


Use R!

Advisors:
Robert Gentleman · Kurt Hornik · Giovanni Parmigiani

For other titles published in this series, go to
http://www.springer.com/series/6991



Christian P. Robert · George Casella

Introducing Monte Carlo
Methods with R

123



Christian P. Robert George Casella
Université Paris Dauphine Department of Statistics
UMR CNRS 7534 University of Florida
CEREMADE 103 Griffin-Floyd Hall
place du Maréchal de Lattre Gainesville FL 32611-8545
de Tassigny USA
75775 Paris cedex 16 casella@stat.ufl.edu
France
xian@ceremade.dauphine.fr

Series Editors
Robert Gentleman Kurt Hornik
Department of Bioinformatics Department of Statistik and Mathematik

and Computational Biology Wirtshchaftsuniversität Wien Augasse 2-6
Genentech South San Francisco A-1090 Wien
CA 94080 Austria
USA

Giovanni Parmigiani
Department of Biostatistics

and Computational Biology
Dana-Farber Cancer Institute
44 Binney Street
Boston, MA 02115
USA

ISBN 978-1-4419-1575-7 e-ISBN 978-1-4419-1576-4
DOI 10.1007/978-1-4419-1576-4
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2009941076

c© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the
publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief
excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



v

To our parents, who taught us much in many ways.



vi

“What if you haven’t the data?”
“Then we shall proceed directly to the brandy and cigars.”

Lyndsay Faye
The Case of Colonel Warbuton’s Madness



Preface

“After that, it was down to attitude.”
Ian Rankin
Black & Blue

The purpose of this book is to provide a self-contained entry into Monte Carlo
computational techniques. First and foremost, it must not be confused with
a programming addendum to our earlier book Monte Carlo Statistical Meth-
ods whose second edition came out in 2004. The current book has a different
purpose, namely to make a general audience familiar with the programming
aspects of Monte Carlo methodology through practical implementation. Not
only have we introduced R at the core of this book, but the emphasis and
contents have changed drastically from Monte Carlo Statistical Methods, even
though the overall vision remains the same. Theoretical foundations are in-
tentionally avoided in the current book.

Indeed, the emphasis on practice is a major feature of this book in that
its primary audience consists of graduate students in statistics, biostatistics,
engineering, etc., who need to learn how to use simulation methods as a tool
to analyze their experiments and/or datasets. The book should appeal to
scientists in all fields, given the versatility of these Monte Carlo tools. It can
also be used for a more classical statistics audience when aimed at teaching a
quick entry into modern computational methods based on R, at the end of an
undergraduate program for example, even though this may prove challenging
for some students.

The choice of the programming language R, as opposed to faster alterna-
tives such as Matlab or C and more structured constructs such as BUGS, is
due to its pedagogical simplicity and its versatility. Readers can easily con-
duct experiments in their own programming language by translating the ex-
amples provided in this book. (Obviously, the book can also supplement other
textbooks on Bayesian modeling at the graduate level, including our books
Bayesian Choice (Robert, 2001) and Monte Carlo Statistical Methods (Robert



viii Preface

and Casella, 2004).) This book can also be viewed as a companion to, rather
than a competitor of, Jim Albert’s Use R! book Bayesian Computation with
R (Albert, 2009). Indeed, taken as a pair, these two books can provide a fairly
thorough introduction to Monte Carlo methods and Bayesian modeling.

We stress that, at a production level (that is, when using advanced Monte
Carlo techniques or analyzing large datasets), R cannot be recommended as
the default language, but the expertise gained from this book should make
the switch to another language seamless.

Contrary to usual practice, many exercises are interspersed within the
chapters rather than postponed until the end of each chapter. There are two
reasons for this stylistic choice. First, the results or developments contained in
those exercises are often relevant for upcoming points in the chapter. Second,
they signal to the student (or to any reader) that some pondering over the
previous pages may be useful before moving to the following topic and so may
act as self-checking gateways. Additional exercises are found at the end of
each chapter, with abridged solutions of the odd-numbered exercises provided
on our Webpages as well as Springer’s.

Thanks

We are immensely grateful to colleagues and friends for their help with this
book, in particular to the following people: Ed George for his comments on the
general purpose of the book and some exercises in particular; Jim Hobert and
Fernando Quintana for helpful discussions on the Monte Carlo EM; Alessandra
Iacobucci for signaling in due time a fatal blunder; Jean-Michel Marin for
letting us recycle the first chapter of Bayesian Core (Marin and Robert, 2007)
into our introduction to R and for numerous pieces of R advice, as well as
pedagogical suggestions; Antonietta Mira for pointing out mistakes during
a session of an MCMC conference in Warwick; François Perron for inviting
CPR to Montréal and thus providing him with a time window to complete
Chapter 8 (only shortened by an ice-climbing afternoon in Québéc!), and also
François Perron and Clémentine Trimont for testing the whole book from
the perspectives of a professor and a student, respectively; Martyn Plummer
for answering queries about coda; Jeff Rosenthal for very helpful exchanges
on amcmc; Dimitris Rizopoulos for providing Exercise 7.21; and Phil Spector
from Berkeley for making available his detailed and helpful notes and slides
on R and C, now partly published as Spector (2009). Comments from both
reviewers were especially useful in finalizing the book. We are also grateful to
John Kimmel of Springer for his advice and efficiency, as well as for creating
the visionary Use R! series and supporting the development of the R language
that way. From a distance, we also wish to thank Professors Gentleman and
Ihaka for creating the R language and for doing it in open-source, as well as
the entire R community for contributing endlessly to its development.

Sceaux and Gainesville Christian P. Robert and George Casella
October 18, 2009



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Basic R Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 R objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 The vector class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 The matrix, array, and factor classes . . . . . . . . . . . . . . . . . . 9
1.3.3 The list and data.frame classes . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Probability distributions in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Basic and not-so-basic statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Graphical facilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.7 Writing new R functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.8 Input and output in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.9 Administration of R objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.10 The mcsm package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.11 Additional exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Random Variable Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.1.1 Uniform simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.1.2 The inverse transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 General transformation methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.1 A normal generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.2 Discrete distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.3 Mixture representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.3 Accept–reject methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

ii

ii



x Contents

2.4 Additional exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3 Monte Carlo Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 Classical Monte Carlo integration . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3 Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3.1 An arbitrary change of reference measure . . . . . . . . . . . . . 69
3.3.2 Sampling importance resampling . . . . . . . . . . . . . . . . . . . . 75
3.3.3 Selection of the importance function . . . . . . . . . . . . . . . . . 78

3.4 Additional exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4 Controlling and Accelerating Convergence . . . . . . . . . . . . . . . . . 89
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2 Monitoring variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3 Asymptotic variance of importance sampling estimators . . . . . . 92
4.4 Effective sample size and perplexity . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5 Simultaneous monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.6 Rao–Blackwellization and deconditioning . . . . . . . . . . . . . . . . . . . 107
4.7 Acceleration methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7.1 Correlated simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.7.2 Antithetic variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.7.3 Control variates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.8 Additional exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Monte Carlo Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.2 Numerical optimization methods . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.3 Stochastic search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.3.1 A basic solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.3.2 Stochastic gradient methods . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.3 Simulated annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.4 Stochastic approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.4.1 Optimizing Monte Carlo approximations . . . . . . . . . . . . . 146
5.4.2 Missing-data models and demarginalization . . . . . . . . . . . 150
5.4.3 The EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.4.4 Monte Carlo EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.5 Additional exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6 Metropolis–Hastings Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.2 A peek at Markov chain theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.3 Basic Metropolis–Hastings algorithms . . . . . . . . . . . . . . . . . . . . . . 170

6.3.1 A generic Markov chain Monte Carlo algorithm . . . . . . . 171
6.3.2 The independent Metropolis–Hastings algorithm . . . . . . 175

6.4 A selection of candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182



Contents xi

6.4.1 Random walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.4.2 Alternative candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

6.5 Acceptance rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.6 Additional exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7 Gibbs Samplers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.2 The two-stage Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.3 The multistage Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.4 Missing data and latent variables . . . . . . . . . . . . . . . . . . . . . . . . . . 209
7.5 Hierarchical structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.6 Other considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.6.1 Reparameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
7.6.2 Rao–Blackwellization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.6.3 Metropolis within Gibbs and hybrid strategies . . . . . . . . 230
7.6.4 Improper priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

7.7 Additional exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

8 Monitoring and Adaptation for MCMC Algorithms . . . . . . . . 237
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
8.2 Monitoring what and why . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

8.2.1 Convergence to the stationary distribution . . . . . . . . . . . . 238
8.2.2 Convergence of averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
8.2.3 Approximating iid sampling . . . . . . . . . . . . . . . . . . . . . . . . 240
8.2.4 The coda package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

8.3 Monitoring convergence to stationarity . . . . . . . . . . . . . . . . . . . . . 242
8.3.1 Graphical diagnoses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
8.3.2 Nonparametric tests of stationarity . . . . . . . . . . . . . . . . . . 243
8.3.3 Spectral analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

8.4 Monitoring convergence of averages . . . . . . . . . . . . . . . . . . . . . . . . 250
8.4.1 Graphical diagnoses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
8.4.2 Within and between variances . . . . . . . . . . . . . . . . . . . . . . 253
8.4.3 Effective sample size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
8.4.4 Fixed-width batch means . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

8.5 Adaptive MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
8.5.1 Cautions about adaptation . . . . . . . . . . . . . . . . . . . . . . . . . 258
8.5.2 The amcmc package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

8.6 Additional exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Index of R Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Index of Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279



List of Figures

1.1 Illustrations of the processing of vectors in R. . . . . . . . . . . . . . . . . 8
1.2 Illustrations of the processing of matrices in R. . . . . . . . . . . . . . . . 11
1.3 Illustrations of the factor class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Chosen features of the list class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Definition of a data frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.6 Loess and natural splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7 Autocorrelation and partial autocorrelation plots . . . . . . . . . . . . . 23
1.8 Simple illustration of bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.9 Bootstrap linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.10 Spline approximation of monthly deaths . . . . . . . . . . . . . . . . . . . . . 29
1.11 Cumsum illustration for an AR(1) . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.12 Range of Brownian motions with confidence band . . . . . . . . . . . . 32
1.13 Some artificial loops in R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1 Representation of a uniform random sample . . . . . . . . . . . . . . . . . 43
2.2 Representations of an exponential random sample . . . . . . . . . . . . 45
2.3 Representation of a binomial random sample . . . . . . . . . . . . . . . . . 51
2.4 Generation of beta random variables . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Evaluation of integrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2 Comparison of integrate and area . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 One-dimensional Monte Carlo integration . . . . . . . . . . . . . . . . . . . 67
3.4 Importance sampling approximation of a normal tail . . . . . . . . . . 72
3.5 Representation of the posterior π(α, β|x) . . . . . . . . . . . . . . . . . . . . 74
3.6 Analysis of a sample from π(α, β|x) . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.7 Infinite variance importance sampler . . . . . . . . . . . . . . . . . . . . . . . . 80
3.8 Convergence of two estimators of the integral (3.9) . . . . . . . . . . . 84
3.9 Posterior of the regression parameter (β1, β2) . . . . . . . . . . . . . . . . 86

4.1 Confidence bands for a simple example . . . . . . . . . . . . . . . . . . . . . . 92
4.2 Range and confidence for the Cauchy-normal problem (1) . . . . . 97



xiv List of Figures

4.3 Range and confidence for the Cauchy-Normal problem (2) . . . . . 98
4.4 ESS and perplexity for the Cauchy-Normal problem . . . . . . . . . . 101
4.5 ESS and perplexity for the Cauchy-Normal problem . . . . . . . . . . 104
4.6 Brownian confidence band for the Cauchy-Normal problem . . . . 106
4.7 Convergence of estimators of E{exp(−X2)} . . . . . . . . . . . . . . . . . . 109
4.8 Approximate risks of truncated James–Stein estimators . . . . . . . 114
4.9 Impact of dyadic average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.10 Impact of control variates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.11 Impact of control variates in logistic regression . . . . . . . . . . . . . . . 121

5.1 Sequences of MLEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.2 Newton–Raphson sequences for a mixture likelihood . . . . . . . . . . 129
5.3 Simple Monte Carlo maximization . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.4 Two Cauchy likelihood maximizations . . . . . . . . . . . . . . . . . . . . . . 133
5.5 A Cauchy likelihood approximation . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.6 Representation of the function of Example 5.6 . . . . . . . . . . . . . . . 136
5.7 Stochastic gradient paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.8 Simulated annealing paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.9 Simulated annealing sequence with two modes . . . . . . . . . . . . . . . 146
5.10 Simulated annealing sequence for four schedules . . . . . . . . . . . . . . 147
5.11 Monte Carlo approximations of a probit marginal . . . . . . . . . . . . 149
5.12 EM sequences for a normal censored likelihood . . . . . . . . . . . . . . . 155
5.13 Multiple-mode EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.14 MCEM on logit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.1 Metropolis output from a beta target . . . . . . . . . . . . . . . . . . . . . . . 173
6.2 Metropolis simulations from a beta target . . . . . . . . . . . . . . . . . . . 174
6.3 Output of a gamma accept–reject algorithm . . . . . . . . . . . . . . . . . 177
6.4 Metropolis–Hastings schemes for a Cauchy target . . . . . . . . . . . . . 179
6.5 Cumulative coverage for a Cauchy target . . . . . . . . . . . . . . . . . . . . 180
6.6 Fitting the braking data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.7 Random walk proposals with different scales . . . . . . . . . . . . . . . . . 184
6.8 Scale impact on mixture exploration . . . . . . . . . . . . . . . . . . . . . . . . 185
6.9 Langevin samples for probit posterior . . . . . . . . . . . . . . . . . . . . . . . 187
6.10 Langevin samples for mixture posterior . . . . . . . . . . . . . . . . . . . . . 189
6.11 Cumulative mean plots with different scales . . . . . . . . . . . . . . . . . . 193

7.1 Histograms from the Gibbs sampler of Example 7.2 . . . . . . . . . . . 203
7.2 Histograms from the Gibbs sampler of Example 7.3 . . . . . . . . . . . 205
7.3 Histograms from the Gibbs sampler of Example 7.5 . . . . . . . . . . . 208
7.4 Histograms of the posterior distributions from Example 7.6 . . . . 211
7.5 Histograms from the Gibbs sampler of Example 7.7 . . . . . . . . . . . 212
7.6 Histograms from the Gibbs sampler of Example 7.8 . . . . . . . . . . . 214
7.7 Gibbs output for mixture posterior . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.8 Simple slice sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219



List of Figures xv

7.9 Logistic slice sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.10 Histograms from the pump failure data of Example 7.12 . . . . . . . 223
7.11 Autocorrelations from a Gibbs sampler . . . . . . . . . . . . . . . . . . . . . . 225
7.12 Autocovariance plots for the Gibbs sampler of model (7.7) . . . . . 226
7.13 Histograms of λ in Example 7.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
7.14 Histograms from the Gibbs sampler of (7.12) . . . . . . . . . . . . . . . . . 233

8.1 Raw coda output for the random effect logit model . . . . . . . . . . . 244
8.2 Empirical cdfs for the random effect logit parameters . . . . . . . . . 244
8.3 Plot of successive Kolmogorov–Smirnov statistics . . . . . . . . . . . . . 246
8.4 Comparison of two MCMC scales for the noisy AR model . . . . . 251
8.5 Multiple MCMC runs for the noisy AR model . . . . . . . . . . . . . . . . 252
8.6 Gelman and Rubin’s evaluation for the noisy AR model . . . . . . . 254
8.7 Gelman and Rubin’s evaluation for the pump failure model . . . . 255
8.8 Fixed-width batch sampling variance estimation for the pump

failure model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
8.9 Degenerating MCMC adaptation for the pump failure model . . . 261
8.10 Nonconverging non-parametric MCMC adaptation for the

noisy AR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
8.11 Mode-recovering non-parametric MCMC adaptation for the

noisy AR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263



List of Examples

1.1 Bootstrapping simple linear regression . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 Exponential variable generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2 Transformations of exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3 Normal variable generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4 Discrete random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5 Poisson random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6 Negative binomial random variables as mixtures . . . . . . . . . . . . . . . . 50
2.7 Accept–reject for beta variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.8 Continuation of Example 2.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 Precision of integrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2 integrate versus area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Monte Carlo convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4 Precision of a normal cdf approximation . . . . . . . . . . . . . . . . . . . . . . . 67
3.5 Tail probability approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6 Beta posterior importance approximation . . . . . . . . . . . . . . . . . . . . . . 71
3.7 Continuation of Example 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.8 Importance sampling with infinite variance . . . . . . . . . . . . . . . . . . . . 79
3.9 Selection of the importance sampling function . . . . . . . . . . . . . . . . . . 82
3.10 Probit posterior importance sampling approximation . . . . . . . . . . . . 83

4.1 Monitoring with the CLT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Cauchy prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3 Continuation of Example 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4 Continuation of Example 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5 Continuation of Example 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.6 Student’s t expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.7 James–Stein estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.8 Continuation of Example 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.9 Cauchy posterior with antithetic variables . . . . . . . . . . . . . . . . . . . . . 115



xviii List of Examples

4.10 Continuation of Example 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.11 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1 Maximizing a Cauchy likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.2 Mixture model likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3 A first Monte Carlo maximization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.4 Continuation of Example 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.5 Continuation of Example 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.6 Minimization of a complex function . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.7 Continuation of Example 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.8 Continuation of Example 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.9 Simulated annealing for a normal mixture . . . . . . . . . . . . . . . . . . . . . 144
5.10 Continuation of Example 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.11 Bayesian analysis of a simple probit model . . . . . . . . . . . . . . . . . . . . . 147
5.12 Missing-data mixture model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.13 Censored–data likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
5.14 Continuation of Example 5.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.15 EM for a normal mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.16 Missing–data multinomial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.17 Random effect logit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.1 Metropolis–Hastings algorithm for beta variables . . . . . . . . . . . . . . . 172
6.2 Cauchys from normals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.3 Metropolis–Hastings for regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.4 Normals from uniforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.5 Metropolis–Hastings for mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.6 Probit regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.7 Continuation of Example 6.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.8 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.9 Acceptance rates: normals from double exponentials . . . . . . . . . . . . 192
6.10 Continuation of Example 6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.1 Normal bivariate Gibbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.2 Generating beta-binomial random variables . . . . . . . . . . . . . . . . . . . . 202
7.3 Fitting a one-way hierarchical model . . . . . . . . . . . . . . . . . . . . . . . . . . 202
7.4 Normal multivariate Gibbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
7.5 Extension of Example 7.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.6 Censored-data Gibbs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
7.7 Grouped multinomial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
7.8 More grouped multinomial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.9 Gibbs for normal mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
7.10 A first slice sampler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7.11 Logistic regression with the slice sampler . . . . . . . . . . . . . . . . . . . . . . 219
7.12 A Poisson hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.13 Correlation in a bivariate normal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224



List of Examples xix

7.14 Continuation of Example 7.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.15 Normal bivariate Gibbs revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.16 Poisson counts with missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
7.17 Metropolis within Gibbs illustration . . . . . . . . . . . . . . . . . . . . . . . . . . 230
7.18 Conditional exponential distributions—-nonconvergence . . . . . . . . . 232
7.19 Improper random effects posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

8.1 Random effect logit model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
8.2 Poisson hierarchical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.3 Metropolis–Hastings random walk on AR(1) model . . . . . . . . . . . . . 249
8.4 Continuation of Example 8.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
8.5 Continuation of Example 8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
8.6 Continuation of Example 8.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
8.7 Another approach to Example 8.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
8.8 Continuation of Example 8.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
8.9 Adaptive MCMC for anova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
8.10 Continuation of Example 8.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
8.11 Continuation of Example 8.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266



1

Basic R Programming

“You’re missing the big picture,” he told her. “A good album should
be more than the sum of its parts.”

Ian Rankin
Exit Music

Reader’s guide

The Reader’s guide is a section that will start each chapter by providing com-
ments on its contents. It also usually contains indications of the purpose of the
chapter and its links with other chapters.

This first chapter is where we introduce the programming language R, which we
use to implement and illustrate our algorithms. We discuss here input and output,
data structures, and basic programming commands for this language. It is thus
a crucial chapter for these new to R, but it will unavoidably feel unsatisfactory
because the coverage of those notions will most likely be too sketchy for most
readers. For those already familiar with R, or simply previously exposed to another
introduction to R, this chapter will undoubtedly feel mostly familiar and act as
a refresher, maybe prodding them to delve deeper into the R language using a
reference book. The similarity with the introductory chapter of Bayesian Core is
not coincidental, as we used the same skeleton as in Marin and Robert (2007).

 
C.P. Robert, G. Casella, Introducing Monte Carlo Methods with R, Use R,  
DOI 10.1007/978-1-4419-1576-4_1, © Springer Science+Business Media, LLC 2010 



2 1 Basic R Programming

1.1 Introduction

This chapter only attempts at introducing R to newcomers in a few pages
and, as such, it should not be considered as a proper introduction to R. Entire
volumes, such as the monumental R Book by Crawley (2007), the introduction
by Dalgaard (2002), and the focused R data manipulation by Spector (2009),
are dedicated to the practice of this language, and therefore additional efforts
(besides reading this chapter) will be required from the reader to sufficiently
master the language.1 However, before discouraging anyone, let us comfort
you with the fact that:

a. The syntax of R is simple and logical enough to quickly allow for a basic
understanding of simple R programs, as should become obvious in a few
paragraphs.

b. The best, and in a sense the only, way to learn R is through trial-and-
error on simple and then more complex examples. Reading the book with
a computer available nearby is therefore the best way of implementing
this recommendation.

In particular, the embedded help commands help() and help.search() are
very good starting points to gather information about a specific function or
a general issue, even though more detailed manuals are available both locally
and on-line. Note that help.start() opens a Web browser linked to the local
manual pages.

One may first wonder why we support using R as the programming in-
terface for this introduction to Monte Carlo methods, since there exist other
languages, most (all?) of them faster than R, like Matlab, and even free, like C
or Python. We obviously have no partisan or commercial involvement in this
language. Rather, besides the ease of presentation, our main reason for this
choice is that the language combines a sufficiently high power (for an inter-
preted language) with a very clear syntax both for statistical computation and
graphics. R is a flexible language that is object-oriented and thus allows the
manipulation of complex data structures in a condensed and efficient manner.
Its graphical abilities are also remarkable, with possible interfacing with a
text processor such as LATEX with the package Sweave. R offers the additional
advantages of being a free and open-source system under the GNU General
Public Licence principle, with constant upgrades and improvements from the
statistics community,2 as well as numerous (free) Web-based tutorials and
user’s manuals,3 and running on all platforms, including both Apple’s Mac

1 If you decide to skip this chapter, be sure to at least print the handy R Refer-
ence Card available at http://cran.r-project.org/doc/contrib/Short-refcard.pdf that
summarizes, in four pages, the major commands of R.

2 There is even an R newsletter, R-News, which is available on cran.r-
project.org/doc/Rnews.

3 This means it is unlikely that you will need to acquire an R programming book
in order to get a proper understanding of the R language, even though it may



1.2 Getting started 3

and Microsoft Windows (and, obviously, under the Linux and Unix operating
systems). R provides a powerful interface that can integrate programs written
in other languages such as C, C++, Fortran, Perl, Python, and Java. Not only
can you keep programming in your usual language, but integrating programs
written by others in an alien language then becomes (mostly) seamless, as
seen in Chapter 8 with the package amcmc. At last, it is increasingly common
to see people who develop new methodology simultaneously producing an R
package in support of their approach and to back up introductory statistics
courses with illustrations in R, as shown by the expanding Use R! Springer
series in which this book is published.

One choice we have not addressed above is “why R and not BUGS?” BUGS
(which stands for Bayesian inference using Gibbs sampling) is a Bayesian anal-
ysis software developed since the early 1990’s, mostly by researchers from the
Medical Research Council (MRC) at Cambridge University. The most common
version is WinBugs, working under Windows, but there also exists an open-
source version called OpenBugs. So, to return to the initial question, we are
not addressing the possible links and advantages of BUGS simply because the
purpose is different. Our goal is to give a deep but intuitive understanding of
simulation tools for statistical inference, not (directly) help in the construction
of Bayesian models and the Bayesian estimation of their parameters. While
access to Monte Carlo specifications is possible in BUGS, most computing op-
erations are handled by the software itself, with the possible outcome that the
user does not bother about this side of the problem and instead concentrates
on Bayesian modeling. Thus, while R can be easily linked with BUGS and sim-
ulation can be done via BUGS, we think that a lower-level language such as R
is more effective in bringing you in touch with simulation imperatives. Note
that this perspective would not hold so tightly for a book on computational
statistics, as Albert (2009).

1.2 Getting started

The R language is straightforward to install: It can be downloaded (obviously
free) from one of the numerous CRAN (Comprehensive R Archive Network)
mirror Websites around the world.4 (Note that it is resident in most current
Linux kernels.)

At this stage, we do not cover installation of the R package and thus assume
that (a) R is installed on the machine you want to work with and (b) that
you have managed to launch it (in most cases, you simply have to click on

prove useful at a later stage. See http://cran.r-project.org/manuals.html for man-
uals available on-line.

4 The main CRAN Website is http://cran.r-project.org/.



4 1 Basic R Programming

the proper icon). You should then obtain a terminal window whose first lines
resemble the following, most likely with a more recent version:

R version 2.5.1 (2007-06-27)
Copyright (C) 2007 The R Foundation for Statistical Computing
ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ’license()’ or ’licence()’ for distribution details.

R is a collaborative project with many contributors.
Type ’contributors()’ for more information and
’citation()’ on how to cite R or R packages in publications.

Type ’demo()’ for some demos, ’help()’ for on-line help, or
’help.start()’ for an HTML browser interface to help.
Type ’q()’ to quit R.

>

Neither this austere beginning nor the prospect of using a line editor should
put you off, though, as there are many other ways of inputting and outputting
commands and data, as we shall soon see! The final line above with the symbol
> is not a typo but rather means that the R software is waiting for a command
from the user (i.e., you). This character > at the beginning of each line in the
executable window is called the prompt and precedes the line command, which
is terminated by pressing the RETURN key. At this early stage, all commands
will be passed as line commands, and you should thus spot commands thanks
to this symbol.

� Make sure to remember that exiting R can be done by typing q() after
the prompt, as in

> q()
Save workspace image? [y/n/c]: n

the options being proposed in the line right after the prompt having to
do with the storage of the command history and the produced objects,
something you can ignore at this stage. Commands and programs that
need to be stopped during their execution, for instance because they take
too long or too much memory to complete or because they involve a
programming mistake such as an infinite loop, can be stopped by the
Control-C double-key action without exiting the R session.



1.3 R objects 5

Exercise 1.1 To start with a limited challenge, using the final lines above the
prompt, you could embark on an on-line visit of the main features of R by typing
demo() after the prompt (make sure to test demo(image) and demo(graphics)
to get an idea of the great graphical abilities of R). More statistical demos are
also available, as listed by demo().

For memory and efficiency reasons, R does not install all the available
functions and programs when launched but only the basic packages that it
requires to run properly. Those basic packages are base, stats, graphics, nmle,
and lattice. Additional packages can be loaded via the library command, as
in

> library(combinat) # combinatorics utilities
> library(datasets) # The R Datasets Package

and the entire list of available packages is provided by library(). (The symbol
# in the prompt lines above indicates a comment: All characters following #
until the end of the command line are ignored. Comments are recommended to
improve the readability of your programs.) There exist hundreds of packages
available on the Web.5 Installing a new package such as the package mcsm
that is associated with this book is done by downloading the file from the
Web depository and calling

> install.package("mcsm")

or

> download.package("mcsm")

For a given package, the install command obviously needs to be executed
only once, while the library call is required each time R is launched (as the
corresponding package is not kept as part of the .RData file, whose role is
explained below in Section 1.9). Thus, it is good practice to include calls to
required libraries within your R programs in order to avoid error messages
when launching them.

1.3 R objects

As with many advanced programming languages, R distinguishes between sev-
eral types of objects. Those types include scalar, vector, matrix, time series,
data frames, functions, or graphics. An R object is mostly characterized by a
mode that describes its contents and a class that describes its structure. The
R function str applied to any R object, including R functions, will show its
structure. The different modes are
5 Packages that have been validated and tested by the R core team are listed at

http://cran.r-project.org/src/contrib/PACKAGES.html.



6 1 Basic R Programming

- null (empty object),
- logical (TRUE or FALSE),
- numeric (such as 3, 0.14159, or 2+sqrt(3)),
- complex, (such as 3-2i or complex(1,4,-2)), and
- character (such as ”Blue”, ”binomial”, ”male”, or "y=a+bx"),

and the main classes are vector, matrix, array, factor, time-series, data.frame, and
list. Heterogeneous objects such as those of the list class can include elements
with various modes. Manual entries about those classes can be obtained via
the help commands help(data.frame) or ?matrix for instance.

R can operate on most of those types as a regular function would operate
on a scalar, which is a feature that should be exploited as much as possible for
compact and efficient programming. The fact that R is interpreted rather than
compiled involves many subtle differences, but a major issue is that all vari-
ables in the system are evaluated and stored at every step of R programs. This
means that loops in R are enormously time-consuming and should be avoided
at all costs! Therefore, using the shortcuts offered by R in the manipulation
of vectors, matrices, and other structures is a must.

1.3.1 The vector class

As indicated logically by its name, the vector object corresponds to a mathe-
matical vector of elements of the same type, such as (TRUE,TRUE,FALSE,TRUE)
or (1,2,3,5,7,11). Creating small vectors can be done using the R command
c() as in

> a=c(2,6,-4,9,18)

This fundamental function combines or concatenates terms together. For in-
stance,

> d=c(a,b)

concatenates the two vectors a and b into a new vector d. Note that decimal
numbers should be encoded with a dot, character strings in quotes " ", and
logical values with the character strings TRUE and FALSE or with their re-
spective abbreviations T and F. Missing values are encoded with the character
string NA. The option recursive=TRUE in c() allows breaking down a list into
its individual components.

� Being able to use abbreviations in R is quite handy, but this may lead to
confusion! In particular, the use of T instead of TRUE is only valid if T is not
defined otherwise in the current R session. Since T is a standard symbol
in Monte Carlo simulation, often denoting the number of iterations, this
may create unsuspected problems. For instance, using



1.3 R objects 7

> sort(weit,dec=T)
Error in sort(weit/sum(weit), dec = T) :

’decreasing’ must be a length-1 logical vector.
Did you intend to set ’partial’?

resulted in an error message because T was already defined in the R
program as 103.

In Figure 1.1, we give a few illustrations of the use of vectors in R. The
character + indicates that the console is waiting for a supplementary instruc-
tion, which is useful when typing long expressions. The assignment operator
is =, not to be confused with ==, which is the Boolean operator for equality.
An older assignment operator is <-, as in

> x <- c(3,6,9)

and, for compatibility reasons, it still remains functional, but it should be
ignored to ensure cleaner programming. (As pointed out by Spector (2009),
an exception is when using system.time, briefly described in Figure 1.13,
since = is then used to identify keywords, although = can preserve its initial
purpose if curly brackets { and } delimit the allocation commands.)

� A misleading feature of the assignment operator <- is found in Boolean
expressions such as

> if (x[1]<-2) ...

which is supposed to test whether or not x[1] is less than -2 but ends
up allocating 2 to x[1], erasing its current value! Note also that using

> if (x[1]=-2) ...

mistakenly instead of (x[1]==-2) has the same consequence.

Exercise 1.2 Propose a valid R expression to overcome the difficulty with the
erroneous Boolean expression if (x[1]<-2) found above. (Hint: Adding a space
in the expression is sufficient.)

If you hit RETURN after the command if (x[1]<-2), you will see a + appear
on the next line instead of the prompt >. This means that your R command
is not complete and that the system is waiting for you to complete it. This
option is quite handy when handling long commands.

Note that new R objects are simply defined by assigning them a value, as
in the first line of Figure 1.1, without a preliminary declaration of type (as in
the C language).



8 1 Basic R Programming

> a=c(5,5.6,1,4,-5) build the object a containing a numeric vector
of dimension 5 with elements 5, 5.6, 1, 4, –5

> a[1] display the first element of a
> b=a[2:4] build the numeric vector b of dimension 3

with elements 5.6, 1, 4
> d=a[c(1,3,5)] build the numeric vector d of dimension 3

with elements 5, 1, –5
> 2*a multiply each element of a by 2

and display the result
> b%%3 provides each element of b modulo 3
> d%/%2.4 computes the integer division of each element of d by 2.4
> e=3/d build the numeric vector e of dimension 3

and elements 3/5, 3, –3/5
> log(d*e) multiply the vectors d and e term by term

and transform each term into its natural logarithm
> sum(d) calculate the sum of d
> length(d) display the length of d
> t(d) transpose d, the result is a row vector
> t(d)%*%e scalar product between the row vector t(b) and

the column vector e with identical length
> t(d)*e elementwise product between two vectors

with identical lengths
> g=c(sqrt(2),log(10)) build the numeric vector g of dimension 2

and elements
√

2, log(10)
> e[d==5] build the subvector of e that contains the

components e[i] such that d[i]=5

> a[-3] create the subvector of a that contains
all components of a but the third.6

> is.vector(d) display the logical expression TRUE if
a vector and FALSE else

Fig. 1.1. Illustrations of the processing of vectors in R.

Note the convenient use of Boolean expressions to extract subvectors from
a vector without having to resort to a component-by-component test (and
hence a loop). The quantity d==5 is itself a vector of Booleans, while the num-
ber of components satisfying the constraint can be computed by sum(d==5).
The ability to apply scalar functions to vectors as a whole is also a major ad-
vantage of R. In the event the function depends on a parameter or an option,
this quantity can be entered as in

> e=gamma(e^2,log=T)

which returns the vector with components logΓ (e2i ). Functions that are spe-
cially designed for vectors include, for instance, sample, permn, order, sort,
and rank, which all have to do with manipulating the order in which the
components of the vector occur. (Note that permn is part of the combinat

6 Positive and negative indices cannot be used simultaneously.



1.3 R objects 9

library, as indicated when typing help.search("permn"), which returns a
permn(combinat) among its matching entries.)

Exercise 1.3 Test the help command on the functions seq, sample, and
order. (Hint: Start with help(help).)

Exercise 1.4 Explain the difference between the functions order and rank. For
the function rep. , explain the difference between the options times, length.out,
and each.

Besides their numeric and logical indexes, the components of a vector can
also be identified by names. For a given vector x, names(x) is a vector of
characters of the same length as x. This additional attribute is most useful
when dealing with real data, where the components have a meaning such
as "unemployed" or "democrat". Those names can also be erased by the
command

> names(x)=NULL

The : operator found in Figure 1.1 is a very useful device that defines
a consecutive sequence, but it is also fragile in that reverse sequences do
not always produce what is expected.7 For one thing, 1:n-1 is interpreted
as (1:n)-1 rather than 1:(n-1). For another, while 3:1 returns the vector
c(3,2,1), the command 1:0 returns c(1,0), which may or may not be okay
depending on the circumstances. For instance, a[1:0] will only return a[1],
and this may not be the limiting case the programmer had in mind. Note also
that a[0] does not produce an error message but a vector with length zero.

Exercise 1.5 Show that the alternative seq(1,n-1,by=1) does not suffer from
the same drawbacks as 1:(n-1). Find a modification of by=1 that handles the
case where n ≤ 1.

1.3.2 The matrix, array, and factor classes

The matrix class provides the R representation of matrices. A typical entry is,
for instance,

> x=matrix(vec,nrow=n,ncol=p)

which creates an n × p matrix whose elements are those of the vector vec,
assuming this vector is of dimension np. An important feature of this entry
is that, in a somewhat unusual way, the components of vec are stored by
column, which means that x[1,1] is equal to vec[1], x[2,1] is equal to
7 This difficulty was pointed out by Radford Neal.



10 1 Basic R Programming

vec[2], and so on, except if the option byrow=T is used in matrix. (Because
of this choice of storage convention, working on R matrices columnwise is
faster then working rowwise.) Note also that, if vec is of dimension n×p, it is
not necessary to specify both the nrow=n and ncol=p options in matrix. One
of those two parameters is sufficient to define the matrix. On the other hand,
if vec is not of dimension n× p, matrix(vec,nrow=n,ncol=p) will create an
n× p matrix with the components of vec repeated the appropriate number of
times. For instance,

> matrix(1:4,ncol=3)
[,1] [,2] [,3]

[1,] 1 3 1
[2,] 2 4 2
Warning message:
data length [4] is not a submultiple or multiple of the number
of columns [3] in matrix in: matrix(1:4, ncol = 3)

produces a 2 × 3 matrix along with a warning message that something may
be missing in the call to matrix. Note again that 1, 2, 3, 4 are entered con-
secutively when following the column (or lexicographic) order. Names can be
given to the rows and columns of a matrix using the rownames and colnames
functions.

R allows for a wide range of manipulations on matrices, both termwise and
in the classical matrix algebra perspective. For instance, the standard matrix
product is denoted by %*%, while * represents the term-by-term product. (Note
that taking the product a%*%b when the number of columns of a differs from
the number of rows of b produces an error message.) Figure 1.2 gives a few
examples of matrix-related commands. The apply function is particularly easy
to use for functions operating on matrices by row or column.

The function diag can be used to extract the vector of the diagonal el-
ements of a matrix, as in diag(a), or to create a diagonal matrix with a
given diagonal, as in diag(1:10). Since matrix algebra is central to good
programming in R, as matrix programming allows for the elimination of time-
consuming loops, it is important to be familiar with matrix manipulation. For
instance, the function crossprod replaces the product t(x)%*%y on either
vectors or matrices by crossprod(x,y) more efficiently:

> system.time(crossprod(1:10^6,1:10^6))

In some situations, it is useful to remember that an R matrix can also be
used as a vector. If x is an n×p matrix, x[i, j]=x[i+n*(j-1)] is equal
o x[i,j], i.e., x can also be manipulated as a vector made of the columns

of vec piled on top of one another. For instance, x[x>5] is a vector, while
x[x>5]=0 modifies the right entries in the matrix x. Conversely, vectors can
be turned into p× 1 matrices by the command as.matrix. Note that x[1,]
produces the first row of x as a vector rather than as a p× 1 matrix.

t



1.3 R objects 11

> x1=matrix(1:20,nrow=5) build the numeric matrix x1 of dimension
5× 4 with first row 1, 6, 11, 16

> x2=matrix(1:20,nrow=5,byrow=T) build the numeric matrix x2 of dimension
5× 4 with first row 1, 2, 3, 4

> a=x3%*%x2 matrix summation of x2 and x3

> x3=t(x2) transpose the matrix x2

> b=x3%*%x2 matrix product between x2 and x3,
with a check of the dimension compatibility

> c=x1*x2 term-by-term product between x1 and x2

> dim(x1) display the dimensions of x1
> b[,2] select the second column of b
> b[c(3,4),] select the third and fourth rows of b
> b[-2,] delete the second row of b
> rbind(x1,x2) vertical merging of x1 and x2

> cbind(x1,x2) horizontal merging of x1 and x2

> apply(x1,1,sum) calculate the sum of each row of x1
> as.matrix(1:10) turn the vector 1:10 into a 10× 1 matrix

Fig. 1.2. Illustrations of the processing of matrices in R.

user system elapsed
0.016 0.048 0.066

> system.time(t(1:10^6)%*%(1:10^6))
user system elapsed
0.084 0.036 0.121

(You can also check the symmetric function tcrossprod.)
Eigenanalysis of square matrices is also included in the base package. For

instance, chol(m) returns the upper triangular factor of the Choleski decom-
position of m; that is, the matrix R such that RTR is equal to m. Similarly,
eigen(m) returns a list (see Section 1.3.3) that contains the eigenvalues of
m (some of which can be complex numbers) as well as the corresponding
eigenvectors (some of which are complex if there are complex eigenvalues).
Related functions are svd and qr, which provide the singular values and the
QR decomposition of their argument, respectively. Note that the inverse M−1

of a matrix M can be found either by solve(M) (recommended) or ginv(M),
which requires downloading the library MASS and also produces generalized
inverses (which may be a mixed blessing since the fact that a matrix is not in-
vertible is not signaled by ginv). Special versions of solve are backsolve and
forwardsolve, which are restricted to upper and lower diagonal triangular
systems, respectively. Note also the alternative of using chol2inv which re-
turns the inverse of a matrix m when provided by the Choleski decomposition
chol(m).

Structures with more than two indices are represented by arrays and can
also be processed by R commands, for instance x=array(1:50,c(2,5,5)),
which gives a three-entry table of 50 terms. Once again, they can also be
interpreted as vectors.



12 1 Basic R Programming

The apply function used in Figure 1.2 is a very powerful device that op-
erates on arrays and, in particular, matrices. Since it can return arrays, it
bypasses calls to multiple loops and makes for (sometimes) quicker and (al-
ways) cleaner programs. It should not be considered as a panacea, however,
as apply hides calls to loops inside a single command. For instance, a com-
parison of apply(A, 1, mean) with rowMeans(A) shows the second version
is about 200 times faster. Using linear algebra whenever possible is therefore
a more efficient solution. Spector (2009, Section 8.7) gives a detailed analysis
of the limitations of apply and the advantages of vectorization in R.

A factor is a vector of characters or integers used to specify a discrete
classification of the components of other vectors with the same length. Its
main difference from a standard vector is that it comes with a level attribute
used to specify the possible values of the factor. This structure is therefore
appropriate to represent qualitative variables. R provides both ordered and un-
ordered factors, whose major appeal lies within model formulas, as illustrated
in Figure 1.3. Note the subtle difference between apply and tapply.

> state=c("tas","tas","sa","sa","wa") create a vector with five values
> statef=factor(state) distinguish entries by group
> levels(statef) give the groups
> incomes=c(60,59,40,42,23) create a vector of incomes
> tapply(incomes,statef,mean) average the incomes for each group
> statef=factor(state, define a new level with one more
+ levels=c("tas","sa","wa","yo")) group than observed
> table(statef) return statistics for all levels

Fig. 1.3. Illustrations of the factor class.

1.3.3 The list and data.frame classes

A list in R is a rather loose object made of a collection of other arbitrary
objects known as its components.8 For instance, a list can be derived from n
existing objects using the function list:

a=list(name_1=object_1,...,name_n=object_n)

This command creates a list with n arguments using object_1,...,object_n
for the components, each being associated with the argument’s name, name_i.
For instance, a$name_1 will be equal to object_1. (It can also be represented
as a[[1]], but this is less practical, as it requires some bookkeeping of the
order of the objects contained in the list.) Lists are very useful in preserving
information about the values of variables used within R functions in the sense
8 Lists can contain lists as elements.



1.3 R objects 13

that all relevant values can be put within a list that is the output of the
corresponding function (see Section 1.7 for details about the construction of
functions in R). Most standard functions in R, for instance eigen in Figure 1.4,
return a list as their output. Note the use of the abbreviations vec and val in
the last line of Figure 1.4. Such abbreviations are acceptable as long as they
do not induce confusion. (Using res$v would not work!)

> li=list(num=1:5,y="color",a=T) create a list with three arguments
> a=matrix(c(6,2,0,2,6,0,0,0,36),nrow=3) create a (3, 3) matrix
> res=eigen(a,symmetric=T) diagonalize a and
> names(res) produce a list with two

arguments: vectors and values

> res$vectors vectors arguments of res
> diag(res$values) create the diagonal matrix

of eigenvalues
> res$vec%*%diag(res$val)%*%t(res$vec) recover a

Fig. 1.4. Chosen features of the list class.

The local version of apply is lapply, which computes a function for each
argument of the list

> x = list(a = 1:10, beta = exp(-3:3),
+ logic = c(TRUE,FALSE,FALSE,TRUE))
> lapply(x,mean) #compute the empirical means
$a
[1] 5.5
$beta
[1] 4.535125
$logic
[1] 0.5

provided each argument is of a mode that is compatible with the function
argument (i.e., is numeric in this case). A “user-friendly” version of lapply is
sapply, as in

> sapply(x,mean)
a beta logic

5.500000 4.535125 0.500000

The last class we briefly mention here is the data frame. A data frame
is a list whose elements are possibly made of differing modes and attributes
but have the same length, as in the example provided in Figure 1.5. A data
frame can be displayed in matrix form, and its rows and columns can be
extracted using matrix indexing conventions. A list whose components satisfy
the restrictions imposed on a data frame can be coerced into a data frame



14 1 Basic R Programming

using the function as.data.frame. The main purpose of this object is to
import data from an external file by using the read.table function.

> v1=sample(1:12,30,rep=T) simulate 30 independent uniform
random variables on {1, 2, . . . , 12}

> v2=sample(LETTERS[1:10],30,rep=T) simulate 30 independent uniform
random variables on {a, b, ...., j}

> v3=runif(30) simulate 30 independent uniform
random variables on [0, 1]

> v4=rnorm(30) simulate 30 independent realizations
from a standard normal distribution

> xx=data.frame(v1,v2,v3,v4) create a data frame

Fig. 1.5. Definition of a data frame.

1.4 Probability distributions in R

R is primarily a statistical language. It is therefore well-equipped with proba-
bility distributions. As described in Table 1.1, all standard distributions are
available, with a clever programming shortcut: A “core” name, such as norm,
is associated with each distribution, and the four basic associated functions,
namely the cdf, the pdf, the quantile function, and the simulation procedure,
are defined by appending the prefixes d, p, q, and r to the core name, such
as dnorm, pnorm, qnorm, and rnorm. Obviously, each function requires ad-
ditional entries, as in pnorm(1.96) or rnorm(10,mean=3,sd=3). Recall that
pnorm and qnorm are inverses of one another.

Exercise 1.6 Study the properties of the R function lm using simulated data as
in

> x=rnorm(20)
> y=3*x+5+rnorm(20,sd=0.3)
> reslm=lm(y∼x)
> summary(reslm)

The simulation aspects related to the normal distribution (and to these other
standard distributions) will be discussed in detail in Chapter 2.

1.5 Basic and not-so-basic statistics

R is designed by statisticians, as the logical continuation of the former S-plus
language, and, as such, it offers a very wide range of statistical packages that
cover the entire spectrum of statistics. The battery of these (classical) sta-
tistical tools, ranging from descriptive statistics to non-parametric density



1.5 Basic and not-so-basic statistics 15

Table 1.1. Standard distributions with R core name.

Distribution Core Parameters Default Values

Beta beta shape1, shape2

Binomial binom size, prob

Cauchy cauchy location, scale 0, 1
Chi-square chisq df

Exponential exp 1/mean 1
F f df1, df2

Gamma gamma shape,1/scale NA, 1
Geometric geom prob

Hypergeometric hyper m, n, k

Log-normal lnorm mean, sd 0, 1
Logistic logis location, scale 0, 1
Normal norm mean, sd 0, 1
Poisson pois lambda

Student t df

Uniform unif min, max 0, 1
Weibull weibull shape

estimation and generalized linear models, cannot be provided in this book,
but we refer you to, for instance, Dalgaard (2002) or Venables and Ripley
(1999) for a detailed introduction.

At the most basic level, descriptive statistics can be obtained for any object
with numerical entries. For instance, mean (possibly trimmed), var, sd, median,
quantile, and summary produce standard estimates for the samples on which
they are called. Note that, due to the choice of an unbiased version of this
estimator that involves dividing the sum of squares by n−1 instead of dividing
by n, the variance estimator of a single observation is NA rather than 0.

When applied to a matrix x, the output of var(x) differs from the output
of sd(x)^2

> b=matrix(1:9,ncol=3)
> var(b)

[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1
[3,] 1 1 1
> sd(b)^2
[1] 1 1 1

because the former returns an estimate of the covariance between the columns
of x, while the latter produces an estimate of the variances of the columns.
Note that the definition of b only specifies the number of columns, 3 in this



16 1 Basic R Programming

case, and thus assumes that the length of the vector is a multiple of 3. (If
it is not, R produces a warning that the data length is not a submultiple or
multiple of the number of columns.)

Classical hypothesis tests, such as the equality of two means or the equal-
ity of two variances, can be conducted using standard functions. Typing
help.search("test") will produce a list of tests that most likely contains
more tests than you have previously heard of. For example, checking that the
mean of a normal sample with unknown variance is zero can be conducted
using the t test (Casella and Berger, 2001) as

> x=rnorm(25) #produces a N(0,1) sample of size 25
> t.test(x)

One Sample t-test

data: x
t = -0.8168, df = 24, p-value = 0.4220
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-0.4915103 0.2127705
sample estimates:
mean of x
-0.1393699

whose outcome can be interpreted as providing a p-value of 0.4220 (i.e., a fairly
large probability of observing a larger empirical average x̄ than the one just
observed, −0.139) and hence as concluding that the data do not contradict
the null hypothesis.

As pointed out previously, all but the most basic R functions return lists
as their output (or value). For instance, when running t.test above, the
output involves nine arguments:

> out=t.test(x)
> names(out)
[1] "statistic" "parameter" "p.value" "conf.int" "estimate"
[6] "null.value" "alternative" "method" "data.name"

which can be handled separately, as for instance in as.numeric(out$est)^2.

Similarly, the presence of correlation between two variables can be tested
by cor.test, as in the example

> attach(faithful) #resident dataset
> cor.test(faithful[,1],faithful[,2])



1.5 Basic and not-so-basic statistics 17

Pearson’s product-moment correlation

data: faithful[, 1] and faithful[, 2]
t = 34.089, df = 270, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.8756964 0.9210652
sample estimates:

cor
0.9008112

which concludes that the data, faithful, made of eruptions and waiting,
which correspond to the eruption times and the waiting times of the Old Faith-
ful geyser in Yellowstone National Park, has its two variables most certainly
correlated.

Non-parametric tests such as the one-sample and two-sample Kolmogorov–
Smirnov adequation tests (ks.test), Shapiro’s normality test (shapiro.test),
Kruskall–Wallis homogeneity test (kruskal.test), and Wilcoxon rank tests
(wilcox.test) are available. For instance, testing for normality on the faithful
dataset leads to

> ks.test(jitter(faithful[,1]),pnorm)

One-sample Kolmogorov-Smirnov test

data: jitter(faithful[, 1])
D = 0.9486, p-value < 2.2e-16
alternative hypothesis: two-sided

> shapiro.test(faithful[,2])

Shapiro-Wilk normality test

data: faithful[, 2]
W = 0.9221, p-value = 1.016e-10

> wilcox.test(faithful[,1])

Wilcoxon signed rank test with continuity correction

data: faithful[, 1]
V = 37128, p-value < 2.2e-16
alternative hypothesis: true location is not equal to 0

In the first command line above, the function jitter is used to perturb each
entry in the dataset in order to remove the ties within it. Otherwise, the
p-value cannot be computed:



18 1 Basic R Programming

Warning message:
cannot compute correct p-values with ties in:
ks.test(faithful[, 1], pnorm)

This function is also quite handy when plotting datasets with ties.

