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INTRODUCTION AND PREVIEW 

1.1 Motivations 

Deciding is a very complex and difficult task. Some people even argue that our abil- 
ity to  make decisions in complex situations is the main feature that distinguishes 
us from animals (it is also common to  say that laughing is the main difference). 
Nevertheless, when the task is too complex or the interests a t  stake are too im- 
portant, we quite often do not know or are not sure what to  decide and, in many 
instances, we resort to  a decision support technique: an informal one-we toss a 
coin, we ask an oracle, we visit an astrologer, we consult an expert-or a formal 
one. Although informal decision support techniques can be of interest, in this 
book, we will focus on formal ones. Among the latter, we find some well-known 
decision support techniques: cost-benefit analysis, multiple criteria decision analy- 
sis, decision trees, . . . But there are many others, some not presented as decision 
support techniques, that help making decisions. Let us give a few examples. 

0 When a school director has to  decide whether a given student will pass or 
fail, he usually asks each teacher to  assess the student's merits by means of 
a grade. The director then sums the grades and compares the result to a 
threshold. 

0 When a bank has to  decide whether a given client will obtain a credit, a 
technique, called credit scoring, is often used. 

0 When the mayor of a city decides to temporarily forbid car traffic in a city 
because of air pollution, he probably takes the value of some indicators, e.g. 
the air quality index, into account. 

0 Groups or committees also make decisions. In order to  do so, they often use 
voting procedures. 

All these formal techniques are what we call (formal) decision and evaluation 
models, i.e. a set of explicit and well-defined rules to  collect, assess and process 
information in order to  be able to  make recommendations in decision and/or eval- 
uation processes. They are so widespread that almost no one can pretend not to  
have used or suffered the consequences of one of them. These models-probably 
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due to  their formal character-inspire respect and trust: they seem scientific. But 
are they really well founded? Do they perform as well as we want them to? Can 
we safely rely on them when we have to  make important decisions? I t  is cru- 
cial to answer these questions because formal models are so widespread in many 
domains of human activity. This is why we chose seven popular evaluation or de- 
cision models and thoroughly analysed them, revealing their weaknesses and how 
things can go wrong, in a previous volume published by the same authors and 
Patrice Perny (Evaluation and decision models: A critical perspective, Bouyssou, 
Marchant, Pirlot, Perny, Tsoukibs, and Vincke, 2000). We also claimed that the 
difficulties encountered are not specific to  these seven models but common to all 
evaluation and decision models: a perfect or not even a best formal model do not 
exist. Actually, defining a 'perfect model' would be a difficult, if not impossible, 
task. You might then ask why bother with formal decision models if they raise so 
many problems. The answer given in the first volume provided three arguments 
in favour of formal models and showing that, besides their weaknesses, they also 
have advantages. 

1. First, it should not be forgotten that formal tools lend themselves more eas- 
ily to criticism and close examination than other types of tools. However, 
whenever "intuition" or "expertise" was subjected to close scrutiny, it was 
more or less always shown that such types of judgments are based on heuris- 
tics that are likely to neglect important aspects of the situation and/or are 
affected by many biases (see the syntheses of Bazerman, 1990; Hogarth, 1987; 
Kahneman, Slovic, and Tversky, 1981; Poulton, 1994; Rivett, 1994; Russo 
and Schoemaker, 1989; Thaler, 1991) 

2. Second, formal methods have a number of advantages that  often prove crucial 
in complex organisational and/or social processes: 

0 they promote communication between the actors of a decision or eval- 
uation process by offering them a common language; 

0 they require the building of models of certain aspects of "reality"; this 
implies concentrating efforts on crucial matters. Thus, formal methods 
are often indispensable structuring instruments. 

0 they easily lend themselves to "what-if" types of questions. These ex- 
ploration capabilities are crucial in order to devise robust recommenda- 
tions. 

Although these advantages may have little weight in terms of effort involved, 
money and time consumed in some situations (e.g. a very simple decision / 
evaluation process involving a single actor) they appear fundamental to  us 
in most social or organisational processes. 

3. Third, casual observation suggests that there is an increasing demand for 
such tools in various fields (going from executive information systems, de- 
cision support systems and expert systems to standardised evaluation tests 
and impact studies). I t  is our belief that  the introduction of such tools can 
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have quite a beneficial impact in many areas in which they are not com- 
monly used. Although many companies use tools such as graphology and/or 
astrology to  choose between applicants for a given position, we believe that 
the use of more formal methods could improve such selection processes in 
a significant way (if only issues such as fairness and equity). Similarly, the 
introduction of more formal evaluation tools in the evaluation of public poli- 
cies, laws and regulations (e.g. policy against crime and drugs, gun control 
policy, fiscal policy, the establishment of environmental standards, etc.), an 
area in which they are strikingly absent in many countries, would surely 
contribute to a more transparent and effective governance. 

So, where are we now? In the first volume, we heavily criticised formal models 
but we also argued that  they can be useful. It is now time to  make a proposal. 
Unfortunately, we have no miraculous solution but we can propose something: 
a kind of guide, a way of reasoning aimed a t  helping the analyst to  choose a 
model and use it consistently. In this volume, we will systematically analyse many 
formal models (often using an axiomatic approach). We will try to  find their most 
characteristic properties and show what makes them different from other models. 
As they are different and thus cannot be used in the same way, our analysis will 
therefore naturally lead us to determine a consistent way to  use each of them. 
We will also see in which context a given property seems useful, desirable or 
undesirable. 

Let us use a metaphor to  clarify our purpose. Suppose you run a small low- 
tech company which has four employees not including yourself. The company 
has no computers and you are computer-illiterate but you believe that things 
have changed and that it is now time to  make a move. After looking a t  a few 
catalogues presenting hundreds of different models, you feel lost. You therefore 
go to the nearest computer store and ask the salesman what he has for you. He 
shows you one model-a desktop-and tells you it is the best one; it was shown 
on T V  and it ranks number one in sales. You decide to buy five of them. The 
salesman congratulates you: this is your best buy and you return home, happy. 
It is possible, if you are lucky, that these computers will allow you to run your 
business more efficiently and that you will be satisfied in the long term. But 
you may also discover after some time that  the computers are not as good as the 
advertisements claim and that the ones you bought cannot do what you expected 
of them. 

Let us now imagine another scenario. When you go to the computer store, the 
salesman tells you that  computers are not perfect. They sometimes crash and, if a 
hard disk crashes, you loose all of your data. They can become infested by viruses. 
Some models are more reliable but their price is higher. Furthermore, no computer 
is ideal for all types of applications. Some are bad for graphic applications, others 
are not compatible with most other computers or are not user-friendly. You then 
leave the store without buying a single computer, very frustrated because you still 
think that you need computers, but you do not know what to  buy. 

In a third scenario, after telling you that no computer is perfect and that 
you therefore need to  know more about computers, the salesman explains how a 
computer works, what the main functionalities are, how you can partially protect 
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yourself against hard disk failures by making backups or against viruses. He also 
sketches a classification of computers. There are mainly three types of computers: 
CP, Pear and Plurax. CP's are bad for graphics and not very reliable but they are 
cheap and compatible with most computers. They are quite user-friendly and there 
are a lot of business applications designed for CP's. Pears are very reliable, good 
for graphics and very user-friendly, but they are expensive and not compatible with 
most computers although there are solutions to improve the compatibility. Finally, 
Plurax's are probably the most reliable and virus-proof computers. This explains 
their high cost. They are not user-friendly and are therefore better suited for 
computer specialists. The salesman then asks what your needs are and eventually 
helps you to formulate them. He finally helps you design a complete solution, i.e. 
not just five identical computers but, for example, several different computers-for 
different uses-with the adequate software and, perhaps, linked by a network. 

It is clear that the third scenario is the best one and this book is meant for 
those wishing they met the third salesman rather than the first two. 

Let us return to evaluation and decision models. A naive decision maker con- 
sulting an analyst that always uses the same decision aiding method (because he 
only knows that one or because it is the one he developed and he wants to sell 
it) is like our business man in the first scenario. This is something we cannot, of 
course, recommend. 

After reading our first volume, a reader may feel very frustrated like the busi- 
ness man in the second scenario, because we criticised so many different models 
without proposing alternatives or a way to cope with the problems. If we (the 
authors) stopped after the first volume, we would be like the second salesman, but 
with this second volume, we hope to be like the third salesman, using criticism as 
a stimulus, a springboard for going beyond the surface and analysing the situation 
in depth. 

In the next section, before shortly presenting the content of this book, we 
will summarise what we learned in the first volume. Note that the first book is 
more a companion volume than one 'to-be-read-before-the-second', but because it 
appeared first and for the ease of reference, we call it first. 

1.2 What have we learned in the first volume? 

Let us summarise the conclusions of the first volume in a few points. 

Objective and scope of formal decision / evaluation models 
0 Formal decision and evaluation models are implemented in complex decision 

/ evaluation processes. Using them rarely amounts to solving a well-defined 
mathematical problem. Their usefulness not only depends on their intrinsic 
formal qualities, but also on the quality of their implementation (structuring 
of the problem, communication with actors involved in the process, trans- 
parency of the model, etc.). Having a sound theoretical basis is therefore 
a necessary but insufficient condition of their usefulness (see first volume, 
chapter 9). 
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0 The objective of these models may not be to recommend the choice of a 
"best" course of action. More complex recommendations, e.g. ranking the 
possible courses of action or comparing them to standards, are also frequently 
needed (see first volume, chapters 3, 4, 6 and 7). Moreover, the usefulness 
of such models is not limited to  the elaboration of several types of recom- 
mendations. When properly used, they may provide support at all steps of 
a decision process (see first volume, chapter 9). 

Collecting data 

0 All models imply collecting and assessing "data" of various types and qual- 
ities and manipulating these data in order to  derive conclusions that  will 
hopefully be useful in a decision or evaluation process. This more or less 
inevitably implies building "evaluation models" trying to  capture aspects of 
"reality" that are sometimes difficult to define with great precision (see first 
volume, chapters 3, 4, 6 and 9). 

0 The numbers resulting from such "evaluation models" often appear as con- 
structs that  are the result of multiple options. The choice between these 
possible options is only partly guided by "scientific considerations". These 
numbers should not be confused with numbers resulting from classical mea- 
surement operations in Physics. They are measured on scales that are dif- 
ficult to characterise properly. Furthermore, they are often plagued with 
imprecision, ambiguity and/or uncertainty. Therefore, more often than not, 
these numbers seem, a t  best, to give an order of magnitude of what is in- 
tended to be captured (see first volume, chapters 3, 4, 6 and 8). 

0 The properties of the numbers manipulated in such models should be exam- 
ined with care; using "numbers" may only be a matter of convenience and 
does not imply that  any operation can be meaningfully performed on them 
(see first volume, chapters 3, 4, 6 and 7). 

0 The use of evaluation models greatly contributes to shaping and transforming 
the "reality" that we would like to "measure". Implementing a decision / 
evaluation model only rarely implies capturing aspects of reality that can be 
considered as independent of the model (see first volume, chapters 4, 6 and 

9). 

Aggregating evaluations 

0 Aggregating the results of complex "evaluation models" is far from being an 
easy task. Although many aggregation models amount to  summarising these 
numbers into a single one, this is not the only possible aggregation strategy 
(see first volume, chapters 3, 4, 5 and 6). 

0 The pervasive use of simple tools such as weighted averages can lead to 
disappointing and/or unwanted results. The use of weighted averages should 
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in fact be restricted to  rather specific situations that  are seldom met in 
practice (see first volume, chapters 3, 4 and 6). 

Devising an aggregation technique is not an easy task. Apparently reasonable 
principles can lead to  a model with poor properties. A formal analysis of 
such models may therefore prove of utmost importance (see first volume, 
chapters 2, 4 and 6). 

Aggregation techniques often call for the introduction of "preference infor- 
mation". The type of aggregation model that is used greatly contributes to 
shaping this information. Assessment techniques, therefore, not only collect 
but shape and/or create preference information (see first volume, chapter 6). 

Many different tools can be envisaged to model the preferences of an actor 
in a decision/evaluation process (see first volume, chapters 2 and 6). 

Intuitive preference information, e.g. concerning the relative importance of 
several points of view, can be difficult to interpret within a well-defined 
aggregation model (see first volume, chapter 6). 

Dealing with imprecision, ambiguity and uncertainty 

In order to  allow the analyst to derive convincing recommendations, the 
model should explicitly deal with imprecision, uncertainty and inaccurate 
determination. Modelling all these elements into the classical framework 
of Decision Theory using probabilities may not always lead to an adequate 
model. I t  is not easy to  create an alternative framework in which problems 
such as dynamic consistency or respect of (first order) stochastic dominance 
are dealt with satisfactorily (see first volume, chapters 6 and 8). 

0 Deriving robust conclusions on the basis of such aggregation models requires 
a lot of work and care. The search for robust conclusions may imply analyses 
much more complex than simple sensitivity analyses varying one parameter 
a t  a time to  test the stability of a solution (see first volume, chapters 6 
and 8). 

1.3 Stepping stones for the analyst 

As we said above, we do not have solutions to all of the problems encountered 
and all of the questions raised in the first volume. We do not have a unique and 
well-defined methodology that one could follow step-by-step from the beginning to 
the end of a decision aiding process. What we can do, is simply propose, here and 
there, a sound analysis of techniques aimed at supporting a part of the decision 
aiding process. These are what we call the 'stepping stones for the analyst'. They 
do not form a single and continuous path to cross the river but can help. 
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We will use a special formatting-as shown in this paragraph-at different 
places in this book, to draw the reader's attention to a 'stepping stone', to the 

Q summary of a section, to something we consider important or of much practical 2 interest or when we present the conclusion of a long development. 

1.3.1 Structure 

The focus in this book-compared to its companion volume-is on multicriteria 
evaluation and decision models: three chapters are devoted to the analysis of 
aggregation methods (chapters 4-6). In chapter 5,  we analyse different aggregation 
methods in the light of Social Choice Theory, while, in chapter 6, we use the 
framework of conjoint measurement theory in order to study many aggregation 
methods (often the same ones as in chapter 5). Chapter 4 serves as an introduction 
to chapters 5 and 6. 

It is well-known that some aggregation methods (for instance the outranking 
methods) yield relations that are not always transitive. It  is therefore necessary, 
after the aggregation, to use an exploitation technique the purpose of which is to 
help make a recommendation to the decision maker. In chapter 7, we show that 
an exploitation is often necessary, not only after an aggregation using an outrank- 
ing method, but in many other cases, even, in some cases, with a multi-attribute 
additive model. We then analyse several exploitation techniques. Another topic 
addressed in chapter 7 is uncertainty. Uncertainty is present in many decision 
problems and decision aiding processes. A very common and reasonable attitude 
in presence of uncertainty, is to try to model it in order to take it into account 
in the decision aiding process. Many different models of uncertainty are available 
in the literature: probabilities, possibilities, belief functions, upper probabilities, 
fuzzy sets, etc. There are also a lot of models incorporating these representa- 
tions of uncertainty in decision models (for instance, Subjective Expected Utility). 
Some of them even cope with multiple attributes. All these models deserve great 
attention and the literature devoted to them is vast but we do not discuss them 
for two reasons: we do not feel competent and the subject is much too vast for 
this volume. Nevertheless, we discuss the important case, seldom treated in the 
literature, where nothing is known about the uncertainty distribution or where the 
hypotheses underlying some models are not met. In such cases, even if it is not pos- 
sible to define a best or rational decision, we can try to draw robust conclusions or 
to make robust recommendations, i.e. conclusions that are true or approximately 
true or recommendations that lead to good-even if not optimal--outcomes under 
all possible scenarios or states of the nature. 

In many evaluation and decision models, and in particular in many aggregation 
and exploitation methods, we use numbers. Sometimes, we use them to represent 
preferences but in other cases we derive preferences from them. Sometimes they are 
factual evaluations of an alternative on an attribute; sometimes, these evaluations 
result from a more or less subjective process. In other cases, they are the result 
of the aggregation (as in MAVT) and/or exploitation method. The pervasiveness 
of these numbers and the variety of their roles makes it necessary to analyse their 
meaning and what we can meaningfully do with them. As they play an important 
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role from the beginning of the decision aiding process, the chapter on numbers 
and preferences (chapter 3) comes before those on aggregation and exploitation 
methods. 

We have not presented the second chapter yet. Its status is quite different from 
that of the other chapters. In chapters 3-7, we analyse some formal techniques 
aimed at supporting one part of the decision aiding process but, in chapter 2, 
the focus is on the whole decision aiding process, on the different ways of con- 
ducting such a process and of introducing rationality into it, on a formalisation of 
the different elements of the decision aiding process: the client, the analyst, the 
stakes, the problem formulation, the model, the recommendation, etc. Because 
this chapter provides a general framework for describing all parts of the decision 
aiding process, it comes just after this introduction. Figure 1.1 presents the logi- 
cal dependencies amongst the chapters. Readers interested mostly by theoretical 

Figure 1.1 : Reading schema. 

aspects can concentrate on chapters 4-7 while practitioners will find it interesting 
to first read chapters 2-3. 

Although most questions raised in the first volume are addressed in this volume, 
there is no chapter-by-chapter correspondence between both volumes. In the first 
volume, we presented several applications of evaluation and decision models. Most 
of them raised questions that are discussed in different chapters of this volume. 
We discussed, for example, the problem of grading students. This problem raises 
questions related to measurement, aggregation, uncertainty, robustness and so on, 
which are discussed in various parts of the present book. 

1.3.2 Outline of the chapters 

1.3.2.1 Chapte r  2: "Problem formulation a n d  structuring: t h e  deci- 
sion aiding process" 

We introduce two basic subjects in chapter 2. The first is a presentation of what we 
call a "decision aiding approach": a perspective of how "rationality" (a key concept 
for formal decision aiding) enters into a decision and/or evaluation model. One 
of our principal claims is that decision aiding approaches are NOT characterised 
by any method used in providing decision support, but by how such methods are 
used. 
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However, the use of a combinatorial optimisation algorithm within the evalua- 
tion model does not preclude that the whole decision aiding process was conducted 
using a constructive approach. It  simply shows that the precise decision maker's 
problem can be formulated using combinatorial optimisation. 

Example 1.1 
Consider the following (simplified) situation. A client is planning to open a num- 
ber of shops in a town structured in districts. He might start by formulating the 
problem of "covering" the whole town with the minimum number of shops (under 
the hypothesis that shops opened in one district also "cover" the adjacent ones). 
This is a typical combinatorial optimisation problem. A solution to this "prob- 
lem" (let's say a minimum of 3 shops are required) could lead the client to believe 
that this is too expensive. The "problem" will now be reformulated as maximising 
coverage under a budget constraint (a  new issue for the client). Again this is a 
well-known combinatorial optimisation problem. The new results, which do not 
cover the whole town, could lead to considering that coverage could be "weighted" 
(the districts having different commercial importance), thus slightly modifying the 
previous formulation. At this point, the client and the analyst could go one step 
further and consider a bi-objective combinatorial optimisation problem: maximis- 
ing weighted coverage and minimising costs. The sequence previously described 
is typically constructive (different problem formulations, alternative evaluation 
models, different recommendations), since the client constructed the final model 
without any ex-ante hypothesis about the problem situation and his preferences. 
Nevertheless, the methods and algorithms are coming from optimisation. 

On the other hand, the use of a preference aggregation procedure based on the 
concordance-discordance principle could be seen as the result of a normative ap- 
proach if the analyst imposes the axioms of such a model as "the model" of ratio- 
nality. 

Example 1.2 
The Italian law concerning the call for tender for the allocation of public works 
contracts (L. 109/1994) imposes, among others, that all tenders should include 
an assessment of the environmental impact of the work to be undertaken in their 
offer. Regulation DPR 55411999 published as the application code of the above 
law explicitly names the ELECTRE, AHP and TOPSIS methods in its annexes 
A and B as the ones to be used in order to perform such an assessment. It is 
interesting to note here that methods which have been explicitly conceived within 
a constructive approach, become norms for this law. This is due to the fact that 
in this context the decision rules have to be announced before the decision process 
itself begins. 0 

The second subject presented in chapter 2 is the "decision aiding process": the 
interactions between a client (a decision maker) and an analyst, aiming to aid 
the client within a decision process. Decision aiding cannot be seen as just the 
construction of a formal decision model. I t  is a complex activity (a process), which 
can be described and characterised by its outcomes, summarised as follows: 

a representation of the problem situation; 
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0 a problem formulation; 

0 an evaluation model; 

0 a final recommendation. 

A large part of chapter 2 is dedicated to discussing how such outcomes are con- 
structed within a decision aiding process and in presenting practical recommenda- 
tions (stepping stones) about conducting this process. The subsequent chapters 
go through a more thorough analysis of the more technical and formal among the 
above outcomes: the evaluation model. The elements of this are discussed in detail 
level and the interested reader will also find several stepping stones enabling an 
analyst and his client to establish meaningful and useful "evaluation models". 

1.3.2.2 Chapter 3: "Numbers and preferences" 

For most people evaluating implies using numbers. It is only after some second 
thought that  we realise we can also evaluate objects by assigning labels such as 
"good" or "bad" to  characterise the way they perform for a given feature. Yet, 
when using numbers, it is not always obvious to interpret the numbers attached 
to objects in terms of achieving some level of performance; it is even less obvious 
to  see how they can be interpreted as reflecting the decision maker's preference. 
You may like having your coffeeltea hot. If this is the case, you probably prefer it 
when it is served a t  a temperature of 40°C rather than 30°C and a t  50°C rather 
than 40 OC. But do you prefer a cup of coffeeltea served a t  80 OC to  a cup a t  70 OC. 
Coffeeltea can be too hot and you might prefer "not warm enough" to "too hot". 
More basically, without looking a t  preferences, but just in terms of warmth, a 
cup of tealcoffee served at 80 "C is clearly hotter than a cup a t  40 OC; can we say 
that  the former is twice as hot as the latter? (if the temperature was measured 
in degrees Fahrenheit-80°C is equal to  176°F and 40°C to  104°F-the former 
would not be twice as hot as the latter). 

Chapter 3 is devoted to  examining what numbers mean and, also, how they 
may relate to  preference. To start with, we discuss the former issue, leading, in 
an informal manner, to  the notion of measurement scale. 

We then contrast measurement and preference. Even when numbers really 
measure a dimension of an object (for instance its cost, provided the latter is 
precisely known) it is often the case that what we can say about the cost does not 
directly transpose in terms of preference. If I want to  buy a car, I may for instance 
feel-in terms of preference-that paying 11 000 € instead of 10 000 € is more 
painful than paying 15 000 € instead of 14 000 €; in other words, my appreciation 
of a cost difference may differ depending on where it is located on the cost scale. 

Preference is modelled as one or several relations. For instance, we say that 
alternative a is preferred to alternative b and note it a P b; alternatives may be 
indifferent; there may be degrees in the preference. Many types of relations or 
families of relations can be used to  model preference and we try to link these with 
numbers. We do this in both ways. Starting with numbers assigned to alternatives, 
we list a number of likely interpretations of these numbers in terms of preference 
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relations. We go from purely ordinal to more "quantitative" interpretations of 
the numbers. We also deal with the case in which an interval is attached to each 
alternative rather than a number, thus aiming a t  taking imprecision into account, 
in a certain-non probabilistic-way. This interpretation of numbers in terms of 
preference is what could be called "preference modelling". 

In the last part of the chapter, we study how some structures of preference 
relations can be represented by numbers. 

In the whole chapter, we consider that the objects are described on a single 
dimension; the presence of several dimensions or criteria will be dealt with in 
the subsequent chapters. At the end, we suggest a t  the end how these single 
dimensional considerations can be related to  multi-criteria evaluation models. 

1.3.2.3 C h a p t e r  4: "Aggregation-Overture" 

When dealing with objects that can only be described and compared using several 
characteristics, aggregation is a major issue: it aims at operating a synthesis of 
the, usually contradictory, features of the objects, in view of achieving a goal such 
as choosing among the objects, rank ordering them, sorting them into categories 
and so on. There are a t  least two ways of looking a t  the operation that we call 
"aggregation". 

One way, is to  approach aggregation as a mechanism that transforms the assess- 
ments or description of the alternatives on the various dimensions into a ranking 
(or some other structure). Similar mechanisms were studied from a theoretical 
point of view in the framework of Social Choice Theory. 

There is another way of looking a t  aggregation that changes the point of view 
on the subject significantly. This theory is usually called "Conjoint Measurement". 
In this approach, we consider the result of the aggregation, not the process itself. 
For example, we consider a relation on the set of alternatives, which is one of the 
possible outputs when applying an aggregation mechanism. 

Aggregation procedures are studied in some depth in chapter 5 ,  while conjoint 
measurement models are described in chapter 6. In chapter 4, we propose an 
introduction t o  both chapters: we present an example of an axiomatic charac- 
terisation obtained in Social Choice Theory (the Borda method) and in conjoint 
measurement (the additive value model), and we try to show why and how these 
characterisations can be useful to the analyst. Chapter 4 also contains a section 
on parameters. Most aggregation methods use parameters: weights, importance 
coefficients, preference thresholds, value functions, etc. We believe that the best 
way to elicit these parameters is to ask the decision maker to compare some alter- 
natives (as is often done, for instance, with the additive value model) or to make 
some statements about alternatives, but not about the parameters themselves. We 
motivate this view and we present a general approach to  the elicitation of para- 
meters that can be adapted to  most-if not all-aggregation methods. Another 
section in this chapter should help the reader interested in a specific method to 
find the most relevant results in chapters 5  and 6. 
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1.3.2.4 Chapter 5: "Aggregation procedures" 

Suppose that you have gathered all the information that you need to  assess the 
alternatives in a decision problem (buying a computer or a house, hiring an em- 
ployee for a particular job, choosing a spot where to spend a holiday, . . . ); assume 
that the assessments are provided on a numerical scale. There are several paths 
you may be tempted to follow to  obtain a ranking of the alternatives. One could 
be: compute a weighted sum of the assessments and rank the alternatives accord- 
ing to  the value of the sum. Although this is the most common way to proceed, 
there are many other possible procedures. You could consider all pairs of alterna- 
tives in turn and determine which alternative is to  be preferred to  the other for 
each pair; this can be done using a form of majority rule, for instance, based on 
the number of attributes for which one alternative is better than the other. How 
can we choose one procedure among all those available? We try to answer this 
question by presenting-in an informal and hopefully intuitive manner-axiomatic 
characterisations of a number of these procedures. Our credo is that  knowing the 
characteristic properties of the procedures helps to perceive their "spirit", sup- 
ports some particular interpretations of its parameters and dismisses others, and 
consequently helps to  understand for which situations (nature, quality, availability 
of information; time pressure, goal of the process, . . . ) they are best suited '. 

Chapter 5, dealing with the characterisation of procedures, is subdivided ac- 
cording to the type of input needed and the type of output provided by the proce- 
dure. The input can possibly be a set of preference relations that  are aggregated 
into a global preference relation; the corresponding section of the chapter is thus 
concerned with the case in which the preferential information for the alternatives 
with respect to  the various dimensions was modelled as relations, usually rank- 
ings. Among the procedures of this type, we characterise the Borda rule, as well 
as various types of majority rules and the lexicographic procedure. The output 
is a relation interpreted as a global preference on the set of alternatives and op- 
erating a synthesis of the partial preferences for the various viewpoints. In this 
setting, we come close to methods that are actually used in multi-criteria decision 
analysis, such as ELECTRE I, ELECTRE I1 or TACTIC. Arrow's Theorem is also 
presented in this section and its implications for decision aiding are discussed at 
length. 

The decision maker's preference on each dimension cannot always be expressed 
as a relation; in the next two sections, we consider the cases in which these pref- 
erences are respectively formulated as fuzzy or valued relations and performance 
tables. A fuzzy or valued relation occurs as input, for example, when a value can 
be assigned to  each pair of alternatives, reflecting the way or the intensity with 
which one is preferred to the other; a performance table is essentially a function 
that assigns a number to each alternative on each dimension; this number posi- 
tions the alternative on the preference scale associated with the dimension. For 
both types of inputs, the fuzzy (valued) relation and the performance table, we 
consider that  the output is a relation on the set of the alternatives. If the input is 

' Note that there may be several equivalent characterisations for a single procedure; in such 
a case, a procedure can be interpreted in different ways. 
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a fuzzy (or valued) relation, we characterise generalisations of the Borda and ma- 
jority rules, that can easily be adapted to  deal with fuzzy relations. Here, we pay 
special attention to  the construction of the fuzzy relations and to  the consistency 
between the nature of the fuzziness, its representation and the aggregation tech- 
nique. The procedures using fuzzy relations as input shed some light on methods 
like PROMETHEE I1 and ELECTRE 111. We then turn to  some results obtained 
in the framework of cardinal Social Choice Theory, i.e. when the information to be 
aggregated into one relation does not consist of one preference relation per criteria 
but of a number (a  performance, an evaluation, a utility, . . . ) for each alternative 
on each criterion. The case in which the input is a "performance tableau" gives us 
the opportunity of characterising the minimum, the weighted sum as well as the 
leximin and leximax procedures, that are commonly used in practice. Here again, 
we insist on the necessary consistency between the meaning of the numbers to  be 
aggregated and the aggregation method. 

Performance tableaus do not always contain numbers; evaluations often are ex- 
pressed on qualitative scales, using verbal labels or statements. Even on numerical 
scales, the significance of the numbers may only be ordinal. We briefly address 
the question of procedures using this type of information as input, which we refer 
to  as 'linguistic performance tables". 

The output of a procedure is not always a relation. Another case of interest 
is that of procedures yielding a set as output, this set being usually interpreted 
as a choice set, i.e. a subset of alternatives, possibly a single one, that would be 
proposed to  the decision maker as the best candidates. We show that the charac- 
terisations of the procedures leading to  a global preference relation can easily be 
adapted to  procedures for which the output is a choice set. I t  is, of course, pleas- 
ant that the interpretation of the input data supported by the characterisation of 
procedures leading to  a ranking of the alternatives (or another type of a preference 
relation) can also be used when dealing with a choice problem. 

The last section covers some aggregation techniques with characterisations that 
are not usually presented as similar to  what is done in 'Social Choice Theory': the 
so-called aggregation operators that are very popular in statistics and in the fuzzy 
literature (the various means, the order statistics, the Choquet and Sugeno inte- 
grals, . . . ). Unlike most aggregation methods in Social Choice Theory, aggregation 
operators use numbers as input (as in Cardinal Social Choice Theory), but yield 
one number per alternative and not a relation on the set of alternatives as out- 
put. Despite this difference, we present results about aggregation operators in this 
chapter because these results are very similar to  those obtained in Social Choice 
Theory: they impose conditions on the method transforming the input into an 
output and not on the preference relations that can be represented by a given 
model (as is the case in conjoint measurement). 

1.3.2.5 C h a p t e r  6: "Multi-dimensional preference models" 

While chapter 5 views aggregation as a mechanism that transforms a multi- 
dimensional input into a more synthetic single-dimensional output, the main prim- 
itive of Conjoint Measurement Theory is a preference relation on a set of alter- 
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natives. Conjoint measurement examines conditions on the relation under which 
can be represented in a model linking the preference to the description of the 
alternatives along the various relevant dimensions. The archetypical relations in 
this theory are those that can be described in the additive value model, studied in 
the first section of chapter 6. A preference fulfills the additive value model if 
one can decide that an alternative a ,  described by its evaluations a l l . .  . ,a, on n 
dimensions, is preferred to an alternative b, described in terms of its evaluations 
bl, . . . , b,, by comparing the values u(a) and u(b) of a function u; the peculiarity of 
the latter is that its value, for an alternative a described by a l ,  . . . , a,, is computed 
as a sum of partial value functions ui(ai) that only depend on the evaluation of 
a on dimension i. In the first section of chapter 6, we do not only describe the 
characteristic properties of the relations that can be represented by an additive 
value function; more importantly, the analysis of the model draws attention to the 
central concept of marginal preferences, i.e, the preferences induced by the global 
one on the scales associated with the various dimensions. Marginal preferences are 
the building blocks that can be combined to give the global preference. In other 
words, the analysis of the model suggests ways of eliciting the preference by asking 
well-chosen questions to the decision maker and these questions rely on marginal 
preferences in an essential way. It is the main goal of the first section of chapter 6 
to stress these features of conjoint measurement theory in the particular case of 
the additive value model. 

The rest of the chapter enlarges the scope of the conjoint measurement models 
that we consider. Why is this needed? Because not all preferences fulfil the 
conditions under which they can be represented by an additive value function. For 
instance, preference relations obtained through applying some sort of a majority 
rule while comparing each pair of alternatives in turn on all relevant dimensions, 
typically lack the transitivity property (alternative a may be preferred to b and 
b to c, while a 'is not preferred to c). Another example is seen when comparing 
objects measured on a single dimension, using a measurement device. If objects are 
only slightly different with respect to their measured characteristic, the measure 
is usually repeated a certain number of times, to control the uncertainty on the 
measure. Each object is thus associated with but a vector recording a sample 
of noisy measures of this object and not with a single measure. Comparing two 
objects is then done through a statistical test of comparison of means, namely the 
means of the measures performed on each object. Such a comparison can lead to 
an intransitive relation on the set of objects ; more precisely, it can occur that 
an object a can be undistinguishable from b, which is undistinguishable from c, 
while a and c can indeed be distinguished (a may be significantly greater than c or 
the opposite). This case suggests that a comparison relation, and by extension, a 
preference relation, may not be transitive. Moreover, the marginal relations of this 
comparison relation may be quite rough in the sense that they do not differentiate 
the values on each dimension sharply; hence the marginal preferences of non- 
transitive preferences may not convey all the information needed to construct the 
global preference relation. 

The need to deal with preferences that are not necessarily transitive and pref- 
erences for which marginal analysis is not sufficient, leads us to propose two more 
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general frameworks in the conjoint measurement spirit, both encompassing the 
additive value model. 

In the first of these frameworks, the marginal preferences are substituted with 
more subtle relations conveying all the information induced by the global prefer- 
ence on the scales of the various dimensions; they are called the marginal traces. 
We describe a variety of very general models that encompass not only the addi- 
tive value model but also a more general one called the decomposable model. An 
important feature of a large particular class of these models is that they respect 
dominance with respect to the marginal traces; we provide a characterisation of 
this class of models. 

Another way of generalising the additive value model is particularly suited to 
describe preferences that can be established on the basis of pairwise comparisons 
of alternatives, as is the case when using majority rules. The building blocks 
for constructing preferences in our second framework are relations called traces 
on differences. By means of these relations, it is possible to express that the 
difference between two levels ai and bi on scale i is at  least as large as that between 
two levels ci and di on the same scale. Within this framework, we analyse the 
preferences obtained through well-known procedures that are mostly variants of 
the majority rule, possibly with vetoes. These procedures are shown to correspond 
to very rough differentiation of preference differences between levels on a scale: 
essentially, a preference difference can be positive, negative or equal to zero; this 
can reasonably arise when the scales are purely ordinal. Introducing vetoes in 
variants of the majority rule amounts to distinguishing five classes of preference 
differences instead of three. 

Finally, a third general framework is explored, that obtained by combining the 
two previous ones; in the corresponding models, marginal preferences on differences 
can be expressed in terms of marginal traces. The use of these refinements allows 
us to further investigate the models based on majority rules, with or without 
vetoes and more generally, the models for preferences distinguishing few levels 
of preference differences. At the other extreme, this framework encompasses the 
additive difference model, which can finely distinguish preference differences. 

After a brief section devoted to valued (or fuzzy) preference models (in which 
we look at the measurement of global preference differences), we close chapter 6 
with a rejoinder, stressing the links that exist between the two different approaches 
to aggregation, described in chapters 5 and 6. 

1.3.2.6 Chapter 7: "Making recommendation" 

The ultimate aim of a decision aiding study is to build recommendations that 
will hopefully be considered as useful by the participants in the decision process. 
Such recommendations, at  least in our approach to decision aiding, are based on 
formal preference models. Many different tasks are required in order to obtain a 
recommendation from such models. Some of them are rather informal, involving, 
e.g., a good strategy of communication with the actors in the decision process, 
the need for transparency in the decision aiding process, a sound management of 
multiple stakeholders, etc. The last chapter of this volume discusses the formal 
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tasks that are involved in the elaboration of a recommendation. 
The analyst's task a t  this stage is clearly dependent upon: 

0 the nature of the recommendation that is sought, which, in turn, is linked 
to  the problem formulation that has been adopted. This chapter will con- 
centrate on the three problem formulations that  are most frequently encoun- 
tered in practice. The first two (i.e. choosing and ranking) involve a relative 
evaluation of the alternatives, while the last one (sorting) is concerned with 
absolute evaluation. 

0 the nature of the preference models that have been built. We distinguish two 
main types of preference models: the ones based on value functions leading 
to well-behaved preference relations and the ones tolerating incomparability 
and/or intransitivity. 

We first deal with the, relatively easy, case of preference models based on a value 
function. We then tackle the much more difficult case of preference models tol- 
erating incompleteness and/or intransitivity. We also envisage the situation in 
which the recommendation is based on several preference models, a situation that  
frequently arises in practice. The main difficulty here will be to  reach conclusions 
that  will hold with all possible preference models, i.e. robust conclusions. 

The chapter concludes with a more general perspective on robustness, an im- 
portant emerging theme in the field of decision aiding. Indeed, all scientists who 
have dealt with real decision problems know that the numerical values used in their 
models are often questionable. This is the case for information describing the de- 
cision situation, traditionally called the "data". They are often values built by 
the analyst according to  the model he wants to use; they result from assumptions 
about the context of the problem, from estimations of badly known or random val- 
ues, from the forecasting of future events. Therefore, i t  often occurs that several 
plausible "sets of data", possibly very different from each other, can constitute a 
good representation of the situation. This is also the case for the parameters that 
have to  be (more or less arbitrarily) chosen by the analyst using a formal decision 
aiding tool (e.g. value functions, weights, thresholds, etc.). 

In such a context, working with a unique (e.g. the "most plausible") set of 
values can be very risky. What the decision maker generally wants is a recommen- 
dation that makes sense with all (or almost all) of the plausible sets of data. This 
is the basis of the concept of robustness. 

1.4 Intended audience 

Most of us are confronted with formal evaluation and decision models. Very often, 
we use them without even thinking about it. This book is intended for the aware 
or enlightened practitioner, for anyone who uses decision or evaluation models- 
for research or for applications-and is willing to  question his practice, to  have 
a deeper understanding of what he does. We have tried to  keep mathematics at 
a minimum, so that, hopefully, most of the material will be accessible to the not 
mathematically-inclined readers. We do not use sophisticated mathematical tools 
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such as differential equations, abstract algebra or calculus and we do not prove 
the theorems we present. Nevertheless, in order to  make our definitions precise 
and to be able to  meaningfully manipulate formal concepts, we need to  use a 
formal language. That is why, compared to  the first volume, this book requires 
more mathematical maturity, even if, sometimes, we have privileged intuition and 
accessibility over mathematical correctness. A rich bibliography will allow the 
interested reader to  locate the more technical literature easily. 

This book can certainly be used for teaching purposes, but not for introductory 
classes because it assumes a basic knowledge of multicriteria decision and evalu- 
ation models. For example, we only give a very short presentation of the main 
aggregation methods. For an introduction, we suggest Bouyssou et  al. (2000), 
Vincke (1992b) or Belton and Stewart (2001). 

1.5 Who are the authors? 

The authors of this book are European academics working in four different univer- 
sities and research institutions, in France and in Belgium. They teach in engineer- 
ing, mathematics, computer science and psychology schools. Their background is 
quite varied: mathematics, economics, engineering, law and geology, but they are 
all active in decision support and more particularly in multiple criteria decision 
support. Preference modelling, fuzzy logic, aggregation techniques, social choice 
theory, artificial intelligence, problem structuring, measurement theory, Opera- 
tional Research, . . . are among their special interests. Besides their interest in 
multiple criteria decision support, they share a common view on this field. Four 
of the five authors of the present volume, together with Patrice Perny, presented 
their thoughts on the past and the objectives of future research in multiple criteria 
decision support in the Manifesto of the new MCDA era (Bouyssou, Perny, Pirlot, 
Tsoukibs, and Vincke, 1993). In 2000, the five authors of this book, once again 
with Patrice Perny, published a book entitled "Evaluation and decision models: A 
critical perspective" (Bouyssou et  al., 2000). 

The authors are active in theoretical research on the foundations of decision 
aiding, mainly from an axiomatic point of view, but have been involved in a variety 
of applications ranging from software evaluation to location of a nuclear repository, 
through the rehabilitation of a sewer network or the location of high-voltage lines. 

In spite of the large number of co-authors, this book is not a collection of 
papers. It is a joint work. 

1.6 Convent ions 

To refer to  a decision maker, a voter or an individual whose sex is not determined, 
we decided not to  use the politically correct "he/sheV but just "he" in order to  
make the text easy to read. The fact that all of the authors are male has nothing 
to do with this choice. The same applies for "his/hern. 

None of the authors is a native English speaker. Therefore, even if we did 
our best to  write in correct English, the reader should not be surprised to  find 
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some mistakes and inelegant expressions. We beg the reader's leniency for any 
incorrectness that might remain. Throughout, we have tried to stick to the spelling 
used in the U.K. 
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PROBLEM FORMULATION AND 
STRUCTURING: THE DECISION 

AIDING PROCESS 

Consider the following situations: 

1. A family discovers that their daughter systematically refuses to eat any type 
of food claiming that eating for her is "disgusting" (a typical symptom of 
"anorexia mentalis"). It is reasonable to expect that the family will contact 
a psychotherapist in order to conceive appropriate therapies to  face this 
(possibly extremely dangerous) situation. 

2. A lady becomes pregnant. Soon after she gradually becomes physically upset. 
Again we can expect that she will consult a physician in order to  establish 
an appropriate treatment. 

3. A large company providing mobile communication services is facing the pos- 
sibility that the European Union will introduce a new directive concerning 
ownership of networks across Europe, thus seriously affecting its business. 
We can expect that this company will contact a primary legal adviser in 
order to  appropriately redesign the company's structure. 

4. A manager has to reconsider the company's supply chain management in or- 
der to  improve productivity and delivery time to  the customer performance. 
I t  is reasonable to  believe that he will contact a supply chain management 
specialist in order to study different policies and establish one. 

These situations all share a common characteristic: there is "a problem", for 
which "a client" (the family, the lady, the company, the manager) asks the advice 
of "an analyst" (the psychologist, the physician, the lawyer, the supply chain 
management specialist) in order to "find a solution". 

There is, however, an important difference when we compare the advice of the 
psychologist, the physician, the lawyer to  that of the supply chain management 
specialist: the language (for more details on this issue the reader is referred to 
Ackoff, 1962; Bevan, 1976; Capurso and TsoukiAs, 2003). Although all of these 
advisers might use a "scientific approach" to  help their clients, the psychologist, 
the physician and the lawyer will use a human natural language (naturally am- 
biguous) and a terminology depending on their specific domain, while the supply 
chain specialist will be likely to  use a formal language (like mathematics) which 
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reduces (if does not exclude) ambiguity and is independent of the field of supply 
chain management. He will use what we call a "decision support language", thus 
introducing a "model of rationality" in his decision aiding activity. 

Does it make sense to use such a language in any context and at all times? 
Obviously not. The use of a "decision support language" presents several disad- 
vantages: 

i t  is much less effective with respect to human communication; 

it has a cost (not necessarily monetary); 

reducing ambiguity might not be desirable; 

0 it imposes a limiting framework on people's intuition and creativity. 

Nevertheless, such a language also presents several advantages, which in some 
circumstances can be interesting (see also Bouyssou et al., 2000): 

it allows the participants in a decision process to  speak the same language, a 
fact that improves the transparency of the process and possibly increases par- 
ticipation (for an example see Bana e Costa, Nunes da  Silva, and Vansnick, 
2001); 

0 it allows the identification of the underlying structure of a decision problem 
(if there is any) and therefore allows the re-use of procedures and models 
(for interesting examples see any textbook of Operational Research, e.g., 
Williams, 1990); 

it is not affected by the biases of human reasoning that are due to  education 
or tradition (for examples see Rivett, 1994); 

0 it may help to  avoid the common errors that are due to  an informal use of 
formal methods; a typical case being the use of averages as a universal grad- 
ing procedure (see Bouyssou et al., 2000, chapter 3, for a critical discussion 
of this issue). 

In this chapter we will focus on a number of this language's concepts and terms. In 
our first volume (Bouyssou et al., 2000) we have shown that within such a language 
we make choices about models, procedures, numerical representations and logics, 
which are not neutral with respect to  the final result of the interaction between 
the client and the analyst. Furthermore we have shown that a problem situation is 
not perceived and modelled in a unique and objective way, but there exist several 
different problem formulations. The use of a formal, domain-independent language 
forces us to be more precise when terms such as problem, objective, solution etc. 
are adopted (see, e.g., Belton and Stewart, 2001; Checkland, 1981; Rosenhead, 
1989; Roy, 1996; Roy and Bouyssou, 1993). 

The aim of this chapter is to  introduce the reader to the concept of "decision 
aiding process", the activities occurring between a client (somebody looking for de- 
cision support) and an analyst (somebody providing decision support). Although 
each such process has a unique history (once accomplished), we claim that there 
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are a number of invariants within it and that these can be used in order to provide 
useful recommendations on how such a process can be conducted. In other words: 
conducting a decision aiding process is a combination of personal skills (in human 
communication, group conduction, listening etc.) and of formal skills characterised 
by the establishment of precise cognitive artefacts which are used by the client and 
the analyst in order to represent the problem and its solution(s). This chapter as 
well as the whole book is dedicated to  analysing such steps, providing concepts, 
tools and methods to  appropriately follow them. 

In order to better understand our point of view, in the first section of this chap- 
ter we discuss four different decision aiding approaches: normative, descriptive, 
prescriptive and constructive (Bell, Raiffa, and Tversky, 1988; Dias and Tsoukihs, 
2004). Under our perspective, the decision support language makes sense within 
a particular context: the interactions between the client and the analyst. Such a 
stream of interactions is denoted as "decision aiding process'' and is viewed as a 
particular type of decision process. For this purpose, we briefly discuss the concept 
of decision process in section 2.2 as well as the differences between "deciding" and 
"aiding to  decide". In section 2.3, we then introduce a formal model of the decision 
aiding process. Such a model is based on the cognitive artefacts, the "products" of 
the process: a problem situation, one or more problem formulations, one or more 
evaluation models, a final recommendation. In section 2.4, we focus on the con- 
struction of such cognitive artefacts. Large part of the book will be dedicated to  a 
deeper analysis of the problems identified in section 2.4. A final section concludes 
showing the research directions opened by such an approach. 

2.1 Decision Aiding Approaches 

In order to help someone to "make" a decision we normally elaborate preferences. 
"Preferences are rational desires" (Aristotle, 1990). Practically what we usually 
know is what a decision maker or a client desires. Where does rationality come 
from? 

Suppose a client faces a health problem. He has a set of more or less sure 
diagnoses and a number of possible treatments of more or less uncertain results. 
A manual of decision theory will suggest to consider each possible treatment as 
an alternative action and each possible diagnosis as a possible state of the world 
to  which a probability might be associated. For each treatment we thus obtain 
the consequences of its application for each diagnosis. Such consequences allow to  
establish a utility function. Maximising such an utility (function), will provide the 
client with the best solution to his problem. The existence of such a utility function 
is guaranteed through a number of axioms (Savage, 1954) which are supposed to 
express the idea of rationality in a formal way. Such axioms are independent of 
the client. Preferences among the potential consequences should be transitive and 
this is imposed because it is considered essential in order to  be rational, otherwise 

' Hereafter we will substitute the term "decision maker" with that of "client". The reason 
will become clear later in the text. A "client" is someone who seeks advice for a decision issue. 
From such a perspective, he is a potential decision maker, but not necessarily. 
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the client should be ready to pay an infinitely increasing amount of money for the 
same solution (see the "money pump" discussion in Raiffa, 1970, p. 78). Similarly, 
preferences about consequences ought to be "independent" (the fact that we prefer 
a certain consequence to another should not depend on the likelihood that any of 
the two will occur) (see Fishburn, 1970, p. 107). Rationality here is established 
independently from the client. We should also note that, although we allow for 
uncertainties in the diagnosis, there is no uncertainty in the model itself. Diagnoses 
are all the possible diagnoses, the treatments are all the possible ones and it is 
clear that the problem is to choose the best one for this specific client (who only 
has to express his preferences) who is supposed to be "rational". If he is not, then 
he should modify his preferences in order to become so. Which is what we call a 
normative approach. 

Since von Neumann and Morgenstern (1947) and Savage (1954) this is the 
dominant paradigm in decision analysis and decision support with or without 
uncertainty, in the presence or not of multiple evaluation dimensions. Traditional 
Operational Research techniques fit the same idea: maximise an economic function 
in the presence of feasibility constraints (usually all expressed in terms of linear 
functions). Rationality is imposed through a number of hypotheses and axioms 
which exist independently from the client and his problem. 

Returning to our client, we can argue whether his behaviour is effectively "ra- 
tional" (in the sense of the axioms of economic rationality). Indeed, since Allais 
(1953) (see also Kahneman and Tversky, 1979), it has been shown that real deci- 
sion makers in real decision situations behave in a way that violates the axioms 
of economic rationality. For instance "negative" outcomes may be considered in a 
totally different way with respect to "positive" outcomes such that the axioms are 
violated. Moreover, to explain observed patterns of behaviour of decision makers 
it is often necessary to adopt "distorted probabilities" (Kahneman and Tversky, 
1979) in order to take into account the perception of uncertainty that the decision 
makers have. What should we do? One way could be to use any of the so called 
"decision heuristics" derived through direct observation of real decision makers. 
Consider the following frequent decision situation for instance. A decision maker 
has to choose among candidates using a number of criteria. He may first rank the 
criteria from the most important to the less important one. He then uses the most 
important one in order to extract a subset of candidates who are the best on that 
criterion. He then uses the second most important criterion in order to extract 
a further reduced subset of candidates from the previously established one. He 
then uses the third criterion in the same way until he (possibly) ends with a sin- 
gle candidate. This is a lexicographic procedure (extensively studied in Fishburn, 
1974). Another example is "dominance structuring" where the decision maker, 
having once identified a "promising alternative" (intuitively or through another 
decision procedure) will try to consolidate his opinion by looking whether it is 
possible to construct a dominance relation between this alternative and the rest. 
This might be possible by the de-emphasising of certain criteria (up to eliminating 
them), bolstering the positive features of the "promising alternative" or modifying 
the criteria set (Montgomery, 1983; Montgomery and Svenson, 1976). Clearly this 
procedure aims at  establishing a justification rather than making a choice. 
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It should be noted that in the above approach, although we do not impose 
a normative model of rationality we do impose one, but on empirical grounds. 
Its validity derives from the fact that several "other" decision makers do behave 
following a precise model. I t  should also be noted that we again consider the model 
as sure. Diagnoses, treatments and probabilities are given and the client has to 
choose one. The difference is that the model of rationality adopted is derived 
from analysing the cognitive effort of other decision makers (Svenson, 1996). We 
call such an approach descriptive since it is based on descriptive models of human 
behaviour when decision situations are faced. 

Both approaches presented impose a model of rationality to the client. The 
question one could introduce is what happens if such a model of rationality cannot 
be imposed. What happens if the client expresses preferences which do not fit any 
model of rationality be it normative or descriptive. It might be the case that the 
client has preferences which are neither transitive nor complete. He might not 
be able to tell whether one alternative is preferable to another or he might not 
be willing to do so. He might have a perception of the uncertainty associated 
with the potential states of the world, but he might not be able to consider them 
within a model of probability. It is also probable that, although he understands 
the necessity to better shape his preferences, he has neither sufficient resources 
nor the time to do it. At the same time, something has to be done and the analyst 
has to be able to produce a recommendation. 

In such cases we may adopt an approach which tries to construct a model as 
coherent as possible with the information provided by the client, while trying to 
satisfy minimum requirements of meaningfulness in manipulating such informa- 
tion. In other words we are not going to ask the client to adapt himself to a model 
of rationality, but try to adaptively model the available information and derive a 
reasonable recommendation. Considering the health example, we will try to iden- 
tify a prescription which fits best with the client's preferences (even if these do not 
obey a model of rationality) and his personal perception of the uncertainty. Nev- 
ertheless, we are not going to accept any type of information manipulation, but 
only those which respect the "nature" of the data (Bouyssou et al., 2000; Roberts, 
1979). 

I t  should be noted that, while in the normative and the descriptive approach we 
consider models of rationality defined "from outside" the client's decision situation, 
in this case we try to model the precise rationality the client exhibits a t  the 
moment. Therefore, rationality is defined "within" the decision situation and 
not "from outside". We call such an approach prescriptive since it is aimed to 
"prescribe" to the client the action which appears hic et nunc as the most preferred. 

However, again the problem is not discussed. We always consider that the 
diagnoses, the treatments, the uncertainties are given and that we are looking for 
the best therapy to follow. In other words, the problem is well established and our 
main concern is the potentially "irrational" information the client may provide or 
the fact that such information is difficult to represent under usual quantitative 
measures. Is it always the case? Are we really sure that all possible diagnoses 
have been obtained? What if there were other experimental treatments we are not 
aware of a t  this moment? Are we sure that the problem is to find a treatment? In 
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several real decision situations neither the client nor the analyst are really aware of 
what the problem exactly is. What often happens is that, while these two actors 
try to  model a problem, they also shape what the decision situation is about, 
thus ending up formulating a completely new problem and so on. In our example, 
although the client claims that he is looking for the best treatment, he might well 
end up understanding that  his problem is to  take a long holiday (possibly together 
with the analyst). 

In other words, looking for the solution of a well established problem is always 
possible, but could be the wrong thing to  do, since it might not be the right prob- 
lem t o  solve. The problem is that neither the client nor the analyst know what 
the problem is a priori. Therefore, a decision support activity should also con- 
tain the structuring of the problem situation in which the client claims to be and 
the construction of several different problem formulations. Moreover, representing 
the client's preferences is not merely an elicitation process in which the analyst 
helps the client to state his values or to discuss them. I t  is a dialogue aimed 
a t  strengthening the conviction of the client that  he actually does prefer "x" t o  
"y", establishing the reasons for supporting such a conviction or the opposite one. 
Within such an approach we do not limit ourselves to using the most appropriate 
method for well established problem formulation, but we try to  support the whole 
decision process in which the client is engaged. From such a perspective, nothing 
can be considered as "given" (if not the client's demand for help), while everything 
has to be constructed. Furthermore, within such an approach there is a funda- 
mental learning dimension, since both the analyst and the client have to learn 
about the client's problem. We call such an approach constructive in the sense 
that  the problem and its solution are constructed, while in all other approaches 
the problem is given and the solution is more or less discovered. 

We can summarise the above presentation as follows. 

Normative approaches 

6 Normative approaches derive rationality models from a priori established 
&> norms . Such norms are postulated as necessary for rational behaviour. De- 
0 viations from these norms reflect mistakes or shortcomings of the client who 
@ should be aided in learning to  decide in a rational way. These models are 
@ intended to be universal, in that they should apply to  all decision makers who 8 want to  behave rationally. We may consider ethical norms, laws and religious 
Q norms as analogies (for more detail, the reader is referred to the following clas- 

sics: Fishburn, 1970, 1982; Luce and Raiffa, 1957; Raiffa, 1970; Savage, 1954; 
@ von Neumann and Morgenstern, 1947; Wakker, 1989). 
C S  

Descriptive approaches 

8 Descriptive approaches derive rationality models from observing how decision 
@ makers make decisions. Such models are general, in that  they should apply to 
Q a wide range of decision makers facing similar decision problems. We may con- 
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GJ sider scientists trying to derive laws from observed phenomena as an analogy 
(for more details, the reader can refer to: Allais, 1979; Barthklemy and Mul- 8 let, 1992; Gigerenaer and Todd, 1999; Humphreys, Svenson, and Vki ,  1983; 

8 Kahneman et al., 1981; Kahneman and Tversky, 1979; Montgomery, 1983; 
@ Montgomery and Svenson, 1976; Poulton, 1994; Svenson, 1996; Tversky, 1969, 
@ 1972; von Winterfeldt and Edwards, 1986). 
L? 

Prescriptive approaches 

3 Prescriptive approaches discover rationality models for a given client from 
<;;I his/her answers to preference-related questions. Modelling consists in discov- 
G ering the model of the person being aided to decide, i.e. unveiling his/her 
@ system of values. Therefore, they do not intend to be general, but only to be 
@ suitable for the given client in a particular context. Indeed the client can run 8 into some difficulties trying to reply to the analyst's questions and/or be unable 
Q to provide a complete description of the problem situation and his/her values. 
G? Nevertheless, a prescriptive approach aims being in a position to provide an 

answer best fitting the decision maker's information here and now.Here, we 
a may consider a physician asking questions to a patient, in order to discover his 8 illness and prescribe a treatment as an analogy (for more details, the reader 
Q is referred to: Belton and Stewart, 2001; Brown, 1989; Keeney, 1992; Larichev 

and Moskovich, 1995; Roy, 1996; Tversky, 1977; Vanderpooten, 2002; Vincke, 
199213; Weber and Coskunoglu, 1990). r'> 

Constructive approaches 
. . 

8 Constructive approaches build rationality models for a given client from his/her 
8 answers to preference-related questions. However, the "discussion" between 
&2 the client and the analyst is not "neutral" in such an approach. Actually such 

a discussion is part of the decision aiding process since it constructs the repre- 
sentation of the client's problem and anticipates, to some extent, its solution. 

:;4 
t,3 If, while talking about what to do tonight, we ask the question "where should 
KJ we go tonight?" we implicitly do not consider all options implying staying at  
[a home. If we ask ('Who should we meet?" we implicitly do not consider all 

options involving staying alone. In such an approach, structuring and forrnu- 
lating a problem becomes as important as trying to "solve" it. Recent real 
world applications (see, e.g., Bana e Costa, Ensslin, CorrBa, and Vansnick, 

@ 1999; Belton, Ackermann, and Shepherd, 1997; Paschetta and Tsouki&s, 2000; 
8 Stamelos and Tsoukik, 2003) do emphasise the importance of supporting the 
Q whole decision aiding process and not just the construction of the evaluation 

model. Modelling using this approach consists in aiding a client to construct 8 his own model, suitable for that contingency and particular context. Indeed, 
0 we can adopt the term of "co-modelling" (co-construction of the model). Here, 
Q we may consider a designer or an engineer tentatively developing a new car 
8 .,. as an analogy (for details, the reader is referred to: Checkland, 1981; Genard 
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and Pirlot, 2002; Habermas, 1990; Landry, Banville, and Oral, 1996; Landry, 
Malouin, and Oral, 1983a; Landry, Pascot, and Briolat, 198313; Rosenhead, 
1989; Roy, 1996; Schaffer, 1988; Watzlawick, Beavin, and Jackson, 1967). 

Approach Characteristics Process to obtain the model 
Normative Exogenous rationality, To postulate 

ideal economic behaviour 
Descriptive Exogenous rationality, To observe 

empirical behaviour models 
Prescriptive Endogenous rationality, coherence To unveil 

with the decision situation 
Constructive Learning process, coherence To reach a consensus 

with the decision process 

Table 2.1: Differences between approaches. 

Theoretical differences. . . 
Table 2.1 summarises the differences between the approaches. We may start by 
dividing these in two groups. On the one hand, normative and descriptive ap- 
proaches use general models of rationality, established independently from the 
client and the decision process, intended to model the rationality of decision mak- 
ers in general. On the other hand, prescriptive and constructive approaches derive 
a model for the rationality of the contingent client, and only that particular client. 

The difference between normative and descriptive models mostly lies in the 
process of obtaining the model. Normative models are grounded on abstract 
economic considerations (rationality corresponds to the behaviour of an abstract 
"homo economicus"), whereas descriptive models are grounded on empirical ob- 
servation. The former focus on how decision makers ought to decide, whereas the 
latter focus on how decision makers actually make decisions. 

The difference between prescriptive and constructive models also lies to a great 
extent in how the model is obtained. Prescriptive models intend to unveil a system 
of values that exists before the decision aiding process starts, hidden somewhere 
inside the client's mind. Constructive models do not assume that preferences pre- 
exist, but let the client construct his/her system of values while the model is being 
constructed, recognising that one construction cannot be isolated from the other. 
Indeed, the final model is expected to be validated through a consensus reached 
between the client and the analyst. Such a "consensual" model is expected to 
satisfy both the client's perception of his/her problem and the analyst's method- 
ological requirements of meaningfulness and formal coherence (on this point see 
Genard and Pirlot, 2002; Landry et al., 1996, 1983a,b). 

. . . and practical issues 

It  should be noted that it often (usually in practice) does not happen that an 
analyst follows any of the above approaches as if he was following a decision 
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theory manual. Normative approaches might be used with weaker versions of 
their axiomatics (see, e.g., Dubois and Prade, 1995; Dubois, Prade, and Sabbadin, 
2001c; Wakker, 1989) knowing that this is empirically grounded. At the same 
time, someone adopting a prescriptive or a constructive approach might decide to 
introduce and fix a dimension of rationality in order to ease the dialogue with the 
client and "force him" to accept a certain point of view. Such interactions between 
the approaches can be better understood when decision support tools come into 
practice (see also Belton and Stewart, 2001). 

The number of decision support tools and methods available today in literature 
and more or less applied is incredibly high (see Bouyssou et al., 2000). They range 
from optimisation techniques to cognitive approaches, from artificial intelligence 
tools to multiple criteria decision analysis methods, from extremely sophisticated 
tools (such as logic argumentation and ordered sets) to "soft", natural language- 
oriented and user-friendly ones. We are not going to present these tools here. Each 
of such tools however, has been created with a more or less precise "philosophical" 
background (see Genard and Pirlot, 2002) and with a more or less precise decision 
aiding approach in mind. 

It is clear for instance that traditional Operational Research techniques such as 
linear programming, combinatorial optimisation and queuing theory reflect a nor- 
mative idea of rationality as well as expected utility theory and game theory (see 
the discussion in Moscarola, 1984). On the other hand, several decision heuristics 
as well as some early artificial intelligence knowledge representation techniques 
reflect a descriptive approach: capture the way in which decision makers and/or 
experts do it and generalise it. Much cognitive analysis can be associated to such 
an approach. 

At the same time, several multiple criteria decision support methods were 
developed under a prescriptive approach and several artificial intelligence tools 
make explicitly or implicitly reference to such an approach. Note for instance the 
common argumentation concerning intransitive preferences in decision analysis and 
non monotonic reasoning in logic (see, e.g., Doyle and Wellman, 1991; Tsoukih, 
1991). It should also be noted that the seminal work of Simon (1954, 1979) on 
the concept of bounded rationality can be viewed as the background of both of 
several decision support methods (developed under a descriptive or a prescriptive 
approach) and of several artificial intelligence achievements. 

Finally, several "soft" OR methods implicitly and several MCDA methods 
explicitly refer to a constructive approach. Indeed Roy (1996) explicitly claims 
that the philosophical justification for the methods developed by himself and his 
group is "constructivism", while the description of the Soft Systems Methodology 
(Checkland, 1981) clearly focuses on the decision aiding process and the structuring 
issue although it does not explicitly mention a constructive approach. 

However, despite the fact that more or less each decision support method can 
be associated to a decision aiding approach, we claim that such an association is 
misleading since it reduces such approaches to a mere collection of methods (on 
this, note the examples used in chapter 1 of this book). 

Our thesis is that decision aiding approaches do not imply the use of an 
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.....- 
@ exclusive set of methods and that at  the same time, the use of a precise method 
@ does not imply the adoption of a decision aiding approach. In the extreme: 
a we consider it possible to use a constructive approach and adopt at  a certain 

point a combinatorial optimisation technique as well as using an outranking 8 based preference aggregation procedure within a normative approach. The 
difference really is observable in the conducting of the decision aiding process. 

Q This is the reason why we dedicate a chapter to discussing how such a process 
9 can be structured and conducted. 

In the following we are going to explore the constructive approach in more 
detail. This book however, and the one we have already published (Bouyssou 
et al., 2000) can be used in order to build models within any approach. 

2.2 Decision Processes and 
Decision Aiding Processes 

The concept of decision process is due to Simon (1947). As early as in 1947, Simon 
observed decision processes occurring within real organisations and concluded that 
the behaviour of real decision makers is far from the postulates of decision theory, 
at  least as this theory was formulated a t  that time. During the '50s, Simon 
(1954, 1956, 1957) developed his "bounded rationality" theory, which states that a 
decision maker facing a choice behaves on the basis of a local satisfaction criterion, 
in the sense that he will choose the first solution that he subjectively considers as 
satisfactory without trying to attain an unrealistic (and useless) optimal solution. 
Actually Simon considers decision theory to be based on three implicit hypotheses 
(see the discussion in Moscarola, 1984): 

decision makers always know their problems well; 

such problems can always be formulated as an effectiveness (or efficiency) 
problem; 

the information and the resources necessary to find a solution are always 
available. 

According to Simon, any of these hypotheses is not true in reality: 

decision makers never have a very precise idea of their problem; 

often their problems can be formulated as the search for a compromise; 

solving a problem is always constrained by the available resources and time. 

The innovation introduced by Simon is radical. Decision theory as had been de- 
veloped up to that moment always considered the rationality model as existing 
independently from the decision maker and his decision process. Simon put the 
decision process (the mental activities of a decision maker) and postulated that a 
rationality model has to be found within such a process at  the centre of his reflec- 
tion and not outside it. Most of the literature around this concept is based on the 
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hypothesis that such cognitive activities are scientifically observable (either empir- 
ically or in experimental settings) and that "patterns" of "decision behaviour" can 
be established (see Humphreys et al., 1983; Kahneman and Tversky, 1979; Mont- 
gomery, 1983; Montgomery and Svenson, 1976; Slovic and Lichtentstein, 1983; 
Slovic and Tversky, 1974; Svenson, 1996; V k i  and Vescenyi, 1983). The use of 
this concept in decision theory introduced two major innovations: 

25 
Q 

rationality is expected to be linked to the process and not to the final 

8 decision; coherence is expected along the process, but such coherence is 
not necessarily reducible to the classic economic rationality; 

G 
rationality is bounded in time, space and the cognitive capacity of the 
decision maker, therefore is subjectively defined and only locally valid. 

G3 
1'5 

The concept of decision process was later associated to organisational studies 
and more precisely to the study of how organisations and other collective bodies 
face decision situations (see Cyert and March, 1963; Emerson, 1962; March and 
Simon, 1958). These works showed that the behaviour of an organisation (assumed 
to be composed of rational decision makers) does not correspond to the rational 
behaviour as described by decision theory (the reader can see an extreme model in 
Cohen, March, and Olson, 1972, which describes the famous garbage can model, 
in which organisations are seen precisely as garbage cans). The problem, already 
observed by Weber (1922) in his studies during the 20's on bureaucracies, is that 
within an organisation different forms of rationality may co-exist (see Simon, 1976). 
Later on, related research was condensed in Mintzberg's work (see Mintzberg, 1979, 
1983; Mintzberg, Raisinghani, and ThBoret, 1976) as well as by other authors (see 
Benson, 1975; Dean and Sharfrnan, 1996; Huber, 1991; Ilgen, Major, and Tower, 
1994; Mackenzie, 1986; Masser, 1983; MBlhse, 1978; Norese and Ostanello, 1984, 
1989; Nutt, 1984, 1993, 1999; Ostanello, 1990; Ostanello and Tsouki&s, 1993). 

The observation of organisational decision processes leads to at least the fol- 
lowing remarks: 

multiple rationalities that can be associated to different individuals 
and/or organisations coexist within organisational decision processes; 

such different rationalities rarely aggregate into a unique rationality char- 
acterising a process; an organised collection (a system) of rational indi- 
viduals does not constitute a rational entity. 

We are not going to further discuss the issue of the decision process and its 
models. Indeed, our aim is not just to propose another model of how decisions are 
made, but to show how analysts can help their clients when they act as "decision 
makers" either in individual or in organisational decision processes. Of course 
accepting an hypothesis on how decision processes are structured might influence 
the adopted decision aiding approach, but this is only one dimension among others 
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in conducting a decision aiding process. The following section considers a model 
of decision process, but our choice is essentially operational. 

2.2.1 A descriptive model of the decision process 

In this section we will use a descriptive model of the decision process, introduced by 
Ostanello and Tsoukihs (1993). This precise model originated to describe inter- 
organisational decision processes, but is sufficiently general to be used in more 
abstract contexts. 

A decision process is characterised by the appearance of an "interaction space", 
an informal abstract space in which actors introduce and share a set of concerns 
(named "objects"). The awareness of the existence of such an interaction space is 
due to the existence of a "meta-object" (a concern which only exists in order to 
allow the actors to justify their presence in the interaction space projecting their 
concerns on such meta-object). 

A temporal instance of a decision process (a state of the process) is charac- 
terised by: the participating actors, their concerns (the objects) and the resources 
committed by each actor to each object. Different levels of commitment and the 
number of actors interested in the same object characterise the structure of such 
a temporal instance, anticipating the dynamics under which such a state can be 
reached. In Ostanello and Tsoukihs (1993), the following characteristic states were 
suggested: 

0 controlled expansion; 

0 uncontrolled expansion; 

0 controlled reduction; 

0 stalemate; 

0 dissolution; 

0 institutionalisation 

in order to show the different directions towards which the state of the process 
can evolve (for more details, the reader can refer to Ostanello and Tsoukihs, 
1993).Recognising the present state and fixing a state one wishes to reach can 
help in understanding the strategy to follow within the decision process. 

Example 2.1 
Consider the construction of a new highway expected to improve the accessibility 
of two towns and going through a certain region. 

There are a number of participating actors: the potential constructors of the 
highway, the local, regional and national institutions (including the "National 
Road Agency"), which have to authorise the construction besides as well as be 
concerned by the use of the highway and the consequences of its construction, the 
population affected by the highway and its construction, the social, political and 
economic groups etc. 

Each of these actors has specific concerns about: 
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the highway construction; 

the environmental impact; 

the socio-economic impact; 

the transformation of the land use; 

0 the transportation policy; 

the environmental policy; 

which are all evoked by the "meta-object": the idea of a highway between A and 
B. Each participant commits and demands resources: for instance the potential 
constructors commit money and demand knowledge and authorisation, the re- 
gional authority commits authorisation and political legitimation and demands 
infrastructures and political legitimation, etc. Different decision problems can be 
identified such as: 

0 build the highway or not? 

freeway or toll-highway? 

which route? 

what the procedure to  approve the route should be? 

and each of them will be treated differently by the different actors depending on 
the concerns they have. 

An external observer could identify the interaction space in which the concerned 
actors "meet" and can also recognise how the process reached its present "state". 
However, there are several different ways to  conduct such a process (in a more or 
less authoritarian or participatory way) and for each of these, different types of 
decision, support can be demanded by different participants. I t  is not possible to  
identify a unique decision support. Decision aiding always refers to a participant 
and his concerns. 0 

As already discussed in the previous section, we are interested in decision aiding. 
From such a perspective the introduction of the above model of the decision process 
is functional to our purpose to describe the decision aiding process. Intuitively, in 
decision aiding we also make decisions (what, why and how to  model and support). 
Decision aiding is  also a decision process but of a particular nature. 

3 Our claim is that in decision aiding contexts an interaction space (for 
62 at  least two actors: the client and the analyst) appears, characterised by a 
@ meta-object which is the "consensual construction of a client's concern repre- 
@ sentation" through the use of the technical and methodological skills of the 

analyst and the domain knowledge of the client. Such a hypothesis implies that 8 &3 the two actors engage themselves in a decision process, that  is, the decision 
a aiding process is a special type of decision process. - 
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2.2.2 Decision Making and Decision Aiding 

The difference between these two concepts has already been discussed in Roy 
(1993) (see also Brown, 1989; Brown and V k i ,  1992). However, Roy considers 
these as two different approaches and not, as we do, as different situations. In 
a decision making context we consider a decision maker who, having a concern, 
might use a decision theory tool in order to  establish potential actions to  undertake 
(although in more general terms decision making can be decision theory free). 
From such a perspective, the reader will often find the term "decision making!' 
in this text. With this term, we will indicate the activities of an individual who 
develops some information in order to  establish a "decision" to  carry on within 
a decision process. In such a setting, decision theory is directly used by the 
decision maker. There is no distinction between an analyst and a client. The 
decision maker is a t  the same time someone looking for support in his decision 
process and someone endowed with the appropriate knowledge to  give himself this 
support. If there is an analyst, his presence is justified either because he acts as a 
tutor or because he is a "clone" of the decision maker (somebody who represents 
the decision maker, but who shares the same information, knowledge and values). 
I t  should also be clear that in such a setting we consider the decision maker as 
endowed with decision power and therefore also responsible for the decision to 
make. 

On the other hand, a decision aiding context implies the existence of a t  least 
two distinctive actors: the client and the analyst, both playing different "roles" 
with respect to  the concern of the client. More actors may exist in such a setting, 
the client not necessarily being a decision maker (he might not have decision power 
and be for instance in turn the analyst for another client). For simplicity, we only 
consider the simpler setting with only these two actors present and use with no 
further distinctions the concepts of decision maker and client. 

A decision aiding context only makes sense with respect to  one or more decision 
processes, the ones in which the client's concerns originate. In this chapter we focus 
our attention on the set of activities occurring within such a setting. We will call 
such a set of activities a "decision aiding process". The ultimate objective of this 
process is to attain a consensus between the client and the analyst. On the one 
hand, the client has a domain knowledge concerning the decision process. On the 
other hand, the analyst has a methodological knowledge, which is more or less 
domain independent. The task can be summarised as: given the client's domain 
knowledge and the analyst's methodological knowledge (and the associated formal 
and abstract language), interpret the client's concerns and knowledge so that he 
can improve his perceived position with respect to the reference decision process. 
Such an interpretation ought be "consensual": the client should consider it as his 
own interpretation, while the analyst should consider it correct and meaningful. 
However, the coherence sought by the actors does not refer to a given situation, 
information or knowledge, but to the cognitive artefacts they produce working 
together. From this point of view, the decision aiding process is an autopoietic 

This is not in contradiction with our emphasis on decision aiding. Indeed the activity of 
supporting a decision maker can be considered as the support to a decision making process. 
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system (a self reference system which maintains its organisation constant, but 
not a closed system since the environment is part of the system's organisation, 
see Maturana and Varela, 1984). Using a stakeholder approach (see Banville, 
Landry, Martel, and Boulaire, 1998)decision aiding sees the emergence of a new 
stakeholder in the decision process, which is the couple "client-analyst". The 
decision aiding process represents the cognitive efforts undertaken by this couple 
in order to  "positively" influence the decision process in which they are involved. 

Example 2.2 
Consider again the previous section's highway example. If decision aiding is re- 
quested by any of the participating actors, this will concern "an object" among 
those evoked by the decision process (and its meta-object: the new highway). 

Providing some decision aiding in this context raises questions of the type: 

what is the precise issue concerning the client and why (money, authority, 
natural resources, power, etc.)? 

0 how can we formulate such an issue in a decision support language, in terms 
of a decision problem (do we have to convince, to  justify, to  choose, to  
analyse, etc.)? 

0 how exactly will the decision support be designed (which alternatives do we 
consider, is there any uncertainty, are there several scenarios etc.)? 

what will effectively be done (negotiate with the other actors, impose a 
precise policy, expand the interaction space, etc 

In a constructive decision aiding approach the answers to  the above questions are 
not unique and have to be provided by both the client and the analyst who are 
now perceived as a unique stakeholder within the process. 0 

Within a decision process, several specific decision processes are struc- 
tured. A particular type of decision process occurs when an individual (or 

8 more), acting as a client, asks another individual (or more), acting as an ana- 
'3 lyst, some advice concerning an object of the client's concern within another '' decision process. 8 We denote such a process as a 'decision aiding process", where we can recog- 
0 nise: 

0 at  least two actors, the client and the analyst; 
G? 

8 0 at  least two objects, the client's concern and the analyst's (economic, 
scientific or other) interest (economic, scientific or other) to contribute; 

L;i 
0 a set of resources including the client's domain knowledge, the analyst's 

methodological knowledge, money (or whatever the analyst asks), time; 
CJ 

0 the meta-object being the construction of a shared representation of the 
client's object and concern. Gl 

,c-, 



34 CHAPTER 2. PROBLEM FORMULATION AND STRUCTURING 

Example 2.3 
Consider an airline company. The sales department (the client) considers that, in 
order to  face tough competition (the decision process), it needs to  diversify the 
offer of seats on each route with respect to  the season and the prices to  apply, pos- 
sibly adapting the offer dynamically as the demand evolves (the client's concern). 
They contact the company's Operational Research department (the analyst) ask- 
ing for support. The Operational Research department replies positively since 
this is its job, but also because this is a good opportunity t o  show to the CEO 
that they are useful (the analyst's concern). The two actors (which in this case 
are units of an organisation and not individuals) will share the knowledge of the 
sales department (structure of the demand, structure of the supply, constraints of 
the commercial policy, competitors policy etc.), the analyst's knowledge (models 
and methods for yield management), the company's investment (time, money, re- 
sources) as well as the "award" in the case of success. The Operational Research 
department will possibly convince the sales department that  their problem fits 
the well know "yield management problem" (thus creating the meta-object of the 
decision aiding process). However, we can expect that the result of the decision 
aiding process will not just be the construction of a yield management model (and 
possibly its successful implementation), but more generally an improvement of the 
company's commercial policy through the adoption of further actions conceived 
while discussing the yield management problem. 0 

2.3 A model of the Decision Aiding Process 

A decision aiding process is a process of distributed cognition (Massey and Wal- 
lace, 1996; Vygotsky, 1978). With this term we indicate any process in which 
different agents endowed with cognitive capabilities have to  share some informa- 
tion and knowledge in order to establish some shared representation of the process 
object. We call such shared representations shared cognitive artefacts. For ex- 
ample, consider two persons observing a painting at an exposition, discussing the 
interpretation to  give to the artist's effort. 

Within a decision aiding process we have at least two such "cognitive agents" 
(the client and the analyst) who share information and knowledge with the per- 
spective of producing a set of shared cognitive artefacts, replying to  questions such 
as: 

0 who has which problem? 

what could a solution to  that problem be? 

why such a solution could be successful? etc. 

However, our analysis of the decision aiding process will not be cognitive (describe 
and analyse the mental activities of the actors involved), but operational (how to 
conduct the process?). Actually, we are not going to analyse how such a distributed 
cognition occurs and how it works (although analysing how the two agents interact 
can be extremely interesting). Our basic hypothesis is that since we are looking for 
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formal models of decision support, there is a basic agreement between the client 
and the analyst that they are looking for such a model and that they are going 
to use a formal representation language (this may possibly reduce the cognitive 
effort). There is no loss of generality with such a hypothesis. If such an agreement 
does not exist in reality, it is always possible to consider that the analyst will spend 
some of his time to convincing his client of the opportunity to follow a formal 
approach. The operational question we therefore have to ask is the following: 
what are precisely the cognitive artefacts that we expect from a decision aiding 
process? 

In other words, we model the decision aiding process through its main products, 
the ones we consider mandatory in order to obtain "a consensual representation 
of the client's concern". At the same time, we can see such products as the 
deliverables honouring the contract with the client. 

We introduce four cognitive artefacts as products of the decision aiding process: 

a representation of the problem situation; 

0 a problem formulation; 

an evaluation model; 

0 a final recommendation. 

8 In the following section we intend to discuss such artefacts in the form 
13 of "checklists" to follow during the interaction with the client. We are aware 
G that a real decision aiding process rarely follows such a checklist, but we have 
@ adopted such a rationalisation for the following two reasons. 
GJ 
8 1. It  may help a novice decision analyst in structuring his interaction with 
&3 his client in order to better conduct their discussion. (2 

2. It may allow any experienced analyst going through a validation of his 

&> work to verify if the key issues and deliverables have been appropriately 
Q considered and how. 
63 
Q We understand that there is a risk of reducing decision aiding to "applying 
GI a manual", but we are confident that the reader also understands that a real 
@ decision aiding process is far more complex and that these are suggestions for 

support. 

2.3.1 The Problem Situation 
The first deliverable consists in offering a representation of the problem situation 
for which the client has asked the analyst to intervene. The main idea is to  enable 
the analyst to answer questions of the type: 

0 who has a problem? 

0 why is this a problem? 
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0 who decides on this problem (who is responsible)? 

0 who pays for the job? 

what is really important for the client? 

how is the client committed in this situation? 

Such an analysis might also be useful for the client since it could help him to 
better situate himself with respect to the decision process for which he asked the 
analyst's advice. 

A representation of the problem situation can be conceived as a triplet 

P = (A, 0,s) 

where: 

0 A are the actors involved in the process (as described by the client and 
perceived by the analyst); 

0 (3 are the objects (stakes) of the different actors; 

0 S are the resources committed by each actor on each object of his concern. 

The reader should remember that a decision aiding process always refers to a de- 
cision process in which the client is involved. Decision support is always requested 
with respect to a decision process. Representing a problem situation corresponds 
to taking a picture of the decision process at  the moment the decision support is 
requested. In this picture, the analyst and the client should recognise who par- 
ticipates (the actors), why they participate and what their concerns (the objects) 
are and what their level of commitment (the resources) is. Several different rep- 
resentations of the problem situation can be constructed during a decision aiding 
process. This is due both to the natural evolution of the decision process in which 
the client is involved (the pictures will be different) and to the decision aiding 
process itself which might modify the perception of the decision process for the 
client and the analyst (they might observe the same picture differently). 

Example 2.4 (Selection of a Billing System) 
A new mobile telecommunications operator has been established in a small, but 
highly competitive European market. One of the basic operational tools of such 
companies is their billing system (BS). This system allows both a structured ac- 
countancy of the traffic and a flexible policy towards the existing and potential 
clients (enabling for instance a variety of services beyond the basic ones, the cre- 
ation of packages of services oriented to specific market targets, the monitoring of 
each subscriber's traffic). 

Some years after the establishment of the company, the necessity to upgrade 
or to substitute the existing billing system became evident to the management. 
A decision process was therefore triggered, and we were asked to provide decision 
support (for details, see Stamelos and TsoukiBs, 2003). An analysis of the problem 
situation showed that: 
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The actors A involved were: 

- the acquisition manager; 

- the information systems manager (IS); 

- the marketing and sales manager; 

- the software suppliers; 

- the IS consultants. 

0 The objects 0 involved in the process were: 

- the market share of the company; 

- the policy towards the suppliers; 

- the company's internal organisation; 

- the billing system itself. 

The resources S implied in the process included the necessary funds for the 
billing system, the knowledge about billing systems and the relations with 
the software suppliers. The available time was very short, since all decisions 
had to  be made in the least possible time due to  the extremely competitive 
environment. 

0 The problem situation 'P results from the explicit representation of the sets 
described above. 

The client in this study was the IS manager. The identification of the actors, their 
concerns and the resources were exploited in order to  establish a set of problem 
formulations (see next section) that  were meaningful for the client and his concerns 
within this situation. 0 

2.3.2 Problem Formulation 

Given a representation of the problem situation, the analyst may provide the client 
with one or more problem formulations. This is a crucial point of the decision 
aiding process. While the first deliverable has mainly a descriptive (possibly ex- 
plicative) nature, the construction of a problem formulation goes further towards 
formalising the interaction between the client and the analyst and introduces the 
use of the decision support language. The result is by definition reductive with 
respect to the reality of the decision process. 

The idea is that  a problem formulation translates the client's concern, using the 
decision support language, into a formal "problem" (a problem to  which decision 
support techniques and methods apply). For instance, the client may claim that 
he has a problem to  "buy a new bus in order to improve service to the clients". 
This may result in different problem formulations such as: 

0 choose one among the potential suppliers of buses; 

choose one among the set of offers submitted by the suppliers; 
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0 choose one among the set of all combinations of two offers. 

The above problem formulations are not similar and are not neutral with respect 
to the possible final recommendation. Indeed we, want to  emphasise that adopting 
a problem formulation implies adopting a precise "strategy" towards the problem 
situation. Each such strategy will lead the decision aiding process to  different 
recommendations. It is necessary to  establish which strategy is going to  be pur- 
sued with the client. Returning to the bus acquisition example, the first problem 
formulation focuses the attention on the suppliers and not on the offers they may 
make. The second problem formulation implicitly assumes that  only one type of 
bus will be bought, while the third one allows to  buy combinations of two different 
offers. I t  is clear that the choice of one of the above problem formulations will 
greatly influence the evaluation of the alternatives and the final solution. 

A problem formulation can be conceived as a triplet: 

where: 

0 A: is a set of potential actions that can be undertaken by the client with 
respect to  the problem situation P; 

V: is a set of points of view from which the potential actions are observed, 
analysed, evaluated, compared, etc.; 

11: is a problem statement which anticipates what is expected to  be done 
with the elements of A. The reader will find more details on this point in 
Bana e Costa (1996), Ostanello (1990) and Roy and Bouyssou (1993) (see 
also section 2.4.3). 

The use of problem formulations aims to  anticipate the possible conclusions of 
the decision aiding process. The awareness of such possible conclusions allows the 
client to  check whether these are compatible with his expectations. Moreover, if 
the effective conclusions are unsatisfactory to  the client, he has the possibility of re- 
vising the problem formulation opening new modelling possibilities. The analyst's 
second deliverable consists in submitting a number of problem formulations to  the 
client . The client validates them and chooses the ones with which the analysis 
might continue. Hereunder, we continue with the real case study (Stamelos and 
TsoukiAs, 2003) concerning the selection of a billing system. 

Example 2.5 (Selection of a Billing System BS) 
The strategic decision with which the management was faced consisted in choosing 
one among the following options: upgrade the existing BS, buy and customise an 
existing BS, buy a BS created ad-hoc for the company by an external supplier 
(bespoke system), develop an ad-hoc BS in collaboration with an external supplier. 
However, the management was not able to choose an option without analysing 
what the billing system would eventually be in all such options. We therefore 
provided three problem formulations (the fourth option being the upgrade of the 
existing BS, was considered familiar) which we will call: 
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B: buy (and customise an existing BS); 

M: make (externally a new ad-hoc BS); 

D: develop (a  new ad-hoc BS in collaboration with a supplier). 

In all three cases, a call for tenders was provided. The three problem formulations 
become: 

1. rB = (AB, V, ,  IIB) where: 

AB: offers proposed by specific suppliers of existing BS accompanied by a 
proposal for the customisation phase. 

VB: points of view of the evaluation: 

- costs (including training, insurance fees and payment conditions); 
- quality (based on IS09126 and benchmarks on the proposed prod- 

uct); 
- timing (of delivery, test and installation); 
- installed base of the proposed BS (including performance reports 

on already installed BS of the same type). 

IIB: ranking of the offers in order to enable further negotiations on the price. 

2. rM = (AM, VM, IIM) where: 

AM: offers proposed by specific software developers with different degrees of 
experience in BS development. 

VM: points of view of the evaluation: 

- costs (including training, insurance fees and payment conditions); 
- requirements satisfaction (client driven requirements); 

- timing (of delivery, test and installation); 

- type of supplier-developer (taking into account the company's sup- 
plying policy); 

- consequences for the company's internal organisation (including 
project management). 

IIM: selection of a supplier - developer with whom to establish a supplying 
process (consisting of benchmarks, tests, training and delivery). 

3. rD = (AD, VD,IID) where: 

AD: set of suppliers with whom it could be possible to co-develop a new BS. 

VD: points of view of the evaluation: 

- costs (distinguishing internal and external costs); 
- requirements analysis and satisfaction; 

- timing (including the time in which the product could be ready for 
the market); 
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- type of supplier-developer (including company's supplying policy); 

- consequences for the company's internal organisation (including 
project management); 

- benefits to the company by entering the market of billing systems 
as a supplier itself. 

no :  selection of a co-developer to establish a co-makership policy and there- 
fore a long-term collaboration. 

The client finally chose the first problem formulation, implicitly accepting a pure 
buying policy with respect to the basic strategic choice. We are not going to 
explain this choice. We would however, like to emphasise two observations: 

1. From a general point of view, each problem formulation may generate quite 
a different evaluation model. The set of potential actions is different (exist- 
ing BS in rB, offers of non existing software in rM, co-developing suppliers 
in r D ) .  The set of criteria may also be quite different (it is sufficient to 
note that the "make" and the "development" option requires to consider 
as a criterion the implication of the information systems department in the 
development process, a fact that may alter the distribution of resources and 
responsibilities in the company's organisation or that the development op- 
tion requires to evaluate the eventual benefits of "selling" the new billing 
system). The relative importance of the criteria may also be different, while 
the aggregation procedures in each model have to be adapted to the different 
problem statements and the different nature of the criteria. 

2. Focusing on the problem, the different problem formulations also lead to 
different models. In the rB case, existing software products must be com- 
pared (even if the one chosen will be customised), a fact that allows the use 
of existing models (as the IS09126 standard). Benchmark tests must also 
be performed. On the other hand, in the rM case, the software artefact 
does not yet exist. The attention of the evaluation will shift to the satisfac- 
tion of the requirements during software development, and therefore some of 
the supplier's quality requirements have to be considered a priori. Finally, 
in the rD case, the evaluation consists in the comparison of possible part- 
ners for software development, implying the comparison of the compliance 
of the partner's software development process with the company's standards 
(assuming that they exist). 

Furthermore, the priorities among the different criteria and attributes will 
change from one problem formulation to another, independently of the un- 
certainty associated with the available or required information. Finally, in 
order to aggregate the different software measurements, different necessities 
arise from one problem formulation to another (e.g., in the rB case, measure- 
ments may correspond to observations and therefore a functional aggregation 
can be allowed, while in the rM and in the rD cases, the measurements are 
predictions or estimations based on expert opinions, a fact that requires a 
different treatment). 0 



2.3. A MODEL OF THE DECISION AIDING PROCESS 41 

Obtaining the client's consensus on a problem formulation leads to a gain of in- 
sight, since instead of having an "ambiguous" description of the problem we have 
an abstract and formal problem. Several decision aiding approaches will stop here, 
considering that formulating (and understanding) a problem is equivalent to solv- 
ing it, thus limiting decision aiding to helping to formulate problems, the solution 
being the client's personal issue. Other approaches might consider the problem 
formulation as given. Within a constructive approach the problem formulation is 
one among the artefacts of the decision aiding process, the one used in order to 
construct the evaluation model. 

2.3.3 Evaluation Model 

For a given problem formulation, the analyst may construct an evaluation model, 
that is to organise the available information in such a way that it will be possible 
to obtain a formal answer to a problem statement (defined within I'). 

An evaluation model can be viewed as an 5-tuple: 

where: 

0 A is the set of alternatives to which the model applies. Formally it establishes 
the universe of discourse (including the domain) of all relations and functions 
that are going to be used in order to describe the client's problem. 

0 D is the set of dimensions (attributes) under which the elements of A are 
observed, described, measured etc. (the set D might be endowed with dif- 
ferent structuring properties such as an hierarchy). Formally D is a set of 
functions such that each element of A is mapped to a co-domain that we 
denote as Xi. 

0 E is the set of Xi associated to each element of D. Each Xi can be considered 
as a set of "levels" or "degrees" to which a structure such as an "order" 
is possibly associated. Intuitively we can consider the functions in D as 
measurements using the Xi as "scales". Issues concerning measurement are 
discussed in more detail in chapter 3 of this book. 

0 H is the set of criteria under which each element of A is evaluated in order to 
take in account the client's preferences. Formally a criterion is a preference 
relation, that is a binary relation on A (a subset of A x A) or a function 
representing the relation. The reader will find more details about preference 
models in chapter 3 of this book. 

U is a set of uncertainty structures to apply to D and/or H. Formally U 
collects all uncertainty distributions that can be associated to the relations 
and functions applied to A, besides possible scenarios to which uncertainty 
measures can be associated. 
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R is a set of operators such that  the information available on A, through 
D and H can be synthesised to a more concise evaluation. Formally R is a 
set of operators such that  it is possible to  obtain a comprehensive relation 
and/or function on A, possibly allowing to infer a final recommendation. 

The reader can observe that a large part of the existing decision aiding models 
and methods can be represented through the above description. It also allows to 
draw the reader's attention to a number of important points: 

1. I t  is easy to  understand why the differences between the approaches do not 
depend on the adopted method. The fact that we work with only one eval- 
uation dimension, a single criterion, a combinatorial optimisation algorithm 
can be the result of applying a constructive approach. I t  is important not 
to  choose the method before the problem has been formulated and the eval- 
uation model constructed, but to show that this is the natural consequence 
of the decision aiding process as conducted up to  that  moment. 

2. The reader should note the difference between D and H. The former rep- 
resents the "empirical" knowledge available or collected about A, but says 
nothing about the preferences of the client. The fact that  such knowledge 
may use a structure such as an order (possibly coded in X i )  does not estab- 
lish any knowledge about the client's "desires". These are modelled in H 
where preferences are explicitly represented. In the literature the elements 
of D are often called "attributes". Chapter 6 will extensively discuss the 
direct use of such "dimensions" in decision aiding. 

3. The technical choices (typology of the measurement scales, different prefer- 
ences or difference models, different aggregation operators) are not neutral. 
Even in the case in which the client has was to formulate his problem clearly 
and he is convinced about it (possibly using one of the techniques aiding 
in formulating problems presented in section 2.4), the choice of a particular 
technique, procedure, operator can have important consequences that are 
not discussed when the problem is formulated (for a critical discussion see 
Bouyssou et al., 2000). Characterising such techniques, procedures and op- 
erators is therefore crucial since i t  allows to control their applicability to  the 
problem as formulated during the decision aiding process. 

4. The evaluation models are subject to  validation processes. This includes 
namely (see Landry et  al., 1983a): 

conceptual validation: verify whether the concepts used within the 
model in order to describe the client's concerns and problem situation 
are meaningful for the client, i.e., that he understands them and finds 
them useful; in other words the client and the analyst have to  agree 
on what each precise concept represents and how this is useful for the 
client's problem; 

logical validation: verify whether the concepts and the tools used within 
the model are logically consistent and meaningful (from a measurement 
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theory perspective); the reader should pay attention to the fact that 
logical consistency does not necessary imply that the client is consistent 
in his claims, but that the model handles the information consistently 
(including possible inconsistencies and ambiguities); 

experimental validation: test the model using experimental data (and 
examples) in order to show that the model provides the expected re- 
sults and possibly check formal requirements such as convergence of an 
algorithm, accuracy of a classification, sensitivity to small variations of 
the parameters, etc.; 

operational validation: show that the model when confronted with the 
decision process for which it was conceived acts as expected and that 
the client can indeed use it within such a process; further unforeseen 
consequences of using the model can be observed at this point. 

It should be noted that validating the model is a crucial activity to establish 
the necessary consensus between the client and the analyst, consensus which 
(at least partially) legitimates the model to be used within the decision 
process for which it was conceived. 

Example 2.6 
Let us again consider the example of buying a bus. Suppose that the problem for- 
mulation adopted was the second one (choose one among the offers from suppliers). 
Suppose also that in reply to a call for tenders a number of offers are available. 
An evaluation model for this problem formulation could be (we use subscript 2 in 
order to denote that is the second problem formulation considered): 

A2: set of offers received, legally acceptable; 

D2: economic dimension (costs, maintenance, payment conditions), tech- 
nical dimension (technical characteristics), quality characteristics (comfort, 
luggage capacity etc.); it should be mentioned that the set of dimensions 
in this case has an hierarchical nature (each of the above dimensions being 
further decomposable); 

E2: we are not going to show the whole set of scales, but we can mention that 
for instance maintenance is measured in "estimated numbers of man-hours 
per month", that one of the technical characteristics is the brakes capacity 
measured in "metres to stop the bus at max speed and full charge", that the 
comfort is a qualitative measure provided by an external expert on a scale 
of the type "good", "acceptable", "unacceptable" ; 

Hz: again we are not going to give the whole set of criteria; a generalised 
cost criterion putting together all different costs and the number of buses 
to buy is considered, while several technical and quality criteria have to be 
constructed such that the client's preferences can be represented; for instance 
a safety criterion is established (offer x is preferred to offer y iff the "brake's 
capacity of x" is at least 20 metres less than the "brake's capacity of y"); 
again an hierarchy of criteria has to be defined; 
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U2 will be considered empty, all measures and preferences being considered 
by the client as "sure" and "precise"; 

R2 is a set of aggregation procedures including the necessary parameters; it 
should be noted that  the presence of an hierarchical structure on the criteria 
could be seen as the creation of a number of evaluation models one for each 
node of the hierarchy excluding the leaves. A precise aggregation procedure 
can be associated to  each such evaluation model for instance, the quality 
criterion is obtained using a sorting (ordered classification) procedure by 
which each offer is classified in one among a set of merit classes (very good, 
good, acceptable, unacceptable) based on the values of the offers on the 
different quality criteria (comfort, luggage capacity, number of seats) (on 
such ordered classification procedures, the reader can be referred to: Belacel, 
2000; Bouyssou and Marchant, 2005a,b; Bouyssou e t  al., 2000; Henriet, 2000; 
Massaglia and Ostanello, 1991; Mousseau, Slowiriski, and Zielniewicz, 2000; 
Paschetta and Tsoukih, 2000; Perny, 1998; Yu, 1992b). Of course each 
aggregation procedure requires a number of parameters (importance of the 
criteria, thresholds, etc.). In our example the final aggregation was expected 
to compute a value for each offer and a multi-attribute value function was 
constructed. Therefore, tradeoffs between the three criteria (cost, technical, 
quality) had to  be established (on such procedures, the reader may refer to 
Bouyssou et al., 2000, and chapter 6 of this book). 

I t  is worth noting that had the third problem formulation been adopted, the 
evaluation model would have been quite different. The set of alternatives would 
be the set of all combinations of two offers. Furthermore, the reason for which 
such a problem formulation was considered derives from the observation that two 
different buses might better fit the variety of client the company serves (one for 
child transportation and the other for medium range tourism services). At least a 
criterion such as "fitting the market variety" should be added, while an uncertainty 
could now be considered (unknown behaviour of the market). 0 

2.3.4 Final Recommendation 

The evaluation model will provide an output (denoted by CP) which is still expressed 
in terms of the decision support language. The final recommendation is the final 
deliverable which translates CP into the client's language. 

I t  should be possible to check whether this final recommendation: 

1. is technically sound (no incorrect or meaningless manipulations should be 
undertaken). Since the output CP is the result of a number of manipulations 
on the available information (representing consequences, modelling prefer- 
ences and uncertainties, aggregating measures, preferences and uncertainties 
etc.), it is important that such operations fulfil basic requirements of mean- 
ingfulness (for definitions, see Roberts, 1979). The number of situations in 
which intuitive reasoning leads us to  undertake meaningless operations is in- 
credibly high (for examples and further discussion see Bouyssou et  al., 2000). 
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Care should be taken to verify whether the evaluation model is free of such 
biases; 

2. is operationally complete (the client understands the recommendation and 
is able to apply it). The fact that the output is technically sound does not 
necessarily mean that this is useful for the client's problem. An arithmetic 
average of three measures of length is technically correct, but useless in case 
the client is looking for an aggregate measure of a volume (where a geometric 
average will fit perfectly). The final recommendation should be able to give 
an operational reply to the client's concerns (as these were established in the 
problem formulation) and enable him to undertake some deliberation and/or 
action (including doing nothing, provided this is deliberated); 

3. is legitimated with respect to the decision process for which it was conceived. 
We should always remember that the advice requested by the client refers 
to some decision process in which he is involved. A technically sound and 
operationally complete recommendation is not sufficient in order to be in- 
cisive within the decision process. The reality of such processes includes 
organisational, cultural, ethical and interpersonal dimensions which are not 
necessarily (and rarely are) considered within the construction of the eval- 
uation model and the establishment of the output @. When we return to 
the reality of the decision process we should take care to present the final 
recommendation in such a way that this can be inserted in the process. 

In other words, the final recommendation should be able to translate the con- 
clusions of the decision aiding process into a format that can be used within the 
client's decision process and/or organisation process in which the client is involved. 
In order to do that, the model, should not only be convincing for the client (which 
should be the case if a consensus was reached between the client and the analyst), 
but also should be able to convince the other actors participating in the process in 
which it is going to be used. Theoretical soundness, operational completeness and 
legitimation are the essential features the final recommendation should satisfy. 

In the following sections we are going to focus our attention on how the previ- 
ously introduced cognitive artefacts can be established, with particular emphasis 
on the definition of a problem formulation and the construction of an evaluation 
model. We try to outline a number of recommendations on how the decision aid- 
ing process should be conducted as well as a number of technical issues to which 
the analyst should pay attention. In this chapter, we do not provide the precise 
theory concerning the items of the evaluation model. These are discussed in a 
structured way and with much more detail in the following chapters. More pre- 
cisely, the use of D, & and the construction of elements of H are mainly discussed 
in chapter 3. R is thoroughly discussed in chapters 4, 5 and 6 since it represents a 
crucial component in multiple criteria decision and evaluation models. Chapter 7 
is dedicated to several technical aspects of the final recommendation construction 
and the treatment of robustness. 
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2.4 Problem structuring 

There is a lot of literature on problem structuring (Abualsamh, Carlin, and Mc- 
Daniel, 1990; Belton and Stewart, 2001; Binbasioglu, 2000; Buchanan, Henig, and 
Henig, 1998; Corner, Buchanan, and Henig, 2001; Courtney and Paradice, 1993; 
Eden, 1988, 1994; Eden, Jones, and Sims, 1983; Keller and Ho, 1988; Landry, 
1995; Lehaney, Martin, and Clarke, 1997; Massey and Wallace, 1996; McGregor, 
Lichtenstein, Baron, and Bossuyt, 1991; Mingers and Rosenhead, 2004; Norese, 
1996; Pidd, 1988; Smith, 1988, 1989; Sycara, 1991; Woolley and Pidd, 1981). A 
common characteristic of this literature is the emphasis on the claim that support- 
ing decisions should not be limited to solving well established decision models, but 
should help in facing more "soft", 'Lill-structured" decision situations that  need 
to be "structured". The idea is that trying to fit a decision situation to a given 
decision model may result in solving the wrong problem correctly. I t  is therefore 
necessary to  have methods and tools enabling to  establish a problem formulation 
before any choice concerning the decision and/or evaluation model. The issue is 
(simplifying): first set what the problem is  and only then consider how to solve 
it. This may appear to  be common sense, but several authors cited above have 
shown that  decision theory traditionally focuses its attention on how to  solve the 
problem and not on how to  formulate it. 

Our claim is that  our model of the decision aiding process can be used as a 
problem structuring method. Before showing how this can occur in detail, we 
discuss some of the best known methods found in the literature. 

2.4.1 Problem Structuring Methods 

Problem structuring methodologies aim to help decision makers to  better under- 
stand their concerns (Checkland, 1981; Landry, 1995; Landry et  al., 1983b; Rosen- 
head, 1989)) better justify and legitimate their conclusions (Landry et al., 1996) 
and ease the validation process (Landry et  al., 1983a; Ostanello, 1997). 

Several among the problem structuring methodologies consider that decision 
aiding is problem structuring (see, e.g., Checkland, 1981; Friend and Hickling, 
1987; Rosenhead, 1989). In other words, the quantitative aspects on which evalu- 
ation models usually rely are considered irrelevant, neglected or not a t  all consid- 
ered under the not unrealistic claim that once the decision maker has a definitely 
clear idea of what the problem is, he also knows how to  solve it. 

2.4.1.1 Cognitive Mapping  

Particularly "cognitive mapping" (see Eden, 1988, 1994; Eden et al., 1983) aims 
to give a representation of how a person (the client) "thinks" about a set of issues. 
The basic tool is simple: a network in which nodes represent the issues concerning 
the client(s) for whom the map is constructed and arrows represent the way in 
which one issue may lead to  or have an implication on another. Issues are rep- 
resented as sentences calling for "action" or "problem solving" and arrows show 
how one such action (or possible solution) will influence the outcome of another. 
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What is important in this method however, is not the tool itself, but the con- 
ducting of the interview which will lead to the establishment of the cognitive map. 
Indeed, the existing software implementing the method (Decision ~ x ~ l o r e r ~ ~ )  is 
just a support for the discussion rather than a decision support tool. In the con- 
struction of a cognitive map a key role is played by the "facilitator" (the analyst in 
our terminology). He is expected to conduct the discussion and practically to de- 
sign the cognitive map using the client's replies as well as the discussion developed 
during a cognitive mapping session. Actually, such sessions are carefully prepared 
and precise rules on how the discussion has to be conducted by the facilitator are 
established (see Rosenhead, 1989, ch. 3). 

Cognitive mapping seems extremely useful when the client(s) consist in a group 
of people involved in organisational decision processes in which the emergence of 
consensus on different issues is extremely difficult and remains subject to power 
manipulations. In such a situation, it can also be very useful in giving a "sense" 
to discussions occurring within an (formal or informal) organisation. 

The scope of a cognitive mapping session (possibly more than one session might 
be necessary) is to provide the client(s) with a representation of how they perceive 
their "problems" and how they expect to act on them. This a clearer representation 
and the structuring of the problem situation should enable the emergence of a 
consensus among the participants on how to act further and which actions it 
might be necessary to undertake. 

2.4.1.2 Strategic Choice 

Another well known problem structuring method is "strategic choice" (see Friend 
and Hickling, 1987; Friend and Jessop, 1969). Such a method is expected to 
handle the complexity of interconnected decision problems. The basic idea is 
that these complex problem situations are characterised by large uncertainties 
requiring strategic management. The authors claim that the basic philosophy of 
their method is "managing uncertainty in a strategic way". Within such a method 
three principal sources of uncertainty are identified: 

0 uncertainties about guiding values; 

0 uncertainties about the working environment; 

0 uncertainties about choices and related agendas. 

The dynamics of a "strategic choice process" distinguish four "modes" of decision 
making: 

0 the "shaping mode" where the decision maker(s) are add concerns about the 
structure of the set of decision problems they are facing; 

0 the "designing mode" where the decision maker(s) are concerned about which 
actions are feasible with respect to their view of the problem; 

Decision Explorer is a product of Banxia Software, see h t t p :  //www. banxia. corn. 
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0 the "comparing mode" where the decision maker(s) look for the different 
dimensions under which different actions could be compared; 

0 the "choosing mode" where the decision maker(s) look for arguments and 
commitment to pursue actions over time. 

Strategic Choice can be seen as a toolbox of procedures aimed to support the 
four different "modes" previously introduced. However, such a toolbox (see also 
the software S T R A D ~ ~ ~ )  is expected to  be used within a precise approach in 
which the decision makers are seen as "stakeholders" of the final decision. It 
is mainly based on conducting workshops facilitating communication among the 
participants through the use of graphical tools manipulated by a facilitator who 
also conducts the workshop. The different modes of decision making are seen as 
interchangeable loops. This implies that within a workshop it is also important to 
register the dynamics of the interactions and of the outcomes. Indeed, the result 
of the method should not only be the deliverables (argued actions and policies), 
but also new ways of pursuing the organisational decision process. 

2.4.1.3 Soft Systems Methodology 

Soft Systems Methodology was developed by Checkland (1981) as an alternative 
to classic systems engineering (see Hall, 1962) seen mainly as a problem solving 
process (in which traditional OR techniques could apply). 

"SSM is  a learning system. The learning is  about a complex problematical hu- 
m a n  situation, and leads to finding accommodations and taking purposeful action 
i n  the situation aimed at improvement, action which seems sensible to those con- 
cerned. SSM articulates a process of enquiry which leads to the action, but that is  
not an  end point unless you choose to make it  one (in Rosenhead, 1989, p. 67, ch. 

4). 
Although its presentation has evolved in recent years, we are going to present 

SSM in its original form, as a series of stages taking place in two worlds: the real 
world and an "abstract world" created through "systems thinking" on the real 
world: 

1. enter situation considered problematic (real world); 

2, express the problem situation (real world); 

3. formulate root definitions of related systems of purposeful activity (abstract 
world); 

4. build conceptual models of the systems used in the root definitions (abstract 
world); 

5. compare models with the real world actions (real world); 

6. define possible changes which are both feasible and desirable (real world); 

STRAD2 is a product of Stradspan, see ht tp:  //www . btinternet . corn/-stradspad 
products. htm. 
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7. take action to  improve the problem situation. 

From a modelling point of view what is important is how "root definitions" are 
formulated. Under such a perspective SSM suggests a checklist of the following 
demands: 

Context :  who would be victim or beneficiary of the purposeful activity? 

Actor:  who would carry out the activities? 

Transformat ion process: what is the purposeful activity expressed as "input- 
transformation-output" ? 

Weltanschauung: what view of the world makes this definition meaningful? 

Owner:  who could stop this activity? 

Env i ronment  constraints:  what constraints in its environment does this system 
take as given? 

The second important modelling step is t o  build conceptual models of the system 
used in the root definitions. In order to  do this, on the one hand it should be 
possible to  consider actions on the systems and on the other hand, it should be 
possible to  monitor and control them. This generates the following three basic 
modelling criteria: 

Effectiveness: is this the right thing to  be doing? 

Efficacy: do the means work? 

Efficiency: is a minimum of resources used? 

The reader should pay attention to the fact that the above recommendations have 
to  be seen within the whole process of understanding the problem situation and 
the different purposeful activities that can be undertaken. SSM is not just a simple 
checklist of modelling acts to  follow in order to establish a deliverable for the client. 

Practically SSM is applied through extensive interviews with the problem own- 
ers and large workshops including the stakeholders of the problem situation. The 
aim is that the modelling process suggested by SSM will allow such stakeholders 
to  converge to  a shared representation of both the problem situation (what is the 
problem?) and the actions to undertake (what to do?). Again the reader should 
consider that SSM has to be viewed as a "methodology" and not just a method, 
thus remaining situation driven and not method driven (the reader is referred to 
Checkland and Scholes, 1990, for more details concerning the use of SSM). 

2.4.1.4 Valued Focussed Thinking 

In his challenging book, Keeney (1992), suggests that  usually decision making 
methods focus their attention on evaluating alternatives after such alternatives 
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have been established or given. Instead, focus should be given to how such alter- 
natives are or can be established and the author's suggestion is: thinking about 
values and objectives. 

The idea is that as soon as the client has been able to structure his objectives 
(with respect to a given problem situation) he is also able not only to compare 
ready-made alternatives, but also to consider alternatives that were not there at  
the beginning of the process, but appear desirable and feasible within the objectives 
and values structure. For instance, it might be that only after understanding the 
importance of CO reduction in car engines for future sales, that CO absorption 
devices could be considered as components of such car engines. 

Structuring objectives implies establishing an hierarchy of values starting from 
what Keeney calls "fundamental objectives". These should be (see table 3.2, in 
Keeney, 1992, page 82): 

essential: indicate consequences in terms of the fundamental reasons for interest 
in the decision situation; 

controllable: address consequences that are influenced only by the choice of al- 
ternatives in the decision context; 

complete: include all fundamental aspects of the consequences of the decision 
alternatives; 

measurable: define objectives precisely and specify the degrees to which objec- 
tives may be achieved; 

operational: make the collection of the information required for an analysis rea- 
sonable, considering the time and effort available; 

decomposable: allow the separate treatment of different objectives in the analy- 
sis; 

non  redundant :  avoid double counting of possible consequences; 

concise: reduce the number of objectives needed for the analysis of a decision; 

understandable: facilitate generation and communication of insights for guiding 
the decision making process. 

