manipulated variable. v(t)1

As can be seen, the response obtained with the linear MPC oscillates for
low values of the setpoints while the response obtained with the nonlinear
MPC is very good for all setpoint changes.

9.2 Nonlinear Models

Developing adequate nonlinear models may be very difficult and there is
no model form that is clearly suitable to represent general nonlinear pro-
cesses. Part of the success of standard MPC was due to the relative ease with
which step and impulse responses or low-order transfer functions could be

1 Note that if λ �= 0, the objective function would not be a quadratic function.

252 9 Nonlinear Model Predictive Control

obtained. Nonlinear models are much more difficult to construct, either from
input/output data correlation or by the use of first principles from well-
known mass and energy conservation laws.

If the deviation from linearity is not too large, some approximations can
be made which acknowledge that certain system characteristics change from
operating point to operating point, but linearity is assumed in the neigh-
bourhood of a specific operating point. There are some approximations to
the problem, such as a scheduled linearized MPC (see Chapter 12), in which
the model is linearized around several operating points and appropriately
used within the linear MPC strategy as the process moves from one operat-
ing point to another. There is also the extended linear MPC in which a basic
linear model is used in combination with an explicit nonlinear model which
captures the nonlinearities.

However, when the nonlinearities are more severe, nonlinear models
must be employed to describe process dynamics. The three main types of
models that are used in this area are: empirical, fundamental, and grey box,
which are discussed later.

9.2.1 Empirical Models

A major mathematical obstacle to a complete theory of nonlinear processes
is the lack of a superposition principle for nonlinear systems. Because of this,
the determination of models from process input/output data becomes a very
difficult task. The number of plant tests required to identify a nonlinear plant
is much greater than that needed for a linear plant. If the plant is linear, in an
ideal situation, only a step test has to be performed in order to know the step
response of the plant. Because of the superposition principle, the response to
a different size step can be obtained by multiplying the response to the step
test by the ratio of both step sizes. This is not the case for nonlinear processes
where tests with many different-size steps must be performed to get the step
response of the nonlinear plant. If the process is multivariable, the difference
in the number of tests required is even greater. In general, if a linear system
is tested with signals u1(t),u2(t), . . . un(t) and the corresponding responses
are y1(t),y2(t), . . . yn(t), the response to a signal which can be expressed as a
linear combination of the tested input signals

u(t) = α1u1(t) + α2u2(t) + · · ·+ αnun(t)

is
y(t) = α1y1(t) + α2y2(t) + · · ·+ αnyn(t)

That is, a linear system does not need to be tested for any input signal
sequence that is a linear combination of previously tested input sequences,
whilst this is not the case for a nonlinear system that must be analyzed for
all possible input signals.

9.2 Nonlinear Models 253

A fundamental difficulty associated with the empirical modelling ap-
proach is the selection of a suitable model form. The available nonlinear
models used for NMPC are described later.

Input-output Models

The nonlinear discrete-time models used for control can be viewed as map-
pings between those variables that are available for predicting system be-
haviour up to the current time and those to be predicted at or after that in-
stant.

This kind of model can be represented as a nonlinear autoregressive
moving average model with exogenous input (NARMAX), which, for single-
input single-output processes, is given by the general equation

y(t) = Φ[y(t− 1), . . . , y(t− ny), u(t− 1), . . . , u(t− nu), e(t), . . . , e(t− ne + 1)]
(9.1)

where Φ is a nonlinear mapping, y is the output, u is the input, and e is
the noise input. The suitability of this model depends on the choice of the
function Φ and the order parameters. Notice that this equation covers a wide
range of descriptions, depending mainly on function Φ. Different choices of
this function give rise to certain of the following models that can provide
attractive formulations for predictive control. Volterra and related models,
local model networks and neural networks are detailed in this subsection.

Volterra Models

If only Finite Impulse Response (FIR) models are considered (which is equiv-
alent to ny = 0 in equation (9.1)) and Φ is restricted to analytic functions,
it follows that this function exhibits a Taylor series expansion which defines
the class of discrete-time Volterra models.

These models are analogous to the continuous-time Volterra models,
with the convolution integrals replaced by discrete convolution sums. The
model response is given by

y(t) = y0 + y1(t) + y2(t) + y3(t) + . . . yn(t)

where the first term is an offset and the second is given by:

y1(t) =
∞∑

i=0

h1(i)u(k − i)

which corresponds to the linear convolution model used in many linear MPC
strategies (such as MAC or DMC) and the higher-order terms are given by:

254 9 Nonlinear Model Predictive Control

y2(t) =
∞∑

i=0

∞∑
j=0

h2(i, j)u(t− i)u(t− j)

y3(t) =
∞∑

i=0

∞∑
j=0

∞∑
l=0

h3(i, j, l)u(t− i)u(t− j)u(t− l)

yn(t) =
∞∑

i1=0

. . .
∞∑

in=0

hn(i1, . . . , in)u(t− i1) . . . u(t− in)

In general, finite-dimensional discrete-time Volterra models can be writ-
ten as:

y(t) = y0 +
M∑

i1=0

· · ·
M∑

in=0

αn(i1, . . . , in)u(t− i1) . . . u(t− in) (9.2)

Although Volterra models have their limitations, they represent a simple
logical extension of the convolution models that have been so successful in
linear MPC. These models are generically well-behaved and their structure
can be exploited in the design of the controller, especially for second-order
models, as will be shown later. In this particular and useful case, and when
the infinite terms are truncated finite to values, the process model is given by

y(t) = y0 +
N∑

i=0

h1(i)u(k − i) +
M∑
i=0

M∑
j=0

h2(i, j)u(t− i)u(t− j) (9.3)

which corresponds to the widely used linear convolution model with the
nonlinearity appearing as an extra term, that is, the nonlinearity is additive.

The number of parameters needed to define a Volterra model is usu-
ally large. The dynamic order of the structure has to be chosen in relation
to the settling time of the process. Since the settling time is typically 10 to
50 times the sampling time, a realistic choice of the order lies between 10
and 50, which gives rise to a great number of parameters. This order can be
reduced by the use of a parametric Volterra model that also considers past
output values:

y(t) = y0 +
N∑

i=0

a1(i)y(k− i)+
N∑

i=0

h1(i)u(k− i)+
M∑
i=0

M∑
j=0

h2(i, j)u(t− i)u(t− j)

(9.4)
This additional linear output feedback helps reduce the dynamic order com-
pared to the basic model.

Two special subclasses of the basic model are employed which reduce
the complexity of the basic Volterra approach and have a reduced number of
parameters. These are the Hammerstein and Wiener models.

9.2 Nonlinear Models 255

(t) y(t)u(t)
g(.)H(z)

Linear dynamic

ψ

a) b)

g(.) H(z)
φ (t)

Linear dynamic

y(t)u(t)

Nonlinear static Nonlinear static

Fig. 9.2. Hammerstein and Wiener models

Hammerstein models belong to the family of block-oriented nonlinear
models, built from the combination of linear dynamic models and static non-
linearities. They consist of a single static nonlinearity g(.) connected in cas-
cade to a single linear dynamic model defined by a transfer function H(z−1),
as shown in Figure 9.2(a).

Notice that the intermediate input Φ(t) is given by

Φ(t) = g(u(t)) =
N∑

j=0

γju
j(t)

and the overall model output is expressed as:

y(t) =
M∑
i=0

h(i)Φ(t− i)

Both expressions can be combined to give a single equation of the general
finite-dimensional Volterra form (9.2), where the constant term is given by

y0 = γ0

M∑
i=0

h(i)

and the coefficients αn equal γnh(i1) for i1 = i2 = . . . = in and are otherwise
zero.

Because of this, Hammerstein models can be considered diagonal Volterra
models, since the off-diagonal coefficients are all zero. Notice that this means
that the behaviour that can be represented by this type of model is restricted.
This is the price to pay for a reduced number of parameters.

The Wiener model can be considered as the dual of the Hammerstein
model, since it is composed of the same components connected in reverse
order, as seen in Figure 9.2(b). The input sequence is first transformed by the
linear part H(z−1) to obtain Ψ(t), which is transformed by the static non-
linearity g(.) to get the overall model output. Therefore the intermediate se-
quence is given by

ψ(t) =
M∑
i=0

h(i)u(t− i)

256 9 Nonlinear Model Predictive Control

and the overall output by

y(t) =
N∑

j=0

γjΨ
j(t)

These equations can be combined to give an expression of the form (9.2)
considering y0 = γ0 and

αn(i1, . . . , in) = γnh(i1) · · ·h(in)

The properties of Volterra and related models are extensively discussed
in [64].

Closely related to Volterra models are bilinear models. The main differ-
ence between this kind of model and the Volterra approach is that crossed
products between inputs and outputs appear in the model. A second-order
finite-dimensional bilinear model is described as

y(t) =
N∑

i=0

h1(i)u(k − i) +
M∑
i=0

M∑
j=0

h2(i, j)y(t− i)u(t− j)

which can also include linear output feedback as in Equation (9.4). Bilinear
models have been successfully used to model and control heat exchangers,
distillation columns, chemical reactors, waste treatment plants, and pH neu-
tralization reactors [98]. It has been demonstrated that this type of model can
be represented by a Volterra series [122].

Local Model Networks

Another way of using input-output models to represent nonlinear behaviour
is to use a local model network representation. The idea is to use a set of local
models to accommodate local operating regimes [99]. A global plant repre-
sentation is formed using multiple models over the whole operating space of
the nonlinear process. The plant model used for control provides an explicit,
transparent plant representation which can be considered an advantage over
black-box approaches such as neural networks (that will be described later).

The basics of this operating regime approach are to decompose the space
into zones where linear models are adequate approximations to the dynam-
ical behaviour within that regime, with a trade-off between the number of
regimes and the complexity of the local model. The output of each submodel
is passed through a local processing function that generates a window of va-
lidity of that particular submodel. The complete model output is then given
by

y(t + 1) = F (Ψ(t), Φ(t)) =
M∑
i=1

fi(Ψ(t))ρi(Φ(t))

9.2 Nonlinear Models 257

where the M local models fi(Ψ(t)) are linear ARX functions of the measure-
ment vector Ψ (inputs and outputs) and are multiplied by basis functions
ρi(Φ(t)) of the current operating vector. These basis functions are chosen to
give a value close to 1 in regimes where fi is a good approximation to the
unknown F and a value close to 0 in other cases.

If the local models are of the affine ARX form:

fi(Ψ) = a1iy(t) + a2iy(t− 1) + . . . anaiy(t− na)
+ b0iu(t) + b1iu(t− 1) + . . . + bnbiu(t− nb) + ci

then the nonlinear network is given by

y(t + 1) = A1y(t) + A2y(t− 1) + . . . + Anay(t− na) +
+ B0u(t) + B1u(t− 1) + . . . + Bnbu(t− nb) + C

which is an ARX model with its parameters defined at each operating regime:

Ai =
M∑

j=1

ρj(Φ(t))aij Bi =
M∑

j=1

ρj(Φ(t))bij C =
M∑

j=1

ρj(Φ(t))cj

Notice that this technique allows the use of a linear predictive controller,
avoiding the problems associated to computation time and optimality of the
nonlinear solution. However, identification of local operating regimes can be
a difficult task.

Furthermore, a family of model-controller pairs can be used together
with a scheduler in the same way as a gain scheduling strategy. The con-
trollers are tuned about a model obtained from experiments around an op-
erating point and the scheduler decides which controller, or combination of
controllers, is applied to the plant. Notice that both the model and the con-
troller are linear. These latter strategies have been successfully tested on a pH
neutralization plant (see [200] for details).

Neural Networks

The nonlinear dynamics of the process can also be captured by an Artificial
Neural Network (ANN). Neural networks are attractive tools to construct the
model of nonlinear processes since they have an inherent ability to approx-
imate any nonlinear function to an arbitrary degree of accuracy [92]. This,
together with the availability of training techniques, has made them very
successful in many predictive control applications and commercial products.
More details of the use of ANN for control can be found in [152].

Neural networks are composed of many neuronlike processing elements
called nodes which are interconnected to form a network. Input signals to the
node are weighted and added together with a bias term (which is required to
take care of the offset in the process model). The node output is obtained by

258 9 Nonlinear Model Predictive Control

passing this summed term through a nonlinear activation function s(.) that
is usually sigmoidal.

The input to the artificial neural network is the measurement vector Ψ =
[y(t−1), y(t−2), . . . , y(t−n), u(t−1), u(t−2), . . . u(t−m)] which is processed
at every node of the input layer, that gives the following output

zi = s(W1Ψ(t− 1) + bi). (9.5)

The activation function usually takes the form s(x) = (1− e−2x)/(1 + e−2x),
W1 is the vector of connection weights, and bi is the bias term. The model
output (considering a monovariable process) is given by the output layer
which is usually a linear weighted combination of the vector Z of hidden
nodes outputs zi:

y(t) = W2Z + bo (9.6)

The weights of the hidden layer W1 and the output node W2 as well as
the hidden and output biases have to be estimated from experimental data.
This is done by means of the training of the neural network using time series
of inputs and outputs. In this case the process model is constituted by the
weights and bias without any physical meaning, forming a black-box model.

Once the model has been obtained, the ANN can be used for prediction.
Combining Equations (9.5) and (9.6), the following expression is obtained

y(t) = W2[s(W1Ψ(t− 1)) + bi] + bo

which gives the output prediction along the horizon

ŷ(t + k) = W2[s(W1Ψ(t + k − 1)) + bi] + bo

which will be used in the cost function to be minimized.
Neural Networks are usually combined with linear models in practical

applications, since they are not able to extrapolate beyond the range of their
training data set. Based on a model confidence index, the ANN is gradually
turned off when its prediction looks unreliable, the predictions relying on the
linear part.

Some commercial predictive controllers such as the MVC algorithm from
Continental Controls and Process Perfecter from Pavillion Technologies use
input-output models where a static nonlinear model is combined with a lin-
ear dynamic model [14]. The latter uses an ANN to describe the nonlinear
part. The dynamic part is described by the deviation variables defined as

δu(t) = u(t)− us δy(t) = y(t)− ys

where the steady-state values for input and output fulfill:

ys = hs(us)

and the deviation variables follow the linear dynamic relationship (usually
with n = 2) :

9.2 Nonlinear Models 259

δy(t) =
n∑

i=1

aiδy(t− i) + biδu(t− i) (9.7)

Therefore, this is a model composed of a linear dynamic part and a non-
linear static one. Identification of the linear dynamic model is made based on
plant tests, and the nonlinear static model is given by a neural network built
from historical data. This procedure facilitates identification since historical
data usually contain rich steady-state information and plant tests are only
needed for dynamic submodel adjustment.

The basic idea is to update the dynamic model coefficients of Equation
(9.7) using a static gain that is a linear interpolation of the initial and final
steady-state gains:

Ks(u(t)) = Ki
s +

Kf
s −Ki

s

uf
s − ui

s

δu(t) (9.8)

Notice that this gain depends on u(t). The gains used for the interpola-
tion are evaluated from the static nonlinear model as:

Ki
s =

dys

dus
|ui

s
Kf

s =
dys

dus
|uf

s

It is assumed that the process dynamics remain linear over the entire
range of operation (that is, coefficients ai do not change). Therefore, bi coef-
ficients are adjusted to the new value of Ks given by (9.8), giving rise to new
coefficients that also depend on δu2(t − i) since Ks depends on δu(t). Now
the dynamic equation turns to

δy(t) =
n∑

i=1

aiδy(t− i) + biδu(t− i) + giδu
2(t− i) (9.9)

where

bi =
biK

i
s(1−
∑n

j=1 aj)∑n
j=1 bj

gi =
bi(1−

∑n
j=1 aj)∑n

j=1 bj
Kf

s−Ki
s

uf
s−ui

s

It can be checked that the static gain of (9.9) is Ks(u(t)), since∑n
i=1 bi + gi∑n

i=1 ai
= Ks(u(t))

This dynamic model is the one used for controller calculation once a non-
linear optimization program has computed the best input and output values
(uf

s and yf
s) using the static model.

It can be observed that the coefficients of the dynamic part in (9.9) change
from one sample period to the next since they are rescaled to fit the new local
gain of the static nonlinear model. This strategy can be considered a linear
interpolation of the linearized gains done after a successive linearization at

260 9 Nonlinear Model Predictive Control

the initial and final state, in a similar formulation to gain scheduling, but with
a different local model. Since it is assumed that the process dynamics remain
linear over the operating range, asymmetric dynamics such as different time
constants cannot be represented by this model.

State Space Models

The linear state space model can naturally be extended to include nonlinear
dynamics. The following state space model can be used to describe a nonlin-
ear plant

x(t + 1) = f(x(t), u(t)) (9.10)
y(t) = g(x(t))

where x(t) is the state vector and f and g are generic nonlinear functions. No-
tice that the same equation can be used for monovariable and multivariable
processes. Notice also that this model can easily be derived from the differen-
tial equations that describe the model (if they are known) by converting them
into a set of first-order equations. Model attainment in this case is straight-
forward but the procedure is very difficult to obtain from experimental data
when no differential equations are available.

This kind of model is the most widely extended for nonlinear plants since
it has given rise to a lot of theoretical results: the majority of results about
stability and robustness have been developed inside this framework. It is
also used in commercial tools such as NOVA NLC or nonlinear PFC.

The use of this kind of model for predictive control needs the state to be
accessible through measurements or the inclusion of a state observer. The
choice of an appropriate observer may have influence on the closed-loop
performance and stability. Although this is not considered in detail in this
book, there exists an estimation approach that is dual to the NMPC problem.
It is called Moving Horizon Estimation (MHE) and is formulated as an on-
line optimization. It uses a moving horizon of old measurements to obtain
an optimization-based estimate of the system state; see, for example, [3].

Although both functions f and g in Equation (9.10) are, in general, non-
linear, in the case that the first one is linear, a model composed of a combi-
nation of a linear state equation with a nonlinear output equation of the fol-
lowing form can be used. This is used in Aspen Target, and the plant model
is given by

x(t + 1) = Ax(t) + Bu(t)
y(t) = g(x(t))

Output nonlinearity can be modelled by the superposition of a linear
relationship and a nonlinear neural network of the form:

9.2 Nonlinear Models 261

g(x(t)) = Cx(t) + NN(x(t))

This model is generic and allows for the consideration of nonlinear ef-
fects other than measurement nonlinearity since the state vector is not lim-
ited to physical variables. Then the system is identified as a linear one and
the output residual terms are adjusted to the states by means of the neural
network. An extended Kalman filter (EKF) can be added to correct modelling
errors and nonmeasurable disturbances, in this way substituting the constant
feedback error that is usually used in MPC.

Nonlinear System Identification

A fundamental issue in NMPC is not only the choice of the type of model
but also of an identification method that is both reliable and robust enough.
Although one major characteristic of linear systems is that almost every non-
linear system is unique, many tools exist that have been developed to allow
the use of the same approach for a broad variety of cases.

As stated by Henson [88], nonlinear system identification involves the
following five tasks, which represent theoretical and practical challenges:

1. structure selection. This requires the choice of the kind of model to be
used and the selection of the model parameters, such as coefficients ny

and nu in equation (9.1) or the order of a Volterra model.
2. input sequence design. The determination of the input sequence to be

injected into the plant to obtain the output sequence. Notice that this is an
open point because of the lack of a superposition principle for nonlinear
systems.

3. noise modelling. This is the determination of the dynamic model for the
noise input.

4. parameter estimation. This is the estimation of the remaining model pa-
rameters from input/output data and the noise input.

5. model validation. The comparison of model predictions with plant data
not used in model development.

This is currently a field of very active research with many open issues
where optimization techniques play an important role. A thorough overview
of the existing tools can be found in the book by Nelles [148].

9.2.2 Fundamental Models

Since it is sometimes difficult to develop liable empirical models based on
empirical data, the possibility of using models that come directly from bal-
ance equations, usually called first principle models, exists. The equations
are obtained from the knowledge of the underlying process. These models

262 9 Nonlinear Model Predictive Control

are derived by applying mass, energy, and momentum balances to the pro-
cess. In this case, the prediction is made by a simulation of the nonlinear
equations describing the process dynamics.

For complex industrial processes, this type of model is very difficult and
expensive to obtain since it needs a lot of expertise. Nevertheless, in some
cases a detailed model exists that has been developed for other purposes,
as is the case of a process simulator for operator training. This simulator
can also be used for control purposes, although on some occasions this dy-
namical model can be too complex to be useful for controller design. This
encourages the use of reduction techniques such as singular perturbation to
derive a simplified model which retains the basic dynamic behaviour of the
complex model.

Fundamental models need less data than empirical models since model
parameters have a physical meaning and can be estimated from laboratory
experiments or operating data. Besides, they can extrapolate to operating
regions which are not represented in the data used for model development.
This is a particularly important advantage when the plant operates over a
wide range of conditions.

9.2.3 Grey-box Models

These models are developed by combining the empirical and fundamental
approaches, exploiting the advantages of each type of model. In this hybrid
approach, basic first principle information is augmented by empirical data.
This term must not be confused with hybrid processes; a hybrid or grey-
box model is a dynamical model that is obtained using both empirical and
theoretical information, while a hybrid process is one that has time-driven
and event-driven dynamics, as will be analyzed in Chapter 10.

There are two common ways of developing hybrid models [88]. The first
is to use empirical models to estimate unknown functions in the fundamen-
tal model (such as reaction rates in a chemical reactor), in which case steady-
state empirical models are sufficient. The second is to utilize a fundamen-
tal model to capture the basic process dynamics and then to describe the
residual between the plant and the model using a nonlinear empirical model.
Both techniques allow the integration of the physical knowledge of the plant
without the need for a rigorous model of it. Although hybrid models offer
promising potential, their use in NMPC has still to be exploited.

9.2.4 Modelling Example

This example shows the adjustment of several nonlinear models to capture
the dynamics of a real process: a gypsum kiln. The behaviour of this kind
of process is affected by nonlinear effects caused by the existence of distur-
bances and the coupling among several variables. The use of second-order

9.2 Nonlinear Models 263

Volterra and Hammerstein models as appropriate solutions to describe pro-
cess dynamics is analyzed. Choosing the type of model is a trade-off between
model complexity and modelling error.

The state of the process is not depicted by a single variable but rather by
several variables that are measured in the plant (for a complete process de-
scription, see [33]). This is a process in which a nonnegligible delay d exists
due to mass transport along the rotary kiln. Outlet product temperature can
be considered as the process output, although it is highly influenced by other
temperatures, mainly by the calcination temperature. Plant operators know
that a relationship between these variables exists, since the behaviour of the
calcination temperature anticipates the outlet temperature evolution. There-
fore, a good model of this part of the process has to be obtained in order to
better control the plant.

In spite of the advantages associated with fundamental modelling, the
difficulties associated with obtaining such a relationship for this case lead to
the alternative of achieving a model from input/output data. Two models
have been chosen for this study: quadratic Hammerstein and second-order
Volterra models.

The quadratic Hammerstein model has been chosen as follows

y(k + d) = h0 +
N∑

i=0

h1iu(k − i) +
N∑

i=0

h2iu
2(k − i) (9.11)

while the second-order Volterra model with truncation of order N is given
by the expression

y(k + d) = h0 +
N∑

i=0

h1iu(k − i) +
N∑

i=0

N∑
j=i

h2iju(k − i)u(k − j) (9.12)

The triangular form is used without any loss of generality, since the
second-order parameters are symmetric for the Volterra model. In both cases
the term h0 is a bias, the h1i terms are the impulse response coefficients, and
the h2i and h2ij terms are the second-order Hammerstein and Volterra terms,
respectively.

Once the model type has been decided there are some issues to be treated,
such as the number of lagged data to be considered (truncation of the mod-
els) and determining what delay best describes the process when a particular
model is being studied.

Real data from a gypsum kiln has been analyzed. To calculate the pa-
rameters for the models, ad hoc Matlab functions have been developed. They
get as an input the sampled data and the model structure (Volterra, Ham-
merstein, and truncation order). Coefficients are calculated according to the
least-squares method.

264 9 Nonlinear Model Predictive Control

0 20 40 60 80 100 120 140 160 180 200
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
In

pu
t

0 20 40 60 80 100 120 140 160 180 200
0.75

0.8

0.85

0.9

0.95

O
ut

pu
t

Samples

Fig. 9.3. Sampled data

In Figure 9.3, original work data are presented. Temperature values have
already been scaled to working values for identification and estimation. The
sample period for the data was 2 minutes.

One important issue not always well treated is the delay determination
for processes. In this example, a search for the best combination delay/model
order has been made for the three models studied: linear (to show the ad-
vances that can be obtained by using nonlinear models), Hammerstein, and
Volterra. They are first presented and then compared using the root mean
square error.

A Hammerstein model, as described in Equation (9.11) was adjusted to
the data, modifying both the delay and the model truncation order. The opti-
mal delay for Hammerstein models remains stable centered on one value (16
samples), presenting no variations even when the truncation order increased.
Accuracy of the model is accomplished through higher-order models. How-
ever, this accuracy is not significantly improved after the fifth order model.

A Volterra model as shown in Equation (9.12) has proven to be the best
choice to get an accurate description of the data. However, the most signifi-
cant difference to the two cases already presented lies in the fact that optimal
delay for identification shifts to lower values as the model order increases.
This is caused by the fact that a crossed product between lagged inputs offers

9.2 Nonlinear Models 265

0 5 10 15
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Model Order

E
rr

or

Model error for best estimations

Hammerstein
Volterra
Linear

Fig. 9.4. Error comparison

richer information about the system than the other models. Optimal delay is
placed for low-order systems close to 16 samples, but it comes to be about 3
or 4 samples when the Volterra model is truncated to higher values, such as
the fifteenth term. Once more, accuracy is improved by increasing the model
order, and in this case information saturation is not achieved as quickly as in
Hammerstein models.

In Figure 9.4, plots for the minimum values of the model errors (for the
best value of the delay) are presented. For the linear case, order is related to
the AR polynomial (and thus the lagged outputs considered), while for the
nonlinear models this means the truncation order N. For the first two cases,
very high-order models do not necessarily mean significant improvement
in model error, while Volterra models always achieve the best correlation
and increasing its order makes performance improve more than in the other
cases.

One of the Volterra model drawbacks is the need for a large number of
parameters to be calculated. For the fitch order Hammerstein model, only
five coefficients are needed to describe the quadratic part, while 55 are re-
quired for the Volterra model. When it comes to N = 15, Hammerstein still
needs 15 and Volterra yields 120 coefficients.

Real data fitting for the models obtained through this search are pre-
sented in Figure 9.5. The best linear model is a third-order model in A(q−1)
polynomial. For the Hammerstein model, N = 5 has been chosen as the best
trade-off between order and accuracy, and for Volterra N=10 was chosen.

Table 9.1 shows the estimation error for the models considered. Results
are improved with the nonlinear models, especially with use of a Volterra
structure which particularly fits the given data.

266 9 Nonlinear Model Predictive Control

0 20 40 60 80 100 120 140 160 180 200
0.75

0.8

0.85

0.9

0.95
Model Identification

Li
ne

ar

0 20 40 60 80 100 120 140 160 180 200
0.75

0.8

0.85

0.9

0.95

H
am

m
er

st
ei

n

0 20 40 60 80 100 120 140 160 180 200
0.75

0.8

0.85

0.9

0.95

Samples

V
ol

te
rr

a

Fig. 9.5. Model identification

Table 9.1. Model error

Model Order Estimation Error

Linear Ny = 3 0.0120
Hammerstein N = 5 0.0108

Volterra N = 10 0.0050

Taking into account the trade-off between complexity and accuracy, a
tenth order Volterra model is proposed as the best choice that will allow the
use of a nonlinear predictive controller in the plant. It is clear that this type of
model can give better results since it has more degrees of freedom, although
the number of parameters can be prohibitive if a high-order model is chosen.

9.3 Solution of the NMPC Problem

In spite of the difficulties associated with nonlinear modelling, the choice of
appropriate model is not the only important issue. Using a nonlinear model
changes the control problem from a convex quadratic program to a noncon-
vex nonlinear problem, which is much more difficult to solve. Furthermore,
in this situation there is no guarantee that the global optimum can be found,

9.3 Solution of the NMPC Problem 267

especially in real-time control when the optimum has to be obtained in a
prescribed time.

9.3.1 Problem Formulation

The problem to be solved at every sampling time is computation of the con-
trol sequence u that takes the process to the desired regime. This desired
operating point (ys, xs, us) may be determined by a steady-state optimiza-
tion which is usually based on economic objectives. The cost function to be
minimized may take the general form

J =
N∑

j=1

‖y(t+ j)−ys‖q
R +

M−1∑
j=1

‖�u(t+ j)‖q
P +

M−1∑
j=1

‖u(t+ j)−us‖q
Q (9.13)

where q can be 1 or 2, depending on the type of norm and P, Q, and R are
weighting matrices. The minimization is subject to model constraint that, if
a state space model (9.10) is used, is given by

x(t + j)− f(x(t + j − 1),u(t + j − 1)) = 0 y(t + j)− g(x(t + j)) = 0

and is subject to the rest of the inequality constraints that can be considered:

y ≤ y(t + j) ≤ y ∀j = 1, N (9.14)
u ≤ u(t + j) ≤ u ∀j = 1,M − 1 (9.15)

�u ≤ �u(t + j) ≤ �u ∀j = 1,M − 1 (9.16)

Soft constraints in the output variable can easily be considered in the
formulation by adding the term ‖s‖q

T to the cost function, where T is a matrix
that penalizes the violation of the output limits by a small amount s. The
inequality constraint now results in:

y − s ≤ y(t + j) ≤ y + s ∀j = 1, N

Notice that the former expressions are derived for a monovariable pro-
cess; in the case of a MIMO plant, variables y and u must be substituted by
vectors y and u.

9.3.2 Solution

The solution of this problem requires the consideration (and at least a partial
solution) of a nonconvex, nonlinear problem (NLP) which gives rise to a lot
of computational difficulties related to the expense and reliability of solving
the NLP online.

268 9 Nonlinear Model Predictive Control

The problem is often solved using Sequential Quadratic Programming
(SQP) techniques. These are extensions of Newton-type methods for converg-
ing to the solution of the Karush-Kuhn-Tucker (KKT) conditions of the opti-
mization problem. The method must guarantee fast convergence and must
be able to deal with ill conditioning and extreme nonlinearities.

SQP is an iterative technique in which the solution at each step is obtained
by solving an approximation to the nonlinear problem in which the objective
is replaced by a quadratic approximation and the nonlinear constraints are
replaced by linear approximations.

The NMPC problem can be written as a general nonlinear programming
problem with wT = [uT xT yT], that is,

min
w

J(w)

subject to: c(w) = 0, h(w) ≤ 0

where the equality constraint vector c corresponds to the model constraints

f(x,u) = 0 y − g(x) = 0

and has nc components, and the inequality constraint vector h corresponds
to (9.14) and has nh components. The following Lagrangian function can be
defined for this problem

L(w, λ1, λ2) = J(w) + λT
1 c(w) + λT

2 h(w)

where the optimum first-order KKT conditions state that Lagrange multipli-
ers λ1 ∈ Rnc and λ2 ∈ Rnh must exist such that

∇wL(w, λ1, λ2) = 0 (9.17)
c(w) = 0 (9.18)

h(w) + s ≤ 0 (9.19)
s ≥ 0, λ2 ≥ 0, sT λ = 0 (9.20)

At each iteration k, a quadratic programming (QP) subproblem is created
and solved, giving rise to a new value of the unknown vector such that the
new direction dT = [dT

u dT
x dT

y] is used as a search direction to converge to
the original problem solution. It starts from wk and supplies the new value
wk+1 = wk + dk, solving the following quadratic problem

min
d
∇J(wk)T d +

1
2
dT Bkd

where Bk is an approximation to the Hessian of the Lagrangian

Bk = ∇2
wwL(w, λ1, λ2) = ∇2J(w) +

nc∑
i=1

λ1i∇2ci(w) +
nh∑
i=1

λ2i∇2hi(w)

9.4 Techniques for Nonlinear Predictive Control 269

subject to the linearized constraints

c(wk) +∇c(wk)T d = 0, h(wk) +∇h(wk)T d ≤ 0

Inequality constraints are in general linear and do not need to be lin-
earized, while the equality constraints that correspond to the model can be
written as:

f(xk,uk) +∇xf(xk,uk)T dx +∇uf(xk,uk)T du = 0
yk + dy − g(xk)−∇xg(xk)T dx = 0

Many problems may appear when applying the method, such as the
availability of the second derivatives or the feasibility of the intermediate so-
lution. This last condition is very important in real-time optimization since,
if time is insufficient, the last iteration uk, which satisfies the local linear ap-
proximation to the constraints, is sent to the plant, although it may violate
the original constraints. Several variations of the original method exist that
try to overcome the main problems. Convergence properties and variants of
the method that enhance efficiency are thoroughly discussed by Biegler [26].

It should be noticed that an iterative algorithm consisting of solving a QP
problem (which is itself iterative) is used at each sampling instant. Therefore
the computational cost is very high, and this justifies the development of
special formulations to solve particular problems or approximate solutions
in spite of losing optimality.

There has been a rapid development of efficient nonlinear programming
algorithms capable of handling large numbers of variables and constraints.
In spite of the significant advances which have been made in this field and
in the computing power of modern control equipment, most of the issues re-
lated to NMPC are as yet unresolved and there is still much work to be done
from the point of view of both theoretical analysis and practical implemen-
tation.

9.4 Techniques for Nonlinear Predictive Control

As has been shown in the previous section, the exact solution of the opti-
mization problem at every sampling instant is a difficult task. Therefore, a
set of efficient formulations that try to avoid the problems associated to non-
convex optimization has appeared in recent years. They are briefly depicted
here.

9.4.1 Extended Linear MPC

This is one of the simplest ways of dealing with process nonlinearities; it was
originally devised for the DMC controller [90]. The idea is to add a new term

270 9 Nonlinear Model Predictive Control

to the output prediction that tries to take nonlinearities into account. This
term is added to the prediction equation (see Chapter 3) giving:

ŷel = Gu + f + dnl

The elements of vector dnl are computed by minimizing the difference be-
tween the prediction obtained from the extended linear model, ŷel, and the
prediction obtained from a full-scale nonlinear model of the plant. This way
the process nonlinearities as captured by the nonlinear model are incorpo-
rated directly into the linear MPC formulation, preserving the original QP
framework.

9.4.2 Local Models

A simple way to deal with the nonlinear model equation is to perform suc-
cessive linearization about a nominal operating point. This yields linear MPC
and allows an online solution, since the problem to be solved at every sam-
pling instant is a QP. Usually the current operating point is used for lineariza-
tion although the accuracy can be improved by linearizing several times over
the sampling period. The linearized model is used for output predictions
while the original nonlinear model can be used to compute the effect of past
input moves.

This idea is extended in [111], which uses linearization about the pre-
dicted trajectories that would be obtained if the extension to the current time
of the previously computed optimal control sequence were used. This exten-
sion is referred to as the tail of the previous time optimal input trajectory. The
linearized model is time-varying but it can be discretized and used with a lin-
ear MPC with endpoint terminal constraint as SGPC (see Section (4.11)). The
effect of linearization errors can be reduced by the appropriate use of linear
interpolation, compensating in this way the loss of optimality. The result-
ing algorithm guarantees stability on account of the implicit use of endpoint
constraints on the linearized models and allows an online solution.

This concept is closely related to the use of a local model network (as
described in Section 9.2). This network of linear models is used to capture
the process dynamics at different operating points. Two alternative methods
of exploiting this idea are presented in [200] using a Generalized Predictive
Controller. The first consists of a network of GPCs, each designed around one
of the local models. The control action is formed by a combination of the out-
put of the linear controllers in a similar way to gain scheduling. A scheduler
uses interpolation and smooths the transition between local controllers. The
second method uses a single GPC, with a linear model obtained as a combina-
tion of the local linear models. An interpolation function generates activation
weights for each model. High weights are given to models that give a good
approximation in the regime where the model is operating while weights
approaching zeros are given to the others. This network of local models pro-
duces an overall nonlinear ARX model of the plant, which may be assumed

9.4 Techniques for Nonlinear Predictive Control 271

to be a locally valid representation of the plant. It is clear that in both cases
the problem is reduced to a QP.

9.4.3 Suboptimal NPMC

This approach avoids the need to find the minimum of a nonconvex cost
function by considering the satisfaction of constraints to be the primary ob-
jective. If an optimization strategy that delivers feasible solutions at every
sub-iteration (inside a sampling period) is used and a decrease in the cost
function is achieved, optimization can be stopped when the time is over and
stability can still be guaranteed. It can be demonstrated that it is sufficient to
achieve a continuous decrease in the cost function to guarantee stability.

The main technique that uses this concept was proposed by Scokaert et
al. [190], and consists of a dual-mode strategy (see next section for details)
which steers the state towards a terminal set Ω and, once the state has entered
the set, a local controller drives the state to the origin. Now, the first controller
does not try to minimize the cost function J , but to find a predicted control
trajectory which gives a sufficient reduction of the cost.

If the cost function is given by

J(t) =
N−1∑
k=0

L(x(t + k), u(t + k))

then any control action that satisfies constraints and fulfills the following
condition (with 0 < μ < 1) is acceptable.

J(t) ≤ J(t− 1)− μL(x(t− 1), u(t− 1))

Once a solution is found, the search for solutions that give a bigger reduc-
tion can continue if there is available time. Notice that the choice of μ has a
great influence over the difficulty of finding the solution. Small values of this
parameter make it easy to find a solution, but at the cost of poor performance
since the reduction of the cost is small. Such small values are useful when it
is difficult to find feasible trajectories, as in the case of large disturbances or
modelling errors.

9.4.4 Use of Short Horizons

It is clear that short horizons are desirable from a computational point of
view, since the number of decision variables of the optimization problem is
reduced. However, long horizons are required to achieve the desired closed-
loop performance and stability (as will be shown in the next section). Some
approaches have been proposed that try to overcome this problem.