Most R functions require arguments, and most of them have default values
for at least some arguments. For instance, the Wilcoxon test wilcox.test has
mu=0 as its default location to be tested. Those default values are indicated
on the help page of the functions.

Non-parametric kernel density estimates can similarly be constructed via
the function density and are quite amenable to calibration, from the choice of
the kernel to the choice of the bandwidth (see Venables and Ripley, 1999).
In our case, they will be handy as sample-based proposals when designing
MCMC algorithms in Chapters 6 and 8. Spline modeling also is available via
the functions spline and splinefun. Non-parametric regression can be performed
via the loess function or using natural splines.

For instance, the data constructed as

> Nit = c(0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,6,6,6)
> AOB =c(4.26,4.15,4.68,6.08,5.87,6.92,6.87,6.25,
+ 6.84,6.34,6.56,6.52,7.39,7.38,7.74,7.76,8.14,7.22)

reports on the relationship between nitrogen level in soil (coded 0,1,2,3,4,6)
and abundance of a bacteria called AOB, reproduced on the left-hand side of
Figure 1.6. The loess and natural spline fits are obtained via the R code

> AOBm=tapply(AOB,Nit,mean) #means of AOB
> Nitm=tapply(Nit,Nit,mean) #means of Nit
> plot(Nit,AOB,xlim=c(0,6),ylim=c(min(AOB),max(AOB)),pch=19)
> fitAOB=lm(AOBm∼ns(Nitm,df=2)) #natural spline
> xmin=min(Nit);xmax=max(Nit)
> lines(seq(xmin,xmax,.5), #fit to means
+ predict(fitAOB,data.frame(Nitm=seq(xmin,xmax,.5))))
> fitAOB2=loess(AOBm∼Nitm,span = 1.25) #loess
> lines(seq(xmin,xmax,.5), #fit to means
+ predict(fitAOB2,data.frame(Nitm=seq(xmin,xmax,.5))))

where the function ns requires the splines library. The loess fit will vary
with the choice of span, as the natural spline fit will vary with the choice of
ns.

Covariates can be used as well for more advanced statistical modeling.
Indeed, linear and generalized linear (regression) models are similarly well-
developed in R. The syntax is slightly unusual, though, since a standard linear
regression is launched as follows:

> x=seq(-3,3,le=5) # equidispersed regressor



1.5 Basic and not-so-basic statistics 19

Fig. 1.6. Scatterplot of bacteria abundance (AOB) versus nitrogen levels (left
panel). The right panel shows both the natural spline fit (dark) with ns=2 and loess
fit (light) with span=1.25.

> y=2+4*x+rnorm(5) # simulated variable
> lm(y∼x)

Call:
lm(formula = y ∼ x)

Coefficients:
(Intercept) x

1.820 4.238

> summary(lm(y∼x))

Call:
lm(formula = y ∼ x)

Residuals:
1 2 3 4 5

0.25219 -0.07421 0.07080 -0.92773 0.67895

Coefficients:
Estimate Std. Error t value Pr(>|t|)



20 1 Basic R Programming

(Intercept) 1.8203 0.3050 5.967 0.00942 **
x 4.2381 0.1438 29.472 8.58e-05 ***
---
Signif. codes: 0 ‘***’ .001 ‘**’ .01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.6821 on 3 degrees of freedom
Multiple R-Squared: 0.9966, Adjusted R-squared: 0.9954
F-statistic: 868.6 on 1 and 3 DF, p-value: 8.58e-05

The core idea is to introduce the model formula y∼x as the argument to the
function. This model means that y is regressed on x. If no intercept is involved,
the model is modified as y∼x-1. Introducing interactions in the regression can
be specified via the colon (:) symbol, following the syntax of McCullagh and
Nelder (1989) for generalized linear models.

The function lm produces a list, and the estimates of the regression co-
efficients can be recovered as lm(y∼x)$coeff. Surprisingly, the estimated
standard error (0.6821 above) is not an argument of this list and needs to be
computed by

> out=lm(y∼x)
> sqrt(sum(out$res^2)/out$df)
[1] 0.6821

rather than via var(out$res), which uses the “wrong” number of degrees
of freedom. Note that the package arm (Gelman and Hill, 2006) provides a
cleaner output than summary via its display function.

An analysis of variance can be done by recycling output from lm, as in
this analysis on the impact of food type on chicken weights:

> summary(lm(weight ∼ feed, data = chickwts))

Call:
lm(formula = weight ∼ feed, data = chickwts)

Residuals:
Min 1Q Median 3Q Max

-123.909 -34.413 1.571 38.170 103.091

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 323.583 15.834 20.436 < 2e-16 ***
feedhorsebean -163.383 23.485 -6.957 2.07e-09 ***
feedlinseed -104.833 22.393 -4.682 1.49e-05 ***
feedmeatmeal -46.674 22.896 -2.039 0.045567 *
feedsoybean -77.155 21.578 -3.576 0.000665 ***



1.5 Basic and not-so-basic statistics 21

feedsunflower 5.333 22.393 0.238 0.812495
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 54.85 on 65 degrees of freedom
Multiple R-Squared: 0.5417, Adjusted R-squared: 0.5064
F-statistic: 15.36 on 5 and 65 DF, p-value: 5.936e-10

> anova(lm(weight ∼ feed, data = chickwts))

Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

feed 5 231129 46226 15.365 5.936e-10 ***
Residuals 65 195556 3009
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

where the first command produces the regression coefficients for each type
of food, while the second command evaluates the relevance of the regression
model (and concludes positively). When using factor variables, more specific
analyzes can be conducted by splitting the degrees of freedom in aov using
the option split.

Generalized linear models can be equally well-estimated thanks to the
polymorphic function glm. For instance, fitting a binomial generalized linear
model to the probability of suffering from diabetes for a woman within the
Pima Indian population is done by

> glm(formula = type ∼ bmi + age, family = "binomial",
+ data = Pima.tr)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.7935 -0.8368 -0.5033 1.0211 2.2531

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.49870 1.17459 -5.533 3.15e-08 ***
bmi 0.10519 0.02956 3.558 0.000373 ***
age 0.07104 0.01538 4.620 3.84e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)



22 1 Basic R Programming

Null deviance: 256.41 on 199 degrees of freedom
Residual deviance: 215.93 on 197 degrees of freedom
AIC: 221.93

Number of Fisher Scoring iterations: 4

concluding with the significance both of the body mass index bmi and the age.
Other generalized linear models can be defined by using a different family
value whose range is provided by the function family. Note also that link
functions different from the intrinsic (and default) link functions (McCullagh
and Nelder, 1989) can be specified, as well as a scale factor, as in

> glm(y ∼ x, family=quasi(var="mu^2", link="log"))

where the model corresponds to a quasi-likelihood with link equal to the log
function.

Unidimensional and multidimensional time series (xt)t can be handled
directly by the arima function, following a Box–Jenkins-like analysis,

> arima(diff(EuStockMarkets[,1]),order=c(0,0,5))

Call:
arima(x = diff(EuStockMarkets[, 1]), order = c(0, 0, 5))

Coefficients:
ma1 ma2 ma3 ma4 ma5 intercept

0.0054 -0.0130 -0.0110 -0.0041 -0.0486 2.0692
s.e. 0.0234 0.0233 0.0221 0.0236 0.0235 0.6990

sigma^2 estimated as 1053: log likelihood = -9106.23,
aic = 18226.45

while more advanced models can be fitted thanks to the function StructTS.
Simpler time-series functions can also be used, such as

> acf(ldeaths, plot=F) #monthly deaths from bronchitis,
#emphysema and asthma in the UK, 1974-1979

Autocorrelations of series ‘ldeaths’, by lag

0.0000 0.0833 0.1667 0.2500 0.3333 0.4167 0.5000 0.5833
1.000 0.755 0.397 0.019 -0.356 -0.609 -0.681 -0.608
0.6667 0.7500 0.8333 0.9167 1.0000 1.0833 1.1667 1.2500
-0.378 -0.013 0.383 0.650 0.723 0.638 0.372 0.009
1.3333 1.4167 1.5000
-0.294 -0.497 -0.586

which is less straightforward to analyze than its graphical alternatives



1.5 Basic and not-so-basic statistics 23

Fig. 1.7. Autocorrelation and partial autocorrelation plots for the ldeaths series,
representing monthly deaths from bronchitis, emphysema, and asthma in the UK
over the period 1974—1979. The dashed horizontal lines correspond to the signifi-
cance boundaries for the non-zero terms.

> acf(ldeaths)
> acf(ldeaths,type="partial")

represented on Figure 1.7 for both the standard and the partial autocorrela-
tions. The standard autocorrelation exhibits quite clearly the seasonal pattern
of the deaths.

Lastly, we mention the bootstrap. This procedure has many uses (see Efron
and Tibshirani, 1993), but here we will mainly illustrate its use as a means of
attaching standard errors.

For readers unfamiliar with the notion of the bootstrap, we briefly recall
here that this statistical method is based upon the notion that the empirical
distribution of a sample X1, . . . , Xn converges in n to the true distribution.
(The empirical distribution is a discrete distribution that puts a probability
1/n on every point Xi of the sample and 0 everywhere else.) The bootstrap
procedure then uses the empirical distribution as a substitute for the true
distribution to construct variance estimates and confidence intervals. Given



24 1 Basic R Programming

Fig. 1.8. Histogram of 2500 bootstrap means of a sample of size 8 generated from
a gamma G(4, 1) distribution, along with the normal approximation.

that the empirical distribution has a finite but large support made of nn

points, Monte Carlo approximations are almost always necessary to evaluate
those quantities, as illustrated in the next example.

For example, if we have a data vector y, we can create a bootstrap sample
y∗ using the code

> ystar=sample(y,replace=T)

Figure 1.8 shows a histogram of 2500 bootstrap means mean(ystar) based on
the sample

y = c(4.313, 4.513, 5.489, 4.265, 3.641, 5.106, 8.006, 5.087),

along with the normal approximation based on the original sample (i.e., using
the empirical mean and empirical variance of y). The sample was in fact drawn
from a gamma G(4, 1) distribution, and we can see on this graph that the
bootstrap approximation does capture some of the skewness in the distribution
of ȳ (indeed, the sample size n = 8 is rather small for the Central Limit
Theorem to apply). The standard deviation of the sample is 0.4699, while the
standard deviation of the 2500 bootstrap means is 0.4368, showing agreement.

One difficulty in implementing the bootstrap technique is that it is not
always clear which quantity should be bootstrapped. A treatment of this im-



1.5 Basic and not-so-basic statistics 25

portant topic is outside the scope of this book, and we caution the reader to
verify the proper bootstrapping technique in any particular application.

As an example, we apply the bootstrap technique to the simple linear
regression example seen previously in this chapter.

Example 1.1. Recall the linear regression

> x=seq(-3,3,le=5) # equidispersed regressor
> y=2+4*x+rnorm(5) # simulated dependent variable
> lm(y∼x)

This corresponds to the regression model

Yij = α+ βxi + εij ,

where α and β are the unknown intercept and slope, and the εij are the iid normal

errors. We fit the model with least squares and get α̂ = 1.820 and β̂ = 4.238.9

The residuals from the least squares fit are given by

ε̂ij = yij − α̂− β̂xi,

and these are the random variables making the sample that we bootstrap. That
is, we create bootstrap samples by resampling the ε̂ij ’s, producing a new sample
(ε̂∗ij)ij by sampling with replacement from the ε̂ij ’s. The bootstrap data are then
y∗ij = yij + ε̂∗ij . This can be implemented with the R code

> fit=lm(y∼x) #fit the linear model
> Rdata=fit$residuals #get the residuals
> nBoot=2000 #number of bootstrap samples
> B=array(0,dim=c(nBoot, 2)) #bootstrap array
> for(i in 1:nBoot){ #bootstrap loop
> ystar=y+sample(Rdata,replace=T)
> Bfit=lm(ystar∼x)
> B[i,]=Bfit$coefficients
> }

The results of this bootstrap inference are summarized in Figure 1.9, where
we provide the histograms of the 2000 bootstrap replicates of both regression
coefficients. We can also derive from those replicates confidence intervals on
both coefficients (by taking 2.5th and 97.5th percentiles, for example), as well as
confidence intervals on predicted values (i.e., for new values of x). For instance,
based on the bootstrap sample, the derived 90% confidence intervals are (in our
case) (2.350, 3.416) for the intercept α and (4.099, 4.592) for the slope β. J

9 When running the same experiment, you will obviously get different numerical
values due to the use of a different random seed (see Section 2.1.1).



26 1 Basic R Programming

Fig. 1.9. Histogram of 2000 bootstrap intercepts (left) and slopes (right) for the
linear regression of Exercise 1.1. The least squares estimate of the intercept is 2.900,
and the slope estimate is 4.35.

Exercise 1.7 For the data associated with Figure 1.8:

a. Bootstrap the data and obtain a similar figure based on 1000 bootstrap repli-
cations. If the inference is about the 95% of the distribution of ȳ, q.95(ȳ),
give a bootstrap estimate of this quantity, q̂.95(ȳ).

b. Construct a bootstrap experiment that provides a 95% confidence interval on
q̂.95(ȳ). (Hint: You have to use two levels of bootstrapping to achieve this
goal.)

Exercise 1.8 For a dataset simulated as in Example 1.1, compare the boot-
strap confidence intervals on both coefficients to the usual ones based on the
t-distribution. Comment on the differences.

1.6 Graphical facilities

Another clear advantage of using the R language is that it allows a very rich
range of graphical possibilities. Functions such as plot and image can be
customized to a large extent, as described in Venables and Ripley (1999) or



1.6 Graphical facilities 27

Murrell (2005) (the latter being entirely dedicated to the R graphic abilities).
Even though the default output of plot as for instance in

> plot(faithful)

is not the most enticing, plot is incredibly flexible: To see the number of
parameters involved, you can type par() that delivers the default values of
all those parameters.

� The wealth of graphical possibilities offered by R should be taken ad-
vantage of cautiously! That is, good design avoids clutter, small fonts,
unreadable scale, etc. The recommendations found in Tufte (1990, 2001)
are thus worth following to avoid horrid outputs like those often found
in some periodicals! In addition, graphs produced by R usually tend to
look nicer on the current device than when printed or included in a slide
presentation. Colors may change, font sizes may turn awkward, separate
curves may end up overlapping, and so on. In the early stages of working
with R, and even later, you should thus check that the different outputs
corresponding to the same graph are satisfactory before closing your R
session and losing hours of work!!!

Before covering the most standard graphic commands, we start by describ-
ing the notion of device that is at the core of those graphic commands. Each
graphical operation sends its outcome to a device, which can be a graphical
window (like the one that automatically appears when calling a graphical com-
mand for the first time as in the example above) or a file where the graphical
outcome is stored for printing or other uses. Under Unix and Linux OS, launch-
ing a new graphical window can be done via X11(), with many possibilities
for customization (such as size, positions, color, etc.). Once a graphical win-
dow is created, it is given a device number and can be managed by functions
that start with dev., such as dev.list, dev.set, and others. An important
command is dev.off, which closes the current graphical window. When the
device is a file, it is created by a function that is named after its driver. There
are therefore a postscript, a pdf, a jpeg, and a png function. The complete
list is given by capabilities(). When printing to a file, as in the following
example,

> jpeg(file="faith,jpg")
> par(mfrow=c(1,2),mar=c(4,2,2,1))
> hist(faithful[,1],nclass=21,col="grey",main="",
+ xlab=names(faithful)[1])
> hist(faithful[,2],nclass=21,col="wheat",main="",
+ xlab=names(faithful)[2])
> dev.off()

closing the sequence with dev.off() is recommended since it completes the
file, which is then saved. If the command jpeg(file="faith,jpg") is re-
peated, the earlier version of the jpeg file is erased.



28 1 Basic R Programming

Using a line command interface for controlling graphics may seem anti-
quated, but this is the consequence of the R object-oriented philosophy. In
addition, current graphs can be saved to a postscript file using the dev.copy
and dev.print functions. Note that R-produced graphs tend to be large ob-
jects, in part because the graphs are not pictures of the current state but
instead preserve every action ever taken. For this reason, long series should
be thinned down to a few thousand points, images should work with a few
hundred pixels, contours should be preferred to images, and jpeg preferred to
pdf.

� One of the most frustrating features of R is that the graphical device
is not refreshed while a program is executed in the main window. This
implies that, if you switch from one terminal to another or if the screen
saver starts, the whole or parts of the graph currently on the graphical
device will not be visible until the completion of the program. Conversely,
refreshing very large graphs will delay the activation of the prompt >.

As already stressed above, plot is a highly versatile tool that can be used
to represent functional curves and two-dimensional datasets. Colors (chosen
by colors() or colours() out of 650 hues), widths, and types can be cal-
ibrated at will and LATEX-like formulas can be included within the graphs
using expression; see plotmath(grDevices) for a detailed list of the math-
ematical symbols. Text and legends can be included at a specific point with
locator (see also identify) and legend. An example of (relatively simple)
output is

> plot(as.vector(time(mdeaths)),as.vector(mdeaths),cex=.6,
+ pch=19,xlab="",ylab="Monthly deaths from bronchitis")
> lines(spline(mdeaths),lwd=2,col="chocolate",lty=3)
> ar=arima(mdeaths,order=c(1,0,0))$coef
> lines(as.vector(time(mdeaths))[-1], ar[2]+ar[1]*
+ (mdeaths[-length(mdeaths)]-ar[2]),col="grey",lwd=2,lty=2)
+ title("Splines versus AR(1) predictor")
> ari=arima(mdeaths,order=c(1,0,0),seasonal=list(order=c(1,
+ 0,0),period=12))$coef
> lines(as.vector(time(mdeaths))[-(1:13)],ari[3]+ari[1]*
+ (mdeaths[-c(1:12,72)]-ari[3])+ari[2]*(mdeaths[-(60:72)]-
+ ari[3]),lwd=2,col="steelblue",lty=2)
> title("\n\nand SAR(1,12) predictor")
+ legend(1974,2800,legend=c("spline","AR(1)","SAR(1,12)"),
+ col=c("chocolate","grey","steelblue"),
+ lty=c(3,2,2),lwd=rep(2,3),cex=.5)



1.6 Graphical facilities 29

represented ion Figure 1.10, which compares spline fitting to an AR(1) pre-
dictor and to an SAR(1,12) predictor. Note that the seasonal model is doing
worse.

Fig. 1.10. Monthly deaths from bronchitis in the UK over the period 1974—1980
and fits by a spline approximation and two AR predictors.

Another example illustrates the use of the command cumsum, which is
particularly handy when checking Monte Carlo convergence, as discussed in
the remark box of page 66.

> x=rnorm(1)
> for (t in 2:10^3)
+ x=c(x,.09*x[t-1]+rnorm(1))
> plot(x,type="l",xlab="time",ylab="x",lwd=2,lty=2,
+ col="steelblue",ylim=range(cumsum(x)))
> lines(cumsum(x),lwd=2,col="orange3")



30 1 Basic R Programming

This four-line program generates a simple AR(1) sequence and plots the orig-
inal sequence (xt) along with the cumulated sum sequence,

t∑
i=1

xi .

Note that, due to the high correlation factor (0.9), the cumulated sum is
behaving much closer to a random walk.

Fig. 1.11. Simulated AR(1) sequence (dotted) along with its corresponding cumu-
lated sum.

Useful graphical functions include hist, for constructing and optionally
plotting histograms of datasets; points, for adding points on an existing
graph; lines, for linking points together on an existing graph, as in the above
example; polygon, for filling the area between two sets of points; barplot, for
creating barplots; and boxplot, for creating boxplots. The two-dimensional
representations offered by image and contour are quite handy when provid-



1.7 Writing new R functions 31

ing likelihood or posterior surfaces, as in Figures 3.5 and 5.2. An instance of
using polygon is provided by

> par(mar=c(2,2,2,2))
> x=matrix(0,ncol=100,nrow=10^4)
> for (t in 2:10^4)
> x[t,]=x[t-1,]+rnorm(100)*10^(-2)
> plot(seq(0,1,le=10^4),x[,1],ty="n",
+ ylim=range(x),xlab="",ylab="")
> polygon(c(1:10^4,10^4:1)/10^4,c(apply(x,1,max),
+ rev(apply(x,1,min))),col="gold",bor=F)
> polygon(c(1:10^4,10^4:1)/10^4,c(apply(x,1,quantile,.95),
+ rev(apply(x,1,quantile,.05))),col="brown",bor=F)

which approximates the range of 100 Brownian motions, as well as a 90%
confidence band, represented in Figure 1.12 (see Kendall et al., 2007, and
Section 4.5).

� The command points is used to add one or several points on a two-
dimensional plot. It suffers from a drawback, however, in that the entry
is by default a time series. Therefore, calling points(x) when x is a
two-dimensional vector will plot both points (1, x1) and (2, x2) rather
than the single point (x1, x2). The result will be as expected if x is a
two-column matrix, resulting in the points (xi1, xi2) being plotted.

These comments are only here to provide an introduction to the capacities
of R. Specific references such as Murrell (2005) need to be consulted to get a
complete picture of those capacities!

1.7 Writing new R functions

One of the strengths of R is that new functions and libraries can be created
by anyone and then added to Web depositories to continuously enrich the
language. These new functions are not distinguishable from the core functions
of R, such as median or var, because those are also written in R. This means
their code can be accessed and potentially modified, although it is safer to
define new functions. (A few functions are written in C, however, for efficiency.)
Learning how to write functions designed for one’s own problems is paramount
for their resolution, even though the huge collection of available R functions
may often contain a function already written for that purpose.

Exercise 1.9 Among the R functions you have met so far, check which ones are
written in R by simply typing their name without parentheses, as in mean or var.



32 1 Basic R Programming

Fig. 1.12. Range of 100 simulated Brownian motions (lighter hue) and 90% confi-
dence band (darker hue).

A function is defined in R by an assignment of the form

name=function(arg1[=expr1],arg2[=expr2],...) {
expression
...
expression
value
}

where expression denotes an R command that uses some of the arguments
arg1, arg2, ... to calculate a value, value, that is the outcome of the
function. The braces indicate the beginning and the end of the function and
the brackets some possible default values for the arguments. Note that pro-
ducing a value at the end of a function is essential because anything done



1.7 Writing new R functions 33

within a function is local and temporary, and is therefore lost once the func-
tion has been exited unless saved in value (hence, again, the appeal of list).
For instance, the following function, named sqrnt, implements a version of
Newton’s method for calculating the square root of y:

sqrnt=function(y){
x=y/2
while (abs(x*x-y) > 1e-10) x=(x+y/x)/2
x
}

When designing a new R function, it is more convenient to use an external
text editor and to store the function under development in an external file,
say myfunction.R, which can be executed in R as source("myfunction.R").
Note also that some external commands can be launched within an R function
via the very handy command system. This is, for instance, the easiest (if not
the most efficient) way to incorporate programs written in other languages
(e.g., Fortran, C, Matlab) within R programs.

The fact that R is an interpreted language obviously helps in debugging
programs. Indeed, whenever a program is interrupted or aborted, the variables
that have been previously defined keep their latest value and can thus be
used to assess the cause of the error. This is not always sufficient though,
in particular because variables defined within functions are not stored, and a
useful tool is the pause command browser, which temporarily stops a program
to allow the programmer to check the values of all variables at a given point.
Further debugging commands are debug and trace.

� Using an external text editor and an external program file is important
for two reasons. First, using the line editor of R is inefficient and close to
impossible for complex problems, even though functions can be internally
edited by the Unix vi editor as myfun=vi(myfun). Cut-and-paste is just
much easier. Second, this forces you to save your functions rather than
relying on .RData and .Rhistory, which are not 100% secure.

The expressions used in a function rely on a syntax that is quite similar to
those of other programming languages, with conditional statements such as

if (expres1) expres2 else expres3

where expres1 is a logical value, and loops such as

for (name in expres1) expres2

and

while (expres4) expres2



34 1 Basic R Programming

where expres1 is a collection of values, as illustrated in Figure 1.13, and
expres4 is a Boolean expression. In particular, Boolean operators can be
used within those expressions, including == for testing equality, != for testing
inequality, & for the logical and, | for the logical or, and ! for the logical
contradiction.

> bool=T;i=0 separate commands by semicolons
> while(bool==T) {i=i+1; bool=(i<10)} stop at i = 10
> s=0;x=rnorm(10000)

> system.time(for (i in 1:length(x)){ output sum(x) and
+ s=s+x[i]})[3] provide computing time
> system.time(t(rep(1,10000))%*%x)[3] compare with vector product
> system.time(sum(x))[3] compare with sum efficiency

Fig. 1.13. Some artificial loops in R.

Exercise 1.10 Explain the difference between the logical operators & and &&,
|, ||, and xor.

The operator if (and the associated operators ifelse and ) are some of
the rare occurrences where R does not apply to vectors. For vector-valued
tests, logical vectors like (abs(x)>1.96) can be used as indices of the output
vector, like the allocation commands

> y[(abs(x)<1.96)]=rep(0,sum(abs(x)>1.96))
> y[(abs(x)>1.96)]=x[(x>1.96)]

Since R is an interpreted language, avoiding loops by vectorial program-
ming is generally a good idea, but this may render programs much harder to
read. It is therefore extremely useful to include comments within the programs
by using the symbol #.

As noted previously, R is fundamentally slower than other languages.
Checking both the speed of a program and the reasons for its poor speed
can be done using the system.time command or the more advanced profiling
commands Rprof and Rprofmem described in the manual. There are, how-
ever, ways of speeding up the execution of your programs. First, using faster
functions (for example, those already programmed in C; see below) obviously
brings improvement. Second, preallocating memory as in x=double(10^5)
also increases speed. Third (and this is getting way beyond the scope of this
introduction!), it is possible to recompile parts of the R package with libraries
that are designed for your machine. An example is the Blas (basic linear al-
gebra subprogram), which can be optimized using the free library Atlas (and
lead to improvements by factors from two to five). Details can be found in the



1.8 Input and output in R 35

R administration manual. Fourth, and this again requires some programming
expertise, you can take advantage of multiple processors, using for instance
netWorkSpace (NWS), Rpmi, or snow, developed by Luke Tierney.

While we cannot delve much here into the issue of interfacing R with other
languages, we do nonetheless stress that this is an important feature of R that
you should investigate, simply because there are problems R is just too slow to
handle! Using some routines written in C or Fortran then becomes paramount,
without losing the main advantages of R altogether. The easiest way to con-
nect R with external subroutines such as the C executable mycprog.o is to
design the corresponding C program to take its input from a file such as
mycinput and write its output in another file such as mycouput. In this case,
calling

> system("mycprog.o")

within the R program will be sufficient. Obviously, this is a rudimentary type
of interfacing and it suffers from two drawbacks, the first one being that
repeated access to files is time-consuming as well and the second one being that
the C program cannot call R functions this way. A more advanced approach is
based on the function .C, which can call C functions with arguments, and the
C subroutine call_R, as described for instance in Crawley (2007). The main
difficulty with these more advanced techniques is to ensure the compatibility
between data types. Section 8.5.2 provides an illustration of a C program being
called by an R program in an efficient manner.

1.8 Input and output in R

Large data objects need to be read as values from external files rather than
entered during an R session at the keyboard (or by cut-and-paste). Input
facilities are simple, but their requirements are fairly strict. In fact, there is
a clear presumption that it is possible to modify input files using other tools
outside R.

An entire data frame can be read directly with the read.table function.
Plain files containing rows of values with a single mode can be downloaded
using the scan function, as in

> a=matrix(scan("myfile"),nrow=5,byrow=T)

When data frames have been produced by other statistical software, the li-
brary foreign can be used to input those frames in R. For example, the
function read.spss allows one to read SPSS data frames.

Conversely, the generic function save can be used to store all R objects in
a given file, either in binary or ASCII format. (The alternative function dump
is more rudimentary but also useful.) The function write.table is used to
export R data frames as ASCII files.



36 1 Basic R Programming

R programs can also be run in BATCH mode, which means that they can
run on remote machines. This is particularly relevant when executing highly
time-consuming programs that cannot run on your laptop or even personal
computer but rather require the power of a multiprocessor mainframe. In this
case, a self-contained program, myprogram.R say, can be launched from the
operating system (not in R) by

R CMD BATCH myprogram.R myprogram.outfile

and, provided it does not encounter difficulties or a power outage during its
execution, this program will store its outcome in myprogram.outfile.

1.9 Administration of R objects

During an R session, objects are created and stored by name. The command
objects() (or, alternatively, ls()) can be used to display, within a direc-
tory called the workspace, the names of the objects that are currently stored.
Individual objects can be deleted with the function rm.

All objects created during an R session (including functions) can be stored
permanently in a file for use in future R sessions. At the end of each R session,
obtained using the command quit (which can be abbreviated as q), the user
is given the opportunity to save all the currently available objects, as in

>q()
Save workspace image? [y/n/c]:

If the user answers y, the object created during the current session and those
saved from earlier sessions are saved in a file called .RData and located in the
current directory. When R is called again, it reloads the workspace from this
file, which means that the user starts the new session exactly where the old
one had stopped. In addition, the entire past command history is stored in
the file .Rhistory and can be used in the current session or later by using
the command history().

The storage in .RData is specific to the current directory. This means that
calling R from another directory will start a new .RData file. This can be useful
when running multiple experiments, but if you want to load the workspace
from another directory, you should use the function setwd for setting the
working directory to this other directory.

1.10 The mcsm package

Since this is primarily a paper book, copying the R code represented on the
pages to your computer terminal would be both tedious and time-wasting.
We have therefore gathered all the programs and codes of this book within an



1.11 Additional exercises 37

R package called mcsm (for Monte Carlo statistical methods) that you should
download from CRAN before proceeding to the next chapter. Once downloaded
on your computer following the instructions provided on the CRAN Webpage,
the package mcsm is loaded into your current R session by library(mcsm).
All the functions defined inside the package are then available, and so is a
step-by-step reproduction of the examples provided in the book, using the
demo command:

> demo(Chapter.1)

demo(Chapter.1)
---- ~~~~~~~~~

Type <Return> to start :

> # Chapter 1 R commands
>
> # Section 1.3.2
>
> x=matrix(1:4,ncol=3)

> print(x[x>5])
integer(0)

> print(x[1.])
[1] 1

> S=readline(prompt="Type <Return> to continue : ")
Type <Return> to continue :

and similarly for the following chapters. Obviously, all commands contained
in the demonstrations and all functions defined in the package can be accessed
and modified.

� Although most steps of the demonstrations are short, some may require
longer execution times. If you need to interrupt the demonstration, recall
that Ctrl-C is an interruption command.

1.11 Additional exercises

Exercise 1.11 Study the relevance of the attach and assign commands toward han-
dling databases other than .RData.

Exercise 1.12 Construct a vector x that contains integers, real numbers, chains of
characters, and several NA missing values. Test for the positions of the missing values



38 1 Basic R Programming

using the is.na function. Produce the subvector where all missing values have been
eliminated.

Exercise 1.13 Explain the distinctions between the R commands capture.output,
dput, dump, save, sink, and write, and illustrate those distinctions in examples of
your own.

Exercise 1.14 In conjunction with the discussion of the function var producing NA on
page 15, explain the role of the option na.rm in this function and why it does not help
with the issue. Describe the role of the option na.action in the functions lm and glm.

Exercise 1.15 Show that, when a is a scalar and x is a vector, match(a,x) is equiv-
alent to min(which(x == a)). Discuss the uses of match and which in the case of the
comparison of two vectors. Compare this with the use of %in%.

Exercise 1.16 The Boolean expression x==y does not work well for floating-point
numbers in that rounding errors may produce a FALSE answer. Compare it with the
functions all.equal and identical.

Exercise 1.17 Compare the execution times of the three equivalent R commands

a. y=c();for (t in 1:100) y[t]=exp(t)

b. y=exp(1:100)

c. y=sapply(1:100,exp)

using system.time.

Exercise 1.18 Explain why the functions diag, dim, length, and names can be as-
signed new values (as in diag(m)=pi).

Exercise 1.19 Using the uniform U(0, 1) random generator runif, construct a 2x2
matrix A such that the sum of each row is 1. Show that this property is preserved by a
matrix power product, and check whether numerical inaccuracies occur when the power
is high enough.

Exercise 1.20 Discuss the relevance of the commands unlist and unclass.

Exercise 1.21 Using the Orange dataset that monitors tree growth versus age for five
orange trees, represent the dataset using the command xyplot. Then fit a linear model
explaining the circumference by the age via lm. Try using the tree index as an extra
covariate.

Exercise 1.22 Here we look at some further applications of the bootstrap.

a. Bootstrap the autocorrelations of Figure 1.7, and compare the bootstrap confidence
intervals to the dashed lines given in the plots. (Here the bootstrap sample is taken
by resampling the data with replacement.)

b. Bootstrap the spline fit shown in Figure 1.6, and use the results to attach a measure
of uncertainty to the spline fit. (Here we bootstrap by resampling the residuals, as
in Example 1.1. However, instead of showing histograms of the coefficients, you
should present the range of fitted curves on a plot.)



1.11 Additional exercises 39

Exercise 1.23 We recall that a Sudoku is a 9x9 grid that is partly filled with numbers
between 1 and 9 such that any number between 1 and 9 only appears once in a row,
a column, or a 3x3 bloc of the grid. This exercise solves a simple Sudoku grid where
there exists a path over the empty entries that fills them one at a time by excluding all
possibilities but one. The Sudoku we solve is given by

> s=matrix(0,ncol=9,nrow=9)

> s[1,c(6,8)]=c(6,4)

> s[2,c(1:3,8)]=c(2,7,9,5)

> s[3,c(2,4,9)]=c(5,8,2)

> s[4,3:4]=c(2,6)

> s[6,c(3,5,7:9)]=c(1,9,6,7,3)

> s[7,c(1,3:4,7)]=c(8,5,2,4)

> s[8,c(1,8:9)]=c(3,8,5)

> s[9,c(1,7,9)]=c(6,9,1)

a. Print the grid on-screen.
b. We define the array pool=array(TRUE,dim=c(9,9,9)) of possible values for each

entry (i, j) of the grid, pool[i,j,k] being FALSE if the value k can be excluded.
Give the R code that updates pool for the entries already filled.

c. If i is an integer between 1 and 81, explain the meaning of s[i].
d. Show that, for a given entry (a, b), the indices of the integers in the same 3x3 box

as (a, b) are defined by

boxa=3*trunc((a-1)/3)+1

boxa=boxa:(boxa+2)

boxb=3*trunc((b-1)/3)+1

boxb=boxb:(boxb+2)

e. Deduce that values at an entry (a,b) that is not yet determined can be excluded
by

for (u in (1:9)[pool[a,b,]])

pool[a,b,u]=(sum(u==s[a,])+sum(u==s[,b])+

sum(u==s[boxa,boxb]))==0

and that certain entries correspond to

if (sum(pool[a,b,])==1) s[i]=(1:9)[pool[a,b,]]

f. Solve the grid above by a random exploration of entries (a,b) that continues as
long as sum(s==0)>0.

� If you ever attempt to apply this program on an arbitrary Sudoku grid, be aware
that it may run forever since the harder Sudokus do not allow this logical and
deterministic filling but instead require several scenarios in parallel be followed.



2

Random Variable Generation

“It has long been an axiom of mine that the little things are infinitely
the most important.”

Arthur Conan Doyle
A Case of Identity

Reader’s guide

In this chapter, we present practical techniques that can produce random variables
from both standard and nonstandard distributions by using a computer program.
Given the availability of a uniform generator in R, as explained in Section 2.1.1,
we do not deal with the specific production of uniform random variables. The
most basic techniques relate the distribution to be simulated to a uniform variate
by a transform or a particular probabilistic property, as in Section 2.2, while the
most generic one is a simulation version of the trial-and-error method, described
in Section 2.3 under the name of the Accept–Reject method. In all cases, the
methods rely on the availability of sequences of independent uniform generations
that are provided by the resident R generator, runif.

C.P. Robert, G. Casella, Introducing Monte Carlo Methods with R, Use R,  
DOI 10.1007/978-1-4419-1576-4_2, © © Springer Science+Business Media, LLC 2010 



42 2 Random Variable Generation

2.1 Introduction

The methods developed in this book and summarized under the denomination
of Monte Carlo methods mostly rely on the possibility of producing (with a
computer) a supposedly endless flow of random variables for well-known or
new distributions. Such a simulation is, in turn, based on the production of
uniform random variables on the interval (0, 1). Although we are not directly
concerned with the mechanics of producing such uniform random variables,
because existing uniform generators can be considered as “perfect”, we will
completely rely on those generators to produce other random variables. In
a sense, the uniform distribution U[0,1] provides the basic probabilistic rep-
resentation of randomness on a computer and the generators for all other
distributions do require a sequence of uniform variables to be simulated.

As already pointed out in Section 1.4 of Chapter 1, R has a large number
of built-in functions that will generate the standard random variables listed
in Table 1.1. For instance,

> rgamma(3,2.5,4.5)

produces three independent generations from a G(5/2, 9/2) distribution with
all due guarantees of representing this distribution. It is therefore counter-
productive, inefficient, and even dangerous to generate from those standard
distributions using anything but the resident R generators. The principles
developed in the following sections are, however, essential to deal with less
standard distributions that are not built into R.

2.1.1 Uniform simulation

The basic uniform generator in R is the function runif, whose only required
entry is the number of values to be generated. The other optional parameters
are min and max, which characterize the bounds of the interval supporting the
uniform. (The default is min=0 and max=1.) For instance,

> runif(100, min=2, max=5)

will produce 100 random variables distributed uniformly between 2 and 5.

Strictly speaking, all the methods we will see (and this includes runif)
produce pseudo-random numbers in that there is no randomness involved—
based on an initial value u0 of a uniform U(0, 1) sequence and a transformation
D, the uniform generator produces a sequence (ui) = (Di(u0)) of values in
(0, 1)—but the outcome has the same statistical properties as an iid sequence.
Further details on the random generator of R are provided in the on-line help
on RNG.

While extensive testing of this function has been undertaken to make sure
it does produce uniform variates for all purposes (see, e.g., Robert and Casella,



2.1 Introduction 43

Fig. 2.1. Histogram (left), pairwise plot (center), and estimated autocorrelation
function (right) of a sequence of 104 uniform random numbers generated by runif.

2004, Chapter 2), a quick check on the properties of this uniform generator
is to look at an histogram of the Xi’s, a plot of the pairs (Xi, Xi+1), and the
estimated autocorrelation function, as any random variable generator does
suffer from a residual autocorrelation and good algorithms will reduce this to
a negligible value. The R code used to produce the output in Figure 2.1 is

> Nsim=10^4 #number of random numbers
> x=runif(Nsim)
> x1=x[-Nsim] #vectors to plot
> x2=x[-1] #adjacent pairs
> par(mfrow=c(1,3))
> hist(x)
> plot(x1,x2)
> acf(x)

and shows that runif is apparently acceptable for this casual evaluation.

As pointed out in the previous remark, runif does not involve random-
ness per se. Producing runif(Nsim) is better described as a deterministic
sequence based on a random starting point. An extreme illustration of this
fact is obtained through the R function set.seed, which uses its single integer
argument to set as many seeds as required. For instance,

> set.seed(1)
> runif(5)
[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
> set.seed(1)
> runif(5)



44 2 Random Variable Generation

[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819
> set.seed(2)
> runif(5)
[1] 0.0693609 0.8177752 0.9426217 0.2693818 0.1693481

shows that setting the seed determines all the subsequent values produced by
the random generator. In the overwhelming majority of cases, we do not set
the seed, which is then chosen according to the current time. But in settings
where we need to reproduce the exact same sequence of random simulations,
for example to compare two procedures or two speeds, setting a fixed value of
the seed is reasonable.

2.1.2 The inverse transform

There is a simple, sometimes useful transformation, known as the probability
integral transform, that allows us to transform any random variable into a
uniform random variable and, more importantly, vice versa. For example, if
X has density f and cdf F , then we have the relation

F (x) =
∫ x

−∞
f(t) dt,

and if we set U = F (X), then U is a random variable distributed from a
uniform U(0, 1). This is because

P (U ≤ u) = P [F (X) ≤ F (x)] = P [F−1(F (X)) ≤ F−1(F (x))] = P (X ≤ x),

where we have assumed that F has an inverse. This assumption can be relaxed
(see Robert and Casella, 2004, Section 2.1) but holds for most continuous
distributions.

Exercise 2.1 For an arbitrary random variable X with cdf F , define the gener-
alized inverse of F by

F−(u) = inf {x; F (x) u} .

Show that if U ∼ U(0, 1), then F−(U) is distributed like X.

Example 2.1. If X ∼ Exp(1), then F (x) = 1−e−x. Solving for x in u = 1−e−x
gives x = − log(1− u). Therefore, if U ∼ U[0,1], then

X = − logU ∼ Exp(1)

(as U and 1− U are both uniform). The corresponding R code

≥



2.1 Introduction 45

Fig. 2.2. Histograms of exponential random variables using the inverse transform
(right) and using the R command rexp (left), with the Exp(1) density on top.

> Nsim=10^4 #number of random variables
> U=runif(Nsim)
> X=-log(U) #transforms of uniforms
> Y=rexp(Nsim) #exponentials from R
> par(mfrow=c(1,2)) #plots
> hist(X,freq=F,main="Exp from Uniform")
> hist(Y,freq=F,main="Exp from R")

compares the output from the probability inverse transform with the output from
rexp. The fits of both histograms to their exponential limit are not distinguishable
in Figure 2.2. J

The generation of uniform random variables is therefore a key determinant
of the behavior of simulation methods for other probability distributions since
those distributions can be represented as a deterministic transformation of
uniform random variables.

Exercise 2.2 Two distributions that have explicit forms of the cdf are the logis-
tic and Cauchy distributions. Thus, they are well-suited to the inverse transform
method. For each of the following, verify the form of the cdf and then generate
10,000 random variables using the inverse transform. Compare your program with
the built-in R functions rlogis and rcauchy, respectively:

a. Logistic pdf: f(x) = 1
β

e−(x−µ)/β

[1+e−(x−µ)/β ]2
, cdf: F (x) = 1

1+e−(x−µ)/β .

b. Cauchy pdf: f(x) = 1
πσ

1

1+( x−µσ )2 , cdf: F (x) = 1
2 + 1

πarctan((x− µ)/σ).



46 2 Random Variable Generation

2.2 General transformation methods

When a distribution with density f is linked in a relatively simple way to
another distribution that is easy to simulate, this relationship can often be
exploited to construct an algorithm to simulate variables from f .

Example 2.2. In Example 2.1, we saw how to generate an exponential random
variable starting from a uniform. Now we illustrate some of the random variables
that can be generated starting from an exponential distribution. If the Xi’s are
iid Exp(1) random variables, then three standard distributions can be derived as

Y = 2
ν∑
j=1

Xj ∼ χ2
2ν , ν ∈ N∗ ,

Y = β

a∑
j=1

Xj ∼ G(a, β) , a ∈ N∗ ,(2.1)

Y =

∑a
j=1Xj∑a+b
j=1 Xj

∼ Be(a, b) , a, b ∈ N∗ ,

where N∗ = {1, 2, . . .}. For example, to generate χ2
6 random variables, we could

use the R code

> U=runif(3*10^4)
> U=matrix(data=U,nrow=3) #matrix for sums
> X=-log(U) #uniform to exponential
> X=2* apply(X,2,sum) #sum up to get chi squares

Obviously, this is not nearly as efficient as calling rchisq, as can be checked by
the R code

> system.time(test1());system.time(test2())
user system elapsed

0.104 0.000 0.107
user system elapsed

0.004 0.000 0.004

where test1 corresponds to the R code above and test2 to its substitution by
X=rchisq(10^4,df=6). J

Many other derivations of standard distributions are possible when taking
advantage of existing probabilistic properties, as shown in Exercise 2.12.

� These transformations are quite simple to use and hence will often be a
favorite in our illustrations. However, there are limits to their usefulness,
both in the scope of variables that can be generated that way (think, for
instance, of a chi-squared distribution with a noneven number of degrees
of freedom) and efficiency of generation. For any specific distribution,



2.2 General transformation methods 47

efficient algorithms have been developed. Thus, if R has a distribution built
in, it is almost always worth using, as shown by Example 2.2. Moreover,
the transformation method described above cannot reach all distributions;
for example, we cannot get a standard normal.

2.2.1 A normal generator

One way to achieve normal random variable simulation using a transform is
with the Box–Muller algorithm, devised for the generation ofN (0, 1) variables.

Example 2.3. If U1 and U2 are iid U[0,1], the variables X1 and X2 defined by

X1 =
√
−2 log(U1) cos(2πU2) , X2 =

√
−2 log(U1) sin(2πU2) ,

are then iid N (0, 1) by virtue of a simple change of variable argument. Note that
this is not the generator implemented in R, which uses by default the probability
inverse transform, based on a very accurate representation of the normal cdf
inverse qnorm (up to 16 digits!). (It is, however, possible, if not recommended,
to switch the normal generator to the Box–Muller (or even to the Kinderman-
Ramage) version via the RNG function.) J

In comparison with (crudely) approximative algorithms based on the Cen-
tral Limit Theorem (CLT), the Box–Muller algorithm is exact, producing two
normal random variables from two uniform random variables, the only draw-
back (in speed) being the necessity of calculating transcendental functions
such as log, cos, and sin.

Exercise 2.3 An antiquated generator for the normal distribution is:
Generate U1, . . . , U12 ∼ U [−1/2, 1/2]
Set Z =

∑12
i=1 Ui

the argument being that the CLT normality is sufficiently accurate with 12 terms.

a. Show that E[Z] = 0 and var(Z) = 1.
b. Using histograms, compare this CLT-normal generator with the Box–Muller

algorithm. Pay particular attention to tail probabilities.
c. Compare both of the generators in part a. with rnorm.

Note that this exercise does not suggest using the CLT for normal generations!
This is a very poor approximation indeed.

The simulation of a multivariate normal distribution Np(µ,Σ), where Σ
is a p × p symmetric and positive-definite matrix, can be derived from the
generic rnorm generator in that using a Cholesky decomposition of Σ (that
is, Σ = AAT) and taking the transform by A of an iid normal vector of di-
mension p leads to a Np(0, Σ) normal vector. There is, however, an R package



48 2 Random Variable Generation

that replicates those steps, called rmnorm and available from the mnormt li-
brary (Genz and Azzalini, 2009). This library also allows computation of the
probability of hypercubes via the function sadmvn, as in

> sadmvn(low=c(1,2,3),upp=c(10,11,12),mean=rep(0,3),var=B)
[1] 9.012408e-05
attr(,"error")
[1] 1.729111e-08

where B is a positive-definite matrix. This is quite useful since the analytic
derivation of this probability is almost always impossible.

Exercise 2.4 Given a 3× 3 matrix Sigma:

a. Show that Sigma=cov(matrix(rnorm(30),nrow=10)) defines a proper co-
variance matrix.

b. Show that setting A=t(chol(Sigma)) leads to a simulation from Np(0, Σ)
by using the command x=A%*%rnorm(3).

c. Compare the execution times of this approach and rmnorm when simulating
one vector and 100 vectors.

2.2.2 Discrete distributions

We next turn to the generation of discrete random variables, where we have
an “all-purpose” algorithm. Again using the inverse transform principle of
Section 2.1.2, we can indeed construct a generic algorithm that will formally
work for any discrete distribution.

To generate X ∼ Pθ, where Pθ is supported by the integers, we can
calculate—once for all, assuming we can store them—the probabilities

p0 = Pθ(X ≤ 0), p1 = Pθ(X ≤ 1), p2 = Pθ(X ≤ 2), . . . ,

and then generate U ∼ U[0,1] and take

X = k if pk−1 < U < pk.

Example 2.4. To generate X ∼ Bin(10, .3), the probability values are obtained
by pbinom(k,10,.3) as

p0 = 0.028, p1 = 0.149, p2 = 0.382, . . . , p10 = 1 ,

and to generate X ∼ P(7), take

p0 = 0.0009, p1 = 0.0073, p2 = 0.0296, . . . ,

the sequence being stopped when it reaches 1 with a given number of decimals.
(For instance, p20 = 0.999985.) J



2.2 General transformation methods 49

Specific algorithms are usually more efficient (as shown in Example 2.5),
but it is mostly because of the storage problem. We can often improve on
the algorithm above by a judicious choice of what probabilities we compute
first. For example, if we want to generate random variables from a Poisson
distribution with mean λ = 100, the algorithm above is woefully inefficient.
This is because we expect most of our observations to be in the interval λ±3

√
λ

(recall that λ is both the mean and the variance for the Poisson distribution),
and for λ = 100 this interval is (70, 130). Thus, starting at 0 will almost always
produce 70 tests of whether or not pk−1 < U < pk that are useless because
they will almost certainly be rejected. A first remedy is to “ignore” what is
outside of a highly likely interval such as (70, 130) in the current example, as

P (X < 70) + P (X > 130) = 0.00268.

Formally, we should find a lower and an upper bound to make this probability
small enough, but informally ±3σ works fine.

Example 2.5. Here is an R code that can be used to generate Poisson random
variables for large values of lambda. The sequence t contains the integer values
in the range around the mean.

> Nsim=10^4; lambda=100
> spread=3*sqrt(lambda)
> t=round(seq(max(0,lambda-spread),lambda+spread,1))
> prob=ppois(t, lambda)
> X=rep(0,Nsim)
> for (i in 1:Nsim){
+ u=runif(1)
+ X[i]=t[1]+sum(prob<u) }

The last line of the program checks to see what interval the uniform random
variable fell in and assigns the correct Poisson value to X. See Exercise 2.14 for
other distributions. J

A more formal remedy to the inefficiency of starting the cumulative prob-
abilities at p0 is to start instead from the mode of the discrete distribution
Pθ and to explore the neighboring values until the cumulative probability is 1
up to an approximation error. The pk’s are then indexed by the visited values
rather than by the integers, but the validity of the method remains complete.

Specific algorithms exist for almost any distribution and are often quite
fast. Thus, we once again stress that, if R has the distribution that you are
interested in, the wisest course is to use it. Once again, the comparison of
the code of Example 2.5 with the resident rpois shows how inefficient this
simple implementation can be. If test3 corresponds to the above and test4
to rpois, the execution times are given by



50 2 Random Variable Generation

> system.time(test3()); system.time(test4())
user system elapsed

0.436 0.000 0.435
user system elapsed

0.008 0.000 0.006

However, R does not handle every distribution that we will need, so ap-
proaches such as the above can be useful. See Exercise 2.15 for some specific
algorithms.