Fundamental objectives are then structured in attributes for which value func- 
tions (or utility functions in the case uncertainty has to be considered) can be 
constructed in order to "measure" the desirability of the outcomes and achieve- 
ments for each objective. Such attributes result in 'Ldecomposing" the fundamental 
objectives into L'sub-objectives", dimensions that contribute to defining the client's 
values. For instance, while looking to buy a car, a fundamental objective could 
be "safety". Such an objective can be decomposed into two attributes: "brakes 
efficiency" and "steering efficiency" which can be appropriately measured and for 
which the client could express preferences. The resulting structure of objectives 
(and attributes) allows the decision maker to have insight into the problem situa- 
tion and, more importantly, to have an organised insight. Indeed he might be able 
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to  concentrate his attention on high-valued alternatives or make use of generic 
alternatives, to  expand the decision context or even to  consider any of his con- 
cerns as decision opportunities rather than as decision problems, thus allowing new 
unforeseeable paths of action to be taken into account. Keeney considers his ap- 
proach as a path to creative decision making, claiming that structuring the client's 
values enables to expand the set of feasible actions through structured desirability. 
Fb-om this perspective his suggestion can be considered as a problem structuring 
approach, although, in this case, the use of quantitative methods is essential (in 
order to  build the value and/or utility functions to be associated to attributes). 

2.4.1.5 Integrating Approaches 

In their book, Belton and Stewart (2001), advocate the necessity of integrating 
different approaches of multiple criteria decision analysis. In doing this they base 
their argumentation on their model of the process of decision analysis in which the 
following stages are distinguished: 

identification of the problem issue; 

problem structuring; 

model building; 

using the model to  inform and challenge thinking; 

development of an action plan. 

In discussing the problem structuring part of the MCDA process, the authors 
suggest a checklist of issues to analyse in order to be able to  establish a model: 

criteria; 

alternatives; 

uncertainties; 

stakeholders; 

0 environmental facts and constraints. 

However, since the author's proposal is essentially a way through which to inte- 
grate different approaches, the idea is to consider within a MCDA process the use 
of different techniques, driven by the problem situation and not by a particular 
method, an idea shared by several scholars in this field (see Bana e Costa et al., 
1999; Belton e t  al., 1997; Norese, 1988, 1996). Multi-methodological approaches 
have been considered in a wider perspective in the literature (for a presentation 
see Rosenhead, 1989, ch. 13). 
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2.4.1.6 Discussion 

All the approaches introduced above are basically prescriptive in nature. They 
suggest how an analyst should conduct the interaction with his client in order 
to  lead him (the client) in a reasonably structured representation of his problem. 
However, they are either based on empirical grounds (we tried this several times 
and it works) or they represent a consistent theoretical conjecture. In all cases 
they have never been based on a descriptive model of the decision aiding activities, 
fixing the cognitive artefacts of the process, thus allowing the client and the ana- 
lyst to control the process in a formal way. The result is that either they have to 
neglect the evaluation model aspect (ignoring situations when the problem formu- 
lated still does not allow to find intuitively dominant solutions or underestimates 
the cognitive biases that affect the decision maker's behaviour) or they have to  
fix a priori some of the artefacts by adopting a precise shape for the evaluation 
model (using value functions) thus limiting the applicability of the approach or 
they underestimate the influence that  the analyst can have on his client, influ- 
encing his behaviour. Moreover, all such approaches do not explicitly take the 
process dimension of the decision aiding activities into account. Such a dimension 
is essential in order to be able to revise and update the outcomes of the decision 
aiding as the decision process evolves and the client learns. 

The model of the decision aiding process previously suggested aims to fill such 
a gap. It is a descriptive model (showing how the decision aiding process gets 
structured) and a t  the same time is constructive since it suggests a path for the 
process concerning both the client and the analyst. Moreover, it allows to control 
the conducting of the process since it fixes the cognitive artefacts that are expected 
to  be constructed during the process. This allows to control the process itself 
since each such artefact is precisely defined. In the next section, we are going to  
present how such artefacts can be constructed in more detail, suggesting empirical 
procedures for conducting the interaction with the client. 

2.4.2 Representing the problem situation 

We consider as given the interest of the client to work with the analyst. This 
interest is expected to  be due to  one or more concerns for which the client seeks 
advice due to  his (possibly justifiable) conviction that he is unable to do this alone. 

The construction of such a representation begins by establishing a list of actors 
potentially affected by the interaction between the client and the analyst (see also 
the so-called stakeholders approaches in decision aiding Banville et al., 1998; De 
Marchi, Funtowicz, Lo Cascio, and Munda, 2000; Shakun, 1991). We try to  answer 
the question "Who else could be concerned by the client's concern?". A particular 
issue to explore here is whether the client is the (only) "owner" of this particular 
concern. It is often the case that the client himself is involved in a decision 
aiding process as an analyst or that this concern originates within a particular 
organisational structure. Actually he might not necessarily be a decision maker. 
For instance, the advice could be asked: 

for a (a priori or a posteriori) justification purpose; 
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0 in order to  understand a problem, but where no immediate action is expected 
to be undertaken; 

because the client has to  report to  somebody within the organisational struc- 
ture. 

This leads to the following questions: why could the other actors be concerned 
and what other concerns could they associate to  the client's concerns? Intuitively 
we trace a map associating actors to concerns. Two questions arise a t  this point: 

0 are there any links among the concerns? 

0 how important are such concerns to  the different actors? 

In order to  reply to  the first question we can make use of a "projection" relation 
(see Ostanello and Tsoukihs, 1993) showing how a concern projects to  another one 
(usually from simple very specific concerns to more general and abstract ones). 
Usually such a relation results in a tree in which the leaves represent the simple 
(not further "decomposable") concerns and the root represents the meta-object 
characterising the decision process for which the decision aiding was requested. 

Example 2.7 
Imagine an artificial lake, created by the construction of a dam required to oper- 
ate a hydroelectric power station, but also used for recreational activities (fishing, 
sailing etc.). The concern of "fish availability" (associated to the local fishermen) 
as well as the concern of "hydrogeological stability" (associated to  the local elec- 
tricity company) both project to  the concern "lake management" (associated to  
the local authority: the local province). 0 

In order to  reply to the second question we can associate the resources committed 
or requested by each actor for each of his concerns to each object. The client's 
commitment is in particular a key issue for two reasons: 

0 it will influence the content of the problem formulation and the evaluation 
model; 

0 it will play a specific role as far as the timing of the decision aiding process 
is concerned. 

Establishing a representation of the problem situation enables the two 
actors (the client and the analyst) to "situate" themselves with respect to the 

G.3 decision process for which the aid was requested. This is important for a t  least 
'3 two reasons: 
LJ 

0 it offers the basic information to formulate the decision aiding problem 

1:;) 
and the associated evaluation models; 

0 it allows the two actors, in case of unsatisfactory conclusions, to  come 

C;j back and re-interpret the problem situation or to update it in order to 

8 take the evolution of the decision process into account. 
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2.4.3 Formulating a problem 

As already introduced, formulating a problem is the first effort to translate the 
client's concern into a formal problem. The first question to  ask here is: "what are 
we going to  decide about"? We might call this set decision variables or alternatives 
or potential decisions. At this stage, it is important to  establish with sufficient 
clarity what the set A does represent (e.g., suppliers or bids or combinations of 
bids etc.) and how (are they quantities, alternatives, combination of actions etc.). 

Where does such information come from? One source is of course the client 
who might be able to  provide a t  least part of the set A directly (for the cognitive 
problems associated to  this activity see Newstead, Thompson, and Handley, 2002). 
The actors and their concerns as identified in the problem situation representation 
can also be sources. However, quite often the elements of set A have to  be "de- 
signed" (see Hatchuel, 2001), in the sense that such a set does not already exist 
somewhere (and we just have to  find it), but has to  be constructed from existing 
or yet to  be expressed information (the reader can see examples of such process in 
Keeney, 1992, a couple starting comparing one week holiday packages in national 
tourist resorts and ending up considering a one month holiday in the Pacific is- 
lands). A way to do this can be to  work on the client's structure of values and 
expectations (as Keeney, 1992, suggested by) or using an "expandable rational- 
ity" (see Hatchuel, 2001) allowing to  make the set of alternatives evolve. Another 
way is through an analysis of the structure of concerns in the problem situation. 
The client typically presents himself with a concern that remains somewhere a t  an 
intermediate level of the tree of concerns. Going up and down such a tree enables 
to identify different sets of potential actions (considering the resources the client 
may commit for each such concern). 

Example 2.8 
Using the holiday example, the concern of an ordinary holiday may project on a 
more general one which is the well being of the couple, for which further resources 
could be committed and thus allow to  consider a concern of a special holiday. 0 

The final shape of set A will only be fixed when the evaluation model is 
established, but the effort of constructing set A during the problem formulation 

63 will pay during the whole decision aiding process: half of a problem i s  deciding 
2 what to  decide. 

The analysis of the different concerns (and how and why these associate to the 
different actors) leads to the establishment of the points of view to  be considered in 
the decision aiding process. These represent the different dimensions under which 
we observe, analyse, describe, evaluate, compare the objects in A. At this stage, 
the elements of V do not have any formal properties and do not necessarily define 
a structure (such as a hierarchy). They simply represent what the client knows or 
wishes to  know about set A. The key question here is: "among all this knowledge, 
what is relevant for the decision situation under analysis?" Again the representa- 
tion of the problem situation can be useful here, since certain concerns can be of 
a descriptive nature (thus resulting in points of view), while the identification of 
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the different resources to be committed to the concern may reveal other points of 
view. A more structured approach for this particular problem can be the use of 
cognitive maps (Eden, 1988, 1994) or Checkland's soft systems methodology (see 
Checkland and Scholes, 1990). 

Last, but not least, we have to establish a problem statement II. Do we optimise 
or do we look for a compromise? Do we just try to provide a formal description of 
the problem? Do we evaluate or do we design alternatives? Establishing a problem 
formulation implies announcing what we expect to do with set A. We can first 
distinguish three basic attitudes: 

the first is constructing a set of feasible and realistic alternative actions 
without any necessary further evaluation purpose (as, for instance, in the 
"constraint satisfaction" case, see Brailsford, Potts, and Smith, 1999); 

the second is describing a set of actions under a set of precise instances of 
the points of view established in V; 

the third one, which we will call "purposeful" (also named operational, see 
Roy, 1996), consists in partitioning set A. 

Let us focus on this third attitude. Partitioning the set A implies establishing a 
set of categories to which each element of A is univocally associated (the "good" 
elements and the "rest", the "better", the "second best", etc., the "type X", the 
"type Y", the "type Z", etc.). In all cases and under all approaches, a purposeful 
problem statement results from the replies to the following questions: 

are the categories predefined or do they result from the comparison of the 
elements of A among themselves? 

are the categories ordered (at least partially) or not? 

how many such categories can exist (if they are not predefined)? Just two 
complementary ones or more than two? 

A purposeful problem statement is a combination of answers to the above questions 
and establishes a precise form of partition of set A: 

1. in predefined, not ordered categories (a typical example being a diagnosis 
problem: patient x has appendicitis, patient y has a simple abdominal pain, 
etc.); 

2. in predefined, ordered categories (as in the "sorting" procedures: tender x 
is "acceptable", tender y is "good", etc.); 

3. in not predefined, not ordered categories (as in the clustering and more 
generally classification case: cluster the students of a class on the basis of 
their height); 

4, in two, not predefined, ordered categories (for instance, the chosen or rejected 
objects and the rest or the optimal solutions and the rest: the outcome of 
all mathematical programming algorithms result in such a partition); 
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5. in more than two, not predefined, ordered categories (as in ranking proce- 
dures: rank the students on the basis of their performances in the different 
classes they followed in a year). 

Up to now we have presented seven possible problem statements, the five pur- 
poseful ones previously described, and the two "non purposeful" ones which we 
call "design" and "description". All such statements can be further characterised 
by the possibility of looking to "robust" decision aiding. We will not further dis- 
cuss this issue which already attracted the interest of several researchers (see Chu, 
Moskowitz, and Wong, 1988; Kouvelis and Yu, 1997; Rios-Insua and Martin, 1994; 
Roy, 1998; Vincke, 1999a,b; Wong and Rosenhead, 2000). Further discussion can 
be found in chapter 7. 

Operational Research and Decision Theory usually focus their attention on 
optimisation and more generally on "choice" problem statements in which one 
alternative or vector of decision variables is ex~ected to be established as a solution 
(thus introducing the use of only two categories of solutions: the chosen ones 
and the rest). However, decision aiding is also provided when we rank-order the 
alternatives, when we classify them in categories (ordered or not, pre-existing or 
not) through internal (relative) or external (absolute) comparison. Establishing 
the problem statement with the client enables to focus on the appropriate methods 
and procedures to be used and avoids wasting time trying to force the information 
in irrelevant ones. Nevertheless, the establishment of lT is an anticipation of the 
final solution and as such it is rare that the client is able to provide it through 
simple questioning. The work of the analyst here is to show (through examples) 
the different possible problem statements and the different outcomes to which they 
lead. 

8 As already mentioned, the establishment of a problem formulation is a key 
a issue in the decision aiding process. I t  represents a tentative start to foreseeing 
&3 and anticipating the conclusions of the process and as such has a "strategic" 
8 character (de facto establishing a strategy with respect to the decision process). 

From this perspective, revising the problem formulation represents a revision 8 of "strategy". 

2.4.4 Constructing the Evaluation Model 

This is the typical task in which the analyst applies his methodological knowledge 
to the information provided by the client in order to produce a model which can 
be elaborated through a Decision Analysis method. 

Again the first step is to fix the set of potential decisions or alternatives A. At 
this stage set A should have precise formal properties such as: 

being a compact (in a topological sense) or a discrete subset of an n-dimen- 
sional space; 

0 being a list of objects or an enumeration of options; 

having a combinatorial structure. 
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The existence of feasibility (or acceptability) constraints should apply here either 
directly (limiting the enumeration of A) or indirectly (limiting the space where 
A can be defined). Set A, established in the problem formulation, is the starting 
point of this process, but new elements may be added (such as dump alternatives 
or ideal solutions) or eliminated. Within an evaluation model we consider the set A 
as stable across time and if it has a combinatorial structure, we have to fix whether 
we are going to  focus on the elementary components or on a list of combinations. 
For instance, in evaluating investment portfolios, we could either consider each 
single investment (and then possibly try to  find an optimal combination) or lists of 
ready-made combinations proposed by an investment company (and then possibly 
try to choose one of these). 

Set A is described through a set of dimensions D. These represent the rele- 
vant knowledge we have about A. Some of these dimensions might have already 
been introduced in the form of constraints (used in order to  fix set A), but other 
dimensions might be necessary for evaluation purposes, that is they should allow 
to  evaluate the performance of each element of A under certain characteristics. 
Again the establishment of D requires fixing some formal properties. Each ele- 
ment of D is considered as a form of measurement, therefore the precise structure 
(Xi) of such a measure should be established ("a measurement scale"). Several 
types of measurement scales are possible and might co-exist within an evaluation 
model such as nominal, ordinal, etc (for more details see chapter 3 in this book). 
Furthermore, set D may have a structure such as a hierarchy. Set D cannot be 
empty. At least one dimension (the nominal description of A) exists. Usually set 
D is constructed using set V as a starting point. Typically the construction of D 
involves structuring V (if necessary) and associating a measurement structure to 
each element thus defined. 

In the case in where a purposeful problem statement has been adopted (such as 
an optimisation or a ranking one), we then have to construct the set of criteria H 
to be used for such a purpose. The key issues here are the client's preferences. We 
define as a criterion any dimension to which it is possible to  associate a preference 
model, even a partial one, such that the client should be able to make a choice along 
this single dimension. The construction of the set of criteria is a central activity in 
the decision aiding process. Dimensions expressed under "nominal measurement" 
(dimensions where we only know "labels" of the alternatives, but we are unable 
to  provide any ordering among them) definitely require the establishment of a 
preference model. Dimensions using Xi endowed with some ordering structure can 
be transformed directly into criteria using an ordering as a preference structure, 
but this is rather exceptional. Usually the preference model is an interpretation of 
the available ordering (consider for example the use of a semi-order as a preference 
structure for a dimension endowed with a ratio scale) and therefore requires careful 
elaboration. The reader will find more details in chapter 3. Furthermore, it 
should be clear that if we are looking for a "rich" (in information) final result 
(such as an optimal solution), then the preference information ought to be "rich" 
itself. It should also be noted that the construction of H can be either the result 
of a direct process (creating criteria from dimensions through direct questioning 
of the client) or of an indirect process (establishing criteria "explaining" global 
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preferences expressed by the client on examples or already known cases). When 
several criteria are considered, the first approach is described in more detail in 
chapter 5, while the second approach is described in chapter 6. 

Last but not least, set H has to fulfil a number of conditions depending on the 
type of procedure that is foreseen to be used in order to elaborate the solution. A 
basic requirement is separability of the criteria: each criterion alone should be able 
to discriminate the alternatives, regardless of how these behave under the other 
criteria. A more complex requirement is the establishment of a consistent family 
of criteria: a set which contains the strictly necessary criteria and only these (see 
also chapter 4 in this book). Further conditions can apply, such as independence 
in the sense of the preferences (when an additive composition of the criteria is 
foreseen), etc. (for more details, the reader is referred to Keeney and Raiffa, 1976; 
Roy and Bouyssou, 1993; Vincke, 1992b). 

At this point an element which has to be added to the model is the presence 
of any uncertainty structure U. Uncertainty can be exogenous or endogenous 
with respect to the model. Typical cases of exogenous uncertainty include the 
presence of different scenarios or states of the nature under which the evaluation 
has to be pursued, poor or missing information as far as certain dimensions or 
criteria are concerned, hesitation or inconsistency of the client in establishing his 
preference on one or more criteria. Typical cases of endogenous uncertainty include 
the difficulty to discriminate alternatives in a dimension or criterion due to its 
ambiguous definition or linguistic nature, the appearance of inconsistencies due 
to conflicting information in different parts of the model, the impoverishment 
of the information due to the aggregation of dimensions or criteria. In all such 
cases the model must contain the appropriate structure for each particular type of 
uncertainty (if any). It should be noted that choosing a particular representation 
for a given uncertainty is not neutral with respect to the final result and that the 
client should be aware of the different results to which such a choice may lead. 

The last element to be established within the evaluation model is the precise 
method R to be used in order to elaborate a solution to the model. Such a choice is 
not neutral, since different methods can result in completely different conclusions. 
Classic decision theory usually neglects this issue since it always considers as given 
the method (an optimisation procedure).This is however, not generally the case. 
The choice of R depends on the problem statement lT adopted in the problem 
formulation and should depend on two criteria: 

25 
0 theoretical meaningfulness (in the sense of measurement theory): the 

method should be sound with respect to the information used. Typi- 
cal errors in this case include the use of averaging operators on ordinal 
information, the use of a conventional optimisation algorithm when the 
cost coefficients are only ordinal, the underestimation of the importance 

0 of the independence of criteria when an additive value function is used. 

Q 
Q 0 operational meaningfulness (in the sense that the client should be able 

@ to understand and use the result within the decision process). It should 
G2 .-. be noted that theoretical meaningfulness does not prevent the problem 
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63 of establishing a useless result (an arithmetic mean of lengths is theoret- 
ically sound, but useless if the client is looking for a volume). Typical GI 
errors here include the underestimation of the quantity of information 

8 required by the client (a  simple ranking of the alternatives can be in- 
sufficient for the client's concerns) or the aggregation of criteria without 8 verifying their coherence. 

G2 
< "1 

A critical aspect in establishing R is the set of properties each such method 
fulfils. Each method may satisfy some useful properties, but may also not satisfy 
some other useful ones. I t  may present undesired side effects (see Bouyssou et al., 
2000)such as non monotonicity, dependence on circuits, different forms of manipu- 
lability etc. The analyst should establish a set of properties that the method should 
fulfil (not necessarily of normative nature, but simply prescriptive ones) and make 
the client aware of the possible side-effects of the use of a potential method. From 
this perspective, the axiomatic study of the methods is a key knowledge for the 
analyst since it allows to have a precise map of the properties each method satisfies 
(see the discussion in chapter 4). 

Furthermore, each method R requires the use of a number of parameters: 
some of these directly representing preferential information to be obtained from 
the client and his/her knowledge, others more or less arbitrary interpretations of 
such knowledge and depending on R itself. 

The best known example concerns the use of coefficients of importance when 
several criteria have to be considered simultaneously. Here the client can have 
an "intuition" on "how important" certain criteria are with respect to  others, 
but the precise formalisation of this concept strictly depends on how R works 
(see Borcherding, Eppel, and von Winterfeldt, 1991; Mousseau, 1997). If, for 
instance, R is based on the construction of a value function, then such parameters 
are tradeoffs among the criteria and have to  be established together with the 
value function associated to  each criterion. If on the other hand, R is a majority 
procedure then these parameters are "power indices" to be associated to potential 
coalitions of criteria. It is clear that, depending on what R is and on the available 
information, the establishment of these parameters requires precise procedures 
and interaction protocols with the client (see Mousseau, 1995; Mousseau, Dias, 
Figueira, Gomes, and Climaco, 2003; von Winterfeldt and Edwards, 1986; Weber 
and Borcherding, 1993). 

The same reasoning applies to  other parameters that could be necessary for 
a given R, such as discrimination thresholds, cutting levels for valued preference 
relations, cost coefficients and right hand side terms in mathematical programmes, 
boundaries of categories in classification procedures etc. Most of these parameters 
are an interpretation of what the client considers relevant for the problem and 
such an interpretation depends on how R is defined. Not all interpretations might 
be consistent with the client's information and knowledge and different consistent 
interpretations might lead to completely different results. The reader will find 
further details in section 4.4 of chapter 4. 

Although constructing the evaluation model can be seen as a traditional 
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- 
Q decision aiding activity, on which the analyst's decision aiding knowledge usu- 
Q ally focuses, it remains a crucial activity to which major attention has to be 
@ dedicated. Several technical choices have to be made here and not all of them 

are either straightforward or neutral with respect to the final recommenda- 
0 tion. The accurate selection and justification of such choices enables on the 
r;3 one hand to guarantee meaningfulness of this artefact and on the other hand 
Q to identify the precise reasons why this specific final recommendation has been 
@ obtained. from this perspective, a sound construction of the evaluation model 

is crucial for easy revision and update, as well as enabling a clear justification 8 of its adoption. 

2.4.5 Constructing the final recommendation 

The output of the evaluation model is essentially a result which is consistent with 
the model itself. This does not guarantee that this result is consistent with the 
client's concern and even less with the decision process for which the aid has been 
requested. As the client and the analyst return to reality they should take at  least 
three precautions before they formulate the final recommendation (to be noted 
that due to the expected consensus between client and analyst, we consider that 
the outcome is also considered as "owned" by the client). 

Sensitivity analysis. How will the suggested solution vary when the parameters 
of the model are perturbed? What is the range of values of such parame- 
ters for which the solution will remain, at  least structurally, the same? A 
solution that appears to be sensitive to very small perturbations of some 
technical parameters implies that the solution strongly depends on this par- 
ticular instance of the parameters and less on the preferential information. 
Since such an instance can be quite an arbitrary interpretation, a thorough 
investigation of the model should be conducted. 

Robustness.  We have already seen that robustness can be conceived as a dimen- 
sion of the problem statement within a problem formulation. How good will 
the solution (or the method) be under different scenarios and combinations 
of the parameters? Being able to show that a particular solution will remain 
"good" (although perhaps not the best one) under the worst conditions that 
may occur should be considered as an advantage. Depending on the partic- 
ular type of robustness considered, it is reasonable to verify whether such a 
feature holds or not. On the other hand a typical error in robustness analysis 
consists in testing different methods in order to find out if a certain solution 
will remain "the best". This is meaningless, since each method provides 
qualitatively different results that cannot be compared. 

Legitimation. How legitimated is the foreseeable recommendation with respect 
to the organisational context of the decision process (David, 2001; Hatchuel 
and Molet, 1986; Landry et al., 1996)? As already mentioned, each decision 
aiding process refers to a decision process that usually occurs within a certain 
organisation (possibly of informal nature). Coming up with a recommenda- 
tion that could be in conflict with such an organisation implies assuming 
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risks. Either the client and the analyst explicitly pursue this conflict or they 
risk wasting time and resources. It should be noted that  in considering le- 
gitimation, besides its precise contents, we have to take into account how a 
recommendation is presented, implemented and perceived by the other ac- 
tors. From this perspective, a valid representation of the problem situation 
helps in verifying the legitimation. 

Establishing the final recommendation implies the return to the reality 
c:.'J of the decision process for the client and the analyst. A successful return is 
Gh not only guaranteed by the scientific legitimation of the final recommenda- 
Q tion (theoretical and operational meaningfulness), but also by the capacity 

of the two actors to  take the dynamics of the decision process as well as its 8 organisational complexity into account. 

2.5 Update and Revision: an open problem 

Conducting a decision aiding process is not a linear process in which the four 
cognitive artefacts are established one after the other. Since a decision aiding 
process always refers to a decision process which has a time and space extension, 
it is natural that the outcomes of the decision aiding process remain defeasible 
cognitive artefacts. Usually the process will encounter situations in which any of 
the above artefacts: 

0 may be in conflict with the evolution of the client's expectations, preferences 
and knowledge; 

0 may be in conflict with the updated state of the decision process and the 
new information available. 

It is therefore necessary to  adapt the contents of such artefacts as the decision 
aiding process evolves in time and space. see example 2.9 below. 

Example 2.9 
Consider again the case of the bus acquisition. A client looking for decision support 
within a problem situation described as: "the client's bus company is looking for 
a bus". He presents a set of offers received from several suppliers, each offer 
concerning a precise type of bus (thus a supplier may introduce several offers). 
The analyst will establish a problem formulation in which: 

0 A is the list of offers received; 

0 V is the list of points of view that are customary in such cases, (e.g., retrieved 
from past decisions) let's say cost, quality and transportation capacity; 

0 IT is a choice problem statement (an offer has to  be chosen). 

It is possible to  construct an evaluation model with such information in which: 
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0 A are the feasible offers; 

0 D are the dimensions under which the offers are analysed: price and man- 
agement costs (for the cost point of view), technical features (for the quality 
point of view), loading capacity (for the transportation capacity point of 
view), etc.; 

0 H are the criteria that the client agrees to  use in order to  represent his 
preferences (the cheapest the better, the more loading capacity the better, 
better quality resulting from better performances on technical features, etc.); 

0 there is no uncertainty; 

0 R could be a multi-attribute value function provided the client is able to 
establish the marginal value function on each criterion. 

When this model is presented to  the client his reaction could be: "in reality we 
can buy more than one bus and there is  no  reason that we should buy two identical 
buses, since these could be used for different purposes such as long range leisure 
travels or urban school transport". With such information, it is now possible to  
establish a new evaluation model in which: 

A are all pairs of feasible offers; 

0 D are the dimensions under which the offers are analysed (price, management 
costs, technical features, loading capacity etc.), but now concerning pairs of 
offers plus a classification of the buses in categories (luxury liner, mass transit 
etc.); 

0 H are the same criteria as previously plus a criterion about "fitting the 
demand'' since two different types of buses may fit the demand better; 

0 uncertainty is now associated to the different scenarios of bus use; 

0 R could be a multi-attribute utility function provided the client is able to 
establish the marginal value function on each criterion. 

A possible reaction to  this suggestion could be the following: "meanwhile we had 
a strategic discussion and the company considers that i n  reality the issue i s  to find 
a supplier with whom to  establish a strategic partnership considering the expansion 
of our activities". Clearly, not only does the evaluation model makes no sense, 
but the problem formulation also has to  be revised. We now have: 

0 A are potential suppliers; 

0 V concern the suppliers reliability, market share, availability to strategic 
partnerships, quality record, etc.; 

0 ll will now become a classification problem statement, the issue being to find 
out whether each supplier fits the company's strategy. 

A new evaluation model has to  be built now in such a way that: 
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A are potential suppliers; 

D are the dimensions under which the suppliers are analysed (market share, 
quality certification, history of past supplies, management structure etc.); 

H are the criteria the client agrees to use in order to represent his preferences; 

there is no uncertainty; 

R could be a multiple criteria classification procedure. 

The process may continue revising models and problem formulations until the 
client is satisfied. 0 

The above example shows that during a decision aiding process several different 
versions of the cognitive artefacts may be established. However, such different 
versions are strongly related to each other since they carry essentially the same 
information and only a small part of the model has to be revised. The problem is: 
is it possible to give a formal representation of how such an evolution occurs? In 
other words: is it possible to show how a set of alternatives or some preferential 
information may change while shifting from one model to another? It is out of 
the scope of this volume to find an answer to this question which requires further 
theory on the dynamics of the decision aiding process. We will just mention that 
the descriptive model of the decision aiding process turns out to be useful since it 
allows to establish a set of possible problem formulations and evaluation models 
to be used in different contexts, thus preventing the necessity of re-starting the 
modelling process from the beginning each time. 

2.6 Conclusion 

This is a book aiming at helping decision makers, analysts, practitioners and 
researchers to appropriately use tools and methods of decision support. However, 
such tools and methods are not independent algorithms and models which we just 
have to apply to  some information to obtain the conclusion. They are used within 
a stream of interactions structured around a decision process in which an actor 
involved (the client) asks for advice and support from another actor who becomes 
involved (the analyst). In other words they are used within a decision aiding 
process. It  is therefore necessary to analyse them from the perspective of such a 
process. Talking about the correct use of such tools, about their meaningfulness, 
about their legitimation and the usefulness of their results only makes sense with 
respect to such a decision aiding process. 

In this chapter we tried to introduce a general description of what such a deci- 
sion aiding process is and how it can be conducted in order to pursue meaningful, 
useful and legitimated recommendations. In order to do so, we first had to show 
that aiding someone involved in a decision process cannot just be limited to solv- 
ing a well established formal problem. It  concerns a wide set of issues including 
the understanding of the problem situation in which the client is involved as well 
as formulating a number of formal problems to choose from. Such concerns are 
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independent of the formal model that  is going to  be used to  elaborate the client's 
problem. In practice, such concerns are always considered. However, different 
decision aiding approaches can be characterised by the fact that such concerns are 
explicitly or implicitly considered as outcomes of the decision aiding approach. 

In the chapter we basically introduce two contributions. 

1. A model of the decision aiding process based on the description of the 
cognitive artefacts such a process produces. Indeed, our point of view 
is that decision aiding is a process in which the actors engaged have to 
establish a set of shared representations of issues such as: 

a representation of the problem situation within which the client 
(and consequently the analyst) are engaged; 

one or more problem formulations, a formal anticipation of the 
model to  construct, in which the client's concerns are expressed 
in a "decision support language"; 

one or more evaluation models enabling to  elaborate the problem 
formulation(s) and to  establish a conclusion; 

a final recommendation in which the conclusions of the decision 
aiding process are summarised, expressed in natural language and 
prepared to be confronted with the real world (the client's decision 
process). 

2. A number of recommendations on how the above cognitive artefacts can 
be constructed through interaction with the client. Such recommenda- 
tions are expected to  be helpful in order to: 

0 guarantee the theoretical soundness of the result (meaningfulness); 

0 guarantee the operational completeness of the result (usefulness); 

0 guarantee the legitimation of the results within the client's decision 
process. 

In the following chapters the reader will see how the construction of the eval- 
uation model can be pursued following the above requirements in further detail. 
More precisely, chapter 3 will discuss how it is possible to  establish models of 
preferences (on a single criterion) and how to  use numerical representations of 
measures and preferences correctly. Chapter 4 gives a general introduction to the 
problem of aggregating preferences expressed on several criteria or performances 
established on several dimensions (attributes). Chapter 5 will focus on the use of 
"procedures" allowing to undertake such an aggregation (and will therefore study 
the properties of such procedures), while chapter 6 will focus on the use of "mod- 
els" representing a global preference and how these influence the preferences on 
single criteria and their aggregation (and will therefore study the properties of 
such models). Finally, chapter 7 will discuss the problem of constructing the final 



2.6. CONCLUSION 65 

recommendation, mainly when the result of the aggregation is not directly usable 
and issues concerning the robustness of such a recommendation. 



NUMBERS AND PREFERENCES 

3.1 Introduction 

This book is devoted to the use of formal models in evaluation and decision aiding 
models. Most of the formal models presented in the literature and used in practice 
are based on two fundamental mathematical concepts: numbers and relations. 
They are also present on each page of this book. In this chapter, we will focus on 
these two basic tools. 

Sections 3.1 to 3.3 are devoted to the use of numbers for representing vari- 
ous aspects of the observed reality and the adequateness of performing certain 
calculations with respect to this reality. The rest of the chapter deals with the 
connections between the language of preference relations (evaluation and decision 
aiding is impossible in the absence of preferences) and the language of numbers. 
This chapter does not aim at being exhaustive: it is to be seen as a collection of 
questions that naturally arise in the course of using formal models for evaluation 
and decision aiding, either to build preferences on the basis of numerical informa- 
tion, or to build numerical models of preferences. It should be noted that, contrary 
to the next chapters, this one does not provide operational tools for decision aid- 
ing, but it points out fundamental aspects which will be (sometimes implicitly) 
present everywhere in the book. 

3.2 Numbers 

To our knowledge, there is no culture, even very primitive, which does not use num- 
bers or, more generally, mathematics. "Everything is numbering" said Pythagoras 
and many stories and legends but also very concrete political decisions are based on 
what could be called the mysticism of numbers. Martzloff (1981) writes: "Without 
them, it is impossible to understand the measure of the sky and of the earth, to 
manage the taxes and finances, to pitch military camps or to arrange bodies of 
soldiers, to govern the city". 

Galileo (published 1966) translated many experimental observations about the 
physical world into mathematics and said that (our translation): 

Philosophy is written in this very vast book that is eternally open in 
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front of our eyes-I mean the universe-but one cannot read it before 
having learned the language and before having become familiar with 
the characters in which it is written. I t  is written in mathematical lan- 
guage and its letters are triangles, circles and other geometric shapes, 
means without which it is humanly impossible to  understand a single 
word, without which we vainly roam in a dark labyrinth 

It is clear that  the success of mathematics in the description and the explana- 
tion of the solar system (for example forecasting the return of the Halley's Comet) 
was crucial in the development of the role of mathematics in the explanation of 
other natural phenomena: capillarity, electromagnetism, classification of crystals, 
heat propagation, . . . Extending the domain of application of mathematics, Con- 
dorcet introduced what is now called "social mathematics" (see Condorcet, 1785). 
He was convinced that this discipline would contribute to  the welfare and the 
progress of humanity. 

Today, mathematics are used in all the fields of human activity, not only as a 
tool to make calculations, but also in the education, the methodology and every- 
one's way of thinking: we all reason in terms of measures, percentages, ratios, 
logical deductions, statistics, . . . In  fact, numbers are present everywhere. Most of 
the people consider that "natural numbers" (positive integers) exist independently 
of any mathematics or, even, of any human intervention. However, our intuitive 
perception is limited to very small numbers, associated to the counting of objects 
(in some primitive tribes people only count up to five or have no specific words for 
the numbers; very small numbers are considered to  be particular characteristics of 
the counted objects and are treated as attributive adjectives). The constitution of 
a system of numbers is already a mathematical theory, with many rules, conven- 
tions or axioms. These rules can be different depending on what these numbers 
represent. 

A first use of numbers is of course numbering (first, second, . . . ), i.e. giving a 
list in a certain order (ordinal aspect of numbers). A second use of natural numbers 
(positive integers) is to count objects (cardinal aspect); in this perspective, some 
basic operations can be introduced, such as addition and subtraction. However, 
the main use of numbers resides in one of the most natural activities of humans: 
measuring. Measuring allows to quantify phenomena, to  make calculations in or- 
der to understand, to  foresee and to  manage our environment. Measuring weights, 
lengths or volumes is necessary in commercial transactions. Measuring heat, du- 
ration or flow is useful to  describe physical phenomena. Measuring wealth, un- 
employment or production allows to analyse economy. Measuring pollution, noise 
or vegetation density is necessary in environmental management. Numbers are 
used to measure many other things (as illustrated in Bouyssou et  al., 2000, ch. 4): 
speed, age, density, score, social impact, economic index, probability, possibility, 
credibility, preference intensity, latitude, date, earthquake intensity, popularity, 

"La filosofia 6 scritta in questo grandissimo libro che continuamente ci sta aperto innanzi 
a gli occhi (io dico l'universo), ma non si pub intendere se prima non s'impara a intender la 
lingua, e conoscer i caratteri, ne' quali 6 scritto. Egli 6 scritto in lingua matematica, e i caratteri 
son triangoli, cerchi, ed altre figure geometriche, senza i quali mezi 6 impossibile a intenderne 
umanamente parola; senza questi 6 un aggirarsi vanamente per un oscuro laberinto". 
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political success, financial ratio, friction coefficient, coordinates, radioactivity, elec- 
tric power, angle magnitude, percentage, severity of a tumour, cash-flow, exchange 
rate, productivity, landscape harmony, . . . A  number can indicate the presence or 
not of a specific property (boolean variable). It can be a tool for recognising an 
object (i.e. a label). Sometimes, it is possible to define a standard and to  express 
the measure of every object in function of this standard thanks to physical instru- 
ments, as is the case for lengths or weights. Sometimes, it is necessary to  define 
reference states on an "arbitrary" scale, as is the case for temperatures or dates 
(of course, this can depend on the state of knowledge: thermodynamics allowed 
to  define an "absolute" zero for temperature and cosmology will perhaps allow to  
do so for dates). 

Manipulating "numbers" in social sciences, as most of the decision aiding tools 
try to do, raises the question of measuring human or social characteristics, such 
as satisfaction, risk aversion, preference, group cohesion, etc. However, contrary 
to  what happens for the characteristics measured in the natural sciences (length, 
weight, duration, etc.), there is no real consensus on what measuring means in 
social sciences. Does the way of measuring depend on the goal of the process 
(description of reality, construction of models or laws, decision support)? Does 
the duplication of social objects make sense (two apples having the same weight 
versus two individuals having the same preference)? How to  aggregate measures 
(the weight of a package of apples versus the preference of a group of individuals)? 

Some of these questions were raised in Bouyssou et al. (2000): remember, 
in particular, the role of numbers in voting systems (chapter 2), in evaluating 
students (chapter 3), in characterising the development of a country, the quality of 
air or the performance of a decathlete (chapter 4), in assessing competing projects 
(chapter 5) or in automatic decision making (chapter 7). 

It seems clear that the numbers representing measures cannot always be treated 
in the same way because the underlying information can be completely different 
from one context to  another. This chapter certainly does not give a definitive 
answer to this fundamental and difficult problem. Its purpose is to try to  clarify 
the various types of numerical scales that are used, especially in the field of decision 
aiding. We will first present four basic examples in order to  introduce the main 
types of scales that are usually discussed in measurement theory (see Krantz, Luce, 
Suppes, and Tversky, 1971; Narens and Luce, 1986; Roberts, 1979, 1994). The 
rest of the chapter is a study of the connections between numbers and relations in 
preference modelling. 

3.3 Four basic examples 

3.3.1 The race 

The arrival order in a race is the following: Alfred, Bill, Carl, David, Ernest, F'ranz, 
Gilles, Henry, Isidore and John. Alfred, David, Franz and John form team a, the 
others form team b. The duration of the race has been registered, in seconds, 
yielding for each runner, giving the numbers in table 3.1. The purpose is to 
compare these two teams and, if possible, to  decide which team is the best. On 
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A B C D E F G H  I J 
43.5 43.7 44.2 45 47 48 52 52.1 52.5 55 

Table 3.1: Race example: times in seconds. 
Team a = {A, D,  F, J ) ,  team b = {B, C, E, G, H, I). 

the basis of these numbers, the following assertions can be verified: 

(i) the mean time of team b = {B, C, E, G, H, I), is higher than the mean time 
of team a = {A, D,  F ,  J ) ;  

(ii) the second best (lowest) time in team b is lower than the second best time 
in team a;  

(iii) the mean time computed on the basis of all the runner' results, is beaten by 
three runners of team a and three runners of team b; 

(iv) the median time, calculated on the basis of all of the runners' results, is 
exceeded by two runners of team a and three runners of team b; 

(v) the third best time in team a is lower than the times of three runners of team 
b; 

(vi) the worst time in team b is more than 1.2 times the best time in team a;  

(vii) the difference between the worst time in team a and the worst time in team 
b is 12.5 times the difference between the best time in team a and the best 
time in team b; 

(viii) the sum of the two best times in team a is higher than the sum of the two 
best times in team b; 

(ix) the difference between the two best times in team a is triple the difference 
between the two best times in team b; 

(x) if we consider the three best times, team b is more often represented than 
team a;  

(xi) the sum of the three best times in team a is higher than the sum of the two 
best times in team b; 

(xii) the mean time of team b is 1.015 times the mean time of team a;  

(xiii) the ratio between the worst and the best times is higher in team a than in 
team b; 

(xiv) in team a ,  the square of the worst time is 1.6 times the square of the best 
time; 

The median of a set of numbers is a value x such that there as many numbers greater than 
x than number smaller than x (some specific conventions exist to  avoid ambiguity in the even 
case). 
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(xv) the difference between the best and the worst times in team a is equal to 
11.5. 

Now, if we convert all the times into minutes, we see that  all the assertions remain 
valid, except (xiv) and (xv). More generally, as a duration is completely defined by 
the choice of a unit (the origin being "natural"), every multiplication by a positive 
constant should be possible without changing the conclusions. This shows that 
some assertions that  use numbers resulting from measurement, even in cases where 
measurement is of "high quality" should be considered with care. The way in which 
numbers are obtained is crucial for their interpretation. This will be all the more 
true with numbers obtained by measurement operations of "decreasing quality". 

3.3.2 The weather 

Temperatures were measured a t  noon in two European countries, during respec- 
tively 10 and 8 consecutive days. The results, in Celsius degrees, are presented in 
table 3.2. On the basis of these observations, how could we help a tourist choose a 
country for his holidays? As in the previous example, many assertions can be pro- 

Table 3.2: Temperatures in two countries (Celsius degrees). 

posed for the comparison of the countries a and b, on the basis of these numbers. 
Here are some examples of such valid assertions: 

(i) the mean temperature in country a is higher than the mean temperature in 
country b; 

(ii) the second highest temperature in country a is higher than the highest tem- 
perature in country b; 

(iii) the mean temperature calculated on the basis of all the measures in both 
countries, is exceeded seven times in country a and three times in country b; 

(iv) the median value, calculated on the basis of all the measures in both coun- 
tries, is exceeded four times in country a and once in country b; 

(v) the fourth highest temperature in country a is higher than the temperatures 
in country b during 5 days; 

(vi) the highest temperature in country a is more than 1.5 times the lowest tem- 
perature in country b; 

(vii) the difference between the highest temperature in country a and the highest 
temperature in country b is four times the difference between the lowest 
temperature in country a and the lowest temperature in country b; 
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(viii) the sum of the two highest temperatures in country a is larger than the sum 
of the two highest temperatures in country b; 

(ix) the difference between the two highest temperatures in country a is two times 
the difference between the two highest temperatures in country b; 

(x) if we consider the five highest temperatures in table 3.2, country a is more 
often represented than country b; 

(xi) the sum of the three highest temperatures in country a is larger than the 
sum of the four lowest temperatures in country b; 

(xii) the mean temperature in country a is 1.1 times the mean temperature in 
country b; 

(xiii) the ratio between the highest and the lowest temperatures is larger in country 
a than in country b; 

(xiv) in country a, the square of the highest temperature is 2.37 times the square 
of the lowest temperature; 

(xv) the difference between the highest and the smallest temperatures in country 
a is equal to  7. 

The temperatures in table 3.2 are expressed in Celsius degrees, but they could be 
expressed on another temperature scale. In table 3.3, they have been converted 
into Fahrenheit degrees (in order to limit the number of decimals, we have simply 
multiplied by 1.8 and added 32). On the basis of these new numbers, we see 

Table 3.3: Temperatures in two countries (Fahrenheit degrees). 

that some assertions remain valid and other do not. As a temperature scale is 
completely defined when the origin and the unit are fixed, every transformation 
of the form 

ax  + p (with a > O), 

should be possible without changing the conclusions. The reader can verify that 
this is the case for all the assertions except (vi), (xi), (xii), (xiii), (xiv) and (xv). I t  
should be noted that what is verified is not the veracity or not of an assertion, but 
the fact that its veracity (resp. falsity) is unchanged for an admissible change of 
scale. For example, let us verify that the following assertion is not invariant for the 
transformation ax + P: "this temperature is the double of that one". Numerically, 
this assertion can be written 

x1 = 2x2. 



3.3. FOUR BASIC EXAMPLES 

As this equality does not imply that 

the veracity (resp, falsity) of the assertion can change for an admissible change of 
scale. 

On the contrary, the assertion "this difference of temperature is the double of 
that one" remains true (resp, false) when an admissible change of scale is applied. 
Indeed, 

implies, V a  > 0, VP: 

3.3.3 The race again 

Let us take again example 3.3.1. Suppose that the only available information is 
the ranking of the runners and that numbers have been associated to them in 
decreasing order of the arrivals, as in table 3.4. On the basis of these numbers, 

A B C D E F G H I J  
1 0 9 8 7 6 5 4 3 2 1  

Table 3.4: Race example: numbers associated to the runners. 
Team a = {A, D, F, J). Team b = {B, C, E, G, H,  I). 

many assertions can be proposed for the comparison of the teams a and b; here 
are some examples of such valid assertions: 

(i) the mean of team a is greater than the mean of team b; 

(ii) the second highest number in team b is bigger than the second highest number 
in team a; 

(iii) two runners of team a and three runners of team b have a number that is 
bigger than the mean of the whole set of runners; 

(iv) two runners of team a and three runners of team b have a number which is 
bigger than the median of the whole set of runners; 

(v) the third highest number in team a is greater than the numbers of three 
runners of team b; 

(vi) the greatest number in team a is less than two times the number of the third 
runner in team b; 
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(vii) the difference between the numbers of the best runners of teams a and b 
is equal to the difference between the numbers of the last runners of these 
teams; 

(viii) the sum of the two highest numbers in team a is equal to the sum of the two 
highest numbers in team b; 

(ix) the difference between the numbers of the first and the second runners of 
team a is triple the difference between the numbers of the first and the 
second runners of team b; 

(x) team b has more runners among the three highest numbers than team a, and 
also among the five highest; 

(xi) the highest number in team a is larger than the sum of the three lowest 
numbers in team b but smaller than the sum of the four lowest numbers in 
team b; 

(xii) the mean of team a is 1.17 times the mean of team b; 

(xiii) the ratio between the second and the third highest numbers is larger in team 
a than in team b; 

(xiv) in team b, the square of the highest number is 20.25 times the square of the 
smallest one; 

(xv) the difference between the greatest and the smallest number in team a is 
equal to 9. 

In fact, in this example, the only relevant information is the ranking of the run- 
ners, and there is no reason to privilege one numerical representation over another 
(unless very specific assumptions are added). Consider, for instance, the numerical 
representation given in table 3.5. On the basis of these new numbers, we see that 

A B C D E F G H I J  
100 90 80 10 9 8 7 6 5 0 

Table 3.5: Race example: other possible values for the runners. 

assertions (ii), (iv), (v) and (x) remain verified but not the others. This means 
that the other assertions cannot be considered as reliable information: their truth 
or falsity depends on the particular numerical representation which is chosen. As 
only the ranking of the runners is known, every strictly increasing transformation 
of the numbers should be possible without changing the conclusions derived from 
these numbers. This is clearly the case only for assertions (ii), (iv), (v) and (x). 
Note also that all these considerations do not allow to definitely decide which team 
is the best. 
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3.3.4 The expert's advice 

Suppose that an expert evaluated social projects in a city by assigning numbers to 
them in function of what he considers as their chance of success and their global 
interest for the city. The scale is [O, 201 and the higher the evaluation, the higher 
the quality of the project. What kind of information can we deduce from these 
evaluations? As in the previous examples, many assertions can be proposed on 

A B C D E F G H I J  
17 16 14 12 10 10 9 5 3 2 

Table 3.6: Evaluations by the expert on a scale from 0 to  20. 

the basis of these numbers; here are some examples of valid assertions: 

(i) project A is the best; 

(ii) project E  is two times better than project H; 

(iii) the difference between projects A and B is less than that between D  and E; 

(iv) the differences between B  and C  and between C  and D  are equal; 

(v) four projects are "below the mean" (which is equal to 10); 

(vi) if two projects can be chosen, the pair { B ,  C )  is better than {A, D )  (as the 
sum of their evaluations is higher). 

In this example, the numbers are associated to  subjective evaluations (by the ex- 
pert) and not to  some "objective facts" such as times, temperatures or ranking, 
as was the case in the previous examples. This means that the reliability of a 
conclusion based on these numbers depends on the type of information they really 
support. This can be the subject of additional assumptions or can be obtained 
by a dialogue with the expert on how he has built his evaluations. Such a dialog 
could reveal, for example, that his evaluations of "bad" projects were only very 
roughly made (so that the difference between H  and I has no meaning a t  all), or 
that he really hesitated to consider that A  is better than B ,  while he was sure that 
C  is much better than D. Moreover, if this expertise has to be merged with other 
information, the decision maker may want to take into account the inevitable im- 
precisions of such subjective evaluations by considering that a difference of 1 point 
between two projects can be ignored. In this case, table 3.7 of evaluations could be 
considered as equivalent to table 3.6 for the purpose of comparing projects. With 

A B C D E F G H I J  
17 17 15 12 10 10 10 0 0 0 

Table 3.7: "Equivalent" possible evaluations. 

these new evaluations, we see that some of the assertions proposed before are no 
longer true. Finally, the only reliable information could be the following: 
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0 A and B are the best projects and are very similar, 

0 C is strictly better than D,  which is better than E, F and G, 

0 There is no significant difference between E, F and G, 

0 H, I, J are the only bad projects (evaluations less than 7), 

and every set of numbers supporting this information could be accepted (and not 
only the strictly increasing transformations as in the example of section 3.3.3). 
For example, every set of numbers satisfying the following conditions could be 
considered as an acceptable numerical representation of the information (in the 
following expressions, h(x) is the numerical evaluation of project x): 

' I W )  - h(B)l 5 1, 
h(A) > h(x) + 1,Vx # A,B,  
h(B) > h(x) + 1, Vx # A, B, 
h(C) > h(x) + 1,Vx # A, B ,C,  
h(D) > h(x) + 1, Vx # A, B ,  C, D, 
lh(E) - WI 5 1, 
lh(E) - h(G)l 5 1, 
I W )  - h(G)l 5 1, 
h(x) 5 7 iff x E {H, I, J ) .  

Of course, the solution of this system is not unique. Moreover, the threshold, equal 
to 1 here, could be variable along the scale. 

3.4 Evaluation and meaningfulness 

3.4.1 Definitions 

Let us consider a completely ordered set (i.e. a set with elements ranked from 
the first to the last, without ties). As a completely ordered set can generally be 
mapped to the real numbers (see Fishburn, 1970), we limit ourselves to numerical 
ordered sets, i.e. subsets of real numbers, and we call them "numerical scales". 
"Evaluating" an object consists in associating an element of a numerical scale to 
it, according to  some conventions as, for example, the choice of a measurement 
instrument (sometimes, the element of the numerical scale that is associated to an 
object is not unique, because of imprecision or uncertainty, but we put these situ- 
ations aside for the moment). The evaluation of an object along a numerical scale 
is supposed to  characterise or to  represent a particular information about certain 
aspects of this object (weight, temperature, age, number of votes, development 
of a country, air quality, performance of a sportsman, etc. (see Bouyssou et al., 
2000, ch. 2 and 4).  Changing the conventions leads to changing the evaluations of 
the objects. An important question is to know whether changing the conventions 
leads to a modification of the underlying information about the objects (in terms, 
for instance, of comparisons between the objects). The examples in section 3.3 
show that, depending on the context, some assertions remain true or remain false 
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when the evaluations of the objects are transformed, while some assertions do not. 
Remember that what is being verified is not the veracity or the falsity of an as- 
sertion, but the fact that its veracity (falsity) is unchanged when the conventions 
used for evaluation are modified. 

Different numerical scales are considered as being "equivalent" if they support 
(represent) the same information about the considered objects: we will call them 
"info-equivalent". Moreover, it is sometimes possible to characterise the mathe- 
matical transformations between info-equivalent numerical scales. This observa- 
tion lead Stevens (1946) to define three important types of scale respectively called 
ordinal, interval and ratio scales (for more details, see Krantz et al., 1971; Narens 
and Luce, 1986; Roberts, 1979, 1994). In the following definitions, the expression 
"admissible transformations" means "transformations into info-equivalent numer- 
ical scales". A scale is ordinal if its admissible transformations are all strictly 
increasing transformations; it is an interval scale if its admissible transformations 
are all positive affine transformations of the form p(x) = a x  + P, with a > 0 
(in this case, the scale is univocally determined by the choice of an origin and a 
unit); it is a ratio scale if its admissible transformations are the positive homo- 
thetic transformations of the form p(x) = a x ,  with a > 0 (in this case, the scale is 
univocally determined by the choice of a unit, the origin being "naturally fixed"). 
Let us also mention the absolute scale which does not accept any admissible trans- 
formation (except the identity), as a counting or a probability scale. Other, more 
or less sophisticated, scale types can be defined (see Roberts, 1979) by their sets 
of admissible transformations, but will not be developed here. It is also important 
to note that, in many cases, it is not possible to characterise the transformations 
between info-equivalent numerical scales in an analytical way (this is the case in 
example 3.3.4). 

In classical measurement theory, an assertion is declared to be meaningful if 
its truth value is unchanged when admissible transformations are applied to the 
scales used in the assertion. More generally (when the admissible transforma- 
tions are not identifiable), we will say that an assertion is meaningful if its truth 
value is unchanged when the numerical scales used in the assertion are replaced 
by info-equivalent scales (see the concept of "technical sound" introduced in chap- 
ter 2, section 2.3.4). For instance, if we consider that a numerical scale used for 
evaluating durations is a ratio scale, then all the assertions in the basic example 
3.3.1 are meaningful, except (xiv) and (xv), because their veracity (or falsity) is 
unchanged by any positive homothetic transformation of the scale. If we accept 
that a scale used for measuring temperatures is an interval scale, then all the as- 
sertions in the basic example 3.3.2 are meaningful, except (vi), (xi), (xii), (xiii), 
(xiv) and (xv), because their veracity (or falsity) is unchanged by any positive 
affine transformation of the scale. If we consider that a scale used for representing 
a ranking is an ordinal scale, then only the assertions (ii), (iv), (v), and (x) are 
meaningful, in the basic example 3.3.3, because their veracity or falsity resists to 
any strictly increasing transformation of the scale. In example 3.3.4, only the as- 
sertions that remain true (or false) for all the sets of all numerical values verifying 
the constraints system are meaningful. As we see, depending on the scale type (i.e. 
depending on the information supported by the scale), some caution is necessary 
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in the manipulation and the interpretation of the numbers if we want to obtain 
meaningful conclusions based on these numbers. A conclusion that is true using a 
given scale but that is meaningless (not meaningful) for this type of scale is com- 
pletely dependent of the particular scale which is considered, has no character of 
generality and is thus, probably, of very limited interest. It can even be dangerous 
because of the tendency of humans to  generalise ideas without sufficient precau- 
tions. The analysis of scale types allows to detect manipulations (mathematical 
operations) which can lead to  meaningless conclusions. In this case, we can speak 
of meaningless operations or procedures. In this perspective, the analysis of scale 
types is a useful tool for scientists. 

3.4.2 Comments 

Identifying the type of scale of a given set of evaluations is not always an easy 
task. Besides the scales used for measuring physical phenomena (length, weight, 
volume, force, time, energy, power, etc.), most of which are ratio or interval scales, 
many situations lead to  the use of scales of a type that does not belong to the 
classical ones and is often the result of an empirical judgement, as in example 
3.3.4 (see also Knapp, 1990). This is the reason why the concept of meaningfulness 
has some limits and was the subject of some criticisms. I t  should also be noted 
that  a "meaningless" manipulation of some numbers (because of the scale type 
considered) can sometimes yield pertinent information. If you respectively assign 
the numbers 0, 1 and 2 to  people having brown, blue and green eyes, the fact 
that the arithmetic mean of these numbers, computed in a given population, is 
1.2, yields the certainty that there are more green than brown eyes, although the 
arithmetic mean is generally considered as meaningless in this context (being a 
so-called nominal scale). Another example is the minimum spanning tree problem 
where the sum can be applied to  the numerical values of the edges of the given 
graph in order to find the optimal solution, even if the numerical scale is ordinal 
(so that ,  theoretically, the sum is meaningless). Conversely, it is possible that 
an assertion is meaningful but without any interest for solving the problem. An 
over-enthusiastic application of this theory may lead to  the fanatic attitude where 
"meaningless" is synonym of senseless. As we will see in the following sections, it 
often happens, particularly in decision aiding, that the scales are an intermediary 
between the classical types defined in section 3.4.1. In these cases, a punctilious 
application of meaningfulness theory generally leads to  an impoverishment of the 
data, due to  the important gap between ordinal and interval scales. 

Defining admissible transformations or info-equivalent scales implies knowing 
what kind of information we want to  represent by the scale. The knowledge of the 
nature of the data is not enough to  determine the scale type or the info-equivalent 
scales, especially in decision aiding. The context, the perception by the decision 
maker and its purpose play an important role in the interpretation of the numbers 
and the scale type and therefore in the conditions for meaningfulness and in the 
acceptable manipulations. A price, for instance, is "naturally" a ratio scale, so 
that, on this basis, it is possible to  give a sense to the assertion "this object is k 
times better than that one with regards to the price". However, it may happen 
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that the decision maker refuses this kind of assertion (due to  his perception of the 
prices in terms of preferences), but only accepts to  compare prices in an ordinal 
way. In this case, the price should be considered as an ordinal scale instead of 
a ratio scale. Conversely, a decision maker may decide to  give a sense to  the 
comparison of intervals on a scale that is "naturally" ordinal. To conclude, we 
consider that scale types are not "naturally given" in decision aiding, even for 
physical measures, and that every use of numbers must be accompanied by some 
precisions on the information they are supposed to support. Despite the limitations 
of meaningfulness theory, we consider it an important tool for the analysts in order 
to  avoid the development of completely arbitrary decision aiding procedures. 

3.5 Stepping stones for this chapter 

Here are the main ideas that we want to put forward in this chapter. 

1. Numbers are present everywhere; however their origins can be very dis- 
similar and the information supported by these numbers can be very 
different from one situation to  another. One consequence is that not all 
mathematical operations are justified for all these numbers (see section 
3.3). 

In evaluation and decision problems (which constitute the subject of 
this book), the analyst is often confronted with two types of numbers: 
"data", which can be considered as pre-existing to  the intervention of the 
analyst (the maximum speed of this car) and "parameters", which are 
introduced by the analyst in the decision aiding process (see the example 
in Bouyssou et al., 2000, ch. 6). This distinction will be illustrated 
in the next sections of this chapter (comparison versus representation 
problems). 

3. In evaluation and decision problems, the nature of the numbers used is 
partially in the hands of the analyst: it mainly depends on the purpose 
of the decision aiding process and on the future steps of the process (is it 
really useful to  build a ratio scale if the next step only exploits the ordi- 
nal properties of the numbers?). The role of the analyst is to be sure that 
all the operations are compatible with his choice, from the assessment of 
the numbers to  their interpretation, including the mathematical manip- 
ulations of these numbers. This essential aspect was widely illustrated 
in Bouyssou et al. (2000); the more theoretical aspects were introduced 
in section 3.4. 

4. As mentioned in chapter 1, we are interested in formal models. It is 
important to  point out that a formal model does not necessarily imply 
the presence of numbers. Many other concepts can be used in formal 
models (sets, relations, geometrical figures, logic languages, . . . ). Even 
if the numbers are useful, their presence in a "model" does not guarantee 
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w that it is a formal model. In a sense, the ease of use of the numbers may 

Q be a pitfall since it can lead to instrumental bias. 
0 
Q 5. Another confusion is often made between the term "qualitative" and the 

absence of numerical information. The colour of an object is typically 8 qualitative but can be represented by a number (the wave length). On 
Q the contrary, the expression "a small number of students" does not con- 

tain any number but is certainly not qualitative. It  represents a quantity. 

M 

The next sections of this chapter will illustrate these stepping stones through 
the study of the connection between numbers and preferences. 

3.6 Numbers and preference relations 

A fundamental step in decision aiding is the modelling and representation of the 
decision maker's preferences over the set A of alternatives. Two main situations 
can be distinguished in this framework and will be developed in this chapter. First, 
the alternatives can be evaluated according to one or several dimensions (cost, ac- 
celeration, pick-up, brakes and road-holding of cars, as in Bouyssou et al. (2000, 
ch. 6); see also chapter 7, section 7.3.5 of this book). An interesting question is to 
find out what kind of preference relation can be deduced from these evaluations. 
Of course, many variants can be considered, depending on the nature of the di- 
mensions, the way the evaluations are expressed and the interpretation that the 
decision maker wants to give to these evaluations. Second, the alternatives can be 
compared pairwise according to one or several dimensions, in terms of preferences. 
A problem is then to try to model this information by assigning numbers to the 
alternatives. This problem is extensively studied in the literature under the de- 
nomination "preference modelling" or "measurement". These two main situations 
are illustrated in figure 3.1 and respectively called the comparison problem and 
the numerical representation problem. Note that the comparison and the numer- 

Comparison 

Numerical Representation 

Figure 3.1: Numbers and preference relations. 

ical representation problems do not only concern the preferences of the decision 
maker when an analyst tries to build an evaluation or a decision model. Other 
concepts such as "the likelihood of events" or "the importance of dimensions" lead 
to the same kind of questions. We only consider "preferences" here because this 
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concept is probably the most intuitive and can be apprehended with rather simple 
questions (easily understandable by the decision maker). 

3.6.1 The comparison problem 

In the comparison problem, the alternatives are evaluated according to a set of 
n dimensions (with n eventually equals to 1). Each dimension i (i = 1,2, .  . . , n) 
is represented by a set of "states" Xi, called attribute, which can be expressed 
by symbols, linguistic expressions or numbers. In our context of decision aiding, 
we assume that Xi is completely ordered. If not, no preference relation can be 
established between the alternatives and none of the decision aiding procedures 
presented in the following chapters is applicable. This means that, under certain 
assumptions, Xi can be considered as a numerical scale (see section 3.4) and that 
the elements of Xi are real numbers. However, this basic structure can be com- 
pleted by additional information about how these numbers (the elements of Xi) 
must be compared: presence of thresholds, comparisons of differences, . . .This 
additional information comes from the context of the decision problem and from 
the meaning that the decision maker wants to give to the elements of Xi. Here 
the notion of scale type and of meaningfulness that we discussed in section 3.4 
comes into the picture. In the comparison problem, we have to make the scale 
type of the Xi's precise in order to be able to infer meaningful preference asser- 
tions. As we have seen, the scale type is not necessarily one of the three main 
types presented in section 3.4. Moreover, it is not given naturally but depends on 
the meaning given by the decision maker to that particular scale (see section 3.5, 
point (4)). Remember also that the scale type cannot always be characterised in 
a simple and concise way. Finally, given Xi and additional information on how its 
elements must be compared, the evaluation of an alternative according to i may 
just be an element of Xi, a probability distribution on Xi, a fuzzy subset of Xi, 
. . . , expressing the fact that the evaluation of an alternative according to a dimen- 
sion can be imprecise, uncertain or undetermined. To conclude, the comparison 
problem consists in building preference relations over the set of alternatives, based 
on their evaluations on the Xi's and on the information we have on the nature of 
the scales. This is a common situation in multiple criteria decision aiding. 

Nature of the Xi 
Evaluation of the alternatives w.r.t. the X 

I 

the set of alternatives 

Figure 3.2: The comparison problem. 
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3.6.2 The numerical representation problem 

In the numerical representation problem, alternatives are compared according to 
one or several points of view. The comparisons can generally be expressed by 
a binary relation S defined on the set A, where a S b means " a  is at least as 
good as b". This relation can be completed by additional information (more or 
less strong preference, preference with a certain credibility or probability, . . . ). If 
there are several independent dimensions, the comparison of the alternatives can 
also be expressed by n binary relations Si (one for each dimension), with possible 
additional information for each of them. The numerical representation problem 
consists in associating numbers to the alternatives in such a way that the pairwise 
comparison of these numbers is a good model of the pairwise comparison of the 
alternatives. In other words, the numerical representation problem consists in 
building numerical scales on the set of alternatives and in making the meaning of 
the obtained numbers in connection with the given preferences clear. Measurement 
theory and preference modelling typically apply to this type of situation. 

Numbers associated to the alternatives 2 

Figure 3.3: The numerical representation problem. 

3.6.3 Content of the following sections 

Section 3.7 is devoted to the comparison problem in the particular case in which 
n = 1; the alternatives are evaluated according to a single dimension which is a 
subset X of R (the case in which several dimensions have to be taken into account 
will be dealt with in chapters 4 , 5  and 6). In each subsection, we describe the basic 
nature of X, the additional information on how to compare the elements of X and 
the resulting evaluation of the alternatives. We then propose some preference 
relations which can be deduced from this information and illustrate the case. 

Section 3.8 is devoted to the numerical representation problem in the particular 
case in which the alternatives are compared according to a single dimension, giving 
rise to a relation S (the case of several dimensions in covered in chapter 6. In each 
subsection, we consider a set of properties for the relation S and we propose a 
numerical representation of this relation. We then discuss the meaningfulness as- 
pects connected to the numbers obtained. The reader will find the basic definitions 
about the properties of relations in section 3.10. 
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3.7 The comparison problem 

3.7.1 Pointwise evaluations on an ordinal scale 

In this section, each alternative a E A is evaluated by a single element x(a) of 
an attribute X c R. This attribute is considered by the decision maker as an 
ordinal scale (see section 3.4). This basic structure can eventually be completed 
by additional information about how the elements of X must be compared (the 
variants on this additional information correspond to the diverse subsections). 

3.7.1.1 Pure ordinal scale 

Without any additional information, the relation > on the set X of numbers 
naturally induces a preference and an indifference relations on A defined by: 

where a P b means "a is preferred to b" and a I b means "a is indifferent to b" 
(or, more precisely, the decision maker is indifferent between a and b). 

It  should be noted that P and I are invariant for any strictly increasing trans- 
formation of the scale of X (leading to an info-equivalent scale). Every assertion 
based on these relations can thus be considered as "meaningful". 

Of course, any "poorer" conclusion can also be considered (retaining only the 
best or the worst, identifying the ties, . . .), but any richer conclusion would imply 
that X is not a pure ordinal scale. The example in section 3.3.3 is typically a 
situation where the numbers that are associated to the alternatives are elements 
of a pure ordinal scale: the only information they are supposed to support is 
the ranking of the runners. Other examples were presented in "Thierry's choice 
problem" presented in Bouyssou et al. (2000, section 6.1). When the evaluations 
are purely ordinal, it is probably better, from a practical viewpoint, to introduce a 
non-numerical coding to express them, in order to avoid any attempt to compare 
differences or to make meaningless calculations. The reader will easily verify that 
the obtained preference and indifference relations satisfy the following properties: 

(1) it is impossible to have a P b and b P a simultaneously (one says that P is 
asymmetric), 

(2) if a is preferred to b and b is preferred to c, then a is preferred to c ( P  is 
transitive), 

(3) if a is not preferred to b and b is not preferred to c, then a is not preferred to c 
( P  is negatively transitive); this is due to the fact that, in the case considered 
here, a is not preferred to b iff x(a) 5 x(b), 

(4) one always has a I b and b I a simultaneously ( I  is symmetric), 

(5) for each alternative a,  a I a (I is reflexive), 
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(6) if a is indifferent to b and b is indifferent to c, then a is indifferent to c ( I  is 
transitive). 

Consequently, P is a strict weak order (it satisfies (1) and (3), hence (2)) and I 
is an equivalence relation (it satisfies (4), (5) and (6)). Note also that, given two 
alternatives a and b, only three situations are possible: a P b or b P a or a I b, 
and they are also mutually exclusive. In other words, I can be seen as an absence 
of P so that I is completely determined by the knowledge of P. 

Consider the following evaluations given by an expert for assessing the "aes- 
thetic" of objects as a numerical example: 

a b c d e f  
1 3 1 2 8 5 4 2  

where the higher the evaluation the more beautiful the object. The comparison 
of the objects leads to the comparisons presented in table 3.8. Every strictly 

Table 3.8: Comparison of objects: linear order 

increasing transformation of the numerical scale would lead to exactly the same 
result (this is the case, e.g., if 13 becomes 1000, 12 becomes 397, 8 becomes 200, 
5 becomes 80, 4 becomes 10 and 2 becomes 0). 

Note also that our example is very particular because of the fact that all the 
alternatives have different evaluations. This means that the indifference relation is 
restricted to the identical pairs and that the preference relation is weakly complete 
(given two distinct alternatives a and b, only two situations are possible: a P b or 
b P a). Relation P is then called a strict linear order (asymmetric, transitive and 
weakly complete or, equivalently, asymmetric, negatively transitive and weakly 
complete). 

If the example given above is modified as follows: 

a b c d e f g h  
1 3 1 3 1 1 9 9 9 7 7  

the classes of indifferent alternatives are not restricted to singletons and the re- 
lation P is not weakly complete. Comparing the objects leads to the relations 
presented in table 3.9. The "step type" matrix obtained, the "noses" of which 
are on the diagonal, generalises the previous one. We can also describe the model 
introduced in this section by using the relation S, where a S b means "a is pre- 
ferred or indifferent to b" or "a is a t  least as good as b". It is obtained from the 
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a b c d e f g h  
P P P P P  
P P P P P  
P P P P P  
I I I P P  
I I I P P  
I I I P P  

1 1  
I 1  

Table 3.9: Comparison of objects: weak order. 

numerical evaluations by defining, Va, b E A, 

This relation is reflexive, transitive and complete and is called a weak order (see 
section 3.10 for definitions). It  is of course the union of P  and I and, conversely, 
given S, the relations P  and I are obtained by 

Instead of Not[b S a ] ,  we shall sometimes write b TS a. A weak order is nothing 
but a ranking with possible ties. If there is no tie, it is called a complete or linear 
order. In conclusion, comparing alternatives that are evaluated by elements of a 
pure ordinal scale leads to a strict preference relation that is a strict weak order 
and to an indifference relation which is an equivalence relation or, equivalently, to 
an "at least as good as" relation which is a weak order. 

3.7.1.2 Ordinal scale with a threshold 

Consider the case in which, besides the natural relation > on the set X of numbers, 
the decision maker considers that there is a threshold q such that he does not want 
to make a distinction between two numbers x and y such that lx - yl 5 q (for 
some comments about thresholding, see Bouyssou et al., 2000, page 142). This 
information induces a preference and an indifference relation on A given by: 

and every assertion based on these relations will be meaningful. As a numerical 
example, consider again the numerical evaluations given by an expert for assessing 
the aesthetic of objects: 

a b c d e f  
1 3 1 2 8 5 4 2  
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Suppose now that the decision maker considers, in agreement with the analyst, that 
a difference of 2 is not very significant. The resulting comparisons are presented 
in table 3.10. In this step-type matrix, generalising the previous ones, the "noses" 
are no longer on the diagonal. The reader can easily verify that, as in the previous 

I I P P P P  
I I P P P P  

1 1 1  
1 1  

Table 3.10: Comparison of objects: semiorder. 

section, P is still asymmetric (property (1)) and transitive (property (2)) and I is 
still symmetric (property (4)) and reflexive (property (5)). However, P is no longer 
negatively transitive (property (3)) and I is no longer transitive (property (6), as 
illustrated by the triplet d, e, f ) ,  so that P is no longer a strict weak order and I 
is no longer an equivalence relation. There are always three possible and mutually 
exclusive situations: a P b or b P a or a I b, so that the information about the 
pairwise comparison of the alternatives is entirely determined by P ( I  being an 
absence of P ) ,  the properties of which are the following (besides asymmetry and 
transitivity): 

(7) if a is preferred to b, b indifferent to c and c preferred to d, then a is preferred 
to d (note that this property implies the transitivity of P ,  because of the 
reflexivity of I ) ,  

(8) if a is preferred to b, b preferred to c and c indifferent to d, then a is preferred 
to d (it also implies the transitivity of P, because of the reflexivity of I ) .  

The relation P is called a strict semiorder (see Pirlot and Vincke, 1997). Of course 
a strict weak order (section 3.7.1.1) is a particular strict semiorder, corresponding 
to the case in which the threshold is set as being equal to 0. 

It is important to note that in this case, no special meaning should be attached 
to the numerical value of q .  This implies that the additions and subtractions in 
the formulae written at  the beginning of this section, do not induce any particular 
algebraic structure on X; they are only convenient ways to express the fact that 
each number cannot be distinguished from some other numbers in its neighbour- 
hood. An equivalent manner of describing the situation, which points out the 
ordinal character of the scale and avoids an eventual misunderstanding about the 
interpretations of the numbers, is the following. Besides the relation > on X ,  the 
decision maker considers that, an element x' > x is associated with each x E X 
and that every z such that x' 2 z 2 x is not distinguished from x; moreover, for 
every x, y E X,  x > y implies x' > y'. This information induces a preference and 
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an indifference relation on A given by: 

a P b H x(a) > x'(b), 
a I b o x'(b) > x(a) and xl(a) > x(b), 

which are the same as before (x + q = x'). 
This presentation also shows that q is not necessarily a "constant", as its 

intrinsic value has no meaning. The only important property, which seems to be 
rather unsurprising in the present context, is the fact that x > y implies x' > y' 
(which could be written, with the idea of threshold, x > y implies x + q(x) > 
y + q(y), the threshold becoming a function). In other words, if z > x > y and 
if z cannot be distinguished from y, then it cannot be distinguished from x. The 
case in which this assumption is not satisfied is not treated here (in our opinion, 
it is not realistic) but will be evoked in section 3.7.3). 

So, the following numerical evaluations would lead to the same preference struc- 
ture as before, provided that the thresholds are chosen as indicated: 

a b c d e f  
Values 180 140 80 30 10 0 

Thresholds 55 50 40 35 25 15 

Again, this illustrates the fact that it is more prudent to work with the relations 
P and I than with the numbers, because the temptation to make calculations is 
great (for instance, the difference between a and b is greater than the difference 
between d and f but a is indifferent to b while d is preferred to f). 

Finally, the presence of a threshold seems to introduce an idea of "distance" 
or "difference" between the evaluations. However, this does not mean that all 
comparisons can be made between differences of evaluations. Let us denote by [x, y] 
the preference difference between the evaluations x and y, where y > x. Imbedded 
preference differences can be completely ranked on the basis of the relation > on 
X.  If two preference differences are not imbedded, one of them can be declared 
"bigger" than the other only if the first one corresponds to a strict preference 
situation and the second to an indifference situation. If two preference differences 
are not imbedded and both correspond to strict preference situations, then neither 
can be declared "bigger" than the other. The situation is similar if they both 
correspond to indifference situations. In the numerical example introduced in this 
section, the relation "bigger than" in the set of preference differences is given in 
figure 3.4 (the edges obtained through transitivity are not represented). 

Formally, if t is the relation "bigger than" in the set of preference differences, 
we have: 

y > t > z > x ,  or 
y > t > z > x ,  or 
y > x' and z' > t 

3.7.1.3 Ordinal scale with two thresholds 

It may happen that, besides the relation > on X ,  the decision maker considers 
that two elements x' and x" of X are associated with each x E X in such a way 
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Figure 3.4: Ordinal scale with a threshold: comparison of preference differences. 

that x" > x' > x and 

every z verifying x' 2 z 2 x must not be distinguished from x, 

0 every z verifying x" 1 z > x' is weakly preferred to  x in the sense that there 
is a hesitation between indifference and strong preference, 

every z verifying z > x" is strongly preferred to  x.  

Another presentation of the same situation is to  denote x' = x + q(x) and x" = 
x +p(x) and to  present q(x) and p(x) as thresholds associated to  x. However, the 
remark made in section 3.7.1.2 about the ordinal character of the information also 
applies here, so we prefer to avoid the introduction of arithmetic operations in the 
description of the situation. As in section 3.7.1.2 it seems natural to accept the 
assumption stating that x > y implies x' > y' and x" > y'' (the reader interested 
in other situations is referred to  Vincke, 1988). This information induces three 
relations on A: I (indifference), Q (weak preference) and P (strict preference) 
defined by: 

{ 
a P b * x(a) > xl'(b), 

Va, b E A, a Q b ++ xl'(b) 2 x(a) > xl(b), 
a I b H xl(b) 2 x(a) and xl(a) 2 x(b), 

and these three relations constitute a so-called pseudo-order (see Roy and Vincke, 
1987). As in the previous sections, every assertion based on these relations will be 
meaningful. 
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I I P P P P  
I I P P P P  

1 1 1  
1 1  

Table 3.11: Comparison of objects: pseudo-order. 

Let us consider again the data given in section 3.7.1.1 as a numerical example. 
Suppose that the decision maker considers a difference smaller or equal to 2 as not 
being significant and that a difference strictly greater than 3 is necessary to justify 
a strict preference. These rules lead to the double step type matrix presented in 
table 3.11. This matrix characterises a pseudo-order and generalises the previous 
ones. In this case, the relation "bigger than" in the set of preference differences is 
given in figure 3.5 (the edges obtained by transitivity are not represented) and is 
obtained by the same reasoning as in section 3.7.1.2). 

Figure 3.5: Ordinal scale with two thresholds: comparison of preference differences. 

3.7.1.4 Ordinal scale with k thresholds 

The situation described in section 3.7.1.3 can be generalised by associating a 
set of elements {X('), x ( ~ ) ,  . . . , x ( ~ ) )  with each element x of X such that x(') > 
x("l) > . . . > and delimiting zones of more and more strong preferences over 



90 CHAPTER 3. NUMBERS AND PREFERENCES 

X. Assuming that x > y implies x(j) > y(j),Vj, this information induces a set 
{I,  PI ,  P 2 ,  . . . , P k )  of relations on A defined by: 

i a P k  b * x(a) > x("(b), 
'da, b E A a Pj b * x(j+')(b) 2 x(a) > x(j)(b),Vj < k, 

a I b @ x(l)(b) 2 x(a) and d l ) ( a )  2 x(b). 

These relations are a so-called "homogeneous family of semiorders", (see Doignon, 
Monjardet, Roubens, and Vincke, 1986; Roubens and Vincke, 1985). Taking the 
example of section 3.7.1.2 again and introducing "thresholds" equal to 2, 3, 5 and 
10, we obtain the following set of relations presented in table 3.12, where PI to 
P4 can be interpreted as preferences that are more and more strong. The relation 

I I P2 P3 P3 Pq 
I I P2 P3 P3 P3 

I Pl p 2  p3 q 1 1 1  

I I  

Table 3.12: Comparison of objects: homogeneous family of semiorders. 

"bigger than" in the set of preference differences is then given by figure 3.6. Re- 
member that the edges obtained through transitivity are not represented; the other 
missing edges correspond to pairs of preference differences for the relation "bigger 
than" that cannot be compared. As in the previous sections, every assertion based 
on the relations {I, P I , .  . . , Pk) will be meaningful. 

3.7.1.5 Ordinal scale with a degree of preference 

Consider the case in which, besides the relation > on X ,  the decision maker is 
able to associate a "degree" d(x, y) of preference of x over y (increasing with x and 
decreasing with y) with every pair (x, y) of elements of X such that x > y. As X is 
supposed to be an ordinal scale, this degree must also be an element of an ordinal 
scale: any richer structure on the degree would imply a richer structure on X.  In 
other words, we are in a situation where the decision maker is able to rank the pairs 
(x, y) of elements of X in function of the strength of preference of x over y (with 
eventual ties). This situation is similar to the previous one (with k thresholds), 
the number of thresholds being equal to the number of different values of the 
degree of preference, so that it also induces a homogeneous family of semiorders 
on A, with the same remark about meaningfulness. Another presentation of the 
same situation consists in defining a valued preference relation S on A as follows: 
'da, b E A, 

S(a, b) = d(x(a), ~ ( b ) )  if ~ ( a )  > ~ ( b ) ,  
otherwise, 
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Figure 3.6: Ordinal scale with several thresholds (2,3,5,10): comparison of pref- 
erence differences. 

which will be a so-called semiordered valued relation (see Pirlot and Vincke, 1997; 
Roubens and Vincke, 1985). This approach is used in methods such as ELECTRE 
I11 or PROMETHEE (see section 4.5 of chapter 4). Note also that, in this situation, 
the relation "bigger than" in the set of preference differences will be defined by: 

It will be a strict weak order as each preference difference is associated to an 
element of an ordinal scale (same situation as in section 3.7.1.1 where the elements 
of A are now the preference differences). Considering again the example given in 
section 3.7.1.2, assume that the degrees of preference between evaluations are those 
given in table 3.13. We then obtain the set of relations presented in table 3.14 and 
the comparison of preference differences presented in figure 3.7. 

Table 3.13: Degrees of preference between evaluations. 
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Table 3.14: Comparison of objects: preference structure with degrees of preference. 

3.7.2 Pointwise evaluations on an interval scale 

In this section, each alternative a of A is evaluated by a single element x(a) of an 
attribute X & EX which is considered as an interval scale (see section 3.4). The 
fact that the attribute is an interval scale can be established on the basis of the 
information we have on how the decision maker compares the elements of X. It can 
also happen that the attribute is "naturally" an interval scale (as a temperature for 
instance). In this last case, the basic structure of X can eventually be completed 
with additional information about how the elements of X must be compared. The 
variants on this additional information correspond to the various subsections that 
follow. 

3.7.2.1 P u r e  interval scale 

Without any additional information, the structure of X induces the following 
relations on A and on the set of ordered pairs of elements of A: 

a P b ~ x ( a )  > x(b), 
a Z b H x(a) = x(b), 

Va, b, c, d E A 
(a, b) P* (c, d) H x(a) - x(b) > x(c) - x(d), 
(a, b) I* (c, d) H x(a) - x(b) = x(c) - x(d). 

I t  is tempting to interpret "(a, b) P* (c, d) " as "the preference of a over b is 
stronger than that of c over d" and "(a, b) I* (c, d) " means "the preference of a 
over b is as strong as that of c over d". As shown in section 4.3.9 of chapter 4, this 
interpretation is not always justified however. 

With such a definition, the relations P and P* are strict weak orders, whatever 
the interpretation of P* (see section 3.7.1.1). Furthermore, these two relations 
satisfy many additional conditions that have been studied in the theory of the 
measurement of differences (see,e.g., Krantz et al., 1971, ch. 4).It is clear that 
these two strict weak orders are invariant for any positive affine transformation 
of X (leading to an info-equivalent scale), so that assertions solely based on them 
are meaningful. 

Consider the following table, giving the temperature (in Celsius degrees) in 
eight different cities, as a numerical example: 

a b c d e f g h  
12 5 14 11 7 11 18 15 
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Figure 3.7: Ordinal scale with a degree of preference: comparison of preference 
differences. 

Assuming that the preferences are completely determined by the temperatures, 
these data lead to the preference structure presented in table 3.15. It will be 
the same for any scale of temperatures (we assume that the preference increases 
with the temperature). Moreover, differences in temperatures induce a complete 
ordering of the ordered pairs of cities as given in figure 3.8. In this figure, arrows 
denote the presence of the relation P*. The resulting comparisons are the same 
for any scale of temperatures. More generally, any assertion which resists to a 
positive affine transformation (i.e. a transformation of the type ax  + /3 where a is 
positive) will be meaningful, as for example: 

I prefer the temperature of c to the mean temperature of the other cities, 

the difference of preference between g and a is twice larger than the difference 
of preference between c and d. 

Note that these kinds of assertions were not allowed in section 3.7.1, even in the 
case where a degree of preference was given (see section 3.7.1.5). 
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r g h c a d f e b  

a 
d I I P P  
. f I I P P  

Table 3.15: Comparison of objects: linear order. 

3.7.2.2 Interval scale with a threshold 

While X is still considered as an interval scale, suppose that the decision maker 
considers that there is a threshold q such that he does not want to make a distinc- 
tion between two numbers x and y when lx - yl 5 q. Note that here, contrary to 
what happened in section 3.7.1.2, the numerical value of q can be seen as a gap 
which can be compared to the distances between elements of X. This information 
allows first to define, as in section 3.7.1.2, a semiorder on A given by: 

Moreover (and contrary to section 3.7.1.2), the interval scale structure of X allows 
to compare all the differences of evaluations through the strict weak order +* 
("bigger than") and the equivalence relation --* ("equal to") defined by: 

However, due to the presence of q, this strict weak order cannot be used as such 
to compare differences of evaluation: because of the existence of a threshold q, 
"small" differences should be considered as non-significant. 

That is why we suggest to define the relations P* and I* as follows: 

(a, b) P* (c,d) H %(a) - x(b) > max[q,x(c) - x(d)], 

(a, b) I* (c, d) -S [Not[ (a, b) P* (c, d) ] and Not[ (c, d) P* (a, b) ] 1. 

With this definition, the reader can verify that P* is a weak order satisfying the 
following desirable property: 

a P b H (a, b) P* (a, a)  

(as was the case in section 3.7.2.1, where P was also a strict weak order while it 
is a strict semiorder here). Let us illustrate this case with the numerical example 
of section 3.7.2.1 where we introduce an indifference threshold equal to 2. We 
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Figure 3.8: Representation of the relation P*. 
(for positive differences of temperatures only) 

obtain the preference structure presented in table 3.16. The comparison of pairs 
of alternatives will give the same figure as in figure 3.8, except that the last two 
classes are now merged into the single class {(c, a) ,  (el b), (h, c), (a, d), (a, f )). 

Insofar as meaningfulness is concerned, it is clear that the previous relations are 
invariant for any positive affine transformation of X ,  provided that q be submitted 
to the same transformation (in order to obtain an info-equivalent scale). 

To generalise the results of measurement theory to this situation remains an 
open problem. It  would be interesting, in particular, to establish the properties of 
P, I, P* and I* characterising the previous model. Such structures have received 
little attention in the literature up to now. 

3.7.3 Pointwise evaluations on a ratio scale 

In this section, each alternative a of A is evaluated by a single element x(a) of 
an attribute X C IR which is a ratio scale. The fact that the attribute is a 
ratio scale can be established on the basis of the information we have on how 
the decision maker compares the elements of X.  It  can also happen that the 
attribute is "naturally" a ratio scale (e.g., a length or a weight or a price). In the 
latter case, the basic structure of X can eventually be completed with additional 
information about how the elements of X must be compared. Various variants on 
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I P P P P P P P  
I I P P P P P  
I I I P P P P  

I I I I P P  
I I I P P  
I I I P P  P 1 1  I 1  

Table 3.16: Comparison of objects: semiorder. 

this additional information are studied in the following subsections. 

3.7.3.1 P u r e  rat io  scale 

In the absence of any additional information, the structure of X induces the fol- 
lowing relations on A and on the set of ordered pairs of elements of A: 

Ma, b, c, d E A 

' a P b H x(a) > x(b), 
a I b H x(a) = x(b), 
(a, b) P* (c, d) H x(a) - x(b) > x(c) - x(d), 
(a, b) I* (c, d) @ x(a) - x(b) = x(c) - x(d), 
(a, b) P** (c, d) H x(a)lx(b) > x(c)lx(d), 

, (a, b) I** (c, d) * x(a)lx(b) = x(c)lx(d), 

where the interpretation of P* and I* is similar to the one presented in section 
3.7.2.1. A possible interpretation for "(a, b) P** (c,d)" is that "the preference 
ratio between a and b is higher than between c and d", the relation I** being 
interpreted similarly. The relations between P* and P** have been analysed in 
Krantz et al. (1971, section 4.4.3, page 152). 

As an illustration, consider a set A of eight possible decisions that have been 
evaluated according to the gains (expressed in thousands of euros) they are sup- 
posed to bring: 

a b c d e f g h  
18 15 12 12 11 9 8 5 

The preference structure will be given by the step type matrix (P is a strict weak 
order) given in table 3.17. For positive differences, the relation P* is the following 
strict weak order: 
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a b c d e f g h  
P P P P P P  
P P P P P P  

I 

Table 3.17: Comparison of objects: weak order. 

For ratios greater than 1, the relation P** is the following strict weak order: 

The strict weak orders obtained are invariant for any positive homothetic trans- 
formation of X, so that the assertions based on them are meaningful. When P** 
is interpreted in terms of "ratio of preference", the assertion "a is k times better 
than b" is here meaningful, contrary to the previous cases. 

3.7.4 Interval evaluations on an ordinal scale 

Sections 3.7.1, 3.7.2 and 3.7.3 were devoted to comparison problems in a set of 
alternatives that are evaluated by elements of numerical scales. In other words, the 
evaluation of each alternative is considered as precise and certain. I t  often happens 
in practice that the context of the problem does not allow the obtention of such 
evaluations. Imprecisions, uncertainties, vagueness have to be taken into account 
and many tools were developed in the literature to cope with these phenomena. 
In Bouyssou et al. (2000, ch. 8), we analysed the very traditional tool offered 
by probability theory. We will consider here the simplest way to introduce lack 
of precision in the evaluation and decision models: it consists in assuming that 
the evaluations of the alternatives are defined by intervals (on numerical scales). 
Moreover, we assume that there is no dependence between these intervals, in the 
sense that each alternative can have any value in its interval independently of the 
values of the other alternatives. 

In this section, each alternative is evaluated by an interval I (a)  = [g(a),Z(a)] 
of an attribute X R. This attribute is considered by the decision maker as an 
ordinal scale. This basic structure can eventually be completed with additional 
information about how the elements of X must be compared (the variants of this 
additional information correspond to the following subsections). 



98 CHAPTER 3. NUMBERS AND PREFERENCES 

3.7.4.1 Pure ordinal scale 

In the absence of additional information, the relation > on X can induce different 
preference structures on A: we present and illustrate three of them here. A first 
possibility is to  define a preference and an indifference relation in the following 
way: 

b , b , ~ , {  a a P I b~ b w I (a )  :(a) n > I(b) ~ ( b ) ,  # 0, 

expressing the fact that strict preference of a over b only occurs when the "worst" 
evaluation of a is higher than the "best" evaluation of b. In this case, P is a 
strict interval order (i.e, an asymmetric relation satisfying property (7) presented 
in section 3.7.1.2; (see also Fishburn, 1985)). 

Note the difference between the situation studied in section 3.7.1.2 (pointwise 
evaluations on an ordinal scale with a threshold) and the present situation (interval 
evaluations on an ordinal scale). Here, it can happen that an interval is included 
in another, while in section 3.7.1.2, we made the (reasonable) assumption that 
a threshold could not be included in another threshold (represented by the fact 
that x > y implies x' > y'). In the particular case in which the interval evalua- 
tions present the property that no interval is included in another, the preference 
structure is a strict semiorder, exactly as in section 3.7.1.2 (see Pirlot and Vincke, 
1997). 

A second possibility is to  consider that there is a strict preference for a over 
b as soon as the interval evaluation of a is "more on the right" than the interval 
evaluation of b, as follows: 

b ' a , b , ~ {  
a P b w Z(a) > ~ ( b )  and :(a) > :(b), 
a I b ~  I (a )  I(b) or I(b) C I (a) .  

The obtained relation P is a strict partial order, i.e, an asymmetric and transitive 
relation. It can be seen as the intersection of the two strict linear orders (see 
section 3.7.1.1) L1 and L2 defined by 

That is why one says that it is a strict partial order of dimension two, representable 
in a plane (see the example below). 

A third possibility is to  introduce a distinction between a strict preference P 
and a weak preference Q and to  consider that: 

a P b w :(a) > Z(b), 

a Q b w Z(a) > Z(b) > :(a) > :(b), 

a I b~ I (a )  C I(b) or I(b) C (a). 

This model leads to  the so-called ( P ,  Q, I)-interval order or (P, Q, I)-semiorder 
that were studied in Tsoukihs and Vincke (2003). All the relations obtained are 
invariant for any strictly increasing transformation of X ,  so that every assertion 
based on these relations is meaningful. 
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d 

Table 3.18: Preference structure: interval order, partial order of dimension 2 and 
( P ,  Q, I) structure. 

C P P  I P 
I I P-' I 

e P P  I P 
f P P  I I 

1 1  
P-' I d 

1 1  
1 1  f 

As a numerical example, consider the following interval evaluations given by an 
expert for assessing the comfort of different transportation systems, on the scale 
X = {1,2,3,4,5,6,7) where the elements of X respectively correspond to  very 
bad, bad, medium, acceptable, good, very good and excellent, 

C P P I  P I I 
P I P-' I P-' P-' 

e P P I  P I P 
P P  I P P-' I 

as illustrated in figure 3.9. Table 3.18, presents the three preference structures 

a b c  d e f 
I I P-' Q-' P-' P-' 
I I P-' I P-l P-' 
P P I P I  I 
Q I P-' I P-' Q-' 
P P I P I Q  
P P  I Q Q-' I 

Figure 3.9: Interval evaluations on an ordinal scale. 

corresponding to the three previous models (the notation P-l, in the case (a, c) for 
instance, means that c P a). Every strictly increasing transformation of X would 
yield the same preference structures (e.g., considering an increasing transformation 
4 such that 4(1) = 0, 4(2) = 5, 4(3) = 10, 4(4) = 12, 4(5) = 14, 4(6) = 16 and 
4(7) = 18). 

However, no meaning can be given to  the differences between these numbers. 
The only meaningful information contained in the data, in terms of preferences, 
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are the preference structures described above. There is no objective argument 
allowing to choose between the three solutions, but the third one is of course more 
discriminating than the other two. As mentioned before, the second preference 
structure is a strict partial order of dimension 2 and can be represented in a plane 
where an alternative is strictly better than another if both its coordinates are 
strictly larger as depicted in figure 3.10. 

Figure 3.10: Geometrical representation of the strict partial order of dimension 2. 

3.7.4.2 Ordinal scale with a threshold 

Consider the case where, besides the strict linear order > on X ,  the decision 
maker considers that there is a threshold q such that he does not want to make a 
distinction between two numbers x and y such that Ix - yl 5 q. Remember that 
the scale is ordinal and that the numerical value of q has no particular meaning: 
we could thus adopt a different presentation from the one made in section 3.7.1.2. 
As the evaluations of the alternatives are intervals, we cannot simply transpose 
the structure of X (as we did in section 3.7.1.2) to A. In fact, many possibilities 
exist for defining a preference structure on A on the basis of the given information. 
A first possibility is to consider that the comparison between two alternatives a 
and b could be made through the comparison of the intervals [ ~ ( a )  - q , ~ ( a )  + q] 
and [ ~ ( b )  - q,Z(b) + q] and apply one of the models described in section 3.7.4.1, 
but this would mean that no distinction is made between the "imprecision" of the 
evaluation of the alternative (leading to interval evaluations) and the perception 
of the elements of the attribute by the decision maker (leading to the introduction 
of an indifference threshold), although the two phenomena are of very different 
natures. Another possibility, presented in the literature, consists in applying the 
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extension principle used in fuzzy logic for defining a fuzzy preference relation on 
A, as explained below (see Perny and Roubens, 1998, and the example below). 
One associates t o  each element a of A the fuzzy number II, defined on X by: 

1 if x E [ ~ ( a )  , ~ ( a ) ]  
Vx E X ,  II,(x) = a if x E @(a),Z(a) + q] or x E [ ~ ( a )  - q,:(a)l 

0 elsewhere, 

where a E [O,l). Moreover, we define, on X x X ,  the function 6 by: 

1 i f x r y - q  
0 otherwise. 

In other words, 6(x, y) = 1 iff x is not worse than y. 
Two indices are then introduced to compare every pair {a, b) of elements of A: 

R-(a, b) = inf max{Q(x, y), 1 - II,(x), 1 - IIb(y)). 
X,Y 

As illustrated in the example below, R+(a, b) is maximum (= 1) when there exist 
two elements x and y of X such that  x is not worse than y (x 1 y - q ) ,  x belongs 
to  I (a)  and y belongs to I(b); it is equal to  a if it is not maximum but there exist 
two elements x and y of X such that x is not worse than y, x is "close" to  I ( a )  
and/or y is "close" to  I(b); it is minimum (= 0) if, for every x such that II,(x) # 0 
and every y such that  IIb(y) # 0, x is worse than y. 

The number R-(a, b) is maximum (= 1) if, for every pair of elements x,  y of X 
such that x is worse than y, either II,(x) = 0 or IIb(y) = 0; it is minimum (= 0) if 
there exist x and y such that x E I(a),  y E I(b) and x is worse than y; it is equal 
to  (1 - a )  if it is not minimum but there exist x and y such that x is worse than 
y, x is close to  I ( a )  and y is close to  I(b). 

So, we see that R+(a ,  b) can be considered as an optimistic indicator of the 
preference of a over b while R-(a, b) is a pessimistic indicator of the preference 
of a over b. Combining them (for example using a convex combination) leads to  
the definition of a fuzzy preference relation on A. The reader will find interesting 
results about this construction in Perny (1992). 

It is easy to  see that no strictly increasing transformation of X can change the 
values of R+ or R-, so that the assertions based on these indicators are meaningful 
(of course, the threshold must also be transformed in order to  maintain the same 
structure on X).  

To illustrate the previous construction, consider the following example: stu- 
dents are evaluated on the ordinal scale {10,9,8,7,6,5,4,3,2,1,0), where a dif- 
ference of one is considered as not significant. Four students a ,  b,c, d have been 
evaluated on this scale, respectively yielding the following intervals: [6,8], [5,6], 
[5,7] and [3,5]. Table 3.19 gives the values obtained for R+ and R- : we see that, 
for R+ all the students are pairwise indifferent except a and d while for R-, they 
are ranked in the order a ,  c, b, d a t  the level 1 - a. To conclude this section, let us 
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Table 3.19: Comparison of objects: relations R- and R+. 

consider the previous model in the particular case where a = 0, so that, Va E A, 

lla (x). = 
1 if x E [ ~ ( a )  , Z(a)] , 
0 elsewhere. 

In this case, it is easy to see that the preferences between the alternatives are 
defined on the basis of the relative positions of the intervals [: - 3, Z + q] for the 
optimistic indicator and of the intervals [: + q , Z - q] for the pessimistic indicator. 
More precisely, we obtain R+ E (0, I ) ,  R- E {O,1) and 

leading to interval orders. In the case where a # 0, the indicators R+ and R- have 
three possible values so that a connection could perhaps be established with some 
well-known ( P ,  Q, I)-structures (see Tsoukihs and Vincke, 2003; Vincke, 1988): to 
our knowledge, this connection has not been studied to  date. 

3.7.5 Interval evaluations on an interval scale 

In this section, each alternative is evaluated by an interval I ( a )  = [:(a),~(a)] of 
an attribute X C R, which is an interval scale. As in section 3.7.2, in the case 
where the attribute is "naturally" an interval scale, some additional information 
can be given about how the elements of X must be compared. 

3.7.5.1 Pure interval scale 

Many preference structures can be proposed, based on the models presented in 
sections 3.7.2.1 and 3.7.4.1. For example, we could define P and P* as follows: 

a I b @  I ( a ) n I ( b )  # 0,  
Va, b, c, d E A 

(a, b) P* (c, d) @ :(a) - ~ ( b )  > :(c) - ~ ( d ) ,  

( (a, b) I* (c, d) ++ :(a) - ~ ( b )  = :(c) - Z(d), 

leading to an interval order P and a strict weak order P* (the additional properties 
of these two relations have never been studied in the literature, to our knowledge). 
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The important point is to define preference relations which are invariant for pos- 
itive affine transformations of X, in order to ensure the meaningfulness of the 
assertions based on these relations. 

3.7.5.2 Interval scale with a threshold 

As in section 3.7.4.2, fuzzy logic can again be used here, with the remark that the 
operators which are used for defining R+ and R- can be different from min and 
max. 

3.7.6 Summary of the comparison problem 

The situations that were analysed in section 3.7 are only a small part of the 
large number of possibilities that can be of interest. In each case, the purpose 
was to show that, given numerical evaluations of alternatives, different meaningful 
preference structures can be built depending on the types of evaluations (pointwise 
versus interval evaluations), depending on the nature of the scale on which the 
evaluations are defined (ordinal, interval or ratio scales) and depending on the 
complementary information given on the way the elements of the scale can be 
compared (thresholds). 

Table 3.20 summarises the results presented. Much work still needs to be done 
to analyse other situations and propose rigourous ways of treating comparison 
problems to the analyst. 

Situation section, page preference structure 
Pointwise evaluations 

pure ordinal scale 

ordinal scale with a threshold 
ordinal scale with 2 thresholds 
ordinal scale with k thresholds 
ordinal scale with a 
degree o f  preference 
pure interval scale 

interval scale with a threshold 

pure ratio scale 
Interval evaluations 

strict weak order (strict linear order, 
weak order) 
strict semiorder 
pseudo-order 
homogeneous family o f  semiorders 
homogeneous family o f  semiorders 
+ weak order on preference differences 
strict weak orders on A and 
A x A + properties 
strict semiorder on A + 
strict weak order on A x A 
+ properties (open problem) 
three strict weak orders + properties 

pure ordinal scale 3.7.4.1, p. 98 strict interval order 
or strict partial order 
or ( P ,  Q ,  I)-structure 

ordinal scale with a threshold 3.7.4.2, p. 100 fuzzy preference relation 
pure interval scale 3.7.5.1, p. 102 strict interval order on A 

+ strict weak order on A x A 
+ properties (open problem) 

interval scale with a threshold 3.7.5.2, p. 103 fuzzy preference relation 

Table 3.20: Summary of the comparison problem. 
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3.8 The numerical representation problem 

In the following subsections, we consider situations where the alternatives are 
compared pairwise according to  a single dimension. Our purpose is to  study the 
numerical representation of the obtained relation and to analyse the admissible 
transformations of these models. Note that, as a particular case, we find out how 
to determine the type of an attribute X on the basis of pairwise comparisons of 
its elements. 

3.8.1 Weakorder 

If the pairwise comparisons of the alternatives lead to a strict preference relation P 
which is a strict weak order (see section 3.7.1.1) and consequently to an indifference 
relation I which is an equivalence relation or, equivalently, to a weak order S=P 
U I (complete and transitive relation), assuming that  A is finite or countable it 
has been proved (see Krantz et  al., 1971) that it is always possible to  build a real 
valued function g on A such that: 

or equivalently: 

When A is not countable (as in econometric models, for instance, where A is a 
continuous subset of a real space), an order-density condition must be added (see 
Krantz et  al., 1971, ch. 2). 

Of course, g is not unique: every strictly increasing monotonic transformation 
of g provides another admissible numerical representation and every admissible 
numerical representation is a strictly increasing monotonic transformation of g. 
According to the definitions in section 3.7.1, the numerical scale obtained is an 
ordinal scale, and the meaningful assertions based on this scale are those whose 
truth value is unchanged by any strictly increasing monotonic transformation of 
the scale. 

For example, suppose that the pairwise comparisons of the elements of A = 
{a, b, c, d, e, f) have led to the following preference structure: 

a b c d e f  
I P P - P - P  P 
P- I P- P- P I 
P P I  I P P  
P P I  I P P  
P- P- P- P- I P- 
P- I P- P- P I 

An easy way to verify that it is a weak order is to  reorder the alternatives in the 
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decreasing order of the number of P s  in the associated lines, as shown below: 

If all the P s  are grouped above the diagonal of the matrix and separated from the 
I s  by a step-type line the "noses" of which are on the diagonal and if all the P-s  
are exactly in the symmetric part under the diagonal (so that the I s  are grouped 
in several disjoint squares along the diagonal), then the relation P is a strict weak 
order (consequence of the definition) and the number of P s  in the row associated 
to each alternative can be taken as the numerical value of this alternative, giving 
in this case: g(d) = g(c) = 4, g(a) = 3, g(b) = g(f) = 1 and g(e)  = 0. 

Of course, every strictly increasing monotonic transformation of g provides 
another admissible numerical representation of the weak order, as for example: 
gt(d) = gt(c) = 1000, gl(a) = 800, gl(b) = gt(f)  = 100, gl(e) = 10. 

Another way of verifying that the given preference structure has the requested 
properties is to check that the relation S=P U I is a weak order (complete and 
transitive relation). Replace first all the P s  and I s  by 1 and all the P-s  by 0 , in 
the initial matrix, as follows: 

a b c d e f  
1 1 0 0 1 1  
0 1 0 0 1 1  
1 1 1 1 1 1  
1 1 1 1 1 1  
0 0 0 0 1 0  
0 1 0 0 1 1  

To verify completeness, sum this matrix with its transpose (i.e. the matrix ob- 
tained by permuting the rows and the columns): the relation S is complete iff the 
resulting matrix does not contain any 0 (immediate consequence of the definition). 

To verify transitivity, compute the product of the above matrix with itself: 
relation S is transitive iff for each 1 in the obtained matrix, there is a 1 in the 
initial matrix (immediate consequence of the definition). Note that the previous 
operations can easily be implemented on a computer, in case A is large. Having 
checked that the preference structure is a weak order, a numerical representation 
is obtained by associating, to each alternative, the number of Is in its row. Here, 
this yields g(c) = g(d) = 6,g(a) = 4,g(b) = g(f) = 3 and g(e) = 1. If all the 
values are different from each other, this means that P is a strict linear order. 

As an exercise, the reader can verify that the following preference structure is 
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not a weak order: 

Indeed, the matrix of the relation S = P U I is the following: 

- a  
a 

d 
e 
f 

Computing the product of this matrix with itself, we obtain a matrix in which 
the cells (a, c), (c, b) and (d, f )  are nonzero, proving that S is not transitive. If we 
associate, to  each alternative, the number of Is  of its row, we obtain: g(b) = g(f)  = 
6, g(c) = 5, g(d) = 4, g(a) = 3 and g(e) = 1, but this numerical representation 
is not acceptable because, for example, g(f)  > g(c) while f I c. In fact, as b I f 
and f I c, we should have a numerical representation where g(b) = g(f)  and 
g(f)  = g(c), implying g(b) = g(c) which is incompatible with the fact that b P c. 

b c d e f  
I P- P- I P P- 

b P  I P P P I  
c P P - I  I P I  

I P -  I I P P -  
P- P- P- P- I P- 
P I I P P I  

So, it is not possible to  obtain a numerical representation of the given preference 
structure by associating an element of a pure ordinal scale to each alternative. 
We will see in the next section that a numerical representation is possible if we 
introduce a threshold on the scale. 

3.8.2 Semiorder 

If the pairwise comparisons of the alternatives lead to a strict preference relation 
P which is a strict semiorder (see section 3.7.1.2) then, assuming that  A is finite, 
it has been proven (see Scott and Suppes, 1958) that it is always possible to choose 
a positive threshold q and to  build a real valued function g on A such that: 

As an example, suppose that the pairwise comparisons of the elements of A = 
{a, b, c, d, e, f )  have led to the following preference structure (it is the same as in 
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the last example of the previous section): 

a b c d e f  
I P- P- I P P- 
P I P P P I  
P P - I  I P I  
I P- I I P P -  

P- P- P- P- I P- 
P I  I P P I  

As before, let us reorder the alternatives in the decreasing order of the number of 
P s  in the associated rows. We see again that P is not a strict weak order because 
the "noses" are not on the diagonal (see previous section): 

b f d a e  

P- 
P- P- I 
P- P- P- 
P- P- P- P- P- I 

However, as all the P s  are grouped above the diagonal of the matrix and separated 
from the I s  by a step-type line and as all the P-s are exactly in the symmetric 
part under the diagonal, then the relation P is a strict semiorder (see Pirlot and 
Vincke, 1997). Choosing a threshold q and an arbitrary value for the "worst" 
alternative (e in our example), we can attribute increasing values from e to b in 
such a way that the difference of values between two alternatives is larger than q 
when one alternative is preferred to the other and less than q when the alternatives 
are indifferent. In our example, taking q = 3, we can define successively: g(e) = 0, 
g(a) = 4, g(d) = 6, g(c) = 8, g(f) = 10 and g(b) = 12. 

If the set of alternatives is too large, checking that the preference structure is a 
semiorder can be done using operations on matrices, as in the previous section. As 
mentioned in section 3.7.1.2, P is a strict semiorder if it is asymmetric and if the 
following two properties are satisfied (see properties (7) and (8) in section 3.7.1.2): 

0 if a is preferred to b, b indifferent to c and c preferred to d, then a must be 
preferred to d; 

0 if a is preferred to b, b preferred to c and c indifferent to d, then a must be 
preferred to d. 

In order to check these properties using operations on matrices, let us build the 
matrix MP,  obtained from the initial matrix by replacing all the P s  by 1 and all 
the I s  and P-s  by 0, and the matrix MI ,  obtained from the initial matrix by 
replacing all the I by 1 and all the P and P- by 0. The asymmetry of P will 
be verified if the sum of the matrix MP with its transpose does not contain any 
element strictly greater than 1 (immediate consequence of the definition). The 
other two conditions will be satisfied if, for each 0 in matrix MP,  there is a 0 



108 CHAPTER 3. NUMBERS AND PREFERENCES 

in the matrix defined by the product M P  M I  M~ and in the matrix defined by 
product M~ M~ MI (consequence of the definition). 

In our example, here are the matrices MP,  M I ,  M I  M I  M P  and M P  M~ M' 
(where the elements larger than 1 have been replaced by 1): 

a b c d e f  - M' 
0 0 0 0 1 0  a 
1 0 1 1 1 0  b 
1 0 0 0 1 0  C 

0 0 0 0 1 0  d 
0 0 0 0 0 0  e 
1 0 0 1 1 0  f 

a b c d e f  
1 0 0 1 0 0  

a b c d e f  
0 0 0 0 0 0  
1 0 0 1 1 0  
0 0 0 0 1 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 1 0  

z strict semiorder, the 

M P M ' M P  
a 
b 
C 

d 
e 
f 

i 

numerical representation is obtained by ordering the alternatives in the decreasing 
order of the number of P s  in their rows, by choosing a constant threshold q and 
in giving numerical values to the alternatives, from the "worst" to  the "best", in 
"the good way" (as we did above). 