In [214] an algorithm which combines the best features of exact opti-
mization and a low computational demand is presented. The key idea is to

272 9 Nonlinear Model Predictive Control

calculate exactly the first control move which is actually implemented, and
to approximate the rest of the control sequence which is not implemented.
Therefore the number of decision variables is one (or the number of in-
puts in the MIMO case), regardless of the control horizon. The idea is that
if there is not enough time to calculate the control sequence u(t | t), u(t + 1 |
t), . . . u(t −M − 1 | t), then compute only the first one and approximate the
rest as well as possible. An approximation to the next value u(t + 1 | t) is
obtained by linearizing the nonlinear system at {x(t + 1 | t), u(t | t)} which
corresponds to the control signal that would be implemented if the system
were linear. This is done along the rest of the control horizon to approximate
the rest of the sequence. The values thus obtained appear as constraints in
the optimization problem which has to calculate only one decision variable.
Clearly it results in significant savings in online computational time as the
online computational time grows exponentially with the number of decision
variables in the worst case.

An algorithm that uses only a single degree of freedom is proposed in
[110] for nonlinear, control affine plants. A univariate online optimization
is derived by interpolating between a control law which is optimal in the
absence of constraints (although it may violate constraints and may not be
stabilizing) and a sub-optimal control law with a large associated stabiliz-
able set. The interpolation law inherits the desirable optimality and feasibil-
ity from these control laws. The stabilizing control law uses an optimization
based on only a single degree of freedom and can be performed by including
a suitable penalty in the cost or an artificial convergence constraint.

9.4.5 Decomposition of the Control Sequence

One of the key ideas in linear MPC is the use of free and forced response
concepts. Although this is no longer valid for nonlinear processes, since the
superposition principle does not hold in this case, variation of the idea can
be used to obtain implementable formulations of NMPC.

In [42], the prediction of process output is made by adding the free re-
sponse (future response obtained if the system input is maintained at a con-
stant value during the control and prediction horizons) obtained from a non-
linear model of the plant and the forced response (the response obtained due
to future control moves) obtained from an incremental linear model of the
plant. The predictions obtained this way are only an approximation because
the superposition principle, which permits the mentioned division in free and
forced responses, only applies to linear systems. However, the approximation
obtained in this way is shown to be better than those obtained using a lin-
earized process model to compute both responses. If a quadratic cost func-
tion is used, the objective function is a quadratic function in the decision
variables (future control moves) and the future control sequence can be com-
puted in the unconstrained case, as the solution of a set of linear equations,
leading to a simple control law. The only difference from standard linear MPC

9.4 Techniques for Nonlinear Predictive Control 273

is that the free response is computed by a nonlinear model of the process.
As the superposition principle does not hold for the nonlinear models, the
approximation is only valid when the sequence of future control moves is
small. Notice that this occurs when the process is operating in steady state
with small perturbations. When the process is being changed from operating
conditions or the external perturbations are high, the future control moves
are usually high and the approximation is not very good.

A way to overcome this problem has been suggested in [106] for EPSAC.
The key idea is that the manipulated variable sequence can be considered
to be the addition of a base control sequence (ub(t + j)) plus a sequence of
increments of the manipulated variables (ui(t + j)), that is,

u(t + j) = ub(t + j) + ui(t + j)

The process output j step ahead prediction is computed as the sum of
the response of the process (yb(t+j)) due to the base input sequence plus the
response of the process (yi(t+ j)) due to the future control increments on the
base input sequence ui(t + j):

y(t + j) = yb(t + j) + yi(t + j)

As a nonlinear model is used to compute yb(t + j) while yi(t + j)) is
computed from a linear model of the plant, the cost function is quadratic
in the decision variables (ui(t + j)) and it can be solved by a QP algorithm
as in linear MPC. The superposition principle does not hold for nonlinear
processes and the process output generated this way and the process output
generated by the nonlinear controller will only coincide in the case when the
sequence of future control moves is zero.

If this is not the case, the base is made equal to the last base control se-
quence plus the optimal control increments found by the QP algorithm. The
procedure is repeated until the sequence of future controls is driven close
enough to zero.

The initial conditions for the base control sequence can first be made
equal to the last control signal applied to the process. Notice that this is the
case when computing the free response in linear MPC. A better initial guess
can be made by making the base sequence equal to the optimal control se-
quence determined for the last sampling instant with the corresponding time
shift.

The convergence conditions of the algorithm are very difficult to obtain
as they depend on the severity of the nonlinear characteristics of the process,
on past inputs and outputs, on the future reference sequence and on pertur-
bations.

274 9 Nonlinear Model Predictive Control

9.4.6 Feedback Linearization

In some cases, the nonlinear model can be transformed into a linear model by
appropriate transformations. Consider, for example, the process described
by the following state space model:

x(t + 1) = f(x(t), u(t))
y(t) = g(x(t))

The method consists of finding state and input transformation functions
z(t) = h(x(t)) and u(t) = p(x(t), v(t)) such that:

z(t + 1) = Az(t) + Bv(t)
y(t) = Cz(t)

The method has two important drawbacks:

• The transformation functions z(t) = h(x(t)) and u(t) = p(x(t), v(t)) can
be obtained for few cases.

• The constraints, which are usually linear, are transformed into a nonlinear
set of constraints.

That is, even in the cases where the model can be linearized by suitable
transformations, the constrained problem is easy to solve due to the nonlin-
ear constraints. The objective function is usually transformed into a nonlin-
ear function, since it was quadratic in u(t) but not necessarily in v(t). If the
nonlinear constraints are approximated and the objective functions remain
quadratic, only a quadratic program needs to be solved at each sampling
instant. However, linear approximation is only valid when both state and in-
put do not deviate too far from the operating regime. This implies that the
control actions have to be close to their linearized values to preserve stability,
and performance may be sacrificed for computational simplicity.

9.4.7 MPC Based on Volterra Models

In some cases, the NLP shows a special structure that can be exploited to
achieve an online feasible solution to the general optimization problem. If
the process is described by a Volterra model (9.2) efficient solutions can be
found, especially for second-order models.

The general nonlinear, nonconvex optimization problem has some pecu-
liarities in this case that permit an easier solution. Consider the most used
case of a second-order model (9.3). If this quadratic model is combined with
the quadratic cost function, it gives rise to a fourth-order programming prob-
lem regardless of the values of the horizons (also for Auto-Regressive mod-
els). This kind of problem (a fourth-order objective function) is easier to solve

9.4 Techniques for Nonlinear Predictive Control 275

than a general NLP, where the cost function is usually of higher order (for in-
stance twentieth-order) in the decision variables. Notice that in this case the
nonlinearities are always polynomial, while in other type of models (funda-
mental models, for instance) they can be exponential. Since the typical NLP
solvers approximate the nonlinear cost function by a quadratic one (as has
been shown for SQP), it is clear that the problem is easier to solve if the cost
function is of low order.

Apart from this complexity reduction in the direct solution, a control
strategy can be devised that can solve the nonlinear problem by iteration of
the linear solution, based on the particular structure of Volterra models. This
iterative procedure proposed by Doyle et al. [64] gives rise to an analytical
solution in the unconstrained case or a QP solution if constraints exist and
allows an easy solution to the nonlinear problem. If a second-order model
is used, the prediction can be written as an extension of the linear process
y = Gu+ f + c, where f includes the terms that depends on past and known
values and the new term c takes into account new terms that depend on
crossed products between past and future control actions. If p is the predic-
tion horizon and m the control horizon, the predictions can be written as:

⎡⎢⎢⎢⎣
ŷ(t + 1 | t)
ŷ(t + 2 | t)

...
ŷ(t + p | t)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1(1) 0 ... 0
h1(2) h1(1) ... 0

...
... · · · h1(1)

...
... · · · h1(1) + h1(2)

...
... · · · ...

h1(p) h1(p− 1) ...
∑p−m+1

i=1 h1(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
u(t)

u(t + 1)
...

u(t + m− 1)

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣
f(t + 1)
f(t + 2)

...
f(t + p)

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
c(t + 1)
c(t + 2)

...
c(t + p)

⎤⎥⎥⎥⎦
The terms h1(t) are the elements of the linear part of the Volterra model

(similar to the impulse response in a linear system), and vector f (similar to
the free response) is given by (where N is the truncation order of the linear
part of the model):

276 9 Nonlinear Model Predictive Control

⎡⎢⎢⎢⎣
f(t + 1)
f(t + 2)

...
f(t + p)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1(2) h1(3) h1(p) 0
h1(3) h1(4) . . . h(p) 0 0

...
...

...
...

...
...

h1(p− 1) h1(p)
...

...
...

...

h1(p) 0
...

...
...

...

0 0
... 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
u(t− 1)
u(t− 2)

...
u(t−N)

⎤⎥⎥⎥⎦+

+

⎡⎢⎢⎢⎣
d(t + 1)
d(t + 2)

...
d(t + p)

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
g(t + 1)
g(t + 2)

...
g(t + p)

⎤⎥⎥⎥⎦
Vector d is the feedback term, that is, the difference between the mea-

sured output value and the predicted output at time t, and usually all its
elements are equal to d(t+1) (the error is considered to be constant along the
horizon and equal to the current value). Vector g is formed by the crossed
products of past outputs (and is therefore known). Vector c is composed of
the products of future control actions with past and future control actions
(quadratic terms) and is therefore unknown. Then the prediction

y = Gu + Hupast + d + g︸ ︷︷ ︸
f

+c(u)

depends on the unknowns (u) both in a linear form (G u) and a quadratic
form (c(u)) and cannot be solved analytically as in the linear unconstrained
case. However, the iterative procedure proposed in [64] starts with an initial
value of c and solves the problem, obtaining the solution:

u = (GT G + λI)−1GT (w − f − c) (9.21)

The new solution is used to recalculate c and the problem is solved again
until the iterated solution is close enough to the previous one. In the con-
strained case, u is computed solving a QP instead of Equation (9.21). Due to
the feasibility of its being implemented in real time, this method has been
successfully applied to real plants, such as polymerization processes [133] or
biochemical reactors [64].

A suboptimal approach for Volterra models using a GPC with input sig-
nal parametrization (control increments equal to zero after the first control
action, that is, control horizon equal to one, or all control increments with
the same value) is proposed in [86]. In the absence of constraints, the authors
provide an analytical solution (without iterations) by solving a third-order
polynomial.

9.4 Techniques for Nonlinear Predictive Control 277

Hammerstein and Wiener Models

If the process can be modelled by a Hammerstein model (see Figure 9.2), the
problem can be easily transformed into a linear one by inverting the nonlin-
ear static part, g(.). This way, the solution can be obtained by minimizing a
cost function that depends on the intermediate variable Φ(t) = g(u(t)):

JH =
p∑

i=1

‖e(t + i)‖Q +
m∑

i=1

‖Φ(t + i− 1)‖R

Notice that this cost function may lose part of its physical meaning, since
the real control action u(t) is not considered. The minimization is performed
with respect to Φ, which is not the physical control action. If the transformed
input constraints are convex, the minimization is reduced to a QP problem
that supplies the best values for the intermediate variable Φ. The real control
signal to be implemented is obtained by the inversion of the static part: u(t) =
g−1(Φ(t)).

Although the calculated Φ(t) is optimal with respect to JH , the resulting
u(t) does not have to be optimal with respect to the original problem (formu-
lated as a function of y and u). Besides, on many occasions it is not possible
to find the inverse, or this is not unique. In the latter case, the solution giv-
ing the lowest cost is the one that is actually implemented. Instead of using
the inverse, the static input nonlinearity can be transformed into a polytopic
description, as in [28], where the use of a robust linear MPC algorithm is pro-
posed, consisting of a convex optimization problem with nominal closed-
loop stability.

The same idea can be applied to Wiener models, where the static nonlin-
earity goes after the linear dynamics. In [158] a pH neutralization process is
controlled in this way.

9.4.8 Neural Networks

Artificial Neural Networks, apart from providing a modelling tool that en-
ables accurate nonlinear model attainment from input-output data, can also
be used for control. Since ANNs are universal approximators, they can learn
the behaviour of a nonlinear controller and calculate the control signal online
with few calculations, since the time-consuming part of the ANN (training) is
done beforehand. This has been applied to several processes in the process
industry [9], [24] and to systems with short sampling intervals (in the range
of milliseconds) such as internal combustion engines [150]. These issues will
be addressed again in Chapter 11, and an application of an NN controller to
a mobile robot is detailed in Chapter 12.

9.4.9 Commercial Products

In order to exploit the success of linear MPC in industry, many products have
recently appeared on the market that try to solve the nonlinear problem.

278 9 Nonlinear Model Predictive Control

They are mainly aimed at the chemical and petrochemical sectors and pro-
vide integrated solutions that usually include modelling and commissioning
facilities.

The most extended products are:

• PFC by Adersa,
• Aspen Target by Aspen Technology,
• MVC by Continental Controls,
• NOVA NLC by DOT Products,
• Process Perfecter by Pavillion Technologies, and
• INCA by IPCOS.

These products try to provide a solution in real time using some of the
techniques previously shown, looking for a feasible solution although this
implies a loss of optimality. They share some characteristics, which are de-
scribed here.

Different types of models are used. The most extended is state space, but
all of the models described in Section 9.2 appear in one product or another.
All of them also provide a steady-state optimization, which computes opti-
mal targets to be used in the dynamic optimization. The dynamic objective
function is quadratic except in NOVA NLC which can also use 1-norm. The
optimization of this function includes constraints that are usually hard for
the inputs but can be softened for the outputs, since output hard constraints
can easily lead to unfeasibility. Process Perfecter offers the possibility of ap-
plying soft constraints using a frustum method, which gives more freedom
to the output at the beginning of the horizon than at the end but no error is
allowed outside the frustum.

Usually the prediction horizon is finite but very large, in order to capture
the output dynamics up to the permanent regime. This can be interpreted as
an approximation to the infinite horizon method used to guarantee closed-
loop stability (see next section) and can explain why terminal constraints are
not included in any of the products.

In order to reduce the complexity of the problem, some products use
a control horizon of one while PFCs use the concept of basis functions, de-
scribed in Section 3.3 for the linear case. This product reduces the solution
complexity by solving the unconstrained problem with a nonlinear least
squares method and clipping the inputs to their limits if constraints are vi-
olated. Logically, the solution is not optimal but the speed of execution is
enhanced, allowing the use of this method in fast processes such as mis-
sile control. The remaining products use several algorithms for the solution,
ranging from multistep Newton-type methods to generalized reduced gra-
dient methods and proprietary nonlinear programming techniques.

A more complete review of the existing products and applications can be
found in [14].

9.5 Stability and Nonlinear MPC 279

9.5 Stability and Nonlinear MPC

The efficient solution of the optimal control problem is important for any ap-
plication of NMPC to real processes, but stability of the closed loop is also
of crucial importance. Some significant results related to closed-loop stabil-
ity have recently appeared. Even in the case that the optimization algorithm
finds a solution, this fact does not guarantee closed-loop stability (even with
perfect model match). The use of terminal penalties and/or constraints, Lya-
punov functions or invariant sets has given rise to a wide family of tech-
niques that guarantee the stability of the controlled system.

This problem has been tackled from different points of view, and several
contributions have appeared in recent years, always analyzing the regula-
tor problem (drive the state to zero) in a state space framework. The main
proposals are the following:

• infinite horizon. This solution was proposed by Keerthi and Gilbert [103]
and consists of increasing the control and prediction horizons to infin-
ity, P,M → ∞. In this case, the objective function can be considered a
Lyapunov function, providing nominal stability. This is an important con-
cept, but it cannot be directly implemented since an infinite set of decision
variables should be computed at each sampling time.

• terminal constraint. The same authors proposed another solution consid-
ering a finite horizon and ensuring stability by adding a state terminal
constraint of the form:

x(k + P) = xs

With this constraint, the state is zero at the end of the finite horizon and
therefore the control action is also zero; consequently (if there are no
disturbances) the system stays at the origin. Notice that this adds extra
computational cost and gives rise to a restrictive operating region, which
makes it very difficult to implement in practice.

• dual control. This last difficulty made Michalska and Mayne [138] look
for a less restrictive constraint. The idea was to define a region around
the final state inside which the system could be driven to the final state
by means of a linear state feedback controller. Now the constraint is:

x(t + P) ∈ Ω

The nonlinear MPC algorithm is used outside the region in such a way
that the prediction horizon is considered as a decision variable and is
decreased at each sampling time. Once the state enters Ω, the controller
switches to a previously computed linear strategy.

• quasi-infinite horizon. Chen and Allgöwer [49] extended this concept, us-
ing the idea of terminal region and stabilizing control, but only for the
computation of the terminal cost. The control action is determined by
solving a finite horizon problem without switching to the linear controller

280 9 Nonlinear Model Predictive Control

even inside the terminal region. The method adds the term ‖x(t + Tp)‖2P
to the cost function. This term is an upper bound of the cost needed to
drive the nonlinear system to the origin starting from a state in the ter-
minal region and therefore this finite horizon cost function approximates
the infinite- horizon one.

These formulations and others with guaranteed stability were summa-
rized in the survey paper by Mayne et al. [137]. In this reference, the au-
thors present general sufficient conditions to design a stabilizing constrained
MPC and demonstrate that all the aforementioned formulations are particular
cases of them.

The key ingredients of the stabilizing MPC are a terminal set and a termi-
nal cost. The terminal state denotes the state of the system predicted at the
end of the prediction horizon. This terminal state is forced to reach a terminal
set that contains the steady state. This state has an associated cost denoted as
terminal cost, which is added to the cost function.

It is assumed that the system is locally stabilizable by a control law
u = h(x). This control law must satisfy the following conditions:

• There is a region Ω such that for all x(t) ∈ Ω, then h(x(t)) ∈ U (set of
admissible control actions) and the state of the closed loop system at the
next sample time x(t + 1) ∈ Ω.

• For all x(t) ∈ Ω, there exists a Lyapunov function V (x) such that

V (x(t))− V (x(t + 1)) ≥ x(t)T Rx(t) + h(x(t))T Sh(x(t))

If these conditions are verified, then considering Ω as terminal set and
V (x) as terminal cost, the MPC controller (with equal values of prediction
and control horizons) asymptotically stabilizes all initial states which are fea-
sible. Therefore, if the initial state is such that the optimization problem has
a solution, then the system is steered to the steady state asymptotically and
satisfies the constraints along its evolution.

The condition imposed on Ω ensures constraint fulfillment. Effectively,
consider that x(t) is a feasible state and u∗(t) the optimal solution; then a
feasible solution can be obtained for x(t + 1). This is the composition of the
remaining tail of u∗(t) finished with the control action derived from the local
control law h(x). Therefore, since no uncertainty is assumed, x(t + j|t + 1)
= x(t+j|t) for all j ≥ 1. Then the predicted evolution satisfies the constraints
and x(t+P |t+1) ∈ Ω, being P the prediction horizon. Thus, applying h(x(t+
P |t + 1)), the system remains in the terminal set Ω. Consequently, if x(t) is
feasible, then x(t+1) is feasible too. Since all feasible states are in X , then the
system fulfills the constraints.

The second condition ensures that the optimal cost is a Lyapunov func-
tion. Hence, it is necessary for the asymptotic convergence of the system to
the steady state. Furthermore, the terminal cost is an upper bound of the op-
timal cost of the terminal state, in a similar way to the quasi-infinite horizon
formulation of MPC.

9.5 Stability and Nonlinear MPC 281

These are mild conditions and the terminal cost and terminal set are not
difficult to compute. If the linearized system in the steady state is stabilizable
then they can be computed based on it [132],[163].

Since the optimization problem to be solved at each sample time may not
be convex, the optimal solution may not be unique and may be very difficult
to obtain. Thus, different approaches have been proposed to relax this fact.
The main contribution in this topic is the proof of the asymptotic stability of
the controller in the case of suboptimal solutions [190]: it suffices to consider
any feasible solution with an associated cost strictly lower than the one of
the previous sample time. In effect, any feasible solution ensures feasibility,
and hence constraint satisfaction, and the strictly decreasing cost guarantees
asymptotic stability. It is worth remarking that suboptimality is not desirable,
since it implies a loss of performance.

Another technique for reducing the computational burden of the opti-
mization problem is the removal of the terminal constraint. It is especially
interesting when the system is unconstrained on the state. In this case, the
computational burden of the optimization problem does not have to be in-
creased by introducing terminal state constraints due to stabilizing reasons.
This topic has been analyzed in [93],[96], and [126]. In [96] it is proven that
a region exists around the terminal set where the terminal constraint may be
removed without effecting the asymptotic stability. In [93] it is shown that
MPC without a terminal constraint asymptotically stabilizes any initial state
so that the optimal solution steers the system to the terminal set. In a recent
paper [126] it is demonstrated that by simply weighting the terminal cost, an
MPC without a terminal constraint stabilizes any initial state that can be stabi-
lized by the controller with the terminal constraint. Furthermore, a procedure
to compute the terminal weighting for a given initial state is presented.

The prediction horizon is the design parameter of the MPC with an im-
portant effect on the computational cost of the controller. If a long predic-
tion horizon is considered, then the domain of attraction of the controller is
bigger and the performance is improved. However, the number of decision
variables increases and hence the complexity of the optimization problem
to be solved increases. The necessary condition that must be considered for
choosing the prediction horizon is the feasibility of the initial state. Thus, this
horizon can be reduced by enlarging the terminal region. In [132] a controller
is proposed with a prediction horizon larger than the control horizon. This
allows the region of feasible initial states with the same control horizon to
be enlarged. In [124] an MPC with a contractive terminal constraint based on
invariant sets is presented. This provides a larger domain of attraction for a
given prediction horizon.

The conditions previously presented are based on a state space represen-
tation of the system and full state information available at each sample time.
However, most of the time the only available information is the measure-
ment of the system output. In this case the controller can be reformulated
using the outputs and under certain observability and controllability condi-

282 9 Nonlinear Model Predictive Control

tions [103], closed-loop stability can be proved. However, the most common
way of applying MPC in the input-output formulation is by estimating the
state by means of an observer. It is well known that even when the state space
MPC and the observer are both stable, there is no guarantee that the cascaded
closed-loop system is stable. Thus, additional stabilizing conditions must be
considered [67].

If stability analysis in NMPC is a complex task, robustness analysis (that
is, stability when modelling errors appear) is logically worse. The previously
shown stability results are valid only in the case of a perfect model, which
is not the case in practice. This can be considered as an open field with only
preliminary results. Formulations in the form of a min-max problem or an
H∞-NMPC have been proposed, although the computational requirements
are prohibitive.

9.6 Case Study: pH Neutralization Process

This section deals with the application of NMPC to the control of a typical
nonlinear plant: a pH neutralization process. The control of pH is common in
the chemical and biotechnological industries. Examples of this kind of plant
can be found in wastewater treatment plants, the production of pharmaceuti-
cals, and fermentation processes. Controlling the pH value of these processes
is difficult due to the highly nonlinear response of the pH to the addition of
acid or base. These processes can exhibit severe static nonlinear behaviour
because the gain can vary several orders of magnitude for a slight range of
pH values. Many control strategies have been applied to the pH process [89],
ranging from linear or nonlinear PIDs to adaptive nonlinear control strate-
gies. Predictive and fuzzy controllers have also been used.

This example corresponds to a laboratory fermentation process taken
from [13]. The pH value ranks as one of the most important factors that in-
fluence a fermentation process. A pH value out of its optimum often inhibits
the growth of the essential micro-organisms, alters the bacterial population
and inhibits the desirable enzymatic activities. The result is a delay in the fer-
mentation process or even the death of the micro-organisms. The controller
must achieve the prescribed accuracy (around 0.05 pH unit) despite the se-
vere process nonlinearities.

The process is shown in Figure 9.6 and consists of a tank where three
streams are mixed:

• an acid (H Cl) stream (q1),
• a buffer (K H2 P O4 and Na2 H P O4) stream (q2), and
• a base (Na O H) stream (q3).

The process output is the pH value of the solution which can be controlled
acting on the valves.

9.6 Case Study: pH Neutralization Process 283

��

�

��� ���

�� �����
�� �������� ��������

�� ������

��

���
�

��
�

��
��

�

���
��

�

����
�

�

��

Fig. 9.6. pH fermentation process

A continuous model can be obtained by first principles, assuming perfect
mixing, constant density, and complete solubility of the ions. This model can
be described by the following equations (see [13] for details and numerical
values):

Ah
dWa4

dt
= q1 (Wa1 −Wa4) + q2 (Wa2 −Wa4) + q3 (Wa3 −Wa4) (9.22)

Ah
dWb4

dt
= q1 (Wb1 −Wb4) + q2 (Wb2 −Wb4) + q3 (Wb3 −Wb4) (9.23)

A
dh

dt
= q1 + q2 + q3 − q4 (9.24)

Wb4

Ka4/[H3O
+] + 2Ka4Ka5/[H3O

+]2 + 3Ka4Ka5Ka6/[H3O
+]3

1 + Ka4/[H3O+] + Ka4Ka5/[H3O+]2 + Ka4Ka5Ka6/[H3O+]3

+ Wa4 +
Kw

[H3O+]
− [H3O

+
]

= 0 (9.25)

pH = − log
[
H3O

+
]

(9.26)

where Wa4 and Wb4 are the chemical reaction invariants of the output
stream q4, and the equilibrium constants are denoted by Kx. The static Equa-
tions (9.25) and (9.26) make the process highly nonlinear and can be used to

284 9 Nonlinear Model Predictive Control

 300 200 100 0 100 200 300

2

3

4

5

6

7

8

9

10

11

12

ml (NaOH)

pH

ml (HCl)

Fig. 9.7. Titration curve

obtain the theoretical pH curve of a solution of KH2PO4 and Na2HPO4 to
a changing flow in q3. The parameters of the model are given in Table 9.2.

Table 9.2. Model parameters

Variable Value Units
A 0.7854 dm2

h 1.5915 dm
Ka4 7.585710−3

Ka5 6.165910−11

Ka6 2.137910−13

Kw 110−14

Wa2 −177.310−3 mol/l
Wa3 −1 mol/l
Wb2 154.910−3 mol/l
Wb3 0 mol/l

This curve is shown in Figure 9.7 and is obtained by integrating Equa-
tions (9.22)-(9.24) with zero initial conditions. The figure shows the static
nonlinear pH characteristic of a 10-ml phosphoric acid buffering solution to
the addition of base and acid. It is clearly shown how the slope of the pH
curve presents high variations along the curve.

9.6.1 Process Model

In order to devise an NMPC, a nonlinear model of the process must be ob-
tained. A Hammerstein model seems attractive since this type of representa-
tion is adequate to model the effect of the nonlinear gain. The process output

9.6 Case Study: pH Neutralization Process 285

is the pH value, which will be controlled by adjusting q3, while the other
streams are kept at the values of q1 = 0.0059 l/s and q2 = 0.3333 l/s. A
dynamic model formed by a static nonlinear part

Φ(t) = g(u(t)) =
8∑

j=0

γju
j(t) (9.27)

and a first-order dynamic linear part

A(z−1)y(t) = B(z−1)Φ(t− 1)

is used, where the parameters are given in Table 9.3.

Table 9.3. Hammerstein model parameters

Variable Value
γ0 8.71
γ1 148.36
γ2 −750.54
γ3 23860.37
γ4 −3.9055 × 106

γ5 3.52051 × 107

γ6 −1.782601 × 108

γ7 4.767372 × 108

γ8 −5.249928 × 108

A(z−1) 1 − 0.7165z−1

B(z−1) 0.2835z−1

Figure 9.8 shows the polynomial adjustment to the nonlinear response.
This model can capture the process dynamics at different operating points,
although it fits better for values of pH around 9.5, as shown in Figure 9.9.

9.6.2 Results

Using the Hammerstein model, a suboptimal strategy can be used, as de-
scribed in Section 9.4.7, which gives rise to a simple solution by decomposing
the problem into a linear MPC and the inversion of (9.27). The computational
cost is therefore negligible. The results obtained for this control strategy are
shown in Figure 9.10, which shows the controller behaviour when a setpoint
change from 10 to 8.5 is produced. The response for several values of λ is
shown, as well as disturbance rejection to a step change of 10% in q1. The
fastest response is obtained for λ = 200, and the other is obtained for λ = 500.
Notice that the high values of the control weighting factor are due to the fact
that the variables are not normalized; the output is around a value of 10 and
the input around 0.01.

286 9 Nonlinear Model Predictive Control

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

q3 (l/s)

pH

Fig. 9.8. Hammerstein model adjustment

0 2 4 6 8 10 12 14 16 18 20
8.5

9

9.5

10

10.5

11

11.5

12

Time (min)

pH

Fig. 9.9. Response to step changes in the manipulated variable

The test of the controller is done using the simulated nonlinear model
of the plant given by Equations (9.22)-(9.26). It is clear that, as the nonlinear
model is not perfect, the controller is not able to eliminate all the nonlinear ef-
fects. This can be seen in Figure 9.11, which shows the same setpoint change
but in the opposite direction.

Another example of an NMPC strategy is also tested on the simulated
plant. An EPSAC is used to control the plant, as shown in Figure 9.12. The
system response to setpoint changes is similar to that obtained with the Ham-
merstein controller. This controller uses an iterative algorithm with a slightly
greater computational cost (around one-third greater in this simulated exam-

9.7 Exercises 287

0 20 40 60 80 100 120 140 160 180

7

8

9

10

11

Time (s)

pH

0 20 40 60 80 100 120 140 160 180
0.01

0.015

0.02

0.025

0.03

0.035

Time (s)

q3
 (l

/s)

Fig. 9.10. pH control with Hammerstein model: λ = 200 (thick line) and λ = 500 (thin
line)

0 50 100 150 200 250 300
8

8.5

9

9.5

10

10.5

Time (s)

pH

Fig. 9.11. Nonlinear effect

ple). However, EPSAC formulation is valid for any type of nonlinear model,
while the Hammerstein formulation works well in the specific case where
the process can be modelled by a static nonlinear gain and a linear dynamic
part.

9.7 Exercises

9.1. Write the Hammerstein model of the neutralization process as a general
Volterra model in the form of Equation (9.3) and in the form of equation (9.4).

288 9 Nonlinear Model Predictive Control

0 50 100 150 200 250 300
8

8.5

9

9.5

10

10.5

Time (s)

pH

Fig. 9.12. pH control by nonlinear EPSAC

9.2. Adjust a third-order Hammerstein model to the previous process. This
can be done generating the curve shown in Figure 9.8 from the process equa-
tions and obtaining the best coefficients by a least-squares fit.

9.3. Apply a linear GPC to control the neutralization process given by its
eight-order Hammerstein model.

9.4. Change this linear GPC in such a way that the free response is calcu-
lated using the complete Hammerstein model. Compare the result with the
previous case.

9.5. Develop step by step a GPC with N1 = 1, N2 = Nu = 3 that calculates
Ψ(t) and then obtain u(t) by inverting Equation (9.27).

9.6. Use an SQP routine to solve the general nonlinear control of the neutral-
ization process.

9.7. Train a Neural Network to reproduce the behaviour of the previous con-
troller. Compare the results in both performance and computation time.

10

Model Predictive Control and Hybrid Systems

In most processes there are not only continuous variables but also variables
that have a discrete nature. For a long time, the control of processes with dis-
crete variables and the control of processes with continuous variables were
considered to be two completely different things. On the one hand, the the-
ories of finite state machines were used to control processes with discrete
variables, and on the other hand, linear and nonlinear control theory was
used for the control of continuous variables. The techniques for modelling
and analysis of these types of systems are different. In the case of continu-
ous systems, differential equations, transfer functions, etc., are used as mod-
elling tools, while in the discrete counterpart, state transition graphs, Petri
Nets, etc., are employed (see Figure 10.1). From the beginning of the 1990s
there has been great interest in processes that have both discrete and contin-
uous parts. Hybrid systems are dynamic systems with both continuous-state
and discrete-state and event variables. That is, the plant has time-driven and
event-driven dynamics, the controller affects both time-driven and event-
driven components, and it may deal with continuous and/or discrete sig-
nals.

This chapter is devoted to introducing how model predictive control is
able to cope with hybrid systems.

10.1 Hybrid System Modelling

Hybrid modelling techniques used for control purposes have to be descrip-
tive enough to capture the behavior of the various parts of the system; i.e.,
continuous dynamics (physical laws) and logic components (switches, au-
tomata, software code), and to take into account interconnections between
logic and continuous dynamics. At the same time, the model has to be sim-
ple enough to solve analysis and synthesis problems.

The discrete (usually logical) parts of the systems can be described by dis-
crete automata. An automata is defined by the following 5-tuple [X,U, Y, φ, γ],

E. F. Camacho et al., Model Predictive Control
© Springer-Verlag London Limited 2007

290 10 Model Predictive Control and Hybrid Systems

Control Theory

Transfer functions
State space

Frequency methods
Robust Control ...

Computer Science

Petri nets
Finite state automatas

Switching theory
Logical Design ...

Hybrid
Systems

G(s)

q1

q4

q3

q5

q2

Fig. 10.1. Hybrid systems

where X is the finite set of possible states and U and Y are the finite sets of
possible inputs and outputs. The transition function δ : X × U → X defines
the next state of the system (x(t + δt) = φ(x(t), u(t)). The output function
γ : X × U → Y describes the output of the system as a function of the state
and input (when the Mealy model is used) or just the state (when the Moore
model is used).

Functions φ and γ are logical functions and can be defined by logical ex-
pressions or truth tables. The time interval δt appearing in the state transition
equation may be dictated by a clock in the case of synchronous systems or by
the occurrence of a particular event in the case of asynchronous systems (see
[91], a classical book on the subject). Events are usually produced when one
of the input signals changes state. These abstract descriptions of an automata
resemble the state space description of continuous1 systems. However, other
descriptions and models, such as Petri nets, can be more appropriate in many
cases as they allow parallelism, synchronization, shared resources, etc. to be
modelled.

These types of models have been widely used in the computer science
community but rarely used in the control community. The approach taken
by the computer science community to model hybrid systems has been the
hybrid automata. That is an extension of the automata models to cope with
continuous signals and equations. The main idea in this context is that the
continuous parts evolve within each of the states.

Hybrid automata are finite state machines where a continuous dynamics
is associated to each discrete state. Hybrid automata are composed of a set of
discrete states Xd and a set of continuous states Xc. A switch is a change of
the discrete state of hybrid automata. When a switch takes place the contin-
uous state is reset. Events are associated to the instant of time when a switch
1 The word continuous is used here to refer to systems with variables that take real

values.

10.1 Hybrid System Modelling 291

takes place. Discrete state changes can be produced by changes of the dis-
crete inputs, or when the continuous state (augmented by the input signals)
enters or exits determined regions (usually defined by polyhedra).

People coming from the continuous control field have used a more alge-
braic approach. As will be seen later, the logical relationships coming from
the discrete part of the hybrid system are described by real algebraic equa-
tions and constraints. That is, mainly algebraic equations and constraints
extended to cope with logical variables and predicates. The main ideas are
similar to those used in the Constraint Logic Programming (CLP) paradigm
where some resemblance to traditional Operation Research approaches are
sought to solve logical problems. Constraint programming is the study of
computational systems based on constraints. The idea of constraint pro-
gramming is to solve problems by stating constraints (conditions, properties)
which must be satisfied by the solution. Then an algorithm is used to find a
feasible solution to the problem.

Let us consider a hybrid dynamical system composed of continuous and
discrete input, output, and state variables. The dynamics can be described as
follows

ẋc(t) = fc(xc(t), uc(t), xd(Tk), ud(t), t, δt) Tk ≤ t < Tk + δt

xd(Tk + δt) = fd(xc(t), uc(t), xd(Tk), ud(t), t, δt)
yc(t) = h(xc(t), uc(t), xd(Tk), ud(t), t)
yd(t) = hd(xc(t), uc(t), xd(Tk), ud(t), t)

δt = ζ(xc(t), uc(t), xd(Tk), ud(t), t)

where xc, uc, and yc are the continuous state, inputs, and outputs; functions
fc and hc are the state transition and output functions of the continuous
parts. The discrete state, input, and output variables are xd, ud, and yd. Func-
tions fd and hd are the state transition and output function of the discrete
parts. The function ζ determines the time interval δt until the next event. No-
tice that function fc, which determines the next state, can usually be obtained
by integrating the continuous equations. Determining δt (time to next event)
is one of the most difficult issues in hybrid control, especially in applications
which are time-critical. When this is not the case, a good approximation can
be obtained by making the times between events δ constant and equal to the
sampling time if the sampling time is sufficiently small. This is the approach
normally used when applying MPC to hybrid systems an approach that will
be used in the book.

292 10 Model Predictive Control and Hybrid Systems

v

v

v

v

D

A B

C

V

V

Fig. 10.2. Jacket cooled batch reactor

10.2 Example: A Jacket Cooled Batch Reactor

Consider the batch reactor shown in Figure 10.2. The manipulated variables
are the two product input valves vA and vB , the output valve vC , and the
valve controlling the coolant inflow to the refrigeration jacket vD.

The state variables are the concentration C, the temperature of the batch
T , and the volume V . That is, x(t)T = [C(t) T (t) V (t)]T ∈ R

3. The sen-
sors installed in the reactor are two on-off volume sensors SV and SV which
take the ”ON” value if V (t) ≤ V and V (t) ≥ V respectively and the ”OFF”
value otherwise. V and V are fixed values corresponding to the empty and
full values of the product volume in the reactor. There is also a temperature
sensor that gives an analogue reading of the product temperature (it is as-
sumed that the temperature is uniform because the product is well stirred);
that is, the output vector can be expressed as y(t) = [V (t) V (t) T (t)]. If
we use the typical assignment of the ON value to 1 and OFF to 0, the output
vector y(t) ∈ {0, 1}2 × R.

The manipulated variables are u(t) = [vA(t) vB(t) vC(t) vD(t)]T . The
product inlet and outlet valves can be either totally closed or open while the
valve controlling the coolant inflow to the refrigeration jacket can be contin-
uously manipulated to the intermediate position; that is, u(t) ∈ {0, 1}3 × R.