2.2.3 Mixture representations

It is sometimes the case that a probability distribution can be naturally rep-
resented as a mixture distribution; that is, we can write it in the form

(2.2) f(x) =
∫
Y
g(x|y)p(y) dy or f(x) =

∑
i∈Y

pi fi(x) ,

depending on whether the auxiliary space Y is continuous or discrete, where
g and p are standard distributions that can be easily simulated. To generate
a random variable X using such a representation, we can first generate a
variable Y from the mixing distribution and then generate X from the selected
conditional distribution. That is,

if y ∼ p(y) and X ∼ f(x|y), then X ∼ f(x) (if continuous);
if γ ∼ P (γ = i) = pi and X ∼ fγ(x), then X ∼ f(x) (if discrete).

For instance, we can write Student’s t density with ν degrees of freedom Tν
as a mixture, where

X|y ∼ N (0, ν/y) and Y ∼ χ2
ν .

Generating from a Tν distribution could then amount to generating from a χ2
ν

distribution and then from the corresponding normal distribution. (Obviously,
using rt is slightly more efficient, as you can check via system.time.)

Example 2.6. If X is a negative binomial random variable, X ∼ N eg(n, p),
then X has the mixture representation

X|y ∼ P(y) and Y ∼ G(n, β),

where β = (1− p)/p. The following R code generates from this mixture

> Nsim=10^4
> n=6;p=.3
> y=rgamma(Nsim,n,rate=p/(1-p))
> x=rpois(Nsim,y)
> hist(x,main="",freq=F,col="grey",breaks=40)
> lines(1:50,dnbinom(1:50,n,p),lwd=2,col="sienna")

and produces Figure 2.3, where the fit to the negative binomial pdf is shown as
well. J



2.3 Accept–reject methods 51

Fig. 2.3. Histogram of 104 negative binomialN eg(6, .3) random variables generated
from the mixture representation along with the probability function.

2.3 Accept–reject methods

There are many distributions for which the inverse transform method and even
general transformations will fail to be able to generate the required random
variables. For these cases, we must turn to indirect methods; that is, methods
in which we generate a candidate random variable and only accept it subject
to passing a test. As we will see, this class of methods is extremely powerful
and will allow us to simulate from virtually any distribution.

These so-called Accept–Reject methods only require us to know the func-
tional form of the density f of interest (called the target density) up to a
multiplicative constant. We use a simpler (to simulate) density g, called the
instrumental or candidate density , to generate the random variable for which
the simulation is actually done. The only constraints we impose on this can-
didate density g are that

(i). f and g have compatible supports (i.e., g(x) > 0 when f(x) > 0).
(ii). There is a constant M with f(x)/g(x) ≤M for all x.

In this case, X can be simulated as follows. First, we generate Y ∼ g and,
independently, we generate U ∼ U[0,1]. If

U ≤ 1
M

f(Y )
g(Y )

,

then we set X = Y . If the inequality is not satisfied, we then discard Y and
U and start again. Succinctly, the algorithmic representation of the Accept–
Reject method is as follows:



52 2 Random Variable Generation

Algorithm 1 Accept–Reject Method

1. Generate Y ∼ g, U ∼ U[0,1];
2. Accept X = Y if U ≤ f(Y )/Mg(Y );
3. Return to 1 otherwise.

The R implementation of this algorithm is straightforward: If randg is a
function that delivers generations from the density g, in the same spirit as
rnorm or rt, a simple R version of Algorithm 1 is

> u=runif(1)*M
> y=randg(1)
> while (u>f(y)/g(y)){
+ u=runif(1)*M
+ y=randg(1)}

which produces a single generation y from f .
Why does this method work? A straightforward probability calculation

shows that the cdf of the accepted random variable, P (Y ≤ x|U ≤ f(Y )/
{Mg(Y )}), is exactly the cdf of X. That is,

P (Y ≤ x|U ≤ f(Y )/{Mg(Y )}) =
P (Y ≤ x, U ≤ f(Y )/{Mg(Y )})

P (U ≤ f(Y )/{Mg(Y )})

=

∫ x
−∞

∫ f(y)/{Mg(y)}
0

du g(y) dy∫∞
−∞

∫ f(y)/{Mg(y)}
0

du g(y) dy

=

∫ x
−∞[f(y)/{Mg(y)}] g(y) dy∫∞
−∞[f(y)/{Mg(y)}] g(y) dy

=

∫ x
−∞ f(y) dy∫∞
−∞ f(y) dy

= P (X ≤ x),

where we use the fact that the uniform integral is equal to its upper limit.
Despite simulating only from g, the output of this algorithm is thus exactly
distributed from f .

� The Accept–Reject method is applicable in any dimension, provided g is
a density over the same space as f .

Note the cancellation of the g(y)’s and the M ’s in the integrals above.
It also follows from this representation that we do not need to be concerned
about normalizing constants. As long as we know f/g up to a constant, f/g ∝
f̃/g̃, the algorithm can be implemented if an upper bound M̃ can be found
on f̃/g̃. (The missing constants actually get absorbed into M .)



2.3 Accept–reject methods 53

Exercise 2.5 Show that the probability of acceptance in an Accept–Reject al-
gorithm with upper bound M on the density ratio f/g is 1/M . Show that the
expected value of the acceptance rate, E[I(U < f̃/M̃g̃)], can be used to compute
the missing constant in f/g.

As stressed by this exercise, the probability of acceptance is 1/M only if the
normalizing constants are known. Otherwise, since the missing constants do
get absorbed into M̃ , 1/M̃ is not the probability of acceptance.

Example 2.7. Example 2.2 did not provide a general algorithm to simulate beta
Be(α, β) random variables. We can, however, construct a toy algorithm based on
the Accept–Reject method, using as the instrumental distribution the uniform
U[0,1] distribution when both α and β are larger than 1. (The generic rbeta
function does not impose this restriction.)

The upper bound M is then the maximum of the beta density, obtained for
instance by optimize (or its alias optimise):

> optimize(f=function(x){dbeta(x,2.7,6.3)},
+ interval=c(0,1),max=T)$objective
[1] 2.669744

Since the candidate density g is equal to one, the proposed value Y is accepted if
M ×U < f(Y ), that is, if M ×U is under the beta density f at that realization.
Note that generating U ∼ U[0,1] and multiplying by M is equivalent to generating
U ∼ U[0,M ]. For α = 2.7 and β = 6.3, an alternative R implementation of the
Accept–Reject algorithm is

> Nsim=2500
> a=2.7;b=6.3
> M=2.67
> u=runif(Nsim,max=M) #uniform over (0,M)
> y=runif(Nsim) #generation from g
> x=y[u<dbeta(y,a,b)] #accepted subsample

and the left panel in Figure 2.4 shows the results of generating 2500 pairs (Y,U)
from U[0,1] ×U[0,M ]. The black dots (Y,Ug(Y )) that fall under the density f are
those for which we accept X = Y , and we reject the grey dots (Y,Ug(Y )) that
fall outside. It is again clear from this graphical representation that the black dots
are uniformly distributed over the area under the density f . Since the probability
of acceptance of a given simulation is 1/M (Exercise 2.5), with M = 2.67 we
accept approximately 1/2.67 = 37% of the values. J

In the implementation of the Accept–Reject algorithm above, the total
number of attempts Nsim is fixed, which means that the number of accepted
values is a binomial random variable with probability 1/M . Instead, in most
cases, the number of accepted values is fixed, but this implementation can
nonetheless be exploited as in



54 2 Random Variable Generation

Fig. 2.4. Generation of beta random variables X ∼ Be(2.7, 6.3): Using the Accept–
Reject algorithm, 2500 (Y,U) proposals were generated from g and U[0,M ], respec-
tively, and the points (Y,Ug(Y )) were represented with grey dots. In the left panel,
Y ∼ U[0,1], and 36% of the candidate random variables were accepted and repre-
sented with black dots. In the right panel, Y ∼ Be(2, 6) and 58% of the simulated
values were accepted (and similarly represented with black dots). In both panels, f
and Mg are also plotted.

> x=NULL
> while (length(x)<Nsim){
+ y=runif(Nsim*M)
+ x=c(x,y[runif(Nsim*M)*M<dbeta(y,a,b)])}
> x=x[1:Nsim]

(Note that using y=u=runif(Nsim*M) in the program would produce a bias,
as y and u would then take the same values.) Simulating Nsim*M proposals
from the start reduces the number of calls to while since this is the expected
number of proposals (Exercise 2.5).



2.3 Accept–reject methods 55

Exercise 2.6 Compare the execution times of the two proposed implemen-
tations of the Accept–Reject algorithm, as well as alternatives simulating
Nsim*Nprop proposals at once when Nprop varies.

� Some key properties of the Accept–Reject algorithm, which should always
be considered when using it, are the following:
1. Only the ratio f/M is needed, so the algorithm does not depend on

the normalizing constant.
2. The bound f ≤ Mg need not be tight; the algorithm remains valid

(if less efficient) when M is replaced with any larger constant.
3. The probability of acceptance is 1/M , so M should be as small as

possible for a given computational effort.

The efficiency of a given Accept–Reject algorithm can be measured in
terms of its acceptance probability since the higher this probability, the fewer
wasted simulations from g. (In absolute terms, this must be weighted down
by the computational cost of producing a value from g since otherwise the
best choice for g would be f !)

Example 2.8. (Continuation of Example 2.7) Consider instead simulating
Y ∼ Be(2, 6) as a proposal distribution. This choice of g is acceptable since

> optimize(f=function(x){dbeta(x,2.7,6.3)/dbeta(x,2,6)},
+ max=T,interval=c(0,1))$objective
1.671808

This modification of the proposal thus leads to a smaller value of M and a
correspondingly higher acceptance rate of 58% than with the uniform proposal.
The right panel of Figure 2.4 shows the outcome of the corresponding Accept–
Reject algorithm and illustrates the gain in efficiency brought by simulating points
in a smaller set. J

Exercise 2.7 Show formally that, for the ratio f/g to be bounded when f is a
Be(α, β) density and g is a Be(a, b) density, we must have both a ≤ α and b ≤ β.
Deduce that the best choice for a and b among the integer values is a = bαc and
b = bβc.

As shown by Example 2.8, some optimization of the Accept–Reject algo-
rithm is possible by choosing the candidate density g in a parametric family
and by then determining the value of the parameter that minimizes the bound
M .



56 2 Random Variable Generation

Exercise 2.8 Consider using the Accept–Reject algorithm to generate a N (0, 1)
random variable from a double-exponential distribution L(α), with density
g(x|α) = (α/2) exp(−α|x|) as a candidate.

a. Show that
f(x)
g(x|α)

≤
√

2
π
α−1eα

2/2

and that the minimum of this bound (in α) is attained for α = 1.
b. Show that the probability of acceptance is then

√
π/2e = .76 and deduce

that, to produce one normal random variable, this Accept–Reject algorithm
requires on average 1/.76 ≈ 1.3 uniform variables.

c. Show that L(α) can be generated by the probability inverse transform, and
compare this algorithm with the Box–Muller algorithm of Example 2.3 in
terms of execution time.

It may sometimes happen that the complexity of the optimization is very
expensive in terms of analysis or computing time. In the first case, the con-
struction of the optimal algorithm should still be undertaken when the algo-
rithm is to be subjected to intensive use. This is, for instance, the case for
most random generators in R, as can be checked by help. In the second case,
it is most often preferable to explore the use of another family of instrumental
distributions g. (See Exercise 2.22.)

One particular application of the Accept–Reject algorithm has found a
niche in population genetics and is called ABC, following the denomination
proposed by Pritchard et al. (1999). The core version of this algorithm is
an Accept–Reject algorithm fitted for Bayesian problems, where a posterior
distribution π(θ|x0) ∝ π(θ)f(x0|θ) is to be simulated for a likelihood function
f(x|θ) that is not available but can be simulated. The ABC algorithm then
generates values from the prior and from the likelihood until the simulated
observation is equal to the original observation x0:
Repeat

Generate θ ∼ π(θ) and X ∼ f(x|θ)
until X = x0

Exercise 2.9 Prove that the conditional probability of acceptance in the loop
above is f(x0|θ), and deduce that the distribution of the accepted θ is π(θ|x0).

This algorithm is thus valid, but it only applies in settings where π(θ) is a
proper prior and where Pθ(X = x0) has a positive probability of occurring.
Even in population genetics where X is a discrete random variable, the size
of the state-space is often such that this algorithm cannot be implemented.
The proposal of Pritchard et al. (1999) is then to replace the exact acceptance
condition X = x0 with an approximate condition d(X,x0) < ε, where d is a
distance and ε a tolerance level. While unavoidable, this approximation step



2.4 Additional exercises 57

makes the ABC method difficult to recommend on a general basis, even though
more recent works rephrase it in a non-parametric framework that aims at
approximating the likelihood function f(x|θ) (Beaumont et al., 2002).

One criticism of the Accept–Reject algorithm is that it generates “useless”
simulations from the proposal g when rejecting, even those necessary to vali-
date the output as being generated from the target f . We will see in Chapter
3 how the method of importance sampling (Section 3.3) can be used to bypass
this problem.

2.4 Additional exercises

Exercise 2.10 The vector randu is a historical reminder of how wrong a random
generator can get. It consists of 400 rows of three consecutive values produced by a
former VAX random generator called RANDU.

a. Produce a random sample by taking all columns of randu, and reproduce Figure
2.1.

b. Show that the triplets randu[i,] lie on one of 15 parallel hyperplanes.

Exercise 2.11 In both questions, the comparison between generators is understood in
terms of efficiency via the system.time function.

a. Generate a binomial Bin(n, p) random variable with n = 25 and p = .2. Plot a
histogram for a simulated sample and compare it with the binomial mass function.
Compare your generator with the R binomial generator.

b. For α ∈ [0, 1], show that the R code

> u=runif(1)

> while(u > alpha) u=runif(1)

> U=u

produces a random variable U from U([0, α]). Compare it with the transform αU ,
U ∼ U(0, 1), for values of α close to 0 and close to 1, and with runif(1,max=alpha).

Exercise 2.12 Referring to Example 2.2,

a. Generate gamma and beta random variables according to (2.1).
b. Show that if U ∼ U[0,1], then X = − logU/λ ∼ Exp(λ).
c. Show that if U ∼ U[0,1], then X = log u

1−u is a Logistic(0, 1) random variable.

Exercise 2.13 The Pareto P(α) distribution is defined by its density f(x|α) =
αx−α−1 over (1,∞). Show that it can be generated as the −1/α power of a uniform
variate. Plot the histogram and the density.

Exercise 2.14 Referring to Example 2.5:

a. Verify the R code for the Poisson generator. Compare it with rpois.



58 2 Random Variable Generation

b. The negative binomial distribution, with parameters r and p, has mass function

P (Y = y) =

„
r + y − 1

y

«
pr(1− p)y, y = 0, 1, . . . ,

with mean r(1 − p)/p and variance r(1 − p)/p2. For r = 10 and p = .01, .1, .5,
generate 1000 random variables and draw their histograms. Compare the histograms
with the probability functions and your generator with rnegbin (which is in the MASS
package).

c. The logarithmic series distribution has mass function

P (X = x) =
−(1− p)x

x log p
, x = 1, 2, . . . , 0 < p < 1.

For p = .001, .01, .5, generate 1000 random variables and draw a histogram. Com-
pare the histograms with the probability functions.

Exercise 2.15 The Poisson distribution P(λ) is connected to the exponential distri-
bution through the Poisson process in that it can be simulated by generating exponential
random variables until their sum exceeds 1. That is, if Xi ∼ Exp(λ) and if K is the first
value for which

PK+1
i=1 Xi > 1, then K ∼ P(λ). Compare this algorithm with rpois

and the algorithm of Example 2.5 for both small and large values of λ.

Exercise 2.16 An algorithm to generate beta random variables was given in Example
2.2 for α ≥ 1 and β ≥ 1. Another algorithm is based on the following property: If U
and V are iid U[0,1], the distribution of

U1/α

U1/α + V 1/β
,

conditional on U1/α + V 1/β ≤ 1, is the Be(α, β) distribution. Compare this algorithm
with rbeta and the algorithm of Example 2.2 for both small and large values of α, β.

Exercise 2.17 We saw in Example 2.2 that, if α ∈ N, the gamma distribution Ga(α, β)
can be represented as the sum of α exponential random variables εi ∼ Exp(β). When
α 6∈ N, this representation does not hold.

a. Show that we can assume β = 1 by using the transformation y = βx.
b. When the G(n, 1) distribution is generated from an Exp(λ) distribution, determine

the optimal value of λ.
c. When α ≥ 1, show that we can use the Accept–Reject algorithm with candidate

distribution Ga(a, b) to generate a Ga(α, 1) distribution, as long as a ≤ α. Show
that the ratio f/g is b−axα−a exp{−(1 − b)x}, up to a normalizing constant,
yielding the bound

M = b−a
„

α− a
(1− b)e

«α−a
for b < 1.

d. Show that the maximum of b−a(1 − b)α−a is attained at b = a/α, and hence the
optimal choice of b for simulating Ga(α, 1) is b = a/α, which gives the same mean
for Ga(α, 1) and Ga(a, b).

e. Defend the choice of a = bαc as the best choice of a among the integers.
f. Discuss the strategy to adopt when α < 1.



2.4 Additional exercises 59

Exercise 2.18 The rather strange density

f(x) ∝ exp(−x2/2)
˘

sin(6x)2 + 3 cos(x)2 sin(4x)2 + 1
¯

can be generated using the Accept–Reject algorithm.

a. Plot f(x) and show that it can be bounded by Mg(x), where g is the standard
normal density g(x) = exp(−x2/2)/

√
2π. Find an acceptable if not necessarily

optimal value of M . (Hint: Use the function optimise.)
b. Generate 2500 random variables from f using the Accept–Reject algorithm.
c. Deduce from the acceptance rate of this algorithm an approximation of the nor-

malizing constant of f , and compare the histogram with the plot of the normalized
f .

Exercise 2.19 In an Accept–Reject algorithm that generates a N (0, 1) random vari-
able from a double-exponential distribution with density g(x|α) = (α/2) exp(−α|x|),
compute the upper bound M over f/g and show that the choice α = 1 optimizes the
corresponding acceptance rate.

Exercise 2.20 In each of the following cases, construct an Accept–Reject algorithm,
generate a sample of the corresponding random variables, and draw the density function
on top of the histogram.

a. Generate normal random variables using a Cauchy candidate in Accept–Reject.
b. Generate gamma G(4.3, 6.2) random variables using a gamma G(4, 7) candidate.

Exercise 2.21 The noncentral chi-squared distribution, χ2
p(λ), can be defined by

(i). a mixture representation (2.2), where g(x|y) is the density of χ2
p+2y and p(y) is the

density of P(λ/2), and
(ii). the sum of a χ2

p−1 random variable and the square of a N (||θ||, 1).

a. Show that both those representations hold.
b. Show that the representations are equivalent if λ = θ2/2.
c. Compare the corresponding algorithms that can be derived from these representa-

tions among themselves and also with rchisq for small and large values of λ.

Exercise 2.22 Truncated normal distributions N+(µ, σ2, a), in which the range of
a normal random variable is truncated, appear in many contexts. If X ∼ N (µ, σ2),
conditional on the event {x ≥ a}, its density is proportional to

exp
˘
−(x− µ)2/2σ2¯ Ix≥a.

a. The näıve method of simulating this random variable is to generate a N (µ, σ2) until
the generated value is larger than a. Implement the R code

> Nsim=10^4

> X=rep(0,Nsim)

> for (i in 1:Nsim){

+ z=rnorm(1,mean=mu,sd=sigma)

+ while(z<a) z=rnorm(1,mean=mu,sd=sigma)

+ X[i]=z}

and evaluate the algorithm for µ = 0, σ = 1, and various values of a.



60 2 Random Variable Generation

b. Show that the algorithm in part a requires, on average, 1/Φ((µ−a)/σ) simulations
from N (µ, σ2) for one acceptance. Deduce that, if a is in the tail of the distribution,
this algorithm will take a very long time.

c. We now consider the case where µ = 0 and σ = 1. Show that an Accept–Reject
algorithm based on a normal N (µ, 1) candidate can be implemented to generate
from the N+(0, 1, a) distribution for µ > 0. For a given a, discuss the optimization
in µ.

d. Another potential candidate distribution for the Accept–Reject algorithm is the
translated exponential distribution, Exp(α, a), with density

gα(z) = αe−α(z−a) Iz≥a .

Show that the ratio (f/gα)(z) ∝ eα(z−a) e−z
2/2 is then bounded by exp(α2/2−αa)

if α ≥ a. Deduce that a = α gives a legitimate candidate density. Compare the
performance of the corresponding Accept–Reject algorithm based on an Exp(a, a)
candidate with the algorithm in part c, especially for a located in the tails of the
normal N (0, 1) distribution.

(The scale of the exponential distribution in part d can be optimized, but this may not
lead to explicit expressions for the candidate scale. Two-sided normal truncation (that is,
when b ≤ x ≤ a) is a bit more tricky to deal with. See Robert (1995b) for a resolution,
or use rtrun from the package bayesm. Also see Exercise 7.21 for another truncated
normal generator.)

Exercise 2.23 Given a sampling density f(x|θ) and a prior density π(θ), if we observe
x = x1, . . . , xn, the posterior distribution of θ is

π(θ|x) = π(θ|x1, . . . , xn) ∝
Y
i

f(xi|θ)π(θ),

where
Q
i f(xi|θ) = L(θ|x1, . . . , xn) is the likelihood function.

a. If π(θ|x) is the target density in an Accept–Reject algorithm, and if π(θ) is the can-
didate density, show that the optimal bound M is the likelihood function evaluated
at the MLE.

b. For estimating a normal mean, a robust prior is the Cauchy. For Xi ∼ N (θ, 1),
θ ∼ C(0, 1), the posterior distribution is

π(θ|x) ∝ 1

π

1

1 + θ2

1

2π

nY
i=1

e−(xi−θ)2/2.

Set θ0 = 3, n = 10, and generate X1, . . . , Xn ∼ N (θ0, 1). Use the Accept–Reject
algorithm with a Cauchy C(0, 1) candidate to generate a sample from the posterior
distribution. Evaluate how well the value θ0 is recovered. How much better do things
get if n is increased?



3

Monte Carlo Integration

“Every time I think I know what’s going on, suddenly there’s another
layer of complications. I just want this damn thing solved.”

John Scalzi
The Last Colony

Reader’s guide

While Chapter 2 focused on the simulation techniques useful to produce random
variables by computer, this chapter introduces the major concepts of Monte Carlo
methods; that is, taking advantage of the availability of computer-generated ran-
dom variables to approximate univariate and multidimensional integrals. In Section
3.2, we introduce the basic notion of Monte Carlo approximations as a by-product
of the Law of Large Numbers, while Section 3.3 highlights the universality of
the approach by stressing the versatility of the representation of an integral as
an expectation. Chapter 5 will similarly deal with the resolution of optimization
problems by simulation techniques.

C.P. Robert, G. Casella, Introducing Monte Carlo Methods with R, Use R,  
DOI 10.1007/978-1-4419-1576-4_3, ©  Springer Science+Business Media, LLC 2010 



62 3 Monte Carlo Integration

3.1 Introduction

Two major classes of numerical problems that arise in statistical inference are
optimization problems and integration problems. Indeed, numerous examples
(see Rubinstein, 1981, Gentle, 2002, or Robert, 2001) show that it is not
always possible to analytically compute the estimators associated with a given
paradigm (maximum likelihood, Bayes, method of moments, etc.).

Thus, whatever the type of statistical inference, we are often led to consider
numerical solutions. The previous chapter introduced a number of methods
for the computer generation of random variables with any given distribution
and hence provides a basis for the construction of solutions to our statistical
problems. A general solution is indeed to use simulation, of either the true
or some substitute distributions, to calculate the quantities of interest. In
the setup of decision theory, whether it is classical or Bayesian, this solution
is natural since risks and Bayes estimators involve integrals with respect to
probability distributions.

Note that the possibility of producing an almost infinite number of ran-
dom variables distributed according to a given distribution gives us access to
the use of frequentist and asymptotic results much more easily than in the
usual inferential settings, where the sample size is most often fixed. One can
therefore apply probabilistic results such as the Law of Large Numbers or
the Central Limit Theorem, since they allow assessment of the convergence of
simulation methods (which is equivalent to the deterministic bounds used by
numerical approaches).

Before embarking upon the description of Monte Carlo techniques, note
that an apparently obvious alternative to the use of simulation methods for
approximating integrals of the form∫

X
h(x) f(x) dx,

where f is a probability density, would be to rely on numerical methods such
as Simpson’s and the trapezium rules. For instance, R offers two related func-
tions that run unidimensional integration, area (in the MASS library) and
integrate. However, area cannot deal with infinite bounds in the integral
and therefore requires some prior knowledge of the region of integration. The
other function, integrate, accepts infinite bounds but is unfortunately very
fragile and can produce untrustworthy output.

Example 3.1. As a test, we compare the use of integrate on the integral∫ ∞
0

xλ−1 exp(−x) dx

with the computation of Γ (λ) via the gamma function. Implementing this com-
parison as



3.1 Introduction 63

> ch=function(la){
+ integrate(function(x){x^(la-1)*exp(-x)},0,Inf)$val}
> plot(lgamma(seq(.01,10,le=100)),log(apply(as.matrix(
+ seq(.01,10,le=100)),1,ch)),xlab="log(integrate(f))",
+ ylab=expression(log(Gamma(lambda))),pch=19,cex=.6)

we obtain the sequence represented in Figure 3.1, which does not show any dis-
crepancy even for very small values of λ. J

Fig. 3.1. Comparison of the integrate evaluation of the Γ (λ) integral with its true
value.

A main difficulty with numerical integration methods such as integrate
is that they often fail to spot the region of importance for the function to
be integrated. In contrast, simulation methods naturally target this region by
exploiting the information provided by the probability density associated with
the integrals.

Example 3.2. Consider a sample of ten Cauchy rv’s xi (1 ≤ i ≤ 10) with
location parameter θ = 350. The (pseudo-) marginal of the sample under a flat
prior is then

m(x) =
∫ ∞
−∞

10∏
i=1

1
π

1
1 + (xi − θ)2

dθ .

However, integrate returns a wrong numerical value

> cac=rcauchy(10)+350
> lik=function(the){
+ u=dcauchy(cac[1]-the)
+ for (i in 2:10)



64 3 Monte Carlo Integration

+ u=u*dcauchy(cac[i]-the)
+ return(u)}
> integrate(lik,-Inf,Inf)
7.38034e-46 with absolute error < 1.5e-45
> integrate(lik,200,400)
4.83155e-13 with absolute error < 9e-13

and fails to signal the difficulty since the error evaluation is absurdly small. Fur-
thermore, the result is not comparable to area:

> cac=rcauchy(10)
> nin=function(a){integrate(lik,-a,a)$val}
> nan=function(a){area(lik,-a,a)}
> x=seq(1,10^3,le=10^4)
> y=log(apply(as.matrix(x),1,nin))
> z=log(apply(as.matrix(x),1,nan))
> plot(x,y,type="l",ylim=range(cbind(y,z)),lwd=2)
> lines(x,z,lty=2,col="sienna",lwd=2)

Using area in that case produces a more reliable evaluation, as shown in Figure
3.2, since area(lik,-a,a) flattens out as a increases, but this obviously requires
some prior knowledge about the location of the mode of the integrand. J

Fig. 3.2. Comparison of integrate and area on the integral of a Cauchy likelihood
in log scale (the outcome of area corresponds to the dashed curve above).

Lastly, numerical integration tools cannot easily face the highly (or even
moderately) multidimensional integrals that are the rule in statistical prob-
lems. Devising specific integration tools for those problems would be too costly,
especially because we can take advantage of the probabilistic nature of those
integrals.



3.2 Classical Monte Carlo integration 65

3.2 Classical Monte Carlo integration

Before applying our simulation techniques to practical problems, let us recall
the properties that justify their use, referring to Robert and Casella (2004)
for (many) more details. The generic problem is about evaluating the integral

(3.1) Ef [h(X)] =
∫
X
h(x) f(x) dx,

where X denotes the set where the random variable X takes its values, which
is usually equal to the support of the density f . The principle of the Monte
Carlo method for approximating (3.1) is to generate a sample (X1, . . . , Xn)
from the density f and propose as an approximation the empirical average

hn =
1
n

n∑
j=1

h(xj) ,

computed by mean(h(x)) in R, since hn converges almost surely (i.e. for almost
every generated sequence) to Ef [h(X)] by the Strong Law of Large Numbers.
Moreover, when h2(X) has a finite expectation under f , the speed of con-
vergence of hn can be assessed since the convergence takes place at a speed
O(
√
n) and the asymptotic variance of the approximation is

var(hn) =
1
n

∫
X

(h(x)− Ef [h(X)])2 f(x)dx,

which can also be estimated from the sample (X1, . . . , Xn) through

vn =
1
n2

n∑
j=1

[h(xj)− hn]2 .

More specifically, due to the Central Limit Theorem, for large n,

hn − Ef [h(X)]
√
vn

is approximately distributed as a N (0, 1) variable, and this leads to the con-
struction of a convergence test and confidence bounds on the approximation
of Ef [h(X)].

Example 3.3. For the toy function1

(3.2) h(x) = [cos(50x) + sin(20x)]2 ,

represented in the upper panel of Figure 3.3, consider evaluating its integral
over [0, 1]. It can be seen as a uniform expectation, and therefore we gener-
ate U1, U2, . . . , Un iid U(0, 1) random variables and approximate

∫
h(x)dx with

1 This function can be integrated analytically.



66 3 Monte Carlo Integration∑
h(Ui)/n. The lower panel in Figure 3.3 shows the running means and the

bounds derived from the estimated standard errors against the number n of sim-
ulations. The R implementation is as follows:

> h=function(x){(cos(50*x)+sin(20*x))^2}
> par(mar=c(2,2,2,1),mfrow=c(2,1))
> curve(h,xlab="Function",ylab="",lwd=2)
> integrate(h,0,1)
0.965201 with absolute error < 1.9e-10
> x=h(runif(10^4))
> estint=cumsum(x)/(1:10^4)
> esterr=sqrt(cumsum((x-estint)^2))/(1:10^4)
> plot(estint, xlab="Mean and error range",type="l",lwd=
+ 2,ylim=mean(x)+20*c(-esterr[10^4],esterr[10^4]),ylab="")
> lines(estint+2*esterr,col="gold",lwd=2)
> lines(estint-2*esterr,col="gold",lwd=2)

Note that the confidence band produced in this figure is not a 95% confidence
band in the classical sense (i.e., it does not correspond to a confidence band on the
graph of estimates, but rather to the confidence assessment that you can produce
for every number of iterations, were you to stop at this number of iterations). J

� While the bonus brought by the simultaneous evaluation of the error of
the Monte Carlo estimate cannot be disputed, you must be aware that it
is only trustworthy as far as vn is a proper estimate of the variance of hn.
In critical situations where vn does not converge at all or does not even
converge fast enough for a CLT to apply, this estimate and the confidence
region associated with it cannot be trusted.

When monitoring Monte Carlo convergence, an issue that will be fully
addressed in the next chapter, the R command cumsum is quite handy in that
it computes all the partial sums of a sequence at once and thus allows the
immediate representation of the sequence of estimators.

Exercise 3.1 For the normal-Cauchy Bayes estimator

δ(x) =
∫ ∞
−∞

θ

1 + θ2
e−(x−θ)2/2 d θ

/∫ ∞
−∞

1
1 + θ2

e−(x−θ)2/2 d θ ,

solve the following questions when x = 0, 2, 4.

a. Plot the integrands, and use Monte Carlo integration based on a Cauchy
simulation to calculate the integrals.

b. Monitor the convergence with the standard error of the estimate. Obtain three
digits of accuracy with probability .95.

c. Repeat the experiment with a Monte Carlo integration based on a normal
simulation and compare both approaches.



3.2 Classical Monte Carlo integration 67

Fig. 3.3. Approximation of the integral of the function (3.2): (upper) function (3.2),
and (lower) mean ± two standard errors against iterations for a single sequence of
simulations.

The Monte Carlo methodology illustrated by the example above can be
successfully implemented in a wide range of cases where the distributions in-
volved in the model can be simulated. For instance, we could use Monte Carlo
sums to calculate a normal cumulative distribution function (even though the
normal cdf can now be found in all software and many pocket calculators).

Example 3.4. Given a normal N (0, 1) sample of size n, (x1, . . . , xn), the ap-
proximation of

Φ(t) =
∫ t

−∞

1√
2π
e−y

2/2dy

by the Monte Carlo method is

Φ̂(t) =
1
n

n∑
i=1

Ixi≤t,



68 3 Monte Carlo Integration

Table 3.1. Evaluation of some normal probabilities Pr(X ≤ t) by a regular Monte
Carlo experiment based on n replications of a normal generation. The last line
achieves the exact values.

n/t 0.0 0.67 0.84 1.28 1.65 2.32 2.58 3.09 3.72

102 0.485 0.74 0.77 0.9 0.945 0.985 0.995 1 1
103 0.4925 0.7455 0.801 0.902 0.9425 0.9885 0.9955 0.9985 1
104 0.4962 0.7425 0.7941 0.9 0.9498 0.9896 0.995 0.999 0.9999
105 0.4995 0.7489 0.7993 0.9003 0.9498 0.9898 0.995 0.9989 0.9999
106 0.5001 0.7497 0.8 0.9002 0.9502 0.99 0.995 0.999 0.9999
107 0.5002 0.7499 0.8 0.9001 0.9501 0.99 0.995 0.999 0.9999
108 0.5 0.75 0.8 0.9 0.95 0.99 0.995 0.999 0.9999

with (exact) variance Φ(t)[1−Φ(t)]/n (since the variables Ixi≤t are independent
Bernoulli with success probability Φ(t)). The R implementation that led to Table
3.1 is

> x=rnorm(10^8) #whole sample
> bound=qnorm(c(.5,.75,.8,.9,.95,.99,.999,.9999))
> res=matrix(0,ncol=8,nrow=7)
> for (i in 2:8) #lengthy loop!!
+ for (j in 1:8)
+ res[i-1,j]=mean(x[1:10^i]<bound[j])
> matrix(as.numeric(format(res,digi=4)),ncol=8)

For values of t around t = 0, the variance is thus approximately 1/4n, and
to achieve a precision of four decimals, we need 2×

√
1/4n ≤ 10−4 simulations,

i.e., about n = (104)2 = 108 simulations. Table 3.1 gives the evolution of this
approximation for several values of t and shows an accurate evaluation for 100
million iterations. Note that greater (absolute) accuracy is achieved in the tails
and that (much) more efficient simulation methods could be used. J

As you have presumably noticed, the outputs in R are represented with
all the available digits, as in

> rnorm(1)
[1] -0.08581098

While this is logical from an informatic point of view, it is not recommended
to produce all those digits in statistical and simulation environments because
most of them are not significant and also because it impairs the readability of
the output. The format function is then quite handy to cut down the number
of represented digits, as shown in the last line of the R program above.

The Monte Carlo approximation of a probability distribution function il-
lustrated by Example 3.4 has nontrivial applications since it can be used in



3.3 Importance sampling 69

assessing the distribution of a test statistic such as a likelihood ratio test un-
der a null hypothesis, as illustrated in Robert and Casella (2004), as well as
its power under alternatives.

It may thus seem at this stage that the Monte Carlo methodology in-
troduced in this section is sufficient to approximate integrals like (3.1) in a
controlled way. However, while the straightforward Monte Carlo method in-
deed provides good approximations of (3.1) in most regular cases, there exist
more efficient alternatives that not only avoid a direct simulation from f but
also can be used repeatedly for several integrals of the form (3.1). The re-
peated use can be for either a family of functions h or a family of densities f .
In addition, problems of tail simulation as in Example 3.4 can be processed
much more efficiently than simulating from f since simulating events with a
very small probability requires a very large number of simulations under f to
achieve a given (relative) precision.

Exercise 3.2 Given that IXi≤t is a Bernoulli random variable equal to 1 with
probability Φ(t), show that the variance of the normalized estimator IXi≤t/Φ(t)
goes to infinity when t decreases to −∞. Deduce the number of simulations (as
a function of t) that are necessary to achieve a variance less than 10−8.

Exercise 3.3 If we are interested in the tail probability Pr(X > 20) when
X ∼ N (0, 1), simulating from a N (0, 1) distribution does not work. Express
the probability as an integral and use an obvious change of variable to rewrite
this integral as an expectation under a U(0, 1/20) distribution. Deduce a Monte
Carlo approximation to Pr(X > 20) along with an error assessment.

3.3 Importance sampling

The method we now study is called importance sampling because it relies on
so-called importance functions, which are instrumental distributions , in lieu of
the original distributions. In fact, an evaluation of (3.1) based on simulations
from f is almost never optimal in the sense that using alternative distributions
can improve the variance of the resulting estimator of (3.1).

3.3.1 An arbitrary change of reference measure

The importance sampling method is based on an alternative representation
of (3.1). Given an arbitrary density g that is strictly positive when h × f is
different from zero, we can indeed rewrite (3.1) as

(3.3) Ef [h(X)] =
∫
X
h(x)

f(x)
g(x)

g(x) dx = Eg
[
h(X)f(X)
g(X)

]
;



70 3 Monte Carlo Integration

that is, as an expectation under the density g. (Note that X is again the set
where X takes its value and that it may therefore be smaller than the support
of the density g.) This importance sampling fundamental identity justifies the
use of the estimator

(3.4)
1
n

n∑
j=1

f(Xj)
g(Xj)

h(Xj)→ Ef [h(X)]

based on a sample X1, . . . , Xn generated from g (not from f !). Indeed, because
(3.1) can thus be written as an expectation under g, (3.4) does converge to
(3.1) for the same reason the regular Monte Carlo estimator hn converges,
whatever the choice of the distribution g (as long as supp(g) ⊃ supp(h× f)).
This ubiquitous property relates to the fact that (3.1) can be represented in
an infinite number of ways by pairs (h, f) and thus that a given integral is
not intrinsically associated with a given distribution. On the contrary, there
is almost absolute freedom in its representation as an expectation.

� The constraint on the support of g, supp(g) ⊃ supp(h×f), is absolute in
that using a smaller support truncates the integral (3.3) and thus produces
a biased result. This means, in particular, that when considering non-
parametric solutions for g, the support of the kernel must be unrestricted.

Exercise 3.4 For the computation of the expectation Ef [h(X)] when f is the
normal pdf and h(x) = exp(−(x− 3)2/2) + exp(−(x− 6)2/2):

a. Show that Ef [h(X)] can be computed in closed form and derive its value.
b. Construct a regular Monte Carlo approximation based on a normal N (0, 1)

sample of size Nsim=10^3 and produce an error evaluation.
c. Compare the above with an importance sampling approximation based on

an importance function g corresponding to the U(−8,−1) distribution and
a sample of size Nsim=10^3. (Warning: This choice of g does not provide a
converging approximation of Ef [h(X)]!)

Example 3.5. As mentioned at the end of Example 3.4, approximating tail prob-
abilities using standard Monte Carlo sums breaks down once one goes far enough
into the tails. For example, if Z ∼ N (0, 1) and we are interested in the probability
P (Z > 4.5), which is very small,

> pnorm(-4.5,log=T)
[1] -12.59242

simulating Z(i) ∼ N (0, 1) only produces a hit once in about 3 million iterations!
Of course, the problem is that we are now interested in the probability of a

very rare event and thus näıve simulation from f will require a huge number of



3.3 Importance sampling 71

simulations to get a stable answer. However, thanks to importance sampling, we
can greatly improve our accuracy and thus bring down the number of simulations
by several orders of magnitude.

For instance, if we consider a distribution with support restricted to (4.5,∞),
the additional and unnecessary variation of the Monte Carlo estimator due to
simulating zeros (i.e., when x < 4.5) disappears. A natural choice is to take g as
the density of the exponential distribution Exp(1) truncated at 4.5,

g(y) = e−y
/∫ ∞

4.5

e−xdx = e−(y−4.5) ,

and the corresponding importance sampling estimator of the tail probability is

1
n

n∑
i=1

f(Y (i))
g(Y (i))

=
1
n

n∑
i=1

e−Y
2
i /2+Yi−4.5

√
2π

,

where the Yi’s are iid generations from g. The corresponding code is

> Nsim=10^3
> y=rexp(Nsim)+4.5
> weit=dnorm(y)/dexp(y-4.5)
> plot(cumsum(weit)/1:Nsim,type="l")
> abline(a=pnorm(-4.5),b=0,col="red")

The final value is then 3.312 10−6, to be compared with the true value of 3.398×
10−6. As shown in Figure 3.4, the accuracy of the approximation is remarkable,
especially when compared with the original size requirements imposed by a normal
simulation. J

Exercise 3.5 In the exercise above, examine the impact of using a truncated
exponential distribution Exp(λ) on the variance of the approximation of the tail
probability.

Importance sampling is therefore of considerable interest since it puts very
little restriction on the choice of the instrumental distribution g, which can
be chosen from distributions that are either easy to simulate or efficient in the
approximation of the integral. Moreover, the same sample (generated from g)
can be used repeatedly, not only for different functions h but also for different
densities f .

Example 3.6. This example stems from a Bayesian setting: When considering
an observation x from a beta B(α, β) distribution,

x ∼ Γ (α+ β)
Γ (α)Γ (β)

xα−1(1− x)β−1 I[0,1](x),



72 3 Monte Carlo Integration

Fig. 3.4. Convergence of the importance sampling approximation of the normal tail
probability P (Z ≥ 4.5), based on a sequence simulated from a translated exponential
distribution. The straight line corresponds to the true value of the integral.

there exists a family of conjugate priors on (α, β) of the form

π(α, β) ∝
{
Γ (α+ β)
Γ (α)Γ (β)

}λ
xα0 y

β
0 ,

where λ, x0, y0 are hyperparameters, since the posterior is then equal to

π(α, β|x) ∝
{
Γ (α+ β)
Γ (α)Γ (β)

}λ+1

[xx0]α[(1− x)y0]β .

This family of distributions is intractable if only because of the difficulty of dealing
with gamma functions. Simulating directly from π(α, β|x) is therefore impossible.
We thus need to use a substitute distribution g(α, β), and we can get a preliminary
idea by looking at an image representation of π(α, β|x). If we take λ = 1, x0 =
y0 = .5, and x = .6, the R code is

> f=function(a,b){
+ exp(2*(lgamma(a+b)-lgamma(a)-lgamma(b))+
+ a*log(.3)+b*log(.2))}
> aa=1:150 #alpha grid for image
> bb=1:100 #beta grid for image
> post=outer(aa,bb,f)
> image(aa,bb,post,xlab=expression(alpha),ylab=" ")
> contour(aa,bb,post,add=T)



3.3 Importance sampling 73

The outer command is a handy abbreviation to compute a matrix
A=outer(a,b,f) of dimension c(dim(a),dim(b)) whose A[i,j] element is
equal to f(a[i],b[j]). While it is much faster than the basic double allocation
loop,

> system.time(outer(aa,bb,f))
user system elapsed

0.028 0.000 0.029
> system.time(for (j in 1:100){for (i in 1:150)
+ post[i,j]=f(a=aa[i],b=bb[j])})

user system elapsed
0.360 0.004 0.367

it compares speedwise with a single allocation loop

> system.time(outer(aa,bb,f))
user system elapsed

0.028 0.000 0.028
> system.time(for (j in 1:100){post[,j]=f(a=aa,b=bb[j])})

user system elapsed
0.028 0.000 0.027

> system.time(for (i in 1:150){post[i,]=f(a=aa[i],b=bb)})
user system elapsed

0.032 0.000 0.031

and thus does not offer a superefficient way to allocate values to a matrix.

The examination of Figure 3.5 (left) shows that a normal or a Student’s t distri-
bution on the pair (α, β) could be appropriate. Choosing a Student’s T (3, µ,Σ)
distribution with µ = (50, 45) and

Σ =
(

220 190
190 180

)
does produce a reasonable fit, as shown on Figure 3.5 (right) using the super-
position of simulation from this T (3, µ,Σ) distribution with the surface of the
posterior distribution. The covariance matrix above was obtained by trial-and-
error, modifying the entries until the sample in Figure 3.5 (right) fit well enough:

> x=matrix(rt(2*10^4,3),ncol=2) #T sample
> E=matrix(c(220,190,190,180),ncol=2) #Scale matrix
> image(aa,bb,post,xlab=expression(alpha),ylab=" ")
> y=t(t(chol(E))%*%t(x)+c(50,45))
> points(y,cex=.6,pch=19)

Note the use of t(chol(E)) to ensure that the covariance matrix is E (up to a
factor of 3 due to the use of the Student’s t3 distribution).



74 3 Monte Carlo Integration

Fig. 3.5. (left) Representation of the posterior distribution π(α, β|x) on the param-
eters of a B(α, β) distribution for x = 0.6. (right) Superposition of a sample of 103

points from a Student’s t T (3, µ,Σ) distribution used as an importance function.

If the quantity of interest is the marginal likelihood, as in Bayesian model
comparison (Robert, 2001),

m(x) =
∫

R2
+

f(x|α, β)π(α, β) dαdβ

=

∫
R2

+

{
Γ (α+β)
Γ (α)Γ (β)

}λ+1

[xx0]α[(1− x)y0]β dαdβ

x(1− x)
∫

R2
+

{
Γ (α+β)
Γ (α)Γ (β)

}λ
xα0 y

β
0 dαdβ

,

we need to approximate both integrals and the same t sample can be used for
both since the fit is equally reasonable on the prior surface. This approximation

m̂(x) =
n∑
i=1

{
Γ (αi + βi)
Γ (αi)Γ (βi)

}λ+1

[xx0]αi [(1− x)y0]βi
/
g(αi, βi)

/



3.3 Importance sampling 75

n∑
i=1

{
Γ (αi + βi)
Γ (αi)Γ (βi)

}λ
xαi0 yβi0

/
g(αi, βi) ,(3.5)

where (αi, βi)1≤i≤n are n iid realizations from g, is straightforward to implement
in R:

> ine=apply(y,1,min)
> y=y[ine>0,]
> x=x[ine>0,]
> normx=sqrt(x[,1]^2+x[,2]^2)
> f=function(a) exp(2*(lgamma(a[,1]+a[,2])-lgamma(a[,1])
+ -lgamma(a[,2]))+a[,1]*log(.3)+a[,2]*log(.2))
> h=function(a) exp(1*(lgamma(a[,1]+a[,2])-lgamma(a[,1])
+ -lgamma(a[,2]))+a[,1]*log(.5)+a[,2]*log(.5))
> den=dt(normx,3)
> mean(f(y)/den)/mean(h(y)/den)
[1] 0.1361185

Our approximation of the marginal likelihood, based on those simulations is thus
0.1361. Similarly, the posterior expectations of the parameters α and β are ob-
tained by

> mean(y[,1]*apply(y,1,f)/den)/mean(apply(y,1,h)/den)
[1] 19.33745
> mean(y[,2]*apply(y,1,f)/den)/mean(apply(y,1,h)/den)
[1] 16.54468

i.e., are approximately equal to 19.34 and 16.54, respectively. J

3.3.2 Sampling importance resampling

The importance sampling technique does more than approximate integrals,
though, since it provides an alternative way to simulate from complex dis-
tributions. Recall that the method produces a sample X1, . . . , Xn simulated
from g along with its importance weights f(Xi)/g(Xi). This sample can then
be recycled by multinomial resampling into a sample that is (almost) from f .

Indeed, if we could sample with replacement from the weighted population
{X1, . . . , Xn}, picking Xi with probability f(Xi)/ng(Xi), we would get an
outcome X∗ distributed as

Pr(X∗ ∈ A) =
n∑
i=1

Pr(X∗ ∈ A and X∗ = Xi)

=
∫
A

f(x)
g(x)

g(x) dx =
∫
A

f(x) dx,

and the method would then produce an exact simulation from f ! Unfortu-
nately, the probabilities f(Xi)/ng(Xi) do not sum up to 1 (worse, some may
even be larger than 1) and need to be renormalized into (i = 1, . . . , n)



76 3 Monte Carlo Integration

(3.6) ωi =
1
n
{f(Xi)/g(Xi)}

/
1
n

n∑
j=1

{f(Xj)/g(Xj)} .

While the denominator is converging almost surely to one, the renormalization
induces a bias in the distribution of the resampled values. Nonetheless, for
large sample sizes, this bias is negligible, and we will thus use multinomial
resampling (or an improved version; see Exercises 3.6 and 3.12) to approximate
samples generated from f .

Exercise 3.6 Given an importance sample (Xi, f(Xi)/g(Xi)), show that if ωi
has a Poisson distribution ωi ∼ P(f(Xi)/g(Xi)), the estimator

1
n

n∑
i=1

ωih(xi)

is unbiased. Deduce that the sample derived by this sampling mechanism is
marginally distributed from f .

The sole difficulty with the solution proposed in Exercise 3.6 is that the sam-
ples thus produced have a random size due to the random replications of each
value in the weighted sample, ranging from 0 to ∞. While the setting where
either f or g is missing a normalizing constant can be handled as well by
replacing f/g by αf/g, the impact on the final sample size is even harder to
fathom (see Exercises 3.10 and 3.12).

The use of the renormalized weights in the importance sampling estimator
produces the self-normalized importance sampling estimator

(3.7)
n∑
i=1

h(Xi) f(Xi)/g(Xi)
/ n∑

j=1

{f(Xj)/g(Xj)} ,

which can also be used in situations when either f or g are missing a nor-
malizing constant. The denominator of (3.6) is then estimating the missing
constant(s) as well. (This is for instance the case in Example 3.6: The missing
normalizing constant of the prior is estimated by mean(apply(y,1,h)/den)
in the code above.)

� The importance weights only provide a relative assessment of the ade-
quacy of the simulated sample to the target density in that they indicate
how much more likely Xi is to be simulated from f compared with Xj ,
but they should not be overinterpreted. For instance, if Xi has a self-
normalized weight that is close to 1, it does not mean that this value is
very likely to be generated from f but simply that it is much more likely
than the other simulated values! Even when the fit between f and g is very
poor, this occurrence is bound to happen. Therefore, more trustworthy
indicators must be used to judge the adequacy of g against f .