Of course the constant q and the obtained numerical representation are not 
unique: every strictly increasing transformation of the set of values {g(a), g(a) + 
q, a E A) provides another acceptable numerical representation. However, not all 
the acceptable numerical representations are obtained in this way. As an example, 
consider A = {a, b,c), with a I b, b I c and a P c. Here are two numerical 
representations of this semiorder, without any strictly increasing transformation 
between the two sets of values {g (a), g (a) + q, a E A) and {gl(a), gl(a) + q', a E A): 

a b c d e f M P  M P  M1 
0 0 0 0 0 0  a 
1 0 0 1 1 0  b 
0 0 0 0 1 0  C 

0 0 0 0 0 0  d 
0 0 0 0 0 0  e 
1 0 0 0 1 0  f 

a b c  
g 4 2 1 q = 2  
g 1 3  2 1 91-2 

Once it has been checked that the preference structure is 

When there is no pair of equivalent alternatives for the semiorder (two alternatives 
are equivalent if they are indifferent between themselves and if they are compared 
to  the other alternatives in exactly the same way), then every admissible transfor- 
mation of g must be strictly increasing. However, any strictly increasing transfor- 
mation of g is not admissible because of the presence of the threshold. For example, 
consider A = {a, b, c, d), with a I b, a P c, a P d, b P c, b P d, c I d. Taking q = 2, 
a numerical representation of this semiorder is given by g(a) = 5, g(b) = 4, g(c) = 1 
and g(d) = 0. Now, taking gl(a) = 5, gl(b) = 4, gl(c) = 3 and gl(d) = 0 (which 
can be seen as the result of a strictly increasing transformation of g),  there is no 
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threshold q' allowing to represent the given semiorder since we must necessarily 
have q' 2 gl(c) - gl(d) = 3 and q' < g'(b) - gl(c) = 1. 

As a last example, consider A = {a, b, c) with a P b, a P c and b I c. As a weak 
order, it has a numerical representation which is unique up to a strictly increasing 
transformation. However, as a semiorder (with two equivalent elements b and c) 
it has several numerical representations with no strictly increasing transformation 
between them, as illustrated below: 

a b c  
g 5 2 1 q = 2  
g' 5 1 2 q = 2  

Let us also mention the fact that a sort of "canonical" representation of a semiorder 
is given by the concept of minimal representation (see Pirlot and Vincke, 1997, for 
precise definitions and properties. This representation has the advantage of being 
unique). 

Finally, an assertion based on a numerical representation of a semiorder is 
meaningful if its truth value is unchanged when another numerical representation 
of this semiorder (i.e. an info-equivalent scale) is used (unfortunately, as we have 
seen above, there is no simple analytic expression of the admissible transformations 
for the numerical representations of a given semiorder). 

Note that we can also decide to  numerically represent the semiorder with in- 
tervals on an ordinal scale, with the property that no interval is included in any 
other. In this case, we can give arbitrary values to the alternatives, in the increas- 
ing order of the number of P s  in their rows: these values will be the left end points 
of the intervals. The right end points are then fixed in the same increasing order 
in such a way that, for each alternative a ,  the right-end point of its interval is: 

0 smaller than the left-end point of any alternative b such that b P a ,  

larger than the left-end point of any alternative c such that  c I a. 

For the example introduced a t  the beginning of this section, here is a possible 
result: 

alternatives left-end points right-end points 
e 0 0.5 

As an exercise, let us verify that the following preference structure is not a semi- 
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a b c d e f  
I I I P-  P P- 
I I I P-  I P- 
1 1 1  I I P -  
P P I  P I  

P- I I P- I P- 
P P P I P I  

Ordering the alternatives in the decreasing order o f  the number o f  Ps in the lines 
gives the following matrix ( i f  two alternatives have the same number o f  Ps in their 
rows, we order them in the increasing order o f  the number o f  P-s in their rows), 
which is not characteristic o f  a semiorder: 

Moreover, computing the matrices M P ,  M I ,  M P  MI M P  and M P  M P  M' gives 
the following results: 

9 f d a c b e  

a b c d e f  MI - 
0 0 0 0 1 0  a 
0 0 0 0 0 0  b 
0 0 0 0 0 0  C 

1 1 0 0 1 0  d 
0 0 0 0 0 0  e 
1 1 1 0 1 0  f 

e 

a b c d e f  
1 1 1 0 0 0  
1 1 1 0 1 0  
1 1 1 1 1 0  
0 0 1 1 0 1  
0 1 1 0 1 0  
0 0 0 1 0 1  

c P -  I 1 1 1 1  
b P - P -  1 1 1 1  

P- P- P-  I I I 

a b c d e f  M P  M~ M I  

0 0 0 0 0 0  a 
0 0 0 0 0 0  b 
0 0 0 0 0 0  C 

0 0 0 0 1 0  d 
0 0 0 0 0 0  e 
1 1 0 0 1 0  f 

a b c d e f  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 0 0 0 0 0  
0 1 1 0 1 0  
0 0 0 0 0 0  
0 1 1 0 1 0  

As we can see, P is asymmetric and satisfies the ( M P ~ ' M P ) - c o n d i t i o n ,  but the 
(MPMPMI)-condition is not satisfied as there is a 0  in the cell (d ,  c )  o f  matrix M P  
but not in the same cell o f  matrix M ~ M ~ M ' .  The reason is that d is preferred 
to  a which is preferred t o  e which is indifferent t o  c, but d is not preferred t o  c. 
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3.8.3 Interval order 

If the pairwise comparisons of the alternatives lead to a strict preference relation P 
which is a strict interval order (see section 3.7.4.1), then, assuming that  A is finite 
or countable i t  has been proven (see Fishburn, 1985) that  it is always possible to 
build two real valued functions g and q ( 2  0) such that: 

Equivalently, if P is a strict interval order, it is always possible to  associate an 
interval G(a) = [g(a),g(a)] - to each alternative a E A in such a way that: 

Taking g = g and g + q = g, we obtain the representation given above. 
For example, suppose that the pairwise comparisons of the elements of A = 

{a, b, c, d, e, f )  have led to the following preference structure (the same as in the 
last example of the previous section): 

a b c d e f  
I I I P- P P- 
I I I P- I P- 
1 1 1  I I P -  
P P I I P I  
P- I I P- I P- 
P P P I P I  

As P is asymmetric (this was verified a t  the end of section 3.8.2) and as all the 
P s  are grouped above the diagonal and separated from the I s  by a step-type line, 

We have seen in the previous section that ordering the alternatives in the de- 
creasing order of the number of P s  in their rows did not lead to  a configuration 
characterising a semiorder. So, we will build two different rankings of the alterna- 
tives: the first one will be defined by the decreasing number of P s  in the rows (in 
case of ties, put the alternative with the smallest number of P - s  in its row first) 
and the second one will be defined by the increasing number of P s  in the columns 
(in case of ties, put the alternative with the largest number of P-s  in its column 
first). The first one is (f ,  d, a ,  c, b, e) and the second one is (f, d, c, a ,  b, e). Using 
these two rankings to  respectively reorder the rows and the columns of the initial 
matrix, we obtain: 

- f  d c a b e  

e 

a P - P - I  I I F  
c P -  I I 1 1 1  
b P - P - I  1 1 1  

P- P- I P- I I 
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the relation P is a strict interval order. The values of the function g (or of the left 
end points g of the intervals) are chosen arbitrarily in the increasing order from 
the bottomto the top of the rows. The values of the function g + q (or of the right 
end points ?j of the intervals) are chosen in the increasing order from the right to 
the left of the columns in such a way that, for each alternative a: 

For the preference structure treated here, we obtain for example: 

If the set of alternatives is too large, checking that  the preference structure is a 

Figure 3.11: Representation by intervals. 

strict interval order can be carried out through operations on matrices, as in the 
previous sections. We already know that P is an interval order if i t  is asymmetric 
and if it satisfies the following property (see property (7) in section 3.7.1.2): 

0 if a is preferred to b, b indifferent to c and c preferred to  d, then a must be 
preferred to  d. 

Checking these properties through operations on matrices was explained in section 
3.8.2, using the matrices M P  and M r .  We concluded, at the end of section 3.8.2 
that the preference structure treated here satisfied the asymmetry of P and the 
(M' M' MP)-condition, proving that P is a strict interval order. Of course, g 
and q are not unique: every strictly increasing transformation of the set of values 
{g(a), g(a) +q(g(a)), a E A) provides another acceptable numerical representation. 
However, not all the acceptable numerical representations are obtained in this way. 
For example, consider A = {a, b, c, d), with a P b P c, d I a ,  d I b and d I c. Here 
are two numerical representations of this interval order where the two sets of values 
{g(a), g(a) + q(g(a)), a E A) and {gl(a), gl(a) + ql(gl(a)), a E A) are not ordered 
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in the same way: 
a b c d  

Note that even the two sets of values {g(a),a E A) and {gl(a),a E A) are not 
ordered in the same way, showing that non increasing transformations of g can 
be admissible here, even when there is no pair of equivalent alternatives (which 
was not the case for the semiorders). Also note that here, contrary to the semi- 
orders again, every strictly increasing transformation of g is admissible because 
it is always possible to  adapt the variable threshold in order to  have a numerical 
representation of the interval order. This is due to  the fact that, given g, the only 
constraints that must be satisfied by g(a) + q(g(a)), for a certain a E A, are: 

Finally, as for semiorders, we can conclude that an assertion based on a numerical 
representation of an interval order is meaningful if its truth value is unchanged 
when another numerical representation of this interval order is used (without hav- 
ing the possibility of giving an analytic expression of the admissible transforma- 
tions for the numerical representations of a given interval order). 

3.8.4 (P, Q, I)-structure 
If the pairwise comparisons of the alternatives lead to a strict preference relation 
P, a weak preference relation Q and an indifference relation I ,  then, in function 
of the properties of these relations, numerical representations with two thresholds 
or representations by intervals are possible. We refer the reader to Vincke (1988) 
and Tsoukihs and Vincke (2003) for some examples of results which were proved. 

Generally speaking, these representations are not unique: when the thresholds 
are not constant, every strictly increasing transformation of g is admissible but all 
the admissible transformations are not of this type. If one (or both) threshold(s) 
must be constant, not all the strictly increasing transformations of g are admissible. 
As in the previous cases, an assertion based on a numerical representation of a 
( P , Q ,  I)-structure is meaningful if its truth value is unchanged when another 
numerical representation of this (P ,  Q, I)-structure is used. 

3.8.5 Valued preference relation 

Different situations can lead to the necessity of working with valued (or fuzzy) 
relations. Let us point out two of them, which are very frequently encountered. 
The first one is the case where the data associated to the alternatives are precisely 
known and the relation used to  compare them is vague (example: the relation 
"much smaller" in a set of individuals whose heights are precisely measured). 
The second one is the case where the relation used to compare the alternatives is 
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precise but the data are not (example: the relation "smaller" in a set of individuals 
whose heights are imprecise). Of course, the two types of imprecisions can also be 
combined. 

In these cases, the pairwise comparisons of the alternatives can lead to a valued 
relation in A, a "degree" of preference being associated with each ordered pair of 
elements of A. This "degree" of preference can reflect the imprecisions mentioned 
above, but it can also express the result of a voting procedure, the probability of 
an external event, a credibility index built in a decision aiding procedure (as in 
Bouyssou et al., 2000, ch. 6), an intensity of preference, etc. 

In most cases, it is an element of a numerical scale, so that the acceptable 
numerical representations and the meaningfulness of the assertions depend on the 
nature of the numerical scale on which the "degree" of preference is defined. 

If the "degree" of preference is an element of an ordinal scale, the valued 
relation is strictly equivalent to an embedded family of preference relations and 
one may be interested in the numerical representation of this information by a 
function g and a family of thresholds (see sections 3.7.1.4 and 3.7.1.5). This 
situation was studied by Doignon et al. (1986) and conditions were established for 
the existence of this type of numerical representation. Such a model is used, for 
example, in MACBETH (see section 7.3.1.3.1). 

If the "degree" of preference of a over b is the number (or the proportion) of 
people who prefer a to b in a jury, one may want to take some cardinal aspects 
of this degree into account. For example, the assertion "the degree of a over b is 
worth twice the degree of c over d" is meaningful. 

There is also a very abundant literature on so-called stochastic relations, where 
the values associated with the pairs of alternatives are probabilities, with the 
property that, Va, b E A, 

p(a, b) + P@, a)  = 1. 

The interested reader is referred to Fishburn (1973a) and Roubens and Vincke 
(1985). 

If the valued relation is additive, in the sense that, Va, b, c E A, 

v(a, c)  = v(a, b) + v(b, c), 

then the "degree" of preference can be interpreted as an intensity of preference 
and one may want to look for a numerical representation such that, Va, b E A, 

Measurement theory (see Krantz et al., 1971) provides many results in this context. 

3.9 Conclusion 

As mentioned in the introduction, the purpose of this chapter was to show the 
connections between two languages that are naturally used in evaluations and 
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decision aiding problems: the language of numbers and the language of preference 
relations. We first pointed out the great diversity of information that can be 
supported by numbers and the necessity of being very cautious in their use and 
manipulation. The rest of the chapter gave some guidelines: 

0 to build preference relations on the basis of numerical evaluations of a set of 
alternatives, 

0 to build numerical models of preferences expressed on a set of alternatives. 

These two situations are permanently present in the decision aiding processes 
which will be developed in the next chapter. More precisely, let us give some 
examples of the relevance of the above considerations for the evaluation phase of 
the decision aiding process: 

0 not all aggregation methods require an explicit modelling of the preference 
of the decision maker on each dimension of evaluation. Some of them do the 
job implicitly, in the process of aggregating the various dimensions. After 
the latter is completed, one may observe the resulting preference structures 
on these dimensions and they may be related to some of the interpretations 
of numerical scales proposed in this chapter (see for instance, sections 5.4 or 
6.2.9). 

some aggregation methods require a description of the alternatives on the 
various dimensions, not by means of performance assessments, but by means 
of preference relations (see sections 5.2 and 6.2.6). If the information avail- 
able on these alternatives are performance measurements (possibly only on 
a subset of the dimensions), "converting" them into preference relations is 
directly related to section 3.7.6 

conversely, when the single dimensional information is ordinal (e.g. rankings) 
some aggregation procedures (for instance the Borda rule, introduced in 
4.2.2) use numerical representations of these relations as an intermediary 
step in the aggregation process. 

3.10 Appendix: binary relations and ordered sets 

The purpose of this appendix is to recall some basic definitions about binary 
relations and their properties. Let A denote a finite set of elements a ,  b, c, . . . and 
IAl, its number of elements. A binary relation S on the set A is a subset of the 
Cartesian product A x A, that is, a set of ordered pairs (a, b) such that a and b 
belong to A, i.e., S C A x A. If the ordered pair (a, b) is in S, we write (a, b) E S 
or a S b. Otherwise, we write (a, b) @ S or Not[a S b ]  or a 4' b. 

Let S and T be two relations on the same set A. The following notations will 
be used. 

S G T i f f  a S b + a T b , V a , b ~ A  (inclusion), 

a ( S  U T)  b iff a S b or (inclusive) a T b (union), 
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a ( S  n T) b iff a S b and a T b (intersection), 

0 a S T  b iff 3c E A : a S c and c T b (product), 

0 a S 2 b i f f 3 c ~ A : a S c a n d c S b .  

A binary relation S on the set A is: 

0 reflexive iff a S a,  'da E A, 

0 irreflexive iff a 4' a,  'da E A, 

symmetric iff a S b + b S a,'da, b E A, 

antisymmetric iff a S b + b -6 a,Va, b E A such that a # b, 

0 asymmetric iff a S b + b 1.9 a,Va, b E A, 

0 complete iff a S b or b Sa, 'da ,b  E A 

0 weakly complete iff a S b or b S a,  Va, b E A such that a # b, 

0 transitive iff a S b, b S c + a S c, Va, b, c E A, 

negatively transitive iff a 45' b, b 4' c =+ a 4' c,Va, b, c E A, 

0 an equivalence relation iff it is reflexive, symmetric and transitive, 

0 a strict partial order iff it is asymmetric and transitive, 

0 a partial order iff it is reflexive, antisymmetric and transitive, 

0 a partial preorder or simply preorder iff it is reflexive and transitive, 

0 a strict linear order iff it is asymmetric, transitive and weakly complete, 

0 a strict weak order iff it is asymmetric and negatively transitive, 

0 a wealc order iff it is complete and transitive, 

0 a linear order iff it is complete, transitive and antisymmetric. 

Given a binary relation S on a set A, we respectively denote by Ps and Is the 
asymmetric and the symmetric parts of S;  

a Ps b H a S b and b l S a ,  

a I s  b ~ a S b a n d  b S a .  

It  is clear that S = Ps U Is. When no confusion is possible, Ps and Is will be 
replaced by P and I. Given a binary relation S = P U I ,  the relation E defined by 

is clearly an equivalence relation. Also note that: 

0 S is a linear order iff P is a strict linear order, 

0 S is a weak order iff P is a strict weak order, 

when I is defined as the absence of P. 



AGGREGATION-OVERTURE 

4.1 Introduction 

In this chapter and the next two, we concentrate on aggregation, an important 
point in the building of an evaluation model, itself a step of the decision aiding 
process as in section 2.3 of chapter 2. This point is both crucial and highly 
controversial since a profusion of methods have been-and are still-proposed to 
overcome it. Let us first state exactly where we stand in the decision aiding 
process; we recall the scheme described mainly in section 2.3.3. The analyst and 
his client (to keep it simple) have determined-possibly after major efforts-a 
problem formulation (a triplet (A, V,IT), in the language of chapter 2) relative 
to  a problem situation P. And they have started to  build an evaluation model 
(A, {D, E ) ,  H,U,  R) (see section 2.3.3). That is, a set A of alternatives has been 
eventually settled and each alternative a in A has been assigned an element gi(a) 
on the scale Xi associated with dimension i, this for all dimensions that  have 
been determined relevant in the problem situation Pi The "level" gi(a) describes, 
measures, characterises the alternative x on dimension i. It may happen that  the 
analyst and his client, have gone one step further, incorporating the client's a 
priori preference on each dimension; this, as we have seen in chapter 3, may result 
for instance in a binary relation on A for each dimension or in a function hi that  
usually associates a number hi(a) to  alternative a on each dimension. Most of the 
time, the number hi(a) can be viewed as a function of gi(a) (which, we insist, is 
not necessarily a number; Xi may well be an unordered set of labels, for instance). 

Let us take the example of buying a sports car, which was discussed in chapter 
6 of Bouyssou et  al. (2000). The client, Thierry, who is an engineering student, 
earns little money and participates in car races, wants to  buy a sportive second 
hand car. Here, rather exceptionally, the client also plays the role of the analyst. 
Thierry selects a set A of 14 cars in the middle range segment, but with powerful 
engines. Three points of view are of importance to  him for assessing these cars: 
cost, performance of the engine and safety; Thierry is not concerned a t  all with 
such issues as comfort or aesthetics. He constructs an evaluation model taking 
these three viewpoints into account. Cost is a single dimension, since Thierry 
manages to  estimate the yearly expenses gl that each car would generate for 
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him. The numbers labelling the scale XI  associated to the cost represent amounts 
of money. For assessing the engine performance, Thierry uses two dimensions, 
namely, acceleration and pick up; the measures gz and g3 on the corresponding 
scales X2 and X3 are expressed in seconds of time. The safety viewpoint is as- 
sociated two dimensions, one evaluating the cars brakes while the other evaluates 
roadholding. Cars are assessed on these dimensions using aggregates of several 
indicators assessed by experts and found in specialised magazines; this yields two 
functions g4 and g5 ranging respectively in the numerical scales X4 and X5. Due 
to  their mode of computation, the significance of these numbers is rather unclear, 
but Thierry believes that they correctly reflect his feelings about the safety of the 
cars; he is ready to  use them to  compare cars, saying, for instance, that a car 
rated "2" on the "brakes scale" X4 is better than a car rated 1.67 on the same 
scale. The evaluation model built so far has specified the set of alternatives A, 
the dimensions and scales, D and E ;  the preferences of Thierry have not been 
incorporated into the evaluations. This is quite clear for cost, acceleration and 
pick up, the assessment of which being measures expressed in physical units (€, 
seconds). This is also largely true regarding the latter two dimensions, although 
one may consider that Thierry's preferences are reflected in the way he interprets 
the numbers g4 and g5; one might argue that he and h5, the preference-coloured 
information on dimensions X4 and X5, are in fact relations ordering of the cars 
according to  their value g4 and g5, respectively (many other interpretations of the 
numbers g4 and g5 could be made, as was shown in chapter 3. In this decision 
problem, uncertainty (that should be described in the U structure) has not been 
explicitly modelled, although there are many elements of uncertainty, for instance, 
in the assessment of the cost. At this point, the set R of aggregation procedures 
to  be used is still undetermined. 

The crux of the evaluation process-and the central topic of this chapter and 
the two next ones-is to select, build or elicit the link between the description 
D of the alternatives-or the preference-coloured description H-and the output 
of the evaluation process. The output may be, for instance, a relation on A or 
a real-valued function on A, that  synthesises the multi-dimensional description of 
the alternatives, which incorporates the client's preferences. The output of the 
evaluation process is intended to allow the analyst to  derive a recommendation for 
the client (this is dealt with in chapter 7). The link between D and H, on the one 
hand, and the output of the evaluation process, on the other, is symbolised by R 
in the model described in chapter 2; this is also what we call "aggregation". In the 
buying a sports car example, Thierry has to  combine the evaluations of the cars 
on the various dimensions with his personal priorities to  derive synthetic global 
statements about the cars, that should help him make a decision. 

This chapter and the following two (chapters 4-6) try to deal in a general 
way with the operation of aggregating descriptions on various dimensions into 
a global object, called preference, which summarises all relevant features of the 
alternatives and incorporates the client's preference in a given problem situation 
P. These chapters are built as a piece of music for two voices. These voices develop 
the theme of aggregation in rather different ways. 

The first voice views aggregation as an operator that  transforms single-dimen- 
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sional information on the alternatives (sets of relations or vectors of numbers, see 
chapter 2) into a global preference. It  takes its inspiration from the tradition of 
social choice theory. It  characterises a number of mechanisms that can transform 
a certain type of input information related to the evaluation of the alternatives 
on several dimensions into a synthetic output, most of the time a relation. The 
characterisations are expressed as properties of the mechanism. 

The other voice follows the tradition of conjoint measurement theory. It pro- 
vides us with families of models that decompose a global preference relation into 
elements related to the description of the alternatives on the various dimensions. 
The characterisations are of the following type: if a global preference relation sat- 
isfies some conditions, then it admits a description within a particular model. In 
this approach, one does not investigate the properties of mechanisms but those of 
preference relations. Characterising a model amounts to finding the properties of 
all the preference relations that fit the model. 

4.1.1 How can this help the analyst? 

With both voices, we focus on characterisations either of mechanisms or of models 
(i.e. of subsets of preference relations) by groups of properties that we shall call 
axioms. What can the benefits of having characterisations of a number of mecha- 
nisms or models be in practice? Axioms usually have an intuitive content (which 
we have tried to make as explicit as possible in the presentation that follows) as 
they express: 

0 in the first approach, how an aggregation mechanism behaves, i.e. how the 
output changes in response to particular changes in the input information 

in the second approach, how the preference behaves in various configurations, 
i.e. on selected subsets (often pairs) of alternatives. 

This offers the analyst an opportunity to test (at least partly) whether a set of 
properties is likely to be verified in a particular decisional context. How? By asking 
the client how he feels the mechanism should behave or how the preference behaves 
in the situations evoked in the axioms (or some of these situations). So, ideally, 
one might expect that the analyst who knows about the various mechanisms or 
models and their characterisations is helped in his choice of a particular mechanism 
or model in a given decisional context. The client's answers to some well-chosen 
questions may suggest that the analyst eliminate some methods and drive him 
towards others or, at  best, point him to a single particular method. 

The two approaches we follow are not exclusive; the same methods commonly 
used in practice for constructing preference relations (additive value model, ELEC- 
TRE or PROMETHEE) can be understood using the tools and concepts of both 
approaches. The interesting feature is that they can be analysed from two different 
perspectives and using different concepts. This should help the analyst diversify 
the "languages" in which he can talk with the client to better understand the 
decision problem and elicit the client's preferences in a reliable way. 
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4.1.2 Organisation of chapters 4-6 

The chapters on aggregation are organised in the following way. The concert starts 
with a brief presentation, in chapter 4 sections 4.2 and 4.3, of the main themes of 
the two voices; they are illustrated with well known situations. They should help 
the reader understand the specificity of each approach more precisely, how they 
contrast from one another and also on which points they converge. We then have 
a few bars with three themes common to both voices. 

0 Since, in both approaches, systems of axioms fail most of the time to de- 
termine a single mechanism or a single preference but rather select a family 
of aggregation procedures or a model for a family of preferences, there usu- 
ally remain "parameters" (e.g. weights, value functions, thresholds) to be 
determined. The axioms generally offer clues on how to determine these 
parameters. This question will be discussed in section 4.4 in a general way; 
more practical issues on how to determine the parameters in the context of 
a particular procedure or model will be addressed in chapters 5 and 6. 

The reader may sometimes be interested in a particular aggregation proce- 
dure and not be willing to read the three chapters on aggregation before 
finding the information he is looking for. Section 4.5 was written for this 
reader; it is a kind of commented index of some popular aggregation meth- 
ods, we give a list of all sections of chapters 4-6 that are relevant and we 
briefly explain why. 

Our analysis of aggregation procedures is often axiomatic. We believe that 
this has a lot of advantages but it also suffers some limitations. These are 
discussed in section 4.6. 

We come back to the main themes of the first and second voice and develop them 
thoroughly in chapters 5 and 6. In chapter 5, the characteristic properties of a 
variety of mechanisms (called procedures) are described. The rationale for grouping 
the procedures is the type of input information needed and the type of output that 
is desired. For example, section 5.2 deals with the aggregation of a profile of binary 
relations into a binary relation, as the expression of the global preference; section 
5.4 accepts a performance table as input (each row represents the description of 
an alternative on a dimension) and associates a binary relation to any such table. 

Chapter 6 mainly analyses two types of models. The first is, the comparison 
of two alternatives resulting from the comparison of the description of each of 
them on the different dimensions. In the second type of models, the preference 
difference between alternatives is assessed for each pair of alternatives and each 
dimension. The model then balances all these preference differences in order to 
determine which of the two alternatives is the preferred one. Each type of model 
has its own logic and suggests a corresponding strategy of elicitation. 
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4.2 Theoretical results inspired by social choice 
theory : introduction 

In social choice theory, and more particularly in voting theory, a society needs to 
choose a candidate from a set of candidates. The choice of the candidate is, in 
most cases, based on the preferences of the voters. This problem bears a striking 
similarity to the multiple criteria decision support problem in which a client needs 
to choose an alternative, based on preferences on different dimensions. In multiple 
criteria decision support, the client plays the role of society, criteria play the role 
of the voters, and alternatives, the role of the candidates l .  

Social choice theory was already an active research field in the eighteenth 
century with people like M. J. A. N. Caritat, marquis de Condorcet and J.-Ch. 
de Borda, but it grew dramatically since the 1950s, thanks to the celebrated works 
of K. J. Arrow and D. Black (see, among others, Arrow, 1963; Black, 1958). Since 
the 1980s, some concepts and theorems originally developed in the framework of 
social choice theory have been adapted to the problem of multiple criteria decision 
support (see Arrow and Raynaud, 1986; Bouyssou and Perny, 1992; Marchant, 
1996; Nurmi and Meskanen, 2000; PBrez and Barba-Romero, 1995). Some other 
results have been completely developed in the framework of multiple criteria de- 
cision support, but using an approach that is typical of voting theory. 

In this section as well as in chapter 5, we present some of these results and we 
try to show how they can be used to help the client and the analyst. We introduce 
some concepts, an example illustrates why an axiomatic characterisation can be 
useful and we explain why the theoretical results inspired by social choice theory 
are fundamentally different from those obtained using measurement theory that 
are presented in section 4.3 and chapter 6. 

4.2.1 Aggregation functions 

Suppose we have a set of alternatives A = {a, b, c, .  . .) and a set of dimensions 
N = {1,2,. . . , n). We have some ordinal information about the alternatives along 
each dimension. For example, 

0 linguistic assessments (excellent, good, average, bad or beautiful, average, 
ugly or ...), 

0 numbers the meaning of which is only ordinal (expert evaluations on a ten 
point scale), 

ranks (1 for the best alternative, 2 for the second, . . . ). 
This ordinal information can be modelled or represented by a binary preference 
relation. So, for each dimension i, we have, a preference relation ki defined on A. 
We call p the n-tuple (k1, k2,.  . . , kn) .  Such a vector is called a profile. Lastly, 
suppose that we would like to construct a global preference relation k on A and 

' For a more thorough discussion of the analogy between social choice theory and multiple 
criteria decision support, see Bouyssou et al. (2000, ch. 2). 
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that we want this global preference relation to be a weak order (a  complete ranking, 
possibly with ties). 

To illustrate these first definitions, let us use an example. Let A = {a, b, c, d) 
be the set of the alternatives and N = {1,2,3) the set of the dimensions. The 
profile p thus contains three preference relations. We suppose here that these 
relations are linear orders (complete rankings without ties): 

The notation x t i  y + i  z means that x is strictly better than y on dimension i 
and that y is strictly better than z on the same dimension. Because we assumed 
that the relations are linear orders, we also have, by transitivity, x strictly better 
than z .  

Our goal is now to construct a global preference relation k on A, taking the 
preferences on each dimension into account. In other words, our goal is to aggre- 
gate the n preference relations ki into one global preference relation k .  And we 
want the global preference relation k to be a weak order (as decided above). A 
possible way to do this is to adopt the majority principle. Alternative a is the 
best one for a majority of criteria (213); therefore, it is the best alternative. Then 
we see that b is better than d and c for a majority of criteria (313) and, finally, d 
is better than c for a majority of criteria (213). I t  happens that, for this example, 
the result is a complete ranking2: 

a t b t d t c .  

One could possibly argue that, even if a beats b on two criteria, there is a criterion 
for which a is the worst alternative. Therefore, a should not be considered as the 
best alternative. Instead, an alternative should be penalised for each bad position. 
A possible way to construct the preference relation k is then the following: an 
alternative gets one point for each first rank (best position), two points for each 
second rank, three points for each third rank, and so on. These points can be 
considered as penalties. The worse the position, the higher the penalty. 

In our example, a obtains 6 points (1 + 1 + 4)) b obtains 5 points (2+2+1), c 
obtains 10 points (4 + 3 + 3) and d obtains 9 points (3 + 4 + 2). Hence, b is the 
best alternative because it obtained the lowest penalty. Similarly, we find: 

Note that the ranking was different using the majority principle. So, starting from 
the same data (the profile), there are different ways, different aggregation proce- 
dures to construct a global preference relation. And these different aggregation 
procedures do not yield the same result, the same global preferences. 

2As is well known, the majority rule may give rise to global preference relations that are not 
rankings and may have cycles; see section 5.2.1.3 in chapter 5 
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Once an aggregation procedure has been chosen, the global preference relation 
2 is of course a function of the profile, of the n preference relations k i ,  i = 1. .  . n .  
In other words, & = k ( k l ,  k2, . . . , k n )  = k(p).  We call 2 an aggregation function 
and each aggregation procedure corresponds to  a different aggregation function. 
Selecting an aggregation function amounts to  setting the set R of "operators" that  
appears in the description of an evaluation model (section 2.3.2). 

When the problem is formulated in these terms, the task of the analyst is then 
to  choose a function k. In this process, he can be helped by some theoretical re- 
sults, by characterisations. These characterisations tell us what the fundamental 
properties or characteristics of an aggregation function 2 are. In the next para- 
graphs, we briefly show, in the light of an example, how these characterisations 
can be helpful. 

4.2.2 An example: the Borda method 

The method we presented above, using penalties, is called the Borda method 
(de Borda, 1784). It can be used in a number of different contexts, but we will 
consider it in this section only for the aggregation of linear orders. This method 
has a number of interesting properties of which we now present five. 

4.2.2.1 Axioms and characterisation 

0 Weak Order. The global preference relation is always a weak order ( a  rank- 
ing, possibly with ties). 

Faithfulness. If we have only one dimension, i.e. N = {I), then k(p) is equal 
to  kl, i.e. the global preference is identical to  the preference relation on the 
unique dimension. 

0 Cancellation. If, for every pair of alternatives, there are as many criteria in 
favour of the first alternative as in favour of the second , then all alternatives 
are tied. 

0 Neutrality. The result of the aggregation does not depend on the labels of 
the alternatives but only on their positions in the n preference relations hi. 

0 Consistency. Suppose that, for some reason, you divide your n dimensions in 
two subsets N1 = {1,2,. . . , k )  and N2 = {k + 1, k + 2,. . . , n )  (for example, 
costs / benefits or financial / non-financial). This also corresponds to two 
profiles, pl and p2. Then, taking only the dimensions in N1 into account, 
you use an aggregation function to construct a global preference relation. 
Suppose this yields a k(p1) b (a  is not worse than b). Then, taking only 
the dimensions in N2 into account, you use the same aggregation function 
in order to construct a global preference relation. Suppose this also yields 
a k(p2)  b (or even a +(p2) b). Now, if you take all the dimensions in N 
into account, you probably expect that the aggregation function will tell you 
a k(p)  b (or a +(p) b). If it does, then we say that the aggregation function 
satisfies Consistency. 
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Using these five properties, Debord (1987) proved the following theorem3. 

Theorem 4.1 
Suppose we want to aggregate profiles of linear orders. The only aggregation func- 
tion satisfying Weak Order, Faithfulness, Cancellation, Neutrality and Consistency 
is  the Borda method. 

In other words, if you want to use a procedure that satisfies the five above- 
mentioned properties, you must use the Borda method. Conversely, if you use the 
Borda method, these five properties are necessarily satisfied. Many other proper- 
ties are also satisfied, but only the Borda method satisfies these five. Since the 
five properties completely characterise the Borda method, this theorem is called a 
characterisation and the five properties are called axioms. 

Note that it might be possible to find other conditions that also characterise 
the Borda method. They would necessarily be logically equivalent to those of 
theorem 4.1 because they are necessary and sufficient. The reason why we use these 
particular conditions is that we think they are more or less intuitively interpretable. 
So, they can help the analyst or the client to better understand the procedure he 
uses. We have also chosen the conditions in such a way that they are independent, 
i.e. none of them is implied by the other ones. In other words, you cannot drop 
one of them in the statement of the theorem. 

Note also that Theorem 4.1 does not apply if we want to aggregate linear 
orders and, simultaneously, take some additional information into account. For 
example the fact that the preference between a and b on dimension 1 is much 
stronger than the preference between c and d. Or the fact that b is definitely not a 
good alternative. An aggregation function associates a linear order to each profile, 
without considering any other information than the profiles. While this is quite 
natural in Social Choice Theory, it is sometimes a limitation in multiple criteria 
decision aiding. 

Remark 4.2.1 
For more on the Borda method, see, among others, Chamberlin and Courant 
(1983), Debord (1992), Dummett (1998), McLean and Urken (1995), Marchant 
(1996, 1998, 2000, 2001), Nitzan and Rubinstein (1981), Pattanaik (2002), Regen- 
wetter and Grofman (1998), Saari (1990, 1994), Smith (1973) and Van Newenhizen 
(1992) 

4.2.2.2 Usefulness of the characterisation 

We believe that such a theorem can be useful for the client and the analyst be- 
cause, if the analyst is able to explain the intuitive content of the axioms to the 
client and if the client finds them appealing or at  least acceptable, then he should 
probably use the Borda method-no other method satisfies the same axioms. On 
the contrary, if he dislikes one or more axioms, then he should probably not use 
the Borda method. 

The first characterisation of the Borda method was presented by Young (1974), but in a 
somewhat different context. 
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In order to  make the axioms intuitively understandable to the client, the analyst 
can state them in natural language, however he also does need t o  show why they 
could be desirable or why not. He can also speak of the axioms that are not 
satisfied by a method. This should help the client make up his mind. In the 
previous section, while we presented the axioms, we also showed why they could 
eventually be considered as sensible. In the following paragraphs, we show some 
reasons to  eventually reject them. 

Consider Cancellation for example: it might seem reasonable in some applica- 
tions but probably is not in most of them. Suppose a client faces a problem with 
two dimensions and somehow finds that a criterion, say 1, is much more impor- 
tant than the other criterion, say 2, he then will probably not find Cancellation 
attractive. Indeed, for him, not only the number of criteria in favour of a against 
b is relevant when comparing a and b but also the importance of each criterion. 
And it is often the case that not all criteria play the same role. 

Another reason why Cancellation might not be adequate is the following: sup- 
pose that there are only two alternatives a and b (this makes the presentation 
simpler but doesn't change the reasoning) and that there are as many criteria in 
favour of a as in favour of b. Suppose also that a client considers all criteria as 
equally important. Then, according to Cancellation, a and b should be tied. But 
suppose finally that the client considers that a is not only better than b on di- 
mension 1 but much better than b. Then, this large advantage of a on dimension 
1 combined with the advantages on the other dimensions in favour of a might be 
too large to  be compensated by the advantages of b on the rest of the criteria. It 
would therefore be reasonable to  consider a strictly better than b. Of course, if we 
strictly respect the setting in which we presented the Borda method (aggregation 
of linear orders), this cannot happen. We have only ordinal information and no 
information about the size of some advantages or differences. But, in practice, it is 
not always clear whether the information we have about the alternatives is purely 
ordinal or not. 

Another axiom that might not seem attractive in some cases is Consistency. 
Suppose that four high school students take four exams and are ranked as follows. 

Physics a tp b tp c tp d, 

Maths c t, a t, d t, b, 

Economics d te b t, c te a,  

Law c a t 1  d t 1  b. 

They apply for scholarships and we want to give the best scholarships to  the 
best students. We therefore need to rank them. If they apply for a scholarship in 
Physics, we might only look a t  the rankings in Physics and Maths. Because Maths 
and Physics are very important in a cursus in Physics, we might also consider that 
both dimensions play the same role. A reasonable ranking of the candidates is 
then a t ( p )  c t ( p )  b t ( p )  d (according to our opinion, intuitively). 

Suppose then that the four students apply for a scholarship in Economics. For 
similar reasons, we look only a t  the rankings in Economics and Law. Observe that 
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c and d have symmetric positions in the two rankings. Hence, c and d should be 
considered as equivalent. The same applies to  a and b. Observe also that c and 
d have ranks 1 and 3 in Economics and Law while a and b have ranks 2 and 4. 
Therefore, the most plausible rankings of the four candidates is [c ~ ( p )  d] + ( p )  

[a " ( P )  bl. 
Suppose now that the four students apply for the best student award in their 

high school. A first and a second prize will be awarded. We therefore need to  rank 
the candidates. Because c is ranked before b in the rankings for both scholarships, 
then, using Consistency, we might conclude that  c should be ranked before b in 
the award contest. But if we look a t  the profile-at the four dimensions-we see 
that  b is perhaps better than c. Student b is better than c in two rankings. His 
only bad grades are in Maths and Law. But, because he is good in Physics and in 
Economics, it is hard to  believe that he is really bad in Maths. So, in this case, 
the use of Consistency seems to  yield an unsatisfactory result. 

The problem illustrated in this example is typical of an interaction between two 
or more criteria. Here, the interaction is positive, between Physics and Economics. 
The impact of a good rank simultaneously in Economics and in Physics is larger 
than the impact of a good rank in Physics "plus" the impact of a good rank 
in Economics. The interested reader will find more about interaction and ways 
to handle it in Grabisch, Labreuche, and Vansnick (2003), Marichal (2004) and 
Marichal and Roubens (2000), among others. 

On the contrary, Neutrality and Faithfulness seem to  be two conditions an 
aggregation function should satisfy in any context. 

Weak Order has a different status. In our opinion, any client that wants to 
construct a global preference relation, wants it t o  be a ranking, possibly with ties; 
not a partial order or a cyclical relation-these are not easy to  interpret. But, for 
some reasons that we will present in section 5.2, p. 174, it is sometimes difficult to 
obtain a ranking. So, in some cases, a client might be satisfied with a partial order 
or even a preference relation with some cycles and eventually decide to  use an 
exploitation procedure (see chapter 7, section 7.4) later in the process. In such a 
case an analyst could be interested by an aggregation function that doesn't satisfy 
the Weak Order property. 

In chapter 5, we will present various results similar to  theorem 4.1 and show 
how they can be used to help the client and the analyst. We now turn to  some 
problems and limits of this approach. 

4.2.3 Specificity of this approach 

In section 4.2.2, we presented a characterisation of the Borda method as an ex- 
ample of the results (and their usefulness) that can be obtained in a framework 
inspired by social choice theory. The Borda method, like many other procedures 
that have been characterised in social choice theory, aggregates ordinal informa- 
tion: the information on each dimension is ordinal, it is a binary relation. 

Until recently, all results of social choice theory applied to  multiple criteria 
decision support were characterisations of ordinal aggregation procedures. The 
aggregation procedures that are not ordinal (for example MAVT, Multi-Attribute 
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Value Theory) have always been studied in a different framework, in conjoint 
measurement (see section 4.3 and chapter 6). It would be misleading to  think that 
social choice theory is devoted to the problem of ordinal aggregation and conjoint 
measurement to  cardinal aggregation. In fact, there is a part of social choice theory 
called cardinal social choice theory. I t  studies procedures for aggregating cardinal 
information into a weak order or a choice set. We will develop this in section 5.4. 
Besides, conjoint measurement can also be used to study the problem of ordinal 
aggregation (Bouyssou and Pirlot, 2002a). 

What is then the difference between the two approaches? All characterisations 
that  will be presented in chapter 5 are to some extent similar to  theorem 4.1. They 
are often inspired by social choice theory (ordinal or cardinal). They characterise 
aggregation procedures, i.e. procedures that transform an input-a profile or a 
performance table-into an output-a weak order, most of the time. Characteri- 
sations tell us which properties make a given procedure unique. 

Roughly speaking, in conjoint measurement, the input is the global preference 
relation and the set of dimensions. One then tries to represent the global preference 
relation by means of a model, the parameters of which must be estimated. In 
conjoint measurement, a typical theorem tells us under which conditions a global 
preference relation can be represented by a given model. Note that the conditions 
are imposed on the global preference relation, not on the model. 

Some researchers have used the results of conjoint measurement in multiple 
criteria decision support. For them, the model used in conjoint measurement 
becomes the aggregation procedure. A typical result of conjoint measurement ap- 
plied to multiple criteria decision support therefore tells us under which conditions 
(imposed on the global preferences) a given aggregation procedure can be used. 
I t  also suggests a way to set the parameters. This is completely different from so- 
cial choice theorems where most of the conditions are imposed on the aggregation 
procedure. 

In the next section as well as in chapter 6, we will present some conjoint 
measurement results applied to  multiple criteria decision support. 

4.3 Conjoint measurement theory interpreted in 
MCDA 

Measurement theory aims towards examining the conditions and the meaning of 
measurement, which consists in representing "some attributes of objects, sub- 
stances, and events" (Krantz et  al., 1971, p. xvii) numerically. In problems in 
which a relevant description of an object requires several dimensions, a major 
question arises: is there an "aggregated measure" or "aggregated descriptor" that 
allows us to  compare these objects even when the measurements on the various 
dimensions are expressed on incommensurable scales (e.g. mass and length)? Con- 
joint measurement theory examines the conditions under which a relation on a set 
of objects described by a vector of evaluations is determined by a sort of synthetic 
measurement that  takes the relevant attributes of the objects into account in an 
appropriate manner. This theory was first developed in Economics (Debreu, 1960) 
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and in Psychology (Luce and Tukey, 1964). It did not take long before people work- 
ing in decision analysis realised that it could also be used to represent preferences 
(Edwards, 1971; Raiffa, 1969). In a decision context, the aggregated measure does 
not reflect an intrinsic property of the objects, which would be independent of the 
particular evaluation model; it is usually related to a client's subjective preference, 
which is assumed to be, in some way, related to several objective characteristics 
of the objects. 

4.3.1 The additive value function model 

To be more concrete, suppose that within a certain problem formulation, we have 
started to build an evaluation model: we have determined a set of alternatives 
A and n dimensions that can describe all the aspects relevant to the decision 
problem a t  hand. Suppose that a descriptor for assessing the alternatives on 
each of the n aspects settled on has been constructed; let gi : A -+ Xi be the 
descriptor used for dimension i, with Xi the set of levels of the associated scale. 
Referring to the evaluation model concept described in chapter 2, section 2.3.3, 
A precisely denotes the set of alternatives to which the evaluation model applies; 
it may be larger than the set of alternatives that can be actually chosen by the 
client; it may contain ideal alternatives that could help in the elicitation of the 
evaluation model. In this section and more generally in the framework of conjoint 
measurement, we shall assume that the set of functions gi used to describe the 
alternatives on each dimension is exhaustive, so that any alternative a can be 
identified with the vector (gl(a), . . . , gi(a), . . . , gn(a)). We may then work with the 
set of vectors representing the alternatives instead of the alternatives themselves. 
These vectors form a subset {(gl(a), . . . ,gn(a)), a E A) of the Cartesian product 
X = X1 x X2 x . . . Xi x . . . Xn of the various scales. We assume further that 
each vector of X corresponds to an alternative and that the client's preferences, 
denoted by 2, is a relation on the whole4 set X .  Conjoint measurement theory 
studies the links that may exist-depending on the properties of 2-between any 
pair (x, y) of vectors of X and the fact that this pair is or is not in the preference 
relation (x 2 y or Not[x y ] ) .  

In the most popular model of this theory, it can be determined that x is 
preferred to y by comparing the values that a function u, defined on X ,  as- 
signs to x and y; u is called a multi-attribute value function (MAV function). 
A very particular case for u, but also by far the most frequent in practice, is 
when u decomposes into a sum of n functions ui each of a single variable, i.e. 
U(X) = u(xl, .  . . , xn) = Cy=l ui(xi). The main model of conjoint measurement- 

This postulates the extension t o  all the Cartesian product X o f  the preference relation that 
is perceived on Q(A) = {(gl(a), . . . ,g,(a)), a E A). In practice, such an extension could force 
the client t o  compare alternatives that appear artificial or unrealistic t o  him. Monotonicity con- 
siderations should help t o  position such unrealistic alternatives with respect t o  the real ones; 
for instance, the fictitious cheap car with high performance on all dimensions would clearly be 
ranked at the top; it is true however that meaningless comparison between unrealistic alterna- 
tives could entail contradictions with groups o f  actual alternatives. Despite possible unwanted 
practical consequences and provided that the range Xi is not unrealistic, we consider that the 
extension o f  t o  X is not an outrageous assumption. 
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called additive value function model-thus deals with preferences on X such that 
for all x, y E X: 

where ui is a function mapping Xi into R for all i. In this representation, the 
relative importance of the criteria is reflected in the magnitude of the functions 
ui. There is an alternative way of representing the same model, which makes the 
importance of the criteria more explicit. 

4.3.2 An alternative formulation showing tradeoffs 
Let us start by normalising the values of ui to  fit in the [O, 11 interval (this is always 
possible if the set Xi is finite or, more generally, if ui(Xi) is a bounded set of R); 
denoting by gi (resp. z i )  the minimal (resp. the maximal) value taken by ui(xi) 
when xi varies in the set Xi, we define the normalised value vi of ui as 

Expressing ui as a function of vi yields 

substituting this expression in equation (4.1) yields: 

Subtracting ELl gi from both sides of the inequality and dividing by x & , ( ~ i j  - 
gj)  yields another additive value function v that represents the same relation k; 
we have: 

The transformed value function v is thus defined by: 

Defining coefficients ki as: 

we have the following representation of the preference k: 
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in which ki are nonnegative "weighting factors" adding up to  1; in this represen- 
tation the maximal value of vi is 1 and the minimal is 0. 

In the sequel we assume that ui(Xi) is a bounded set of R. Starting with any 
representation of a preference in model (4.1), we can derive a representation in 
model (4.5), as we have just shown. Conversely, from a representation in model 
(4.5), we immediately derive a representation in model (4.1); letting ui = kiwi, we 

n 
get: x 2 y H v(x) = Cy=, ui(xi) 2 v(y) = ui(yi). Hence, models (4.5) and 
(4.1) are equivalent in the sense that all preferences that  can be represented by 
one of them can be represented by the other. 

Depending on the context, one or another formulation of the model may offer 
an advantage. From equation (4.4), we infer that ki can be computed as the length 
of the range of variation of function ui relatively to  the sum of all ranges; the value 
of ki remains invariant when we apply a positive affine transformation to  ui. In 
section 4.3.8, we shall see how the "weights" ki can be interpreted as tradeofls. 

4.3.3 Additive value function and conjoint measurement 

The model described above, in either of its forms (4.1) or (4.5), will be referred to  as 
the additive value function model; u is called an additive MAV function. Conjoint 
measurement theory is concerned with establishing conditions on 2 under which 
a representation according to  model (4.1) (or (4.5)) exists. The uniqueness of the 
representation is also studied. 

Why is this interesting? Clearly, if we have reasons to believe that a preference 
might obey model (4.1), we can try to determine the preference-which is usually 
not known explicitly-by constructing the functions u i ;  alternatively, for elicit- 
ing model (4.5), we should construct the functions vi and assess the coefficients 
ki. Each model suggests a strategy (or several) for eliciting preferences that are 
representable in the model. Of course, not all preferences satisfy model (4.1); we 
shall not specify the necessary and sufficient conditions here but just mention the 
following two important and obvious requirements for the preference: 

0 2 must be a weak order (see chapter 3, section 3.10), i.e. a transitive and 
complete preference, in other words a complete ranking, possibly with tied 
alternatives. This is clearly a necessary requirement since model (4.1) exactly 
says that  the order 2 on X is obtained by transporting the natural order of 
R onto X using the function u. 

0 2 must satisfy (strong) preference independence. The decomposition of u 
into a sum of functions each of a single variable reveals that if x k y while x 
and y have received the same assessment on dimension i, then, if we change 
that common level into another common level, the transformed x and y will 
compare in the same way as before. More formally, let x and y be such that 
xi = yi = ai; let x' be equal to x except that xi = bi # xi and let y' be equal 
to  y except that  yi = bi # yi, then: 
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since 

The independence property of the preference has far-reaching consequences; it 
allows in particular for ceteris paribus reasoning, i.e. comparing alternatives the 
evaluations of which differ only on a few attributes without specifying the common 
level of their evaluations on the remaining attributes; the independence property 
guarantees that the result of such a comparison is not altered when changing the 
common level on the attributes that do not discriminate between the alternatives. 
We shall further discuss this property in section 4.3.5. 

The two conditions stated above are not sufficient for ensuring that 2 satisfies 
model (4.1). If the evaluation space X is infinite, various sets of sufficient condi- 
tions are provided in the literature; they are often categorised into two branches, 
the algebraic and the topological theories, respectively (see e.g. Fishburn, 1970, 
ch. 5). We give a schematic outline of the algebraic approach in section 6.1.2 of 
chapter 6, including an intuitive presentation of the additional conditions that are 
necessary for the additive model. If the set of possible levels Xi on each dimension 
is finite, the situation is rather unpleasant since necessary and sufficient conditions 
are not generic: using mathematical tools (mainly the theorem of the alternative 
for systems of linear equations and inequalities, see Fishburn (1970), p. 46), one 
can write a system of compatibility conditions for each particular set X (Fishburn, 
1970, ch. 4) that guarantees the existence of a representation of 2 according to  
model (4.1); we outline the theory for the finite case in chapter 6, section 6.1.3. 
So, without explaining the formulation of necessary and sufficient conditions here, 
we just bear the two necessary conditions cited above in mind. 

4.3.4 Uniqueness issues 

If the model is to be used to elicit preferences through the construction of functions 
ui, it may also be important to  know whether these ui are uniquely determined. 
Actually, the ui's are not unique. For a preference 2 that fits in the additive value 
model, there is a family of value functions u that both 

decompose additively as U(X) = zy=l ui(xi) and 

0 represent the preference, i.e., satisfy x 2 y ++ u(x) 2 u(y). 

Suppose indeed that we start with a particular representation of 2 ,  u(x) = 
EL1 ui(xi) and transform ui into u: by using a positive a f i n e  transformation 
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with a > 0 and Pi a real number (that may vary with i). By using u: instead of 
ui in the additive model, we obtain: 

Clearly, u' is an alternative representation of the preference 2 since x y H 
u(x) 2 u(y) * ul(x) 2 ul(y). SO, the ui's to be used in an additive representation 
are at  best determined up to a positive affine transformation. 

If X is infinite, a number of systems of conditions that guarantee the existence 
of an additive representation according to model (4.1) are known; this additive 
representation is unique up to a positive affine transformation of the ui's according 
to equation (4.6) (the positive coefficient a is the same for all i but Pi may depend 
on i). These conditions involve structural assumptions that are sufficient but not 
necessary; however they may be reasonable in practical situations. For instance, 
in the algebraic theories mentioned in the last paragraph of the previous section, 
one postulates that the set of levels Xi on each attribute are "sufficiently rich" 
so that some "solvability conditions" are fulfilled; roughly speaking, it is required 
that it always be possible to find a level xi such that an alternative involving xi is 
indifferent to a specified alternative (see section 6.1.2 for more details). Richness 
is not a necessary assumption, but it corresponds to our intuition related to the 
measurement of length, for instance. In the finite case, provided the representation 
of a preference by the additive model exists, it is generally not unique (even up to 
a positive affine transformation). 

Remark 4.3.1 (Normalisation) 
If the representation in the additive model is unique up to a positive affine trans- 
formation of the ui's, it is not difficult to impose additional constraints to the 
function u in order to fix the degrees of freedom left for the determination of the 
ui's. One may, for instance, scale u in order for its minimal value on X to be 0 
and its maximal value to be 1. If such a requirement is imposed and the functions 
ui are constrained to be nonnegative, then they are exactly determined. Indeed, 
consider any additive representation u of the preference, with u(x) = EL, ui(xi); 
due to the uniqueness hypothesis of the ui's up to a positive affine transformation, 
all other additive representations are of the form 

i=l i= 1 

with u:(xi) = aui(xi) +Pi. If we impose that u' is scaled as said above and using 
the notations introduced page 129, we must have 
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Imposing that the ui's are nonnegative, implies that mi +Pi > 0; this, combined 
with the first equation, forces Pi = - m i ;  the second equation entails 

a = 
1 

xy=l ( ~ i  - ~ i )  ' 

Hence there is no degree of freedom left on a and the Pi's. 

Assuming that the ui's are determined up to a positive affine transformation, 
we shall briefly explain in section 4.3.7 how we can take advantage of this to  
construct an additive representation of the preference. 

4.3.5 Relevance of conjoint measurement results for MCDA 

It may seem disturbing a t  first glance that  conjoint measurement results require 
the verification of properties of a preference that will only be known at  the end of 
the MCDA process. To use these results, the client is asked to answer questions 
that refer to  his intuitive perception of his own preferences. For instance, the 
preference independence hypothesis that  is crucial for model (4.1) can be a t  least 
partially tested by asking the client questions like: "Do you prefer a meal with fish 
and red wine or a meal with fish and white wine?" "Do you prefer a meal with 
meat and red wine or a meal with meat and white wine?". If the client is consistent 
in preferring the same type of wine with both meat and fish, then there is no clue 
that his preference might not satisfy preference independence, with main course 
and wine as attributes. In the opposite case, we know that his preferences cannot 
be represented by model (4.1). Thus, the characterisation of conjoint measurement 
models has the advantage of allowing to  test whether the model is likely to  be able 
to  fit the preference. Of course the possibility of testing such hypotheses is often 
theoretical: some axioms may have little intuitive content; even if it is not the case, 
most of the time it is only possible to  "falsify" a model by exhibiting a situation 
where an axiom fails to  be satisfied (like, potentially, in our question about fish, 
meat and wine) while it is seldom possible to positively establish that a preference 
will fit with the model. 

4.3.6 Marginal preferences within the additive value model 

The type of function u associated to model (4.1) suggests a stepping stone for its 
elicitation. Under the hypothesis that  k fits with model (4.1), the model suggests 
that  functions ui could be elicited. Going one step further, it is readily seen that  
ui(xi) must be compatible with the marginal preference relation ki defined as: 

Consider two alternatives (xi, and (yi, that may only differ on attribute 
i; they have common evaluations a j  on all attributes j except for j = i. If the 
client says that  he likes (xi, a-i) at least as much as (yi,a-i), this means, in terms 
of the marginal preference relation ki, that xi ki yi and it translates in model 
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(4.1) into: 

from which we deduce ui(xi) > ui(yi). Thus, whenever xi ki yi, we have ui(xi) > 
ui(yi) and it is easily seen that the converse is also true; for all levels xi, yi in Xi, 
we have xi ki yi iff ui(xi) > ui(yi). Therefore, in model (4.1), the function ui can 
be interpreted as a numerical representation of the marginal preference ki, which 
is a weak order (a ranking of the alternatives, possibly with ties). 

The fact that the marginal preference is a weak order has strong links with 
the independence property of preference k (this will be analysed much more in 
depth in section 6.2.9). This is also of significant practical importance. How- 
ever, a difficulty remains; the ui functions that we need to use in the additive 
representation of the preference are not just any numerical representation of the 
marginal preference relations ki. A weak order like ki, has many different numer- 
ical representations since any increasing function of a representation is in turn a 
representation; the numerical representation of a weak order is determined up to 
an increasing transformation. Among the whole set of possible representations of 
the weak order hi, we have to select the right one (determined up to a positive 
affine transformation), the one that is needed for a representation of the global 
preference in the additive model. 

Example 4.1 (Buying a sports car) 
We consider the example briefly described in section 4.1 (see also in chapter 6 of 
Bouyssou et  al. (2000)). Thierry, a student who is passionate about sports cars 
but earns little money, assesses fourteen cars among which he considers buying 
one, based on the five dimensions that are of importance to  him, namely cost, 
acceleration, pick up, brakes and road holding. Assume that  his preference fits 
with the additive value model (4.1) and let us help Thierry build a value function 
u that represents his preference in accordance with the additive model. 

We first settle the ranges Xi in which the attributes will reasonably vary (in 
view of the evaluation of the fourteen selected cars). These ranges are shown in 
table 4.1. The evaluations on the first three attributes are expressed in "physical" 
units (thousands of €, and twice in seconds, respectively); the last two belong to 
a qualitative scale. On the first three attribute scales, less is better, while on the 
last two, more is better. What is the relationship between the evaluations and the 

Attribute i Xi unit to  be 
Cost 1 113; 211 1000€ minimised 

Acceleration 2 i28; 31j second minimised 
Pick up 3 [34; 421 second minimised 
Brakes 4 [I;  31 qualitative maximised 

Road holding 5 [I;  41 qualitative maximised 

Table 4.1: Ranges of the five dimensions in the "Buying a sports car example". 

value function u? There are two main features that we want to emphasise: 
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the information contained in the evaluations is transferred to the value func- 
tion through the marginal preferences; 

0 the marginal preferences, which are weak orders in the additive model (4.1), 
cannot be considered as identical to the natural ordering of the evaluations 
although these weak orders are not unrelated. 

Take for example the cost attribute. Clearly, a car, say x ,  that costs 150008 
is not preferred to a car y that costs 14000€ if both cars are tied for all other 
dimensions. And the conclusion will be the same when comparing the first car 
with any other car that costs less and has the same evaluation on all other at- 
tributes. More formally, car x can be described by the vector (15, a2, as, a4, as) 
and y by (14, az ,  as, ad, as); the first dimension of these vectors represents the cost 
(in thousands of €) and ai, for i = 2,. . . ,5, designates any level on the other 
attributes. Car y is certainly at  least as preferred as x (y 2 x) since y is cheaper 
than x and all other evaluations are identical for both cars. This is a typical case 
in which "ceteris paribus" reasoning applies; the property of the preference we use 
here is weak preference independence (see page 239, definition 6.3); it is implied 
by strong preference independence which is a necessary condition for a preference 
being represented by the additive value model (4.1). 

The fact that car y is preferred to car x, independently of the value of a j ,  can 
be translated into a statement involving the marginal preference k1 on the Cost 
attribute, namely 14 k1 15. For all pairs of costs X I ,  yl in the range [13; 211, we 
would similarly have yl k1 xl  as soon as the cost xl is higher than the cost yl. 0 

Remark 4.3.2 
This does not mean, however, that the marginal preference kl is necessarily the 
reversed natural order for the costs in the [13; 211 interval. The marginal preference 
k1 might indeed not discriminate between xl  and yl when the difference lxl -yll is 
small enough. The client could feel that, due to the imprecision of the evaluation of 
the costs, he cannot distinguish, in terms of preference, between costs that round 
up to the same nearest thousand of Euros. In such a case, the marginal preference 
relation k1 would be less discriminating than the reversed natural order on the 
real numbers. A numerical representation u1 of the weak order k1 is graphed in 
figure 4.1. 

4.3.7 Leaning on the additive value model to elicit prefer- 
ences 

The additive value model suggests a general strategy for the elicitation of a pref- 
erence that fits with the model. We assume here that the conditions of uniqueness 
of the additive representation are fulfilled (see section 4.3.4; i.e., that the functions 
ui, which intervene in the sum are determined up to a positive affine transforma- 
tion (see (4.6)). The strategy consists in eliciting the functions ui, relying on the 
fact, observed in the previous section, that the ui's are numerical representations 
of the marginal preferences. The main problem is to find among the many rep- 
resentations of the marginal preferences, the essentially unique ones that can be 
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Figure 4.1: Numerical representation of the marginal preference for Cost in a case 
where it is a nonincreasing function of the cost. 

summed up and yield an additive representation u of the preference. This can be 
done in many different ways, which have been thoroughly studied (see, e.g., Fish- 
burn, 1967; Keeney and Raiffa, 1976; von Winterfeldt and Edwards, 1986). We 
briefly illustrate the method of standard sequences using the example of ranking 
sports cars outlined in the previous section; we refer the reader to Bouyssou et al. 
(2000, ch. 6) for more details and for the illustration of other elicitation methods 
applied to the same example. 

We limit ourselves here to the elicitation of the marginal value function u2, 
corresponding to the "Acceleration" attribute, by means of indifference judgements 
requested from the client. We start by considering two hypothetical cars that differ 
only on the cost and acceleration attributes, their performance levels on the other 
dimensions being tied (this is again "ceteris paribus" reasoning but with only 
three common levels, instead of four in the previous section). We assume that 
the two cars differ in cost by a noticeable amount, say for instance 10008;  we 
locate an interval of cost of that amplitude in the middle of the cost range, say 
for example [16 500; 17 5001 €. We then fix a value for the acceleration, also in 
the middle of the acceleration range, say, 29.5. We ask the client to consider 
a car costing 16500€ and accelerating in 29.5 seconds, the evaluations on the 
other dimensions being fixed at  an arbitrary (say mid-range) value. We ask the 
client to assess a value x2 of the acceleration such that he would be indifferent 
between the cars (16.5; 29.5) and ( 1 7 . 5 ; ~ ~ )  (the cars are sufficiently specified by 
a pair of levels, on cost and acceleration attributes, since we assume that their 
evaluations on the remaining dimensions are identical and that the preference 
is independent, i.e, that ceteris paribus reasoning makes sense). This question 
amounts to determining which improvement of the performance on the acceleration 
attribute (starting from a value of 29.5 seconds) would be worth a cost increase of 
1000€ (starting from 16500€), all other performance levels remaining constant. 
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Since the client is assumed to  be fond of sports cars, he could say for instance that 
2 2  = 29.2 seconds, which would result in the following indifference judgement: 
(16.5; 29.5) -- (17.5; 29.2). In view of the hypothesis that  the client's preference 
fits into the additive value model, this indifference judgement can be translated 
into the following equality: 

Since the performance of both cars on attributes j = 3,4,5 are equal, the cor- 
responding terms of the sum cancel and we are left with ul(16.5) + ~ ~ ( 2 9 . 5 )  = 
ul(17.5) + ~ ~ ( 2 9 . 2 )  or: 

which translates as an equality between differences of marginal values on attributes 
1 and 2. 

The second question to the client uses his answer to  the first question; we ask 
him to assess the value xz of the acceleration that  would leave him indifferent 
between the two cars (16.5; 29.2) and (17.5; 22). Suppose the answer is x2 = 28.9; 
we would then infer that: 

Note that the left-hand side has remained unchanged: we always ask for accelera- 
tion intervals that  are considered as equivalent to  the same cost interval. 

The next question asks for a value 2 2  such that (16.5; 28.9) -- (17.5; 22) and so 
on. Let us imagine that  the sequence of answers is e.g.: 29.5; 29.2; 28.9; 28.7; 28.5; 
28.3; 28.1. In view of (4.9), this amounts to saying that this sequence of levels on 
the marginal value scale of the acceleration attribute are equally spaced and that  
all differences of value between consecutive pairs of levels in the list are worth the 
same difference in cost, namely a difference of 1000€ placed between 16 500 and 
17 500 €. In other words, the client values 1000 € as an improvement of 

0.3 seconds w.r.t. a performance level of 29.5s or 29.2s 
0.2 seconds w.r.t. a performance level of 28.9s) 28.7s, 28.5s or 28.3s 

on the acceleration attribute. He thus values improvements in the lower range 
of the scale more. Similar questions are asked for the upper half of the range 
of the acceleration attribute, i.e., from 29.5 to 31 seconds. We ask the client to 
assess x2 such that  he would be indifferent between ( 1 6 . 5 ; ~ ~ )  and (17.5; 29.5). 
Assume the client's answer is 2 2  = 30.0. Then we go on asking for 2 2  such that 
(16.5; x2) N (17.5; 30.0) and suppose we get x2 = 31. From all these answers, one 
understands that  the client values a gain in acceleration performance of 1 second 
between 31 and 30 and a gain of 0.2 second between e.g. between 28.9 and 28.7 in 
the same way, a ratio of 5 to  1. 

What can we do with this piece of information? We can build a piecewise 
linear approximation of the function u2 (defined on the range going from 28 to  31 
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seconds). Using an arbitrary unit of length on the vertical axis (the unit of length 
represents 1 000€ or more precisely the difference u1 (16.5) - u1(17.5)), we obtain 
the function u2 represented in figure 4.2; this is in fact a linear interpolation of 
nine points the first coordinates of which correspond to the answers given by the 
client to  seven indifference judgments; the second coordinates of these points have 
just to be equally spaced (by one unit of length). The position of the origin is 
arbitrary. We have extrapolated the line from 28.1 to 28 (thinner piece of line). 
Note that function ug is decreasing, since smaller is better with the measure chosen 
for evaluating the acceleration. 

28.0 28.5 29.0 29.5 30.0 30.5 31.0 
Figure 4.2: Piecewise linear interpolation of the marginal value function uz on the 
acceleration attribute. 

To determine u3, uq and us, we search successively, in the same way as for 
acceleration, for intervals on the pick up, brakes and road holding scales that 
would compensate exactly the cost interval (16.5; 17.5) in terms of preference. 

Finally, we have to do the same recoding for the cost itself. We fix an interval 
for instance on the acceleration scale, say [29.2; 29.51. We already know the answer 
to one question: (17.5;29.2) is indifferent to (x1,29.5) when x l  = 16.5. We then 
ask the client, which level xl  on the cost scale would leave him indifferent between 
(16.5; 29.2) and (x1,29.5). A cost lower than 16500E is expected and we use this 
in the next question, and so on. We might end up, for instance, with the curve 
shown in figure 4.3. Looking at this curve indicates that the client is inclined to 
pay more for the same improvement on the acceleration attribute for a car priced 
in the lower part of the cost range than for one priced in the higher part. Plausibly, 
with the limited budget of a student, Thierry can reasonably spend up to 17 500€ 
on buying a car; paying more would imply restrictions on other expenses. Suppose 
we have built piecewise linear approximations of ul to us in this way. If we have 
chosen the same unit to represent intervals equivalent to ul(16.5) - ul(17.5) on all 
vertical axes, all that remains is to add up these functions to obtain a piecewise 
linear approximation of u; ranking in turn the alternatives according to their 
decreasing value of u (formula (4.1)) yields the preference (or an approximation 
of it). For the sake of illustration, we show the additive value function computed 

In fact, these values have been determined by means of another elicitation method; details 
are provided in Bouyssou et al. (2000, ch. 6). 
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13 14 15 16 17 18 19 20 21 
Figure 4.3: Piecewise linear interpolation of the marginal value function u2 on the 
cost attribute. 

for each of the 14 cars selected as alternatives by Thierry in table 4.2. Ranking the 
cars in decreasing order of the value function yields Thierry's preference relation 
2 on the set of alternatives. This preference is a weak order; its equivalence 
classes are labelled by their rank in the table. If we admit that the precision of 
the indifference judgments made by the client is absolute, there are no ties in this 
ranking. 

Cars Value u Rank 
,Peugeot 3091 16 0.85 1 
Nissan Sunny 0.75 2 
Honda Civic 0.66 3 
Peugeot 309 0.65 4 
Renault 19 0.61 5 
Ope1 Astra 0.55 6 
Mitsubishi Colt 0.54 7 
Mazda 323 0.53 8 
Fiat Tipo 0.51 9 
Toyota Corolla 0.50 10 
Mitsubishi Galant 0.48 11 
Alfa 33 0.47 12 
Ford Escort 0.32 13 
R 21 0.16 14 

Table 4.2: Ranking of the cars in decreasing order of the value function u. 

Remark 4.3.3 
As just outlined, the construction of an additive representation incorporates the 
client's preference in the ui's; one can thus interpret the uils as the set of criteria H 
of the evaluation model (A,  {D, I ) ,  H,U,  R) (see section 2.3.3). The synthesis of 
the various criteria into global preferential information, here the preference relation 
2 ,  decomposes in two steps that can be interpreted as constituting the set R of 
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"operators" in the evaluation model. First the criteria (i.e., the ui functions) 
are summed up, yielding a numerical representation u of the preference; then 
this representation is used according to model (4.1) to determine the preference 
relation k. Note that the sole significance of the function u is to be a numerical 
representation of the preference relation; larger or smaller differences u(x) - u(y) 
may not, in principle, be interpreted as reflecting larger or smaller differences in 
preference intensities between the alternatives x and y. We will come back to this 
point in section 4.3.9 below. 

t x ,  

The construction of an additive representation shows the following impor- 
8 tant features: 

the representations .ui of the marginal preferences ki are built jointly, 
using one of the dimensions (here the cost) as reference dimension; 

the elicitation process transforms the dimensions (attributes) into crite- 
ria, incorporating the client's preference into the model; 

comparing differences u(x) - u(y) is meaningless; in the additive value 
function model, these differences do not, in general, model preference 
intensity. 

Tradeoffs or substitution rates 

An interesting feature of the form (4.5) of the additive model is that it allows 
us to give a precise meaning to the intuitively appealing notion of "importance 
of the criteria"; in this model, this notion can be represented by the "weights" 
ki, provided that the vi's are normalised in such a way that their maximum is 1 
and their minimum is 0, as was assumed in section 4.3.2. The "weights" ki in 
model (4.5), can be interpreted as substitution rates or tradeoffs. Consider two 
alternatives x and y that share all levels except those on two dimensions i and j ,  
i.e., x = ( ~ ~ , x j , a - { ~ , ~ } )  and y = (yi, yj,a-{i,jl), where denotes a vector 
of dimension n - 2, the coordinates of which are those of alternative a except for 
dimensions i and j ;  suppose that these alternatives are indifferent, implying that 
u(x) = ~ ( y ) ;  using the form (4.5), after having cancelled the terms klvl(al) for 
1 # i, j that appear on both sides of the equality we obtain: 

from which we get: 

In other words, indifference between x and y means that the "difference of pref- 
erence" between the levels xi and yi on attribute i is exactly balanced by the 
"difference of preference" between the levels yj and x j  on attribute j ,  the alter- 
natives being tied on all other attributes (ceteris paribus reasoning again!). If we 
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know that vi(xi) -vi(yi) correctly represents the preference differences on attribute 
i ,  i.e. that the difference of preference between the levels xi and yi is at  least as 
large as the difference of preference between any two levels zi and ki if and only if 
Vi(xi) - Vi(yi) 1 vi(zi) - vi(ki), and if the same is true for vj on attribute j ,  then 
the coefficients ki and Icj  allow us to compare "inter-attribute" preference differ- 
ences. Equation (4.11) tells us that the difference vj(yj) - vj(xj) can be balanced 
by 

ki - X (%(xi) - v i ( ~ i ) )  (4.12) 
Icj 

the ratio k i / 4  being the substitution rate between the differences in marginal 
values. 

Let us assume that the conditions of uniqueness of the ui's up to a positive 
affine transformation are fulfilled. If model (4.1) is considered instead of model 
(4.5)) we may obtain a representation in the latter, as shown in section 4.3.2, by 
applying the transformation (4.2), i.e., computing vi(xi) = (ui(xi) -gi)/(iCii - gi).  
Substituting vi in equation (4.12) yields 

When using model (4.1)) the ratio ki/kj can still be computed on the basis of a 
ratio of differences (here involving ui and uj), except that the differences have to 
be normalised by the range of the corresponding function (ui or uj). 

Example 4.2 
Consider for instance the "Buying a sports car" example (described on page 134) 
and suppose that the ui's are unique up to a positive affine transformation. If we 
accept that the curves in figures 4.3 and 4.2 correctly represent the marginal value 
functions u1 and u2 on cost and acceleration, respectively, then we may estimate 
the ratio kl/k2 by substituting ui by kiwi, for i = 1,2, in the following equation 
(see (4.9)): 

ul(16.5) + u2(29.2) = ul(17.5) + ~ ~ ( 2 8 . 9 ) .  

Using (4.13)) we obtain: 

In figure 4.3, we see that El = 10 units and gl = 0; in figure 4.2, we obtain E2 = 8 
units and g2 = 0; remember that the units are the same on both attributes (due 
to the elicitation procedure) and we have determined that they are equal to the 
differences ~ ~ ( 2 8 . 9 )  - u2(29.2) = ul(16.5) - ul(17.5). Hence, 

What does this mean? If we normalise the ranges of variation of the marginal value 
functions on the two dimensions in order for the normalised values to vary between 
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0 and 1, then the substitution rate between one unit on the normalised range of 
the cost criterion is worth 1.2 units on the normalised range of the acceleration 
criterion. 0 

4.3.9 The measurement of global preference differences 

Consider a preference k for which there exists a unique additive representation 
(up to a positive affine transformation of the ui's) within model (4.1). Through 
an elicitation proceduresuch as, for instance, the standard sequence method 
outlined in section 4.3.7-one obtains a value function u that represents k.  Let us 
assume that Thierry's preference in the case outlined above fulfils the hypotheses 
of model (4.1) and that  a value function u representing Thierry's preference in 
the model has been correctly elicited. Note that this function represents Thierry's 
preference not only for the cars in the set of selected alternatives, but also for 
the whole Cartesian product X determined by the ranges of the attributes (see 
table 4.1). In other words, we know the u-value of any 'Lcar"-real or fictitious- 
described by a vector (XI, xz, 23, xd, xs), with xi varying in the ranges specified in 
table 4.1. 

Under the above conditions, as we have seen in remark 4.3.1, the normalised 
additive representation is uniquely determined. In other words, if we set the value 
u of the ideal6 car 3 at  1 and the value of the anti-ideal car g at 0, then there is 
only one additive value function representing k.  The u-function in table 4.2 has 
been set using these constraints. 

It is a common mistake to interpret the uniqueness of the additive value func- 
tion representing k as implying that the size of the difference u(x) - u(y) can be 
interpreted as measuring a preference difference and that such differences can be 
compared meaningfully. In the "Buying a sports car" example, the difference in 
the values of the two top-ranked cars, the Peugeot 309116 and the Nissan Sunny, is 
0.85 - 0.75 = 0.10; the difference in the values associated to the cars ranked in 8th 
and 9th positions, the Mazda 323 and the Fiat Tipo, is equal to 0.53 -0.51 = 0.02. 
Comparing these differences does not make any sense because we did not ask the 
client any information on global preference differences. One cannot meaningfully 
say something like "the difference (of preference) between the former two cars is 
five times the difference between the latter two cars". I t  cannot even be said that 
the preference of the Peugeot to  the Nissan is stronger than the preference of the 
Mazda to  the Fiat. Differences in u-values, although u is numeric and unique, 
may not be meaningfully related with "strength of preference" or any analogous 
concept. 

We emphasise here that the only legitimate interpretation of u is ordinal. The 
only conclusion we can meaningfully draw from the fact that  the u-value attached 
to  the Peugeot is 0.85 and that  attached to the Nissan is 0.75, is that the Peugeot 
is preferred to  the Nissan. And that's all! The uniqueness result discussed above 
only concerns additive representations of 2. There are clearly many other value 

The ideal car is the fictitious car that realises the best performance level on all attributes, 
in the range specified in table 4.1: it is a car that costs 130008, accelerates in 28 seconds, etc. 
The anti-ideal car is defined symmetrically. 
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functions-assigning 1 to the ideal car and 0 to the anti-ideal-that can represent 
the preference 2 equally well, but the only one that is normalised and decomposes 
into a sum of marginal value functions ui is u. In table 4.3, apart from the 
additive value function we already know, we give an equivalent representation of 
the preference using a value function v. We see that the "difference" between the 
Peugeot and the Nissan is 0.01 according to v, while it is 0.10 between Mazda and 
Fiat. Any increasing transformation of the [O, 11 interval into itself provides an 
alternative representation of the preference k when applied to u. Does the above 

Cars Value u Value v 
Peugeot 309116 0.85 0.60 
Nissan Sunny 0.75 0.59 
Mazda 323 0.53 0.58 
Fiat Tipo 0.51 0.48 
Ideal 1.00 1.00 
Anti-ideal 0.00 0.00 

Table 4.3: Two equivalent representations of the preference; u is the additive one. 

analysis imply that comparing preference differences is meaningless? By no means! 
But the model one uses must be speczfically designed for that purpose. Difference- 
or strength-of preference is a different notion from that of preference. Formally, 
it is a relation, that we shall denote by L*, defined on the pairs of alternatives, 
i.e. on X2.  It enables to compare one pair of alternatives (x, y) to another pair 
(z, w). There are various ways of interpreting the relation resulting from such a 
comparison. One reads (x, y) 2* (z, w) as "the preference difference between x 
and y is larger (or not smaller) than the preference difference between z and w". 
Another way of expressing the same idea is in terms of strength of preference: the 
preference of x to y is at least as strong as the preference of z to w. 

In the comparison of the four cars discussed above, if we want to make sense 
when comparing preference differences or talking in terms of strength of preference, 
we need a value function, say v, that meets the following two requirements: for all 
alternatives x, y, z, w E X ,  

and 
(x, Y) k* ( z ,  w) @ 4 x 1  - V(Y) 2 v(z) - 4 ~ ) .  (4.15) 

Representations satisfying these two conditions were studied in the literature; con- 
ditions have been provided, in particular, for the existence (and uniqueness) of a 
value function v that satisfies (4.14) and (4.15) (see Krantz et al., 1971, ch. 4 and 
Fishburn, 1970, ch. 6). 

In these models, the value function does not, in general, decompose additively. 
The conditions to be imposed on the pair of primitive relations ( 2 ,  k* )  so that 
they admit a representation as described above, with a function v that is also an 
additive value function, are of course more restrictive than those just guaranteeing 
a representation of the sole relation k with an additive value function. To be 
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more specific, assume that the client not only has a preference on the set X of 
alternatives, but is also able to compare preference differences between all pairs of 
alternatives in X ,  yielding a relation on X2. If the pair ( k ,  k * )  satisfies the axioms 
that guarantee the existence of an additive value function v representing 2, and at 
the same time guarantee that differences in the values of v can be used to represent 
k* according with (4.15), then building v as proposed for instance in section 4.3.7 
will also yield a representation of k*. On the contrary, it may happen, if 2 and 
k* do not satisfy all the axioms of additive difference of preference measurement, 
that the preference 2 has a unique additive representation v according to (4.1) 
but that the relation k* comparing preference differences cannot be represented 
in accordance with (4.15) by differences of this function v. In this case, no other 
function v could satisfy the latter condition on the representation of preference 
differences and at  the same time, constitute an additive value model for k since the 
latter is unique. The additive model of preference differences is a very constrained 
one; axiomatic characterisations of this model have been obtained; the interested 
reader is referred to Dyer and Sarin (1979) and von Winterfeldt and Edwards 
(1986, chapter 9) on this issue. 

4.3.10 Insufficiency of classical conjoint measurement 

We now come back to the additive value model (4.1) and describe several examples 
showing that there are preferences that are both reasonable and do not satisfy the 
hypotheses for an additive representation. 

4.3.10.1 Example 1: Flexible CSP 

A solution to a Flexible Constraint Satisfaction Problem is assessed by a vector 
of n numbers that represent the degree to which each of the n constraints are 
satisfied; the degree of satisfaction is usually modelled as a number between 0 
and 1. For instance, in certain scheduling problems (Dubois, Fargier, and Prade, 
1995; Dubois and Fortemps, 1999), there may be an ideal range of time between 
the end of some tasks and the start of other; if more (or less) time elapses, the 
schedule is then less satisfactory; for each constraint of this type, the degree of 
satisfaction is equal to 1 if the corresponding slack time lies within the ideal range; 
it decreases outside this range; and outside a larger interval corresponding to the 
admissible delays between the end of a task and the beginning of another, the 
degree of satisfaction reaches 0. Usually, one considers that the scale on which 
the satisfaction degrees are assessed is ordinal (see chapter 3, section 3.4) and the 
same goes for all constraints: one may meaningfully compare degrees of satisfaction 
(saying for instance that one is higher than the other), but the difference between 
two degrees cannot be compared meaningfully to another difference; moreover, 
the degrees of satisfactions of two different constraints are commensurate: it is 
meaningful to say that a constraint is satisfied to a higher level than another 
one. A solution to such a scheduling problem is an assignment of a starting time 
to each task; comparing two solutions amounts to comparing their associated 
vectors of degrees of satisfaction. Usually in practice, a solution is evaluated using 
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its weakest aspect, i.e. the lowest degree of satisfaction i t  attains on the set of 
constraints. Clearly, the relation comparing the vectors of satisfaction degrees can 
be viewed as a relation k on the product set X = [0, 11,. In other words, vectors 
of satisfaction can be compared using the "min-score"; for x = (XI , .  . . , x,) and 
y = (yl,. . . , yn), where xi and yi respectively denote the degrees of satisfaction of 
constraint i for the two alternatives to  be compared, we have: 

x 2 y H min(x1, . . . , x,) 2 rnin(y1, . . . , y,) (4.16) 

Clearly, the relation comparing the vectors of degrees of satisfaction can be viewed 
as a relation on the product set X = [0, 11,. I t  is defined by means of the "minn- 
score instead of an additive value function as in model (4.1). Of course, it may 
occur that a preference relation can be defined using several different scores and 
one can not exclude a priori that the relation defined by (4.16) could also be rep- 
resented in model (4.1). This is however not the case, since this relation does not 
satisfy one of the necessary conditions stated above, namely the strong indepen- 
dence property: we can indeed transform an indifference into a strict preference 
by changing the common level of satisfaction that is achieved by two alternatives 
for the same constraint. This is shown with the following example. Suppose there 
are two constraints (n = 2) and x = (0.6,0.5), y = (0.6,0.7); one has y >. x, but 
lowering to  0.3, for instance, the common satisfaction level yields x' N y' (with 
x' = (0.3,0.5) and y' = (0.3,0.7)). I t  should be clear from this example that there 
are simple and well-motivated procedures the additive value function model is not 
able to encompass. 

4.3.10.2 Example  2: Non-transit ive preferences 

In the previous example, we described a procedure leading to  a preference that 
lacks the strong independence property. The other necessary condition for model 
(4.1), namely transitivity, may also fail to be satisfied by some reasonable prefer- 
ences. 

Let us just recall R. D. Luce's famous example (Luce, 1956) of the sugar in the 
cup of coffee: a person who likes to  drink coffee is indifferent between two cups of 
coffee that  differ by the adjunction of one grain of sugar; he normally would not 
be indifferent between a cup with no sugar and a cup containing one thousand 
grains of sugar; according to whether he likes drinking sugared coffee or not, he 
would definitely prefer the latter or the former. A long sequence of indifferent 
alternatives may thus result in a preference, contrary to the hypothesis of the 
additive value model, in which preferences are weak orders, hence transitive7. 

4.3.10.3 E x a m p l e  3: P R O M E T H E E  I1 a n d  t h e  addi t ive  value funct ion 
mode l  

There are preferences that can be represented within the additive value function 
model but: 

For further discussion of the transitivity of preference issue, mainly in the context of decision 
under risk, the reader is referred to  Fishburn (1991b). For counter-arguments against considering 
intransitive preferences, see (Luce, 2000, section 2.2). 
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the model is more specific than (4.1): the ui functions have special charac- 
teristics; 

using model (4.1) offers no clues for eliciting the ui's and constructing the 
global preference. 

Consider for example the PROMETHEE I1 method (Brans and Vincke, 1985). I t  is 
usually presented as a method that relies on pairwise comparisons of alternatives, 
as in the Condorcet method. It is nevertheless amenable to a representation within 
the additive value model. 

PROMETHEE I1 starts by comparing alternatives, in a pairwise manner, with 
respect to each attribute i. Consider two alternatives x (resp. y) characterised by 
their description (XI , .  . . , x i , .  . . ,x,) (resp. (yl, . . . , yi,. . . , y,)) on t h e n  attributes; 
we assume that xi, yi are numbers, usually obtained as evaluations gi(x), gi(y) of 
the alternatives on attribute i. The intensity Si(x, y) of the preference of x to  y 
on attribute i is a nondecreasing function Pi of the difference xi - yi: 

When the difference xi - yi is negative, it is assumed that Si(x, y) = 0: the 
intensity of the preference of x over y on attribute i is zero. The global intensity 
of the preference of x to y is described using a weighted sum of the Si functions: 

where wi is the weight associated to attribute i. 
One can view S as a valued relation assigning the value S(x,  y) to the pair 

(x, y) for all x, y 6 A. In a further step, the alternatives are evaluated using their 
score, computed as the "net flow" @ a t  each node, i.e., for alternative x,  @(x) is 
the difference of the sum of the values of all arcs emanating from x minus the sum 
of the values of all arcs entering x: 

This score is then used to determine that x is preferred to y if @(x) 2 @(y). This 
is the customary presentation of PROMETHEE I1 (see, e.g., Vincke, 1992b, page 
74). 

By using equations (4.19), it is easy to rewrite @(x) as follows: 

The latter formula can be seen as defining an additive value model in which the 
marginal value functions ui have the following particular form: 
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The computation of function ui that models the influence of criterion i depends 
on the other alternatives (as in the Borda method; see section 4.2.2 and, below, 
section 5.2.1.1 for a discussion of a property called "(in)dependence of irrelevant 
alternatives"). Equation (4.21) suggests that the preference can be constructed 
through modelling the value of any echelon xi as the sum of its "advantages" and 
"disadvantages" for each dimension , respectively coded by Si(x, y) and Si(y, x) 
(remember that Si(x,y) = 0 whenever yi > xi). Model (4.1) makes no mention 
of intuitively interpretable concepts that would suggest that ui could be viewed 
as a superposition (using a sum) of more elementary elements. The basic notion 
emerging from model (4.1) is the marginal preference ki defined by (4.7); the basic 
hint provided by the model for building the preference, is that one may construct 
ui as a numerical representation of ki. In section 6.6.2, it will be shown that the 
valued version of a family of models studied in section 6.4 offers better insight into 
the process of constructing a preference according to the PROMETHEE I1 model. 

This example suggests that one of the virtues of a formal model could be 
pedantically called its "hermeneutic power", i.e. the fact that it facilitates the 
elicitation process; of course this power depends on the context of the problem 
situation, including the cultural and intellectual background of the client. 

4.3.1 1 Conclusion 

We hope to have shown: 

that the additive value function model is not appropriate for all possible 
evaluation problems; 

that one virtue of the models that provide a preference representation (i.e. 
models in which preference can be described using a condition of the type 
x 2 y H . . . ) is to support the process of constructing of the preference by: 

- implying intuitively interpretable concepts (such as that of marginal 
preference), 

- establishing a link between these concepts and elements of the repre- 
sentation built in the model (such a s  the link between the marginal 
preferences and the marginal value functions ui). 

In chapter 6 we present more general conjoint measurement models (which provide 
more general representations of the preference); the models proposed all induce 
concepts-usually different from marginal preferences-that can support the con- 
struction or elicitation process. 

4.4 General comment on the status of the para- 
meters 

Many aggregation methods require some parameters: weig.hts, importance coeffi- 
cients, indifference thresholds, concordance thresholds, veto thresholds, and so on. 



148 CHAPTER 4. AGGREGATION-OVERTURE 

These parameters are very important; they allow us to adapt or modulate to  some 
extent a rigid mathematical model, taking the values or preferences of the client 
into account. Thanks to the parameters, we can hope that the outcome of the 
aggregation procedure will make sense to the client. Indeed, using the weighted 
sum, ELECTRE, PROMETHEE 11, AHP, . . .without weights (or all weights be- 
ing equal) is bound to fail. There is very little chance that a client will trust the 
outcome of such an aggregation procedure because it is not faithful to his values, 
preferences or beliefs. I t  does not reflect his subjective perception of the situation. 
In this section, we will examine a few popular methods used to set parameters. 
We will then present a general approach that can help us set the parameters in a 
meaningful way. We will often speak of weights although not all parameters are 
weights. But almost everything we will say about weights can be transposed to 
other types of parameters. 

4.4.1 Direct rating 

In many applications, the analyst just asks the client to give numerical values to  
the weights. These numbers are then eventually normalised, in order for them to 
add up to one, and they are used in an aggregation procedure. What we would like 
to show now, is that such weights should probably not be used in an aggregation 
procedure. Not because the client gives wrong answers to  the question raised by 
the analyst or because the weights given by the client are only approximations 
of the "true" weights, but because the analyst's question is very ambiguous. We 
know that weights (sometimes called importance coefficients) do not play the same 
role in different aggregation procedures (Bouyssou et  al., 2000; Roy and Mousseau, 
1996). Furthermore, in most aggregation procedures, the role of the weights is not 
well understood. So, how can we hope that  the weights given by the client can be 
adapted to  the aggregation procedure to  be used thereafter? 

Besides, even if we use an aggregation procedure in which the weights have a 
simple and well-understood role (say the weighted sum), the weights do not have 
any intrinsic numerical value in a given application. I t  is well known that the 
value of the weights (using the weighted sum) must depend on the units used for 
the different criteria. For example, if we already have the weights, if a dimension 
is measured in metres and we change it t o  centimetres, then the weight of that 
criterion needs to  be divided by 100. Suppose now that we do not know the weights 
and that we ask the client for them. Will he give a weight 100 times smaller if we 
express the evaluations in centimetres instead of metres? Probably not. 

Consider now an aggregation procedure where the units of measurement play 
no role: absolute majority. Each criterion has a weight and the weights add up 
to  1. An alternative a is globally a t  least as good as b if the total weight of the 
criteria with a ki b is not smaller than 112. Suppose we decided to use three 
criteria in a given problem formulation and we ask the client for the weights he 
wishes to use. Feeling that criterion 1 is slightly more important than criterion 2 
but much more important than criterion 3, he gives respective weights 0.45, 0.40 
and 0.15. Note that no criterion is strong enough to  attain the threshold 0.5 on 
its own. Note also that any coalition of two criteria is strong enough to attain 
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the threshold. So, the three criteria play exactly the same role; the real weight or 
importance (game theorists speak of power index) of the three criteria are 1/3,1/3 
and 113. They have the same power despite the very different weights given by the 
client. When the number of criteria increases, computing the power of a criterion 
becomes very difficult and we cannot expect a client to  assign weights such that 
the powers reflect his beliefs. 

Besides, if we used simple majority-a is globally a t  least as good as b if the 
total weight of the criteria with a ki b is not smaller than the total weight of the 
criteria with b ki a-the result would be very different, using the same weights. 
Criterion 1 would have more power than criterion 2 and criterion 2 would have 
more power than criterion 3. Yet the odds are small that a client assign different 
weights if we use simple instead of absolute majority. 

In ELECTRE I, the weights are independent of the units of measurement, 
but are not independent of the other parameters of the methods (the various 
thresholds). We cannot expect that  the client to  assign weights that  are consistent 
with the other parameters, the aggregation procedure and his preferences. 

So, even if this has not been empirically proven, it seems extremely plausi- 
ble that the weights spontaneously given by a client are not reliable, and it is 
not a matter of precision. This cannot be solved by a sensitivity analysis. The 
weights can differ by several orders of magnitude from weights that  we would 
obtain through a sound procedure (an example of such a procedure is given in 
section 4.4.5). 

4.4.2 Simos' cards method 

In the method proposed by J. Simos (see Roy and Figueira, 2002; Simos, 1990), 
the client receives n cards; The name of one dimension is written on each one. The 
first task is for the client to rank these cards from the least to  the most important 
criterion. Ties are allowed. The client can then insert one or more white cards 
between the previously ranked cards. The number of white cards between two 
criteria indicates the difference in importance between these criteria. The more 
white cards, the larger the difference. Simos then suggests a simple algorithm that 
computes weights based on the cards ranking given by the client. 

In this method, the analyst does not ask the client for the numerical values 
of the weights but he nevertheless asks him to  reason about the weights, to  make 
statements about the weights. We are convinced that this does not make sense. 
This would make sense only if the client had even some vague or imprecise knowl- 
edge about the weights to  be used with a particular procedure. I t  would help us to  
set precise numerical values without asking for these values. But even just asking 
the client to rank the criteria by importance is in fact too much. With the weighted 
sum, there is no such thing as an intrinsic ranking of the criteria: it depends on 
the units. Suppose we have two criteria and the performances on those criteria are 
expressed in metres and Euros. Suppose also we have found weights that perfectly 
reflect the client's preferences: 0.3 and 0.7. I t  seems, therefore, that the second 
criterion is more important than the first. If we now express the performances on 
the first dimension in kilometres, we must multiply the weight of the first criterion 
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by 1000. The weights are then 300 and 0.7. If we want to  normalise them, we 
find 0.998 and 0.002. I t  now seems that the first criterion is much more important 
than the second . All this is of course spurious. 

With ELECTRE, the value of the weights is not independent of the other 
parameters (concordance, discordance, indifference and preference thresholds) and 
the role of the weights is not completely clear. With some variants of ELECTRE 
(such as ELECTRE 111) or when an exploitation procedure is used, the role of 
the weights can even become obscure (see also Bouyssou et  al., 2000, ch. 6). We 
illustrate this with an example using a simplified version of ELECTRE, namely 
qualified majority. Suppose we have three criteria and we want to  use qualified 
majority, i.e. absolute majority with a threshold possibly different to 112. The 
client thinks that  criterion 1 is more important than criterion 2, which itself is 
more important than criterion 3. We can represent this using the weights 0.45,0.40 
and 0.15. If we use a threshold equal to 112, we have seen in section 4.4.1 that 
the three criteria have the same power, namely 113. But if we use a threshold 
of 0.6, we see that criterion 1 has more power than criteria 2 and 3 because the 
coalition of criteria 2 and 3 is not strong enough to  attain the threshold, while the 
other coalitions of two criteria are strong enough. If we use a threshold of 0.7, we 
see that criteria 1 and 2 have the same power but more power than criterion 3 
because the only strong enough coalition of two criteria is the coalition of 1 and 
2. In these three examples, we see that  although the client uses the same ranking 
of the criteria, we obtain three different rankings of the power of the criteria. 
And, if we were to  use other weights such as 0.45, 0.30 and 0.25 (reflecting the 
same ranking of the criteria), we would obtain other orderings of the power of the 
criteria. The client can certainly not anticipate this and, so, we cannot expect him 
to  provide us with the correct ranking of the criteria. Note that  if we consider the 
possibility of using other kinds of majorities (like simple majority), the situation 
worsens. 

4.4.3 Ranking the criteria 

The goal of the designers of MELCHIOR (Leclercq, 1984), ORESTE (Roubens, 
1982) and QUALIFLEX (Paelinck, 1978) was to  avoid asking the client for numer- 
ical weights because it is too difficult. So, they decided to  just ask for a ranking of 
the criteria, from the most to  the least important. But, in fact, this is not easier. 

No method is used for eliciting this ranking. The analyst just asks the client 
to provide a ranking of the criteria. For the reasons presented in the previous 
section on Simos' method, we think that a ranking of the criteria given by a client 
is no more reliable than numerical values, because, we insist, it is not a problem 
of precision. Several methods can be thought of that only use a ranking of the 
criteria but that  lead to  different results. So, the meaning of the relation "more 
important than" can vary from one aggregation procedure to another. It has no 
meaning per se and, even if the client has the impression that he understands 
it, we can never be sure that his concept of the relation "more important than" 
coincides with the one to be used with a particular aggregation method. So, if no 
absolute ranking exists, how can we expect the client to  provide us with the right 
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one, adapted to his problem, to  the aggregation procedure to  be used, to  the units 
and scales of the different criteria and to  the other parameters used in the chosen 
method? 

4.4.4 Analytic Hierarchy Process (AHP) 

The technique used in AHP (Saaty, 1980), to  set the value of the weights is very 
sophisticated (see section 4.5.1). I t  also avoids asking the client for numerical 
values, but it fails for the same reason as the previous methods. I t  asks the client 
to  compare the importance of the criteria. But the concept of importance, even in 
its relative form (more important than), is so ill-defined that the answers given by 
the client and used with a particular aggregation procedure cannot reliably reflect 
his value system. See Belton and Gear (1983) and Dyer (1990). 

4.4.5 A classical technique in MAVT 

In this subsection, we present an interesting technique, which is classical in MAVT, 
but that  can easily be adapted to  other parameters in other aggregation proce- 
dures. The reader should therefore not understand this subsection as an argument 
in favour of MAVT and against other methods. Instead, it should be a source of 
inspiration for a sound elicitation of parameters using other methods (this will be 
developed in the next section). 

Suppose a client and an analyst have decided to use an additive model, i.e., 
given the performances gl (a), . . . , gn (a) and gl (b), . . . , gn(b) of two alternatives a 
and b, they will consider a ,  globally a t  least as good as b if and only if 

where ki is the weight associated to  dimension i and vi is the value function 
corresponding to dimension i (note the similarity with equation (4.5); this will be 
discussed a t  the end of this subsection, on p.153). Two kinds of parameters thus 
need be determined: the marginal value functions and the weights. Suppose they 
used the midvalue splitting technique (see Keeney and Raiffa, 1976, section 3.4.7) to  
elicit the n value functions. We will not say much about this technique (though it is 
quite interesting), but we will focus on the next step-the elicitation of the weights 
or scaling constants-because these parameters are in some way comparable to 
those discussed in the previous sections. 

After the midvalue splitting technique, the client has n value functions such 
that vi(gi) = 0 and vi(gi) = 1, where gi is the worst performance and gi is the 
best performance on dimension i. The range of each value function is thus [ O , l ] .  
If we then want to  additively combine these values, we must use some weights, 
as in (4.22). Indeed, even if the numerical difference in value between g .  and 
gi is the same as between g .  and ijj (it is equal to  one), these difference;' may 

-3 
represent very different things for the client. The difference between gi and gi is 
perhaps perceived as much bigger than the difference between g .  and gj .  So, we 

-3 
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need weights or scaling constants or substitution rates to  make these differences 
comparable. 

Keeney and Raiffa (1976) suggest to  use the following technique. For the 
sake of clarity, suppose there are only three dimensions. Present the following 
three fictitious alternatives to  the client: a = (g1,g2,g3), b = (g1,g2,&) and 
c = (g1,g2,g3) where (x, y, z) stands for an alternative with x,  y 
and z on criteria 1, 2 and 3. Then ask the client to rank them from best to  worst. 
Suppose his answer is b t- c t- a.  From this, we can conclude that  

or, using (4.22)) 

We present then the following pair of fictitious alternatives to  the client: d = 

(gl, gZ, g3) and e = (gl, 2 2 ,  gJ where 2 2  stands for an unspecified performance on 
criterion 2, with the constraint that g, 5 x2 5 g2. The client must then say for 
which value of 2 2  he is indifferent between d and e. We then again write (4.22): 

that is, k3 = k2v2(x2). Because the value functions vi have been previously deter- 
mined by the midvalue splitting technique, we know the value of vz(x2). Let us 
call it p. So, k3 = k2p .  This means that a difference of one unit on criterion 3 is 
worth a difference of p units on criterion 2. 

If we now present the pair d' = (gl, g2, g3) and e' = (gl, xh, g3) where x; 
stands for an unspecified performance on criterion 2, we can find a value v such 
that kl = k2v in a similar way. This means that  one unit of value on criterion 1 is 
worth v units on criterion 2. We can then choose any value for k2 and the other 
weights are automatically determined by the relations k3 = k2p and k1 = k2v. In 
particular, we can arrange to have EL1 ki = 1 but this is not necessary. If there 
are more criteria, the same technique can be generalised. 

The interest of this technique is that all questions we ask to the client are 
formulated in his language and are directly related to his problem, not to a model: 
we only ask him to  compare alternatives. We never ask for the value of a parameter. 
We do not even mention parameters. Besides, we are sure that the parameters 
we obtain are to some extent (we do not believe in a perfect model) compatible 
with the client's preferences: if we use (4.22) with the obtained parameters and 
the alternatives a ,  b, c, d, e, d' or e', we necessarily obtain the preferences that were 
previously stated by the client. If we do the same with other alternatives, we are 
no longer sure that the obtained preferences will coincide with those of the client. 
I t  will only be so if the chosen aggregation method is well-adapted to  the client's 
preferences. This is not due to an incorrect choice of the weights. 

But if we use (4.22) with the parameters elicited through a direct rating pro- 
cedure, we are not even certain that the resulting preferences will coincide with 
the client's preference for even one pair of alternatives. 
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In section 4.3, we presented the additive model (4.1) and showed that it had 
the equivalent alternative formulation (4.5). The latter form corresponds exactly 
to model (4.22) above, provided we identify gi(a) and xi. Despite the fact that 
models (4.1) and (4.5) are equivalent, their different formulations suggest different 
elicitation procedures for their parameters. This is why we presented another 
elicitation procedure in section 4.3. Ideally, both procedures should lead to the 
same result, i.e. to the same preference relation. 

4.4.6 General approach 

The technique used in the previous section to elicit the substitution rates or weights 
can be adapted to many different parameters and aggregation procedures. For 
example, Mousseau, Figueira, and Naux (2001) and Mousseau and Dias (2004) 
have proposed a similar technique for eliciting the parameters of a variant of 
ELECTRE I devoted to the problem of sorting. The same reasoning also lies 
at the heart of the aggregation-disaggregation approach (see Jacquet-Lagrkze and 
Siskos, 2001, which is the editorial of a special issue on preference disaggregation) 
and in particular the UTA method implemented in PREFCALC (see Jacquet- 
Lagrhze and Siskos, 1982 and also, to some extent Mousseau et al., 2003). Koksalan 
and Ulu (2003) use this approach for setting the parameters of a linear utility 
model in a sorting problem. It is also possible to elicit preference thresholds (for 
example in ELECTRE) by asking the client to compare some pairs of alternatives 
instead of asking for the threshold directly, this whether one criterion or several 
are considered (see chapter 3). 

For any aggregation procedure involving parameters, if we present a pair of 
Q alternatives to the client and if he tells us which one he prefers, we can always 
&2 draw some conclusion about the parameters (all of them, not just the weights) 
@ of the aggregation method we want to use. This conclusion is generally under 

the form of a constraint. When we repeat this process and present more and 8 more pairs of alternatives, we obtain more and more constraints. By combining 
@ these constraints, we can eventually isolate a set (hopefully not too large) 
Q containing the suitable parameters. Note that the representation theorems 
8 obtained in the framework of measurement theory can help us determine the 

questions we must ask to arrive at unique parameters or, more realistically, at 8 a small set of parameters as fast as possible (i.e. with a minimal number of 
questions). 

This can sometimes be difficult. It may require the use of complex algorithms. 
And these algorithms are yet to be developed for some aggregation procedures. 
But we are convinced that it is the best way to arrive at parameters that make 
sense with respect to a particular aggregation procedure. 

The difficulty is not only computational. Sometimes, the client will be able 
to compare only a few pairs of alternatives. He will be undecided about the 
other pairs. So, we might have too few constraints and not be able to set, even 
approximately, the value of the parameters. 



154 CHAPTER 4. AGGREGATION-OVERTURE 

Sometimes, we will need to ask hundreds of questions in order to have enough 
constraints, but this will not be possible due to lack of time. We will therefore 
need to cope with poor information. Some hypotheses will eventually help narrow 
the set of possible parameters. We could, for example, invoke Laplace's principle 
of insufficient reason or, more generally, any means for setting default parameter 
values. A sensitivity analysis or a robustness approach (see chapter 7, section 7.5) 
might prove helpful in these cases. 

Sometimes, in order to gain more information with less questions, we might be 
tempted to present pairs of fictitious alternatives, with a particular structure (as 
in the previous section). But the client must then compare alternatives that  he 
does not know and, possibly, alternatives that are not realistic. So, his answers 
become less reliable. We must therefore balance the need for specially structured 
alternatives that  bring a lot of information and the need for reliable answers. 

In the following two chapters, we discuss many aggregation procedures involv- 
ing parameters. For some of them, we mention a technique that  can be used for 
eliciting these parameters, which always follows the approach presented in this sec- 
tion. For the other aggregation procedures (not presented in this book or for which 
we do not present an elicitation technique), the same approach can and should al- 
ways be used. It does not yield the "right" or "correct" parameters (which we 
cannot define) but it guarantees parameters that make sense. 

4.4.7 Laplace's principle of insufficient reason and other 
principles 

Suppose we are in the middle of a decision aiding process. We have been through 
the formulation phase, we have constructed an evaluation model (see chapter 2, 
section 2.3.3) and we have decided to use a particular aggregation method involving 
weights, but we have no idea what the weights should be. I t  is then tempting to  
invoke Laplace's principle of insufficient reason and take all weights as being equal. 
In a constructive approach (see chapter 2, p. 26), we can justify this by saying that 
the client's preferences do not exist a priori, that they are constructed during the 
decision aiding process, through the interaction, the discourse between the client 
and the analyst. So, if the client and the analyst agree on the relevance of Laplace's 
principle, then it is fine. 

But we must not forget that in many cases, the client has some a priori prefer- 
ences. They are of course incomplete and some are not stable (they might change 
during the decision aiding process). But often, there are probably some elements 
of preference that exist and that are stable. If we do not respect these preferences, 
we should wonder what the client's role is in such a process and we should not be 
surprised if the client does not accept our recommendations. So, in a constructive 
approach, we have to build the preferences around some elements that already 
exist. 

Let us come back to our example. Taking all weights as being equal amounts 
precisely to not take the client's preferences into account. This will yield a pref- 
erence relation that is completely (and in some sense artificially) constructed. By 
chance, it might contain the pairs that existed in the preferences of the client. The 
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client might then accept the outcome of the aggregation and the recommendation 
based on it. But the outcome can also contain none or only few of the pairs that 
existed in the preferences of the client. There is then a risk that he accepts a 
recommendation based on a constructed preference relation that has nothing to 
do with his preferences. 

We therefore think that the use of Laplace's principle is not to be recommended 
in our example and in many other cases. If we do not know which weights to use, 
we may not guess or toss a coin. Our duty, as analysts, is to take one of the 
following two routes: 

to honestly acknowledge our ignorance and use only the available informa- 
tion. For example, to use the dominance relation or a robustness approach 
(see chapter 7, section 7.5). 

to work harder and search for the information that can help us set the 
weights. There are techniques for that. We presented some of them in 
connection with some aggregation procedures. We also presented a general 
approach (section 4.4) that can be used with any aggregation procedure. 

This discussion is not limited to the use of Laplace's principle for setting weights. 
It holds for all parameters (thresholds, importance of criteria, value functions, . . . ). 
It also holds for other, somehow related, principles that can help set parameters, 
like Jaynes' maximum entropy or minimum information principle ', Wald's max- 
imin criterion or Savage's minimax regret criteriong (see Luce and Raiffa, 1957). 
This also holds for the principle lying at the heart of the Regime method (Hin- 
loopen, Nijkkamp, and Rietveld, 1983). In this method, when the performances 
of the alternatives on a criterion are ordinal, it is assumed that they can be repre- 
sented by a value function but, because this value function is unknown, all value 
functions compatible with the ordering of the performances are used in the com- 
putation of some indexes. Yet, if the client has some preferences-and we believe 
that this is often the case-there are value functions that better represent his 
preferences than others and there are techniques to construct such functions. 

Now, let us be more pragmatic. We know, that in almost all decision aiding 
processes, it will not be possible to find a unique value for the weights or the other 
parameters, even if we use the best techniques and devote a lot of time: these 
techniques will probably give us intervals for the weights or at  least narrow the 
range of the possible values. What can we do then to set the weights within the 
limits of our techniques? Toss a coin? This is hardly recommendable. The best 
solution is probably to try to find robust alternatives, i.e. alternatives that are 
good, even if not the best, under all possible scenarios (see chapter 7, section 7.5). 
But this might take too long or be difficult in some circumstances. We could 

See Jaynes (2003). Fine (1973, chapter 6) shows that the use of information-theoretic prin- 
ciples like maximum entropy is an attempt to "enlarge the domain of classical probability to 
include unequal probability assignments"; it thus clearly shows the filiation with Laplace. 

These principles are mainly concerned, at  least originally, with the assessment of probabilities 
or statistical decision theory; they have links with Bayesian statistics; the minimal specificity 
principle (Benferhat, Dubois, and Prade, 1997) used in the possibilistic approach to default or 
nonmonotonic reasoning, is a similar idea proposed in the field of artificial intelligence. 



156 CHAPTER 4. AGGREGATION-OVERTURE 

then invoke Laplace's principle or another similar principle. But that is precisely 
what we strongly criticised in the previous paragraphs! What is the difference 
between the situation here and the situation in the first paragraph of this section? 
Unfortunately, there is no fundamental difference, it is only a matter of degree. 
In both situations, we try to use a principle as a remedy to  our ignorance. But 
it is our conviction that  we should do this only after we have used all available 
techniques that are feasible in the decision aiding context. 

Let us finally mention a situation where Laplace's principle of insufficient rea- 
son or another similar principle might be used to set the weights or some other 
parameters. Suppose we have decided to  use an aggregation procedure involving 
weights but we do not know these weights. We therefore ask the client to compare 
some alternatives, according to the general strategy presented in section 4.4.6, in 
order to  find constraints on the weights. Unfortunately, the client finds the task 
difficult and can compare almost no alternatives, so we have almost no constraints. 
We might then decide to arbitrarily choose some weights (according to  Laplace's 
principle or to the throw of a dice), to use the aggregation procedure with these 
weights and to  present the resulting ranking to the client. The ranking should 
be-unless we are extremely lucky-very different from what the client expects, 
a t  least for some pairs. It can therefore be used as a provocation, as a support for 
an interaction or a dialogue between the analyst and the client. It should force 
the client to  react and say, for example, 'it is not possible that  a is better than b; 
I am sure b is better than a.' So, i t  can help us find constraints on the weights. 

In such a case, the weights obtained by the application of Laplace's principle 
are in no way meant to  be sensible, correct or even approximately correct weights. 
We use them only for their maieutic virtues. 

Note that  a situation where the client does not answer any of our questions or 
where he answers only a few of them is problematic; not only for the determination 
of the parameters but also for the whole decision aiding process. The client must 
use some of his resources (time, money, . . . ) t o  interact with the analyst and he 
must commit himself. Otherwise, we can hardly speak of a decision aiding process. 