The dynamic equations describing the process variables can be approxi-
mated as

Ċ(t) = KR(1− C(t))(T (t)− T0)
Ṫ (t) = KT1(1− C(t))(T (t)− T0)−KT2vD(t)/V (t)
V̇ (t) = KAvA(t) + KBvB(t)−KCvC(t)

10.2 Example: A Jacket Cooled Batch Reactor 293

mixing emptying

reactionV(t) > V

t < T + T

V(t) < V V(t) < V V(t) > V

t > T + T

0

0

Fig. 10.3. Jacket cooled batch reactor state diagram

where the reaction speed Ċ(t) is considered to be proportional to the product
of the temperature by the amount of product yet to react. The heat produced
by the reaction is considered to be proportional to the reaction speed. KR, T0,
KT1, KT2, KA, KB , and KC are the corresponding proportional constants.

The reactor is first loaded with the two products, then a temperature-
controlled reaction takes place, and after a fixed reaction time, the product is
emptied and a new cycle starts. In order to accomplish this, the controller of
the process works as indicated in Figure 10.3. First the product input valves
are fully open, while the product outlet valve and the cooling valve are fully
closed (u1(t) = vA(t) = 1, u2(t) = vB(t) = 1, u3(t) = vC(t) = 0, u4(t) =
vD(t) = 0). Once the volume in the reactor reaches V (y2(t) = SV (t) = 1),
the inlet product valves are closed and the coolant inlet valve opening is
determined by a PID temperature controller; that is, u1(t) = vA(t) = 0,
u2(t) = vB(t) = 0, u3(t) = vC(t) = 0, u4(t) = vD(t) = uPID(t). The process
remains in this state for the prescribed reaction time. After this, the product
outlet valves opens until the reactor is empty (y1(t) = SV (t) = 1) and a new
cycle starts.

As can be seen, the process is characterized by continuous and discrete
process and controller variables. The process controller is composed of a con-
tinuous part (PID) and a discrete part (automata) controlling the transitions
between states. The process is also event-driven as changes of states are dic-
tated by the occurrence of certain events such as when V (t) ≥ V and the
system goes from the filling-up state to the reaction state.

10.2.1 Mixed Logical Dynamical Systems

This type of model was proposed by Bemporad and Morari [22]. Mixed Log-
ical Dynamical (MLD) systems are described by

x(t + 1) = Ax(t) + B1U(t) + B2δ(t) + B3z(t) (10.1)
y(t) = Cx(t) + D1u(t) + D2δ(t) + D3z(t) (10.2)

E1x(t) + E2u(t) + E3δ(t) + E4z(t) ≤ g (10.3)

where x(t) = [xT
r (t) xT

b (t)] with xr(t) ∈ R
n is the continuous part of the

state vector and xb(t) ∈ {0, 1}nb is the part of the state vector corresponding

294 10 Model Predictive Control and Hybrid Systems

to the discrete part. Notice that if the state is discrete, not necessarily Boolean,
but finite, it can be coded into a set of Boolean variables. The output signals
also have a similar structure y(t) = [yT

r (t) yT
b (t)] with yr(t) ∈ R

mis the
continuous part of the output and yb(t) ∈ {0, 1}mb is the discrete part. The
input vector u(t) = [uT

r (t) uT
b (t)] is composed of a continuous part ur(t) ∈ R

l

and a discrete part ub(t) ∈ {0, 1}lb . Some auxiliary continuous z(t) ∈ R
r and

discrete variables δ(t) ∈ {0, 1}rb are usually needed.
The key idea of the method is that logical expressions can be transformed

into algebraic constraints. Consider the logical predicates L1 and L2. A logi-
cal predicate (or literal) is a sentence that can be either true or false. For exam-
ple, L1 can be something like: the flow is higher than 0.2 liters/second, which can
be true or false. Boolean algebra allows simple predicates to be combined us-
ing connectives and/or modifiers such as and (∧), or (∨), not (∼), implies (→)
or if and only if (↔). Predicates take logical values true or false. Any logical
predicate can be written using a subset of connectives. The most common
are: {∧,∨,∼}. There are simple transformations that can be used to express
any logical predicate in terms of the basic connectives. For example:2

L1 → L2 ⇔ ∼ L1 ∨ L2 (10.4)
L1 ↔ L2 ⇔ L1 = L2 (10.5)

Expressions (10.4) and (10.5) can be proved by a truth table (computing
both side of the equation for all possibilities) as can be seen in the following
truth table comparing the corresponding columns, where true and false are
denoted by T and F, respectively.

L1 L2 ∼ L1 L1 ∨ L2 L1 ∧ L2 L1→ L2 ∼ L1 ∨ L2 L1 ↔ L3 L1 = L2
F F T F F T T T T
F T T T F T T F F
T F F T F F F F F
T T F T T T T T T

Although it is normal to associate values 1 and 0 to the true and false
values, they are not numbers. Let us associate an integer variable δ to these
predicates such that δ = 1 if L = T (true) and δ = 0 if L = F (false). It is very
easy to see that the basic logical operators have the following corresponding
algebraic inequalities:

2 The symbol ⇔ will be used in the text as a meta symbol to express that the expres-
sions on both sides of the symbol ⇔ are equivalent.

10.2 Example: A Jacket Cooled Batch Reactor 295

∼ L1 ⇔ δ1 = 0 (10.6)
L1 ∨ L2 ⇔ δ1 + δ2 ≥ 1 (10.7)
L1 ∧ L2 ⇔ δ1 = 1, δ2 = 1 (10.8)

L1 → L2 ⇔ δ1 − δ2 ≤ 0 (10.9)
L1 ↔ L2 ⇔ δ1 − δ2 = 0 (10.10)

In order to connect the logical and the continuous parts, consider a func-
tion f : R

n → R and a logical variable l ∈ {0, 1}. Consider that f is bounded
in its domain by f ≤ f(x) ≤ f . Then, consider a logical predicate about the
continuous function such as f(x) ≤ 0. It can be seen that the following logical
statements and constraints are equivalent

(f(x) ≤ 0) ∧ (δ = 1) ⇔ f(x)− δ ≤ −1 + f(1− δ) (10.11)

(f(x) ≤ 0) ∨ (δ = 1) ⇔ f(x) ≤ fδ (10.12)
∼ (f(x) ≤ 0) ⇔ f(x) > 0 or f(x) ≥ ε (10.13)

where ε is the smallest number in the computer. From expression (10.4), it
follows that:

(f(x) ≤ 0) → (δ = 1) ⇔∼ (f(x) ≤ 0) ∨ (δ = 1) (10.14)

Taking into account (10.13);

(f(x) ≤ 0) → (δ = 1) ⇔ (f(x) ≥ ε) ∨ (δ = 1)
⇔ (g(x) ≤ 0) ∨ (δ = 1) with g(x) = ε− f(x)
⇔ g(x) ≤ gδ with g = max

dom(g)
g(x) = ε− f

⇔ ε− f(x) ≤ (ε− f)δ
⇔ f(x) ≥ ε + δ(f − ε)

that is,
(f(x) ≤ 0) → (δ = 1)⇔ f(x) ≥ ε + δ(f − ε) (10.15)

Similarly,

(δ = 1)→ (f(x) ≤ 0) ⇔ ∼ (δ = 1) ∨ (f(x) ≤ 0)
⇔ (δ′ = 1) ∨ (f(x) ≤ 0) with δ′ = 1− δ

⇔ f(x) ≤ fδ′ = f(1− δ)

that is,

(δ = 1) → (f(x) ≤ 0) ⇔ f(x) ≤ fδ′ = f(1− δ) (10.16)

The if and only if condition (↔) necessary to establish the equivalence
between the logical predicate and the set of constraints can be obtained by
combining (10.15) and (10.16):

296 10 Model Predictive Control and Hybrid Systems

(δ = 1)↔ (f(x) ≤ 0) ⇔
{

f(x) ≤ fδ′ = f(1− δ)
f(x) ≥ ε + δ(f − ε) (10.17)

The combinations of logical predicates and real functions can also be
handled. As an example, consider a term in the form δf(x). We can intro-
duce an auxiliary real variable z � δ f(x) satisfying z = 0 when δ = 0
and z = f(x) when δ = 1. By using the previous results, these predicates
((δ = 0) → (z = 0) and (δ = 1) → (z = f(x))) can be translated into the
following linear inequalities:

z ≤ fδ

z ≥ fδ

z ≤ f(x)− f(1− δ)

z ≥ f(x)− f(1− δ)

The previous inequalities can easily be obtained considering that z = 0 ⇔
(z ≤ 0)∧ (z ≥ 0), z = f(x) ⇔ (z− f(x) ≤ 0)∧ (f(x)− z) ≤ 0), δ′ = 1− δ and
then using (10.15) and(10.16).

The product of variables (δ1, δ2) associated to logical predicates can also
be translated as a set of linear constraints by introducing an auxiliary δ3 �
δ1δ2. This is equivalent to (δ3 = 1) ↔ (δ1 = 1) ∧ (δ2 = 1). By using the
previous results:

(δ3 = 1)↔ (δ1 = 1) ∧ (δ2 = 1) ⇔
⎧⎨⎩
−δ1 + δ3 ≤ 0
−δ2 + δ3 ≤ 0
δ1 + δ2 − δ3 ≤ 1

(10.18)

There are different ways of translating logic predicates into linear in-
equalities. The number of auxiliary variables and constraints will depend
on which one is chosen.

10.2.2 Example

To illustrate how a hybrid system can be modelled by an MLD, consider the
mixing process described in Figure 10.4.

The mixer is controlled by an automata and works as follows: the tank is
filled (valves VA and VB open, valve VC closed) and stirred at the same time
until the level in the tank reaches the maximum height H . At this point the
outlet valve opens, letting the product out until the level in the tank is below
the empty level h. There are two Boolean states, the filling-mixing one and
the emptying one. We can associate a Boolean state variable xb = 0 when
the process is in the filling-mixing state and xb = 1 when the process is in

10.2 Example: A Jacket Cooled Batch Reactor 297

v v

v

A B

C

h

H H

Fig. 10.4. Mixing process

the emptying state. The continuous state xc(t) is associated to the height in
the mixing tank. It can easily be seen that the Boolean state variable will take
the value one when the height in the mixing deposit is above H or when the
system is already in state one and the level is above h. That is:

((xb(t) = 1) ∧ (xc(t) > h)) ∨ (xc(t) > H) ↔ xb(t + 1) = 1

Let us introduce some logical auxiliary variables δ1,δ2,δ3, and δ4 with the
following meanings:

(δ1 = 1) ↔ (xc(t) ≤ H) (10.19)
(δ2 = 1) ↔ (xc(t) > h) (10.20)
(δ3 = 1) ↔ ((xb(t) = 1) ∧ δ2) (10.21)
(δ4 = 1) ↔ (δ3∨ ∼ δ1) (10.22)

By using the previous transformation, the following linear inequalities
are obtained

(δ1 = 1)↔ (xc(t) ≤ H) ⇔
{

xc(t)−H ≤ (H −H)(1− δ1)
xc(t)−H ≥ ε− (H + ε)δ1

(10.23)

(δ2 = 1) ↔ (xc(t) > h) ⇔
{

h− xc(t) ≤ h(1− δ2)− εδ2

h− xc(t) ≥ (h−H)δ2
(10.24)

(δ3 = 1) ↔ ((xb(t) = 1) ∧ δ2) ⇔
⎧⎨⎩
−xb(t) + δ3 ≤ 0
−δ2 + δ3 ≤ 0
xb(t) + δ2 − δ3 ≤ 1

(10.25)

(δ4 = 1) ↔ (δ3∨ ∼ δ1) ⇔
{

δ1 − δ3 + δ4 ≤ 1
δ1 − δ3 + 2δ4 ≥ 1 (10.26)

298 10 Model Predictive Control and Hybrid Systems

where H is the maximum height of the tank and ε is a very small number.
The continuous part of the process can be described by

xc(t + 1) = xc(t) + (1− xb(t))(QA + QB)/S − xb(t)QC/S (10.27)

where S is the section of the tank and QA, QB , and QC are the flows of prod-
ucts when valves VA, VB , or VC are open. Notice that when the process is at
state xb(t) = 0, corresponding to the filling state, the inlet flows correspond
to the filling valves open; when the Boolean state is xb(t) = 1, the net flow
corresponds to the flow through the outlet valve. The Boolean state in the
next sampling period is given by:

xb(t + 1) = δ4(t) (10.28)

Other operating constraints can be added to the process. For example,
constraints about the minimum and maximum heights of the liquid in the
deposit xc(t) ≤ H and xc(t) ≥ 0. The model is described by Equations
(10.27) and (10.28) and linear inequalities (10.23) and (10.26) plus other oper-
ational constraints. Notice that these expressions have the shape of Expres-
sions (10.1)-(10.2). That is:

xc(t + 1) = xc(t) + (1− xb(t))(QA + QB)/S − xb(t)QC/S

xb(t + 1) = δ4(t)
s. t.: xc(t)−H ≤ (H −H)(1− δ1)

xc(t)−H ≥ ε− (H + ε)δ1

h− xc(t) ≤ h(1− δ2)− εδ2

h− xc(t) ≥ ε(h−H)δ2

−xb(t) + δ3 ≤ 0
−δ2 + δ3 ≤ 0
xb(t) + δ2 − δ3 ≤ 1
δ1 − δ3 + δ4 ≤ 1
δ1 − δ3 + 2δ4 ≥ 1
xc(t) ≤ H

xc(t) ≥ 0

10.3 Model Predictive Control of MLD Systems

The ideas of MPC (optimising an objective function over a finite and rolling
control horizon) can also be applied to MLD systems. However the problem
is far more difficult than in the case of processes with real variables. The
problem can be formulated as:

u∗ = arg min
u
‖x− rx‖p

Qx
+ ‖u− ru‖p

Qu
+ ‖δ − rδ‖p

Qδ
+ ‖z− rz‖p

Qz
(10.29)

10.3 Model Predictive Control of MLD Systems 299

s. t.:

x(t + j) = Ax(t + j − 1) + B1u(t + j − 1) + B2δ(t + j − 1) + B3z(t + j − 1)
y(t + j) = Cx(t + j) + D1u(t + j) + D2δ(t + j) + D3z(t + j)

E1x(t + j) + E2u(t + j) + E3δ(t + j) + E4z(t + j) ≤ g

where ‖x‖p
Q denotes xT Qx when p = 2 and Q‖x‖p for p = 1 or p = ∞ and Qx,

Qu, Qδ , and Qz are weighting matrices or vectors of appropriate dimensions
and all the signals in the future are predicted with the information available
at time t, as is usual in MPC. The vectors x, u, δ, z, rx, ru, rδ and rz are the
vectors of future predicted states, control moves, auxiliary Boolean variables,
auxiliary real variables, and their corresponding future references. They are
defined as

u �

⎡⎢⎢⎢⎣
u(t)
u(t + 1)
...
u(t + N − 1)

⎤⎥⎥⎥⎦x �

⎡⎢⎢⎢⎣
x(t + 1)
x(t + 2)
...
x(t + N)

⎤⎥⎥⎥⎦ δ �

⎡⎢⎢⎢⎣
δ(t + 1)
δ(t + 2)
...
δ(t + N)

⎤⎥⎥⎥⎦ z �

⎡⎢⎢⎢⎣
z(t + 1)
z(t + 2)
...
z(t + N)

⎤⎥⎥⎥⎦
with u(t) �

[
uc(t)
ub(t)

]
, x(t) �

[
xc(t)
xb(t)

]
The MLD MPC (10.29) results in an optimization problem with a set of lin-

ear constraints and with real and integer (Boolean in this case) decision vari-
ables. These types of optimization problems are known, in general, as Mixed
Integer Programming (MIP) problems. If the objective function is a linear
function these problems are known as Mixed Integer Linear Programming
(MILP) problems, or Mixed Integer Quadratic Programming (MIQP) problems
when the objective function is quadratic. It has to be said that this is a much
more difficult problem to solve than an LP or a QP problem (see, for example,
[68] for an excellent introduction).

Notice that for each of the possible (feasible) combinations of the discrete
decision variables, a QP problem (with the remaining continuous decision
variables) can be solved. A brute force approach would be to solve all of these
QPs; the solution will be the minimum of the solutions of all the QP problems.
If all the discrete decision variables are Boolean, the number of possible QP
problems is 2nb . Fortunately there are more efficient ways of solving this type
of problem. They are usually based on branch and bound methods and solve
only a portion of all QP problems.

10.3.1 Branch and Bound Mixed Integer Programming

Consider the optimization problem P0 with u ∈ R
n and δ ∈ {0, 1}m:

min
u,δ

J(u, δ) subject to R

[
u
δ

]
≤ r (10.30)

300 10 Model Predictive Control and Hybrid Systems

δ = 0 δ = 1

δ = 0

1 1

2

P0

P1 P1
δ = 0 2 δ = 12

P2 P2 P2

2 δ = 1

00 10 11

δ = 13

δ = 03

δ = 03

δ = 13

δ = 03

δ = 13 δ = 13

δ = 03

P201

P3 P3 111P3000 P3001 P3010 P3011 P3100 P3 110101

0 1

Fig. 10.5. Binary tree representation of a MIQP

A fundamental concept of the branch and bound algorithms is the enu-
meration of the optimization problems to be solved. These problems can be
represented. If the integer variables are Boolean, the resulting tree is a binary
tree (two branches per node), as the tree shown in Figure 10.5. The root node
(the node on the top) represents the original MIP problem and is located at
level 0. At the next level (depth = 1), there are two nodes (children). The first
one (P10) represents a subset of the parent problem, characterized by hav-
ing the first component of the Boolean decision variables (δ1) equal to zero.
The other node at level 1 (P11) represents the subset of the original prob-
lem characterized by δ1 = 1. Notice that the solution of the original prob-
lem (P0) is the minimum of the solution of problems P10 and P11. That is,
min(P0) = min(min(P10),min(P11)). At level 2, there are four nodes, nodes
P2{00} and P2{01}, descendants (children) from node P20 and nodes P2{10},
and P2{11}, descendants from node P21. The nodes at level m in the tree
(leaves of the tree) correspond to each of the possible 2m QP problems that
would have to be solved if brute force were used. Figure 10.5 corresponds to
a tree with three logical variables and the number of leaves and possible QPs
is 8.

The key idea of branch and bound is to establish a partition of the feasible
set into smaller subsets and then calculate certain bounds on the costs within
some of the subsets to eliminate from further consideration other subsets
and, therefore, to reduce the number of optimization problems to be solved.

Suppose that we have to solve minu f(u) with u ∈ U. Given two sub-
sets U1 ⊆ U and U2 ⊆ U, suppose that we have bounds f1 ≤ minu∈U1 f(u),
f2 ≥ minu∈U2 f(u). Then, if f2 ≤ f1 , the points in U1 may be disregarded
since their cost cannot be smaller than the cost of any solution in U2. An easy
way of computing bounds for the optimization problem is by relaxation of
the original problem. Consider problem P0 defined in (10.30). If we relax the
conditions δ ∈ {0, 1}m and substitute them by 0 ≤ δ ≤ 1, we have a relaxed
problem (RP0) with larger feasibility region and the following characteris-
tics:

10.3 Model Predictive Control of MLD Systems 301

1. If P0 is feasible, so is RP0; if RP0 is infeasible so is P0.
2. The minimum of the relaxed problem is a lower bound of the minimum

of the original problem (i.e., min RP0 ≤ min P0).
3. If the optimal solution of RP0 is feasible for P0, it is also the optimal

solution for P0.

More formally, we can define the problem Pkj , with k equal to the depth
in the tree and j a binary combination of k zeros and ones corresponding
to a particular realization of the Boolean variables for one of the nodes be-
ing explored (j ∈ {0, 1}k). For example, P210 represents the problem corre-
sponding to fixing the first two Boolean decision variables to 1 and 0, respec-
tively (δ1 = 1, δ2 = 0) while leaving the remaining Boolean variables free
δk+i ∈ {0, 1} for i = 1, . . . , m − k. The relaxed problem RPkj is the problem
obtained when the constraints δk+i ∈ {0, 1} for i = 1, . . . , m − k are relaxed
to 0 ≤ δk+i ≤ 1 for i = 1, . . . , m− k.

Let us define u∗r = arg min RPkj (the value that minimizes the relaxed
problem keeping the first k Boolean variables at the values corresponding
to index j), u∗ = arg min Pkj , F(Pkj), and F(RPkj) the feasible regions of
problems Pkj and RPkj , respectively. Then it can be seen that:

1. F(Pkj) ⊆ F(RPkj).

2. F(Pkj) �= ∅ ⇒ F(RPkj) �= ∅.

3. F(RPkj) = ∅ ⇒ F(Pkj) = ∅.

4. min RPkj ≤ min Pkj .

5. If u∗r ∈ F(Pkj) ⇒ u∗ = u∗r .

Notice that problem RPkj is an optimization problem with n+m−k op-
timization variables. A basic branch and bound-based MIP algorithm works
as follow:

1. Calculate an upper bound J(P0) and a lower bound J(P0) of minu(P0);3

∅ → SOL. Put P0 and its associated lower bound (J(P0)) into OPEN (List
of Candidate Solutions).

2. If OPEN is empty, the optimum solution is in SOL and its value is J ,
STOP.

3. Otherwise, get a problem Pi from OPEN. If the associated lower bound
of Pi is bigger than J , go to step 2 (disregard node as its lower bound is
above the upper bound of the solution found so far).

4. Form the relaxed problem RPi. Solve RPi. Let SOL1 be the solution (it
may be empty if the problem is unfeasible) and Ji be the minimum value
of the objective function.

3 These bounds can be always set to a very high number and a very low number.

302 10 Model Predictive Control and Hybrid Systems

5. If SOL1 is empty (problem RPi infeasible), go to step 2.
6. If Ji ≥ J go to step 2 (disregard node as its lower bound is above the

upper bound of the solution found so far).
7. If SOL1 is also feasible for Pi set J∗i = Ji, set J = Ji and the solution of

SOL=SOL1; go to step 2.
8. Generate problems Pi0 and Pi1 (children of problem Pi) and put them in

OPEN with associated lower bounds J(Pi0) = J(Pi0) = Ji, go to step 2.

Some remarks can be made on this basic branch and bound algorithm:

• The initial upper and lower bounds on optimal cost can be fixed at very
high and low values if no information is available. However, the number
of visited nodes can be reduced if these bounds are tightly estimated.

• One of the most important aspects, regarding efficiency, of the algorithm
is how the next node to be expanded is selected from the set of candi-
date solutions (OPEN). The two classical alternatives for exploring a tree
are the depth-first search, and breadth-first search. The depth-first search
consists in selecting the node with greatest depth. The second strategy
consists of expanding the nodes with the smallest depth. This strategy
looks more systematic but requires more nodes in memory to be main-
tained. More efficient strategies use information about the objective func-
tion and expand more promising nodes by selecting nodes with lower
bounds of the objective function, for example.

• The order in which the Boolean variables are selected for branching can
be determinative. In Figure 10.5, the first variable selected was δ1, then
δ2 and δ3. There is nothing to keep us from choosing another order, for
example, (δ3, δ1, δ2). A logical way is to order these variables according to
the influence they will have on the objective function.

10.3.2 An Illustrative Example

Consider the following MIQP

min
u,δ

1
2

(2u2 + δ2
1 + 5δ2

2 + 4δ2
3 + uδ1) + u− δ1 − 3δ2 − 2δ3 (10.31)

subject to −1 ≤ u ≤ 1
1 ≤ δ1 + δ2 + δ3 ≤ 2
δ ∈ {0, 1}3

with δT = [δ1 δ2 δ3]. The first step of the algorithm is to assign a high value to
J(P0) (7.5 is more than enough in this case) and a low value to J(P0) (it can
easily be computed as −7 in this case by adding all the negative terms of J).
Then, form the relaxed problem obtained when relaxing the integer Boolean
conditions for the P0 problem; that is, form the RP0 problem replacing the
last constraints of Problem (10.31) by 0 ≤ δ ≤ 1.

10.4 Piecewise Affine Systems 303

The solution of RP0 is obtained for u = −0.6792, δ1 = 0.717, δ2 = 0.5943,
δ3 = 0.6887, and a value of the objective function of −2.9009. Notice that this
value is a lower bound of the objective function. The relaxed problems RP10

and RP11 are generated and put into OPEN with the lower bound (equal for
both) of the parent node of −2.9009.

The problem RP11 is chosen from OPEN for expansion because the solu-
tion of RP0 is for δ1 = 0.717, which is nearer to 1 than to 0 and one should
expect that the integer solution should approximate the real solution. Prob-
lem RP11 is solved, resulting in u = −0.75, δ1 = 1, δ2 = 0.5, δ3 = 0.5, and
a value of the objective function of −2.8125. Problems RP210 and RP211 are
generated and put into OPEN with a lower bound of the parent node RP11

of −2.8125.
The next problem from OPEN to be expanded is PRP10 as it is the node

with the smallest lower bound. Problem PRP10 is solved for u = −0.5,
δ1 = 0, δ2 = 0.75, δ3 = 1, and a value of the objective function of −2.375.
The problems RP200 and RP201 are formed and included in OPEN with a
lower bound of −2.375.

Node RP210 is selected from OPEN as it has the lowest lower bound.
RP210 is solved, resulting in u = −0.75, δ1 = 1, δ2 = 0, δ3 = 1, and a value of
the objective function of −2.0625. As the solution is also feasible for P210 no
more nodes are generated. Furthermore, as −2.0625 < J then −2.0625 → J
and SOL is labelled by RP210 (this is the best solution found so far).

The next problem to be expanded from OPEN is RP211 which is solved,
resulting in u = −0.75, δ1 = 1, δ2 = 1, δ3 = 0, and a value of the objective
function of −2.0625. As the solution is also feasible for P211, no more nodes
are generated.

RP200 is selected from OPEN and its optimal solution is u = −0.5, δ1 = 0,
δ2 = 0, δ3 = 1, and a value of the objective function of −1.25. As the solution
is also feasible for P200, no more nodes are generated. Since the value of
the objective function does not improve the solution found so far no more
actions are taken by the algorithm.

The next node to be expanded from OPEN is RP201, which has the solu-
tion u = −0.5, δ1 = 0, δ2 = 1, δ3 = 1, and a value of the objective function of
−2.25. As the solution is also feasible for P201, no more nodes are generated.
Furthermore, as −2.25 < J (−2.0625) then −2.25 → J and SOL is labelled by
RP201 (this is the best solution found so far). No more problems can be ex-
panded so the final solution is the solution of node P201 given by u = −0.5,
δ1 = 0, δ2 = 1, δ3 = 1, and a value of the objective function of −2.25.

10.4 Piecewise Affine Systems

Another way to model hybrid systems is by piecewise affine systems (PWA).
It has been shown that MLD systems, and other types of Hybrid System de-
scriptions, are equivalent to a PWA description [87]. PWA systems have other

304 10 Model Predictive Control and Hybrid Systems

advantages, such as being able to approximate nonlinear dynamics arbitrar-
ily well, and are suitable for stability analysis and reachability analysis [195].
A PWA system is defined as

x(t + 1) = Aix(t) + Biu(t) + f i

y(t) = Cix(t) + gi for
[

x(t)
u(t)

]
∈ Xi (10.32)

where {Xi}s
i=1 is a polyhedral partition of the states and input space. Each

Xi is given by

Xi �
{[

x(t)
u(t)

]
|Ri

[
x(t)
u(t)

]
≤ ri

}
where x(t), u(t), and y(t) denote the state, input, and output vectors, respec-
tively. Each subsystem S

i defined by the 7-tuple (Ai, Bi, Ci, f i, gi,Ri, ri),
i ∈ {1, 2, . . . , s}, is termed a component of the PWA system (10.32). Ai ∈
R

n×n, Bi ∈ R
n×m, and (Ai, Bi) is a controllable pair. Ci ∈ R

r×n and
Ri ∈ R

pi×(n+m) and f i , gi , ri are suitable constant vectors. Note that n is
the number of states, m is the number of inputs, r is the number of outputs,
and pi is the number of hyperplanes that define the i polyhedral.

Assume that a full measurement of the state is available at the current
time k. The formulation of MPC for a PWA system can be expressed as:

u = arg(min
u

J) (10.33)

s.t. : J =
N∑

i=1

qii(y(t + i | t)− w(t + i))2 +
N−1∑
i=0

riiu(t + i)2 (10.34)

umin ≤ u(t + i) ≤ umax i = 0, ..., N − 1 (10.35)

Let us consider the prediction problems associated to the MPC in the case
of a PWA system. The subsystem describing the process is known if x(t)
is known, but the following subsystems depend on the applied control se-
quence. It can be considered that a change (transition) of model is produced
between one sampling instant and the next. In general, a sequence of sub-
systems I = {I(t) I(t + 1) . . . I(t + N)} is activated. Only the initial value
I(t) = I(t)(x(t)) of this sequence is known. If no constraints are considered,
the number of possible sequences for a prediction horizon N is sN−1. In or-
der to solve the MPC problem (10.34) the optimization sequence is added to
the decision variables. The resulting optimization problem can be stated as

u∗ = arg(min
u,I

J) (10.36)

where constraints relating the dependencies of the possible sequences u and
I have to be added, i.e.:

RI(t+j)x(t + j) ≤ rI(t+j), j = {1, . . . , N} (10.37)

10.4 Piecewise Affine Systems 305

Due to the integer nature of sequence I , the problem of finding the optimum
can be solved by finding the optimum of the solutions for all possible se-
quences of I , i.e.

u∗ = arg
(

min
I

(
min
u

(
J

RIU u≤qIU

)))
(10.38)

where RIUu ≤ rIU indicate the constraints due to dependencies between I
and U .

Equation (10.34) can be written as

J = (y −w)T Q(y −w) + uT Quu (10.39)

where (Qu = QT
u � 0) and (Q = QT � 0) are weight matrices penalizing the

control effort and the tracking errors and y =
[
y(t + 1)T · · · y(t + N)T

]T ,

w =
[
w(t + 1)T · · · w(t + N)T

]T , u =
[
u(t)T · · · u(t + N − 1)T

]T . The pre-
dicted output vector can be written as

y = Fyx(t) + Hyu + foy
(10.40)

Fy = CyFx, Hy = CyHx, foy
= Cyfox

+ go

(10.41)

where

Cy = diag(CI(t+1), CI(t+2), · · · , CI(t+N))
Hx =

[
h1 h2 · · · hN

]

Fx =

⎡⎢⎢⎢⎣
AI(t)

AI(t+1)AI(t)

...
AI(t+N−1)AI(t+1) · · ·AI(t)

⎤⎥⎥⎥⎦

h1 =

⎡⎢⎢⎢⎣
BI(t)

AI(t+1)BI(t)

...
AI(t+N−1)AI(t+N−2) · · ·AI(t+1)BI(t)

⎤⎥⎥⎥⎦

h2 =

⎡⎢⎢⎢⎢⎢⎣
0

BI(t+1)

AI(t+2)BI(t+1)

...
AI(t+N−1)AI(t+N−2) · · ·AI(t+1)BI(t+1)

⎤⎥⎥⎥⎥⎥⎦
hN =

[
0 0 0 · · · (BI(t+N−1))T

]T

306 10 Model Predictive Control and Hybrid Systems

fox

T =
[
f1 f2 · · · fN

]T
go

T =
[
gI(t)T

gI(t+1)T · · · gI(t+N−1)T
]T

f1 =

⎡⎢⎢⎢⎣
I

AI(t+1)

...
AI(t+N−1)AI(t+N−2) · · ·AI(t+1)

⎤⎥⎥⎥⎦

f2 =

⎡⎢⎢⎢⎢⎢⎣
0
I

AI(t+2)

...
AI(t+N−1)AI(t+N−2) · · ·AI(t+2)

⎤⎥⎥⎥⎥⎥⎦
fN =

[
0 0 0 · · · I

]T
Note that the following equalities are fulfilled:

x = Fxx(t) + Hxu + fox
(10.42)

y = Cyx + go

x =
[
x(t + 1)T x(t + 2)T · · · x(t + N)T

]T
Replacing (10.40) in (10.39),

J(I,u) = uHQP u + fT
QP u + gQP (10.43)

where

HQP =
[
HT

y QHy + Qu

]
fT
QP =

[
2x(t)FT

y QHy + 2fT
oy

QHy − 2wT QHy

]
gQP = x(t)T FT

y QFyx(t) + 2fT
oy

QFyx(t)− 2fT
oy

Qw

+fT
oy

Qfoy
− 2wT QFyx(t) + wT Qw

The constraints over the control (10.35) can be written as Ruu ≤ ru (normally

Ru = [−IN×N IN×N]T , ru =
[
− (umin)T (umax)

T
]T

), and the constraints
due to I and u dependency (10.37) can be written as

RIxxI ≤ rIx (10.44)

where
xI =

[
x(t + 1)T , . . . , x(t + N − 1)T

]T , RIx = diag(RI(t+1), ...,RI(t+N−1)),

rIx =
[(

rI(t+1)
)T

. . . ,
(
rI(t+N−1)

)T]T
.

Note that x(t) and x(t+N) are not taken into account in these constraints
because the original region is known and the final region where x(N) will be

10.4 Piecewise Affine Systems 307

h
A1

A2
h0

qc

qo

qd

Fig. 10.6. Tank with discontinuous section

located is either fixed by stability or operational constraints or is a part of the
MPC problem for the next sampling instant. The vector xI can be written by

xI = Cxx (10.45)

where Cx =
[
I(n∗(N−1))×(n∗(N−1)) 0

]
. Replacing (10.45) and (10.42) in (10.44),

the constraints due to the dependency between U and I result in RIUu ≤
rIU , RIU = RIxCxHx, rIU = rIx− RIxCxFxx(t)− RIxCxfox

. If constraints
on the control actions are also considered then

RQP u ≤ rQP (10.46)

RQP =
[
(Ru)T (RIU)T

]T , rQP =
[
(ru)T (rIU)T

]T .
Therefore, once the sequence I is fixed, the problem can be solved by

minimizing (10.43) subject to the constraints in (10.46).

10.4.1 Example: Tank with Different Area Sections

Consider the tank process shown in Figure 10.6. As can be seen, the area sec-
tion of the tank changes abruptly at height h0. The tank has two manipulated
input variables. One is the flow qc ∈ [0, Qc] of a continuous regulated pump
and the other is the flow qd ∈ {0 , Qd} of an ON-OFF pump. The area below
and above h0 are denoted by A1 and A2, respectively. The dynamics can be
described by the following equations:

ḣ =
qc + qd − qo

A1
for h0 < h ≤ hmax (10.47)

ḣ =
qc + qd − qo

A2
for hmin ≤ h ≤ h0 (10.48)

This is a model described by two different physical models (one for
h0 < h and the other one for h ≥ h0), each described by a continuous dif-
ferential equation. The model can be approximated by the following discrete
time model:

308 10 Model Predictive Control and Hybrid Systems

h(t + 1) = h(t) +
T0(qc + qd − qo)

A1
for h0 < h(t) ≤ hmax (10.49)

h(t + 1) = h(t) +
T0(qc + qd − qo)

A2
for hmin ≤ h(t) ≤ h0 (10.50)

where T0 is the sampling time. Notice that the discrete-time approximated
equations are exact except when the height crosses h0 between two sampling
times. Consider that x(t) and uc(t) correspond to the continuous state and
manipulated variables sampled with T0, that is, x(t) = h(t), uc(t) = qc(t),
ud(t) = qd(t), the model can be described by the following PWA systems with
the following four regions:

1. (x(t) ≤ h0) ∧ (ud(t) = 0) ⇒ x(t + 1) = x(t) + (T0(uc(t)− qo))/A2

2. (x(t) ≤ h0)∧ (ud(t) = Qd) ⇒ x(t + 1) = x(t) + (T0(uc(t) + Qd − qo))/A2

3. (x(t) > h0) ∧ (ud(t) = 0) ⇒ x(t + 1) = x(t) + (T0(uc(t)− qo))/A1

4. (x(t) > h0)∧ (ud(t) = Qd) ⇒ x(t + 1) = x(t) + (T0(uc(t) + Qd − qo))/A1

The sampling time is set to T0 = 0.2 second and the rest of the model
parameters are set to: A1 = 1, A2 = 0.5, h0 = 1, hmax = 2, Qc = 0.2, Qd = 0.2,
and qo = 0, 3. The water level in the tank was originally set to h(0) = 0.1.

Figure 10.7 shows the results obtained by applying an MPC with the fol-
lowing objective function

4∑
j=1

rx(r(j + t)− x(t + j))2 + rudud(t + j − 1)2 + rucuc(t + j − 1)2

and the weighting factors set to: rx = 3, rud = 0.1, and ruc = 2. The different
sectors reached can be observed in the bottom part of Figure 10.7.

10.4.2 Reach Set, Controllable Set, and STG Algorithm

Although the MPC problem for the PWA system (i.e., minimising (10.43)) sub-
ject to constraints (10.46) can be solved by an MIQP algorithm, the number of
possible combinations of the integer variables, and therefore the maximum
number of QP problems, may be very high. The maximum number of QP
problems is SN (with S the number of polyhedral regions and N the control
horizon). Consider, for example, a PWA system with a polyhedral partition
of 100 regions and a horizon of 10. The maximum number of QP problems
to be solved at each sampling instant would be 1020, too many for real-time
applications.

In [164] an algorithm was proposed to reduce the maximum number of
QP problems to be solved. The method reduces the number of possible se-
quences of the integer variables using knowledge about the process dynam-
ics. The key idea of the algorithm is to determine the set of possible regions
that can be reached from the actual region at the next few sampling times.

10.5 Exercises 309

0 2 4 6 8 10 12 14 16 18 20
0

1

2

h−
hr

0 2 4 6 8 10 12 14 16 18 20
0

0.2

u c

0 2 4 6 8 10 12 14 16 18 20
0

0.2

u d

0 2 4 6 8 10 12 14 16 18 20
1

2

3

4

S

Time (seconds)

Fig. 10.7. Tank with discontinuous section: simulation results

The reach set concept [104] is used for this purpose. The set of possible re-
gions to be reached from a particular one can be organized as a state transi-
tion graph. A search directed by this graph can then be implemented; that is,
every sequence that cannot be obtained following the transition graph is not
considered.