3.3 Importance sampling 77

Example 3.7. (Continuation of Example 3.6) The validity of the approx-
imation (3.5) of the marginal likelihood, (i.e., the convergence of the importance
sampling solution) can be assessed by graphical means as follows:

> par(mfrow=c(2,2),mar=c(4,4,2,1))
> weit=(apply(y,1,f)/den)/mean(apply(y,1,h)/den)
> image(aa,bb,post,xlab=expression(alpha),
+ ylab=expression(beta))
> points(y[sample(1:length(weit),10^3,rep=T,pro=weit),],
+ cex=.6,pch=19)
> boxplot(weit,ylab="importance weight")
> plot(cumsum(weit)/(1:length(weit)),type="l",
+ xlab="simulations", ylab="marginal likelihood")
> boot=matrix(0,ncol=length(weit),nrow=100)
> for (t in 1:100)
+ boot[t,]=cumsum(sample(weit))/(1:length(weit))
> uppa=apply(boot,2,quantile,.95)
> lowa=apply(boot,2,quantile,.05)
> polygon(c(1:length(weit),length(weit):1),c(uppa,rev(lowa)),
+ col="gold")
> lines(cumsum(weit)/(1:length(weit)),lwd=2)
> plot(cumsum(weit)^2/cumsum(weit^2),type="l",
+ xlab="simulations", ylab="Effective sample size",lwd=2)

We will not discuss in detail all those indicators, as some are explained in the
next chapter. The upper left graph in Figure 3.6 shows that the sample weighted
using the importance weight π(αi, βi|x)/g(αi, βi) produces a fair rendering of a
sample from π(α, β|x). The resampled points do not degenerate in a few points
but instead cover, with high density, the correct range for the target distribution
(compare it with the right-hand side of Figure 3.5). The upper right graph gives
a representation of the spread of the importance weights. While there exist simu-
lations with much higher weights than the others, the spread of the weight is not
so extreme as to signify a degeneracy of the method. For instance, the highest
reweighted point only represents 1% of the whole sample. The lower left graph
represents the convergence of the estimator m̂(x) as n increases. The colored
band surrounding the sequence is a bootstrap rendering (Section 1.5) of the vari-
ability of this estimator that mimics the confidence band represented in Figure
3.3 at a low cost. The lower right curve is representing the efficiency loss in using
importance sampling by the effective sampling size (see Section 4.4),{

n∑
i=1

π(αi, βi|x)/g(αi, βi)

}2/ n∑
i=1

{π(αi, βi|x)/g(αi, βi)}2 ,

which should be equal to n, if the (αi, βi)’s are generated from the posterior. The
current graph shows that the sample produced has an efficiency of about 6%. We
will further consider this indicator in Section 4.2. J



78 3 Monte Carlo Integration

Fig. 3.6. (upper left) Superposition of 103 resampled points over the posterior dis-
tribution π(α, β|x) on the parameters of a B(α, β) distribution for x = 0.6. (upper
right) Boxplot of the importance weights. (upper right) Convergence of the approx-
imation m̂(x) and bootstrap rendering of its variability. (upper right) Evolution of
the effective sample size.

3.3.3 Selection of the importance function

The versatility of the importance sampling technique is high, but the down-
side of this versatility is that a poor choice of the importance function g may
produce very poor outcomes. While the optimal choice of g is more of a theo-
retical exercise (see Rubinstein, 1981, or Robert and Casella, 2004, Theorem
3.12) than anything useful, an issue of primary relevance is to consider the
variance of the resulting estimator (3.3) when judging the adequacy of the
corresponding importance function g.



3.3 Importance sampling 79

Indeed, while (3.4) does converge almost surely to (3.1), given that the
expectation (3.1) exists, the variance of this estimator is finite only when the
expectation

Eg
[
h2(X)

f2(X)
g2(X)

]
= Ef

[
h2(X)

f(X)
g(X)

]
=
∫
X
h2(x)

f2(x)
g(x)

dx <∞

is finite. While not exactly prohibiting importance functions with tails lighter
than those of f that lead to unbounded ratios f/g, this condition stresses that
those functions are much more likely to lead to infinite variance estimators.

Before discussing this issue in more detail, let us consider a simple example
to illustrate the disastrous impact of an infinite variance estimator.

Example 3.8. A simple setting where infinite variance occurs is when using a
N (0, 1) normal importance function aimed at a Cauchy C(0, 1) target. The ratio
f(x)/g(x) ∝ exp(x2/2)/(1 + x2) is then explosive in that even moderately high
values of x get very large importance weights. If you run the code

> x=rnorm(10^6)
> wein=dcauchy(x)/dnorm(x)
> boxplot(wein/sum(wein))
> plot(cumsum(wein*(x>2)*(x<6))/cumsum(wein),type="l")
> abline(a=pcauchy(6)-pcauchy(2),b=0,col="sienna")

a few times, you should see graphs like the one in Figure 3.7 occurring, namely
patterns with huge jumps in the cumulated average, even with a large number of
terms in the average. The jumps happen at values of the simulations for which
exp(x2/2)/(1 + x2) is large, which means when x is large. The reason for this
phenomenon is that since those values are rare under the normal importance dis-
tribution (meaning rarer than under the Cauchy target), they need to compensate
for their rarity by taking high weights. For instance, in Figure 3.7, the major jump
is due to a value of x = 5.49 associated with a normalized weight of ωi = 0.094.
It means that this single point has a weight of about 10% in a sample of a million
points! Obviously, it is impossible to trust the outcome of this simulation since
the sample size is then irrelevant (i.e., most simulated values have a negligible
weight). J

When the ratio f/g is unbounded, the importance weights f(xj)/g(xj)
often vary widely, giving too much importance to a few values xj and thus
degrading the efficiency of the estimator (3.4). As in the example above, it
may happen that the estimate abruptly changes from one iteration to the
next one, even after many iterations, due to a single simulation. Conversely,
importance distributions g with thicker tails than f ensure that the behavior
of the ratio f/g is not the cause of the divergence of Ef [h2(X)f(X)/g(X)].



80 3 Monte Carlo Integration

Fig. 3.7. Evolution of the importance sampling estimator of the probability P (2 ≤
Z ≤ 6) against iteration indices, when Z is distributed from a Cauchy distribution
and the importance function is normal. The straight line is the exact value, 0.095.

Using thicker-tailed importance sampling proposal distributions is almost
a “must” when considering the approximation of functions h such that (3.1)
exists but Ef [h2(X)] does not. In such cases, using regular Monte Carlo is not
possible, since the empirical average of the h(Xi)’s then has no variance.

Exercise 3.7 When f is a Tν distribution, show that the variance of the im-
portance sampling estimator associated with an importance function g and the
integrand h(x) =

√
x/(1− x) is infinite for all g’s such that g(1) <∞. Discuss

a sufficient condition on g for the variance to be finite. (Hint: See Example 3.9.)

� The self-normalized estimator (3.7) requires the same condition as in
the nonnormalized case for the variance to be finite. But, as detailed in
Chapter 4, the expression of the variance is not available in closed form
and needs to be approximated by Monte Carlo methods.

As a generic recommendation, at this stage we thus suggest looking for
distributions g for which |h|f/g is almost constant or at least enjoys a con-



3.3 Importance sampling 81

trolled tail behavior, since this is more likely to produce estimators with a
finite variance.

A basic requirement for functions h with restricted supports as in Example
3.5 is that g adopt the same support as h unless this is prevented by the
complexity of h. Obviously, this requires fitting a new importance function
for each integrand h to be considered, but this is the price to pay to achieve
(much) more efficiency, as shown by Example 3.5.

Given that importance sampling primarily applies in settings where f is
not easy to study, this constraint on the tails of f is often not easy to imple-
ment, especially when the dimensionality is high. A generic solution nonethe-
less exists based on the artificial incorporation of a fat tail component in the
importance function g. This solution is called defensive sampling by Hester-
berg (1995) and can be achieved by substituting a mixture density for the
density g,

(3.8) ρg(x) + (1− ρ)`(x), 0 < ρ < 1 ,

where ρ is close to 1 and the density ` is chosen for its heavy tails (for instance,
a Cauchy or a Pareto distribution), not necessarily in conjunction with the
problem at hand.

Assuming g is provided by the setting, choosing the heavy-tailed function
` is potentially delicate. In the special case of Bayesian inference, when the
target distribution f is the posterior distribution, it is, however, natural to
choose the prior if proper. Indeed, this function has heavier tails than f by
construction and is usually a standard distribution that is easy to simulate.
Using the prior as the main importance function g would not make sense
because of the waste induced (assuming the data are informative). But using
it as a stabilizing factor does make sense.

Exercise 3.8 (Smith and Gelfand, 1992) Show that when evaluating an integral
based on a posterior distribution

π(θ|x) ∝ π(θ)`(θ|x),

where π is the prior distribution and ` the likelihood function, the prior distribution
can always be used as an instrumental distribution.

a. Show that the variance of the weight is finite when the likelihood is bounded.
b. Compare the previous choice with choosing `(θ|x) as the instrumental distri-

bution when the likelihood is proportional to a density. (Hint: Consider the
case of exponential families.)

c. Discuss the drawbacks of this (these) choice(s) in specific settings.
d. Show that a mixture between both instrumental distributions can ease some

of the drawbacks.



82 3 Monte Carlo Integration

From an operational point of view, generating from (3.8) means that the
observations are generated with probability ρ from g and with probability
1− ρ from `, using a code like

> mix=function(n=1,p=0.5){
+ m=rbinom(1,size,pro=p)
+ c(simg(m),siml(n-m))}

if simg and siml denote generators from g and `, respectively. We stress that
the fact that some points are generated from g and others from ` does not
impact the importance weight in that it is equal to f(x)/{ρg(x)+(1−ρ)`(x)}
for all generated values.

By construction, the importance sampling estimator integrates out the
uniform variable used to decide between g and `. Conditioning on this uniform
variable would both induce more variability and destroy the purpose of using a
mixture by dividing once again by g(x) in the importance weight. (We discuss
in detail such a marginalization perspective in the next chapter, in Section
4.6, where uniform variables involved in the simulation are integrated out in
the estimator.)

Note that the selection of a random number of simulations from g and `
is in fine unnecessary, however, since generating exactly ρn xi’s from g and
(1 − ρ)n yi’s from ` produces an unbiased estimator (under the assumption
that ρn is an integer) in the sense that the importance sampling estimator

1
n

ρn∑
i=1

h(xi)
f(xi)

ρg(xi) + (1− ρ)`(xi)
+

1
n

(1−ρ)n∑
i=1

h(yi)
f(yi)

ρg(yi) + (1− ρ)`(yi)

has a global (if not termwise) expectation equal to Ef [h(X)] (see Owen and
Zhou, 2000, for more details). Thus, simulating a fixed number of points from
each distribution is both valid and interesting in that it completely eliminates
the variability due to the binomial sampling above.

Example 3.9. As indicated in Exercise 3.7, the computation of the integral

(3.9)
∫ ∞

1

√
x

x− 1
t2(x) dx =

∫ ∞
1

√
x

x− 1
Γ (3/2)/

√
2π

(1 + x2/2)3/2
dx

is delicate because the function h(x) =
√

1/(x− 1) is not square-integrable
and therefore using simulations from the T2 distribution will produce an infinite
variance for the Monte Carlo estimator of the integral.

This feature means that a mixture of the T2 density with a well-behaved ` is
required. To achieve integrability of h2(x)f(x)/`(x) calls for ` to be divergent
in x = 1 and for ` to decrease faster than x5 when x goes to infinity. Those
boundary conditions suggest that



3.3 Importance sampling 83

`(x) ∝ 1√
x− 1

1
x3/2

Ix>1

(which is defined up to a constant) is an acceptable density. To characterize this
density, you can check that∫ y

1

dx√
x− 1x3/2

=
∫ y−1

0

dw√
w(w + 1)3/2

=
∫ √y−1

0

2dω

(ω2 + 1)3/2

=
∫ √2(y−1)

0

2dt

(1 + t2/2)3/2
.

This implies that `(x) corresponds to the density of (1 + T 2/2) when T ∼ T3,
namely

`(x) =
√

2Γ (3/2)/
√

2π√
x− 1x3/2

I(1,∞)(x) .

(You can verify that this is the correct normalizing constant by running integrate.)
The comparison of defensive sampling with the original importance sampler

thus consists in adding a small sample from ` to the original sample from g = f :

> sam1=rt(.95*10^4,df=2)
> sam2=1+.5*rt(.05*10^4,df=2)^2
> sam=sample(c(sam1,sam2),.95*10^4)
> weit=dt(sam,df=2)/(0.95*dt(sam,df=2)+.05*(sam>0)*
+ dt(sqrt(2*abs(sam-1)),df=2)*sqrt(2)/sqrt(abs(sam-1)))
> plot(cumsum(h(sam1))/(1:length(sam1)),ty="l")
> lines(cumsum(weit*h(sam))/1:length(sam1),col="blue")

Note that simulations that are smaller than 1 get a weight equal to 1/.95 in the
defensive version since `(x) = 0 for x ≤ 1. As in Example 3.8 and Figure 3.7, the
original sample may exhibit important jumps in the cumulated average that are
warnings of infinite variance problems. The defensive sampling solution produces
a much more stable evaluation of the integral. In alternative simulations, both
convergence graphs may also be quite similar if no simulation is close enough to
1 to induce a large value of 1/

√
x− 1. In Figure 3.8, we selected one occurrence

of discrepancy between both samples where defensive sampling brings a clear
element of stabilization. J

The example above clearly illustrates the impact of defensive sampling
when the heavy-tailed component of the mixture is somehow related to the
problem at hand. Generic choices of ` often lead to less efficient solutions,
even when they ensure a finite variance for the Monte Carlo estimator.

Example 3.10. This example considers a probit model from a Bayesian point
of view. We recall that the probit model is a particular case of a generalized linear



84 3 Monte Carlo Integration

Fig. 3.8. Convergence of two estimators of the integral (3.9) of Example 3.9 based
on a sample from T2 (dark line) and a defensive version (grey line).

model where the observables y are binary variables, taking values 0 and 1, and
the covariates are vectors x ∈ Rp such that

Pr(y = 1|x) = 1− Pr(y = 0|x) = Φ(xTβ) , β ∈ Rp .

Data for this model can easily be simulated, but we use instead an R dataset called
Pima.tr that is available in the library MASS. This dataset surveys 200 Pima Indian
women in terms of presence or absence of diabetes, Pima.tr$type (this is the
binary variable y to explain) and various physiological covariates. For illustration
purposes, we only consider the body mass index covariate, Pima.tr$bmi, with
an intercept.

A standard GLM estimation of the model is provided by

> glm(type∼bmi,data=Pima.tr,family=binomial(link="probit"))

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.54303 0.54211 -4.691 2.72e-06 ***
bmi 0.06479 0.01615 4.011 6.05e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

which indicates that the body mass index covariate has a significant impact on
the possible presence of diabetes.



3.3 Importance sampling 85

From a Bayesian perspective, we introduce a vague prior on β = (β1, β2) that
is a normal N (0, 100) distribution. The posterior distribution on β is then the
product of this essentially flat prior by the likelihood, which can be defined as

like=function(beda){
mia=mean(Pima.tr$bmi)
prod(pnorm(beda[1]+(Pima.tr$bm[Pima.tr$t=="Yes"]-

mia)*beda[2]))*
prod(pnorm(-beda[1]-(Pima.tr$bm[Pima.tr$t=="No"]

-mia)*beda[2]))/exp(sum(beda^2)/200)
}

Experimenting with the image function and this likelihood indicates that the
central part of the likelihood is located near the maximum likelihood estimator
(MLE) with a range of −.6/−.3 for the intercept β1 and a range of 0.04/0.09
for β2. Using a normal proposal centered at the MLE with a diagonal covariance
matrix corresponding to the estimate provided by glm is a natural choice for g,
even though this does not guarantee a finite variance for all purposes. However,
implementing this idea with

> sim=cbind(rnorm(10^3,mean=-.4,sd=.04),
+ rnorm(10^3,mean=.065,sd=.005))
> weit=apply(sim,1,post)/(dnorm(sim[,1],mean=-.4,sd=.04)*
+ dnorm(sim[,2],mean=.065,sd=.005))

shows that the importance weights are rather uneven, if not degenerate (you can
check using boxplot(weit) for instance). A representation of 104 resampled
points based on those weights in Figure 3.9 confirms this pattern.

In order to evaluate the (low) impact of a defensive sampling implementation,
we also create an importance sample that includes simulations from the prior with
probability .05 by modifying the above into

> sim=rbind(sim[1:(.95*10^3),],cbind(rnorm(.05*10^3,sd=10),
+ rnorm(.05*10^3,sd=10)))
> weit=apply(sim,1,post)/(.95*dnorm(sim[,1],m=-.4,sd=.081)*
+ dnorm(sim[,2],m=0.065,sd=.01)+.05*dnorm(sim[,1],sd=10)*
+ dnorm(sim[,2],sd=10))

The difference in efficiency is not visible, though. When use the effective sample
size criterion (defined in Section 4.4), the difference on 103 simulations is an
effective sample size of 302 for the normal sample versus an effective sample size
of 283 for the defensive one. The estimates of β produced by both methods are
(−0.452, .0653) and (−0.452, .0652), respectively. (Note the proximity with the
MLE if we incorporate the mean of Pima.tr$bmi.) The reason for this strong
similarity is that the additional term in the denominator due to the inclusion of
the prior density is mostly zero. J



86 3 Monte Carlo Integration

Fig. 3.9. Posterior distribution of the parameter (β1, β2) for the regression of
diabetes on body mass index in the Pima.tr dataset with resampled values from a
normal proposal superimposed.

3.4 Additional exercises

Exercise 3.9 For the same estimator δ(x) as in Exercise 3.1:

a. Build an Accept–Reject algorithm based on a Cauchy candidate to generate a sample
from the posterior distribution and then deduce the estimator.

b. Design a computer experiment to compare Monte Carlo errors when using (i) the
same random variables θi in the numerator and denominator or (ii) different random
variables.

Exercise 3.10 Consider the same question as in Exercise 3.6 when

ωi = bf(Xi)/g(Xi)c+ δi, with δi ∼ Bin{1, f(Xi)/g(Xi)− bf(Xi)/g(Xi)c}

and bxc denoting the integer part of x. Show that there also exists an unbiased estimator
based on the replacement of f(Xi)/g(Xi) with αf(Xi)/g(Xi) for any α > 0.

Exercise 3.11 Referring to Example 3.5:

a. Show that to simulate Y ∼ Exp+(a, 1), an exponential distribution left truncated
at a, we can simulate X ∼ Exp(1) and take Y = a+X.

b. Use this method to calculate the probability that a χ2
3 random variable is greater

than 25 and that a t5 random variable is greater than 50.



3.4 Additional exercises 87

c. Explore the gain in efficiency from this method. Take a = 4.5 in part (a) and run an
experiment to determine how many random variables would be needed to calculate
P (Z > 4.5) to the same accuracy obtained from using 100 random variables in an
importance sampler.

Exercise 3.12 Show that if

ωi ∼

(
Bin(1, f(Xi)/g(Xi)) if f(Xi)/g(Xi) < 1 ,

Geo(g(Xi)/f(Xi)) otherwise ,

the estimator 1
n

Pn
i=1 ωih(xi) is also unbiased.

Exercise 3.13 (Ó Ruanaidh and Fitzgerald, 1996) For simulating random variables
from the density f(x) ∝ exp{−x2√x}[sin(x)]2, 0 < x < ∞, compare the following
choices of instrumental densities on R:

g1(x) =
1

2
e−|x|, g2(x) =

1

2π

1

1 + x2/4
, g3(x) =

1√
2π
e−x

2/2 .

For each of the instrumental densities, estimate the number M of simulations needed to
obtain three digits of accuracy in estimating Ef [X]. Deduce from the acceptance rate
an estimator of the normalizing constant of f for each of the instrumental densities.

Exercise 3.14 When a cdf F (x) has a tail power of α (i.e., when 1 − F (x) ∝ x−α

for x large enough):

a. Show that E[X|X > K] = Kα/(α− 1) for K large enough. Discuss the existence
of this expectation as a function of α.

b. Derive an estimate of E[X|X > K] based on a sample from F .
c. Evaluate the stability of this estimate as a function of K when F is a Pareto P(2),
P(3), P(4) distribution (see Exercise 2.13).

Exercise 3.15 (Gelfand and Dey, 1994) Consider a density function f(x|θ) and a
prior distribution π(θ) such that the marginal m(x) =

R
Θ
f(x|θ)π(θ)dθ is finite a.e.

The marginal density is of use in the comparison of models since it appears in the Bayes
factor (see Robert, 2001).

a. Give the general shape of an importance sampling approximation of m.
b. Detail this approximation when the importance function is the posterior distribution

and when the normalizing constant is unknown.
c. Show that, for a proper density τ ,

m(x)−1 =

Z
Θ

τ(θ)

f(x|θ)π(θ)
π(θ|x)dθ ,

and deduce that when the θ∗i ’s are generated from the posterior,

m̂(x) =

(
1

T

TX
t=1

τ(θ∗i )

ffi
f(x|θ∗i )π(θ∗i )

)−1

is another importance sampling estimator of m(x).

Exercise 3.16 Given a real importance sample X1, . . . , Xn with importance function
g and target density f :



88 3 Monte Carlo Integration

a. Show that the sum of the weights ωi = f(Xi)/g(Xi) is only equal to n in expecta-
tion and deduce that the weights need to be renormalized even when both densities
have known normalizing constants.

b. Assuming that the weights ωi have been renormalized to sum to one, we sample,
with replacement, n points X̃j from the Xi’s using those weights. Show that the
X̃j ’s satisfy

E

"
1

n

nX
j=1

h(X̃j)

#
= E

"
nX
i=1

ωih(Xi)

#
.

c. Deduce that if the formula above is satisfied for ωi = f(Xi)/g(Xi) instead, the
empirical distribution associated with the X̃j ’s is unbiased.

Exercise 3.17 Monte Carlo marginalization is a technique for calculating a marginal
density when simulating from a joint density. Let (Xi, Yi) ∼ fXY (x, y), independent,
and the corresponding marginal distribution fX(x) =

R
fXY (x, y)dy.

a. Let w(x) be an arbitrary density. Show that

lim
n

1

n

nX
i=1

fXY (x∗, yi)w(xi)

fXY (xi, yi)
=

Z Z
fXY (x∗, y)w(x)

fXY (x, y)
fXY (x, y)dxdy = fX(x∗) ,

which provides a Monte Carlo estimate of fX , the marginal distribution of X, when
the joint distribution is only known up to a constant.

b. Let X|Y = y ∼ G(y, 1) and Y ∼ Exp(1). Use the technique above to plot the
marginal density of X. Compare this with the exact marginal.

c. Show that choosing w(x) = fX(x) works to produce the marginal distribution and
that it is optimal in the sense of the variance of the resulting estimator.

Exercise 3.18 Given the Gumbel distribution, with density f(x) = exp{x− exp(x)}
over the real line, we are interested in comparing the variability of regular importance
sampling based on a normal importance function with the variability of the corresponding
self-normalized version of (3.7).

a. Show that the expectation of exp(X) is well-defined for the Gumbel distribution.
b. Create a matrix x of normal simulations with 100 columns using rnorm(100*10^4)

and deduce the importance weights we.
c. Deduce the regular and the self-normalized sequences of estimators of E[exp(X)]

by

> nore=apply(we*exp(x),2,cumsum)/(1:10^4)

> reno=apply(we*exp(x),2,cumsum)/apply(we,2,cumsum)

and plot the ranges of both sequences of estimates using polygon.

Exercise 3.19 (Berger et al., 1998) For a p× p positive-definite symmetric matrix Σ,
consider the distribution

π(θ) ∝ exp
`
−(θ − µ)tΣ−1(θ − µ)/2

´ffi
||θ||p−1 .

a. Show that the distribution is well-defined; that is,
R

Rp π(θ)dθ <∞.
b. Show that an importance sampling implementation based on the normal instru-

mental distribution Np(µ,Σ) is not satisfactory from both theoretical and practical
points of view.

c. Examine the alternative based on a gamma distribution G(α, β) on η = ||θ||2 and
a uniform distribution on the angles.



4

Controlling and Accelerating Convergence

Bartholomew smiled. “Just because we cannot find the link here and
now does not mean that it is not there. The evidence we have at the
moment is just not sufficient to support any firm conclusion.”

Susanna Gregory
An Unholy Alliance

Reader’s guide

In Chapter 3, the Monte Carlo method was introduced (and discussed) as a
simulation-based approach to the approximation of complex integrals. While the
principles should by now be well-understood, there is more to be said about
convergence assessment; that is, when and why to stop running simulations. We
present in this chapter the specifics of variance estimation and control for Monte
Carlo methods, as well as accelerating devices. We particularly focus in Sections
4.2 and 4.5 on the construction of confidence bands, stressing the limitations
of normal-based evaluations in Section 4.2 and developing variance estimates for
importance samplers in Section 4.3 and convergence assessment tools in Section
4.4. These are fundamental concepts, and we will see connections with similar
developments in the realm of MCMC algorithms, which are discussed in Chapters
6–8. The second part of the chapter covers various accelerating devices such as
Rao–Blackwellization in Section 4.6 and negative correlation in Section 4.7.

C.P. Robert, G. Casella, Introducing Monte Carlo Methods with R, Use R,  
DOI 10.1007/978-1-4419-1576-4_4, © Springer Science+Business Media, LLC 2010 



90 4 Controlling and Accelerating Convergence

4.1 Introduction

Chapter 3 mentioned that the Central Limit Theorem applies to Monte Carlo
estimates of the form

hn =
1
n

n∑
j=1

h(Xj) Xj ∼ f(x)

(under integrability conditions) and thus that it can be exploited for assessing
the convergence to the integral of interest,

(4.1) I =
∫
h(x)f(x) dx,

in the sense that the random variable
√
n(hn − I) is asymptotically normal.

The lower panel of Figure 3.3 associated with Example 3.3 provides a direct
illustration of the use of a normal confidence interval for this assessment.
It represents, for each fixed number of iterations, an asymptotically valid
confidence interval on the value of (4.1).

However, this approach has limitations in that the envelope built over it-
erations and represented in Figure 3.3 has no overall validity as a confidence
band. Indeed, if you repeat the Monte Carlo experiment once again, the se-
quence (hn) produced on the second run will most likely not stay within this
envelope, and if you repeat it many times, the frequency with which it will
stay within the band will not meet the nominal probability of 0.95.

The explanation for this apparent discrepancy is that the monitoring
method illustrated by the lower panel of Figure 3.3 is essentially univariate in
nature. That is, the confidence bounds placed on the estimate hk at iteration k
only depend on the values of hk and the variance estimate at time k, and they
thus ignore any correlation structure in the iterates. A valid confidence band
needs to account for the distribution of the entire sequence, in a multivariate
or even functional perspective, as discussed in Section 4.5, even though the
theoretical construction of such a global band is somehow beyond our reach.

We stress that the confidence band provided by the Central Limit Theorem
is asymptotically valid. What we are seeking is a more global assessment of
convergence for the sequence of estimators as the number of simulations varies.
This can be considered as a second-order convergence assessment, necessarily
more conservative—i.e. requiring more simulations—than the original one.
Although we do not male the link explicit here, the fixed-width batch mean
and the bootstrap methods of Jones et al. (2006) described in Section 8.4.4
also apply to the iid settings of the current chapter.



4.2 Monitoring variation 91

4.2 Monitoring Variation

First, you must realize there is a straightforward and simple solution for eval-
uating the variability of a sequence of Monte Carlo estimates, which is to run
several independent sequences in parallel. This is both easier to derive and
more widely applicable than the techniques based on asymptotic approxima-
tion, if much greedier in computing time. Unfortunately, this last characteristic
is a feature we will meet repeatedly in the book, namely that validation of
the assessment of variation is of a higher order than convergence of the es-
timator itself. Namely, error assessment requires much more computing time
than validation of the pointwise convergence (except in very special cases such
as regeneration, covered in Robert and Casella, 2004). An approximate but
cheaper version of this basic Monte Carlo estimate of the variability is to
bootstrap (see Section 1.5) the current sample, as already used in Example
3.7 (see the lower left panel of Figure 3.6).

Example 4.1. If we repeat the simulations of Example 3.3, we can produce a
matrix of converging estimators as in

> x=matrix(h(runif(200*10^4)),ncol=200)
> estint=apply(x,2,cumsum)/(1:10^4)

and thus obtain a Monte Carlo evaluation of the Monte Carlo variation by

> plot(estint[,1],ty="l",col=0,ylim=c(.8,1.2))
> y=apply(estint,1,quantile,c(.025,.975))
> polygon(c(1:10^4,10^4:1),c(y[1,],rev(y[2,])),col="wheat")

At any iteration, the band represented in Figure 4.1 contains 95% of the estimation
sequences. Obviously, if we pick any of the convergence sequences thus produced,
the CLT confidence band will fail to correspond to this overall band since, as in
Figure 3.3 (lower), it will reproduce the variations of the original sequence. If we
now consider the bootstrapped version of the overall confidence band, we start
by producing bootstrapped replicas of the original sequence x[,1] using

> boot=matrix(sample(x[,1],200*10^4,rep=T),nrow=10^4,ncol=200)

and then reproduce the confidence band construction by

> bootit=apply(boot,2,cumsum)/(1:10^4)
> bootup=apply(bootit,1,quantile,.975)
> bootdo=apply(bootit,1,quantile,.025)

As shown in Figure 4.1, the band thus produced has a behavior that is quite
similar to that of the band resulting from iid replications of the Monte Carlo
sequence, except for a drift in its location. The gain in using the bootstrap version
is obviously that only a single sequence needs to be produced. J



92 4 Controlling and Accelerating Convergence

Fig. 4.1. Convergence band of 200 parallel sequences of Monte Carlo estimators
of the integral of h(x) = [cos(50x) + sin(20x)]2 (lower) and bootstrap version based
on a single sequence (upper), with its lower bound represented by a dotted line.

In Example 4.1, the appeal of using a bootstrapped confidence band is
somehow limited because the computing cost of producing a bootstrap se-
quence is approximately the same as the computing cost of producing a new
sequence. In more complex settings, however, producing a new sequence may
prove much more costly than resampling from the original sequence.

This simple example thus warns us against the blind use of a normal ap-
proximation when repeatedly invoked over iterations with dependent estima-
tors simply because the normal confidence approximation only has a pointwise
validation. Using a band of estimators in parallel is obviously more costly, but
it provides the correct assessment on the variation of these estimators.

4.3 Asymptotic variance of importance sampling
estimators

The following example illustrates a basic difficulty when assessing convergence
for importance sampling.

Example 4.2. For a normal observation equal to x = 2.5 with a Cauchy prior
distribution on its mean,



4.3 Asymptotic variance of importance sampling estimators 93

X ∼ N (θ, 1), θ ∼ C(0, 1) ,

the posterior expectation of the mean θ is given by

δπ(x) =
∫ ∞
−∞

θ

1 + θ2
e−(x−θ)2/2dθ

/∫ ∞
−∞

1
1 + θ2

e−(x−θ)2/2dθ .

Therefore, an approximation of δπ(x) can be based on the simulation of iid vari-
ables θ1, · · · , θn ∼ N (x, 1) as

(4.2) δ̂πn(x) =
n∑
i=1

θi
1 + θ2i

/ n∑
i=1

1
1 + θ2i

since both the numerator and the denominator are convergent (in n). Note that
the estimator can also be interpreted as a self-normalized importance sampling
approximation with the importance function being the normal density and the
importance ratio being equal to 1/(1 + θ2). J

A difficulty associated with this example (and any other self-normalized
importance sampler) is that the estimator δ̂πn(x) is in fact a ratio of estimators
and that the variance of a ratio is not the ratio of the variances. This is a
common occurrence in Bayesian computations (see Exercises 4.1 and 4.2).

� As mentioned previously, normalizing constants are superfluous in Bayesian
inference, except in the case when several models are considered simulta-
neously in order to be compared. In those occurrences, the fundamental
quantity is the Bayes factor

ρ =
m1(x)
m2(x)

=

∫
Θ1
π1(θ1)f1(x|θ1) dθ1∫

Θ2
π (θ2)f2(x|θ2) dθ2

whose position against 1 drives the comparison (see, e.g., Robert, 2001,
Chapters 5 and 6). In this case, the posterior distributions for both models
under comparison are typically available up to a normalizing constant,

π1(θ|x) = π̃1(θ)/c1 and π2(θ|x) = π̃2(θ)/c2 ,

where only π̃1 and π̃2 are known and where c1 and c2 correspond to the
marginal likelihoods, m1(x) and m2(x) (the dependence on x is removed
for simplification purposes). The Bayes factor is therefore identical to
the ratio of those missing constants, % = c1/c2. Special computational
techniques have been devised for the approximation of Bayes factors, as
in Chen et al. (2000) (see also Exercise 4.2).

2



94 4 Controlling and Accelerating Convergence

Exercise 4.1 We assume here that both posteriors are absolutely continuous
with respect to one another (i.e., that the parameters for both models live in the
same space).

a. Show that the Bayes factor % can be approximated by

%̂ =
1
n

n∑
i=1

π̃1(θi)
π̃2(θi)

, θ1, . . . , θn ∼ π2.

b. Show that the identity∫
π̃1(θ)α(θ)π2(θ|x)dθ∫
π̃2(θ)α(θ)π1(θ|x)dθ

=
c1
c2

= %

holds for every function α such that both integrals are finite.

The transform ξ = log(%) is often seen as more relevant for the model
comparison (because of the χ2 scale of the log-likelihood ratio), and this log-
odds ratio can be approximated in its own right.

Exercise 4.2 Under the same assumption as in Exercise 4.1, when the priors π1

and π2 belong to the same parameterized family (that is, when πi(θ) = π(θ|λi)),
the corresponding normalizing constants are denoted by c(λi). The parameter λ
is a real number.

a. When π(λ) is an arbitrary distribution on λ with support (λ1, λ2), verify the
identity

− log
(
c(λ1)
c(λ2)

)
= E

[
U(θ, λ)
π(λ)

]
,

where

U(θ, λ) =
d

dλ
log(π̃(θ|λ))

and the expectation is computed under π(θ|λ)π(λ).
b. Deduce that ξ can be estimated with the path sampling estimator

ξ̂ =
1
n

n∑
i=1

U(θi, λi)
/
π(λi)

when the (θi, λi)’s are simulated from the joint distribution π(λ)π(θ|λ).
c. Show that the minimum variance estimator of ξ over all π(λ)’s is based on

π?(λ) ∝
√

E[U2(θ, λ)|λ] .



4.3 Asymptotic variance of importance sampling estimators 95

Consider thus a general ratio estimator

δnh =
n∑
i=1

ωi h(xi)
/ n∑

i=1

ωi,

where the xi’s are realizations of random variables Xi ∼ g(y) with g as a
candidate distribution for target f . In addition, the ωi’s are realizations of
random variables Wi such that E[Wi|Xi = x] = κf(x)/g(x), κ being an
arbitrary constant (that corresponds to the lack of normalizing constants in
f and g). We denote

Snh =
n∑
i=1

Wih(Xi) , Sn1 =
n∑
i=1

Wi .

(Note that we do not assume independence between the Xi’s as in regular
importance sampling.) Then, as shown in Liu (1996) and Robert and Casella
(2004, Chapter 4), the asymptotic variance of δnh is

var(δnh) =
1

n2κ2

{
var(Snh )− 2Ef [h] cov(Snh , S

n
1 ) + Ef [h]2 var(Sn1 )

}
.

Following Liu (1996), we can then deduce that, when considering iid Xi’s,
the self-normalized importance sampling estimator, and the right degree of
approximation, a rough approximation to its variance is

var(δnh) ≈ 1
n

varf (h(X)) {1 + varg(W )} .

� The approximation above is only valid for the normalized version of the
weights ωi, for otherwise it would depend on the missing constant κ. Its
Monte Carlo estimate is thus

(4.3)
∑n
i=1 ωi {h(xi)− δnh}

2

n
∑n
i=1 ωi

1 + n2 v̂ar(W )

/(
n∑
i=1

ωi

)2
 ,

where v̂ar denotes the standard variance estimate (as when using var).
This expression and its simplification will be further discussed in Section
4.4 when building a convergence assessment based solely on the weights.

This expression of the variance is a rather crude approximation, as can
be seen through the fact that this quantity is always larger than varf (h(X)),
which provides the variance for an iid sample with the same sample size. Since
there exist choices of g for which the variance var(δnh) is exactly equal to 0
(see Robert and Casella, 2004), this ordering cannot always hold.



96 4 Controlling and Accelerating Convergence

Example 4.3. (Continuation of Example 4.2) If we generate a normal
N (x, 1) sample for the importance sampling approximation (4.2), the variance
approximation above can be used to assess the variability of these estimates, but,
again, the asymptotic nature of the approximation must be taken into account. If
we take as reference the range of 500 parallel sequences of estimators of δπ(x),

> norma=matrix(rnorm(500*10^4),ncol=500)+2.5
> weit=1/(1+norma^2)
> esti=apply(norma*weit,2,cumsum)/apply(weit,2,cumsum)
> plot(esti[,1],type="l",col="white",ylim=c(1.7,1.9))
> band=apply(esti,1,quantile,c(.025,.975))
> polygon(c(1:10^4,10^4:1),c(band[1,],rev(band[2,])))

the juxtaposition of the band produced on a single sequence shows an underesti-
mation of the variation if the usual variance estimate is used

> vare=cumsum(weit[,1]*norma[,1]^2)/
+ cumsum(weit[,1])-esti[,1]^2
> lines(esti[,1]+2*sqrt(vare/(1:10^4)))
> lines(esti[,1]-2*sqrt(vare/(1:10^4)))

and an equivalent if drifted range for the weight correction

> varw=cumsum(weit[,1]^2)*(1:10^4)/cumsum(weit[,1])^2
> lines(esti[,1]+2*sqrt(varw*vare/(1:10^4)),col="sienna")
> lines(esti[,1]-2*sqrt(varw*vare/(1:10^4)),col="sienna")

since the respective ranges are 0.0559 for the former (Monte Carlo) and 0.0539
for the latter (corrected variance). Figure 4.2 compares the approximated variance
bands for x = 2.5 with the actual variation of the estimates, evaluated over the
500 parallel sequences.

Figure 4.3 reproduces this evaluation for θi’s simulated from the prior C(0, 1)
distribution and for the importance sampling estimate1

δ̃nh =
n∑
i=1

θi exp
{
−(x− θi)2/2

}/ n∑
i=1

exp
{
−(x− θi)2/2

}
.

In this case, since the corresponding functions h are bounded for both choices,
the variabilities of the estimates are quite similar, with a slight advantage to the
normal sampling. The range of the Monte Carlo evaluation is indeed 0.0594, while
the range of the asymptotic band is 0.0800. The fact that the latter is based on
a single sequence must be taken into account. Another sequence would produce
a different range, as you can (and should) easily check. Similarly, the boundary
curves appearing in both Figures 4.2 and 4.3 are produced by a single sequence
and thus should not be overinterpreted. J

1 The inversion of the roles of the N (x, 1) and C(0, 1) distributions illustrates once
more both the ambiguity of the integral representation and the opportunities
offered by importance sampling.



4.3 Asymptotic variance of importance sampling estimators 97

Fig. 4.2. Convergence of a sequence of Monte Carlo estimators for the posterior
mean in the Cauchy-normal problem when x = 2.5 and the simulations are from a
normal N (x, 1) importance function. The shaded zone represents the 95% confidence
range on the entire set of 500 parallel sequences of Monte Carlo estimators at each
iteration, the inner boundary corresponds to the normal band for the standard
variance estimate, and the outer (lighter) boundary corresponds to the normal band
for the corrected variance estimate.

In the example above, running the approximation with a Cauchy sample
leads to an interesting if minor implementation problem. Since the Cauchy
distribution has very heavy tails, some of the 500*10^4 simulations take very
large values, which then leads to weights equal to zero in the R output, even
though the normal density is formally strictly positive:

> cocha=matrix(rcauchy(500*10^4),ncol=500)
> range(cocha)
[1] -18228407 3461090
> wach=dnorm(cocha,mean=2.5)
> range(wach)
[1] 0.0000000 0.3989423

Since using values with zero weights as first simulations is impossible when
resorting to cumsum to monitor the convergence of the self-normalized impor-



98 4 Controlling and Accelerating Convergence

Fig. 4.3. Same plot as Figure 4.2 when the θi’s are simulated from the prior C(0, 1)
distribution.

tance sampling estimate, given that it produces NA due to divisions by zero,
a fix to the problem is to impose a minimum value on the weights in the
denominator in the first simulation, namely

> wachd=wach
> wachd[apply(wachd,2,cumsum)<10^(-10)]=10^(-10)

which is the solution used to produce Figure 4.3. Note that, except for this
difficulty, the behavior of the weights is quite similar in both approaches, as
can be checked via boxplot.

4.4 Effective sample size and perplexity

The representation (4.3) proposed for the approximate variance of the self-
normalized importance sampling estimator leads to an essential tool for assess-
ing the performance of importance samplers. When expanding the empirical
variance v̂ar(W ),



4.4 Effective sample size and perplexity 99

v̂ar(W ) =
1
n

n∑
i=1

ω2
i −

1
n2

(
n∑
i=1

ωi

)2

,

the coefficient 1 + v̂arg(W ) is equal to

n2
n∑
i=1

ω2
i

/(
n∑
i=1

ωi

)2

.

If we now denote the normalized weights by

ωi = ωi

/ n∑
j=1

ωj ,

we then define the effective sample size by

ESSn = 1
/ n∑

i=1

ω2
i .

Beside being useful in assessing the loss in variance due to the importance
weights, this factor gives a direct evaluation of the worth of the importance
sampler, as it is equivalent to a sample size. For a uniformly weighted sample,
ESSn is equal to n, while, for a completely degenerated sample where all
importance weights but one are zero, ESSn is equal to 1. The effective sample
size thus evaluates the size of the iid sample equivalent to the weighted sample
and allows a direct comparison of samplers.

Exercise 4.3 Show that ESSn always takes values between 1 and n.

A second (and almost equivalent) assessment is provided by the so-called
perplexity (Cappé et al., 2008), exp(Hn)/n, where

Hn = −
n∑
i=1

ωi log(ωi)

is the Shannon entropy of the normalized importance sampling weights. (This
tool is primarily used in information theory and speech recognition, see Je-
linek, 1999, but it nonetheless brings an additional feature to the effective
sample size that can be exploited in all settings.) The perplexity provides an
estimate of exp[E(f, g)], where

E(f, g) =
∫

log
{
f(x)
g(x)

}
f(x) dx

is the Kullback–Leibler divergence between the target f and the importance
function g. Therefore, the closer the perplexity is to 1, the more appropriate
the importance function.



100 4 Controlling and Accelerating Convergence

Exercise 4.4 Show that exp(Hn) always takes values between 1 and n.

Example 4.4. (Continuation of Example 4.3) If we compare the effective
sample sizes for the normal and the Cauchy simulations, the difference in efficiency
(and perplexity) is much clearer than in the comparison between Figures 4.2 and
4.3. The computation of those quantities is straightforward. For the effective
sample sizes,

> ess=apply(weit,2,cumsum)^2/apply(weit^2,2,cumsum)
> essbo=apply(ess,1,quantile,c(.025,.975))
> ech=apply(wachd,2,cumsum)^2/apply(wachd^2,2,cumsum)
> echbo=apply(ech,1,quantile,c(.025,.975))

and for the perplexities,

> sumweit=apply(weit,2,cumsum)
> plex=(apply(weit*log(weit),2,cumsum)/sumweit)-log(sumweit)
> chumweit=apply(wachd,2,cumsum)
> plech=(apply(wachd*log(wachd),2,cumsum)/chumweit)-
+ log(chumweit)
> plob=apply(exp(plex),1,quantile,c(.025,.975))
> ploch=apply(exp(plech),1,quantile,c(.025,.975))

As shown by both panels of Figure 4.4, the normal-based simulation is clearly
twice as efficient as the Cauchy-based scenario. Note the strong stability of those
indicators across sequences. J

4.5 Simultaneous monitoring

As mentioned in the introduction to this chapter, one valid method for at-
taching variances to a mean plot, and thus for building a valid Central Limit
Theorem, is to derive the bounds using a multivariate approach. A first con-
struction, based on a normal approximation, is found in Robert and Casella
(2004, Section 4.1.2).

Given an iid sequence X1, X2, . . . , Xn with mean µ = Ef (X1), we want
to produce an error bound on the sequence (X̄m)1≤m≤n, where X̄m =
(1/m)

∑m
i=1Xi. If, further, Xi ∼ N (µ, σ2), then

X̄ = (X̄1, X̄2, . . . , X̄n) ∼ Nn(1µ,Σ) ,

with

Σ = σ2


1 1

2
1
3

1
4

1
5 · · ·

1
n

1
2

1
2

1
3

1
4

1
5 · · ·

1
n

1
3

1
3

1
3

1
4

1
5 · · ·

1
n

...
...

...
...

... · · ·
...

1
n

1
n

1
n

1
n

1
n · · ·

1
n

 .



4.5 Simultaneous monitoring 101

Fig. 4.4. (left) Evolution of the effective sample sizes (ESS) for the normal (grey)
and the Cauchy (light grey) importance weights; (right) evolution of the perplexities
with the same color codes. (In both graphs, the normal importance sampler is above
the Cauchy importance sampler.)

Exercise 4.5 Establish that

cov(X̄k, X̄k′) = σ2
/

max{k, k′}.

Since

(4.4) (X̄− 1µ)′Σ−1(X̄− 1µ) ∼

{
χ2
n if σ2 is known,
nFn,ν if σ2 is unknown,

we have a simultaneous variation region for the entire vector X̄ of the form{
x̄ : (x̄− 1µ)′Σ−1(x̄− 1µ) ≤ dn

}
,

where dn is the appropriate χ2
n or Fn,ν quantile (and Σ−1 is based on an

estimate σ̂2 ∼ χ2
ν of σ2, independent of X̄ in the latter case).

Furthermore, the inverse of Σ happens to be computable in closed form
(Exercise 4.6), since it is given by



102 4 Controlling and Accelerating Convergence

(4.5) Σ−1 =
1
σ2



2 −2 0 0 0 · · · 0
−2 8 −6 0 0 · · · 0
0 −6 18 −12 0 · · · 0
0 0 −12 32 −20 · · · 0
...

...
...

...
... · · · −n(n− 1)

0 0 0 0 · · · −n(n− 1) n2


.

Exercise 4.6 Establish a recursion relation for calculating the elements aij of
Σ−1:

aij =


2i2 if i = j < n,

n2 if i = j = n,

−ij if |i− j| = 1,
0 otherwise.

Obviously, this region cannot be used per se since µ is unknown. A possible
substitute is the ellipsoid centered at the final estimate x̄n,{

ȳ : (ȳ − 1ȳn)′Σ−1(ȳ − 1ȳn) ≤ dn
}
,

but this induces a bias that should be accounted for in the bound dn. Further-
more, the computation and representation of the confidence band induced by
this condition are far from immediate. In fact, the most obvious implementa-
tions involve simulations of the same order of magnitude as the rudimentary
replications proposed in Section 4.2!

Exercise 4.7 Show that the bias due to the replacement of µ by x̄n is of the
order of a χ2

n term, which can thus be corrected directly in dn.

This procedure is, however, easy to modify into a straightforward solution
with a sound theoretical2 foundation that can be found in Kendall et al.
(2007). Instead of relying on the normal approximation above. those authors
relate the sequence of the Xi’s to the step function δn defined by

{δn(t)}t∈[0,1] =

 1
bntc

bntc∑
i=1

Xi


t∈[0,1]

where bxc denotes the integer part of x, that is, the largest integer not ex-
ceeding x. By convention, δn(t) = 0 for t < 1/n. There exists a functional
2 The remainder of this section requires the use of the Brownian motion. While

the final outcome does not require any advanced knowledge about the Brownian
motion, for those readers unfamiliar with this notion, the section can possibly be
skipped since it has no bearing on the remainder of the book.



4.5 Simultaneous monitoring 103

extension of the CLT called Donsker’s Theorem, which states that both the
random functional  1√

n

bntc∑
i=1

(
Xi − µ
σ

)
t∈[0,1]

and its approximation  σ̂−1
n√
n

bntc∑
i=1

{Xi − µ}


t∈[0,1]

converge in distribution (when n goes to infinity) to a standard Brownian
motion on [0, 1], denoted {W (t)}t∈[0,1] (Feller, 1971). Exploiting a confidence
band u? on the Brownian motion {W (t)}t∈[0,1] derived in the same paper,
Kendall et al. (2007) then showed that the functional band{

ω ; ω(t) ∈
[
µ− u?(t)

√
nσ̂2

n

/
bntc, µ+ u?(t)

√
nσ̂2

n

/
bntc

]
, t ∈ [0, 1]

}
contains (δn(t))t∈[0,1] with asymptotic probability 1−α. While the exact form
of u? is slightly too complex to describe here, a conservative approximation
at the confidence level 0.95 is provided by

u?(t) = a+ b
√
t with a = 0.3 and b = 2.35 ,

as illustrated by Figure 4.5.

Exercise 4.8 Based on the three fundamental properties of a Brownian motion
{W (t)}t∈[0,1],

i. W (0) = 0,
ii. W (t1)−W (t2) ∼ N (0, |t1 − t2|) for 0 ≤ t1, t2 ≤ 1,
iii. W (t1)−W (t2) is independent from W (t2) for t1 > t2,

construct an algorithm that simulates the Brownian motion at a given discretiza-
tion level δ, {W (kδ)}k=0,...,n, and verify by a Monte Carlo experiment that the
bound above contains the Brownian motion with probability 95%.

While this construction is appealing in controlled situations when µ is
known or estimated from an independent source (see Section 4.7.3), the main
item of interest from a Monte Carlo point of view is rather a confidence
region that should contain a (random) Monte Carlo sequence with a given
(asymptotic) probability, given the current sequence X1, . . . , Xn. Formally,
given an iid sample Y1, . . . , Yn from the same target f that is independent of
the observed X1, . . . , Xn, associated with the estimators δN (1) (of µ) and σ̂n
(of σ), we are interested in the variations of the random function



104 4 Controlling and Accelerating Convergence

Fig. 4.5. 95% confidence bound on the Brownian motion on [0, 1] and representa-
tion of one realization of a Brownian motion.

(
σ̂−1
n√
n

bntc∑
i=1

{Yi − δn(1)}
)
t∈[0,1]

,

which can be decomposed as

σ̂−1
n√
n

bntc∑
i=1

{Yi − δn(1)} =
σ̂−1
n√
n

bntc∑
i=1

{Yi − µ} −
bntc σ̂−1

n√
n
{δn(1)− µ} .