4.5 I am using the XYZ method. Which results 
are useful for me? 

In this section, we have selected a few popular aggregation methods or models of 
preference in MCDA: AHP, ELECTRE I, ELECTRE 111, MAVT, PROMETHEE 
and TACTIC (in alphabetical order). We will list the relevant sections of chap- 
ters 4-6 for each of them. We also give a short presentation and a few references 
to important publications for each one. The reader interested in a more exten- 
sive presentation of the different methods is referred to Belton and Stewart (2001) 
and Vincke (199213). There are of course, many other interesting methods but we 
do not mention them here because chapters 5 and 6 do not contain any material 
pertaining to them or because they are not popular. 
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4.5.1 AHP 

References: Saaty (1980) and Harker and Vargas (1987) 

4.5.1.1 The method 

The Analytic Hierarchy Process (AHP) is a method for building an evaluation 
model. Its main characteristics are the following: 

the evaluation model is structured in a hierarchical way; 

the same assessment technique is used a t  each node of the hierarchy; 

0 the assessment of the "children" nodes of a common "parent" node is based 
on pairwise comparisons. 

In the simplest case, the hierarchy has three levels. The node at  the top level repre- 
sents the client's global objective and is analysed as resulting from the aggregation 
of n dimensions (or criteria) represented by the second level nodes; each dimen- 
sion is split into as many nodes as there are alternatives (which are represented 
as bottom nodes and duplicated as many times as there are dimensions). In more 
complex cases, there may be more levels, corresponding to splitting dimensions in 
sub-dimensions. 

The assessment technique, used at  each node (except for the bottom nodes), 
assigns a weight or score to each of the "children" nodes of a "parent" node. For in- 
stance, the procedure for assessing the n dimensions in terms of their contribution 
to the client's global objective runs as follows: 

0 the client is asked to compare the dimensions (or criteria) 

- in a pairwise manner, 

- in terms of their relative importance, 

- using a conventional "semantic" scale with five levels (these levels be- 
ing labelled "equally important", "weakly more important", "strongly 
more important", "very strongly more important", "extremely more 
important") with possibly 4 intermediate levels; 

0 the qualitative assessments made by the client are given a quantitative in- 
terpretation; the five levels of the semantic scale are respectively coded as 
1 ,3 ,5 ,7  and 9; this process results in a n x n pairwise comparison matrix; 
for instance, when the client considers that dimension i is "weakly more im- 
portant" than dimension j ,  3 is written in row i column j of the matrix and 
113 in row j column i;  

0 from the (numerically coded) pairwise comparison matrix, one computes a 
score or weight wi attached to each dimension i; the scores are computed as 
the eigenvector corresponding to the maximum eigenvalue of the matrix and 
are normalised to add up to 1. 
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The reasons for applying such a procedure are complex. Briefly, the judgments 
made by the client when comparing two dimensions i and j are assumed to  be 
strongly related to  the ratio wi/wj of the scores of the corresponding dimensions, 
as they are computed by the procedure. 

The same procedure (differing only in the labelling of the levels on the semantic 
scale), is applied to  compare the alternatives on each dimension. This yields a score 
a i (x)  attached to each alternative x on each dimension i. 

The global score of each alternative w.r.t. the global objective is finally com- 
puted as: 

n 

and the alternatives are ranked accordingly. 

4.5.1.2 S o m e  pointers  

A very distinctive feature of AHP is the derivation of the value of each alter- 
native on each dimension by means of pairwise comparisons and the eigenvector 
technique. But a very standard aggregation procedure lies a t  the heart of AHP: 
the weighted sum. The values obtained through the eigenvalue technique are ag- 
gregated by nothing else than a weighted sum. Section 5.4.4 about the weighted 
sum thus gives us some insight into AHP and section 5.4.4.3 is particularly rele- 
vant since it presents two meaningful techniques for the elicitation of weights to 
be used in a weighted sum. Other techniques exist but are variants of these two 
(e.g. von Winterfeldt and Edwards, 1986, ch. 7). The technique generally used 
with AHP for the elicitation of the weights is not a variant of the techniques we 
present. I t  yields weights that are independent of the aggregation procedure (the 
weighted sum) and of the values of the alternatives on the dimensions. For reasons 
presented in section 4.4, i t  should therefore never be used in the way advocated 
in the orthodox AHP method. See also (Belton, 1986; Belton and Gear, 1983; 
Bouyssou et al., 2000; Dyer, 1990, ch. 6). 

Although some proponents of AHP sustain that  AHP is not a value function 
method, the theory of additive value functions (MAVT) has a t  least some relevance 
w.r.t. AHP. I t  cannot be doubted that the preference 2 induced by the global 
score yielded by AHP satisfies the hypotheses of the additive value model since 
alternatives, say x and y are ranked according to the rule: 

i=l i=l 
Comparing this expression with model (4.1), p. 129, one concludes that wiai(x) 
can play the role of the marginal value function ui(xi), when AHP is applied to  al- 
ternatives described by a performance vector. Can we infer from this that wiai(x) 
are the marginal value functions? In some cases we do! In section 4.3.4, we dis- 
cussed uniqueness issues related to  the representation in the additive value model. 
If the conditions for uniqueness are fulfilled, there is only one representation of 
the client's preference in the additive model, up to  positive affine transformations 
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of the ui7s. In other words, if AHP gives us an additive representation of the 
preference, it is the only one and ui(xi) = wiai(x). So, in case of uniqueness of 
the additive representation, AHP should be considered as a method for eliciting 
an additive value function and could (should) be compared to the other elicita- 
tion methods on empirical grounds. We are not aware of empirical tests on this 
particular issue. But in view of the considerable experience accumulated on the 
elicitation of the additive model, it can hardly be doubted that the elicitation of 
an additive model using AHP would be biased. Indeed, with AHP, the questions 
asked for eliciting, e.g., the "weights" do not refer to the scales of the associated 
dimensions or to the additive model that will be used for the aggregation. We 
therefore have the same problem as with the direct rating technique, discussed in 
section 4.4.1, p. 148. 

4.5.2 ELECTRE I 

References: Roy (1968, 1971) and Maystre, Pictet, and Simos (1994) 

4.5.2.1 The method 

ELECTRE I is aimed at the aggregation of a performance table into a choice set. It 
is often presented as a three-step procedure (preference modelling, aggregation and 
exploitation) although the first step is almost trivial. But using this presentation 
in three steps allows a unified presentation of ELECTRE I and ELECTRE 111. 
Several variants of ELECTRE I have been proposed and, because the original 
version of ELECTRE I is almost never used, we present the most common variant 
here. 

Preference modelling We define two binary relations Si and & for each dimen- 
sion by 

a Si b * gi(a) > gi(b) 

where ~i is positive lo. The first relation simply expresses the fact that a is 
at  least as good as b on a given dimension. The second one expresses the fact 
that a is much better than b on a given dimension, because the difference 
between their performances exceeds a threshold that the client considers as 
very large. 

Aggregation A binary relation, called outranking relation, is constructed on A. 
We will consider that a outranks b iff the coalition of criteria such that a 
is better than b is sufficiently large and if b is not much better than a on 
a dimension. In order to define large coalitions of criteria, an importance 
coefficient wi is associated to each criterion and the large coalitions are those 

lo In section 5.4.6, the notation for the thresholds is more cumbersome because we consider 
the case where there are several thresholds per criterion. 



160 CHAPTER 4. AGGREGATION-OVERTURE 

for which the sum of the importance coefficients is larger than a threshold 
c, called concordance threshold. Formally, the outranking relation depends 
on performance table g but also on the n-tuples w = (wl, .  . . , w,) and ? = 
(T I , .  . . , 7,) and on c. So, we write 

Exploitation The outranking relation built during the aggregation is usually not 
a weak order. It is therefore not easy to  see which alternatives are the 
best ones and a complementary analysis is often necessary. The author of 
the method recommends using the kernel (see section 7.4.3.1, p. 367) of the 
relation k. The kernel K is a subset of alternatives such that 

each alternative not in the kernel is outranked by a t  least one alternative 
in the kernel and 

no alternative in the kernel outranks any other alternative in the kernel. 

Inother words, VbE A \ K , 3 a  E K :  ak (g ,w,? ; , c )  b a n d y b e  K,$a E K :  
a k ( g ,  w, TI c) b. The kernel is not necessarily unique and does not always 
exist. In such cases, several solutions have been proposed in the literature. 
The kernel will not necessarily contain the best alternatives but a set of 
promising alternatives that must be further analysed. 

4.5.2.2 Some pointers 

Until now, ELECTRE I, with its concordance thresholds, discordance thresholds 
and weights, has not been characterised as an aggregation procedure but different 
special cases (simplified versions) have been. The concordance relation in ELEC- 
TRE I is nothing but a kind of majority relation. I t  is therefore not surprising 
that relevant results can be found in section 5.2.3 about the qualified majority. 
These results do not take weights and vetoes into account. 

Simple majority is another kind of majority and its weighted variant is charac- 
terised. Due to the similarity between qualified and simple majority, the analysis 
of weighted simple majority can be fruitful for our understanding of ELECTRE I. 
In particular, we present a technique that can be used for setting the weights in 
section 5.2.2. I t  can easily be adapted for using i t  with ELECTRE I. 

One last result inspired by Social Choice Theory and relevant for understanding 
ELECTRE I is theorem 5.13 in section 5.4.6. I t  does not take weights into account, 
even though not all coalitions are assumed to be equally important. Contrary to 
the other results related to  ELECTRE I, these two address the aggregation of 
performances and not of preference relations. 

Other kinds of results have been found in the framework of conjoint measure- 
ment (see section 6.5). In ELECTRE I, we add the weights of the criteria sup- 
porting an alternative against another one. If we replace the sum of the weights 
by a more general or abstract operation, we obtain a general model (or a family 
of models) that is characterised. This general model contains ELECTRE I as a 
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special case (see sections 6.3.5.3, 6.3.4, 6.4.3). The analysis of this model thus tells 
us a lot about ELECTRE I, in particular that the traces on differences (see (6.28), 
p. 275) are a fundamental elicitation tool. A slightly more general version helps 
to clarify the very special way in which vetoes intervene in the global preference 
relation; this issue is addressed in section 6.3.6. 

4.5.3 ELECTRE I11 

References: Roy (1978), Vincke (1992b) and Roy and Bouyssou (1993, ch. 5 and 
6) 

4.5.3.1 T h e  method  

ELECTRE I11 is aimed at  the aggregation of a performance table into a ranking 
(partial weak order). The main difference with respect to ELECTRE I lies in the 
preference modelling and the exploitation. With ELECTRE I, we say that a is 
preferred to b with respect to dimension i as soon as the performance of a is at 
least as good as that of b on dimension i. The change from non-preference to 
preference is therefore very discontinuous. Here, we will try to  make the change 
more continuous. 

Preference modelling We define two valued binary relations Si and V,  for each 
dimension by 

1 if gi(a) + ~ i , l  2 gi(b) 
0 if g i ( a ) + q , z l g i ( b )  
linear in between 

and 
0 if gi(a) l gi(b) + Ti,z 

1 if gi(a) L gi(b) + Ti,3 

linear in between 

where T ~ , J  < Ti,2 < 7i,3 are positive. The first relation simply expresses the 
fact that a is at least as good as b on a given dimension. The second one 
expresses the fact that a is much better than b on a given dimension. 

Aggregation A binary relation S, called outranking relation, is constructed on 
A. With ELECTRE 111, the outranking relation is valued between 0 en 1. 
In order to build S ,  we first compute a concordance index CI ,  for each pair, 
by 

n 

CI(a,  b) = ~ w i S i ( a ,  b). 
i= 1 

Then, 
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Exploitation The outranking relation constructed during the aggregation is val- 
ued and, furthermore, often lacks nice properties. It is therefore not easy to 
see which alternatives are the best ones and an exploitation is often neces- 
sary. The author of the method recommends to use the so-called distillation 
procedure. We do not present it here, because chapters 5 and 6 contain no 
result pertaining to the exploitation procedure of ELECTRE 111. 

4.5.3.2 Some pointers 

ELECTRE I11 builds a valued relation based on a concordance-discordance princi- 
ple then exploits this relation in view of producing rankings. Only the part leading 
to a valued relation is analysed in chapters 5 and 6. A version without discordance 
is described as a generalisation of the Condorcet method (section 5.3.3). Conjoint 
measurement models of valued preferences (section 6.6) offer a framework in which 
the valued relation produced by ELECTRE I11 can be fully analysed; some of the 
main features of ELECTRE I11 are emphasised by the model, namely the construc- 
tion of the relation based on the modelling of preference differences. However, no 
characterisation of the specific ELECTRE I11 valued relations is provided and it 
would probably be very difficult to find one. 

4.5.4 MAVT 

References: Fishburn (1970), Keeney and Raiffa (1976), Wakker (1991b) and von 
Winterfeldt and Edwards (1986) 

4.5.4.1 The method 

MultiAttribute Value Theory (MAVT)-also called MultiAttribute Utility Theory 
(MAUT), but this terminology is better suited to decision under risk (not covered 
in this volume)-is not the theory of an aggregation procedure, contrary to all 
the other items in this section. MAVT studies a collection of models of preference 
relations. Once it has been recognised (or assumed) that the client's preference can 
be represented in such a model, MAVT usually indicates strategies or procedures 
for eliciting the model, hence the preference. 

MAVT deals with preference relations k that can be represented by a value 
function u in the following way: 

Such preferences are thus necessarily weak orders (rankings, possibly with ties). 
The particular form of u that has received the most attention is the additive 
model. Each alternative x is assumed to be completely described by a performance 
vector x = (XI, xz, . . . , x,) and each vector, provided its coordinates vary within a 
specified range, is assigned a value u(x) = Cy=, ui(xi), that decomposes additively 
along the n dimensions. Systems of conditions on the preference k are known, 
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guaranteeing that  such a preference can be represented in the additive model, i.e. 
satisfies 

n n 

for some specification of the ui functions. Only preferences that are independent 
weak orders can be represented in this way (additional restrictions on the pref- 
erence are required). The form of the model suggests a strategy for eliciting the 
client's preference through the elicitation of the ui functions; many procedures for 
doing this have been proposed in the literature2(see, e.g., section 4.3.7). 

4.5.4.2 Some pointers 

It is not easy to  approach multiattribute value (or utility) models using the char- 
acterisation of aggregation procedures. The characterisation of the weighted sum 
in section 5.4.4 is the closest in this chapter; what we miss is the possibility of 
recoding the evaluations using marginal values that reflect single-attribute prefer- 
ences. 

Contrarily, MAVT is a t  the heart of conjoint measurement theory; in which it 
has had many different full characterisations. The most relevant section of this 
chapter is section 4.3. Section 6.1 of chapter 6 is devoted to  a relatively detailed 
presentation of the additive value model. Elicitation issues-mainly through using 
standard sequences-are dealt with in sections 4.3.7, 6.1.2, 6.1.2.2; section 6.1.2.3 
opens to other elicitation methods. 

4.5.5 PROMETHEE I1 

References: Brans and Vincke (1985), Brans and Mareschal (2002) 

4.5.5.1 The method 

PROMETHEE I1 is aimed at the aggregation of a performance table into a weak 
order and is often presented, as ELECTRE 111, as a three-step procedure. In the 
first step, a valued preference relation is built for each criterion. In the second 
one, these valued relations are aggregated into one global preference relation. In 
the last step, the global preference relation is exploited using a net flow procedure 
in order t o  obtain a weak order. We hereunder detail the three steps. 

Preference modelling The first step for the client is to choose a preference func- 
tion Pi for each dimension i .  A preference function Pi is a non decreasing 
function from R into [ O , l ]  and such that Pi(z) = 0 for all z < 0. Six such 
functions are proposed in the software PROMCALC (see figure 4.4). A fuzzy 
relation Si is constructed for each dimension on the basis of these preference 
functions. It is defined by 
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Figure 4.4: The six preference functions proposed in PROMCALC. 

where gi(a) is the performance of alternative a on dimension i .  The value 
Si(a, b) measures, in some sense, the intensity of the preference for a over b 
with respect to dimension i. 

Aggregation In the second step, the profile of fuzzy relations obtained at  the 
end of step one, is aggregated into one fuzzy preference relation. The aggre- 
gation is performed simply by computing a weighted average for each pair 
of alternatives. Formally, for every a and b in A, we define 
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where wi is the weight of criterion i and the sum of the weights is 1. In some 
sense, the value S(a ,  b) measures the global intensity of the preference for a 
over b taking all criteria into account. 

Exploitation The fuzzy relation obtained a t  the end of step 2 is often very dif- 
ficult to  interpret. An exploitation is therefore often necessary and is per- 
formed using the net flow. For each alternative we compute 

@i(a) = x S(a,  b) - x S(b, a). (4.24) 
bEA bEA 

The net flow of alternative a ,  @i(a), is the sum of the valuations on all arcs 
leaving a minus the sum on all arcs entering a. The alternatives are then 
ranked in decreasing order of their net flows. Other exploitation techniques 
are also proposed by the authors of the method. 

4.5.5.2 Some pointers 

The last step is analysed in section 7.4.3.2 of chapter 7.' If we consider the last 
two steps as one procedure for the aggregation of valued relations into one weak 
order, then we also have interesting results in section 5.3.2. 

It is interesting to  note that, if we consider all three steps together, then 
PROMETHEE I1 can be put into a very simple form, which is a particular case of 
the additive value function model (see section 4.3.10.3). So, it can be described in 
the framework of conjoint measurement theory. Unfortunately, the additive value 
function model is much more general, so its analysis doesn't tell us much about 
PROMETHEE 11. 

The first two steps, leading to  a valued relation, can also be analysed within 
conjoint measurement; the resulting valued relation can be described in the frame- 
work of models L- D (section 6.6.2). Although only describing part of the method, 
this model is perhaps more in phase with the "philosophy" of PROMETHEE I1 
that, classified within the outranking methods, is based on pairwise comparisons 
and is close in spirit t o  ELECTRE 111. 

Let us finally mention a result in Myerson (1995) that  characterises an aggre- 
gation procedure in the framework of Social Choice Theory, which is very general 
but not so far from the three steps of PROMETHEE 11. 

4.5.6 TACTIC 

Reference: Vansnick (1986b) 

4.5.6.1 The method 

TACTIC is very similar to  ELECTRE I but yields a global preference relation 
instead of a choice set. Like ELECTRE I, it consists of three main steps. 
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Preference modelling We define two binary relations Pi and & for each dimen- 
sion by 

a Pi b @ %(a) - gi(b) > ~ $ 1  

where 0 5 ri,l < TQ. The first relation simply expresses the fact that a is 
better than b on a given dimension because the difference between the pref- 
erences exceeds some indifference or discrimination threshold. The second 
one expresses the fact that a is much better than b on a given dimension, 
because the difference between their performances exceeds a threshold that 
the client considers as being very large. In the version presented in Vansnick 
(1986b), instead of using the difference in the performances, one uses the 
difference in the image of the performances through a value function. 

Aggregation A binary relation, sometimes called outranking relation, is con- 
structed on A. We will consider a outranks b iff the coalition of criteria 
such that  a is better than b is sufficiently larger than the coalition of cri- 
teria such that b is better than a and if b is not much better than a on 
a t  least one dimension. In order to define the importance of a coalition of 
criteria, an importance coefficient wi is associated to  each criterion and the 
importance of a coalition is the sum of the importance coefficients of the 
criteria in the coalition. Formally, the outranking relation depends on the 
performance table g but also on the n-tuple w = (wl,. . . , w,), the 2n-tuple 
T = ( T ~ , ~ ,  . . . , qn, T ~ J , .  . . , q n )  and on a threshold p. So, we write 

Note that contrary to ELECTRE I, the global preference relation is asym- 
metric; it represents a strict preference. 

Exploitation The outranking relation constructed during the aggregation is usu- 
ally not a weak order and, hence, is difficult to  interpret. In order to facilitate 
the interpretation by the client, the simply connected components of the re- 
lation are isolated and, within each component, the alternatives are grouped 
suitably after eliminating possible cycles. 

4.5.6.2 Some pointers 

TACTIC is very close to the (weighted) Condorcet method. Two particularly 
interesting sections are therefore sections 5.2.1 and 5.2.2. From a conjoint mea- 
surement viewpoint, the most relevant sections are sections 6.3.5.5 and 6.3.6.2 as 
well as the more general section 6.5. 
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4.6 Limitations of the axiomatic approach 

In this chapter, we suggested that the axiomatic analysis of an aggregation proce- 
dure can help the analyst or client to choose one that is well-suited to his problem 
and to use it in a consistent way. We suggested that the client and the analyst mu- 
tually agree on a set of sensible or attractive conditions, hereby reducing the set of 
available aggregation methods. But it is certainly not always easy to understand 
an axiom and all of its consequences. This is even more difficult if we consider 
groups of axioms, because they interact and as a group, can have far-reaching 
consequences. In the course of a decision aiding process, it can thus happen that 
a client does not agree with the outcome of the aggregation or that he finds a new 
axiom attractive whilst this new axiom is not compatible with those he selected at  
the beginning of the process. Choosing a particular method because the axioms 
that characterise it seem attractive or relevant does therefore not always lead to 
an adequate choice. 

It  might help in the discussion about the choice of the procedure to "test" the 
axioms instead of asking the client if he agrees with them. We do not mean exten- 
sive tests such as, for example, in the experimental assessment of mathematical 
models in psychology. We simply suggest to present a few well-chosen pairs of 
alternatives (real or not too fictitious ones) to the client and see if his preferences 
are compatible with the axiom. This will not guarantee the choice of the "right" 
aggregation procedure but it might help. 

Many axioms force the aggregation procedures to behave consistently when we 
change the preferences (Positive Responsiveness, Limited Influence of Indifference), 
the weights (Convexity, Archimedeanness), the number of criteria (consistency) or 
the set of alternatives (a  variant of Independence of Irrelevant Alternatives-not 
presented h e r e d o e s  this). These conditions often look attractive to the analyst 
or the client because they guarantee that the outcome will not vary too much 
or in the wrong direction if the data change a little bit. But these consistency 
conditions are imposed for all logically possible profiles whilst the client is usually 
only interested in small changes. Even if the single-dimension preferences, the 
set of dimensions or the set of alternatives can change during the decision aiding 
process, we do not expect dramatic changes. So, these consistency conditions, 
although quite appealing, are perhaps too strong and there might be aggregation 
procedures that are only locally consistent, but we do not know them. There are 
two reasons for this: 

0 It  seems technically difficult to characterise an aggregation procedure with 
a restricted domain. 

0 It  is not at  all clear how we should define the restricted domain, i.e. the 
set of admissible data (alternatives, dimensions, performances, preferences, 
. . . ), in a given decision aiding process, how we should define which changes 
are possible and which are not. 

When a theorem states that only one method or no method satisfies a given set 
of axioms, we must not forget that there are perhaps other methods that almost 
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satisfy these axioms. And these other methods may have such nice properties that 
we might be willing to use them, even if they do not satisfy the axioms we had 
first chosen. For example, there is an aggregation procedure which almost satisfies 
the axioms of Arrow's Theorem under some conditions: the Condorcet method. It 
satisfies Independence of Irrelevant Alternatives, Pareto and Non-Dictatorship in 
all cases. And, with 3 alternatives, the proportion of profiles for which it yields a 
weak order varies between 91 and 94%, according to the number of voters (Gehrlein 
and Fishburn, 1976). Unfortunately, when the number of alternatives grows, the 
proportion rapidly decreases and tends towards 0. 

The axiomatic approach probably suffers more limitations than those listed 
above but these limitations certainly do not cancel the advantages. Instead, we 
are convinced that it is a powerful tool for the analysis of aggregation procedures 
and that it helps to understand a lot of their characteristics. 



AGGREGATION PROCEDURES 

In this chapter we analyse different aggregation procedures with an emphasis on 
their axiomatic characterisations. Contrary to  chapter 6, the viewpoint is that  of 
social choice theory. 

5.1 Different kinds of aggregation functions 

In section 4.2, we presented an example of an aggregation function: the Borda 
method. It maps a profile of linear orders on a weak order. But we sometimes 
want to aggregate other kinds of profiles: profiles of weak orders, of semi-orders, 
of fuzzy relations, . . . (in chapter 3, section 3.6.2, we discuss how these different 
relations might arise), profiles of real valued mappings (performance table), etc. 

Similarly, we do not always want the result of the aggregation to  be a weak 
order. A choice set or an acyclic relation might also be fine. So, we can define 
other kinds of aggregation functions: 

functions mapping a profile of weak orders on a weak order, 

0 functions mapping a profile of linear orders on a subset of alternatives con- 
taining only the best one, 

0 functions mapping a profile of linear orders on an acyclic preference relation, 

functions mapping a profile of fuzzy relations on a weak order, 

0 functions mapping a performance table on a fuzzy relation, 

functions mapping a performance table on a weak order, 

and so on. 

The next two sections will be devoted to  the problem of aggregating a profile of 
binary preference relations (fuzzy in section 5.2, or not in section 5.3) into one 
preference relation. In section 5.4, we will turn to the problem of aggregating a 
performance table into one preference relation. In section 5.5, we will very shortly 
discuss the aggregation of linguistic performances into one relation. The outcome 
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of the aggregation in sections 5.2 to 5.5 is always a preference relation. This is 
well suited when the decision maker wants to rank a set of objects, but there are 
cases where he wants to choose one object. It is then more adequate to use an 
aggregation procedure (a choice function) leading to a subset of best alternatives 
and not to a preference relation. This is discussed in section 5.6. We will con- 
clude this chapter by a presentation of some techniques (e.g. the arithmetic mean) 
aiming at the aggregation of a vector of performances into one single performance 
(section 5.7). 

5.2 Aggregation of preference relations into one 
relation 

In this section, we present different procedures aimed at aggregating a profile of 
preference relations into one binary relation. These preference relations (binary 
relations) can be the outcome of a preference modelling process (see chapter 3, 
section 3.10) or be formally derived from performances (numerical, linguistic, . . . ) 
or they can be directly stated by the decision maker. In the evaluation model 
presented in chapter 2, p. 41, the preference relations are elements of H. Un- 
less otherwise stated, we do not assume that preference relations have particular 
properties like reflexivity or transitivity. 

We will discuss the following methods: 

The simple majority or Condorcet method. We present the method itself, 
its characterisation and the celebrated Arrow's Theorem that explains why 
the Condorcet method does not always help us make a decision. Some aspects 
of the TACTIC method are discussed. 

The weighted Condorcet method. This method is a variant of the one stated 
above. A characterisation is presented as well as some consequences for the 
TACTIC method. 

The qualified majority. This method is to some extent similar to simple ma- 
jority. A characterisation is presented and a link is established with the 
ELECTRE-like methods. 

The lexicographic method. This simple method, although its use is not very 
widespread, has some interesting properties and allows us to introduce some 
important concepts. 

Note that we already extensively presented a method aggregating several prefer- 
ence relations into one: the Borda method (see section 4.2.2). 

Many other methods for the aggregation of preference relations into one relation 
can be found in the literature. They are so numerous that it is definitely not 
possible to present them all here. We present only five of them: we chose these 
because they help us understand some aggregation methods commonly used in 
multicriteria decision aiding. 
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5.2.1 The simple majority or Condorcet method 

This procedure, named after the French mathematician and philosopher Condorcet 
(1743-1794), works as follows l.  Take any pair (a, b) of alternatives. If the number 
of criteria such that a defeats b is larger than the number of criteria such that b 
defeats a ,  then a is globally preferred to b. If the two numbers are equal, then 
a is globally indifferent to b. We illustrate this method with a simple example 
(the notation has been introduced in section 4.2.1, p. 121). Let A = {a, b,c), 
N = {1,2,3) and p contain the following three weak orders (rankings, possibly 
with ties). 

Alternative a defeats b twice. Therefore, a is globally better than b. Alternative c 
defeats a once and a defeats c also once. Therefore, a and c are globally indifferent. 
Alternative c defeats b twice. Therefore, c is globally better than b. Finally, we 
obtain the weak order [a ~ ( p )  C] +(p) b. 

5.2.1.1 Axioms and characterisation 

0 Anonymity. All criteria play exactly the same role. In other words, 

whatever the order of the relations in the profile. 

Completeness. The global preference relation is always complete, i.e. for any 
pair (a, b), we have either a k(p)  b or b k(p)  a (possibly both). In other 
words, no pairs of alternatives are incomparable. 

0 Neutrality. See section 4.2.2, p. 123. 

0 Positive Responsiveness. Suppose that, using 2 ,  we obtain Not [b t ( p )  
a], i.e. a is strictly preferred to b or they are incomparable or indifferent. 
Suppose also that p' is identical to p except for one criterion, on which 
the position of a has improved with respect to b. If k satisfies Positive 
Responsiveness, then a t ( p l )  b. In other words, if a is globally not worse 
than b in p and if p' is identical t o p  except for one criterion where the position 
of a has improved with respect to b, then a should be globally better than 
b. By an improvement of a with respect to b, we mean one of the following 
situations. 

- b t i  a in p and a k; b in p' or 

This procedure was presented very informally in section 4.2.1, as a procedure for aggregating 
linear orders. 
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- a y b in p and a +I b in p'. 

An example will clarify the picture. Let A = { a ,  b, c ,  d )  be a set of projects, 
N = { 1 , 2 , 3 )  and p contain the following three linear orders. 

Suppose that  the decision maker uses the aggregation function 2 and finds 
c ~ ( p )  b. Later, the decision maker improves project c and uses k again with 
the new profile p' in which the position of c has improved on criterion 3.  In 
this new profile, c +; b +$ a +$ d. Because the position of c has improved 
and because c was a s  good as b in p, Positive Responsiveness imposes that c 
is now better than b in p', i.e. c + ( P I )  b. 

Independence of Irrelevant Alternatives. The global preference between a 
and b depends only on their relative position in p, not on other alternatives. 
In other words, if p and p' are two profiles such that, for each criterion i ,  
a ki b in p ej a ki b in p', then a k ( p )  b * a k ( p ' )  b. 

An example will help to understand this property. Let A = { a ,  b, c , d ) ,  
N = { 1 , 2 , 3 )  and p contain the following three linear orders. 

Suppose that  the decision maker uses the aggregation function k and finds 
c k ( p )  b. Suppose that he later uses the same aggregation function with a 
profile p' differing from p only on the first criterion: this time, b +: d +: 
a +: c. In the new profile p', b is still better than c on criteria 1 and 3 
and c is better than b on the second criterion, precisely as in p. Because no 
change occurred in the relative position of c and b, Independence of Irrelevant 
Alternatives imposes that c ? ( p f )  b, as in p. The positions of d and a have 
no influence on the way 2 compares b and c. 

The following theorem uses these 5 axioms to characterise the Condorcet method. 
It is based on a theorem by May (1952). 

Theorem 5.1 
Suppose we want  to  aggregate profiles of weak orders into  a binary relation. T h e  
only aggregation function satisfying Anonymity ,  Completeness, Neutrality, Posi- 
tive Responsiveness and Independence of Irrelevant Alternatives i s  the Condorcet 
method. 

Remark 5.2.1 
In his theorem, May only considers aggregation procedures that  satisfy Complete- 
ness. He therefore uses a version of Positive Responsiveness that works only with 
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procedures satisfying Completeness. But later in this book (Section 5.2.1.4), we 
will consider aggregation procedures that  do not satisfy Completeness. Hence we 
need a version of Positive Responsiveness that  works well with or without Com- 
pleteness. That is why the version of Positive Responsiveness that  we use is not 
exactly the same as that  of May. Note that  our Positive Responsiveness plus 
Completeness implies the Positive Responsiveness of May. Another difference be- 
tween May's theorem and theorem 5.1 is that  May's theorem is stated for only 
two alternatives. But, because we impose Independence of Irrelevant Alterna- 
tives, we may apply May's theorem to  each pair of alternatives and, so, the proof 
is straightforward. 

5.2.1.2 Discussion 

The five axioms characterising the Condorcet method look reasonable to some 
extent but, nevertheless, deserve discussion. 

Neutrality This condition is very compelling under most circumstances: we do 
not want to favour any alternative a priori. Yet there are circumstances 
where some alternatives have a different status than others and may be 
treated in a different way. For instance, when there is a status quo, i.e. an 
alternative representing the opportunity of doing nothing. 

Completeness If two alternatives are indifferent on six criteria, if a is better 
than b on one criterion and b is better than a on one criterion, then it 
seems reasonable to conclude that  a and b are globally indifferent. But 
consider now a quite different situation: a is better than b on four criteria 
and b is better than a on four criteria; then it might be the case that  the 
decision maker concludes that  he is indifferent between a and b, but a more 
likely situation is that  he would be unable or unwilling to  conclude anything, 
because of the highly conflicting information he has about a and b. So, 
imposing Completeness is a strong requirement. 

Anonymity In most applications, even if no question about the importance of 
the criteria is asked, we can expect that  the decision maker will consider 
some criteria more important than others or that  they do not play the same 
role. If this is the case, then the Condorcet method should not be used. If 
the other axioms of the Condorcet method look attractive or seem adequate, 
a possible solution is then to  use the weighted Condorcet method (see p. 
178). 

Positive Responsiveness This property may seem desirable in many conditions 
but it has some consequences that  need to  be considered. Suppose that, 
given a profile p, the result of the aggregation is a ~ ( p )  b. If the aggregation 
procedure 2 satisfies Positive Responsiveness, then any change in favour of 
a or in favour of b will break the indifference and we will have a >.(pl) b or 
b >.(pl) a; even if there are many criteria and if the change occurs only on 
one criterion. Therefore, a situation where two alternatives are indifferent is 
very unstable: the smallest change can break the indifference. 
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Independence of Irrelevant Alternatives Let A = {a, b, c), N = {1,2) and 
p contain the following two linear orders. 

Note that b compares to a in exactly the same way that c compares to 
a. Hence, under Independence of Irrelevant Alternatives, if an aggregation 
function concludes that b t ( p )  a,  then it must also conclude that c t ( p )  a. 
But suppose that the decision maker knows or feels or is convinced that the 
difference between b and a on criterion 1 is much larger than the difference 
between c and a. On the contrary, on criterion 2, he feels that the difference 
between a and b is much smaller than between a and c. It might then be very 
reasonable to conclude that b t ( p )  a but that a t ( p )  c, thereby violating 
Independence of Irrelevant Alternatives. 

This example shows us that, even if there are cases where Independence of 
Irrelevant Alternatives makes sense, it is no longer a desirable property when 
the information to be aggregated is not purely ordinal, because it discards 
any information on preference differences, anything that is not ordinal. 

Note that in this example, the available information is very poor, somewhere 
between ordinal and interval: we have two linear orders (ordinal information) 
plus the fact that some differences are larger than others. When we have 
cardinal information (interval, ratio or absolute scales) for each criterion, 
we then definitely have good reasons to reject Independence of Irrelevant 
Alternatives. 

5.2.1.3 W h e n  simple majority fails 

In the previous section, we characterised the Condorcet method as a function 
aggregating a profile of linear orders into a binary relation with Theorem 5.1. The 
main problem with the Condorcet method is that this binary relation is not always 
a weak order, as shown in the following example where p contains the following 
three linear orders. 

Alternative a defeats b twice. Therefore, a is globally better than b. Alternative 
c defeats a twice. Therefore, c is globally better than a. Alternative b defeats c 
twice. Therefore, b is globally better than c. Unfortunately, this is not a weak 
order: the global preference relation is cyclical (see figure 5.1). No alternative is 
better than all of the other ones and it is therefore impossible to make a decision. 
This situation is often called the Condorcet paradox. If an analyst presents such 
an outcome to a decision maker, we can safely consider that it is of no help to the 
decision maker. 
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Figure 5.1: The preferences a > b, b >. c, c t a. 

Arrow (1963) proved a theorem that helps us understand why the Condorcet 
method does not always work and why it is difficult to  avoid this problem. We 
now present this theorem (slightly modified) and the axioms it uses. 

0 Weak Order. See p. 123. 

Independence of Irrelevant Alternatives (see p. 172). In (Arrow, 1963), 
this condition is stated in terms of social choice and not in terms of social 
preferences. A proof of Arrow's Theorem with the condition we use can be 
found in Sen (1986). 

Non-Dictatorship. There is no criterion k such that, in any profile p, if 
a t k  b, then, necessarily, a t ( p )  b. In other words, no criterion can impose 
its strict preference or, very roughly, the global preferences depend on more 
than one criterion. Ideally, we would like k ( p )  t o  depend on all criteria. 
So, imposing that it depends on more than one criterion is certainly a basic 
condition. 

0 Pareto. If a is strictly better than b on all criteria ( a  ti b for all i ) ,  then a 
is globally strictly better than b, i.e. a t ( p )  b. It would indeed be strange 
that an alternative b worse than a with respect to  all criteria would globally 
defeat a. 

Theorem 5.2 (Arrow's Theorem) 
Suppose we want to aggregate profiles of weak orders and there are at least three al- 
ternatives. There is no aggregation function satisfying Weak Order, Independence 
of Irrelevant Alternatives, Non-Dictatorship and Pareto (in fact this theorem also 
applies to profiles of linear orders, semi-orders,if there are at least four alterna- 
tives, and many different kinds of binary relations). 

The four properties involved in Arrow's Theorem are not compatible. I t  is not 
possible to  find a method that satisfies all of them. Therefore, if an aggregation 
function satisfies Weak Order, Independence of Irrelevant Alternatives and Pareto, 
it necessarily does not satisfy Non-Dictatorship. In other words, such a method 
always yields a global preference the asymmetric part of which is the same as 
the asymmetric part of the preference relation along a given criterion (the same 
for all profiles). Similarly, if an aggregation function satisfies Weak Order, Non- 
Dictatorship and Pareto, it cannot satisfy Independence of Irrelevant Alternatives. 
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Let us now come back to  the Condorcet method. This method satisfies Pareto, 
Non-Dictatorship and Independence of Irrelevant Alternatives. Hence, it cannot 
satisfy Weak Order: this is why the outcome of the Condorcet method is not 
always a weak order. 

But it also tells us something which is much more important: there is no perfect 
aggregation function. Or, we should say: no aggregation method can satisfy all 
our expectations. But this is not a problem of the aggregation method, it is our 
problem. Our expectations are not reasonable. We should not expect to  find 
an aggregation method satisfying all the axioms of Arrow's Theorem, whether 
we aggregate ordinal information or we use only the ordinal part of the available 
information: it is too poor. So, if we want to aggregate a profile of binary relations, 
we have to  abandon one of the four properties proposed by Arrow; we have to use 
a method that suffers some flaws, some weaknesses or a t  least some imperfections. 
We can, for instance, drop transitivity. We then obtain a method that, in some 
cases, will yield intransitive global preference relations. In order to  arrive a t  a 
recommendation for the decision maker, some further analysis is then necessary 
(see section 5.2.1.5 and chapter 7). 

Another possibility is to  drop Independence of Irrelevant Alternatives. Look 
for example a t  the Borda method. It satisfies Weak Order, Non-Dictatorship and 
Pareto. Therefore, according to  Arrow's Theorem, it cannot satisfy Independence 
or Irrelevant Alternatives. And, indeed, if you apply the Borda method to the 
example on page 172, you will find that it doesn't. 

The task of choosing an aggregation procedure may then be seen as the task of 
looking for the procedure whose strengths and weaknesses best fit to the decision 
context. This fit must take into account some more or less objective elements such 
as the axioms satisfied by the method or the computational tractability but also 
some more subjective elements such as the ease of use, the confidence put by the 
decision maker in the procedure, the existence of a software, and so on. In this 
chapter, we will focus on the axiomatic properties satisfied by the procedure but 
the other aspects also need to be examined with care. 

Remark 5.2.2 
As stated above, Arrow's Theorem is limited to the aggregation of weak orders. 
I t  tells us nothing about the aggregation of relations that are not weak orders. 
In fact, it holds for most relations that we encounter in our applications: semi- 
orders, interval orders, partial orders, some kinds of trees, and so on. This has 
been proven in different variants or generalisations of Arrow's original Theorem 
(for example BarthBlemy, McMorris, and Powers, 1995; Sen, 1986). 

Note also that  many researchers have tried to  escape from Arrow's Theorem 
by weakening some of its axioms. For a survey of this literature, see Campbell and 
Kelly (2002); for for more specific surveys focusing on conditions on profiles (on the 
domain of aggregation functions), see Gaertner (2002); Weymark (forthcoming). 

5.2.1.4 Condorcet and TACTIC 

Consider an application of TACTIC (Vansnick, 198613) without weights (or all 
weights set to  I ) ,  without veto and with a concordance threshold equal to 1. What 
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we obtain then is almost the Condorcet method. The only difference is that TAC- 
TIC yields incomparability where the Condorcet method yields indifference. This 
special version of TACTIC is therefore characterised by almost the same axioms as 
the Condorcet method. We just have to replace Completeness by Antisymmetry. 

No indifference. The global preference relation is always antisymmetric, i.e. for 
any pair (a ,  b) of distinct alternatives, we never have a ~ ( p )  b. In other words, no 
pairs of alternatives are indifferent. 

Theorem 5.3 
Suppose we want to aggregate profiles of weak orders. The only aggregation func- 
tion satisfying Anonymity, No indiflerence, Neutrality, Positive Responsiveness 
and Independence of Irrelevant Alternatives is TACTIC, without weights, without 
veto and with a concordance threshold equal to 1. 

Among the conditions of this theorem, the only one we have not yet discussed 
is No indifference. In some sense, it poses the same problem as Completeness. 
Completeness does not allow incomparability. But No indifference does not allow 
indifference. Yet, in our discussion of Theorem 5.1 (p. 172), we showed that 
indifference and incomparability can, at least in some cases, be desirable. 

If we now consider a version of TACTIC without weights and without veto 
but with a Concordance threshold different from 1, the axioms of Theorem 5.3 
remain valid, except for one: Positive Responsiveness. Indeed, if two alternatives 
are incomparable in k ( p ) ,  because the threshold is larger than 1, if the position 
of b is improved on one of the criteria, the global preference relation might not 
change. 

As the Condorcet method, TACTIC satisfies Pareto, Independence of Irrele- 
vant Alternatives and Non-Dictatorship. Therefore, as proved by Arrow's Theorem 
(Theorem 5.2), it cannot always yield a weak order. That is why an exploita- 
tion phase is sometimes necessary after the aggregation phase (see chapter 7, 
section 7.4). 

5.2.1.5 What do we do with a non-transitive relation? 

We showed in the two previous sections that the outcome of an aggregation with 
simple majority (or a special case of TACTIC) is not always transitive. So, if 
we decide to use simple majority, we must be prepared to face cases in which 
the global preference relation is not transitive, i.e. preference relations on which 
it is not easy to base a recommendation (see section 7.4) for the decision maker. 
Indeed, if the global preference relation is a weak order (ranking with ties), then 
there is one or several best alternative(s) and it is easy to see that they are good 
candidates for a recommendation if the decision maker must choose an alternative. 
But if the global preference relation is not transitive, then there is not necessarily 
an alternative (or several) that is better than all of the other ones (see figure 5.1, 
p. 175) and it is not at all obvious at to decide which one should be recommended. 

Hence, a careful analysis of the global preference relation is needed in order 
to derive a recommendation. This analysis is usually called the exploitation of 
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the global preference relation. Many techniques have been developed for the ex- 
ploitation: they are presented in chapter 7, section 7.4. The analyst performing 
an exploitation should always bear the technique used for the construction of the 
global preference relation in mind because not all exploitation techniques are com- 
patible with a specific construction technique. Note that if the exploitation is 
necessary when the outcome of the aggregation is not transitive, there are also 
cases in which an exploitation is helpful even if the outcome of the aggregation is 
transitive. This is also discussed in chapter 7. 

5.2.2 The weighted simple majority or weighted Condorcet 
method 

This procedure is a generalisation of the classical Condorcet method. In this 
procedure, each criterion i is assigned a weight wi reflecting its importance. The 
n-tuple w = (wl, . . . , w,) is called the weight vector. We define Wab(p, w) as the 
sum of the weights of the criteria such that a is at  least as good as b (a ki b) in 
the profile p. This number can be interpreted as the strength of the coalition of 
criteria supporting a against b. We will therefore say that a is globally at  least as 
good as b if Wab(p, w) > Wba(p, w). Because the global preferences now depend 
on the preferences for each criterion and also on the weights, we use the notation 
k(p, w) for the global preference relation. This explicitly indicates that 2 is a 
function of p and w. 

We illustrate this method with a simple example. Let A = {a, b,c), N = 
{1,2,3) and p contain the following three linear orders. 

Let the weights of the three criteria respectively be: 3, 1 and 1. We have 
Wab(p, W) = 4 and Wba(p, W) = 1. Therefore, a +(p, w) b. Also, Wac(p, w) = 3 and 
Wca(p, w) = 2. Therefore, a +(p, w) c. Finally, Wcb(p, w) = 4 and Wbc(p, w) = 1, 
so, Therefore, c +(p, w) b. The final ranking is thus: 

Note that if we choose all weights equal to 1, we obtain the classical Condorcet 
method. 

5.2.2.1 Axioms and characterisation 

Here are the properties that we will use to characterise the weighted Condorcet 
method. 

Weighted Anonymity. All criteria play the same role but their weight makes 
a difference. Therefore, if you rename the criteria (for example, 3 becomes 2, 
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2 becomes 3 and 1 doesn't change) and if you accordingly change the weights 
(wg becomes w2, w2 becomes w3 and wl doesn't change), the result of the 
aggregation doesn't change. 

Slightly more formally, 

0 Convexity. Let p be a profile. Suppose that, using the weight vector w = 
(wl, . . . , wn), we obtain a k(p,  w) b. Using another vector w' = (wi, . . . , wA), 
we also obtain a k(p, w') b. Suppose finally that  we use a third weight 
vector w" such that  each weight wy is the average of wi and w:, i.e. w" = 
(W1 +w; w,+w' 

2 ! . . "  n ) .  Because a k(p,  w) b and a k(p,  w') b and also because 
w" is half-way between w and w', we might expect that a k(p,  w") b. This 
is precisely what convexity says. 

0 Archimedeanness. Very roughly, Archimedeanness imposes that, if you raise 
the weight of a criterion high enough, the global preferences will be identical 
to  the preferences for that criterion. A consequence of this is that  a good 
rank on a criterion with a high weight can compensate anything. 

0 Neutrality. See p. 123 

0 Positive Responsiveness. See p. 171. 

Faithfulness. See p. 123 

Independence of Irrelevant Criteria. A criterion which is assigned a weight 
equal to  zero plays no role. If a criterion has a weight equal to  zero, modify- 
ing the preferences along that criterion will not affect the global preference 
relation. 

0 Independence of Irrelevant Alternatives. See p. 172. 

The following theorem uses these 8 axioms to  characterise the weighted Condorcet 
method. It is based on proposition 3 in Marchant (2003). 

Theorem 5.4 
Suppose we want to aggregate profiles of complete binary relations into complete 
binary relations (not necessarily weak orders). The only aggregation function satis- 
fying Weighted Anonymity, Convexity, Archimedeanness, Neutrality, Positive Re- 
sponsiveness, Faithfulness, Independence of Irrelevant Criteria and Independence 
of Irrelevant Alternatives is the weighted Condorcet method. 
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5.2.2.2 Discussion 

Some of the conditions characterising the weighted Condorcet method have already 
been discussed: Neutrality, Positive Responsiveness, Faithfulness, Independence of 
Irrelevant Alternatives (see p. 124 and p. 173). Among the other axioms, Weighted 
Anonymity and Independence of Irrelevant Criteria seem to be unavoidable. But 
the need for Convexity and Archimedeanness is subject to  criticism, a t  least in 
,wme CB?S.  

In this context, Convexity is, t o  some extent, similar to  Consistency (see 
p. 123). We can use the same example of four students ranked in physics, 
maths, economics and law to  show that Convexity is not always desirable. 
If there is some interaction between two or more criteria, Convexity is a 
drawback. 

Due to Archimedeanness, as said earlier, a good rank on a criterion with 
a high weight can compensate anything, even the worst ranks on all other 
criteria. This is clearly not always what a decision maker wants. 

5.2.2.3 Cyclical preferences 

Because the simple weighted majority method is just a generalisation of the plain 
simple majority method, it is also possible that  cyclical global preferences appear. 
Hence, an exploitation (see chapter 7) of the global preference relation will often 
be needed in order to  arrive a t  a final recommendation (see chapter 2). 

5.2.2.4 Choosing t h e  weights 

Archimedeanness tells us that, if the weight of a criterion is too high, then the 
other criteria no longer play a role (they cannot even break ties). This criterion 
becomes overwhelming. It is not hard to show that this happens when a criterion 
has a weight larger than the sum of the weights of the other criteria. This is 
definitely not desirable and it therefore puts a constraint on the weights. Let W 
be the sum of the weights, for all criteria. Then, each weight wi must be lower 
than W/2. Of course, this constraint is very weak and doesn't help us very much 
in choosing the weights. 

If we want to  be more practical, then we might use the following method, 
consistent with the general approach presented in section 4.4.6. We present a 
(fictitious or not) profile on two alternatives a and b t o  the decision maker and we 
ask him which one he prefers. He is not necessarily able to answer our question; 
he can hesitate, but if he does answer, then we can use his answer to set the 
weights. Suppose he says that a is strictly better than b. Then, we know that 
Wab(p, W) > Wba(p, w). The weight of the coalition in favour of a is strictly larger 
than the weight of the coalition in favour of b. If he says that a and b are indifferent, 
then we know that Wab(p, w) = Wb,(p, w). 

For example, if we present this profile p 
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and if he says that b is strictly better than a ,  then we know that w2 +w3 > w1 +w3 
and, so, wz > w1. 

With another profile p', 

if he says that  a is strictly better than b, then we know that wl > w2 + ws. 
If we then present other profiles pl',p'", . . . on two alternatives, we can even- 

tually find all inequalities (or equalities in cases of indifferences) involving every 
pair of coalitions that  restrict the set of possible weights. Our task is then t o  find 
weights wl, w2, . . . , w, such that all inequalities are satisfied. There can be many 
such vectors but they all correspond to the same ordering of the coalitions and, 
hence, they all yield the same result. So, picking any of them is fine. 

But, unfortunately, it is not always possible to find weights satisfying all the 
inequalities. For example, suppose that using different profiles, we find 

It is not possible to  satisfy all these inequalities simultaneously. Indeed, w2 + w3 > 
wl + w2 implies w3 > wl and this is not compatible with wl > w3. 

If such a problem occurs, we can ask the decision maker if he wants to  revise his 
position. If he does, there is no problem, but if he doesn't, then, strictly speaking, 
it means that the weighted Condorcet method is not appropriate for this decision 
maker, in this context. But, of course, if we can find weights such that almost all 
inequalities are simultaneously satisfied, then the decision maker and the analyst 
might decide to  go on and neglect the inconsistencies. 

The number of profiles that is needed on two alternatives in order to  rank all 
coalitions can be very high if the number of criteria is not small. For n larger 
than 5 or 6, this number can be prohibitive. Performing all necessary comparisons 
would take too much time. Instead of ranking all coalitions, a possible attitude is 
then to  rank only the criteria (coalitions of size 1) or only the coalitions of size 1 
or 2. In order to rank the criteria, we present profiles where a and b are indifferent 
on all criteria but two. On one of these two criteria, a is better than b. On the 
other one, b is better than a.  For example, with 4 criteria, if we want to  rank 
criteria 2 and 3, we use the following profile. 
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If the decision maker says that he prefers a t o  b, then we know that w2 > w3. Once 
more, strictly speaking, it is necessary to  compare all n ( n  - 1)/2 pairs of criteria in 
order to  rank them and to test the consistency of the comparisons. We illustrate 
this with an example. Suppose that after comparing a and b in two profiles, we 
obtain wl > w2 and wg > w3. We might stop here and consider that wl > w3. 
But if we ask the decision maker to compare a and b in a profile where they differ 
only on criteria 1 and 3, we would perhaps find wl < w3. This would indicate that 
the decision maker's preferences are not compatible with the weighted Condorcet 
method. 

So, comparing all n (n  - 1)/2 pairs of criteria is time consuming- perhaps 
sometimes impossible-but it is a good method for checking the compatibility 
between the decision maker's preferences and the aggregation function. Note that  
the only way to  really check this compatibility is to  compare all pairs of coalitions- 
there are 2n - 2 such pairs. 

Note also that ranking only the criteria and not all coalitions yields a number 
of inequalities that is not sufficient for determining the weights. Several weight 
vectors satisfying the inequalities can yield different results. The choice of a weight 
vector among those satisfying the inequalities is then, to  some extent, arbitrary and 
leads to  an arbitrary ranking of the alternatives. I t  might then be wise to perform a 
robustness analysis (see chapter 7, section 7.5) and to  draw only robust conclusions, 
i.e. conclusions that hold with any weight vector satisfying the inequalities. 

Choice of the weights. A good way to set the weights with the weighted 
Condorcet method is to present various profiles on two alternatives to  the de- 
cision maker. The profiles are constructed in such a way that, if the decision 

0 maker can state which alternatives he prefers, then we can derive some inequal- 
CJ a ities involving the weights. For example, wl +w3 + w4 > w2 +wg. If we present 
Q 2" - 2 carefully constructed profiles and if the decision maker can say which 
r& of the two alternatives he prefers for each profile, we then can unambiguously 
O set the weights and we can also fully check the compatibility between the de- 
@ cision maker's preferences and the aggregation procedure. Unfortunately, the 

decision maker is not always able to  compare the two alternatives and we do 8 not always have the time to  perform all 2" - 2 comparisons. Nevertheless, 
Q performing as many comparisons as possible is probably the best way to set 
Q the weights and to  check the adequacy of the aggregation procedure. 
A 

5.2.2.5 TACTIC and Condorcet 

On page 176, we already discussed the similarity between a simplified version 
of TACTIC and the Condorcet method. The same analogy exists between the 
weighted Condorcet method and TACTIC with weights but without veto and 
with a concordance threshold equal to  1. 

A sensible way to  set the weights in TACTIC is the procedure described on p. 
180, where indifference must be replaced by incomparability in the global prefer- 
ence relation. 
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5.2.3 Absolute and qualified majorities 

Simple majority (see p. 171) is an operationalisation of the concept of majority. 
Absolute majority is another one. With absolute majority, an alternative a is 
globally preferred to b (i.e. a +(p) b) if the number of criteria such that a is better 
than b is larger than n/2. If a is not globally preferred to b and b is not globally 
preferred to a ,  then a and b are indifferent. When the preferences on all criteria are 
rankings without ties, simple and absolute majority always yield the same result. 
But when there are ties, they can yield different results. This is illustrated by the 
following example. Let A = {a, b), N = {1,2,3,4) and p contain the following 
four weak orders: 

Alternative a defeats b on more criteria than b defeats a (2 against 1). So, a +(p) b 
according to simple majority. But, with absolute majority, a ~ ( p )  b because the 
number of criteria such that a is better than b is not larger than n/2 (criteria 1 
and 2) and the number of criteria such that b is better than a is smaller than n/2 
(criterion 3). 

Note that absolute majority can also be defined as follows: an alternative a is 
globally at  least as good as b (i.e. a k(p)  b) if and only if the number of criteria 
such that a is at  least as good as b is at  least n/2. This definition is equivalent to 
the previous one. 

In the simple example given above, absolute majority yields a tie while simple 
majority does not. This is not a special case: absolute majority will very often 
yield a tie where simple majority does not. We say that simple majority is more 
decisive. 

Qualified majority is a generalisation of absolute majority. With qualified 
majority, a is at  least as good as b (i.e. a k(p)  b) if and only if the number 
of criteria such that a is a t  least as good as b is at  least equal to some fixed 
concordance threshold 6, between 0 and n. 

Fishburn (1973b) charadterised absolute majority. We do not present his result 
but a slightly modified version of another one, proved by Marchant (unpublished), 
characterising qualified majority and, so, including the cases where thresholds 
different from n/2 are used. 

5.2.3.1 Axioms and characterisation 

We will use the following properties to characterise qualified majority. 

Anonymity. See p. 215. 

Neutrality. See p. 123. 
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Non-Negative Responsiveness If p and p' are two identical profiles except 
that the position of a with respect to b has been improved on one criterion 
in p', then the position of a w.r.t. b in the global preference relation k ( p t )  
cannot be worse than in k ( p ) .  In other words, if a is globally a t  least as 
good as b in p, then this is still the case in p'. If a is globally better than 
b in p, then it is also so in p'. This condition is a weak version of Positive 
responsiveness (see p. 171). With Positive Responsiveness, an improvement 
of the position of a on one criterion must lead to  a global improvement. With 
Non-Negative Responsiveness, an improvement of the position of a on one 
criterion cannot lead to  a global deterioration. 

Limited Influence of Indifference Consider two identical profiles p and p' 
except that, on one criterion i, a +i b in p and a Ni  b in p'. Suppose that  
a k ( p )  b. Even if there is less support for the global strict preference of a 
over b in p' than in p, we might consider that there is not less support for 
the global weak preference of a over b in p' than in p. It is then reasonable 
to  impose that a ? ( P I )  b and this is precisely what Limited Influence of 
Indifference does. 

Suppose now that a +(p)  b. Then, because there is less support for the global 
strict preference of a over b in p' than in p, it might happen that a ~ ( p ' )  b. 
This is not prevented by Limited Influence of Indifference. So, moving from 
a >-i b in p to a Ni  b in p' can influence the global preference relation and 
cause a deterioration of the global position of a ,  but not in all situations. 
That is why we speak of "limited influence.'' 

0 Independence of Irrelevant Alternatives. See p. 172. 

Pareto. See p. 175. 

The following theorem uses these 6 axioms to  characterise qualified majority. 

Theorem 5.5 
Suppose we want  t o  aggregate profiles of weak orders. T h e  only aggregation func- 
t ion satisfying Anonymity ,  Neutrality, Non-Negative Responsiveness, Limited In- 
fluence of Indifference, Independence of Irrelevant Alternatives and Pareto i s  a 
qualified majority,  i.e, there i s  a n  integer 6 (0 5 6 5 n) such that a k ( p )  b i f f  the 
number of criteria such that a ki b i s  at least 6 .  

5.2.3.2 Discussion 

Only two of the 6 conditions characterising qualified majority have not yet been 
discussed. 

Non-Negative Responsiveness This condition is very natural. It says that the 
global preference cannot react in the wrong direction when the preferences 
on one criterion change. Contrary to Positive Responsiveness (see p. 171 
and 173), it does not impose that global indifference be broken as soon as an 
improvement occurs on one criterion. Therefore, it is hard to find situations 
in which Non-Negative Responsiveness is a problem. 
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Limited Influence of Indifference This condition is not as natural as Non- 
Negative Responsiveness but it is at least reasonable. It is a type of prudence 
condition. It  makes the global preference stable or robust. It perhaps makes 
sense when "a ~i b" does not mean that a is perfectly equivalent to b on 
criterion i, but just means that a is approximately equivalent to b on criterion 
2. 

5.2.3.3 Cyclical preferences 

Just like with the Condorcet method (see p. 174), it is possible to arrive at cycli- 
cal or non-transitive preferences with qualified majority. Consider for example a 
profile p consisting of the following three linear orders (this is the same profile as 
in section 5.2.1.3): 

Applying qualified majority with a threshold of 0.6, a cycle appears. Hence, an 
exploitation of the global preference relation will often be needed (see section 7.4). 

5.2.3.4 The choice of the concordance threshold 6 for the qualified 
majority 

We now present a method to set the value of the concordance threshold 6. I t  is 
based on the general method that we have presented in section 4.4.6. Present two 
alternatives a and b to the decision maker and ask him if he strictly prefers a to b, 
b to a or if he is indifferent between them. Let Nab(p) be the number of criteria in 
p such that a is at least as good as b. According to the decision maker's answer, 
there are four cases. 

i) He strictly prefers a to b. If Nab(p) 2 Nba(p), we know that Nba(p) < 6 5 
Nab(p) But if Nab(p) < Nba(p), we are in trouble because this is not compat- 
ible with the qualified majority. There are then three possible attitudes: we 
can ask the decision maker to revise his position, we can decide that qualified 
majority is not the right model for this decision maker in this context or we 
can just ignore his answer. 

ii) He strictly prefers b to a. Symmetrically, if Nba(p) 2 Nab(p), we know that 
Nab(p) < 6 5 Nba(p). But if Nba(p) < Nab(p), we are in trouble as in the 
previous case. 

iii) He is indifferent between a and b. We then know that 6 < Nab(p) and 6 5 
Nba (P). 

iv) He cannot compare a and b. We then know that 6 > Nab(p) and 6 > Nba(p). 
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So we have found two constraints on 6. If we then repeat this process with different 
pairs of alternatives, we obtain more constraints on 6. Some of them take the form 
6 > . . ., some the form 6 5 . . . Hence, ideally, we can finally identify a value or a 
range of possible values for 6. 

Of course, this procedure does not always work. As always with this way 
of working, some contradictions may appear between constraints; for example a 
constraint saying that 6 1 3 and another saying that  6 < 2. Here again, three 
attitudes are possible. We ask the decision maker to  revise his position, we abandon 
qualified majority or, if the contradictions are not too numerous and too severe, we 
can try to  find a value for 6 that is "almost" compatible with the constraints. In 
our example, 2 would be a reasonable value for 6, but 1 and 3 are also reasonable 
candidates: they almost satisfy the constraints. 

Another problem with this approach is the treatment of incomparability. If 
we always handle incomparable pairs as in iv), then we will not help the decision 
maker. Indeed, if his answers are totally compatible with the qualified major- 
ity and if we respect all his preferences, indifferences and incomparabilities, then 
the aggregation procedure will just restate the decision makey's answers. This is 
definitely not what he needs. 

In a decision aiding process, there are almost always pairs that the de- 
@ cision maker cannot compare; this is usually why he uses a decision aiding 

method. What can we then offer him with our aggregation procedures? First, 
@ a structured process that can help him reason about his problem and analyse 
@ his values, needs and goals. Second, a formal technique for constructing a 8 &3 global preference relation that  obeys two (often contradictory) principles in a 
@ consistent way: respecting the information provided by the criteria and by the 
Q decision maker, and easy to use and interpret (roughly speaking, as complete 

and transitive as possible). According to  the latter principle, it is necessary 
@ that  the aggregation procedure changes a t  least some incomparabilities stated 8 by the decision maker into indifferences or preferences. 

The question is then: which ones? We do not have a clear answer, just two 
suggestions: 

0 Drop the incomparabilities yielding .constraints that are incompatible with 
the other constraints. These incomparabilities are easy to identify: they 
correspond to pairs with high values of N,b(p) or Nb,(p) or both. 

0 Ask the decision maker to  distinguish between pairs that are incomparable 
because he does not know how to compare them or because he is convinced 
that they cannot be compared. Then drop the incomparabilities of the former 

type. 

Finally, if the decision maker is undecided about many pairs and if we do not 
want to  keep all the corresponding constraints, we may have too few constraints. 
I t  is then perhaps wise to  present pairs of fictitious alternatives in order to try to 
obtain more constraints. 
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5.2.3.5 T h e  qualified major i ty  a n d  ELECTRE I 

It  is easy to see that ELECTRE I (Roy, 1996), without weights and vetoes, is 
equivalent to a qualified majority with 6 2 n / 2 .  The characterisation of the 
qualified majority and the discussion about the choice of the threshold can thus 
help us use ELECTRE I in a consistent way. In fact, we just need one additional 
condition (Marchant, unpublished) to characterise ELECTRE I, without weights 
and vetoes. 

Restricted Positive Responsiveness. Suppose p and p' are two identical profiles 
except that the position of a has been strongly improved on one criterion i, in 
the following sense: b +i a and a +: b. Suppose also that there is no criterion 
for which a and b are indifferent. Then, if a and b are globally indifferent in p, a 
should be globally preferred to b in p'. 

It  is interesting to compare this condition with Positive Responsiveness (p. 
171). Both conditions impose that the global preference reacts positively to  an 
improvement of the position of an alternative; but with Restricted Positive Re- 
sponsiveness, this positive reaction is imposed only in some special cases. 

Theorem 5.6 
Suppose we want to aggregate profiles of weak orders. The only aggregation func- 
tion satisfying Anonymity, Neutrality, Non-Negative Responsiveness, Limited In- 
fluence of Indifference, Independence of Irrelevant Alternatives, Pareto and Re- 
stricted Positive Responsiveness is  E L E C T R E  I without weights and vetoes, i.e. 
there is  an  integer 6 (6 2 n/2) such that a k ( p )  b iff the number of criteria i such 
that a ki b is  at least 6. 

We will not devote a lot of time to the discussion of Theorem 5.6 because all the 
axioms it uses have been discussed previously, except Restricted Positive Respon- 
siveness. This condition might be seen as too restrictive, in some situations, just 
for the same reason as Positive Responsiveness. But because Restricted Positive 
Responsiveness is much weaker, the problem (if any) is much less serious. Note 
finally that, in most cases, ELECTRE I is used with a threshold larger than n/2, 
so, it never happens that there is no criterion on which a and b are indifferent 
and a and b are globally indifferent. Hence, Restricted Positive Responsiveness 
is trivially satisfied and does not really help us to understand how ELECTRE I 
works. 

It  is therefore more interesting to characterise ELECTRE I with 6 > n/2, 
which is why we introduce a new condition. 

Minimal Incomparability. Assume n is even. There is a t  least one situation where 
a and b must be considered incomparable: when the conflict is maximal, i.e. when 
a is strictly better than b on n / 2  criteria and b is strictly better than a on the 
other n / 2  criteria. But, because n can be odd, we must adapt the condition for 
this case. Alternatives a and b must be incomparable if a is strictly better than b 
on (n  + 1)/2 criteria and b is strictly better than a on the other (n  - 1)/2 criteria, 
or the converse. 

The meaning of this condition is clear. If you impose it, you adopt a prudent 
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attitude. You avoid that  the aggregation function always gives a clear-cut and 
easily interpretable result, even when it (perhaps) should not. But the cost of 
imposing this condition is also clear. The global preference relation might be 
difficult to  interpret or use. I t  is up to the decision maker to choose between 
prudence and ease of interpretation. 

Theorem 5.7 
Suppose we want to  aggregate profiles of weak orders. The only aggregation func- 
tion satisfying Anonymity, Neutrality, Non-Negative Responsiveness, Limited In- 
fluence of Indifference, Independence of Irrelevant Alternatives, Pareto and Min- 
imal Incomparability is  E L E C T R E  I without weights and vetoes, i.e, there is  a n  
integer 6 > n/2 such that a &(p)  b iff the number of criteria i such that a ki b is  
at least 6 .  

There is, t o  the best of our knowledge, no characterisation of the weighted qualified 
majority. So, we cannot analyse the role and meaning of the weights in details, 
although ELECTRE I is almost always used with weights. The method described 
on p. 180 for setting the weights of the Condorcet or simple majority method can 
easily be adapted to  the qualified majority and ELECTRE I. 

5.2.4 The lexicographic method 

This very simple method works as follows: first, you need a linear order (a ranking 
without ties) on the set of criteria N. This linear order is denoted by >e. The 
maximal criterion (with respect to >e) is denoted by l e ,  the second one, by 2e and 
so on. So, we have le >e 2e >e 3 e . .  . >e ne. Then you look a t  the first criterion 
in >e, i.e. le. If a is strictly better than b on criterion le, then a is declared 
globally preferred to b without even considering the other criteria. Similarly, if b is 
strictly better than a on criterion le, then b is considered as globally preferred to  
a without considering the other criteria. But if a and b are indifferent on criterion 
le ,  you look a t  the second criterion in >e, i.e. 2e. If a or b is strictly better than the 
other on criterion 2e, then it is declared globally better than the other one without 
considering criteria 3e, 4e, . . .If you still can not make a difference between a and 
b using criterion 2e, you proceed with criterion 3e, then 4e and so on until you can 
make a difference or until you have considered all criteria. In that case, a and b 
are globally tied. Formally, 

a ~i b for all criteria 

a ti b for the first criterion i ,  w.r.t. >e, for which a +i b. 

We illustrate the lexicographic method with a simple example. Suppose there are 
three voters, three candidates and the profile p is 
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Suppose also that 2 >e 1 >e 3. Consider the pair a ,  b. Begin with criterion 2 on 
which a and b are indifferent. They are also indifferent on criterion 1 (the next 
one in >e). But b is strictly better than a on criterion 3. Therefore, b t ( p )  a. 
Consider now c and b. Alternative c is strictly better than b on criterion 2 (the 
first one in >e). So, c t ( p )  b. Similarly, c t ( p )  a. The final result is thus the 
linear order c ~ ( p )  b t ( p )  a. 

Note that, in this example, the relation k(p)  is complete and transitive. But 
there are cases where this is not so. For example, when the preferences along each 
criterion are semi-orders, the global preference relation needs not be transitive. 

Leaving aside some very particular (degenerated) cases, we can say that t ( p ) ,  
the asymmetric part of the global preference relation, is transitive if and only if 
each relation ki is transitive. Moreover, k(p)  is a weak order iff all relations ki 
are weak orders (for the aggregation of semi-orders, see e.g. Pirlot and Vincke, 
1992). 

The particularity of the lexicographic method is the existence of the order >e 
and the fact that each criterion is totally or infinitely more important than all 
other criteria lower in the order >e. If a is better than b on criterion l e ,  it will 
be globally better than b, even if b is better than a on ten or one hundred other 
criteria. No compensation is possible. 

There are not many cases in which a decision maker would say that only one 
criterion (except in case of a tie) must be taken into account for deciding if a k (p)  b 
or the converse. In most cases, a decision maker would be willing to consider all 
criteria because the difference between a and b on criterion le might not be so large 
(even if this is not explicit) and could be compensated by opposite differences on 
other criteria. 

But there is a t  least one context for which this does make sense: screening. 
Screening can be applied to a wide variety of problems and is very popular in 
recruitment processes. In a screening process, all applicants take a first test me+ 
suring one or several abilities or competencies. The best applicants are then se- 
lected while the others are eliminated. The remaining ones then take a second test 
measuring some other characteristics. A new elimination follows. Then a third 
test is given, and so on until one or only a few applicants remain. 

In such a process, each test can be seen as a criterion. The first test corresponds 
to criterion le, the second one to criterion 2e, and so on. The ranking of the 
applicants after test 1 is klt. The ranking given by test 2 is 2 2 8 ,  and so on. 
If, at  each step i, we keep the best candidates according to kip, then the set of 
applicants that remain at  the end of the process is the set of the best applicants 
according to the lexicographic method. 

The motivation for using the lexicographic method in this context is obvious. 
After the first test, only kit is known. Furthermore testing all applicants is 
expensive. One therefore tries to give the second test to as few applicants as 
possible. This is why a first elimination occurs after the first test, taking into 
account only Z1t. For the same reason, a second elimination occurs after test 2, 
taking into account only k2e, and so on. Of course, if the human resources manager 
knew all relations kit, k2 t ,  . . . , kne from the beginning, he would probably not 
use the lexicographic method. But the cost of information prevents him from 
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giving all tests to all applicants. 

5.2.4.1 Axioms a n d  characterisation 

Here are the most characteristic properties of the lexicographic method. 

Strong Pareto. If a is strictly better than b on some criteria (a t.i b for some 
i) and a is at  least as good as b on all criteria (a ki b for all i), then a is 
globally strictly better than b, i.e. a +(p) b. Furthermore, if a is indifferent 
to b on all criteria (a Ni b for all i), then a is globally indifferent to b, i.e. 
a ~ ( p )  b. Note that this condition implies Pareto (see p. 175). It is a kind 
of unanimity condition. 

0 Independence of Irrelevant Alternatives. See p. 172. 

0 Weak Order. See p. 123. 

The following theorem uses these three axioms to characterise the lexicographic 
method. It can be found in Fishburn (1974). 

Theorem 5.8 
Suppose we want to aggregate profiles of weak orders and n 2 3. An aggregation 
function satisfies Weak Order, Independence of Irrelevant Alternatives and Strong 
Pareto if and only if it is a lexicographic method. 

5.2.4.2 Discussion 

It is important to notice the similarity between this theorem and Arrow's Theo- 
rem 5.2. Non-Dictatorship has been deleted but Pareto has been strengthened to 
Strong Pareto. The result is now that there is not one dictator but a hierarchy > e  
of dictators. Let us now discuss some of the axioms used in this characterisation. 

S t rong  P a r e t o  Consider the following case: a ~i b for all criteria but the least 
important one, i.e. ne, and a + n ~  b. According to Strong Pareto (but not to 
Pareto), we have a +(p) b. At first sight, this seems quite reasonable but it 
is so only if "a ~i b" really means that a and b are perfectly equivalent on 
criterion i. Indeed, if a and b are perfectly equivalent on all criteria except ne, 
then a difference on ne can make a global difference. But suppose now that 
"a wi b" just means that a and b are approximately indifferent on criterion i. 
Then, the strict preference a +,e b, on the least important criterion, might 
not be enough to conclude that a +(p) b. 

Independence of Irrelevant alternatives As mentioned earlier (when discus- 
sing the Condorcet method, p. 174), Independence of Irrelevant Alternatives 
is probably not a good property when the information on each criterion is 
richer (even slightly) than ordinal. I t  is worth saying a word about this in the 
context of screening processes. Consider the recruitment example. When the 
applicants take the first test, the result of the test can be a ranking (purely 
ordinal information) but, very often, the result of the test is a score. The 
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recruiter then keeps all the applicants with a score above a given threshold 
or the m best applicants, where m is a predetermined number. The scores 
are often measured on scales with well-known psychometric and/or statistic 
properties but with measurement-theoretic characteristics that are not so 
well understood. Nevertheless, they are very often a bit more than ordinal. 
Suppose for example that the score is the number of correctly answered items 
in a multiple choice questionnaire. Some items are easier than others. So, 
the number of correct answers cannot be considered as a measure of some 
ability on an interval scale. But suppose there are 20 items; then the differ- 
ence between a score of 18 and one of 10 is certainly much larger than the 
difference between a score of 5 and one of 2. Hence, some comparisons of 
differences make sense: the information is more than ordinal. This indicates 
that, when the result of a test is a score and not a ranking, then the lexi- 
cographic method should not be used because the information is not purely 
ordinal. This is even more true if the scores are measured on interval or ratio 
scales. 

The lexicographic method should probably be used only in two cases: 

when there are good reasons to consider that one criterion is infinitely 
more important than the other ones, i.e. a difference on that criterion, 
no matter how small it is, cannot be compensated by any number of 
differences , no matter how large they are, on the other criteria. We must 
also be sure that an indifference between a and b on a criterion really 
means that a and b are perfectly equivalent regarding that criterion only. 
The preference relations ki thus need be very finely grained. 

when the cost of constructing the preference relations ki is high and 
one wants to reduce the costs by means of a screening process. But in 
such a case, it is probably better not to use a pure lexicographic method. 
The cost of constructing a very fine-grained preference relation ki might 
be too high. Furthermore, some kind of compensation is very often 
desirable. So, instead of keeping only the best applicants, one might 
want to keep all the good ones, so that, after the last step, when the 
remaining applicants have taken all tests, the decision maker can use a 
method (AHP, MAVT, ELECTRE, . . . ) allowing some compensation. 
The decision maker then needs to decide in which order the tests will 
be given. He definitely must take the cost of the tests into account: a 
cheap one will be given in the first steps, an expensive one later. But he 
must also consider some preferential aspects of the problem: he does not 
want to eliminate an applicant early on in the process who might prove 
globally excellent later. 
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5.3 Aggregation of fuzzy relations into one rela- 
t ion 

So far we only considered the aggregation of classical preference relations, where 
"classical" is used as opposed to  "fuzzy." We also sometimes use the term crisp 
relations instead of classical relations. In a classical preference relation, when 
comparing two alternatives a and b, there are four and only four possible cases: 

a is strictly preferred to  b (a +i b), 

a and b are indifferent (a Ni b), 

b is strictly preferred to  a (a +i b) or 

a and b are not comparable. 

But the situation is often not so clear-cut and there are many circumstances in 
which more nuances would be useful. For example, a decision maker is not always 
sure that he prefers a to b, even when considering only one criterion, because 
his knowledge of a and b is uncertain or not perfect. Another example is when 
the decision maker is sure of his preference but would like to make a distinction 
between different degrees or intensities of preference. A last example is when some 
criterion i can be decomposed into several sub criteria. When the decision maker 
must say whether he prefers a to  b, taking into account only criterion i, he might 
hesitate because he does not know how to  balance the pros and cons of the different 
sub criteria. For a more thorough discussion of these questions, see Bouyssou et  al. 
(2000) and Perny and Roubens (1998). 

In these cases, a fuzzy preference relation can be used to  model the preferences 
of the decision maker. A fuzzy preference relation is a relation in which the 
preference between each pair of alternatives a and b is measured by a number 
between 0 and 1. The value 1 indicates that a is preferred to  b with certainty (if 
we want to model uncertainty) or with maximum intensity (if we want to  model 
intensity). The value 0 indicates that it is certain that a is not preferred to  b 
(uncertainty representation) or that the intensity of the preference is 0 (intensity 
representation). An intermediate value, say 0.7, indicates that  it is fairly certain 
that  a is preferred to b or that  the preference intensity between a and b is high 
but not maximum. Note that, in some cases, a fuzzy preference relation can be 
used to simultaneously capture uncertainty and intensity. In any case, the analyst 
should always clearly know what he wants to  represent by means of preferences 
valued between 0 and 1. 

Formally a fuzzy preference relation S (sometimes called valued relation) on 
the set A maps each pair of alternatives (a, b) to a real number S(a,  b) in [O,l]. 
According to the context, S(a,  b) will denote the intensity or the certainty of the 
preference of a over b. The larger S(a ,  b), the larger the certainty or the intensity 
of the preference. Note that  S(b,a), the certainty or intensity of the preference 
of b over a,  is usually not linked to  S(a,  b). Yet, in some applications, these two 
numbers are linked, for example by the relation S(a ,  b) + S(b, a )  = 1 (reciprocal 
relations) or max[S(a, b), S(b, a)] = 1, etc. This link can result from an arbitrary 
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choice by the analyst or from the construction technique. For example, S (a ,  b) can 
be the proportion of cases where the decision maker chooses a over b in a forced- 
choice pairwise presentation. In this case, we necessarily have S(a ,  b) +S(b, a )  = 1. 
This is also true if S (a ,  b) is the proportion of experts in a panel choosing a over 
b. 

Suppose now that the preferences of a decision maker, along each criterion 
i, are modelled by a fuzzy preference relation Si. We then have a profile p = 
(S1, Sz, . . . , S,) of fuzzy preference relations and the following question arises: how 
can we aggregate or synthesise this profile into one (classical or fuzzy) preference 
relation. This is almost the same problem as the one considered in section 5.2. 
The only difference is that  our profiles now consist of fuzzy relations and that the 
global preference relation will in some cases be fuzzy (section 5.3.4). 

5.3.1 Construction of fuzzy preference relations 

Assume we have a small-sized problem with 6 alternatives and 4 criteria. A profile 
of fuzzy preference relations is in this case defined by 4 x 6 x 6 = 144 numbers 
between 0 and 1. Until now, to  the best of our knowledge, no method has been 
proposed in the literature to  elicit Si(a, b), the certainty or intensity of the pref- 
erence of a over b on criterion i . But suppose we have such a method. We would 
then need to apply it 144 times to  determine the profile p. This shows why profiles 
of fuzzy preference relations are almost never elicited by questioning the decision 
maker: the process would be far too long. Instead, fuzzy preference relations are 
usually obtained by construction, starting from a performance table where the 
performances are real numbers or fuzzy numbers. 

PROMETHEE I1 is an example of a method where a fuzzy preference relation 
is constructed for each criterion, starting from real performances (see p. 196). 
ELECTRE I11 (Roy, 1996) is another example (for a brief description of these 
methods, see section 4.5). Note that the numbers Si(a, b) in PROMETHEE I1 are 
usually interpreted as intensities of preference, while they are often considered in 
ELECTRE I11 as degrees of credibility of the statement "a is a t  least as good as 
b." In our opinion, the construction techniques are so similar in ELECTRE I11 
and PROMETHEE I1 that such a dramatic difference between the interpretations 
can hardly be justified. But it is not clear to us which of these interpretations is 
correct. 

We now present a completely different example of a construction technique in a 
case where the membership degrees reflect some kind of uncertainty or imprecision 
rather than an intensity. Suppose the performances of the alternatives on criterion 
i are not perfectly known: they are modelled using fuzzy numbers. Figure 5.2 
presents an example with three alternatives. In this figure, the three curves 

pg,(b) and psi(,) are the fuzzy performances of the three alternatives a ,  b 
and c. We might choose Si(b,a) equal to 1 minus the value of psi(.) and pgi(b) 
at  the intersection of the two curves, as depicted in figure 5.2. This is in fact 
the necessity (see Dubois and Prade, 1983) that b be strictly better than a. In 
other words, taking only criterion i into account, b is preferred to  a with certainty 
si (b, a). 



194 CHAPTER 5 .  AGGREGATION PROCEDURES 

Figure 5.2: A fuzzy preference relation based on fuzzy performances and aiming 
at  modelling uncertainty. 

The three construction techniques presented here are just examples. Many 
others are used and can be considered. But these examples show that the meaning 
of the numbers S,(a, b) can vary and is not always clear. This should be kept in 
mind when aggregating fuzzy preference relations. 

We will now present two methods for the aggregation of fuzzy relations into 
one relation: a generalisation of the Borda method and a generalisation of the 
Condorcet method. There are of course many other methods, but we present 
these two because they allow us to shed some light on some aggregation methods 
that  are commonly used in multicriteria decision aiding. 

5.3.2 The Generalised Borda method 

In section 4.2.2, we presented the Borda method as a method aimed at  aggregatiing 
a profile of linear orders into a weak order. In fact, the Borda method can be used 
for aggregating any kind of binary relations and also fuzzy relations. Hcre is how 
it works. Suppose we have a profile p of fuzzy relations: p = ( S 1 , .  . . , S,). We will 
not discuss the nature of the valuations for the moment; This will be addressed 
later. We define ba(S,), the single-criterion score of alternative a in S,, as follows. 

I t  is the sum of the valuations on the arcs leaving a minus the sum of the valuations 
on the arcs entering a. Thus, the larger ba(Si),  the better a in Si. The Borda 
score of alternative a, Ba(p) ,  is then defined as the sum over all criteria of the 
single-criterion scores. 

Ba(p) = C ba(Si). (5.2) 
ZEN 

We then say that  a k(p) b iff Ba(p) 2 Bb(p). In other words, we rank the 
alternatives in the decreasing order of their Borda scores. 

We illustrate the Borda method with the profile presented in figure 5 . 3 .  The 
Borda score of a, Ba(p) ,  is equal to -1.7. Similarly, Bb(p) = 1.4 and B,(p) = 0.3. 
Hence, b >(p) c >(a) . 
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Figure 5.3: A profile of fuzzy preference relations. 

Note that  if a fuzzy relation happens to  be a crisp linear order, then ba(Si) is 
just the number of alternatives beaten by a in Si minus the number of alternatives 
beating a in Si. It  can be shown that  this number is a negative affine transforma- 
tion of the rank of a in Si. Therefore, if the profile p contains only linear orders, 
ranking the alternatives in increasing order of their sum of ranks (Borda method) 
or in decreasing order of their sum of single-criterion scores (generalised Borda 
method) is equivalent and the two methods coincide. 

5.3.2.1 Axioms and characterisation 

Here are the main characteristics of the generalised Borda method. 

Weak Order. See p. 123. 

Generalised Faithfulness. If we have only one criterion, i.e. N = {I),  and 
if Si is a linear order, then k(p)  is equal to S1, i.e. the global preference is 
identical t o  the preference relation along the unique criterion. 

Generalised Cancellation. For any pair (a, b) of alternatives, let r a b  be defined 
by 

If, for all pairs (a, b) of alternatives, rab(p) = rba(p), then all alternatives tie. 

Note that ,  if all relations in p are linear orders, then rab(p) is the number 
of criteria such that  a is preferred to b. Generalised Cancellation is thus 
equivalent to  Cancellation. 

Neutrality. See p. 123. 

Consistency. See p. 123. 

Marchant (1996) proved the following theorem. 

Theorem 5.9 
Let F be a set of fuzzy relations. Suppose we want to aggregate profiles of fuzzy 
relations taken in 3. The only aggregation function satisfying Weak Order, Gen- 
eralised Faithfulness, Generalised Cancellation, Neutrality and Consistency is the 
Generalised Borda method. This theorem holds for almost any 3 (see Remark 5.3.1 
below). 
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5.3.2.2 Discussion 

This characterisation is very similar to  Theorem 4.1. I t  uses almost the same 
axioms. It is interesting to  note that  only one axiom is based on the valuations: 
Generalised Cancellation. In this axiom we use the sum of some valuations. So, 
these valuations must be cardinal, they should in principle be measured a t  least 
on an interval scale, otherwise we are note sure i t  makes sense to  add them; it 
would not be meaningful in the sense of meaningfulness theory (see chapter 3, 
section 3.4). Furthermore, even if we have interval or ratio scales, we must wonder 
if the sum of the valuations makes sense, if it represents something. In order to 
illustrate this last point, let us consider density (of mass). Density is measured 
on a ratio scale, so, a statement like dl + d2 = d3 + d4, involving the sum of 
densities, is meaningful, in the sense of meaningfulness theory (with di the density 
of object i). But, even if it is meaningful, i t  does not mean anything except if 
we speak of objects of identical volume. Similarly, even if the valuations are on 
interval or ratio scales, we need to  consider if their sum represents something. In 
principle, measurement theory should be used to  answer this question but, very 
often, the problem is too difficult and the answer is unknown. So, the analyst and 
the decision maker need to consider if they are willing and if it is sensible to  give 
a meaning to the sum of the valuations. 

Hence, looking at this characterisation in order to find out if the Generalised 
Borda method is appropriate in a given context makes sense only if the valuations 
of the fuzzy preference relations are cardinal and if their sum represents something. 
If not, then this characterisation may not be used. 

Remark 5.3.1 
Note that this theorem is valid in many different cases. Not only for profiles 
of fuzzy relations without restriction but for virtually all kinds of profiles (for 
a precise statement, see Marchant, 1996): profiles of t-transitive fuzzy relations 
(where the t-norm t can be chosen arbitrarily), profiles of fuzzy relations such that 
&(a, b) + Si(b, a )  = 1, profiles of semi-orders (they are also fuzzy relations, with 
Si(a, b) E (0, I)), profiles of interval orders, . . . 

5.3.2.3 The Generalised Borda method and PROMETHEE I1 

Some aspects of PROMETHEE I1 (Brans and Vincke, 1985) have been shortly 
discussed in section 4.3.10.3, p. 145 (see also section 6.6.2, p. 320). For a short 
presentation of PROMETHEE, see p. 163. 

The net flow of alternative a ,  denoted by @(a), is defined (see p. 165) by: 

@i(a) = &(a, b) - Si(b, a) ,  
bE A bEA 

where 
n 
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It is easy to  see that  the net flow can also be written as 

where 
Qi(a) = ): &(a, b) - ): Si(b, a )  

b E A  bE A  

The net flow @(a) of alternative a can therefore be seen as the sum on all criteria 
of the single criterion net flow Qi(a). This is very similar to what was shown for 
the Borda method. 

A close look a t  Equations 5.1 and 5.2 will convince the reader that, once the 
preference functions Pi have been chosen, the PROMETHEE I1 method is nothing 
but a weighted version of the Borda method applied to  the valued relations Si de- 
fined by (5.3). Theorem 5.9 thus tells us a lot about the PROMETHEE I1 method. 
Roughly speaking, once the decision maker has decided to use preference functions 
and has agreed on the axioms characterising the Generalised Borda method, he no 
longer has choice. He must use the PROMETHEE I1 method. We say "roughly" 
because a small issue has not yet been addressed: the weights. In the generalised 
Borda method, there are no weights. In PROMETHEE 11, there are weights. But, 
if the weights are integer, it can be shown that assigning a weight wi t o  criterion 
i amounts to considering a problem without weights and where each criterion i is 
taken into account wi times. The number of criteria in this new problem is then 
no longer n but the sum of the weights. If the weights are not integer but rational, 
they can be transformed into integers through a multiplication. 

The axioms characterising the Generalised Borda method have already been 
discussed, but one of them deserves a deeper discussion in relation to  the PROME- 
THEE I1 method: Generalised Cancellation. In this axiom, we add the numbers 
&(a, b), for i E N. These numbers thus need to be a t  least taken on an interval 
scale; otherwise the sum and, hence, the condition, do not make sense. But it 
is not an easy task to  decide if this is the case. The analysis of the construction 
technique (the preference functions) does not tell us much about the scale on 
which &(a, b) is measured. Today, we do not have a clear understanding of what 
is really modelled by the preference functions and we do not really know how to set 
the parameters of these functions. The question of the scale type of Si(a, b) thus 
remains open. Deciding if Generalised Cancellation is an appropriate condition in 
a given decision problem is thus problematic because we do not even know if the 
condition makes sense. 

5.3.3 The Generalised Condorcet method and other majori- 
ties 

One of the most cited arguments against the Borda method (generalised or not) 
is that it does not satisfy Independence of Irrelevant Alternatives (see p. 172). An 
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obvious way to avoid this problem is to aggregate the preference relations in a 
pairwise manner, i.e. to consider in turn all pairs of alternatives and to decide for 
each pair which alternative is preferred to the other, taking only the preferential 
information about that pair into account. We have already considered this idea 
when we wanted to aggregate crisp (not fuzzy) relations (section 5.2) with the 
Condorcet method (p. 171) and qualified majority (p. 183). We might then want 
to adapt one of these methods for the aggregation of fuzzy preference relations. Let 
us carry out the exercise with the Condorcet method. In the crisp case, a +(p) b 
iff the number of criteria such that a is preferred to b is larger than the number of 
criteria such that b is preferred to a.  If these two numbers are equal, then a ~ ( p )  b. 
More formally, 

a k ( p )  b *  I{i:a>.i b)l 2 [{i :  b>.ia)l 

or, equivalently, 

For a crisp preference relation ki, let us define &(a, b) = 1 iff a ki b. Otherwise, 
Si(a, b) = 0. We can then rewrite (5.6) as 

If we now apply (5.7) with fuzzy relations (where Si(a, b) can take any value be- 
tween 0 and I),  we have a generalisation or an extension of the Condorcet method 
for fuzzy relations. The adaptation is thus very simple and we can follow the same 
steps to generalise another type of majority method, e.g. the qualified majority. 
In the next few paragraphs, we make some comments about this generalisation. 

5.3.3.1 Does it make sense to add the valuations? 

This question is in fact twofold. First, is it meaningful in the sense of meaningful- 
ness theory (see chapter 3) to add the valuations? Second, even if the valuations 
are measured on interval or ratio scales, does the sum of the valuations repre- 
sent anything? These two questions have already been discussed in section 5.3.2.2 
about the Generalised Borda method. 

Note that when &(a, b) takes its values in (0, I), i.e. when the preference 
relations are crisp, the sum of the valuations correspond to the number of criteria 
for which a is better than b and this makes sense. 

5.3.3.2 Other possible extensions 

Have a look at (5.6). It  is the definition of the simple majority for crisp relations. 
It  can also be written as (5.7). But it could also be written as 
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This expression is perfectly equivalent to (5.6) and (5.7) if we consider only crisp 
relations, because Si(b, a )  can take only two values: 0 and 1. But using (5.8) for 
the aggregation of fuzzy relations is not equivalent to (5.7). So, we now have two 
different extensions of the Condorcet method and it would not be difficult to find 
many more. This raises a new problem: which extension is the right one? Once 
more, there is no universal answer. A correct extension in a given context is mean- 
ingful, in the sense of meaningfulness theory, and involves arithmetic operations 
that  represent something, that  make sense for the decision maker. Each case thus 
requires a careful analysis but this is often difficult. 

5.3.3.3 Transitivity 

As seen in section 5.2.1.3 on Arrow's Theorem, an aggregation method satisfying 
Independence of Irrelevant Alternatives, Non-dictatorship and Pareto (that is the 
case of the simple majority and of qualified majority) does not always yield a 
transitive global preference relation. This was in the section about the aggregation 
of crisp preference relations. But we now want to aggregate fuzzy preference 
relations. Is it any different? Unfortunately not and the reason is simple: if 
we want to  aggregate fuzzy preference relations into a crisp preference relation, 
we must be prepared to aggregate all kinds of fuzzy relations, for instance fuzzy 
relations where Si(a,  b) is 0 or 1 for every pair a ,  b. But such relations are obviously 
equivalent to  crisp relations and so, Arrow's Theorem applies. 

The outcome of an aggregation method (for fuzzy preferences) satisfying Inde- 
pendence of Irrelevant Alternatives, Non-dictatorship and Pareto (like (5.7) and 
different forms of majority) will therefore not always be transitive. Hence, an ex- 
ploitation (see chapter 7) of the global preference relation will often be needed in 
order to  reach a final recommendation (see chapter 2). 

5.3.3.4 ELECTRE I11 

Equation (5.7) is a particular generalisation of simple majority. If we omit the 
weights and vetoes, the aggregation mechanism in ELECTRE I11 (Roy, 1996) can 
be seen as the same kind of generalisation of qualified majority. Our comments 
in the three previous paragraphs (sum of the valuations, other extensions and 
transitivity) thus also apply to  ELECTRE 111. 

Let us mention here a recent paper by Mousseau and Dias (2004) about the 
elicitation of the parameters of a variant of ELECTRE 111. They propose a disag- 
gregation technique in the spirit of the techniques we recommend in section 4.4.6. 

5.3.4 Pairwise aggregation into a fuzzy relation 

In this section, we consider the aggregation of a profile of fuzzy preference relations 
into one fuzzy preference relation, contrary to the previous sections where the 
outcome of the aggregation was a crisp relation. In order to do this, we aggregate 
the relations Si in a pairwise manner into one fuzzy relation S by means of an 
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aggregation operator such as the arithmetic mean. For example, we could define 

1 
S(a ,  b) = - %(a, b), Va, b E A. 

i=l 

Of course, instead of the arithmetic mean, we can use the weighted arithmetic 
mean, the geometric mean, the median, an Ordered Weighted Average (OWA) 
operator, the min, the max, the leximin, etc. Any averaging or aggregation opera- 
tor can do the trick (see Garcia-Lapresta and Llamazares, 2000 and Example 4.11 
in Perny, 1992). Section 5.7, of this chapter, is devoted to  these operators, in a 
different context but the analysis remains valid. When evaluating the relevance 
of a condition for his application, the interested reader will thus go to section 5.7, 
bearing in mind that  he is aggregating valuations of arcs from different preference 
relations (see Fodor and Roubens, 1994, section 5.10). 

A key property in the analysis of aggregation operators is commensurability (p. 
203-205), this is the fact that  valuations on different criteria can be compared. So, 
a very careful construction of these valuations is necessary in order to guarantee 
commensurability. 

Another important issue for the aggregation of valuations is the scale on which 
they are measured. As already mentioned in section 5.3.2.3, not much is known 
today about the scales on which preference intensities, credibilities or certainties 
are measured. And, as far as we know, to  date, no technique has been proposed to  
construct fuzzy preference relations such that  the valuations would be measured 
on, say, an interval scale. It is therefore prudent to  use aggregation procedures 
that  only take the ordering of the valuations into account and not the values 
themselves, unless there are good reasons to  use the values. 

5.3.5 General comment on the aggregation into a fuzzy re- 
lation 

As seen in sections 5.2.1.3 and 5.3.3.3, when we want to  aggregate crisp or fuzzy 
relations into one crisp relation using an aggregation method satisfying Indepen- 
dence of Irrelevant Alternatives, Non-dictatorship and Pareto, the result is not 
always transitive. But in this section, we want to  aggregate profiles of preference 
relations into a fuzzy relation, not a crisp one. We may thus wonder if it is now 
possible to  always obtain a transitive result. Unfortunately, the answer is negative. 

Let us be more explicit: it is not possible to apply Arrow's Theorem in this 
context because Transitivity, as defined previously, does not make sense when 
the global preference relation is fuzzy. Transitivity must be redefined for fuzzy 
relations. A popular definition of transitivity for fuzzy relations is 

(called min-transitivity). But another definition is 
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(called product transitivity) or 

(called Lukasiewicz transitivity). And there are many more. But there are many 
results in the literature showing that, for different definitions of transitivity, a vari- 
ant of Arrow's theorem can be proved, showing that Independence of Irrelevant 
Alternatives, Transitivity and Pareto are not compatible with Non-dictatorship or 
with a slightly stronger condition imposing the absence of a coalition of criteria 
that would play the role of a dictator (see Banerjee, 1994; Barrett, Pattanaik, and 
Salles, 1986, 1992; Dutta, 1987). There are also few results showing that  Inde- 
pendence of Irrelevant Alternatives, Transitivity and Pareto are compatible with 
a particular definition of transitivity. One such result, due to  Ovchinnikov (1991), 
uses Lukasiewicz's transitivity. But this apparently positive result is not totally 
positive because Lukasiewicz-transitive relations can be very difficult to interpret 
as illustrated in figure 5.4. The relation depicted in this figure is Lukasiewicz- 

Figure 5.4: A Lukasiewicz-transitive fuzzy relation. 

transitive because 0.2 > 0.6 + 0.6 - 1 2 0. But, for a decision maker, it is as 
difficult to  interpret as a cyclic crisp relation: i t  looks like a cycle. Note that  if we 
cut the relation at any level between 0.2 and 0.6, we obtain the cyclic crisp relation 
(a, b), (b, c), (c, a). If we cut above 0.6, we obtain an empty relation that  does not 
help the decision maker either. Only when cutting under 0.2 do we obtain a weak 
order, but one where all alternatives are indifferent. 

So, the aggregation of fuzzy relations into one fuzzy relation is also difficult. 
As an application of these results, note that  the methods described in the pre- 

vious section (5.3.4) do not always yield transitive relations (whatever definition of 
transitivity you choose), since they satisfy Independence of Irrelevant Alternatives, 
Pareto and Non-Dictatorship. 

Note that, when the outcome of the aggregation is a fuzzy preference relation, 
an exploitation (see chapter 7, section 7.4.3.2 and 7.4.4.2) is almost always nec- 
essary if we want to  make a recommendation (see chapter 2). Suppose that the 
decision makers's problem is to  find the best alternative. I t  is not possible, in 
general, t o  identify the best alternative just by looking a t  a fuzzy relation, even 
if it is transitive in some sense. This is why exploitation techniques are needed. 
If in addition, the outcome is not transitive, then the exploitation is even more 
necessary . . . and difficult. 
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5.3.6 The difficulty of aggregating fuzzy relations 

Let us summarise the steps involved in the process of aiding a decision maker by 
modelling his preferences by means of fuzzy relations and aggregating them. 

I t  is almost never the case that fuzzy preference relations exist a priori, so, we 
must first construct the fuzzy preference relations (1 per criterion). This can 
be done by directly questioning the decision maker or using a construction 
technique (see section 5.3.1 and chapter 3). In the first case, we do not know 
exactly what properties the resulting fuzzy relations have. In particular, we 
do not know on what kind of scale the valuations lie. In the second case, 
it is sometimes possible to  obtain well-behaved fuzzy relations, but with 
many techniques, the obtained fuzzy relations are not well understood (with 
PROMETHEE and ELECTRE I11 for example). 

We must then aggregate the fuzzy preference relations. Very few aggregation 
methods yield a weak order (a  ranking, possibly with ties). The generalised 
Borda method does but it requires valuations that  can be added and we 
probably seldom have such valuations. We will thus almost always end up 
with a non-transitive and eventually fuzzy global preference relation. 

We therefore need an exploitation step, which will not be simple. This is par- 
ticularly true if the global preference relation is fuzzy because, in many cases, 
we will not exactly know the properties and the meaning of the valuations 
obtained a t  the end of the aggregation. 

The number of steps and their complexity is such that we fear that the outcome 
will seldom be reliable (although there are cases where it is). Given our current 
knowledge, we think that it is often more sensible or prudent to  take a simpler 
route. For example, instead of constructing fuzzy relations from performances and 
aggregating these relations, it might be better to  directly use the performances in 
an aggregation method. I t  is simpler (one step instead of two) and is perhaps 
better understood so that we can use sound techniques for setting the parameters 
(if any) of the aggregation method. 

5.4 Aggregation of a performance table into one 
relation 

As mentioned in section 4.2.3, social choice theory is not only concerned with 
the aggregation of ordinal information (preference relations) but also of cardinal 
information. In this section, we present different characterisations of aggregation 
procedures that  were first formulated in the frame of social choice theory. We will 
discuss the min, the weighted sum, the leximin and a family of procedures called 
outranking procedures, similar in some sense to the ELECTRE-like methods and 
PROMETHEE. There are of course many other aggregation procedures but we 
chose these because they allow us to present some important concepts or because 



5.4. AGGREGATION O F  A PERFORMANCE TABLE 203 

they are close to some aggregation procedures commonly used in multicriteria 
decision aiding. 

Before presenting these characterisations, we introduce some new notations 
and make some general comments about the nature of the cardinal information. 

5.4.1 Notations and definitions 

In this section, the descriptor gi (introduced in section 4.3, p. 128) is assumed to 
take its values in R. The values gi(a), gi(b), . . . can be interpreted as a more or less 
factual description of a ,  b, . . . on dimension i-gi is then an element of D and E 
could be formalised as X1 x . . . x X, where each Xi = R (see chapter 2, p. 41)-or 
as the numerical representation of the decision maker's preferences with respect 
to viewpoint i-gi is then an element of H (see chapter 2, p. 41). 

In the first interpretation, our hypothesis is that all preferences are increasing 
with gi, i.e. the larger an evaluation, on any criterion, the better the alternative. 
If we then face a problem in which the preference on a criterion is decreasing with 
gi, it is generally obvious to make the necessary adaptations in the aggregation 
methods or in the axioms that we will present in this section. 

In this context, a profile is a n-tuple of functions gl, . . . ,g,. We now use the 
symbol g for a profile. The symbol p is used only for profiles of preference relations. 
Note that a profile g can also be seen as a performance or evaluation table or 
matrix. I t  contains an evaluation for each alternative on each criterion. 

We must now consider the nature of the information provided by the functions 
gi. We distinguish several cases (according to d'Aspremont and Gevers, 1977, and 
Roberts, 1980). 

Ordinal non commensurable. In this case, the only meaningful operation we 
can perform is the comparison of two evaluations on a single criterion. For 
example, g3(b) = 357 is obviously larger than g3(c) = 287. We cannot say 
anything about the distance between b and c. Only the order matters. Fur- 
thermore it is also impossible to compare evaluations on different criteria. 
For example, the statement g3(c) = 287 > gl(c) = 36 has no meaning. 

Because the information is purely ordinal, it is perfectly equivalent to use a 
profile of weak orders, which contains exactly the same information, instead 
of the functions gi. Therefore, we will not discuss this case; it has already 
been treated in section 5.2. 

Ordinal commensurable. It  can happen that all evaluations, for all criteria, are 
measured on the same ordinal scale. In such a case, only order matters, as 
in the previous case, but, in addition, inter-criteria comparisons make sense. 
For example, we can say that g2(c) = 8.6 > gl(b) = 7.1. This will make it 
possible to use the min or leximin, for instance. This hypothesis is frequent 
made for example in constraint satisfaction problems (see p. 144). There, the 
alternatives are different solutions to a problem (for example a scheduling 
problem) and, for i = 1, .., n,  the function gi measures the extent to which 
constraint i is satisfied (between 0 and 1). Because the different criteria (the 
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satisfaction of the constraints) are of a similar nature, it is not unreasonable 
to  consider that  the satisfaction degrees can be compared across criteria. 

I t  therefore makes sense to compare evaluations on different criteria when all 
criteria are measured on the same scale. But, be careful! Same scale is not 
equivalent to  same range. For example, if an expert assesses the alternatives 
on three criteria (financial, social and environmental costs), using a scale 
from 0 to  10, i t  is very unlikely that the scales are the same, even if they 
have the same range. Indeed, it is hard to  say if a 5 on the financial criterion 
is better, worse or equivalent to a 5 on the environmental criterion. 

Interval non commensurable. The scale for each criterion is an interval scale 
(see chapter 3), i.e, the evaluations can only be transformed through positive 
affine transformations2. Therefore, gi = aigi + ,& is as good an evaluation 
function as gi. Note that the transformations need not be the same for all 
criteria. We can have all different ai 's and all different Pi's. Therefore, 
saying that  

g2(4 - gz(a) = 2 (gz(b) - g2(a)) 

is meaningful while saying 

is not. Indeed, if we use two different transformations for criterion 1 and 
criterion 2, the first statement remains true while the second one becomes 
false. 

Interval with the same unit. The scale for each criterion is an interval scale. 
The evaluations can only be transformed using affine transformations such 
that gi = agi +pi. Here, a is the same for all criteria, which means that the 
same unit is used for all criteria but not necessarily the same origin. In this 
case, a statement like 

is meaningful because it is independent of the origin. But 

is not meaningful. In other words, comparisons across criteria are not per- 
mitted but comparisons of differences make sense. This will make tradeoffs 
possible. 

Ratio non commensurable. The scale for each criterion is a ratio scale. Evalu- 
ations can only be transformed by linear transformations such that gi = aigi. 
Comparisons across criteria are in general not meaningful but, because there 

An affine transformation f is a mapping that can be written in the form f (u) = au + P,  
where a and p are real constants. It is positive if a: > 0. 
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is a fixed origin, a special kind of comparison is possible. Suppose that  
g2(c) > 0 and gl(a) < 0. Then, after any transformation, gh(c) > 0 and 
gi(a) < 0. Therefore, the statement 

is meaningful. 

R a t i o  commensurable  The scale for each criterion is a ratio scale with the same 
unit. The evaluations can only be transformed by linear transformations such 
that  gi = agi,  with a identical for all criteria. So, all statements that are 
meaningful with ratio scales are meaningful here, even across criteria. 

This case occurs, for example, when all criteria are expressed in monetary 
units and when we are interested in the amounts of money and not by their 
value or utility for one or several persons. 

We can of course distinguish many other cases. Our list is not exhaustive. For 
example, interval with the same unit and origin. But this case is not interesting: 
on an interval scale, we always compare differences; so, the origin doesn't play any 
role and this case boils down to the case of interval scales with the same unit. 
Another case is when all criteria are expressed on incommensurable ordinal scales 
with a common fixed point. This can happen if all criteria are ordinal but, a 
neutral point is precisely identified on each one; a point such that  every evaluation 
above it is considered as attractive and every evaluation under it is repulsive. An 
aggregation procedure might take advantage of the existence of this special point 
(see e.g. Grabisch and Labreuche, 2004). Unfortunately, we do not have much to 
say about this case. 

Note that  if some preferences are increasing with gi and others are decreas- 
ing with gj  (see our comment p. 203), then i t  is very unlikely that  some sort of 
commensurability exists between the criteria. 

5.4.2 A comment about commensurability 

Commensurability is very rare. I t  almost never happens that two scales are com- 
mensurable, even if we often assume they are, for commodity reasons. Often, when 
two scales seem commensurable, they are not. For example, suppose some projects 
must be ranked, taking only their costs in year 1 and 2 into account. The two 
costs are measured in Euros. So, apparently, the two scales are identical but it 
could be the case that the decision maker prefers a cost of lo6 € in the second year 
to  the same cost in the first year because he expects to have more liquidities in the 
second year (even after discounting). So, even if the consequences, measured in 
monetary amounts are commensurable, we do not necessarily know how a decision 
maker compares them. The simple algebraic comparison gi(a) 2 gj(b) does not 
necessarily imply that gi(a) is a t  least as good as gj(b) (preferential comparison). 

There are techniques that can help build commensurable scales. These tech- 
niques are based on conjoint measurement (MAVT) and are discussed in section 4.3 
and chapter 6. But, using these techniques, in the process of constructing the 
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scales, we necessarily also build a global preference relation on A. So, once we 
have obtained commensurable scales, we no longer need to use an aggregation 
method, because we already performed the aggregation. These techniques do not 
help us to construct commensurable scales that we can later use in a weighted sum 
for example. They yield the scales and the global preference relation simultane- 
ously. 

If we do not construct commensurable scales, when do we face such scales? A 
general answer to this question probably does not exits, but we see a t  least three 
classes of problems in which we might have commensurable scales. 

0 When alternatives have dispersed consequences. An alternative has dis- 
persed consequences (Azibi and Vanderpooten, 2003; Keeney and Raiffa, 
1976) when it has consequences of the same nature in different places (the 
impact of a factory all along a river i t  pollutes), a t  different moments (the 
impact of an investment over the next ten years) or for different persons (the 
impact of a new community policy on all people in that  community) or units 
(the impact of a policy decided by a bank for all its branches). 

Suppose that, in order to  estimate the aesthetical impact of a new freeway 
on the landscape, twenty points are selected along it. At each point, the 
maximum distance from which the freeway can be seen is considered as the 
impact. From a purely algebraic viewpoint, the twenty evaluations are on 
commensurable ratio scales. Now, from a preferential viewpoint, we probably 
do not have ratio scales (because the aesthetical impact might not vary 
linearly with distance) but we might still have commensurable scales (except 
if one of the twenty points lies in a national park, for example). 

Dispersion in time is more problematic because we seldom give the same 
importance to yesterday, today, tomorrow, next year and the next millen- 
nium. One Euro today often has more value than one Euro tomorrow while 
one Euro yesterday or in the next millennium has no value a t  all. But, in 
some cases, short- or mid-term, commensurability might hold. Suppose for 
example that, in a production planning problem, you estimate the average 
delivery time for every month of a year (the mean of the delivery times for 
all orders received during that month). It is probably reasonable to  assume 
that a given average delivery time for month 3 is equivalent (in terms of 
preference) to  the same average delivery time for month 7. 

0 In the constraint satisfaction problem (see p. 144). 

In the pairwise aggregation of fuzzy preference relations (see p. 199). 

Our remark for the first case also holds for the last two ones: it is not because 
the ranges of the scales are the same that they are commensurable. So, a careful 
construction of the scales is necessary but perhaps not always possible. We now 
turn to  the description and analysis of some simple and/or popular aggregation 
methods. 
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5.4.3 The min 

The min, also called maximin, is a very simple method. The alternatives are 
ranked in the decreasing order of their minimum performance. Formally, 

It is a very pessimistic aggregation method because it only takes the worst perfor- 
mance into account. Table 5.1 illustrates how the min 'works'. Note that, using 

Table 5.1: The min: the smallest performance of a (resp, b and c) is 6 (resp. 4 
and 4). The ranking is thus a +(g) [b ~ ( g )  c]. 

the min, the global preference relation k ( g )  is always a weak order, i.e. a ranking, 
possibly with ties. 

Of course, a symmetrical or dual aggregation procedure can be defined: the 
max (or minimax). The alternatives are ranked in the increasing order of their 
maximal performance. Formally, 

I t  is a very optimistic aggregation method because it only takes the best perfor- 
mance into account. Everything we state about the min in the next paragraphs 
can easily be adapted to the max. 

5.4.3.1 Axioms and characterisation 

We will use the following condition to characterise the min. 