10.5 Exercises

10.1. Consider the tank of Figure 10.6; find a hybrid model and formulate an
MPC in the following cases:

1. a new ON-OFF feeding pump is added.
2. a new area section A3 is added. The tank area section is A3 when the

height of the water in the tank is below h1 (0 ≤ h ≤ h1 < h0 < hmax), A2

when h is above h1 and below h0, and A1 when h is above h0.

10.2. Solve the MPC for the three level-tank of the previous exercise when the
control horizon is N = 3. What is the number of QP problems to be solved?
Is there any way of reducing the number of QP problems to be solved?

10.3. Consider the system described by the following equations:

310 10 Model Predictive Control and Hybrid Systems

1

3

1

T
h

h

h

cQ Qd

T

h 4

2
2

Fig. 10.8. Interconnected-tanks

xc(t + 1) = 0.5xc(t) + uc(t) + xd(t)
xd(t + 1) = (xd(t) ∧ (xc(t) > x0)) ∨ (� xd(t) ∧ (xc(t) > x1))

with:
xc(t) ∈ [−5 , 5] ∈ R, uc(t) ∈ [−1 , 1] ∈ R, xd(t) ∈ {0, 1}

1. Describe the system as a hybrid automaton; i.e., find the state transition
diagram and switching conditions.

2. Find equivalent MLD and PWA descriptions.
3. Formulate an MPC problem.
4. Solve the previous MPC problem with different control horizons.

10.4. Consider two tanks T1 and T2 interconnected by two pipes at heights
h3 and h3 as shown in Figure 10.8. The manipulated variables are the inflow
Qc to tank T1 controlled by an analogue valve and the inflow Qd to tank T2

controlled by an ON-OFF valve.

1. Describe the system as a hybrid automaton.
2. Describe the system as an MLD system (linearize when necessary).
3. Formulate an MPC to control the level in both tanks (h1 and h2). Comment

on the complexity of the problem to be solved.

11

Fast Methods for Implementing Model Predictive
Control

One of the disadvantages of MPC is that the computation time required in
some cases considerably limits the bandwidth of processes to which it can
be applied. This is the case of MPC in the presence of constraints, adaptive
MPC, robust MPC and MPC of nonlinear processes. This chapter is devoted to
explaining some of the procedures used to reduce the amount of computa-
tion needed for the implementation of MPC. All of these procedures are based
on doing most of the required computation off-line, leaving only part of the
computation for the online part of the implementation.

11.1 Piecewise Affinity of MPC

As was shown in Chapter 7, MPC in the presence of constraints results in a
QP problem when the objective function is quadratic and in an LP problem
if the objective function is a 1-norm or ∞-norm type of function and the
constraints are linear. Although very efficient algorithms exist for solving
these types of problems, the computation time required is too high when
MPC is applied to fast processes. It has been shown by Bemporad et al. that
MPC for these cases can be considered as a multiparametric quadratic [23]
or linear programming problem [20] and that MPC solution turns out to be a
relatively easy-to-implement piecewise affine controller.

The idea is simple and was first pointed out in [212]: the optimum of a
QP problem is reached for a set of active constraints (the set may be empty)
and for all points in the state space with the same set of active constraints, the
solution is an affine function of the state. Consider the optimization problem
originated by a constrained MPC with a quadratic objective function

J = (w − y)T Q(w − y) + uT Quu (11.1)

where Q and Qu are weighting matrices penalizing the tracking errors and
control effort, respectively. If the prediction equation y = Gu + Fx(t) is in-
troduced in (11.1), the constrained MPC can be expressed as

E. F. Camacho et al., Model Predictive Control
© Springer-Verlag London Limited 2007

312 11 Fast Methods for Implementing Model Predictive Control

min
u

1
2
uT Hu + bT u + f0 (11.2)

s. t. Ru ≤ r = Vx(t) + rb (11.3)

where R is an m× n matrix, r is an m vector, and:

H = 2(GT QG + Qu)
b = 2(GT Q(Fx(t)−w))
f0 = x(t)T FT QFx(t) + wT Qw − 2wT QFx(t)

Notice that the term f0 is a quadratic function of the process state x(t)
and that vectors b and r depend in an affine way on the free response and
therefore on the process state x(t).

Let us consider all points in the state space where the optimization prob-
lem is feasible and let us denote its solution by u∗. There are two possible
situations for these points: the solution is either inside the polytope defined
by the constraints or at its boundary. Let us define set Ω0 as the points in the
state space where the solution of the MPC optimization problem lies inside
the polytope defining the constraints. For all points contained in Ω0 the so-
lution of the MPC optimization problem is equivalent to the unconstrained
minimization of Function (11.2) of which the solution is:

u∗ = −H−1 b = 2H−1GT Q(w − Fx(t))

that is, u∗ is an affine function of the state x(t) for all points in Ω0. Let us now
suppose that the solution lies at the boundary of the polytope. Define by Ωp

the region in the state space such that the solution of the MPC optimization
problem lies in a set of constraints denoted by p (one of the multiple combi-
nations of constraints that can be active).

The rows of R for a particular set of active constraints can be reordered
in such a way that the constraint matrix R can be partitioned as:

R =
[
R1

R2

]
r =

[
r1

r2

]
with

R1u = r1

R2u < r2

where R1 is an m1 × n matrix and r1 is an m1 vector. It is assumed that
m1 < n and that rank(R1) = m1. If this is not the case, keep the maximal set
of linearly independent active constraints to form R1.

The MPC optimization problem for points in Ωp is equivalent to:

min
u

1
2
uT Hu + bT u + f0

s. t. R1u = r1

A direct way of solving this problem is to use constraints R1u = r1 to
express m1 of the u variables as a function of the remaining n−m1 variables

11.1 Piecewise Affinity of MPC 313

(ub) and then to substitute them in the objective function. The problem is
reduced to minimizing a quadratic function of n−m1 variables without con-
straints. As was pointed out in Chapter 7, a generalized elimination method
is normally used instead of a direct elimination procedure. The idea is to ex-
press u as a function of a reduced set of n − m1 variables, u = Yr1 + Zv,
where Y and Z are n × m1 and n × (n − m1) matrices such that R1Y = I,
R1Z = 0 and the matrix [Y Z] has full rank. If this substitution is made, the
equality constraints hold and the objective function

J(v) =
1
2
[Yr1 + Zv]T H[Yr1 + Zv] + bT [Yr1 + Zv] + f0

=
1
2
vT Hvv + bv

T v + fv0

with Hv = ZT HZ, bv = ZT (b + HYr1) and fv0 = [12r
T
1 YT H + bT]Yr1 + f0;

that is, an unconstrained QP problem of n −m1 variables. As matrix ZT HZ
is positive definite, there is only one global optimum point that can be found
solving the linear set of equations ZT HZv = −ZT (b+HYr1) whose solution
is:

v = −(ZT HZ)−1ZT (b + HYr1)

This expression shows that v is an affine function of b and r1 which are also
affine functions of x(t). The solution of the MPC optimization problem (u∗),
which is also an affine function of v, is, therefore, an affine function of the
state for all points in region Ωp. That is, an MPC with a quadratic objective
function and linear constraints results in a controller which is a piecewise
affine (PWA) function of the process state1. The optimal control moves for
any x(t) ∈ Ωp can now be computed as:

u = Yr1 + Zv

= Yr1 − Z[(ZT HZ)−1ZT (b + HYr1)]
= Y(V1x(t) + rb

1)− Z[(ZT HZ)−1ZT ((2GT QT (Fx(t)−w))
+ HY(V1x(t) + rb

1))]

where V1 and rb
1 are the rows of matrix V and vector rb of the MPC con-

straints in (11.3). The previous expression shows that for all points in region
Ωp (i.e., all points where the optimum lies in the active sets of constraints
defined by R1u = r1) the controller is an affine function of the state x(t) and
future reference w

u = Kp
ww + Kp

xx(t) + Kp (11.4)

1 It is also an affine function of the future references and of the measurable distur-
bances, as will be seen later in this chapter.

314 11 Fast Methods for Implementing Model Predictive Control

where Kp
w = Z(ZT HZ)−1ZT , Kp

x = −Kp
w(2GT QF + HYV1) + YV1, and

Kp = Yrb
1 −Kp

wHYrb
1.

Notice that the controller constant matrices can be computed easily if the
set of active constraints is known. Notice that if the number of constraints is
L, the maximum number of possible combinations, and therefore of possible
values of p and of possible regions, can be very high for normal values of the
prediction horizon. Fortunately, the number of constraint combinations that
generate a nonempty region is usually only a small fraction of the maximum
number of possible combinations

The problem is how to characterize regions Ωp for all possible con-
straint active sets. The solution of this problem can be obtained using multi-
parametric programming concepts, as will be seen in the next section.

Once regions Ωp have been determined in an off-line manner, the con-
troller will consist of reading (or estimating) the process state x(t), then de-
termining in which region Ωp the current process state x(t) lies and finally
applying the corresponding affine controller (11.4).

11.2 MPC and Multiparametric Programming

The same results as those reached in the previous section can be obtained by
showing that the MPC with linear constraints problem can be formulated as
a multiparametric programming problem. This type of problem is intimately
related to the sensitivity analysis of the solution of optimization problems.
Sensitivity analysis consists in determining how the optimal solution varies
when some uncertain coefficients of the problem change. There are basically
two questions addressed by sensitivity analysis. One is how the optimal so-
lution changes with the coefficients of the objective function. The other ques-
tion is how the optimal solution changes with the right-hand side of the con-
straints. If the solution of the problem is expressed in terms of these changing
parameters we are solving what is known as a multiparametric optimiza-
tion problem. Multiparametric programming is a technique for obtaining the
solution of an optimization problem as a function of the uncertain param-
eters. The advantage of the technique is that if the parameters change, the
optimization problem need not be solved again since the solution has been
obtained as a function of the uncertain parameters.

In the MPC context, the state is considered to be the vector of uncertainty
parameters and the solution is made a function of the state. It will be seen
that the solution of MPC problems with linear constraints and quadratic, 1-
norm or ∞-norm types of objective functions turns out to be a piecewise
affine function of the state.

Let us suppose that the future references are zero (w = 0). Then the MPC
optimization problem (11.3) results in

11.2 MPC and Multiparametric Programming 315

min
u

1
2
uT Hu + 2x(t)T FT QGu + x(t)T FT QFx(t)

s. t. Ru ≤ Vx(t) + rb

which can be formulated as the multiparametric QP problem:

μ(x(t)) � min
z

1
2
zT Hz

s.t. Rz ≤ Sx(t) + rb

where z = u + 2H−1GT QFx(t) and S = V + 2RH−1GT QF.
The first-order Karush-Kuhn-Tucker (KKT) optimality conditions can be

expressed as:

Hz + RT λ = 0 (11.5)
λi(Riz− rb

i − Six(t)) = 0 (11.6)
λ ≥ 0 (11.7)
Rz ≤ Sx(t) + rb (11.8)

The superscript or subindex i indicates the ith row or components of the
corresponding matrix or vector. Solving (11.5) for z results in

z = −H−1RT λ (11.9)

which, substituted into (11.6), leads to

λi(Ri(−H−1RT λ)− rb
i − Six(t)) = 0

Let λ1 and λ2 denote the sets of Lagrange multipliers corresponding
to the active and inactive constraints, respectively. For the inactive con-
straints λ2 = 0 while for active constraints λ1 > 0 which implies that
Ri(−H−1RT λ) − rb

i − Six(t) = 0 for all constraints belonging to the active
set. These conditions can be expressed in condensed form as

Rp(−H−1RT
p λ1)− rb

p − Spx(t) = 0

where Rp, rb
p and Sp are the matrices formed by the rows corresponding to

active constraints of matrices R, rb and S. Solving for λ1,

λ1 = −(RpH−1RT
p)−1(rb

p + Spx(t))

substituting λ1 in (11.9),

z = H−1RT
p (RpH−1RT

p)−1(rb
p + Spx(t)) (11.10)

If (11.10) is inserted in z = u + 2H−1GT QFx(t), solving for u leads to

316 11 Fast Methods for Implementing Model Predictive Control

u = Kxpx(t) + kp (11.11)

with

Kxp = H−1[RT
p (RpH−1RT

p)−1Sp−2GT QF], kp = H−1RT
p (RpH−1RT

p)−1rb
p

which shows that u is an affine function of x(t).

11.3 Piecewise Implementation of MPC

As has been seen in previous sections, the resulting controller is an affine
function of the process state with gains depending on the set of active con-
straints at the optimum. In order to implement the controller, it is necessary
to determine the regions in which a determined set of constraints is active.
This, as shown in [23], can be done by imposing the remaining KKT condi-
tions, λ ≥ 0 and Rz ≤ Sx(t) + rb:

−(RpH−1RT
p)−1(rb

p + Spx(t)) ≥ 0 (11.12)

RH−1RT
p (RpH−1RT

p)−1(rb
p + Spx(t)) ≤ Sx(t) + rb (11.13)

Inequalities (11.12) and (11.13) define a (possibly empty) region Ωp in the
space. For all points in this region, the solution of the optimization problem
lies in the intersection of the set of active constraints p and the controller is
given by Equation (11.11).

A brute force approach to determining all the regions would consist of
using an enumerative algorithm to generate all possible sets of active con-
straints, then computing the corresponding Rp, Sp and rb

p and using Expres-
sions (11.12) and (11.13) to define the regions. A more efficient method has
been proposed in [23] to generate the regions. The procedure is based on the
following theorem [23]

Theorem 11.1. Let Y ∈ R
n be a nonempty polyhedron, and Ω0 � {x ∈ Y : Rx ≤

r} a polyhedral subset of Y. And let

Ωi =

⎧⎨⎩
x ∈ Y
Rix > ri

Rjx ≤ rj , ∀j < i

⎫⎬⎭ , i = 1, · · · ,m

where m = dim(r) and let Ωrest �
⋃m

i=1 Ωi. Then: (i) Ωrest
⋃

Ω0 = Y, (ii)
Ω0
⋂

Ωi = ∅, (iii) Ωi

⋂
Ωj = ∅, ∀i �= j, i.e. { Ω0,Ω1, · · · ,Ωm } is a partition of

Y.

The procedure starts by choosing a feasible point x0 ∈ X in the state
space and solving the associated QP problem2. The active constraints are ob-
tained from the solution and, after eliminating the superfluous constraints
2 The Chebyshev centre of X is proposed in [23] as x0. The Chebyshev centre of a

polytope can be found by solving an LP problem.

11.3 Piecewise Implementation of MPC 317

from (11.12) and (11.13), region Ω0 is determined. Then all the inequalities
defining Ω0 are considered one by one as indicated in Theorem 11.1, making
Y = X. That is, for i = 1 only the first row of the inequality matrix defin-
ing Ω0 is chosen. This will establish a partition in Y formed by the regions
Ω0, Ω1 � {x ∈ Y,R1x > r1}, Ω2 � {x ∈ Y,R1x ≤ r1,R2x > r2}, · · · ,
Ωm � {x ∈ Y,R1x ≤ r1,R2x ≤ r2, · · · ,Rmx > rm}. Where Ri and ri are
the ith row and ith component of matrix R and vector r, respectively.

The procedure is applied recursively to all regions {Ω1, · · · ,Ωm }. That
is, a feasible point is found in Ω1 and the corresponding QP problem solved.
The critical region Ω10 is determined (Ω10 is the region corresponding to the
feasible point found in Ω1). Then Theorem 11.1 is applied again with the
constraints defining Ω10 and making Y = Ω1. Some precautions have to be
taken to make sure that matrix RpH−1RT

p is nonsingular [23].

11.3.1 Illustrative Example: The Double Integrator

Let us consider a double integrator process described by the following con-
tinuous transfer function:

Y (s) =
1
s2

U(s)

If the process is sampled with a sampling time of one unit and assuming a
sample and hold at both integrator inputs, the discrete state space represen-
tation is given by:

A =
[

1 1
0 1

]
B =

[
0
1

]
C =

[
1 0
]

Let us consider an objective function with an infinity control horizon given
by:

J =
∞∑

j=1

(y(t + j)2 + λu(t + j − 1)2)

Notice that using an infinite horizon guarantees stability for the nominal case
when no constraints are present. When constraints have to be considered this
problem cannot be solved because the number of control moves and, there-
fore, the number of decision variables is infinite. However, if we suppose that
the constraints are always going to be fulfilled after a finite number of steps
N , the objective function can be decomposed into the following terms

J = λu(t)2 +
N−1∑
j=1

(x(t + j)T Qx(t + j) + u(t + j)T Ru(t + j))

+
∞∑

j=N

(x(t + j)T Qx(t + j) + u(t + j)T Ru(t + j)) (11.14)

318 11 Fast Methods for Implementing Model Predictive Control

with R = λ and Q =
[

1 0
0 0

]
for the example. If the last part of cost func-

tion (11.14) is not affected by constraints, the optimal value for that part
can be found solving a Riccati equation (see Appendix B). For N = 2 and
λ = 0.1, the resulting control law (obtained by solving the Riccati equation)
is u(t) = Kx(t) with K = [−0.8166 − 1.7499]. The value of the cost func-
tion when the optimal control law is applied (for the nominal model and no
noise) is a function of the state and is given by J(x) = xT Px, where P has
been obtained solving the previous Riccati equation. In this case matrix P
turns out to be:

P =
[

2.1429 1.2246
1.2246 1.3996

]
If the optimal control law is applied for k > N , the cost function (11.14)

can be expressed as

J =
N∑

j=1

(x(t + j)T Qjx(t + j) + u(t + j − 1)T Ru(t + j − 1)) (11.15)

with Qj = Q for j < N and QN = P . When the control moves are con-
strained by −1 ≤ u(t) ≤ 1 and −1 ≤ u(t + 1) ≤ 1, there are nine resulting
regions. These regions and corresponding controllers are given by the fol-
lowing,

Region 1:

If

⎡⎢⎢⎣
−0.8166 −1.7499
0.6124 0.4957
0.8166 1.7499
−0.6124 −0.4957

⎤⎥⎥⎦ x(t) ≤

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ then
u(t) = [−0.8166 − 1.7499]x(t)

Region 2:

If

⎡⎣ 2.4491 5.2482
−0.8166 −2.5665
0.8166 2.5665

⎤⎦ x(t) ≤
⎡⎣−2.9991

2.7499
−0.7499

⎤⎦ then u(t) = 1

Region 3:

If

⎡⎣−0.4521 −0.3660
−0.5528 −1.5364
0.5528 1.5364

⎤⎦ x(t) ≤
⎡⎣−0.7383

1.4308
0.5692

⎤⎦ then
u(t) = [−0.5528 − 1.5364]x(t) − 0.4308

Region 4:

If

⎡⎣−2.4491 −5.2482
−0.8166 −2.5665
0.8166 2.5665

⎤⎦ x(t) ≤
⎡⎣−2.9991
−0.7499
2.7499

⎤⎦ then u(t) = −1

11.3 Piecewise Implementation of MPC 319

Region 5:

If

⎡⎣ 0.4521 0.3660
−0.5528 −1.5364
0.5528 1.5364

⎤⎦ x(t) ≤
⎡⎣−0.7383

0.5692
1.4308

⎤⎦ then
u(t) = [−0.5528 − 1.5364]x(t) + 0.4308

Region 6:

If
[

6.7349 18.7181
2.4491 7.6974

]
x(t) ≤

[−17.4314
−8.2474

]
then u(t) = 1

Region 7:

If
[

6.7349 18.7181
−2.4491 −7.6974

]
x(t) ≤

[−6.9349
2.2491

]
then u(t) = 1

Region 8:

If
[

2.4491 7.6974
−6.7349 −18.7181

]
x(t) ≤

[
2.2491
−6.9349

]
then u(t) = −1

Region 9:

If
[−6.7349 −18.7181
−2.4491 −7.6974

]
x(t) ≤

[−17.4314
−8.2474

]
then u(t) = −1

The resulting control signal is unconstrained for all points in region 1 and
coincides with the solution of the Riccati equation, as expected. The regions
can be seen in Figure 11.1, which also shows the evolution of the system
state when the optimal control law (the piecewise affine function described
earlier) is applied and the initial state is given by x(t)T = [−5 5].

The controller minimizes Expression (11.15), that is, a quadratic function
which also penalizes the state at the end of the prediction horizon (N = 2 in
the example). Minimizing this objective function will minimize the infinite
horizon objective function when the control law is unconstrained for hori-
zons bigger than 2 and this does not happen in all cases (see Exercise 11.1).

Notice that the online part of the controller would consist of reading or
estimating the process state, then deciding what region the state is in and
applying the corresponding control law. In this example, the number of op-
erations needed to determine the region where the process state is will take,
in the worst case, 48 multiplications, 24 additions and 24 comparisons. Com-
puting the controller would require two multiplications and one addition.

Notice that the most time-consuming operation is determining the ap-
propriate region and that the computational burden depends on the number
of regions and number of constraints defining each region. If the number of
regions is very high, the time required to determine the affine control law
to be applied would also be very high and this would be a limiting factor.
Some ideas have been proposed to overcome this difficulty. These ideas are

320 11 Fast Methods for Implementing Model Predictive Control

−15 −7.5 0 7.5 15
−6

−4

−2

0

2

4

6

x
1

x 2

R9

R1

R4

R8

R3

R6

R2

R7

R5

Fig. 11.1. Affine controller regions for the double integrator

based on the fact that each of the inequalities (Rix ≤ ri) defining the critical
regions divides the state space into two parts: Ai = {x ∈ X : Rix ≤ ri} and
Bi = {x ∈ X : Rix > ri}). Some regions will be included in Ai, some will
be included in Bi and some will intersect both Ai and Bi. Suppose that by
checking Rix ≤ ri we determine that x is in Ai; then all regions included in
Bi can be discarded from further tests. An algorithm has been proposed in
[199] to organize the inequalities in such a way that the number of constraint
checks is minimized. The idea is to first choose those inequalities with more
discriminating power. The ideal situation would be for half of the regions to
be included in Ai and the rest in Bi.

11.3.2 Nonconstant References and Measurable Disturbances

In the case of a nonzero (nonconstant in general) reference trajectory and
measurable disturbances, consider an augmented vector

v =

⎡⎣x(t)
w
p

⎤⎦
where w is the vector of future references and p is the vector of predicted
future measurable disturbances. The objective Function (11.1) can then be
expressed as 3

J = (w − (Gu + Fx(t) + Fpp))T Q(w − (Gu + Fx(t) + Fpp)) + uT Ru

= uT (GT QG + R)u + 2(Fvv)T QGu + (Fvv)T Q(Fvv)
3 Recall from Section 4.8 that the predicted output vector can be computed as
y = Gu + Fx(t) + Fpp.

11.3 Piecewise Implementation of MPC 321

with Fv = [F − I Fp]. If the constraints on the problem are expressed as
Ru ≤ Vv + rb, the MPC can be expressed as the following multiparametric
quadratic problem:

μ(v) � min
z

1
2
zT Hz (11.16)

s. t. Rz ≤ Sv + rb

where H = 2(GT QG + R), z = u + 2H−1GT QFvv and S = V +
2RH−1GT QFv .

The solution to the multiparametric problem is again a piecewise affine
function. However, the dimension of the space where the control regions
are defined is augmented by the dimension of the future reference trajec-
tory w and the dimension of the predicted disturbances, that is, by the cost
horizon multiplied by the dimension of the output and/or the cost horizon
multiplied by the dimension of the measurable disturbances. If only setpoint
changes are considered, the reference trajectory can be expressed as the de-
sired setpoint multiplied by a vector whose entries are ones. In this case, the
dimension of the augmented space where the regions are defined is only in-
creased by the number of outputs.

11.3.3 Example

Consider the system described by

x(t + 1) = 0.9x(t) + u(t)

with the manipulated variable constrained by−1 ≤ u(t) ≤ 1 and an objective
function

J =
5∑

j=1

(
(x(t + j)− w(t + j))2 + λu(t + j − 1)2

)
Let us consider that the future reference is unknown and that it is made equal
to the present reference, i.e., w(t + j) = w(t) for j = 1, . . . , 5, and that the
control weight λ is equal to one. The prediction of the state vector for the
prediction horizon can be computed as

x = Gu + Fx(t)

with

G =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0

0.9 1 0 0 0
0.81 0.9 1 0 0
0.729 0.81 0.9 1 0
0.6561 0.729 0.81 0.9 1

⎤⎥⎥⎥⎥⎦ F =

⎡⎢⎢⎢⎢⎣
0.9
0.81
0.729
0.6561
0.5905

⎤⎥⎥⎥⎥⎦
The objective function can be expressed as

322 11 Fast Methods for Implementing Model Predictive Control

−10 −5 0 5 10
−10

−5

0

5

10

x(t)

r(
t) 0 50 100 150 200 250 300

−10

−5

0

5

10

Samples

r(
t)

, x
(t

)

0 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

Samples

u
(t

)

(a) (b)

Fig. 11.2. Controller regions for first-order system and nonconstant reference

J = (Gu + Fx(t)− 15w(t))T (Gu + Fx(t)− 15w(t)) + λuT u

where 15 = [1 1 1 1 1]T . Defining v(t) = [x(t) w(t)]T , Fv = [F ;−15]

J = (Gu + Fvv(t))T (Gu + Fvv(t)) + λuT u

The problem can be expressed as the mp-QP Problem (11.16) with:

H =

⎡⎢⎢⎢⎢⎣
8.8560 5.3956 3.9951 2.6390 1.3122
5.3956 7.9951 4.4390 2.9322 1.4580
3.9951 4.4390 6.9322 3.2580 1.6200
2.6390 2.9322 3.2580 5.6200 1.8000
1.3122 1.4580 1.6200 1.8000 4.0000

⎤⎥⎥⎥⎥⎦ Fv =

⎡⎢⎢⎢⎢⎣
0.9000 −1.0000
0.8100 −1.0000
0.7290 −1.0000
0.6561 −1.0000
0.5905 −1.0000

⎤⎥⎥⎥⎥⎦
The constraint matrices of (11.16) are R =

[
I5

−I5

]
, V = 0, rb = 110 and

S = 2RH−1GT QFv . The regions obtained when the mp-QP problem is
solved can be seen in Figure 11.2-(a). Notice that the reference is shown in
the vertical axis. The figure also shows a trajectory in the augmented state
space (state plus reference) when the reference is changed according to the
pattern shown in Figure 11.2-(b) which also shows the evolution of x(t) in
time. As can be seen the controller is able to follow the reference accurately.

11.3.4 The 1-norm and ∞-norm Cases

It has also been shown [18] that in the case of 1-norm and ∞-norm types
of cost functions the resulting MPC is also a piecewise affine function of the
state. The reason for this is that both problems can be expressed as a multi-
parametric LP problem whose solution is an affine function of the parame-
ters. Let us first consider the 1-norm case: the objective function is the sum
of weighted reference absolute errors plus the sum of the weighted absolute
values of the control signal.

11.3 Piecewise Implementation of MPC 323

The MPC problem can be stated as

min
u

|w − (Gu + Fx(t))|T q + |u|T r (11.17)

s. t. Ru ≤ Vx(t) + rb

where q and r are vectors penalizing the absolute errors of the output and
control efforts. Problem (11.17) can be expressed as the following mp-LP
problem

min
u,α,β,μ

μ (11.18)

s. t. Ru ≤ Vx(t) + rb

−α ≤ w −Gu− Fx(t) ≤ α

−β ≤ u ≤ β

−μ ≤ αT q + βT r ≤ μ

(11.19)

where α and β are vectors with nonnegative entries of appropriate dimen-
sions and μ is a nonnegative scalar. Optimization Problem (11.18) can be ex-
pressed in a more compact form as

minz cT z
s. t. Rzz ≤ Vxx(t) + rc

z ≥ 0
(11.20)

where zT = [uT
+,uT

−, αT , βT , μ], cT = [0 · · · 0 1] and

Rz =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

R −R 0 0 0
−G G −I 0 0

G −G −I 0 0
I −I 0 −I 0

−I I 0 −I 0
0 0 qT rT −1
0 0 −qT −rT −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Vx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

V
F

−F
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
rc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

rb

−w
w
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11.21)

Notice that by making u = u+−u−, the problem can be expressed as an LP in
its standard form (nonnegative variables). Problem (11.20) can be considered
as a multiparametric linear programming (mp-LP) problem where the com-
ponents of x(t) are the changing parameters of the problem. The solution of
this problem results in a piecewise affine function of the parameters (in our
case the parameters correspond to the process state variables).

Multiparametric linear programming ([71],[72]) is closely related to the
concept of critical region which is defined as the set of points in the parameter

324 11 Fast Methods for Implementing Model Predictive Control

space where a certain basis is optimal for problem (11.20). Let us consider the
critical region Ωi defined as the set of points in the parameter space where
the optimal basis for problem (11.20) is Bi. Let Ri

z be the matrix formed by
the rows of Rz corresponding to constraints which are active for basis Bi.
Similarly let Vi

x and ri be the corresponding rows and entries of matrix Rz

and vector rc. That is, Ri
zz = Vi

xx(t) + ri. The optimal solution for an LP
problem is attained at one of the vertices of the feasible region, in this case
the vertex is given by the solution of equation Ri

zz = Vi
xx(t) + ri. Let us

suppose that the number of rows of Ri
z is equal to dim(z) and full rank. If

this is not the case, just take a sufficient number of linearly independent rows
of Ri

z . Notice that this is always possible if no degeneracy occurs [20]. Then

z = (Ri
z)
−1Vi

xx(t) + (Ri
z)
−1ri (11.22)

that is, the solution of the LP problem is an affine function of the state for all
points in the critical region Ωi.

To determine the conditions to be fulfilled by a point in the state space
in order to belong to critical region Ωi, let us call Rni

z the matrix formed by
the rows of Rz corresponding to constraints which are inactive for basis Bi.
Similarly, let us call Vni

x and rni the corresponding rows and entries of matrix
Rz and vector rc, that is,

Rni
z z < Vni

x x(t) + rni (11.23)

If (11.22) is substituted into Inequality (11.23) we get

Rni
z [(Ri

z)
−1Vi

xx(t) + (Ri
z)
−1ri] < Vni

x x(t) + rni (11.24)

which can be reordered as

(Rni
z (Ri

z)
−1Vi

x −Vni
x)x(t) < rni −Rni

z (Ri
z)
−1ri (11.25)

Inequalities (11.25) describe the open critical region. The closed critical region
Ωi is obtained by changing < to ≤ in (11.25). This can be rewritten in a more
compact way as

Aix(t) ≤ ai (11.26)

with ai = Rni
z (Ri

z)
−1Vi

x −Vni
x and ai = rni −Rni

z (Ri
z)
−1ri.

Notice that it is also necessary for the vertex (of the constraint polytope
in the z space) corresponding to this region to be optimal for the LP prob-
lem; therefore optimality has to be checked for each of the chosen bases. In
principle this requires a point to be found in the interior of the region de-
fined by (11.26), solving the LP problem and then verifying that the active
constraints for the LP solution coincide with Ri

z . The number of possibilities
to be checked (and therefore the number of LP problems to be solved) is the
maximum number of vertices of the region defined by Rzz ≤ Vxx(t) + rc,
which depends of the number of constraints (m) and the dimension of z (n)
as m(m−1)···(m−n)

n! .

11.3 Piecewise Implementation of MPC 325

There are some algorithms proposed in literature for solving the multi-
parametric LP problem explicitly (i.e. determining the critical regions). The
first one, proposed in [72], is based on graphs. The algorithm associates a
node of a connected graph to each of the optimal bases Bi. Two nodes are
connected (neighbors) if their corresponding bases (Bi, Bj) are neighbors.
That is, Bi and Bj are both optimal bases for a particular point in the state
space and it is possible to obtain one of the bases from the other by just one
pivoting step. The algorithm generates the critical region by constructing and
exploring this graph.

Other algorithms have been proposed in literature. In [34], a geometric
method that directly explores the parameter space is proposed. The idea of
the method is to get a particular point in the state space (parameter space
for the multiparametric problem) and then to solve the primal and dual LP
problem. From the optimal solution, the corresponding optimal control law
and critical region are defined using (11.22) and (11.26). The algorithm solves
the cases where the solutions of the LP problem are affected by degeneracy
(primal or dual). For the sake of simplicity all variables will be considered to
be positive and the control move will be calculated as u = u+ − u− from the
optimal solution zT = [uT

+ uT
− αT βT μ].

The∞-norm Case

Let us turn our attention to the∞-norm case. The MPC problem is expressed
in this case as:

min
u

‖w − (Gu + Fx(t))‖∞ (11.27)

s. t. Ru ≤ Vx(t) + rb

Problem (11.27) can be expressed as

min
u,μ

μ (11.28)

s. t. Ru ≤ Vx(t) + rb

−μ ≤ w −Gu− Fx(t) ≤ μ

(11.29)

where μ is a vector with nonnegative entries. Optimization Problem (11.28)
can be expressed as the following mp-LP

min
z

cT z (11.30)

s. t. Rzz ≤ Vxx(t) + rc

z ≥ 0

326 11 Fast Methods for Implementing Model Predictive Control

where zT = [uT
+ uT

− μ], c = [0 · · · 0 1] and

Rz =

⎡⎣ R −R 0
−G G −1

G −G −1

⎤⎦ , Vx =

⎡⎣ V
F

−F

⎤⎦ , rc =

⎡⎣ rb

−w
w

⎤⎦ , u = u+ − u−

where 0 and 1 are vectors of appropriate dimensions whose entries are zeros
and ones, respectively.

Notice that Problem (11.30) is a multiparametric LP problem whose solu-
tion is a piecewise affine function of the state.

Nonconstant References and Measurable Disturbances

As in the case of quadratic cost functions, the MPC results in a piecewise
affine function of the reference trajectory and/or measurable disturbances.
It is easy to see how mp-LP can be applied to this problem if the following
augmented vector is considered

v =

⎡⎣x(t)
w
p

⎤⎦
where w is the vector of future references and p is the vector of predicted
disturbances. The optimization Problems (11.20) and (11.30) can then be ex-
pressed as

min
z

cT z (11.31)

s. t. Rzz ≤ Vvv + rc

with constraints matrices defined accordingly (see Exercise 11.3). The solu-
tion to the multiparametric LP problem is again a piecewise linear function of
the augmented state (process state plus future references and/or measurable
disturbances).

11.4 Fast Implementation of MPC for Uncertain Systems

As was seen in Chapter 8, when uncertainties are considered, a very long
computation time is required. The reason is that it is necessary to solve a
min-max problem and at the same time to satisfy the constraints for any pos-
sible realization of the uncertainties. It can be seen that multiparametric pro-
gramming can also be extended to this problem and that min-max MPC with
∞-norm (or 1-norm) results in a piecewise affine control law [19]. This fact
can easily be deduced because∞-norm (or 1-norm) min-max MPC can be ex-
pressed as an LP problem (as was shown in Chapter 7). As the solution of a
multiparametric LP problem is a piecewise affine function of the parameters

11.4 Fast Implementation of MPC for Uncertain Systems 327

(i.e., the process state in this case) it follows that the resulting min-max con-
troller is an affine function of the process state. This fact dramatically changes
the way of implementing such control laws.

It has been proved in [173] that the min-max MPC control law with a
quadratic objective function is also piecewise affine. This can be exploited to
implement this type of control law to processes with fast dynamics.

Let us consider a min-max problem with bounded additive uncertainties

min
u

max
θ∈Θ

J(θ, u, x(t))

where θ represents the sequence of future uncertainties and x(t) is the pro-
cess state. Notice that x(t) will be used here like a parameter rather than a
variable. When a linear prediction model is used, the set of j ahead optimal
predictions for j = 1, . . . , N2 (where N2 is the prediction horizon) can be
written in condensed form as

y = Guu + Gθθ + Fxx(t) (11.32)

where y = [y(t + 1) · · · y(t + N2)]T , u = [Δu(t) · · ·Δu(t + Nu − 1)]T , θ =
[θ(t + 1) . . . θ(t + N2)]T , and Fxx(t) represents the free response, which de-
pends linearly on the process state.

Without loss of generality, consider a constant setpoint of w(t + j) = 0
for j = 1, . . . , N2. Then function J(θ,u, x(t)) becomes

J(θ,u, x(t)) = uT Muuu + θT Mθθθ + 2θT Mθuu + 2x(t)T MT
ufu

+ 2x(t)T MT
θfθ + x(t)T FT

x Fxx(t) (11.33)

where Muu = GT
u Gu +λI , Mθθ = GT

θ Gθ, Mθu = GT
θ Gu, Muf = GT

u Fx and
Mθf = GT

θ Fx.
It is clear from (11.33) that function J∗(u, x(t)) � max

θ∈Θ
J(θ, u, x(t)) can be

expressed as the maximum of a quadratic function of θ for each value of u
and x(t)

J∗(u, x(t)) = max
θ∈Θ

{θT Mθθθ + M′
θ(u)θ + M′(u)}

where M′
θ(u) = 2(x(t)T MT

θf +uT MT
θu) and M′(u) = uT Muuu+2x(t)T MT

ufu
+x(t)T FT

x Fxx(t). Matrix Gθ is a lower triangular matrix having all the ele-
ments of the main diagonal equal to one, thus Mθθ is a positive definite ma-
trix. This implies that function J∗ is strictly convex (see [15], theorem 3.3.8)
and the maximum of J will be reached at one of the vertices of the polytope
Θ (see [15], theorem 3.4.6).

Function J∗ is a piecewise quadratic function of u. Therefore, the u do-
main (U) can be divided into different regions Up so that u ∈ Up if the maxi-
mum of J is attained for the polytope vertex θp. For the region Up, J∗ can be
expressed as a function of u for a given x(t)

J∗(u, x(t)) = uT Muuu + M∗
u(θp)u + M∗(θp) (11.34)

328 11 Fast Methods for Implementing Model Predictive Control

J*

J
1
 J

2

min−max

J*

J
1

J
2

min−max

(a) (b)

Fig. 11.3. Possible locations of the solution of min-max problem for two quadratic
functions: (a) curve minima (b) intersection of curves

where M∗
u(θp) = 2(θT

p Mθu+x(t)T MT
uf) and M∗(θp) = θT

p Mθθθp+2θT
p Mθfx(t)

+x(t)T FT
x Fxx(t). The Hessian matrix of function J∗(u) is Muu which is pos-

itive definite for positive values of λ. This implies that the function is con-
vex (see [15], theorem 3.3.8) and that there is only a unique minimizer, thus
avoiding local minima problems (see [15], theorem 3.4.2).