Therefore, based on Donsker’s version of the CLT (Kallenberg, 2002, p. 275),
the scaled cumulative estimates converge in distribution to a continuous ran-
dom process that is the sum of a standard Brownian motion {W (t)}t∈[0,1]

and a random linear function (tU)t∈[0,1], U being a standard normal ran-
dom variable independent of {W (t)}t∈[0,1]. For this alternative stochastic pro-
cess, the confidence band is determined by a function that is approximately
u?(t) = a+b

√
t, with a = 0.1 and b = 3.15 (Kendall et al., 2007). This implies

that the natural confidence band associated with a sequence X1, . . . , Xn is
given by

δn(1)± σ̂n
√
n

bntc
u?(t) , t ∈ [0, 1] .



4.5 Simultaneous monitoring 105

As is obvious from the previous formula, the confidence band derived from
the Brownian approximation solely depends on the estimates of the expecta-
tion δn(1) and its variance σ̂2

n at the end of the simulation run. Thus, while
the formal validity of the Brownian approximation is certain, when compared
with the original CLT approximation in Section 4.2, it should not be overin-
terpreted! In particular, computing the confidence bands associated with two
different simulation runs will produce different and possibly conflicting ranges.
Note also that the confidence band needs to be recomputed when more sim-
ulations are added as for instance when you realize the range is too large for
your estimation purposes (which is the primary reason for using those bands!).
Given that the augmented confidence band corresponds to longer sentences,
it should be inflated when compared with the current version.

Example 4.5. (Continuation of Example 4.4) If we want to compare the
confidence bands produced by the two importance sampling approximations based
on the normal and the Cauchy samples, we simply need to produce a normal and
a Cauchy sequence, respectively. Given that precision or variation is what matters,
we can evaluate both the numerator and denominator separately. If we consider
for instance

I1 =
∫

1
π

θ

1 + θ2
1√
2π

exp
{
−1

2
(θ − x)2

}
dθ ,

the band for the normal simulation is obtained by

> Nsim=10^4
> norma=rnorm(Nsim)+2.5
> hnorm=norma*dcauchy(norma)
> munorm=mean(hnorm)
> sdnorm=sd(hnorm)
> f=function(x) (cumsum(hnorm))[round(Nsim*x)]/round(x*Nsim)
> curve(munorm+(.1+3.15*sqrt(x))*sdnorm*10^2/round(x*Nsim),
+ lwd=2,from=0,to=1)
> curve(munorm-((.1+3.15*sqrt(x))*sdnorm*10^2/round(x*Nsim)),
+ lwd=2,from=0,to=1,add=T)
> curve(f,lwd=2,from=0.001,to=1,col="steelblue",add=T)

while the band for the Cauchy simulation is produced the same way, replacing the
first two lines by

> norma=rcauchy(Nsim)
> hnorm=norma*dnorm(norma-2.5)

Since the variance estimate is much larger for the Cauchy sample, the correspond-
ing confidence is much larger too. Figure 4.6 represents the confidence bands for
both I1 and

I2 =
∫

1
π

1
1 + θ2

1√
2π

exp
{
−1

2
(θ − x)2

}
dθ ,



106 4 Controlling and Accelerating Convergence

that are associated with a normal and a Cauchy sequence, respectively. In both
cases, the confidence allocated to the normal run is higher. J

Fig. 4.6. 95% confidence bounds on the importance sampling estimates of I1 (left)
and I2 (right) for a single normal (full) and a single Cauchy (dotted) sequence of 104

simulations superimposed. The Cauchy confidence bands are larger in both cases.

The construction of the confidence band above obviously applies to any
transform h(X) that is square-integrable. It also operates in importance sam-
pling settings (i.e., when the Yi’s are generated from an importance density q
and h(Yi) is replaced with H(Yi) = h(Yi)fπ(Yi)/q(Yi)) as well as in Markov
chain Monte Carlo (MCMC) setups.



4.6 Rao–Blackwellization and deconditioning 107

4.6 Rao–Blackwellization and deconditioning

A famous theorem of mathematical statistics, the Rao–Blackwell Theorem,
states that replacing an estimator with a conditional expectation improves
upon its variance,

var(E[δ(X)|Y ]) ≤ var(δ(X)) ,

if Y is a sufficient statistic (Lehmann and Casella, 1998). This theorem also has
bearings on computational methodology since it gives a generic approach to
reducing the variance of a Monte Carlo estimator, which is to use conditioning.
This technique is sometimes called Rao–Blackwellization (Gelfand and Smith,
1990, Liu et al., 1994, Casella and Robert, 1996), although the conditioning is
not always in terms of sufficient statistics in Monte Carlo settings. It basically
states that using conditional expectations—that can be computed—in Monte
Carlo expressions brings an improvement in the variability of those Monte
Carlo estimators while it does not perturb their inherent unbiasedness.

Rao–Blackwellization means taking advantage of the fact that, if δ(X)
is an estimator of I = Ef [h(X)] and if X can be simulated from the joint
distribution f?(x, y) satisfying∫

f?(x, y) dy = f(x),

then the new estimator δ?(Y ) = Ef [δ(X)|Y ] dominates δ in terms of variance,
while the bias is the same. Obviously, this result is only useful in settings where
δ?(Y ) can be explicitly computed.

Example 4.6. Consider computing the expectation of h(x) = exp(−x2) when
X ∼ T (ν, µ, σ2). The standard Student’s t distribution has been constructed by
William Gosset (see, e.g., Stigler, 1986) as the distribution of the ratio of a normal
variable by a normalized χ (not χ2!) variable; i.e., if X ∼ T (ν, µ, σ2), then

X = µ+ σ
ε√
ξ/ν

, with ε ∼ N (0, 1) , ξ ∼ χ2
ν .

Therefore, even though the t distribution can be simulated directly by the func-
tion rt(), it allows for the marginal representation above in terms of the joint
distribution on (x, ξ) or, equivalently (for y = ξ/ν),

f?(x, y) =
√
y

√
2πσ2

exp
{
−(x− µ)2y/2σ2

} (ν/2)ν/2

Γ (ν/2)
yν/2−1 exp (−yν/2) ,

sometimes called Dickey’s decomposition (1968). The implementation of the de-
composition is straightforward:

> y=sqrt(rchisq(Nsim,df=nu)/nu)
> x=rnorm(Nsim,mu,sigma/y)



108 4 Controlling and Accelerating Convergence

produces a sample of (Xi, Yi)’s (i = 1, . . . , n). (Remember that, in R, the norm
functions are parameterized by the standard deviation and not the variance!)
Therefore, the empirical average

δn =
1
n

n∑
j=1

exp(−X2
j )

can be improved upon when the Xj ’s are parts of the sample ((X1, Y1), . . . ,
(Xn, Yn)), since the Rao–Blackwellized version

δ?n =
1
n

n∑
j=1

E[exp(−X2)|Yj ]

=
1
n

n∑
j=1

1√
2σ2/Yj + 1

exp
{
− µ2

1 + 2σ2/Yj

}
can be directly computed. It is therefore a matter of comparison of

> d1=cumsum(exp(-x^2))/(1:Nsim)
> d2=cumsum(exp(-mu^2/(1+2*(sigma/y)^2))/
+ sqrt(1+2*(sigma/y)^2))/(1:Nsim)

Figure 4.7 provides an illustration of the difference of the convergence of δn and
δ?n to Eg[exp(−X2)] for (ν, µ, σ) = (5, 3, 0.5). For δn to have the same precision
as δ?n requires ten times as many simulations since the estimated variances are
0.00279 and 0.00022, respectively. J

Exercise 4.9 Show that∫ ∞
−∞

exp{−x2} exp{−(x− µ)2y/2σ2} dx = exp
{
− µ2

1 + 2σ2/y

}
by completing the square in the exponent to evaluate the integral.

Unfortunately, this conditioning principle seems to enjoy limited applica-
bility since it involves a particular type of simulation (joint variables) and also
requires integrand functions h that are sufficiently regular for the conditional
expectations to be explicit. There are, however, specific situations where Rao–
Blackwellization is always possible. One illustration is provided in Robert and
Casella (2004, Section 4.2) in the setup of Accept–Reject methods where the
rejected simulations can be recycled by integrating over the uniform variates
that are used at the selection stage.



4.6 Rao–Blackwellization and deconditioning 109

Fig. 4.7. Convergence of the estimators of E[exp(−X2)], δn (solid lines, darker),
and δ?n (dots, lighter) for (ν, µ, σ) = (5, 3, 0.5). The final values are 0.00762 and
0.00769, respectively, for a true value equal to 0.00771.

Exercise 4.10 Consider an Accept–Reject method for the target density f based
on the instrumental distribution g.

a. Show that the Accept–Reject sample (X1, . . . , Xn) can be associated with
two iid samples, (U1, . . . , UN ) and (Y1, . . . , YN ), with corresponding distri-
butions U[0,1] and g; N is the stopping time associated with the acceptance
of n variables Yj .

b. Deduce that the corresponding estimator of Ef [h(X)] based on (X1, . . . , Xn)
can be written as

δ1 =
1
n

n∑
i=1

h(Xi) =
1
n

N∑
j=1

h(Yj) IUj≤wj ,

with wj = f(Yj)/Mg(Yj).



110 4 Controlling and Accelerating Convergence

Another generic setting for Rao–Blackwellization has already been il-
lustrated in Chapter 3 with the notion of defensive sampling (see Section
3.3.3). When using a mixture distribution as importance function, g(x) =
%g1(x) + (1− %)g2(x), the random variable corresponding to the choice of the
component of the mixture is an auxiliary variable Y that can be integrated
out. If we represent the importance sampling estimator by

δn =
1
n

n∑
i=1

h(Xi)
{
f(Xi)
g1(Xi)

IYi=1 +
f(Xi)
g2(Xi)

IYi=2

}
,

taking its expectation conditional on the Xi’s leads to

δ?n =
1
n

n∑
i=1

h(Xi)E
[
f(Xi)
gYi(Xi)

∣∣∣∣Xi

]

=
1
n

n∑
i=1

h(Xi)f(Xi)
%+ 1− %

%g1(Xi) + (1− %)g2(Xi)

=
1
n

n∑
i=1

h(Xi)
f(Xi)

%g1(Xi) + (1− %)g2(Xi)
,

as suggested in Section 3.3.3.

The additional stabilization brought by setting the number of variables
simulated from g1 equal to %n and the number of variables simulated from
g2 equal to (1 − %)n is not, formally speaking, a Rao–Blackwellization, even
though the resulting estimator is both unbiased and less variable than the
estimator with a binomial Bin(n, %) number of generations from g1.

When enough information is available on the density f , a specific im-
plementation of Rao–Blackwellization is stratified sampling. The case oc-
curs when the probabilities %i = Pf (Ai) of the sets Ai of a given partition
{A1, . . . , Ap} of X are known. Since the integral

∫
X h(x)f(x) dx can be ex-

pressed as∫
X
h(x)f(x) dx =

p∑
i=1

∫
Ai

h(x)f(x) dx =
p∑
i=1

%i

∫
Ai

h(x)fi(x) dx =
p∑
i=1

%iIi ,

where the fi’s are the restrictions of f to the regions Ai (i = 1, . . . , p), from
a Rao–Blackwellization point of view, this means that simulating X ∼ f is
equivalent to simulating Y from P (Y = i) = %i and then simulating X|Y =
i ∼ fi, while the variability due to the simulation of Y can be integrated out.

In practice, samples of size ni are generated from the fi’s to evaluate each
integral Ii separately by a regular estimator Îi. The variance of the resulting
estimator, %1Î1 + · · ·+ %pÎp, that is,



4.7 Acceleration methods 111

p∑
i=1

%2
i

1
ni

∫
Ai

(h(x)− Ii)2fi(x) dx,

may be much smaller than the variance of the standard Monte Carlo estimator
based on a sample of size n = n1 + · · ·+ np. The optimal choice of the ni’s in
this respect is such that

(n∗i )
2 ∝ %2

i

∫
Ai

(h(x)− Ii)2fi(x) dx.

Thus, if the regions Ai can be chosen, the variance of the stratified estima-
tor can be reduced by selecting Ai’s with similar variance factors

∫
Ai

(h(x)−
Ii)2fi(x) dx. Of course, the number of cases where stratified sampling is pos-
sible is limited.

4.7 Acceleration methods

Similar to the deconditioning device above, there exist global acceleration
strategies that are more or less independent of the simulation setup but try
to exploit the output of the simulation in more efficient ways and should
thus be implemented whenever possible. When seen as postprocessing devices,
those methods can also be used to assess convergence by providing alternative
estimators of the same quantity.

4.7.1 Correlated simulations

Although the usual simulation methods lead to iid samples, it may actually
be preferable to generate samples of negatively or positively correlated vari-
ables when estimating an integral I, as they may reduce the variance of the
corresponding estimator.

The first setting where the independence requirement may be less desirable
corresponds to the comparison of two quantities that are close in value. If

(4.6) I1 =
∫

g1(x)f1(x)dx and I2 =
∫

g2(x)f2(x)dx

are two such quantities, where δ1 estimates I1 and δ2 estimates I2, indepen-
dently of δ1, the variance of (δ1 − δ2) is then var(δ1) + var(δ2), which may be
too large to support a fine enough analysis on the difference I1−I2. However,
if δ1 and δ2 are positively correlated, the variance is reduced by a factor of
−2 cov(δ1, δ2), which may improve the analysis of the difference.

A convincing illustration of the improvement brought by correlated sam-
ples is the comparison of (regular) statistical estimators via simulation. Given
a density f(x|θ) and a loss function L(δ, θ), two estimators δ1 and δ2 are eval-
uated through their risk functions, R(δ1, θ) = E[L(δ1, θ)] and R(δ2, θ) (see,



112 4 Controlling and Accelerating Convergence

e.g., Robert, 2001, Chapter 2). In general, these risk functions are not avail-
able analytically, but they may be approximated, for instance, by a regular
Monte Carlo method,

R̂(δ1, θ) =
1
n

n∑
i=1

L(δ1(Xi), θ), R̂(δ2, θ) =
1
n

n∑
i=1

L(δ2(Yi), θ)

the Xi’s and Yi’s being simulated from f(·|θ). Positive correlation between
L(δ1(Xi), θ) and L(δ2(Yi), θ) then reduces the variability of the approximation
of R(δ1, θ)−R(δ2, θ).

Two general-purpose recommendations for conducting simulation-based
comparisons of statistical procedures are that

(i). First, the same sample (X1, . . . , Xn) should be used in the Monte Carlo ap-
proximations of R(δ1, θ) and R(δ2, θ). This repeated use of a single sample
does not greatly jeopardize the convergence of the approximation, while
it improves the precision of the estimated difference R(δ1, θ)−R(δ2, θ), as
shown by the comparison of the variances of R̂(δ1, θ)− R̂(δ2, θ) and

1
n

n∑
i=1

{L(δ1(Xi), θ)− L(δ2(Xi), θ)} .

(ii). Second, the same sample should also be used for the comparison of risks
for every value of θ (i.e., for the approximation of the entire risk function)
in order to present a smoother representation of this function. Although
this sounds like an absurd recommendation when the sample (X1, . . . ,
Xn) is usually generated from a distribution depending on θ, it is often
the case that the same uniform sample can be used for the generation
of the Xi’s for every value of θ. Also, in many settings, there exists a
transformation Mθ on X such that if X0 ∼ f(X|θ0), MθX

0 ∼ f(X|θ). A
single sample (X0

1 , . . . , X
0
n) from f(X|θ0) is then sufficient to produce a

sample from f(X|θ) using the transform Mθ. Finally, the implementation
of this principle is obvious when using importance sampling.

The second point is somewhat tangential for the theme of this section; how-
ever, it brings significant improvement in the practical implementation of
Monte Carlo methods.

The variance reduction associated with the conservation of the underlying
uniform sample is obvious in the graphs of the resulting risk functions, which
then miss the irregular peaks of graphs obtained with independent samples
and allow an easier comparison of estimators.

Example 4.7. In the case X ∼ Np(θ, Ip), the transform Mθ mentioned in the
remark above obviously is the location shift MθX = X + θ− θ0. When studying
positive-part James–Stein estimators



4.7 Acceleration methods 113

δa(x) =
(

1− a

‖x‖2

)+

x, 0 ≤ a ≤ 2(p− 2)

(see Robert, 2001, Chapter 2, for a motivation), the comparison of the squared
error risk of the δa’s is more easily conducted by simulation, based on a single
normal sample, as follows:

> nor=matrix(rnorm(Nsim*p),nrow=p)
> risk=matrix(0,ncol=150,nrow=10)
> a=seq(1,2*(p-2),le=10)
> the=sqrt(seq(0,4*p,le=150)/p)
> for (j in 1:150){
+ nornor=apply((nor+rep(the[j],p))^2,2,sum)
+ for (i in 1:10){
+ for (t in 1:Nsim)
+ risk[i,j]=risk[i,j]+sum((rep(the[j],p)-
+ max(1-a[i]/nornor[t],0)*(nor[,t]+rep(the[j],p)))^2)
+ }}
> risk=risk/Nsim

Figure 4.8 illustrates this comparison in the case p = 5. Note that the upper curve,
which corresponds to the estimated risk of δa for a = 2∗(p−2), exceeds the value
p = 5 for larger θ’s since it ends up at 5.12, while the theory guarantees that the
true risk does not. This is the consequence of using a Monte Carlo approximation,
obviously, and running more simulations would lead to a value closer to p = 5,
as you can check. A derivation of the empirical error of risk[i,j] shows that
the precision is ±0.23, which means that the confidence interval on the risk of
δ2(p−2) includes values that are lower than 5. J

In a more general setup, creating a strong enough correlation between δ1
and δ2 is rarely that simple, and the quest for correlation can result in an
increase in the conception and simulation burdens, which may even have a
negative overall effect on the efficiency of the analysis. Indeed, to use the
same uniform sample for the generation of variables distributed from f1 and
f2 in (4.6) is only possible when there exists a simple transformation from
f1 to f2 such as location-scale. For instance, if f1 or f2 must be simulated
by Accept–Reject methods, the use of a random number of uniform variables
prevents the use of a common sample.

4.7.2 Antithetic variables

The method of antithetic variables is based on the same idea that higher
efficiency can be obtained through correlation. Given two samples (X1, . . . ,
Xn) and (Y1, . . . , Yn) from f used for the estimation of

I =
∫

R
h(x)f(x) dx ,



114 4 Controlling and Accelerating Convergence

Fig. 4.8. Approximate squared error risks of truncated James–Stein estimators for
a normal distribution N5(θ, I5), as a function of ‖θ‖, based on n = 103 simulations.

the estimator

(4.7)
1

2n

n∑
i=1

[h(Xi) + h(Yi)]

is more efficient than an estimator based on an iid sample of size 2n if the
variables h(Xi) and h(Yi) are negatively correlated. In this setting, the Yi’s
are called the antithetic variables. Obviously, creating negative correlation
for an arbitrary transform h is not always possible, even when Xi and Yi
are negatively correlated. A solution proposed in Rubinstein (1981) is to use
uniform variables Ui to generate the Xi’s as Xi = F−(Ui) and the Yi’s as Yi =
F−(1−Ui). This idea can be generalized toward a systematic coverage of the
unit interval that is closely related to quasi-random schemes (see, e.g., Robert
and Casella, 2004, Section 2.6.2). Given a first sample of Xi = F−(Ui)’s,
2q replicated samples can be constructed by considering the 2q first dyadic
symmetries of the Ui’s, obtained by switching the q first bits of the binary
decompositions of the Ui’s.

Exercise 4.11 Show that if H = h ◦ F−, U ∼ U(0, 1), X = F−(U), and
Y = F−(1 − U), then h(X) and h(Y ) are negatively correlated when H is a
monotone function.



4.7 Acceleration methods 115

Example 4.8. (Continuation of Example 4.1) Based on the original sim-
ulation experiment

> uref=runif(10^4)
> x=h(uref)
> estx=cumsum(x)/(1:10^4)

the dyadic symmetries can be produced by

> resid=uref%%2^(-q)
> simx=matrix(resid,ncol=2^q,nrow=10^4)
> simx[,2^(q-1)+1:2^1]=2^(-q)-simx[,2^(q-1)+1:2^1]
> for (i in 1:2^q) simx[,i]=simx[,i]+(i-1)*2^(-q)
> xsym=h(simx)
> estint=cumsum(apply(xsym,1,mean))/(1:10^4)

through a systematic exploration of all the terms in the unit interval with the
same terminal bits. The impact of averaging over those values is clear from Figure
4.9. Using the symmetries over the first four bits produces a much more stable
sequence, while using the first eight bits gives the correct answer 9.9652 (obtained
by integrate) almost from the start, even though 28 = 256 is much smaller than
104. J

As can be extrapolated from this example, the improvement brought by
the dyadic averaging is of a numerical nature; i.e., it relates to a perspective
of numerical integration rather than Monte Carlo integration. Indeed, if the
number q of bits goes to infinity (and Example 4.8 showed that q = 8 is
already close to infinity), the random aspect of the estimator vanishes. As
a consequence, settings where this technique is likely to have an impact are
those where numerical integration applies.

The technique only applies for simulations that are direct transforms of
uniform variables, thus excluding the Accept–Reject methods where the im-
pact of the negative correlation is most likely diluted. More general group
actions can nonetheless be considered, as in Evans and Swartz (2000) and
Kong et al. (2003), where the authors replace the standard average by an
average (over i) of the average of the h(gXi) (over the transformations g).3

An immediate application of this averaging principle is to replicate the avail-
able sample using random permutations over the level sets of the density; i.e.,
replicating Xi into

Yi ∼ U ({y; f(y) = f(Xi)}) .

Example 4.9. (Continuation of Example 4.5) If we see the numerator
of the posterior mean as an expectation under the normal N (x, 1) distribution,

3 Strictly speaking, this is not antithetic sampling since the averaging is over the
dominating measure rather than on the distribution itself.



116 4 Controlling and Accelerating Convergence

Fig. 4.9. Impact of the dyadic average over the approximation of the integral of h
studied in Example 4.1 for 24 (grey, dotted) and 28 replicas (light grey straight line)
when compared with the convergence of the original sequence (dark full line).

the symmetry is with respect to x; i.e., the sample of θi’s is to be replicated into
2x−θi’s, while, if the reference distribution is the Cauchy distribution, the sample
of θi’s is duplicated into the sample of −θi’s. J

� In the few situations where simulation from this uniform distribution can
be conducted, the improvement brought by averaging via Monte Carlo
over level sets is not always very significant.

4.7.3 Control variates

In some particular cases, there exist functions h0 whose mean under f is
known. For instance, if f is symmetric around µ or if µ is the median of f ,
the mean of h0(X) = IX≥µ is 1/2. The technique of control variates takes
advantage of this additional piece of information to reduce the variance of
a Monte Carlo estimator of I =

∫
h(x)f(x)dx in the following way. If δ1 is

an estimator of I and δ3 an unbiased estimator of Ef [h0(X)], consider the
weighted estimator



4.7 Acceleration methods 117

δ2 = δ1 + β(δ3 − Ef [h0(X)]).

The estimators δ1 and δ2 have the same mean and

var(δ2) = var(δ1) + β2 var(δ3) + 2β cov(δ1, δ3) .

For the optimal choice

β∗ = −cov(δ1, δ3)
var(δ3)

,

we have
var(δ2) = (1− ρ2

13) var(δ1),

ρ2
13 being the correlation coefficient between δ1 and δ3, so the control variate

strategy will result in a decreased variance for δ2. In particular, if

δ1 =
1
n

n∑
i=1

h(Xi) and δ3 =
1
n

n∑
i=1

h0(Xi),

the control variate estimator is

δ2 =
1
n

n∑
i=1

(h(Xi) + β∗ {h0(Xi)− Ef [h0(X)]}) ,

with β∗ = −cov(h(X), h0(X))/var(h0(X)).
When p control variates are available, h01(Xi), . . . , h0p(Xi) say, the exten-

sion is immediate, the control variate estimator then being

δ2 =
1
n

n∑
i=1

h(Xi) +
p∑
j=1

β∗j {h0j(Xi)− Ef [h0j(X)]}


and the coefficient vector β∗ = (β∗1 , . . . , β

∗
p) being derived as the orthogonal

projection
β∗ = −varf (h0(X))−1 covf (h(X),h0(X))

for h0(x) = (h01(x), . . . , h0p(x)).

Exercise 4.12 Show that if f(x|θ) is the density of interest, parameterized by
θ ∈ R, the function h(x, θ) = ∂ log f(x|θ)

/
∂θ is always a control variate with

mean zero. Discuss the relevance of this result when f is known up to a constant
(as a density in x).

In practice, β∗ obviously is unavailable but can be approximated by a
simple regression of the h(xi)’s over the h0(xi)’s (or a multiple regression of
the h(xi)’s over the h0j(xi)’s).



118 4 Controlling and Accelerating Convergence

Example 4.10. (Continuation of Example 4.9) Since the normal distribu-
tion used in the representation of the numerator of the posterior mean is centered
at x, all odd moments of (x−θ) have zero mean. It is therefore possible to conduct
a regression of the simulated θi/(1 + θ2i )’s on the control variates (x − θi)2k+1

in order to improve the approximation of

I =
∫

θ

1 + θ2
exp−(x− θ)2/2√

2π
dθ .

A rudimentary implementation of the control variate technique is as follows:

> thet=rnorm(10^3,mean=x)
> delt=thet/(1+thet^2)
> moms=delta=c()
> for (i in 1:5){
+ moms=rbind(moms,(thet-x)^(2*i-1))
+ reg=lm(delt∼t(moms)-1)$coef
+ delta=rbind(delta,as.vector(delt-reg%*%moms))
+ }
> plot(cumsum(delt)/(1:10^3),ty="l",lwd=2,lty=2)
> for (i in 1:5) lines(cumsum(delta[i,])/(1:10^3),lwd=2)

It should stop adding variates when the regression fit does not improve and when
the regressors become nonsignificant. In Table 4.1, the residual error stops de-
creasing for k = 3, where the regression summary is

Coefficients:
Estimate Std. Error t value Pr(>|t|)

moms1 -0.110128 0.027401 -4.019 6.28e-05 ***
moms2 0.004218 0.016815 0.251 0.802
moms3 0.002693 0.001986 1.356 0.176

Residual standard error: 0.3486 on 997 degrees of freedom
Multiple R-Squared: 0.05643, Adjusted R-squared: 0.05359
F-statistic: 19.87 on 3 and 997 DF, p-value: 1.621e-12

This indicates that the third odd moment (i.e., the fifth moment) is not con-
tributing significantly to the regression, while, for k = 2, the regression summary
is

Coefficients:
Estimate Std. Error t value Pr(>|t|)

moms1 -0.137687 0.018380 -7.491 1.50e-13 ***
moms2 0.025994 0.004976 5.224 2.14e-07 ***

The graphical comparison in Figure 4.10 of the estimators thus induced shows no
difference from k = 3 onward and very similar variabilities for k = 2 and k = 3.
The improvement upon the original graph of estimates is quite apparent. J



4.7 Acceleration methods 119

Table 4.1. Comparisons of the first regression coefficient and the regression fit
parameters against the number k of odd moments used as control variates.

k 1 2 3 4 5

β1 −.06 −.113 −.110 −.105 −.108
R2 .0279 .0528 .0536 .0527 .0517
σ̂ .353 .349 .349 .349 .349

Fig. 4.10. Impact of the control variates (x − θ)2k−1 over the approximation of
the integral I for k = 1, . . . , 5. The original sequence of estimators is the dotted one
(dark), while the control variate corrections are increasing with k at iteration 500
(grey). The graphs for k = 3, 4, 5 are indistinguishable.

The technique of control variates thus appears to be manageable only in
very specific situations where the control function h must be available. There
exists, however, a class of Bayesian models where some expectations always
are available, in the setting of conjugate priors and exponential families (see,
e.g., Robert, 2001, Chapter 3).

Example 4.11. Consider modeling the Pima.tr dataset—introduced in Section
1.5 and already used in Example 3.10—using a logistic regression model, (1 ≤
i ≤ m)

P (Yi = 1|xi) = exp(xtiθ)/{1 + exp(xtiθ)} .



120 4 Controlling and Accelerating Convergence

Under a flat prior on θ, the posterior distribution on the regression coefficient has
density proportional to

(4.8) exp

(
θt
∑
i

Yixi

)
m∏
i=1

{1 + exp(xtiθ)}−1.

As for all distributions from an exponential family, we have that

Eθ

[
m∑
i=1

Yixi

]
= m∇ψ(θ) and Eπ

[
∇ψ(θ)

∣∣∣∣ m∑
i=1

Yixi

]
=
∑
i Yixi
m

,

where ψ(θ) is the classical notation for the log-cumulant function, such that

m∇ψ(θ) =
m∑
i=1

exp(xtiθ)
1 + exp(xtiθ)

xi

in the logistic regression model. Therefore, the posterior expectation of ∇ψ(θ) is
known in this case.

The expectation Eπ[θ|
∑
i Yixi + ζ, λ + 1] can be derived from variables θj

(1 ≤ j ≤ n) generated from (4.8). Since this is not a regular distribution, we
follow the same track as in Example 3.10, namely to start from the maximum
likelihood estimates

> glm(Pima.tr$t∼bmi,family=binomial)

Call: glm(formula = Pima.tr$t ∼ bmi, family = binomial)

Coefficients:
(Intercept) bmi

-0.7249 0.1048

to construct a scaled normal proposal as in

> sim=cbind(rnorm(10^4,m=-.72,sd=.55),rnorm(10^4,m=.1,sd=.2))
> weit=apply(sim,1,like)/(dnorm(sim[,1],m=-.72,sd=.55)*
+ dnorm(sim[,2],m=.1,sd=.2))

The efficiency is again rather poor, with a normalized effective sample size of 7%
and a perplexity of 9.5%.

A control variate version of

δ1 =
n∑
j=1

ωjθj

/
n∑
j=1

ωj

is thus available via the weighted regression of the θj ’s upon the

m∑
i=1

expxtiθj
1 + expxtiθj

xi ,

which can be readily obtained as



4.7 Acceleration methods 121

Fig. 4.11. Impact of the log-cumulant control variates over the posterior esti-
mations of the logistic regression coefficients for the Pima.tr dataset. The original
sequence of estimators over the first 103 iterations is the full one (dark), while the
control variate correction is the dotted curve (grey). The upper graph corresponds
to the intercept, with maximum likelihood estimate equal to −0.725, and the lower
graph to the coefficient of the body mass index, with maximum likelihood estimate
equal to 0.105.

> vari1=(1/(1+exp(-sim[,1]-sim[,2]*bmi)))-
+ sum((Pima.tr$t=="Yes"))/length(Pima.tr$bmi)
> vari2=(bmi/(1+exp(-sim[,1]-sim[,2]*bmi)))-
+ sum(bmi[Pima.tr$t=="Yes"])/length(Pima.tr$bmi)
> resim=sample(1:Nsim,Nsim,rep=T,pro=weit)
> reg=as.vector(lm(sim[resim,1]∼t(rbind(vari1[resim],
+ vari2[resim]))-1)$coef)

since resampling avoids using weighted regression. The impact on the estimation
of the coefficients of θ is, however, quite limited, as is shown in Figure 4.11. J



122 4 Controlling and Accelerating Convergence

4.8 Additional exercises

Exercise 4.13 Following the results obtained in Exercise 4.2:

a. Deduce that

(4.9)
1

n2

n2X
i=1

π̃1(θ2i)α(θ2i)

,
1

n1

n1X
i=1

π̃2(θ1i)α(θ1i) ,

with θ1i ∼ π1 and θ2i ∼ π2, is a convergent estimator of %.
b. Show that part b covers as a special case the Newton and Raftery (1994) harmonic

mean representation

% = Eπ2 [π̃2(θ)−1]

ffi
Eπ1 [π̃1(θ)−1]

if both expectations exist. Give a sufficient condition for those expectations to be
finite.

Exercise 4.14 Using the following approximation

Var(%̂)

%2
≈ 1

n1n2

(R
π1(θ)π2(θ)[n1π1(θ) + n2π2(θ)]α(θ)2 dθ`R

π1(θ)π2(θ)α(θ) dθ
´2 − 1

)
to the variance of (4.9), show that the optimal choice of α in (4.9) is

α(θ) ∝ 1

ffi
n1π1(θ) + n2π2(θ) .

The optimal solution exhibited in Exercise 4.14 above can also be interpreted as a
defensive mixture version, as in (3.8), while the harmonic mean solution is generally
worthless because of its infinite variance.

Exercise 4.15 For each of the following cases, generate random variables Xi and
Yi and compare the empirical average and Rao–Blackwellized estimator of Ef (X) and
varf (X):

a. X|y ∼ P(y), Y ∼ Ga(a, b) (X is negative binomial);
b. X|y ∼ N (0, y), Y ∼ Ga(a, b) (X is a generalized t);
c. X|y ∼ Bin(y), Y ∼ Be(a, b) (X is beta-binomial).

Exercise 4.16 Given an Accept–Reject algorithm based on (f, g, ρ), we denote by

b(yj) =
(1− ρ)f(yj)

g(yj)− ρf(yj)

the importance sampling weight of the rejected variables (Y1, . . . , Yt) and by (X1, . . . , Xn)
the accepted variables.

a. Show that the estimator

δ1 =
n

n+ t
δAR +

t

n+ t
δ0,

with δ0 = 1
t

Pt
j=1 b(Yj)h(Yj) and δAR = 1

n

Pn
i=1 h(Xi), does not uniformly

dominate δAR. (Hint: Consider the constant functions.)



4.8 Additional exercises 123

b. Show that

δ2w =
n

n+ t
δAR +

t

n+ t

tX
j=1

b(Yj)

St
h(Yj)

is asymptotically equivalent to δ1 in terms of bias and variance.
c. Deduce a condition for δ2w to asymptotically dominate δAR (see Robert and Casella,

2004, Section 4.6.2).

Exercise 4.17 In conjunction with Exercise 4.6, show that, if we denote by Σ−1
k the

inverse matrix corresponding to (X̄1, X̄2, . . . , X̄k), to get Σ−1
k+1 we only have to change

one element and then add one row and one column to Σ−1
k .

Exercise 4.18 A näıve way to implement the antithetic variable scheme is to use both
U and (1−U) in an inversion simulation. Examine empirically whether this method leads
to variance reduction for the distributions (i) f1(x) = 1/π(1 + x2), (ii) f2(x) = 1

2
e−|x|,

(iii) f3(x) = e−xIx>0, (iv) f4(x) = 2

π
√

3

`
1 + x2/3

´−2
, and (v) f5(x) = 2x−3Ix>1.

Examine variance reductions of the mean, second moment, median, and 75th percentile.

To calculate the weights for the Rao–Blackwellized estimator of Section 4.6, it is
necessary to derive properties of the distribution of the random variables in the Accept–
Reject algorithm. The following problem is a rather straightforward exercise in distri-
bution theory and is only made complicated by the stopping rule of the Accept–Reject
algorithm.

Exercise 4.19 This problem looks at the performance of a termwise Rao–Blackwel-
lized estimator. Casella and Robert (1998) established that such an estimator does not
sacrifice much performance over the full Rao–Blackwellized estimator of Exercise 4.10.
Given a sample (Y1, . . . , YN ) produced by an Accept–Reject algorithm to accept n values
based on (f, g,M):

a. Show that

1

N

NX
i=1

E[IUi≤ωi |Yi]h(Yi) =
1

N − n

 
h(YN ) +

N−1X
i=1

b(Yi)h(Yi)

!

with

b(Yi) =

„
1 +

n(g(Yi)− ρf(Yi))

(N − n− 1)(1− ρ)f(Yi)

«−1

.

b. If SN =
PN−1

1 b(Yi), show that

δ =
1

N − n

 
h(YN ) +

N − n− 1

Sn

N−1X
i=1

b(Yi)h(Yi)

!

asymptotically dominates the usual Monte Carlo approximation, conditional on the
number of rejected variables n under quadratic loss. (Hint: Show that the sum of
the weights SN can be replaced by (N − n− 1) in δ and assume Ef [h(X)] = 0.)

Exercise 4.20 Following from Exercise 4.10,



124 4 Controlling and Accelerating Convergence

a. Conclude that a reduction in the variance of δ1 can be obtained by integrating out
the Ui’s, as in the estimator

δ2 =
1

n

NX
j=1

E[IUj≤wj |N,Y1, . . . , YN ] h(Yj) =
1

n

NX
i=1

ρih(Yi).

b. Show that, for i = 1, . . . , k − 1, ρi satisfies

ρi = P(Ui ≤ wi|N = k, Y1, . . . , Yn)

= wi

P
(i1,...,in−2)

Qn−2
j=1 wij

Qk−2
j=n−1(1− wij )P

(i1,...,in−1)

Qn−1
j=1 wij

Qk−1
j=n(1− wij )

,

while ρk = 1. The numerator sum is over all subsets of {1, . . . , i−1, i+1, . . . , k−1}
of size n− 2, and the denominator sum is over all subsets of size n− 1.

Exercise 4.21 The control variate scheme can be adapted to the Accept–Reject algo-
rithm. When Y1, . . . , YN is the sample produced by an Accept–Reject algorithm based
on g aiming at t acceptances, let m denote the density

m(y) =
t− 1

n− 1
f(y) +

n− t
n− 1

g(y)− ρf(y)

1− ρ

when N = n and ρ =
1

M
.

a. Show that m is the marginal density of the Yi’s conditional upon N = n, and
deduce that

I =

Z
h(x)f(x)dx = EN

»
Em
»
h(Yi)f(Yi)

m(Yi)

˛̨̨̨
N

––
.

b. Show that, for any function c(·) with a closed-form expectation E[c(Y )] and for any
constant β,

I = βE[c(Y )] + E
»
h(Y )f(Y )

m(Y )
− βc(Y )

–
.

Deduce that

Î =
h(YN )

N
+

1

N

N−1X
i=1


h(Yi)f(Yi)

m(Yi)
− β (c(Yi)− E[c(Y )])

ff
is a control variate estimator of I.

c. Setting d(y) = h(y)f(y)/m(y), show that the optimal choice of β is

β∗ = cov[d(Y ), c(Y )]/var[c(Y )].

d. Examine choices of c for which the optimal β can be constructed and thus where
the control variate method applies.

(Note: Strawderman, 1996, suggests estimating β using β̂, the regression coefficient of
d(Yi) on c(Yi), i = 1, 2, . . . , n− 1.)



5

Monte Carlo Optimization

“He invented a game that allowed players to predict the outcome?”
Susanna Gregory

To Kill or Cure

Reader’s guide

This chapter is the equivalent for optimization problems of what Chapter 3 is
for integration problems. We distinguish between two separate uses of computer-
generated random variables to solve optimization problems. The first use, as seen
in Section 5.3, is to produce stochastic search techniques to reach the maximum
(or minimum) of a function, devising random exploration techniques on the surface
of this function that avoid being trapped in local maxima (or minima) and are
sufficiently attracted by the global maximum (or minimum). The second use,
described in Section 5.4, is closer to Chapter 3 in that simulation is used to
approximate the function to be optimized.

C.P. Robert, G. Casella, Introducing Monte Carlo Methods with R, Use R,  
DOI 10.1007/978-1-4419-1576-4_5, © Springer Science+Business Media, LLC 2010 



126 5 Monte Carlo Optimization

5.1 Introduction

Optimization problems can mostly be seen as one of two kinds: We either
need to find the extrema of a function h(θ) over a domain Θ or find the
solution(s) to an implicit equation g(θ) = 0 over a domain Θ. Both problems
are exchangeable to some extent in that the second one is a minimization
problem for a function like h(θ) = g2(θ) (in dimension one), while the first
one is equivalent to solving ∂h(θ)/∂θ = 0 (assuming the function h can be
differentiated). Therefore, we only focus on the maximization problem

(5.1) max
θ∈Θ

h(θ)

since a minimization problem can be handled as a maximization problem when
substituting −h or 1/h for h.1

Similar to the problem of integration treated in Chapter 3, the optimiza-
tion problem (5.1) can be processed by either numerical or stochastic means.
In the numerical perspective, performance is highly dependent on the ana-
lytical properties of the target function (such as convexity, boundedness, and
smoothness), while those properties of h play a lesser role in simulation-based
approaches. Therefore, if h is too complex to allow an analytic study or if
the domain Θ is too irregular, the method of choice is rather the stochastic
approach.

The entire chapter addresses the issue of finding extrema using stochastic
techniques, but let us point out here that optimization problems are generi-
cally harder to solve than integration problems. That is, the former are much
more local than the latter, at least from a computational point of view (since,
from a mathematical viewpoint, the information about the extrema of a func-
tion is as global as that about its integrals). In other words, it is harder to
pinpoint a single extreme point in a domain than the average of a regular
function over the same domain. Note that, in accord with the remainder of
the book, this chapter deals with optimization problems that relate to statis-
tics, with domains that are almost always continuous. This means that hard
combinatoric problems leading to optimization over a finite (if large) set such
as the traveling salesman problem (see, e.g., Spall, 2003, Robert and Casella,
2004) are not considered here.

1 While the choice of the transform is innocuous from a mathematical point of
view, since the argument of the minimum does not change, its impact on the
approximation method used to find this argument is far from innocuous and the
selection of the transform should be considered carefully.



5.2 Numerical optimization methods 127

5.2 Numerical optimization methods

In R, there are several embedded functions to solve optimization problems.
The simplest one is optimize (or optimise), which processes one-dimensional
targets.

Example 5.1. When considering maximizing the likelihood of a Cauchy C(θ, 1)
sample,

`(θ|x1, . . . , xn) =
n∏
i=1

1
1 + (xi − θ)2

,

the sequence of maxima (i.e., of the MLEs) is converging to θ∗ = 0 when n goes
to ∞. This is reflected by Figure 5.1 (left), which corresponds to the code

> xm=rcauchy(500)
> f=function(y){-sum(log(1+(x-y)^2))}
> for (i in 1:500){
+ x=xm[1:i]
+ mi=optimise(f,interval=c(-10,10),max=T)$max}

where the log-likelihood is maximized sequentially as the sample increases. How-
ever, when looking directly at the likelihood, using optimise eventually produces
a diverging sequence since the likelihood gets too small around n = 300 observa-
tions, even though the sequences of MLEs are the same up to this point for both
functions. When we replace the smooth likelihood with a perturbed version, as in

> f=function(y){-sin(y*100)^2-sum(log(1+(x-y)^2))}

the optimise function gets much less stable, as demonstrated in Figure 5.1
(right), since the two sequences of MLEs (corresponding to the log-likelihood and
the likelihood) are no longer identical. J

� The output of optimise is a list with components “minimum” (or “max-
imum”) and “objective”. Rather unfortunately, in contrast with mathe-
matical conventions, “minimum” gives the location of the minimum of
the function (that is, the argument of the minimum), while “objective”
gives the value of the minimum of the function (that is, the minimum
itself)!

Similarly, nlm is a generic R function that searches for the minimum of
a function based on the Newton–Raphson method—that is, based on the
recurrence relation

θi+1 = θi −
[
∂2h

∂θ∂θT
(θi)
]−1

∂h

∂θ
(θi)

—where the matrix of the second derivatives is called the Hessian and the vec-
tor of the first derivatives the gradient (sometimes denoted ∇h). This method



128 5 Monte Carlo Optimization

Fig. 5.1. (left) Sequence of MLEs corresponding to 500 simulations from a Cauchy
C(0, 10) distribution obtained by applying optimize to the log-likelihood and the
likelihood (in lighter colors); (right) the same sequences when using a perturbed
likelihood.

is perfect when h is quadratic but may also deteriorate when h is highly non-
linear, and it obviously does not work when the domain Θ is irregular. It also
obviously depends on the starting point θ0 when h has several minima.

Example 5.2. The likelihood associated with the mixture model

(5.2)
1
4
N (µ1, 1) +

3
4
N (µ2, 1)

is bimodal, as seen in Figure 5.2 for a simulated sample of 400 observations from
this mixture with µ1 = 0 and µ2 = 2.5, actually produced by

> da=rbind(rnorm(10^2),2.5+rnorm(3*10^2))
> like=function(mu){
+ sum(log((.25*dnorm(da-mu[1])+.75*dnorm(da-mu[2]))))}

and by applying the R function contour to a grid of points where the log-
likelihood function like is computed. When using nlm, the modes are obtained
within a few iterations, depending on the starting points, and the intermediate
values of the Newton–Raphson sequence can be plotted by

> sta=c(1,1)
> mmu=sta
> for (i in 1:(nlm(like,sta)$it))
+ mmu=rbind(mmu,nlm(like,sta,iter=i)$est)
> lines(mmu,pch=19,lwd=2)

where the function like has been redefined as its inverse to account for the
fact that nlm produces a local minimum. Note that some starting points produce
warnings:



5.2 Numerical optimization methods 129

NA/Inf replaced by maximum positive value in: nlm(like, sta)

meaning that the (numerical approximation to the) Hessian is not invertible at
the current value. The sequences represented in Figure 5.2 all end up in one of the
two modes, but with highly nonlinear patterns. For instance, the starting point
(−1,−1) corresponds to a very steep gradient and thus bypasses the main mode
(−0.68, 1.98) to end up at the secondary one (lower in likelihood). Although all
represented sequences do converge, starting farther away from the modes may
produce divergent sequences. J

Fig. 5.2. Six Newton–Raphson sequences for a mixture likelihood ending in one of
two modes depending on the starting point based on a sample of 400 observations
from the normal mixture (5.2) with µ1 = 0 and µ2 = 2.5.

Exercise 5.1 Write an R code that truly produces a sample of 400 observations
from (5.2) instead of setting the normal subsample sizes to 100 and 300 as above.
Compare the shapes of the corresponding log-likelihoods in both cases.



130 5 Monte Carlo Optimization

The function nlm is a numerical method to determine the minimum of its first
argument f. While it is not absolutely exact and depends on its starting value
p, we stress that nlm is deterministic. Therefore, repeatedly using nlm with
the same starting value p will always produce the same Newton–Raphson
sequence. On the other hand, if the target h is modified by a monotonic
transform—that thus leaves the true mode unchanged— the Newton–Raphson
sequence will differ and may end up diverging in some cases.

Exercise 5.2 Using 1/like as the target of nlm in the setting of Example 5.2,
compare the Newton–Raphson sequences with those produced using -like and
the same starting points.

When using simulation techniques to solve an optimization problem, there
exist two different points of entry. The first one corresponds to stochastic
search or exploration methods, where a function h is approximately maxi-
mized by considering a random sequence of points. The actual properties of
the function play a lesser role here, with the Monte Carlo aspect being more
closely tied to the exploration of the entire space Θ, even though, for instance,
some features of h can be used to speed up the exploration. The second entry
is based on a stochastic approximation of the function h to be maximized, and
this step can also be seen as preliminary to the actual optimization process.
Here, the Monte Carlo aspect exploits the probabilistic properties of the func-
tion h to come up with an acceptable approximation ĥ and is not concerned
with exploring Θ. Obviously, both aspects can be merged, as for instance in
Monte Carlo EM methods (Section 5.4.4).

This is obviously a very brief and necessarily incomplete introduction to
numerical optimization methods using only the most basic functions in R. The
literature in this area is enormous, and we refer for instance to Spall (2003)
for a possible entry.

5.3 Stochastic search

5.3.1 A basic solution

A natural if rudimentary way of using simulation to obtain an approximation
to the solution of (5.1) is to simulate points over Θ according to an arbitrary
distribution f positive everywhere on Θ until a sufficiently high value of h(θ)
is observed. This solution may be very inefficient if f is not chosen in connec-
tion with h but, given an infinite number of simulations and some regularity
requirements on the problem, including the compactness of the domain Θ, it
is bound to converge (see, e.g., Spall, 2003, Theorem 2.1). For instance, if Θ is
bounded, we can simulate from a uniform distribution on Θ, u1, . . . , um ∼ UΘ,



5.3 Stochastic search 131

and use h∗m = max(h(u1), . . . , h(um)) as an approximation to the solution of
(5.1).

Example 5.3. Recall the simple and regular but highly variable function h(x) =
[cos(50x) + sin(20x)]2 defined on [0, 1], first seen in Example 3.3. A call to
optimise provides an identification of the maximum at x? = 0.379 with a value
of h(x?) = 3.8325. If we want to assess the variability of a uniform sampler, we
can use multiple uniform sequences as in

> rangom=h(matrix(runif(10^6),ncol=10^3))
> monitor=t(apply(rangom,1,cummax))
> plot(monitor[1,],type="l",col="white")
> polygon(c(1:10^3,10^3:1),c(apply(monitor,2,max),
+ rev(apply(monitor,2,min))),col="grey")
> abline(h=optimise(h,int=c(0,1),max=T)$ob)

whose result is shown in Figure 5.3. While the starting value h(u1) of the se-
quence is highly variable, the range reduces very quickly and, after 103 iterations,
the worst sequence among the 103 parallel sequences is within 0.24 of the true
maximum. J

Using a uniform distribution over the domain Θ is only relevant when Θ
has a regular shape. Otherwise, it is more efficient to simulate from a uniform
distribution over a domain containing Θ and to drop the simulations outside
Θ.

Exercise 5.3 When Θ is defined on R2 by the constraint

x2(1 + sin(3y) cos(8x)) + y2(2 + cos(5x) cos(8y)) ≤ 1 ,

propose a simple uniform simulation on a larger domain and evaluate the perfor-
mance of this method via the average number of rejected points.

Obviously, this blind solution—blind in the sense that it does not take h
into account—quickly gets impractical as the dimension or the complexity of
the problem increases. For instance, in a Bayesian setting, when the size n of an
iid sample x1, . . . , xn from f(x|θ) grows, the associated posterior distribution
π(θ|x1, . . . , xn) gets more and more concentrated around its mode, which is
thus more and more difficult to approximate this way. This, however, is not
always the case, as the following example shows.