0 Weak Order. See p. 123. 

Strong Ordinality. Suppose that, given g,  we change the performances in g in 
order to obtain g', in such a way that we never reverse the order between two 
performances or break an indifference. In other words, if gi(c) > gj(d), then 
two cases are possible: gi(c) > gl, (d) or g:(c) = gl, (d). The case g{(c) < gl, (d) 
is not allowed (this is a reversal). If gi(c) = gj(d), then only one case is 
possible: gi(c) = gl,(d). Suppose now that alternative a is globally at  least 
as good as b in g. If is Strongly Ordinal, then a must still be globally at  
least as good as b in g'. Very roughly, this means that only the order of the 
performances is relevant. 

Formally: let g- be the smallest admissible or possible performance. Let 
4 be a non-decreasing mapping from [g-, co[ into R. If g' is such that 
g{(a) = 4(gi(a)) for all i E N and all a E A, then a k ( g )  b + a k ( g f )  b. 
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Weak Reversibility. Suppose that a k ( g )  b. Then, by lowering any perfor- 
mance of a sufficiently, it is possible to obtain b k ( g )  a. 

0 Strong Reversibility. Suppose that a k ( g )  b and none of the performances 
of b are equal to g-. Then, by lowering any performance of a sufficiently, it 
is possible to  obtain b t ( g )  a. 

In a different context, Bouyssou and Pirlot (1997) proved the following theorem. 

Theorem 5.10 
If the smallest possible performance g- can be attained, then the only aggregation 
function satisfying Weak Order, Strong Ordinality, Weak Reversibility and Strong 
Reversibility is the min, i.e. the alternatives are ranked in the decreasing order of 
their minimum performance. 

For alternative characterisations, see Bouyssou (1991, 1995); Fortemps and Pirlot 
(2004); Pirlot (1995). 

5.4.3.2 Discussion 

Because the only operation we carry out on the performances is comparing them, 
they do not need to be on a scale that is stronger than ordinal. But, because we 
compare performances on different criteria, it is necessary that these performances 
be measured on commensurable scales. So, if we have ordinal commensurable 
scales and if the four axioms which characterise the rnin seem appealing to the 
decision maker, it makes sense to  use the min. But this is not the only case. We 
have seen that the scales must a t  least be ordinal. So, if the scales are commensu- 
rable ratio scales and if the decision maker agrees with the axioms, then he should 
also use the min. Its use is not restricted to  ordinal scales. The important issue is 
the commensurability of the scales. 

If the smallest possible performance cannot be attained-for example if the 
range for the performances is R-then Theorem 5.10 does not hold. This does not 
mean that the rnin should not be used. I t  just means that there might then exist 
other aggregation procedures which also satisfy Weak Order, Strong Ordinality, 
Weak Reversibility and Strong Reversibility. Furthermore one of them might be 
better suited to  the decision maker's need than the min. 

8 When using the min, it is very important to make sure that the per- 
@ formances on all criteria are on the same scales, in a very strong sense: if 
Q gi(a) > gj(b), the decision maker must then agree that gi(a) is a t  least as good 
Q (or as desirable, as attractive, . . . )  as gj(b), for all pairs of criteria i , j  and '' all pairs of alternatives a, b. This is a strong requirement. Here is an example 8 where it is not satisfied: suppose some projects must be ranked, taking only 
@ their costs in years 1 and 2 into account. The two costs are measured in €. 
1.3 So, apparently, the two scales are identical but it could be the case that the 
Q decision maker prefers a cost of l o 6 €  in the second year to  the same cost in 

the first year because he expects to have more liquidities in the second year 
0 
Q (even after actualisation). 
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Later on, we will present a method bearing some similarities with the min-the 
leximin-but let us first discuss the weighted sum. 

5.4.4 The weighted sum 

The weighted sum is a very popular and simple aggregation method. For each 
alternative, we compute a score s,(p) which is defined as the weighted sum of its 
evaluations: 

sa(g) = C wigi(a). (5.9) 
iEN 

The alternatives are then ranked in the decreasing order of their score. Table 5.2 
illustrates how the weighted sum works. 

Table 5.2: The weighted sum: if w = (1,2,1) the score of a (resp. b and c) is 30 
(resp. 27 and 31). The ranking is thus c +(g) a +(g) b. 

5.4.4.1 Axioms a n d  characterisation 

0 Weak Order. See p. 123. 

0 Cardinal Pareto. If alternative a is strictly better than b on all criteria, then 
a is globally preferred to b. Formally, 

gi(a) > gi (b) Vi E N =+ a ~ ( g )  b. 

This condition is in fact almost the same as Pareto (see p. 175). The only 
difference is that Pareto is formulated in terms of preference relations while 
Cardinal Pareto is formulated in terms of performance tables. 

Cardinal Independence of Irrelevant Alternatives. The global preference 
between a and b depends only on their evaluations in g and not on the 
evaluations of other alternatives. In other words, if g and g' are two pro- 
files such that ,  for every criterion i, gi(a) = gi(a) and gi(b) = g((b), then 
a k ( g )  b e a k (g l )  b. This condition is almost the same as Independence of 
Irrelevant Alternatives (see p. 172). 

0 Cardinal Neutrality. The result of the aggregation does not depend on the 
labels of the alternatives, but only on their evaluations in g. This condition 
is almost the same as Neutrality (see p. 123). 

Invariance w.r.t. Independent Translations. Suppose that, given some g,  
we change the performances in g in order to  obtain g', in such a way that 
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g;(a) = gi(a) + pi. Suppose now that alternative a is globally better than b 
in g.  If is Invariant w.r.t. Independent Translations, then a must remain 
globally better than b in g'. Very roughly, this means that  the performances 
as such are not really important. What really matters are the differences 
between performances. We speak here of Independent Translations because 
the performances on each criterion are translated by a different quantity 
pi. We already presented a somewhat similar condition: Strong Ordinality 
(see p. 207). It could have been called Invariance w.r.t. a Common Non- 
Decreasing Transformation. 

Note that if the performances gi(a) are utilities that  have been previously 
constructed in such a way that differences of utility are meaningful, then 
Invariance w.r.t. Independent Translations certainly makes sense. But it 
might make sense in other circumstances as well. 

Invariance w.r.t, a Common Multiplication. Suppose that, given g ,  we 
change the performances in g in order to  obtain g', in such a way that 
gi(a) = agi(a).  Suppose now that alternative a is globally better than b in 
g. If 2 is Invariant w.r.t. a Common Multiplication, then a must still be 
globally better than b in g'. This, combined with the previous condition, im- 
plies that only ratios of differences between performances are important. We 
speak of a Common Multiplication because the performances on all criteria 
are multiplied by the same amount a. 

K. W. S. Roberts (1980) proved the following theorem. 

Theorem 5.11 
Suppose that, for each criterion i and each alternative a, the performance gi(a) 
can be any real number. Then, the only aggregation function satisfying Weak 
Order, Cardinal Pareto, Cardinal Independence of Irrelevant Alternatives, Cardi- 
nal Neutrality, Invariance w.r. t.  Independent Ranslations and Invariance w. r. t. a 
Common Multiplication is the weighted sum, i.e. the alternatives are ranked in  the 
decreasing order of their weighted sum. 

5.4.4.2 Discussion 

In this characterisation, the first four conditions imposed on the aggregation func- 
tion are extremely reasonable. It is hard to find an example of a decision problem 
in which one of these conditions is questionable. But the last two deserve a closer 
examination; combined with the first four, they impose that the scales of the 
different criteria be interval scales with the same unit. We will show this now. 

For the sake of clarity, let us consider a profile with two criteria. Suppose the 
decision maker is indifferent between a and b. We then have to  choose the weights 
wl and w2 in such a way that wlgl(a)  + w2gz(a) = wlgl(b) + w2g2(b) (we will 
discuss the choice of the weights later). This can be rewritten as 
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where 1-21 = w2/wl. If we now want to compare two other alternatives c and d, 
we need to compare 

In the last line, it is clear that the quantities we compare are differences of perfor- 
mances. The performances thus need to  be measured on interval scales. Further- 
more, we compare differences of performances on different criteria. The scales for 
the criteria must therefore have the same unit. 

But how do we know if we have interval scales with the same unit? Or how can 
we construct our scales in such a way that we are sure that they are interval scales 
with the same unit? These questions are addressed, to some extent, in chapter 3. 

In (5.10), i t  also clearly appears that any difference on the second criterion is 
exactly compensated by 7-21 times that difference on the first criterion. A difference 
of 1 on the second criterion is compensated by a difference of 7-21 on the first one. 
A difference of 2 on the second criterion is compensated by a difference of 2rzl 
on the first one. And so on. The ratio 7-21 is called the substitution rate or 
tradeoff. I t  tells us how many units of criterion 1 each unit of criterion 2 is worth. 
I t  is important to  note that substitution rate ml is independent of the level of 
the performances. Whether the performances g2(a) and g2(b) are both low, both 
average or both high, their difference is compensated exactly by ml [g2(a) - g2(b)]. 
This is a consequence of Invariance w.r.t. Independent Translations. 

When there are more than two criteria, a substitution rate can be defined for all 
pairs of criteria and has the same properties as the substitution rate in a bicriteria 
problem. 

In order to  use the weighted sum, it is important that the performances 
Q be measured on interval scales with the same unit for all criteria and that the 
0 substitution rates be constant for all levels of the criteria. Here is an example 
0 (already introduced on p. 208) where it is not constant. Suppose some projects '' must be ranked, taking only their costs in year 1 and 2 into account. The two 8 0 costs are measured in Euros. The two scales are thus interval scales with the 

same unit. Suppose the decision maker expects to have more liquidities in the 
Q second year and he is indifferent between a (1.5 lo6 € in year 1, 2 lo6 € in year 
8 2) and b (1 lo6 €, 3 lo6 €). The substitution rate ml is thus 112. Let us now 
a present two other projects to  the decision maker: c (1.5 lo6 €, 50 lo6 €) and d 8 CJ (1 lo6 €, 51 lo6 €). The difference between the costs in the second year might 
Q now appear to  be very small (relatively) when compared to  the difference 
GJ between the costs in the first year. The decision maker might then prefer c to 
Q d. The substitution rate would then be smaller than 112. In other words, it 

would have changed. 
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I t  is interesting to  note that none of the axioms of Theorem 5.11 involve weights. 
So, even if no weights are given, if the decision maker does not think about weights, 
the need for weights may appear as a consequence of the axioms or conditions 
imposed on the aggregation function. This is quite different from what we had in 
Theorem 5.4 where, in the axioms, the weights were considered as given. 

Last remark: for convenience reasons, we often write that a performance gi(a) 
is any real number although, for a given criterion i, the range of gi is often limited. 
The cost of a piece of equipment can neither be negative nor infinite! So, in some 
cases, strictly speaking, Theorem 5.11 cannot be applied. But it is probably not 
terribly wrong to  apply it. 

5.4.4.3 Choosing the weights 

In order to  set the weights, we need to  ask questions to  the decision maker, some- 
how as with the Weighted Condorcet method (see p. 180). 

1. A first strategy is the following. Present a profile on two alternatives to 
the decision maker and ask him which one he prefers. Using (5.9), we then 
obtain an inequality involving the weights and the performances of the two 
alternatives. For example, suppose we present the following profile 

and the decision maker says he prefers a to b. We then know that 

Presenting more profiles will give us more inequalities. Eventually, we will 
have so many constraints that all weight vectors satisfying them will yield 
the same global preference relation. We then just have to pick one of these 
weight vectors and we are done. But i t  can also happen that no weight 
vector simultaneously satisfies all constraints. The decision maker might 
then be willing to  modify his judgements. If not, he might be satisfied with 
a weight vector satisfying almost all constraints. If not, we are in trouble. 
The weighted sum is an aggregation function that is not well suited to the 
problem; probably because the scales are not interval scales with the same 
unit. 

2. A second and more direct strategy is to  present only profiles on two alterna- 
tives such that the performances of both alternatives are equal on all criteria 
but two. In addition, the performance of one alternative is not fixed on one 
of these two criteria. An example of this type of profile is: 
We then ask to  the decision maker for what value of gl(b) he would be 
indifferent between a and b. Suppose he says 8. We then write (5.9): 



5.4. AGGREGATION O F  A PERFORMANCE TABLE 

Table 5.3: Setting the weights: a profile on two alternatives. 

After some simplifications, we find: 

If we repeat this operation for the pairs of criteria (1,3), (1,4), . . . ( l ,n) ,  we 
find all weights up to a multiplicative constant. If we follow the convention 
that the weights add up to 1, then they are completely known; after only 
n - 1 questions. 

Note that if we ask only the n - 1 above-mentioned questions, we are sure 
that  all answers will be compatible and will lead to  a unique weight vector, 
up to  a multiplicative constant. But if we ask additional questions, we might 
obtain contradictory information, as with the first strategy. 

3. Many other strategies (mostly variants of the first two) can be thought of 
(see e.g. von Winterfeldt and Edwards, 1986, table 8.3). 

The second strategy is faster to implement than the first but it also has some 
drawbacks. The compared profiles are almost always hypothetical, fictitious and 
any statement about such profiles is probably not very reliable. Any such state- 
ment is about something that the decision maker does not really know and, might 
even be about something impossible. Furthermore the task to  be performed by 
the decision maker is not familiar to him. Comparing alternatives (as in the first 
strategy) is something he can (sometimes) do. Finding a performance for a given 
criterion that  makes two alternatives indifferent is something he probably never 
does. I t  is therefore not certain he can do i t  in a reliable way. Nevertheless, this 
technique can 'force' the decision maker to  think about his problem and promote 
the dialogue with the analyst. It is therefore an interesting maieutic tool. 

Choosing the weights. A good way to  set the weights with the weighted 
kJ sum is to  present a profile on two alternatives to  the decision maker, in which 
6.2 the performances of the alternatives are identical except on two criteria, as in 
cj3 
., table 5.3. The decision maker needs to  find the value gl(b) that makes a and 
&,.i b indifferent. This is done for the n - 1 pairs (1,2), (1,3), . . . (1,n) and yields 
Q n - 1 equations, each one involving wl and one of the other weights. If we 
8 then choose a value for wl,  all other weights are fixed. They can eventually be 
0 normalised. It is a good idea to  present more than the n - 1 required profiles, 
0 in order to  check the adequacy of the weighted sum. 
@ In many applications of the weighted sum (see, e.g., Liu, Lai, and Wang, 8 2000), the criteria are first reraled or normalised so that the largest perfor- 

mance is 1 and the smallest 0. Suppose we then apply a meaningful technique 
(like one of those presented above) for the elicitation of the weights. If, later, 
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a new alternative is added and if some of its performances fall outside of the 
previous range for some criteria, we may be tempted to normalise the criteria 

G2 
Q (although this is not necessary). But if we do so, the scale of the values that 
Q will be added in the weighted sum will change and, hence, the weights must be 
Q changed accordingly. I t  is in fact much simpler not to  normalise or renormalise 
@ the criteria. Then the weights never need to  be changed when a new alter- 
@ native is added. Furthermore, this normalisation is quite misleading: it gives 8 the impression that  a difference of, say, 0.1 on one criterion is worth the same 
E;I difference on another criterion. This is not true. Even if two differences are 
Q numerically equal, they are not necessarily identical in terms of preferences. 
@ The normalisation also leads some people to  believe that, because the nor- 

malised performances are without units, the weights only need to reflect the 8 subjective intrinsic importance of the criteria. This is not true: the weights 
1;3 remain substitution rates or tradeoffs and must be elicited as above. 

5.4.5 The leximin and leximax 

The leximin is another simple aggregation method. For each alternative a ,  we 
define a new vector gp(a) which is just a reordering of g(a) such that the per- 
formances in g f ( a )  are increasing or at least not decreasing from left to right. 
For example, if g is as in table 5.4, then g f ( a )  = (4,5, lo) ,  gp(b) = (4,5,9) and 
gp(c) = (5,6,6). In order to determine the ranking between two alternatives, say 

Table 5.4: The leximin. The ranking is c >(g) a >(g) b. 

a and b, we then look a t  their reordered vector of performances gp(a)  and gp(b). 
We first focus on the first component g<(a) and g;"(b). If g;"(a) > g((b), then 
a >(g) b. On the contrary, if g<(b) > g;"(a), then b >(g) a .  If the two smallest 
performances are equal, i.e. g<(a) = g<(b), then we look a t  the second component 
in order to try to  make a distinction between a and b. We do this in the same way 
as for the first component. If we cannot make a distinction between a and b, i.e. 
gg (a )  = gg(b), we then look a t  the third component, and so on. If two vectors 
g f ( a )  and gf(b) are identical, then a ~ ( g )  b. 

In other words: the leximin is the lexicographic method applied to g f ( a )  and 
g'(b). 

We illustrate this using the example in table 5.4. By looking a t  the first 
component of g'(a), gf (b) and gf (c), we find that c > (g) a and c > (g) b but we 
do not know how to  rank a and b because their smallest performances are equal: 
it is 4. We thus look a t  the second smallest performance of a and b, i.e. a t  the 
second component of gp(a) and gf(b). They are also equal. So, we look a t  the 
third component and we find that a +(g) b. The ranking is thus c >(g) a >(g) b. 
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The leximax is the same method except that we use the vector gL(a), where 
the performances are ordered in decreasing order, instead of &(a). 

Very briefly, the leximin focuses on the worst performances, irrespective of 
the criteria on which they are measured, while the leximax focuses on the best 
performances. 

5.4.5.1 Axioms a n d  characterisation 

The following properties are characteristic of the leximin. 

Weak Order. See p. 123. 

Cardinal Pareto. See p. 209. 

0 Cardinal Independence of Irrelevant Alternatives. See p. 209. 

0 Cardinal Neutrality. See p. 209. 

0 Anonymity. Anonymity is verified when all criteria play exactly the same 
role. That is, we can permute the components of g (the columns of the 
performance table) without modifying the ranking of the alternatives. 

0 Ordinality. Suppose that, given g,  we change the performances in g in order 
to obtain g', in such a way that we completely preserve the order between 
the performances. In other words, 

Suppose now that alternative a is globally better than b in g. If 2 is Ordinal, 
then a must still be globally better than b in g'. This just means that 
only the order of the performances is relevant. Note the difference with 
Strong Ordinality (see the characterisation of the min, p. 207): with Strong 
Ordinality, it is admitted that gi(c) > gj  (d) and gi(c) = g(i (d). 

Independence. Suppose we have two alternatives a and b such that the per- 
formances of a and b in g are identical on some but not all criteria (say the 
criteria in a set M ) .  Suppose also that a k ( g )  b. Consider now a new profile 
g' identical to g except that some of the performances of a and b on the cri- 
teria in M have been modified, while keeping them equal (like in table 5.5). 

Table 5.5: Two profiles on two alternatives such that Independence applies. The 
set M consists of criteria 1 and 3. 

If Independence is satisfied, then a k(g') b. The reason for imposing such 
a condition is simple: when we compare a and b in profile g,  we only pay 
attention to the criteria which are not in M because the criteria in M do 
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not make a difference. And this leads us to  considering that a k ( g )  b. But 
when we compare a and b in the profile g', we also only pay attention to  the 
criteria which are not in M for the same reason. Therefore, it seems logical 
that we come to  the same conclusion, i.e. a k(g')  b, because g and g' are 
just the same when we consider only the criteria not in M. 

K. W. S. Roberts (1980) proved the following theorem. 

Theorem 5.12 
Suppose that, for each criterion i and each alternative a, the performance gi(a) can 
be any real number. Then, if there are at least three criteria, the only aggregation 
functions satisfying Weak Order, Cardinal Pareto, Cardinal Independence of Irrel- 
evant Alternatives, Cardinal Neutrality, Anonymity, Ordinality and Independence 
are the leximin and the leximax. 

For another characterisation, see Fortemps and Pirlot (2004). 

5.4.5.2 Discussion 

Anonymity is seldom a desirable condition: in many applications, we do not want 
the criteria to play identical roles. But here are some cases where it seems a 
reasonable condition: 

When the performances are evaluations given by different experts, stakehold- 
ers or voters and there is no hierarchy among these persons, then it seems a 
good thing to impose Anonymity. 

When all the performances express the same sort of consequence but for dif- 
ferent comparable units, objects or persons (dispersed consequences) and if 
there is no hierarchy among these units, then Anonymity also seems interest- 
ing. For example, consider the choice among different potential locations for 
a household garbage dump. The garbage dump will cause nauseous smells. 
The nuisance caused by a smell is measured on an ordinal scale and varies 
with the nauseous gas concentration. Using a mathematical model, it is 
possible to  predict the gas concentration in each house (the units) within 
a radius of 10 kilometres around the location. The consequences are thus 
nuisances caused by smells in each house. If we do not want to  favour some 
house or inhabitant, we will impose Anonymity. Because all other conditions 
of Theorem 5.12 seem reasonable (at least to us) in this application and be- 
cause the consequences are measured on the same ordinal scale (see below 
for a more thorough discussion of this point), the leximin and the leximax 
are probably "adequate" aggregation functions.) 

0 The flexible constraint satisfaction problem (flexible CSP) is another kind of 
problem where Anonymity seems natural (see p. 144). 

Ordinality, as stated above, means that only order matters, not the performances 
themselves. It is very similar to  Strong Ordinality (see par. 5.4.3.1, p. 207 and 
par. 5.4.3.2). Note that, just like Strong Ordinality, Ordinality makes sense only 
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if all scales are commensurable, i.e. a performance on a scale must be comparable 
with a performance on another scale. This calls for a comment about the example 
of the garbage dump. It is probably true that the nuisance caused by the odour 
varies with the gas concentration: the higher the concentration, the stronger the 
nuisance. But it is certainly not true that the same gas concentration causes 
the same nuisance to each person. Some individuals are more sensitive to odours 
than others. Ordinality is therefore questionable in this application and, strictly 
speaking, it should be rejected. But, we might argue-this is open to discussion- 
that smell sensitivity does not vary so much between individuals, except for some 
rare cases, and that  Ordinality is rather a reasonable condition. Then, the leximin 
and leximax are the only possibilities. 

On the contrary, if we decide that nuisances are not comparable between indi- 
viduals, then the available information we have (the performances) is ordinal and 
not commensurable. This is in fact equivalent to  a profile of rankings and we are 
then back to the problem discussed in section 5.2. The leximin and leximax are 
no longer available options. 

We repeat that, as on p. 208, even if the performances are measured on interval 
or ratio scales, it might make sense to impose Ordinality. Consider for example the 
choice between different potential locations for a facility to be accessed by different 
customers (the units). The consequences are travel times for each customer. If all 
customers have approximately the same importance, then we do not want to favour 
any customer and we might impose Anonymity. Contrary to  the garbage dump 
example, the consequences are measured on ratio scales (travel times). Because 
all performances are measured on the same ratio scale, we might just impose 
Invariance w.r.t. a Common Multiplication (see p. 210) and not Ordinality (which 
could be called Invariance w.r.t. a Common Increasing Transformation). This, 
combined with the other axioms of Theorem 5.12 and some kind of continuity 
would force us to  use the arithmetic mean. 

But it is not because we have a ratio scale (travel time) that we must im- 
pose Invariance w.r.t. a Common Multiplication. We may think that  a gain of 
5 minutes in travel time for a 15 minutes journey is more important, has more 
value than the same gain for a 30 minutes journey. The utility or value of travel 
time would thus not be proportional to travel time. Then, instead of arbitrarily 
saying that the utility or value of a travel time is equal to its square root (or 
logarithm or square or exponential), we might just say that the utility of travel 
time is measured on an ordinal scale. This brings us back to  the problem of the 
garbage dump. An important question is then to  find out whether the utilities 
are identical for all customers, in other words, if the travel times (or their utility) 
are commensurable across customers. If the customers are individuals, then we 
suspect that  the answer is negative: not all people perceive and value time the 
same way. But if the customers are similar companies, then the answer could be 

3 T h i ~  theorem (Roberts, 1980) is not presented in this book, but another characterisation 
of the arithmetic mean can easily be obtained by adding Anonymity to the conditions of The- 
orem 5.11, characterising the weighted sum. It is indeed clear that, if Anonymity is imposed, 
then all weights must be identical and we obtain the arithmetic mean. Here, we consider the 
arithmetic mean as an aggregation function and not as an aggregation operator as in section 5.7. 
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approximately 'yes' because each company consists of different people and that 
their "average" perception and value for time is perhaps roughly the same. 

We now present an application, in robustness analysis, in which Ordinality 
definitely makes sense. Suppose we want to go from A to B and there are six 
possible routes: through C, D, El F ,  G or H. We would like to choose the fastest 
route but because of some unpredictable events, the travel times for each route 
can take two different values. The travel times for these six routes are presented 
in table 7.9 in chapter 7, where this example is introduced. If we want to find 
a robust solution, we may then consider a decision problem with two criteria 
such that the performances on the two criteria are the travel times under the 
two different scenarios (for a motivation of this approach, see section 7.5.2). If 
we consider that the utility or value of travel time is measured on an ordinal 
scale, then Ordinality is a condition that we will definitely impose because the 
performances on the two criteria are utilities of travel times, for the same person. 
They are therefore perfectly commensurable. We know for sure that 28 minutes 
on route AEB is better than 29 minutes on the same route. 

Suppose now that both scenarios seem equally possible; we then do not want 
to favour one of them and we may impose Anonymity. If we then also impose In- 
dependence and the other conditions of Theorem 5.12 (these are very reasonable), 
we find that we must use the leximin or the leximax. 

8 Just as for the min, a crucial issue for the leximin is the commensurability 
Q of the scales. We must be able to compare performances on different criteria. 
8 If 5 is a performance on criterion i and 6 on criterion j ,  then it must be 
0 that the decision maker considers 6 as better than 5. The main difference 

with respect to the min is Independence. Take two alternatives that have 
@ the same performance on one criterion and lower that performance; if you 

lower it enough and if you use the min, you are sure that the two alternatives 
(J will be indifferent. With the leximin, because of Independence, if you lower 
a two identical performances, the ranking between these alternatives will not be 

affected and if one is strictly preferred to the other one, they will remain so. r . 2  

The last condition of Theorem 5.12 we want to discuss is Independence (see 
p. 215). This condition looks innocuous but is in fact not always acceptable. It 
is very similar to several other conditions introduced in section 4.3 and chapter 6: 
namely Weak Separability (p. 258), Weak Preference independence (p. 239) and 
Strong Preference Independence (p. 239). Because these conditions are discussed 
at length in section 4.3 and chapter 6, we refer the reader to those sections. 

5.4.6 The outranking procedures 

The expression outranking procedure has often been used informally to designate 
aggregation methods that, like ELECTRE I, PROMETHEE, TACTIC, etc., pro- 
duce a global preference relation, sometimes not complete, based on pairwise com- 
parisons of the alternatives. There is no formal definition of an outranking proce- 
dure. 

In this section, we use the expression outranking procedure in a different way, 
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as defined by Pirlot (1997). It is not unrelated to the informal expression but 
it is not equivalent. Outranking procedures are a large family of aggregation 
functions. Unlike most families of aggregation functions we have seen so far, 
outranking procedures are functions not only of a performance table but also of 
some parameters: the thresholds. For each criterion i, there are ti thresholds: 
ri,l, TQ, . . . , ~ i , ~ ~ .  These thresholds are non-negative real numbers and are or- 
dered, i.e. 0 < < Ti,2 < q t i .  We use the symbol 7 to represent the collection 
of all thresholds to be used in a particular problem. In this section, an aggrega- 
tion function is therefore a function 2 that associates a global preference relation 
denoted by k ( g ,  7) to each profile g and each collection of thresholds 7. 

Another difference with the aggregation functions presented so far: outranking 
procedures are not defined by the computations we need to perform in order to 
use them, but by a list of properties or axioms that they satisfy. We can therefore 
not present outranking procedures without first presenting the axioms that they 
all must satisfy (by definition). 

Cardinal Neutrality. See p. 209. 

No Reversal. Suppose that, given a profile g and a collection of thresholds 
F ,  we have a k ( g ,  7) b. Construct a new profile g' identical to g except that 
some performances of a are raised and some performances of b are lowered. 
Formally, for every criterion i, gi(a) 1 gi(a) and gi(b) < gi(b). Because the 
position of a has improved and that of b has deteriorated and because we 
had a k ( g ,  7 )  b, No Reversal imposes a k (gf ,  7) b. 

0 Cardinal Independence of Irrelevant Alternatives with thresholds. The global 
preference between a and b depends only on their evaluations in g and on the 
thresholds, but not on the evaluations of other alternatives. In other words, 
if g and g' are two profiles with a vector 7 such that, for each criterion 
i, gi(a) = gi(a) and gi(b) = gi(b), then a k (g ,? )  b a k (g l ,  7) b. This 
condition is almost the same as Independence of Irrelevant Alternatives (see 
p. 172) and Cardinal Independence of Irrelevant Alternatives (see p. 209). 
The difference is purely formal. 

Semi-pareto. This axiom is a variant of Cardinal Pareto (p. 209) and gives a 
meaning to the first threshold ri,l. For a criterion i, ri,l represents the limit 
between the differences of performances that are considered as negligible or 
not important and those that are significant or not negligible. The threshold 
T ~ , J  can therefore be seen as an indifference threshold. Taking this into 
account, we can adapt the Pareto condition as follows: if an alternative a is 
significantly better than another one (say b) on all criteria, then it cannot be 
globally worse than b. By 'significantly better', we mean that the difference 
in performances is larger than ri,l. Formally, Semi-Pareto is satisfied if 

Semi-Ordinality. This axiom gives a meaning to the other thresholds. As we 
have seen, the first threshold ri,l represents the limit between the differences 
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in performances that are considered as negligible and those that are signif- 
icant. No distinction is made between negligible differences (thus smaller 
than T ~ , J ) .  The other thresholds will partition the larger differences in per- 
formances as follows: the differences in performance lying between ri,1 and 
r i ,2  are considered as larger than those smaller than ri ,~ but no distinction is 
made between them. The differences in performance lying between r i ,2  and 
ri,3 are considered as larger than those smaller than ri ,2  but no distinction is 
made among them. And so on. Hence, if we change some performances but 
if the differences in performances remain between the same thresholds, for 
each criterion, then the result of the aggregation should not vary. Formally, 
suppose we have two profiles g and g' such that, for every pair a, b in A, 
every criterion i and every j between 1 and ti, 

Semi-Ordinality then imposes that k ( g ,  f )=k(g l ,  7). 

Pirlot (1997) defines an outranking procedure as any aggregation function satis- 
fying Cardinal Neutrality, No Reversal, Cardinal Independence of Irrelevant Al- 
ternatives with Thresholds, Semi-Pareto and Semi-Ordinality. The reader may 
now wonder what these outranking procedures look like, but it is very difficult 
to answer this question because this family is very large. Nevertheless, it is not 
difficult to see that they are based on pairwise comparisons (because of Cardinal 
Independence of Irrelevant Alternatives with Thresholds) and on differences in 
performances for each criterion (because of Semi-Ordinality). They are therefore 
quite close to the ELECTRE methods, TACTIC, PROMETHEE, etc. This is why 
they are been called outranking procedures. 

By imposing an additional condition, Pirlot (1997) characterises a family of 
aggregation functions that is very much like ELECTRE I, without veto. This 
condition is 

Componentwise Strong Ordinality. This condition is similar to Strong Ordinality 
(p. 207) but here we consider independent transformations for all criteria, i.e. we 
have n mappings 4i instead of one mapping 4. 
Formally, let 4i be a non-decreasing mapping from R into R. If g' is such that 
gi(a) = &(gi(a)) for all i E N and all a E A, then a k ( g ,  7) b + a k(g1,7) b. 

Theorem 5.13 
An aggregation function satisfies Cardinal Neutrality, No Reversal, Cardinal Inde- 
pendence of Irrelevant Alternatives with Thresholds, Semi-pareto, Semi-Ordinality 
and Componentwise Strong Ordinality if and only if there is a set C of coalitions 
of criteria (to be interpreted as strong coalitions) such that 

a k ( g , r )  b iff {i : gi(a) L gi(b)) E C. 
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5.4.6.1 Discussion 

In general, outranking procedures allow for the existence of an indifference thresh- 
old as defined by Semi-Pareto but in Theorem 5.13, there is no indifference thresh- 
old (in fact, it is equal to zero). This is a consequence of Componentwise Strong 
Ordinality. So, we could have used Cardinal Pareto instead of Semi-Pareto in the 
statement of Theorem 5.13 but because Semi-Pareto is part of the definition of an 
outranking procedure and because it is weaker than Cardinal Pareto, we prefer 
the statement with Semi-pareto. 

As already discussed, Cardinal Neutrality is essentially the same condition 
as Neutrality (see p. 123) and is very compelling except perhaps in situations 
involving a status quo. 

No Reversal is in fact a weak version of Non-Negative Responsiveness (see 
p. 184). With Non-Negative responsiveness, when the position of a improves on 
some criteria w.r.t. b, the global position of a w.r.t. b can not deteriorate. With 
No Reversal, the global position of a w.r.t. b can deteriorate in the sense that  a 
strict preference of a over b can be transformed in an indifference. But a preference 
(strict or not) of a over b cannot be transformed in a strict preference of b over a. 
This is an extremely weak condition. In just about all cases, we will want more 
than No reversal. I t  is therefore a very compelling condition. 

Cardinal Independence of Irrelevant Alternatives with Thresholds is a more 
disputable condition. Because it is essentially the same condition as Independence 
of Irrelevant Alternatives, we refer the reader to  the discussion on p. 174. 

Semi-Pareto is a weaker condition than Pareto. I t  applies only if a is signifi- 
cantly better than b on all criteria whilst Pareto applies when a is better than b 
on all criteria. Because Pareto is a very reasonable condition in most (or even all) 
cases, Semi-Pareto seems very appealing. 

Semi-Ordinality is a strange property of outranking procedures. In some sense, 
it imposes that  a method be not too sensitive to small changes. Indeed, if we change 
some performances and if all performances remain between the same thresholds, 
the result of the aggregation must be the same. But, a t  the same time, the 
thresholds induce some discontinuities: if the difference between two performances 
is just smaller than a threshold and if we slightly change these performances in such 
a way that the difference between them becomes just larger than the threshold, 
anything can happen. 

Another salient aspect of outranking procedures is very clear when we look a t  
Semi-Ordinality: the outcome of an outranking procedure does not depend on the 
magnitude of the performances, but only on their order and their differences. If 
we add a constant to  all performances on a criterion, no difference changes and, 
hence, the outcome does not change. Suppose now that the indifference threshold 
for a criterion expressed in Euros is 10008.  This threshold will play the same 
role when we compare two alternatives with costs of 99 000 € and 99 500 € or two 
alternatives with costs of l O O €  and 600€ because the differences are the same. 
But this is not necessarily what we want. If this is a problem in a given context, 
we can easily avoid it by using variable thresholds. But we then leave the world 
of outranking procedures (as defined by Pirlot). 
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The last condition we must discuss is Componentwise Strong Ordinality. It is 
not a characteristic of all outranking procedures, but only of those characterised 
by Theorem 5.13. Componentwise Strong Ordinality is a very strong condition. 
I t  has two aspects. 

First, it imposes that the outcome of the aggregation be insensitive to any 
non-decreasing transformation of the performances. So, the magnitude of the per- 
formances is not relevant (this is also a consequence of Semi-Ordinality) but, in ad- 
dition, the differences are also not relevant. So, only the order of the performances 
matters and, hence, all thresholds must be zero. This is probably reasonable if the 
performances are measured on an ordinal scale, that  is, we have no information 
about distances between the various performances. 

Second, it imposes that the outcome be insensitive to different transformations 
on the different criteria. This is quite different from Strong Ordinality that we 
presented in section 5.4.3 about the min (see p. 207). There we considered the 
same transformation for all criteria. Here, the performances on one criterion can 
be transformed independently of those on another criterion. A consequence of 
this is that the methods characterised by Theorem 5.13 are noncompensatory. 
Indeed, suppose we have two criteria (investment and exploitation cost) and two 
alternatives with the following performances: 

Suppose also that a L(g,?) b. Then, if we want to use the same procedure in 
order to compare two other alternatives c and d with the following performances 

we must conclude c L(g,  T) d because, on each criterion, the performances of c and 
d are in the same order as those of a and b. So, even though c is much worse than d 
on criterion 1 and only slightly better than d on criterion 2, the bad performance of 
d on criterion 2 cannot be compensated by its very good performance on criterion 
1. 

A situation where noncompensation is probably desirable or useful is when 
comparisons across criteria are difficult, as in the following example. Suppose 
your beloved is in a coma and you must choose between 3 different surgical treat- 
ments for him or her. You have a performance table with three criteria (cost in 
Euros, quality of life after treatment and chances of success). If you use a com- 
pensatory technique-say additive utility (see section 4.3)-to choose a treatment, 
then during the elicitation process, you will have to  answer questions like 'Do you 
prefer a or b' where a and b are characterised by the following performances. 

Cost QOL Chances 
a 30000 6 0.7 
b 10000 6 0.6 
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This means that you will have to decide if increasing the chance of success of your 
beloved by 0.1 is worth 200008. This is a tough question! Chances are you will 
not be able or willing to answer it. With a procedure like those characterised by 
Theorem 5.13, you would not have to answer such a question, where an increase 
on one criterion is compared to an increase on another one. 

Note that, in our example, comparisons across criteria are difficult and, so, 
perhaps justify the use of a method insensitive to independent transformations 
of the scales but the performances are not measured on ordinal scales (at least 
not all of them). Using a method satisfying Componentwise Strong Ordinality is 
therefore not completely justified. 

In Pirlot (1997), another result is presented, similar to Theorem 5.13 but where 
Componentwise Strong Ordinality is replaced by two other conditions, one of them 
expressing the fact that the second threshold ri,z is a veto threshold. The meth- 
ods characterised by this theorem are very close to those of Theorem 5.13. The 
difference is the presence of a veto. 

5.4.6.2 The outranking procedures and ELECTRE I 

It is clear that ELECTRE I is an outranking procedure, in the sense of Pirlot 
(1997). If we put aside the vetoes, ELECTRE I is even one of the methods 
characterised by Theorem 5.13. These are more general than ELECTRE I because 
the set of strong coalitions is not necessarily defined by the addition of weights. 
The second main result in Pirlot (1997), that we do not present here, characterises 
a family even closer to ELECTRE I since it allows for vetoes. 

A very particular property of ELECTRE I is its noncompensatory char- 
8 acter which, in the absence of vetoes, is formally expressed by Componentwise 
G2 Strong Ordinality. Before using ELECTRE I within an evaluation model, it 
Q is probably a good idea to check if the absence of compensation is desirable. 

A simple way to do this is to present two alternatives a and b such that the 8 
decision maker prefers one of them (say a)  and such that the number of criteria 
for which a is better than b is as small as possible. Then improve significantly 

G3 the performances of b on all criteria for which b is better than a. If the de- 
8 cision maker still prefers a to b, then ELECTRE I might be an appropriate 

aggregation method. 

We already mentioned ELECTRE I several times in this chapter but we never 
mentioned noncompensation. The reason is that this is the first time we consider 
the aggregation of performances. Until now, we always considered the aggrega- 
tion of preference relations and noncompensation was not really relevant in that 
context. The condition that makes the outranking procedures noncompensatory 
is clearly Componentwise Strong Ordinality. 
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5.5 Aggregation of a linguistic performance table 
into one relation 

When each alternative is evaluated on each criterion by means of linguistic evalu- 
ations ("good", "average", "bad" or ' 'very comfortable", "comfortable", "accept- 
able", "unacceptable" or . . . ) and we want to construct a preference relation on 
the set of alternatives, several attitudes are possible. 

We have no other information than the linguistic evaluations and an order 
on these evaluations. For example, we know that "good" is better than 
"average" which is better than "bad". For some reason, we do not try or do 
not succeed in gaining more information. In this case, we are back to the 
case explored in section 5.2 (the aggregation of several binary relations into 
one relation). 

0 If the decision maker has enough time and is willing to spend some energy 
in such a process, it might be interesting to try to build a numerical rep- 
resentation on each criterion. Using the techniques of preference modelling 
(see chapter 3), we can arrive at numerical evaluations for each alternative 
on each criterion on scales that are stronger than ordinal (eventually inter- 
val scales). Instead of a numerical representation, we can also build a fuzzy 
representation, i.e. a model where each alternative is characterised on each 
criterion by a fuzzy number instead of a number. The next step is then 
to aggregate these performances into one global preference relation. If the 
performances are crisp, this brings us back to section 5.4; the case of the ag- 
gregation of fuzzy performances into one relation-which is popular in fuzzy 
control (see Bouyssou et al., 2000, chapter 7 or Nguyen and Kreinovich, 
1998)-is not addressed in this book. 

Note that transforming the linguistic evaluations into numerical or fuzzy 
evaluations is not an easy task. It is not enough to say that we will (re)code 
"good" by 3, "average" by 2 and "bad" by 1 or to decide that "good" is 
represented by the trapezoidal4 fuzzy number (6, 8.5, 10, lo), "average" by 
(3.5, 4, 6, 8.5) and "bad" by (0, 0, 3.5, 4). The representation must really 
represent the decision maker's preferences. It  is therefore necessary to have 
a deep interaction with the decision maker to obtain the information that 
can help us move from an ordinal scale to a richer scale. For a discussion of 
techniques that may be of some help with fuzzy sets, see Bollmann-Sdorra, 
Wong, and Yao (1993); Marchant (2004a,b, forthcoming). 

In the previous case, we suggested replacing the linguistic evaluations by 
numerical or fuzzy evaluations through a preference modelling step. This 
can take place independently for each criterion. The evaluations we obtain 
are therefore on incommensurable scales and it is then not at all obvious how 
to aggregate these evaluations. In section 5.4, all of the aggregation methods 
we presented require some commensurability. 

4An example of a trapezoidal fuzzy number is curve b in fig. 5.2. 
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I t  might then be wiser (but this might also be more difficult) to model the 
preferences on all criteria simultaneously in order to  obtain commensurable 
scales. This process is known by the name conjoint measurement. I t  is fa- 
miliar to all those who used MAVT, but it is not limited to  MAVT. Thanks 
to  the work of Bouyssou and Pirlot (2002a), we know that many different ag- 
gregation methods (even those usually grouped under the label of outranking 
methods) can be described in the framework of conjoint measurement. The 
reader interested in this approach should go to  section 4.3 and chapter 6. 

Note that, after the conjoint measurement (or conjoint preference modelling) 
step, no aggregation is needed because the modelling of the preferences on 
all criteria simultaneously is necessarily accompanied by the construction of 
the global preference. 

Choosing between the three attitudes described above is not easy. If the decision 
maker has a lot of time and is willing to cooperate with the analyst, if the decision 
maker is able to give consistent answers to the analyst, to give him the necessary 
information, then the last attitude will probably yield the global preference relation 
with the strongest validity because it will be based on a large amount of consistent 
and relevant preferential information. 

But if time is short or if the decision maker does not really want to  cooperate 
or if he is not able to give consistent answers, then the second or even the first 
attitude might be equally or even more valid than the third one. If the decision 
maker does not really understand your questions or if he has no time to  think 
about your questions, the global preference relation might just be the outcome 
of a stochastic (or chaotic) process and not really reflect the decision maker's 
preferences. In such a case, it might then be better to  ask the decision maker for 
less information and to  replace it by some more or less normative principles (some 
axioms characterising an aggregation function) that can eventually be discussed 
with the decision maker. The result would then neither be a better reflection of the 
decision maker's preferences nor a worse one. But-this is important-it would 
be consistent and you would know on what it is based. 

5.6 Choice functions 

Until now, we always considered the problem of aggregating a profile of preference 
relations (or a performance table) into a global preference relation. If this global 
preference relation is a weak order, then this problem is often referred to as the 
ranking problem statement (see section 2.4.3 and Roy, 1996). But, in many cases, 
the decision maker's problem is not stated in terms of ranking alternatives. There 
are many other possible problem statements. Formulating a problem statement 
is a difficult issue and also a very important one if we do not want to find the 
correct solution of an erroneous problem. We will not develop this point here 
because it has been partially addressed in chapter 2 and will be further discussed 
in chapter 7. Suppose our decision maker just needs to  choose one alternative: the 
best one. He is not interested in a ranking. This problem is known as the choice 
problem statement. There are typically two ways to  handle this problem. 
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The decision maker first constructs a global preference relation, by aggregat- 
ing the single-criterion preference relations. He then tries to base his choice 
on the analysis of the global preference relation. This second step is often 
called the exploitation of the global preference relation. It  is discussed in 
chapter 7, section 7.4. 

0 The decision maker directly constructs a choice set (a set with the best 
alternatives) in one step. Only this approach will be discussed in this section. 

Many aggregation procedures can be used for ranking or choosing; in the latter 
case, they provide the decision maker with a choice set which contains the best 
alternatives (one or more alternatives). For example, with the Borda method, 
instead of ranking the alternatives according to their score, you just choose the 
alternatives with the highest score. With the Condorcet method, the choice set 
contains the alternatives that are preferred to all other alternatives (this choice 
set can eventually be empty). For many procedures, switching from ranking to 
choosing requires only a small and obvious adaptation. But the choice functions 
that we then obtain are no longer aggregation functions and the characterisations 
that we presented above no longer hold. We need new characterisations of choice 
functions. 

For some methods, we have both kinds of characterisations (choice and rank- 
ing). For example, Young (1974) characterised the Borda method as a choice 
function. Fortunately, in all cases in which we have the two kinds of character- 
isations, the axioms are almost the same; they express the same kind of ideas 
and only small adaptations are necessary. This seems to indicate (but does not 
prove) that characterisations of ranking and choice methods are essentially the 
same. Therefore, if we know a characterisation of an aggregation procedure used 
for ranking, we can quite safely use this characterisation for practical purpose, in 
order to try to understand the corresponding choice function. 

The opposite adaptation, i.e. transforming a choice function into an aggregation 
function (for ranking) is often possible but less obvious. There can be several ways 
to convert a choice function into an aggregation function. 

In the following subsection, we explain how it is possible to take axioms per- 
taining to the ranking problem and adapt them to the choice problem. Of course, 
this is relevant only if the method one wants to analyse comes in two flavours: 
ranking and choice. 

5.6.1 Adapting the axioms to  the choice problem 

Adapting the axioms is usually an easy job. Let us use the symbol C for the choice 
set. C is a function of p. C(p) is thus the choice set based on the profile p. We 
first give three general principles of axioms translation and we then show some 
examples: 

ranking choice 

a *(PI b if a is in C(p) then b is not in C(p) 

a L(P) b if b is in C(p) then a is also in C(p) 
k(p)  depends only on . . . C(p) depends only on . . . 
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Based on these principles, it is easy to adapt some axioms to the choice problem. 
We provide some examples below. 

Cancellation. If, for any pair of alternatives, there are as many criteria in 
favour of the first alternative as in favour of the second one, then all alternatives 
are in the choice set. 

Faithfulness (in the case of a profile of linear orders). If there is only one 
criterion, i.e. N = {I), then the choice set contains only the alternative which is 
ranked first on that criterion. 

Neutrality. The axiom presented in section 4.2.2 (p. 123) does not need to be 
changed. 

Anonymity. All criteria play the same role. In other words, 

Positive Responsiveness. Suppose a is globally not worse than b (i.e., if b is 
in C(p) then a is also in C(p)). Suppose also that pf is identical to p except for 
one criterion where the position of a has improved with respect to b. If k satisfies 
positive responsiveness, then a is globally strictly better than b (if a is in C(pl) 
then b is not in C(pf)). 

Most axioms can easily be transposed to the choice problem, as illustrated 
above. The interested reader will thus be able to analyse choice methods by 
transposing characterisations obtained for ranking methods. Of course, before 
trying such a transposition, one should check that no characterisation of the choice 
method exists in the literature. 

5.7 Aggregation of a performance vector into one 
single performance 

Suppose we have an object a, characterised by some performances or evaluations 
(real numbers) on different criteria: gl(a) on the first criterion, g2(a) on the second, 
and so on. These numbers may eventually be the outcome of a preference modelling 
process, they may be utilities (gj is then an element of H in the evaluation model. 
See chapter 2, p. 41). Or they can be just performances or evaluations not reflecting 
any preferences (gj is then an element of D in the evaluation model. See chapter 2, 
p. 41). We might want to aggregate or summarise these performances into one 
single global performance. We then immediately think of the arithmetic mean, or 
the weighted arithmetic mean, the median, the min, etc. All these operations that 
aggregate a vector g(a) of real numbers into a single real number G(a) are called 
aggregation operators and this section will be devoted to them. 

It is important to make a clear distinction between this section and section 5.4. 
In that section, we also use the weighted sum and the min (among others), but we 
then use the global score or performance to derive a ranking: the alternatives are 
ranked in decreasing (or increasing) order of their global scores. In this section, 
we are interested in the global performance itself, not in the ranking that we can 
derive by comparing global scores. 
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At first sight, this does not make a big difference and, indeed, the calculations 
are exactly the same. But the conditions or axioms characterising, for example, 
the weighted sum are not the same if we are interested in the ranking derived from 
the weighted sum or in the weighted sum itself. In particular, the axioms in this 
section will usually be stronger than those given in section 5.4 for the following 
reason: suppose that, using the weighted sum as in section 5.4, we obtain a > ( g )  b. 
If we used the weighted sum raised to the power 3, we would get the same result, 
because 

x > y H x3 > Y3. 
In other words, the ordering between any two numbers is preserved if we raise 
them to the third power. Similarly, if we used the exponential of the weighted 
sum, we would also get a + ( g )  b because 

This is in fact true for any strictly increasing function applied to the weighted sum 
(e.g., the square root, arctan, . . . ). So, when we only look a t  the derived ranking, 
the conditions characterising the weighted sum also characterise the square root of 
the weighted sum and many others because they are all equivalent. But if we want 
to characterise the weighted sum itself (not the derived ranking), then we need to 
impose additional conditions that make a distinction between the weighted sum 
and all the increasing transformations of the weighted sum (square root of the 
weighted sum, etc.). 

This way of reasoning not only applies to the weighted sum, but to  all aggre- 
gation operators: the min, the max, the ordered weighted average (see below in 
this section), and so on. 

It is then natural to  ask the following question: when are we interested in the 
global performance of an alternative rather than in its position in a ranking ? We 
can distinguish a t  least two situations where this is the case. 

Suppose the decision maker considers a hierarchy of criteria, i.e. some criteria 
are decomposed into sub criteria which, in turn, can also be decomposed into 
sub-sub criteria, and so on. I t  is then sometimes interesting or convenient 
to  perform the aggregation a t  different levels, i.e, aggregate a t  the level of 
the sub criteria and then a t  the level of the criteria (we suppose here that 
there are only two levels in the hierarchy). In such a case, after the first 
aggregation (at sub criteria level), what we are interested in is not a ranking 
but aggregated performances that we can use in the next aggregation (at 
criteria level). 

There are also situations in which, after the aggregation, a relative evaluation 
(a  ranking) of the alternatives is not sufficient. An absolute evaluation is 
needed, imposed or customary. Think of the students' grades, the Dow 
Jones, the life expectancy, and the many different indexes used in almost all 
areas of human activity (see Bouyssou et  al., 2000, ch. 4). 
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In these cases, it is however important to remain critical. It is not because an 
absolute evaluation is customary that we necessarily need it. For example, a 
bank that evaluates credit applications probably does not need an absolute 
and numerical evaluation. A very rough ranking or a classification in or- 
dered classes (e.g., very good, good, acceptable, problematic, unacceptable) 
is probably significant enough. 

Another context where the aggregation of a vector of numbers into one number 
is relevant is the pairwise aggregation of fuzzy preference relations (section 5.3.4). 
But, here, the numbers are not performances of alternatives, they are valuations 
of different fuzzy preference relations for a given pair of alternatives. 

In this section, we will review some popular aggregation operators, present their 
characterisation and try to identify contexts in which they are appropriate. As in 
section 5.4, it is important to consider the nature of the information provided by 
the numerical performances. Are the scales identical or not? Are the performances 
measured on an ordinal, interval or ratio scale? The reader will find a discussion 
of these points in section 5.4, p. 203. 

5.7.1 Notation 

As in section 5.4, the performance vector of alternative a could be denoted by 
g(a). But, in this section, because we are looking at absolute evaluations and not 
at rankings, most of the time, we will consider only one alternative at a time. We 
can thus safely drop the name of the alternative and use the simplified notation 
g = (gl, . . . , gn) for the vector of performances. The aggregation operator will be 
denoted by G. Because the number of performances (the number of criteria or 
dimensions) to be aggregated can vary, we will use the superscript (n) to specify 
the number of arguments of a given operation aggregator. For example, G(3) is an 
aggregation operator for vectors of size 3. When we speak of a specific aggregation 
operator, we indicate this with a subscript. For example, if G is the arithmetic 
mean, we use the subscript Z and we write 

Similarly, ~ 2 : ~  will denote the min, i.e. 

5.7.2 The arithmetic mean 

This well-known operator is defined by: 
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5.7.2.1 Axioms a n d  characterisation 

The arithmetic mean has, among others, the following properties. 

Idempotency. When all performances of an alternative are identical, then 
the global performance should be equal to the single-criterion performances. 
In other words, 

G$qg, . . . , g) = g. 

This condition obviously makes sense only if all performances are measured 
on the same scale and if the global performance also needs to  be measured 
on the same scale. We stress again that "same scale" does not only mean 
scales with the same range (say, from 0 to  1) but fully commensurable scales 
(for a more thorough discussion of this question, see stepping stones on p. 
208). This can eventually be the case if the performances are not just "raw" 
performances but utilities or numbers resulting from a preference modelling 
process. 

Cardinal Neutrality. See section 5.4.4.1, p. 209. 

Continuity. Continuity ensures that, if a performance gi changes slightly, 
then the global performance will not change dramatically. Small changes in 
the single-criterion performances can only cause small changes in the global 
performance G(,)(g). Technically, this condition is spelled out as follows: 
G(,) is a continuous function of gl ,  g2,. . . , g,. 

Strict Monotonicity. Suppose that  two alternatives a and b are identical 
except on criterion i. Suppose also that gi(a) > gi(b). Strict monotonicity 
imposes then that G(,)(g(a)) > G(,)(g(b)). This condition is of course 
related to Cardinal Pareto (p. 209) but it is stronger because Cardinal Pareto 
applies only if a is strictly better than b on all criteria. 

Note that we often use a rounded version of the arithmetic mean and that 
this rounded version does not verify Strict Monotonicity. Indeed, take a 
and b such that g(a) = (3.12,4.32,2.71) and g(b) = (3.12,4.32,2.70). After 
rounding, we obtain GF)(g(a))  = 3.38 = Ggl(g(b)).  So, even if a and b are 
not the same, they get the same global performance because the small differ- 
ence between them was lost in the rounding process. But this is usually not 
a problem because, if we did not use rounding, we would probably consider 
the difference as negligible anyway. So, this shows that Strict monotonicity 
is probably not an important or crucial condition. 

Decomposability. This property is convenient when we perform the aggrega- 
tion a t  different levels. Suppose that we have some criteria that are decom- 
posed into sub criteria, themselves decomposed into sub-sub criteria. We 
do not want the overall performance to  depend on the way this hierarchy 
of criteria is structured. If we use such a hierarchy, it is because it is con- 
venient and helps us think in a structured way, considering only one small 
sub .problem at a time. Of course, another decomposition of the problem 
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into sub problems might also work. The overall performance should there- 
fore be independent of the decomposition we chose. This is in some sense 
what Decomposability says. Formally, an aggregation operator G satisfies 
Decomposability if 

~(~)(g~,...,gk,~k+l,...,~n)=~(~)(g,...,g,gk+l,...,gn), - 
k times 

where g = G ( ~ )  (gl, . . . , gk). We may replace k different performances by k 
times the value corresponding to  their aggregation. Note that  this condition 
has some similarities with Consistency (see p. 123). 

0 Stability w.r.t. a Common Translation. Suppose two alternatives a and b are 
such that the performance of b on each criterion is equal to  the performance of 
a plus a constant ,6' (for example g(a) = (3,4.5,1.8) and g(b) = (4,5.5,2.8)). 
Then the global performance of b is equal to  the global performance of a 
plus the same constant P. Formally, Stability w.r.t. a Common Translation 
is defined by 

This condition is often presented as follows. 

If we change the scale of measurement by adding a constant to  all 
performances (like displacing the origin of the time scale from 1 
A.D. to  622 A.D. as in the traditional muslim calendar) and we 
then compute the global performance, we obtain the same result as 
if we first aggregated the performances and then added the same 
constant to  the global score. 

This interpretation is quite attractive but misleading. It implicitly assumes 
that  we want to use the same aggregation operator on both scales (before and 
after the addition of a constant). But it is not clear a t  all why we would want 
to use the same one (see Narens, 2002, for a deep discussion of these issues). 
When we use a weighted sum, it is clear for everyone that, if we change 
the unit of measurement of one criterion, we have to accordingly change the 
weight of that criterion, i.e, we change the aggregation procedure. And this 
is accepted by everyone. So, why impose that the aggregation operator be 
independent of the scale of measurement? 

We must therefore only keep the first interpretation in mind, which looks a t  
the relation between the global performances of pairs of alternatives with a 
particular structure, in the absence of a change of scale. The question we 
must now answer is: when is Stability w.r.t. a Common Translation a sensible 
condition? Instead of a clear answer, we will just present two examples of 
cases where Stability w.r.t. a Common Translation is not desirable. 

- Suppose the performances of student a for three different courses are 
g(a) = (3,2,3), with 0 and 10 indicating respectively the worst and 
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best possible performances. It would make sense to  give him a global 
score equal to  2, thereby penalising his consistently bad scores. Suppose 
now that the performances of another student b are g(b) = (9,8,9). A 
decision maker might be tempted to  reward his consistently good scores 
and give him 9 as global score. Now note that g(b) = g(a) + 6 and 
~ ( ~ ) ( ~ ( b ) )  # ~ ( ~ ) ( ~ ( a ) )  + 6, contradicting Stability w.r.t. a Common 
Translation. Finally, note that this has nothing to  do with the nature 
of the scales: this discussion does not rely on the hypothesis that the 
performances lie on some particular scale. It just depends on the opinion 
or preferences of a decision maker. 

- Consider now a set of investments characterised by their rates of return 
in years 1, 2 and 3 (for example, 0.95, 1.01 and 1.12). If we want to 
aggregate the three rates into one rate, representing the average rate 
over three years, it is well-known that  we must use the geometric mean, 
i.e. 

G3(gl, 92,93) = (919293)1'3 

and not the arithmetic mean. This indicates that Stability w.r.t, a 
Common Translation is not a desirable condition in this case. Note 
though that  the scale on which the rates are measured is a strong one: 
it is an absolute scale. 

This condition is very similar to Invariance w.r.t. Independent Translations 
introduced on p. 209, for the weighted sum. There are however two differ- 
ences: 

- Here, we look a t  the global performance and not a t  the ranking derived 
from the global performance. For this reason, we use the name Stability 
instead of Invariance. 

- Here, we consider identical translations on all criteria while the transla- 
tions could be different on different criteria with the weighted sum (see 
p. 209). 

Finally note that  it is necessary that the performances gi(a) be constructed 
in such a way that differences of utility are meaningful (see section 4.3.9, p. 
142), if we want to  impose Stability w.r.t. a Common Translation but it is 
not sufficient. 

Stability w.r.t. a Common Multiplication. This condition is very similar to 
the previous one: Stability w.r.t. a Common Translation. Here, instead of 
adding a constant ,B we multiply by a constant a. Formally, Stability w.r.t. 
a Common Multiplication is defined by 

There is also a misleading presentation of this condition, based on a change of 
scale. In this case, the change is no longer a change of origin (a translation) 
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but a change of unit (a multiplication). This interpretation should not be 
used for the same reasons as those presented for Stability w.r.t. a Common 
Translation (see p. 231). 

The following theorem (Kolmogoroff, 1930) uses these seven axioms to  characterise 
the arithmetic mean. 

Theorem 5.14 
Suppose that, for each dimension i and each alternative a, the performance gi(a) 
can be any real number in  some interval. The only aggregation operator satis- 
fying Idempotency, Cardinal Neutrality, Continuity, Strict Monotonicity, Decom- 
posability, Stability w.r.t. a Common l3-anslation and Stability w.r.t. a Common 
Multiplication is the arithmetic mean. 

5.7.2.2 Discussion 

The long list of axioms characterising the arithmetic mean and the nature of these 
axioms (see above for a discussion) show that the arithmetic mean, although very 
natural in statistics, is not so likely to  be a "good" aggregation operator in many 
contexts. Yet such a context may exist. Note also that the range of the scale (we 
don't use the plural because all criteria must be measured on the same scale) for 
the performances can take different forms. For example, [O, 11, [0, co[ and ] -co, co[. 

To summarise very roughly, if we want to  use the arithmetic mean, we need 
t& to be sure that all criteria play exactly the same role, that all performances, 
Q along all criteria, are measured on the same interval scale. If the performances 
'3 I... are measured on a "strong" scale (like mass, length, price, temperature, . . . ) 
'5' and if we just want to summarise this factual information, the conditions for 8 the arithmetic mean are probably met. But if the performances are subjec- 
i;; tive and/or measured on ordinal scales (loudness, risk, aesthetic, reliability, 
O . . . although it is sometimes possible to  measure these attributes on interval or 
8 ratio scales) or if we are not interested by the performances per se but by the E.2 

value or utility attached to  these performances by the decision maker, then we 
&> 
Q should probably not use the arithmetic mean, unless we build the scales very 

carefully. 

5.7.3 Quasi-arithmetic means 

This is a family of aggregation operators, generalising the arithmetic mean. We 
say that an aggregation operator G ( ~ )  is a quasi-arithmetic mean if there is a 
continuous and strictly monotonic function f such that 

The arithmetic mean is a quasi-arithmetic mean with f (x) = x. The geometric and 
harmonic means are also quasi-arithmetic means with f (x) = log x and f (x) = l / x  
respectively. 
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The family of quasi-arithmetic means is characterised (Kolmogoroff, 1930) by 
Idempotency, Neutrality, Continuity, Strict Monotonicity and Decomposability. 
The arithmetic mean is the only one that also satisfies Stability w.r.t. a Common 
Translation and a Common Multiplication. Any other quasi-arithmetic mean can 
be characterised by imposing some kind of Stability condition applied not to the 
performances themselves but to the performances transformed by f on top of the 
previous five conditions. 

The five axioms characterising the family of quasi-arithmetic means are quite 
reasonable and tend to make them attractive. But as soon as we want to isolate 
one of them, we need some kind of stability condition that we cannot easily justify. 
This makes these quasi-arithmetic means no more attractive than the arithmetic 
mean. 

5.7.4 Min, max and the other order statistics 

The min is the operator that maps each vector of performances on the smallest 
performance. 

(n) Gmin(gl,. . . , gn) = min(g1,. . . , g,). 

The max is defined in a similar way. Min and max are particular cases of order 
statistics. The kth order statistic, denoted by G$;,, is equal to the k-th smallest 

performance. It  is defined for k = 1. .  . n. Obviously, when k = 1, G ~ A ~  = ~ 2 ) ~ .  
When k = n, GgLn = ~ 2 2 ~ .  Another particular case is the median: it corresponds 
to the case k = (n  + 1)/2 if n is odd. 

The family of order statistics was characterised by Fodor and Roubens (1995). 
The axioms in their characterisation implicitly indicate that the performances to 
be aggregated are measured on an ordinal scale and that the global performance 
must also be interpreted on an ordinal scale. The use of the aggregation operator 
G?; in such a context is in fact equivalent to the use of the min as an aggregation 
function, aggregating a performance table into a binary relation (see section 5.4, 
p. 207). We therefore do not present the characterisation of Fodor and Roubens 
(1995); not only because it would be redundant with Theorem 5.10, but also to 
stress the fact that, in spite of appearances, it sheds some light on the min as 
an aggregation function, in the spirit of section 5.4, and not as an aggregation 
operator. 

This does not mean that using the min or another order statistic as an aggre- 
gation operator with performances on interval or ratio scales is meaningless. But 
we are not aware of any theoretical result that would help us understand what the 
distinctive properties of this operator are. 

5.7.5 The weighted mean, the weighted sum and the other 
aggregation operators 

It  is possible to generalise the weighted mean exactly in the same way as the quasi- 
arithmetic mean generalises the arithmetic mean. We then obtain the quasi-linear 
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weighted mean, that was characterised by Aczd (1948). If we add a stability 
condition to AczBl's axioms, it is possible to characterise the weighted mean. We 
do not present these results here. They can be found, with related results, in Fodor 
and Roubens (1994) for example. These results always involve Idempotency. But 
if we want to aggregate performances on different scales, Idempotency does not 
make sense. So, it is natural to  turn to the weighted sum because it can eventually 
be used even if the scales are not the same for all criteria. Surprisingly, we did not 
find a characterisation of the weighted sum. 

In the case of aggregation functions (see section 5.4), the weighted mean and 
the weighted sum are equivalent because we look only a t  the induced ordering. But 
in this section, we are considering aggregation operators and the two operators are 
not equivalent. 

There are of course many other aggregation operators and several of them have 
been characterised: the weighted minimum and maximum (Dubois and Prade, 
1986), the OWA or ordered weighted average (Fodor, Marichal, and Roubens, 
1995; Yager, 1988), the Choquet and Sugeno integrals (Grabisch, Nguyen, and 
Walker, 1995), . . . (see also Marichal, 1998). We will not discuss them here because 
we do not aim at  exhaustivity. We just presented some operators that  are often 
used by analysts or that  allow us to introduce some important concepts. We hope 
that, after reading this section, the reader interested in other operators will be 
prepared to dive into the relevant literature. 



MULTI-DIMENSIONAL 
PREFERENCE MODELS 

This chapter may look more formal than the other parts of this book. We acknowl- 
edge this, believing that a formal presentation of this material is both unavoidable 
and worth the effort. Our goal is to offer a picture of the variety of preference 
models, showing them in a structured way that is the result of recent research. 
We mainly present three frameworks for describing preferences. Each one is a sort 
of matryoshka or Russian doll formed of embedded families of models. Each one 
relies on a clear basic principle for decomposing preferences; they both start with 
a very general family of models that gradually specialises when further proper- 
ties are added. The remarkable thing is that most preference models that have 
been proposed and that are used in practice belong to a family of models in these 
hierarchies. 

There is a price to pay: the-sometimes tiny-differences between families of 
models in a hierarchy can only be understood by stating precise definitions and 
theorems. In order to ease the reading and to convince the reader of the relevance 
of our frameworks, we have illustrated the definitions as often as possible; 

0 we describe the insertion of as many examples of actually used models as 
possible in the hierarchies; 

0 we emphasise the consequences of the progressive structuring of the hierar- 
chies of models on the elicitation process of these models. 

In the previous chapter we characterised a number of aggregation procedures; 
we now explore another way of analysing multiple criteria preferences, by charac- 
terising preference relations. The conjoint measurement approach was introduced 
in section 4.3 where its main model, the additive value function model, was briefly 
described. Some limitations of this model were discussed. We first come back to 
the additive value model in more detail, focusing on the conditions under which a 
preference relation can be represented in it and how it is possible to elicit the para- 
meters of the model; we then develop three types of extensions of this fundamental 
model, namely: 

0 models based on marginal traces (section 6.2) 

0 models based on traces on differences (section 6.3) 
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0 models based on marginal traces and on traces on differences (section 6.4) 

In the light of these extensions, we then discuss models that distinguish a small 
number of differences in preference (which are useful for understanding ordinal ag- 
gregation; see section 6.5). Finally in section 6.6, we introduce valued preferences 
and the related conjoint measurement models, in connection with the measurement 
of preference differences. 

Throughout this chapter we consider preferences, denoted by 2, defined on a 
product set X = nkl Xi. Each of the sets Xi is typically the co-domain of the 
scale associated to dimension i or the co-domain of a numerical representation of 
the client's preferences on dimension i (see chapter 2, section 2.3.3). Any alterna- 
tive will be identified by a vector x = (xl , .  . . , xn) of X where $1,. . . ,x i , .  . . , x, 
denote the evaluations of alternative x on the n dimensions. We shall use the 
notation x - ~  to refer to a (n - 1) components vector obtained by dropping the i th 
coordinate of vector x; this allows us to define an "alternative" (xi,aWi) as the 
vector that has xi as its i th component while the other components are those of 
vector a.  Such n - 1 dimensional vectors form the set X-i = njZi Xi. We denote 
by N the set of integers {1,2,. . . ,n) .  For any subset J of N ,  XJ is the product 
set niEJ Xi. 

6.1 The additive value model 

The additive value function model was introduced in section 4.3.1 of chapter 4. We 
recall that a preference on X can be represented in the additive value function 
model (or additive value model for short) if there are functions ui from Xi into R 
for all i ,  such that, for all x, y E X: 

Not all preferences, of course, satisfy such a condition. Before considering the 
hypotheses under which this is the case, we investigate the notion of marginal 
preference that is an important one in the process of elicitation of the additive 
value model. 

6.1.1 Independence and marginal preferences 

In conjoint measurement, one starts with a preference relation 2 on X. It is then 
of vital importance-as anticipated in section 4.3.6-to investigate how this infor- 
mation makes it possible to define preference relations on dimensions or subsets 
of dimensions. 

Let J C N be a nonempty set of dimensions. We define the marginal relation 
2 J induced on XJ by 2 letting, for all x J ,  y~ E XJ: 
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with asymmetric (resp. symmetric) part + J (resp. NJ).  When J = {i), we often 
abuse notation and write ki instead of k{i) (see the definition (4.7) of 2; on 
p. 133). Note that if 2 is reflexive (resp. transitive), the same will be true for ZJ. 
This is clearly not true for completeness however. 

Definition 6.1 (Independence) 
Consider a binary relation k on a set X = nE1 Xi and let J N be a nonempty 
subset of dimensions. We say that 2 is independent for J iJ for all X J ,  y j  E XJ,  

If k is independent for all nonempty subsets of N,  we say that k is independent 
(or strongly independent). If is independent for all subsets containing a single 
dimension, we say that k is weakly independent. 

In view of (6.1), it is clear that the additive value model will require that 2 
is independent. This crucial condition says that common evaluations on some 
dimensions do not influence preference. Whereas independence implies weak in- 
dependence, it is well-know that the converse is not true (Wakker, 1989). 

Remark 6.1.1 
The (strong) independence condition is equivalent to an apparently weaker condi- 
tion, i.e. independence with respect to all subsets J containing n - 1 elements. I t  
is easy to convince oneself that this condition indeed implies independence with 
respect to all subsets J of X .  To contrast this condition with weak independence 
we state both of them explicitly below. A relation k on X is 

0 (strongly) independent if, for all i and all xi, yi, a-i, b-i, 

0 weakly independent if, for all i and all xi, yi, a-i, b-i, 

In other words, (strong) independence means that once one has (xi, a-i) k (xi, b-i) 
for some xi, then a-i k-i b-i; weak independence says that once for some a+, 
one has (xi, a-i) k (yi, a-i), then xi ki yi. When dealing with (strong) inde- 
pendence, the alternatives share a common level on a single criterion (xi is the 
common level), while in the weak independence property, all levels are common 
but one. This makes the latter condition less restrictive than the former. Strong 
independence says that when two alternatives share the same evaluation on a cri- 
terion, their relative position in the preference does not change when this common 
level is changed in any other common one; weak independence says something sim- 
ilar when two alternatives share all their evaluations but one: changing all those 
common levels into other common levels does not change the way the alternatives 
compare. 0 
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R e m a r k  6.1.2 
Weak independence is referred to  as "weak separability" in Wakker (1989); in 
section 6.2.3, we use "weak separability" (and "separability") with a different 
meaning. 

R e m a r k  6.1.3 
Independence, or a t  least weak independence, is an almost universally accepted 
hypothesis in multiple criteria decision making. I t  cannot be overemphasised that  
it is easy to  find examples in which it is inadequate. 

We have already examined the following example of likely non-independent 
preference in section 4.3.5: if a meal is described by the two dimensions, main 
course and wine, it is highly likely that  most gourmets will violate independence, 
preferring red wine with beef and white wine with fish. Similarly, in a dynamic 
decision problem, a preference for variety will often lead to  violating independence: 
you may prefer Pizza to Steak, but your preference for meals today (first dimen- 
sion) and tomorrow (second dimension) may well be such that  (Pizza, Steak) is 
preferred to  (Pizza, Pizza), while (Steak, Pizza) is preferred to  (Steak, Steak). 

Many authors (Keeney, 1992; Roy, 1996; von Winterfeldt and Edwards, 1986) 
have argued that  such failures of independence were almost always due to a poor 
structuring of dimensions (e.g, in our choice of the meal example above, preference 
for variety should be explicitly modelled). 

When k is a weak order (complete transitive relation or a ranking, possibly 
with ties) and is weakly independent, marginal preferences are well-behaved and 
combine with the preference k in a monotonic manner. For instance, if an alterna- 
tive is preferred to another on all dimensions, then the former should be globally 
preferred to  the latter. This monotonicity property of the preference with respect 
to  the marginal preferences has strong links with the idea of dominance that  we 
shall discuss more in depth later (see section 6.2.8). We put forward some useful 
properties of independent weak orders in the next proposition. 

P ropos i t ion  6.1 (P roper t i e s  of independen t  weakly  o r d e r e d  preferences) 
Let be a weakly independent weak order on  X = nk, Xi. Then  ki is  a weak 
order on  Xi and for all x, y E X and all zi,wi E Xi: 

4. [x k y and yi +i wi] + x + (wi, Y - ~ )  

The latter four properties express the way the preference responds to  mar- 
ginal improvement or worsening of the alternatives involved: the response is 
monotonic (or non-negative) and even strictly monotonic (positive) with respect 
to  marginal preferences as we see from the last two properties. Non-negative or 
positive responsiveness properties of the preference were discussed several times 
in section 5.2 (see p. 171, 173, 184). 
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For preferences that are independent weak orders, the marginal prefer- 
@ ences are also weak orders and the preference responds monotonically with 
G respect to the marginal preferences. The importance of these properties can- 
@ not be overemphasised, since direct procedures for eliciting preferences that are 
a independent weak orders, usually rely on the relationship between marginal Q 
Q preferences and the global preference; this will be the case for the additive 
Q value model as shown in the following sub-sections. 
Q It should however be kept in mind that preferences that are not weak 

orders may show different behaviours. For more general preferences, the mar- 
& ginal preferences may no longer be the adequate tool on which to rely for 8 eliciting the preference. This will be strongly emphasised and analysed in the 
& generalisations of the additive value model discussed in sections 6.2 to 6.5. 

6.1.2 The additive value model in the "rich" case 

The purpose of the remainder of section 6.1 is to present the conditions under 
which a preference relation on a product set may be represented by the additive 
value function model (6.1) and how such a model can be assessed; the presentation 
of this material follows Bouyssou and Pirlot (2005b). We begin here with the case 
that most closely resembles the measurement of physical dimensions such as length. 

When the structure of X is presumed to be "adequately rich", conjoint mea- 
surement is an adaptation of the process that is used for the measurement of 
physical extensive quantities such as length. The basic idea of this type of me* 
surement (called extensive measurement, see Krantz et al., 1971, ch. 3) consists in 
comparing the object to be measured with a standard object that can be replicated 
while the length of the chains of replicas is an integer number of times that of the 
standard "unit" object. The "length" of preference intervals on a dimension will 
be measured here, using a preference interval on another dimension as a standard. 
A sequence of "equal length" intervals, called a standard sequence, will be built 
on each dimension; the procedure used to build such a sequence is known as the 
"standard sequence method" (von Winterfeldt and Edwards, 1986). 

6.1.2.1 The case of two dimensions 

Consider first the two dimension case, where the relation 2 is defined on a set 
X = X1 x X2. In section 4.3, p. 130, we already identified necessary conditions 
for a relation to be representable in the additive value model, namely, we have to 
assume that 2 is an independent weak order. In such a case, L1 and k2 are weak 
orders, as stated in proposition 6.1. Consider two levels xy,x: E XI on the first 
dimension such that x: xy, i.e. x: is preferable to xy. Note that in order to be 
able to find such levels, we will have to exclude the case in which all levels on the 
first dimension are marginally indifferent. 

Choose any x: 6 X2. The arbitrarily chosen element (xy,xg) E X will be our 
"reference point". The basic idea is to use this reference point and the "unit" on 
the first dimension given by the reference preference interval [x?,x:] to build a 
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standard sequence on the preference intervals on the second dimension. We are 
therefore looking for an element x t  E X2 that would verify: 

Clearly, this will require the structure of X2 to  be adequately "rich" to  be able 
to  find the level x i  E X2 such that the reference preference interval on the first 
dimension [xy, x i ]  is exactly matched by a preference interval of the same "length" 
on the second dimension [x;, xi]. Technically, this calls for a solvability assumption 
or, more restrictively, for the assumption that X2 has a (topological) structure that 
is close to that of an interval of R and that is "somehow" continuous. 

If such a level x i  can be found, model (6.1) implies: 

ul(xy) + u2(x:) = ul(x:) + u~(x;) SO that 

u2(x9 - u2(&) = ul(x:) - u1(x?). 
(6.5) 

Let us set the origin of measurement letting: 

ul(x?) = u 2 ( x 9  = 0, 

and our unit of measurement letting: 

ul(x:) = 1 SO that ul(xi)  - u ~ ( x ? )  = 1. 

Using (6.5), we obtain u2(xi) = 1. We have therefore found an interval between 
levels on the second dimension ([xi, xi]) that exactly matches our reference interval 
on the first dimension ( [ x ~ , ~ : ] ) .  We may proceed with building our standard 
sequence on the second dimension (see figure 6.1) asking for levels x i ,x$,  . . . such 
that: 

As above, using (6.1) leads to: 

so that: 
u2(x3  = 2, u2(xi) = 3, . . . , u2(x9 = k .  

This process of building a standard sequence on the second dimension therefore 
leads to  defining u2 on a number of carefully selected elements of X2. When 
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Figure 6.1: Building a standard sequence on X2. 

measuring physical quantities such as length, a key idea is that it is always possible 
to concatenate copies of a unit rod or ruler and to compare, with respect to length, 
any object to a composite one obtained by concatenating copies of a unit rod. This 
is a basic feature of what is technically called extensive measurement (Krantz et al., 
1971, ch. 3). An implicit hypothesis is that the length of any object can be exceeded 
by the length of a composite object obtained by concatenating a sufficient number 
of perfect copies of a standard rod. Such a hypothesis is called Archimedean since 
it mimics the property of the real numbers which says that for any positive real 
numbers x ,  y it is true that nx > y for some integer n ,  i.e. y, no matter how large, 
may always be exceeded by taking any x, no matter how small, and adding it 
with itself and repeating the operation a sufficient number of times. Clearly, we 
will need a similar hypothesis here. Failing this, there might be a level y2 E X2 
that will never be "reached" by our standard sequence, i.e. such that ya +2 x$, 
for k = 1,2, . . .. For measurement models in which this Archimedean condition is 
omitted, see Narens (1985) and Skala (1975). 

Remark 6.1.4 
At this point a good exercise for the reader is to figure out how we may extend 
the standard sequence to cover levels of X2 that are "below" the reference level 
xg. This should not be difficult. 

Now that a standard sequence is built on the second dimension, we may use any 
part of it to build a standard sequence on the first dimension. This will require 
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Figure 6.2: Building a standard sequence on XI.  

finding levels x:, xy, . . . E X1 such that (see figure 6.2): 

Using (6.1) leads to: 

so that: 
k ul(xf) = 2, ul(x;) = 3 , .  . . , ul(xl)  = k. 

As was the case for the second dimension, the construction of such a sequence 
will require the structure of X1 to be adequately rich, which calls for a solvability 
assumption. An Archimedean condition will also be needed to ensure that all 
levels of X1 can be reached by the sequence. 

At this point, we have defined a "grid" in X (see figure 6.3) and we have 
u l (x t )  = k and uz(xt) = k for all elements of this grid. Intuitively, such numerical 
assignments seem to define an adequate additive value function on the grid. We 
have to prove that this intuition is correct. Let us first verify that, for all integers 
Q, D, 7 , 6 :  

~ + / ~ = ~ + ~ = E J ( X ~ , X ~ ) ~ ( X : , X $ ) .  (6.6) 

When E = 1, (6.6) holds by construction because we have: (xy,xa) - (x:,x;). 
When 6 = 2, we know that (xy,xg) - (x:,xi) and (xf,x:) - (x:,xi) and the 
claim is proved using the transitivity of N. 
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Figure 6.3: The grid. 

Consider E = 3. We have (xy, xz) (xi, xg) and (xy, $23) - (x:, xz). It remains 
to be shown that (x?,x!j) (xi,x;) (see the dotted arc in figure 6.3). This does 
not seem to follow from the previous conditions that we more or less explicitly 
used: transitivity, independence, "richness", Archimedean property. Indeed, it 
does not. Hence, we have to suppose that: (x?,xi) - ( x ~ , x ~ )  and (xy,xA) N 

(xi,  x i )  imply (x:, x i )  - (xi,  xz). This condition, called the Thomsen condition, 
is clearly necessary for (6.1). The above reasoning easily extends to all points on 
the grid, using weak ordering, independence and the Thomsen condition. Hence, 
(6.6) holds on the grid. 

I t  remains to show that: 

Using transitivity, it is sufficient to show that (6.7) holds when E = E' + 1. By 
construction, we know that (xi ,xi )  + (xy,xg). Using independence, this implies 
that (xi,  xg) + (xy, xg). Using (6.6) we have (xi,  xg) - (x!+',xi) and (xy,x$) - 
(xf , xi).  Therefore we have (x!", x i )  + (xf , xi) ,  the desired conclusion. 

We have thus built an additive value function of a suitably chosen grid (see 
figure 6.4). The logic of the assessment procedure is then to assess more and more 
points, somehow considering more finely grained standard sequences. Going to the 
limit then unambiguously defines the functions ul and uz. Clearly such ul and u2 
are quite closely related. Once we have chosen an arbitrary reference point (xy, xi )  
and a level x i  defining the unit of measurement, the process we just described 
entirely defines u l  and un. It  follows that the only possible transformations that 
can be applied to ul and u2, is to multiply both by the same positive number a 
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Figure 6.4: The entire grid. 

and to add to both a (possibly different) constant. This is usually summarised by 
saying that u1 and I L ~  define interval scales with a common unit. 

The above reasoning is a rough sketch of the proof of the existence of an additive 
value function when n = 2, as well as an outline of how it could be assessed. The 
careful readers can refer to Fishburn (1970, ch. 5), Krantz et al. (1971, ch. 6) and 
Wakker (1989, ch. 3). 

Remark 6.1.5 
The measurement of lengths through standard sequences as described above leads 
to a scale that is unique once the unit of measurement is chosen. At this point, a 
good exercise is to find an intuitive explanation to the fact that, when measuring 
the "length" of preference intervals, the origin of measurement becomes arbitrary. 
The analogy with the measurement of duration on the one hand and dates, as 
given in a calendar on the other hand, should help. 

It is worth emphasising that the assessment technique using standard se- 
&3 quences outlined above makes no use of the vague notion of the "importance" 

of the various dimensions. The "importance" is in fact captured in the lengths 
lf3 of the preference intervals on the various dimensions. 

A common but critical mistake is to confuse the additive value function 8 model (6.1) with a weighted average and to try to assess weights asking whether 
&3 a dimension is "more important'' than another. This makes no sense. 
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6.1.2.2 The case of more than two dimensions 

The good news is that the process is exactly the same when there are more than two 
dimensions. There is one surprise: the Thomsen condition is no longer needed to 
prove that the standard sequences defined on each dimension lead to an adequate 
value function on the grid. A heuristic explanation of this strange result is that, 
when n = 2, there is no difference between independence and weak independence. 
This is no longer true when n 1 3 and assuming independence is much stronger 
than just assuming weak independence. We use the "algebraic approach" below 
(Krantz, 1964; Krantz et al., 1971; Luce and Tukey, 1964). A more restrictive 
approach using a topological structure on X is given in Debreu (1960), Fishburn 
(1970, ch. 5) and Wakker (1989, ch. 3). We formalise the conditions informally 
introduced in the previous section below. The reader not interested in the precise 
statement of the results or, even better, having already written down his own 
statement, may skip this section. 

Definition 6.2 (Thomsen condition) 
Let be a binary relation on  a set X = X1 x X2. It is  said to satisfy the Thomsen 
condition if 

for all X I ,  yl, zl E XI and all x2, y2,zz E X2. 

Figure 6.5 shows how the Thomsen condition uses two "indifference curves" (i.e. 
curves linking points that are indifferent) to place a constraint on a third one. 
This was needed above to prove the existence of an additive value function on our 
grid. Remember that the Thomsen condition is only needed when n = 2; so, we 
only stated it in this case. 

} + C N D  
E - F  

Figure 6.5: The Thomsen condition. 

Definition 6.3 (Standard sequences) 
A standard sequence o n  dimension i E N i s  a set {a! : a t  E Xi, k E K )  where K is 
a set of consecutive integers (positive or negative, finite or infinite) such that there 
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are x-i, y-i E X-i satisfying N o t [ x v i  ~ - i  y-i] and (a:,xvi)  (a!+', y-i), for 
all lc E K .  

A standard sequence on dimension i E N is said t o  be strictly bounded i f  there 
are bi, ci E Xi such that bi +i a: +i ci, for all lc E K. I t  is then clear that,  when 
model (6.1) holds, any strictly bounded standard sequence must be finite. 

Definition 6.4 (Archimedean) 
For all i E N ,  any strictly bounded standard sequence on i E N is finite. 

The  following condition rules out the case in which a standard sequence cannot 
be built because all levels are indifferent. 

Definition 6.5 (Essentiality) 
Let k be a binary relation on a set X = X I  x X 2  x . . . x X,. Dimension i E N 
is said to be essential if (xi ,a-i)  + (yi,aWi), for some x i ,  yi E Xi and some 
a-i E X-i.  

Definition 6.6 (Restricted Solvability) 
Let k be a binary relation on a set X = X I  x X z  x . . . x X,. Restricted solvability 
is said to hold with respect to dimension i E N if, for all x E X ,  all z-i E X P i  
and all ai, bi E Xi ,  [(ai ,  Z-i) k x k (bi, ~ - i ) ]  * [ X  - (ci, Z-i), for some C i  E X i ] .  

Remark 6.1.6 
Restricted solvability in the case where n = 2 is illustrated in figure 6.6. I t  states 
that, given any x E X ,  i f  it is possible find two levels ai, bi E Xi such that when 
combined with a certain level Z-i E X-i on the other dimensions, (ai ,  z-i) is 
preferred t o  x and x is preferred t o  (bi, zPi) ,  it should be possible t o  find a level 
ci, "in between" ai and bi, such that (ci, z-i) is exactly indifferent t o  x. 

A much stronger hypothesis is unrestricted solvability asserting that for all 
x E X and all Z-i E X-i,  x (ci, z+), for some ci E Xi. Its use leads t o  much 
simpler proofs (Fishburn, 1970; Gonzales, 1996b). 

I t  is easy t o  imagine situations in which restricted solvability holds while un- 
restricted solvability fails. Suppose, e.g. that a firm has t o  choose between several 
investment projects, two dimensions being the Net Present Value (NPV)  o f  the 
projects and their impact on the public image o f  the firm. Consider a project 
consisting in investing in the software market. I t  has a reasonable NPV and no 
adverse consequences on the image o f  the firm. Consider another project that 
could have dramatic consequences on the image o f  the firm, because it leads to  
investing in the cocaine market. Unrestricted solvability would require that by 
sufficiently increasing the NPV o f  the second project i t  would become indifferent 
t o  the more standard project o f  investing in the software market. This is not 
required by restricted solvability. 

W e  are now in a position t o  state the central results concerning model (6.1). Proofs 
may be found in Krantz et al. (1971, ch. 6 )  and Wakker (1991b). 
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=+ there is a w such that x N w 
x + Y 

Figure 6.6: Restricted Solvability on XI. 

Theorem 6.1 (Additive value function when n = 2) 
Let k be a binary relation on  a set X = X1 x X2. If restricted solvability holds 
o n  all dimensions and each dimension is  essential, then 2 has a representation i n  
model (6.1) if and only if ;f is a n  independent weak order satisfying the Thomsen 
and Archimedean conditions 

Furthermore i n  this representation, ul and u2 are interval scales with a com- 
m o n  unit,  i.e. if ul,u2 and vl,v2 are two pairs of functions satisfying (6.1), there 
are real numbers a ,  with a > 0 such that, for all xl  E X1 and all x2 E X2 

When n > 3 and at least three dimensions are essential, the above result simplifies 
in that the Thomsen condition can now be omitted. 

Theorem 6.2 (Additive value function when n 2 3) 
Let ;f be a binary relation on  a set X = X1 x X2 x . . . x X, with n 2 3. If restricted 
solvability holds on  all dimensions and at least 3 dimensions are essential, then k 
has a representation i n  model (6.1) if and only if k is a n  independent weak order 
satisfying the Archimedean condition. 

Furthermore i n  this representation u1, u2, . . . , U, are interval scales with a 
common unit.  

Remark 6.1.7 
The additive value model is central to several fields in decision theory. It is there- 
fore not surprising that quite a lot of energy has been devoted to analyse variants 
and refinements of the results given above. Among the most significant ones, let 
us mention: 
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0 the study of cases in which solvability holds only on some or none of the di- 
mensions (Fishburn, 1992b; Gonzales, 1996a,b, 2000, 2003; Jaffray, 1974a,b; 
Nakamura, 2002), 

0 the study of the relation between the "algebraic approach" introduced above 
and the topological one used in Debreu (1960), see e.g. Karni and Safra 
(1998), Kobberling (2003), Wakker (1989, ch. 3) and Wakker (1991b). 

The results given above are only valid when X is the entire Cartesian product of the 
sets Xi. Results in which X is a subset of the Cartesian product XI  x X2 x . . . x X, 
are not easy to obtain, see Chateauneuf and Wakker (1993) and Segal (1994) (the 
situation is "easier" in the special case of homogeneous product sets, see Wakker, 
1991c, 1993)). 0 

8 We have shown how additive value functions can be assessed using the 
Q standard sequence technique. We pinpoint some of the characteristics of this 

assessment procedure: 
A 

It requires the set Xi to be rich so that it is possible to find a preference 
interval on Xi that will exactly match a preference interval on another 
dimension. This excludes using such an assessment procedure when some 
of the sets Xi are discrete. 

It relies on indifference judgements which, a priori, are less firmly estab- 
lished than preference judgements. 

It relies on judgements concerning fictitious alternatives which, a priori, 
are harder to conceive than judgements concerning real alternatives. 

The various assessments are thoroughly intertwined and, e.g., an impre- 
cision on the assessment of xi, i.e, the endpoint of the first interval in 
the standard sequence on X2 (see figure 6.1), will propagate to many 
assessed values, 

The assessment of tradeoffs may be plagued with cognitive biases (see, 
e.g., DelquiB, 1993; Stillwell, von Winterfeldt, and John, 1987). 

Implementation: S tandard  sequences a n d  beyond 

The assessment procedure based on standard sequences is, as we have seen, rather 
demanding; hence, it seems to be seldom used in the practice of decision analysis 
(Keeney and Raiffa, 1976; von Winterfeldt and Edwards, 1986). The literature on 
the experimental assessment of additive value functions (see, e.g., Stillwell et al., 
1987; von Nitzsch and Weber, 1993; Weber, Eisenfuhr, and von Winterfeldt, 1988) 
suggests that this assessment is a difficult task that may be affected by several 
cognitive biases. 

Many other simplified assessment procedures that are less firmly grounded in 
theory have been proposed. In many of them, the assessment of partial value 
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functions ui relies on direct comparison of preference differences without recourse 
to an interval on another dimension used as a "yard-stick" . We refer to  Dyer and 
Sarin (1979) for a theoretical analysis of these techniques. 

These procedures include: 

direct rating techniques in which values of ui are directly assessed with ref- 
erence to two arbitrarily chosen points (Edwards, 1977; Edwards and Hut- 
ton Barron, 1994)) 

0 procedures based on bisection, the client being asked to  assess a point that  
is "half way" between two reference points in terms of preference(von Win- 
terfeldt and Edwards, 1986), 

procedures that  try to build standard sequences on each dimension in terms 
of "preference differences" (see Krantz et  al., 1971, ch. 4). 

An excellent overview of these techniques may be found in von Winterfeldt and 
Edwards (1986, ch. 7). 

6.1.3 The additive value model in the "finite" case 

In this section, we assumed that  k is a binary relation on a finite set X X1 x 
X2 x . . . x X, (contrary to  the previous section, dealing with subsets of product 
sets will raise no difficulty here). The finiteness hypothesis clearly invalidates the 
standard sequence mechanism used so far. There will only be a finite number of 
"preference intervals" on each dimension and exact matches between preference 
intervals will only exceptionally occur, see Wakker ( l99la).  . 

Clearly, as before, independence remains a necessary condition for model (6.1). 
Given the absence of structure of the set X ,  it is unlikely that  this condition is 
sufficient to  ensure (6.1). The following example shows that  this intuition is indeed 
correct. 

Example 6.1 
Let X = X1 x X2 with X1 = {a, b, c) and X2 = {d, e, f ) .  Consider the weak order 
on X ,  such that ,  abusing notation in an obvious way, 

I t  is easy to check that  2 is independent. Indeed, we may for instance check that: 

ad + bd a n d u e +  b e a n d a f  + bf, 

ad + ae  and bd >. be and cd + ce. 

This relation cannot however be represented in model (6.1) since: 
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Summing the first two inequalities leads to: 

Summing the last two inequalities leads to: 

a contradiction. 
Note that, since no indifference is involved, the Thomsen condition is trivially 

satisfied. Although this is clearly necessary for model (6.1), adding it to indepen- 
dence will therefore not solve the problem. 0 

The conditions allowing to build an additive value model in the finite case were in- 
vestigated in Adams (1965), Adams and Fagot (1959) and Scott (1964). Although 
the resulting conditions turn out to be complex, the underlying idea is quite sim- 
ple. It amounts to  finding conditions under which a system of linear inequalities 
has a solution. 

Suppose that x + y. If model (6.1) holds, we have: 

Similarly if x N y, we obtain: 

The problem is then to find conditions on & such that the system of finitely many 
equalities and inequalities (6.8-6.9) has a solution. This is a classical problem in 
Linear Algebra (see, e.g., Gale, 1960). 

Definition 6.7 (Relation Em) 
Let m be a n  integer > 2. Let xl,  x2,.  . . ,xm,  yl ,  y2, .  . . , ym E X. W e  say that 

i f ,  for all i E N ,  (x:, x:, . . . , x r )  is a permutation of (y:, y:,.. . , yy) .  

Suppose that (xl ,  x2 , .  . . ,xm)Em(yl,  y2 , . .  . , ym). Then model (6.1) implies that 

Therefore if x j  & yj  for j = 1,2, .  . . , m - 1, it cannot be true that xm + ym. This 
condition must hold for all m = 2,3,. . .. 
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Definition 6.8 (Condition Cm) 
Let m be an integer > 2. We say that condition Cm holds i f  

for all xl ,  x2 , .  . . , xm, y l ,  y2, . .  . , ym E X such that 

R e m a r k  6.1.8 
It  is not difficult to check that: 

C2 =+ k is independent, 

C3 3 2 is transitive. 

We already observed that Cm was implied by the existence of an additive rep- 
resentation. The main result for the finite case states that requiring that 2 is 
complete and that Cm holds for m = 2,3,.  . . is also sufficient. Proofs can be 
found in Fishburn (1970, ch. 4) and Krantz et al. (1971, ch. 9). 

Theorem 6.3 (Additive value function in  t h e  finite case) 
Let k be a binary relation on a finite set X C X1 x X2 x . . . x X,. There are 
real-valued functions ui on Xi  such that (6.1) holds if and only if 2 is complete 
and satisfies Cm for m = 2,3,. . .. 
R e m a r k  6.1.9 
Contrary to the "rich" case considered in the preceding section, here we have nec- 
essary and sufficient conditions for the additive value model (6.1). However, it is 
important to note that the above result uses a denumerable scheme of conditions. 
Scott and Suppes (1958) show that this denumerable scheme cannot be truncated: 
for all m > 2, there is a relation 2 on a finite set X such that Cm holds, but vio- 
lating Cm+' (this is studied in more detail in Luce, Krantz, Suppes, and Tversky 
(1990), Titiev (1972) and Wille (2000)).Therefore, no finite scheme of axioms is 
sufficient to characterise model (6.1) for all finite sets X .  

Given a finite set X of given cardinality, it is well-known that the denumerable 
scheme of conditions can be truncated. The precise relation between the cardi- 
nality of X and the number of conditions required raises difficult combinatorial 
questions that are studied in Fishburn (1996, 1997). 

R e m a r k  6.1.10 
It  is clear that, if a relation 2 has a representation in model (6.1) using functions 
ui ,  it also has a representation using functions v: = aui +pi with a > 0. Contrary 
to the rich case, the uniqueness of the functions ui is more complex, as shown by 
the following example. 
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Example 6.2 
Let X = X1 x X2 with X1 = {a, b, c) and X2 = {d, e). Consider the weak order 
on X such that, abusing notation in an obvious way, 

ad + bd + ae t- cd + be + ce. 

This relation has a representation in model (6.1) with 

An equally valid representation would be given taking ul(b) = 2. Clearly this new 
representation cannot be deduced from the original one applying a positive affine 
transformation. 0 

Remark 6.1.11 
Theorem 6.3 has been extended to the case of an arbitrary set X in Jaffray 
(1974a,b) (see also Fishburn, 199213; F'urkhen and Richter, 1991). The result- 
ing conditions are however quite complex. This explains why we spent time on 
this "rich" case in the previous section. 

Remark 6.1.12 
The use of a denumerable scheme of conditions in theorem 6.3 does not ease 
the interpretation and test of conditions. However it should be noted that, on 
a given set X ,  the test of the Cm conditions amounts to  finding if a system 
of a finite number of linear inequalities has a solution. It is well-known that 
Linear Programming techniques are quite efficient for such a task. In chapter 7, 
section 7.3.1, we show how to  use LP techniques to assess an additive value model 
(6.1). 0 

6.2 A first line of generalisation: models based on 
marginal traces or preferences 

Section 4.3 focused on the additive value function model (equation (6.1)); examples 
were presented showing the need for preference models that cannot be described by 
means of an additive value function. In this section we discuss a generalisation of 
the additive value function model, while preserving the possibility of using the fun- 
damental construction tool suggested by the model, namely marginal preferences 
that are weak orders represented by the functions ui in (6.1). Interestingly, the 
generalised model admits a full characterisation through fairly simple and intuitive 
axioms, which was not the case for model (6.1) as we have just seen. 

Since we limit ourselves to evaluation models in which there are a finite number 
of alternatives, we may restrict the Xi's to  be finite sets, but the reader might be 
interested to know that the theorems below remain valid when the Xi are countably 
infinite and that  for sets of arbitrary cardinality, necessary and sufficient conditions 
are known (the references provided below deal with the general case). 
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6 -2.1 Decomposable preferences 

The so-called decomposable model was introduced in Krantz et al. (1971, ch. 7) as 
a natural generalisation of model (6.1). The preference k is meant to be a weak 
order and can thus be represented by a rule of the type 

with u, a real-valued function defined on X .  Instead of specifying u as a sum of 
functions ui of the variables xi, u is just assumed to be decomposable in the form 

where ui is a function mapping Xi onto R (the set of real numbers) and U is 
increasing in all its arguments. 

This model encompasses the case in which u is a non-additive function of the 
ui's, which is suitable for non-additive utility models, for instance polynomial 
models (see, e.g., Krantz et al., 1971, ch. 7). 

The interesting point with this model is that it admits an intuitively appealing 
full characterisation. The basic axiom for characterising the decomposable model 
described above (with increasing function U) is the weak independence condition 
(see definition 6.1, page 239). 

For preferences that are weak orders, we know that the weak independence 
property is equivalent to the fact that the marginal preferences ki are weak orders 
(proposition 6.1). Moreover, it is easy to see that ui in (6.11) is necessarily a nu- 
merical representation of ki, i.e. xi ki yi iff ui(xi) 2 ui(yi). This is an important 
result, since it opens the door to the elicitation of the ui's by questioning in terms 
of marginal preferences ki as in the additive utility model. 

The following theorem states a simple and important characterisation of the 
decomposable model. This result was first proved in Krantz et al. (1971, ch. 7). 

Theorem 6.4 (Representation in the decomposable model) 
A preference relation k on  X admits a representation i n  the decomposable model: 

with U increasing i n  all i ts arguments iff 2 is  a weak order and satisfies weak 
independence. 

If one intended to apply this model, one would specify the type of function U, 
possibly by verifying further conditions on the preference that impose that U be- 
longs to a parameterised family of functions (e.g, polynomials of bounded degree). 
However, the structure of the model suggests a general elicitation scheme that is 
quite complex due to the high generality of the model, but could be envisaged 
for instance, when the number of alternatives is small. Even if this scheme may 
be of little practical value, it is nevertheless fully compatible with the model and 
logically valid when the number of alternatives is finite. 
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6.2.2 A procedure for eliciting the general decomposable 
model 

Once it is recognised that model (6.11) could apply, the first step consists in 
eliciting the marginal preferences ki. An arbitrary numerical representation of 
the weak order ki may then be chosen for each ui. There are many possible 
strategies for obtaining (through questioning a client) a function U that assigns a 
rank to each profile of levels a = (ul,  . . . , u,) E nyZl ui(Xi) (we abuse notations 
denoting by ui a value taken by the function ui : Xi + R). We just suggest one 
way of doing this here. 

On each scale ui(Xi), select a reference level up (this could be the minimum 
or the maximum on each scale, but it is perhaps better-for cognitive reasons-to 
start from the "middle" of the scale (see von Winterfeldt and Edwards, 1986, ch. 
7)) and form the reference profile GO = (u:, . . . , u:). Assign the value 0 to this 
profile, i.e. set u (a0)  = 0. Then build a number of "milestone profiles" for instance 
in the following way: denote by N(u i )  the level just above ui on the scale ui(Xi) 
or ui itself if the latter is the highest level on the scale l .  Conversely, N-'(ui) 
denotes the level just below ui or ui itself if there is no level below ui. N will be 
called the "next level" operator and N-l, the "preceding level" operator. Using 
N ,  we recursively define the milestone profiles a', a 2 ,  . . . by 

and more generally for all k = 0,1,2, .  . ., 

the milestone profiles below ao are defined for k = 0, -1, -2,. . . by 

Of course we stop generating milestone profiles as soon as ak+l = Tik and as soon 
as = 'iik. Suppose that the generation stops when k = above ??' and when 
k = below ??'. Due to the properties of the marginal preferences ki w.r.t. k, we 
have: 

ax+ ... +a1 + d ' + ~ i - l  + .. .  +ak. (6.12) 

We assign the value k to u (ak) ) .  
The next step consists in inserting all other profiles in between the appropriate 

consecutive "milestones". Start for instance with the profiles that differ from 'iik 
on a single coordinate and by one level, i.e., for some i, ui = N ( u f )  # uf .  There 

- 

are at  most n such (distinct) profiles that all lie between E& and Tik. One has to 
situate them in this interval with respect to each other and then give them an 
arbitrary value of U with the constraint that the assigned values reflect the order 
of the profiles in the interval. One may then consider profiles at  "distance 2" above 

Formally, N(u i )  2 ui and for all ui E ui(Xi), if there is vi E ui (Xi )  such that vi > ui, then 
N(u i )  > ui. 
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Tik, i.e. profiles that differ from the latter either on two coordinates by one level 
(above) or on a single coordinate by two levels (above). After having inserted 
all such profiles, one has to consider profiles that are more and more distant, 
until all profiles have been inserted between those previously assessed. Note that 
the only constraint to be fulfilled when inserting a new profile, is to respect the 
dominance relation w.r.t, the previously inserted profiles; this means that if Ti' is 
to be inserted, the value U(b) must be 

larger than the value assigned to any already assigned profile Ti that is dom- 
inated by Ti', i.e. to any profile such that 

u: > ui, for all i and for some i,u: > ui; 

0 smaller than the value assigned to any already assigned profile Ti that domi- 
nates Ti' 

Remark 6.2.1 
Our goal in outlining the above procedure was just to suggest a way of eliciting 
a decomposable model; we do not say that the suggested strategy is the best one 
possible; it is certainly not the only one. A lot of additional effort would be needed 
to make it precise and operational. 0 

Remark 6.2.2 
This procedure is also quite complex and it could be envisaged to use it only when 
the number of different profiles is small. Note however, that the latter number is 
not directly determined by the number of alternatives, but rather by the number 
of levels on the scales ui(Xi), i.e. the number of equivalence classes of the marginal 
preferences. If the discrimination power of the marginal preferences is weak, the 
cardinality of the set of profiles n:, ui(Xi) is low. 0 

Remark 6.2.3 
Software could help operationalising the above procedure by 

prompting the next profile to be inserted; 

0 propagating the consequences of the last insertion, i.e. automatically insert- 
ing all profiles that can unambiguously be placed due to dominance consid- 
erations; 

list the places where a profile could be inserted, taking dominance consider- 
ations into account . 

The previous section shows that it is possible, at  least in theory, to devise 
g~ a procedure for faithfully assessing a general decomposable model or, in other 
G3 words, to elicit a preference that is assumed to be a weakly independent weak 
@ order. The procedure mainly relies on the elicitation of marginal preferences. 
@ This is in line with the procedures used for eliciting the additive value model 8 
Q (see section 6.1.2) 
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6.2.3 Non-strict decomposable model 

6.2.3.1 T h e  non-strict decomposable model  

The decomposable model is fairly general, yet not general enough to encompass a 
widely used aggregation procedure such as the "min". In the example of Flexible 
CSP (p. 144), we pointed out that the "min-score" aggregation method (equation 
4.16) does not satisfy the strong independence property; the same small numerical 
example given there shows that it also fails to verify weak independence. However, 
it is not difficult to convince oneself that changing all the levels that are common to 
two alternatives into other common levels can only transform strict preference into 
indifference, excluding strict preference in the opposite direction (the numerical 
example shows a transformation of strict preference into indifference). This is a 
motivation to consider a weakened variant of the decomposable model in which 
U is not assumed to be increasing, but just non-decreasing in all its arguments; 
we shall refer to such a model as non-strict decomposable model. The relevant 
weakening of weak independence is called weak separability. This property was 
considered for instance in Blackorby, Primont, and Russell (1978). We give its 
definition below and, for reasons of symmetry, we also define (strong) separability. 

Definition 6.9 (Separability) 
Let k be a binary relation o n  a set X = nkl X i  and J & N be a nonempty subset 
of dimensions. W e  say that k i s  separable for J iJ for all XJ, y~ E X J ,  

If k i s  separable for all nonempty subsets of N ,  we say that 2 i s  separable (or 
strongly separable). If 2 i s  separable for all subsets containing a single dimension, 
we say that 2 i s  weakly separable. 

Comparing the definition of "separable for J" to that of "independent for J" 
(see definition 6.1, p. 239), shows that the only difference is the substitution of 
2 with + in the premise of the condition. Hence separability is a weaker 
requirement than independence and weak separability weakens weak independence. 
The weak separability property tells us that when two alternatives share the same 
evaluations on all but one criterion, changing all these common levels into any other 
common level, can neither transform a strict preference into a strict preference in 
the other "direction", nor into no preference at  all. Weak separability and weak 
independence are intuitively very similar conditions. 

Substituting weak independence with weak separability leads to a slightly more 
general family of models that can be characterised. They admit a numerical rep- 
resentation of type (6.11) with U nondecreasing instead of increasing. This result 
is stated below; it was proven (in the special case where X = Rn) by Blackorby 
et al. (1978) and is revisited in Bouyssou and Pirlot (2004b, Proposition 8). 

Theorem 6.5 (Representation i n  t h e  non-strict decomposable model) 
A preference relation k o n  X admits a representation in the non-strict decompos- 
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able model 

with U nondecreasing in all its arguments, iff 2 is a weak order and satisfies weak 
separability. 

6.2.3.2 Eliciting t h e  non-strict decomposable model 

A non-strict decomposable model can be elicited in a very similar way to what 
we proposed for the strict case. The only difference results from the fact that 
the preference 2 is no longer positively responsive to the marginal preferences. 
It  may occur that for some common levels a-i, (x:,a-i) + (xi,a_i) while for 
other common levels bWi, (21, b-i) (xi, b-i); in contrast, in the decomposable 
model, one always has xi +i xi + (XI, aPi) + (xi, a-i), for all a-i. Consequently, 
in the process proposed above for eliciting a decomposable model, one can not 
exclude that N(u i )  # ui while (ul,  . . . , N(ui), . . . ,un)  N (ul, . . . , ui,. . . , u,); in 
particular, it may occur that in (6.12), ?ik N ?ik-l, for some k. As a consequence, 
the suggested elicitation procedure must be adapted as follows. 

For eliciting a non-strict decomposable model, follow the same lines as indicated 
for the decomposable model. For each profile generated by applying the "next 
level" operator N or the "preceding level" operator N-l to a starting profile, one 
has to verify whether the generated profile is strictly preferred (+) or indifferent 
(N) to the initial one. For instance, if for some k, ?ik+l N ?ik, i.e. if consecutive 
milestones are indistinguishable, then all profiles in-between also collapse; more 
precisely, any profile ?i for which ui = ?it+' or ?it for all i is indifferent both to 
?ik+l and ?i% Profiles generated by applying the "preceding level" operator should 
be similarly checked for indifference or strict preference. 

6.2.4 Insufficiency of the decomposable model 

Decomposable preferences form a large family of preferences though not large 
enough to encompass all useful cases. A major restriction is that not all preferences 
may be assumed to be weak orders. The example of the sequence of cups of coffee, 
each differing from the previous one by an imperceptible added quantity of sugar, 
is famous; it leads to the notion of semiorder (Luce, 1956), in which indifference 
is not transitive, while strict preference is. A classic example of such a situation 
occurs in statistical decision contexts. 

Example 6.3 (Testing for equality of means) 
Let X = Rn; a vector x E X can be viewed as a sample of n independent trials 
drawn from a normal probability distribution. Let a and b be two vectors of X ;  
assuming that they are respectively samples of the variables A and B, both normal 
and with respective means and p~ (and known variance a'), one may wish to 
test for equality of the means and p ~ .  Let us mention as a relevant example, 
the case in which the length (or mass, or volume, . . . ) of a collection of objects are 
measured using an appropriate measuring device; the measure of each object is 
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repeated n times in order to control errors in measurement; vector a records the n 
measures performed on a specific object that can be identified with the variable A; 
the "true" measure of object A is PA.  If we want to test whether there is evidence 
that /.LA > p~ or on the contrary, if the data point to accepting that p~ = p~ 
(onesided test), we have to compute ?i = l /n  Cy=, ai and 6 = l l n  ELl bi. We 
shall reject the hypothesis that p~ = p~ and consider that  p~ > p~ if 

where k is a positive value determined in order to  limit the risk of type I (i.e. the 
risk of rejecting the hypothesis while i t  is true). One could decide that p~ > p~ 
as soon as ?i > 5 but due to  random effects, using this criterion would lead us to 
frequent errors, especially when p~ is only slightly larger than PA. 