Function J∗ is a piecewise quadratic function of u for a given x(t). Every
region Up is due to a different vertex θp of the polytope Θ. Also, each region
can be seen as a region in which a different plant model is used to compute
the worst case. The minima of this piecewise quadratic function is the solu-
tion of the min-max problem. This solution of the min-max problem has a
graphical interpretation, as illustrated in the following.

Consider the simplest form of min-max MPC with bounded global uncer-
tainties, e.g. Nu = N2 = 1. In this case only two quadratic functions appear,
J1 and J2, one for the maximum value of the uncertainty θ and the other for
the minimum value of the uncertainty θ. Thus the min-max problem consists
of finding the minimum of the piecewise quadratic maximum curve J∗. The
minimum will be on one of the minimizers of the quadratic functions J1, J2,
or on the intersection point of J1 and J2. Both situations are depicted in Fig-
ure 11.3. This situation is generalized to arbitrary horizons in which more
quadratic functions have to be taken into account. The solution of a min-max
problem over a set of quadratic functions is in either a minimizer of one of
them or in an intersection point of two or more of them.

Consider a linear prediction model and a process state x(t) in which the
min-max solution is in the minima of a quadratic function Jp related to the
polytope vertex θp. Then the min-max solution is the same as that obtained
by considering a linear plant whose model is the nominal one plus the con-
tribution of the extreme uncertainty realization represented by vertex θp. The
resulting model is also linear, and the control law in this case is affine on x(t):

u∗ = −M−1
uuMufx(t)−M−1

uuMT
θuθp (11.35)

11.4 Fast Implementation of MPC for Uncertain Systems 329

In the case that the solution is attained at an intersection (i.e., Ji = Jj), the
resulting problems is:

min
u

Ji s. t.: Ji = Jj

The equality equation Ji = Jj results in a linear equation on u and the solu-
tion is therefore an affine function of the state.

It has been proven that the control law is piecewise affine and continuous
in all the process state space where the problem is feasible for the min-max
MPC unconstrained case [174] and the constrained case [175]. An algorithm
to determine the min-max MPC controller explicitly (i.e., to determine the
regions and the affine controller for each region) has been developed in [145].

However, the number of regions in which the state space has to be parti-
tioned grows very rapidly with the prediction horizon. Thus, storage require-
ments and searching time for the appropriate region can be very high for
practical values of the prediction and control horizons. Furthermore, if the
process model changes, the computation of the regions has to be repeated.
In [1] a method has been proposed to reduce the computation time required.
The method is based on transforming the original min-max problem into a
reduced min-max problem whose solution is much simpler. The idea is to
consider only the active vertices (i.e., vertices of the uncertainty polytope
that can be part of the min-max solution). Thus, for many processes in which
time constants are measured in seconds or minutes, the reduced min-max
problem can be solved online using standard numerical algorithms such as
the ellipsoid method.

11.4.1 Example

Consider the system described by

x(t + 1) = Ax(t) + Bu(t) + Dθ(t)

with

A =
[

1 1
0 1

]
, B =

[
0
1

]
, D =

[
1 0
]
, −0.1 ≤ θ(t) ≤ 0.1, −1 ≤ u(t) ≤ 1

The control objective consists of taking (and maintaining) the state vector
as close to zero as possible by solving the following min-max problem:

min
u∈[−1,1]5

max
θ∈[−0.1,0.1]5

5∑
j=1

x(t + j)T x(t + j) + 10u(t + j − 1)2

Once the problem is solved4, the resulting control regions can be seen in
Figure 11.4 which also shows how the trajectory followed by the state from

4 Note that the min-max problem to be solved is a min-max MPC with additive
bounded uncertainties, constrained inputs and quadratic cost function.

330 11 Fast Methods for Implementing Model Predictive Control

−10 10
−6

6

x
1

x 2 x(0)

Fig. 11.4. Piecewise controller regions for a system with additive uncertainties

0 20
−10

5

Samples

x 1,x
2

x
1

x
2

0 20
−0.5

1

Samples

u

Fig. 11.5. State and manipulated variable evolution for a system with additive uncer-
tainties

initial state x(0) = [−6.5668 0.5789]T until it reaches a neighborhood around
the origin. Notice that because of the perturbations it cannot be maintained
at the origin exactly. The evolution of the state and control signal in time can
be seen in Figure 11.5, which shows how the piecewise controller is able to
take the state to a vicinity of the origin.

11.4.2 The Closed-Loop Min-max MPC

Recall from Chapter 8 that Dynamic Programming can be used to state the
closed-loop min-max MPC. The problem can be expressed as the recursive
problem

11.4 Fast Implementation of MPC for Uncertain Systems 331

J∗t (x(t)) � min
u(t)

Jt(x(t), u(t)) (11.36)

s.t.
Rxx(t) + Ruu(t) ≤ r

f(x(t), u(t), θ(t)) ∈ X (t + 1)

}
∀θ(t) ∈ Θ

Jt(x(t), u(t)) � max
θ(t)∈Θ

L(x(t), u(t)) + J∗t+1(x(t + 1)) (11.37)

where X (t + 1) is the region where function J∗t+1(x(t + 1)) is defined. In [21]
it has been demonstrated that if the system is linear x(t + 1) = A(θ(t))x(t) +
B(θ(t))u(t) + E(θ(t)), with A(θ(t)) = A0 +

∑nθ(t)
i=1 Aiθ

i(t), B(θ(t)) = B0 +∑nθ

i=1 Biθ
i(t), E(θ(t)) = E0 +

∑nθ

i=1 Eiθ
i(t), where θi(t) denotes the ith com-

ponent of the uncertainty vector θ(t) ∈ Θ, and the stage cost of the objective
function defined as: L(x(t + j), u(t + j)) � ‖Qx(t + j)‖p + ‖Ru(t + j)‖p with
the terminal cost defined as J∗t+N (x(t + N)) � ‖Px(t + N)‖p the solution is a
piece affine function of the state.

The demonstration is based on the following results [21]:

1. If J(x(t),u) is a convex piecewise affine function (i.e., J(x(t),u) =
maxi=1,··· ,s{Liu + Hix(t) + ki}), the problem

J∗(x(t)) � min
u

J(x(t),u)

s.t. Ru ≤ r + Sx(t)

is equivalent to the following mp-LP problem:

min
u,ε

ε

s.t. Ru ≤ r + Sx(t)
Liu + Hix(t) + ki ≤ ε i = 1, . . . , s

2. If J(u, x(t), θ) and g(u, x(t), θ) are convex functions in θ for all (u, x(t))
with θ ∈ Θ, where Θ is a polyhedron with vertices θi (i = 1, · · · , Nθ).
Then the problem

J∗(x(t)) � min
u

max
θ

J(x(t),u, θ) (11.38)

s.t. g(u, x(t), θ) ≤ 0 ∀θ ∈ Θ

is equivalent to the problem:

min
u,ε

ε

s.t.
J(x(t),u, θi) ≤ ε
g(u, x(t), θi) ≤ 0

}
i = 1, · · · , Nθ

332 11 Fast Methods for Implementing Model Predictive Control

3. If J(u, x(t), θ) is convex and piecewise in x(t) and u (i.e. J(u, x(t), θ) =
Li(θ)u + Hi(θ)x(t) + ki(θ)) and g(u,x(t), θ) is affine in x(t) and u (i.e.
g(u, x(t), θ) = Lg(θ)u + Hg(θ)x(t) + kg(θ)) with Li,Hi, ki, Lg,Hg, kg con-
vex functions, then the min-max Problem (11.38) is equivalent to the
problem:

min
u,ε

ε

s.t:
Lj(θi)u + Hj(θi)x(t) + kj(θi) ≤ ε
Lg(θi)u + Hg(θi)x(t) + kg(θi) ≤ 0

}
i = 1, · · · , s
j = 1, · · · , Nθ

Let us now consider the first step of the dynamic programming problem
(11.36) with L(x(t + j), u(t + j)) � ‖Qx(t + j)‖p + ‖Ru(t + j)‖p with the
terminal cost defined as J∗t+N (x(t+N)) � ‖Px(t+N)‖p and the linear system
x(t + 1) = A(θ(t))x(t) + B(θ(t))u(t) + E(θ(t)). The first step of the dynamic
programming problem consists of solving the following problem

J∗t (x(t)) � min
u(N−1)

JN−1(x(N − 1), u(N − 1)) (11.39)

s.t.
Rxx(N − 1) + Ruu(N − 1) ≤ r
x(N) ∈ X (N)

}
∀θ(N − 1) ∈ Θ

JN−1(x(N − 1), u(N − 1)) �
max

θ(N−1)∈Θ
L(x(N − 1), u(N − 1)) + J∗N (x(N)) (11.40)

with:
L(x(N − 1), u(N − 1)) = ‖Qx(N − 1)‖p + ‖Ru(N − 1)‖p

J∗N (x(N)) = ‖Px(N)‖p

x(N) = A(θ(N − 1))x(N − 1) + B(θ(N − 1))u(N − 1) + E(θ(N − 1))

The cost function (11.40) is piecewise affine convex with respect to the maxi-
mization variables θ(N − 1). Furthermore, the constraints for the minimiza-
tion Problem (11.39) are linear in (x(N−1), u(N−1)) for all θ(N−1). Applying
the previous results, this is equivalent to the following mp-LP problem:

J∗N−1(x(t)) � min
u(N−1),μ

μ (11.41)

s.t.
Rxx(N − 1) + Ruu(N − 1) ≤ r
x(N) = A(θi)x(N − 1) + B(θi)u(N − 1) + E(θi)
x(N) ∈ X (N)
‖Qx(N − 1)‖p + ‖Ru(N − 1)‖p + ‖Px(N)‖p ≤ μ

⎫⎪⎪⎬⎪⎪⎭ i = 1, · · · , nθ

(11.42)

J∗N−1 is the solution of the mp-LP problem (11.41) which results in a piece-
wise affine function of the state x(N − 1). The corresponding control signal

11.5 Approximated Implementation for MPC 333

Exact MPC
computation

Approximated
MPC

Tuning
procedure

x(t),w

u(t)

û(t)

Error
+

-

Fig. 11.6. Procedure to obtain an approximated MPC

u∗(N − 1) is also a continuous piecewise affine function of the state and the
feasible set X (N − 1) is a convex polyhedron. The same steps can be ap-
plied recursively for j = N − 2, N − 3, · · · 0, and we reach the conclusion that
u∗(t) is a piecewise affine function of state x(t). That is, that min-max MPC
closed-loop control results in a piecewise linear control law. Notice that the
argument does not hold when the objective function is quadratic as Function
(11.42) would not be piecewise affine convex with respect to the maximiza-
tion variables θ(N − 1).

11.5 Approximated Implementation for MPC

As has been shown in this chapter, MPC results in a controller that, in prin-
ciple, is quite easy to implement for small problems. However, the number
of regions in which the state space has to be partitioned grows very rapidly
with the prediction horizon. Thus, storage requirements and searching time
for the appropriate region can be very high for practical values of the predic-
tion and control horizons. A way to implement MPC in these cases is to use
an approximated controller.

Consider an MPC controller defined by u(t) = fMPC(x(t),w). The idea
is to choose a function f̂MPC(x(t),w) such that the approximation error
e(x(t),w) = fMPC(x(t),w) − f̂MPC(x(t),w) is small for the operating region
(i.e., x(t) ∈ X and w ∈ W).

The approximation procedure starts by choosing a type of function that
is able to approximate fMPC(x(t),w) by tuning some free parameters. These
parameters are adjusted as indicated in Figure 11.6 to approximate the func-
tion. A set of representative points inX×W is chosen and for all these points,
the MPC problem is solved as, indicated in Figure 11.6. Let us call zi = [xi wi]
one of these points and ui its corresponding solution. The approximating
function is tuned to the set of points obtained. Normally this is done to mini-
mize an error function such as

∑M
i=1 ‖fMPC(xi,wi)− f̂MPC(xi,wi)‖p . Differ-

334 11 Fast Methods for Implementing Model Predictive Control

ent types of functions have been used to approximate MPCs, such as neural
networks and hinging hyperplanes.

Artificial Neural Network (ANN) based controllers exploit the possibili-
ties of neural networks for learning nonlinear functions or the possibilities of
neural networks to solve certain types of problems where massive parallel
computation is required. The learning capability of ANN is used to make the
controller learn a certain function, most of the time highly nonlinear, repre-
senting direct dynamics, inverse dynamics or any other characteristics of the
process. This is usually done during a (normally long) training period when
commissioning the controller in a supervised or unsupervised manner.

There are some applications of ANN to Model Predictive Control. In some
cases, the ANNs are used to model the plant. For example, in [9], Neural Net-
works are used to model the free response of a solar plant in an MPC scheme;
in [166], ANNs are used to implement nonlinear MPC. In other cases, ANNs
are directly used to model the controller as indicated in this section. First,
during a normally long training phase, the ANNs are adjusted to imitate the
controller (see Figure 11.6) and then the controller is commissioned. Notice
that the training phase of the ANN is analogous to the offline computation
required to obtain the explicit controllers dealt with in this chapter. Once the
NN is working, the amount of computation required is very small and can
be compared to the online computation of the fast implementation methods.
An example of how to implement an MPC for a nonlinear process (a mobile
robot) using ANN is given in Chapter 12.

Hinging hyperplanes (HH) have also been used to model piecewise lin-
ear models. The HH technique is a nonlinear function approximation method
that uses hinge functions, i.e., hyperplanes joined together. With this tech-
nique, piecewise linear functions, such as the resulting MPC controllers, can
be described using a basis function expansion. The HH technique has been
used in the MPC context in [51] and in [176] to implement a min-max MPC for
a heat exchanger.

Notice that if the approximation is good enough (i.e., an approximation
error below the conversion errors of the digital-analog conversion), the ap-
proximate implementation will not differ from the exact MPC at all from a
practical viewpoint.

11.6 Fast Implementation of MPC and Dead Time
Considerations

The fast methods for implementing MPC studied in this chapter consist of
determining, in an offline manner, a function of the state5 fMPC(x(t)) that
once computed in an online manner will give the optimal MPC control move

5 Extended state in the case of nonconstant references or measurable disturbances
as seen in Section 11.3.2.

11.7 Exercises 335

u∗(t). The complexity of the methods depends to a great extent on the state
vector dimension which can be very high for processes with long dead times
(as can be found frequently in industry). In the case of a dead time of d sam-
pling instants, an augmented state vector xa(t) = [x(t)t u(t − 1)T u(t −
2)T . . . u(t − d)T] is needed; that is, the online function has to be defined
over the augmented state (xa(t)) domain. The increase of the vector dimen-
sion due to the dead time could be very limiting for the applicability of the
techniques described in this chapter.

A technique proposed in [43] can be used to overcome these problems.
The idea consists of using the predicted state x̂(t + d | t) as indicated in
Section 5.2.2 in order to compute f̂MPC(x̂(t + d | t)) instead of fMPC(xa(t)).
This can be done without problem using the information available at time t.
Furthermore, the outcome is the same; i.e., f̂MPC(x̂(t + d | t)) = fMPC(xa(t)).

To illustrate the gain that can be obtained, consider a process that can be
modelled by the reaction curve method with a dead time equal to its time
constant. If the sampling time chosen is one-tenth of the time constant, then
dim(xa(t)) = 11 while dim(x(t)) = 1 (see Exercise 11.6).

11.7 Exercises

11.1. Consider the double integrator MPC of the example in Section 11.3.1:

1. Write a computer program to simulate the controller given. Simulate the
response with different initial states x(t) such that ‖x(t)‖∞ ≤ 5. Do all
trajectories converge to the origin?

2. Find the attraction region for the controller.
3. Recompute the controller with N = 3 and repeat step 1. Is the attraction

region enlarged by considering a higher control horizon?

11.2. Consider a linear system described with dim(x(t)) = nx, dim(y(t)) =
ny , dim(u(t)) = nu, dim(p(t)) = np (measurable disturbances) and predic-
tion and control horizon equal to N . The system is constrained by Ru ≤
Vx(t) + r with R an m× (N × nu) matrix. Discuss the maximum number of
regions, storage size required, and number of multiplications, additions and
comparisons needed to implement the explicit MPC as a function of nx, nu,
np, m and N .

11.3. Define constraint matrices and vectors Rz , Vv and rc of MPC problem
(11.31).

11.4. Consider the system described by x(t+1) = 0.9x(t)+u(t)+p(t) with the
manipulated variable constrained by −1 ≤ u(t) ≤ 1 and an objective func-
tion J =

∑N
j=1

(
x(t + j)2 + λu(t + j − 1)2

)
. The signal p(t) is a measurable

disturbance:

336 11 Fast Methods for Implementing Model Predictive Control

1. Explain how to obtain an explicit MPC taking into account the measurable
disturbances.

2. Obtain an explicit controller for N = 2, consider that the future distur-
bances are estimated as the present measured disturbance, i.e., p(k + j) = p(k)
for j = 1, . . . , N and that the control weight λ = 1.

3. Indicate what should be done if the future disturbances are computed as
p(k + j + 1) = 2p(k + j)− p(k + j − 1) for j = 1, . . . , N .

11.5. For the problem described in Section 11.4.1 implement the closed-loop
approach described in Section 11.4.2 with increasing values of N .

11.6. Consider the system described by

Y (s) =
2e−10s

1 + 10s
U(s)

which is sampled with a sampling time of 1. The signals are bounded by
|u(t)| ≤ 1 and |y(t)| ≤ 1:

1. Discuss how you would compute an explicit MPC with and without using
a predictor for y(t + d).

2. Formulate the explicit MPC using a predictor for N = 3.
3. Simulate the resulting controller with different values of N and λ and

comment on the results.

12

Applications

This chapter is dedicated to presenting some MPC applications to the con-
trol of different real and simulated processes. The first application presented
corresponds to a self-tuning and a gain scheduling GPC for a distributed col-
lector field of a solar power plant. In order to illustrate how easily the control
scheme shown in Chapter 5 can be used in any commercial control system,
some applications concerning the control of typical variables such as flows,
temperatures and levels of different processes of a pilot plant are presented.
The description of two applications in the food industry (a sugar refinery and
an olive oil mill) are included. Finally the application of an MPC to a highly
nonlinear process (a mobile robot) is also described.

12.1 Solar Power Plant

This section presents an application of an adaptive long-range predictive
controller to a solar power plant and shows how this type of controller, which
normally requires a substantial amount of computation (in the adaptive
case), can easily be implemented with few computation requirements. The
results obtained when applying the controller to the plant are also shown.

The controlled process is the distributed collector field (Acurex) of the
Solar Platform of Tabernas (Spain). The distributed collector field consists
mainly of a pipeline through which oil is flowing and onto which the solar
radiation is concentrated by means of parabolic mirrors, which follow the
sun by rotating on one axis, in order to heat the oil. It consists of 480 modules
arranged in 20 lines which form 10 parallel loops. A simplified diagram of
the solar collector field is shown in Figure 12.1. The field is also provided
with a sun-tracking mechanism which causes the mirrors to revolve around
an axis parallel to that of the pipeline.

On passing through the field the oil is heated and then introduced into a
storage tank to be used for the generation of electrical energy. The hot oil can
also be used directly for feeding the heat exchanger of a desalination plant.

E. F. Camacho et al., Model Predictive Control
© Springer-Verlag London Limited 2007

338 12 Applications

.........

. .

Acurex
field

Pump Buffer

Storage tank

or

Plant
Desalination

generator
steam

To

Fig. 12.1. Schematic diagram of collectors field

The cold inlet oil to the field is extracted from the bottom of the storage tank.

Each of the loops is formed by four twelve-module collectors, suitably
connected in series. The loop is 172 metres long, the active part of the loop
(exposed to concentrated radiation) measures 142 metres and the passive
part 30 metres.

The system is provided with a three-way valve which allows the oil to
be recycled in the field until its outlet temperature is adequate to enter the
storage tank. A more detailed description of the field can be found in [101].

A fundamental feature of a solar power plant is that the primary energy
source, whilst variable, cannot be manipulated. The intensity of the solar ra-
diation from the sun, in addition to its seasonal and daily cyclic variations,
is also dependent on atmospheric conditions such as cloud cover, humidity,
and air transparency. It is important to be able to maintain a constant outlet
temperature for the fluid as the solar conditions change, and the only means
available for achieving this is via adjustment of the fluid flow.

The objective of the control system is to maintain the outlet oil temper-
ature at a desired level in spite of disturbances such as changes in the solar
irradiance level (caused by clouds), mirror reflectivity or inlet oil tempera-
ture. This is accomplished by varying the flow of the fluid through the field.
The field exhibits a variable delay time that depends on the control variable
(flow). The transfer function of the process varies with factors such as irradi-
ance level, mirror reflectance and oil inlet temperature.

The distributed collector field is a nonlinear system which can be ap-
proximated by a linear system when considering small disturbances. The
maintenance of a constant outlet temperature throughout the day as the so-

12.1 Solar Power Plant 339

lar conditions change requires a wide variation in the operational flow level.
This leads to substantial variations in the general dynamic performance and
in particular, from the control viewpoint, gives rise to a system time delay
which varies significantly. The controller parameters need to be adjusted to
suit the operating conditions, and self-tuning control offers one approach
which can accommodate such a requirement.

Because of the changing dynamics and strong perturbations, this plant
has been used to test different types of controllers [40],[41].

For self-tuning control purposes a simple, linear model is required which
relates changes in fluid flow to changes in outlet temperature.

Observations of step responses obtained from the plant indicate that in
the continuous time domain behaviour it can be approximated by a first-
order transfer function with a time delay. Since the time delay τd is relatively
small compared to the fundamental time constant τ , a suitable discrete model
can be constructed by choosing the sample period T equal to the lowest value
of the time delay τd. This corresponds to the operating condition where the
flow level is highest. The discrete transfer function model then takes the form

g(z−1) = z−k bz−1

1− az−1

and at the high flow level condition, k = 1.

12.1.1 Selftuning GPC Control Strategy

A particular feature of the system is the need to include a series feedforward
term in the control loop [39]. The plant model upon which the self-tuning
controller is based relates changes in outlet temperature to changes in fluid
flow only. The outlet temperature of the plant, however, is also influenced by
changes in system variables such as solar radiation and fluid inlet temper-
ature. During estimation, if either of these variables changes it introduces a
change in the system output unrelated to fluid flow which is the control input
signal, and in terms of the model, it would result in unnecessary adjustments
of the estimated system parameters.

Since both solar radiation and inlet temperature can be measured, this
problem can be eased by introducing a feedforward term in series to the sys-
tem, calculated from steady-state relationships, which makes an adjustment
in the fluid flow input, aimed at eliminating the change in outlet tempera-
ture caused by the variations in solar radiation and inlet temperature. If the
feedforward term perfectly countered the changes in solar radiation and in-
let temperature, then the observed outlet temperature changes would only
be caused by changes in the control input signal. Although exact elimination
obviously cannot be achieved, a feedforward term based on steady-state con-
siderations overcomes the major problems inherent in the single-input model
and permits successful estimation of model parameters. The basic idea is to

340 12 Applications

r1

y1

y2

^

^+

+++

^

+

ba

b

1 - a y(t)

l

l

l

-1
Z

Adapt

Ident

Inlet oil temperature

Solar radiation

forward

Feed
Plant

^

r(t)

Predictor

Fig. 12.2. Self-tuning control scheme

compute the necessary oil flow to maintain the desired outlet oil temperature
given the inlet oil temperature and the solar radiation. The feedforward sig-
nal also provides control benefits when disturbances in solar radiation and
fluid inlet temperature occur, but the basic reason for its inclusion is that of
preserving the validity of the assumed system model in the self-tuning algo-
rithm; for more details see [45].

In the control scheme, the feedforward term is considered as a part of
the plant, using the setpoint temperature to the feedforward controller as the
control signal.

In this section, the precalculated method described in Chapter 5 is used.
As the dead time d is equal to 1, the control law is given by

�u(t) = ly1ŷ(t + 1 | t) + ly2y(t) + lr1r(t) (12.1)

where the value ŷ(t + 1 | t) is obtained by use of the predictor:

ŷ(t + j + 1 | t) = (1 + a)ŷ(t + j | t)− aŷ(t + j− 1 | t) + b�u(t + j− 1) (12.2)

The proposed control scheme is shown in Figure 12.2. The plant esti-
mated parameters are used to compute the controller coefficients (ly1, ly2, lr1)
via the adaptation mechanism. Notice that in this scheme, the feedforward
term is considered as a part of the plant (the control signal is the setpoint
temperature for the feedforward controller instead of the oil flow). This sig-
nal is saturated and filtered before its use in the estimation algorithm. The
controller also has a saturation to limit the increase of the error signal.

As suggested in Chapter 5, a set of GPC parameters were obtained for
δ(i) = 1, λ(i) = 5 and N = 15. The pole of the system has been changed with
a 0.0005 step from 0.85 to 0.95, which are the values that guarantee the system
stability if the parameter set estimation is not accurate enough. Notice that

12.1 Solar Power Plant 341

1.5

2

2.5

3

0.85 0.9 0.95

ly
1

estimated pole

-3.5

-3

-2.5

-2

0.85 0.9 0.95

ly
2

estimated pole

0.395

0.4

 .405

0.41

0.415

0.85 0.9 0.95

lr
1

estimated pole

Fig. 12.3. Controller parameters for λ = 5

due to the fact that the closed-loop static gain must equal the value unity, the
sum of the three parameters equals zero. The curves shown in Figure 12.3
correspond to the controller parameters ly1,ly2, lr1 for the values of the pole.

The adjustment of analytical functions to the calculated values provide:

ly1 = 0.4338 - 0.6041 â / (1.11 - â)
ly2 = -0.4063 + 0.4386 â / (1.082 - â)
lr1 = −ly1 − ly2

(12.3)

These expressions give a very good approximation to the true controller
parameters and fit the set of computed data with a maximum error of less
than 0.6 per % of the nominal values for the range of interest of the open
loop-pole; for more details see [40].

The parameters of the system model in the control scheme are deter-
mined online via recursive least-squares estimation. The estimation algo-
rithm incorporates a variable forgetting factor and only works when the in-
put signal contains dynamic information. These considerations can be taken
into account by checking the following conditions:

| �u |≥ A

k=0∑
k=−N

| �u(k) |≥ B

If one of these conditions is true, the identifier is activated. Otherwise, the
last set of estimated parameters is used. Typical values of A, B and N chosen
from simulation studies are: A = 9, 7 ≤ B ≤ 9 and N = 5. The covari-
ance matrix P (k) is also monitored by checking that its diagonal elements
are kept within limits; otherwise P (k) is reset to a diagonal matrix having
the corresponding elements saturated to the violated limit.

With respect to the adaptation mechanism, it only works when the es-
timated parameters are contained within the ranges (0.85 ≤ â ≤ 0.95 and
0.9 ≤ k̂est ≤ 1.2, where k̂est is the estimated static gain of the plant b̂/(1− â))
in order to avoid instability in cases of nonconvergence of the estimator. A
backup controller is used in situations in which these conditions are not ac-
complished (for example, when daily operation starts).

342 12 Applications

In each sampling period the self-tuning regulator consists of the follow-
ing steps:

1. Estimate the parameters of a linear model by measuring the inlet and
outlet values of the process.

2. Adjust the parameters of the controller using Expressions (12.3).
3. Compute ŷ(t + d | t) using the predictor in (12.2).
4. Calculate the control signal using (12.1).
5. Supervise the correct working of the control.

Plant Results

Figure 12.4 shows the outlet oil temperature and reference when the pro-
posed self-tuning generalised predictive controller is applied to the plant.
The value of the control weighting λ was made equal to 5 and, as can be
seen, a fast response to changes in the setpoint is obtained (the rising time ob-
served is approximately 7 minutes). When smaller overshoots are required,
the control weighting factor has to be increased.

The evolution of the irradiation for the test can be seen in the same figure
and it corresponds to a day with small scattered clouds. The oil flow changed
from 4.5 l/s to 7 l/s, and the controller could maintain performance in spite
of the changes in the dynamics of the process caused by flow changes.

12.1.2 Gain Scheduling Generalized Predictive Control

There are many situations in which it is known how the dynamics of a
process change with the operating conditions. It is then possible to change
the controller parameters taking into account the current operating point of
the system. Gain scheduling is a control scheme with open-loop adaptation,
which can be seen as a feedback control system in which the feedback gains
are adjusted by a feedforward compensation. Gain scheduling control is a
nonlinear feedback of a special type: it possesses a linear controller whose
parameters are modified depending on the operating conditions in a pre-
specified manner.

The working principle of this kind of controller is simple; it is based on
the possibility of finding auxiliary variables which guarantee a good corre-
lation with process changing dynamics. In this way, it is possible to reduce
the effects of variations in the plant dynamics by adequately modifying the
controller parameters as functions of auxiliary variables.

An essential problem is the determination of the auxiliary variables. In
the case studied here, the behaviour and changes in the system dynamics
mainly depend on the oil flow if very strong disturbances are not acting on
the system (due to the existence of the feedforward controller in series with
the plant). The oil flow has been the variable used to select the controller

12.1 Solar Power Plant 343

11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5
local time (hours)

160.0

170.0

180.0

190.0
se

t p
oin

t/o
utl

et
tem

pe
rat

ure
s (

 C
)

11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5
local time (hours)

4.5

5.0

5.5

6.0

6.5

7.0

oil
flo

w (
l/s)

11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5
local time (hours)

630.0

650.0

670.0

690.0

710.0

730.0

So
lar

 ra
dia

tio
n (

W/
m2

)

Fig. 12.4. Adaptive GPC: plant outlet oil temperature, flow and solar radiation

parameters (a low-pass filter is used to avoid the inclusion of additional dy-
namics due to sudden variations in the controller parameters).

Once the auxiliary variables have been determined, the controller pa-
rameters have to be calculated at a number of operating points, using an
adequate controller design algorithm, which in this case is the GPC method-
ology. When coping with gain scheduling control schema, stability and per-
formance of the controlled system are usually evaluated by simulation stud-
ies [142]. A crucial point here is the transition between different operating

344 12 Applications

points. In those cases in which a nonsatisfactory behaviour is obtained, the
number of inputs to the table of controller parameters must be augmented.
As has been mentioned, it is important to point out that no feedback exists
from the behaviour of the controlled system to the controller parameters. So
this control scheme is not considered as an adaptive one, but rather as a spe-
cial case of a nonlinear controller.

The main disadvantages of gain scheduling controllers are:

• It is an open-loop compenzation: there is no way to compensate for a
wrong election of the controller parameters within the table.

• Another important inconvenience is that the design stage of the strat-
egy often consumes too much time and effort. The controller parameters
must be calculated for enough operating points, and the behaviour of the
controlled system has to be checked under very different operating con-
ditions.

Its main advantage is the ease of changing controller parameters in spite
of changes in process dynamics. As classical examples of applications of this
kind of controller, the following control fields can be mentioned: design of
ship steering autopilots, pH control, combustion control, engine control, de-
sign of flight autopilots, etc. [12].

Plant Models and Fixed Parameter Controllers

The frequency response of the plant has been obtained by performing a PRBS
PRBS test in different operating conditions, using both the plant and a non-
linear distributed parameter model1 [25]. In this way, different linear models
were obtained from input-output data in different working conditions. These
models relate changes in the oil flow to those of the outlet oil temperature,
and can take into account the antiresonance characteristics of the plant if they
are adequately adjusted. The control structure proposed is shown in Figure
12.5. As can be seen, the output of the generalized predictive controller is the
input (trff) of the series compensation controller, which also uses the solar
radiation, inlet oil temperature and reflectivity to compute the value of the
oil flow, which is sent to the pump controller.

The controller parameters were obtained from a linear model of the plant.
From input-output data of the plant, the degrees of the polynomials A and B
and the delay (of a CARIMA plant model) that minimizes Akaike’s Informa-
tion Theoretic Criterion (AIC) were found to be na = 2, nb = 8 and d = 0. By a
least squares estimation algorithm, the following polynomials were obtained
using input-output data of one test with oil flow of around 6 l/s:

1 The software simulation package for the solar distributed collector field with real
data from the plant can be obtained by contacting the authors or by accessing
http://www.esi.us.es/ eduardo.

12.1 Solar Power Plant 345

Inlet Temperature (Tin)

trff

Y[2]

Y[1]

.

.

.

U[9]

U[2]

U[1]

..

.

-1

-1

-1

-1

Z

Z

Z

Z

l[0]...l[12]
compensator

Series PlantController
GPC flow

oil toutsp

Radiation

point
set

Fig. 12.5. Control scheme using high-order models

A(z−1) = 1− 1.5681z−1 + 0.5934z−2

B(z−1) = 0.0612 + 0.0018z−1 − 0.0171z−2 + 0.0046z−3 + 0.0005z−4

+0.0101z−5 − 0.0064z−6 − 0.015z−7 − 0.0156z−8

The most adequate value for the control horizon (N = 15) was calculated
taking into account the values of the fundamental time constant and the sam-
pling period used for control purposes. In this case, N1 = 1 and N2 = 15. The
value of λ was determined by simulation studies using the nonlinear model
and was found to be λ = 6 (fast) and λ = 7 (without overshoot). For smaller
values of λ, faster and more oscillatory responses were obtained. Following
the design procedure of the GPC methodology, the controller parameters cor-
responding to λ = 7 were obtained (Table 12.1).

Table 12.1. Fixed GPC controller coefficients

l[0] l[1] l[2] l[3] l[4] l[5] l[6]

−2.4483 6.8216 −4.7091 −0.0644 −0.0526 −0.0084 0.0629

l[7] l[8] l[9] l[10] l[11] l[12]

0.0161 0.0311 −0.0631 0.0231 1.0553 0.3358

346 12 Applications

11.6 12.1 12.6 13.1 13.6 14.1 14.6
local time (hours)

230.0

240.0

250.0

260.0

se
t p

oi
nt

 a
nd

 o
ut

le
t o

il
te

m
pe

ra
tu

re
s

(C
)

set point and outlet oil temperatures �oC�

11.6 12.1 12.6 13.1 13.6 14.1 14.6
local time (hours)

600.0

620.0

640.0

660.0

680.0

700.0

720.0

740.0

760.0

780.0

800.0

820.0

di
re

ct
 s

ol
ar

 r
ad

ia
tio

n
(W

/m
2)

direct solar radiation �W�m��

Fig. 12.6. Test with the fixed GPC high-order controller

The control law can be written by

trff = l[2]tout + l[1]y[1] + l[0]y[2] + l[6]u[6] + l[3]u[9] + l[4]u[8] + l[5]u[7]
+l[7]u[5] + l[8]u[4] + l[9]u[3] + l[10]u[2] + l[11]u[1] + l[12]sp (12.4)

where

trff : reference temperature for the feedforward controller;
tout: outlet temperature of the field;
sp: setpoint temperature;
l[i]: controller parameters;
y[i]: outlet temperature of the field at sampling time (t− i)and
u[i]: reference temperature for the feedforward controller at sampling time

(t− i).

With these values, the behaviour of this fixed parameter controller was an-
alyzed in operation with the distributed solar collector field. The outlet oil
temperature of the field evolution and corresponding setpoint can be seen
in Figure 12.6. The evolution of the solar radiation during this test can also
be seen in Figure 12.6. Although direct solar radiation goes from 810 W/m2

to 610 W/m2, the field was working in midflow conditions because the set-
point was also changed from 258oC to 230oC. When operating conditions in
the field change, the dynamics of the plant also change and the controller
should be redesigned to cope with the control objectives.

The dynamics of the field are mainly dictated by the oil flow, which de-
pends on the general operating conditions of the field: solar radiation, re-
flectivity, oil inlet temperature, ambient temperature and outlet oil tempera-
ture setpoint. These changes in plant dynamics are illustrated in Figure 12.7,
where the frequency response of the nonlinear distributed parameter dy-
namic model of the field can be seen. The curves shown in Figure 12.7 were
obtained by a spectral analysis of the input-output signals of the model at
different operating points (PRBS signals were used for the input).

12.1 Solar Power Plant 347

10
-3

10
-2

10
-1

frequency (rad/s)

10
-2

10
-1

10
0

am
plit

ud
e

AMPLITUDE PLOT

flow=2.8 l/s

flow=5.2 l/s

flow=7.9 l/s

flow=9.3 l/s

Fig. 12.7. Frequency response of the field under different operating conditions

As can be seen, the frequency response changes significantly for different
operating conditions. The steady-state gain changes for different operating
points, as does the location of the antiresonance modes.

Taking into account the frequency response of the plant and the different
linear models obtained from it, it is clear that a self-tuning controller based on
this type of model is very difficult to implement. The fundamental reason is
the fact that estimation of the model parameters requires a lot of computation
when the number of estimated parameters increases and the convergence of
the estimation process is seldom accurate and fast enough.

Another way of coping with changing dynamics is to use a gain schedul-
ing controller, making the controller parameters dependent on some vari-
ables which indicate the operating conditions.

With the input-output data used to obtain the frequency responses shown
in Figure 12.7 and using the method and type of model previously described
for the case of a high-order fixed parameter controller, process (a[i] and b[i])
and controller (l[i]) parameters were obtained for several oil flow conditions
(q1 = 2.8 l/s, q2 = 5.2 l/s, q3 = 7.9 l/s and q4 = 9.3 l/s), using different val-
ues of the weighting factor λ. Tables 12.2 and 12.3 contain model and control
parameters, respectively, for a weighting factor λ = 6. A value of λ = 7 has
also been used to obtain responses without overshoot.