Example 5.4. (Continuation of Example 5.1) Using the same Cauchy
model as in Example 5.1, we can monitor the discrepancy between the solu-
tions provided by optimise and by uniform sampling over [−5, 5] as the sample
size n increases from n = 1 to n = 5001. Figure 5.4 (top) plots the value of the
true argument θ? (as provided by optimise) against the value of the uniform



132 5 Monte Carlo Optimization

Fig. 5.3. Range of 103 sequences of successive maxima found by random uniform
sampling over 103 iterations. The true maximum value is identified by the grey line
on top of the graph.

sample with the highest likelihood and does not show a significant increase of the
error near zero since there are more points in this neighborhood. Similarly, Figure
5.4 (bottom) shows that the relative error between the true maximum and the
approximation on the uniform sample does not exhibit an increasing trend. J

It is therefore more fruitful to design the simulation experiment in (close)
connection with h as well as with the domain Θ. Intuitively, it makes sense
to increase the probability of simulating in regions where h is large and to
decrease this probability in regions where it is small. This means creating a
probability distribution that is related with h in a nonlinear way but with
identical or close to identical modes. Obviously, if h is positive and∫

Θ

h(θ) dθ < +∞,

the resolution of (5.1) amounts to finding the modes of the density proportional
to h. More generally, any density H sharing maxima with h is a potentially
interesting choice, for instance

H(θ) ∝ exp(h(θ)/T )



5.3 Stochastic search 133

Fig. 5.4. Comparison of a numerical and a stochastic maximization of a Cauchy
likelihood in terms of the sample size via (top) respective locations of the numerical
and stochastic evaluations of the arguments, plotted along the diagonal; (bottom)
relative error of the stochastic evaluation against the numerical evaluation as a
function of the sample size.

for any T > 0 such that exp(h(θ)/T ) is integrable. The parameter T , called
the temperature, is free to calibrate and can be chosen toward accelerating
convergence or avoiding local maxima, as we will discuss later. The problem
(5.1) then being expressed in statistical terms, it is natural to generate a
sample (θ1, . . . , θm) from H and to apply a standard mode estimation method
on this sample (or to simply compare the h(θi)’s). In some cases, it may be
more practical to decompose H(θ) into H(θ) = H1(θ)H2(θ) and to simulate
from H1 only.

In statistical applications, h is most often a likelihood and thus simulating
from h is identical with simulating from the posterior distribution associated
with the flat prior.

Example 5.5. (Continuation of Example 5.1) The likelihood is clearly
interpretable as a posterior distribution on θ. However, this is not a standard
distribution, and we need a handy substitute! Given that the product of the
Cauchy densities amounts to the inverse of a polynomial (in θ) of degree 2n,
we can pick a t distribution with (n − 1)/2 degrees of freedom, with mean the
empirical median—since the Cauchy mean is notoriously unstable—and scale the
interquartile range. Comparing the true posterior with the approximation via



134 5 Monte Carlo Optimization

> cau=rcauchy(10^2)
> mcau=median(cau)
> rcau=diff(quantile(cau,c(.25,.75)))
> f=function(x){
+ z=dcauchy(outer(x,cau,FUN="-"))
+ apply(z,1,mean)}
> fcst=integrate(f,from=-20,to=20)
> ft=function(x){f(x)/fcst}
> g=function(x){dt((x-mcau)/rcau,df=49)/rcau}
> curve(ft,from=-10,to=10)
> curve(g,add=T)

Fig. 5.5. Comparison of the posterior density (in black) of a Cauchy location
parameter based on 101 observations and a t approximation (dotted lines).

shows that the approximation is acceptable, as shown in Figure 5.5. (Note the
use of the R function outer in the function f, already discussed in Example 3.6.
This function allows us to apply the function f to a vector, if not a matrix, and
thus to use curve.) As expected, using the t approximation produces evaluations
of the maximum likelihood that converge faster (in the number of simulations),
as can be seen through the following Monte Carlo experiment (which is easy to
reproduce on your own).

> unisan=matrix(f(runif(5*10^4,-5,5)),ncol=500)
> causan=matrix(f(rt(5*10^4,df=dft)*rcau+mcau),ncol=500)
> unimax=apply(unisan,2,cummax)[10:10^2,]



5.3 Stochastic search 135

> caumax=apply(causan,2,cummax)[10:10^2,]
> plot(caumax[,1],col="white",ylim=c(.8,1)*max(causan))
> polygon(c(10:10^2,10^2:10),c(apply(unimax,1,max),
+ rev(apply(unimax,1,min))),col="grey")
> polygon(c(10:10^2,10^2:10),c(apply(caumax,1,max),
+ rev(apply(caumax,1,min))),col="wheat")

In line with the idea above of decreasing the temperature to freeze the simulations
in higher and higher values of the target function h, it would be possible to repeat
the experiment with a smaller range, except that our t approximation does not
preserve the mode of h, so this strategy is not advisable in the present case. J

Exercise 5.4 Given the function h(x) defined in Example 5.3, deduce from the
bound

h(x) ≤ 2 ∗ (| cos(50x)|+ | sin(20x)|)

a practical way to simulate from a density proportional to h. Compare the vari-
ability in the evaluation of maxh(x) based on 103 simulations from h with the
variability in the same evaluation based on 103 uniform simulations.

While this solution is completely natural and formally provides a converging
method, its implementation is far from obvious. Finding a density H that
both shares modes with h and is easy to simulate is quite a challenge when
h is a complex function, and the solutions we will produce in Sections 5.3.2
and 5.3.3 are actually inferring on h locally (that is, in a neighborhood of
the current simulations from H), in a spirit almost identical to the MCMC
algorithms of Chapters 6 and 7.

Example 5.6. Consider minimizing the (artificially constructed) function in R2

h(x, y) = (x sin(20y) + y sin(20x))2 cosh(sin(10x)x)
+ (x cos(10y)− y sin(10x))2 cosh(cos(20y)y),

whose global minimum is 0, attained at (x, y) = (0, 0). Since this function has
many local minima, as shown by Figure 5.6, obtained via

> h=function(x,y){(x*sin(20*y)+y*sin(20*x))^2*cosh(sin(10*x)
+ *x)+(x*cos(10*y)-y*sin(10*x))^2*cosh(cos(20*y)*y)}
> x=y=seq(-3,3,le=435) #defines a grid for persp
> z=outer(x,y,h)
> par(bg="wheat",mar=c(1,1,1,1)) #bg stands for background
> persp(x,y,z,theta=155,phi=30,col="green4",
+ ltheta=-120,shade=.75,border=NA,box=FALSE)

it does not satisfy the conditions under which standard minimization methods are
guaranteed to provide the global minimum. On the other hand, the distribution on
R2 with density proportional to exp(−h(x, y)) can be simulated, even though this



136 5 Monte Carlo Optimization

is not a standard distribution, using either an Accept–Reject algorithm based on
the uniform distribution (since h is positive)—which is then defeating the purpose
of simulating from h rather than from the uniform distribution over Θ!—or more
advanced MCMC techniques introduced later in Chapter 6. J

Fig. 5.6. Representation via persp of the function h(x, y) of Example 5.6 on [−3, 3]2.

5.3.2 Stochastic gradient methods

Given that generating direct simulations from the target function H defined in
the previous section is often a major difficulty, a different stochastic approach
to the maximization of h is to explore the surface of h in a local manner (that
is, by defining a sequence {θj}j by moving from θj to θj+1 in a dependent
step) rather than independently as in the basic stochastic search algorithm.
The dependence of θj+1 on θj is often chosen to be linear, in the sense that
it is represented as

(5.3) θj+1 = θj + εj ,



5.3 Stochastic search 137

where εj is the local perturbation of the current value. In mathematical terms,
this makes the sequence {θj}j a Markov chain. While there is a connection
between those methods and the MCMC algorithms (Chapters 6 and 7), the
Markov property, however, is less important in the present setting simply
because the mathematics justifying the convergence to a global maximum
is too advanced to be considered here (see, e.g., Hàjek, 1988 or Haario and
Sacksman, 1991).

When considering the implementation of the local update idea in (5.3),
the perturbation εj can be simulated from an arbitrary distribution such as
a Np(0, σ2Ip) distribution if Θ ⊂ Rp. However, given that we are specifically
searching for the maximum of h, using some information about h in construct-
ing the distribution of the perturbation is bound to increase the efficiency of
the method. In particular, it makes sense to favor moves increasing in h over
moves decreasing in h, even though the latter should not be impossible if you
want to avoid local maxima. A natural approach is to use the gradient of h,
∇h, if available.

In numerical optimization, the gradient method is a deterministic numerical
approach to the optimization problem (5.1) related to the Newton–Raphson
method already introduced in Section 5.2. It produces a sequence {θj} defined
by

(5.4) θj+1 = θj + αj∇h(θj) , αj > 0 ,

that converges to the exact solution of (5.1), θ∗, when the domain Θ ⊂ Rd
and the function (−h) are both convex—thus assuming there exists a sin-
gle maximum—and for various choices of the decreasing sequence {αj} (see
Thisted, 1988). For less regular problems, the gradient sequence is most likely
to get stuck in a local extremum of the function h.

Stochastic gradient methods take advantage of this method to build the
perturbation in (5.3). For instance, the finite-difference proposal is to build a
numerical substitute to the true gradient

∇h(θj) ≈
h(θj + βjζj)− h(θj + βjζj)

2βj
ζj =

∆h(θj , βjζj)
2βj

ζj ,

where (βj) is a second decreasing sequence and ζj is uniformly distributed
over the unit sphere ||ζ|| = 1. In contrast to the deterministic approach, the
update

(5.5) θj+1 = θj +
αj
2βj

∆h(θj , βjζj) ζj

does not proceed along the steepest slope of h in θj since each time it picks
the direction at random, but this property is generally a plus in the sense that
it may avoid being trapped in local maxima or in saddlepoints of h.



138 5 Monte Carlo Optimization

Whether or not {θj} defined by (5.5) does converge to the argument θ∗

of (5.1) will highly depend on the choice of the sequences {αj} and {βj}.
For instance, αj needs to decrease slowly enough to 0 for the corresponding
series

∑
j αj to diverge, while βj must decrease even more slowly for the series∑

j(αj/βj)
2 to converge (Spall, 2003, Chapter 6).

Example 5.7. (Continuation of Example 5.6) We apply the iterative con-
struction (5.5) to the multimodal function h(x, y) with different sequences of αj ’s
and βj ’s to check for their impact. A natural stopping rule for the algorithm is to
check for stabilization in the sequence θj , leading to the R implementation

> start=c(.65,.8)
> theta=matrix(start,ncol=2)
> diff=iter=1
> while (diff>10^-5){
+ zeta=rnorm(2)
+ zeta=zeta/sqrt(t(zeta)%*%zeta)
+ grad=alpha[iter]*zeta*(h(theta[iter,]+beta[iter]*zeta)-
+ h(theta[iter,]-beta[iter]*zeta))/beta[iter]
+ theta=rbind(theta,theta[iter,]+grad)
+ dif=sqrt(t(grad)%*%grad)
+ iter=iter+1}

where the sequences of αj ’s and βj ’s have to be inserted. When running this R
code, we actually had to include an inner safety loop

> scale=sqrt(t(grad)%*%grad)
> while (scale>1){
+ zeta=rnorm(2);zeta=zeta/sqrt(t(zeta)%*%zeta)
+ grad=alpha[iter]*zeta*(h(theta[iter,]+beta[iter]*zeta)-
+ h(theta[iter,]-beta[iter]*zeta))/beta[iter]
+ scale=sqrt(t(grad)%*%grad)}

to protect against diverging evaluations of the gradient grad that occur from
time to time and lead the program to abort.

The different sequences we tested are

Scenario 1 2 3 4

αj 1/ log(j + 1) 1/100 log(j + 1) 1/(j + 1) 1/(j + 1)
βj 1/ log(j + 1).1 1/ log(j + 1).1 1/(j + 1).5 1/(j + 1).1

Note that, in each case, the decrease in the second sequence is much slower than
for the first sequence. When using faster sequences (βj), you should check that
the method does not necessarily converge to the global minimum.

Figure 5.7 illustrates on single runs (you are encouraged to duplicate those
runs) that, depending on the speed of convergence of (αj), the global minimum
is correctly approximated or not. In the case of scenario 1, where both αj and βj
decrease very slowly, it appears that the perturbation lacks the energy necessary



5.3 Stochastic search 139

Fig. 5.7. Single realizations of stochastic gradient paths for four different choices
of the sequences (αj) and (βj) with the same starting point (0.65, 0.8): Scenario 1
corresponds to (αj , βj) = (1/100 log(j + 1), 1/ log(j + 1).1), scenario 2 corresponds
to (αj , βj) = (1/ log(j + 1), 1/ log(j + 1).1), scenario 3 corresponds to (αj , βj) =
(1/(j+1), 1/(j+1).5), and scenario 4 corresponds to (αj , βj) = (1/(j+1), 1/(j+1).1).
The function h to be minimized is defined in Example 5.6 and the minimum of h is
achieved at the central point (0, 0).

to reach the global minimum, while multiplying (αj) by 100 shows a sequence
θj that does not stabilize quickly enough to remain at the global minimum (as
can be checked via theta[iter,]). For the geometric decreases of scenarios 3
and 4, the difference in the power involved in βj does not significantly impact the
ability to uncover the true minimum of h. J



140 5 Monte Carlo Optimization

Exercise 5.5 Reproduce the analysis of Example 5.7 above about the impact
of the dynamics of the sequences αj and βj on the convergence of the finite-
difference method in the setting of the mixture likelihood of Example 5.2.

5.3.3 Simulated annealing

This alternative method constructs the sequence in (5.3) by simulating the
εj ’s in a completely different manner. Rather than aiming to follow the slopes
of the function h (or a monotonic transform H), simulated annealing defines
a sequence {πt} of densities whose maximum arguments are confounded with
the arguments of maxh and with higher and higher concentrations around
this argument. Each θt in the sequence is then simulated from the density πt
according to a specific update mechanism.

The name of this algorithm is borrowed from metallurgy (see Robert and
Casella, 2004, and Spall, 2003, for details). The method was introduced by
Kirkpatrick et al. (1983), the theory behind it being discussed in Geman and
Geman (1984) and Van Laarhoven and Aarts (1987) for the discrete case
and in Haario and Sacksman (1991) and Del Moral and Miclo (1999) for the
continuous one, but certainly not in this book, due to its complexity (see, e.g.,
an illustration in the Appendix of Chapter 8 in Spall, 2003).

The construction of the sequence of densities {πt} is obviously the central
issue when designing a simulated annealing algorithm. The most standard
choice is based on the Boltzman–Gibbs transforms of h,

(5.6) πt(θ) ∝ exp(h(θ)/Tt) ,

where the sequence of temperatures, {Tt}, is decreasing (under the assump-
tion that the right-hand side of (5.6) is integrable). It is indeed clear that,
as Tt decreases toward 0, values simulated from πt become concentrated in
a narrower and narrower neighborhood of the maximum (or maxima) of h.
The additional feature of simulated annealing, when compared with the basic
simulation approach of Section 5.3.1, is that this technique does not simulate
an entire sample from πt at each iteration t but accelerates convergence by
simulating a single realization from πt. It thus updates both the sequence and
the target distribution at each iteration t.

The choice (5.6) is a generic solution to concentrate (in t) the distribu-
tion πt around the maxima of an arbitrary function h, but other possibilities
are available in specific settings. For instance, when maximizing a likelihood
`(θ|x), the pseudo-posterior distributions πt(θ|x) ∝ `(θ|x)mtπ0(θ), associated
with a nondecreasing integer sequence {mt} and an arbitrary prior π0, enjoy
the same property. This alternative is obviously more intuitive from a sta-
tistical point of view since it amounts to using a regular likelihood with a



5.3 Stochastic search 141

sample replicated (mt−1) times, and it has been introduced in Robert (1993)
under the name of prior feedback (see also Robert and Casella, 2004, Section
5.2.4) and studied for latent variable models in Doucet et al. (2002) under
the acronym of SAME (state augmentation for marginal estimation). (This
algorithm has been rediscovered under various names by Gaetan and Yao,
2003, Lele et al., 2007 or Jacquier et al., 2007.) Simulation algorithms used in
Bayesian analysis such as those presented in Chapters 6 and 7 can obviously
be recycled for this purpose.

Exercise 5.6 For the Cauchy likelihood of Example 5.1, based on a simulated
sample of size n = 100, show that the pseudo-posterior distribution πm(θ|x) ∝
`(θ|x)m is defined for any integer m > 0. Using integrate to properly normalize
πm, show graphically how πm concentrates as m increases.

Two practical issues that hinder the implementation of this otherwise at-
tractive algorithm are (a) the simulation from πt and (b) the selection of
the temperature sequence (or schedule) {Tt}. While the second item is very
problem-dependent, the first item allows a generic solution, related to the
Metropolis–Hastings algorithm, first proposed by Metropolis et al. (1953) and
detailed in Chapter 6. The update from θt to θt+1 is indeed based on the
Metropolis–Hastings step: ζ is generated from a distribution with symmetric
density g, and the new value θt+1 is generated as

θt+1 =

{
θt + ζ with probability ρ = exp(∆h/Tt) ∧ 1 ,
θt with probability 1− ρ,

where ∆h = h(ζ + θt)− h(θt).
Since we are not interested in proving convergence results for this algo-

rithm, we will postpone until the next chapter the proof that this transi-
tion preserves the distribution πt (provided it exists) and will focus on its
connection with the maximization problem. Instead of looking for a deter-
ministic or stochastic gradient, the algorithm proposes a symmetric pertur-
bation of the current value, θt + ζ. If the perturbation increases h (i.e., if
h(θt + ζ) ≥ h(θt)), the new value is automatically accepted. On the other
hand, if h(θt + ζ) < h(θt), this move may still be accepted with probability
ρ > 0. Otherwise, a new perturbation θt+ζ is created and tested (from a max-
imization viewpoint, the fact that θt+1 = θt does not really matter, except
in the determination of the stopping rule). By allowing random moves that
may see h decrease, the simulated annealing method can explore multimodal
functions and escape the attraction of local modes as opposed to deterministic
(and to some extent stochastic) gradient methods.

The algorithmic rendering of the simulated annealing is thus



142 5 Monte Carlo Optimization

Algorithm 2 Simulated Annealing
At iteration t,

1. Simulate ζ ∼ g(ζ);
2. Accept θt+1 = θt + ζ with probability

ρt = exp{∆ht/Tt} ∧ 1;
take θt+1 = θt otherwise.

the density g being symmetric (around 0) but otherwise almost arbitrary.
An R version of this algorithm is associated with a random generator from

g, randg, as in Algorithm 1,

> theta=rep(theta0,Nsim)
> hcur=h(theta0)
> xis=randg(Nsim)
> for (t in 2:Nsim){
+ prop=theta[t-1]+xis[t]
+ hprop=h(prop)
+ if (Temp[t]*log(runif(1))<hprop-hcur){
+ theta[t]=prop
+ hcur=hprop
+ }else{
+ theta[t]=theta[t-1]}}

where the temperature sequence Temp needs to be defined by the user.
Obviously, the performance of the algorithm will depend on the choice

of g. For instance, if g corresponds to perturbations with a large scale, the
moves will most often be rejected because ∆ht will be negative most of the
time. On the other hand, if the scale of g is small, the sequence {θt} will have
difficulties in exploring several modes and will most likely end up being stuck
at the mode it started with, thus cancelling the appeal of the method. As
will be discussed in Chapter 6, a proper scaling of g should correspond to an
acceptance rate between .2 and .6.

Example 5.8. (Continuation of Example 5.3) For the simple function
from Example 5.3, h(x) = [cos(50x) + sin(20x)]2 , we can compare the impact
of using different temperature schedules on the performance of the simulated
annealing sequences. Note that, besides setting a temperature sequence, we also
need to set a scale value (or sequence) for the distribution g of the perturbations
as well as a stopping rule. Since the domain is [0, 1], we use a uniform U(−ρ, ρ)
distribution for g and our stopping rule is that the algorithm will stop when the
observed maximum of h has not changed in the second half of the sequence {xt}.

An R rendering of this simulated annealing algorithm is

> x=runif(1)
> hval=hcur=h(x)



5.3 Stochastic search 143

> diff=iter=1
> while (diff>10^(-4)){
+ prop=x[iter]+runif(1,-1,1)*scale
+ if ((prop>1)||(prop<0)||

(log(runif(1))*temp[iter]>h(prop)-hcur))
+ prop=x[iter]
+ x=c(x,prop)
+ hcur=h(prop)
+ hval=c(hval,hcur)
+ if ((iter>10)&&(length(unique(x[(iter/2):iter]))>1))
+ diff=max(hval)-max(hval[1:(iter/2)])
+ iter=iter+1}

The constraint involving unique is cancelling the stopping rule when no pertur-
bation has been accepted in the second half of the iterations, meaning that the
scale may then be inappropriate. (Note that the updates of temp and scale need
to be included in the loop.)

For a scale defined by
√
Tt and a temperature decrease in 1/ log(1 + t), the

sequence almost always ends up at a value close to the true maximum. Similarly,
a scale defined by 5

√
Tt and a temperature decrease in 1/(1 + t)2 leads almost

certainly to the global maximum, as shown on Figure 5.8 (where the last example
was obtained after several runs). Decreasing the scale by a factor of ten has a
clear and negative impact on the performance of the algorithm. J

You can, in particular, check by testing the code above that the faster Tt
decreases to 0, the less likely the simulated annealing sequence is to leave the
current mode.

While there exist theoretical results about temperature schedules that
guarantee convergence of the simulated annealing algorithm, they have lit-
tle practical value because they depend on calibration constants that are
problem-related. The general recommendation for the temperature decrease
is that it should be logarithmic, as in Ti = Γ/ log i, rather than geometric,
Ti = αiT0, even though the former induces very slow convergence patterns.
Adaptive strategies that update temperature and scale after learning episodes
of several iterations that evaluate acceptance rates and maximum increase are
thus recommended, even though their validation is mostly empirical.

The fact that approximate methods are necessary for optimization prob-
lems in finite state spaces may sound rather artificial and unnecessary, but
the spaces involved in some modelings can be huge. For instance, in the trav-
eling salesman problem, comparing all possible travels between n consecutive
towns is of order O(n!), which amounts to 10158 possible sequences for n = 100
towns. In the mixture setting of Example 5.2, the number of partitions of a
sample of 400 observations into two groups is 2400 (i.e., more than 10120). In
genetics, the analysis of DNA sequences may involve 600, 000 bases (A, C,



144 5 Monte Carlo Optimization

Fig. 5.8. Realizations of four simulated annealing sequences for Tt = 1/(t+1)2 and
ρ = 5

√
Tt over the graph of the function h (grey). Note that the points represented

on the graph of h correspond to successive accepted values in Algorithm 2 and do
not reflect the number of iterations.

G, or T), which corresponds to state-spaces of size 4600,000 if we consider all
possible combinations.

Example 5.9. Using the same normal mixture likelihood as in Example 5.2,
we can implement the simulated annealing algorithm for this example using for
instance the following R function:

SA=function(x){
temp=scale=iter=dif=factor=1
the=matrix(x,ncol=2)
curlike=hval=like(x)



5.3 Stochastic search 145

while (dif>10^(-4)){
prop=the[iter,]+rnorm(2)*scale[iter]
if ((max(-prop)>2)||(max(prop)>5)||

(temp[iter]*log(runif(1))>-like(prop)+curlike))
prop=the[iter,]

curlike=like(prop);hval=c(hval,curlike);the=rbind(the,prop)
iter=iter+1;temp=c(temp,1/10*log(iter+1))
ace=length(unique(the[(iter/2):iter,1]))
if (ace==1) factor=factor/10
if (2*ace>iter) factor=factor*10
scale=c(scale,max(2,factor*sqrt(temp[iter])))
dif=(iter<100)+(ace<2)+(max(hval)-max(hval[1:(iter/2)]))
}
list(theta=the,like=hval,ite=iter)

}

As shown in Figure 5.9, the outcome is quite satisfactory. Most sequences end
up in a close neighborhood of the maximum. It is also of interest to notice that
the sequences are quite insensitive to the proximity of a given mode in that they
most often visit the other mode before converging. (You should check that other
realizations of the sequences may visit the second mode of the likelihood.) J

Exercise 5.7 In the setting of Example 5.9, build a Monte Carlo experiment
that evaluates the frequency of visits to both modes of the likelihood for different
temperature schedules.

Example 5.10. (Continuation of Example 5.6) We can also apply Algo-
rithm 2 to find the minimum of the function h of Example 5.6. The perturbation
is chosen to be Gaussian

> prop=the[iter,]+scale[iter]*rnorm(2)

as in the previous examples, and the scale is based on the current temperature,

> scale=min(.1,5*factor*sqrt(temp[iter]))

where factor depends on the acceptance rate of the algorithm, as in Example
5.9. As illustrated by Figure 5.10, the results change with the rate of decrease of
the temperature Ti, both in the minima obtained (this will vary depending on the
simulation, as you should check) and in the pattern of exploration of the valleys
of h on both sides of the central zone. (Note that the heading of the four graphs
was obtained by

> title(main=paste("min",format(-max(hval),dig=3),sep=" "))

using format to control the number of digits.) J



146 5 Monte Carlo Optimization

Fig. 5.9. Six simulated annealing sequences for a temperature schedule Tt =
1/ log(1 + t) based on a sample of 400 observations from the normal mixture (5.2)
with µ1 = 0 and µ2 = 2.5.

5.4 Stochastic approximation

We now consider methods that work more directly with the objective function
h rather than being concerned with fast exploration of the domain Θ for its
optimization. Informally speaking, simulation is used in these methods to
approximate the function h. In particular, when compared with the previous
section, the use of those methods results in an additional level of error due to
this approximation of h.

Although this may sound like an overspecialized problem at this stage, we
will see in Section 5.4.2 that many statistical problems can be expressed in
terms of an objective function h written as E[H(x, Z)]. This is the setting of
so-called missing-data models, which arise in many realistic setups. Moreover,
note that artificial extensions (or demarginalization), which use this repre-
sentation, are only computational devices and do not invalidate the overall
inference. Before launching into their description, we cover the specific issue
of maximizing an approximation of h.

5.4.1 Optimizing Monte Carlo approximations

If h(x) can be written as E[H(x, Z)] but is not directly computable, a natural
Monte Carlo approximation of h is



5.4 Stochastic approximation 147

Fig. 5.10. Simulated annealing sequences for four temperature schedules: Tt =
(.95)t, Tt = 1/10(t+ 1), Tt = 1/ log(1 + t), and Tt = 1/10

p
log(1 + t), and starting

point (0.65, 0.8), aimed at minimizing the function h of Example 5.6. The light dot
on top of the sequence corresponds to the final stage of the sequence {θt} and not
necessarily the minimizer of h.

(5.7) ĥ(x) =
1
m

m∑
i=1

H(x, zi),

where the Zi’s are generated from the conditional distribution f(z|x). This
approximation yields a convergent estimator of h(x) for every value of x (that
is, it provides a pointwise convergent estimator), but its use in optimization
setups is not recommended because, since the sample of Zi’s changes with
every value of x, using an iterative optimization algorithm over the x’s will
result in an unstable sequence of evaluations of h and thus in a rather noisy
resolution to arg maxh(x).

Example 5.11. In the Bayesian analysis of a simple probit model, where a binary
variable Y ∈ {0, 1} is distributed conditionally on a covariate X as



148 5 Monte Carlo Optimization

Pθ(Y = 1|X = x) = 1− Pθ(Y = 0|X = x) = Φ(θ0 + θ1x) ,

it is of interest to derive the marginal posterior mode of, say, θ0. For illustration
purposes, we will use here the Pima.tr dataset already presented in Chapter 1,
X being chosen as the body mass index variate, bmi, and Y as the indicator for
diabetes, type. The marginal posterior mode is obtained as

arg max
θ0

∫ ∏
i=1

Φ(θ0 + θ1xn)yiΦ(−θ0 − θ1xn)1−yi dθ1 = arg max
θ0

h(θ0)

for a flat prior on θ and a sample (x1, . . . , xn). Given the lack of analytic expression
for this integral, the function h is then only defined as an expectation in θ1.
Since the conditional distribution of θ1 given θ0 is also nonstandard, we opt for
an importance sampling approximation. Using as the importance function a t
distribution with 5 degrees of freedom, mean µ = 0.1, the MLE of θ1, and scale
σ = 0.03 the standard deviation provided by glm, we can construct a sample of
θm1 (m = 1, . . . ,M) and replace h(θ0) with

ĥ0(θ0) =
1
M

M∑
m=1

∏
i=1

Φ(θ0 + θm1 xn)yiΦ(−θ0 − θm1 xn)1−yi t5(θm1 ;µ, σ)−1 ,

where t5(θ1;µ, σ) denotes the corresponding t density. Plotting this approximation
of h with t samples simulated for each value of θ0 using the R function

margap=function(a){
b=rt(10^3,df=5)
dtb=dt(b,5,log=T)
b=b*.1+.1
themar=0
for (i in 1:10^3)
themar=themar+exp(like(a,b[i])-dtb[i])

themar/10^3
}

(with like being defined as the probit likelihood as detailed in the remark below)
shows how variable the approximation can be. Figure 5.11 (top) illustrates this

variation both for one realization of ĥ and for a range of its variation based on
100 copies. It is obvious that the maximization of the represented ĥ function is
not to be trusted as an approximation to the maximization of h.

In comparison, if we use the same t sample for all values of θ0, we obtain
a much smoother function, as shown by the central panel of Figure 5.11. While
the range is naturally the same as in the top panel, the smoothness of the result-
ing ĥ function allows for a more trustworthy approximation. The bottom panel
compares the averages of the approximations ĥ over the 100 replications for both
approaches, showing no visible difference, which indicates that the corresponding
105 simulations are sufficient to produce a stable approximation of h. J



5.4 Stochastic approximation 149

Fig. 5.11. Monte Carlo approximations of the marginal posterior of the probit
posterior distribution associated with the Pima.tr dataset based on 103 simulations
from a t5(θm1 ;µ, σ) distribution. (top) Range of 100 replications of the approxima-

tion bh when simulating a different t sample for each value of θ0 and overlay of one
replication; (middle) range of 100 replications of the approximation bh when simulat-
ing the same t sample for each value of θ0 and overlay of one replication; (bottom)
comparison of the averages of both experiments (the dotted graph corresponding to
the top experiment is not distinguishable from the other graph).

In order to handle vectors in the function like, we had to define it as

like=function(a,b){
apply(pnorm(-a-outer(X=b,Y=da[,2],FUN="*"),lo=T)*(1-da[,1])
+pnorm(a+outer(X=b,Y=da[,2],FUN="*"),lo=T)*da[,1],1,sum)}

due to the use of vectors in pnorm. Otherwise, it is impossible to apply func-
tions like integrate to exp(like(a,x)). You can also check that the function
integrate is completely unstable and thus untrustworthy in this example.

As illustrated by the example above, the type of approximation that is
needed is a uniformly convergent approximation of h in order to trust ĥ(x)
for any value of x. It thus makes sense instead to use importance sampling



150 5 Monte Carlo Optimization

based on a single sample of Zi’s simulated from an importance function g(z)
for all values of x and to estimate h(x) with

(5.8) ĥm(x) =
1
m

m∑
i=1

f(zi|x)
g(zi)

H(x, zi).

Solving
max
x

ĥm(x)

leads to a convergent solution of (5.1) in most cases and also allows the use
of regular optimization techniques since the function ĥm does not vary at
each iteration. Nonetheless, this approach is not absolutely fool-proof in that
the precision of ĥm(x) has no reason to be independent of x. The number
m of simulations thus has to be set by considering the most varying case.
Furthermore, as in every importance sampling experiment, the choice of the
importance function g is influential in obtaining a good (or a disastrous)
approximation of the function h(x). Checking for the finite variance of the
ratio f(zi|x)H(x, zi)

/
g(zi) for all values of x is thus a requirement in the

choice of g, even though it is not necessarily implementable in practice.

5.4.2 Missing-data models and demarginalization

Missing data models are special cases of the representation h(x) = E[H(x, Z)]
best thought of as models where the density of the observations can be ex-
pressed as

(5.9) g(x|θ) =
∫
Z
f(x, z|θ) dz .

This representation occurs in many statistical settings, including censoring
models and mixtures and latent variable models (tobit, probit, arch, stochastic
volatility, etc.). Slice sampling (Section 7.4) is also an example of artificial
missing data.

Example 5.12. The mixture model of Example 5.2 can be expressed as a
missing-data model even though the (observed) likelihood can be computed in
a manageable time. Indeed, if we introduce a vector (z1, . . . , zn) ∈ {1, 2}n in
addition to the sample (x1, . . . , xn) such that

Pθ(Zi = 1) = 1− Pθ(Zi = 2) = 1/4 , Xi|Zi = z ∼ N (µz, 1) ,

we recover the mixture model (5.2) as the marginal distribution of Xi. The (ob-
served) likelihood is then obtained as E[H(x,Z)] for

H(x, z) ∝
∏

i; zi=1

1
4

exp
{
−(xi − µ1)2/2

} ∏
i; zi=2

3
4

exp
{
−(xi − µ2)2/2

}
,



5.4 Stochastic approximation 151

where x denotes2 (x1, . . . , xn) and z denotes (z1, . . . , zn) ∈ {1, 2}n. J

Example 5.13. Censored data may come from experiments where some poten-
tial observations are replaced with a lower bound because they take too long to
observe. Suppose that we observe Y1, . . ., Ym, iid, from f(y − θ) and that the
(n −m) remaining (Ym+1, . . . , Yn) are censored at the threshold a. The corre-
sponding likelihood function is then

(5.10) L(θ|y) = [1− F (a− θ)]n−m
m∏
i=1

f(yi − θ),

where F is the cdf associated with f and y = (y1, . . . , ym). If we had observed
the last n −m values, say z = (zm+1, . . . , zn), with zi ≥ a (i = m + 1, . . . , n),
we could have constructed the (complete data) likelihood

Lc(θ|y, z) =
m∏
i=1

f(yi − θ)
n∏

i=m+1

f(zi − θ) .

Note that

L(θ|y) = E[Lc(θ|y,Z)] =
∫
Z
Lc(θ|y, z)f(z|y, θ) dz,

where f(z|y, θ) is the density of the missing data conditional on the observed data,
namely the product of the f(zi − θ)/[1− F (a− θ)]’s; i.e., f(z − θ) restricted to
(a,+∞). J

From the perspective of this chapter, when (5.9) holds, the vector Z merely
serves to simplify calculations, as it does not necessarily have a specific mean-
ing for the corresponding statistical problem. It can still be seen as a missing-
data model in the sense that Z can be interpreted as missing from the obser-
vations. We thus refer to the function Lc(θ|x, z)) = f(x, z|θ) as the “complete
model” or “complete-data” likelihood, which is the likelihood we would ob-
tain were we to observe (x, z), also called the complete data, albeit a misnomer
since this is not truly data. This is a special case of demarginalization, a set-
ting where a function of interest can be expressed as the integral of a more
manageable quantity with no further constraint. We will meet such setups
again in Chapter 7.

The following sections consider a hybrid strategy where the approximation
of the objective function h and its maximization are grouped together in
a single procedure. In the simplest cases, there is no randomness involved,
and this leads to the EM algorithm, presented in Section 5.4.3. More general
versions involving Monte Carlo steps are described in Section 5.4.4.
2 In this section, in order to keep up with the traditional representation used for

missing-data problems and the EM algorithm, we depart from our convention
of denoting scalars and vectors with the same notation, using instead boldfaced
symbols to represent samples of observed or latent variables.



152 5 Monte Carlo Optimization

5.4.3 The EM algorithm

The EM (which stands for expectation–maximization) algorithm is a deter-
ministic optimization technique (Dempster et al., 1977) that takes advantage
of the representation (5.9) to build a sequence of easier maximization problems
whose limit is the answer to the original problem.

We thus assume that we observe X1, . . . , Xn, jointly distributed from
g(x|θ) that satisfies

g(x|θ) =
∫
Z
f(x, z|θ) dz,

and that we want to compute θ̂ = arg maxL(θ|x) = arg max g(x|θ). Since the
augmented data is z, where (X,Z) ∼ f(x, z|θ) the conditional distribution of
the missing data Z given the observed data x is

k(z|θ,x) = f(x, z|θ)
/
g(x|θ) .

Taking the logarithm of this expression leads to the following relationship
between the complete-data likelihood Lc(θ|x, z) and the observed-data likeli-
hood L(θ|x). For any value θ0,

(5.11) logL(θ|x) = Eθ0 [logLc(θ|x,Z)]− Eθ0 [log k(Z|θ,x)],

where the expectation is with respect to k(z|θ0,x). In the EM algorithm, while
we aim at maximizing logL(θ|x), only the first term on the right side of (5.11)
will be considered.

Denoting
Q(θ|θ0,x) = Eθ0 [logLc(θ|x,Z)],

the EM algorithm indeed proceeds iteratively by maximizing Q(θ|θ0,x) at
each iteration and, if θ̂(1) is the value of θ maximizing Q(θ|θ0,x), by replacing
θ0 by the updated value θ̂(1). In this manner, a sequence of estimators {θ̂(j)}j
is obtained, where θ̂(j) is defined as the value of θ maximizing Q(θ|θ̂(j−1),x);
that is,

(5.12) Q(θ̂(j)|θ̂(j−1),x) = max
θ

Q(θ|θ̂(j−1),x).

This iterative scheme thus contains both an expectation step and a maximiza-
tion step, giving the algorithm its name.

Algorithm 3 The EM Algorithm
Pick a starting value θ̂(0)
Repeat



5.4 Stochastic approximation 153

1. Compute (the E-step)

Q(θ|θ̂(m),x) = Eθ̂(m)
[logLc(θ|x,Z)] ,

where the expectation is with respect to k(z|θ̂(m),x) and
set m = 0.

2. Maximize Q(θ|θ̂(m),x) in θ and take (the M-step)

θ̂(m+1) = arg max
θ

Q(θ|θ̂(m),x)

and set m = m+ 1
until a fixed point is reached; i.e., θ̂(m+1) = θ̂(m).

By virtue of Jensen’s inequality, it is easy (see, e.g., Robert and Casella,
2004, Theorem 5.15) to show that, at each step of the EM algorithm, the
likelihood on the left side of (5.11) increases,

L(θ̂(j+1)|x) ≥ L(θ̂(j)|x),

with equality holding if and only if Q(θ̂(j+1)|θ̂(j),x) = Q(θ̂(j)|θ̂(j),x). This
means that, under some conditions, every limit point of an EM sequence {θ̂(j)}
is a stationary point of L(θ|x), albeit not necessarily the maximum likelihood
estimator or even a local maximum (see Wu, 1983, Theorem 3, or Boyles, 1983,
for precise convergence results). It thus means that, in practice, running the
EM algorithm several times with different, randomly chosen starting points
is recommended if one wants to avoid using a poor approximation to the
true maximum. (This is the only element of randomness involved in the EM
algorithm since using the same starting point θ̂(0) ends up in the same fixed
point.)

Implementing the EM algorithm thus means being able (a) to compute
the function Q(θ′|θ,x) and (b) to maximize this function. Numerous missing-
data models can actually be processed that way, as illustrated in the following
examples.

Example 5.14. (Continuation of Example 5.13) If the distribution f(x−
θ) corresponds to the N (θ, 1) distribution, the complete-data likelihood is

Lc(θ|y, z) ∝
m∏
i=1

exp{−(yi − θ)2/2}
n∏

i=m+1

exp{−(zi − θ)2/2} ,

resulting in the expected complete-data log-likelihood

Q(θ|θ0,y) = −1
2

m∑
i=1

(yi − θ)2 −
1
2

n∑
i=m+1

Eθ0 [(Zi − θ)2] ,



154 5 Monte Carlo Optimization

where the missing observations Zi are distributed from a normal N (θ, 1) distribu-
tion truncated in a. Doing the M-step (i.e., differentiating the function Q(θ|θ0,y)
in θ) and setting it equal to 0 then leads to the EM update

θ̂ =
mȳ + (n−m)Eθ′ [Z1]

n
.

Since Eθ[Z1] = θ + ϕ(a−θ)
1−Φ(a−θ) , where ϕ and Φ are the normal pdf and cdf,

respectively, the EM sequence is

(5.13) θ̂(j+1) =
m

n
ȳ +

n−m
n

[
θ̂(j) +

ϕ(a− θ̂(j))
1− Φ(a− θ̂(j))

]
.

The corresponding R implementation of the update is an easy recursion:

> theta=rnorm(1,mean=ybar,sd=sd(y))
> iteronstop=1
> while (nonstop){
+ theta=c(theta,m*ybar/n+(n-m)*(theta[iter]+
+ dnorm(a-theta[iter])/pnorm(a-theta[iter]))/n)
+ iter=iter+1
+ nonstop=(diff(theta[iter:(iter+1)])>10^(-4)) }

As can be checked when testing this program with arbitrary values of the pa-
rameters n, m, a, and ȳ, convergence to the maximum is quite rapid. Figure
5.12 illustrates this point by representing some sequences {θ(j)}j climbing the
log-likelihood function. J

The example above is completely formal in that the observed likelihood
can be computed in exact form, as shown by the graph in Figure 5.12, and
optimized numerically. Thus, EM is not needed in this setting!

Exercise 5.8 Write an R code producing the likelihood (5.10) for a normal
sample. Derive the numerical maximum likelihood estimator using optimise.
Design a Monte Carlo experiment that studies the variation of the EM solutions
around this numerical optimum.

Example 5.15. (Continuation of Example 5.12) Using the normal mix-
ture likelihood of Examples 5.2 and 5.9, we saw in Figures 5.2 and 5.9 that the
likelihood is bimodal when associated with a sample from the normal mixture (see
Exercise 5.13 for a setup producing an alternative number of modes). Using the
missing data structure exhibited in Example 5.12 leads to an objective function
equal to

Q(θ′|θ,x) = −1
2

n∑
i=1

Eθ
[
Zi(xi − µ1)2 + (1− Zi)(xi − µ2)2

∣∣x] .



5.4 Stochastic approximation 155

Fig. 5.12. Representation by dotted lines of 11 EM sequences started at random
for the censored likelihood (5.10) when the data is normal, ȳ = 0, a = 1, n = 30,
and m = 20, on top of the true log-likelihood (grey curve).

Solving the M-step then provides the closed-form expressions

µ′1 = Eθ

[
n∑
i=1

Zixi|x

]/
Eθ

[
n∑
i=1

Zi|x

]

and

µ′1 = Eθ

[
n∑
i=1

(1− Zi)xi|x

]/
Eθ

[
n∑
i=1

(1− Zi)|x

]
.

Since

Eθ [Zi|x] =
ϕ(xi − µ1)

ϕ(xi − µ1) + 3ϕ(xi − µ2)
,

the EM algorithm can easily be implemented in this setting. Running EM five
times with various starting points chosen as in Figures 5.2 and 5.9, we represent
in Figure 5.13 the corresponding occurrences. Two out of five sequences are
attracted by the higher mode, while two others go to the lower mode (even



156 5 Monte Carlo Optimization

Fig. 5.13. Trajectories of five runs of the EM algorithm for Example 5.15 with
their final position on the log-likelihood surface.

though the likelihood is considerably smaller) and, rather exceptionally (meaning
that repeating the experiment on your own is unlikely to make this happen!), the
fifth sequence ends up at the saddlepoint of the likelihood. Note that in a very
few iterations the value is close to the modal value, with improvement brought by
further iterations being incremental. For the current dataset, the EM sequences
can thus only end up in three different spots, represented by dots on the likelihood
surface. Note that, in comparison with the Newton–Raphson sequences in Figure
5.2, the convergence is systematically faster in that case. J

Exercise 5.9 Show that, in Example 5.15, the weights 1/4 and 3/4 are irrelevant
for the maximization of Q(θ′|θ,x).



5.4 Stochastic approximation 157

Exercise 5.10 Reproduce the analysis of Example 5.15 when the target is the
normal scale mixture (5.2) by building the complete likelihood based on the al-
location vector z = (z1, . . . , zn) and by deriving the updating step of the corre-
sponding EM algorithm. Implement the algorithm on the dataset log(deaths)
(available in library(MASS)).

This example reinforces the need for rerunning the algorithm a number
of times, each time starting from a different initial value that can be chosen
randomly, provided the range of the starting distribution is wide enough to
encompass all possible modes.

5.4.4 Monte Carlo EM

A difficulty with the implementation of the EM algorithm is that each E-step
requires the computation of the expected log-likelihood Q(θ|θ0,x). Besides
standard cases where the function Q is available in closed form, since Q is
naturally expressed as an expectation, it can be approximated using Monte
Carlo following the general rules of Section 5.4.1. This means for instance
simulating Z1, . . . ,ZT from the conditional distribution k(z|x, θ̂(m)) and then
maximizing the approximate complete-data log-likelihood

(5.14) Q̂(θ|θ0,x) =
1
T

T∑
i=1

logLc(θ|x, zi)

as suggested by Wei and Tanner (1990) under the name of Monte Carlo EM
(MCEM). However, as described in Section 5.4.1, a more stable version relies
on importance sampling in order to avoid simulating a new sample for each
new value θ̂(m). A specific solution (Geyer and Thompson, 1992) consists in
using only the conditional distribution k(z|x, θ̂(0)) due to the identity

arg max
θ
L(θ|x) = arg max

θ
log

g(x|θ)
g(x|θ(0))

= arg max
θ

log Eθ(0)

[
f(x, z|θ)
f(x, z|θ(0))

∣∣∣∣x] ,
which implies that simulating Z1, . . . ,ZT from the conditional distribution
k(z|x, θ̂(0)) provides as an approximation to the log-likelihood (modulo an
additive constant)

logL(θ|x) ≈ 1
T

T∑
i=1

Lc(θ|x, zi)
Lc(θ(0)|x, zi)

,

the stability of which depends on the choice of θ(0) in order to ensure a finite
variance for this approximation.



158 5 Monte Carlo Optimization

Example 5.16. A classic example of the EM algorithm is a genetics problem
(Dempster et al., 1977) where observations (x1, x2, x3, x4) are gathered from the
multinomial distribution

M
(
n;

1
2

+
θ

4
,

1
4

(1− θ), 1
4

(1− θ), θ
4

)
.

Estimation is easier if the x1 cell is split into two cells, so we create the augmented
model

(z1, z2, x2, x3, x4) ∼M
(
n;

1
2
,
θ

4
,

1
4

(1− θ), 1
4

(1− θ), θ
4

)
with x1 = z1+z2. The complete-data likelihood function is then simply θz2+x4(1−
θ)x2+x3 , as opposed to the observed-data likelihood function (2 + θ)x1θx4(1 −
θ)x2+x3 . The expected complete log-likelihood function is

Eθ0 [(Z2 + x4) log θ + (x2 + x3) log(1− θ)]

=
(

θ0
2 + θ0

x1 + x4

)
log θ + (x2 + x3) log(1− θ),

which can easily be maximized in θ, leading to the EM step

θ̂1 =
{

θ0 x1

2 + θ0 + x4

}/{
θ0 x1

2 + θ0
+ x2 + x3 + x4

}
.

A Monte Carlo EM solution would replace the expectation θ0 x1/(2 + θ0) with
the empirical average

zm =
1
m

m∑
i=1

zi,

where the zi’s are simulated from a binomial distribution B(x1, θ0/(2 + θ0)) or,
equivalently, by

mzm ∼ B(mx1, θ0/(2 + θ0)) .

The MCEM step would then be

̂̂
θ1 =

zm + x4

zm + x2 + x3 + x4
,

which obviously converges to θ̂1 as m grows to infinity. J

Exercise 5.11 In the setting of Example 5.16, starting from θ0 = .5, design a
Monte Carlo experiment to evaluate the variation of the MCEM sequence around
the EM sequence for m = 100 and plot the range of variation using polygon.

This example is merely a formal illustration of the Monte Carlo EM algo-
rithm and its convergence properties since EM can be applied. (In Example



5.4 Stochastic approximation 159

7.8, we will revisit this example with a Gibbs sampler.) The next example,
however, details a situation in which the E-step is too complicated to be im-
plemented and where the Monte Carlo EM algorithm provides a realistic (if
not straightforward) alternative.

Example 5.17. A simple random effect logit model processed in Booth and
Hobert (1999) represents observations yij (i = 1, . . . , n, j = 1, . . . ,m) as dis-
tributed conditionally on one covariate xij as a logit model

P (yij = 1|xij , ui, β) =
exp {βxij + ui}

1 + exp {βxij + ui}
,

where ui ∼ N (0, σ2) is an unobserved random effect. The vector of random ef-
fects (U1, . . . , Un) therefore corresponds to the missing data Z. When considering
the function Q(θ′|θ,x,y),

Q(θ′|θ,x,y) =
∑
i,j

yijE[β′xij + Ui|β, σ,x,y]

−
∑
i,j

E[log 1 + exp{β′xij + Ui}|β, σ,x,y]

−
∑
i

E[U2
i |β, σ,x,y]/2σ′2 − n log σ′ ,

with θ = (β, σ), it is impossible to compute the expectations in Ui. Were those
available, the M-step would then be almost straightforward since maximizing
Q(θ′|θ,x,y) in σ′ leads to

σ′2 =
1
n

∑
i

E[U2
i |β, σ,x,y] ,

while maximizing Q(θ′|θ,x,y) in β′ produces the fixed-point equation∑
i,j

yijxij =
∑
i,j

E
[

exp {β′xij + Ui}
1 + exp {β′xij + Ui}

∣∣∣∣β, σ,x,y] xij ,
which is not particularly easy to solve in β.