This classical statistical test interpreted within our framework, amounts to  
define a relation + on X by 

It models the decision that would be taken, according to  standard statistical theory, 
on the issue of mean equality in all possible cases of two independent samples of 
normal distributions with known common variance. The relation that one obtains 
on X is the asymmetric part of a semiorder (see chapter 3). In order to deal with 
reflexive preferences as we did before, we may consider the semiorder of which the 
asymmetric part is t that is defined as follows: 

The information conveyed in this relation, although it has no classical statistical 
interpretation, is logically equivalent to its asymmetric part (the latter can be 
reconstructed from the former without loss of information). 

This semiorder cannot be represented within the decomposable model (or in 
its non-strict variant). Instead, here is another type of a representation for k: 

or, equivalently, 
1 u 

a b iff - x ( a i  - bi) + k- > 0. 
i=1 f i -  

The previous example shows that the decomposable model may prove insufficient 
for representing relations that  occur rather naturally; in particular, the model does 
not cover preference relations that are no weak orders. One objection to  example 
6.3 may be that i t  does not deal with preferences in the true sense. We decided to 
develop this example because it is familiar to  all those who have received a t  least 
a basic course in statistics; it also has the advantage of providing a simple and un- 
ambiguous mathematical formulation. In addition, we are convinced that the type 
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of behaviour producing the relation k or + in example 6.3 is.very common when 
dealing with an additive model for decision. Due to the uncertainty and errors 
in the assessment of the marginal value functions ui, one would probably refrain 
from claiming that a + b as soon as u(a) = l /nCF=l  ai > u(b) = l /nCy=l  bi. 
Instead, it would be more reasonable to say that a + b when u(a) > u(b) + E, i.e. 
when l / n  C;=, ai > l / n C L l  bi + E, where E is a positive constant that offers 
some guarantee against estimation errors. One would thus have: 

a b iff lu(a) - u(b)l 5 E 

a + b iff u(a) > u(b) + E 

Estimating E is not an easy task. For example, considering an additive value model 
involving evaluations on a cost criterion, one can compute the cost equivalent to 
a unit of u and ask the client which monetary amount he would consider as an 
indifference threshold, taking his perception of the uncertainty on cost evaluation 
into account. Of course, this will only reflect the uncertainty as to cost (and not 
error or imprecision in the elicitation of the functions ui) but it should provide 
at least a lower bound on E, which, most likely, will be positive. The concern for 
not asserting conclusions that are not well-established because the parameters of 
a model are not precisely or reliably assessed, is the central topic of section 7.5 in 
chapter 7. 

6.2.5 Insufficiency of marginal analysis: marginal traces 

In the decomposable model, the preference may be reconstructed on the basis 
of the marginal preferences ki since it is represented by a function of the ui's, 
themselves representing ki (at least in the strict decomposable model). 

This is no longer the case when k is not a weak order. Again take example 
6.3. We have: 

ai ki bi iff (ai, c-i) k (bi, c -~) ,VC-~ 

The marginal preference ki is thus itself a semiorder with a larger threshold 
- k u f i  (larger in absolute value compared to the threshold associated with k ) .  
This threshold is n times larger than the one associated with the representation 
of k ,  which means that the relation ki on Xi is not very discriminating. 

Suppose that in example 6.3 the variance u2 of both observed normal distrib- 
utions is equal to 1 and their mean p are known to range between -112 and 112. 
Let n = 25, which corresponds to samples of 25 observations. Fix the type I risk 
to 5%; in our case, this corresponds to a constant k  equal to 1.96 in formula (6.15). 
We thus have: 

ai ki bi iff ai 2 bi - 1.96fi = bi - 9.8 
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In view of (6.16), ai  ~i bi iff lai - bil 5 9.8, which means that  ki does not 
discriminate between levels on Xi that  differ by less than 9.8. If Xi is bound 
to take values, e.g. in the interval [-3.5;3.5]-which would be reasonable since 
Gaussian distributions very seldom deviate from their mean by more than 3~-all 
levels of Xi are indifferent w.r.t the marginal preference. 

Is there a relation on Xi that  has stronger links with the global preference k 
than marginal preference k i ?  The answer is the marginal trace 2; that  is defined 
below. 

Definit ion 6.10 (Marginal  t race)  
The marginal trace k' of relation k on the product set X = n X i  is the relation 
on Xi defined by: 

for all c, d E X ,  
[(hi, C-i) 2 d] +- [(ai, C-i) k d] and (6.17) 

[C (ai, d-i)] +- [c (bil d-i)] 

In other words, if a test decides that  pc 2 p~ (where C and D are normal 
variables with equal variances) on the basis of a sample of C containing bi, the 
same decision would be made if the sample contained ai  instead of bi; conversely, 
if a test decides that  pc >. p~ on the basis of a sample of D containing a%,  the 
same decision would be made if the sample contained bi instead of ai. 

In example 6.3, one has ai  h; bi iff ai  2 bi, which is easily verified. Suppose 
indeed that  (bi, c-i) 2 d for some c-i E XPi and d  E X ;  this means that 

Substituting bi by ai  > bi preserves the inequality. Conversely, when ai  < bi, there 
are situations in which substituting bi by ai  results in violating the inequality. 
Choose for instance c j  and dj  in (6.18), such that  the inequality becomes an 
equality; this can be done in many ways since c j  and d j  can take any value in R. 
In such a case, substituting bi by ai  breaks the tie in the wrong direction. 

In models in which k is not assumed to be a weak order, the information 
conveyed in the marginal preference relations may be insufficient to  reconstruct 
the preference. As we shall see, marginal traces, provided they are weak orders, 
always convey sufficient information. 

The reason why the insufficiency of marginal preferences did not show up in 
the decomposable model is a consequence of the following result. 

P ropos i t ion  6.2 (Marginal  preferences a n d  marginal  t races)  
If a preference relation k on X is rejlexive and transitive, its marginal preferences 
ki and its marginal traces 2' are identical for all i .  

This proposition almost directly results from the definitions of marginal preferences 
and traces. I t  implies that  there is no need to worry about marginal traces unless 
k is not transitive. More precisely, as we shall see below, the notion that  conveys 
all the information needed to reconstruct the global preference from relations on 
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each scale Xi, is always the marginal traces; but when k is reflexive and transitive, 
you may equivalently use marginal preferences. The converse of the proposition 
is not true however: there are cases where k is not transitive (e.g, when k is a 
semiorder) and ki=kf (see Bouyssou and Pirlot, 2004b, Example 4). 

For transitive preferences, the marginal preference contains all the rele- 
e vant information on the client's preferences in relation to the corresponding 
@ dimension. When a preference happens to be nontransitive, the marginal pref- 
Q erence may cease to be the central tool for eliciting the preference, because it 
a may not contain all the relevant one-dimensional information. In the case of 8 intransitive preferences, the full one-dimensional information is to be sought 
~23 in the marginal traces. 

Instead of generalising the decomposable model again to encompass preferences 
that are, for instance, semiorders2, we propose and study a much more general 
model. It  is so general that it encompasses all relations on X. Considering this 
model as a framework, we introduce successive specialisations that will bring us 
back to the decomposable model, but "from above", i.e. in a movement from the 
general to the particular. In this specialisation process, it is the marginal trace- 
not the marginal preference-that is the central tool. Our main axioms will have 
a direct impact on the properties of marginal traces while they will be used to 
further specify the models. 

6.2.6 Generalising decomposable models using 
marginal traces 

Consider the very general representation of a relation k described by: 

The main difference w.r.t. the decomposable model is that the evaluations of the 
two alternatives are not dealt with separately. 

If no property is imposed on function F ,  the model is trivial since any relation 
can be represented within it. I t  obviously generalises the decomposable model and 
encompasses as a special case, the representation involving a threshold described 
in (6.14) (in which the preference is a semiorder). 

It  is easy to obtain representations that guarantee simple properties of k. For 
instance, we have that: 

0 k is reflexive iff it has a representation in model (LO) with 

Obviously one could think of generalising the decomposable model to  represent some prefer- 
ences that  are semiorders, getting inspiration from the  numerical representation with threshold 
in (6.13). 



264 CHAPTER 6. MULTI-DIMENSIONAL PREFERENCE MODELS 

0 k is complete iff it has a representation in model (LO) with 

What if we impose monotonicity conditions on F? The natural conditions in view 
of the decomposable model are: 

F increasing in its first n arguments and decreasing in its last n arguments 

0 F non-decreasing in its first n arguments and non-increasing in its last n 
arguments 

The following axioms are closely linked to imposing monotonicity properties to F 
and, as we shall see, with properties of the marginal traces. 

Definition 6.11 (Axioms AC1, AC2, AC3, AC4) 
W e  say that k satisfies: 

ACli  if 
(xi, a-i) k Y (zi, a-i) k Y 

and } + { o r  
(zi, b-i) k w (xi, b-i) k w 

for all xi, zi E Xi, all a-i, b-i E X-i and all y, w E X ,  
AC4i if k satisfies AC3i and, whenever one of the condusions of AC3i i s  

false, then the other one holds with + instead of k .  
W e  say that k satisfies AC1 (resp. AC2, AC3, AC4) if i t  satisfies ACli  

(resp. AC&, AC3i, AC4i) for all i E N .  W e  also use AC123i (resp. AC123) as 
shorthand for ACli,  AC2i and AC3i (resp. AC1, AC2 and AC3). 

The intuition behind these axioms is the following. Take axiom ACli.  I t  suggests 
that xi and zi can be compared: either xi corresponds to  a LLlevel" on a "scale" 
on Xi that is "above" zi or the other way around. Suppose indeed that xi is 
involved in an alternative that is preferred to  another alternative ((xi, x-i) k y); 
suppose further that substituting zi to xi would not allow to  preserve the preference 
( Not[(zi, x-i) k y ] ). Then ACli  says that  substituting zi with xi when zi is 
involved in an alternative that is preferred to  another ((zi, z-i) 2 w) will always 
preserve the preference (i.e. we have: (xi,z-i) 2 w). One can interpret such a 
situation by saying that xi is "above" zi. The "being above'' relation on Xi is 
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what we call the left marginal trace of k and we denote it by k$; i t  is defined as 
follows: 

xi kt zi @ [(zi, 2-i) 2 w =+ (xi, Z-i) 2 w]. (6.19) 

We explained above that ACli  means that xi and zi can always be compared, 
which, in terms of the left trace, interprets as: "We may not have Not[xi  zi] 
and Not[zi k+ x i ]  " at  the same time. I t  is easy to see that assuming the latter 
amounts to having some z-i and some w such that: 

(zi, xi) 2 w and Not[ (xi, zVi) k W ]  

and a t  the same time, for some x-i and some y, 

which is exactly the negation of ACli.  Axiom ACli thus says that the left marginal 
trace k$ is a complete relation; since it is transitive by definition, ACli  means 
that  2; is a weak order. The natural order induced by k on Xi is 2;; this 
order on Xi may be interpreted as a criterion, an element of the set H defined in 
chapter 2, section 2.3.3. So, in a sense, knowing k$ transforms dimension i into 
a criterion; kt encodes the client's preference as far as dimension i is concerned. 
Endowed with the order kt, Xi can also be seen as an ordinal scale (see chapter 
3, section 3.7.1.1). 

ACli  deals with levels involved in alternatives that are preferred to other 
alternatives, thus in the strong (left hand side) position in the comparison of two 
alternatives; in contrast, AC2i rules the behaviour of k when changing levels 
in alternatives in the weak position (another alternative is preferred to  them). 
Clearly, AC2i is concerned with a right marginal trace ki that is defined as 
follows: 

Y i  ki Wi * [X k ( ~ i ,  Y-i) * X 2 (wi,y-i)]. (6.20) 

The interpretation of yi k; wi is clear: when an alternative is beaten showing the 
level yi, it would also be beaten if yi was changed into wi. In other words, ki 
compares levels on Xi when these levels are involved in alternatives in the weak 
(right hand side) position of a preference relation. By reasoning as above, one sees 
that AC2i be equivalent to  requiring that ki is a complete relation and thus a 
weak order (since it is transitive by definition). 

At this stage, it is natural to  ask whether the left marginal trace is related to the 
right one. The role of AC3i is to ensure that k; and 2; are not incompatible, i.e. 
that one cannot have Not[xi  k$ yi] and Not [yi 2; xi] at the same time. If k: 
and 2; are complete, this means that one cannot have [yi +f xi] and [xi +; yi] 
(where +: and +; denote the asymmetric part of and k;, respectively) or, in 
other words, that [xi +$ yi] implies [xi ki yi] and [xi +; yi] implies [xi k+ yi]. 
As a consequence of AC123i, the intersection of the (complete) relations k+ and 
+- is a complete relation, that is nothing else than the marginal trace 2: since 
N Z  

definition (6.17) is equivalent to 
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We summarise our findings in the next proposition (Bouyssou and Pirlot, 2004b, 
Lemma 3). 

Proposi t ion 6.3 (P roper t i e s  of marginal  t races)  
1. k+ is a weak order iff ACli  holds, 

2. 2; is a weak order iff AC2i holds, 

3. 2"s a weak order iff ACli,  AC2i and AC3i hold. 

The exact role of AC4i is less transparent. It is related to  the monotonicity 
properties of the preference k with respect to its marginal traces. By definition of 
the marginal traces, without assuming any of AC1, AC2 or AC3, the preference 2 
responds monotonically w.r.t. k: and k i  as follows (Bouyssou and Pirlot, 2004b, 
Lemma 2). 

Proposi t ion 6.4 (Responsiveness w.r.t. marginal  t races)  
For all X, y 6 X and all zi, wi E Xi, 

2. [x 2 y and yi & wi] + x k (wi, y-i). 

These properties hold a fortiori if (resp. 2;) is substituted by k:. Con- 
trasting the latter with proposition 6.1 that describes the responsiveness of in- 
dependent weakly ordered preferences k w.r.t. marginal preferences ki, we note, 
in the present case, that  there is no mention of strict or positive responsiveness 
(proposition 6.1.3 and 4). The latter property is not true of general preferences 
and is indeed related to  axiom AC4. As soon as k is reflexive, one can show that 
AC4i implies AC123i and, moreover, that the preference is strictly responsive to 
+:, i.e.: 

[x 2 y and zi t: xi] + (zi,x-i) t y, (6.21) 

R e m a r k  6.2.4 (Posit ive responsiveness w.r.t. marginal  t races)  
The property just discussed corresponds to the positive responsiveness property 
introduced in section 5.2 (see pages 171, 173). The two points of view on aggre- 
gation developed in this book (characterisation of procedures, in chapter 5 and 
characterisation of relations in a conjoint measurement framework, in the present 
chapter) meet here. The positive responsiveness property defined on p. 171 relates 
profiles of relations to  the global preference obtained through an aggregation pro- 
cedure applied to  these profiles. If the relations in a profile (that can be interpreted 
as a priori modelling the preferences of the client on the various dimensions, i.e. 
as criteria in the sense of section 2.3.3 of chapter 2) happen to be our marginal 
traces, then the positive responsiveness defined have the same meaning in both 
cases. 

The links between the axioms given above and the marginal traces can be directly 
exploited in the construction of a monotone numerical representation of k in model 
(LO). We have the following result (Bouyssou and Pirlot, 2004b, Theorem 2). 
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Proposition 6.5 (Representation in  models L) 
A preference relation 2 on  X admits a representation i n  model (LO) with F non- 
decreasing in its first n arguments, and non-increasing i n  the last n arguments if 
and only if i t  satisfies AC1, AC2 and AC3. 

To clarify how the marginal traces intervene in the construction of the represen- 
tation, we describe how a representation can be obtained with F monotone as 
indicated. Due to the fact that 2 satisfies AC123, we know that the marginal 
traces k' are weak orders. Take any numerical representation of the weak order 
2; for ui, i.e, ui is any real-valued function defined on Xi, such that 

Then define F as follows: 

+ e x ~ ( C y = ~  (%(xi) - u i ( ~ i ) ) )  if 2 k Y,  
F(["i(xi)l; = 

- e x p (  (ui(yi) - u ( x ) ) )  otherwise. (6.23) 

It can easily be shown that this representation satisfies the requirements. Clearly, 
the choice of the exponential function in the definition of F is arbitrary; any other 
positive and non-decreasing function could have been chosen instead. Again the 
choice of a representation ui of the weak orders k,f: is highly arbitrary. We are 
thus far from the uniqueness results that can be obtained for the representation of 
preferences in the additive utility model (6.1). However, all these representations 
are however equivalent from the point of view of the description of a preference. 

6.2.7 Models using marginal traces 

At this point, it might be useful to give a full picture of the models based on 
marginal traces. We have identified three variants of model (LO) above: those 
corresponding respectively to reflexive or complete preference 2 or to a preference 
with complete marginal traces. One can associate particular features of the numer- 
ical representation in model (LO) to each variant. Systematising the analysis, we 
may define the variants of model (LO) listed in table 6.1. This table also shows a 
characterisation of the models using the axioms introduced in the previous section. 

R e m a r k  6.2.5 
Note that requiring that F be strictly monotone instead of monotone makes no 
difference unless k is complete. This is quite understandable and is due to the fact 
that, when 2 is complete, the value of F dedicated to representing indifference is 
0. In such a case, if F is strictly monotone, any increase (with respect to marginal 
traces) of an evaluation of an alternative produces an alternative that is strictly 
preferred to the original one. Not all preferences show this feature. 

R e m a r k  6.2.6 
Model (L8) is the closest to the (strict) decomposable model; while model (L7) 
is the closest to the non-strict decomposable model. Each of them generalises 
the corresponding decomposable model to non-necessarily transitive preference 
relations. If k is transitive (and complete, hence a weak order) the corresponding 
decomposable model is the appropriate tool for analysing preferences. 0 
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Table 6.1: Main models using traces on levels and their characterisation. 

Models Definition Conditions 

(L1) (LO) with F([ui (x i )] ,  [ui(xi)])  = 0 refl. 

( L l )  with 
(L2)  

F( [w  (x i )] ;  [ui (y i )] )  = -F([ui(yi)];  [ui(xi)])  
C P ~  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(L5) (L1) with F ( / ,  \) 
0 refl., AC123 

(L6) ( L l )  with F ( / / ,  \\) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(L7) (L2) with F ( / ,  \) cpl., AC123 

/ means nondecreasing, \ means nonincreasing 
// means increasing, \\ means decreasing 

refl. means reflexive, cpl. means complete 

6.2.8 Respect of the dominance relation 

Why is the monotonicity of F in proposition 6.5 an appealing property? In conjoint 
measurement, we do not suppose a priori that  there is any preference information 
on the sets Xi; it is the "observed" global preference on X that  reveals how the 
client values the levels on each viewpoint. In the practice of MCDM, very often, 
the set of levels on the scales attached to  each viewpoint are a t  least ordered3. 
Suppose that  there is an a priori weak order Si on each set Xi, with xi Si zi 
meaning that  level xi is a t  least as good as level zi. In other words, Si orders the 
levels of Xi from the least desirable to  the most desirable. We emphasise that  this 
order a priori has nothing to do with a particular client's preference. For instance, 
if the alternatives are cars and we consider the point of view of cost, the ordering 
Si would correspond to "the cheaper the better". Similarly, if cars are supposed 
to be assessed on a comfort scale with 5 degrees, these degrees will usually be 
ranked by increasing order of comfort, independently of the cars to be assessed 
and one may presume for instance, that  no client who considers comfort a relevant 

We do not consider the case where the "natural" order on the scale is not compatible 
with the "natural" preferences of the client here, i.e. for instance when the client's preference 
initially increases with the performance until a maximum is reached, after which the preference 
decreases; for an analysis of the requirements for an appropriate system of criteria in multiple 
criteria decision analysis, see Roy and Bouyssou (1993, chapter 2) or Bouyssou (1990). 
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criterion for choosing a car, will find degree 3 more desirable than degree 4 (he 
may possibly be indifferent). 

So, if there is such a priori information available on the sets Xi, one may expect 
that the client's preference 2 on the set X of alternatives fulfills the following 
consistency property that we call "respect of dominance". We restrict ourselves 
to reflexive preference relations in this section. 

Definition 6.12 (Respect of dominance) 
Let Si be a weak order o n  Xi, for all i ,  and let x, y be alternatives i n  X .  The 
dominance relation As on  X i s  defined by 

x As y iff xi Si yi, for all i E N ;  (6.24) 

when this condition i s  fulfilled, we say that x dominates y. If 2 is  a reflexive 
preference o n  X ,  is  "compatible with the dominance relation Asn if the following 
condition holds: 

[ z A s x , x k y  a n d y A s w ] = + z k w .  (6.25) 

W e  say that 2 is  strictly compatible with As if, i n  addition, we have z > w as 
soon as at least one of the two dominance pairs corresponds to strict dominance, 
i.e. zi Pi xi or yi Pi wi for some i E N ,  where Pi denotes the asymmetric part of 
si . 
When k is compatible with the dominance relation As, we also say that it "re- 
spects dominance"; "strict respect of dominance" occurs when 2 is strictly com- 
patible with As. This definition requires that combining preference with domi- 
nance on both sides of the preference yields a preference; in particular it entails 
(provided k is reflexive, which we assume here) that dominance implies preference 
(i.e. x As y =+ x k y) .  

R e m a r k  6.2.7 
Note that the above definition of dominance is the non-strict version of the usual 
one. Usually (see, e.g., Steuer, 1986, p. 147), dominance is defined as an irreflexive 
relation: on top of condition (6.24), we must have xi Pi yi for at  least one i. The 
latter relation, that we could refer to a strict dominance, is just the asymmetric 
part of the above-defined A or in other words, we include in A pairs of alternatives 
that are indifferent on all dimensions (xi Ii yi for all i ,  where Ii denotes the 
symmetric part of Si). 

The first question that arises in the framework of conjoint measurement is: "Are 
all preferences compatible with some weak order Si on each Xi? And if this is 
not the case, which preferences are?". It is important to understand that, for the 
moment, we do not presuppose the knowledge of weak orders on Xi; we adopt the 
typical point of view of conjoint measurement theory, assuming only that we have 
a preference k on X. We thus investigate the conditions on k under which there 
m a y  exist weak orders Si on Xi such that 2 is compatible with the dominance 
relation As these weak orders define. These conditions are readily obtained using 
AC123, and AC4, for the strict respect of dominance (Bouyssou and Pirlot, 2004b, 
Theorem 1). 
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Theorem 6.6 (Compatibility with the dominance relation) 
Let 2 be a reflexive relation o n  a set X .  There are weak orders Si o n  Xi for all 
i E N such that: 

1. k is  compatible with the dominance relation A s  iff k satisfies AC123; 

2. k is  strictly compatible with the dominance relation As iff k satisfies AC4 

The conditions that guarantee the compatibility of k with a dominance relation 
are precisely those ensuring that the marginal traces k: are weak orders and that 
there is a monotone representation of & in model (LO). So it would be no wonder 
if the marginal traces and the weak orders Si had close connections. It is indeed 
the case that 

xi Si zi * xi kf zi, 

which means that kf is usually less discriminant than Si. Thus, to be compatible 
with As, k must have marginal traces that never contradict the weak orders Si, 
i.e. if xi Si zi, either xi yi or xi -' zi, but we never have zi t: xi. Returning 
to the comfort criterion in the buying-a-car example alluded to in the beginning 
of this section, the qualitative levels 3 and 4, with 4 Pi 3, may be considered by 
the marginal trace as indifferent or distinct (with, in the latter case, 4 >: 3). 

Strict compatibility with a dominance relation is quite a stringent requirement. 
It imposes that raising the evaluation of an alternative on the scale Si of any crite- 
rion i yields another alternative that is strictly preferred to the original one. And 
a symmetric behaviour is expected when any evaluation is lowered. Indifference is 
very "thin" with such a preference relation. This is indeed the case with prefer- 
ences that can be represented by an additive value function (model 6.1) and also 
by a decomposable model (6.11), but not with the non-strict decomposable model. 

5 In practice, the client often has a priori preferences on each dimension: 
@ cost should be minimised, time needed for accelerating to reach a certain 
Q speed should be minimised, etc. This section clarifies how these a priori one- 
@ dimensional preferences combine with the global preference. If the latter sat- 

isfies some reasonable properties, the marginal traces contain the a priori pref- 8 erences. However, the a priori preference may distinguish pairs of levels that 
@ are indifferent in the marginal trace. This is quite natural; small differences 
€3 in cost, for instance, will usually not influence the way two costly equipments 
0 compare to all other alternatives, provided the characteristics of the former 

two are tied on all other dimensions. 

6.2.9 Properties of marginal preferences in (LO) and vari- 
ants 

We briefly come back to the analysis of marginal preferences in connection with the 
variants of (LO) characterised above. As stated before (proposition 6.2), we know 
that for reflexive and transitive preferences, ki=k'. For reflexive preferences, 
xi k' zi implies xi ki zi. 
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The incidence of axioms AC1, AC2, AC3 and AC4 on marginal preferences is 
summarised in the next proposition (Bouyssou and Pirlot, 2004b, Proposition 3 
and Lemma 4.3). 

Proposition 6.6 (Properties of marginal preferences) 
1. If k is  reflexive and either ACli  or AC2i holds then ki is  an  interval order. 

2. If, i n  addition, k satisfies AC3i then ki is  a semiorder. 

3. I f  2 is  reflexive and AC4i holds then ki is  a weak-order and ki=kF. 

The preference k in example 6.3, page 259 has marginal preferences ki that  are 
semiorders as is shown by equation (6.15), while marginal traces are the natural 
weak orders on R. From the latter, applying proposition 6.5 (in its version for sets 
X of arbitrary cardinality), we deduce that 2 satisfies AC123. Applying the third 
part of proposition 6.6, we deduce further that  k does not satisfy AC4. 

6.2.9.1 Separability and independence 

Conditions AC1, AC2, AC3 and AC4 also have an impact on the separability and 
independence properties of k (Bouyssou and Pirlot, 2004b, Proposition 3.1 and 
Lemma 4.3). 

Proposition 6.7 (Separability and independence) 
Let k be a reflexive relation o n  X .  W e  have: 

1. I f  k satisfies ACli or AC& then 2 is  weakly separable for i E N .  

2. If 2 satisfies AC4i then 2 is  independent for { i ) ,  

Preference 2 in the example of the statistical test (example 6.3, p. 259) is weakly 
separable for all i (since k satisfies AC123 and in view of part 1 of proposition 
6.7); although 2 does not satisfy AC4, it is easy to see, applying the definition, 
that 2 is also independent for all i. 

6.2.9.2 The case of weak orders 

The case in which is a weak order is quite particular. We have the following 
result (Bouyssou and Pirlot, 2004b, Lemma 5 and Lemma 4.3). 

Proposition 6.8 (Case of weakly ordered preferences) 
Let k be a weak order on  a set X .  Then: 

1. [k is  weakly separable] H [k satisfies ACl]  H [k satisfies AC2] H [k sat- 
isfies AC3], 

2. [k is  weakly independent] H [k satisfies AC41, 

3. If 2 is  weakly separable, the marginal preference ki equals the marginal trace 
k:, for all i ,  and these relations are weak orders. 
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This result recalls that when analysing weakly separable weak orders, marginal 
traces can be substituted by marginal preferences (as is classically done); it also 
shows that weak separability masks AC123. 

Example 6.4 (Min, LexiMin and DiscriMin) 
In section 4.3.10.1, we have shown that comparing vectors of satisfaction degrees 
associated with a set of constraints could be done by comparing the lowest satis- 
faction degree in each vector, i.e. 

x 2 y * min(x1,. . . ,x,) > min(y1,. . . , y,), 

where x and y are n-tuples of numbers in the [O, 11 interval. This method for 
comparing vectors is known as the "Min" or "MaxMin" method. Clearly, the 
preference 2 that this method yields is a weak order; it is not weakly independent 
as was shown in section 4.3.10.1, but it is weakly separable since kf is simply the 
natural weak order on the interval [0, 11; the relation k thus satisfies AC123 but 
not AC4. By theorem 6.8.3, k:=ki, for all i. 

A refinement of the "Min" or "MaxMin" method is the "LexiMin" method 
that was studied in section 5.4.5; the latter discriminates between alternatives 
that  the former leaves tied. When comparing alternatives x and y, LexiMin ranks 
x before y if minxi > min yi; when the minimal value of both profiles are equal, 
LexiMin looks a t  the second minimum and decides in favour of the alternative 
with the highest second minimum; if again the second minima are equal, it goes to 
the third and so on. Alternatives will only be indifferent for LexiMin when they 
cannot be distinguished when their coordinates are rearranged in non-decreasing 
order. 

The preference yielded by LexiMin is again an independent weak order and 
kF=ki, for all i. 

There is another interesting procedure that  is less commonly used: the "Dis- 
criMinV method. To compare two alternatives, DiscriMin first eliminates the di- 
mensions on which their evaluations are equal; then it ranks as first, the alternative 
that has the highest minimal value (on the remaining dimensions). The obtained 
preference is not a weak order because the associated indifference is not transitive 
(for instance, (O.l,O.3) - (0.2,O.l) (0.1,0.2) but (O.l,O.3) + (0.1,0.2)); it is 
nevertheless weakly separable; its marginal traces and preferences are again the 
natural order on [0.1]. 0 

6.2.10 Eliciting the variants of model (LO) 

This family of models suggests an elicitation strategy similar to that used for the 
decomposable model, but based on the marginal traces instead of the marginal 
preferences. It is not likely, however, that  such a general model could serve as 
a basis for a direct practical elicitation process; instead, we think that it is a 
framework for conceiving more specific models associated to a method; the addi- 
tive value function model could be considered in this framework; the DiscriMin 
method, described above, is another example that  doesn't yield a preference that 
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is a weak order. Although it may seem unrealistic to work in such a general frame- 
work, Greco, Matarazzo, and Slowifiski (1999a) have proposed to do so and elicit 
preferences using an adapted rough sets approach (indirect approach). 

5 The family of models based on marginal traces constitute a framework 
i : ~  that encompasses many common preference models; basic properties that dis- 

tinguish them (such as independence vs. separability, responsiveness, respect 
of the dominance relation, etc.) can be understood in this framework. This 
may help the analyst to select appropriate evaluation models in practical prob- 

G3 
Q lem situations, for instance by looking for evidence that the preference satisfies 
9 some discriminating properties or not. 

6.3 Following another path: models using mar- 
ginal traces on differences 

The generalisation of the additive value model was pursued to its most extreme 
limits, since with model (LO) we encompass all possible binary relations on a 
product set. This generalisation relies on the marginal traces on the sets Xi. 
These relations were shown to be the stepping stones to lean on to elicit this 
type of model, for relations that are not transitive. For transitive (and reflexive) 
relations, marginal traces reduce to the usual marginal preferences. 

There is, however, another line of generalisation of the additive value model. 
Obviously, it cannot be advocated as more general than the models based on 
marginal traces; it nevertheless sheds another light on the picture, since it is based 
on an entirely different fundamental notion: traces on diflerences. Instead of 
comparing performance profiles alternatives such as in the additive value model or 
the decomposable model or even, in a more implicit form, in model (LO), we can 
see the preference of x over y as resulting from a balance made between advantages 
and disadvantages of x w.r.t. y on all criteria. While the approach followed in the 
additive value model could be described as Aggregate then Compare, the latter 
is more relevant to the opposite paradigm Compare (on each dimension) then 
Aggregate (Dubois, Fargier, Perny, and Prade, 2003; Perny, 2000). The origins of 
such a paradigm can perhaps be found in social choice theory and, in particular, 
the majority rule ci la Condorcet (see section 5.2.1). If we consider alternatives as 
candidates and points of view as voters, we may use the majority rule to compare 
the positions of each pair of candidates x, y in the ranking of each voter and 
then "aggregate" these comparisons by counting the number of voters that place 
candidate x ahead of candidate y and conversely. The ELECTRE methods (see 
p. 187) exploit the same idea in the context of multiple criteria decision analysis. 

6.3.1 The additive difference model 

This paradigm is not new in conjoint measurement either. I t  is related to the 
introduction of the intransitivity of preference. A. Tversky (1969) was one of 
the first to propose a model generalising the additive value model and able to 
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encompass preferences that lack transitivity. It is known as the additive difference 
model in which, 

n 

x k Y * C Qi(ui(xi) - ui(yi)) 2 0, (6.26) 
i=l 

where Qi are increasing and odd functions. 
Preferences that satisfy (6.26) may be intransitive, but they are complete (due 

to the postulated oddness of Qi). When attention is restricted to the comparison 
of objects that only differ on one dimension, (6.26) implies that the preference 
between these objects is independent of their common level on the remaining 
n - 1 dimensions. This amounts to saying that k is independent for all i; the 
marginal preferences k i ,  clearly, are complete and transitive (hence weak orders) 
due to the oddness and the increasingness of the Qi. This, in particular, excludes 
the possibility of any perception threshold on dimensions, which would lead to 
an intransitive indifference relation on these dimensions. Imposing that Qi are 
nondecreasing instead of being increasing allows for such a possibility. This gives 
rise to what Bouyssou (1986) called the weak additive difference model. 

Model (6.26) sums up the differences of preference represented by the func- 
tions Qi(ui(xi) -ui(yi)); these differences are themselves obtained by recoding the 
algebraic difference of partial value functions ui through the functions Qi. Due 
to the presence of two algebraic operations-the sum of the Qi and the difference 
of the ui-the difficulties faced when axiomatising (6.26) are of the same order 
as (or worse than) for the additive value function model. The characterisations 
obtained in the "rich case" incorporate unnecessary structural assumptions on the 
set X ,  either in the topological or the algebraic approach: for n = 2, see Bouyssou 
(1986); Croon (1984); Fishburn (1980); for n 2 3, see Fishburn (1992a). 

Dropping the subtractivity requirement in (6.26) (as suggested in Bouyssou, 
1986; Fishburn, 1990a,b, 1991a; Vind, 1991) is a partial answer to the limitations 
of the additive difference model. This leads to nontransitive additive conjoint 
measurement models in which: 

where the pi's are real-valued functions on Xf and may have several additional 
properties (e.g. pi(xi, xi) = 0, for all i E {1,2,. . . , n)  and all xi E Xi). 

This model is an obvious generalisation of the (weak) additive difference model. 
It allows for intransitive and incomplete preference relations k as well as for in- 
transitive and incomplete marginal preferences. An interesting specialisation of 
(6.27) is obtained when the functions pi are required to be skew symmetric,  i.e., 
such that pi(xi, yi) = -pi(yi, xi). This skew symmetric nontransitive additive con- 
joint measurement model implies the completeness and the independence of k. In 
view of the addition operation involved in the model, the difficulties in obtaining 
a satisfactory axiomatisation of the model remain essentially as in model (6.26). 
Fishburn (1990b, 1991a) axiomatises the skew symmetric version of (6.27) both 
in the finite and the infinite case; Vind (1991) provides axioms for (6.27) with 
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pi(xi,xi) = 0 when n 2 4; Bouyssou (1986) gives necessary and sufficient condi- 
tions for (6.27) with and without skew symmetry in the denumerable case, when 
n = 2. 

6.3.2 Comparison of preference differences 

With the nontransitive additive model (6.27), the notion of "preference difference" 
becomes more abstract than it seems to be in Tversky's model (6.26); we still refer 
to pi as to a representation of preference differences on i even though there is no 
algebraic difference operation involved. 

This prompts the following question: is there any intrinsic way of defining the 
notion of "difference of preference" by referring only to the preference relation k? 
The answer is pretty much in the spirit of what we discovered in the previous 
section: differences of preference can be compared in terms of traces, here, of 
traces on "differences". We define a relation 25, that we shall call marginal trace 
on differences, comparing any two pairs of levels (xi, yi) and (zi, wi) E X: in the 
following way. 

Definition 6.13 (Marginal t race o n  differences ki) 
The marginal trace on differences k; is the relation on the pairs of levels X: 
defined by: 

Intuitively, if (xi, yi) k: (zi, wi), it seems reasonable to conclude that the pref- 
erence difference between xi and yi is not smaller that the preference difference 
between zi and wi. Note that, by construction, k; is reflexive and transitive. 

Contrary to our intuition concerning preference differences, the definition of 2; 
does not imply that there is any link between two "opposite" differences (xi, yi) 
and (yi, xi). Henceforth we introduce the binary relation k;* on X:. 
Definition 6.14 (Marginal t r ace  o n  differences ki*) 
The marginal trace on differences k;* is the relation on the pairs of levels X: 
defined by: 

It is easy to see that kf* is transitive and reversible, i.e. 

The relations k; and kf* both appear to capture the idea of comparison of 
preference differences between elements of Xi induced by the relation k. Hence, 
they are good candidates to serve as the basis for the definition of the functions pi. 
They will not serve this purpose well however, unless they are complete. Before 
turning to the study of models based on traces on differences, it may be useful to 
emphasise that, by definition, preferences have some monotonicity properties with 
respect to their traces. We collect these properties in the following proposition 
(Bouyssou and Pirlot, 2002b, Lemma 3, p. 689). 
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Proposition 6.9 (Responsiveness w.r.t. t races  o n  differences) 
For all X,Y E X and all zi, wi E Xi, 

These statements tell us how a preference relation responds when a difference 
of preference on a criterion is substituted with a larger one. The preference 
cannot be reversed with respect to both 227 and kf* when enlarging the dif- 
ference between the compared alternatives on any criterion. Furthermore, it is 
not impossible that, using k r ,  a strict preference (x + y) becomes an indifference 
((zi,x-i) N (wi, y-i)), which is impossible when using k:*. Note that these are 
simply consequences of the definition of k5, not really a property of the prefer- 
ence; they add credit to our interpretation of relations kf and kT* as comparing 
differences of preference on Xi. 

These monotonicity properties of the preference with respect to the relations 
** or kf* are similar to those observed with respect to marginal preferences N Z  

(proposition 6.1) and marginal traces (proposition 6.4). 

6.3.3 A general family of models using traces on differences 

In the same spirit as the generalisation of the decomposable model to the models 
based on marginal traces, we envisage a very general model based on preference 
differences here. It formalises the idea of measuring "preference differences" sep- 
arately on each dimension and then combining these (positive or negative) differ- 
ences to find out whether the aggregation of these differences leads to an advantage 
for x over y. More formally, this suggests a model in which: 

where pi are real-valued functions on X! and G is a real-valued function on 
n:, P~(x:). 

As already noted by Goldstein (1991), all binary relations satisfy model (DO) 
when X is finite or countably infinite. Necessary and sufficient conditions for the 
non-denumerable case are well-known (Bouyssou and Pirlot, 2002b). 

As for the variants of model (LO), it is easy to impose conditions on G that 
will result in simple properties of 2 ;  we have for instance: 

0 2 is reflexive iff it has a representation in model (DO) with 

G([pi(xi,xi)]) > 0, for all xi; 

0 k is independent iff it has a representation in model (DO) with 

pi(xi, xi) = 0 for all xi; 

in addition, k is reflexive iff G(0) 2 0 and k is irreflexive iff G(0) < 0. 
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k is complete i f f  it has a representation in model (DO) with skew-symmetric 
pi, i.e. 

p i ( x i , ~ i )  = - ~ i ( ~ i , ~ i )  for all X i , Y i ;  

and G odd, i.e. G ( - p )  = -G(p)  for all p = ( P I , .  . . ,p,). 

Again, as for the models based on marginal traces, the monotonicity o f  G is related 
t o  the properties o f  traces on differences (6.28) and (6.29). The  axioms needed to  
guarantee the monotonicity o f  G are very similar to  AC1, AC2 or AC3 because 
traces are involved. 
Definit ion 6.15 
We say that relation 2 on X satisfies: 
R C l i  if 

( x i ,  a-i) k ( ~ i ,  b-i) ( x i ,  C-i) k ( ~ i ,  d-i) 
and } + { or 

(z i ,  C-i) k (wi,  d-i) (25, a-i) k (wi ,  b-i), 

RC2i if 
( x i ,  a-i) k ( ~ i ,  b-i) (z i ,  a-i) 2 (wi,  b-i) 

and } { or 
(y i ,  C-i) k ( x i ,  d-i) (wiyc-i) k (z i ,d- i ) ,  

for all xi ,yi ,zi ,wi E Xi and all a - i , b - i , ~ - i , d - ~  E X-i.  
RC3i if ;f satisfies RC2i and when one of the conclusions of RC2i is false 

then the other holds with >. instead of k. 
We say that 2 satisfies RC1 (resp. RC2)  if it satisfies R C l i  (resp. RC2i) for 

all i E N .  We also use RC12 as shorthand for RC1 and RC2. 

Condition RCl i  implies that any two ordered pairs ( x i ,  yi) and (zi ,  wi)  o f  elements 
o f  Xi  are comparable in terms o f  the relation kf.  Indeed, it is easy to  see that 
supposing Not[  ( x i ,  yi) kf (ti, wi) ] and Not[  (z i ,  wi)  kf ( x i ,  yi) ] is the negation 
o f  RCl i .  Similarly, RC2i implies that the two opposite differences ( x i ,  yi) and 
(y i ,  x i )  are linked. In terms o f  the relation kf ,  it states that i f  the preference 
difference between xi and yi is not at least as large as the preference difference 
between zi and wi then the preference difference between yi and xi should be at 
least as large as the preference difference between wi and zi (Bouyssou and Pirlot, 
2002b, Lemma 1). 

Proposit ion 6.10 (Comple teness  o f  t h e  traces  on di f ferences)  
We have: 

1. [kf is a weak order] @ R C l i ,  

2. [kf* is a weak order] * [RCl i  and RC2i] 

Here again (as for the models based on marginal traces, see section 6.2.6) the 
links between RC1, RC2 and properties o f  2; and kf* play a fundamental role 
in the construction o f  a representation o f  a preference relation in model (DO) with 
a monotone G function. Axiom RC2 introduces a mirror effect on preference 
differences: under RC2i, the difference o f  preference (yi ,  x i )  is the mirror image o f  
( x i ,  yi) (Bouyssou and Pirlot, 2002b, Theorem 1). 
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Proposition 6.11 (Representation in  model  D) 
A preference relation 2 on X admits a representation in model (DO) with G nonde- 
creasing in all its n arguments iff 2 satisfies RC1. It admits such a representation 
with, in addition, pi(xi, yi) = -pi(yi, xi), iff 2 satisfies RC1 and RC2. 

The construction of a representation under the hypotheses of the above proposition 
helps to make this proposition more intuitive. We outline this construction below. 

Suppose that k satisfies RC1. We know, by proposition 6.10.1 that 25 is a 
weak order on the set of pairs of levels X; for all i .  Select, for all i, a real-valued 
function pi that represents the weak order k:, i.e. that satisfies: 

for all xi, yi, zi, wi E Xi. Then define G as follows: 

It can easily be shown that G is well-defined. The choice of the exponential 
function and the sum operator is purely arbitrary; any other increasing function 
defined on the set of real numbers and taking positive values would do as well. 
The role of such a function is to ensure that, in each of the two sub-domains x k y 
and "otherwise", function G is increasing in the pi's; since the relation 2 is itself 
non-decreasing with respect to  the relations k: for all i (as implied by proposition 
6.9), raising the value of a pi (which represents k;) may only result in remaining 
in the same sub-domain or passing from the domain "otherwise" to the domain 
"x & y"; the value of G is negative in the former sub-domain and positive in the 
latter and in each sub-domain, G is increasing. This proves that G is increasing 
in all its arguments pi. 

The second case, in which 2 satisfies RC1 and RC2 is dealt with similarly. 
Since in this case k:* is a weak order, we use functions pi that represent kt* 
instead of k;. We may, moreover, exploit the reversibility property (6.30) of k:* 
to ensure that we may choose a skew-symmetric function pi to represent k;*. Then 
we define G as in (6.31). In the same case, we may also obtain a representation in 
which G is increasing (instead of non-decreasing) by defining G as follows: 

i f x + y  
i f x ~ y  (6.32) 

- exp [- Cy=l pi (xi, yi)] otherwise. 

Combining the various additional properties that can be imposed on k, we are led 
to consider a number of variants of the basic (DO) model. These models, labelled 
( D l )  to ( D l l ) ,  can be fully characterised using the axioms RC1, RC2 and RC3. 
The definition of the models, as well as their characterisation are displayed in table 
6.2. 

R e m a r k  6.3.1 ( Importance of marginal t races  o n  differences) 
In models (LO) to (L8) (see table 6.1, p. 268), both the understanding of the 
models and the basis for eliciting them rely on a fundamental object: the marginal 
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Table 6.2: Main models using traces on differences and their characterisation. 

Models Definition Conditions 

(DO) with pi(xi, xi)  = 0  

(DO) with pi skew symmetric 
................................. 
(DO) with pi skew symmetric and 

G  odd 

(DO) with G ( / )  

(DO) with G ( m )  
. . . . . . . . . . . . . . . . . . . . . . . . . .  

( D l )  with G ( / )  

( D l )  with G ( / / )  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

( 0 2 )  with G ( / )  

( 0 2 )  with G ( n )  
. . . . . . . . . . . . . . . . . . .  
( 0 3 )  with G ( / )  

( 0 3 )  with G(/"/') 

0 

ind. 

cpl., ind. 

RC1 

RC1, ind. 

RC12 

cpl., RC12 

cpl., RC3 

/ means nondecreasing, /"/" means increasing 
cpl. means completeness, ind. means independence 

traces k'. Here, obviously, the same role is played by the traces on differences 
+* or k;*. I t  is indeed tempting to  interpret the functions pi as being numerical N Z  

representations of k; or k;*; i t  is always possible to  impose that  the pi functions 
used in models ( D l )  to ( D l l )  represent either one or the other of those traces. 

An alternative strategy for eliciting a preference model, relies on the elici- 
@ tation of a relation comparing differences of preferences on each dimension, in 
@ contrast to the elicitation of marginal traces for models ( L l )  t o  (L8)  or, when 
8 preferences are assumed to  be transitive, in contrast t o  the elicitation of the 
@ marginal preferences. In order to  apply such a strategy, the basic property that  8 should reasonably be required of the preference is that  its traces on differences 

be complete, which can be tested using axioms RC1 and/or RC2. Methods 
O of aggregation based on pairwise comparisons, such as the numerous versions 
a of the majority rule considered in chapter 5, are likely to  lead to preferences 9, that  fit into the "D" models. 
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R e m a r k  6.3.2 (Responsiveness wi th  respect t o  t races  o n  differences) 
Proposition 6.9 expresses the fact that all preferences are positively (more pre- 
cisely, non-negatively) responsive with respect to their traces on differences; this 
is implied by the very definition of the traces. The response however is not strictly 
positive in general. As can be seen in table 6.2, when the preference is complete, 
RC3i is linked to the way the preference reacts to a strict increase of a prefer- 
ence difference. Complete preference relations satisfying RC3i enjoy the following 
positive responsiveness property (Bouyssou and Pirlot, 2002b, Lemma 3.5, p. 689): 

For such a preference, indifference is "thin", since, in case x and y are indifferent, 
increasing the difference of preference (xi, yi) or reducing the difference (yi, xi) 
converts indifference into strict preference. 

Note that positive responsiveness is not the rule for all preferences. It is not the 
case for instance in example 6.3 (statistical test of comparison of means) in which 
the marginal traces on differences can be represented by the algebraic differences 
of the values ai - bi. Clearly in this example, indifference is not thin, due to 
the fact that the values of the means cannot be significantly distinguished unless 
their difference reaches some threshold (see equation (6.14)). On the contrary, 
the usual additive value model (6.1) is positively responsive; its marginal traces 
on differences can be represented by the differences of marginal utilities ui(xi) - 
u i ( ~ i ) .  

6.3.4 Eliciting models using traces on differences 

We suppose that k is reflexive and satisfies RC1, i.e., we are in model ( 0 5 )  
(equivalent to (D9)). In this model, 2; is a weak order on the "differences of 
preference" (xi, yi) E X:, for all i, and the functions pi may be chosen to be 
numerical representations of k:. To each pair of alternatives x ,  y E X ,  a profile 
iJ = (pl , .  . . ,p,) of differences of preferences (pi = pi(xi, yi), for i = 1,. . . , n) is 
henceforth associated. The function G may be conceived of as a rule that assigns 
a value to each profile; in model (05) ,  G is just assumed to be nonincreasing (not 
necessarily increasing if we choose to represent k into model (05)  instead of the 
equivalent model (D9)) and therefore we may choose a very simple form of G that 
codes profiles in the following way: 

+l if i j .  corresponds to x + y; 
0 if iJ corresponds to x N y; (6.34) 

-1 if p corresponds to Not[x  2 y ] . 

The strategy for eliciting such a model (directly) may thus be as follows: 

1. for all i, elicit the weak order 2: that ranks the differences of preference; 
choose a representation pi of k; 

2. elicit the rule (function) G that assigns a category (coded + l ,  0 or -1) to 
each profile iJ. 
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The second step of the elicitation strategy is comparable to that used for eliciting 
function U in the decomposable model (page 256), since the monotonicity of G in 
its arguments can be exploited. 

The initial step, however, is more complex than with the decomposable model, 
because we have to rank-order the set X: instead of Xi. If it may be assumed that 
the difference of preference is reversible (see (6.30)), almost half of the work can be 
saved since only the "positive" (or only the "negative") differences must be rank- 
ordered4. The difficulty that remains even in the reversible case, may motivate 
the consideration of another family of models that rely both on marginal traces 
and on traces on differences. In some of these models, k f  reacts positively (or 
non-negatively) to marginal traces and therefore, the elicitation of pi may benefit 
from its monotonicity w.r.t. marginal traces. This family of models is presented 
in section 6.4. 

Models (D4), (D5), (D6) and (D7), in which G is a nondecreasing function, 
can be elicited in a similar fashion. The situation is different when a representation 
is sought with G increasing, in particular for model (Dl l ) .  The definition of G by 
(6.34) is no longer appropriate for such representations, and defining G requires 
more care and effort. We do not analyse this point. 

6.3.4.1 Testing whether preferences fit into model ( 0 5 )  

In view of the characterisation of ( 0 5 )  (see table 6.2), a preference satisfies ( 0 5 )  
iff the differences of preferences can be rank-ordered (according to k;) and the 
preference k is monotone w.r.t. the orders on the differences of preference k;. 
( 0 5 )  might be considered as a default model if a model based on preference dif- 
ferences was previously chosen. The elicitation strategy outlined above could be 
pursued until consistency problems are encountered in the elicitation process: e.g. 
contradictions between the client's answers and consequences of the monotonicity 
of 2 applied to previous answers. If no such contradiction has been met when 
the elicitation is completed, the validation of the model may consist in partially 
testing the consistency of the model by asking redundant questions aimed at de- 
tecting non-monotonicity of k w.r.t. the elicited 2;. Detected contradictions may 
lead either to reject the model or to revise the elicitation of some k;. 

Preliminary questions may lead to assuming a more structured model, such as 
e.g. 

0 (D6) (equivalent to (D10)) if, in addition, the decision maker feels that 
the difference of preference (xi, yi) is exactly the opposite of the difference 
of preference (yi,xi) for all xi, yi (this may be partially tested by asking 
appropriate questions); 

0 ( 0 7 )  (equivalent to (D10)) if, in addition to the hypotheses of (D6), the de- 
cision maker feels that the preference is complete (this can be partly tested). 

In the case of a tie, i.e. whenever (xi, yi) -2 (zit wi), one has, however, to  explicitly look at  
the relation between the reverse differences (yi, xi) and (wi, zi) since all cases (kt ,  -2 or 5;) 
can possibly occur. 
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Testing (or questioning about) Model ( D l l )  seems to  be more difficult. This 
model departs from model ( 0 7 )  or, equivalently (D10) because preference k reacts 
positively to  any improvement of the difference of preference on any dimension i. 
More precisely, if x - y and the difference of preference (xi, yi) is substituted 
by a larger one w.r.t. k;*, say (zi, wi) with (zi, wi) +;* (xi, yi), the preference 
becomes strict between the transformed alternatives, i.e. (zi,x-i) + (wi, y-i) (see 
Bouyssou and Pirlot, 2002b, Lemma 3.5). Partially testing this condition does not 
make much sense since this condition may, of course, hold in some cases in model 
(D10); the fact that  it holds in all cases is characteristic of model ( D l l ) .  

6.3.5 Examples of models that distinguish no more than 
three classes of differences 

The family of models using traces on differences provides an appropriate frame- 
work for describing the procedures examined in section 5.2, i.e. procedures that 
aggregate a profile of preference relations into one relation. In this section, we 
show that the simple majority (or Condorcet method), weighted majority, qual- 
ified majority and the lexicographic method can be represented in some of the 
models ( D l )  to  ( D l l ) .  We consider, in addition, a variant of the ELECTRE I 
procedure in which the profile of preferences on each dimension are not weak or- 
ders but semiorders. In each of these cases, the relation that orders the differences 
of preference on each criterion is revealed by the global preference relation. 

The above rules can also be described in another, more detailed, framework 
that  will be discussed below in section 6.4, where we will come back to all of these 
rules. In section 6.5, we will study, a class of relations that encompass all the rules 
and are called concordance relations. 

First of all, the definitions of the various majority rules and the lexicographic 
method discussed in section 5.2 require to be slightly adapted to our conjoint mea- 
surement context. We do not start with a profile of preference relations here, but, 
instead, with a global preference relation 2 that-we assume-can be obtained 
through the application of some sort of a majority or lexicographic rule to a profile 
of a priori preference relations on each dimension. More formally, we say that a 
relation 2 ,  defined on a product set X = ny=E=, Xi is the result of the application 
of a majority or a lexicographic rule if there is a relation Si on each Xi such that 
2 can be obtained by aggregating the n relations Si using that rule. These Si's 
will usually be weak orders, but we will also consider more general structures such 
as semiorders. There can be some sort of relationship between Si and the revealed 
marginal preferences ki induced by k on Xi. This relationship will be examined 
in section 6.4.3. In the sequel, we refer to Si as to the a priori preference relation 
on Xi. Such relations may have been obtained as suggested in chapter 3 

Take the example of the simple majority rule. We say that k is a simple 
majority preference relation if there are relations Si that  are weak orders on the 
corresponding Xi such that: 

the number of criteria on which xi Si yi 
is a t  least as large as (6.35) 
the number of criteria such that yi Si xi. 
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There is apparently a difference with the procedures defined in section 5.2. In 
that section, the weak orders (that are denoted there by ki and correspond here 
to the Si relations) are defined on the set of alternatives X;  it is easy to extend 
our relation Si, defined on Xi, to a relation six on X just by saying that x six y 
iff xi Si yi, where xi (resp. yi) is the evaluation of x (resp. y) on the i th dimension. 
In other words, Xi can be interpreted as representing the aspect of the alternatives 
that is relevant for ranking them according to dimension i; this ranking is Si. 

We emphasise that the relations denoted by ki in section 5.2 are not to be 
confused with the marginal preferences induced by k as defined by equation (4.7) 
in section 4.3.6 (although there may exist relationships between them as we shall 
see in section 6.4.1). 

In the rest of this section, Pi will denote the asymmetric part of a relation 
Si defined on Xi and its symmetric part will be denoted by Ii. In the first five 
examples, the Si's are assumed to be weak orders. 

We refer the reader to section 5.2 for a comparison of the social choice and 
conjoint measurement perspectives on the procedures described below. 

6.3.5.1 Simple majority or the Condorcet method 

A relation k on X is a simple majority relation (see section 5.2.1 for a social 
choice viewpoint on simple majority) if there is a weak order Si on each Xi such 
that 

x k y  iff I{i€ N : x i S i  yi)l 2 I{i€ N :  yiSixi}l.  (6.36) 

In other words, x y if the "coalition" of criteria on which x is at  least as good 
as y is at least as large as the "opposite coalition", i.e. the set of criteria on which 
y is at  least as good as x. The term "coalition" is used here for "set", in reference 
to  social choice. We apparently do not distinguish between the case in which xi is 
better than yi (xi Pi yi) and that in which they are indifferent (xi Ii yi). Note that 
the criteria for which xi is indifferent to yi appear in both coalitions and hence 
cancel each other. We could thus define a simple majority relation equivalently by 
x k y iff I{i E N : xi Pi yi)l 2 [{i E N : yi Pi xi}[. 

Such a relation can be represented in model ( D l l )  by defining 

and 

Indeed x k y iff G([pi(xi, yi)]) = [{i E N : xi Pi yi)l - I{i E N : yi Pi xi)l 2 0, 
which is clearly equivalent to definition (6.36). 

This representation of a simple majority relation can furthermore be called 
regular, in the sense that the functions pi are numerical representations of the 
weak orders k;*; the latter having exactly three equivalence classes, namely, the 
set of pairs (xi, yi) such that xi Pi yi, the set of pairs for which xi Ii yi and the 
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set of pairs such that yi Pi xi. Note that the relation k5 distinguishes the same 
three classes; hence 2; = hf *. 

6.3.5.2 Weighted simple majority or the weighted Condorcet method 

A relation k on X is a weighted simple majority relation (see section 5.2.2 for a 
social choice viewpoint on weighted majority) if there is a vector of normalised 
weights [wi] (with wi > 0 and CiEN wi = 1 )  and a weak order Si on each Xi such 
that  

The coalitions of criteria are weighted in this model: they are assigned a value 
that is the sum of those assigned to the criteria belonging to the coalition. As in 
the simple majority rule, the preference of x over y results from the comparison 
of the coalitions: x k y if the coalition of criteria on which x is a t  least as good 
as y does not weigh less than the opposite coalition. As for simple majority, 
we could have defined the relation using strict a priori preference, saying that 

x k Y iff C i E N : x i P i y i  W i  2 C j E N : y j P j s j  W j .  

A representation of a weighted majority relation in model ( D l l )  is readily 
obtained. Let: 

wi if xi Pi yi 
~ i ( x i , ~ i )  = 0 if xi Ii yi 

-wi if yi Pi xi 

and 

We have that x 2 iff G([pi(x i ,y i )] )  = CiEN:xipiyi W i  - C j E N : y j ~ j x j  w j  0. 
This representation is regular since pi is a numerical representation of kz* and 

k;* has only three equivalence classes as in the case of simple majority. 

6.3.5.3 Weighted qualified majority 

A relation k on X is a weighted qualified majority relation if there is a vector of 
normalised weights [wi] (i.e, with wi non-negative and summing up to  I ) ,  a weak 
order Si on each Xi and a threshold S between and 1 such that  

In contrast to  the previous models, the preference does not result from a compar- 
ison of coalitions, but from stating that the coalition in favour of an alternative 
is strong enough, i.e. that the measure of its strength reaches a certain threshold 
6 (typically above 0.5). Even when S is set to  0.5, this method is not equivalent 
to weighted simple majority, with the same weighting vector [wi]; this is due to  
the inclusion of the criteria on which x and y are indifferent in both coalitions in 
favour of x over y and in favour of y over x. Take for example two alternatives x ,  
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y compared on five points of view; suppose that the criteria are all assigned the 
same weight, i.e. wi = 115, for i = 1,. . . ,5.  Assume that  x is preferred to y on 
the first criterion (xl PI yl), x is indifferent to  y on the second and third criteria 
(22 I2 y2; 2 3  I3 y3) and y is preferred to x on the last two criteria (y4 P4 x4; 
y5 P5 25). Using the weighted majority rule (equation (6.39)), we obtain y + x, 
since the coalition in favour of x against y is composed of criteria 1, 2, 3 (weighting 
0.6) and the opposite coalition contains criteria 2, 3, 4, 5 (weighting 0.8). Using 
the weighted qualified majority with threshold 6 up to  0.6, we obtain that  x y, 
since both coalitions weigh a t  least 0.6. 

Note that when the criteria have equal weights (wi = l l n ) ,  weighted qualified 
majority could be called simply qualified majority; the latter has the same rela- 
tionship with weighted qualified majority that weighted simple majority has with 
simple majority. 

Remark 6.3.3 (Strict weighted qualified majority) 
There is another way of defining a weighted qualified majority, denoting the pref- 
erence by t and using Pi, the asymmetric part of Si, in the sum in definition 
(6.42): 

With this rule, that  could be called strict weighted qualified majority, only those 
criteria on which x is strictly preferred to y enter into the coalition; the criteria 
on which x and y are tied (from the preference point of view) don't count in the 
comparison of these alternatives. The resulting preference t is irreflexive, since, 
when comparing x with x,  the coalition of criteria stating that  x is strictly preferred 
to  x is empty. Furthermore, this preference is asymmetric when the threshold 6 
is strictly larger than 0.5; this results from the following fact: the coalition of 
criteria stating that x is strictly preferred to y weighs more than 0.5 if and only if 
the opposite coalition, the one stating that y is strictly preferred to  x weighs less 
than 0.5. The "asymmetric intuition" behind this kind of rule leads to excluding 
values of 6 less than or equal to  4. 

Weighted qualified majority relations are a basic component of the ELECTRE 
I and ELECTRE I1 methods (Roy, 1971) as long as there are no vetoes (see also 
section 5.2.3.5). 

Any weighted qualified majority relation admits a representation in model 
( 0 8 ) .  Let: 

and 
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We have that 

In this representation, pi is a numerical representation of k: but not of kz*. The 
former has two equivalence classes: the pairs (xi, yi) that are in Si form the upper 
class of the weak order; those that are not in form the lower class. Note that there 
are no further distinctions between pairs; all pairs in the upper class contribute 
the same amount wi - to  the value of the coalition, while the pairs of the lower 
class all contribute the same amount -:. The comparison of preference differences 
in this model is thus rather poor (as is the case, of course, in the previous two 
models). 

The relation k:* is also a weak order; it has three equivalence classes. I t  makes 
a distinction between xi Pi yi and xi Ii yi (a distinction that k; does not): both 
cases play the same role when comparing (xi, yi) to other pairs (since what counts 
in formula (6.42) is whether or not (xi, yi) belongs to Si); this is no longer the case 
when comparing (yi, xi) to  other pairs since then, xi Ii yi counts in the coalition 
in favour of y against x while xi Pi yi does not. 

Are there representations of a weighted majority relation in models which are 
more constrained than (08). The answer is positive in view of the fact that kf* 
is a weak order for all i, hence that satisfies axioms RC12 (Proposition 6.10.2). 
Consequently, there are representations of k in model (D10) and possibly in more 
constrained ones. 

In such models, however, G may no longer-in general-be taken to be the 
sum of the pi's. Indeed, in all more constrained models considered in table 6.2, 
pi(xi,xi) = 0 for all xi and pi(xi, yi) < 0 whenever xi is not a t  least as good as 
yi (i.e. when yi Pi xi). Suppose for simplicity that all criteria have equal positive 
weight (wi = l l n )  and suppose that threshold 6 is less than % so that unanimity 
is not required for preference. Take a pair of alternatives that are indifferent on all 
criteria but one, say criterion 1 (thus xi = yi for all i # 1). We may assume without 
being restrictive that X I ,  yl are such that yl PI x l  and hence that pi(xi, yi) < 0. 
We have x k y since the former alternative is a t  least as good as (in fact indifferent 
to) the latter on n - 1 criteria (and worse only on the first criterion). Using an 
additive representation G(bi(xi,  yi)]) = CiEN pi(xi, yi) with pi(xi, yi) = 0 for all 
i # 1 and pl(xl,  yl) < 0 would lead us to  conclude that x is not preferred or 
indifferent to  y ( Not[x 2 y ] ) since we have: 

P ~ ( x I , Y ~ )  + ) p i ( x i , ~ i )  = PI(XI,YI) < 0 
i#1 

I t  is however possible to  get a representation of k in model (D6) that is equivalent 
to model (D10) using a function G that is not the sum of its arguments pi (see 
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table 6.2). Take for pi a numerical representation of hf*, for instance: 

and define G for instance by: 

Since the weights wi sum up to one, 1 - CiEN:pi<Opi = CiEN:xiSiyi wi and 
thus x 2 y iff G([pi(xi, yi)]) = CiEN:xiSiyi wi - S 2 0, which is exactly the 
same expression as in equation (6.45). The difference between these models is 
in the different decompositions of the function mapping (XI, yl, . . . , x,, y,) onto 
G(pl(xl, yl), . . . ,p,(x,, y,)) into G and the pi's. The two models for a weighted 
qualified majority relation described above provide two such decompositions; they 
vary in the properties of the pi's, the crucial one being the requirement in the 
latter that pi(xi, xi) = 0. 

Let us turn to examining the properties of G as defined by equation (6.47). G 
is a nondecreasing function of its arguments; it is not odd since when pi = 0 for 
all i, we should have G([pi]) = 0 (since G([-pi]) = -G([pi]) implies G([pi]) = 0). 
G is not strictly increasing since the expression that defines G in terms of the 
pi's (equation (6.47)) makes no difference between pi = 0 (in case xi Ii yi) and 
pi = wi (in case xi Pi yi). With the above definitions of pi and G we thus have a 
representation of 2 in model (D6). Since models (D6) and (D10) are equivalent, 
one can also build a representation in model (D10) by choosing a function G that 
is increasing instead of nondecreasing. This can be achieved through the general 
construction scheme outlined in section 6.3.3, using for instance equation (6.32) 
as a definition of G. 

Are there representations in models such as (07)  or (D l l )  or do we have to 
conclude that a weighted qualified majority relation does not, in general, satisfy 
the axioms for these models? Examining the properties of a weighted qualified 
majority relation 2, one readily sees that 2 is not necessarily complete. Take for 
instance the case where there are four criteria and two levels on each criterion, i.e. 
Xi = { ai, bi), with ai Pi bi, for i = 1, . . . , 4 .  Let the criteria have equal weights 
(wi = 0.25) and S be equal to 0.75. Consider the alternatives x = (al, a2, b3, b4) 
and y = (bl, b2,a3,a4). We have neither x 2 y, nor y 2 x, since the first two 
criteria are in favour of x and the last two in favour of y; both coalitions weigh 
0.5, none reaches the threshold of 0.75. 

Property RC3 is also not fulfilled, in general, by weighted qualified majority 
relations. Consider a case with three criteria and two levels on each criterion 
(Xi = {ai, bi), with ai Pi bi, for i = 1,. . . ,3). Take equal weights for all criteria 
(wi = 113) and set the threshold S to 213. We have (al ,  a2, b3) 2 (al ,  a2, as) since 
these alternatives have common levels on two criteria. We apply RC21 to two 
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"copies" of this preference, substituting a1 with bl yielding: 

The first preference on the righthand side is false; the second one is true (in 
agreement with RC21, which is a property of weighted qualified majority relations 
as already observed), but it is not strict (indeed, it is easy to see that (al ,  a2, bs) - 
(bl, an, as)), contrary to R C ~ I .  

Another way of obtaining an intuition about model ( D l l )  and RC3 is through 
noticing that in model ( D l l ) ,  the class of indifferent alternatives is "thin" in 
the following sense: take two alternatives x and y that are indifferent (x N y); let 
(zi, wi) be a pair of levels on Xi that represent a difference of preference larger than 
(xi, yi), the pair of levels shown by x and y on Xi; we thus have (zi, wi) tf (xi, yi). 
Substituting xi (resp, yi) by zi (resp. wi) in x (resp. y) transforms indifference into 
strict preference: (zi, x-i) t (wi, y-i). Indifference is broken in the same way as 
soon as (zi, wi) t$* (xi, yi), thus even when (zi, wi) N: (xi, yi) but (yi, xi) t: 
(wi, zi) (see section 6.3.8 for another example). 

In the case of a weighted qualified majority preference relation 2, we may 
therefore not hope to have a representation of 2 either in model (07)  (unless 
2 is complete), or in model ( D l l )  (unless 2 is complete and satisfies RC3). 
The most constrained model that k fits in is (D6) and its equivalent strictly 
increasing version (D10). Obtaining a representation of k in this model is of no 
practical interest since such a representation is highly artificial. I t  can however be 
obtained in the generic way suggested by formula (6.31): take a skew symmetric 
representation of kz* for pi (as in (6.46)) and define G by: 

This definition fulfills all the requirements of model (DlO), but it offers no hint for 
constructing it since it presupposes the knowledge of 2 (here via a representation 
in model ( 0 8 ) )  to determine the adequate sub-domain. 

See section 5.2.3 for a social choice viewpoint on qualified weighted majority. 

Remark 6.3.4 (Majority models with semiordered a priori preferences) 
In the variants of majority rules defined in sections 6.3.5.1 and 6.3.5.2 and in this 
section, we considered an a priori preference relation Si on each dimension and we 
assumed that this relation is a weak order. The reader might have noticed that this 
assumption (in particular, the transitivity of Si) was not needed for obtaining a 
representation of the majority relations in the models described. We can thus relax 
the hypothesis made on Si to encompass other types of preference relations. This 
may prove useful since, in the ELECTRE methods, when there is no veto, it may 
occur that the a priori preferences are semiorders. This is the situation described 
in section 3.7.1.2 of chapter 3. Often, the client may feel that a small difference 
between the evaluations of alternatives on a dimension is not a sufficient reason 
for saying that an alternative is better than another on that criterion. This lack of 
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discrimination of the dimension may be due to the imprecision of the evaluation 
process. Let us consider, for instance, one of the criteria retained in the choice of a 
car example described in Bouyssou et al. (2000, chapter 6). The client wants to buy 
a second hand car and he evaluates the potential cars on several criteria, including 
their annual utilisation cost. Due to the uncertainty involved in the estimation 
of such a cost (annual mileage, price of gasoline, maintenance costs, credit costs, 
etc), he might consider that a difference of less than l O O €  is not significant. If 
X1 denotes the set of costs the client could afford, its a priori preference would 
be modelled as follows: he would say that two cars x, y differing in cost by less 
than 100€ are a priori indifferent on criterion 1; representing the evaluation of x 
(resp. y) on criterion 1 by xl  (resp. yl), we would write that xl  Il yl as soon as 
1x1 - yll I 100. The client would also say that level xl  is a priori strictly preferred 
to level yl (xl Pl yl) whenever x1 is at least 100€ cheaper than yl (xl < yl-100). 
Since the a priori preference S1 on criterion 1 occurs when either PI or Il occurs, 
we would thus have the following description of S1: 

XI  S1 yl iff XI  I yl + 100 (6.49) 

Relation S1 is a semiorder. In all variants of majority relations studied in section 
6.3.5, the a priori preferences Si were assumed to be weak orders. Relaxing this 
hypothesis into the assumption that Si are semiorders, does not raise any problems 
with the definitions of the variants of majority relations introduced so far. In 
the case of weighted qualified majority for instance, we could simply apply the 
same definition, obtaining what could be called a qualified majority relation with 
semiordered a priori preferences on the attributes. With this relaxed definition, 
nothing changes in the possibility of representing 2 in models (Dl )  to (D l l ) ;  in 
particular, the same forms of representation in models (D6) and (D10) are valid 
in case 2 has semiordered a priori preferences (see section 6.3.5.3). And the same 
is true of course for the other variants of majority relations. 

6.3.5.4 Lexicographic preference relations 

A lexicographic procedure supposes that the criteria are linearly ordered and are 
considered in that order when comparing alternatives (see section 5.2.4): in this 
order, the first criterion that favours one alternative with respect to another de- 
termines the global preference. Denoting a linear order on the set of criteria by 
>e, we rank-order the criteria according to it: le >e 2e >e . . . >e ne. We thus have 
the following definition: a relation 2 on X is a lexicographic preference relation if 
there is a linear order >e on the set of criteria and a weak order (or a semiorder) 
Si on each Xi such that: 

xlt P1e yle or 
xlt Ilt yle and x2e P2t y2t or 

x + y i f  
xit I l e  yie vi = 1,. . . , k - 1 and xke Pke yke, 

(6.50) 

for some k such that 2 5 k 5 n. 

and x y if xje l i t  yjr, for all i E N. In other words, x y if xi is a priori 
indifferent to yi, for all i; x + y if, for the first index ke for which zit is not a 
priori indifferent to yie, one has xke a priori preferred to Yie. 
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Such a relation can be viewed (as long as there is only a finite number of 
criteria) as a special case of a weighted majority relation. Choose a vector of 
weights wi as follows: for all i E N, let wit be larger than the sum of all remaining 
weights (in the order >e), i.e.: 

Using these weights in (6.40) and (6.41), which define a representation for weighted 
majority relations, one obtains a representation for lexicographic relations in model 
(Dl l ) .  To illustrate the definition of weights appropriate for lexicographically or- 
dering alternatives, we adapt the example presented in section 5.2.4. Consider a 
case with three criteria and the following linear order >e on the criteria: crite- 
rion 2 is more important than criterion 1, which in turn is more important than 
criterion 3 (2 >e 1 >e 3). Let a = (al,a2,a3), b = (bl,bg,b3), c = ( c I , c ~ , c ~ )  be 
three alternatives with the following a priori weakly ordered preferences on each 
criterion: a1 Il bl PI cl, c2 P2 b2 I2 a2, b3 P3 a3 I3 c3, as in the example in section 
5.2.4. The following weights constitute an appropriate choice for obtaining the 
lexicographic ordering of the three alternatives, i.e. c + b + a. Let: 

Using formula (6.40) and (6.41), we obtain: 

which represents the lexicographic ordering of these three alternatives correctly. 
Note that any set of weights such that Wit is larger than the sum of all the 

remaining weights leads to the same relation k .  

6.3.5.5 Other  forms of weighted qualified majori ty  

Instead of imposing a threshold above 0.5 for defining a weighted qualified majority, 
as in section 6.3.5.3, we may alternatively impose a relative majority threshold, in 
an additive or a multiplicative form. A preference relation k on X is a weighted 
majority relation with additive threshold if there is a vector of normalised weights 
[wi] (with wi 2 0 and CiEN wi = I) ,  a weak order or semiorder Si on each Xi 
and a non-negative threshold y such that 

A relation k is a weighted majority relation with multiplicative threshold p 2 1 if 
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with [wi] and Si as in the case of an additive threshold. 
It  is easy to provide a representation of a weighted majority relation with 

additive threshold in model (D10); define for instance pi by equation (6.46) and 
G by: 

In this representation, G is not an odd function due to the presence of the -y term; 
we thus have a representation in model (DlO), since the pi's are skew-symmetric 
and G is increasing in the pi's. Despite the fact that the representation above is 
not in model ( 0 7 )  or ( D l l ) ,  relation k is complete: we have x k y or y k x, 
or both, for all X,  y, since CiEN:xiSiy, wi 2 CjEN:y jS jx j  W j  or CiEN:xiSiyi Wi < 
CjEN:yjSj,j wj and y is non-negative. There must thus be (according to table 
6.2) a representation of k in model (07) .  A representation that would appear 
natural is not obvious; we always have the opportunity of defining G according 
to the general construction scheme provided by (6.31); using the pi's defined by 
(6.46), it adapts as follows: 

This form guarantees the oddness of G as soon as the relation 2 is complete. 
There is, in general, no representation of such a preference in model ( D l l )  

since we cannot assume that indifference is "thin" unless y = 0 or y is smaller 
than w,, the smallest of the weights wi, i E N. Indeed, x and y are indifferent iff 
-y 5 CiEN pi 5 y. Any alternative x is indifferent to itself (x N x); if y is at  least 
as large as some weight wj, we can build an alternative y = (yj, x-j) by changing 
x only on criterion j on which we substitute level x j  by any yj that is a priori 
preferred to x j  (yj Pj xj). Comparing y to x, we see that -y 5 xiEN pi = wj i y; 
this means that y is indifferent to x ,  which violates the positive responsiveness 
property. 

Finally, note that the representations using the pi's defined by (6.46) are, in 
general, regular in the sense that such pi's are numerical representations of the 
weak orders kz* on differences of preference. This would fail to be the case only in 
very degenerate situations in which a criterion would have no influence whatsoever 
on preference 2 ;  such a criterion would never make any difference and could be 
eliminated (see the notion of influent criterion in section 6.5). 

Turning to weighted majority relations with multiplicative threshold as defined 
by (6.53), one observes that k is complete and can be represented in model (DlO), 
for instance through defining pi by equation (6.46) and G by: 

Since k is complete, it is possible, as in the additive threshold case, to provide a 
representation in model (07) .  The preference 2 does not fit in model ( D l l )  since, 
in general, indifference is not "thin". 
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Remark 6.3.5 (Asymmetric preference relations: the TACTIC method) 
Constructing preference relations using these rules resembles what is known as 
the TACTIC method; it was proposed and studied in Vansnick (1986a) with the 
possible adjunction of vetoes that we shall consider later in remark 6.3.8, p. 297. 
In the original version of TACTIC the preference is defined as an asymmetric 
relation + (a  strict preference) either by: 

or by: 

where Pi denotes the asymmetric part of the weak order or the semiorder Si. 
The reflexive relation 2 defined by (6.52) can be obtained from the irreflexive one 
defined by (6.57) just by saying that x k y if and only if Not[y  + x ]  . Indeed, 
assuming (6.52), we have 

since the term CiEN:xiliyi wi appears in the two following expressions and can be 
cancelled: 

C w i =  C wi+ C wi 
i E  N:xiSiyi iEN:xiPiyi iEN:xiI,yi 

and 

C w j =  C w j +  C wj, 
jEN:yjS,xj jEN:yjP,xi jEN:yjIixj 

where Ii is the symmetric part of Si. The reflexive and complete relation 2 derived 
from definition (6.57) of its asymmetric part is thus a weighted majority relation 
with additive threshold as defined by (6.52); hence it admits representations in 
models (D10) and (D7), but not in (011) 5 .  

Remark 6.3.6 (Duality) 
Usually, if a relation k is defined by x k y  if and only if Not [y  + X I ,  it is called 
the dual of +; of course, + is also the dual of k.  Duality transforms irreflexive 
relations into reflexive ones (and conversely); it transforms asymmetric relations 
into complete ones (and conversely). If we interpret + as a "better than" relation, 
its dual k interprets as an "at least as good" relation. 

Note that it is possible to develop a theory of models based on marginal traces or on marginal 
traces on differences for irreflexive relations; the characterisation of such models is straightfor- 
ward, using the results obtained for reflexive relations. See Bouyssou and Pirlot (2002a) for an 
illustration in a particular context. 



6.3. MODELS BASED ON MARGINAL TRACES ON DIFFERENCES 293 

The multiplicative versions (6.53) and (6.58) are not quite related in the same 
way: due to the multiplicative threshold, there is no cancellation of the term 
CiEN:x,,l,yi wi and hence, assuming (6.58), we have: 

Such a relation, the dual of +, is a variant of the weighted majority relation with 
multiplicative threshold defined by (6.53). I t  admits a (simpler) representation in 
model (DlO), using (6.46) as a definition of pi and defining G by: 

Since the relation is complete, it also admits a representation in model (07) .  
For more information about TACTIC, see also sections 5.2.1.4 and 5.2.1.4; note 

that definitions (6.52) and (6.53) both reduce to that of weighted simple majority 
(see section 6.3.5.2) when y = 0 and p = 1 respectively. 

Table 6.3 provides a summary of the main models applicable to preferences that 
distinguish no more than three classes of differences of preference on each dimen- 
sion. 

Aggregation rule General model Special models 
Weighted simple majority * ( D l l )  ( D l l )  + additive 

(see 6.3.5.2) 
Weighted qualified majority * (Dl01 ( 0 8 )  + additive 

(see 6.3.5.3) 
Lexicographic (see 6.3.5.4) (011) ( D l l )  + additive 

Weighted majority with ( 0 7 )  (D10) + additive 
add. threshold (see 6.3.5.5) (with constant: eq. (6.52)) 

Weighted majority with (07)  (D10) + 1' lnear 
mult. threshold (see 6.3.5.5) (eq. (6.56)) 

Table 6.3: Models distinguishing no more than three classes of differences of pref- 
erences. 

6.3.6 Examples of models using vetoes 

Vetoes could be introduced in all the examples dealt with in the previous section. 
We shall only consider the case of qualified weighted majority relations (see section 
6.3.5.3) with vetoes (the relations that are the basic ingredients of the ELECTRE 
I and I1 methods) and of weighted majority relations with thresholds (see section 
6.3.5.5) and vetoes (these relations are fundamental in TACTIC). This section 
responds to section 5.4.6 of chapter 5 ;  we use the notations introduced there. 

* Also with semiordered a priori preferences, see remark 6.3.4. 
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The intuition one can have about a veto is the following. Consider an alter- 
native x and a criterion i on which the level of the performance of x ,  xi, is much 
worse than the level yi of another alternative y. A veto of y on x on criterion i 
consists in rejecting the possibility that x be globally preferred to y, irrespective 
of the performances of x and y on the criteria other than i. In other words, a 
veto on criterion i forbids the declaration that x k y if (xi, yi) is a "negative" 
difference that is "large enough in absolute value", with respect to relation k; or 
k:* (in the latter case, this is equivalent to saying that (yi, xi) is a large enough 
"positive" difference). Of course, if the difference (xi, yi) leads to a veto forbid- 
ding the declaration that x preferred to y, it is certainly because we do not have 
xi Si yi, but, instead, yi Pi xi, and "even more". We thus define the veto relation 
& as a subset of relation Pi consisting of all pairs (yi; xi) such that the presence 
of the reverse pair (xi, yi) for two alternatives x and y prohibits x 2 y; V,  is an 
asymmetric relation. 

Suppose that, for all i, Xi is a subset of the set of real numbers ( X  can be seen, 
in a sense, as a performance table, as in section 5.4) and that Si is a semiorder 
determined by the following condition: 

where ri,l is a non-negative threshold. This is similar to the situation described 
in section 6.3.5.3 using the example of the cost (except that the cost was to be 
minimised; here we prefer the larger values): the values xi and yi are indifferent 
(xi Ii yi) if they differ by less than the threshold r i , ~ ;  xi is strictly preferred to yi 
(xi Pi yi) if it surpasses yi by at  least the value of the threshold. In such a case, 
a convenient way of defining the veto relation V,,  a subset of Pi, is by means of 
another threshold ri,z that is larger than ri,l We say that the pair (yi, xi) belongs 
to the veto relation & if the following condition is satisfied: 

Clearly, the veto relation defined above is included in Pi. Assume indeed that 
yi V,  xi; since T ~ J  is larger than ri,l, we have yi > xi + ri,z > xi + ri,l, yielding 
yi Pi xi. We call r ~ ,  a veto threshold; the relation & defined by (6.62) is a 
strict semiorder, i.e. the asymmetric part of a semiorder; it is contained in Pi 
that is also a strict semiorder, namely, the asymmetric part of the semiorder Si. 
In such a situation, when comparing an arbitrary level xi to a fixed level yi, we 
can distinguish four relative positions of xi with respect to yi that are of interest. 
These four zones are shown on figure 6.7; they correspond to relations described 
above, namely: 

If xi belongs to: then: 
Zone I xi Pi ~i 

Zone I1 xi Ii yi 
Zone I11 yi Pi xi and Not[ yi V ,  xi ]  
Zone IV yi Pi xi and yi & xi 
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Figure 6.7: Relative positions of an arbitrary level xi with respect to a fixed level 
Yi . 

6.3.6.1 Weighted qualified majority with veto 

Starting with both an a priori preference relation Si (a semiorder) and an a priori 
veto relation V ,  (a strict semiorder included in Pi) on each set Xi, we can define 
a global preference relation of the ELECTRE I type as follows: 

(6.63) 
there is no dimension i on which yi Vi xi; 

in this expression, (wl, . . . , w,) denotes a vector of normalised weights and S, a 
majority threshold that belongs to the [i, 11 interval. The global preference of the 
ELECTRE I type is thus a weighted qualified majority relation (in which the a 
priori preferences may be semiorders instead of weak orders) that is "broken" as 
soon as there is a veto on any single criterion, i.e, as soon as the performance of 
an alternative on some dimension is sufficiently low in comparison to the other. 

It  is not difficult to provide a representation of such a preference relation 2 in 
model ( 0 8 ) .  Let: 

wi if xi Si yi 
~ i ( x i ,  ~ i )  = 0 if yi Pi xi but Not[ yi Vl, xi ] (6.64) 

-M if y i&x i ,  

where M is a large positive constant and 

If no veto occurs in comparing x and y, then G([pi(xi, yi)]) = Ci:+,S,yi wi - S, 
which is the same representation as for the weighted qualified majority without 
veto (section 6.3.5.3). Otherwise, if on at least one criterion j ,  one has yj V, xj ,  
then G([pi(xi, yi)]) < 0, regardless of x-j and y-j. The effect of the constant M 
in the definition of pi is to make it impossible for G to reach 0 whenever any of 
the terms pi is equal to -M; it is sufficient that M be larger than 1 to ensure this 
effect since the sum of all weights wi is equal to 1 and cannot balance a penalty 
(represented by M )  larger than 1. 
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The above-mentioned representation of an ELECTRE I type of preference re- 
lation in model (D8) is regular since pi, as defined by (6.64)) is a numerical rep- 
resentation of the weak order ?; on the differences of preference. This order 
distinguishes three equivalence classes of differences of preference, namely those 
corresponding respectively to the cases where xi Si yi, yi Pi xi but Not[yi V ,  xi ]  
and yi V,  xi. 

The representation given above is probably the most natural and intuitive. 
Since the set of relations that can be described by (6.63) contains the weighted 
qualified majority relations, it is clear from section 6.3.5.3 that one cannot expect 
that weighted qualified majority relations with veto admit a representation in 
model ( 0 7 )  or (Dl l ) .  Nevertheless, they admit a representation in model (D6) 
and in its strictly increasing yet equivalent version (D10). For a representation in 
model (D6), we may choose a numerical representation of the weak order ?:* for 
pi, which determines five equivalence classes of differences of preference, namely: 

M if xi V,  yi 
wi if xi Pi yi and Not[xi V ,  yi] 

pi(xi, ~ i )  = 0 if xi Ii yi (6.66) 
-wi if yi Pi xi and Not[ yi x i ]  
-M if y i l$xi ,  

where M is a positive constant larger than wi. The function G can be defined by 

Ci:z.Siyi min(pi(xi, yi), wi) - 6 if, for all j E N, Not[yj l$ xj  ] 
if, for some j E N, yj Vj xj.  

(6.67) 

Using a representation of &:* for pi forces us to define G in a tricky way since, when 
xi Pi yi, G should not make any distinction between the sub-cases Not[xi V ,  yi] 
and xi l$ yi; the fact that the pair of levels (yi,xi) is in the veto relation V, only 
intervenes when determining whether x is preferred to y (x ? y) and not when 
determining whether y is preferred to x. This leads us to write minbi(xi, yi), wi] 
instead of simply writing pi(xi, yi) in the definition of G. In this way, the value M 
of pi is truncated to wi by function G. With this definition, G is nondecreasing in 
all its arguments pi. Note that the value -M never appears in the sum since the 
latter only adds up the weights of the criteria on which xi is at  least as good as 
yi. Thus the only constraint on M is to be larger than the maximal value w* of 
the weights wi is ; this has to be imposed in order to obtain, with pi, a numerical 
representation of the weak order ?;*. 

A strictly increasing representation (in model (D10)) is obtained using the 
usual construction, for instance equation (6.48). 

6.3.6.2 Weighted relative major i ty  wi th  additive threshold a n d  veto 

A veto relation can be defined and used as above to discard preferences in each of 
the models of majority described in section 6.3.5. We consider a weighted majority 
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relation with additive threshold described by equation (6.52) as a further example. 
We can "add" a veto in the same way as in (6.63), defining k by: 

x k y i f f  CiEN:ziSiyi Wi 2 CjEiV:yjsj+j wj - Y and 
there is no dimension i on which yi & xi. 

(6.68) 

We easily obtain a natural representation of such a relation in model (D9) by 
modifying the definition (6.40) of pi in a weighted simple majority into: 

0 if xi Ii yi 
-wi if yi Pi xi and Not [ yi V,  xi ] 

(6.69) 

-M if yi & xi. 

and defining G by 

the positive constant M has to be chosen large enough to make G negative as soon 
as there is a veto on any one criterion (e.g. M larger than 1 + y). To obtain a 
representation in model (D6), it is sufficient to define pi by (6.66) and G using the 
same trick as in (6.67), yielding: 

Here too, terms equal to +M should not show up in the sum; hence pi has to be 
truncated in order not to go above the value of weight wi; in contrast to (6.67), 
the value -M plays its role, when there is a veto, by driving G to the negative 
numbers. 

A representation in model (D10) can also be obtained using the standard con- 
struction. In general, the preference will not be a complete relation and hence will 
not fit into models ( 0 7 )  or ( D l l ) .  

Remark 6.3.7 
"Adding" vetoes to a previously defined preference k, as was done in the last two 
subsections can have two kinds of effects on a pair of alternatives x and y. If we 
initially had x + y, a veto can break the strict preference, yielding incomparability 
between x and y; if this occurs when the initial preference was a complete relation, 
the latter property will be lost. Another case is when x and y are indifferent with 
respect to the initial preference (x N y); in this situation, vetoes may either make 
x and y incomparable by breaking both the preference x k y and the preference 
y 2 x, or they may break only one, say x 2 y; in this case, the introduction of 
vetoes turns indifference into strict preference. Vetoes can only delete preference 
arcs; they never create new ones. 

Remark 6.3.8 (Adding vetoes to asymmetric preferences) 
In the TACTIC method (Vansnick, 1986a), the preference is defined as an asym- 
metric relation t; in the absence of veto, it is defined by formula (6.57), in case 
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of an additive threshold, or by (6.58), in case of a multiplicative threshold. We 
consider only the additive threshold case here. 

Remark 6.3.5 has shown that, starting with an irreflexive relation + defined 
by (6.57), we obtain a reflexive relation k, using x 2 y if and only if Not[y + x ]  ; 
this relation, the dual of +, is a weighted majority relation with additive threshold 
in the sense of (6.52). 

The original definition of the preference relation in the TACTIC method in- 
volves a veto; it is defined as 

CiEN:z iP iy i  wi > C j E N : y j ~ j z j  Wj + 7 
(6.72) 

there is no dimension i on which yi K xi, 

with &, a strict semiorder included in Pi; remember that yi V1, xi is interpreted as 
"yi is much better than xi". 

Using remark 6.3.5, the dual & of the relation just defined is such that: 

CiE~:xi&y,  Wi 2 C ~ E N : ~ ~ S ~ ~ ~  Wj - 7 
(6.73) 

there is a dimension i on which xi Vi yi. 

Although the first condition alone determines a weighted majority relation with 
additive threshold (as established in remark 6.3.5), the relation & defined by (6.73) 
is not a weighted majority relation with additive threshold and veto; it could be 
called instead a weighted majority relation with additive threshold and bonus, since 
the veto condition, which removes arcs from +, adds arcs to its dual as soon as x 
is "much better" than y on any single dimension i (according to the interpretation 
of K) .  We emphasise that the dual of a relation with veto is not a relation with 
veto, but a relation with bonus. The intuition behind this type of preference is 
that x is declared preferred to y as soon as there is a "large" preference difference 
in favour of x on any dimension. 

6.3.7 Other examples of preferences that distinguish five 
classes of differences 

The relations defined by using vetoes described in the previous section, make 
up a very particular subclass of relations for which five classes of differences of 
preference can be distinguished. Using vetoes, the lowest class of the relation kt* 
on differences of preference intervenes in a particular way that could be qualified 
as "conjunctive and negative"; we declare that x is preferred to y if some condition 
is fulfilled (involving neither the highest nor the lowest class of k f * ,  but just the 
fact that the pairs (xi, yi) are either above or below the "null" level (xi, xi)) and 
for each criterion, a requirement of "non veto" is satisfied. It is obviously possible 
to conceive interventions of the highest and lowest classes of &f* that are much 
less radical in the determination of a global preference. To illustrate this, we 
briefly present an example of a preference k determined by a relation k5* with 
five equivalence classes, not using vetoes. 
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The thresholds ri,1 and r i ,2  that we introduced in section 6.3.6 (formulas (6.61) 
and (6.62)) can be used with totally different meanings, for instance, with the se- 
mantic of the (P, Q, I )  preference structure introduced in chapter 3, section 3.7.1.1 
(we consider a very special case here, in which the relations can be defined using 
two constant thresholds). Let us recall the interpretation of the three binary re- 
lations that appear in this structure: P represents clear-cut strict preference (an 
asymmetric relation); I is indifference (a symmetric relation) and Q (an asymmet- 
ric relation) represents weak preference, i.e. a state of hesitation between strict 
preference (P) and indifference (I);  this system of relations is assumed to be com- 
plete, i.e. any pair of objects (x, y) either belongs to one of the three relations or 
the opposite pair (y, x) belongs to P or Q. Suppose that, for all i, Xi is the set 
of real numbers. A convenient way of determining a (P, Q, I) structure (Pi, Qi, Ii) 
on Xi is by means of a pair of thresholds ri,l, r i ,2  (with 0 5 ri,l < riV2) that we 
use to delimit the categories of pairs of levels (xi, yi) in the following way: 

Pi: level xi is strictly preferred to level yi: 

Qi: level xi is weakly preferred to level yi: 

Ii: level xi is indifferent to level yi: 

or, in other words, if the absolute value of the difference of xi and yi is 
smaller than ri,l (lxi - yil < r i , ~ ) ;  

symmetrically, if (xi, yi) does not belong to any of the relations Pi, Qi or Ii, then 
we have: 

The above-described situation is illustrated in figure 6.8; it corresponds to a 
particular case of a (P, Q, I )  interval order (Tsoukib and Vincke, 2003) but also of 
a pseudo-order, a structure mentioned in section 3.7.1.3 (see also Roy and Vincke, 
1987); this pseudo-order is particular since it admits a representation with two 
constant thresholds. Using such a definition, we thus build exactly five classes of 
differences of preference on each set Xi and we may decide to combine them to 
obtain a global preference through a model based on traces on differences ( (Dl)  
to (Dl l ) ) .  To make it more concrete, let the functions pi be defined as follows: 

We use the term "level" in a rather improper way here since-as we recall-there is no a 
priori ordering on the sets Xi; in this context, the term "level" designates an element of a set, 
the set of symbols used to characterise the alternatives on dimension a ,  i.e. the co-domain of the 
scale associated with i (see section 2.3.3). 
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Figure 6.8: Relative positions of an arbitrary level xi with respect to a fixed level 
yi in a (P, Q, I) preference structure with two thresholds. 

and let the pi's be additively aggregated: 

Observing a preference of this type would reveal in particular that, in comparing 
alternatives x and y belonging to X, 

0 any difference (xi, yi) belonging to category Qi can be exactly compensated 
by a difference (yj, x j )  belonging to category Qj  on another dimension j ;  for 
instance, let x and y be two alternatives such that xi Qi yi and yj Qj  x j  
while, on the other dimensions k # i, j, xk = yk; in such a case x and y 
cannot be distinguished; they are not only indifferent (x - y) but they also 
compare to all third-party alternatives in the same manner: x k z iff y 2 z 
and z k x  iff zk y. 

0 any difference (xi, yi) belonging to relation Pi can be exactly compensated 
by a difference (yj,xj) such that yj Pj x j  on another dimension j or by 
differences yj Qj x j  and (yk Qk xk) on two dimensions j and k different 
from i; for instance, let x and y be two alternatives such that (xi, yi) belongs 
to Pi, (yj, xj) belongs to Qj  and (yk, xk) belongs to Qk while, on the other 
dimensions 1 # i, j, k, xl = yl; in such a case x and y should be declared 
indifferent and compare in the same manner with respect to all third-party 
alternatives: x z iff y k z and z k  x iff z 2 y. 

Clearly, the above-defined model belongs to the class (D l l ) .  

Remark 6.3.9 
There are of course many other ways of defining models of preference that distin- 
guish five classes of differences. The preference we have just defined belongs to 
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Fishburn's model (6.27) since it can be represented combining the pi's in an ad- 
ditive manner. It also belongs to Tversky's additive difference model (6.26) since 
pi(xi, yi) can be obtained by recoding the arithmetic difference xi - yi by means 
of a function Qi: 

This is not the most general case: 

for an observed preference that admits a representation in model ( D l l ) ,  it 
may be impossible to find pi's such that the preference can be represented 
by means of a sum of these pi's as in model (6.27); 

the possibility or impossibility of decomposing the pi functions using an 
order on the sets Xi (the latter being possibly represented by partial value 
functions ui on Xi) will be examined in section 6.4; a special case is Tversky's 
model in which pi is a function of the difference ui(xi) - ui(yi). 

6.3.8 Examples of preferences that distinguish a large vari- 
ety of differences 

Contrary to the examples discussed so far in which the relations k,7 or k f *  dis- 
tinguish a small number of classes of preference differences (typically three or five 
classes for k;* in the examples given above), there are very common cases where 
there is a large number of distinct classes, possibly an infinite number of them. 

The most common model, the additive value model, usually belongs to the class 
of models in which k f *  makes subtle distinctions between differences of preferences. 
Indeed its definition, equation (6.1), p. 238, can be rewritten as follows: 

The difference ui(xi) -ui(yi) can often be interpreted as a representation pi(xi, yi) 
of k:*; the preference then satisfies model ( D l l ) .  Let us take a simple example; 
assume that Xi = R, that the number of dimensions n is equal to 2 and that 
ui(xi) = xi for i = 1,2. The preference is defined by: 

In such a case, p1 (xl,  yl) = xl -yl is a numerical representation of the relation k;* 
on the differences of preference on the first dimension X1 (and similarly for x2 - y2 
on X2). The pair (xl,  yl) corresponds to an a t  least as large difference of preference 
as (z1,wl) iff x1 - y1 2 z1 - w1; indeed, if (zl,a2) k (wl, b2) for some "levels" 
az, b2 in X2, then substituting (21, wl) by (xl,  yl) results in (xl,  a2) k (yl, b2) 
and, conversely, if (yl, c2) k (XI, dn) for some c2, d2 in X2, then (wl, c2) 2 (21, d2) 
(by definition of k;*, see (6.29) and (6.28)). We furthermore know that both 
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preferences obtained after these substitutions are strict as soon as (xl ,  yl) +T* 
(21, wl), i.e, as soon as x l  - yl > zl - w1. This strict responsiveness property of 
2 is characteristic of model ( D l l ) ,  in which indifference is "thin" as was already 
mentioned a t  the end of section 6.3.5.3. Indeed if (zl,a2) (wl, b ~ ) ,  we must 
have: 

and substituting (zl ,  wl) by (XI, yl) results in (XI - yl) + (a2 - b2) > 0 as soon as 
X l  - y1 > z1 - W l .  

Thus, any increase or decrease of pi(xi, yi) breaks indifference. This is also the 
case with the additive difference model (6.26) (with pi(xi, yi) = @i(ui(xi) - ~ i ( y i ) )  
and the nontransitive additive model (6.27). 

Remark 6.3.10 (From ordinal to cardinal) 
The framework based on marginal traces on differences that we studied in this 
section 6.3 is general enough to  encompass both "noncompensatory" and "com- 
pensatory" preferences, for instance, preferences based on a majority or a lexi- 
cographic rule (three classes of differences of preference) and those represented 
in an additive manner (that can potentially distinguish an unbounded number 
of differences). A weighted qualified majority rule, for instance, can be said to 
be ordinal or purely non-compensatory; from the representation of the procedure 
(equations (6.43-6.44)), one can see that the full weight wi associated to a dimen- 
sion is credited to an alternative x, as compared to an alternative y, as soon as the 
preference difference pi(xi, yi) is in favour of x on that dimension. In this model, 
the preference difference pi(xi, yi) is positive as soon as xi is preferred to yi, w.r.t. 
some a priori preference relation Si on Xi, hence the denomination of "ordinal". 

Contrarily, in the additive value model (equation (6.81)), a large difference 
of preference on one dimension can be compensated by a conjunction of small 
differences of opposite sign on other dimensions: the procedure is compensatory 
and i t  uses the full power of the numbers pi in arithmetic operations such as sums 
and differences; we call it "cardinal". 

Between these two extremes, the other procedures can be sorted in the in- 
creasing order of the number of classes of difference~ of preference they allow to 
distinguish. This can be seen as a picture of a transition from "ordinal" to "car- 
dinal" or, alternatively, from noncompensatory to  compensatory procedures. Of 
course, the type of model is determined by the richness of the preferential infor- 
mation available. 

The family of models based on marginal traces on differences encompasses 
0 aggregation procedures ranging from those using purely ordinal information 
Q (like majority rules) to those relying on cardinal information (like the additive 

value model). Their description in a common framework enables to  break from '' a vision of pure opposition between ordinal and cardinal procedures; it allows 8 us to view the existing aggregation procedures more as a continuum. 
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6.4 Models using traces on differences and mar- 
ginal traces 

In many of the examples examined in section 6.3.5, the functions pi are represen- 
tations of 25 or kf* and they can be expressed in terms of functions ui defined on 
Xi. This is, in particular, the case with the additive value model discussed in the 
previous subsection: pi(xi, yi) = ui(xi) - ui(yi). In this section, we examine the 
possibility of further decomposing the model on differences introduced in section 
6.3. 

Consider any relation 2 on X.  As we have seen in section 6.3.3, any relation 
admits a representation in model (DO) (equation (0)): 

It is always possible to further decompose each pi using a real-valued function ui 
defined on Xi. The latter, in this trivial model, is just a numeric label assigned to 
each element of Xi; all elements that are not distinguished by the marginal trace 
>-' may receive the same label or, in other words, the fact that ui(xi) = ui(yi) 
N Z  

implies that xi N: yi is the only requirement imposed on ui. We may then 
unambiguously define the function of two variables pi on ui(Xi) x ui(Xi) by 

We thus have the general model using marginal traces and traces on differences, 
that we label (LODO): 

Of course this definition, which makes sense in all cases, becomes interest- 
ing and useful when cpi enjoys some properties such as non-decreasingness in its 
first variable and non-increasingness in its second variable; such a property brings 
it closer to an algebraic difference (and thus closer to Tversky's model (6.26)). 
Combining the variants of model (DO) (studied in table 6.2) with monotonicity 
properties of cpi may indeed lead to interesting models. 

A model in which the term pi(xi, yi) is substituted with cpi(ui(xi),ui(yi)) cor- 
responds to each of the 12 models (DO) to ( D l l )  studied in section 6.3. In order 
to bring the function pi "closer" to a subtraction, we envisage two variants of each 
of these models. In the first one, we impose that cpi be nondecreasing in its first 
argument and nonincreasing in its second argument. This defines models (LIDO) 
to (LlD11). In the other variant, we impose that cpi be increasing in its first 
argument and decreasing in its second argument. This defines models (L2DO) to 
(L2Dll).  

An interesting feature is that the axioms to be added to those shown in table 
6.2 to characterise the newly defined models, are precisely axioms AC1, AC2, AC3 
and AC4 that were used in the models based on marginal traces. The "RC" and 
the "AC" axioms do not interact: they are independent (see Bouyssou and Pirlot, 
2004a). 
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Table 6.4: Models (LIDO) to (LlD11): Definition and characterisation. 

Models Definition Conditions 

(LIDO) (LODO) with p i ( / ,  \) 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(LlD1)  (LIDO) with pi(u(xi) ,ui(xi))  = 0 

$ ind. 
(LlD2)  (LlD1) with pi skew symmetric 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(L1 D3) (LlD2) with G odd cpl., ind. 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(L1 D4) (LIDO) with G ( / )  

$ RC1, AC123 
(LlD8)  (LIDO) with G ( / / )  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(LlD5)  (LlD1) with G ( / )  

$ RC1, ind., AC123 
(LlD9)  (LlD1) with G(/"/") 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(LlD6)  (LlD2) with G ( / )  

$ RC12, AC123 
(LlD10) (LlD2)  with G(/"/") 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(LlD7) (LlD3) with G ( / )  cpl., RC12, AC123 

(LlD11) (LlD3)  with G ( m )  cpl., RC3, AC123 

/*/* means increasing, / means nondecreasing, \, means nonincreasing 
cpl. means completeness, ind. means independence 

The definition and characterisation of the various models "(Ll - Dj)"  (for 
j = 0 to 11) that  we consider are provided in table 6.4. The table only describes 
models (LIDO) to (LlD11). The models where cpi is assumed to be increasing in 
its first argument and decreasing in its second, i.e. models (L2DO) to (L2Dl l ) ,  
are equivalent to  the corresponding (LlDy)  model with the exception of the last 
one: (L2Dll )  is not equivalent to (LlD11). The characterisation of this model 
can be found in table 6.5. 

6.4.1 Relationship between marginal traces and traces on 
differences 

As suggested by the axioms used to  characterise the variants of model (LODO) 
(see tables 6.4 and 6.5), these models use both marginal traces &: (introduced 
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Table 6.5: Characterisation of model (L2Dll ) .  

Model Definition Conditions 

x 2 Y G([vi(ui(xi), ui(yi))]) L 0, 
(L2Dll) with pi(//, \\) and skew symmetric, cpl., RC3, AC4 

G odd and increasing 

// means increasing, \\ means decreasing, cpl. means completeness 

in section 6.2.5, formulas (6.17)) and traces on differences k; and k;* (formulas 
(6.28) and (6.29)). I t  is quite important and also quite simple to  understand how 
those traces are related: in fact, k: is not only the marginal trace left by the 
relation 2 on Xi but, a t  the same time, it is the marginal trace left by kf and 
kf* on Xi. Indeed, using the original definitions of the involved relations, we can 
easily verify that we have: 

xi k: yi iff Vzi E Xi, (xi, zi) k; (yi, zi) 
(6.84) 

and Qwi E Xi, (wi, yi) 2; (wi, xi). 

The latter expression implies that ~ 5 s  the marginal trace of both kl and kf*. 
This is true without any assumption on k. When the traces of k are assumed to  
be weak orders, the weak orders k: and k;* react monotonically with respect to  
their traces k' (which are also weak orders). Table 6.4 shows us that for models 
(LlD4) and those more constrained, both 2; and k: are complete relations (since 
RC1 and AC123 hold), hence they are weak orders. For model (LlD6) and more 
constrained ones, we have in addition that k;* is also a weak order. In model 
(LlD4), one may thus take numerical representations of the weak orders 2; for 
the functions pi and these functions factorise as pi (xi, yi) = pi (ui (xi), ui (yi)) ; 
the functions ui may furthermore be taken to  be numerical representations of the 
weak orders 2:; G can be assumed to  be nondecreasing in the pi's. In model 
(L1 D6), we may choose functions pi that represent the weak orders k;*, the rest 
of the properties of model (LlD4) remaining true. These facts have important 
consequences for the elicitation of such models as we shall see in section 6.4.2. 

Another feature shown in tables 6.4 and 6.5 is that the strict monotonicity of 
G or the pi's is not linked to  observable characteristics of preference 2, unless we 
consider the more constrained of the models, i.e. models (LlD11) and (L2Dll) .  
In the former model, G strictly responds to  any improvement or depreciation of a 
difference of preference on any dimension i; in the latter model, not only does G 
react in that way, but it is also the case for pi, for all i: pi strictly responds to any 
improvement or depreciation of any of the compared alternatives on dimension 
i. The practical consequences of this feature of the models are however relatively 
limited: in these models, the indifference is "thin", with, as we shall see, slightly 
different behaviours depending on which of the two models the preference belongs 
to. The concept of preference relations with thin indifference has been already 
discussed, on p. 288, as a consequence of RC3 (for a preference that is a complete 
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relation). Examples of preferences with thin indifference have been presented on 
p. 302. Models (LlD11) and (L2Dll)  both satisfy RC3 and are complete; there is 
nothing specific regarding thinness of indifference, with model (L lDl l ) ,  contrary 
to model (L2Dll) .  Indeed, suppose that x and y are tied, i.e. x y; 

in model ( L l D l l ) ,  indifference is broken as soon as any difference of prefer- 
ence (xi, yi) is substituted with a non-equivalent (w.r.t. k t * )  one; 

in model (L2Dll)  indifference is also broken when any level xi or yi is 
changed into a non-equivalent (w.r.t. k f )  one. 

In the latter model, variations of levels produce variations in the traces on differ- 
ences which in turn can break ties. 

6.4.2 Eliciting models using both marginal traces and traces 
on differences 

6.4.2.1 Procedure 

The strategy suggested by the models using traces on differences for eliciting k can 
be further refined with these models. In the models using traces on differences, it 
is natural, as emphasised in remark 6.3.1, to  base the elicitation of the preference 
on the elicitation of the relation on preference differences (2; or k t*) .  Here, we 
may further wish to  use the possible decomposition of the relation on preference 
differences on each dimension i as a function of traces on the set Xi. 

Due to  the existence of the ordering k: on Xi, we may represent all pairs 
(xi, yi) (where xi, yi belong to  Xi) in a system of orthogonal axes; on both axes, 
we rank the elements of Xi in increasing order w.r.t. k f ,  e.g. by assigning the 
value ui(xi) to xi (where ui(xi) is chosen to  be a numerical representation of 2:). 
Each pair (xi, yi) can thus be represented in Cartesian coordinates by the point 
(ui(xi),ui(yi)). We will be interested in the indifference curves of kt (and ?a*), 
i.e. the equivalence classes of this relation. 

Let us consider two simple examples of relations on preference differences on 
dimension i. In the first one, the relation kt* (or k t )  responds strictly to the 
marginal trace 2;; in the second, the response is not necessarily strict. 

Example 6.5 (Strict responsiveness) 
Let Xi = {1,2,3,4,5) and suppose that 2,': is the usual order on Xi. Let 
pi(xi, yi) = ~ i ( u i ( x i ) ,  ui(yi)) be defined by 

and suppose that pi is a numerical representation of the weak order kt*. In such a 
case, the equations of the indifference curves of kt* are xi - yi = k ,  for all possible 
constants k .  These "curves" are represented in figure 6.9. One observes that they 
define increasing functions mapping Xi into Xi. Indeed, for each equivalence class 
of kt*, to each xi corresponds a t  most one yi such that (xi, yi) belongs to that 
class (for instance, in the class pi = 2, to  xi = 3 corresponds yi = 1, but no yi 
can be associated to xi = 1). Moreover, if (xi, yi) belongs to an indifference curve, 
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and you increment xi, positioning yourself at zi +: xi, then if there is a point on 
the indifference curve corresponding to zi, it must be a level wi above yi and in 
any case, (zi,yi) belongs to an indifference curve that is below (w.r.t. k:*) that 
passing through (xi, yi) . 