The controller parameters applied in real operation are obtained by us-
ing a linear interpolation with the data given in Table 12.3. It is important
to point out that to avoid the injection of disturbances during the controller
gain adjustment, it is necessary to use a smoothing mechanism of the tran-
sition surfaces of the controller gains. In this case, a linear interpolation in
combination with a first-order filter has been used, given a modified flow
Q(t) = .95 Q(t − 1) + .05 q(t) (where q(t) is the value of the oil flow at
instant t and Q(t) is the filtered value used for controller parameter adjust-
ment). The linear interpolation has also been successfully applied in [97]. An-
other kind of gain scheduling approach can be obtained by switching from
one set of controller parameters to another depending on the flow condi-

348 12 Applications

Table 12.2. Coefficients of polynomials A(z−1) and B(z−1) for different flows

q1 q2 q3 q4

a[1] −1.7820 −1.438 −1.414 −1.524

a[2] 0.81090 0.5526 0.5074 0.7270

b[0] 0.00140 0.0313 0.0687 0.0820

b[1] 0.03990 0.0660 0.0767 0.0719

b[2] −0.0182 −.0272 −.0392 −.0474

b[3] −0.0083 0.0071 0.0127 0.0349

b[4] 0.00060 0.0118 0.0060 0.0098

b[5] −.00001 0.0138 −.0133 −.0031

b[6] 0.00130 0.0098 −.0156 0.0111

b[7] 0.00160 0.0027 −.0073 0.0171

b[8] 0.00450 −.0054 0.0037 0.0200

Table 12.3. GPC controller coefficients in several operating points (λ = 6)

l[0] −7.0481 −1.4224 −1.1840 −1.3603

l[1] 16.2223 3.84390 3.48440 3.02280

l[2] −9.5455 −2.7794 −2.6527 −2.0142

l[3] 0.03910 −0.0139 0.00860 0.03740

l[4] 0.00980 0.00830 −0.0184 0.02730

l[5] 0.00560 0.02610 −0.0352 0.01080

l[6] −0.0070 0.03390 −0.0239 −0.0197

l[7] −0.0016 0.02480 0.02630 0.00460

l[8] −0.0793 0.00880 0.03980 0.05070

l[9] −0.1575 −0.0822 −0.0869 −0.1098

l[10] 0.36470 0.16410 0.19600 0.12480

l[11] 0.82620 0.83010 0.89360 0.87390

l[12] 0.37130 0.35800 0.35230 0.35170

tions, without interpolating between controller parameters. The set of con-
troller parameters c can be obtained by choosing one of the sets ci in Table
12.3, related to flow conditions qi (i = 1, 2, 3, 4):

if
qi−1 + qi

2
< q ≤ qi + qi+1

2
then c = ci, i = 2, 3

if q ≤ q1 then c = c1

if q ≥ q4 then c = c4

The control structure is similar to the one obtained for the fixed controller
previously studied. The optimal realization of the gain scheduling controller
consists of calculating the controller parameters under a number of operat-
ing conditions and suppose that the values of the controller coefficients are

12.1 Solar Power Plant 349

15.0 15.2 15.5 15.8 16.0
local time (hours)

208.0

210.0

212.0

214.0

216.0

218.0

220.0

222.0

set
 po

int/
ou

tlet
 te

mp
era

tur
es

(C)

Setpoint and oil outlet temperatures oC

15.0 15.2 15.5 15.8 16.0
local time (hours)

640.0

660.0

680.0

700.0

720.0

740.0

760.0

780.0

800.0

820.0

be
am

 ra
dia

tion
 (W

/m
2)

Direct solar radiation (W/m2)

Fig. 12.8. Test with the gain scheduling GPC controller, λ = 7

constant between different operating conditions, generating a control surface
based on an optimization criterion which takes into account the tracking er-
ror and control effort. It is evident that if the procedure is applied at many
working points, an optimum controller will be achieved for those operating
conditions if there is a high correlation between the process dynamics and
the auxiliary variable. The drawback to this solution is that the design pro-
cess becomes tedious. This is one of the main reasons for including a linear
interpolation between the controller parameters.

Plant Results

In the case of real tests, similar results were obtained and depending on the
operating point, disturbances due to passing clouds, inlet oil temperature
variations, etc., different performance was achieved.

Figure 12.8 shows the results of one of these tests with the gain schedul-
ing GPC with λ = 7. The operating conditions correspond to a clear after-
noon with the solar radiation changing from 800 W/m2 to 660 W/m2 and oil
flow changing from 3.75 l/s to 2 l/s. As can be seen, the effect of the antireso-

350 12 Applications

11.7 12.2 12.7 13.2 13.7 14.2 14.7 15.2 15.7
local time (hours)

270.0

275.0

280.0

285.0

290.0

se
t p

oin
t/o

utl
et

tem
pe

rat
ure

s (
C)

Setpoint and outlet oil temperature (oC)

11.7 12.2 12.7 13.2 13.7 14.2 14.7 15.2 15.7
local time (hours)

800.0

810.0

820.0

830.0

840.0

850.0

860.0

870.0

be
am

 ra
dia

tio
n (

W/
m2

)

Direct solar radiation (W/m2)

11.7 12.2 12.7 13.2 13.7 14.2 14.7 15.2 15.7
local time (hours)

170.0

180.0

190.0

200.0

210.0

inl
et

oil
 te

mp
era

tur
e (

C)

Inlet oil temperature (oC)

Fig. 12.9. Test with the gain scheduling GPC controller, λ = 7

nance modes does not appear in the response, due to the use of an extended
high order model which accounts for these system characteristics.

Figure 12.9 shows the result of a test with a weighting factor λ = 7 cor-
responding to a day of intermittent scattered clouds which produce large
changes in the solar radiation level and the inlet oil temperature changing

12.1 Solar Power Plant 351

11.8 12.3 12.8 13.3 13.8 14.3 14.8
local time (hours)

215.0

220.0

225.0

230.0

235.0

240.0
se

t p
oi

nt
 a

nd
 o

ut
le

t o
il

te
m

pe
ra

tu
re

s
(C

)

set point and outlet oil temperatures �oC�

11.8 12.3 12.8 13.3 13.8 14.3 14.8
local time (hours)

530.0

550.0

570.0

590.0

610.0

630.0

650.0

670.0

690.0

710.0

730.0

di
re

ct
 s

ol
ar

 r
ad

ia
tio

n
(W

/m
2)

direct solar radiation �W�m��

Fig. 12.10. Test with the gain scheduling GPC controller, λ = 7

from 170oC to 207oC. As can be seen, the outlet oil temperature follows the
setpoint in spite of changing operating conditions and the high level of noise
in the radiation level produced by clouds.

The results of a test corresponding to a day with sudden changes in the
solar radiation caused by clouds can be seen in Figure 12.10. As can be seen,
the controller (also designed with λ = 7) is able to handle different operating
conditions and the sudden perturbations caused by the clouds. After the tests
presented using a weighting factor λ = 7, two new test campaigns were
carried out to test the behaviour of the controller with a weighting factor
λ = 6. In the first campaign, the evaluation of the controller performance was
considered. In the second, the behaviour of the controller operating under
extreme working conditions was studied.

Figure 12.11 shows the results obtained in the operation on a day with
normal levels of solar radiation, but on which a wide range of operating con-
ditions is covered (oil flow changing between 2 l/s and 8.8 l/s) by perform-
ing several setpoint changes. At the start of operation there is an overshoot
of 6oC, due to the irregular conditions of the oil flowing through the pipes
because the operation starts with a high temperature level at the bottom of
the storage tank. After the initial transient, it can be observed that the con-
trolled system quickly responds to setpoint changes under the whole range
of operating conditions with a negligible overshoot. The rise time is about 6
minutes with a setpoint change of 15 degrees, as can be seen in Figure 12.11,
with smooth changes in the control signal, constituting one of the best con-
trollers implemented at the plant. It is important to note that the controller
behaves well even with great setpoint changes.

352 12 Applications

10.1 10.6 11.1 11.6 12.1 12.6 13.1 13.6 14.1 14.6 15.1 15.6 16.1
local time (hours)

145.0

155.0

165.0

175.0

185.0

195.0

205.0

215.0

225.0

235.0

245.0
te

m
pe

ra
tu

re
 (

C
)

inlet oil temperature
outlet oil temperature
set point temperature

10.1 10.6 11.1 11.6 12.1 12.6 13.1 13.6 14.1 14.6 15.1 15.6 16.1
local time (hours)

820.0

840.0

860.0

880.0

900.0

920.0

di
re

ct
 s

ol
ar

 r
ad

ia
tio

n
(W

/m
2)

Fig. 12.11. Test with the gain scheduling GPC controller, λ = 6

12.2 Pilot Plant

In order to show how GPC can be implemented on an industrial SCADA, ap-
plications to the control of the most typical magnitudes found in the process
industry (flow, level, temperatures) are introduced in this section.

The tests are carried out on a pilot plant existing in the Departamento de
Ingenierı́a de Sistemas y Automática of the University of Seville. The pilot plant
is provided with industrial instrumentation and is used as a testbed for new
control strategies which can be implemented on an industrial SCADA con-
nected to it. This plant is basically a system using water as the working fluid
in which various thermodynamic processes with interchange of mass and en-
ergy can take place. It essentially consists of a tank with internal heating with
a series of input-output pipes and recirculation circuit with a heat exchanger.

The design of the plant allows for various control strategies to be tested
in a large number of loops. Depending on the configuration chosen, it is pos-
sible to control the types of magnitudes most frequently found in the process
industry such as temperature, flow, pressure and level. For this, four actua-
tors are available: three automatic valves and one electric heater that heats
the interior of the tank. Later some of the possible loops are chosen (consid-
ered as being independent) for implanting the GPC controllers.

12.2.1 Plant Description

A diagram of the plant which shows its main elements as well as the local-
ization of the various instruments is given in Figure 12.12.

The main elements are:

• feed circuit. The plant has two input pipes, a cold water one (at air tem-
perature) and a hot water one (at about 70oC) with nominal flow and
temperature conditions of 10 l/min and 2 bar for the cold water and 5
l/min and 1 bar for the hot. The temperatures and flows of the inputs
are measured with thermocouples and orifice plates, respectively, with
motorized valves for regulating the input flows.

12.2 Pilot Plant 353

V
8

V4

V5

FT1 TT1

FT2 TT2

LT1
PT1

TT5

FT3

TT3

waterHot

waterCold

Heat exchanger

Tank

Heater

Waste

Pump

TT4

Fig. 12.12. Diagram of the pilot plant

• tank. It has a height of 1 m and an interior diameter of 20 cm, it is ther-
mically insulated, and it has an approximate volume of 31 l. It can work
pressurized (up to a limit of 4 bar) or at atmospheric pressure, depending
on the position of the vent valve. In its interior there is a 15 kW electric
resistance for heating, and an overflow, an output pipe and another pipe
for recirculating the water through the exchanger.

• recirculation circuit. The hot water in the tank can be cooled by entering
cold water through the cooling circuit. This circuit is composed of a cen-
trifugal pump that circulates the hot water from the bottom of the tank
through a tube bundle heat exchanger returning at a lower temperature
at its top.

12.2.2 Plant Control

To control the installation there is an ORSI Integral Cube distributed control
system, composed of a controller and a supervisor connected by a local data
highway. The former is in charge of carrying out the digital control and anal-
ogous routines whilst the latter acts as a programming and communication
platform with the operator. On this distributed control system the GPC al-
gorithms seen before will be implemented. This control system constitutes
a typical example of an industrial controller, having the most normal char-
acteristics of medium-size systems to be found in the market today. As in
most control computers the calculation facilities are limited and there is little

354 12 Applications

time available for carrying out the control algorithm because of the attention
called for by other operations. It is thus an excellent platform for implanting
precalculated GPC in industrial fields.

From all the possible loops that could be controlled the results obtained
in certain situations will be shown. These are: control of the cold water flow
FT2 with valve V5, control of the output temperature of the heat exchanger
TT4 with valve V8, control of the tank level LT1 with the cold water flow by
valve V5 and control of the tank temperature TT5 with the resistance.

12.2.3 Flow Control

The control of the cold water flow has been chosen as an example of regu-
lating a simple loop. Because all the water supplied to the plant comes from
only one pressure group, the variations affecting the hot water flow or the
cold water flow of the heat exchanger will affect the cold water flow as dis-
turbances. Regulating the cold water flow is not only important as a control
loop but it may be necessary as an auxiliary variable to control the tempera-
ture or level in the tank.

The dynamics of this loop are mainly governed by the regulation valve.
This is a motorized valve with a positioner with a total open time of 110 sec-
onds, thus causing slow dynamics in the flow variation. The flow behaviour
will approximate that of a first-order system with delay.

First the parameters identifying the process are obtained using the reac-
tion curve, and then the coefficients of the GPC are found using the method
described in Chapter 5. In order to do this, working with the valve 70% open
(flow of 3.98 l/min), a step of up to 80% is produced, obtaining after the
transition a stationary value of 6.33 l/min. From the data obtained it can be
calculated that

K = 0.25 τ = 10.5 seconds τd = 10 seconds

when a sampling time T = 2 seconds is used, the parameters for the corre-
sponding discrete model are:

a = 0.8265 b = 0.043 d = 5

The control signal can easily be computed using the expression

u(t) = u(t− 1) + (ly1ŷ(t + 5) + ly2ŷ(t + 4) + lr1r(t))/K

where u(t) is the position of the valve V5 and y(t) is the value of the flow
FT2. Using the approximation formulas (5.10) with λ = 0.8, the controller
gains result as:

ly1 = −2.931
ly2 = 1.864
lr1 = 1.067

12.2 Pilot Plant 355

0 100 200 300 400 500 600
Time (seconds)

2

3

4

5

6

7

8

Co
ld

wa
ter

 flo
w (

l/m
in)

0 100 200 300 400 500 600
Time (Seconds)

60.0

70.0

80.0

90.0

Va
lve

 V 5

Fig. 12.13. Flow control

The behaviour of the closed loop when setpoint changes are produced
can be seen in Figure 12.13.

The disturbances appearing in the flow are sometimes produced by
changes in other flows of the installation and at other times by electrical
noise produced by equipment (mainly robots) located nearby. The setpoint
was changed from 4 to 6.3 litres per minute. The measured flow follows the
step changes quite rapidly (taking into account the slow valve dynamics)
with an overshoot of 13%. The manual valve at the cold water inlet was par-
tially closed in order to introduce an external disturbance. As can be seen,
the controller rejected the external perturbation quite rapidly.

12.2.4 Temperature Control at the Exchanger Output

The heat exchanger can be considered to be an independent process within
the plant. The exchanger reduces the temperature of the recirculation water,
driven by the pump, using a constant flow of cold water for this. The way of
controlling the output temperature is by varying the flow of the recirculation
water with the motorized valve V8; thus the desired temperature is obtained
by variations in the flow. In brief, the heat exchanger is nothing more than a
tube bundle with hot water inside that exchanges heat with the exterior cold
water. It can thus be considered as being formed of a large number of first-
order elements that together act as a first-order system with pure dead time

356 12 Applications

0 100 200 300 400 500 600 700 800 900 1000
Time (Seconds)

30

32

34

36

38

40

Te
mp

era
tur

e a
nd

 Re
fer

en
ce

Cooling water
valve closed

Resistor duty

cycle decreased

0 100 200 300 400 500 600 700 800 900 1000
Time (Seconds)

30

40

50

60

70

80

90

100

Va
lve

 V 8

Fig. 12.14. Behaviour of the heat exchanger

(see Chapter 5). Thus the TT4-V8 system will be approached by a transfer
function of this type.

Following the procedure used until now the system parameters which
will be used for the control law are calculated. Some of the results obtained
are shown in Figure 12.14. It should be born in mind that as the exchanger
is not independent from the rest of the plant, its output temperature affects,
through the tank, that of the input, producing changes in the operating con-
ditions. In spite of this its behaviour is reasonably good.

The setpoint was changed from 38oC to 34oC. As can be seen in figure
12.14, the heat exchanger outlet temperature evolved to the new setpoint
quite smoothly without exhibiting oscillations. Two different types of exter-
nal disturbances were introduced. First the manual valve of the refrigerating
cold water was closed for a few seconds. As was expected, the outlet tem-
perature of the heat exchanger increased very rapidly because of this strong
external perturbation and then it was taken back to the desired value by
the GPC. The second perturbation is caused by decreasing the duty cycle of
the resistor in the tank, thus decreasing the inlet hot water temperature and
changing the heat exchanger operating point. As can be seen, the GPC rejects
almost completely this perturbation, caused by a change in its dynamics.

12.2 Pilot Plant 357

0 200 400 600 800 1000 1200 1400
Time (Seconds)

30

35

40

45

50

55

60

65

70

Te
mp

era
tur

e o
f th

e t
an

k

0 200 400 600 800 1000 1200 1400
Time (Seconds)

0

20

40

60

80

100

Re
sis

tan
ce

 (%
)

Fig. 12.15. Evolution of the tank temperature

12.2.5 Temperature Control in the Tank

The next example chosen is also that of a very typical case in the process
industry: the temperature of the liquid in a tank. The manipulated variable
in this case is the duty cycle of the heating resistor.

The process has integral effect and was identified around the nominal
operating conditions (50oC). The following model was obtained:

G(s) =
0.41

s(1 + 50s)
e−50s

The GPC was applied with a sampling time T = 10 seconds, λ = 1.2 and
N = 15. As in the previous case, the controller parameters were computed
by the formulas given in Chapter 5 for integrating processes. The results ob-
tained are shown in Figure 12.15. A perturbation (simulating a major failure
of the actuator) was introduced. As can be seen, after the initial drop in the
temperature of the tank, caused by the lack of actuation, the control system
is able to take the tank temperature to the desired value with a very smooth
transient. A change in the setpoint from 50oC to 60oC was then introduced.
The temperature of the tank evolves between both setpoints without big os-
cillations.

358 12 Applications

0 200 400 600 800 1000 1200 1400
Time (Seconds)

60

65

70

75

80

85

90

Le
ve

l (%
)

0 200 400 600 800 1000 1200 1400
Time (Seconds)

0

10

20

30

40

50

60

70

Va
lve

 V 5

Fig. 12.16. Evolution of the level

12.2.6 Level Control

Level is another of the most common variables in the process industry. In the
pilot plant, the level of the tank can be controlled by the input flows (cold
or hot water). In this example, the valve V5 will be used. The system was
identified around the nominal operating point (70%) by the reaction curve
method. The model transfer function is:

G(s) =
1.12

1 + 87s
e−45s

For a sampling time T = 10 seconds, the dead time results to be non-
integer, thus the controller parameters must be calculated as shown in Sec-
tion 5.2. The results obtained when working with a weighting factor of 1
and a prediction horizon of 15 are shown in Figure 12.16. The setpoint was
changed from 70 to 75%. As can be seen, the level of the tank moves smoothly
between both setpoints. An external perturbation was introduced to test the
disturbance rejection capabilities of the GPC. The perturbation consisted of
opening the hot water inlet and thus increasing the level of the tank. As can
be seen, the perturbation is rejected after a well-damped transient.

12.2.7 Remarks

The main objective of the control examples presented in this section was to
show how easily GPC can be implemented on a commercial distributed con-

12.3 Model Predictive Control in a Sugar Refinery 359

trol system using the implementation technique presented in Chapter 5. The
GPCs were implemented without difficulty using the programming language
(ITER) of the Integral Cube distributed control system.

Although comparing the results obtained by GPC with those obtained
using other control techniques was not one of the objectives, GPC has been
shown to produce better results than the traditional PID on the examples
treated. In all the processes, the results obtained by PID, tuned by the Ziegler-
Nichols open-loop tuning rules, were very oscillatory, better results were ob-
tained [203] after a long commissioning period where optimal PID parameters
were found. The commissioning of the GPC controllers was done in virtually
no time; they worked from the word go. The results obtained by GPC were
superior in all cases to the ones obtained by the PID controllers as reported
in [203].

12.3 Model Predictive Control in a Sugar Refinery

This section shows an application of Precomputed GPC to a process in a sugar
refinery. The implementation was carried out by the authors in collaboration
with the firm PROCISA. The refinery is located in Peñafiel (Valladolid, Spain)
and belongs to Ebro Agricolas. The controller runs in a ORSI Integral Cube
control system, where the GPC has been included as a library routine which
can be incorporated in a control system as easily as the built-in PID routine.
The factory produces sugar from sugar beet by means of a series of processes
such as precipitation, crystallization, etc. The process to be controlled is the
temperature control of the descummed juice in the diffusion.

In order to extract the sugar from the beet it is necessary to dilute the
saccharose contained in the tuber tissue in water to form a juice from which
sugar for consumption is obtained.

The juice is obtained in a process known as diffusion. Once the beet has
been cut into pieces (called chunks) to increase the interchangeable surface,
it enters the macerator (which revolves at a velocity of 1 rpm) where it is
mixed with part of the juice coming from the diffusion process (see Figure
12.17). Part of the juice inside the macerator is recirculated to be heated by
means of steam and in this way it maintains the appropriate temperature for
maceration. The juice from the maceration process passes into the diffusor (a
slowly revolving pipe 25 m long with a diameter of 6 m) where it is mixed
with water and all the available sugar content is extracted, leaving the pulp
as a subproduct. The juice coming out of the diffusor is recirculated to the
macerator, from which the juice already prepared is extracted for the next
process.

For the diffusor to work correctly it is necessary to supply thermal en-
ergy to the juice during maceration. To obtain this objective, part of the juice
from the macerator (150 m3/h) is made to recirculate through a battery of ex-
changers; within these the steam proceeding from the general services of the

360 12 Applications

DiffusorMacerator

Beet chunks

Water

Pulp

Heat exchangers

Steam

Product

Recirculation

valve
Control

TemperatureTT

Fig. 12.17. Diffusion process in a sugar refinery

factory provides the heat needed to obtain optimum maceration. Therefore
the controller must adjust the steam valve (u) to achieve a determined return
temperature to the macerator (y).

The system response is seriously disturbed by changes in the steam pres-
sure, which are frequent because the steam used in the exchangers has to be
shared with other processes which can function in a noncontinuous manner.

The process is basically a thermal exchange between the steam and the
juice in the pipes of the exchanger, with overdamped behaviour and delay
associated to the transportation time of the juice through pipes about 200
metres long. These considerations, together with the observation of the de-
velopment of the system in certain situations, justify the use of a first-order
model with delay.

A model was identified by its step response. Starting from the conditions
of 82.42 ◦C and the valve at 57 %, the valve was closed to 37 % in order
to observe the evolution; the new stationary state is obtained at 78.61 ◦C.
The values of gain, time constant and delay can easily be obtained from the
response (as seen in previous examples):

K =
82.42− 78.61

57− 37
= 0.1905

0C

%
τ = 5 min τd = 1 min 45 s

However, it is seen that the system reacts differently when heated to
when cooled, the delay being much greater in the first case. A similar test
changing the valve to 57 % again provides values of

K = 0.15 τ = 5 min 20 s τd = 4 min 50 s

Although an adaptive strategy could be used (with the consequent compu-
tational cost), a fixed parameter controller was employed, showing, at the

12.3 Model Predictive Control in a Sugar Refinery 361

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Time (hours)

10.0

30.0

50.0

70.0

90.0

110.0

Valve
Temperature

0.0 1.0 2.0 3.0 4.0 5.0 6.0
Time (hours)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Ste
am

 pr
ess

ure

Fig. 12.18. System response in the presence of external disturbances

same time, the robustness of the method when using the T-polynomial in the
presence of modelling errors. The error in the delay, which is the most dan-
gerous, appears in this case. The following values of the model were chosen
for this

K = 0.18 τ = 300 s τd = 190 s

and sampling time of T = 60 s.
It should be noticed that there are great variations in the delay (that pro-

duced on heating is about three times greater than that on cooling), due to
which it is necessary to introduce a filter T (z−1) as suggested in [210] to in-
crease the robustness.

The following figures show various moments in operating the tempera-
ture control. The behaviour of the controller rejecting the disturbances (sud-
den variations in the steam pressure and macerator load) can be seen in Fig-
ure 12.18. On the other hand, Figure 12.19 shows the response to a setpoint
change in the juice temperature.

It should be emphasized that this controller worked satisfactorily and
without interruption until the end of the year’s campaign, being handled
without difficulty by the plant operators who continuously changed the val-
ues of the model throughout the operation time. Following many operational
days the operators themselves concluded that a satisfactory model was given

362 12 Applications

0.0 0.5 1.0 1.5 2.0
Time (hours)

72.0

73.0

74.0

75.0

76.0

77.0

78.0

79.0

80.0

Te
mp

era
tur

e

0.0 0.5 1.0 1.5 2.0
Time (hours)

30.0

50.0

70.0

90.0

Co
ntr

ol v
alv

e

Fig. 12.19. Setpoint change

by:
K = 0.25 τ = 250 s τd = 220 s λ = 0.1

The sampling time was set to 50 seconds and the following robust filter was
used

T (z−1) = A(z−1)(1− 0.8az−1)

with a equal to the discrete process pole.

12.4 Olive Oil Mill

This example describes the application of a predictive controller that deals
with measurable disturbances in the extraction process in an olive oil mill.
The application focuses on the thermal part of the process, where the raw
material is prepared for the mechanical separation. The system under consid-
eration can be viewed as composed of several changing level stirred tanks.
The example shows the development of the controller based upon a model
obtained from first principles combined with experimental results and vali-
dated with real data. Strong disturbances and large time delays appear in the
process, so predictive control strategies have been tested under simulation
and have been implemented on the real plant. A study about the considera-
tion of different models for the estimation of measurable disturbances along

12.4 Olive Oil Mill 363

LT

LT

LT

Clean olives

Mill

Addition water

Thermomixer
Paste pump

Olive
Oil

By-product

Heating water

Extraction

Fig. 12.20. Process

the prediction horizon shows that good performance can be obtained by use
of an appropriate model. A new idea that can improve periodic disturbance
rejection in Model Based Predictive controllers is also presented.

The process is composed of several operations: recollection and reception
of raw material (olives), washing, preparation, extraction, and storage of the
produced oil. Figure 12.20 shows the most important phases of the process:
preparation and extraction.

The preparation phase is crucial for the whole process; it consists of two
subprocesses. The first is olive crushing by a special mill, whose objective
is to destroy the olive cells where oil is stored. The second aims at homo-
genising the paste by stirring it while its temperature is kept constant at a
specific value (around 35 o C). This is performed by a machine called a ther-
momixer, which homogenises the three phases of the paste (oil, water and a
by-product) while it exchanges energy with surrounding pipes of hot water.
This is done to facilitate oil extraction in the following process: mechanical
separation in the decanter. This case study is focused on thermomixer control
since homogenisation is crucial in the entire process. Bad operational condi-
tions in the thermomixer can dramatically reduce the quality and quantity of
the final product.

There are three main obstacles that appear when trying to maintain the
optimal operating conditions in the thermomixer. The first is the existence of
large delays (around one and a half hours) because of the thermal nature of
the process. The predictive controller treats the delays in a convenient way.
The second obstacle is caused by the on-off mechanism feeding the paste,
so the inlet paste flow does not reach a constant value. These changes in-
troduce periodic variations in level and therefore temperature changes since
the quantity of product inside the machine varies. As the level can be eas-

364 12 Applications

ily measured, it can be considered as a measurable disturbance and hence
can be taken into account by the predictive algorithm as a feedforward ac-
tion. The third difficulty usually takes place at the beginning or the end of the
campaign. The process is frequently interrupted because of the heterogeneity
and low quantity (and often, low quality) of raw material. When the process
is stopped and restarted, the temperature inside the thermomixer increases
rapidly.

12.4.1 Plant Description

The system considered corresponds to a thermomixer, whose main objective
is to homogenise the three phases of the paste (oil, water and the by-product)
and keep it at a desired temperature to facilitate oil extraction. Heating the
paste is achieved by means of hot water circulating through a jacket. The
machine is divided into different (usually two, three or four) tanks or bod-
ies, each with revolving blades to facilitate homogenising. The bodies are
composed of semicylinders about 3 metres long with a diameter of 1 metre.
Paste is dropped over one side of the first body and pushed by the revolv-
ing blades which make the paste fall down to the second body through the
overflow and so on. The existence of several bodies allows a gradual temper-
ature increment along the thermomixer, since abrupt changes in paste tem-
perature would affect the quality of the end product. Each body has its own
water jacket. The water circuit is connected in parallel, so the same quantity
of water flows for each jacket. We can only set the total water flow (which is
shared equally amongst all the bodies).

The paste is heated to facilitate mixing since the paste turns more liquid
as the temperature rises. However, there exists a maximum temperature at
which olive oil loses quality (flavour, fragrance, etc.) due to the oxidation
process and the loss of volatile components. The heating water comes from
a boiler that supplies hot water to several processes in the factory, so it is
affected by load changes and is therefore another disturbance.

Therefore, the outlet temperature presents oscillations at the frequency
of level variations with changes produced by heating water variation. The
controller must be able to reduce the effect of these disturbances as much
as possible. Level and water temperature can easily be measured and future
level evolution can be predicted as shown later. Figure 12.21 shows level evo-
lution in the last body and the random variations of inlet water temperature.
It is clear that a more efficient performance could be obtained by a good de-
sign in the feeding system that keeps the level constant; this is the kind of
level control system that is installed in most olive oil mills for cost reasons.
Therefore, to address the current problem, this disturbance has been consid-
ered as something external to the proposed control solution.

12.4 Olive Oil Mill 365

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
70

75

80

85

90

95

100
Measured level in the third body (%)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
50

55

60

65

70

75

80
Measured inlet water temperature (ºC)

Time(hours)

Fig. 12.21. Measurable disturbances

12.4.2 Process Modelling and Validation

The attainment of the process model is described in [32], where thermody-
namical equations together with input-output data allows construction of a
nonlinear simulator that can be used to test the controller. The model was
validated using real data obtained from an olive oil mill located in Málaga
(Spain). These data were used to estimate many of the parameters that ap-
pear in the model which are not perfectly known, since they depend on sev-
eral circumstances: type and moisture of olives, soil in the heating circuit,
etc.

A linear model must be developed to design a simple linear predictive
controller that will run on a Programmable Logic Controller (PLC) with low
computational capabilities. The linear model is obtained by performing tests
in the nonlinear model, where all manipulated variables can be changed in-
dependently to see their influence on temperature behaviour. The models
needed for control must predict correctly the final paste temperature (the
paste that leaves the last body of the thermomixer) as a function of hot water
flow, level, and temperature of the heating water.

For the CARIMA model, numbers that give temperature as a function of
the hot water flow are

366 12 Applications

10 11 12 13 14 15 16 17 18 19 20
20

25

30

35

40

45

Time (hours)

Te
m

pe
ra

tu
re

 (º
C)

Real
Linear model

Fig. 12.22. Validation linear prediction model

B(z−1) = 4.315 · 10−5z−5

A(z−1) = 1− 0.92z−1

temperature with respect to level:

B(z−1) = −0.0028z−3

A(z−1) = 1− 0.8825z−1

and temperature with respect to water temperature

B(z−1) = 0.0093z−3

A(z−1) = 1− 0.926z−1

The model used in simulation has a sample time of 100 seconds. Figure
12.22 shows the predictions of temperature using a linear model with a pre-
diction horizon of seven, which is the one that will be used by the predictive
controller, compared with real data. This corresponds to a new set of data not
used to build the model.

12.4.3 Controller Synthesis

The control objective is to maintain the operating conditions in the ther-
momixer, that is equivalent to keep the temperature of the last body as con-
stant as possible in spite of disturbances (level and variations in hot water
temperature). The manipulated variable is the hot water flow.

The process is characterized by big dead times in temperature dynamics.
Moreover, the effect of disturbances, mainly level, on the controlled variable

12.4 Olive Oil Mill 367

shows fast dynamics (mainly at high production rates). This fact makes dis-
turbance rejection more difficult and implies the necessity of a control strat-
egy that eliminates the effect of level disturbance, at least in the nominal case.

MPC can be an interesting candidate to control this system and distur-
bance rejection capabilities can be improved by the estimation of the future
disturbance values in the controlled variable prediction model. That is, the
current value of the disturbance is known at the sampling time, but its future
evolution along the horizon can also be estimated since it affects the process
predicted output (temperature). This is a slight improvement with respect
to standard MPC algorithms, which consider that disturbances are kept con-
stant (and equal to their current value) in the future. The information that
provides this future evolution is very important in this case, allowing the
controller to anticipate its influence on the process output.

In this application, as the main disturbance acting on the output (level)
exhibits a predictable behaviour, the control law is calculated considering an
Auto-Regressive (AR) model of disturbance. Periodic disturbance rejection
is also treated in [29]. Therefore the AR model is not used to estimate the
actual values of the disturbances, but utilized as an instrument to improve
the prediction of future values of the disturbances. So the prediction of the
controlled variable must also be enhanced. The identified AR polynomial is:

A(z−1) = 1− 1.589z−1 + 1.696z−2 − 1.178z−3 + 0.697z−4

When a disturbance model is included in the prediction, the control law
that minimizes the general cost function

J =
p∑

i=1

[ŷ (t + i)− w(t + i)]2 + λ
m−1∑
i=0

[Δu(t + i)]2 (12.5)

is given by (see [31])

u = (GT G + λI)−1GT
[
w − (fu + f̂d)

]
(12.6)

where

• u is the vector of future control action increments;
• fu is the calculated free response without disturbances;
• w is the reference trajectory and
• f̂d is the estimated value of the free response due to measurable distur-

bances and can be calculated using the following equation

f̂d(t + i) =
i−1∑
k=0

gkΔd̂(t + i− k) +
N∑

k=i

gkΔd(t + i− k) (12.7)

where gk are the samples of the truncated step response and Δd(t) is the
increment of the disturbance signal at time t and the AR prediction is given
by

368 12 Applications

d̂(t) =
N∑

i=1

aid(t− i) (12.8)

The terms that depend on future values of the disturbances are separated
from the directly measured ones. The first part in the sum is assumed to be
zero in standard MPC formulations. This means that the polynomial AR is
equal to 1− z−1, which is equivalent to the assumption that future values of
disturbance equal its current value.

Therefore, the control algorithm (MPC with Auto-Regressive model for
the measurable disturbances or MPC-AR) is reduced to the following:

1. Compute the free response as in a basic MPC algorithm.
2. Add the term due to measurable AR disturbance as shown in (12.7 - 12.8).
3. Calculate the control law with Equation (12.6).

The controller presented here has been devised to be implemented in
low-cost control equipment, as is the case of a PLC. This can be done since
only part of the algorithm is calculated in real time. The most demanding
part of MPC (the optimization that corresponds to Equation (12.6)) is done
beforehand, since the model is known and the only part to be calculated at
every sampling time is the free response of the system. Should the model
change with time, the control law parameters will be updated by a higher-
level routine running on the SCADA computer.

12.4.4 Experimental Results

Several tests have been done on the real plant. The experiments have been
carried out in different situations since it is very difficult to obtain the same
operational conditions in different days because of the continuously chang-
ing raw material. Several tunings of the controller (using different weighting
factors and different disturbance models) have been tested. The controller
runs on a PLC, where the control law can be switched to an existing PID con-
troller for comparison. The PID was tuned manually by trained personnel:
see [32].

Table 12.4 shows the root mean square error of the temperature, compar-
ing a PID with feedforward to the proposed MPC. Results with changes in
temperature setpoint are also presented.

Table 12.4. Fits obtained with PID and proposed MPC in real plant

Error (o C) PID MPC-AR
Regulation 2.1 0.5
Tracking 2.9 0.9

Figure 12.23 shows the controlled temperature in the last body when the
setpoint changes in real tests. MPC-AR is able to reach the set point faster

12.4 Olive Oil Mill 369

9 10 11 12 13 14 15 16 17 18 19
30

32

34

36

38

40

3º
 b

od
y

te
m

pe
ra

tu
re

 (
ºC

)

9 10 11 12 13 14 15 16 17 18 19
20

30

40

50

60

70

80

V
al

ve
 (

%
)

Time (hours)

���� ��� � ���� �

12 13 14 15 16 17 18 19
30

32

34

36

38

40

3º
 b

od
y

te
m

pe
ra

tu
re

 (
ºC

)

λ=0.001

12 13 14 15 16 17 18 19
20

30

40

50

60

70

80

90

V
al

ve
 (

%
)

Time (hours)

������� ��� � 	�
� �

Fig. 12.23. Changes in the setpoint. PID control (two upper graphs) and MPC-AR
control (two lower graphs).

than PID, which ever continuously oscillates around the setpoint. The control
action of PID is obviously slower, and it cannot be accelerated much more
without losing stability.

Figure 12.24 presents two different tests of the designed MPC in the real
plant, performed during the intermediate dates of the campaign, in which

370 12 Applications

19 20 21 22 23 24

30

32

34

36

38

40

T
em

pe
ra

tu
re

 a
nd

 s
et

 p
oi

nt
 (

ºC
)

MPC, aggressive control

0 1 2 3 4 5

30

32

34

36

38

40

Time (hours)

T
em

pe
ra

tu
re

 a
nd

 s
et

 p
oi

nt
 (

ºC
)

MPC, smooth control

Fig. 12.24. MPC with different values for λ

the process is often stabilized. The first corresponds to a controller with a
small value for the control weighting factor (λ) and no measurable distur-
bances considered. The second shows the same controller with a bigger value
of λ, giving a slower control. The λ parameter defines the aggressiveness of
the controller. If λ is set to a very small value, the closed-loop system be-
haves faster, but it loses robustness. In this application, the fits achieved in
both cases are similar, because a faster control induces more high-frequency
noise. Although the fit in the first case is slightly better, it is preferable to
have a more robust and smoother control.

The biggest benefits of the inclusion of AR model for measurable distur-
bances can be obtained at the end of the olive season, when the operational
conditions are not stationary and effect level evolution. In the first case (Fig-
ure 12.25, top graph) the behaviour of the temperature is not good, with con-
siderable oscillations around the setpoint, although it is the same controller
that has shown good performance during the intermediate dates of the cam-
paign. The performance is clearly improved with the AR model (Figure 12.25,
bottom graph), under the same conditions (similar evolution of level and wa-
ter temperature), showing that the proposed algorithm is a viable solution to
the problem.

Plant results have shown that an MPC considering the prediction of fu-
ture level variations can be a recommendable solution for the problem that
exists in the real plant.