The alternative to EM is therefore to simulate the Ui’s conditional on β, σ,x,y
in order to replace the expectations above with Monte Carlo approximations.
While a direct simulation from

(5.15) π(ui|β, σ,x,y) ∝
exp

{∑
j yijui − u2

i /2σ
2
}

∏
j [1 + exp {βxij + ui}]

is feasible (Booth and Hobert, 1999), it requires some preliminary tuning better
avoided at this stage, and it is thus easier to implement an MCMC version of the
simulation of the ui’s toward the approximations of both expectations. We will



160 5 Monte Carlo Optimization

discuss how to construct a (standard) MCMC algorithm to produce samples of
ui’s in the next chapter and we assume from now on that, at each iteration of
the MCEM algorithm, we obtain an (n, T ) matrix

> mcmc(beta,sigma,x,y,T)

whose ith row is a sample of uit’s distributed from (5.15). (Both x and y are
defined as (n,m) matrices.) Given this matrix of samples, we can update σ2

by sum(u^2)/(n*T) and, for updating β, we can for instance use the function
uniroot for the target function

targ=function(beta,x,y,uni){
xs=exp(beta*x)
xxs=x*xs
ome=exp(uni)
prodct=0
for (j in 1:m) for (t in 1:T)
prodct=prodct+sum(xxs[,j]*ome[,t]/(1+xs[,j]*ome[,t]))

prodct-sum(T*x*y)
}

as in

> beta=uniroot(targ,x=x,y=y,u=u,int=mlan+10*sigma*c(-1,1))

if mlan is defined as the MLE of β when there is no random effect:

> mlan=as.numeric(glm(as.vector(y)∼as.vector(x)-1,
+ fa=binomial)$coe)

The entire MCEM step is therefore produced by

> T=1000 #Number of MCEM simulations
> beta=mlan
> sigma=diff=iter=factor=1
> while (diff>10^-3){
+ samplu=mcmc(beta[iter],sigma[iter],x,y,T)
+ sigma=c(sigma,sd(as.vector(samplu)))
+ beta=c(beta,uniroot(targ,x=x,y=y,u=samplu,
+ inter=mlan+c(-10*sigma,10*sigma)))
+ diff=max(abs(diff(beta[iter:(iter+1)])),
+ abs(diff(sigma[iter:(iter+1)])))
+ iter=iter+1
+ T=T*2}

where the last line T=T*2 of the while loop is intended to stabilize the MCEM
sequence by increasing the number of Monte Carlo steps at each iteration, as
suggested in Wei and Tanner (1990), McCulloch (1997), and Booth and Hobert
(1999). The stopping rule is based on this stabilization of the MCEM values, even
though an alternative criterion based on the Monte Carlo approximation to the
(observed) likelihood



5.4 Stochastic approximation 161

like=function(beta,sigma){
lo=0
for (t in 1:(10*T)){
uu=rnorm(n)*sigma
lo=lo+exp(sum(as.vector(y)*(beta*as.vector(x)+rep(uu,m)))-

sum(log(1+exp(beta*as.vector(x)+rep(uu,m))))) }
lo/T
}

could be used as well. Figure 5.14 shows the sequence of θ’s produced by this
algorithm as well as how the sequence of completed likelihoods evaluated at the
true random effects evolves with β. J

In the example above, when using the R procedure uniroot in conjunction
with the target function targ, the last argument of targ cannot be chosen to
be u, as in

> targ=function(beta,x,y,u)

because it would then create confusion with the upper argument of uniroot

> uniroot(targ,int=c(-5*sigma0,5*sigma0),x=x,y=y,u=samplu)
Error in f(lower, ...) : argument "u" is missing, with
no default

while using the argument uni avoids the confusion:

> uniroot(targ,int=c(-5*sigma0,5*sigma0),x=x,y=y,uni=samplu)
$root
[1] -2.995976
$f.root
[1] 0.003151796
$iter
[1] 10
$estim.prec
[1] 6.103516e-05

Exercise 5.12 Show that (5.15) can be simulated using an Accept–Reject al-
gorithm based on a normal proposal. Examine the performance of this algorithm
in terms of acceptance probability when using a simulated sample with the same
parameters as in Figure 5.14. (Hint: See Booth and Hobert (1999) for a version
that does not require a different maximization for each new value of β, as well as
an importance sampling alternative.)

� Note that the MCEM algorithm no longer enjoys the fundamental EM
monotonicity property. It is therefore important to assess that the se-



162 5 Monte Carlo Optimization

Fig. 5.14. MCEM estimation of the parameters of a logit model with random
effects based on a simulated dataset with n = 20, m = 35, β = −3, σ = 1, and
xij randomly distributed in {−1, 0, 1}. The top graph represents the sequence of
(β, σ)’s produced by the MCEM algorithm when starting from β0 = β̂, the MLE
estimator for the logit model, and σ0 = 1. The final value for the approximation of
the MLE is (β10, σ10) = (−3.002, 1.048). The bottom graph provides the sequence
of Lc(β, σ,u|x,y) for the simulated vector u of random effects.

quence of (β, σ)’s produced by the MCEM algorithm converges to an ap-
proximate maximum of the model likelihood, either by numerically evalu-
ating the likelihood or by repeating the runs with different starting values.
In contrast with more generic Monte Carlo methods, the MCEM algo-
rithm nonetheless offers the advantage of approximating the converging
EM sequence, rather than maximizing an approximation of the likelihood.

In contrast with EM, as MCEM is a Monte Carlo method, its outcome
should be associated with an error evaluation. Besides using the crude and
costly device of path replications, Booth and Hobert (1999) provide a first-



5.5 Additional exercises 163

order approximation based on a Taylor expansion of Q:

var(θ1|θ0,x) ≈
[
∂2Q(θ1|θ0,x)

∂θ∂θT

]−1

var
(
∂Q(θ1|θ0,x)

∂θ

)[
∂2Q(θ1|θ0,x)

∂θ∂θT

]−1

.

The inner variance term can then be easily evaluated based on the simulated
missing variables.

5.5 Additional exercises

Exercise 5.13 In the setting of Example 5.2, draw the likelihood surface associated
with the model (5.2) when the sample of size 400 is produced by

> x=rnorm(80,mean=-4)

> for (i in 1:4) x=c(x,rnorm(80,mean=-4+2*i))

and determine the number of local maxima associated with a given sample.

Exercise 5.14 Consider a sample of size n from a mixture distribution with unknown
weights,

Xi ∼ θg(x) + (1− θ)h(x), i = 1, . . . , n,

where g(·) and h(·) are known.

a. Introduce Z1, . . . , Zn, where Zi indicates the distribution from which Xi has been
drawn, so

Xi|Zi = 1 ∼ g(x), Xi|Zi = 0 ∼ h(x) .

Show that the complete-data likelihood can be written as

Lc(θ|x, z) =

nY
i=1

[zig(xi) + (1− zi)h(xi)] θ
zi(1− θ)1−zi .

b. Show that E[Zi|θ, xi] = θg(xi)/[θg(xi) + (1 − θ)h(xi)], and deduce that the EM
sequence is given by

θ̂(j+1) =
1

n

nX
i=1

θ̂(j)g(xi)

θ̂(j)g(xi) + (1− θ̂(j))h(xi)
.

c. Examine the convergence properties of this EM algorithm on a simulated dataset
with n = 25, θ = 0.3, h(x) = ϕ(x), and g(x) = ϕ((x− 2)/2)/2, where ϕ denotes
the N (0, 1) density.

Exercise 5.15 Consider the sample x = (0.12, 0.17, 0.32, 0.56, 0.98, 1.03, 1.10, 1.18,
1.23, 1.67, 1.68, 2.33), generated from an exponential mixture

p Exp(λ) + (1− p) Exp(µ).

All parameters p, µ, λ are unknown.



164 5 Monte Carlo Optimization

a. Show that the likelihood h(p, λ, µ) can be expressed as E[H(x, Z)], where z =
(z1, . . . , z12) corresponds to the vector of allocations of the observations xi to the
first and second components of the mixture; that is, for i = 1, . . . , 12,

P (zi = 1) = 1− P (zi = 2) =
pλ exp(−λxi)

pλ exp(−λxi) + (1− p)µ exp(−µxi)
.

b. Construct an EM algorithm for this model, and derive the maximum likelihood
estimators of the parameters for the sample provided above.

Exercise 5.16 Consider the function

h(θ) =
||θ||2(p+ ||θ||2)(2p− 2 + ||θ||2)

(1 + ||θ||2)(p+ 1 + ||θ||2)(p+ 3 + ||θ||2)

when θ ∈ Rp and p = 10.

a. Show that the function h(θ) has a unique maximum in ||θ||2.
b. Show that h(θ) can be expressed as E[H(θ, Z)], where z = (z1, z2, z3) and Zi ∼
Exp(1/2) (i = 1, 2, 3). Deduce that f(z|x) does not depend on x in (5.8).

c. When g(z) = exp(−α{z1 + z2 + z3}), show that the variance of (5.8) is infinite
for some values of t = ||θ||2 when α > 1/2. Identify A2, the set of values of t for
which the variance of (5.8) is infinite when α = 2.

d. Study the behavior of the estimate (5.8) when t goes from A2 to its complement
Ac2 to see if the infinite variance can be detected in the evaluation of h(t).

Exercise 5.17 Referring to Example 5.14,

a. Give the density of the missing data (Zn−m+1, . . . , Zn).

b. Show that Eθ′ [Zi] = θ′ + φ(a−θ′)
1−Φ(a−θ′) and that the EM sequence is given by (5.13).

Exercise 5.18 In the setup of the probit model of Example 5.11, denoting β = (θ0, θ1)
and replacing the covariate x with the vector x = (x, 1),

a. Give the likelihood associated with a sample ((x1, y1), . . . , (xn, yn)).
b. Show that, if we associate with each observation (xi, yi) a missing variable Zi such

that
Zi|Xi = x ∼ N (xTβ, 1) Yi = IZi>0 ,

iteration m of the associated EM algorithm is the expected least squares estimator

β(m) = (XTX)−1 XT Eβ(m−1) [Z|x,y] ,

where x = (x1, . . . , xn), y = (y1, . . . , yn) and Z = (Z1, . . . , Zn)T , and X is the
matrix with columns made of the xi’s.

c. Give the value of Eβ [Zi|xi, yi].
d. Implement this EM algorithm for the Pima.tr dataset when x corresponds to the

variables glu, skin, and bmi, respectively. Compare it with the solutions provided
by glm.

Exercise 5.19 Test the limitations of the uniroot function when considering h(x) =
(x− 3)(x+ 6)(1 + sin(60x)) on the intervals (−2, 10) and (−8,−1).

Exercise 5.20 An alternate implementation of the Monte Carlo EM might be, for
Z1, . . . , Zm ∼ k(z|x, θ), to iteratively maximize



5.5 Additional exercises 165

log L̂(θ|x) =
1

m

mX
i=1

{logLc(θ|x, zi)− log k(zi|θ, x)}

(which might more accurately be called Monte Carlo maximum likelihood).

a. Show that L̂(θ|x)→ L(θ|x) as m→∞.
b. Show how to use L̂(θ|x) to obtain the MLE in Example 5.15 and illustrate the

convergence of this procedure for the data faithful[,1].

Exercise 5.21 For the situation in Example 5.16, data (x1, x2, x3, x4) = (125, 18, 20,
34) are collected.

a. Construct an EM algorithm to find the MLE of θ.
b. Construct a Monte Carlo EM algorithm to find the MLE of θ. Compare your results

with those of part a using a Monte Carlo experiment evaluating the variability of
the MCEM sequence.

Exercise 5.22 The following dataset gives independent observations of Z = (X,Y ) ∼
N2(0, Σ) with missing data denoted by ∗.

x 1.17 -0.98 0.18 0.57 0.21 * * *

y 0.34 -1.24 -0.13 * * -0.12 -0.83 1.64

a. Show that the observed likelihood is

3Y
i=1

n
|Σ|−1/2 e−z

t
iΣ
−1zi/2

o
σ−2

1 e−(x2
4+x2

5)/2σ2
1σ−3

2 e−(y26+y27+y28)/2σ2
2 .

b. Examine the consequence of the choice of π(Σ) ∝ |Σ|−1 on the posterior distribu-
tion of Σ.

c. Show that the missing data can be simulated from

X?
i ∼ N

„
ρ
σ1

σ2
yi, σ

2
1(1− ρ2)

«
(i = 6, 7, 8),

Y ?i ∼ N
„
ρ
σ2

σ1
xi, σ

2
2(1− ρ2)

«
(i = 4, 5),

to derive a Monte Carlo EM algorithm.
d. Build an efficient simulation method to obtain the MLE of the covariance matrix

Σ.



6

Metropolis–Hastings Algorithms

“How absurdly simple!”, I cried.
“Quite so!”, said he, a little nettled. “Every problem becomes very
childish when once it is explained to you.”

Arthur Conan Doyle
The Adventure of the Dancing Men

Reader’s guide

This chapter is the first of a series of two on simulation methods based on Markov
chains. Although the Metropolis–Hastings algorithm can be seen as one of the
most general Markov chain Monte Carlo (MCMC) algorithms, it is also one of the
simplest both to understand and explain, making it an ideal algorithm to start
with.

This chapter begins with a quick refresher on Markov chains, just the ba-
sics needed to understand the algorithms. Then we define the Metropolis–
Hastings algorithm, focusing on the most common versions of the algorithm.
We end up discussing the calibration of the algorithm via its acceptance rate in
Section 6.5.

C.P. Robert, G. Casella, Introducing Monte Carlo Methods with R, Use R,  
DOI 10.1007/978-1-4419-1576-4_6, © Springer Science+Business Media, LLC 2010 



168 6 Metropolis–Hastings Algorithms

6.1 Introduction

For reasons that will become clearer as we proceed, we now make a fundamen-
tal shift in the choice of our simulation strategy. Up to now we have typically
generated iid variables directly from the density of interest f or indirectly
in the case of importance sampling. The Metropolis–Hastings algorithm in-
troduced below instead generates correlated variables from a Markov chain.
The reason why we opt for such a radical change is that Markov chains carry
different convergence properties that can be exploited to provide easier pro-
posals in cases where generic importance sampling does not readily apply. For
one thing, the requirements on the target f are quite minimal, which allows
for settings where very little is known about f . Another reason, as illustrated
in the next chapter, is that this Markov perspective leads to efficient decom-
positions of high-dimensional problems in a sequence of smaller problems that
are much easier to solve.

Thus, be warned that this is a pivotal chapter in that we now introduce a
totally new perspective on the generation of random variables, one that has
had a profound effect on research and has expanded the application of statis-
tical methods to solve more difficult and more relevant problems in the last
twenty years, even though the origins of those techniques are tied with those
of the Monte Carlo method in the remote research center of Los Alamos dur-
ing the Second World War. Nonetheless, despite the recourse to Markov chain
principles that are briefly detailed in the next section, the implementation of
these new methods is not harder than those of earlier chapters, and there is
no need to delve any further into Markov chain theory, as you will soon dis-
cover. (Most of your time and energy will be spent in designing and assessing
your MCMC algorithms, just as for the earlier chapters, not in establishing
convergence theorems, so take it easy!)

6.2 A peek at Markov chain theory

� This section is intended as a minimalist refresher on Markov chains in or-
der to define the vocabulary of Markov chains, nothing more. In case you
have doubts or want more details about these notions, you are strongly
advised to check a more thorough treatment such as Robert and Casella
(2004, Chapter 6) or Meyn and Tweedie (1993) since no theory of con-
vergence is provided in the present book.

A Markov chain {X(t)} is a sequence of dependent random variables

X(0), X(1), X(2), . . . , X(t), . . .

such that the probability distribution of X(t) given the past variables depends
only on X(t−1). This conditional probability distribution is called a transition
kernel or a Markov kernel K; that is,



6.2 A peek at Markov chain theory 169

X(t+1) | X(0), X(1), X(2), . . . , X(t) ∼ K(X(t), X(t+1)) .

For example, a simple random walk Markov chain satisfies

X(t+1) = X(t) + εt ,

where εt ∼ N (0, 1), independently of X(t); therefore, the Markov kernel
K(X(t), X(t+1)) corresponds to a N (X(t), 1) density.

For the most part, the Markov chains encountered in Markov chain Monte
Carlo (MCMC) settings enjoy a very strong stability property. Indeed, a sta-
tionary probability distribution exists by construction for those chains; that is,
there exists a probability distribution f such that ifX(t) ∼ f , thenX(t+1) ∼ f .
Therefore, formally, the kernel and stationary distribution satisfy the equation

(6.1)
∫
X
K(x, y)f(x)dx = f(y).

The existence of a stationary distribution (or stationarity) imposes a pre-
liminary constraint on K called irreducibility in the theory of Markov chains,
which is that the kernel K allows for free moves all over the stater-space,
namely that, no matter the starting value X(0), the sequence {X(t)} has a
positive probability of eventually reaching any region of the state-space. (A
sufficient condition is that K(x, ·) > 0 everywhere.) The existence of a station-
ary distribution has major consequences on the behavior of the chain {X(t)},
one of which being that most of the chains involved in MCMC algorithms
are recurrent, that is, they will return to any arbitrary nonnegligible set an
infinite number of times.

Exercise 6.1 Consider the Markov chain defined by X(t+1) = %X(t) +εt, where
εt ∼ N (0, 1). Simulating X(0) ∼ N (0, 1), plot the histogram of a sample of X(t)

for t ≤ 104 and % = .9. Check the potential fit of the stationary distribution
N (0, 1/(1− %2)).

In the case of recurrent chains, the stationary distribution is also a limiting
distribution in the sense that the limiting distribution of X(t) is f for almost
any initial value X(0). This property is also called ergodicity, and it obviously
has major consequences from a simulation point of view in that, if a given
kernel K produces an ergodic Markov chain with stationary distribution f ,
generating a chain from this kernel K will eventually produce simulations
from f . In particular, for integrable functions h, the standard average

(6.2)
1
T

T∑
t=1

h(X(t)) −→ Ef [h(X)] ,

which means that the Law of Large Numbers that lies at the basis of Monte
Carlo methods (Section 3.2) can also be applied in MCMC settings. (It is then
sometimes called the Ergodic Theorem.)



170 6 Metropolis–Hastings Algorithms

We won’t dabble any further into the theory of convergence of MCMC
algorithms, relying instead on the guarantee that standard versions of these
algorithms such as the Metropolis–Hastings algorithm or the Gibbs sampler
are almost always theoretically convergent. Indeed, the real issue with MCMC
algorithms is that, despite those convergence guarantees, the practical imple-
mentation of those principles may imply a very lengthy convergence time or,
worse, may give an impression of convergence while missing some important
aspects of f , as discussed in Chapter 8.

There is, however, one case where convergence never occurs, namely when,
in a Bayesian setting, the posterior distribution is not proper (Robert, 2001)
since the chain cannot be recurrent. With the use of improper priors f(x)
being quite common in complex models, there is a possibility that the prod-
uct likelihood × prior, `(x) × f(x), is not integrable and that this problem
goes undetected because of the inherent complexity. In such cases, Markov
chains can be simulated in conjunction with the target `(x)×f(x) but cannot
converge. In the best cases, the resulting Markov chains will quickly exhibit
divergent behavior, which signals there is a problem. Unfortunately, in the
worst cases, these Markov chains present all the outer signs of stability and
thus fail to indicate the difficulty. More details about this issue are discussed
in Section 7.6.4 of the next chapter.

Exercise 6.2 Show that the random walk has no stationary distribution. Give
the distribution of X(t) for t = 104 and t = 106 when X(0) = 0, and deduce that
X(t) has no limiting distribution.

6.3 Basic Metropolis–Hastings algorithms

The working principle of Markov chain Monte Carlo methods is quite straight-
forward to describe. Given a target density f , we build a Markov kernel K
with stationary distribution f and then generate a Markov chain (X(t)) using
this kernel so that the limiting distribution of (X(t)) is f and integrals can be
approximated according to the Ergodic Theorem (6.2). The difficulty should
thus be in constructing a kernel K that is associated with an arbitrary density
f . But, quite miraculously, there exist methods for deriving such kernels that
are universal in that they are theoretically valid for any density f !

The Metropolis–Hastings algorithm is an example of those methods.
(Gibbs sampling, described in Chapter 7, is another example with equally uni-
versal potential.) Given the target density f , it is associated with a working
conditional density q(y|x) that, in practice, is easy to simulate. In addition, q
can be almost arbitrary in that the only theoretical requirements are that the
ratio f(y)/q(y|x) is known up to a constant independent of x and that q(·|x)
has enough dispersion to lead to an exploration of the entire support of f . Once



6.3 Basic Metropolis–Hastings algorithms 171

again, we stress the incredible feature of the Metropolis–Hastings algorithm
that, for every given q, we can then construct a Metropolis–Hastings kernel
such that f is its stationary distribution.

6.3.1 A generic Markov chain Monte Carlo algorithm

The Metropolis–Hastings algorithm associated with the objective (target)
density f and the conditional density q produces a Markov chain (X(t))
through the following transition kernel:

Algorithm 4 Metropolis–Hastings
Given x(t),

1. Generate Yt ∼ q(y|x(t)).
2. Take

X(t+1) =

{
Yt with probability ρ(x(t), Yt),
x(t) with probability 1− ρ(x(t), Yt),

where

ρ(x, y) = min
{
f(y)
f(x)

q(x|y)
q(y|x)

, 1
}
.

A generic R implementation is straightforward, assuming a generator for
q(y|x) is available as geneq(x). If x[t] denotes the value of X(t),

> y=geneq(x[t])
> if (runif(1)<f(y)*q(y,x[t])/(f(x[t])*q(x[t],y))){
+ x[t+1]=y
+ }else{
+ x[t+1]=x[t]
+ }

since the value y is always accepted when the ratio is larger than one.
The distribution q is called the instrumental (or proposal or candidate)

distribution and the probability ρ(x, y) the Metropolis–Hastings acceptance
probability. It is to be distinguished from the acceptance rate, which is the
average of the acceptance probability over iterations,

ρ = lim
T→∞

1
T

T∑
t=0

ρ(X(t), Yt) =
∫
ρ(x, y)f(x)q(y|x) dydx.

This quantity allows an evaluation of the performance of the algorithm, as
discussed in Section 6.5.



172 6 Metropolis–Hastings Algorithms

While, at first glance, Algorithm 4 does not seem to differ from Algorithm
2, except for the notation, there are two fundamental differences between the
two algorithms. The first difference is in their use since Algorithm 2 aims at
maximizing a function h(x), while the goal of Algorithm 4 is to explore the
support of the density f according to its probability. The second difference
is in their convergence properties. With the proper choice of a temperature
schedule Tt in Algorithm 2, the simulated annealing algorithm converges to
the maxima of the function h, while the Metropolis–Hastings algorithm is
converging to the distribution f itself. Finally, modifying the proposal q along
iterations may have drastic consequences on the convergence pattern of this
algorithm, as discussed in Section 8.5.

Algorithm 4 satisfies the so-called detailed balance condition,

(6.3) f(x)K(y|x) = f(y)K(x|y) ,

from which we can deduce that f is the stationary distribution of the chain
{X(t)} by integrating each side of the equality in x (see Exercise 6.8).

That Algorithm 4 is naturally associated with f as its stationary distribu-
tion thus comes quite easily as a consequence of the detailed balance condition
for an arbitrary choice of the pair (f, q). In practice, the performance of the
algorithm will obviously strongly depend on this choice of q, but consider
first a straightforward example where Algorithm 4 can be compared with iid
sampling.

Example 6.1. Recall Example 2.7, where we used an Accept–Reject algo-
rithm to simulate a beta distribution. We can just as well use a Metropolis–
Hastings algorithm, where the target density f is the Be(2.7, 6.3) density and the
candidate q is uniform over [0, 1], which means that it does not depend on the
previous value of the chain. A Metropolis–Hastings sample is then generated with
the following R code:

> a=2.7; b=6.3; c=2.669 # initial values
> Nsim=5000
> X=rep(runif(1),Nsim) # initialize the chain
> for (i in 2:Nsim){
+ Y=runif(1)
+ rho=dbeta(Y,a,b)/dbeta(X[i-1],a,b)
+ X[i]=X[i-1] + (Y-X[i-1])*(runif(1)<rho)
+ }

A representation of the sequence (X(t)) by plot does not produce any pattern
in the simulation since the chain explores the same range at different periods. If
we zoom in on the final period, for 4500 ≤ t ≤ 4800, Figure 6.1 exhibits some
characteristic features of Metropolis–Hastings sequences, namely that, for some
intervals of time, the sequence (X(t)) does not change because all corresponding



6.3 Basic Metropolis–Hastings algorithms 173

Fig. 6.1. Sequence X(t) for t = 4500, . . . , 4800, when simulated from the
Metropolis–Hastings algorithm with uniform proposal and Be(2.7, 6.3) target.

Yt’s are rejected. Note that those multiple occurrences of the same numerical value
must be kept in the sample as such; otherwise, the validity of the approximation
of f is lost! Indeed, when considering the entire chain as a sample, its histogram
properly approximates the Be(2.7, 6.3) target. Figure 6.2 shows histograms and
overlaid densities both for this Metropolis–Hastings sample and for an (exact) iid
sample drawn using the rbeta command. The fits are quite similar, and this can
be checked even further using a Kolmogorov–Smirnov test of equality between
the two samples:

> ks.test(jitter(X),rbeta(5000,a,b))

Two-sample Kolmogorov-Smirnov test

data: jitter(X) and rbeta(5000,a,b)
D = 0.0202, p-value = 0.2594
alternative hypothesis: two-sided

which states that both samples are compatible with the same distribution. An
additional (if mild) check of agreement is provided by the moments. For instance,
since the mean and variance of a Be(a, b) distribution are a/(a+ b) and ab/(a+
b)2(a+ b+ 1), respectively, we can compare

X̄ = .301 , S2 = .0205 ,

with the theoretical values of .3 for the mean and .021 for the variance. J

While the MCMC and exact sampling outcomes look identical in Figure
6.2, it is important to remember that the Markov chain Monte Carlo sample
has correlation, while the iid sample does not. This means that the quality
of the sample is necessarily degraded or, in other words, that we need more



174 6 Metropolis–Hastings Algorithms

Fig. 6.2. Histograms of beta Be(2.7, 6.3) random variables with density func-
tion overlaid. In the left panel, the variables were generated from a Metropolis–
Hastings algorithm with a uniform candidate, and in the right panel the random
variables were directly generated using rbeta(n,2.7,6.3).

simulations to achieve the same precision. This issue is formalized through
the notion of effective sample size for Markov chains (Section 8.4.3).

In the symmetric case (that is, when q(x|y) = q(y|x)), the acceptance prob-
ability ρ(xt, yt) is driven by the objective ratio f(yt)/f(x(t)) and thus even the
acceptance probability is independent from q. (This special case is detailed in
Section 6.4.1.) Again, Metropolis–Hastings algorithms share the same feature
as the stochastic optimization Algorithm 2 (see Section 5.5), namely that they
always accept values of yt such that the ratio f(yt)/q(yt|x(t)) is increased com-
pared with the “previous” value f(x(t))/q(x(t)|yt). Some values yt such that
the ratio is decreased may also be accepted, depending on the ratio of the



6.3 Basic Metropolis–Hastings algorithms 175

ratios, but if the decrease is too sharp, the proposed value yt will almost al-
ways be rejected. This property indicates how the choice of q can impact the
performance of the Metropolis–Hastings algorithm. If the domain explored by
q (its support) is too small, compared with the range of f , the Markov chain
will have difficulties in exploring this range and thus will converge very slowly
(if at all for practical purposes).

Another interesting property of the Metropolis–Hastings algorithm that
adds to its appeal is that it only depends on the ratios

f(yt)/f(x(t)) and q(x(t)|yt)/q(yt|x(t)) .

It is therefore independent of normalizing constants. Moreover, since all that
matters is the ability to (a) simulate from q and (b) compute the ratio
f(yt)/q(yt|x(t)), q may be chosen in such a way that the intractable parts
of f are eliminated in the ratio.

� Since q(y|x) is a conditional density, it integrates to one in y and, as
such, involves a functional term that depends on both y and x as well
as a normalizing term that depends on x, namely q(y|x) = C(x)q̃(x, y).
When noting above that the Metropolis–Hastings acceptance probability
does not depend on normalizing constants, terms like C(x) are obviously
excluded from this remark since they must appear in the acceptance prob-
ability, lest it jeopardize the stationary distribution of the chain.

6.3.2 The independent Metropolis–Hastings algorithm

The Metropolis–Hastings algorithm of Section 6.3.1 allows a candidate distri-
bution q that only depends on the present state of the chain. If we now require
the candidate q to be independent of this present state of the chain (that is,
q(y|x) = g(y)), we do get a special case of the original algorithm:

Algorithm 5 Independent Metropolis–Hastings
Given x(t)

1. Generate Yt ∼ g(y).
2. Take

X(t+1) =

Yt with probability min
{
f(Yt) g(x(t))
f(x(t)) g(Yt)

, 1
}

x(t) otherwise.



176 6 Metropolis–Hastings Algorithms

This method then appears as a straightforward generalization of the
Accept–Reject method in the sense that the instrumental distribution is the
same density g as in the Accept–Reject method. Thus, the proposed values
Yt are the same, if not the accepted ones.

Metropolis–Hastings algorithms and Accept–Reject methods (Section 2.3),
both being generic simulation methods, have similarities between them that
allow comparison, even though it is rather rare to consider using a Metropolis–
Hastings solution when an Accept–Reject algorithm is available. In particular,
consider that

a. The Accept–Reject sample is iid, while the Metropolis–Hastings sample is
not. Although the Yt’s are generated independently, the resulting sample
is not iid, if only because the probability of acceptance of Yt depends on
X(t) (except in the trivial case when f = g).

b. The Metropolis–Hastings sample will involve repeated occurrences of the
same value since rejection of Yt leads to repetition of X(t) at time t + 1.
This will have an impact on tests like ks.test that do not accept ties.

c. The Accept–Reject acceptance step requires the calculation of the upper
bound M ≥ supx f(x)/g(x), which is not required by the Metropolis–
Hastings algorithm. This is an appealing feature of Metropolis–Hastings if
computing M is time-consuming or if the existing M is inaccurate and
thus induces a waste of simulations.

Exercise 6.3 Compute the acceptance probability ρ(x, y) in the case q(y|x) =
g(y). Deduce that, for a given value x(t), the Metropolis–Hastings algorithm
associated with the same pair (f, g) as an Accept–Reject algorithm accepts the
proposed value Yt more often than the Accept–Reject algorithm.

The following exercise gives a first comparison of Metropolis–Hastings with
an Accept–Reject algorithm already used in Exercise 2.20 when both algo-
rithms are based on the same candidate.

Exercise 6.4 Consider the target as the G(α, β) distribution and the candidate
as the gamma G([α], b) distribution (where [a] denotes the integer part of a).

a. Derive the corresponding Accept–Reject method and show that, when β = 1,
the optimal choice of b is b = [α]/α.

b. Generate 5000 G(4, 4/4.85) random variables to derive a G(4.85, 1) sample
(note that you will get less than 5000 random variables).

c. Use the same sample in the corresponding Metropolis–Hastings algorithm to
generate 5000 G(4.85, 1) random variables.

d. Compare the algorithms using (i) their acceptance rates and (ii) the estimates
of the mean and variance of the G(4.85, 1) along with their errors. (Hint:
Examine the correlation in both samples.)



6.3 Basic Metropolis–Hastings algorithms 177

Fig. 6.3. Histograms and autocovariance functions from a gamma Accept–
Reject algorithm (left panels) and a gamma Metropolis–Hastings algorithm (right
panels). The target is a G(4.85, 1) distribution and the candidate is a G(4, 4/4.85)
distribution. The autocovariance function is calculated with the R function acf.

Figure 6.3 illustrates Exercise 6.4 by comparing both Accept–Reject and
Metropolis–Hastings samples. In this setting, operationally, the indepen-
dent Metropolis–Hastings algorithm performs very similarly to the Accept–
Reject algorithm, which in fact generates perfect and independent random
variables.

Theoretically, it is also feasible to use a pair (f, g) such that a bound M on
f/g does not exist and thus to use Metropolis–Hastings when Accept–Reject is
not possible. However, as detailed in Robert and Casella (2004) and illus-
trated in the following formal example, the performance of the Metropolis–
Hastings algorithm is then very poor, while it is very strong as long as
sup f/g = M <∞.



178 6 Metropolis–Hastings Algorithms

Example 6.2. To generate a Cauchy random variable (that is, when f corre-
sponds to a C(0, 1) density), formally it is possible to use a N (0, 1) candidate
within a Metropolis–Hastings algorithm. The following R code will do it:

> Nsim=10^4
> X=c(rt(1,1)) # initialize the chain from the stationary
> for (t in 2:Nsim){
+ Y=rnorm(1) # candidate normal
+ rho=dt(Y,1)*dnorm(X[t-1])/(dt(X[t-1],1)*dnorm(Y))
+ X[t]=X[t-1] + (Y-X[t-1])*(runif(1)<rho)
+ }

When executing this code, you may sometimes start with a large value for X(0),
12.788 say. In this case, dnorm(X[t-1]) is equal to 0 because, while 12.788
can formally be a realization from a normal N (0, 1), it induces computational
underflow problems

> pnorm(12.78,log=T,low=F)/log(10)
[1] -36.97455

(meaning the probability of exceeding 12.78 is 10−37) and the Markov chain
remains constant for the 104 iterations! If the chain starts from a more central
value, the outcome will resemble a normal sample much more than a Cauchy
sample, as shown by Figure 6.4 (center right). In addition, very large values of
the sequence will be heavily weighted, resulting in long strings where the chain
remains constant, as shown by Figure 6.4, the isolated peak in the histogram
being representative of such an occurrence. If instead we use for the independent
proposal g a Student’s t distribution with .5 degrees of freedom (that is, if we
replace Y=rnorm(1) with Y=rt(1,.5) in the code above), the behavior of the
chain is quite different. Very large values of Yt may occur from time to time (as
shown in Figure 6.4 (upper left)), the histogram fit is quite good (center left),
and the sequence exhibits no visible correlation (lower left). If we consider the
approximation of a quantity like Pr(X < 3), for which the exact value is pt(3,1)
(that is, 0.896), the difference between the two choices of g is crystal clear in
Figure 6.5, obtained by

> plot(cumsum(X<3)/(1:Nsim),lwd=2,ty="l",ylim=c(.85,1)).

The chain based on the normal proposal is consistently off the true value, while
the chain based on the t distribution with .5 degrees of freedom converges quite
quickly to this value. Note that, from a theoretical point of view, the Metropolis–
Hastings algorithm associated with the normal proposal still converges, but the
convergence is so slow as to be useless. J

We now look at a somewhat more realistic statistical example that corre-
sponds to the general setting when an independent proposal is derived from
a preliminary estimation of the parameters of the model. For instance, when
simulating from a posterior distribution π(θ|x) ∝ π(θ)f(x|θ), this independent



6.3 Basic Metropolis–Hastings algorithms 179

Fig. 6.4. Comparison of two Metropolis–Hastings schemes for a Cauchy target
when generating (left) from a N (0, 1) proposal and (right) from a T1/2 proposal

based on 105 simulations. (top) Excerpt from the chains (X(t)); (center) histograms
of the samples; (bottom) autocorrelation graphs obtained by acf.

proposal could be a normal or a t distribution centered at the MLE θ̂ and with
variance-covariance matrix equal to the inverse of Fisher’s information matrix.

Example 6.3. The cars dataset relates braking distance (y) to speed (x) in a
sample of cars. Figure 6.6 shows the data along with a fitted quadratic curve that
is given by the R function lm. The model posited for this dataset is a quadratic
model

yij = a+ bxi + cx2
i + εij , i = 1, . . . , k, j = 1, . . . ni,

where we assume that εij ∼ N(0, σ2) and independent. The likelihood function
is then proportional to



180 6 Metropolis–Hastings Algorithms

Fig. 6.5. Example 6.2: cumulative coverage plot of a Cauchy sequence generated
by a Metropolis–Hastings algorithm based on a N (0, 1) proposal (upper lines) and
one generated by a Metropolis–Hastings algorithm based on a T1/2 proposal (lower
lines). After 105 iterations, the Metropolis–Hastings algorithm based on the normal
proposal has not yet converged.

(
1
σ2

)N/2
exp

 −1
2σ2

∑
ij

(yij − a− bxi − cx2
i )

2

 ,

where N =
∑
i ni is the total number of observations. We can view this likelihood

function as a posterior distribution on a, b, c, and σ2 (for instance based on a flat
prior), and, as a toy problem, we can try to sample from this distribution with a
Metropolis–Hastings algorithm (since this standard distribution can be simulated
directly; see Exercise 6.12). To start with, we can get a candidate by generating
coefficients according to their fitted sampling distribution. That is, we can use
the R command

> x2=x^2
> summary(lm(y∼x+x2))

to get the output



6.3 Basic Metropolis–Hastings algorithms 181

Fig. 6.6. Braking data with quadratic curve (dark) fitted with the least squares
function lm. The grey curves represent the Monte Carlo sample (a(i), b(i), c(i)) and
show the variability in the fitted lines based on the last 500 iterations of 4000
simulations.

Coefficients:
Estimate Std. Error t value Pr(> |t|)

(Intercept) 2.63328 14.80693 0.178 0.860
x 0.88770 2.03282 0.437 0.664
x2 0.10068 0.06592 1.527 0.133
Residual standard error: 15.17 on 47 degrees of freedom

As suggested above, we can use the candidate normal distribution centered at the
MLEs,

a ∼ N (2.63, (14.8)2), b ∼ N (.887, (2.03)2), c ∼ N (.100, (0.065)2),

σ−2 ∼ G(n/2, (n− 3)(15.17)2),

in a Metropolis–Hastings algorithm to generate samples (a(i), b(i), c(i)). Figure
6.6 illustrates the variability of the curves associated with the outcome of this
simulation. J



182 6 Metropolis–Hastings Algorithms

6.4 A selection of candidates

The study of independent Metropolis–Hastings algorithms is certainly inter-
esting, but their practical implementation is more problematic in that they
are delicate to use in complex settings because the construction of the pro-
posal is complicated—if we are using simulation, it is often because deriving
estimates like MLEs is difficult—and because the choice of the proposal is
highly influential on the performance of the algorithm. Rather than building
a proposal from scratch or suggesting a non-parametric approximation based
on a preliminary run—because it is unlikely to work for moderate to high
dimensions—it is therefore more realistic to gather information about the
target stepwise, that is, by exploring the neighborhood of the current value
of the chain. If the exploration mechanism has enough energy to reach as far
as the boundaries of the support of the target f , the method will eventually
uncover the complexity of the target. (This is fundamentally the same intu-
ition at work in the simulated annealing algorithm of Section 5.3.3 and the
stochastic gradient method of Section 5.3.2.)

6.4.1 Random walks

A more natural approach for the practical construction of a Metropolis–
Hastings proposal is thus to take into account the value previously simulated
to generate the following value; that is, to consider a local exploration of the
neighborhood of the current value of the Markov chain.

The implementation of this idea is to simulate Yt according to

Yt = X(t) + εt,

where εt is a random perturbation with distribution g independent of X(t),
for instance a uniform distribution or a normal distribution, meaning that
Yt ∼ U(X(t) − δ,X(t) + δ) or Yt ∼ N (X(t), τ2) in unidimensional settings.
In terms of the general Metropolis–Hastings algorithm, the proposal density
q(y|x) is now of the form g(y − x). The Markov chain associated with q is
a random walk (as described in Section 6.2) when the density g is symmet-
ric around zero; that is, satisfying g(−t) = g(t). But, due to the additional
Metropolis–Hastings acceptance step, the Metropolis–Hastings Markov chain
{X(t)} is not a random walk. This approach leads to the following Metropolis–
Hastings algorithm, which also happens to be the original one proposed by
Metropolis et al. (1953).

Algorithm 6 Random walk Metropolis–Hastings
Given x(t),

1. Generate Yt ∼ g(y − x(t)).



6.4 A selection of candidates 183

2. Take

X(t+1) =

{
Yt with probability min

{
1, f(Yt)

/
f(x(t))

}
,

x(t) otherwise.

As noted above, the acceptance probability does not depend on g. This
means that, for a given pair (x(t), yt), the probability of acceptance is the
same whether yt is generated from a normal or from a Cauchy distribution.
Obviously, changing g will result in different ranges of values for the Yt’s and
a different acceptance rate, so this is not to say that the choice of g has no
impact whatsoever on the behavior of the algorithm, but this invariance of
the acceptance probability is worth noting. It is actually linked to the fact
that, for any (symmetric) density g, the invariant measure associated with
the random walk is the Lebesgue measure on the corresponding space (see
Meyn and Tweedie, 1993).

Example 6.4. The historical example of Hastings (1970) considers the formal
problem of generating the normal distribution N (0, 1) based on a random walk
proposal equal to the uniform distribution on [−δ, δ]. The probability of acceptance
is then

ρ(x(t), yt) = exp{(x(t)2 − y2
t )/2} ∧ 1.

Figure 6.7 describes three samples of 5000 points produced by this method for
δ = 0.1, 1, and 10 and clearly shows the difference in the produced chains: Too
narrow or too wide a candidate (that is, a smaller or a larger value of δ) results
in higher autocovariance and slower convergence. Note the distinct patterns for
δ = 0.1 and δ = 10 in the upper graphs: In the former case, the Markov chain
moves at each iteration but very slowly, while in the latter it remains constant
over long periods of time. J

As noted in this formal example, calibrating the scale δ of the random walk
is crucial to achieving a good approximation to the target distribution in a
reasonable number of iterations. In more realistic situations, this calibration
becomes a challenging issue, partly tackled in Section 6.5 and reconsidered in
further detail in Chapter 8.

Example 6.5. The mixture example detailed in Example 5.2 from the perspec-
tive of a maximum likelihood estimation can also be considered from a Bayesian
point of view using for instance a uniform prior U(−2, 5) on both µ1 and µ2. The
posterior distribution we are interested in is then proportional to the likelihood.
Implementing Algorithm 6 in this example is surprisingly easy in that we can re-
cycle most of the implementation of the simulated annealing Algorithm 2, already



184 6 Metropolis–Hastings Algorithms

Fig. 6.7. Outcomes of random walk Metropolis–Hastings algorithms for Example
6.4. The left panel has a U(−.1, .1) candidate, the middle panel has U(−1, 1), and
the right panel has U(−10, 10). The upper graphs represent the last 500 iterations
of the chains, the middle graphs indicate how the histograms fit the target, and the
lower graphs give the respective autocovariance functions.

programmed in Example 5.2. Indeed, the core of the R code is very similar except
for the increase in temperature, which obviously is not necessary here:

> scale=1
> the=matrix(runif(2,-2,5),ncol=2)
> curlike=hval=like(x)
> Niter=10^4
> for (iter in (1:Niter)){
+ prop=the[iter,]+rnorm(2)*scale
+ if ((max(-prop)>2)||(max(prop)>5)||
+ (log(runif(1))>like(prop)-curlike)) prop=the[iter,]



6.4 A selection of candidates 185

Fig. 6.8. Impact of the scale of the random walk on the exploration of the modes
in the mixture model: representation of the Markov chain (µ

(t)
1 , µ

(t)
2 ) on top of the

log-posterior surface with (left and center) scale equal to 1 and (right) scale equal
to 2 based on 104 simulations and 500 simulated observations.

+ curlike=like(prop)
+ hval=c(hval,curlike)
+ the=rbind(the,prop)}

Since the main problem of this target is the existence of two modes, one of which
is smaller than the other, we can compare the impact of different choices of
scale on the behavior of the chain in terms of exploration of both modes and the
attraction therein. When the scale is 1, the modes are highly attractive and, out
of 104 iterations, it is not uncommon to explore only one mode neighborhood,
as shown in Figure 6.8 (left and center) for both modes. If the scale increases to
2, the proposal is diverse enough to reach both modes but at a cost. Out of 104

iterations, the chain only changes values 23 times! For the smaller scale 1, the
number of changes is closer to 100, still a very low acceptance rate. J

An issue that often arises when using random walks on constrained do-
mains is whether or not the random walk should be constrained as well. The
answer to this question is no in that using constraints in the proposal modi-
fies the function g and thus jeopardizes the validity of the ratio of the targets
found in Algorithm 6. When values yt outside the range of f are proposed
(that is, when f(yt) = 0), the proposed value is rejected and the current value
X(t) is duplicated. Obviously, picking a random walk density that often ends
up outside the domain of f is a poor idea in that the chain will be stuck most
of the time! But it is formally correct.

6.4.2 Alternative candidates

While the independent Metropolis–Hastings algorithm only applies in specific
situations, the random walk Metropolis–Hastings algorithm often appears as a
generic Metropolis–Hastings algorithm that caters to most cases. Nonetheless,



186 6 Metropolis–Hastings Algorithms

the random walk solution is not necessarily the most efficient choice in that
(a) it requires many iterations to overcome difficulties such as low-probability
regions between modal regions of f and (b) because of its symmetric features,
it spends roughly half the simulation time revisiting regions it has already
explored. There exist alternatives that bypass the perfect symmetry in the
random walk proposal to gain in efficiency, although they are not always easy
to implement (see, for example, Robert and Casella, 2004).

One of those alternatives is the Langevin algorithm of Roberts and Rosen-
thal (1998) that tries to favor moves toward higher values of the target f by
including a gradient in the proposal,

Yt = X(t) +
σ2

2
∇ log f(X(t)) + σεt , εt ∼ g(ε) ,

the parameter σ being the scale factor of the proposal. When Yt is constructed
this way, the Metropolis–Hastings acceptance probability is equal to

ρ(x, y) = min
{
f(y)
f(x)

g [(x− y)/σ − σ∇ log f(y)/2]
g [(y − x)/σ − σ∇ log f(x)/2]

, 1
}
.

While this scheme may remind you of the stochastic gradient techniques
of Section 5.3.2, it differs from those for two reasons. One is that the scale σ
is fixed in the Langevin algorithm, as opposed to decreasing in the stochastic
gradient method. Another is that the proposed move to Yt is not necessarily
accepted for the Langevin algorithm, ensuring the stationarity of f for the
resulting chain.

Example 6.6. Based on the same probit model of the now well-known Pima.tr
dataset as in Example 3.10, we can use the likelihood function like already
defined on page 85 and compute the gradient in closed form as

grad=function(a,b){
don=pnorm(q=a+outer(X=b,Y=da[,2],FUN="*"))
x1=sum((dnorm(x=a+outer(X=b,Y=da[,2],FUN="*"))/don)*da[,1]-

(dnorm(x=-a-outer(X=b,Y=da[,2],FUN="*"))/
(1-don))*(1-da[,1]))

x2=sum(da[,2]*(
(dnorm(x=a+outer(X=b,Y=da[,2],FUN="*"))/don)*da[,1]-
(dnorm(x=-a-outer(X=b,Y=da[,2],FUN="*"))/

(1-don))*(1-da[,1])))
return(c(x1,x2))
}

When implementing the basic iteration of the Langevin algorithm

> prop=curmean+scale*rnorm(2)
> propmean=prop+0.5*scale^2*grad(prop[1],prop[2])



6.4 A selection of candidates 187

> if (log(runif(1))>like(prop[1],prop[2])-likecur-
+ sum(dnorm(prop,mean=curmean,sd=scale,lo=T))+
+ sum(dnorm(the[t-1,],mean=propmean,sd=scale,lo=T))){
+ prop=the[t-1,];propmean=curmean}

we need to select scale small enough because otherwise grad(prop) returns NaN
given that pnorm(q=a+outer(X=b,Y=da[,2],FUN="*")) is then either 1 or 0.
With a scale equal to 0.01, the chain correctly explores the posterior distribution,
as shown in Figure 6.9, even though it moves very slowly. J

Fig. 6.9. Repartition of the Langevin sample corresponding to the probit posterior
defined in Example 3.10 based on 20 observations from Pima.tr and 5×104 iterations.

The modification of the random walk proposal may, however, further hin-
der the mobility of the Markov chain by reinforcing the polarization around
local modes. For instance, when the target is the posterior distribution of the
mixture model studied in Example 6.5, the bimodal structure of the target
is a hindrance for the implementation of the Langevin algorithm in that the
local mode becomes even more attractive.



188 6 Metropolis–Hastings Algorithms

Example 6.7. (Continuation of Example 6.5) The modification of the
random walk Metropolis–Hastings algorithm is straightforward in that we simply
have to add the gradient drift in the R code. Defining the gradient function

gradlike=function(mu){
deno=.2*dnorm(da-mu[1])+.8*dnorm(da-mu[2])
gra=sum(.2*(da-mu[1])*dnorm(da-mu[1])/deno)
grb=sum(.8*(da-mu[2])*dnorm(da-mu[2])/deno)
return(c(gra,grb))
}

the simulation of the Markov chain involves

> prop=curmean+rnorm(2)*scale
> meanprop=prop+.5*scale^2*gradlike(prop)
> if ((max(-prop)>2)||(max(prop)>5)||(log(runif(1))>like(prop)
+ -curlike-sum(dnorm(prop,curmean,lo=T))+
+ sum(dnorm(the[iter,],meanprop,lo=T)))){
+ prop=the[iter,]
+ meanprop=curmean
+ }
> curlike=like(prop)
> curmean=meanprop

When running this Langevin alternative on the same dataset as in Example 6.5,
the scale needs to be reduced quite a lot for the chain to move. For instance,
using scale=.2 was not small enough for this purpose and we had to lower
it to scale=.1 to start seeing high enough acceptance rates. Figure 6.10 is
representative of the impact of the starting point on the convergence of the chain
since starting near the wrong mode leads to a sample concentrated on this very
mode. The reason for this difficulty is that, with 500 observations, the likelihood
is very peaked and so is the gradient. J

Both examples above show how delicate the tuning of the Langevin al-
gorithm can be. This may explain why it is not widely implemented, even
though it is an easy enough modification of the basic random walk code.

Random walk Metropolis–Hastings algorithms also apply to discrete sup-
port targets. While this sounds more like a combinatoric or an image-
processing setting, since most statistical problems involve continuous parame-
ter spaces, an exception is the case of model choice (see, for example, Robert,
2001, Chapter 7), where the index of the model to be selected is the “param-
eter” of interest.

Example 6.8. Given an ordinary linear regression with n observations,

y|β, σ2, X ∼ Nn(Xβ, σ2In) ,

where X is a (n, p) matrix, the likelihood is



6.4 A selection of candidates 189

Fig. 6.10. Exploration of the modes in the mixture model by a Langevin algorithm:
representation of two Markov chains (µ

(t)
1 , µ

(t)
2 ) on top of the log-posterior surface

with a scale equal to .1 based on 104 simulations and a simulated dataset of 500
observations.



190 6 Metropolis–Hastings Algorithms

`
(
β, σ2|y, X

)
=
(
2πσ2

)−n/2
exp

[
− 1

2σ2
(y −Xβ)T(y −Xβ)

]
and, under the so-called g-prior of Zellner (1986),

β|σ2, X ∼ Nk+1(β̃, nσ2(XTX)−1) and π(σ2|X) ∝ σ−2

(where the constant g is chosen equal to n), the marginal distribution of y is a
multivariate t distribution,

m(y|X) = (n+ 1)−(k+1)/2π−n/2Γ (n/2)
[
yTy − n

n+ 1
yTX(XTX)−1XTy

− 1
n+ 1

β̃TXTXβ̃

]−n/2
.

As an illustration, we consider the swiss dataset, where the logarithm of the
fertility in 47 districts of Switzerland around 1888 is the variable y to be explained
by some socioeconomic indicators,

> y=log(as.vector(swiss[,1]))
> X=as.matrix(swiss[,2:6])

The covariate matrix X involves five explanatory variables

> names(swiss)
[1] "Fertility" "Agriculture" "Examination" "Education"
[5] "Catholic" "Infant.Mortality"

(that are explained by ?swiss) and we want to compare the 25 models corre-
sponding to all possible subsets of covariates. (In this toy example, the number
of models is small enough to allow for the computation of all marginals and
therefore the true probabilities of all models under comparison.) Following Marin
and Robert (2007), we index all models by vectors γ of binary indicators where
γi = 0 indicates that the corresponding column of X is used in the regression.
(Note that, adopting Marin and Robert’s, 2007, convention, we always include
the intercept in a model.) Using the fast inverse matrix function

inv=function(X){
EV=eigen(X)
EV$vector%*%diag(1/EV$values)%*%t(EV$vector)
}

we then compute the log marginal density corresponding to the model γ, now
denoted as m(y|X, γ), as

lpostw=function(gam,y,X,beta){
n=length(y)
qgam=sum(gam)
Xt1=cbind(rep(1,n),X[,which(gam==1)])



6.4 A selection of candidates 191

if (qgam!=0) P1=Xt1%*%inv(t(Xt1)%*%Xt1)%*%t(Xt1) else{
P1=matrix(0,n,n)}
-(qgam+1)/2*log(n+1)-n/2*log(t(y)%*%y-n/(n+1)*
t(y)%*%P1%*%y-1/(n+1)*t(beta)%*%t(cbind(rep(1,n),
X))%*%P1%*%cbind(rep(1,n),X)%*%beta)

}

The exploration of the space of models can result from a Metropolis–Hastings al-
gorithm that moves around models by changing one model indicator at a time;
that is, given the current indicator vector γ(t), the Metropolis–Hastings proposal

picks one of the p coordinates, say i, and chooses between keeping γ
(t)
i and

switching to 1− γ(t)
i with probabilities proportional to the associated marginals.