The case in which k f *  is a weak order may be simpler compared to  the case in 
which only k; is complete. Indeed, k f *  is a reversible relation and thus about 
"half of the relation" has to  be described since, as is the case in the example 
given above, when we know that (xi, yi) and (zi, wi) belong to  the same indiffer- 
ence curve, then we also know that (yi, xi) and (wi, zi) belong to  the same curve 
(usually another one). The diagonal of XP, that is the set of all pairs (xi, xi), is 
the only indifference curve that contains both (xi, yi) and (yi, xi). In such a case, 

Figure 6.9: The indifference curves of pi(xi, yi) = X i  - yi. 

an elicitation procedure of 2; based on a preliminary elicitation of k:, could be 
designed as follows: start from any pair (xi, yi) and try to  list the pairs in its 
equivalence class by gradually incrementing the value of xi; start with the value 
zi just above xi, and ask which value wi (there is a t  most one such value) is such 
that (zi, wi) is indifferent to  (xi, yi). Then go ahead incrementing zi. When the 
procedure finishes, start again a t  xi and decrement it. Here is a numerical illus- 
tration on the example given above. We ask for indifference judgements based on 
the relation ~ f .  Let us start for instance with (xi, yi) = (3,l) .  Asking which pair 
of type (4, wi) is indifferent to (3, I) ,  we obtain wi = 2; then we find that (5,3) is 
indifferent to (4,2) (and by transitivity, to (3,l)) .  Decrementing xi starting again 
downwards from (3, I ) ,  we obtain no other pair since no pair (2, wi) is indifferent 
to  (3 , l )  if wi is only allowed to  take values in {1,2,3,4,5). To describe the other 
curves, just remove the pairs that have already been assigned to a curve and start 
the same procedure from one of the unassigned pairs. 0 

In case of ties in the relation k:, the remark in the footnote on p. 281 also applies here 
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Example 6.6 (Non strict responsiveness) 
Our second example is built on the set X, = {1,2,3,4) (with k:, the natural 
order) by defining the representation pi of k: as follows: 

and pi (xi, yi) = -pi(yi, xi). Here the indifference "curves" should be called indif- 
ference strips; as the indifference curves in example 6.5, they are nondccrcasing 
in some sense. The indifference strips are shown in figure 6.10. In contrast to 

Figure 6.10: The indifference strips in example 6.6. 

example 6.5, the equivalence classes of kf* are not functions: for any xi, there 
may be several pairs (x,, yi), (xi, zi) that are indifferent, while y, is not equal to 
zi; for all xi; there is an interval (possibly empty) of values such that all pairs 
(xi, yi), with yi in the interval, are indifferent. The lower and upper boundaries of 
these intervals form a nondecreasing function of xi. For example, in figure 6.10, 
the boundaries of the class containing pair (3,2) are: 

lower boundary: (2, I ) ,  (3, I ) ,  (4,2); 

upper boundary: (2, I ) ,  (3,2),  (4,3). 

Thus, in this example, the interval for xi = 1 is empty, that for xi = 2 contains a 
single pair and the intervals for xi = 3 and xi = 4 both include two elements. 

Based on the preliminary knowledge of k:, an elicitation procedure of k:* 
could run as follows: start with an arbitrary pair, say (3,2). Ask which pairs (3, w,) 
are indifferent to (3,2); we then obtain (3,1) and (3,2). Afterwards, increment 
x, = 3, asking for pairs of type (4,wi) indifferent to (3,2);  we obtain (4,2) and 
(4,3). We start again from (3,2),  decrementing x, = 3 and asking for pairs (2, wi) 
indifferent to (3,2);  we obtain the single wi = 1. Finally, one asks for pairs (1, wi) 
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indifferent to (2 , l )  and we don't get any value wi. The indifference class containing 
(3,2) is now completely known. We remove the pairs that belong to it from further 
consideration and start the same procedure from an arbitrary pair that has not 
yet been assigned to an indifference class. If k f *  is reversible as in this example, 
it suffices to do half of the job, as in example 6.5. 0 

6.4.2.2 Peculiarities of t h e  elicitation of models (L - D) 

To build a representation of a preference 2 in one of the models from (LlD5) 
and those more constrained, we might, in theory, apply the strategy outlined in 
section 6.3.4. When both marginal traces and traces on differences are weak orders 
(i.e. in models from (LlD5) and those more constrained), we may exploit what 
precedes to ease the elicitation of the traces on differences using marginal traces. 
In principle, the more the model is constrained the lower the complexity of the 
elicitation; in particular: 

in models where pi is skew-symmetric, we may assign the value 0 to pi(xi, xi), 
for all xi and elicit either the "positive" or the "negative" part of pi (exploit- 
ing the fact that pi(xi, yi) = -pi(yi, xi)); 

when pi(xi, yi) = cpi(ui(xi), ui(yi)) is increasing in its first argument and 
decreasing in its second one, the indifference curves are functions and their 
elicitation might possibly be considered to be easier (compared to the de- 
scription of "strips of indifference" in the non-strictly monotone case). 

The latter advantage might however be questioned for two reasons. First, it is not 
that clear, that eliciting indifference strips is more complex in terms of numbers of 
mental operations, than eliciting indifference functions: we lack a full proper theory 
on the complexity of eliciting empirical structures (in contrast to the complexity 
of logical decision problems, which is well-studied (Garey and Johnson, 1979)). 
The second objection is more serious. Consider all models (L - D )  in which kf 
and k f  (or possibly k f * )  are weak orders. In the models in which pi(xi, yi) = 
pi  (ui (xi), ui(yi)) is non-decreasing in its first argument and non-increasing in its 
second argument, it is always possible (as long as Xi is a finite or denumerable 
set, which we assume) to choose a numerical representation of the weak order 
kf (or k f * )  on differences of preferences for pi and a numerical representation 
of the marginal trace kf for ui. This is not always the case if we impose that 
cpi(ui(xi), ui(yi)) is increasing in its first argument and decreasing in its second 
argument. We shall not enter into the-rather technical-discussion of this issue 
that we call the regularity of the representation elsewhere; the interested reader 
is referred to Bouyssou and Pirlot (2004a, section 5.4.2) for more detail. The 
disadvantage of a non-regular representation is obvious: if pi is not a numerical 
representation of 2; (or k f*) ,  an elicitation procedure as the one outlined for 
example 6.5 loses its justification. 
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6.4.3 Models distinguishing no more than five classes of dif- 
ferences revisited 

We start with the weighted majority model then address more general models in 
which kf or kf* have a t  most three classes of equivalence. 

6.4.3.1 The weighted majority model revisited 

In the weighted (simple) majority model (see section 6.3.5.2), we declare that x 2 y 
if and only if the sum of the weights of the dimensions saying that x is a t  least as 
good as y is not less than the corresponding sum for dimensions stating that y is a t  
least as good as x. The numerical representation of in model ( D l l )  described 
by equations (6.40) and (6.41) can easily be transformed into a representation in 
model (LlD11); it is sufficient to define cpi by 

where ui is any numerical representation of the weak order Si on Xi (see section 
6.3.5.2). With this definition, the value of the function pi(ui(xi),ui(yi)) is the 
same as that of pi(xi, yi) defined by (6.40). The aggregation of the pi's is carried 
on additively as in (6.41), i.e. G([vi]) = xiEN pi. 

One can immediately see that in the above representation, cpi is not strictly 
monotonic in its arguments. Indeed, as soon as we have, for instance, ui(xi) > 
ui(yi), cpi(ui(xi),ui(yi)) is equal to the weight wi and its value does not respond 
to  any further increase in its first argument. Similarly, the value of cpi does not 
increase when decreasing the value of its second argument. This shows that (6.87) 
does not define a representation of majoritarian preferences in the strictly respon- 
sive model (L2Dll) .  

Is there another way of building a representation of such a preference that would 
yield a representation in model (L2Dll)  8? The answer is, in general, negative for 
the following reason: suppose that x is indifferent to  y while uj(xj)  > uj(yj) 
for some j; we have G([cpi(ui(xi),ui(yi))]) = 0 to  represent the indifference of 
x and y. Assume that there exists zj  with uj(zj) > uj(xj). According to the 
definition of the weighted simple majority rule (6.39), we have (zj ,x_i) y. 
Postulating the existence of a strictly monotonic representation of 2, would lead 
to G ( ~ j ( u j ( z j ) ,  u j ( ~ j ) ) ,  [(~i(ui(xi) ,  u i (~i) ) ] i# j )  > 0, which implies (zj, X-i) * Y, a 
contradiction. 

Remark 6.4.1 (Regularity of the representation) 
Another issue about the representation is related to its regularity. In models 
(LlDi) or (L2Di), regularity is twofold: in equation (LODO), it can or not be that 
cpi(ui(xi),ui(yi)) represents the weak order kf or kf* and it can or not be that 
ui(xi) represents the weak order k t .  The representation is regular if both are 
true, which presupposes a t  least model (LlD4) (in order to  be sure that kf and 

This is the only case of interest since we know that models ( L l D i )  and (L2Di) are equivalent 
for i  = 1 up to  a = 10. So, if there is a representation in ( L l D i ) ,  there is one in (L2Di).  
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k: are both weak orders). I t  is always possible to obtain regular representations 
functions cpi that are monotonic but not strictly monotonic. This is no longer true 
when we want a representation in models (L2Di) for i = 4 to 10 since all pairs 
xi, yi for which xi Pi yi, i.e. for which ui(xi) > ui(yi), are equivalent with respect 
to LT. The existence of regular representations is an advantage from the point 
of view of the elicitation of the preferences, since, as shown in section 6.4.2, one 
may rely upon the traces 25 and 2: to build a numerical representation of the 
preference. 

6.4.3.2 Other models 

In all models studied in sections 6.3.5 and 6.3.6, the relations k? are weak or- 
ders for all i ;  they thus admit a numerical representation that we denote by ui. 
For all these models, as soon as pi is a representation of the weak order kf or 
*** it always makes sense to define cpi by setting pi (ui (xi), ui(yi)) = pi (xi, yi). 
N Z  7 

By doing this, starting from a representation of in model Di  for some i E N, 
one obtains a representation in the corresponding model (LlDi).  For all i # 11, 
this implies that a representation also exists in the corresponding model (L2Di), 
since the latter is equivalent to the former. The picture is not the same for mod- 
els (LlD11) and (L2Dll)  as already observed for weighted majority preferences: 
there is a representation in model (L2Dll)  iff there is one in model (LlD11) and 
indifference is "thin". Regarding the regularity of the representation, as in the 
case of weighted majority, it is seldom possible to guarantee both regularity and 
the strict monotonicity of cpi whilst regularity and (non-strict) monotonicity of cpi 
are perfectly compatible. 

6.5 Models with weakly differentiated preference 
differences 

In section 6.3.5 and subsection 6.4.3.1, we investigated a variety of models in which 
the number of classes of differences of preference is reduced to a t  most three. Can 
one provide a unified framework for discussing and understanding all these variants 
of a majority rule? It  is our aim in this section to briefly describe such a framework. 
All the preferences described in the above-mentioned sections have some right to 
be called concordance relations. The term LLconcordance" was introduced by Roy 
(1968,1971) in the framework of the ELECTRE methods (see also Roy (l996), Roy 
and Bouyssou (1993, sections 5.2 and 5.3) and Roy (1991); Roy and Vanderpooten 
(1996).). I t  specifies an index (the so-called concordance index) that measures the 
strength of the coalition of criteria stating that an alternative x is a t  least as good 
as an alternative y. Here, we use this term in the same spirit for qualifying a 
preference relation that results from the comparison of the strengths of coalitions 
of criteria: we have all preference relations studied in section 6.3.5 in mind9 and 
subsection 6.4.3.1. 

The lexicographic preference described in subsection 6.3.5.4 enters into this framework but 
can be seen as a limit case. 



312 CHAPTER 6. MULTI-DIMENSIONAL PREFERENCE MODELS 

An earlier investigation of preference relations of this type in a conjoint mea- 
surement framework is that of Fishburn (1976) through its definition of noncom- 
pensatory preferences (see also Bouyssou and Vansnick (1986)). More recently, 
Fargier and Perny (2001) (see also Dubois, Fargier, Perny, and Prade, 2001a; 
Dubois et al., 2003 and Dubois, Fargier, and Perny, 2002) have proposed a charac- 
terisation of concordance relations that relies on an axiom inspired from neutral- 
ity and monotonicity conditions used in Social Choice Theory, which strengthens 
Fishburn's noncompensation condition. 

Although it has long been thought that noncompensatory preferences provided 
the adequate framework for the analysis of preferences resulting from ordinal ag- 
gregation methods (i.e. methods in which the only thing that matters in comparing 
x to y on a dimension is whether x is ranked above or below y if not x and y are 
tied on that dimension), it was recently shown in Bouyssou and Pirlot (2002a), 
that this is not totally true and that a slightly broader framework is needed. In 
this paper (see also Bouyssou and Pirlot, 2005a), a precise definition of concor- 
dance relations is proposed and the relations that fulfill it can be described within 
the family of models that rely on traces on differences (sections 6.3.3 and 6.4). 
It is the goal of this section to outline these results (we mainly follow Bouyssou 
and Pirlot, 2005a). Similar ideas have been developed by Greco, Matarazzo, and 
Slowiriski (2001a) 

6.5.1 Concordance relations 

In a conjoint measurement context, a concordance relation is characterised by the 
following features. 

Definition 6.16 (Concordance relation) 
A reflexive relation 2 on  X is  a concordance relation if there are: 

a complete binary relation Si on  each Xi, 

0 a binary relation between subsets of N ,  the union of which is  N ,  which is  
monotonic with respect to inclusion, i.e. such that for all A, B ,  C, D C N ,  

[ A r > B , C > A , B 2 D 1 C u D = N ] + C r > D ,  (6.88) 

such that, for all x, y E X, 

where S(X, y) = { i  E N : xi Si yi). 

In this definition, we interpret Si as the a priori preferences on the scale co-domain 
Xi of each dimension; in cases of practical interest, Si will usually be a weak order 
or a semiorder (but we do not assume this to begin) and the global preference of x 
over y results from the comparison of the coalitions of criteria S(x, y) and S(y, x). 
The former can be seen as the list of reasons for saying that x is at least as good 
as y, while the latter is a list of reasons supporting conversely that y is at least as 
good as x. A fundamental ingredient amalgamated in a concordance preference is 
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a way of comparing coalitions of criteria: we assume that there is a relation D on 
the power set of the set N that allows us to decide whether a subset of criteria 
constitute a stronger argument than another subset of criteria; the interpretation 
of such a relation is straightforward when the compared subsets are the lists of 
dimensions S(x, y) and S(y, x) involved in the comparison of two alternatives x 
and y. Note that enables us only to compare "complete" coalitions of criteria, 
i.e. those whose union is N. 

The weighted majority relation (section 6.3.5.2), typically, fulfills the require- 
ments for a concordance relation as defined above. In this example, the strength of 
a subset of criteria can be represented by the sum of their weights and, comparing 
S(x, y) to S(y,x) amounts to comparing two numbers, namely the sums of the 
weights of the dimensions that belong respectively to S(x, y) and S(y, x). In such 
a case, k can be extended to a weak order on the power set of N and this weak 
order admits a numerical representation that is additive with respect to individual 
dimensions: 

In our general definition however, we neither postulate that k is a weak order 
nor that it can be additively represented on the basis of "weights" of individual 
criteria. We only impose a quite natural property (6.88) on the relation k ,  namely 
that it is monotonic with respect to the inclusion of subsets of criteria. Suppose 
that we start with a list of arguments A (e.g. S(x, y)) that is a t  least as strong as a 
list B (e.g. S(y, 2))-we thus start with A k B. This relation should be preserved 
when enlarging the list A into a list C that contains A or, on the opposite, when 
contracting the list B into a subset D of B. This is the minimal requirement we 
can impose on a relation comparing the strengths of coalitions. 

The interesting feature of concordance relations, in the sense of definition 6.16 is 
that they can easily be characterised within the family of models (Dk) that rely on 
preference differences. The main result, obtained in Bouyssou and Pirlot (2005a, 
Theorem I),  establishes that concordance relations are exactly those preferences 
for which the traces on differences k:* are weak orders and have no more than 
three equivalence classes. This result will be part 1 of theorem 6.7 stated below 
on p. 316. Consequently, concordance relations form a subclass of the relations 
belonging to model (D6) (or equivalently to model (D10)). 

6.5.1.1 The relation k 

As a consequence of this result, all preferences described in section 6.3.5 (see also 
table 6.3) admit a representation as a concordance relation, i.e. can be described 
by means of equation (6.89), i.e.: 

for some and some Si satisfying the requirements of definition 6.16. We em- 
phasise that this is true, not only for simple weighted majorities (section 6.3.5.2), 
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but also for qualified majorities (section 6.3.5.3) or lexicographic preferences (sec- 
tion 6.3.5.4) that are not primarily defined through comparing coalitions (qual- 
ified majority is defined through comparing the "pros" in favour of x against y 
to a threshold; lexicographic relations arise from considering the most important 
criterion and only looking at the others when alternatives are tied on the most 
important one). Part 1 of theorem 6.7 says that all these relations can also be 
represented according to equation (6.89) using an appropriate definition of r> and 
Si. Of course, we cannot ensure that r> can be represented, in general, according 
with equation (6.90), i.e. in an additive manner. 

6.5.1.2 The relations Si 

Are these relations determined by the preference k ?  Indeed they are; Si can be 
defined as follows: 

xi Si Yi @ (xi1 ~ i )  k5 (xi, xi). (6.91) 

The interpretation of this definition is clear (at least for reflexive and independent 
preferences 2 with which all "null differences" (xi, xi), for xi E Xi, are indifferent 
with respect to relation kz):  xi Si yi means that the difference of preference 
(xi, yi) is %on negative", in the sense that it is a t  least as large as the "null 
difference" (xi, xi) or any other null difference (zi, zi). 

I t  can be shown that Si is complete but not necessarily transitive for a gen- 
eral concordance relation k ;  the marginal traces and k i  are included in Si, 
which in turn is contained in the marginal preference ki. Note that in general 
concordance relations, the marginal traces are not necessarily complete (hence not 
necessarily weak orders) and the marginal preferences cannot be guaranteed to be 
transitive or complete. 

For more constrained concordance relations, namely for those that admit a 
representation in model (LlD6), Si can be proved to be a semiorder (Bouyssou 
and Pirlot, 2005a, theorem 4 and lemma 10). Remember that in such models, the 
marginal preferences ki is also a semiorder (proposition 6.6). I t  would however 
be wrong to infer that Si=ki for concordance relations representable in model 
(LlD6), as will be shown by the second example below. In the still more con- 
strained model (L2Dll),  Si and ki will be weak orders and, a t  this stage, it is 
true that Si equals the marginal preferences ki as well as the marginal trace k:. 

We give two examples that illustrate the relatively subtle relationships between 
all these relations. 

Example 6.7 
Consider alternatives that can be described by two dimensions; the co-domain 
of their associated scale is the integer interval [O, lo]. Equal weights wi = 0.5 
are associated to both dimensions and the decision rule that determines whether 
x = (xl,x2) is preferred at  least as much as y = (yl, y2) consists in checking 
whether for both dimensions xi is not less than yi - 1. The rationale for this rule 
is that the client does not perceive a clear difference of performance on a dimension 
unless xi and yi differ by at  least two units. The global preference results from 
unanimous agreement to say that x is a t  least as good as y on both dimensions. 
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We thus have: 
x y  C w i = l .  (6.92) 

i :x i>&- l  

So, for example, we have (1,2) N' (2,3) and (1,2) N (2 , l )  but not (2,3) + (2, I ) ,  
which implies that the symmetric part of the global preference-interpreted as 
indifference-is not transitive. The marginal traces k t  and 2; are the natural 
order on the integers of [O, 101 since any advantage xi > yi can make a difference, 
in an appropriate context; for instance: xl  = 2 > yl = 1 yields (2,4) k (0,5) 
while Not [ ( l ,  4) 2 (0,5)] ; hence 2 +? 1. The marginal preferences ki are the 
semiorders defined by xi ki yi iff xi 2 yi - 1. We indeed have (xi,aVi) 2 
(yi, a-i) as soon as this condition is fulfilled. The trace k;* on differences has 
three equivalence classes: the class of pairs (xi, yi) such that xi - yi is strictly 
larger than 1, that for which xi - yi is either - 1 , O  or 1 and, finally, that for which 
xi - yi is strictly smaller than -1. In this example, Si is equal to the marginal 
preference k i ,  since we have (xi, yi) k: (yi, yi) iff xi 2 yi - 1. 0 

Example 6.8 
This example is a variant of the previous one. We consider three dimensions instead 
of two, with scales valued in the integer interval [O, 101. The weights attached to 
the dimensions are equal (wi = $) and the preference of alternative x = (xl,  22, 23) 
over y = (yl, y ~ ,  y3) results from the following qualified majority rule: 

Note that setting the threshold to any value between 0.34 and 0.66 would not make 
any difference to the preference relation 2. The only difference with example 6.7, 
in terms of relations derived from the preference 2 ,  is the marginal preference k i ;  
in this example, all levels xi are indifferent with respect to the marginal preference. 
Indeed we have for all a-i,xi, yi, (xi, a-i) N (yi, a-i) since 

in this case the common levels a-i ensure on their own that the required major- 
ity threshold is reached, whatever happens on dimension i. In this example, the 
marginal preferences ki are different from the Si that are such that xi Si yi iff 
xi 2 yi - 1 as in example 6.7. This again illustrates (as already shown in section 
6.2.5) that ceteris paribus reasoning qan be insufficient, even with quite reason- 
able preferences. Note also that the present example is not covered by Fishburn's 
theory of noncompensatory preferences (Fishburn, 1976)) because Fishburn's ax- 
ioms imply that the marginal preferences and the Si relations are identical; the 
concordance relations in the sense of definition 6.16 are thus significantly more 
general. 0 

We summarise the results given above in the following theorem that is based on 
Bouyssou and Pirlot (2005a, theorems 2 and 4). Note that this paper provides 
conditions, expressed in terms of the relation k ,  that are equivalent to requiring 
that the traces on differences ki* have a t  most three equivalence classes. 
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Theorem 6.7 (Concordance relation) 
1. A relation 2 o n  X is  a concordance relation iff it is  reflexive, satisfies RC12 

and its traces o n  differences ?:* have at most three equivalence classes. 

2. The relations Si that intervene i n  the definition of concordance relations are 
semiorders iff 2 satisfies, i n  addition, AC123. 

3. These relations are weak orders as soon as 2 satisfies AC4. 

6.5.2 Relationship with actual outranking methods 

The above results and examples echo the practice of building concordance relations 
in the ELECTRE I and I1 methods (section 6.3.5.3 and, particularly, remark 
6.3.4) or the TACTIC method (section 6.3.5.5). In the process of building an 
outranking relation ci la ELECTRE, a priori preferences on each dimension are 
used to determine whether level xi is not worse than level yi and if this the case, 
dimension i enters the coalition of dimensions S(x, y) that is in favour of saying 
that x is globally not worse than y. Such a process is likely to lead to relations Si 
as defined by (6.91). 

This is also to be connected to the respect of the dominance relation by prefer- 
ences that satisfy AC123 (section 6.2.8). If we interpret Si as the a priori preference 
of the client on dimension i ,  the concordance relation of an ELECTRE I method, 
is compatible with the dominance relation with respect to the Si's. In addition, of 
course, the differences of preference on each dimension are weakly differentiated. 
The further introduction of vetoes may contribute towards refining the discrim- 
ination between differences of preference. Models that encompass the latter will 
not be discussed in detail here. Observe simply that outranking relations resulting 
from the application of the ELECTRE I or I1 methods, are representable in the 
subclass of model (LlD6) in which the traces on differences of preferences kf* 
have at most five equivalence classes. Models with vetoes constitute a very pecu- 
liar subclass of that class, as emphasised in section 6.3.7. Greco et al. (2001a) have 
characterised a slightly restrictive version of concordance relations with vetoes (see 
the discussion section in Bouyssou and Pirlot, 2005a). 

Recently, Bouyssou and Pirlot (2005~) have modified definition 6.16 of concor- 
dance relation in order to cover concordance relations with vetoes; these are called 
concordance-discordance relations. 

Definition 6.17 (Concordance-discordance relation) 
A reflexive relation 2 on  X is a concordance-discordance relation if there are: 

a complete binary relation Si on  each Xi, 

a n  asymmetric relation V ,  included i n  Si, 

a binary relation r> between subsets of N ,  the union of which is  N ,  which is  
monotonic with respect to  inclusion, i.e. such that for all A, B, C, D N ,  
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such that, for all x, y E X, 

where S(x, y) = {i E N : xi Si yi) and V(y, x) = {i E N : yi K xi). 

This definition clearly encompasses the models of preference involving a veto 
that were described in section 6.3.6. Concordance-discordance relations can be 
characterised in the same spirit as concordance relations (theorem 6.7). Besides 
being reflexive and satisfying RC12, concordance-discordance relations have traces 
on differences kf* that determine at most five classes of differences; if there are 
indeed five classes, all "positive" differences play the same role, while the largest 
"negative" differences trigger a veto. The axioms characterising concordance- 
discordance relations in Bouyssou and Pirlot (2005~) express essentially these 
characteristics. 

The models based on weakly differentiated differences of preference described 
above, thus come quite close to a realistic description of the practice of building 
outranking relations ci la ELECTRE. 

6.5.2.1 Elicitation issues 

It has just been suggested that the elicitation of the relations Si could be rather 
direct; determining whether xi Si yi amounts to determining whether dimension i 
joins the coalition S(x, y) that will be compared to S(y, x) to decide whether x is at 
least as good as y. Eliciting the relation on the coalitions of dimensions might 
be more delicate. In practice, this relation is usually assumed to be additively 
representable, which means that coalitions can be compared by comparing their 
weights; the weight of a coalition is computed as the sum of the weights of the 
dimensions that belong to the coalition. The weights of individual dimensions can 
be determined for instance by using Simos'"cards method" (see section 4.4.2, page 
149) or by using one of the other methods discussed in section 4.4. 

The existence of such an additive representation of C1 is certainly not guar- 
anteed, in general, for concordance relations, even in the most constrained of the 
variants considered in theorem 6.7. We are not aware of any characterisation of 
concordance relations for which the relation D would be guaranteed to admit an 
additive representation lo; it is likely that the axioms used in such a characteri- 
sation would be barely interpretable (such as those for additive representation of 
value functions in the case of a finite set of alternatives; see section 4.3, page 131). 
In the absence of an indication of the existence of an additive representation of P ,  
the monotonicity of I> is the sole property that could be exploited to simplify the 
elicitation of the relation on the power set of the set of dimensions. 

8 The models based on weakly differentiated differences of preferences are 

lo Note that the problem of characterising relations that admit an additive representation is 
similar to the characterisation of comparative probabilities that admit a representation by means 
of an additive probability measure (on this-much studied-issue, see de Finetti, 1931; Fishburn, 
1996; Kraft, Pratt, and Seidenberg, 1959 and a recent survey by Regoli, 2000). 
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6 an ideal framework both for 
s 
@ understanding the characteristics of the preferences obtained through a 
62 large number of aggregation procedures based on pairwise comparisons 

of alternatives; 

@ proposing new procedures of this type and analysing them easily. 
8 
R 

6.6 Models for valued preferences 

So far in chapter 6, we have adopted a classical conjoint measurement point of view, 
that led us to describing a preference relation on a product set of alternatives by 
means of several types of models. For the reader's convenience, the rules that 
define 2 in various families of models studied in the previous subsections, are 
summarised in table 6.6; these families of models include: 

models based on marginal traces (models "(L)") analysed in subsection 6.2; 

models based on traces on differences (models "(D)") analysed in subsection 
6.3: 

models based on both traces (models "(L - D)") analysed in subsection 6.4. 

Table 6.6: Representations of three models of preference. 

A glance at table 6.6 shows that, in all cases, the preference relation is obtained 
by "cutting" a function ( F  or G) at  a single level-that is chosen to be 0 only for 
convenience. It  is tempting to ask whether the functions F or G could not be used 
for representing preference structures richer than just a binary relation 2 on the 
set of alternatives. The first thing that comes to mind is that the values of F or G 
could be used, for instance, for representing preference intensity or the credibility 
of the preference. This immediately points towards a number of models that have 
been evoked in earlier sections of this chapter, namely, the additive measurement 
of differences, ELECTRE I11 and PROMETHEE 11. 

In this section, we shall briefly show that these models can be represented as 
models (L), (D) or (L - D), the main difference with the latter being in the way 
the values taken by G or F are related to a more complex preference structure. 
Since the complete characterisation of such models is still under development, we 
shall only indicate some general ideas of a theory of such structures in a conjoint 
measurement perspective. 
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6.6.1 The measurement of preference differences 

In section 4.3.9, we introduced the model of measurement of preference differences 
which involves two relations k and 2 % ;  the former denotes the usual preference 
relation on the set of alternatives and the latter is a relation that compares pairs 
of alternatives; (x, y) k* (z, w) states as "the difference of preference between x 
and y is at  least as large as that between z and w". In the additive measurement of 
differences of preferences, there is a function u on the set of alternatives that can 
be decomposed as a sum of partial value functions ui(xi), i.e. u(x) = xi ui(xi), 
and that satisfies the following two conditions: 

Bearing the "(L)" and the "(D)" models in mind, we can consider two natural 
generalisations of the additive differences of preference models. Using the ideas of 
models on levels (models "(L)"), yields the following representation of the pair of 
relations 2, k* :  

We will refer to this model as the (L*) model; it is obtained from the addi- 
tive differences of preference model (6.94) and (6.95) through substituting the 
differences u(x) - u(y) and u(z) - u(w), respectively by F([ui(xi)], [ui(yi)]) and 
F([ui (zi)] [ui (wi)]). 

Another avenue of generalisation is offered by substituting the differences u(x) - 
u(y) and U(Z) - u(w), respectively by G([pi(xi, yi)]) and G([pi(zi, wi)]), yielding: 

We refer to the latter as the (D*) model. In both the (L*) and (D*) models, in 
the absence of any additional specification, relation 2 has no special property, as 
was the case for model (LO) defined on p. 263 or model (DO) defined on p. 276. 
The status of relation k* is different. Any valued relation on a set induces a 
weak order on the pairs of elements of this set: the pair (x, y) comes before the 
pair (z, w) in this weak order iff the value attached to (x, y) in the valued relation 
is larger than that attached to (z, w). Considering F (resp. G) as a valued relation 
on the set of alternatives X ,  we see that equations (6.97) (resp. (6.99) exactly 
define the weak order induced by F (resp. G) on X2;  hence, k* is a weak order 
both in the (L*) and (D*) models. 

I t  is not difficult to define a third family of models that we will call the (L* - D*) 
model; it is obtained from (6.98) and (6.99) through decomposing pi(xi, yi) into 
cpi(ui(xi),ui(yi)) for all alternatives x, y. 

In the axiomatic analysis of such models, we would of course be interested in 
conditions that make: 
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0 F nondecreasing (resp. increasing) in its first n arguments and nonincreasing 
(resp. decreasing) in its last n arguments; 

that F([ui(xi)], [ui(xi)]) = 0 and that 

G nondecreasing (or increasing) in its n arguments; 

cpi(ui (xi), ui(yi)) nondecreasing (resp. increasing) in its first argument ui (xi) 
and nonincreasing (resp. decreasing) in its second argument ui(yi). 

These questions correspond exactly to those we solved in the simpler case in which 
the analysis is only concerned with a single preference relation k ,  without taking 
the measurement of global differences of preference into account. One can be 
confident that the axiomatic analysis of such models could be achieved using the 
tools presented in the previous sections, namely, various sorts of traces. Since 
such a study has not yet been completed, we do not develop these formal aspects 
further; instead, we simply suggest a framework that encompasses several valued 
relations showing up at some stage of practical multiple criteria methods. 

6.6.2 Conjoint measurement models for ordinally valued or 
fuzzy preference relations 

Assume that a value S(x, y) is attached to each pair of alternatives (x, y) E X.  
Assume further that the interpretation given to the values is ordinal. This means 
that another set of values S' is equivalent to S provided that, for all alternatives 
x, y, z, w, we have S(x, y) 2 S(z, w) if and only if S'(x, Y) 2 S1(z, w); in other 
words, two ordinally valued relations S and S' are equivalent iff they induce the 
same (weak) order on the pairs of alternatives: 

Thus, an ordinally valued relation on X is equivalent to some relation k* on the 
set of pairs of alternatives X2. This relation is a weak order by construction. 

Among several commonly used practical methods, which pass through the con- 
struction of valued relations as an intermediary stage on their way to the elicitation 
of a preference, are PROMETHEE I1 and ELECTRE 111, not to speak of the ad- 
ditive measurement of differences of preferences briefly discussed in section 4.3.9. 
Let us interpret these valued relations in an ordinal way; we thus try to describe 
these relations as representations of a relation k* comparing the differences of 
preference between pairs of alternatives. 

Consider a weak order k* on X2;  we can view it as a weak order on the set 
Y = nz, 6 ,  where Y,  = XixXi. Proposition 6.8 (p. 271) applies to this situation; 
assuming that k* satisfies the classical weak separability condition formulated for 
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the Cartesian product Y, it tells us that k* can be represented by means of 
a nondecreasing function U of n variables and n functions pi(xi, yi) defined on 
Xi x Xi such that: 

If we view the pi functions as valued relations on Xi (representing the marginal 
traces 2; of relation k * ) ,  we understand that the model given above provides a 
framework for studying the aggregation of n valued relations into one (ordinally) 
valued relation (this is to be put in relation with section 5.3, p. 192). Assuming 
that U([pi(xi,xi)]) = 0 for all x, yields a relation k on X ,  defined as x k y if 
(x, y) k* (2, x) with the numerical representation x k y iff U([pi(xi, yi)]) L 0. 

Under appropriate further conditions, the pi's decompose as: 

with cpi nondecreasing in its first argument and nonincreasing in its second. When 
the pi's have been substituted by the cpi's, model (6.100) offers a framework for 
dealing with the aggregation of performance tables into a valued relation (see 
sections 5.4, p. 202 and 5.5, p. 224). 

As particular cases of the latter model, we have: 

0 the additive preference differences model, in which, 

and U is a sum; 

the relation S(x, y) of PROMETHEE I1 (see p. 146)) in which, 

(equations 4.17 and 4.18) and U is a sum; 

the relation S(x, y) of ELECTRE I11 that also belongs to the model with 
complicated cpi's and additive U .  

Note that in all the cases stated above, U is additive. If appropriate conditions are 
fulfilled, the relation k* admits a unique additive representation (see section 4.3.4, 
p. 131). The theory of additive value functions could then apply; in particular, 
the pi's could be elicited as marginal value functions on the Cartesian products 
Xi x Xi (see section 4.3.7, p. 135). Having modelled things in this way, how do 
we help the client? The additive preference difference model is, in a sense, trivial. 
Since in this model, it occurs that the relation 2 (defined above using k* )  is a 
weak order, deriving a recommendation to the client is relatively straightforward 
(see chapter 7 for a thorough discussion). When this is not the case, as with 
PROMETHEE 11, an "exploitation procedure') has to be applied to S(x, y) or k* 
in order to derive a recommendation. Classically, the net Bow method is used with 
PROMETHEE 11, but it clearly makes usage of the numerical value of S ,  which is 
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hardly arguable since we assumed that S is an ordinally valued relation (see the 
discussion in section 5.3.5, p. 200 and also section 5.3.3, p. 197). 

There is an alternative way of looking at this issue. Consider that the intensity 
of the preference relation, k*, is the main preferential object, the one that is 
perceived by the client. Under this hypothesis, once this information has been 
elicited from the client, we have to transform it into "decisive information". For 
instance, in case a ranking of the alternatives is needed-and under the assumption 
that this ranking is not the client's preference k-it would be advisable to study 
models of procedures transforming an (ordinally) valued relation into a ranking 
(i.e. a weak order), imposing rationality assumptions on such procedures. One 
could envisage, for example, not to use the numerical representation of the valued 
relation S obtained in the elicitation of k* but to change it into an equivalent one 
that is needed in the process of building a final ranking (see also the discussion of 
exploitation procedures in chapter 7, section 7.4). 

6.7 Reconciling Social Choice and Conjoint mea- 
surement 

In chapters 5 and 6, we have described two quite contrasted approaches that we 
believe are relevant for understanding the relationships between a preference on a 
set of dimensions and the evaluations of these alternatives on a complete family 
of criteria. The approach developed in chapter 5 finds inspiration in Social Choice 
Theory and aims at characterising aggregation procedures. Conjoint measurement, 
presented in chapter 6, characterises families of preferences that can be represented 
in specific models. 

Although conceptually different, the two approaches shed some light, from 
various angles, on the aggregation issue. In this section, we try to emphasise cor- 
respondences at various levels between the two approaches. The reader should be 
aware that "correspondence" does not mean 'Lequivalence" : in particular, bear in 
mind that chapter 5 characterises procedures while chapter 6 characterises prefer- 
ence relations. 

1. The decomposable model (section 6.2.1) corresponds to the aggregation of 
weak orders into a weak order, a special case of the aggregation of binary 
relations into a binary relation (sections 4.2.2 and 5.2), encompassing, in 
particular, the Borda (section 4.2.2) and lexicographic (section 5.2.4) meth- 
ods. A preference k fitting with the decomposable model can be described 
by x k y iff u(x) = U([ui(xi)]) > u(y) = U([ui(yi)]) A general procedure 
for aggregating weak orders into a weak order would start with a profile of 
relations (S1,. . . , Si, . . . , S,), that are weak orders, and output a weak order 
2. If ui is any representation of the weak order Si in the input profile and 
if u represents k ,  then we can see U as an aggregation procedure; using the 
decomposable model, this aggregation procedure is quite a general one but 
the resulting preference is at least weakly separable (definition 6.9). 
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Models based on marginal traces (L models). There are examples of aggre- 
gation procedures in section 5.2 yielding preferences that fit with the more 
general models based on marginal traces (section 6.2.7) and are not de- 
composable. From proposition 6.8, we know that they are not weak orders 
(otherwise they would fit with the decomposable model). The preferences 
resulting from a majority rule (sections 5.2.1 to 5.2.3) are examples of such 
procedures, but their description in the model based on marginal traces is 
not the most appropriate one; they fit better into the model based both on 
marginal traces and on traces on differences (see below, item 4). 

3. Models based on traces on differences (D models). They are studied in section 
6.3 and correspond to the aggregation of relations or valued relations into 
a relation (sections 5.2 and 5.3). A preference k that can be described 
within a D model satisfies x k y iff G([pi(xi, yi)]) 2 0. A general procedure 
aggregating relations into a relation is like the one described in item 1 except 
that the relations Si are not necessarily weak orders. If pi represents the 
relation Si (i.e, pi(xi, yi) = 1 if xi Si yi and 0 otherwise), then G can be 
viewed as an operator aggregating relations. 

4. The models based on marginal traces and on traces on differences (L - D 
models) are studied in section 6.4; the pi function of the D models is further 
decomposed into pi(ui(xi),ui(yi)). The L - D models correspond to the 
procedures that aggregate performance tables into a relation (section 5.4); 
the input of such a procedure is a profile of functions (gl, .  . . ,g i , .  . . ,g,). If 
we interpret xi as gi(x) (the evaluation of alternative x on dimension i) and 
yi as gi(y), the function cpi(ui(xi), ui(yi)) appearing in the L - D model can 
be seen as a way of coding the difference of preference between xi and yi 
on dimension i. Function G then aggregates these differences, determining 
whether the balance is positive; if so, then x k y. All procedures studied 
in section 5.4 fit with this interpretation of models L - D, but they also 
fit with the more parsimonious decomposable model (item I),  which thus 
provides a more appropriate framework for them. The procedures studied 
in section 5.4 do not however illustrate all the ways of aggregating a perfor- 
mance table into a relation; there are reasonable ones that do not fit with 
the decomposable model. Consider, for instance, PROMETHEE 11, which 
was described as a procedure for aggregating fuzzy relations into a relation 
in section 5.3.2.3. The fuzzy relations Si(x, y) on each dimension are built 
through recoding the differences gi(x) -gi(y) using formula (5.3). One could 
thus also interpret PROMETHEE I1 as aggregating the performance table 
associated with the functions gi into a relation. This leads to interpreting 
Si(x, y) as the cpi(ui(xi), ui(yi)) function of a L - D model; this model will 
not, in general, be a decomposable one. 

Note that the L - D models also provide an adequate framework corre- 
sponding with the aggregation of linguistic performance tables into a relation 
(section 5.5). Remember that no particular structure is required on the com- 
ponents Xi of a conjoint measurement model. The "levels" of the linguistic 
evaluation scales can thus be represented by the sets Xi. An ordering of the 
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levels of the linguistic scales, which is not pre-existent, is possibly induced 
by the preference of the client (it is the case in the L - D models satisfying 
RC1 and AC123; the induced weak order is the marginal trace 2;). 

5. The valued version of the L - D model, briefly described in section 6.6.1, can 
be put in correspondence with a family of aggregation procedures that has 
not been discussed, but is the "valued version" of the aggregation of a per- 
formance table into a relation (section 5.4). Take for instance the "weighted 
sum procedure" (section 5.4.4); in the resulting relation, x is ranked before 
y if the weighted sum s,(g) of the evaluations g(x) of x is larger than the 
weighted sum s,(g) of the evaluations of y. Instead, one could consider the 
procedure that would associate the difference s,(g)-s,(g) to each pair (x, y), 
which can also be written as CiEN wi(gi(x) - gi(y)) ll.  By doing this, we 
would have aggregated a performance table into a valued relation that can 
obviously be put in correspondence with the measurement of differences of 
preferences (section 4.3.9). It  also corresponds to a particular case of the val- 
ued L - D model, namely, the case in which the functions cpi are differences 
and G is a sum of those differences. Similar things can be said about the 
"min" procedure (section 5.4.3) as well as about "leximin" and "leximax" 
(section 5.4.5). In all these cases, the corresponding valued L - D model 
could be called "decomposable" since the value associated with the pair 
(x, y) is a difference of scores of the type U([ui(xi)]) - U([ui(yi)]). I t  is not 
difficult to find examples in which the L - D model does not decompose into 
an algebraic difference. An appropriate "part" of the PROMETHEE I1 or of 
ELECTRE methods can be viewed as such examples. PROMETHEE 11, for 
instance, can be described as associating a value S(x, y) to each pair (x, y), 
namely a weighted sum of the Si(x, y)) (formula (5.3)): 

then a score l2 is computed that is the "net flow" of the valued relation S at 
each "node" x: 

@(x) = c s h y )  - S(Y,X). (6.102) 
YEA 

If we consider the intermediary step of computing the relation S from the 
performance table as a procedure per se, we see that we can analyse it in the 
framework of the L - D models. 

Going through the various models described in this chapter and overviewing their 
inter-relationships, prompts two further remarks that will respectively relink ag- 
gregation models looking back towards chapter 3 and forward towards chapter 
6. 

l 1  Instead of associating the difference of the weighted sums to a pair, we could associate the 
difference of the Borda scores. This method has been characterised in Marchant (1998, 2000). 

l2 The reader can verify that this score is the same as that in formula (5.4). It is not uninter- 
esting to note that a procedure can sometimes be analysed in several different ways. 
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Looking back towards chapter 3. What is the "input" of the aggregation procedures 
considered in the present chapter? On which objects are the preferences repre- 
sented in our conjoint measurement models defined? We did not discuss much how 
the data needed for describing the alternatives were prepared for use in all these 
procedures or models. 

The preparation of the inputs obviously has a lot to do with chapter 3. In 
chapter 5, we considered various types of data as inputs of aggregation proce- 
dures, especially: a binary or a valued relation on each dimension; a performance 
table containing the evaluations of all alternatives on all dimensions. In chapter 3, 
we mainly examined how relational information can be transformed into numer- 
ical representations and, vice versa, how the evaluations of the alternatives on a 
dimension can be transformed into a relation comparing the alternatives from the 
point of view associated with this dimension. This could be described as preference 
modelling on a single attribute. 

It is one of the aims of chapter 3 to provide ways of preparing the information 
on the alternatives for use in aggregation procedures. The circumstances of the 
decision aiding process (type of information available, culture of the client, type 
of recommendation required, etc.) may of course influence the type of aggregation 
procedure that will be chosen and, accordingly, the type of preparation of the 
input data. Comparing sections 4.2.2 and 5.3.2 illustrates the fact that using, 
for instance, the Borda procedure applied to weak orders or the variant of the 
Borda method applied to performance tables may depend on the type of raw data 
available but also on the preference modelling phase and the interpretation of the 
meaning of the data. 

In conjoint measurement models, the perspective is apparently different since 
the global preference is presented as a primitive of the model. Any alternative, 
say x, is described as a vector (xl , .  . . , x,) of a Cartesian product. The level xi 
is usually interpreted as the evaluation gi(x) of alternative x on dimension i (the 
scale of evaluation being possibly numeric, linguistic, . . . ). 

A preliminary recoding of the "original" evaluation scale is not excluded by the 
conjoint measurement approach. In any case, the vector (xl , .  . . , x,) should offer a 
complete, unambiguous description of the alternative x (see p. 128); in particular, 
two alternatives associated with the same vector should be indistinguishable from 
the point of view of the preference. Recoding a linguistic descriptor xi E Xi into a 
numerical descriptor or a numerical descriptor into another numerical descriptor 
can ease the elicitation of the preference. Consider for instance the problem of 
choosing a place to live. Let xi denote the distance of house x from the centre of 
the city, which constitutes point of view i. The client's preference does not decrease 
or increase monotonically with xi; the centre of the city is not an ideal place to 
live (too much traffic, noise, pollution, . . . ); being far from the centre is not good 
either (long journey to reach the office, . . .); there might be an ideal distance 
A corresponding to residential suburbs and the preference on this viewpoint will 
decrease as the absolute value [xi -A[ of the difference between A and the distance 
to the centre of the city increases. Suppose that we have determined that the 
global preference of the client on the houses he could possibly buy and live in 
can be modelled within a model based on marginal traces, say L3, for which the 
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marginal trace 2"s a weak order; we can choose a numerical representation of 
2; for ui. Recoding the "distance from the centre" attribute as [xi - A[ could 
ease the elicitation process. Indeed, knowing that the preference decreases when 
[xi - A1 increases provides us with a first approximation of a representation ui of 
the marginal trace k: since we know that ui(x:) is a nonincreasing function of 
xi = Ixi - A[;  we just have to determine the intervals where ui would possibly be 
constant as a function of xi. 

In the same spirit, for D or L - D models, it could be advisable to find a 
"pre-model" of the functions pi(xi, yi) or pi (ui(xi), ui (yi)). If a scale Xi is poorly 
structured (linguistic or ordinal), it may make sense to build a relation Si= (Pi, I i)  
(that is not necessarily a weak order) telling us which level xi is certainly not worse 
than level yi. This is essentially what is done in formula (6.49) when determining 
that cost xi is not worse than yi as long as it does not exceed yi by more than 
loo€.  This introduces a constraint on the traces of differences k f  or kt* in 
models D or L - D satisfying RC1 (hence for which k f  is a weak order) since 
pairs (xi, yi) such that xi Si yi should be ranked (by k;) before pairs (zi, wi) such 
that Not [ zi Si wi ] . In other words, in such a case, pi(xi, yi) should be larger 
than pi(zi, wi), provided we choose a numerical representation of the weak order 
k! for pi. This again can ease the elicitation process. 

Pointing forward to chapter 7. The recommendation to make to the client is 
not always a straightforward consequence of the output of the aggregation phase 
(it is even seldom the case as was announced in chapter 2 and is elaborated on in 
chapter 7). Here, we only present one blatant example for which a post-aggregation 
phase is needed. If we aggregate relations into a relation, say, by means of a 
majority method (or, more generally, in the language of conjoint measurement, 
if the preference fits with a D or L - D model and distinguishes few classes of 
preference differences) it may occur that the output preference relation has circuits. 
It is of course arguable that a procedure that may lead to (or a model that admits) 
circuits is not appropriate for decision analysis. There is another way of dealing 
with such a drawback. The idea is to accept cycles and other "defects" in the 
preferences modelled and to exploit this information further in order to  derive a 
recommendation. Examples of exploitation procedures for this case are presented 
in chapter 7, as well as considerations showing that an exploitation phase is needed 
for all procedures and models. 



MAKING RECOMMENDATION 

7.1 Introduction 

7.1.1 Position of the problem 

In chapters 4, 5 and 6, we presented various preference models for alternatives 
evaluated on several attributeslcriteria. The presentation in these chapters em- 
phasised the underlying logic of these models, their axiomatic analysis and their 
possible implementation. Two main types of preference models were envisaged: 

preference models based on value functions leading to a weak order on the 
set of alternatives, 

0 preference models in which incomparability and/or intransitivity may occur. 

These preference models are tools built by the analyst in the course of the deci- 
sion aiding study, the main phases of which were described in chapter 2. Having 
built one or several preference models does not mean that the analyst'work is 
over: this is only a step in the elaboration of a recommendation and its possible 
implementation in the decision process. 

Going from a formal preference model to a recommendation requires many 
different tasks. Some of them are rather informal, involving, e.g., a good commu- 
nication strategy with the actors in the decision process, the need for transparency 
in this process, a sound management of multiple stakeholders, etc. This chapter 
discusses the formal tasks that are involved in the elaboration of a recommenda- 
tion. Sections 7.2, 7.3 and 7.4 will be devoted to the elaboration of a recommen- 
dation on the basis of the preference models analysed in the previous chapters. 
Section 7.5 will be devoted to the management of imprecision, uncertainty and 
inaccurate determination in order to  reach robust conclusions. 

It  should be clear at this stage that using the well-structured preference models 
that are induced by value functions will make the elaboration of a recommendation 
will be much easier. This does not mean that such models are always adequate. 
We saw in chapters 5 and 6 that their construction often requires a delicate analy- 
sis contrary, e.g., to more ordinal preference models, e.g. majoritarian models as 
introduced in section 5.2.2 of chapter 5. Here, the analyst faces a difficult tradeoff 
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between the ease of construction of the preference model and the ease of using it 
to derive a recommendation. The analysis of this tradeoff depends on the nature 
of the decision process. 

7.1.2 What kind of recommendation? 

The aim of this chapter is to study how an analyst can use formal preference models 
to tentatively build a recommendation. The nature of this recommendation that 
is looked for will therefore be of crucial importance in this phase of the decision 
aiding study. As should be apparent from section 2.3 of chapter 2, the central 
element here is the problem statement II that has been agreed upon at the problem 
formulation stage of the decision aiding process. 

Among the various problem statements presented in chapter 2, in this chap- 
ter our attention will be focused on the ones aiming at partitioning the set of 
alternatives. Depending on: 

whether or not the categories are ordered, 

0 whether or not the categories are predefined and, 

0 the number of categories, 

several problem statements arise. For instance, the situation in which categories 
are neither ordered nor predefined, calls for the use of clustering techniques. Be- 
cause our basic material in this chapter will be one or several relations comparing 
alternatives in terms of preference, we will mostly restrict our attention to problem 
statements involving ordered categories. This roughly leaves us with three main 
problem statements, i.e., the three "purposeful" problem statements introduced 
in chapter 2: 

Choosing : a t  most two categories that are ordered and not predefined, 

Ranking : ordered categories that are not predefined, 

Sorting : ordered categories that are predefined. 

The first two problem statements lead to a relative evaluation. They are concerned 
with the fact that an alternative is or not preferable to another, without taking 
a position on the "intrinsic desirability" of the alternatives that are compared, 
which would require the categories to be predefined. Alternative a may be found 
preferable to alternative b while a and b may both be rather poor. The third 
problem statement deals with absolute evaluation: it will lead to a judgement on 
the intrinsic desirability of the alternatives. 

Before recalling the essential elements of these three problem statements, it is 
important to note that the distinction between absolute and relative evaluation is 
sometimes blurred in practice. The analyst having opted for a "choosing" problem 
statement might well be lead to start a new phase of the decision aiding study after 
realising that all alternatives that were considered are not likely to contribute much 
to the decision process. Similarly, if the analyst has succeeded in isolating a set of 
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"desirable" alternatives, their relative evaluation will be necessary if only one of 
them can be implemented. In such cases, the problem statement is likely to evolve 
during the decision aiding process. 

7.1.2.1 Choosing 

The first problem statement, choosing, is quite familiar in Operational Research 
and in Economics. The analyst'task is formulated in such a way that he either 
tries 

to isolate, in the set A of potential alternatives, a subset A' that is likely to 
contain the most desirable alternatives in A given the information available 
or 

0 to propose a procedure that will operate such a selection. 

Examples in which such a problem statement seems appropriate are not difficult 
to find: 

0 a recruiter wants to select a unique applicant, 

0 an engineer wants to select the best possible technical device, 

0 a patient wants to choose the best possible treatment among those offered 
in a hospital, 

a manager wants to optimise the supply policy of a factory, 

0 a consultant wants to screen a large number of possible sites to set up a new 
factory. Only the most promising ones will be subjected to detailed on-site 
studies. 

In all these examples, the selection is to be made on the sole basis of the comparison 
of potential alternatives. In other words, the "best" alternatives are not defined 
with respect to external norms but with respect to a set of alternatives A; the 
evaluation is only relative. Therefore, it may occur that the subset A', while 
containing the most desirable alternatives within A, only contains poor ones. 

7.1.2.2 Ranking 

The second problem statement, ranking, is also familiar in Operational Research 
and Economics. The problem is formulated in such a way that the analyst tries 

0 to rank order the set of potential alternatives A according to their desirability 
or, 

to propose a procedure that will operate such a ranking. 

It is not difficult to find examples in which this problem statement seems appro- 
priate: 
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a sports league (e.g., soccer or basketball) wants to rank order the teams at 
the end of the season, 

an academic programme has to select a number of applicants given the pro- 
gramme's size. A competitive exam is organised which leads to rank ordering 
the applicants according to an "average grade". Applicants are then selected 
in the decreasing order of their average grades until the size of the programme 
is reached, 

an R&D department has to finance a number of research projects subject to 
a budget constraint. Research projects are then rank ordered and financed 
till the budget constraint is binding. 

The evaluation is performed, as in the preceding problem statement, on a relative 
basis: the top ranked alternatives are judged better than the others while nothing 
guarantees that they are "satisfactory". The ranking of the alternatives is not 
defined with respect to outside norms but with respect to the comparison of the 
alternatives in A among themselves. 

Ideally we would like to be in a position to rank order the set A of alternatives 
from the best to the worst alternatives. Remember from chapter 3 that this 
amounts to defining a complete and transitive binary relation on A. As we will 
show below, this is not always an easy task. Therefore, some techniques do not 
insist on obtaining a complete relation leaving the possibility of incomparable 
alternatives (see the case study described in Bouyssou et al., 2000, ch. 9). 

Remark 7.1.1 
Our definition of the ranking problem statement does not prevent the relative posi- 
tion of two alternatives a and b from depending upon their comparison with other 
alternatives, e.g., c. Methods using ranking techniques allowing for such compar- 
isons violate the famous independence condition introduced by Arrow (1963) (see 
section 5.2.1.2 in chapter 5). 

Remark 7.1.2 
The distinction between this problem statement and the preceding one, choosing, is 
often subtle. Both are based on the comparison of alternatives amongst themselves. 
Intuitively, one would expect that the alternatives in set A' in a choosing problem 
statement should be ranked in the first equivalence class of the ranking within the 
ranking problem statement. This is misleading however since the ranking problem 
statement aims at  providing much richer information than the choosing problem 
statement. In a location study, the elements in A' may be promising and worth a 
further detailed study. This does not mean that they appear as equally promising. 
On the contrary, A' may contain sites that are quite different, e.g., isolated sites 
and sites close to city or to a recreational facility. 

7.1.2.3 Sorting 

The third problem statement, sorting, is designed to deal with absolute evaluation. 
The problem is here formulated in such a way that the analyst tries 
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0 to partition the set of alternatives into several categories, the definition of 
these categories being intrinsic, 

to  propose a procedure that will generate such a partition. 

The essential distinctive characteristics of this problem statement therefore lie in 
the definition of the categories. Two main cases arise. 

The definition of the categories may not refer to  the desirability of the alter- 
natives. Many problems that arise in pattern recognition, speech recognition or 
diagnosis are easily formulated in this way. We may, e.g., want to  decide whether 
an image reveals the presence of roads, whether a certain sound is to be interpreted 
as "yes" or "no", whether a patient has a certain disease, etc. Such situations call 
for the use of classification techniques that are beyond the scope of the present 
volume. In those situations, a category is often defined with respect to one or sev- 
eral of its prototypical elements. Alternatives are then assigned to the categories 
according to their "proximity" to the prototypical elements. 

In this chapter, we will exclusively be concerned with the case in which the 
absolute evaluation that sought involves the desirability of the alternatives, e.g., 
a credit manager may want to  isolate "good" risks and "bad" risks, an academic 
programme may wish to  enroll only "good" students, etc. A crucial problem here 
will lie in the definition of the categories, i.e., of the norms defining what is a 
"good" risk, what is a "good" student. Note that the traditional "classification" 
methods used, e.g., in machine learning or pattern recognition are not always 
well adapted to  deal with the case of categories conveying information on the 
desirability of the alternatives (on this point, see Greco, Matarazzo, and Slowifiski, 
1999b, 2001~) .  

Remark 7.1.3 
As already mentioned, the distinction between absolute and relative evaluation is 
often more subtle than presented above and it is often the case that  absolute and 
relative considerations are mixed. For instance, in a choosing problem statement, 
the set A' may contain alternatives that are 'Lobviously" very poor, leading the 
analyst not to  recommend any alternatives in A, but to foster a reformulation of 
the problem that aims at enlarging the set of alternatives (for a formal study of 
selection procedures that may end up with an empty choice set, see Aizerman, 
1985; Aizerman and Aleskerov, 1995). Similarly, in a ranking problem statement, 
it is often the case that  alternatives are rank ordered using "average grades" as is 
customary in many academic programmes. Although these average grades have, 
most often, an ordinal meaning (see Bouyssou et  al., 2000, ch. 3) some grades (e.g., 
the middle of the grading scale) may have a special meaning involving an element 
of absolute evaluation. 
Remark 7.1.4 
A frequent misunderstanding is to  confuse "absolute evaluation" with the mea- 
surement of desirability on a "cardinal" evaluation scale, the frequently mentioned 
example being the grades assigned to students. We saw in Bouyssou et  al. (2000, 
ch. 3) that the case of grades is probably more complex than it appears a t  first 
sight. Let us simply observe that absolute evaluation can be conceived indepen- 
dently of the construction of any "cardinal" evaluation scale. Suppose that  some 
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alternatives are judged "satisfactory", which is an absolute judgement. The ana- 
lyst, having built a preference relation on the set of alternatives, might be led to 
consider that all alternatives that are preferable to the satisfactory ones are also 
satisfactory. This is independent from any "cardinal" evaluation scale. 0 

8 An appropriate definition of the problem statement is an essential part 
@ of the formulation of the problem. It is crucial to know whether the desired 
Q evaluation is absolute as in the sorting problem statement or relative as in the 
0 choosing and ranking problem statements. The use of a problem statement 

involving absolute judgements calls for the modelling of norms. This is not 8 necessary when looking for a relative evaluation. In such a case however, 
Q the best alternatives may not be desirable. The main difference between the 
Q choosing and ranking problem statements lies in the richness of the output. 
h 

We refer the reader to Bana e Costa (1996), Roy (1996) and Roy and Bouyssou 
(1993) for a thorough analysis of these three problem statements. The aim of this 
chapter is to describe a number of techniques that the analyst can use in order to 
build a recommendation in one of these three problem statements on the basis of 
the preference models that were introduced in chapters 5 and 6. 

In section 7.2, we tackle the simple case in which the preference model takes 
the form of a value function. Section 7.3 is devoted to the case of making a rec- 
ommendation on the basis of several value functions. Such a situation frequently 
arises when using Linear Programming-based assessment techniques of, e.g., an 
additive value function. In section 7.4 we deal with the more delicate case of de- 
riving a recommendation on the basis of less well-structured preference models, 
e.g., those obtained by using ELECTRE, TACTIC or PROMETHEE, belonging 
to the family of the so-called outranking methods. A final section (7.5) will deal 
with the general problem of deriving robust conclusions. 

7.2 Deriving a recommendation 
with a value function 

Many of the preference models envisaged in chapter 6 are based on value functions. 
This means that the analyst has built a real-valued function V such that alternative 
a is judged at least as good as alternative b when V(a) 2 V(b). In chapters 5 and 
6, several techniques were presented to assess such a function. Many of them imply 
a particular functional form for V, e.g., an additive value function in the case of 
the comparison of multi-attributed alternatives. 

The value function V induces a binary relation k on the set of alternatives A, 
interpreted as an "at least as good" relation letting, for all a, b E A: 

Such a relation k is complete and transitive. It is therefore simple to use it to 
build a recommendation involving only a relative evaluation of the alternatives, 
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the hard work involved in the assessment of a value function being rewarded at 
this stage of the decision aiding process. 

In this section, we suppose that the value function V is only constrained by 
(7.1). This means that any increasing transformation of V would carry the same 
information as V (in the language of chapter 3, we suppose that V defines an 
ordinal scale). 

Remark 7.2.1 
It should be mentioned here that all that follows does not depend on the way 
value function V was obtained. The analysis in this section applies as soon as a 
preference model is, explicitly or implicitly, defined by (7.1). This is frequently 
the case in Operational Research, Economics or Statistics. 

7.2.1 Relative evaluation 

If the analyst has opted for a problem statement involving only a relative evaluation 
of the alternatives, i.e., choosing or ranking, the well-behaved relation 2 between 
alternatives induced by V offers a direct way to build recommendations. 

7.2.1.1 Choosing 

In a choosing problem statement, it is natural to look for alternatives that would 
be "at least as good" as all other alternatives, i.e., to identify the set G(A, k )  of 
greatest alternatives in A given the binary relation 2 defined by: 

Since k is complete and transitive, G(A, k )  will, in general l ,  be nonempty. Find- 
ing the alternatives in G(A, 2) is equivalent to finding the solutions to the following 
optimisation problem: 

max V(a). 
aEA 

Note that the set of solutions of this optimisation problem is unchanged if V is 
replaced by any value function satisfying (7.1), i.e., by any value function obtained 
from V applying to it an increasing transformation. Again, if a relative evaluation 
is sought, the only element that really matters is k. 

The set G(A, k )  may contain more than one element. In this case, all al- 
ternatives in G(A,k)  are indifferent and compare in the same way to all other 
alternatives. Therefore, the preference model defined by V offers no means of 
distinguishing between them. All alternatives in G(A, k )  are strictly preferred to 
all alternatives outside G(A, 2 ) .  The rejection of the latter therefore seems fully 
justified: all recommended alternatives are judged strictly better than all rejected 
alternatives. 

This is true when A is finite. The general case may be more tricky: while the relation 2 
on 1 is complete and transitive, G(>, P) is clearly empty. The same is true with 2 on the open 
10, l[ interval. 
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With a value function a t  hand, the analyst's task in a choosing problem state- 
ment is therefore clear: i t  consists in identifying the set G(A, 2 )  of greatest ele- 
ments in A. This is easy when A is "small" (i.e., finite and of limited cardinality). 
When A is not %mall", the analyst will resort to  one of the classical optimisa- 
tion techniques developed in Operational Research, depending on the structure of 
A and the properties of V (bearing in mind that  we may apply any increasing 
transformation to V). 

Remark 7.2.2 
As observed in chapters 5 and 6, the task of assessing a value function is not al- 
ways easy. Several value functions may appear as a reasonable preference model, 
leading to several possible relations 2 an, thus, several sets G(A,?). The elab- 
oration of the recommendation should this take into account. Such "robustness" 
considerations will be discussed in sections 7.3 and 7.5. 

Remark 7.2.3 
The set of maximal alternatives M ( A , k )  in A, given the binary relation k, is 
defined by: 

M ( A , k ) = { a € A :  N o t [ b + a ] , V b ~ A ) .  

where > is the asymmetric part of 2. I t  is often presented as the central notion in 
a choosing problem statement. I t  is important to  note that, when 2 is complete, 
we always have G(A, 2 )  = M(A, 2 ) .  

When A is finite, it is easy to  show that M(A, 2 )  is nonempty when 2 has no 
circuit in its asymmetric part >. For finite sets, the absence of any circuit in > 
is, in fact, a necessary and sufficient condition for M ( B ,  2 )  to  be nonempty for all 
nonempty sets B A. 

As soon as >. has no circuit, building a recommendation in a choosing problem 
statement does not raise conceptual difficulties, even when 2 cannot be be rep- 
resented using a value function in the sense of (7.1). In fact, all what is in fact 
needed is that  > has no circuit. 0 

Remark 7.2.4 
The determination of G(A, 2 )  does not become easier if we suppose that V defines 
a scale that  is stronger than an ordinal scale, e.g., because it allows to compare 
preference differences. This type of richer information may however ease the in- 
terpretation of G(A, k), giving an indication of the "distance" between selected 
and rejected alternatives. 

7.2.1.2 Ranking 

Let us now envisage the case of a ranking problem statement. The hard work of 
building a value function also pays off here since the binary relation 2 induced on 
A by the value function V (or by any increasing transformation of V) rank orders 
the alternatives from the best to the worst, which is precisely what is wanted. 
Apart from the necessity of conducting a robustness analysis (see sections 7.3 and 
7.5), no additional work is required. 
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Remark 7.2.5 
As in the choosing problem statement, having a value function V that is more con- 
strained than an ordinal scale may ease the interpretation of the ranking. If, e.g., 
the difference between V(a) and V(b) conveys information on the "preference dif- 
ference" between a and b, this may be used to analyse the proximity of the various 
indifference classes of k.  It  cannot be overemphasised that this is only legitimate 
if such information has been modelled in the definition of V (see section 6.6.1 of 
chapter 6). 

When a value function is defined on the set of alternatives, it is easy to 
0 derive a recommendation in the choosing or ranking problem statement. The 
@ main difficulty lies in the definition of the value function. 

r-, 

7.2.2 Absolute evaluation: Sorting 

In both problem statements involving only a relative evaluation of alternatives, 
we have seen that the value function model provided an almost immediate way of 
deriving a recommendation. The situation is slightly more complex in a sorting 
problem statement, which calls for an absolute evaluation. It  is thus necessary 
to define the "norms" that will give sense to such an evaluation, whereas the 
assessment of a value function usually does not require such an analysis. 

The general problem of defining what is "good" and "bad" on the basis of a 
preference model is complex (and often involves the definition of a "neutral" point, 
see Rescher, 1969; von Wright, 1963, 1972). We will only envisage the, frequent, 
case in which the absolute evaluation that is sought takes the form of a sorting 
of the alternatives between several categories. We consider the case of r ordered 
categories C1, C2 , .  . . , CT, with C1 containing the least desirable alternatives. The 
definition of each category involves the definition of norms. These norms usually 
take two distinct forms. They may be modelled as prototypes of alternatives 
belonging to a category or as limiting profiles indicating the limit of each category. 
Such norms may result from conventions, interaction with the decision maker or 
the analysis of past decisions. The definition of such norms is discussed in some 
detail in section 7.3.4. 
Remark 7.2.6 
These two ways of defining categories in a sorting problem statement are easily 
illustrated by considering the case of the evaluation of students in an academic 
programme. A "good" student may be defined using examples of past students 
in the programme. This would define the prototypes of the category of "good 
students". Alternatively, we could define, as is done in the French baccalaure'at, 
an average grade above which, students are considered to be "good". E.g., in 
the French baccalaure'at an average grade above 16 on a scale going from 0 to 20 
implies that the exam is passed magna cum laude. 

7.2.2.1 Limiting profiles 

When each category Ck  is delimited by a limiting profile .rrk, an alternative a 
should belong at least to the category Ck  when it is preferred to nk .  It  then 
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becomes easy to  use a value function to sort the alternatives: alternative a E A 
will belong to ck if and only if v ( n k )  < <(a) < v(nk+l ) ,  where the unlikely 
cases of equality are dealt with conventionally, depending on the definition of the 
limiting profiles nk.  Note that the definition of a limiting profile implies that there 
is only one such profile per category. The main problem here lies in the definition 
of the limiting profiles nk.  We shall come back to this point in section 7.3.4. 

7.2.2.2 Prototypes 

The situation is more delicate when categories are defined via prototypes. Suppose 
that category Ck has been defined by a set pk of prototypes. A first step in the 
analysis consists in checking whether this information is consistent with the value 
function V, i.e., if the prototypes defining a category C k  are all preferred to the 
prototypes defining the category ck' when k > k'. 

When this consistency test fails, the analyst may wish to reconsider the defini- 
tion of V or of the various prototypes. When the prototypes are consistent, we may 
easily associate to  each category C k ,  its lowest prototype Lk and its highest pro- 
totype Hk in terms of the value function V. If V(a) E [V(Lk); v ( H k ) ] ,  alternative 
a should be assigned to  the category Ck. If this simple rule allows to assign each 
alternative to  a well-defined category, no further analysis is required. When this is 
not the case, i.e., when there are alternatives a E A such that V(a) falls between 
two intervals, we may either try to  refine the information defining the categories, 
e.g., try to  ask for new prototypes, or apply a simple rule e.g., replacing the inter- 
vals [v(Lk) ;  v ( H k ) ]  by the interval [(V(Hk-l)+V(Lk))/2; ( v ( H ~ ) + v ( L ~ + ' ) ) / ~ ] .  
Ideally we would need a similarity measure on the set of alternatives, that  would 
allow to  classify a as a member of C k  if a is close to  one or several of the prototype 
alternatives defining C k .  The simple rule envisaged above amounts to  using V as 
a very rough similarity measure since this amounts to saying that a is more similar 
to b than it is to c if IV(a) - V(b)l < IV(a) - V(c)l. I t  should however be noted 
that the assessment procedures of V envisaged above do not guarantee that such a 
measure is appropriate. In general, this would call for the modelling of "preference 
differences" between alternatives, e.g., using a model in which: 

where k* is a binary relation on A2 such that (a, b) k* (c, d) is interpreted as 
"the preference difference between a and b is a t  least as large as the preference 
difference between c and d". Preference models satisfying (7.2) and (7.3) were 
presented in section 4.3.9 of chapter 4 and section 6.6.1 of chapter 6. They are 
thoroughly analysed in Krantz et  al. (1971, ch. 4). Again, a common mistake here 
is to use any V satisfying (7.2) as if it would automatically satisfy (7.3). Note 
that the fact that V in (7.2) defines an interval scale (e.g., if V is a value function 
obtained using an expected utility model, see Fishburn, 1970, ch. 8), does not 
guarantee that (7.3) holds. 

When a value function is defined on the set of alternatives, the derivation 
of a recommendation in the sorting problem statement calls for the definition 
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G of the various categories. This may be done either by using limiting profiles or 
Q prototypical elements. In the former case, the derivation of a recommendation 

is straightforward. In the latter case, the situation is more complex, unless 8 the value function has been defined to  model preference differences between 
Q alternatives. 

Remark 7.2.7 
As already emphasised, the assessment of a value function V is often a difficult 
task. Therefore, the situation in which several functions V appear as reasonable 
preference models is not exceptional. The following section deals with this situ- 
ation in the special case of additive value functions. In such a case, it is often 
possible to reach an explicit definition of the set of all acceptable value functions. 
Formal techniques can then be used to  derive robust recommendations taking the 
fact that  the preference model is not perfectly defined into account. Besides this 
special case, the possibility of an explicit definition of the set of all acceptable value 
functions is quite unlikely. The need for robust conclusions remains, however. Us- 
ing a value function as if "small" differences were not significant is often helpful 
in this respect. The definition of a threshold allowing to separate significant from 
insignificant differences is not straightforward. The use of such a threshold should 
be considered as a technical device allowing the analyst to cope with the likely 
imprecision of the value function assessed. A more general view on robustness is 
presented in section 7.5. 

7.3 Deriving a recommendation with 
a set of value functions 

In the preceding section, we envisaged the case in which the analyst has to  build 
a recommendation on the basis of a single value function V (or, more precisely, of 
a set of value functions representing the same preference relation in the sense 
of (7.1); these value functions can all be deduced from V using increasing trans- 
formations, see chapter 3). This amounts to  separating the assessment phase of V 
from the elaboration phase of the recommendation. Motivated by the assessment 
of an additive value function via Linear Programming, in this section we envisage 
techniques for which this separation is not so clear in that the assessment proce- 
dure is no longer oriented towards the definition of a single value function V. The 
analyst will then have to  build a recommendation on the basis of several value 
functions that  cannot be deduced from one another using an increasing transfor- 
mation. In this section, the analysis is closely related to section 7.5 in which the 
general problem of defining and deriving robust conclusions is tackled. 

7.3.1 Motivation: Linear programming assessment of addi- 
tive value functions 

In order to motivate our study of techniques designed to  derive a recommendation 
on the basis of several value functions, i t  is instructive to realise that such a 
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situation is common when one tries to assess an additive value function using 
Linear Programming techniques. This will also allow us to illustrate a "learning 
by example" strategy for the assessment of a preference model based on regression. 

7.3.1.1 Beyond standard sequences 

In chapter 6 (see also Bouyssou et al., 2000; Krantz et al., 1971; Wakker, 1989), we 
have presented the theory underlying the additive value function model. Consider 
a set of alternatives A evaluated on a set of attributes. Let us denote by Xi the 
set of possible levels for attribute i E N. This set of levels on attribute i E N 
may well contain levels that are not encountered within set A: this will be the 
case as soon as the analyst wishes to build a preference model that can evaluate 
alternatives that are outside A either because the recommendation will take the 
form of a methodology for evaluating alternatives or because set A may evolve 
during the study. If the set of attributes adequately describes the consequences 
of the potential alternatives, each alternative is modelled as an element of X = 
X1 x X2 x . . . x X,. At this stage, the analyst may wish to build a preference model 
allowing to compare all the elements of X. An additive value function model takes 
the following form: 

n n 

X k Y * X ~ i ( x i )  2 ):ui(yi), (7.4) 

where ui is a real-valued function on Xi. 
The reader is referred to section 6.1 of chapter 6 for a detailed analysis of the 

properties of this model. An analyst willing to make use of such a model should 
therefore assess the functions ui, called marginal value functions. The results in 
chapter 6 give useful hints on how such a value function may be assessed, which 
exemplifies the interest of the axiomatic analysis of a preference model. 

The main tool envisaged in chapter 6 to assess such a value function is the 
standard sequence technique that directly follows from theorems 6.1 and 6.2. Let 
us recall here that this technique leads to choose a reference point (xy, xg, . . . , x:) 
in X and a reference level xi  on attribute i = 1. A standard sequence on attribute 
j = 2 is a set of levels x i ,  x;, . . . , s t  E X2 such that: 

(x?, xi ,  x; . . . , x i )  - (x;, x;, x; . . . , x:), 

(x?, xi ,  x; . , . , x i )  (x;, x i ,  x; . . . , x i ) ,  
0 3 0 0 1 2 0  ( ~ 1 , ~ 2 , ~ 3 . . . , ~ ; ) ,  
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We can always take ui(x:) = 1 and ui(x:) = 0, for all i E N. Therefore the 
standard sequence on attribute 2 built above leads to uz(x;) = 1, u~(x ; )  = 2, . . . , 
u ~ ( x $ )  = k. 

The logic of the assessment procedure is then to  build a standard sequence on 
each of the attributes which is different from the reference attribute 1. 

Once this is done, we can use the information collected on any attribute other 
than the reference attribute to build a standard sequence on the reference attribute. 
We may, e.g., use attribute 2 in order to define a standard sequence on the first 
attribute. This implies finding values xq, xp, . . . , x: E X2 such that: 

2 0 0 1 0  
( ~ 1 , ~ 2 r ~ 3 . . . , ~ k )  (x:,x2,x3...,xk), 

3 0 0 0 2 1 0  
(x1,x2)x3.. . ,xn) ( x 1 , ~ 2 , ~ 3 . . . 1 ~ : ) ,  

1 0  0 (XI;:, x i ,  X: . . . , x i )  N (x:-', x2, x 3 . .  . , xn). 

This will enable the assessment of a number of points on the graph of the marginal 
value function on the reference attribute 1. 

The logic of the assessment procedure derived from theorems 6.1 and 6.2 is 
then to  assess more and more points considering more finely grained standard 
sequences. A limiting process then unambiguously defines the functions ui. The 
resulting ui functions are unique up to  the choice of the origin and that of a 
common unit. Indeed, the only arbitrary choices made above were the definition 
of the reference point (xy, xg, . . . ,x:) (defining the origin) and the definition of 
the reference level x i  (defining the common unit). 

This assessment procedure results directly from theoretical considerations. It 
is worth noting here that this procedure: 

requires that the set Xi to be rich in that on each attribute i E N there 
must be a level xr such that the "difference" between x; and xi-' exactly 
offsets the "difference" between x: and x? (this is often called a "solvability" 
assumption). Practically, this excludes using such an assessment procedure 
when some of the sets Xi are discrete, 

0 relies on indifference judgements which, a priori, are less firmly established 
than preference judgements, 

0 relies on judgements concerning fictitious alternatives which, a priori, are 
harder t o  conceive than judgements concerning real alternatives, 

0 is such that the various assessments are thoroughly intertwined and an impre- 
cision on the assessment of x i ,  for instance, will propagate to many assessed 
values. 

I t  may thus be useful to resort to  other kinds of assessment techniques. 

8 The assessment of an additive value function using the standard sequence 
technique is technically and cognitively demanding. In particular, it is not 

@ appropriate when some attributes have an underlying discrete structure or 
Q when it appears to  be difficult to compare unrealistic fictitious alternatives. r'3 
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7.3.1.2 Linear Programming assessment techniques 

In practice, it is not restrictive to suppose that the sets Xi are bounded so that 
there is a worst value gi and a most preferable value Ti. Using the uniqueness 
properties of the ui, it may always be assumed that: 

Two main cases arise (see figures 7.1 and 7.2): 

. . . ,  , 0 set Xi is discrete and we have Xi = {gi, x i ,  x:, x;" zi}. We therefore 
have to assess ri + 1 values of ui, 

set Xi has a continuous structure. It is hardly restrictive in practice to 
assume that Xi c R. Instead of assessing ui we may opt for the assessment 
of a piecewise linear approximation of ui partitioning the set Xi into ri + 1 
intervals and assuming that ui is linear on each of these intervals. Note that 
the approximation of ui can be made more precise by simply increasing the 
number of these intervals 2.  

Figure 7.1: Value function when Xi is discrete. 

With these conventions, the assessment of model (7.4) amounts to giving a value 
to ri + 1 points on each function ui subject to conditions (7.5-7.6). Taking these 
conditions into account, this gives a total of Cy=l(ri + 1) - 1 unknowns. Any 
judgment of preference linking x and y translates into a linear inequality between 
these unknowns. Similarly any judgment of indifference linking x and y translates 
into a linear equation between these unknowns. 

It is, of course, not compulsory to  partition the set Xi into intervals of equal length. 
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Figure 7.2: Value function when Xi is continuous. 

Linear Programming (LP) offers a powerful tool for testing whether a system 
of linear constraints has solutions. Therefore, alternative assessment procedures 
may be conceived on the following basis (which is closely related to the theoretical 
analysis of model (7.4) in the finite case proposed by Scott (1964), see theorem 
6.3): 

0 obtaining judgments in terms of preference or indifference linking several 
alternatives in X, 

converting these judgments into linear constraints, 

testing, using LP, whether this system of constraints has a solution. 

If the system has no solution then one may envisage either to propose a solution 
that  will be "as close as possible" to  the information obtained, e.g., violating 
the minimum number of constraints or to suggest the reconsideration of certain 
judgements. If the system is compatible, one may explore the set of all solutions 
to  this system, since they are all candidates for the establishment of model (7.4). 
These various techniques depend on 

the choice of the alternatives in X that are compared: they may be real or 
fictitious, they may differ on a different number of attributes, 

0 the way of dealing with the inconsistency of the system of linear constraints 
and to  eventually propose that some judgments be reconsidered, 

0 the way of exploring the set of solutions of the system and to use this set as 
the basis for deriving a recommendation. 

('71 

Linear programming offers a simple and versatile technique to assess an 
13 additive value function. All restrictions generating linear constraints on the 
G3 parameters of the value function can easily be accommodated. 
R 
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7.3.1.3 Variants of LP based assessment 

The idea that the assessment of an additive value function can be obtained via 
the solution of a system of linear constraints has generated numerous studies (for 
a thorough overview, see Belton and Stewart, 2001). We will look a t  the two most 
useful and well-known techniques that have been developed within this framework 
here. 

7.3.1.3.1 UTA (Jacquet-LagrBze and Siskos, 1982) UTA (which is the 
French acronym for additive utility) is one of the oldest technique belonging to 
this family of assessment techniques. In UTA it is assumed that there is a subset 
ARef c A of reference alternatives that  the decision maker knows well either be- 
cause he has experienced them or because they have received particular attention. 
The technique amounts to asking the decision maker to provide a weak order on 
A R e f  Each preference or indifference relation contained into this weak order is 
then translated in a linear constraint: 

x N y yields an equation V(x) - V(y) = 0 and 

x + y yields an inequality V(x) - V(y) > 0, 

where V(x) and V(y) can be expressed as a linear combination of the unknowns 
as noted earlier. Strict inequalities are then translated into nonstrict ones as is 
usual in Linear Programming, i.e., V(x) - V(y) > 0 becomes V(x) - V(y) 2 6 
where E > 0 is a very small positive number that  should be chosen according to 
the precision of the arithmetics used by the LP package. 

The testing of the existence of a solution to the system of linear constraints 
is carried out via standard Goal Programming techniques adding appropriate de- 
viation variables. In UTA, each equation V(x) - V(y) = 0 is translated into an 
equation V(x) - V(y) + a: - a; - a$ + a; = 0, where a:, a;, a$ and a; are 
nonnegative deviation variables. Similarly each inequality V(x) - V(y) 2 E is 
written as V(x) - V(y) + a: - a; - a$ + a; 2 E. It is clear that there will be 
a solution to  the original system of linear constraints if there is a solution of the 
LP in which all deviation variables are zero. This can easily be tested using the 
objective function 

Minimise Z = af + a, (7.7) 
x E A R ~ ~  

Two cases arise 

1. If the optimal value of Z is 0, there is an additive value function that rep- 
resents the preference information. It should be observed that, except in 
exceptional cases (e.g., if the preference information collected is identical to 
the preference information collected with the standard sequence technique) 
there is an infinite number of such value functions (that cannot be deduced 
from one another by an increasing transformation since we have normalised 
the value functions using (7.5) and (7.6)). The value function given as the 
"optimal" one using LP does not have a special status, since it is highly 
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dependent upon the arbitrary choice of the objective function and upon the 
implementation of the LP algorithm. Instead of minimising the sum of the 
deviation variables, we could have as well minimises the largest of these vari- 
ables and still preserving linearity using standard tricks in LP. The whole 
polyhedron of feasible solutions of the original constraints corresponds to  
adequate additive value functions: we have an entire set V of additive value 
functions representing the information collected on the set of reference al- 
ternatives ARef.  

Using standard techniques in LP, several functions in V may be obtained, 
e.g., the ones maximising or minimising, within V, ui(Zi) for each attribute 
(see Jacquet-LagrBze and Siskos, 1982). The size of V is dependent on the 
choice of the alternatives in ARef. 

If the optimal value of Z is strictly larger than 0, there is no additive value 
function representing the preference information available. Note that, in gen- 
eral, the value function derived from the optimal solution of the LP, is highly 
dependent upon the choice of the objective function and there is no guaran- 
tee that it leads to  the minimum possible number of violations with respect 
to  the information provided (this would require solving an Integer Linear 
Programme). This absence of a solution to the system of linear constraints 
might be due to  several factors: 

the piecewise linear approximation of the ui for the "continuous" at- 
tributes could be too rough. I t  is easy to  test whether an increase in 
the number of linear pieces on some of these attributes may lead to  a 
nonempty set of additive value functions. 

the information provided by the decision maker could be of poor qual- 
ity. It might then be interesting to present one additive value function 
(e.g., one may present an average function after some post-optimality 
analysis) in the pictorial form of figures 7.1 and 7.2 to  the decision 
maker and to  let him react to  this information either by modifying his 
initial judgments or even by letting him react directly to the shape of 
the value functions. This is the solution implemented in the well-known 
PREFCALC system (Jacquet-LagrBze, 1990). 

the preference information provided by the decision maker might be 
inconsistent with the conditions implied by an additive value function. 
The system should then help to locate these inconsistencies and allow 
the decision maker to reflect on them. 

Even when a perfect restitution of the information provided by the decision 
maker is not possible, the "optimal" additive value that has been obtained 
may still be considered as an adequate model. Again, since the objective 
function introduced above is somewhat arbitrary, i t  is highly recommended 
to perform a post-optimality analysis, considering additive value functions 
that are "close" to  the optimal solution. This can easily be done using 
alternative objective functions, e.g., maximising or minimising ui(zi), and 
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introducing the linear constraint: 

where Z* is the optimal value of the original linear programme and p is a 
small positive number. As in the above case, the result of the analysis is a 
set V of additive value functions defined by a set of linear constraints. A 
representative sample of additive value functions within V may be obtained 
as above. 

It  should be noted that many variants of UTA can be conceived building on 
the following comments. They include: 

0 the addition of monotonicity properties of the ui with respect to the under- 
lying continuous attributes, 

0 the addition of constraints on the shape of the marginal value functions ui, 
e.g., requiring them to be concave, convex or S-shaped, 

the addition of constraints linked to a possible indication of preference inten- 
sity for the elements of ARef given by the decision maker, e.g., the difference 
between x and y is larger than the difference between z and w. 

With UTA, the assessment of an additive value function rests on a weak 
@ order given by the decision maker on a subset ARef of A. This leads either 
8 to a whole set of additive functions V compatible with the information or to 
Q the conclusion that there is no compatible additive value function. In the 

first case, interaction with the decision maker can help reduce the size of V. 8 In the second case, it should be remembered that the objective function of 
@ the optimisation model used to test the compatibility of the constraints is 
C2 arbitrary. No particular status should be given to the value function derived 
Q from the optimal solution of the LP. Interaction and post-optimality analysis 
s h o u l d  extensively be used to delineate an adequate set V. 

7.3.1.3.2 MACBETH (Bana e Costa and Vansnick, 1994) It  is easy to 
see that equation (7.4) may equivalently be written as: 

where 
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Categories Description 
C1 weak 
C2 strong 
C3 extreme 

Table 7.1: Definition of categories in MACBETH. 

With such an expression of an additive value function, it is tempting to break down 
the assessment into two distinct parts: a marginal value function vi is assessed on 
each attribute and then, scaling constants wi are assessed taking the shape of the 
value functions vi as given. This is the path followed in MACBETH. 

The assessment procedure of the vi is conceived so as to avoid comparing al- 
ternatives differing on more than one attribute. The trick here is that MACBETH 
asks for judgments related to the difjerence between the desirability of alterna- 
tives. Value functions vi are approximated on each attribute in a way similar to 
that used in UTA: each point on the function is assessed for discrete attributes, 
a piecewise linear approximation is used for continuous ones. MACBETH asks 
the decision maker to compare pairs of levels on each attribute. If no difference 
is sensed between these levels, they receive an identical marginal value level. If a 
difference is felt between x t  and x:, MACBETH asks for a judgment qualifying 
the strength of this difference. The method and the associated software propose 
three different semantical categories (see table 7.1), with the possibility of using 
intermediate categories, e.g., between weak and strong (giving a total of six dis- 
tinct categories, taking an hesitation between a weak difference and no difference 
at  all into account). 

This information is then converted into linear inequalities using the natural 
interpretation that if the "difference" between the levels x t  and xy has been judged 
larger than the "difference" between 25' and xf , then it should follow that vi(xt)- 
vi(xF) > vi (xt' ) - vi(x:'). 

The software associated to MACBETH offers the possibility of comparing all 
pairs of levels on each attribute for a total of (ri + l)ri /2 comparisons. Using 
standard Goal Programming techniques as in UTA, the test of the compatibility 
of a marginal value function with this information is performed via solving a Linear 
Programme. 

If there is a marginal value function compatible with the information, a post- 
optimality analysis is performed and a "central" function is proposed to the deci- 
sion maker who has the possibility of modifying it. If not, the results of the LP 
are exploited so as to propose modifications of the information that would make 
it consistent. 

The assessment of the scaling constants wi is made using similar principles. 
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The decision maker is asked to  compare the following (n + 2) alternatives by pairs: 

placing each pair in a category of difference. This information immediately trans- 
lates into a set of linear constraints on the wi. They are processed as before. 

Remark 7.3.1 
It should be noted that once the marginal value functions vi are assessed, it is not 
necessary to use the levels gi and Ti to assess the wi since they may well lead to 
alternatives that are too unrealistic. The authors of MACBETH suggest to replace 
zi by a "neutral" level which appears neither desirable nor undesirable and Ti by 
a desirable level that  is judged satisfactory. Although this has an impact on the 
quality of the dialogue with the decision maker, this has no consequence on the 
underlying technique used to process information. 0 

As in UTA, many variants of the method are easy to conceive through the ex- 
ploitation of various types linear restrictions on the vi and/or on the wi. The 
result of MACBETH, as in UTA is an entire set V of additive value functions 
(again, since these functions are normalised using (7.9), (7.10) and (7.11), they 
cannot be deduced from one another by an increasing transformation). The origi- 
nality of MACBETH, breaking down the assessment phase into two different steps, 
often allows to  reduce the size of V compared with UTA, e.g., it is often the case 
that  interaction with the decision maker allows to specify a unique marginal value 
function on each attribute. 

With UTA or MACBETH the result of the assessment procedure is a set 
8 V of additive value functions. The formulation of a recommendation should 
@ take the whole set of additive value functions in V into account. 
,h 

This raises the problem of formulating a recommendation on the basis of a 
set V of value functions that cannot be deduced from one another by using an 
increasing transformation. What is sought here is a way of deriving "robust" 
recommendations in spite of the fact that our assessment techniques have not 
allowed to isolate a single value function. 

Remark 7.3.2 
As an alternative, we could also try to aggregate this information using the tech- 
niques envisaged in chapter 5. This is rarely appropriate however, since most of 
the techniques presented in chapter 5 require some form of interaction with the 
decision maker. Here, the existence of several value functions stems from the as- 
sessment procedure of the preference model and, therefore, occurs after the main 
phase of interaction with the decision maker. 0 
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7.3.2 Choosing with a set of additive value functions 

Suppose for example that, because we have assessed an additive value function 
with UTA or MACBETH, we have an entire set V of value functions compatible 
with the available information. Two main ways of exploiting this set V may be 
envisaged within a choosing problem statement. 

The simplest way of using the set V is to consider that an alternative a E A 
should be included in the set A' C A of recommended alternatives as soon as there 
is one additive value function in V such that using this function, a is a t  least as 
good as any other alternative in A. This is illustrated in section 7.3.5. 

When the set V comes from Linear Programming-based assessment techniques, 
such a test is easily performed using LP, since the elements in V correspond to  the 
solution of a set of linear constraints. In fact, we only have to test whether the 
system of inequalities V(a) 1 V(b), for all b E A, is consistent for some V E V .  
This requires solving a linear programme for each alternative a E A. 

The above mentioned technique is very cautious and is likely to lead to  quite 
large choice sets. A more refined analysis is based on the "proportion" of value 
functions V E V for which an alternative is optimal. The "more functions" V in V 
give a as the optimal solution, the more confident we are in the fact that  a can be 
recommended (implementing such an approach, would require making the way of 
"counting" the functions in V precise and of making an hypothesis stating that  all 
functions in V play a similar role). In general, such an analysis would require an 
enormous amount of computation (see Bana e Costa, 1986, 1988), even when V is 
defined by the solutions of a set of linear constraints. A possible solution would 
be to  sample a few value functions within V .  

When V is defined by linear constraints, Jacquet-Lagrhze and Siskos (1982) 
suggested that  a finite subset V' of V that is "representative" of the whole set V 
can be built considering on top of the "optimal" value function 2 x n functions 
respectively obtained by maximising and minimising ui(Pi) for each attribute. 
This set V' is easily obtained using LP. 

When using techniques such as MACBETH, it may also occur that  the shape 
of the single attribute value functions ui are assessed with sufficient confidence but 
that the scaling constants wi are only known through a number of inequalities. 
This case has been thoroughly studied in Bana e Costa (1986,1988), Bana e Costa 
and Vincke (1995), Carrizosa, Conde, Fernandez, and Puerto (1995), Eum, Park, 
and Kim (2001), Fishburn (1964); Hazen (1986), Henggeler Antunes and Climaco 
(1992), Kirkwood and Corner (1993), Kirkwood and Sarin (1985), Kmietowicz and 
Pearman (1981), Mateos, J imhez,  and Rios-Insua (2003), Rios-Insua (1990) and 
Rios-Insua and French (1991). 

LP offers simple means of deriving a recommendation in the choosing 
[,:;;q problem statement, on the basis of a entire set V of additive value functions. 
f& The more refined analysis based on the proportion of the value functions within 

V that put each alternative in the first place is computationally intensive, 
except under special circumstances. r Z i  
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7.3.3 Ranking with a set of additive value functions 

Here again, the crudest way of using the information contained in V would be to 
build a partial preorder (i.e., a reflexive and transitive relation) T such that: 

a T  b~ V(a) > V(b) for all V E V, (7.12) 

i.e., letting a be ranked before b if it is so for every admissible function V in V. 
Testing if a T b can easily be done using LP when V is defined via linear con- 

straints. The use of such a technique is however limited since it implies solving 
n(n  - 1) linear programmes when IAl = n. Furthermore, such a unanimity argu- 
ment is likely to  lead to  a very poor recommendation: many alternatives will be 
incomparable when V is large. 

When IAl is too large to  allow the use of the technique described above or 
when a richer result is sought, one may either try to restrict the domain V through 
emphasising interaction with the decision maker during the assessment phase, or 
work with the representative set of value functions V' introduced above. Quite 
interesting examples of such techniques can be found in Siskos (1982). This is 
illustrated in section 7.3.5. 

The case in which the value functions in V only differ in the assessment of 
the scaling constants wi has been thoroughly studied in the literature (see Bana e 
Costa, 1990; Bana e Costa and Vincke, 1995; Carrizosa e t  al., 1995; Kirkwood and 
Sarin, 1985, for thorough overviews). 

Remark 7.3.3 
Suppose that we have obtained a finite representative sample V' of V. At this 
stage, it is tempting to consider that alternative a should be ranked higher than 
alternative b if there are more value functions in V' leading to a k b than to  b k a.  
This amounts to  replacing a "unanimity" argument by a "majority" one. 

Although quite simple, such a "majority" argument is quite deceptive. Indeed, 
as detailed in chapter 5, simple examples show that, in general, it does not lead 
to compare alternatives in a transitive way, which is a basic requirement of the 
ranking problem statement. a 

Remark 7.3.4 
It may be interesting to  detail the links between the ranking technique evoked here 
and the choice technique detailed above. Suppose that a E A', i.e., that for some 
V E V, we have V(a) > V(b), for all b E A. This obviously implies that a cannot 
be strictly beaten by any other alternative using the relation T defined by (7.12). 
Hence, a must belong to  set M(A,T)  of maximal elements in A for T. 

7.3.4 Sorting with a set of additive value functions 

In the techniques envisaged so far we did not consider the definition of the "norms" 
that  are necessary to  sort alternatives. A useful technique, in the spirit of UTA, 
consists in assessing the additive value function using examples of alternatives 
belonging to each of the ordered categories, that we called prototypes in section 7.1. 
Such examples may come from past decisions or may be obtained from the decision 
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maker as prototypical examples of each category. We may then try to infer limiting 
profiles and an additive value function on the basis of such information. 

This amounts to assessing an additive value function V and thresholds sk such 
that, for all prototypes n; of category Ck we have V(@) E [sk,sk+'[. This is 
the basis of the UTADIS technique (see Jacquet-LagrBze, 1995; Zopounidis and 
Doumpos, 2000b, 2001, 2002) and its variants (Zopounidis and Doumpos, 2000a). 

Basically UTADIS replaces the weak order on a subset of reference alternatives 
as used in UTA, by a number of prototype alternatives for each ordered category. 
Such a technique extends the traditional methods of discrimination used in Statis- 
tics considering the possibility of nonlinear value functions. As in Statistics, the 
assessment may use "cost of misclassification" which simply amounts to weighting 
the deviation variables in the LP used to assess the value function V appropri- 
ately. As in UTA, this leads to a whole set of possible additive value functions 
with associated limiting thresholds. 

The way to  make use of such information to build a recommendation has not 
been thoroughly studied in the literature. The most obvious way of doing so 
seems to be to consider a subset V' of representative additive value functions as 
suggested above. For each alternative a E A, it is easy to compute a set of possible 
assignments using V'.  One may then, for example, use the frequency with which 
each alternative is assigned to a category to devise a recommendation. This is 
illustrated below. 

7.3.5 Example: Thierry's choice 

7.3.5.1 Thierry's choice (Bouyssou et al., 2000, ch. 6) 

In order to illustrate the techniques described above, let us consider the example 
of the choice of a car presented and discussed at length in Bouyssou et al. (2000, 
ch. 6). Let us simply recall here the structure of this case. 

Thierry, a Belgian engineering student, aged 21 (back in 1993 when the problem 
was formulated), is passionate about sports cars and driving (he has taken lessons 
in sports car driving and participates in races). Being a student, he cannot afford 
to buy either a new car or a luxury second hand sports car; so he decides to explore 
the middle range segment, 4 year old cars with powerful engines. Thierry intends 
to use the car in everyday life and occasionally in competitions. His strategy is 
first to select the make and type of the car on the basis of its characteristics, 
estimated costs and performances; then to look for such a car in second hand car 
sale advertisements. 

The initial list of alternatives was selected taking an additional feature into 
account. Thierry lives in town and does not have a garage to park the car in at 
night. Consequently he does not want a car that would be too attractive to thieves. 
This explains why he discards cars like VW Golf GTI or Honda CRX. He thus 
limits his selection of alternatives to the 14 cars listed in table 7.2. As discussed 
in Bouyssou et al. (2000, ch. 6), Thierry's concerns are very particular. This leads 
him to select five viewpoints related to cost (criterion l ) ,  performance of the engine 
(criteria 2 and 3) and safety (criteria 4 and 5). Evaluations of the cars on these 
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Trademark and type Abbreviation 
1 Fiat Tipo 20 ie 16V Tipo 
2 Alfa 33 17 16V Alfa 
3 Nissan Sunny 20 GTI 16 Sunny 
4 Mazda 323 GRSI Mazda 
5 Mitsubishi Colt GTI Colt 
6 Toyota Corolla GTI 16 Corolla 
7 Honda Civic VTI 16 Civic 
8 Ope1 Astra GSI 16 Astra 
9 Ford Escort RS 2000 Escort 
10 Renault 19 16s R19 
11 Peugeot 309 GTI 16V P309-16 
12 Peugeot 309 GTI P309 
13 Mitsubishi Galant GTI 16 Galant 
14 Renault 21 20 turbo R21t 

Table 7.2: List of the cars selected as alternatives. 

criteria were obtained from monthly journals specialised in the benchmarking of 
cars. The official quotation of second hand vehicles of various ages is also published 
in such journals following the process described in Bouyssou et al. (2000, ch. 6) 
and Perlias-Bouncke (1998). 

The cost criterion evaluates, in €, the estimated expenses incurred by buying 
and using a car. Criterion 2 ("Accel" in table 7.3) encodes the time (in seconds) 
needed to cover a distance of one kilometre starting from standstill. The third 
criterion that Thierry took into consideration is linked to the pick up or suppleness 
of the engine in urban traffic; this dimension is considered important since Thierry 
also intends to use his car in normal traffic. The indicator selected to measure 
this dimension ("Pick up" in table 7.3) is the time (in seconds) needed to cover 
one kilometre when starting in fifth gear at 40 km/h. This dimension is not 
independent of the second criterion, since they are generally positively correlated 
(powerful engines generally lead to quick response times on both criteria); cars 
that are specially prepared for competition may however lack suppleness in low 
operation conditions, which is quite unpleasant in urban traffic. So, from the point 
of view of the user, i.e., in terms of preferences, criteria 2 and 3 reflect different 
requirements and are thus both necessary. 

Criteria 4 and 5 (resp. "Brakes" and "Road-h" in table 7.3) were evaluated 
using ordinal evaluations reported in several magazines on a scale with levels "se- 
rious deficiency", "below average", "average", "above average", "exceptional". He 
considers 3 such indicators for criterion 4 and 4 for criterion 5. To obtain an over- 
all indicator of braking quality (and also for road-holding), Thierry re-codes the 
ordinal levels with integers from 0 to 4 and takes the arithmetic mean of the 3 or 
4 numbers; this results in the figures rounded to 2 decimals provided in the last 
two columns of table 7.3. 

Note that the first 3 criteria have to be minimised while the last 2 must be 
maximised. It seems reasonable to consider that the scale of each of these criteria 
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is continuous. 

Critl Crit2 Crit3 Crit4 Crit5 
Cost Accel Pick up Brakes Road-h 

1 Tipo 18342 30.7 37.2 2.33 3.00 
2 Alfa 15335 30.2 41.6 2.00 2.50 
3 Sunny 16973 29.0 34.9 2.66 2.50 
4 Mazda 15460 30.4 35.8 1.66 1.50 
5 Colt 15 131 29.7 35.6 1.66 1.75 
6 Corolla 13841 30.8 36.5 1.33 2.00 
7 Civic 18 971 28.0 35.6 2.33 2.00 
8 Astra 18319 28.9 35.3 1.66 2.00 
9 Escort 19800 29.4 34.7 2.00 1.75 

10 R19 16966 30.0 37.7 2.33 3.25 
11 P309-16 17537 28.3 34.8 2.33 2.75 
12 P309 15980 29.6 35.3 2.33 2.75 
13 Galant 17219 30.2 36.9 1.66 1.25 
14 R21t 21 334 28.9 36.7 2.00 2.25 

Table 7.3: Data for the "choosing a car" problem. 

7.3.5.2 Using UTA 

Suppose that Thierry already has some knowledge about the 14 cars he wishes to 
evaluate, e.g., because he has driven some of them or because he has read Bouyssou 
et al. (2000, ch. 6). He feels able to express the following preferences: 

P309-16 F Sunny F Galant + Escort F R21t. 

Let us assume that Thierry only wishes to build a preference model that will 
allow him to evaluate the 14 cars at hand. It is then reasonable to take, for each of 
the 5 criteria, gi (resp. ~ i )  as the worst (resp. best) value encountered in table 7.3 
for this criterion. Let us also suppose that, as a first attempt, we wish to fit an 
additive value function model in which each of the marginal value function has two 
linear pieces to the information provided. For simplicity, the breakpoint & is taken 
as (gi + ?fi)/2, for all criteria. Table 7.4 summarises this. Using this information, 

- 
Zi xi X i  

Cost 21 334 17 587.5 13 841 
Accel. 30.8 29.4 28 

Pick up 41.6 38.15 34.7 
Brakes 1.33 1.995 2.66 

Road-h. 1.25 2.25 3.25 

Table 7.4: Additional data for the "choosing a car" problem. 

we can express the utility of each of the 5 cars that were rank ordered, introducing 
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two decision variables per criteria, yil giving the level of utility of breakpoint f i  
and yi2 that  of the best value Ti. Using linear interpolation as explained above, 
we obtain: 
V(P309-16) = 0.987~11 + 0.013y12 + 0.214~21 + 0 . 7 8 6 ~ ~ ~  + 0 . 0 2 9 ~ ~ ~  + 0.971y32 + 
0.496~41 + 0.504~42 + 0.5~51 + 0 . 5 ~ ~ 2 ,  
V(Sunny) = 0.836y11+ 0 . 1 6 4 ~ ~ ~  +0.714y21+0.286y~~ + 0 . 0 5 8 ~ ~ ~  $ 0 . 9 4 2 ~ ~ 2  +y42 + 
0.75~51 + 0.25~52, 
V(Ga1ant) = 0.902yll + 0.098y12 + 0.429~21 + 0 . 6 3 8 ~ 3 ~  + 0.362~32 + 0.496yd1, 
V(Escort) = 0.409yli + yal + y32 + 0.992y41 + 0 . 0 0 8 ~ 4 ~  + 
V(R2lt)  = 0.643~21 + 0.357~22 + 0.58~31 + 0.42~32 + 0 . 9 9 2 ~ ~ ~  + 0 . 0 0 8 ~ ~ 2  + ~ 5 1 .  

In order to  test whether the information provided by Thierry is compatible with 
an additive value function, we may then solve the following Linear Programme: 

min Z = a+ + 0%: 
subject to 

V(P309-16) - V(Sunny) + at - a; - a: + a; 2 6 ,  

V(Sunny) - V(Ga1ant) + u$ - a, - a$ + a; 2 E, 

V(Ga1ant) - V(Escort) + u$ - 03 - a: + a: 2 E, 
V(Escort) - V(R2lt) + a$ - a; - a$ + a; 2 E,  

yi2 - yil 2 0, for i = 1,2 , .  . .5 ,  

~ : = 1  Yi2 = 1, 
y i k l O ,  f o r i = 1 , 2  , . . .  5 a n d k = 1 , 2 ,  
a:, 0%: 2 0, for i = 1 , 2 , .  . .5 ,  

where the values V(Cars) are as given above and E is a small positive number, e.g., 
0.01. 

Using a standard LP package, the reader will easily check that  the optimal 
value of Z is 0, so that there is an additive value function compatible with the 
available information. 

I t  is worth recalling that the optimal values of the variables yij have no special 
status since the objective function (F) is arbitrary: we could have decided to 
minimise the largest of the deviation variables instead of minimising their sum. 

7.3.5.3 Choosing 

Since the set of alternatives in this example is small, we can test whether it is 
possible to  obtain any alternative as the most preferred one, given the information 
obtained. This requires to  express the value for each of the 14 alternatives as 
a linear function of the yij. For each of these 14 alternatives, we add to the 
constraints (C) new ones expressing that  the alternative under consideration is 
preferred or indifferent to  all others. We then test, using LP, if the resulting 
system of constraints is compatible. If the answer is positive this means that, 
given the available information, the alternative under consideration appears as a 
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potential choice. Table 7.5 shows that the information available is compatible with 
the choice of 6 among the 14 possible cars. 

This relatively disappointing result shows the importance of interaction be- 
fore directly using the results obtained with UTA and/or of a more sophisticated 
analysis exploiting the "frequency" with which each alternative appears as at least 
as good as all others. The analysis below will allow us to draw more conclusions 
on this point. 

Abbrev. Can be chosen 
1 Tipo NO 
2 Alfa YES 
3 Sunny NO 
4 Mazda NO 
5 Colt YES 
6 Corolla YES 
7 Civic NO 
8 Astra NO 
9 Escort NO 

10 R19 YES 
11 P309-16 YES 
12 P309 YES 
13 Galant NO 
14 R21t N o  

Table 7.5: Potentially optimal alternatives. 

7.3.5.4 Ranking 

It  would be very time consuming to test for each pair of alternatives whether 
all the value functions in V rank the elements of this pair in the same way. We 
instead use a subset V' of V consisting of all the functions obtained minimising and 
maximising the values yi2 for all criteria as well as the "optimal" additive value 
function. This gives 1 + 2 x 5 = 11 rankings in total. They are summarised in 
table 7.6. Although taking the intersection of these 11 rankings would result in a 
very poor relation, compared to table 7.5, table 7.6 reveals that P309-16 seems to 
be a very good alternative whatever the value function chosen, with alternatives 
R19, P309 and Sunny as close contenders. Clearly alternatives Mazda, Escort, 
Galant and R21t are quite poor. Although the choice of Alfa, Colt and Corolla 
is compatible with the information available, table 7.6 leads to believe that their 
choice is rather unfrequent with the set V. 

7.3.5.5 Sorting 

Let us suppose that, instead of a ranking, Thierry is simply able to divide the 
reference set into "good" (P309-16 and Sunny), "acceptable" (Galant, Escort) 
and "bad" cars (R21t), therefore creating three ordered categories. We may then 
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min max min rnax min max min max min rnax 
Abbrev. Opt. y 1 2  5112 y22  y z 2  y32  ~ 3 2  ~ 4 2  y42  9 5 2  9 5 2  

1 Tipo 6 2 11 6 14 7 11 6 6 13 2 
~ i f a  

Sunny 
Mazda 

Colt 
Corolla 

Civic 
Astra 

Escort 
R19 

P309-16 
P309 

Galant 
R21t 

Table 7.6: Ranks of alternatives using V' 

exploit this information in the spirit of the UTADIS method mentioned earlier. 
This amounts to  solving the following linear programme: 

5 

m i n ~  = xai +a; +a: 
i= 1 

(F ' )  

subject to 

' V(P309-16) + a1 sl + E, 

V(Sunny) + a 2  2 sl + E,  

V(Ga1ant) - a s  < sl, 
V(Ga1ant) + a; 2 s 2  + E, 
V(Escort) - a 4  5 s l ,  
V(Escort) + a; 2 s2 + E ,  

V(R2lt) - 05 5 ~ 2 ,  

yi2 - yil 2. 0, for i = 1,2 , .  . .5,  

~ : = 1  ~ i 2  = 1, 
yik>O, f o r i = 1 , 2  ,... 5 a n d k = 1 , 2 ,  
a i>O,  f o r i = 1 , 2  ,... 5 , a ; , a i > 0 ,  

, S1 2 32 2 0, 

where sl and s 2  are the thresholds used to  separate the three categories and E is a 
small positive number, e.g., 0.01. In view of the results already obtained, it should 
not be a surprise that  the optimal value of this LP is 0. 

I t  is interesting to  test what the constraints imply for the assignment of the 
14 - 5 = 9 cars that  are not in the reference set using LP. This is summarised 
in table 7.7. In this example, the assignment of two cars not in the reference set 
(Colt and P309) is constrained by (C').  
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Abbrev. Bad Acceptable Good 
1 Tipo YES YES YES 

2 Alfa YES YES YES 

4 Mazda YES YES YES 

5 Colt NO YES YES 

6 Corolla YES YES YES 

7 Civic YES YES YES 

8 Astra YES YES YES 

10 R19 YES YES YES 

1 2  P309 NO YES YES 

Table 7.7: Sorting the alternatives not in the reference set. 

7.4 Deriving a recommendation with other pref- 
erence models 

As argued in chapters 5 and 6, using a value function is not always appropriate to 
adequately model preferences. Several extensions of this central model were pro- 
posed in these chapters. In most of them, we have seen that  the "more ordinal" 
aggregation a t  work could well lead to preference structures that are not transi- 
tive and may include incomparability. As stressed in chapter 4, this additional 
flexibility a t  the level of preference modelling may ease the analyst's work and the 
acceptation of the model. I t  nevertheless raises difficult problems when it comes 
to  establishing a recommendation. The aim of this section is to  briefly envisage a 
number of techniques that can be used for such a purpose. 

7.4.1 The extent of the problem 

Suppose that you have built a preference relation on a set of alternatives using 
one of the techniques presented in chapters 5 and 6 that does not guarantee the 
transitivity or the completeness of the result. This does not necessarily mean that 
any preference structure can be obtained with such a method (e.g., only certain 
types of intransitive or incomplete relations could occur). Below, we prove that 
for a number of well known techniques, this is unfortunately true, thereby showing 
the difficulty of building a recommendation on such a basis. 

7.4.1.1 Simple majority 

Consider simple majority, i.e., the simplest "ordinal" technique for comparing 
alternatives as introduced in section 5.2.1 of chapter 5. On each criterion, we 
suppose that  alternatives can be compared using a weak order. Simple majority 
amounts to  declaring that: 
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where P(x ,  y) denotes the set of criteria on which x is preferred to y. Clearly, a 
relation obtained in such a way is always complete. 

Let T be any complete binary relation on a finite set of alternatives A. Besides 
completeness, no hypothesis is made on T;  it may be the most intransitive relation 
you can think of, with circuits of any length in its asymmetric part. The surprising 
and disturbing fact, proved by McGarvey (1953), is that it is always possible to 
see T as the result of a simple majority aggregation. 