12.5 Mobile Robot 371

0 0.5 1 1.5 2 2.5 3 3.5 4

30

32

34

36

38

40

T
em

pe
ra

tu
re

 a
nd

 s
et

 p
oi

nt
 (

ºC
)

MPC controller, RMS=1.35

0 0.5 1 1.5 2 2.5 3 3.5 4

30

32

34

36

38

40

T
em

pe
ra

tu
re

 a
nd

 s
et

 p
oi

nt
 (

ºC
)

Time (hours)

MPC−AR controller, RMS=0.60

Fig. 12.25. MPC at the end of olive season

12.5 Mobile Robot

This section shows the application of NMPC to mobile robot navigation. This
implementation tries to solve one of the main problems in the development
of autonomous mobile robots: the problem of path tracking in an environ-
ment with unexpected obstacles. MPC is a suitable technique to apply to this
problem because the objective is to drive future outputs (robot position and
heading) close to the desired values in some way, bearing in mind the control
activity required to do so.

If the control signal is constrained and the system model is nonlinear
the MPC results in a very complex and time-consuming problem. A neural
network is used to solve the problem, as described in Section 9.4.

12.5.1 Problem Definition

The problem of driving a mobile robot to follow a previously calculated de-
sired path has been addressed in [77] where an NN is used to solve the NMPC
problem online with the following objective function

372 12 Applications

J1(N1, N2, Nu) =
N2∑

i=N1

[Ŷ (t + i|t)− Yd(t + i)]2

+
Nu∑
i=1

λ1([Δωr(t + i− 1)]2 + [Δωl(t + i− 1)]2) +

+
Nu∑
i=1

λ2[ωr(t + i− 1)− ωl(t + i− 1)]2

where Ŷ (t + i|t) = {x̂(t + i|t), ŷ(t + i|t)} is an i step prediction of the robot
position made at instant t; ωr and ωl are the right and left angular velocities
of the two driving wheels, which are the control variables; and λ1, λ2 and
ψ are constant weighting factors. The first term in J penalizes the position
error; the second term penalizes the acceleration and the third penalizes the
robot angular velocity. These last two terms ensure smooth robot guidance.

When unexpected static obstacles are taken into account, a new term
must be added to the cost function in order to penalize the proximity be-
tween the robot and the obstacles, which are detected with an ultrasound
proximity system placed on board the mobile robot. Therefore, the function
to be minimized now is:

J(N1, N2, Nu) = J1(N1, N2, Nu) +
NFO∑
j=1

(
N2∑

i=N1

ψ

[distf (Ŷ (t + i|t), FOj)]2
)

The new term is a potential function term, where distf (·) is a measure-
ment in t + i of the distance between the robot and a fixed obstacle FOj ,
which is considered to have a polygonal geometry in the plane. A more pre-
cise description of this function is presented here. A block diagram of the
system is shown in Figure 12.26. Notice that the consideration of unexpected
obstacles makes the objective function not quadratic and thus the computa-
tional burden is increased.

In the following N1 and N2 will be considered to be N1 = d + 1 and
N2 = N , and Nu will be given a value of N2 − d. So the controller has only
one free parameter N . The predictive problem, formulated under these cir-
cumstances, has to be solved with numerical optimization methods, which
are not acceptable for real-time control. The controller is implemented using
a neural network scheme, which allows real time.

12.5.2 Prediction Model

For an MBPC formulation, a model of the mobile platform is needed to predict
the future positions and headings of the robot. As a testbed for the experi-
ments, a TRC LABMATE mobile robot has been used.

12.5 Mobile Robot 373

Y(t+i)^

Y (t+i)d

-
+

U(t)

Y(t)

model

Non-linearFuture predicted

Predictive controller Past control
actions

Future

errors

Objetive
function

constraints

Robot
Mobile

Future control
actions

outputs

Future
references

Future obstacle

predictionpositions

Environment
sensor

information

Minimization

Fig. 12.26. The predictive controller scheme

A model of the LABMATE mobile robot, which takes into account the dead
time produced by communication with the host processor, was obtained by
using kinematic equations and identification tests. The following kinematic
model (which corresponds to a differential-drive vehicle) is used for comput-
ing the predictions

θ(k + 1) = θ(k) +AT

x(k + 1) = x(k) +
V

A (sin(θ(k) +AT)− sin(θ(k)))

y(k + 1) = y(k)− V

A (cos(θ(k) +AT)− cos(θ(k)))

A = R
ωr(k − 1)− ωl(k − 1)

2W

V = R
ωr(k − 1) + ωl(k − 1)

2
where x, y and θ are the position and heading of the robot in a fixed

reference frame (see Figure 12.27), T is the sample interval and W is the half-
distance between wheels, which value has been estimated to be 168 mm (Fig-
ure 12.27). V is the linear velocity of the mobile robot,A is the steering speed,
and ωr(k− 1), ωl(k− 1) and R are the right and left wheel angular velocities
(which are considered to be constant for each sample interval) and the wheel
radius, respectively. In the case of a linear trajectory (A = 0), the equations
of motion are given by:

374 12 Applications

Yf

X f

Y

X r

r

2 W

θ

PG
y

x

Fig. 12.27. Reference frame

θ(k + 1) = θ(k)
x(k + 1) = x(k) + V T cos θ(k)
y(k + 1) = y(k) + V T sen θ(k)

Using the maximum acceleration value, the velocities of both wheels
have been considered to be constant for each sample period.

12.5.3 Parametrization of the Desired Path

The reference path is given to the MPC controller as a set of straight lines and
circular arcs. The MPC approach needs the desired positions and headings of
the mobile platform at the next N time instants. So, given the current position
and heading of the robot, it is necessary to parameterize the desired path for
the next N periods of time to calculate the N future path points desired. As is
shown in Figure 12.28, the desired point for the current instant (Xd(k), Yd(k))
is obtained first. It is located at the intersection between the desired path and
its perpendicular, traced from the actual robot position (Xr(k), Yr(k)). The
next N points are spaced equally on the path, with a separation between
them of ΔS, which is a design parameter.

12.5.4 Potential Function for Considering Fixed Obstacles

As stated earlier, the fixed obstacles are considered to have polygonal ge-
ometry in the plane, and the surfaces of the obstacles are considered to be
perpendicular to the moving plane of the mobile robot.

Two different potential functions have been used for the polygonal ge-
ometry case: one for the convex polygon and the other for the concave poly-
gon:

12.5 Mobile Robot 375

SΔ
90

.

d

δ
.

.
.

.

(k)

(k)

x (k+1) x (k+N)

d

d

y(k)

x(k)

y (k)

y (k+1)

dx (k)
d d

Fig. 12.28. Parametrization of the desired path

• potential function for a convex polygon [94]. A convex region will be de-
scribed by a set of inequalities

g(x) ≤ 0, g ∈ Lm, x ∈ Rn

where L is the set of linear functions and n is the space dimension (in this
case n = 2). The function

f(x) =
NSF∑
i=1

gi(x) + |gi(x)|

is zero inside the convex region and increases linearly out of it, as the
distance to the frontier is augmented. NSF is the number of segments of
the obstacle frontier. The following potential function is used

pcvx(x) = [δ + f(x)]−1 =
1

δ +
NSF∑
i=1

(gi(x) + |gi(x)|)

where δ is a small constant that limits the value of pcvx(x) inside the con-
vex region; pcvx(x) reaches its maximum value δ−1 inside the region oc-
cupied by the obstacle, and decreases with the distance between the robot
and the obstacle. A graphic example of this function is shown in Figure
12.29, where two rectangular static obstacles are present in the proximity
of the robot.

376 12 Applications

0.5

0.4

0.3

0.2

0.1

y

0

12
10

8
6

4
2

0
-2

x

0

12
10

8
6

4
2

0
-2

Fig. 12.29. Convex regions potential function

• potential function for a concave polygon. A concave region will be de-
scribed by a set of inequalities

v(x) ≥ 0, v ∈ Lm, x ∈ Rn

The potential function used in this case is

pccv(x) =
1

δ + gccv(x)

where δ is a small constant and gccv(x) is the minimum of the distances
between the robot position and every straight line that defines the obsta-
cle frontier. This function has the same characteristics as pccx(x).

12.5.5 The Neural Network Approach

As was mentioned before, the minimization of the cost function J has to be
carried out by a numerical optimization method which requires too much
computation to be used in real time. A neural network solution is proposed,
which guarantees real time for the robot control.

The modules of the control scheme used in this work (see Figure 12.30)
are:

• artificial neural network controller. The NN architecture chosen here is a
Multilayer Perceptron, with one hidden layer (see Figure 12.31).
The input layer consists of twelve neurons. The first two inputs corre-
spond to the previous linear and angular velocities of the robot. The next

12.5 Mobile Robot 377

Y(t)Y(t)U(t)

planning

pathGlobal

absolute coordinates

referenc.

Future

Generation

Vector

Past control

actions

Vector

Generation

Mobile

robot

heading estimation

Position and

Future references at

future references into

Transformation of

relative coordinates

Input

Sensored enviromental

information

Output

Fig. 12.30. Predictive neural network scheme for mobile robot navigation

. .
 .

.

. .
 .

.

1/ρ(k)

V(k). .
 .

.

. .
 .

.

. .
 .

.

(k)δ

(k)d

S0 (k)

S5 (k)

S6 (k)

V(k-1)

(k-1)
.

(k)
.

θ

θ

Fig. 12.31. Neural network scheme

three inputs are associated to the parameterization of the desired trajec-
tory over the prediction horizon. To reduce the number of inputs, the
parameters given to the network are the distance d from the robot guide
point to the path, the angle δ between the robot heading and the path
orientation and an average of the inverse of the curvature of the future
desired points (1/ρ) (see Figure 12.28). The last seven inputs correspond
to the distances measured directly by the ring of sonar sensors. This fact
avoids the high-level process that usually has to be carried out with sen-

378 12 Applications

-

+

ERROR

Global path
planning

and heading
Robot position

Obstacle position

Sonar model
SONAR

MEASURES

CONTROLLER

PREDICTIVE

SIMULATED

SIMULATED

OUTPUTS

A.N.N.

OUTPUTS

MODULE

BACKPROPAGATION

M
od

if
ic

at
io

n
of

A
.N

.N
. w

ei
gh

ts

Fig. 12.32. ANN supervised training scheme

sor data to provide useful environment information, which is a difficult
and high computation time-consuming phase. The output layer consists
of two nodes which correspond to the control commands (the linear and
angular robot velocities).

• input vector generation module. A symmetry analysis is made here to
reduce the number of training patterns needed to provide good perfor-
mance of the neural network controller [78]. Also a normalization is made
which leads to better performance at the NN training stage.

• output vector generation module. This performs the inverse transforma-
tion of that made at the symmetry input module when required.

• reference path coordinates transformation module. The desired path co-
ordinates are transformed from a global reference system to a local refer-
ence system, attached to the mobile robot. This avoids the use of addi-
tional NN inputs for the robot position and heading, which are implicitly
given to the NN in the reference path.

• past control actions. These are needed for NN to consider the delay time
of the robot system.

• sonar range measurements. Their measurements are directly used as in-
puts for NN. ANN learns from the input patterns set, where different situa-
tions of static obstacles are present. Thus, there is no need for a high-level
sonar measurement preprocess, which guarantees real time.

12.5.6 Training Phase

The controller has been trained using a classic supervised training scheme as
the backpropagation algorithm (see Figure 12.32). The training patterns set

12.5 Mobile Robot 379

have been obtained from an offline simulation system. For the minimization
phase a Powell iterative algorithm has been used, where constraints on the
control variables are considered. Also, the sonar system measurements have
been simulated using a sonar model where the objects in the environment
are described as a set of geometric primitives such as planes, cylinders, edges
and corners.

12.5.7 Results

The proposed control structure has been tested with the LABMATE mobile
robot.

The sampling interval T was given a value of 2 s. The value of N chosen
for the MPC was made equal to 7, thus N1, N2 and Nu were given the values
2, 7 and 6, respectively, and the weighting factors were given the following
values: λ1 = 35, λ2 = 5 and ψ = 0.5. The maximum and minimum linear and
angular velocities were given the following values, respectively: 0 m/s, 0.4
m/s, -20 o/s and 20 o/s. For Δs, a value of 0.15 m was chosen, which leads to
an average linear robot velocity of 0.25 m/s.

Figure 12.33 shows some of the experimental results obtained in the labo-
ratory when applying the proposed algorithm to the LABMATE mobile robot.
Although it is drawn as straight lines in the figures, the real environment
includes laboratory objects such as chairs, tables, etc. This shows the robust-
ness of the neural controller as it has been trained with only a set of geometric
primitives such as planes, corners, etc.

Figure 12.33(a) shows the desired trajectory and the real trajectory through
the laboratory where unexpected static obstacles have been positioned. It is
important to notice how the mobile robot returns to the reference path after
an unexpected obstacle has been avoided.

Figure 12.33(b) shows an experiment where an unexpected obstacle is
situated in the path that the robot must follow to avoid a previous unex-
pected obstacle. Again, the controller performance is quite good. Finally, Fig-
ure 12.33(c) shows another test for a path where small curvature radii are
specified. The tracking error observed in Figure 12.33(c) is due to saturation
in the angular velocity and to the penalization chosen for the control actions.

More details about the implementation of the controller can be found in
[78], [79].

380 12 Applications

-2.0 0.0 2.0 4.0 6.0
-6.0

-4.0

-2.0

0.0

2.0

4.0

Y
 (

m
)

X (m)a)

0.0 2.0 4.0 6.0
-1.0

0.0

1.0

2.0

3.0

X (m)b)

Y
 (

m
)

-3.0 -1.0 1.0 3.0 5.0
-5.0

-3.0

-1.0

1.0

X (m)c)

Y
 (

m
)

Fig. 12.33. Experimental results of the neural predictive controller for mobile robot
navigation

A

Revision of the Simplex Method

The Simplex method [129] is the algorithm most used for solving linear pro-
gramming problems, such as the ones appearing when using a 1-norm MPC.
The Simplex algorithm finds successive and better feasible solutions at the
extreme points of the feasible region until it stops, in a finite number of steps,
either at the optimum or finds that the optimal solution is not bound by the
feasible region. This appendix is dedicated to revising the basic ideas behind
the Simplex method.

A.1 Equality Constraints

The problem of minimizing a linear function subject to equality constraints
will be considered first

Minimize ctx
subject to Ax = b

x ≥ 0
(A.1)

where A is a q × p real matrix with q < p and full rank.
If the equality constraint equation is multiplied by a matrix T and the

columns of A and corresponding components of x are interchanged in such
a way that T A = [Iq×q N] and T b = b, the point x = [xt

b xn]t = [b
t
0] is a basic

feasible solution. The components xb are called basic variables whereas the re-
maining components (corresponding to N) are called nonbasic variables. Note
that this can be done by applying elementary row transformations to matrix
A and interchanging the columns of A (and the corresponding x variables)
to take matrix A to the form [I N]. If the same transformations are applied to
I and b, matrix T and vector b are obtained.

The objective function takes the value z0 = ct
bxb + ct

nxn = ct
bxb. The basic

variables can be expressed as a function of the nonbasic variables from the
transformed constraint equation:

xb = b−Nxn

382 A Revision of the Simplex Method

by substituting in the cost function

z = ctx = ct
b(b−Nxn) + ct

nxn = z0 + (ct
n − ct

bN)xn

As xn ≥ 0, the objective function decreases if any component of (ct
n − ct

bN)i

is negative and the corresponding nonbasic variable xni
increases. This gives

an indication of how to obtain a more feasible solution and is the basic idea
behind the algorithm. The problem is determining which of the nonbasic
variables should be increased (become basic) and which of the basic variables
should leave the basis.

This is done as follows:

1. Find an initial basic solution.

2. Form the following tableau:
xt

b xt
n

xb I N b

J 0 cn − ct
bN ct

bb

3. If cn − ct
bN ≥ 0 then STOP, the actual basic solution is optimal.

4. Choose one of the negative elements (say, the jth) of row cn − ct
bN (the

most negative is usually chosen).
5. Choose i such that the ratio bi/Nij is the minimum for all Nij > 0. If there

are no nonnegative elements in that column of the tableau, the problem
is not bounded.

6. Make xnj
a basic variable and xbi

a non basic variable by pivoting:
a) Divide the ith row of the tableau by Nij .
b) Make zero the remaining elements of the jth column of the nonbasic

variable block by multiplying the resulting the ith row by Nkj and
subtracting it from the kth row.

7. Go to step 2.

A.2 Finding an Initial Solution

The Simplex method starts from an initial feasible extreme point. An initial
point can be found by applying elementary row transformations to matrix A
and vector b and interchanging the columns of A (and the corresponding x
variables) to take matrix A to the form [I N].

A solution can be obtained by using the Simplex algorithms in differ-
ent ways. One way, known as the two-phase method, consists of solving the
following augmented system:

minimize 1txa

subject to xa + Ax = b
x ≥ 0, xa ≥ 0

(A.2)

Note that the constraint matrix is now [IA] and that the obvious solu-
tion x = 0 and xa = b is an extreme point of the augmented problem. The

A.3 Inequality Constraints 383

variables xa are called artificial variables and are all in the basis for the initial
solution. If the algorithm does not find a solution with xa = 0, the problem
is not feasible. Otherwise, the solution constitutes an initial solution to the
original problem and the second phase of the algorithm can be started for
the original problem with this solution.

Another way of dealing with initial conditions, known as the big-M
method [15], solves the whole problem in only one phase. Artificial variables
are also introduced as in the two-phase method but a term is added to the
objective function penalizing the artificial variables with high weighting fac-
tors in order to force artificial variables out of the basis. The problem is now
stated as:

minimize ctx + mtxa

subject to xa + Ax = b
x ≥ 0, xa ≥ 0

(A.3)

If all the artificial variables are out of the basis at termination, a solution to
the optimization problem has been found. Otherwise, if the variable entering
the basis is the one with the most positive cost coefficient, we can conclude
that the problem has no feasible solution.

A.3 Inequality Constraints

Consider the problem:
minimize ctx
subject to Ax ≤ b

x ≥ 0
(A.4)

The Simplex method can be used to solve inequality constraint problems by
transforming the problem into the standard format by introducing a vector
of variables, xs ≥ 0, called slack variables, such that the inequality constraint
Ax ≤ b is transformed into the equality constraint Ax + xs = b. The problem
can now be stated in the standard form as:

minimize ctx

subject to [A I]
[

x
xs

]
= b[

x
xs

]
≥ 0

(A.5)

The number of variables is now q + p and the number of constraints is q.
Notice that the form of the equality constraint matrix is [A I] and the point
[xt xt

s] = [0 bt] is an initial basic solution to this problem.

Duality

The number of pivoting operations needed to solve a standard linear pro-
gramming problem is on the order of q [129], while the number of floating-
point operations needed for each pivoting operation is on the order of q × p.

384 A Revision of the Simplex Method

The number of floating-point operations needed to solve a standard LP prob-
lem is therefore on the order of (q2 + q × p). For the inequality constraint
problem, the number of variables is increased by the number of slack vari-
ables which is equal to the number of inequality constraints. In the linear
programming problems resulting from robust MPC, all of the constraints are
inequality constraints, so the number of operations needed is on the order
of q(q × (q + p)) = q3 + q2p. That is, it is linear in the number of variables
and cubic in the number of inequality constraints. The problem can be trans-
formed into an LP problem with a different and more convenient structure
using duality.

Given the problem (primal)

minimize ctx
subject to Ax ≤ b

x ≥ 0
(A.6)

the dual problem is defined as [129]:

minimize −btλ
subject to −Atλ ≤ −c

λ ≥ 0
(A.7)

The number of operations required by the dual problem is on the order
of p(p× (p + q)) = p3 + p2q. That is, it is cubic in the number of variables and
linear in the number of inequality constraints. So, for problems with more
inequality constraints than variables, solving the dual problem will require
less computation than the primal.

The solutions to both problems are obviously related (Bazaraa and Shetty
[15], theorem 6.6.1.). If xo and λo are the optimal of the primal and dual prob-
lem then, ctxo = btλo (the cost is identical) and (ct−λt

oA)xo = 0. If the primal
problem has a feasible solution and has an unbounded objective value the
dual problem is unfeasible. If the dual problem has a feasible solution and an
unbounded objective value the primal problem is unfeasible.

B

Dynamic Programming and Linear Quadratic
Optimal Control

Model Predictive Control is closely related to Linear Quadratic (LQ) Optimal
Control. This appendix shows the main characteristics of LQ and its relation
to MPC.

Dynamic Programming can be used to find the solution of the LQ prob-
lem, since it provides an efficient means for sequential decision making. It is
based on Bellman’s principle of optimality [16], which states that an optimal
policy has the property that whatever the initial state and the initial decision
are, the remaining decisions must constitute an optimal policy with regard
to the state resulting from the first decision. Notice that a decision is the con-
trol action at a particular time instant while policy is equivalent to the control
sequence.

If the goal is to move the process from an initial state to a final state with
minimum cost, it is clear that the optimal solution can be obtained calculat-
ing the cost associated to every possible route and choosing the route with
minimum cost. This implies an evaluation of all possible alternatives. How-
ever, the problem can be solved by defining the cost associated to a particular
state as the sum of two terms: the part attributable to the current decision and
the part representing the minimum value of all future costs, starting with the
state which results from the first decision.

The principle of optimality replaces a choice among all alternatives by a
sequence of decisions among fewer alternatives. Dynamic Programming al-
lows one to concentrate on a sequence of current decisions rather than being
concerned about all decisions simultaneously.

B.1 Linear Quadratic Problem

When the cost is quadratic and the system is linear, the problem can be solved
analytically and the controller results in a linear state feedback.

The process is modelled by

386 B Dynamic Programming and Linear Quadratic Optimal Control

x(t + 1) = Ax(t) + Bu(t) (B.1)

with x(0) known, and the objective is to find the control sequence u(0), u(1),
. . ., u(N − 1) that drives the process from the initial to the final state mini-
mizing the cost given by

J = x(N)T QNx(N) +
N−1∑
k=0

x(k)T Qkx(k) + u(k)Rku(k)

where Qk are symmetric positive semidefinite matrices and Rk > 0.
The procedure to obtain the control sequence is based on solving the

problem in reverse sense, that is, start computing u(N − 1) and finishing
with u(0). Let us define I∗1 as the optimal cost of the last stage (from state
x(N − 1) to the end), which is expressed as

I∗1 (x(N − 1)) = min
u(N−1)

x(N)T QNx(N) + u(N − 1)RN−1u(N − 1)

and can be computed analytically deriving with respect to u(N − 1), giving:

u(N − 1) = −(BT QNB + R)−1BT QNAx(N − 1) = KN−1x(N − 1) (B.2)

Therefore, the control action is a linear feedback of the state vector. The
last stage cost is then given by:

I∗1 = (Ax + BKN−1x)T QN (Ax + BKN−1x) + xT KT
N−1RN−1KN−1x

Defining

PN−1 = (A + BKN−1)T QN (A + BKN−1) + KT
N−1RN−1KN−1

this cost can be written as a quadratic form of the state:

I∗1 = x(N − 1)T PN−1x(N − 1)

At this point Bellman’s optimality principle is used to calculate the next cost:

I∗2 = min
u(N−2)

x(N − 1)T QN−1x(N − 1) + u(N − 2)RN−2u(N − 2) + I∗1

= min
u(N−2)

x(N − 1)T (QN−1 + PN−1)x(N − 1) + u(N − 2)RN−2u(N − 2)

As x(N − 1) can be expressed as a function of x(N − 2) and u(N − 2) using
(B.1), I∗2 depends on these last values and the optimal control action can be
obtained analytically in the same fashion as (B.2); that is,

u(N − 2) = KN−2x(N − 2)

This procedure can be extended to all the states leading to the general ex-
pression of the control law

B.2 Infinite Horizon 387

u(k) = Kkx(k) with Kk = −(BT Pk+1B + R)−1BT Pk+1A (B.3)

and the symmetric semidefinite matrix Pk is given by:

Pk = (A + BKk)T Pk+1(A + BKk) + KT
k RkKk + Qk

which after a few manipulations is transformed into:

Pk = AT Pk+1A + AT Pk+1BKk + Qk (B.4)

This is called the discrete-time Riccati equation and can be used to compute the
value of Pk recursively starting with PN = QN .

The problem is solved backwards, starting at time N and calculating u(k)
using (B.3) and matrix P from (B.4).

As the controller is a linear feedback of the state, the use of a state estima-
tor or observer is required to compute the control action. If the observer is a
Kalman filter, then it gives rise to the well-known control strategy called Lin-
ear Quadratic Gaussian (LQG). A detailed study of the relationship between
MPC (especially GPC) and LQG can be found in [27].

B.2 Infinite Horizon

In some situations it is justifiable to assume that the terminal time is infinitely
far in the future. This so-called infinite horizon case leads to a constant feed-
back gain matrix, which can be calculated from (B.4) considering that the
weighting matrices are constant. Then Pk → P∞ ≥ 0 and is calculated using
the algebraic Riccati equation:

P∞ = AT P∞A + AT P∞BK∞ + Q

Now the control action becomes the constant state feedback law:

u(k) = K∞x(k) with K∞ = −(BT P∞B + R)−1BT P∞A

It can be proved that this control law is stabilizing by defining the Lyapunov
function as V (x(k)) = x(k)T P∞x(k).

The close relationship between LQ and MPC can be used to derive sta-
bility properties of MPC based on the well-known LQ properties, as shown
in [27]. However, there are some differences between the two methods, the
main one being that LQ does not take constraints into account. Also the cost
function, although similar, is not exactly the same, since MPC uses increments
in the control actions and LQ weights the control actions. The predictive con-
trol problem can be put in the standard LQ framework using the incremental
state space model of Equation (2.8) with x(t) = [x(t) u(t− 1)]T . In this case,
the new error weighting matrix is:

388 B Dynamic Programming and Linear Quadratic Optimal Control

Q =
[

Q 0
0 0

]
Notice that the control weight Rk remains unchanged but now it has the
meaning of weights on the control increments. The concept of control hori-
zon does not exist in LQ but can easily be added setting Rk = ∞ for k ≥ Nu.

References

1. T. Alamo, D.R. Ramirez, and E.F. Camacho. Efficient Implementation of Min-
Max Model Predictive Control with Bounded Uncertainties. In Preprints IEEE
CCA’02. Glasgow. UK., 2002.

2. P. Albertos and R. Ortega. On Generalized Predictive Control: Two Alternative
Formulations. Automatica, 25(5):753–755, 1989.

3. F. Allgöwer, T.A. Badgwell, J.S. Qin, J.B. Rawlings, and S.J. Wright. Advances in
Control (Highlights of ECC 99), chapter Nonlinear Predictive Control and Moving
Horizon Estimation - An Introductory Overview. Springer, 1999.

4. A.Y. Allidina and F.M. Hughes. Generalised Self-tuning Controller with Pole
Assignment. Proceedings IEE, Part D, 127:13–18, 1980.

5. J.C. Allwright. Advances in Model-Based Predictive Control, chapter On min-max
Model-Based Predictive Control. Oxford University Press, 1994.

6. T. Alvarez and C. Prada. Handling Infeasibility in Predictive Control. Computers
and Chemical Engineering, 21:577–582, 1997.

7. T. Alvarez, M. Sanzo, and C. Prada. Identification and Constrained Multivari-
able Predictive Control of Chemical Reactors. In 4th IEEE Conference on Control
Applications, Albany, pages 663–664, 1995.

8. P. Ansay and V. Wertz. Model Uncertainties in GPC: A Systematic Two-step
Design. In Proceedings of the 3rd European Control Conference, Brussels, 1997.

9. M.R. Arahal, M. Berenguel, and E.F. Camacho. Neural Identification Applied to
Predictive Control of a Solar Plant. Control Engineering Practice, 6:333–344, 1998.

10. L.V.R. Arruda, R. Lüders, W.C. Amaral, and F.A.C Gomide. An Object-oriented
Environment for Control Systems in Oil Industry. In Proceedings of the 3rd Con-
ference on Control Applications, Glasgow, UK, pages 1353–1358, 1994.

11. K.J. Aström and B. Wittenmark. Computer Controlled Systems. Theory and Design.
Prentice-Hall. Englewood Cliffs, NJ, 1984.

12. K.J. Aström and B. Wittenmark. Adaptive Control. Addison-Wesley, 1989.
13. R. Babuska, J. Oosterhoff, A. Oudshoorn, and P.M. Brujin. Fuzzy Self-tuning PI

Control of pH in Fermentation. Engineering Applications of Artificial Intelligence,
15:3–15, 2002.

14. T.A. Badgwell and S.J. Qin. Nonlinear Predictive Control, chapter Review of Non-
linear Model Predictive Control Applications. IEE Control Engineering series,
2001.

15. M.S. Bazaraa and C.M. Shetty. Nonlinear Programming. Wiley, 1979.

390 References

16. R. Bellman and S.E. Dreyfus. Applied Dynamic Programming. Princeton Univer-
sity Press, Princeton, NJ, 1962.

17. A. Bemporad. Reducing Conservativeness in Predictive Control of Constrained
Systems with Disturbances. In IEEE Conference on Decision and Control, 1998.

18. A. Bemporad, F. Borrelli, and M. Morari. Explicit Solution of LP-based Model
Predictive Control. In 39th IEEE Conference on Decision and Control, Sydney, Aus-
tralia, 2000.

19. A. Bemporad, F. Borrelli, and M. Morari. Robust Model Predictive Control:
Piecewise Linear Explicit Solution. In Proc. European Control Conference, ECC’01,
August 31 - September 3 2001.

20. A. Bemporad, F. Borrelli, and M. Morari. Model Predictive Control Based on
Linear ProgrammingThe Explicit Solution. IEEE Trans. on Automatic Control,
47(12):1974–1985, 2002.

21. A. Bemporad, F. Borrelli, and M. Morari. Min-max Control of Constrained Un-
certain Discrete-time Linear Systems. IEEE Tran. on Automatic Control, 48(9):1600
– 1606, 2003.

22. A. Bemporad and M. Morari. Control of Systems Integrating Logic, Dynamics
and Constraints. Automatica, 35(3):407–427, 1999.

23. A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The Explicit Linear
Quadratic Regulator for Constrained Systems. Automatica, 38(1):3–20, 2002.

24. M. Berenguel, M.R. Arahal, and E.F. Camacho. Modelling Free Response of a So-
lar Plant for Predictive Control. Control Engineering Practice, 6:1257–1266, 1998.

25. M. Berenguel, E.F. Camacho, and F.R. Rubio. Simulation Software Package for the
Acurex Field. Departamento de Ingenierı́a de Sistemas y Automática, ESI Sevilla
(Spain), Internal Report, 1994.

26. L. T. Biegler. Nonlinear Model Predictive Control, chapter Efficient Solution of Dy-
namic Optimization and NMPC Problems. Birkhäuser, 2000.

27. R.R. Bitmead, M. Gevers, and V. Wertz. Adaptive Optimal Control. The Thinking
Man’s GPC. Prentice-Hall, 1990.

28. H.H.J. Bloemen, T.J.J. van den Boom, and H.B. Verbruggen. Model-based Predic-
tive Control for Hammerstein systems. In Proceedings of the 39th IEEE Conference
on Decision and Control. Sydney, Australia, 2000.

29. M. Bodson and S.C. Douglas. Adaptive Algorithms for the Rejection of Sinu-
soidal Disturbances with Unknown Frequency. Automatica, 33(12):2213–2221,
1997.

30. C. Bordons. Control Predictivo Generalizado de Procesos Industriales: Formulaciones
Aproximadas. PhD thesis, Universidad de Sevilla, 1994.

31. C. Bordons and J.R. Cueli. Modelling and Predictive Control of an Olive Oil
Mill. In Proceedings European Control Conference, Porto, September 2001.

32. C. Bordons and J.R. Cueli. Predictive Controller with Estimation of Measur-
able Disturbances. Application to an Olive Oil Mill. Journal of Process Control,
14(3):305–315, 2004.

33. C. Bordons and F. Dorado. Non-linear Models for a Gypsum Kiln. A Compara-
tive Analysis. In Proceedings of the IFAC Triennal World Congress, Barcelona, Spain,
2002.

34. F. Borrelli, A. Bemporad, and M. Morari. A Geometric Algorithm for Multi-
Parametric Linear Programming. Journal of Optimization Theory and Applications,
118(3):515–540, 2003.

35. S. Boyd, L. El Ghaouni, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities
in Systems and Control Theory. SIAM Books, 1994.

References 391

36. E.H. Bristol. On a New Measure of Interaction for Multivariable Process Control.
IEEE Trans. on Automatic Control, 11(1):133–4, 1966.

37. A.E. Bryson. Control of Spacecraft and Aircraft. Princeton University Press, NJ,
1994.

38. E.F. Camacho. Constrained Generalized Predictive Control. IEEE Trans. on Au-
tomatic Control, 38(2):327–332, 1993.

39. E.F. Camacho and M. Berenguel. Advances in Model-Based Predictive Control,
chapter Application of Generalized Predictive Control to a Solar Power Plant.
Oxford University Press, 1994.

40. E.F. Camacho, M. Berenguel, and C. Bordons. Adaptive Generalized Predictive
Control of a Distributed Collector Field. IEEE Trans. on Control Systems Technol-
ogy, 2:462–468, 1994.

41. E.F. Camacho, M. Berenguel, and F.R. Rubio. Application of a Gain Scheduling
Generalized Predictive Controller to a Solar Power Plant. Control Engineering
Practice, 2(2):227–238, 1994.

42. E.F. Camacho, M. Berenguel, and F.R. Rubio. Advanced Control of Solar Power
Plants. Springer-Verlag, London, 1997.

43. E.F. Camacho and C. Bordons. Implementation of Self Tuning Generalized Pre-
dictive Controllers for the Process Industry. Int. Journal of Adaptive Control and
Signal Processing, 7:63–73, 1993.

44. E.F. Camacho and C. Bordons. Model Predictive Control in the Process Industry.
Springer-Verlag, 1995.

45. E.F. Camacho, F.R. Rubio, and F.M. Hughes. Self-tuning Control of a Solar Power
Plant with a Distributed Collector Field. IEEE Control Systems Magazine, 2(2):72–
78, 1992.

46. R.G. Cameron. The Design of Multivarible Systems. In V Curso de Automática en
la Industria, La Rábida, Huelva, Spain, 1985.

47. P.J. Campo and M. Morari. Robust Model Predictive Control. In American Control
Conference, Minneapolis, Minnesota, 1987.

48. H. Chen and F. Allgöwer. A Quasi-Infinite Horizon Nonlinear Model Predictive
Control Scheme for Constrained Nonlinear Systems. In Proceedings 16th Chinese
Control Conference, Qindao, 1996.

49. H. Chen and F. Allgöwer. A Quasi-infinite Horizon Nonlinear Predictive Con-
trol Scheme with Guaranteed Stability. Automatica, 34(10):1205–1218, 1998.

50. T.L. Chia and C.B. Brosilow. Modular Multivariable Control of a Fractionator.
Hydrocarbon Processing, pages 61–66, 1991.

51. Y. Chikkula, J.H. Lee, and B. Ogunnaike. Dynamic Scheduled Model Predictive
Control Using Hinging Hyperplane Models. AIChE Journal, 44:1691–1724, 1998.

52. L. Chisci, J. A. Rossiter, and G. Zappa. Systems with persistent disturbances:
Predictive control with restricted constraints. Automatica, 37:1019–1028, 2001.

53. C.M. Chow and D.W. Clarke. Advances in Model-Based Predictive Control, chapter
Actuator nonlinearities in predictive control. Oxford University Press, 1994.

54. D.W. Clarke. Application of Generalized Predictive Control to Industrial Pro-
cesses. IEEE Control Systems Magazine, 122:49–55, 1988.

55. D.W. Clarke and P.J. Gawthrop. Self-tuning Controller. Proceedings IEE, 122:929–
934, 1975.

56. D.W. Clarke and P.J. Gawthrop. Self-tuning Control. Proceedings IEEE, 123:633–
640, 1979.

57. D.W. Clarke and C. Mohtadi. Properties of Generalized Predictive Control. Au-
tomatica, 25(6):859–875, 1989.

392 References

58. D.W. Clarke, C. Mohtadi, and P.S. Tuffs. Generalized Predictive Control. Part I.
The Basic Algorithm. Automatica, 23(2):137–148, 1987.

59. D.W. Clarke, C. Mohtadi, and P.S. Tuffs. Generalized Predictive Control. Part II.
Extensions and Interpretations. Automatica, 23(2):149–160, 1987.

60. D.W. Clarke, E. Mosca, and R. Scattolini. Robustness of an Adaptive Predictive
Controller. In Proceedings of the 30th Conference on Decision and Control, pages
979–984, Brighton, England, 1991.

61. D.W. Clarke and R. Scattolini. Constrained Receding-horizon Predictive Con-
trol. Proceedings IEE, 138(4):347–354, july 1991.

62. C.R. Cutler and B.C. Ramaker. Dynamic Matrix Control- A Computer Control
Algorithm. In Automatic Control Conference, San Francisco, 1980.

63. P.B. Deshpande and R.H. Ash. Elements of Computer Process Control. ISA, 1981.
64. F.J. Doyle, R.K. Pearson, and B.A. Ogunnaike. Identification and Control Using

Volterra Models. Springer, 2001.
65. J.C. Doyle and G. Stein. Multivariable Feedback Design: Concepts for a Classi-

cal/Modern Synthesis. IEEE Trans. on Automatic Control, 36(1):4–16, 1981.
66. G. Ferretti, C. Manffezzoni, and R. Scattolini. Recursive Estimation of Time De-

lay in Sampled Systems. Automatica, 27(4):653–661, 1991.
67. R. Findeisen, L. Imsland, F. Allgöwer, and B.A. Foss. State and Output Nonlinear

Model Predictive Control: An Overview. European Journal of Control, 9:190–206,
2003.

68. C.A. Floudas. Non-Linear and Mixed Integer Optimization. Oxford Academic
Press, 1995.

69. Y.K. Foo and Y.C. Soh. Robust Stability Bounds for Systems with Structured and
Unstructured Perturbations. IEEE Trans. on Automatic Control, 38(7), 1993.

70. J.B. Froisy and T. Matsko. IDCOM-M Application to the Shell Fundamental
Control Problem. In AIChE Annual Meeting, 1990.

71. T. Gal. Postoptimal Analyses, Parametric Programming and Related Topics. McGraw-
Hill, 1979.

72. T. Gal and J. Nedona. Multi-parametric Linear Programming. Management Sci-
ence, 18:406–422, 1972.

73. C.E. Garcı́a, D.M. Prett, and M. Morari. Model Predictive Control: Theory and
Practice-a Survey. Automatica, 25(3):335–348, 1989.

74. W. Garcı́a-Gabı́n. Control Predictivo Multivariable para Sistemas de Ceros de Trans-
misión en el Semiplano Derecho. PhD thesis, Universidad de Sevilla, 2002.

75. W. Garcı́a-Gabı́n and E.F. Camacho. Application of Multivariable GPC to a Four
Tank Process with Unstable Transmission Zeros. In Conference on Control Appli-
cations, Glasgow, Scotland, Sep 2002.

76. W. Garcı́a-Gabı́n, E.F. Camacho, and D. Zambrano. Multivariable Model Predic-
tive Control of Process with Unstable Transmission Zeros. In American Control
Conference, Anchorage, AK, May 2002.

77. J. Gómez Ortega and E.F. Camacho. Neural Network MBPC for Mobile Robots
Path Tracking. Robotics and Computer Integrated Manufacturing Journal, 11(4):271–
278, December 1994.

78. J. Gómez Ortega and E.F. Camacho. Mobile Robot Navigation in a Partially
Structured Environment using Neural Predictive Control. Control Engineering
Practice, 4:1669–1679, 1996.

79. J. Gómez Ortega and E.F. Camacho. Neural Predictive Control for Mobile Robot
Navigation in a Partially Structured Static Environment. In Proceedings of the
13th IFAC World Congress, San Francisco, CA, june 1996.

References 393

80. G. Goodwin and K. Sin. Adaptive Filtering, Predicition and Control. Prentice-Hall,
1984.

81. F. Gordillo and F.R. Rubio. Self-tuning Controller with LQG/LTR Structure. In
Proceedings 1st European Control Conference, Grenoble, pages 2159–2163, july 1991.

82. J.R. Gossner, B. Kouvaritakis, and J.A. Rossiter. Stable Generalized Predictive
Control with Constraints and Bounded Disturbances. Automatica, 33:551–568,
1997.

83. C. Greco, G. Menga, E. Mosca, and G. Zappa. Performance Improvement of Self
Tuning Controllers by Multistep Horizons: The MUSMAR Approach. Automatica,
20:681–700, 1984.

84. M.J. Grimble. Generalized Predictive Optimal Control: an Introduction to the
Advantages and Limitations. International Journal of Systems Science, 23(1):85–98,
1992.

85. P. Grosdidier, J.B. Froisy, and M. Hamman. IFAC Workshop on Model Based Process
Control, chapter The IDCOM-M Controller. Pergamon Press, Oxford, 1988.

86. R. Haber, R. Bars, and O. Lengvel. Long-range Predictive Control of the Para-
metric Hammerstein Model. In Proceedings of the IFAC NOLCOS’98, pages 434–
439, Enschede, The Netherlands, 1998.

87. W.P.M.H. Heemels, B. De Schutter, and A. Bemporad. Equivalence of Hybrid
Dynamical Models. Automatica, 37(7):1085–1091, 2001.

88. M. Henson. Nonlinear Model Predictive Control: Current Status and Future
Directions. Computers and Chemical Engineering, pages 187–202, 1998.

89. M. Henson and D.E. Seborg. Adaptive Nonlinear Control of a pH Neutralization
Process. IEEE Transactions on Control Systems Technology, 2(3):169–182, 1994.

90. E. Hernandez and Y. Arkun. A Nonlinear DMC Controller: Some Modeling and
Robustness Considerations. In Proceedings of the American Control Conference,
Boston, MA, 1991.

91. F.J. Hill and G.R. Peterson. Introduction to switching theory and logical design. John
Wiley and Sons, Inc., 1968.

92. K. Hornik, M. Stinchombe, and H. White. Multilayer Feedforward Networks
are Universal Approximators. Neural networks, pages 359–366, 1989.

93. B. Hu and A. Linnemann. Towards Infinite-horizon Optimality in Nonlinear
Model Predictive Control. IEEE Transactions on Automatic Control, 47(4):679–682,
2002.

94. Y. K. Hwang and N. Ahuja. A Potential Field Approach to Path Planning. IEEE
Transactions on Robotics and Automation, 8(1):23–32, February 1992.

95. R. Isermann. Digital Control Systems. Springer-Verlag, 1981.
96. A. Jadbabaie, J. Yu, and J. Hauser. Unconstrained Receding-Horizon Control of

Nonlinear Systems. IEEE Transactions on Automatic Control, 46(5):776–783, 2001.
97. J. Jiang. Optimal Gain Scheduling Controller for a Diesel Engine. IEEE Control

Systems Magazine, pages 42–48, 1994.
98. Y. Jin, X. Sun, and C. Fang. Adaptive Control of Bilinear Systems with Bounded

Disturbances, and its Application. Control Engineering Practice, pages 815–822,
1996.

99. T.A. Johansen, J.T. Evans, and B.A. Foss. Identification of Nonlinear System
Structure and Parameters Using Regime Decomposition. Automatica, pages 321–
326, 1995.

100. K.H. Johansson. The Quadruple-Tank Process: A Multivariable Laboratory Pro-
cess with an Adjustable Zero. IEEE Transaction on Control Systems Technology,
8(3):456–465, May 2000.

394 References

101. A. Kalt. Distributed Collector System Plant Construction Report. IEA/SSPS
Operating Agent DFVLR, Cologne, 1982.

102. M.R. Katebi and M.A. Johnson. Predictive Control Design for Large Scale Sys-
tems. In IFAC Conference on Integrated System Engineering, pages 17–22, Baden-
Baden, Germany, 1994.

103. S.S. Keerthi and E.G. Gilbert. Optimal Infinite-horizon Feedback Laws for a Gen-
eral Class of Constrained Discrete-time Systems: Stability and Moving-horizon
Approximations. J. Optim. Theory Appl., 57(2):265–293, 1988.

104. E. Kerrigan. Robust Constraint Satisfaction: Invariant Sets and Predictive Control.
PhD thesis, University of Cambridge, 2000.

105. R.M.C. De Keyser. Basic Principles of Model Based Predictive Control. In 1st

European Control Conference, Grenoble, pages 1753–1758, july 1991.
106. R.M.C. De Keyser. A Gentle Introduction to Model Based Predictive Control. In

PADI2 International Conference on Control Engineering and Signal Processing, Piura,
Peru, 1998.

107. R.M.C. De Keyser and A.R. Van Cuawenberghe. Extended Prediction Self-
adaptive Control. In IFAC Symposium on Identification and System Parameter Esti-
mation, York,UK, pages 1317–1322, 1985.

108. R.M.C. De Keyser, Ph.G.A. Van de Velde, and F.G.A. Dumortier. A Compara-
tive Study of Self-adaptive Long-range Predictive Control Methods. Automatica,
24(2):149–163, 1988.

109. M.V. Kothare, V. Balakrishnan, and M. Morari. Robust Constrained Predictive
Control using Linear Matrix Inequalities . Automatica, 32:1361–1379, 1996.

110. B. Kouvaritakis, M. Cannon, and J.A. Rossiter. Stability, Feasibility, Optimality
and the Number of Degrees of Freedom in Constrained Predictive Control. In
Symposium on Non-linear Predictive Control. Ascona, Switzerland, 1998.

111. B. Kouvaritakis, M. Cannon, and J.A. Rossiter. Non-linear Model Based Predic-
tive Control. International Journal of Control, 72(10):919–928, 1999.

112. B. Kouvaritakis, J.A. Rossiter, and A.O.T Chang. Stable Generalized Predic-
tive Control: An Algorithm with Guaranteed Stability. Proceedings IEE, Part D,
139(4):349–362, 1992.

113. K. Krämer and H. Ubehauen. Predictive Adaptive Control. Comparison of Main
Algorithms. In Proceedings 1st European Control Conference, Grenoble, pages 327–
332, julio 1991.

114. A.G. Kutnetsov and D.W. Clarke. Advances in Model-Based Predictive Control,
chapter Application of Constrained GPC for Improving Performance of Con-
trolled Plants. Oxford University Press, 1994.

115. W.H. Kwon and A.E. Pearson. On Feedback Stabilization of Time-Varying Dis-
crete Linear Systems. IEEE Trans. on Automatic Control, 23:479–481, 1979.

116. J.H. Lee, M. Morari, and C.E. Garcı́a. State-space Interpretation of Model Pre-
dictive Control. Automatica, 30(4):707–717, 1994.

117. J.H. Lee and Z. Yu. Worst-case Formulations of Model Predictive Control for
Systems with Bounded Parameters. Automatica, 33(5):763–781, 1997.

118. M.A. Lelic and P.E. Wellstead. Generalized Pole Placement Self Tuning Con-
troller. Part 1. Basic Algorithm. International J. of Control, 46(2):547–568, 1987.

119. M.A. Lelic and M.B. Zarrop. Generalized Pole Placement Self Tuning Controller.
Part 2. Application to Robot Manipulator Control. International J. of Control,
46(2):569–601, 1987.

120. C.E. Lemke. Mathematics of the Decision Sciences, chapter On Complementary
Pivot Theory. G.B. Dantzig and A.F. Veinott (Eds.), 1968.

References 395

121. J.M. Lemos and E. Mosca. A Multipredictor-based LQ Self-tuning Controller.
In IFAC Symp. on Identification and System Parameter Estimation, York, UK, pages
137–141, 1985.

122. W. S. Levine. The Control Handbook, chapter Volterra and Fliess Series Expansions
for Nonlinear Systems. CRC/IEEE Press, 1996.

123. W.S. Levine. The Control Handbook. IEEE Press, Boca de Ratón, 1996.
124. D. Limon, T. Alamo, and E.F. Camacho. Enlarging the domain of attraction of

MPC controller using invariant sets. In Proceedings of the IFAC World Congress,
2002.

125. D. Limon, T. Alamo, and E.F. Camacho. Input-to-state Stable MPC for Con-
strained Discrete-time Nonlinear Systems with Bounded Additive Uncertain-
ties. In IEEE Conference on Decision and Control, 2002.

126. D. Limon, T. Alamo, and E.F. Camacho. Stable Constrained MPC without Ter-
minal Constraint. In Proceedings of the American Control Conference, 2003.

127. D.A. Linkers and M. Mahfonf. Advances in Model-Based Predictive Control, chap-
ter Generalized Predictive Control in Clinical Anaesthesia. Oxford University
Press, 1994.

128. L. Ljung. System Identification. Theory for the user. Prentice-Hall, 1987.
129. D.E. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, 1984.
130. J. Lunze. Robust Multivariable Feedback Control. Prentice-Hall, 1988.
131. J.M. Maciejowski. Predictive Control with Constraints. Prentice Hall, Harlow, 2001.
132. L. Magni, G. De Nicolao, L. Magnani, and R. Scattolini. A Stabilizing Model-

based Predictive Control Algorithm for Nonlinear Systems. Automatica, 37:1351–
1362, 2001.

133. B.R. Maner, J.C. Doyle, B.A. Ogunnaike, and R.K. Pearson. Nonlinear Model
Predictive Control of a Multivariable Polymerization Reactor unsing Second Or-
der Volterra Models. Automatica, 32:1285–1302, 1996.

134. J.M. Martin-Sanchez and J. Rodellar. Adaptive Predictive Control. From the concepts
to plant optimization. Prentice -Hall International (UK), 1996.

135. D.Q. Mayne and H. Michalska. Receding Horizon Control of Nonlinear Sys-
tems. IEEE Trans. on Automatic Control, 35:814–824, 1990.

136. D.Q. Mayne and H. Michalska. Robust Receding Horizon Control of Con-
strained Nonlinear Systems. IEEE Trans. on Automatic Control, 38:1623–1633,
1993.

137. D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained Model
Predictive Control: Stability and Optimality. Automatica, 36:789–814, 2000.

138. H. Michalska and D.Q. Mayne. Robust receding horizon control of constrained
nonlinear systems. IEEE Trans. on Automatic Control, 38(11):1623–1633, 1993.

139. C. Mohtadi, S.L. Shah, and D.G. Fisher. Frequency Response Characteristics of
MIMO GPC. In Proceedings 1st European Control Conference, Grenoble, pages 1845–
1850, july 1991.

140. M. Morari. Advances in Model-Based Predictive Control, chapter Model Predictive
Control: Multivariable Control Technique of Choice in the 1990s? Oxford Uni-
versity Press, 1994.

141. M. Morari and E. Zafiriou. Robust Process Control. Prentice-Hall, 1989.
142. E. Mosca. Optimal, Predictive and Adaptive Control. Prentice Hall, 1995.
143. E. Mosca, J.M. Lemos, and J. Zhang. Stabilizing I/O Receding Horizon Control.

In IEEE Conference on Decision and Control, 1990.
144. E. Mosca and J. Zhang. Stable Redesign of Predictive Control. Automatica,

28:1229–1233, 1992.

396 References

145. D. Muñoz, T. Alamo, and E.F. Camacho. Explicit Min-max Model Predictive
Control. Internal Report GAR 2003/03. University of Seville, 2003.

146. K.R. Muske, E.S. Meadows, and J.B. Rawlings. The Stability of Constrained Re-
ceding Horizon Control with State Estimation. In Proceedings of the American
Control Conference, pages 2837–2841, Baltimore, MD, 1994.

147. K.R. Muske and J. Rawlings. Model Predictive Control with Linear Models.
AIChE Journal, 39:262–287, 1993.

148. O. Nelles. Nonlinear System Identification. Springer, 2001.
149. R.B. Newell and P.L. Lee. Applied Process Control. A Case Study. Prentice-Hall,

1989.
150. G. De Nicolao, L. Magni, and R. Scattolini. Nonlinear Model Predictive Control,

chapter Nonlinear Receding Horizon Control of Internal Combustion Engines.
Birkhäuser, 2000.

151. G. De Nicolao and R. Scattolini. Advances in Model-Based Predictive Control, chap-
ter Stability and Output Terminal Constraints in Predictive Control. Oxford Uni-
versity Press, 1994.

152. M. Norgaard, O. Ravn, N.K. Poulsen, and L.K. Hansen. Neural Networks for
Modelling and Control of Dynamic Systems. Springer, London, 2000.

153. J.E. Normey, E.F. Camacho, and C. Bordons. Robustness Analysis of General-
ized Predictive Controllers for Industrial Processes. In Proceedings of the 2nd
Portuguese Conference on Automatic Control, pages 309–314, Porto, Portugal, 1996.

154. J.E. Normey-Rico, C. Bordons, and E.F. Camacho. Improving the Robustness of
Dead-Time Compensating PI Controllers. Control Engineering Practice, 5(6):801–
810, 1997.

155. J.E. Normey-Rico and E.F. Camacho. A Smith Predictor Based Generalized Pre-
dictive Controller. Internal Report GAR 1996/02. University of Sevilla, 1996.

156. J.E. Normey-Rico and E.F. Camacho. Robustness Effect of a Prefilter in General-
ized Predictive Control. IEE Proc. on Control Theory and Applications, 146:179–185,
1999.

157. J.E. Normey-Rico, J. Gómez-Ortega, and E.F. Camacho. A Smith Predictor Based
Generalized Predictive Controller for Mobile Robot Path-Tracking. In 3rd IFAC
Symposium on Intelligent Autonomous Vehicles, pages 471–476, Madrid, Spain,
1998.

158. S. Norquay, A. Palazoglu, and J.A. Romagnoli. Application of Wiener Model
Predictive Control (WMPC) to a pH Neutralization Experiment. IEEE Transac-
tions on Control Systems Technology, 7(4):437–445, 1999.

159. M. Ohshima, I. Hshimoto, T. Takamatsu, and H. Ohno. Robust Stability of Model
Predictive Control. International Chemical Engineering, 31(1), 1991.

160. A.W. Ordys and D.W. Clarke. A State-space Description for GPC Controllers.
International Journal of System Science, 24(9):1727–1744, 1993.

161. A.W. Ordys and M.J. Grimble. Advances in Model-Based Predictive Control, chap-
ter Evaluation of Stochastic Characteristics for a Constrained GPC Algorithm.
Oxford University Press, 1994.

162. G.C. Papavasilicu and J.C. Allwright. A Descendent Algorithm for a Min-Max
Problem in Model Predictive Control. In Proceedings of the 30th Conference on
Decision and Control, Brighton, UK, 1991.

163. T. Parisini and R. Zoppoli. A Receding-Horizon Regulator for Nonlinear Sys-
tems and a Neural Approximation. Automatica, 31(10):1443–1451, 1995.

References 397

164. D. Peña, E.F. Camacho, and S. Pinón. Hybrid Systems for Solving Model Pre-
dictive Control of Piecewise Affine System. In Proceedings IFAC Conference on
Analysis and Design of Hybrid Systems ADHS’03. Saint-Malo (France), pages 76–
81, 2003.

165. V. Peterka. Predictor-based Self-tuning Control. Automatica, 20(1):39–50, 1984.
166. S. Piche, B. Sayyar-Rodsari, D. Johnson, and M. Gerules. Nonlinear Model

Predictive Control Using Neural Networks. IEEE Control Systems Magazine,
20(3):53–62, 2000.

167. D.M. Prett and M. Morari. Shell Process Control Workshop. Butterworths, 1987.
168. D.M. Prett and R.D. Morari. Optimization and Constrained Multivariable Con-

trol of a Catalytic Cracking Unit. In Proceedings of the Joint Automatic Control
Conference., 1980.

169. A.I. Propoi. Use of LP Methods for Synthesizing Sampled-data Automatic Sys-
tems. Automatic Remote Control, 24, 1963.

170. S.J. Qin and T.A. Badgwell. An Overview of Industrial Model Predictive Control
Technology. In Chemical Process Control: Assessment and New Directions for
Research. In AIChE Symposium Series 316, 93. Jeffrey C. Kantor, Carlos E. Garcia
and Brice Carnahan Eds. 232-256, 1997.

171. S.J. Qin and T.A. Badgwell. An Overview of Nonlinear Model Predictive Control
Applications. In IFAC Workshop on Nonlinear Model Predictive Control. Assessment
and Future Directions. Ascona (Switzerland), 1998.

172. J.M. Quero and E.F. Camacho. Neural Generalized Predictive Controllers. In
Proc. IEEE International Conference on System Engineering, Pittsburg, PA, 1990.

173. D.R. Ramı́rez and E.F. Camacho. On the piecewise linear nature of Min-Max
Model Predictive Control with bounded uncertainties. In Proc. 40th Conference
on Decision and Control, CDC’2001, December, 4-7 2001.

174. D.R. Ramirez and E.F. Camacho. On the Piecewise Linear Nature of Min-max
Model Predictive Control with Bounded Global Uncertainties. In Proc. 40th IEEE
Conference on Decision and Control CDC’01, Orlando FL, 2001.

175. D.R. Ramirez and E.F. Camacho. On the Piecewise Linear Nature of Constrained
Min-max Model Predictive Control with Bounded Global Uncertainties. In Proc.
of the American Control Conference ACC’03, Denver, CO, 2003.

176. D.R. Ramı́rez, E.F. Camacho, and M. R. Arahal. Proc. of the IFAC World Congress,
B’02, Editors: E.F. Camacho, L. Basanez and J.A. de la Puente, chapter Implementa-
tion of Min-Max MPC Using Hinging Hyperplanes. Application to a Heat Ex-
changer. Elsevier Science, 2002.

177. J. Rawlings and K. Muske. The Stability of Constrained Receding Horizon Con-
trol. IEEE Trans. on Automatic Control, 38:1512–1516, 1993.

178. J. Richalet. Practique de la commande predictive. Hermes, 1992.
179. J. Richalet. Industrial Applications of Model Based Predictive Control. Automat-

ica, 29(5):1251–1274, 1993.
180. J. Richalet, S. Abu el Ata-Doss, C. Arber, H.B. Kuntze, A. Jacubash, and W. Schill.

Predictive Functional Control. Application to Fast and Accurate Robots. In Proc.
10th IFAC Congress, Munich, 1987.

181. J. Richalet, A. Rault, J.L. Testud, and J. Papon. Algorithmic Control of Industrial
Processes. In 4th IFAC Symposium on Identification and System Parameter Estima-
tion. Tbilisi USSR, 1976.

182. J. Richalet, A. Rault, J.L. Testud, and J. Papon. Model Predictive Heuristic Con-
trol: Application to Industrial Processes. Automatica, 14(2):413–428, 1978.

398 References

183. B.D. Robinson and D.W. Clarke. Robustness Effects of a Prefilter in Generalized
Predictive Control. Proceedings IEE, Part D, 138:2–8, 1991.

184. A. Rossiter, J.R. Gossner, and B. Kouvaritakis. Infinite Horizon Stable Predictive
Control. IEEE Trans. on Automatic Control, 41(10), 1996.

185. J.A. Rossiter and B. Kouvaritakis. Constrained Stable Generalized Predictive
Control. Proceedings IEE, Part D, 140(4), 1993.

186. J.A. Rossiter and B. Kouvaritakis. Advances in Model-Based Predictive Control,
chapter Advances in Generalized and Constrained Predictive Control. Oxford
University Press, 1994.

187. R. Rouhani and R.K. Mehra. Model Algorithmic Control: Basic Theoretical Prop-
erties. Automatica, 18(4):401–414, 1982.

188. P.O.M. Scokaert and D.W. Clarke. Advances in Model-Based Predictive Control,
chapter Stability and Feasibility in Coinstrained Predictive Control. Oxford Uni-
versity Press, 1994.

189. P.O.M. Scokaert and D.Q. Mayne. Min-max feedback model predictive con-
trol for constrained linear systems. IEEE Transactions on Automatic Control,
43(8):1136–1142, 1998.

190. P.O.M. Scokaert, D.Q. Mayne, and J.B. Rawlings. Suboptimal model predic-
tive control (feasibility implies stability). IEEE Transactions on Automatic Control,
44(3):648–654, 1999.

191. S.L. Shah, C. Mohtadi, and D.W. Clarke. Multivariable Adaptive Control with-
out a Prior Knowledge of the Delay Matrix. Systems and Control Letters, 9:295–
306, 1987.

192. I. Skrjanc and D. Matko. Advances in Model-Based Predictive Control, chapter
Fuzzy Predictive Controller with Adaptive Gain. Oxford University Press, 1994.

193. O.J.M. Smith. Close Control of Loops with Deadtime. Chemical Engineering
Progress, 53(5):217, 1957.

194. R. Söeterboek. Predictive Control. A unified approach. Prentice-Hall, 1992.
195. E.D. Sontag. Nonlinear Regulation: The Piecewise Linear Approach. IEEE Trans.

on Automatic Control, 26(2):346–358, 1981.
196. E. Srinivasa and M. Chidambaram. Robust Control of a Distillation Column by

the Method of Inequalities. Journal of Process Control, 1(3):171–176, 1993.
197. G.W. Stewart. Introduction to Matrix Computations. Academis Press, Inc., 1973.
198. Y. Tan and R. De Keyser. Advances in Model-Based Predictive Control, chapter

Neural Network Based Predictive Control. Oxford University Press, 1994.
199. P. Tøndel and T.A. Johansen. Proc. of the IFAC World Congress, B’02, Editors: E.F.

Camacho, L. Basanez and J.A. de la Puente, chapter Complexity Reduction in Ex-
plicit Linear Model Predictive Control. Elsevier Science, 2002.

200. S. Townsend and G.W. Irwin. Nonlinear Predictive Control, chapter Nonlinear
Model Based Predictive Control Using Multiple Local Models. IEE Control En-
gineering series, 2001.

201. C.A. Tsiligiannis and S.A Svoronos. Multivariable Self-tuning Control via the
Right Interactor Matrix. IEE Trans. Aut. Control, 31:987–989, 1986.

202. M.L. Tyler and M. Morari. Propositional Logic in Control and Monitoring Prob-
lems. Technical Report AUT96-15, Institut fur Automatik, ETH- Swiss Federal Insti-
tute of Technology, Zurich, Switzerland, 1996.

203. E.R. Velasco. Control y Supervisión de Planta Piloto mediante Sistema de Control
Distribuido. P.F.C. Univesidad de Sevilla, 1994.

204. R.A.J. De Vries and H.B. Verbruggen. Advances in Model-Based Predictive Control,
chapter Multivariable Unified Predictive Control. Oxford University Press, 1994.

References 399

205. P.E. Wellstead, D. Prager, and P. Zanker. A Pole Assignment Self Tuning Regu-
lator. Proceedings IEE, Part D, 126:781–787, 1978.

206. T.H. Yang and E. Polak. Moving Horizon Control of Nonlinear Systems with
Input Saturations, Disturbances and Plant Uncertainties. Int. Journal of Control,
pages 875–903, 1993.

207. B.E. Ydstie. Extended Horizon Adaptive Control. In Proc. 9th IFAC World
Congress, Budapest, Hungary, 1984.

208. T.W. Yoon and D.W. Clarke. Prefiltering in Receding-Horizon Predictive Con-
trol. Internal Report 1995/93, University of Oxford, Department of Engineering Sci-
ence, 1993.

209. T.W. Yoon and D.W. Clarke. Advances in Model-Based Predictive Control, chapter
Towards Robust Adaptive Predictive Control, pages 402–414. Oxford University
Press, 1994.

210. T.W. Yoon and D.W. Clarke. Observer Design in Receding-Horizon Control.
International Journal of Control, 2:151–171, 1995.

211. L.A. Zadeh and B.H. Whalen. On Optimal Control and Linear Programming.
IRE Trans. Automatic Control, 7(4), 1962.

212. E. Zafiriou. Robust Model Predictive Control of Processes with Hard Con-
straints. Computers and Chemical Engineering, 14(4/5):359–371, 1990.

213. A. Zheng and M. Morari. Stability of Model Predictive Control with Soft Con-
straints. Internal Report. California Institute of Technology, 1994.

214. A. Zheng and W. Zhang. Nonlinear Predictive Control, chapter Computation-
ally Efficient Nonlinear Model Predictive Control Algorithm for Control of Con-
strained Nonlinear Systems. IEE Control Engineering series, 2001.

215. Y. Zhu and T. Backx. Identification of Multivariable Industrial Processes. Springer-
Verlag, 1993.

Index

Active constraint set, 189, 190, 313
Active set methods, 189, 192, 196
Actuators, 178
Adaptation, 90, 97, 342
Adaptation mechanism, 341
Adaptive Predictive Control System, 9
Affine function, 221, 226
AIC, 344
Akaike, 344
Allgöwer F., 212
Allwright J., 7, 228
Antiresonance, 344
Artificial Neural Networks, 16, 277, 334,

371
Auxiliary variable, 342

Batch processes, 19
Bemporad, A., 8, 293, 311
Bitmead, R.R, 7
Bristol method, 120

Campo, P.J., 7, 226, 228
CARIMA, 16, 48, 64, 84, 94, 128, 135, 142
CARMA, 48
Chen, H., 212
Cholesky, 132
Clarke D.W., 7, 26, 47, 62, 71, 210
Closed-Loop Min-max MPC, 330
Closed-loop poles, 21
Colouring polynomial, 128
Colouring polynomial matrix, 134, 145
Complementary sensitivity function, 114
Compressor, 203
Constrained MPC, 4

Constrained Receding Horizon
Predictive Control, 71

Constraint
Reduction, 199

Constraint matrix, 230
Constraints, 21, 35

General Form, 183
Active, 189, 190, 313
Actuator nonlinearities, 182
Clipping, 178
Contraction, 212
Elimination, 208
Equality, 189
Handling of, 196
Hard, 163, 165, 208, 210
Inactive, 189, 190, 313
Inequality, 189
Input, 178, 192

Amplitude, 178, 184, 198
Slew rate, 178, 184, 196, 227

Management, 206
Manipulated variables, 227
Monotonic behaviour, 180, 185
Nonminimum phase, 180
Output, 178, 179, 192, 199, 227

Bands, 179
Overshoot, 180, 185

Process behaviour, 180
Reduction, 228
Relaxation, 208
Soft, 208, 210
State, 210
Terminal set, 182

402 Index

Terminal state, 182
Violations, 178

Control effort, 3, 18, 23, 89, 347
Control horizon, 18, 228, 345

Choice of, 160
Control law, 21, 38, 72
Control weighting factor, 49, 86, 89, 101
Convex function, 225
Convolution model

Multivariable, 149
CRHPC, 7, 21, 71, 189, 210

Properties, 75
Critical Region, 323
Cutler, C.R., 5

De Keyser, R.M.C., 7
Dead time, 48, 50, 82, 84, 93, 157

Diagonal A(z−1), 160
Reduction of matrix dimensions, 162
Variable, 338

Dead time uncertainties, 71, 221
Deadbeat, 19
Degeneracy, 194
Desalination plant, 338
Diophantine equation, 5, 16, 53

MIMO, 128
Recursion, 49

MIMO, 129
SISO, 49

Discrete transfer function, 84, 93, 100
Distillation column, 1, 98, 163
Distributed collector field, 337
Distributed control system, 11, 81
Disturbance model, 14, 16, 34
Disturbance prediction, 34
Disturbance rejection, 355
DMC, 5, 8, 21, 23, 31
Duality, 203
Dynamic information, 341
Dynamic load, 165
Dynamic Matrix Control, 8, 23, 31

EHAC, 5, 15, 25
Elimination methods, 189, 190, 313
EPSAC, 7, 14, 15, 24, 273
Evaporator, 11, 117
Expectation operator, 49, 128
Extended Horizon Adaptive Control, 5,

25

Extended Prediction Self Adaptive
Control, 7, 24

External disturbances, 217

Family of models, 218
Fast implementation

min-max, 326
Feasibility, 210
Feasible directions, 189, 191
Feasible point, 191
Feasible region, 199, 210
Feasible solution, 193
Feedback gain, 342
Feedforward controller, 339
Filter, 343
Filter polynomials, 58, 62

Selection, 61
Finite horizon, 225
Forgetting factor, 341
Free response, 64, 130, 136
Frequency response, 344, 346
Frequency uncertainties, 222
Future control signals, 3, 49
Future reference, 49
Fuzzy logic, 16

Gain scheduling, 342, 349
Gain uncertainties, 221, 232
Generalized Minimum Variance, 7
Generalized Predictive Control, 7, 13, 26,

47
Global uncertainties, 221
GMV, 7
Goodwin G.C., 138
GPC, 7, 13–16, 21, 26, 47, 72, 81
Greatest right common divisor, 138
Grimble, M.J., 183

H∞, 62
Heat exchanger, 355
Hessian, 225
HIECON, 8
Hierarchical Constraint Control, 8
Honeywell, 7
Horizon

Control, 49
Costing, 49
Prediction, 3
Receding, 1, 75

Hybrid Automata, 290

Index 403

Hybrid Systems, 289
Control, 298
Modelling, 289

IDCOM, 8
Identification, 82, 141
Identification and Command, 8
Improving feasible direction, 189, 191
Infeasibility, 210
Infinite horizon, 209
Initial feasible point, 192
Integral effect, 99
Integrating Processes, 99
Interactor matrix, 157

Kalman filter, 28, 144, 145, 261
Karush-Kuhn-Tucker conditions, 195,

268, 315
Kouvaritakis, B., 7, 76, 210
Kwon, W.H., 75

Lagrange multipliers, 75
Least squares, 87, 97, 142, 341
Left coprime, 138
Left matrix fraction description, 133, 222,

226
Lemke’s algorithm, 193, 195

Convergence, 195
Starting point, 195
Tableau, 195

Linear Complementary Problem, 193,
195

Linear interpolation, 347
Linear Matrix Inequalities, 234
Linear Programming, 5, 201, 203, 227,

230
Linear system, 338
LMI, 234
Load disturbances, 25
Local optimum, 226
Long Range Predictive Control, 1, 337
LP, 227, 229
LRPC, 1
Lyapunov, A.M., 210

MAC, 5, 14, 21
Maciejowski, J.M., 29, 167
Maniputaled variables, 178
Matrix fraction description, 220

Mayne, D.Q., 211
MBPC, 1, 13
Measurable disturbance, 34, 63, 135, 326
Michalska, H., 211
MILP, 215
MIMO GPC

Derivation, 128, 135
Diophantine equation, 129
State space, 143
Step response, 131, 137

Diagonal A(z−1), 131, 137
Objective function, 128

Min-max, 221, 226, 232
Min-max GPC, 234
Min-max MPC, 326
Minimum time control, 5
MIQP, 215
Mixed Integer Programming, 299
Mixed Logical Dynamical Systems, 293
Model Algorithmic Control, 5, 23
Model Based Predictive Control, 1, 13
Model Predictive Control, 1, 13
Model Predictive Heuristic Control, 5, 23
Mohtadi, C, 7
Monotonic behaviour, 180
Monotonically decreasing, 76, 210
Morari M., 7, 163, 209, 210, 226, 228, 293
Mosca, E., 7
Motorized valve, 355
MPC, 1, 13, 14, 18, 23, 26

Commercial controllers, 31
Elements, 13
Strategy, 13

MPHC, 5
Multiobjective

Function, 212
Priorization, 214

Multiparametric Programming, 314
Multipredictor Receding Horizon

Adaptive Control, 7
Multistep Multivariable Adaptive

Control, 7
Multivariable process, 11
MURHAC, 7, 15
Muske, K., 209, 210
MUSMAR, 7, 15

NLP, 267
Noise

404 Index

Coloured, 53, 132
Non zero mean, 128
White, 48, 128

Nominal model, 217
Nominal prediction, 224
Nonlinear Model Predictive Control, 249
Nonlinear models, 251

Bilinear, 256
Hammerstein, 254
Neural Networks, 257
State Space Models, 260
Volterra, 253
Wiener, 254

Nonlinear programming, 267
Nonlinear system, 338
Nonminimum phase, 2
Norms
∞-∞-norm, 226
1-norm, 201, 228

Nyquist
plane, 113

Objective function, 1, 13, 18, 133, 224
Observers, 16
OPC, 9
Open-loop compensation, 344
Open-loop optimal feedback, 5
Operating conditions, 98
Operating point, 82, 349

Optimal cost, 187
Optimal prediction, 49
Optimum Predictive Control, 9
Ordys, A.W., 183
Overshoot, 180

Padé expansion, 93
Parameter estimation, 341
Parameter identification, 141
Parametric uncertainties, 220
PCT, 8
Pearson, A.E., 75
Peterka, V., 5
Petrochemical, 5
PFC, 7, 8, 15, 24, 39
PI, 120
PID, 2, 11, 81, 359
Piecewise affine, 311
Piecewise Affine Systems, 303
Pilot plant, 11, 352

Pivoting methods, 193
Polynomial fitting, 90
Polynomial matrix, 128, 135

Monic, 128, 135
Polytope, 192, 199, 225
Positive definite, 225
PRBS, 344
Precalculated GPC, 340
Predicted control reference, 3
Predicted output, 13
Prediction equation, 226

MIMO, 131, 137
Prediction horizon, 18, 228

Choice of, 50, 160
Finite, 209
Infinite, 209

Prediction model, 13
Predictions, 36
Predictive Control Technology, 8
Predictive Functional Control, 7, 8, 24, 39
Predictor, 86, 95
Predictor polynomial, 54
Prett, D.M., 163
Projection matrix, 189
Propoi, A.I., 5

QP, 182
Quadratic norm, 225
Quadratic Programming, 182, 188

Algorithms, 188
Quadruple-tank, 170

Ramaker, B.C., 5
Rational matrix, 138
Rawlings, J., 209, 210
Reaction curve method, 82, 90
Recursive least squares, 341
Reference, 95, 101
Reference trajectory, 19, 86
Response

Forced, 18
Free, 18, 32

Riccati equation, 28, 75, 318
Richalet, J., 5, 24, 36
Right coprime, 138
Right divisor, 138
Right matrix fraction description, 133
RMPCT, 7, 8
Robot manipulators, 106

Index 405

Robust control, 217
Robust Model Predictive Control

Technology, 8
Robust MPC, 4, 219
Robustness, 21, 111
Rosen’s method, 197
Rossiter, J.A., 76, 210

Safety, 178
Sampling time, 87
SCADA, 352
SCAP, 9
Scattolini, R., 7, 71, 210
Scheduled linearized MPC, 252
Scokaert, P., 210
Self-tuning, 81, 339
Sensitivity analysis, 314
Sensor range, 177
Sequential Programming, 268
Setpoint, 86, 101, 232, 355

Constant, 86, 105
Ramp, 105

Setpoint Multivariable Control Architec-
ture, 9

SGPC, 7, 76
Sin, K.S., 138
SIORHC, 7
SISO GPC

Closed-loop relationships, 57
Derivation, 48

Diophantine equation, 49
Step response, 51

Slew rate, 177, 196
Smith predictor, 66, 157
Smoothing mechanism, 347
Solar power plant, 11, 337
Solar radiation, 338, 349
Spectral analysis, 346
Stability, 71, 75, 76

Constrained MPC, 209
Nonlinear MPC, 211
Terminal region, 212
Unconstrained MPC, 210

Stable Generalized Predictive Control,
76

State space, 7, 15

Description, 143
Formulation, 27
Noise models, 143
Prediction equation, 144

State space model, 4
Static gain, 82

Unitary, 86
Steady-state gain, 347
Step response, 82
Sugar refinery, 359

Tank reactor, 139
Time constant, 82
Transfer function, 4, 15, 16, 25
Transfer matrix, 138
Transmission zeros, 166
Truncated impulse response, 4, 14, 36,

219, 226, 228
Truncated step response, 4, 14
Tuning OUD zeros, 173

Uncertainties, 217
Frequency, 217, 222
Matrix fraction description, 220
Parameters, 220

Number, 220, 221
Parametric, 217, 220
Structured, 11
Truncated impulse response, 219
Unstructured, 11

Uncertainty bands, 223
Uncertainty model, 228
Unified Predictive Control, 7
Unimodular matrix, 138
UPC, 7, 15

White noise
MIMO, 128
Zero mean, 84

Ydstie, B.E., 5
Yoon, T.W., 62

Zheng, A., 210
Ziegler Nichols tuning rules, 7, 81, 84,

359