The proof of this result is simple and instructive. Take any complete relation 
T on the finite set A. Consider any two alternatives a ,  b in A and label the other 
alternatives in A arbitrarily X I ,  22,. . . , xk-2. Considering only two criteria for 
which, using obvious notations: 

we have IP(a, b)l = 2, IP(b,a)l = 0, IP(a,x)l = IP(x,a)l = 1, IP(b,x)l = 
IP(x,b)l = 1 and lP(x,y)l = IP(x,y)l = 1, V X , Y  E A \  {a,b). 

Similarly considering two criteria such that: 

we obtain IP(a, b)I = IP(b, a)l = 1, IP(a, x)l = IP(x, a)l = 1, IP(b, x)l = IP(x, b)I = 

1 and IP(x,y)I = IP(x,y)l = 1, VX,Y E A \ {a,b). 
Now consider all k(k - 1)/2 distinct ordered pairs in A. If a T b and Not[b T 

a ] ,  we introduce two criteria satisfying (7.13). If b T a and Not[a T b ]  , we 
introduce two criteria satisfying (7.13) interchanging the roles of a and b. Other- 
wise, since T is complete, we have a T b and b T a. We then introduce two criteria 
satisfying (7.14). Using simple majority on such k(k- 1)/2 criteria will then yields 
the relation T. 

Remark 7.4.1 
The algorithm described above amounts to considering k(k- 1)/2 criteria to obtain 
the complete relation T. In many cases, a much lower number of criteria can be 
used. The determination of the minimal number of criteria for the result to hold 
raises difficult combinatorial questions (see Stearns, 1959). 0 

With simple majority, any complete relation on a finite set of alternatives 
Q may be obtained. Therefore, when devising a procedure designed to build a 
G-3 recommendation on the basis of a simple majority aggregation, this procedure 
@ has to deal with any complete relation. rs 

7.4.1.2 ELECTRE I (Roy, 1968) 

As we saw in section 5.2.3.5 of chapter 5, ELECTRE I, leads to building a relation 
S on a finite set of alternatives evaluated on a set N of criteria. For each criterion 
i E N,  ELECTRE I uses the following ingredients: 

a weak order Si on Xi, 
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0 a positive weight wi, 

0 a binary relation Vi on Xi included in the asymmetric part of Si. 

Defining for all x,  y E A, S(x,  y) = {i E N : xi Si yi), i.e., the set of criteria for 
which x is "at least as good as" y, we have in ELECTRE I: 

C wi > s and 
a S b * {  iES(a ,b)  (7.15) 

Not[bi & a i l ,  for all i E N 

where s E [1/2; 11 is the concordance threshold. 
I t  is easy to  build examples in which S is incomplete and intransitive. More 

is in fact true since it is possible to show (see Bouyssou, 1996) that  any reflexive 
relation on a finite set of alternatives may be obtained with ELECTRE I. This is 
easily shown by considering a situation in which: 

0 there is a criterion on which all alternatives are indifferent and t o  which a 
large weight is assigned, 

0 for each ordered pair (a, b) of alternatives such that Not [a  S b] there is a 
criterion to which little weight is assigned and on which we have b Vi a.  

In fact, the patient reader will easily prove that  a similar conclusion still holds, 
with a more complex construction, when all relations & are assumed to  be empty 
(see Bouyssou, 1996). Therefore the situation is even worse with ELECTRE I 
than with simple majority: any reflexive relation can occur! 

7.4.1.3 ELECTRE I11 (Roy, 1978) 

In Bouyssou (1996) it is shown that the situation is not simpler with aggregation 
methods such as ELECTRE I11 (Roy, 1978) or PROMETHEE (Brans, Mareschal, 
and Vincke, 1984; Brans and Vincke, 1985) leading to  a valued preference relation. 
With ELECTRE 111, any reflexive (i.e., such that R(a,a) = 1, for all a E A) 
valued relation on a finite set may be obtained. The situation is slightly more 
complex with PROMETHEE. I t  is nevertheless true that if P is any irreflexive 
(i.e., such that  P(a ,  a) = 0, for all a E A) valued relation on a finite set A, then, 
for some X E [O; 11 it is possible to  obtain the valued relation [XP] (defined by 
letting [XP](a, b) = XP(a, b), for all a ,  b E A) as the result of PROMETHEE. 

$ For many aggregation methods that does not imply transitivity or com- 
Q pleteness, any preference structure can, in fact, be obtained. Techniques de- 
8 signed to build recommendations should therefore be able to  deal with any 
@ such structure. They are therefore quite unlikely to  give satisfactory results 2 in all cases. 

The difficulty of building adequate procedures dealing with all kinds of incom- 
plete and/or intransitive relations is illustrated in the next section. 
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7.4.2 How things may go wrong: examples 

Many techniques for building recommendations on the basis of a non-necessarily 
transitive or complete binary relation have been proposed in the literature on 
MCDM. Most of them were justified on an ad hoc basis. In view of the results in 
the preceding section, it should be expected that the intuition supporting these 
techniques might not work appropriately in all cases. We illustrate this crucial 
point using two examples. 

Example 7.1 (Choice procedures and dominated alternatives) 
Consider a set of alternatives A = {a, b, c, d) evaluated on three criteria. Suppose 
that, on each criterion, alternatives are weakly ordered by a binary relation S,. 
Suppose that the preference on each criterion are such that, using an obvious 
notation for weak orders: 

a Pl bPl c P l  d, 
c Pz d P2 a P2 b, 
d P3 a P3 b P3 C, 

where Pi denotes the asymmetric part of Si. 
Alternative b is strongly dominated by alternative a (a is strictly preferred to 

b on all criteria). Intuitively, this gives a decisive argument not to include b in the 
set of recommended alternatives. 

Suppose then that the above information is aggregated into a binary relation S 
using simple majority. It is not difficult to  see that S is such that (see figure 7.3): 

where P denotes the asymmetric part of S.  Observe that the same result is 
obtained with ELECTRE I using equal weights, a concordance threshold s E 
[1/2; 2/3[ and no veto. It is obvious that S is not well suited to  select a subset of 
alternatives since its asymmetric part P contains a circuit involving all alterna- 
tives (a  P b, b P c, c P d, d P a). The simplest way to get rid of such a circuit is 

Figure 7.3: Majority relation in example 7.1. 

to consider that all alternatives included in a circuit should be considered "equiv- 
alent". This can be done by considering the transitive closure of the relation, 
i.e., the smallest transitive relation containing it. But using the transitive closure 
of S would then lead to  consider that all alternatives are equivalent and, hence, 
to propose the whole set A as the set of recommended alternatives. This does 
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Figure 7.4: Relation P in example 7.2. The relation P is weakly complete, all non 
depicted arrows point downwards. 

not appear to be sound since we have observed that  there are quite compelling 
arguments showing that  b should not be recommended. I t  should be noted that, 
the selection procedure of ELECTRE I (Roy, 1968), introduced below, would also 
lead to recommending the whole set A for this example. 

This example also illustrates that separating the phase of construction of S 
from that of the construction of a recommendation may be deceptive. In our 
example, the fact that b is strongly dominated is only apparent considering the 
original information and not just the relation S.  0 

Example 7.2 (Ranking procedures and monotonicity) 
Let A = {a, b, c, d, e, f ,  g). Using the results in the previous section, we know that 
with simple majority and ELECTRE I, we might end up with a complete binary 
relation S such that  (see figure 7.4): 

where P denotes the asymmetric part of S.  
In order to obtain a ranking on the basis of such information, one may use a 

measure of the "desirability" of each alternative. A simple measure of the desir- 
ability of an alternative x consists in counting the number of alternatives y such 
that x S y minus the number of alternatives z such that  z S x. This measure is 
called the Copeland score of an alternative (Laslier, 1997). 

A simple way of building a ranking on A goes as follows. Define the first 
equivalence class of the ranking as the alternatives that  have obtained a maximal 
Copeland score. Remove these alternatives from the set of alternatives. Define the 
second equivalence class of the ranking as the alternatives with maximal Copeland 
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scores in the reduced set. Repeat this procedure as long as there are unranked 
alternatives. Such a ranking procedure is intuitively appealing and leads to the 
following ranking, using obvious notations: 

which does not seem unreasonable. 
Consider now a relation identical to the one above except that a P d is added. 

Intuition suggests that the position of a has improved and we should reasonably 
expect that this is reflected in the ranking obtained on the basis of this new 
relation. But applying the same ranking method as before now leads to: 

Such a result is quite disappointing since, before a was improved, a was ranked 
before b while, after the improvement of a ,  b is ranked before a. 0 

These two examples illustrate the following points. 

The definition of sound procedures for deriving a recommendation on the 
@ basis of a non necessarily transitive or complete binary relation is a difficult 
@ task. Intuitively appealing procedures may sometimes produce very disap- 
@ pointing results. n 

This raises the question of how to analyse and compare the various procedures 
that have been proposed in the literature for such a purpose. The literature on 
MCDM is quite poor in this respect. Most often, the authors of methods have 
advocated an "intuitively reasonable" procedure. As shown above, "intuition" 
may hide major difficulties. 

A similar problem arises in Social Choice Theory. Although the literature on 
Social Choice Theory is much richer than the literature on MCDM, it is mainly 
restricted to  the choosing problem on the basis of a complete binary relation, 
with McGarvey's result in mind. Furthermore, the attention of Social Choice 
theorists has mainly been concentrated on the case of tournaments, i.e., complete 
and antisymmetric relation (an excellent account of this literature can be found 
in Laslier, 1997). 

Two main routes may be followed to  study the difficult problem of deriving a 
recommendation on the basis of a non necessarily complete and transitive binary 
relation. The first one (see, e.g., Bouyssou and Vincke, 1997; Vincke, 1992a) 
consists in defining a list of properties that seem "desirable" for such a technique 
(for example, never select a dominated alternative or respond to  the improvement 
of an alternative in the expected way). Given such a list of properties one may 
then try: 

to analyse whether or not they are satisfied by a number of techniques, 

0 to establish "impossibility theorems", i.e., subsets of properties that cannot 
be simultaneously fulfilled, 
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0 to determine, given the above-mentioned impossibility theorems, the tech- 
niques that satisfy most properties. 

The second one (see, e.g., Bouyssou, 1991, 1992a,b, 1995, 1997; Bouyssou and 
Perny, 1992; Bouyssou and Pirlot, 1997; Pirlot, 1995) consists in trying to find 
a list of properties that would "characterise" a given technique, i.e., a list of 
properties that this technique would be the only one to satisfy. This allows to 
emphasise the specific features of an exploitation technique and, thus, to compare 
it more easily with others. 

These two types of analysis are not unrelated: ideally they should merge at  the 
end, the characterising properties exhibited by the second type of analysis being 
parts of the list of "desirable" properties used in the first type of analysis. Both 
types of analysis have their own problems. In the first, the main problem consists 
in defining the list of "desirable" properties. These properties should indeed cover 
every aspect of what seems to be constitutive of an "appropriate" technique. In 
the second, the characterising properties will only be useful if they have a clear 
and simple interpretation, which may not always be the case when analysing a 
complex technique. 

A thorough analysis of the problem would be rather lengthy and technical. 
Our aim in this section will therefore be twofold. We shall first try to present the 
procedures that have been proposed in the literature in a critical manner, warning 
the reader against common pitfalls. Second, we shall try to offer an introduction 
to the growing but quite technical literature on the subject. 

7.4.3 Choice procedures 

Let A be a set of alternatives. Suppose that you have built a preference relation 
S on A using an aggregation technique. Let us call S the set of all conceivable 
preference relations that can be obtained using such a technique. As shown above, 
S consists of all reflexive binary relations if one is using ELECTRE I, all complete 
binary relations if one is using simple majority and all reflexive valued relations 
if one is using ELECTRE 111. A choice procedure C is a function associating a 
nonempty subset C(S)  of A with each element S of S. The choice set C(S)  should: 

be as small as possible given the available information, 

0 be such that there are clear arguments to justify the elimination of the al- 
ternatives in A \ C(S),  i.e., the alternatives that are not selected, 

be such that there is no built-in bias in favour of some alternatives, i.e., that 
the only arguments that can be taken into account in the determination 
of C(S) are how these alternatives are related in terms of the relation S. 
Technically, this leads to requiring that C is neutral 3,  i.e., that C(S)  = 

The "neutrality" condition for choice procedures is different from the neutrality condition 
introduced in chapter 5. We use a similar term however, because the idea underlying these two 
conditions is similar: alternatives should not be treated differently because of their label. A 
similar remark holds for the conditions of monotonicity and faithfulness introduced below. 
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a[C(Su)], where a is any one-to-one function on A and So is the binary 
relation in S such that, for all a, b E A, S(a,  b) = Su(a(a) ,  a(b)). 

0 react to the improvement of an alternative in the expected direction. Techni- 
cally, the procedure should be monotonic, i.e., if a E C(S) and S' is identical 
to S except that [a S' b and Not[a S b ] ]  or [Not[b S' a ]  and b S a], for 
some b E A, then we should have a E C(S1). 

Below, we distinguish the case in which S is a set of crisp (i.e., non valued) binary 
relations from the case in which S is a set of valued relations. 

Remark 7.4.2 
We have defined a choice procedure as a function from the set of all possible 
relations S to the set of nonempty subsets of A. It  is important to realise that this 
very definition implies that the only information that is taken into account by C 
is the relation S on A. This, in particular, implies that: 

0 the choice set C(S) may depend on the behaviour of S on the whole set A. 
Adding or removing alternatives from A may have a dramatic influence on 
the result of the choice procedure. The fact that an alternative a belongs 
to the choice set and that an alternative b is rejected may depend on the 
comparison of a and b with respect to other alternatives. It  may even depend 
on the comparison of two alternatives distinct from a and b. Although such 
a dependence is almost inevitable as soon as the choice procedure has to 
deal with relations S having no remarkable transitivity properties, it may 
lead to undesirable effects. Indeed, the result of the choice procedure will be 
dependent on the set of alternatives A, whereas, in practice, the definition 
of this set can always be modified, e.g, adding very poor alternatives. 

0 the relation S contains all the information used by C. In particular, this 
excludes the use of some "reference points", i.e., of alternatives playing a 
particular role, as advocated by Dubois et al. (2003). When such reference 
points are taken into account, the separation between the phases of building a 
relation S and exploiting it in order to build a choice set is blurred. Indeed, it 
is then tempting to compare alternatives only to the reference points and not 
amongst themselves. Such approaches may offer an interesting alternative 
to the use of choice procedures. They have not been worked out in much 
detail to date. In particular, the selection in practice of appropriate reference 
points does not seem to be an obvious task. 

7.4.3.1 Crisp relations 

Let S E S. We shall always denote by P (resp. I) the asymmetric (resp, symmetric) 
part of S and J the associated incomparability relation. 
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Figure 7.5: Refining the set of greatest alternatives {a, b). 

7.4.3.1.1 Procedures  based o n  covering relations Suppose that there ex- 
ists a E A such that a P b, for all b E A \ {a). Such an alternative is usually 
called a Condorcet winner. In this case, letting C(S)  = {a) seems to  be the only 
reasonable choice. In fact, by construction: 

when there is a Condorcet winner, it is necessarily unique, 

0 there is direct evidence that a is better to  all other alternatives. 

Unfortunately, the existence of a Condorcet winner is an unlikely situation and we 
must agree on what to do in the absence of a Condorcet winner. 

A simple extension of the notion of a Condorcet winner is that  of greatest 
alternatives already introduced. Remember that an alternative a E A belongs to  
the set G(A, S )  of greatest alternatives in A given S if a S b, for all b E A. If a 
belongs to G(A, S),  we have direct evidence that  a is a t  least as good as any other 
alternative in A. Contrary to  the case of Condorcet winners, there may be more 
than one greatest alternative. When the set of greatest alternatives is nonempty, 
it is tempting to put all alternatives on G(A, S)  in C(S). 

This seems a natural choice. Indeed, all greatest alternatives are indifferent, 
so there is no direct evidence that would allow to further refine the choice set 
C(S).  Contrary to the case in which S is a weak order, it should however be noted 
that there might be indirect evidence that allows to distinguish between greatest 
alternatives. As shown in the following example, indirect evidence may be usefully 
employed to narrow down the set of selected alternatives. 

Example  7.3 
Suppose that  A = {a, b, c) and S be such that a I b, b I c and a P c (see figure 7.5). 
Although both a and b belong to  G(A, S), we can use the way a and b compare to  
a third alternative, c, to distinguish between them. In our example, since a P c 
while b I c, i t  is very tempting to  use this indirect evidence to  conclude that that 
C(S)  could be narrowed down to  {a). 0 

Unfortunately, there is no clear-cut way of defining what should count as an indirect 
evidence that an alternative is better to another and to  balance it with the direct 
evidence. 

Suppose first that a P b so there is direct evidence that a is superior to b. If, for 
a l l c ~ A , w e h a v e c P a ~ c P b , c I a ~ c S b ,  b P c 3 a P c a n d  b I c + a S c ,  
there is no indirect evidence that b could be superior to  a .  In such a case, we say 
that a strongly covers b ( a  S C  b) and it seems that the selection of b would be quite 
unwarranted. A cautious selection would then seem to  be to  select all alternatives 
that are not strongly covered by any other, i.e., the set M(A, SC) of maximal 
alternatives in A for SC.  When A is finite, M(A, SC) is always nonempty since 
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the strong covering relation is asymmetric and transitive and, thus, has no circuit. 
Therefore letting C(S) = M(A, SC) defines a selection procedure. Note that the 
use of this selection procedure would allow to  avoid selecting a strongly dominated 
alternative as was the case with the procedure envisaged in example 7.1 since, in 
this example, a strongly covers b. With such a procedure, the rejection of the 
elements in A \ C(S)  would seem fully justified since for each b E A \ C(S),  there 
would be an a E C(S) such that a P b. We leave to the reader the, easy, task of 
showing that this selection procedure is neutral and monotonic. 

The relation S C  is likely to be rather poor so, that the above procedure is quite 
stringent and may result in large choice sets. In order to  reject an alternative, it 
is necessary to have direct evidence against it and no indirect evidence in its 
favour. In example 7.3, it would not allow to  distinguish between the two greatest 
alternatives a and b since there is no direct evidence for a against b. 

.A less stringent procedure would consist in saying that the selection of b is 
unwarranted as soon as there is an alternative a such that  there is direct evidence 
that a is a t  least as good as b while there is no indirect evidence that b is better 
to a.  This would lead to  the definition of a covering relation in which a weakly 
covers b (a W C  b) as soon as a S b and for all c E A, we have c P a + c P b, 
c I a =+ c S b, b P c + a P c and b I c + a S c. Therefore, the weak covering 
relation W C  is identical to  the strict covering relation SC except that a I b is 
compatible with a W C  b. Contrary to  SC, the relation W C  is not asymmetric. 
It is reflexive and transitive so its asymmetric part has no circuit. When A is 
finite, letting C(S)  = M(A, WC) therefore defines a selection procedure. For 
each non selected alternative b, there is a selected alternative a such that either 
a P b or a I b, while there is no indirect evidence that b might be superior to  a .  
The theoretical properties of this choice procedure are quite distinct from the one 
relying on the strong covering relation (Dutta and Laslier, 1999; Peris and Subiza, 
1999), while remaining neutral and monotonic. I t  seems to  qualify as a natural 
benchmark for all choice procedures. 

A weakness of the procedure given above is that  when a and b are incomparable, 
it is impossible to distinguish between them even when there is strong indirect 
evidence that one is better to  the other. I t  is possible to modify the definition of 
the weak covering relation requiring only that there is no direct evidence against a ,  
i.e., that a S b or a J b (remember that J is the incomparability relation associated 
to S ;  with WC,  it is impossible to have a W C  b, while a J b), while still requiring 
that there is no indirect evidence that b is superior to  a.  This very weak covering 
relation is still reflexive and transitive. Taking the maximal alternatives in A for 
the very weak covering relation therefore defines a selection procedure. It refines 
the above selection procedure based on the weak covering relation. This is however 
a price to  pay. Using such a choice set does not prevent the existence of a non 
selected alternative b such that there is no alternative in the choice set for which 
there is direct evidence that it is a t  least as good as b. Therefore, the narrowing 
of the choice set, considering the very weak covering relation, may be judged 
unsatisfactory. 

We refer to  Dutta and Laslier (1999), Laslier (1997) and Peris and Subiza 
(1999) for a thorough study of the properties of choice sets that are based on some 
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idea of "covering" i.e., mixing direct and indirect evidence to  justify the selection 
of C(S).  

7.4.3.1.2 Procedures based on kernels Quite a different path was taken 
by Roy (1968) and Roy and Skalka (1984) in the ELECTRE I and ELECTRE IS 
methods (a similar idea is already detailed in von Neumann and Morgenstern, 
1947, in the context of Game Theory). Note that  the selection procedure is clear 
as soon as S is transitive. In fact, in such a case, the set of maximal elements in 
A, i.e., M(A, S)  = {a E A : Not[b P a ]  for all b E A) is always nonempty and 
such that, for all b $ M(A, S),  there is an alternative a E M(A,  S) such that a S b. 
In fact, when S is transitive, the set M(A,  S)  coincides with the set of maximal 
alternatives for the weak covering relation since, in this case, S = WC. 

For B A, we say that B is dominating if for all c $ B there is an alternative 
b E B such that b S c. Therefore the selection of the alternatives in a dominating 
subset always justifies the non selection of the other alternatives. By construction, 
the set A itself is dominating. When A is finite, there are therefore dominating 
subsets of minimal cardinality. If there is only one such dominating subset, it is 
a good candidate for the choice set C(S).  When S has circuits, there may be 
more than one dominating subset of minimal cardinality. Taking their union will 
generally result in quite an undiscriminating procedure. This is illustrated in the 
following example. 

Example 7.4 
Let A = {a, b,c, d, e). Suppose that S is such that a P b, b P c, c P d, d P e 
and e P a (see figure 7.6). This relation has 5 dominating subsets of minimal 
cardinality, i.e., {a, c, e), {a, b, d), {a, c, d), {b, c, e) and {b, d, e). The union of the 
minimal dominating subsets is A. 0 

Figure 7.6: Relation P in example 7.4. 

B. Roy therefore suggested to consider the relation S' obtained by reducing the 
circuits in S, i.e., to consider all alternatives that are involved in a circuit as a 
single alternative. Working with S' instead of S amounts to  considering that all 
alternatives involved in a circuit compare similarly with alternatives outside the 
circuit. This is frequently a strong hypothesis implying the loss of a lot of infor- 
mation, as shown in example 7.4. The following example illustrates the process of 
reducing the circuits of S. 
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Example 7.5 
Let A = {a, b, c, d, e, f) and consider the binary relation S such that: 

represented in figure 7.7 In order to build the relation S' obtained by reducing 

Figure 7.7: Relation S in example 7.5. 

the circuits in S we need to find the maximal circuits in S (i.e., circuits that are 
not included in other circuits). There is only one circuit in S: a S b, b S c and 
c S a. Therefore the three alternatives a ,  b and c are replaced by a single one, say 
x, and there is an arc from x to another alternative if there is an arc in S going 
from either a ,  b or c to this alternative. Similarly there is an arc going from an 
alternative to x if there was an arc going from this alternative to either a ,  b or c 
in S. Therefore the binary relation S' (see figure 7.8) is such that: 

In the relation built in example 7.2, there is a circuit going through all alternatives 
( d P c , c P a , a P b , b P e , e P  f ,  f P g , g P b a n d b P d ) .  Insuchcases,the 
reduction of circuits involves a huge loss of information. 0 

A famous result of Graph Theory (Berge, 1970; Roy, 1969-70) implies that when 
a graph has no circuit, it has a unique kernel, defined as a dominating subset that 
is internally stable, i.e., such that there is no arc between any of its elements (this 

Figure 7.8: Relation S' in example 7.5. 
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Figure 7.9: Relation S in example 7.6. 

implies that the kernel is a minimal dominating subset). Reducing the circuits and 
taking the kernel of the relation is the selection procedure proposed in ELECTRE I. 
It is easy to  verify that it is neutral and monotonic. 

Example 7.6 
Let A = {a, b, c, d, e, f ,  g). Consider the relation S defined by figure 7.9. This 
relation has no circuit. Its unique kernel is C ( S )  = {a, d, e, g) 0 

The selection procedure defined by the kernel is distinct from the one consisting 
of alternatives that are maximal for the weak covering relation. Indeed in exam- 
ple 7.6, the set of maximal alternatives for the weak covering relation is {a, d, e, f )  
(g is covered by f ,  b and c are covered by a). This shows that covered alternatives 
may be selected in the kernel. Most importantly, as we have seen, the reduction of 
circuit may involve an important loss of information and can even lead to selecting 
dominated alternatives as in example 7.1. 

The procedure in ELECTRE IS (see Roy and Bouyssou, 1993; Roy and Skalka, 
1984) amounts to a more sophisticated reduction of the circuits that takes the way 
the relation S has been defined into account. In particular, it can help to  avoid 
the selection of dominated alternatives. 

Remark 7.4.3 
A related selection procedure was suggested by Hansen, Anciaux-Mundeleer, and 
Vincke (1976) and Vincke (1977) in order to avoid the reduction of circuits, which, 
as we have seen, can lead to a significant loss of information. A quasi-kernel of a 
graph is a set of vertices that is internally stable (alternatives in a quasi-kernel are 
incomparable) and quasi-dominating, i.e., such that for any alternative b outside 
the quasi-kernel, there is one alternative a in the quasi-kernel such that  either 
a S b or a S c and c S b, for some alternative c. Thus, a quasi-kernel may not be 
dominating but all alternatives outside the quasi-kernel can be reached via a path 
of length a t  most 2. 

I t  is well-known (Lovbsz and Chvbtal, 1974) that all graphs have a t  least one 
quasi-kernel. There may however be several quasi-kernels. Hansen et  al. (1976) 
suggest to  consider the selection of a quasi-kernel of minimal weakness, i.e., such 
that the set of alternatives that are not dominated by one alternative in the quasi- 
kernel is of minimal cardinality. This raises difficult combinatorial problems how- 
ever. 

Choice procedures based on covering relations take the indirect evidence 
8 that an alternative is at least as good as another into account. There are several 
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Q ways to define what should count as indirect evidence. Procedures based on 
kernels imply getting rid of circuits, which may involve a considerable loss of 
information. They may lead to the selection of covered alternatives. 

7.4.3.1.3 Other  procedures The use of covering relations and of the notion 
of kernel are far from being the only possible choices to devise a selection procedure 
(Laslier, 1997; Peris and Subiza, 1999; Schwartz, 1986). Some of the possibilities 
that we do not investigate here are: 

selection procedures based on the consideration of relations close to S for 
which the choice is simple, e.g, orders or weak orders (see BarthklCmy, 
GuCnoche, and Hudry, 1989; Laslier, 1997), 

0 selection procedures based on scores, e.g., Copeland scores (see Henriet, 1985; 
Rubinstein, 1980; van den Brink and Gilles, 2003), 

0 selection procedures that directly operate on the evaluations of the alterna- 
tives without building a relation S as an intermediate step. This was studied 
in section 5.6 of chapter 5 (see also Fishburn, 1977). 

7.4.3.2 Valued relations 

The literature on selection procedures on the basis of valued preference relations 
is extensive (Banerjee, 1993; Barrett, Pattanaik, and Salles, 1990; Basu, Deb, and 
Pattanaik, 1992; Bisdorff, 2000; Bouyssou, 1992a, 1997; Bouyssou and Pirlot, 1997; 
Dasgupta and Deb, 1991; De Donder, Le Breton, and Truchon, 2000; Dutta and 
Laslier, 1999; Dutta, Panda, and Pattanaik, 1986; Fodor, Orlovski, Perny, and 
Roubens, 1998; Fodor and Roubens, 1994; Herrera and Herrera-Viedma, 2000; 
Kitainik, 1993; Lahiri, 2002; Litvakov and Vol'skiy, 1986; Montero and Tejada, 
1988; Nurmi and Kacprzyk, 1991; Pattanaik and Sengupta, 2000; Perny, 1995; 
Perny and Roubens, 1998; Roubens, 1989; Sengupta, 1999) and it would be illusory 
to attempt summarising it here. 

Let us simply mention here that this diversity is due to numerous factors: 

0 the variety of possible interpretations of the valued relation which goes from 
interpretations in terms of "credibility" to probabilistic or "intensity of pref- 
erence" interpretations, 

0 the different ways in which to interpret the numbers in the valued relation 
which goes from a purely ordinal interpretation to more cardinal interpreta- 
tions. Indeed the number S(a,  b) may, depending on the context, be inter- 
preted as the (weighted) number of criteria on which a is judged at least as 
good as b or simply as a "credibility" index of the proposition "a is at least 
as good as b", 

0 the various ways of defining classical properties (completeness, transitivity) 
of binary relations for the valued case; these various definitions are not always 
equivalent, 
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0 the difficulty to define "strict preference", "indifference" and "incomparabil- 
ity" on the basis of a valued relation. 

We briefly envisage three different types of techniques here. 

7.4.3.2.1 U s e  of A-cuts Any selection procedure designed for crisp relations 
may be applied to  a valued relation considering various A-cuts of the valued rela- 
tions, i.e., the crisp relation Sx defined by: 

The definition of the A-cuts of a valued relation only uses the ordinal properties of 
the valuations. With a strictly ordinal interpretation of valued relations, the set of 
all A-cuts of a valued relation contains the same information as the valued relation 
itself. A cautious attitude is therefore to  study the result of selection procedures 
for crisp relations when applied to  the set of all A-cuts of the valued relation (in 
practice, one may want to  consider only the A-cuts corresponding to relatively 
high values of A). This raises the problem of aggregating this information. This 
problem is all the more serious that  it is easy to  build examples in which two 
distinct A-cuts of S may result in vastly different crisp relations, even when the 
two values of A are "close". 

7.4.3.2.2 Fuzzyfication of cr isp  procedures  Another class of procedures 
consists in "fuzzyfying" the definition of various selection procedures for crisp 
relations using a particular interpretation of logical connectives (AND, OR, NOT) 
in a valued framework. This is a classical procedure in "fuzzy" mathematics. 

Suppose, for instance, that S is a valued preference relation interpreted as an 
"at least as good as" preference relation. The set of maximal elements in A given 
a crisp relation S has been defined as M(A, S )  = {a E A : Vb E A, Not[b P a ]  ). 
This set may be empty. When it is not, we have seen that the alternatives in this 
set may be seen as reasonable candidates for choice. The "fuzzyfication" of the 
concept of the set of greatest alternatives amounts to  attaching to  each alternative 
in A the credibility that i t  belongs to  the set of greatest elements4. 

Given the relation S, we have a P b if [a S b and Not[b S a ] ] .  Interpreting 
AND as "rnin" and NOT as "1-", we obtain the degree of credibility of the 
proposition "a is strictly preferred to  b" as P ( a ,  b) = min(S(a, b), 1 - S(b, a)). 
Now we are looking for alternatives in A for which, for all b E A, it is not true that 
b P a.  Interpreting "for all" as "rnin", which is consistent with our interpretation 
of AND, we obtain: 

p(a) = min(1 - P(b, a)), 
~ E A  

= min(1 - min(S(b, a) ,  1 - S(a,  b))), 
bE A 

= min max(1 - S(b, a) ,  S(a ,  b)), 
b€ A 

An alternative approach in which a credibility degree is attached to subsets of alternatives 
was explored by Kitainik (1993) 
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that may be interpreted, given our particular choice of valued connectives, as the 
credibility of the proposition "there is no alternative in A that is strictly preferred 
to  a". One may then select alternatives for which this score is maximal (which 
would imply that  any difference in p is significative) or the alternatives in A for 
which the value of p exceeds a certain threshold. Note that the choice of "1-" 
as a valued interpretation of NOT is not fully compatible with a purely ordinal 
interpretation of the valued relation S. 

Such fuzzyfxation techniques were first proposed by Orlovski (1978), using a 
different definition of P (see Fodor and Roubens, 1997, for a detailed analysis). 
The set of maximal alternatives for the strong or weak covering relation and/or the 
set of greatest elements may be fuzzyfied in a similar manner (see Perny, 1995). 

In fact, this technique allows to transfer any crisp definition into a definition 
adapted to the valued case almost immediately, once fuzzy connectives have been 
agreed upon. This is not an easy choice however (see, e.g., Alaoui, 1999; Bisdorff, 
2000; Fodor et al., 1998; Fodor and Roubens, 1994; Kitainik, 1993; Perny and 
Roubens, 1998; Perny and Roy, 1992). 

7.4.3.2.3 Procedures based on scores Another class of procedures asso- 
ciate to each alternative a E A a "measure of its desirability" in A, we shall 
say a score, given a valued relation S. Many such scores can be envisaged, e.g., 
the Net Flow score which is the analogue of the Copeland scores for crisp re- 
lations obtained by letting the score of alternative a E A be ScoreNF(a, S)  = 
CbEA\(,)(S(a,  b) - S(b, a)) which was axiomatised by Bouyssou (1992a), or the 
Minimum in Favour score Score,i,(a, S )  = minb,A\{al S(a ,  b), characterised in 
Bouyssou (1995) and Bouyssou and Pirlot (1997). T h ~ s  procedure based on min 
can be refined in many ways (see Dubois, Fargier, and Prade, 1996; Dubois, 
Fortemps, Pirlot, and Prade, 2001b, for several lexicographic variants of min). 
They have been studied in Fortemps and Pirlot (2004). 

The choice of an adequate score is dependent upon the interpretation of the 
valuations S(a ,  b). For instance, the use of the Net Flow score appears adequate 
only if it is supposed that the credibility S(a,  b) is measured on a scale that is 
stronger than an ordinal scale, so that adding and subtracting credibility indices 
is meaningful. 
Remark 7.4.4 
It is instructive to show how the axioms used to characterise the choice procedures 
based on the Net Flow score (Bouyssou, 1992a) and the Minimum in Favour score 
(Bouyssou, 1995; Bouyssou and Pirlot, 1997) make hypotheses on the nature of 
the valuations of the fuzzy relation. 

The selection procedure based on the Net Flow score is characterised by an 
axiom implying that  all circuits of length 2 or 3 in the fuzzy relation can be elim- 
inated without affecting the selection, together with neutrality and monotonicity 
requirements. Technically this means that  if two fuzzy relations S and R are 
identical except that: 

R(a, b) = S(a ,  b) + E and R(b, a) = S(b, a) + E or 

R(a, b) = S(a,  b) + E, R(b, c) = S(b, c) + E and R(c, a) = S(c, a)  + E,  
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then S and R should lead to identical selections. Clearly, such an axiom is only 
adequate if the valuations are "cardinal" for it to make sense to add a constant c 
to some of them. 

Similarly, the selection procedure based on the Minimum in Favour score is 
essentially characterised by an "ordinality" axiom stating that if it is possible to 
go from S to R via an increasing transformation on [O; 11 then S and R should 
lead to identical selections. 

7.4.3.2.4 Examples Some of the selection procedures for valued relations en- 
visaged so far are illustrated below. 

Example 7.7 
Let A = {a, b, c, d, e, f )  and consider the valued binary relation S defined by: 

S a b c d e f  
a 1.0 0.5 0.5 0.3 0.3 0.6 

Taking the Minimum in Favour score Score(a, S )  = minbEA\{,) S(a ,  b) leads to the 
unique choice of alternative a which has a maximal score of 0.3. Fuzzyfying the 
quantifier "for all" using "min", this degree can be interpreted as the credibility 
of the proposition "a is a t  least as good as any other alternative in A", i.e., that 
a belongs to the greatest alternatives for S in A. 

The net flow score Score(a, S) = xbEA\(,)(S(a, b)-S(b, a)) leads to the unique 
choice of b with a score of 3.7 - 2.7 = 1. 

Taking P(x,  y) = min(S(x, y), 1 - S(y, a)) ,  we obtain: 

P a b c d e f  
a 0.0 0.2 0.5 0.3 0.3 0.6 
b 0.5 0.0 0.1 0.5 0.4 0.6 
c 0.2 0.2 0.0 0.8 0.2 0.3 
d 0.1 0.0 0.2 0.0 0.9 0.5 
e 0.7 0.6 0.1 0.1 0.0 0.8 
f 0.1 0.1 0.2 0.0 0.0 0.0 

The fuzzyfication of the set of maximal elements envisaged above therefore leads 
to the unique choice of c with the credibility that it belongs to the set of maximal 
alternatives of 1 - 0.5 = 0.5. 

Note that on the example above, the three procedures give different results. 
Unless S has some remarkable properties, this usually cannot be avoided. 0 

The definition of a selection procedure for valued relations should take 
Q the nature of the valuation (e.g., the nature of the scale on which they are 
Q measured) and their interpretation (e.g., large preference or strict preference) ... 
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@ into account. It is always possible to apply a selection procedure designed for 
crisp relations to a valued relation through the use of A-cuts. Using the family 8 of Xcuts of a valued relation and applying a choice procedure for crisp relations 

@ t o  each of these relations may be seen as a very cautious attitude that does not 
Q seek to  exploit the finely grained information provided by the valued relation. 
Q I t  nevertheless raises the problem of aggregating the results obtained a t  each 

cut; this aggregation problem is all the more serious that the application of 8 a choice procedure to two A-cuts obtained for values of h that are close to  
Q each other may lead to  quite different results. If more refined procedures 
&2 are applied, care must be taken to  ensure the compatibility of the operations 
@ performed on the valuations with the way in which they were obtained. In 

some techniques, e.g., ELECTRE I11 or PROMETHEE, the precise nature of 8 the valuations is not easy to  determine, as was emphasised in section 5.3.1 of 
Q chapter 5. 

7.4.4 Ranking procedures 

7.4.4.1 Crisp relations 

Let A be a set of alternatives. Suppose that you have built a crisp relation S on A 
using some kind of aggregation technique. Let S be the set of all conceivable pref- 
erence relations that can be obtained using such a technique. A ranking procedure 
k is a function associating a reflexive and transitive binary relation k ( S )  on A 
with each element S of S. The task of building a transitive result on the basis of 
a binary relation, that might not be transitive or complete is not easy: we are in 
fact looking for a much richer result than that obtained using choice procedures. 

Remark 7.4.5 
Our definition of a ranking procedure does not imply that  k ( S )  is necessarily 
complete. This is in accordance with our definition of the ranking problem state- 
ment above. When using a ranking procedure k that might lead to  an incomplete 
relation k ( S ) ,  it will be important to  analyse the conditions under which incom- 
parabilities could occur. Although always asking for a complete and transitive 
relation may be overly demanding, having many incomparabilities in k ( S )  is un- 
likely to be much helpful. 

Remark 7.4.6 
Remark 7.4.2 about choice procedures fully applies here. Indeed, our definition of 
ranking procedures implies that k ( S )  depends on the behaviour of S on the entire 
set A and S is the only information used by 2. Again the fact that the positions 
of a and b in k ( S )  could depend on how they compare with respect t o  other 
alternatives and, more generally on the whole relation S, although inevitable in 
this approach, may be criticised. Similarly a ranking procedure k does not make 
use of "reference points" to rank alternatives. 

We expect such a ranking procedure to be: 

neutral, i.e., insensitive to  the labelling of the alternatives, 
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0 faithful, i.e., if S is a reflexive and transitive relation, we should have k ( S )  
= S ,  

0 monotonic, i.e., the position of a in the ranking k ( S )  should not decrease 
if S is substituted by a relation S' in which the position of a has improved 
(see example 7.2). 

Clearly, this list is only partial, e.g., we would also expect the ranking k ( S )  to be 
linked to the covering relations defined above (or to have links with the underlying 
weak order of S when S is a semiorder, see Vincke, 1992a). 

Several types of ranking procedures have been suggested in the literature: 

1. Ranking procedures based on the transitive closure of S, 

2. Ranking procedures based on scores, e.g., the Copeland score, 

3. Ranking procedures based on the repeated use of a choice mechanism (as in 
example 7.2), 

4. Ranking procedures based on distances. 

We briefly illustrate each type of procedure below. 

7.4.4.1.1 Procedures baSed on the transitive closure Let S be a reflexive 
binary relation on A. A simple way to  obtain a reflexive and transitive relation 
k ( S )  on the basis of S is to take its transitive closure S, i.e., the smallest transitive 
relation containing S. This defines a ranking procedure; it is easy to  see that  it 
is neutral, faithful and monotonic. In view of our discussion of choice procedures, 
the main defect of this ranking procedure should be apparent. All alternatives 
that are involved in a circuit of S will be equally ranked if we let k ( S )  = S. 
This often results in a very poor information. As suggested in Schwartz (1972) 
and Schwartz (1986), this phenomenon is somewhat less severe if the transitive 
closure is taken on the asymmetric part P of S .  This is however a price to pay, 
since indifferent alternatives in S that are not included in a circuit of P will then 
appear incomparable in k ( S ) .  This calls for the use of techniques allowing to deal 
with such situations (see Perny, 1992). 

A closely related ranking procedure is the one used in ELECTRE I1 (Roy and 
Bertier, 1973). I t  was originally designed to produce a reflexive and transitive 
relation on the basis of two nested reflexive relations. We present it below in the 
special case in which there is only one relation (the role of the second one being 
only to possibly refine the equivalence classes that are obtained). 

Consider any reflexive relation S on A. The ranking procedure of ELECTRE I1 
first consists, as with ELECTRE I, in reducing the eventual circuits in S, replacing 
all alternatives involved in a circuit by a single vertex in the associated graph. Once 
this is done, we obtain, by construction, a relation with no circuit. We use this 
relation to  build two weak orders. In the first one, TI, the first equivalence class 
consists of the maximal elements (there is no element that is strictly preferred to 
them) of the relation with no circuit. These elements are then removed from the 
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Figure 7.10: Relation S in example 7.8. 

set of alternatives. The second equivalence class of TI consists of the maximal 
elements of the relation among those remaining and so forth. 

The second weak order T2 is obtained in a dual way, building the last equiva- 
lence class consisting of the minimal elements first (they are preferred to no other 
element) in the relation with no circuit, removing these elements from the set of 
alternatives and building the penultimate equivalence class of T2 as the minimal 
elements among those remaining and so forth. Let us illustrate this process using 
a simple example. 

Example 7.8 
Let A = {al, a2, . . . , ag )  and let S be such that (see figure 7.10): 

The relation S has a circuit: a1 S a2, a2 S as,  a3 S a l .  We therefore replace S on 
A with the relation S' on A' defined by (see figure 7.11): 

where a l ,  a2 and a3 have been replaced by b. The relation S' has no circuit. Its set 
of maximal elements consists of {b, as). Once these elements have been removed, 
the set of maximal elements is {a4,a5). At the next iteration, we obtain {a6), 
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Figure 7.11: Relation S' in example 7.8. 

Figure 7.12: Relation k (S )  in example 7.8. Transitivity arcs are omitted. 

then {a7) and {ag). Therefore the weak order TI is, using obvious notation: 

In a dual way, we obtain the weak order T2: 

In general, TI and T2 are not identical. The reflexive and transitive relation k (S )  
is then taken to  be the intersection of these two weak orders. In our example we 
would obtain, abusing notation (see figure 7.12): 

[al, a2, a31 * a4 + a6 t a7 t a9, 
[al,a2,a3] * a87 

a4 + a5, 
as + a7,aS + a5, 

a5 t ag. 

What can be said of this result? First observe that the rationale for building two 
weak orders and for defining k (S )  as their intersection is to introduce incompa- 
rability between alternatives that are difficult to compare using S. This is, for 
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Figure 7.13: Transitive closure $ of S in example 7.8 .Transitivity arcs are omitted. 

instance, the case between a5 and all alternatives except a1 or between a8 and all 
alternatives except as. In this respect the success of the procedure is only limited 
since we finally conclude that [al,a2,a3] +(S) ag, ag +(S) a7, a4 +(S) a5 and 
a5 +(S) as. 

Let us also note_that we would have obtained a similar result starting with the 
transitive closure S of S instead of S. Observe that, simply taking k ( S )  = S ,  
would have probably been a better choice in this example (see figure 7.13). 

The final result of the ranking procedure is obtained by taking the intersection 
of two weak orders. Since it is well-known that  there are reflexive and transitive 
relations that  cannot be obtained in such a way (Dushnik and Miller, 1941), this 
procedure is not faithful. We leave the proof that this procedure is indeed neutral 
and monotonic to the reader (it is detailed in Vincke, 1992a). 

Taking the transitive closure of a relation leads to a ranking procedure 
&; that is quite undiscriminating. Applying transitive closure to the asymmetric 
&2 part of S somewhat alleviates the problem but calls for the application of 
Q techniques designed to deal with indifferent alternatives. Ranking procedures 
@ building a reflexive and transitive relation on the basis of the intersection of 8 two weak orders are not faithful. 

7.4.4.1.2 Copeland scores We have seen that the procedure suggested in 
ELECTRE I1 does not satisfy all the requirements we intuitively would like to  see 
satisfied. A simpler ranking procedure consists in rank ordering the elements in 
A according to  their Copeland scores, i.e., the number of alternatives that  they 
beat minus the number of alternatives that  beat them. In our earlier example, 
this would, abusing notation, give the weak order (see figure 7.14): 

We cannot expect faithfulness with such a procedure, since the result of the 
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6 
Figure 7.14: Relation k ( S )  using Copeland scores. 

procedure is obviously complete (note that the procedure treats indifference and 
incomparability similarly). On the other hand, such a procedure is neutral and 
monotonic. 

The ranking procedure based on Copeland scores was characterised by Ru- 
binstein (1980) (for the case of tournaments, i.e., complete and antisymmetric 
relations) and Henriet (1985) (for the case of complete relations). I t  is not diffi- 
cult to extend Henriet's result to cover the case of an arbitrary reflexive relation 
(see Bouyssou, 1992b). The main distinctive characteristic of this ranking proce- 
dure is that it is insensitive to the presence of circuits in S since the contribution 
of this circuit to the Copeland scores of the alternatives in the circuit is always 
zero. 

8 Ranking procedures based on a score always lead to a complete and tran- 
@ sitive relation. They are not faithful. 

Remark 7.4.7 
Observe that we could have weakened faithfulness requiring only that k ( S )  = S ,  
when S is complete and transitive. We leave the easy task of showing that the 
ranking procedure based on Copeland scores is indeed faithful in this weaker sense 
to the reader. 

Remark 7.4.8 
An alternative way of building a ranking procedure consists in using several scores 
(see Bouyssou and Perny, 1992). Each score is used to build a weak order on A and 
k ( S )  is taken as the intersection of these weak orders. The result of this type a 
procedure is a reflexive and transitive relation that can have at  most dimension k, 
where k is the number of scores involved. Hence, such techniques are not faithful. 

7.4.4.1.3 Ranking by repeated choice A possible way of combining the 
simplicity of such a ranking procedure with a move towards faithfulness consists 
in using the Copeland scores iteratively to build two weak orders TI and T2. This 
would consist here in building the first equivalence class of a weak order TI with the 
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Figure 7.15: Relation k (S )  using repeated choice based on Copeland scores. 

alternatives having the highest Copeland scores, and iterating the procedures after 
having removed the already-ranked alternatives. For the relation in example 7.8, 
we would obtain: 

Using a dual principle, we could also build a weak order T2 the last equivalence 
class of which consists of alternatives having minimal Copeland scores and reiterate 
the process on the set of unranked alternatives. This would yield: 

Taking the intersection of these two weak orders is a much simplified version of 
the ranking procedure implemented in ELECTRE I11 (Roy, 1978). This leads to, 
abusing notation, (see figure 7.15): 

Such a result does not seem to lead us closer to an adequate restitution of the 
uncertain positions of as and a5 within S. Furthermore, as observed in exam- 
ple 7.2, such a ranking procedure is not monotonic, which seems to be quite a 
serious shortcoming. 

5 Ranking procedures based on the iteration of choice mechanisms are quite 
8 unlikely to respect monotonicity except in trivial cases (Bouyssou, 2004; Juret, 
8 2003; Perny, 1992). This tends to severely limit their interest. 
R 
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7.4.4.1.4 U s e  of dis tances  Suppose that  you have defined a distance d on 
the set of binary relations in S. A natural way of obtaining a ranking procedure 
would seem to  be to  find the reflexive and transitive relation T a t  minimal distance 
from S. This idea dates back a t  least to  Barbut (1959)) Kemeny (1959), Kemeny 
and Snell (1962) and Slater (1961). Although this may seem the most natural way 
of defining a ranking procedure, this approach raises new problems: 

0 the determination of a transitive relation a t  a minimum distance from crisp 
or valued binary relations raises deep combinatorial questions and quite dif- 
ficult algorithmic problems (see Barthklkmy et al., 1989; Barthklkmy and 
Monjardet, 1981, 1988; Bermond, 1972; Charon, Hudry, and Woirgard, 1996; 
Charon-Fournier, Germa, and Hudry, 1992; Hudry, 1989; Monjardet, 1990). 
From a practical point of view, this tends to  limit the use of such techniques 
to small sets of alternatives. 

0 it is likely that many quite distinct relations are a t  minimum distance of 
S. The definition k (S)  on the basis of this family of relations is far from 
obvious. Systematically taking the intersection of all such relations will often 
yield a result containing more incomparabilities than we would have liked. 

0 the choice of the distance function should be analysed with care (see Roy 
and Slowiriski, 1993) as soon as one is no loner faced with the, easy, case of a 
distance between tournament and linear orders for which the distance based 
on the symmetric difference is an obvious choice (see Barthklkmy, 1979). 

0 the normative properties of such procedures are not easy t o  analyse (see, 
however, Young and Levenglick, 1978). 

R e m a r k  7.4.9 
The analysis above shows that it is very difficult to devise a ranking procedure 
that is fully satisfactory. This difficulty is related to  Arrow-like theorems intro- 
duced in section 5.2.1.3 of chapter 5. Indeed, suppose that you have defined a 
"very nice" ranking procedure. You could then proceed as follows to  rank order 
alternatives. Use one of the majoritarian aggregation methods introduced in sec- 
tion 5.2.3 chapter 5 to  build a relation S. This relation S will mainly depend 
on "ordinal" considerations but will not have remarkable transitivity properties. 
Applying your nice ranking procedure to  S will lead to a reflexive and transitive 
binary relation k (S) .  Clearly, this two-step process (building S and then applying 
2 t o  S)  may be viewed as a one-step process associating a reflexive and transitive 
relation to  a profile of evaluations. But then, Arrow-like theorems apply to  this 
one-step process. The fact that there does not seem to  be a ranking process that 
would be fully satisfactory within this framework is therefore unsurprising. 

This does not mean, however, that such ranking procedures are useless. Once 
their shortcomings are acknowledged, they may indeed be useful tools for the 
analyst in order to  elaborate a recommendation. Discovering, for instance, that  a 
subset of the entire set A is almost always ranked in a similar way using several 
such procedures, may be used as building block by the analyst in order to come 
up with recommendations. 
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7.4.4.2 Valued relations 

We have shown the difficulty of devising a satisfactory ranking procedure for crisp 
relations. The situation is not easier with valued relations. An overview of ranking 
procedures for valued preference relation may be found in Fodor and Roubens 
(1994), Fodor et  al. (1998), Perny (1992) and Perny and Roubens (1998). Working 
with valued relations allows to better discriminate between alternatives. This 
increased discrimination is often obtained a t  the cost of performing operations on 
the valuations that are not always compatible with a strictly ordinal interpretation 
of these numbers. 

Since these procedures do not appear to  be significantly more satisfactory than 
the ones envisaged above, we do not study them in detail here. As in the case of 
crisp relations, ranking procedures for valued preference relations may be based: 

on scoring functions. The main difficulty here will be that the result of 
the ranking procedure will always be complete and that it is necessary to 
use a scoring function that is somehow compatible with the nature of the 
valuations. The ranking procedure based on the Net Flow score has been 
characterised in Bouyssou (199213) using axioms that are very similar to the 
ones used for the associated choice procedure, i.e., interpreting the valuations 
in a kardinal way" (this result has been extended in Bouyssou and Perny 
(1992) to cover the case of the intersection of two procedures based on scores). 
Note that this ranking method is a t  work in the PROMETHEE method 
(Brans et  al., 1984; Brans and Vincke, 1985). Similarly the ranking procedure 
based on the Minimum in Favour score was characterised in Bouyssou (1991), 
Bouyssou and Pirlot.(1997) and Pirlot (1995) using axioms compatible with 
an ordinal interpretation of the valuations. 

on the repeated use of a choice procedure as in ELECTRE I11 (Roy, 1978) or 
in MAPPAC and PRAGMA (Matarazzo, 1986, 1988, 1990). As first shown 
in Perny (1992), such procedures are quite unlikely to  be monotonic, which 
tends to seriously limit their interest. 

on a transitive relation close to the valued relation. Such procedures often 
raise the same kind of difficulties as the ones evoked in the crisp case (see 
page 379). 

7.4.5 Sorting procedures 

We have seen that  the lack of transitivity and/or completeness raised quite serious 
difficulties when it comes to  devising choosing and ranking procedures. These dif- 
ficulties are somewhat less serious here. This is because, with sorting procedures, 
the assignment of an alternative only depends on its comparison to carefully se- 
lected reference actions defining the categories. The use of such reference points 
implies that, contrary to the case of choice and ranking procedures, the distinction 
between the phase of building a relation S and then using this relation in order to 
reach conclusions is blurred with the sorting problem statement. Reference points 
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are used from the beginning and the relation S is mainly used to compare the 
alternatives in A to these reference points. 

To keep things simple, we only deal with the case of a crisp relation S here. 
As in the case of value functions, we only consider the case of ordered categories. 

Early attempts to propose sorting procedures are Massaglia and Ostanello 
(1991), Moscarola and Roy (1977) and Roy (1981). A more general approach to 
the problem was suggested in Roy and Bouyssou (1993) and Yu (1992a) with the 
so-called ELECTRE TRI approach that we present below. 

7.4.5.1 An overview of ELECTRE TRI 

We consider the case of r ordered categories C1, C2 , .  . . ,  C', with C' containing the 
most desirable alternatives. We suppose, for the moment, that each category Ck is 
delimited by a limiting profile .rrk. It is not restrictive to suppose that .rrk+l strictly 
dominates .rrk, for all k .  Furthermore, we can always find an alternative .rrr+' that 
strongly dominates all other alternatives in A and, conversely, an alternative n1 
that is strongly dominated by all other alternatives (see figure 7.16). How can 

Increasing preference ' 

I 

Figure 7.16: Sorting with r ordered categories. 

we use a preference relation between the alternatives in A and the set of limiting 
profiles to define a sorting procedure? Intuitively, since nk is the lower limit of 
category Ck,  we can apply the following two rules: 

0 if an alternative a is preferred to nk ,  it should at least belong to category 

Ck, 

if nk is preferred to a,  a should at most belong to category c k - l ,  

I.e., ak+l is at  least as  good as ak on all criteria and strictly better on some criterion. 
I.e., it is strictly better on all criteria. 
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the case in which a is indifferent to nk is dealt with conventionally depending on 
the definition of the limiting profiles nk. 

When the relation S is complete and transitive, these two rules lead to unam- 
biguously assign each alternative to a single category. 

The situation is somewhat more complex when S is intransitive or incomplete. 
When S is compatible with the dominance relation (which is not a very restrictive 
hypothesis), as we have supposed that nk strictly dominates nkpl ,  it is possible to 
show (see Roy and Bouyssou, 1993, ch. 5) that when an alternative a is compared 
to the set of limiting profiles n l ,  n2 . . . , nTf' ,  three distinct situations can arise: 

1. nT+' P a , n T  P a , .  . . , nk+l  P a , a  P n k , a  P nk-', . . . , a  P nl .  In such a 
case, there is little doubt on how to assign a to one of C1, C2 , .  . . , C T  Since 
a P nk--', a should be assigned at least to category Ck. But since nk P a ,  a 
should be assigned a t  most to Ck. Hence, a should belong to Ck .  

2. nT+l P a , ~ ' + ~  P a , .  . . , r e+ '  P a , a  I ne ,a  I ne-l,. . . , a  I nk+',a P 
n k , .  . .. , a  P nl .  The situation is here more complex. Since ne+' P a ,  al- 
ternative a must be assigned at most to category Ce. Similarly since a P nk,  
a must be assigned at least to category Ck. 

The fact that a is indifferent to several consecutive limiting profiles is prob- 
ably a sign that the definition of the categories is too precise with respect 
to the binary relation that is used by the sorting procedure: the profiles 
are too close to one another. This would probably call for a redefinition of 
the categories and/or for a different choice for S. In such a situation, an 
optimistic attitude consists in assigning a to the highest possible category, 
i.e., Ce. A pessimistic attitude would assign a to ck. 

3. nT+' P a , n T  P a , .  . . , r e+ '  P a , a  J ne,a  J ne-',. . . , a  J n k + l , a  P 
nk,  . . .. , a  P nl .  In this situation, a is incomparable to several consecutive 
profiles. This is a sign that, although we are sure that a must be assigned 
at most to category Ce and at least to category C k ,  the relation S does 
not provide enough information to opt for a category within this interval. 
Again, an optimistic attitude in such a situation consists in assigning a to 
the highest possible category, i.e., Ce. A pessimistic attitude would be to 
assign a to Ck. 

The assignment procedure described above is the one introduced in ELECTRE 
TRI (Roy and Bouyssou, 1993; Yu, 1992a) in which a is assigned to one of 
C1, C2 , .  . . , Cr using an optimistic procedure and a pessimistic procedure. Al- 
ternative a is always assigned to a higher category when using the optimistic 
procedure than when using the pessimistic procedure. One can verify that this 
procedure coincides with the one suggested in 7.2.2 when S is defined by a value 
function. 

Another interesting special case of this procedure arises when S is identical 
to a dominance relation. In this case, the optimistic procedure suggested above 
coincides with a disjunctive sorting procedure. In fact a will be assigned to Ce as 
soon as ne+l P a and ~ o t [ x ~  P a ] ,  which means that l is the highest category 
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such that, on some criterion i E N,  a is better than re. Conversely, the pessimistic 
procedure coincides with a conjunctive assignment strategy: a will be assigned to 
Ck  as soon as Not[a P rktl] and a P r k ,  which amounts to saying that Ic is the 
lowest category such that a dominates rk. 

It  is worth noting that although the authors of this method have coupled this 
procedure with a particular definition of S (a  crisp relation based on a concordance 
discordance principle), it can be applied to any relation that is compatible with a 
dominance relation. 
Remark 7.4.10 
We refer Greco, Matarazzo, and Slowiriski (2001b) and Slowiriski, Greco, and 
Matarazzo (2002) for an axiomatic analysis of the sorting model in which (see also 
the pioneering work of Goldstein, 1991): 

where F is a real-valued function on Rn which is nondecreasing in each of its 
arguments, ui are real-valued functions on R, sk are real numbers and hi(a) is the 
evaluation of alternative a E A on the ith criterion. 

Taking F as a sum shows that the above model contains the UTADIS technique 
introduced in section 7.3.4. It is not difficult to show that the same is true with 
the ELECTRE TRI technique described above. A complete axiomatic analysis 
of ELECTRE TRI was recently proposed in Bouyssou and Marchant (2005a) and 
Bouyssou and Marchant (2005b). 

Remark 7.4.11 
Each alternative is assigned to a category in ELECTRE TRI. Such an assignment 
may hinder the fact that some assignments may be more well-established than 
others. This clearly calls for a robustness analysis before coming to conclusions. 
An interesting way of having a "built-in" robustness analysis within a sorting 
procedure is to compute the credibility, between 0 and 1, that each alternative 
belongs to each category. Alternatives for which this credibility is close to 1 for a 
given category and close to 0 for all other categories are then seen to  be "robustly" 
assigned. Such assignment procedures allow to explicitly model the fact that the 
definition of the categories may not allow to unambiguously assign each alternative. 
These types of techniques are detailed in Perny (1998). 

Remark 7.4.12 
When first confronted with ELECTRE TRI, many people have the impression 
that this method, while preserving an "ordinal" character, provides a way out of 
the problems caused by incompleteness and/or intransitivity. Indeed, the result of 
ELECTRE TRI is an assignment of the alternatives in A among ordered categories 
on the basis of an outranking relation built using the concordance-discordance 
principles. This seems quite close to obtaining a weak order on A. Such a way of 
ranking alternatives is in the spirit of the use of "reference points" for choosing or 
ranking alternatives as advocated in Dubois et al. (2003). 

I t  should however be noted that, unsurprisingly, sorting methods & la ELEC- 
TRE TRI do not offer a "miraculous way out" of the problems of ordinal aggrega- 
tion uncovered by Arrow-like theorems. Indeed, the appearance of transitivity of 
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Table 7.8: Evaluation of two alternatives and the limiting profile. 

the result of ELECTRE TRI is due to the fact that alternatives are only compared 
to the limiting profiles and are not compared between themselves. If this were the 
case, intransitivities would inevitably reappear. Let us illustrate this point using 
a simple example. 

Consider two alternatives a1 and a2 evaluated on a family of three criteria and 
let us suppose that we want to sort these two alternatives into two categories C1 
and C2, b being the limiting profile between C1 and C2. The evaluations of a l ,  
a2 and b for the three criteria are given in table 7.8. Suppose that we compare 
these alternatives using simple majority (therefore considering that all criteria are 
of equal importance). We obtain: b P a1 and a2 P b, so using both the pessimistic 
and the optimistic versions of ELECTRE TRI, we should conclude that a1 E C1 
and a2 E C2. This seems to give evidence that a2 is superior to a l .  However, 
this evidence is contradicted by the fact that, using the same principles, the direct 
comparison of a1 and a2 would have led to a1 P a2, a1 being better than a2 on 
two criteria. 

8 ELECTRE TRI offers a simple way of using a relation based on a 
@ concordance-discordance principle to assign alternatives to ordered categories 
@ defined by limiting profiles. Conjunctive and disjunctive sorting procedures are 
Q particular cases of ELECTRE TRI. Because alternatives are only compared 

to carefully selected reference alternatives, the possible incompleteness or in- 8 transitivity of the preference relation that is used has less severe consequences 
@ than for choosing or ranking procedures. However, this raises the problem of 
G defining these reference alternatives. 
rl 

7.4.5.2 Implementation of ELECTRE TRI 

The ELECTRE TRI procedure described above supposes that the analyst has 
defined: 

0 the limiting profile .rrk for each category Ck, 

0 the parameters involved in the definition of S: weights, indifference and 
preference thresholds, veto thresholds. 

This is overly demanding in most applications involving the use of a sorting proce- 
dure. In many cases however, it is possible to obtain examples of alternatives that 
should be assigned to a given category. Like in the UTADIS method described ear- 
lier (see 7.3.4), one may use a "learning by examples'' strategy to assign a value 
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to  these parameters. Several strategies for doing this were investigated in Dias 
and Climaco (2000), Dias and Mousseau (2006), Dias, Mousseau, Figueira, and 
Climaco (2002), Mousseau et al. (2001), Mousseau and Slowiriski (1998), Mousseau 
et al. (2000) and Ngo The and Mousseau (2002). 

Remark 7.4.13 
The symmetric part I of the relation S can be interpreted with some precaution 
as a similarity relation. When this interpretation is accepted, we may extend this 
type of methods to  cover the case of unordered categories defined by prototypical 
examples, through computing the "similarity" of an alternative with its proto- 
typical elements. This has been investigated in detail in Belacel (2000)) Belacel, 
Hansen, and Mladenovib (2002), Belacel, Scheiff, Vincke, and Boulassel (2000)) 
Belacel, Vincke, and Boulassel (1999), Bisdorff (2002), Henriet (2000), Henriet 
and Perny (1996) and Perny (1998) 

7.5 Robustness of the conclusions 

We have seen in section 7.3 that an assessment procedure can lead to  several 
possible value functions. We argued that, in such a case, the derivation of recom- 
mendation should take all possible value functions into account. Indeed, we are 
interested in obtaining recommendations that could be justified using any of the 
possible value functions, i.e., in what could be called "robust" recommendations. 

The interest of this idea of robustness is not limited to the case of an assessment 
procedure leading to  several value functions. As argued in section 2.3.3 of chap- 
ter 2 many other sources of uncertainty, imprecision and inaccurate determination 
interfere with the work of the analyst (see Bouyssou, 1989; Roy, 1989). The way 
to  manage them has generated a research trend in decision aiding under the name 
of "robustness" problems. The purpose of this section is to  introduce the reader 
to this recent literature. 

7.5.1 Introduction 

All scientists who have treated real decision problems know that the numerical 
values used in the models are questionable. On the one hand, this is the case 
for the information describing the decision situation, traditionally called the data. 
They often are values built by the analyst according to the model he wants to use, 
they result from assumptions about the context of the problem, from estimations 
of badly known or random values, from forecasting of future events. Therefore, it 
is often the case that several plausible sets of data, possibly very different from 
each other, can constitute good representations of the situation. On the other 
hand, this is also the case for the parameters (value functions, weights, thresholds, 
etc.) which must be (more or less arbitrarily) chosen by the user of the methods 
described in this book (see, in particular, section 4.4 of chapter 4). 

In such a context, working with a unique (the "most plausible") set of values 
can be very risky. This is particularly true for the decision maker who has to  live 
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with the consequences of his/her decision, if the "real" set of values is different 
from the set used in the determination of the decision. 

In Bouyssou et al. (2000, ch. 8), we analysed traditional and less traditional 
ways of coping with uncertainty in Decision Theory. In Operational Research, 
stochastic optimisation also takes the presence of multiple data instances which 
can occur in the future into account. However, these approaches usually require 
explicit information on the "plausibility" associated to each instance. This explicit 
information (probabilities, possibilities, fuzzy numbers, etc.) is not known with 
certainty; it can result from more or less reliable estimations and be based on 
more or less strong assumptions. Moreover the enormous number of parameters 
introduced in these approaches can lead to a "black box effect" which is rarely 
desirable in a decision aiding process. 

What the decision maker generally wants is a decision which is relatively good 
for all (or almost all) of the plausible sets of data and which does not imply 
too much risk. This 'is the basis of the concept of robustness that we want to 
introduce in this section. This concept, which until now was not really integrated 
into decision aiding methods, is a challenging area of research and is likely to be 
a very important part of decision aiding techniques. 

7.5.2 Robustness versus stability 

We would like to avoid any confusion between robustness and stability. A solution 
(a decision) is said to be stable if it resists to some perturbations of the data and 
parameters which were used to determine it. The stability of a decision generally 
results from an a posteriori sensitivity analysis which consists in studying how the 
results vary with (generally small) changes in the data. This means that a solution 
(a result, a decision) was determined on basis of a particular set of values for the 
data and the parameters (the most "plausible" ones) and that an a posteriori study 
of the neighbourhood of that solution is performed. Note also that, generally, for 
technical reasons, the sensitivity analysis is performed for the perturbations of one 
parameter at  a time. 

The idea of robustness leads to consider, a priori, several sets of values of the 
parameters (possibly rather different from each other) and to look for decisions 
which are "good" for all or almost all sets of values. No particular set of values 
is privileged; uncertainty is introduced in the formulation of the problem and it 
does not necessarily have to be quantified by probabilities or other tools. 

7.5.3 Alternative definitions of robustness in the literature 

To date there is no specific definition of robustness accepted by the scientific 
community. Moreover, the idea of robustness is rarely integrated into the decision 
aiding tools proposed in the literature and, when it is, it is generally assimilated 
to stability, which is a different property, as explained in section 7.5.2. 

However, the word "robustness" is not new: it was introduced in different 
contexts and with different meanings for the last 30 years. 
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One of the first papers dealing with a concept of robustness appeared in Man- 
agement Science in the seventies (Gupta and Rosenhead, 1972) and was devoted 
to strategic planning. In this context, due to the often appreciable uncertainty 
about external conditions in the future, it is possible that a best decision based on 
the state of current knowledge will prove to be less than good during the following 
years. One way of avoiding this danger is to ensure that the early and irreversible 
decisions keep as many options of "good" plans open as possible. In Rosenhead, 
Elton, and Gupta (1972) and Rosenhead (1989), the robustness of a decision is 
defined as the ratio of two quantities. The first is the number of "good" end- 
states which remain as open options after the decision. The second is the number 
of all possible end-states. The exact mathematical formulation and examples of 
applications can be found in the aforementioned references. 

Rosenblatt and Lee (1987) studied a facilities design problem where different 
versions are possible for the demand of products to be manufactured with these 
facilities, the objective being to minimise the cost resulting from the manipulations 
of the material. This paper defines the robustness of a solution as the number of 
versions where the solution provides a cost that is 'hot too far" from the optimum, 
this acceptable distance being expressed as a pre-defined percentage. 

Sengupta (1991) introduced a concept of robustness in Data Envelopment 
Analysis that mixes the idea of stability for small variations of the data (clas- 
sic sensitivity analysis) and the idea of prudence with regards to possible bad 
versions. 

In Statistics, robustness analysis is used to reduce the influence of outliers on 
the results provided by regression methods or econometric models. 

In Mathematical Programming, Mulvey, Verderbel, and Zenios (1995) intro- 
duced a concept of robustness in relation to optimality (the solution must be "close 
to" the optimum for all possible versions) and another in relation to feasibility (the 
solution must be feasible for all possible versions). The final solution is calculated 
by stochastic programming where penalties for less robust solutions are introduced 
in the objective function . 

In the field of Combinatorial Optimisation, the main contributions are those 
of Kouvelis, Karawarwala, and Gutierrez (1992), Kouvelis and Yu (1997). They 
propose three different definitions that are all inspired by the idea that a robust 
solution should avoid any catastrophic result: 

1, the first definition (absolute robustness) attaches to each solution its worst 
value among all possible versions. One then tries to find the solution for 
which this worst value is the best. 

2. in the second definition (robust deviation) each solution is characterised, for 
each version, by the difference between its value and the optimal value for 
this version. The robust solution is then the solution that minimises the 
largest of these differences. 

3. the third definition (relative robustness) is similar to the second one except 
that it uses deviations from the optimal solution expressed in percentage. 
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Roy (1998) suggests to apply the concept of robustness not only to solutions 
but, more generally, to L'conclusions" (assertions, recommendations). A conclusion 
is an information deduced from the model and given to the decision maker during 
the decision process. It can be a solution to the problem, but it can also be a 
property or a fact that can be useful for the decision maker. A conclusion is called 
robust if it is true for all (or almost all) the versions of the problem where a version 
is characterised by a plausible set of values for the parameters of the model used 
to solve the problem. The reader is referred to Roy (1998) and Vallin (1999) for 
details. 

Vincke (1999a) proposed a theoretical framework for the concept of robustness. 
I t  is based on formal definitions of "problem", "instance of a problem", "proce- 
dure" and "method". It  leads to precise definitions of robust solutions and robust 
methods, which are illustrated using classical optimisation problems (minimum 
spanning tree, minimum Hamiltonian path) and preference aggregation problems. 

Several recent papers deal with the robustness of the solutions to decision 
problems (the interested reader will find a list of references available at  h t t p :  // 
www . ulb. ac . be/polytech/smg/indexresearch. htm) but, as already mentioned, 
the definition of the concept is far from being unique. Robustness may have several 
meanings, such as flexibility (as in Rosenhead, 1989), prudence (as in Kouvelis and 
Yu, 1997), stability (as in Roy, 1998), so that several formalisations of the concept 
should be developed in the future. In the next sections, we would like to illustrate 
some aspects which constitute stepping stones for the analyst on this subject. 

7.5.4 Robustness illustrated: examples 
Example 7.9 (Minimum spanning t ree)  
This first example illustrates the case of a decision situation that has been modelled 
as an optimisation problem with some uncertainty on the data. 

A communication network must be established between 4 cities A, B,  C,  D at 
a minimum cost. The costs of the different connections are given in table 7.9 (see 
also figure 7.17). They are expressed in millions of Euros. However, the total 

AB AC AD B C  B D  C D  
Costs 6 2 8 3 5 7 

Table 7.9: Costs of the possible connections. 

cost could be reduced due to the fact that another project, supported by another 
budget, could be decided by the government in the near future. The problem is 
that, for political reasons, it is impossible to know whether this project will concern 
the connection AB (leading to a reduction of 4 million Euros for the cost of this 
connection) or the connection C D  (leading to a reduction of 3 million Euros). In 
other words, a decision has to be taken in a context where there are two possibilities 
for the costs, leading to two versions (one could also speak of two scenarios) of 
the problem. Table 7.10 summarises the costs of the connections in both versions. 
It is not difficult to see that the optimal solution in version 1 consists in choosing 
the connections AB, AC and B D  (this is known, in Operational Research, as 
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Figure 7.17: Costs of the possible connections. 

AB AC AD B C  B D  C D  
Version 1 2 2 8 3 5 7 
Version 2 6 2 8 3 5 4 

Table 7.10: Costs in the two versions. 

the minimum spanning tree problem), giving a communication network costing 9 
million Euros. However, this choice is rather risky because, should version 2 occur, 
the cost of this network would be equal to  13 million Euros, which represents an 
increase of nearly 50%. 

In version 2, the optimal solution consists in choosing the connections AC, B C  
and C D ,  also giving a communication network costing 9 million Euros, but with 
the risk of paying 12 million Euros in version 1. A rapid analysis of this (very 
simple) example shows that  the network consisting in AC, B C  and B D  costs 10 
million Euros in both versions, which is nearly optimal whatever the version is. 
This last solution could be called "a robust solution" because it is very good in 
both versions (even if not optimal) and its value does not vary too much (in this 
case, it does not vary a t  all) when the version changes. 

Remark 7.5.1 
In this particular case, the solution {AC, BC, BD)  is optimal if a probability 
equal to  0.5 is assigned to  each version and the mean cost of each connection is 
computed. However, the robust solution cannot always be obtained in this way. 
For example, consider a similar problem where the costs, in both versions, are given 
in table 7.11. The reader can verify that the only solutions that can be obtained by 

AB AC AD B C  B D  C D  
Version1 7 5 12 11 9 16 
Version 2 17 9 10 12 4 3 

Table 7.11: New costs in both versions. 

assigning probabilities to  the two versions of the problem and by minimising the 
expected cost are, for any set of probabilities, the solution S1 = {AC, BD,  C D )  
or Sz = {AB, AC, BD),  while i t  would not be unreasonable for a decision maker, 
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to consider that solutions S3 = {AC, AD, BD)  or S4 = {AC, BC, BD)  are more 
robust, as shown in table 7.12. 

Sl s 2  S3 s 4  

Version 1 30 21 26 25 
Version 2 16 30 23 25 

Table 7.12: Comparison of the costs of four solutions in the two versions. 

Remark 7.5.2 
The solution S4 = {AC, BC, BD)  of the initial problem would also be the one given 
in the approach of Kouvelis and Yu (see section 7.5.2). However, it is not difficult 
to build an example where the three definitions proposed by these authors do not 
coincide with a reasonable and intuitive concept of robustness. this is illustrated 
in the following example. 

Example 7.10 (Choice of projects) 
A choice must be made between 6 projects the costs of which depend on some 
external conditions. To simplify the presentation, let us consider that two versions 
of the problem are possible and that the estimation of the costs in these two 
versions are given in table 7.13. We see that the best project (minimising the 

Proiects Version 1 Version 2 

Table 7.13: Possible costs. 

cost) in version 1 is A, which is very bad in version 2. Similarly, the best project 
in version 2, which is B, is very bad in version 1. Applying Kouvelis and Yu's 
definition of absolute robustness, we have to associate the worst value to each 
solution, yielding column 1 of table 7.14. According to this definition, the absolute 
robust solution (having the best worst value) is C,  which indeed can be considered 
as satisfying for both versions. The robust deviation of each solution is obtained 
by calculating, in each version, the difference between the value of this solution 
and the optimal value of this version and by taking the largest difference. This 
leads to column 2 of table 7.14, where we see that the best solution (minimising 
the robust deviation) is D. Note that D could reasonably be considered as better 
than C because it provides a significative improvement in version 1 (see table 7.13) 
for a slight disadvantage in version 2. For Kouvelis and Yu's third definition of 
robustness, we have to compute the relative robust deviation of each solution. For 
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this purpose, we compute, in each version, the ratio between the value of each 
solution and the optimal value of this version and we take the largest of these 
ratios. This leads to column 3 of table 7.14, where we see that the best solution 
(minimising the relative robust deviation) is E ,  which again can reasonably be 
preferred to C and D. Finally, solution F, that is very close to the previous ones 
in version 2, is significantly better in version 1 and is in fact very close to the 
optimum for this version. 

In this example, we see that it would not be unreasonable for a decision maker 
to have a preference for F over all the other solutions, although F will not be 
proposed by any of Kouvelis and Yu's definitions. This example shows that: 

Table 7.14: Three kinds of robustness. 

in the presence of uncertainty, the concept of robust solutions may be 
more suitable than that of an optimal solution, 

0 even in relatively simple optimisation problems, the determination of 
robust solutions cannot always be reduced in a straightforward manner 
to an optimisation problem, 

0 the way to model robustness should integrate aspects of the decision 
maker's preferences. 0 

Example 7.11 (Weighted absolute majority) 
Let us now consider a situation with no uncertainty on "data" but in which nu- 
merical values have to be chosen for the various parameters of the decision aiding 
method. 

Four objects a, b, c, d are compared according to three dimensions, yielding the 
following three rankings: 

0 first dimension: a better than {b, c), better than d. 

second dimension: b better than {a, d), better than c. 

0 third dimension: c better than {a, b), better than d, 

where {x, y) means that x and y are tied. We want to use a weighted absolute 
majority rule, which requires the following steps (see section 5.2.3 of chapter 5): 
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assessing the "weights" of the dimensions; 

0 building a global preference relation: x is considered a t  least as good as y iff 
the sum of the weights of the dimensions supporting this assertion represents 
a t  least 50% of the sum of all weights. 

According to  section 4.4 of chapter 4 (see also 5.2.2), the only way to  assess weights 
in a significant and consistent manner (i.e., a way taking the use of these weights 
in the next steps of the method into account) is to  try to obtain some information 
about the decision maker's global preference relation. Note that without any such 
information, we can already conclude from the data that a and b are a t  least as 
good as d: whatever the weights, the sum of the weights supporting these assertions 
represent 100% of the total sum of the weights. Note also that  d can never be a t  
least as good as b, but it can be a t  least as good as a if the weight of the second 
dimension is larger than 50% of the sum of all weights. Assume that the decision 
maker has a global strict preference for a over c (i.e. a is a t  least as good as c but 
c is not a t  least as good as a ) .  This information leads to the following constraints 
on the weights, denoting by wi the weight of the i th dimension: 

As the weights are clearly defined up to a positive multiplicative constant, we can 
assume that  the total sum is equal to one and these two constraints are equivalent 
to the unique constraint: 

w l  + w2 > 0.5. 

With any set of weights satisfying this constraint we obtain a global preference 
relation respecting the information given by the decision maker. For example, 
choosing w l  = w2 = w3 = 113 yields: 

where P and I respectively denote the global strict preference relation and the 
global indifference relation. 

However, choosing another set of weights compatible with the available infor- 
mation will lead to  different relations P and I. The central question is therefore to 
know what a robust conclusion is in such a problem. This clearly depends on the 
definition of robustness, which, in turn, depends on the definition of "contradic- 
tory" results. For instance, an inversion of strict preference can be considered as 
"less acceptable" than the transformation of an indifference into a strict preference. 

As our example is very simple, let us enumerate all the possible results that 
can be obtained for all the possible sets of weights such that 



7.5. ROBUSTNESS OF THE CONCLUSIONS 393 

Let us consider each ordered pair (x, y) of alternatives and compute for what 
weights we obtain the proposition "x is a t  least as good as y". This is done in 
table 7.15. Using this table, it is easy to see that 4 different results can be obtained, 

(a, b) : w2 1 0.5 (b,a) : wl 1 0.5 
(a, d) : always (d,a) : w2 2 0.5 
( b , ~ )  : wl + w2 1 0.5 (c, b) : w2 5 0.5 
(b, d) : always (d, b) : never 

Table 7.15: Conditions on weights. 

depending on the choice of weights. They are presented in table 7.16 (remember 
that  we know that a P c). If we are very strict and decide that a result is robust 

Weights Results 
w l < 0 . 5 a n d w 2 > 0 . 5  b P a , a I d , b P c , b P d , d P c  

Table 7.16: Possible results. 

only if it remains unchanged for all possible sets of weights, then the only robust 
conclusion is b P d (to which we could add two "negative" robust conclusions: 
Not[d P a ]  and Not[c P b] ). 

But if we accept to relax the definition and refuse only the inversion of strict 
preference, we can also accept the global preference for a over d and for b over c 
as robust. In a choice problem, a robust prescription could be the elimination of 
c and d, as they are both globally not as good as a and b. 

This example again shows that  robustness is not an objective concept: it de- 
pends on what the decision maker considers as "different results" (here, the inver- 
sion of strict preference). This is why we consider that  the concept of robustness 
should be taken into account as early as possible in the decision aiding process: 
ideally, it should be defined in the modelling step of the problem (see section 2.3.2 
of chapter 2). 

Note that, due to  the small number of dimensions in the example, i t  was pos- 
sible here to enumerate all the versions compatible with the available information. 
This is generally not the case and a difficult question is how to  build a represen- 
tative set of versions. 0 

Example 7.12 (Linear Programming) 
Note that the previous example also illustrated the fact that  the concept of ro- 
bustness can be applied to prescriptions and not only to  solutions of the problem 
(as was the case in example 7.9). More generally, it can be applied to  any kind of 
information, even in classical optimisation problems, as illustrated below. 

Suppose that  you have to produce a mix of two products A and B. The total 
quantity of A and B to be produced is 30 tons; for technical reasons, you cannot 



394 CHAPTER 7. MAKING RECOMMENDATION 

produce more than 20 tons of the same product. The profit associated to each 
product depends on the market conditions and two representative versions are 
considered. 

In the first version, the profit made on product A is 2 0 8  per ton and the 
profit made on product B is 1 0 8  per ton. In the second version, the profits are 
respectively l o €  per ton for product A and 3 0 8  per ton for product B. 

A traditional tool used for treating such a problem is linear programming. 
Denoting by x and y the respective quantities of A and B in the production plan, 
we have to determine the values of x and y that maximise (ax + by) under the 
constraints 

0 5  x I 2 0  
0 5  y 5 2 0  

x + y  = 30 

where a = 20, b = 10 in the first version and a = 10, b = 30 in the second version. 
In such a context, assertions such as: 

0 there exists a solution giving a value a t  least equal to 50 to the objective 
function, 

the value of the objective function is less than 700, 

the solution XI = xz = 15 cannot be optimal, 

can be qualified as robust because they are true whatever the version. 
However, the conclusions that are true for all the possible versions will generally 

be of minor interest to the decision maker because there are too general (this is 
the reason why Roy, 1998, proposed several variants of robustness). 

Again, the choice of a robustness concept will depend on the context and on 
the decision maker's preferences. In an optimisation problem (as in examples 7.9 
and 7.12), he may want to obtain, for instance: 

a solution that is feasible in all the versions and gives in each version a 
value of the objective function that is within 10% of the optimal value of the 
objective function for that version, 

0 a solution that belongs to the 10% best feasible solutions in each version, 

a solution that is feasible in 95% of the versions and quasi-optimal (within 
5% of the optimum) in all the versions in which it is feasible, 

0 a solution that is feasible in "most" of the versions, "very good" in "many" 
versions and "not too bad" in the others (the terms between inverted commas 
having to be progressively formalised during the decision aiding process). 

In a more general decision problem (as in example 7.11), there are of course many 
more possibilities. A dialogue with the decision maker about these aspects seems 
to be necessary in a decision aiding perspective. 0 
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7.5.5 Robust methods 

Let us consider again the preference aggregation problem presented in exsm- 
ple 7.11. We fixed an aggregation method (the weighted absolute majority rule) 
and we studied the set of results that could be obtained using this method on the 
basis of the available information. Then, given a particular definition of robust- 
ness, we obtained a set of robust prescriptions. Another approach would consist 
in trying to build a method which always gives robust results, the definition of 
robustness having been fixed in advance. Assume for example that the decision 
maker considers an aggregated preference relation as robust if it is unchanged from 
one version to another, except the eventual replacement of strict preferences by 
indifferences or vice versa (remember that, in this example, a version is charac- 
terised by a set of weights for the different dimensions). A method providing only 
robust aggregated preference relations could be qualified as robust for this problem 
(the reader will find an example in Vincke, 1999a). However, the search for robust 
methods may lead to ad hoc methods which are not very interesting in practice 
(pushing to the limit, if the method imposes the values of the weights, there is 
only one version and the result will certainly be robust). This can be remedied 
by the introduction of a concept of "neutrality", which was proposed in Vincke 
(1999a) (note that this term has here a meaning that is different from the one in 
section 7.4.3 and chapter 5). 

Sorensen (2003) and Sevaux and Sorensen (2004), in the field of scheduling 
problems, propose a robust tabu search technique for combinatorial optimisation 
problems and suggest a distinction between two kinds of robustness for the solu- 
tions: the robustness of their structures and the robustness of their performances. 

7.5.6 Back to Thierry's choice 

Considering again the example in section 7.3.5 (see also Bouyssou et al., 2000, 
ch. 6), we can identify several sources of uncertainty that justify some robustness 
considerations. 

First of all, as in all decision problems, the so-called data (see table 7.3) cannot 
be considered as completely and precisely known. These "data" depend on the 
origin of the information (here, journals specialised in used cars), on the chosen 
scales for each dimension and on some preliminary calculations made on the raw 
data to summarise them (see Bouyssou et al., 2000, ch. 6.1.1; this is especially true 
for criteria 4 and 5). Explicitly taking these uncertainties into account could lead 
the analyst to replace the numbers in table 7.3 by intervals and to consider that 
each element of the Cartesian product of these intervals defines a different version 
of "Thierry's choice" problem. 

Using intervals in the UTA approach (see section 7.3.1.3.1) would lead to a 
lower bound y ( x )  and an upper bound v ( x )  for each alternative x and the pref- 
erence: 

Sunny + Galant 
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given by the decision maker would lead to an inequality such as: 

that could be integrated in the linear programme that is solved in order to  build 
the value function. Note that, as explained in chapter 3 (and, in particular, sec- 
tions 3.7.4 and 3.7.5), there are several ways to  express preferences between inter- 
vals and the preference here above could also be represented by the two following 
inequalities: 

V(Sunny) > y(Galant) ,  

V(Sunny) > V(Ga1ant). i 
Moreover, as already mentioned in section 7.3.1.3.1, the choice of the objective 
function of the linear programme is somewhat arbitrary, so that  it is important 
to  look for conclusions that, insofar as possible, resist the arbitrariness in the 
choice of the objective function. In a choice problem, an interesting question is to 
know whether there exists, for a given alternative x, a specification of the model 
leading to the choice of that alternative. On the basis of table 7.5, we can say that 
"Tipo is not the best" is a robust conclusion (because there is no value function 
compatible with the available information that leads to the choice of Tipo). The 
conclusion "Alfa is the best" is not robust. Indeed, while table 7.5 shows that 
the assertion is true for some value functions, table 7.6 reveals that there are 
value functions compatible with the available information for which it is not true. 
Similarly, in a ranking problem, an interesting question is to  know whether some 
global preferences between pairs of alternatives are valid for all (or almost all) 
value functions (see section 7.3.5) 

Besides the uncertainties on the data and on the parameters of the decision 
aiding model, a third level of uncertainty is connected to the choice of the model 
itself. In Bouyssou et  al. (2000, ch. 6), the "choosing a car" problem was treated 
with different methods (e.g., methods using value functions and methods using 
outranking relations): the robustness of a conclusion or a prescription can also be 
studied in relation to  this diversity. When this is done, one should note that the 
choice of the decision aiding method has an influence on the definition of the nec- 
essary data (since two different methods may require different data). This shows 
that the distinction between the so-called "data" and the so-called "parameters of 
the method" (which we made in examples 7.9 and 7.11) is not always so clear. 

7.5.7 Robustness and MCDA 
In the case where the decision problem is modelled as an optimisation problem and 
where a finite number of versions (sets of values for the data and the parameters 
of the model) has to  be taken into account, one could argue that there are some 
similarities between searching for a robust solution of the optimisation problem 
(that is a solution which is good in most versions and not too bad in others) and 
searching for a compromise solution of a multicriteria problem where the versions 
play the role of criteria. A concept such as efficiency (i.e., the search for non- 
dominated solutions) could be used to select the candidates that qualifies as robust 
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solutions and multicriteria methodologies could be applied to determine robust 
solutions. The interested reader will find an illustration of this approach in Hites, 
De Smet, Risse, Salazar, and Vincke (2003), where the robustness of a solution 
does not only depend on its worst performance (as in Kouvelis and Yu, 1997) but 
simultaneously on its good and bad performances (without trivially applying an 
arithmetic or a weighted mean the drawbacks of which were abundantly illustrated 
in Bouyssou et al., 2000. See also the concept of generalised Lorenz dominance 
used by Perny and Spanjaard, 2003 for the same kind of problem). 

Despite the similarities between searching for a compromise solution of a multi- 
criteria problem and searching for a robust solution of a multiversion optimisation 
problem, one should avoid considering that the only difference is the vocabulary 
(on this subject, see Hites et al., 2003). In the formulation of the problem, the 
family of criteria is built in such a way that the decision maker's opinion is as 
well represented as possible (see the concept of consistent family of criteria pro- 
posed in Roy and Bouyssou, 1993, ch. 2), while the set of versions is often, at  least 
partially, imposed by external conditions. Moreover, the number of versions can 
be infinite (e.g., if the values of the parameters are defined using intervals) and 
the concepts of relative importance or preferential independence are not easy to 
transpose. Finally, most decision problems are simultaneously multicriteria and 
multiversion. In conclusion, it seems clear that the concept of robustness justifies 
the development of a specific theoretical framework and of new methodologies. 
This is an open field of research for the future. 

Summary and open questions 

Ignorance and uncertainty constitute an inevitable feature of all decision 
or evaluation problems. They find their origin, in particular, in: 

the attitudes of the actors, 

0 the fact that the model is not reality, 

0 the incomplete or imprecise knowledge of the environment, 

0 the imprecision of the measurement instruments, 

0 the fact that the choice of a precise decision aiding model is some- 
what arbitrary, 

0 the imperfections of the communication between the actors. 

2. Traditional tools (and, in particular probabilistic tools) are not com- 
pletely satisfactory to cope with all these uncertainties. "Much of what 
is not known cannot be expressed in terms of probabilities" (Rosen- 
head et al., 1972). The fact that there is always an irreducible part of 
uncertainty or ignorance that cannot be quantified and reduced to an 
optimisation problem is included in the idea of robustness. 

3. Robustness is, like "preference" or "importance", a property that de- 
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pends on the actors and the context: it has to be modelled in the course 
@ of the decision aiding process. 
G3 
A 

h3 4. If the situation requires the use of the notion of robustness, it should 
@ be integrated in the very beginning of the decision aiding process, in 

8 the structuring step (see section 2.3.2 of chapter 2). This implies a 
Ca careful reflection about acceptable assumptions, reasonable requirements 

and, finally, a good knowledge of the situation. It is also an interesting 
communication tool to improve the mutual understandiog between the 
decision maker and the analyst. 

h 

5. Robustness ideas and multicriteria concepts present some similarities, €a 
8 but searching for robust solutions is not simply a particular application 

of multicriteria methodoloay. -" 
@ 
Q 6. Classifying and characterising multiversion situations in function of the 
@ various sources and types of uncertainties is an open research question. 

It is likely that the concept of robustness and its implementation should 
depend on this classification. 

7. Decision aiding may first consist in trying to reduce the uncertainties, 
in working on the set of versions, instead of immediately searching for 

8 robust conclusions or solutions. 
8 
Q 8 Decision aiding may also consist in building robustness indicators or 
GJ providing structured sets of solutions and mechanisms of adaptation to 

the evolving circumstances. 

@ 9. An interesting question is that of the dependence or independence among 

8 the various versions of a problem (in particular in the case in which the 

G2 data are defined using intervals). 

52 
Taking the concept of robustness into account in decision aiding tools and tech- 

niques calls for the development of specific concepts and tools. This development 
is likely to be of central importance in the next few years. It  will considerably 
enrich the toolkit of analysts. 



CONCLUSION AND 
PERSPECTIVES 

8.1 Did we keep our promise? 

This book follows a volume published in 2000 by the authors and Patrice Perny. 
Five years ago we wrote (see Bouyssou et al., 2000, p. 244): 

A t  this point it should be apparent that research on  formal decision 
and evaluation methods should not be guided by the hope of discovering 
models that would be ideal under certain types of circumstances. Can  
something be done then? I n  view of the many dificulties encountered 
with the models envisaged i n  this book and the many  fields i n  which 
no  formal decision and evaluation tools are used, we do think that this 
area will be rich and fertile for future research. 

Freed from the idea that we will discover T H E  method, we can, more 
modestly and more realistically, expect to  move towards: 

structuring tools that will facilitate the implementation of formal 
decision and evaluation models in complex and conflictual decision 
processes; 

flexible preference models able to  cope with data of poor or  un-  
known quality, conflicting or  lacking information; 

assessment protocols and technologies able to  cope with complex 
and unstable preferences, uncertain tradeoffs, hesitation and learn- 
ing; 

0 tools for comparing aggregation models in order to know what they 
have i n  common and whether one is  likely to  be more appropriate 
i n  view of the quality of the data? 

tools for defining and deriving "robust" conclusions. 

To summarise, the future as we see it:  structuring methodologies al- 
lowing for an  explicit involvement and participation of all stakehold- 
ers, flexible preference models tolerating hesitations and contradictions, 
flexible tools for modelling imprecision and uncertainty, evaluation mod- 
els fully taking incommensurable dimensions into account i n  a mean- 
ingful way, assessments technologies incorporating framing effects and 
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learning processes, exploration techniques allowing to build robust rec- 
ommendations (see Bouyssou et al., 1995'). Thus, "thanks to rigourous 
concepts, well-formulated models, precise calculations and axiomatic 
considerations, we should be able to clarify decisions by separating what 
is  objective from what is  less objective, by separating strong conclusions 
from weaker ones, by dissipating certain forms of misunderstanding i n  
communication, by avoiding the trap of illusory reasoning, by bringing 
out certain counter-intuitive results" (Roy and Bouyssou, 1991, see). 

This "utopia" calls for a vast research programme requiring many  
different types of research (axiomatic analyses of models, experimental 
studies of models, clinical analyses of decision/evaluation processes, 
conceptual reflections o n  the notions of rationality and performance, 
production of new pieces of software, etc.). 

The authors are preparing another book that will hopefully con- 
tribute to  this research programme. I t  will cover the main  topics that 
we believe to  be useful i n  order to  successfully implement formal deci- 
sion/evaluation models i n  real-world processes : 

structuring methods and concepts, 

preference modelling tools, 

uncertainty and imprecision modelling tools, 

0 aggregation models, 

0 tools for deriving robust recommendations. 

If we managed to convince you that formal decision and evaluation 
models are an  important topic and that the hope of discovering i'ideal" 
methods is  somewhat chimerical, i t  is  not unlikely that you will find 
the next book valuable. 

Well, the "next" book is now in your hands. Did we manage to  keep the promise 
that we made five years ago? Although you remain the ultimate judge, we think 
that it has been kept, a t  least partially. 

While writing this book, we quickly realised that  we could not give an exhaus- 
tive view of all the current trends of research in decision aiding. Significant parts 
of the field, such as decision under uncertainty and combinatorial optimisation, 
had to be neglected. We finally decided to  concentrate on "multiple criteria", 
although we are well aware that in many important situations this may not be 
the central issue. Yet, our feeling is that, we have contributed to the "utopia" 
announced earlier. Indeed: 

1. Our presentation, although i t  is not exhaustive, is carried out within a unique 
frame that  can be extended to most (all?) decision and evaluation models: 
the establishment of a "decision aiding methodology". This is a step towards 
a coherent structure of reasoning about theories and practices concerning 
deciding and aiding to  decide. We tried to  show that different perspectives 
on practice as well as different decision theories can be unified within a 
"unique methodology", the layout of which is introduced in this book. 
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2. This book summarises concepts, findings and results obtained by the authors 
and the larger OR/MS community over the last 15 years in a research project 
which was summarised in the "Manifesto of a new MCDA era", in which we 
claimed (Bouyssou et al., 1993): 

So what? W e  feel that at the beginning of the new age of MCDA 
some priorities have to be settled. W e  do not need new methods 
that just extend old ones or complicate already existing procedures. 
W e  do not need conventional examples and applications that do 
not  allow us t o  learn more about MCDA. W e  believe that two main  
subjects should be explored: 

0 theoretical and axiomatic foundations of MCDA at all levels 
(approach, methodology, methods); 

0 conceptual and operational validation of the use of MCDA i n  
real world problems. 

The results obtained since then are sufficiently encouraging not only to keep 
going on, but also to try to summarise them in this volume. 

8.2 Decision Aiding Methodology using stepping 
stones 

Hopefully reading this book has helped you realise that a decision aiding method- 
ology is not just a collection of methods with some underlying theory. Indeed, 
we cannot reduce decision aiding to the mere application of some formal meth- 
ods that "faithfully" report the decision maker's problem, preferences and values. 
As discussed extensively in chapter 2 decision aiding is a process, during which a 
number of "shared cognitive artefacts" are constructed through the interaction of 
the participating actors, that is, at least, the client and the analyst. The main 
cognitive artefacts are: 

0 a representation of the problem situation; 

0 a problem formulation; 

an evaluation model; 

0 a final recommendation. 

Each of such artefacts contains precise elements of information, the presence of 
which must have a justification. Such a justification comes from: 

0 the fact that the client and the analyst agree that these artefacts are relevant 
for the decision process for which the decision aiding was requested; 

0 the fact that such elements constitute a consistent body of information, 
where consistency is provided by axioms and theorems established in De- 
cision Theory and Operational Research. 
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The content of these cognitive artefacts is not the result of a straightforward 
process, but the reasoned result of the interactions between the client and the 
analyst. There are no "objective" elements within such an artefact, but elements 
"subjectively" chosen as useful by the client and the analyst. This is again illus- 
trated by the following example. 

Example 8.1 
A regional authority wants to  establish a health care policy. In doing so, it may 
consider the opinion of its "health officers" relevant. This is a choice. Not all 
regional authorities will have the same attitude. We have to  take this option into 
account when providing decision aiding in such a situation. If, in order to  imple- 
ment the above policy, the regional authority decides to  listen to the trade unions 
or the individuals, this is again a choice which will affect the information collected 
and possibly the outcome of the process. Furthermore, the way in which such 
an opinion will be considered is a choice: i t  can be considered to be a constraint 
(hard or soft), it can be considered to be a criterion among others or it can finally 
simply be ignored. These are examples of critical options to  be considered when 
involved in a decision aiding process. Last, but not least, in the case the client 
(for the same problem situation: the new health care policy in a certain region) is 
not the regional authority, but another actor involved in the process, all the above 
choices could be totally different. Aiding somebody to decide means being able to 
assist him in all such choices. Aiding a client in a decision process is not only the 
construction of a model comparing policies, but also the process with which these 
policies are conceived, shaped and analysed. 0 

Decision aiding is always viewed as a decision process in which a "client" asks for 
the advice of an "analyst". In this book, we have chosen a simplified presentation 
of this process in which the client and the analyst are seen as two interacting indi- 
viduals. However, a client is not necessarily a decision maker (he could for instance 
be an adviser to the decision maker). Furthermore a client is not necessarily an 
individual, but could be a collective body (a board of directors, a committee, a 
group of experts, a social group etc.). The motivation for asking advice is not 
necessarily "to make a decision", but to  construct an argumentation or a justifi- 
cation. Finally, an analyst is not necessarily an individual, but may be a group of 
analysts. There might be a "chain" of analysts, each being the client of another. 
A real decision aiding process is always a complex reality of interactions occurring 
within real decision processes. Our simplified representation of such a process has 
been conceived for two reasons: 

1. our aim is not to make a "sociological" analysis of the decision aiding process 
(while this is also an important field of research), but to  identify which 
cognitive artefacts characterise the process in order to  be able to conduct it; 
in other words we try to  provide a guide, a handbook, some stepping stones 
for those who, for some reason, are in the position of analyst; 

2. even in the most complex decision aiding situations there will always be two 
distinct actors (almost always two individuals) who will have to argue about 
what the problem is, how to formulate it and how to  solve it; they represent 
the "not further decomposable" units of the decision aiding process. 
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8.3 Decision aiding approaches and tools 

In this book we have discussed a number of different decision aiding approaches, 
i.e. different perspectives about conducting of a decision aiding process. They are 
essentially different insofar as their assumptions about the origin and the nature 
of the rationality model to be introduced in the decision aiding process are con- 
cerned. We claim that such approaches are not collections of methods, although 
this is a common way to classify decision methods. Indeed, what we distinguish 
are not methods, but how these methods are or can be used. For instance, optimi- 
sation methods can be used in a constructive way, while outranking methods can 
be used in a normative way. Normative, descriptive, prescriptive and construc- 
tive approaches represent general directions on how a decision aiding process is 
conducted and therefore represent a key part of a decision aiding methodology. 

This having been said, we consider that a decision aiding methodology also 
contains a toolbox of methods, protocols of interaction, procedures, algorithms 
and concepts. When facing a problem situation, the analyst has to use such a 
toolbox. The issue is then how to use it consistently in order to provide the client 
with a useful, meaningful and legitimated recommendation. Indeed, this book 
mainly aims at  providing elements allowing to construct and use formal models 
of different natures. We wanted the reader of this book to be able to use formal 
models and tools in a reasoned and informed way. We tried to provide some 
stepping stones in this direction. More precisely, we decided to cover the main 
tools used for the construction of decision support models and methods in the 
presence of multiple criteria. We distinguished three classes of such tools: 

0 preference modelling tools; 

0 preference aggregation tools; 

final recommendation tools. 

The reader may have already noticed that several of the tools we discuss can also be 
used when where multiple criteria are not present. Preferences are modelled in any 
type of decision support model and under any approach. Aggregation procedures 
are extremely common in many situations in which no criterion is modelled (such 
as when we aggregate uncertainties or measures). Some algorithms presented in 
chapter 7.1 are derived from graph theory and, as such, have wider applications 
than the ones discussed here. We have not discussed such extensions in this book, 
although they may prove important features of a decision aiding methodology. 

8.4 Stepping stones for preference modelling 

Modelling preferences is the essential and elementary activity of any decision aiding 
process. Preferences always refer to somebody and to a given problem situation 
and formulation. As such they always represent the "subjective" dimension of any 
decision support model. There are n o  "objective preferences", as i s  n o  "objective 
decision support". 
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There are two different problems in preference modelling. In the first one ob- 
jects, for which preferences have to  be expressed, are described using one or several 
attributes to  which a "measurement scale" is associated. From this information 
we try to  derive a preference model. Consider the case in which two objects have 
respective lengths of 10 cm and 12 cm: we want to  know which one is preferred to 
the other and under which preference model. 

In the second one, we already have a set of preference statements (possibly 
expressed directly by the client) and we want to  know whether there is a preference 
model that captures such statements. Furthermore, we want to  know whether a 
numerical representation equivalent to  such a model exists, i.e., one or more real 
valued functions on the set of objects for which the preference statements have 
been expressed, such that the relations between the numerical values are equivalent 
to  the preference statements. Consider the case in which the client claims that a is 
indifferent to  b which is indifferent to c, but a is preferred to  c. We are looking for 
one or more functions u : {a ,  b, c) -+ R that will associate a real number to each of 
the objects in such a way that  we can represent the above-mentioned statements 
comparing these numbers in some way. 

In both cases the analyst has to  pay attention to: 

0 the properties the numerical scales have or could have; this is important 
when such information (the scales) have to be further used in the decision 
aiding process since it affects the meaningfulness of the manipulations we 
carry out (as for instance when we aggregate measures or preferences); 

the properties that preference models fulfill (such as completeness or transi- 
tivity), since again these can allow the use of certain numerical representa- 
tions and/or of certain methods; 

0 the fact that  although there is a limited number of preference models avail- 
able in the literature, they are sufficiently flexible to cover most of the pref- 
erence statements a client can address within a problem situation, including 
situations of conditional preferences, ambiguity, uncertainty and/or incon- 
sistency; i t  is important therefore, to  look carefully for the most appropriate 
model; 

the fact that  numerical representations of preferences are a very elegant and 
easy to  handle tool, but by no means the only way t o  elaborate recommen- 
dations; it is possible to  work with the preference statements modelled in 
a different way without necessarily looking for a numerical representation, 
which might not even exist. 

8.5 Stepping stones for preference aggregation 

Aggregating preferences is one of the main technical problems in Multiple Criteria 
Decision Analysis methods. Indeed a large part of this book are dedicated to this 
problem (chapters 4-6). 
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The point of view adopted is to help the analyst to make better use of a toolbox 
of techniques, rather than describing a number of methods exhaustively (although 
several of them are briefly described in the text). As with preference modelling, 
we consider two different perspectives of the preference aggregation problem. 

The first perspective focuses on aggregation procedures and is inspired by re- 
lated results in social choice theory. Given preferences expressed on several criteria, 
we try to construct or identify the most appropriate procedure to perform a syn- 
thesis of the preferences and the most appropriate protocol to obtain the necessary 
preferential information that such a procedure may require. Despite their differ- 
ences, most of the procedures that were analysed share several common features 
that we tried to uncover in the text, while emphasising the specific characteristics 
of a number of well-known techniques. 

The second perspective focuses on the client's preferences and the models that 
can represent them. The idea here is, how to interpret the client's global preference 
statements when there is an underlying multi-attribute structure. We obtain sets 
of conditions that preferences have to satisfy in order to be represented using 
a number of models. Such conditions allow the comparison of models and, most 
importantly, give hints on how to assess them. Such a perspective is clearly inspired 
by conjoint measurement theory and extensively discussed in chapter 6. 

We can summarise some stepping stones for the analyst as follows. 

There is no unique and/or universal procedure or model to aggregate pref- 
erences. A preference aggregation procedure has to be discussed, chosen, 
validated and justified as appropriate within the decision aiding process (in 
the evaluation model) given the information available and the problem for- 
mulation adopted. Chapters 4-6 show that this is not an impossible task. 

A preference aggregation procedure tends to impoverish the information 
available before aggregation. This means that from "poor" information we 
cannot construct a "rich" result without adding information. The client has 
to be aware that in order to obtain a "rich" result he has to provide more 
information and this can be costly (not only in monetary terms) and painful. 

Almost all preference aggregation procedures make use of specific parameters 
(e.g., tradeoffs, importance coefficients, thresholds, beliefs) that have to be 
assessed. Quite often, there are specific protocols to assess such information, 
which take the client's cognitive effort and the biases possibly arising from 
the clientlanalyst interaction into account. The analyst has to take care in 
using them appropriately. 

I t  is not uncommon that applying a preference aggregation procedure implies 
making several hypotheses that are difficult to verify. These hypotheses have 
to be explained to the client who has to understand their consequences. The 
client should understand the logic of the models that were used. He should 
feel the owner of the models. 

The axioms characterising preference aggregation procedures and models are 
not just their mathematical description. They have to be seen as properties 
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that  may or may not be desirable or required. Knowing the axioms char- 
acterising a certain procedure is much like knowing the "properties" of a 
cruciform screwdriver: they give hints on how, where and when to use it. 

Despite their variety, preference aggregation procedures and models share 
several common features and can be sorted into in a limited number of 
classes. The analyst tempted by the creation of a new ad-hoc procedure 
should take care to  verify whether what he is trying to  do makes sense and 
has not already been analysed in the literature (and the book you have in 
your hands gives a reasonable sample). 

8.6 Final stepping stones 

Decision aiding is a process which starts in the real world (recognising the problem 
situation) and step by step moves towards formal modelling (indeed, it is based 
on the use of a formal language). However, a t  a certain point, it has to  come back 
to  the reality and formulate a final recommendation for the client. 

From such a perspective, the results obtained through the use of the evaluation 
model remain in the abstract and formal world and do not necessarily represent 
something which can be directly used by the client for his concerns and purposes. 
After all, a client asks for your advice in order to buy a car, not to  learn his value 
function for cars. 

The return to  reality is a mix of formal and informal activities. Informal for 
the validation and legitimation of the results regarding the decision process for 
which the aid was requested. Formal for the elaboration of final recommendation 
from the rough result of the evaluation model. Chapter 7.1 is dedicated to this last 
part of formal decision aiding activities. The problem here is that  the evaluation 
model can elaborate a synthetic representation of the client's preferences, beliefs, 
judgements and assessments, but may not provide a direct answer to  the problem 
statement agreed upon in the problem formulation. If this is the case (and it 
often is), then we still need one further step to obtain such a specific answer. This 
means, e.g., going from a global value function to  a best choice; establishing a 
subset of "good" candidates (not identical to  the subset of the better ones) from 
some pairwise comparisons between candidates and profiles, etc. In performing 
such a final step, the analyst should take into account the fact that: 

0 most of the procedures elaborating the final recommendation are algorithms, 
which fulfil some specific properties (and not others) that should be analysed 
with care. There is no straightforward procedure in performing this step (as 
was the case for the previous ones). I t  has to  be chosen and justified. 

I t  is not uncommon that several such procedures will (again) introduce some 
arbitrary hypotheses. This has to be discussed with the client, who has to 
understand them and agree on their use. 

0 Sensitivity analysis (in the sense of analysing the behaviour of the recommen- 
dation with respect to  perturbations of the evaluation model parameters) is 
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an essential activity to be pursued at this step. It  enable the analyst to give 
a more convincing result to the client and to construct a reasoned argumen- 
tation. 

0 Robustness analysis (in the sense of establishing whether the recommenda- 
tion will still hold under different scenarios of information and combinations 
of parameters) is a critical activity to be performed at least a t  this stage 
and for which sensitivity analysis is not a substitute. Being able to provide 
a robust recommendation can be of invaluable help to the client and should 
be the ultimate aim of a decision aiding process. We may even claim that 
robustness should be an issue to consider when formulating the problem. 

8.7 And after all this? 

Our hope "after all this" is that the stepping stones we presented and justified in 
this text will be really helpful to the analysts who try decision aiding in the real 
world. We will be happy to receive feedback on this point. 

On the other hand this book concludes (we hope positively) an experience 
started over 10 years ago, trying to condensate theoretical and practical knowl- 
edge about decision aiding into a methodology. We are aware that despite our 
efforts (and the efforts of a whole community carrying out research and practice in 
decision aiding), questions of capital importance remain unanswered. They deal 
with both the theoretical foundations of our discipline and the practical carrying 
out of decision aiding processes. Indeed, what is presented here remains far from 
a "ready to use methodological compendium". 

This means more research. We need to further investigate theoretical questions 
in preference modelling, in decision making under uncertainty, in axiomatising 
protocols, algorithms and models. We need further research in order to understand 
the dynamics of decision aiding processes and the relations between their cognitive 
artefacts. We also need more insight into our practical experiences and professional 
activities to enhance our knowledge about successes and failures. 

In other words: there is still a lot of work to be done. But this is another story. 
Our hope is that we have motivated you enough to contribute. Who knows; it 
may be that one day, some of us continue it. Until then, so long.. . 

Bruxelles, Gent, Mons, Paris (Brussels, Ghent, Mons, Paris) 
September 2005 
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