The Metropolis–Hastings acceptance probability of the proposed model γ? is then
equal to

min
{
m(y|X, γ?)
m(y|X, γ(t))

m(y|X, γ(t))
m(y|X, γ?)

, 1
}

= 1

since the normalising constants cancel. This means that we do not have to consider
rejecting the proposed model γ? because it is always accepted at the Metropolis–
Hastings step! Running the R function

gocho=function(niter,y,X){
lga=dim(X)[2]
beta=lm(y∼X)$coeff
gamma=matrix(0,nrow=niter,ncol=lga)
gamma[1,]=sample(c(0,1),lga,rep=T)
for (t in 1:(niter-1)){
j=sample(1:lga,1)
gam0=gam1=gamma[t,];gam1[j]=1-gam0[j]
pr=lpostw(gam0,y,X,beta)
pr=c(pr,lpostw(gam1,y,X,beta))
pr=exp(pr-max(pr))
gamma[t+1,]=gam0
if (sample(c(0,1),1,prob=pr))
gamma[t+1,]=gam1}

gamma
}

then produces a sample (approximately) distributed from the posterior distribution
on the set of indicators; that is, on the collection of possible submodels. Based
on the outcome

> out=gocho(10^5,y,X)

the most likely model corresponds to the exclusion of the Agriculture variable
(that is, γ = (1, 0, 1, 1, 1)), with estimated probability 0.4995, while the true
probability is 0.4997. (This model is also the one indicated by lm(y∼X).) Similarly,



192 6 Metropolis–Hastings Algorithms

the second most likely model is γ = (0, 0, 1, 1, 1), with an estimated probability
of 0.237 versus a true probability of 0.234. The probability that each variable is
included within the model is also provided by

> apply(out,2,mean)
[1] 0.66592 0.17978 0.99993 0.91664 0.94499

which, again, indicates that the last three variables of swiss are the most signif-
icant in this analysis. J

The fact that the acceptance probability is always equal to 1 in Example
6.8 is due to the use of the true target probability on a subset of the possible
values of the model indicator.

Exercise 6.5 Starting from the prior distribution

β|σ2, X ∼ Nk+1(β̃, nσ2(XTX)−1) :

a. Show that
Xβ|σ2, X ∼ Nn(Xβ̃, nσ2X(XTX)−1XT)

and that
y|σ2, X ∼ Nn(Xβ̃, σ2(In + nX(XTX)−1XT)) .

b. Show that integrating in σ2 with π(σ2) = 1/σ2 yields the marginal distribu-
tion of y above.

c. Compute the value of the marginal density of y for the swiss dataset.

6.5 Acceptance rates

There are infinite choices for the candidate distribution q in a Metropolis–
Hastings algorithm, and here we discuss the possibility of achieving an “op-
timal” choice. Most obviously, this is not a well-defined concept in that the
“optimal” choice of q is to take q = f , the target distribution, when reason-
ing in terms of speed of convergence. This is obviously a formal result that
has no relevance in practice! Instead, we need to adopt a practical criterion
that allows the comparison of proposal kernels in situations where (almost)
nothing is known about f . One such criterion is the acceptance rate of the
corresponding Metropolis–Hastings algorithm since it can be easily computed
when running this algorithm via the empirical frequency of acceptance. In
contrast to Chapter 2, where the calibration of an Accept–Reject algorithm
was based on the maximum acceptance rate, merely optimizing the accep-
tance rate will not necessarily result in the best algorithm in terms of mixing
and convergence.



6.5 Acceptance rates 193

Fig. 6.11. Cumulative mean plot (left) from a Metropolis–Hastings algorithm
used to generate a N (0, 1) random variable from a double-exponential proposal
distribution L(1) (lighter) and L(3) (black). The center and left panels show the
autocovariance for the L(1) and L(3) proposals, respectively.

Example 6.9. In an Accept–Reject algorithm generating a N (0, 1) sample from
a double-exponential distribution L(α) with density g(x|α) = (α/2) exp(−α|x|),
the choice α = 1 optimizes the acceptance rate (Exercise 2.19). We can use this
distribution as an independent candidate q in a Metropolis–Hastings algorithm.
Figure 6.11 compares the behavior of this L(1) candidate along with an L(3)
distribution, which, for this simulation, produces an inferior outcome in the sense
that it has larger autocovariances and, as a result of this, slower convergence.
Obviously, a deeper analysis would be necessary to validate this statement, but
our point here is that the acceptance rate (estimated) for α = 1 is twice as large,
0.83, as the acceptance rate (estimated) for α = 3, 0.47. J

While independent Metropolis–Hastings algorithms can indeed be opti-
mized or at least compared through their acceptance rate, because this reduces
the number of replicas in the chain {X(t)} and thus the correlation level in
the chain, this is not true for other types of Metropolis–Hastings algorithms,
first and foremost the random walk version.

Exercise 6.6 The inverse Gaussian distribution has the density

f(z|θ1, θ2) ∝ z−3/2 exp
{
−θ1z −

θ2
z

+ 2
√
θ1θ2 + log

√
2θ2

}
on R+ (θ1 > 0, θ2 > 0).

a. A candidate for a Metropolis–Hastings algorithm targeting f is the G(α, β)
distribution. Show that



194 6 Metropolis–Hastings Algorithms

f(x)
g(x)

∝ x−α−1/2 exp
{

(β − θ1)x− θ2
x

}
is maximized in x at

x∗β =
(α+ 1/2)−

√
(α+ 1/2)2 + 4θ2(θ1 − β)
2(β − θ1)

.

b. After maximizing in x, the goal would be to minimize the bound on f/g over
(α, β) for fixed (θ1, θ2). This is impossible analytically, but for chosen values
of (θ1, θ2) we can plot this function of (α, β). Do so using for instance persp.
Do any patterns emerge?

c. The mean of the inverse Gaussian distribution is
√
θ2/θ1, so taking α =

β
√
θ2/θ1 will make the means of the candidate and target coincide. For

θ1 = θ2, match means and find an “optimal” candidate in terms of the
acceptance rate.

The random walk version of the Metropolis–Hastings algorithm, intro-
duced in Section 6.4.1, does indeed require a different approach to acceptance
rates, given the dependence of the candidate distribution on the current state
of the chain. In fact, as already seen in Example 6.4, a high acceptance rate
does not necessarily indicate that the algorithm is behaving satisfactorily since
it may instead correspond to the fact that the chain is moving too slowly on
the surface of f . When x(t) and yt are close, in the sense that f(x(t)) and
f(yt) are approximately equal, the random walk Metropolis–Hastings algo-
rithm leads to the acceptance of yt with probability

min
(
f(yt)
f(x(t))

, 1
)
' 1.

A high acceptance rate may therefore signal a poor convergence pattern as
the moves on the support of f are more limited. Obviously, this is not al-
ways the case. For instance, when f is nearly flat, high acceptance rates are
not indicative of any wrong behavior! But, unless f is completely flat (that
is, it corresponds to a uniform target), there are parts of the domain to be
explored where f takes smaller values and hence where the acceptance prob-
abilities should be small. A high acceptance rate then indicates that those
parts of the domain are not often (or not at all!) explored by the Metropolis–
Hastings algorithm.

In contrast, if the average acceptance rate is low, the successive values of
f(yt) often are small when compared with f(x(t)), which corresponds to the
scenario where the random walk moves quickly on the surface of f since it
often reaches the “borders” of the support of f (or at least when the random
walk explores regions with low probability under f). Again, a low acceptance
rate does not mean that the chain explores the entire support of f . Even with



6.6 Additional exercises 195

a small acceptance rate, it may miss an important but isolated mode of f .
Nonetheless, a low acceptance rate is less of an issue, except from the com-
puting time point of view, because it explicitly indicates that a larger number
of simulations are necessary. Using the effective sample size as a convergence
indicator (see Section 8.4.3) would clearly signal this requirement.

Example 6.10. (Continuation of Example 6.4) The three random walk
Metropolis–Hastings algorithms of Figure 6.7 have acceptance rates equal to

[1] 0.9832
[1] 0.7952
[1] 0.1512

respectively. Looking at the histogram fit, we see that the medium acceptance
rate does better but that the lowest acceptance rate still fares better than the
highest one. J

The question is then to decide on a golden acceptance rate against which to
calibrate random walk Metropolis–Hastings algorithms in order to avoid “too
high” as well as “too low” acceptance rates. Roberts et al. (1997) recommend
the use of instrumental distributions with acceptance rates close to 1/4 for
models of high dimension and equal to 1/2 for the models of dimension 1 or 2.
(This is the rule adopted in the adaptive amcmc package described in Section
8.5.2.) While this rule is not universal (in the sense that it was primarily
designed for a Gaussian environment), we advocate it as a default calibration
goal whenever it can be achieved (which is not always the case). For instance,
if we consider the Metropolis–Hastings algorithm in Example 6.8, there is no
acceptance rate since the acceptance probability is always equal to 1. However,
since the proposal includes the current value in its support, the chain {γ(t)}
has identical values in a row and thus an implicit acceptance (or renewal) rate.
It is equal to 0.1805, much below the 0.25 goal, and the algorithm cannot be
easily modified (for instance, by looking at more alternative moves around the
current model) to reach this token acceptance rate.

6.6 Additional exercises

Exercise 6.7 Referring to Example 2.7, consider a Be(2.7, 6.3) target density.

a. Generate Metropolis–Hastings samples from this density using a range of indepen-
dent beta candidates from a Be(1, 1) to a beta distribution with small variance.
(Note: Recall that the variance is ab/(a+ b)2(a+ b+ 1).) Compare the acceptance
rates of the algorithms.

b. Suppose that we want to generate a truncated beta Be(2.7, 6.3) restricted to
the interval (c, d) with c, d ∈ (0, 1). Compare the performance of a Metropolis–
Hastings algorithm based on a Be(2, 6) proposal with one based on a U(c, d) pro-
posal. Take c = .1, .25 and d = .9, .75.



196 6 Metropolis–Hastings Algorithms

Exercise 6.8 While q is a Markov kernel used in Algorithm 4, it is not the Markov
kernel K of the algorithm.

1. Show that the probability that X(t+1) = x(t) is

ρ(x(t)) =

Z n
1− ρ(x(t), y)

o
q(y|x(t)) dy .

2. Deduce that the kernel K can be written as

K(x(t), y) = ρ(x(t), y)q(y|x(t)) + ρ(x(t))δx(t)(y) .

3. Show that Algorithm 4 satisfies the detailed balance condition (6.3).

Exercise 6.9 Calculate the mean of a gamma G(4.3, 6.2) random variable using

a. Accept–Reject with a gamma G(4, 7) candidate;
b. Metropolis–Hastings with a gamma G(4, 7) candidate;
c. Metropolis–Hastings with a gamma G(5, 6) candidate.

In each case, monitor the convergence across iterations.

Exercise 6.10 Student’s t density with ν degrees of freedom, Tν , is given by

f(x|ν) =
Γ
`
ν+1

2

´
Γ
`
ν
2

´ 1√
νπ

`
1 + x2/ν

´−(ν+1)/2
.

Calculate the mean of a t distribution with ν = 4 degrees of freedom using a Metropolis–
Hastings algorithm with candidate density

a. N (0, 1);
b. t with ν = 2 degrees of freedom.

In each case monitor the convergence across iterations.

Exercise 6.11 Referring to Example 6.3:

1. Use the candidate given in this example to generate a sample (a(i), b(i), c(i)), i =
1, . . . , 500 with a Metropolis–Hastings algorithm. The data is from the dataset
cars.

2. Monitor convergence and check autocorrelations for each parameter across itera-
tions.

3. Make histograms of the posterior distributions of the coefficient estimates, and
provide 95% confidence intervals.

Exercise 6.12 Still in connection with Example 6.3, show that the posterior distribu-
tion on (a, b, c, σ−2) is a standard distribution made of a trivariate normal on (a, b, c)
conditional on σ and the data and a gamma distribution on σ−2 given the data. (Hint:
See Robert, 2001, or Marin and Robert, 2007, for details.)

Exercise 6.13 In 1986, the space shuttle Challenger exploded during takeoff, killing
the seven astronauts aboard. The explosion was the result of an O-ring failure, a splitting
of a ring of rubber that seals the parts of the ship together. The accident was believed to
have been caused by the unusually cold weather (31o F or 0o C) at the time of launch,
as there is reason to believe that the O-ring failure probabilities increase as temperature
decreases. Data on previous space shuttle launches and O-ring failures is given in the
dataset challenger provided with the mcsm package. The first column corresponds to
the failure indicators yi and the second column to the corresponding temperature xi
(1 ≤ i ≤ 24).



6.6 Additional exercises 197

1. Fit this dataset with a logistic regression, where

P (Yi = 1|xi) = p(xi) = exp(α+ βxi)
‹

1 + exp(α+ βxi) ,

using R glm function, as illustrated on page 21. Deduce the MLEs for α and β,
along with standard errors.

2. Set up a Metropolis–Hastings algorithm with the likelihood as target using an expo-
nential candidate for α and a Laplace (double-exponential) candidate for β. (Hint:
Choose the parameters of the candidates based on the MLEs derived in a.)

3. Generate 5000 iterations of the Markov chain and construct a picture similar to
Figure 6.6 to evaluate the variability of p(x) minus the observation dots.

4. Derive from this sample an estimate of the probability of failure at 60o, 50o, and
40o F along with a standard error.

Exercise 6.14 Referring to Example 6.4:

a. Reproduce the graphs in Figure 6.7 for difference values of δ. Explore both small
and large δ’s. Can you find an optimal choice in terms of autocovariance?

b. The random walk candidate can be based on other distributions. Consider generating
a N (0, 1) distribution using a random walk with a (i) Cauchy candidate, and a (ii)
Laplace candidate. Construct these Metropolis–Hastings algorithms and compare
them with each other and with the Metropolis–Hastings random walk with a uniform
candidate.

c. For each of these three random walk candidates, examine whether or not the ac-
ceptance rate can be brought close to 0.25 for the proper choice of parameters.

Exercise 6.15 Referring to Example 6.9:

a. Write a Metropolis–Hastings algorithm to produce Figure 6.11. Note that n L(a)
random variables can be generated at once with the R command

> ifelse(runif(n)>0.5, 1, -1) * rexp(n)/a

b. What is the acceptance rate for the Metropolis–Hastings algorithm with candidate
L(3)? Plot the curve of the acceptance rates for L(α) candidates when α varies
between 1 and 10. Comment.

c. Plot the curve of the acceptance rates for candidates L(0, ω) when ω varies between
.01 and 10. Compare it with those of the L(α) candidates.

d. Plot the curve of the acceptance rates when the proposal is based on a random walk,
Y = X(t) + ε, where ε ∼ L(α). Once again, compare it with the earlier proposals.

Exercise 6.16 In connection with Example 6.8, compare the current implementation
with an alternative where more values are considered at once according to the R code

> progam=matrix(gama[i,],ncol=lga,nrow=lga,byrow=T)

> probam=rep(0,lga)

> for (j in 1:lga){

+ progam[j,j]=1-gama[i,j]

+ probam[j]=lpostw(progam[j,],y,X,betatilde)}

> probam=exp(probam)

> sumam=sum(probam)

> probam=probam/sumam

> select=progam[sample(1:lga,1,prob=probam),]

a. Show that the acceptance probability is different from 1 and involves sumam.
b. Study the speed of convergence of the evaluation of the posterior probability of the

most likely model in comparison with the implementation on page 191.



7

Gibbs Samplers

“Come, Watson , come!” he cried. “The game is afoot.”
Arthur Conan Doyle

The Adventure of the Abbey Grange

Reader’s guide

This chapter covers both the two-stage and the multistage Gibbs samplers. Al-
though the former is a special case of the latter, the two-stage sampler has superior
convergence properties and applies naturally in a wide range of statistical models
that do not call for the generality of the multistage sampler. Nevertheless, the
multistage Gibbs sampler enjoys many optimality properties and still might be
considered the workhorse of the MCMC world. Following the introduction in Sec-
tion 7.1 with some background, we develop the two-stage Gibbs sampler in Section
7.2, moving to the multistage Gibbs sampler in Section 7.3. The Gibbs sampler
is particularly well-suited to handle experiments with missing data and models
with latent variables, as shown in Section 7.4. Although we make use of hierarchi-
cal models throughout the chapter, we focus on their processing in Section 7.5.
Section 7.6 looks at a number of additional topics such as Rao–Blackwellization,
reparameterization, and the effect of using improper priors.

C.P. Robert, G. Casella, Introducing Monte Carlo Methods with R, Use R,  
DOI 10.1007/978-1-4419-1576-4_7, © Springer Science+Business Media, LLC 2010 



200 7 Gibbs Samplers

7.1 Introduction

Chapter 6 described some principles for simulation based on Markov chains,
as well as some implementation directions, including the generic random walk
Metropolis–Hastings algorithm. This chapter extends the scope of MCMC al-
gorithms by studying another class of now-common MCMC methods, called
Gibbs sampling. The appeal of those specific algorithms is that first they
gather most of their calibration from the target density and second they allow
us to break complex problems (such as high dimensional target distributions,
for which a random walk Metropolis–Hastings algorithm is almost impossible
to build) into a series of easier problems, like a sequence of small-dimension
targets. There may be caveats to this simplification in that the sequence of sim-
ple problems may take in fine a long time to converge, but Gibbs sampling is
nonetheless an interesting candidate when dealing with a new problem.

The name Gibbs sampling comes from the landmark paper by Geman and
Geman (1984), which first applied a Gibbs sampler on a Gibbs random field.
For good or bad, it then stuck despite this weak link. Indeed, it is in fact a
special case of the Metropolis–Hastings algorithm as detailed in Robert and
Casella (2004, Section 10.6.1). The work of Geman and Geman (1984), built
on that of Metropolis et al. (1953), Hastings (1970) and Peskun (1973), influ-
enced Gelfand and Smith (1990) to write a paper that sparked new interest
in Bayesian methods, statistical computing, algorithms, and stochastic pro-
cesses through the use of computing algorithms such as the Gibbs sampler
and the Metropolis–Hastings algorithm. It is interesting to see, in retrospect,
that earlier papers such as Tanner and Wong (1987) and Besag and Clifford
(1989) had proposed similar solutions (but did not receive the same response
from the statistical community).

7.2 The two-stage Gibbs sampler

The two-stage Gibbs sampler creates a Markov chain from a joint distribution
in the following way. If two random variables X and Y have joint density
f(x, y), with corresponding conditional densities fY |X and fX|Y , the two-stage
Gibbs sampler generates a Markov chain (Xt, Yt) according to the following
steps:

Algorithm 7 Two-stage Gibbs sampler
Take X0 = x0

For t = 1, 2, . . . , generate
1. Yt ∼ fY |X(·|xt−1);
2. Xt ∼ fX|Y (·|yt) .



7.2 The two-stage Gibbs sampler 201

Algorithm 7 is then straightforward to implement as long as simulating
from both conditionals is feasible.1 It is also easy to see why, if (Xt, Yt) is
distributed from f , then so is (Xt+1, Yt+1), because both steps of iteration t use
simulation from the true conditionals. Convergence of the Markov chain (and
thus the algorithm) is therefore ensured unless the supports of the conditionals
are not connected.

Example 7.1. To start with an obvious illustration, consider the bivariate normal
model

(7.1) (X,Y ) ∼ N2

(
0,
(

1 ρ
ρ 1

))
,

for which the Gibbs sampler is
Given xt, generate

Yt+1 | xt ∼ N (ρxt, 1− ρ2),
Xt+1 | yt+1 ∼ N (ρyt+1, 1− ρ2).

The subchain (Xt)t then satisfies

Xt+1|Xt = xt ∼ N (ρ2xt, 1− ρ4),

and a recursion shows that

Xt|X0 = x0 ∼ N (ρ2tx0, 1− ρ4t) ,

which does indeed converge to N (0, 1) as t goes to infinity. J

As illustrated by the example above, the sequence (Xt, Yt), t = 1, . . . , T ,
produced by a Gibbs sampler converges to the joint distribution f and, as
a consequence, both sequences (Xt)t and (Yt)t converge to their respective
marginal distributions.

Exercise 7.1 Show that the subsequence (Xt) resulting from Algorithm 7 is a
Markov chain. (Hint: Use the fact that (Xt, Yt) is generated conditional on Xt−1

only.)

Perhaps the main reason why the Gibbs sampler became so popular in
the 1990s as the reference MCMC algorithm is that it was the perfect com-
putational complement to hierarchical models, which were then starting to
be seriously investigated. As detailed and justified in Section 7.5, a hierar-
chical model specifies a joint distribution as successive layers of conditional
distributions. The following example gives a first look at hierarchical models.
1 When f(x, y) is available in closed form, up to a normalizing constant, so are
fY |X and fX|Y . Therefore, if simulating directly from those conditionals is not
possible, Monte Carlo or MCMC approximations can be used, as developed in
Section 7.6.3.



202 7 Gibbs Samplers

Example 7.2. Considering the pair of distributions

X|θ ∼ Bin(n, θ) , θ ∼ Be(a, b),

leads to the joint distribution

f(x, θ) =
(
n

x

)
Γ (a+ b)
Γ (a)Γ (b)

θx+a−1(1− θ)n−x+b−1.

The corresponding conditional distribution of X|θ is given above, while θ|x ∼
Be(x+ a, n− x+ b). The associated Gibbs sampler can be implemented as

> Nsim=5000 #initial values
> n=15
> a=3
> b=7
> X=T=array(0,dim=c(Nsim,1)) #init arrays
> T[1]=rbeta(1,a,b) #init chains
> X[1]=rbinom(1,n,T[1])
> for (i in 2:Nsim){ #sampling loop
+ X[i]=rbinom(1,n,T[i-1])
+ T[i]=rbeta(1,a+X[i],n-X[i]+b)
+ }

and its output is illustrated in Figure 7.1 for each marginal. Since this is a toy
example, the closed-form marginals are available and thus produced on top of the
histograms, and they show a good fit for both Gibbs samples. J

Exercise 7.2 The marginal distribution of θ in Example 7.2 is the standard
Be(a, b) distribution, but the marginal distribution of X is less standard and is
known as the beta-binomial distribution.

a. Produce a closed-form expression for the beta-binomial density by integrating
f(x, θ) in Example 7.2 with respect to θ.

b. Use this expression to create the function betabi in R. Then use the R com-
mand curve(betabi(x,a,b,n)) to draw a curve on top of the histogram
as in Figure 7.1.

Example 7.3. Consider the posterior distribution on (θ, σ2) associated with the
joint model

Xi ∼ N (θ, σ2), i = 1, . . . , n,(7.2)
θ ∼ N (θ0, τ2) , σ2 ∼ IG(a, b),

where IG(a, b) is the inverted gamma distribution (that is, the distribution of
the inverse of a gamma variable), with density ba(1/x)a+1e−b/x/Γ (a) and with



7.2 The two-stage Gibbs sampler 203

Fig. 7.1. Histograms of marginal distributions from the Gibbs sampler of Example
7.2 based on 5000 iterations of Algorithm 7 for n = 15, a = 3, b = 7. The true
marginal distribution of θ is Be(a, b) and the marginal distribution of X is beta-
binomial.

θ0, τ
2, a, b specified. Writing x = (x1, . . . , xn), the posterior distribution on

(θ, σ2) is given by

f(θ, σ2|x) ∝
[

1
(σ2)n/2

e−
P
i(xi−θ)

2/(2σ2)

]
(7.3)

×
[

1
τ
e−(θ−θ0)2/(2τ2)

]
×
[

1
(σ2)a+1

e1/bσ
2
]
,

from which we can get the full conditionals of θ and σ2. (Note that this is not
a regular conjugate setting in that integrating θ or σ2 in this density does not
produce a standard density.) Writing x = (x1, . . . , xn), we have

π(θ|x, σ2) ∝ e−
P
i(xi−θ)

2/(2σ2)e−(θ−θ0)2/(2τ2σ2) ,

(7.4)

π(σ2|x, θ) ∝
(

1
σ2

)(n+2a+3)/2

e−
1

2σ2 (P
i(xi−θ)

2+(θ−θ0)2/τ2+2/b) .

These densities correspond to

θ|x, σ2 ∼ N
(

σ2

σ2 + nτ2
θ0 +

nτ2

σ2 + nτ2
x̄,

σ2τ2

σ2 + nτ2

)
and

σ2|x, θ ∼ IG

(
n

2
+ a,

1
2

∑
i

(xi − θ)2 + b

)
,



204 7 Gibbs Samplers

where x̄ is the empirical average of the observations, as the full conditional dis-
tributions to be used in a Gibbs sampler.

A study on metabolism in 15-year-old females yielded the following data,
denoted by x,

> x=c(91,504,557,609,693,727,764,803,857,929,970,1043,
+ 1089,1195,1384,1713)

corresponding to their energy intake, measured in megajoules, over a 24 hour
period (also available in the dataset Energy). Using the normal model above,
with θ corresponding to the true mean energy intake, the Gibbs sampler can be
implemented as

> xbar=mean(x)
> sh1=(n/2)+a
> sigma=theta=rep(0,Nsim) #init arrays
> sigma{1}=1/rgamma(1,shape=a,rate=b) #init chains
> B=sigma2{1}/(sigma2{1}+n*tau2)
> theta{1}=rnorm(1,m=B*theta0+(1-B)*xbar,sd=sqrt(tau2*B))
> for (i in 2:Nsim){
+ B=sigma2[i-1]/(sigma2[i-1]+n*tau2)
+ theta[i]=rnorm(1,m=B*theta0+(1-B)*xbar,sd=sqrt(tau2*B))
+ ra1=(1/2)*(sum((x-theta[i])^2))+b
+ sigma2[i]=1/rgamma(1,shape=sh1,rate=ra1)
+ }

where theta0, tau2, a, and b are specified values. The posterior means of θ and
σ2 are 872.402 and 136, 229.2, giving as an estimate of σ 369.092. Histograms
of the posterior distributions of log(θ) and log(σ) are given in Figure 7.2. J

Exercise 7.3 In connection with Example 7.3

a. Reproduce Figure 7.2 and superimpose the true marginal posteriors of log(θ)
and log(σ) by integrating f(θ, σ2|x) in σ2 and θ, respectively.

b. Investigate the sensitivity of the answer for a range of specifications of the
hyperparameter values theta0, tau2, a, and b. Specifically, compute point
estimates and confidence limits for θ and σ over a range of values for those
parameters.

We want to point out that recognizing the full conditionals from a joint
distribution is not that difficult. For example, the posterior distribution pro-
portional to (7.3) is obtained by multiplying the densities in the specification
(7.2).

To find a full conditional (that is, the conditional distribution of one pa-
rameter conditional on all others), we merely need to pick out all of the terms



7.2 The two-stage Gibbs sampler 205

Fig. 7.2. Histograms of marginal posterior distributions of the log-mean and log-
standard deviation from the Gibbs sampler of Example 7.3 based on 5000 iterations,
with a = b = 3, τ2 = 10 and θ0 = 5. The 90% interval for log(θ) is (6.299, 6.960)
and for log(σ) it is (0.614, 1.029).

in the joint distribution that involve that parameter. For example, from (7.3),
we see that

f(θ|σ2,x) ∝
[

1
(σ2)n/2

e−
P
i(xi−θ)

2/(2σ2)

]
×
[

1
τ
e−(θ−θ0)2/(2τ2)

]
,

f(σ2|θ,x) ∝
[

1
(σ2)n/2

e−
P
i(xi−θ)

2/(2σ2)

]
×
[

1
(σ2)a+1

e1/bσ
2
]
.

It should then be easy to see that the full conditional of σ2 will be an inverted
gamma distribution, as defined on page 202 (see also Exercise 7.19). For θ,
although there is a little more algebra involved in the derivation, we can
recognize that the full conditional will be normal. See Exercise 7.20 for an
illustration with a larger hierarchy.

Exercise 7.4 Make explicit the derivations that connect the expressions above
and the full conditional distributions in (7.4).



206 7 Gibbs Samplers

7.3 The multistage Gibbs sampler

There is a natural extension from the two-stage Gibbs sampler to the general
multistage Gibbs sampler. Suppose that, for some p > 1, the random variable
X ∈ X can be written as X = (X1, . . . , Xp), where the Xi’s are either unidi-
mensional or multidimensional components. Moreover, suppose that we can
simulate from the corresponding conditional densities f1, . . . , fp, that is, we
can simulate

Xi|x1, x2, . . . , xi−1, xi+1, . . . , xp ∼ fi(xi|x1, x2, . . . , xi−1, xi+1, . . . , xp)

for i = 1, 2, . . . , p. The associated Gibbs sampling algorithm (or Gibbs sam-
pler) is given by the following transition from X(t) to X(t+1):

Algorithm 8 The Multistage Gibbs Sampler
At iteration t = 1, 2, . . . ,, given x(t) = (x(t)

1 , . . . , x
(t)
p ), generate

1. X
(t+1)
1 ∼ f1(x1|x(t)

2 , . . . , x
(t)
p );

2. X
(t+1)
2 ∼ f2(x2|x(t+1)

1 , x
(t)
3 , . . . , x

(t)
p );

...
p. X

(t+1)
p ∼ fp(xp|x(t+1)

1 , . . . , x
(t+1)
p−1 ).

The densities f1, . . . , fp are called the full conditionals, and a particular
feature of the Gibbs sampler is that these are the only densities used for
simulation. Thus, even in a high-dimensional problem, all of the simulations
may be univariate, which is usually an advantage.

Example 7.4. As an extension of Example 7.1, consider the multivariate normal
density

(7.5) (X1, X2, . . . , Xp) ∼ Np (0, (1− ρ)I + ρJ) ,

where I is the p × p identity matrix and J is a p × p matrix of ones. This is a
model for equicorrelation, as corr(Xi, Xj) = ρ for every i and j. Using standard
formulas for the conditional distributions of a multivariate normal random variable
(see, for example, Johnson and Wichern, 1988), it is straightforward but tedious
to verify that

Xi|x(−i) ∼ N
(

(p− 1)ρ
1 + (p− 2)ρ

x̄(−i),
1 + (p− 2)ρ− (p− 1)ρ2

1 + (p− 2)ρ

)
,

where x(−i) = (x1, x2, . . . , xi−1, xi+1, . . . , xp) and x̄(−i) is the mean of this
vector. The Gibbs sampler that generates from these univariate normals can then
be easily derived, although it is useless for this problem (Exercise 7.5). It is,



7.3 The multistage Gibbs sampler 207

however, a short step to consider the setup where the components of the normal
vector are restricted to a subset of Rp. If this subset is a hypercube,

H =
∏
i=1

(ai, bi) ,

then the corresponding conditionals simply are the normals above restricted to
(ai, bi) for i = 1, . . . , p (in which case an exact algorithm such as sadmvn can
be used). For more complex constraints, a Gibbs sampler is however (almost)
required, as exact solutions do not exist. This Gibbs sampler is still based on
normal full conditionals, which are now restricted to subsets of the real line and
thus easily simulated (Exercise 2.22). J

Exercise 7.5 Given the normal target Np (0, (1− ρ)I + ρJ):

a. Write a Gibbs sampler using the conditional distributions provided in Example
7.4. Run your R code for p = 5 and ρ = .25, and verify graphically that the
marginals are all N (0, 1).

b. Compare your algorithm using T = 500 iterations with rmnorm described in
Section 2.2.1 in terms of execution time.

c. Propose a constrained subset that is not a hypercube, and derive the corre-
sponding Gibbs sampler. (Hint: Consider, for example, a constraint such as∑m
i=1 x

2
i ≤

∑p
i=m+1 x

2
i for m ≤ p− 1.)

Models more complex than the one in Example 7.3 can be considered for
the normal sampling model, as in the following case.

Example 7.5. A hierarchical specification for the normal model is the one-way
random effects model. There are different ways to parameterize this model, but
a possibility is as follows (see others in Example 7.14 and Exercise 7.24):

Xij ∼ N (θi, σ2), i = 1, . . . , k, j = 1, . . . , ni,
θi ∼ N (µ, τ2), i = 1, . . . , k,(7.6)
µ ∼ N (µ0, σ

2
µ),

σ2 ∼ IG(a1, b1), τ2 ∼ IG(a2, b2), σ2
µ ∼ IG(a3, b3).

Now, if we proceed as before and write down the joint distribution from this
hierarchy, we can derive the set of full conditionals

θi ∼ N
(

σ2

σ2 + niτ2
µ+

niτ
2

σ2 + niτ2
X̄i,

σ2τ2

σ2 + niτ2

)
, i = 1, . . . , k,

µ ∼ N

(
τ2

τ2 + kσ2
µ

µ0 +
kσ2

µ

τ2 + kσ2
µ

θ̄,
σ2
µτ

2

τ2 + kσ2
µ

)
,



208 7 Gibbs Samplers

Fig. 7.3. Histograms of marginal posterior distributions from the Gibbs sampler
of Example 7.5 based on 5000 iterations. The top row gives histograms for the
underlying mean µ and the means, θ1 and θ2, for the girls’ and boys’ energy. The
bottom row corresponds to the standard deviations.

σ2 ∼ IG

n/2 + a1, (1/2)
∑
ij

(Xij − θi)2 + b1

 ,(7.7)

τ2 ∼ IG

(
k/2 + a2, (1/2)

∑
i

(θi − µ)2 + b2

)
,

σ2
µ ∼ IG

(
1/2 + a3, (1/2)(µ− µ0)2 + b3

)
,

where n =
∑
i ni and θ̄ =

∑
i niθi/n.

Expanding on the study in Example 7.3, the dataset Energy also contains
data on the energy intake of boys. Model (7.6) applies (with k = 2) to the
simultaneous analysis of the energy intakes of girls and boys. The outcome of the
Gibbs sampler based on the conditionals in (7.7) is summarized in Figure 7.3. J

Exercise 7.6 In the setting of Example 7.5:

a. Derive the full conditional distributions in (7.7).
b. Implement this Gibbs sampler in R to reproduce the histograms in Figure 7.3.
c. A variation on the model (7.6) is to give µ a flat prior, which is equivalent to

setting σ2
µ = ∞ in (7.6). Construct the full conditionals for this model and

modify the previous R code to compare both models on the Energy data.



7.4 Missing data and latent variables 209

7.4 Missing data and latent variables

Starting with the two-stage Gibbs sampler, working on a joint distribu-
tion f(x, y), there seems to be a major difference with the Metropolis–
Hastings algorithm that works with a single distribution or, in other words,
generates all components of (x, y) at once. This difference in the target is il-
lusory in that once given f(x, y) we can use either the relevant Gibbs sampler
or a generic Metropolis–Hastings algorithm, while if given a marginal density
fX(x), we can construct (or complete fX(x) into) a joint density f(x, y) to aid
in simulation, where the second variable Y is then an auxiliary variable that
may not be directly relevant from a statistical point of view. There are many
settings where a natural completion of fX(x) into f(x, y) does exist and in
fact this can lead to an effective Gibbs sampler.2

These considerations bring us back into the realm of missing-data models,
as described in Section 5.4.2, where the representation (5.9)

g(x|θ) =
∫
Z
f(x, z|θ) dz

was introduced. As discussed in Chapter 5, g(x|θ) is the density of the obser-
vations (that is, the likelihood), and the right side represents the completion
joint density. The density f is arbitrary and can be chosen so that the full con-
ditionals of f are easy to simulate from and the Gibbs algorithm (Algorithm
8) is implemented on f instead of g and the corresponding full conditional of
θ given (x, z).

Depending on the field, such representations go by different names. From
a mathematical perspective, (5.9) is a mixture model. In statistics, we most
often use the name of missing-data models, while econometricians prefer the
use of latent variable models, maybe because of the related feeling of deus ex
machina operating behind the scenes! If we factor f(x, z|θ) = f(x|z, θ)h(z|θ),
then (5.9) becomes

g(x|θ) =
∫
Z
f(x|z, θ)h(z|θ) dz,

and h(z|θ), the marginal distribution of the missing data z, is clearly a mixing
distribution.

In a general missing-data setting,

g(x) =
∫
Z
f(x, z) dz

2 It is obviously always the case that any given density fX(x) can be artificially
completed into a joint density f(x, y), as demonstrated with the slice sampler at
the end of this section.



210 7 Gibbs Samplers

for p ≥ 2, we write y = (x, z) = (y1, . . . , yp) and denote the conditional
densities of f(y) = f(y1, . . . , yp) by

Y1|y2, . . . , yp ∼ f1(y1|y2, . . . , yp),
Y2|y1, y3, . . . , yp ∼ f2(y2|y1, y3, . . . , yp),

...
Yp|y1, . . . , yp−1 ∼ fp(yp|y1, . . . , yp−1).

Then, applying a multistage Gibbs sampler as in Algorithm 8 to those full
conditionals and assuming they all can be simulated leads to a Markov (Y (t))t
that converges to f and therefore a subchain (X(t))t that converges to g.

Example 7.6. In Examples 5.13 and 5.14, we treated a censored-data model as
a missing-data model. We identify g(x|θ) with the likelihood function

g(x|θ) = L(θ|x) ∝
m∏
i=1

e−(xi−θ)2/2,

and

f(x, z|θ) = L(θ|x, z) ∝
m∏
i=1

e−(xi−θ)2/2
n∏

i=m+1

e−(zi−θ)2/2

is the complete-data likelihood. Given a prior distribution π(θ) on θ, we can then
create a Gibbs sampler that iterates between the conditional distributions

π(θ|x, z) and f(z|x, θ)

and will have stationary distribution π(θ, z|x), the posterior distribution of (θ, z).
Taking a flat prior π(θ) = 1, the conditional distribution of θ|x, z is given by

θ|x, z ∼ N
(
mx̄+ (n−m)z̄

n
,

1
n

)
,

while the conditional distribution of Z|x, θ is the product of the truncated normals

Zi|x, θ ∼ ϕ(z − θ)
/
{1− Φ(a− θ)} ,

as each Zi must be greater than the truncation point a. Generating values of Z
can be done via the R function rtrun from the package bayesm (see Exercises
7.21 and 7.7). The outcome of the Gibbs sampler, whose R core can be written
as

> for(i in 2:Nsim){
> zbar[i]=mean(rtrun(mean=rep(that[i-1],n-m),
+ sigma=rep(1,n-m),a=rep(a,n-m),b=rep(Inf,n-m)))
> that[i]=rnorm(1,(m/n)*xbar+(1-m/n)*zbar[i],sqrt(1/n))
> }



7.4 Missing data and latent variables 211

Fig. 7.4. Histograms of the posterior distributions of θ and Z̄ from Example 7.6.
The truncation point on the Zi’s is a = 3.5.

is summarized in Figure 7.4 using the posterior distributions of θ and Z̄. J

Exercise 7.7 Referring to Example 7.6:

a. Show that, as a function of θ, the complete data likelihood is proportional to
the density of N ({mx̄+ (n−m)z̄}/n, 1/n).

b. Complete the R code above into a Gibbs sampler that estimates the posterior
distribution of θ.

Example 7.7. Recall the multinomial model of Example 5.16,

M
(
n;

1
2

+
θ

4
,

1
4

(1− θ), 1
4

(1− θ), θ
4

)
.

where we estimated θ using either EM or MCEM steps, introducing the latent
variable Z with the demarginalization

(z, x1 − z, x2, x3, x4) ∼M
(
n;

1
2
,
θ

4
,

1
4

(1− θ), 1
4

(1− θ), θ
4

)
.

If we use a uniform prior on θ, the full conditionals can be recovered as

θ ∼ Be(z + x4 + 1, x2 + x3 + 1) and z ∼ Bin

(
x1,

θ

2 + θ

)
,



212 7 Gibbs Samplers

Fig. 7.5. Histograms of marginal distributions from the Gibbs sampler of Example
7.7. The main interest is in the marginal distribution of θ.

leading to the Gibbs sampler

> x=c(125,18,20,34) #data
> theta=z=rep(.5,Nsim) #init chain
> for (j in 2:Nsim){
> theta[j]=rbeta(1,z[j-1]+x[4]+1,x[2]+x[3]+1)
> z[j]=rbinom(1,x{1},(theta[j]/(2+theta[j])))
> }

whose output is summarized in Figure 7.5. J

This example shows a case where both EM and the Gibbs sampler ap-
ply. As usual, the Bayesian approach allows a more complete inference that
includes confidence intervals.

Exercise 7.8 In the setting of Example 7.7:

a. Construct a 95% confidence interval for θ based on the outcome of the Gibbs
sampler, and verify whether or not the EM solution belongs to this interval.

b. The Gibbs sampler above used a uniform prior on θ; that is, θ ∼ Be(a, b)
with a = b = 1. Write a Gibbs sampler for general a and b, and, for a range
of a and b, compare the Gibbs estimates of θ with the EM answer. What can
you conclude about sensitivity to the prior?



7.4 Missing data and latent variables 213

Example 7.8. A generalization of the model of Example 7.7 is the model

(7.8) X ∼M5 (n; a1θ1 + b1, a2θ1 + b2, a3θ2 + b3, a4θ2 + b4, c(1− θ1 − θ2)) ,

with 0 ≤ a1 + a2 = a3 + a4 = 1 −
∑4
i=1 bi = c ≤ 1, where the ai, bi ≥ 0 are

known based on genetic considerations, as in Table 7.1 describing the probabilities
of the four blood types as functions of genotype probabilities, because of allele
dominance. Our interest is in estimating the allele frequencies pA, pB , and pO
(which sum to 1).

We can then augment the data with Z = (Z1, Z2, Z3, Z4) as

X1 = Z1 + Z2, X2 = Z3 + Z4, X3 = Z5 + Z6, X4 = Z7 + Z8,

which demarginalizes the model to allow us to sample from

Y ∼M9 (n; a1θ1, b1, a2θ1, b2, a3θ2, b3, a4θ2, b4, c(1− θ1 − θ2)) ,

with Y = (Z1, X1−Z1, Z2, X2−Z2, Z3, X3−Z3, Z4, X4−Z4, X5). (See Exercise
7.23 for an alternate solution.) A natural prior distribution on (θ1, θ2) is the
Dirichlet prior D(α1, α2, α3),

π(θ1, θ2) ∝ θα1−1
1 θα2−1

2 (1− θ1 − θ2)α3−1,

which leads to the full conditionals

(θ1, θ2, 1− θ1 − θ2)|x, z ∼ D(z1 + z2 + α1, z3 + z4 + α2, x5 + α3),

Zi|x, θ1, θ2 ∼ B
(
xi,

aiθ1
aiθ1 + bi

)
(i = 1, 3),(7.9)

Zi|x, θ1, θ2 ∼ B
(
xi,

aiθ2
aiθ2 + bi

)
(i = 5, 7),

which can all easily be simulated and thus included within a Gibbs sampler. Figure
7.6 shows the distributions of chains produced by such a sampler. J

Table 7.1. Observed genotype frequencies on blood type data. The effect of a
dominant allele creates a missing-data problem.

Genotype Probability Observed Probability Frequency

AA p2
A A p2

A + 2pApO nA = 186
AO 2pApO
BB p2

B B p2
B + 2pBpO nB = 38

BO 2pBpO
AB 2pApB AB pApB nAB = 13
OO p2

O O p2
O nO = 284



214 7 Gibbs Samplers

Fig. 7.6. Histograms of marginal distributions of the genotype probabilities from
the Gibbs sampler of Example 7.8.

Exercise 7.9 For the data in Table 7.1, modeled with (7.8):

a. Verify that the observed data likelihood is proportional to

(p2
A + 2pApO)nA(p2

B + 2pBpO)nB (pApB)nAB (p2
O)nO .

b. With missing data ZA and ZB , verify that the complete-data likelihood is
proportional to

(p2
A)ZA(2pApO)nA−ZA(p2

B)ZB (2pBpO)nB−ZB (pApB)nAB (p2
O)nO .

c. Write a Gibbs sampler to estimate pA and pB .

Finite mixture models, which we have seen in some detail in Chapter
5 (Example 5.2) and Chapter 6 (Example 6.5), are obviously a candidate
for demarginalization through latent variables; that is, as a special case of a
mixture (!). As already described in Example 5.12, given a sample (x1, . . . , xn)
from a mixture distribution

k∑
j=1

pj f(x|ξj) ,

where
∑
j pj = 1 and f(·|ξj) is a parameterized density with unknown pa-

rameter ξj , we can associate with every observation xi a latent variable



7.4 Missing data and latent variables 215

zi ∈ {1, . . . , k} that indicates which component of the mixture is associated
with xi. The corresponding completion of the mixture model above is then

Zi ∼Mk(1; p1, . . . , pk), xi|zi ∼ f(x|ξzi).

Thus, considering yi = (xi, zi) (instead of xi) entirely eliminates the mixture
structure since the likelihood of the completed model is

`(p, ξ|y1, . . . , yn) ∝
n∏
i=1

pzi f(xi|ξzi) =
k∏
j=1

∏
i;zi=j

pj f(xi|ξj).

One may wonder why the completion is useful in this setting since the
observed likelihood can be computed in closed form, as shown for instance in
Figure 5.2, which represents a mixture likelihood on a grid of pixels as in Ex-
ample 6.5, where we produced a random walk Metropolis–Hastings algorithm.
As in the EM algorithm of Examples 5.12 and 5.13, using the latent indicator
variables produces a usually efficient simulation algorithm that quickly focuses
on the mode(s) of the posterior distribution.

The two steps of the Gibbs sampler are then associated with the full con-
ditional posteriors

P (Zi = j|x, ξ) ∝ pj f(xi|ξj) (i = 1, . . . , n, j = 1, . . . , k)

and

ξj |y ∼ π

(
ξ

∣∣∣∣λjαj + njxj
λj + nj

, λj + nj

)
,

p ∼ Dk(γ1 + n1, . . . , γk + nk),

where

nj =
n∑
i=1

Izi=j , njxj =
n∑
i=1

Izi=jxi.

In this two-step Gibbs sampler, the generation from the posterior associated
with the complete likelihood is not detailed, as it will vary depending on the
sampling model and the prior used. In the standard situation relying on an
exponential family for f(·|ξ) and a conjugate prior on ξ, this generation is
obviously straightforward.

Example 7.9. As an illustration, consider the same setting as in Example 5.12,
namely a normal mixture with two components with equal known variance and
fixed weights,

pN (µ1, σ
2) + (1− p)N (µ2, σ

2) .

We assume in addition a normal N (0, v2σ2) prior distribution, with v2 known, on
both means µ1 and µ2. The latent variables zi are the same as in Example 5.12,
namely



216 7 Gibbs Samplers

P (Zi = 1) = 1− P (Zi = 2) = p and Xi|Zi = k ∼ N (µk, σ2) .

The completed distribution is then

π(µ1, µ2, z|x) ∝ exp
{
−(µ2

1 + µ2
2)/v2σ2

}
×
∏
i:zi=1

p exp
{
− (xi − µ1)2

2σ2

} ∏
i:zi=2

(1− p) exp
{
− (xi − µ2)2

2σ2

}
,

for which the full conditionals of the µj ’s are easily derived (Exercise 7.10). Figure
7.7 illustrates the behavior of the corresponding Gibbs sampler using a simulated
dataset x of 500 points from the .7N (0, 1)+.3N (2.7, 1) distribution. This picture
plots the MCMC sample after 15, 000 iterations on top of the log-posterior surface.
This simulation is in fact in clear agreement with the posterior surface. Although
it may appear to be too concentrated around one mode, you must account for the
fact that the second mode represented on this graph is much lower since there is
a difference of at least 50 in log-posterior values. J

Exercise 7.10 Using the completed joint distribution in Example 7.9:

a. Show that the conditional distributions are j = 1, 2

µj |x, z ∼ N

 v2

njv2 + 1

∑
i;zi=j

xi,
σ2v2

njv2 + 1

 ,

where nj denotes the number of zi’s equal to j and

P (Zi = j|xi, µ1, µ2) =
p exp

{
− (xi−µj)2

2σ2

}
p exp

{
− (xi−µ1)2

2σ2

}
+ (1− p)

{
− (xi−µ2)2

2σ2

} .
b. Write the R code to reproduce Figure 7.7.
c. For σ = 1, investigate the convergence of the Gibbs sampler for various com-

binations of the true values of (µ1, µ2, p). In particular, you should find that
if the µis are too separated and p = 0.5, the Gibbs sampler may concentrate
in one mode even though the modal likelihoods are similar.

As a last “example” of a latent variable Gibbs sampler, we look at the
slice sampler, which appears more like a generic type of demarginalization.3

(See Neal, 2003, for a comprehensive treatment.) Given a density of interest
fX(x), we can always represent it as the marginal density of the joint density

3 In fact, we can alternatively consider the Gibbs sampler as being derived from
the slice sampler; see Robert and Casella (2004, Chapter 8).



7.4 Missing data and latent variables 217

Fig. 7.7. Gibbs sample of 5000 points for the mixture posterior against the log-
posterior surface.

f(x, u) = I {0 < u < fX(x)}

since integrating the above in u returns fX . The associated conditional den-
sities are

fX|U (x|u) =
I{0 < u < fX(x)}∫
I{0 < u < fX(x)} dx

, fU |X(u|x) =
I{0 < u < fX(x)}∫
I{0 < u < fX(x)} du

,

which means they are both uniform. Those two conditionals then define the
slice sampler as the associated Gibbs sampler.



218 7 Gibbs Samplers

Algorithm 9 2D slice sampler
At iteration t, simulate

1. U (t+1) ∼ U[0,f(x(t))];

2. X(t+1) ∼ UA(t+1), with

A(t+1) = {x : f(x) ≥ u(t+1)}.

The appeal of this algorithm is that it formally applies to any density
known up to a multiplicative constant with no restriction on its shape or
dimension. Obviously, its implementation may be hindered by the uniform
simulation over the set A(t).

Example 7.10. Consider the density f(x) = 1
2e
−
√
x defined for x > 0. While it

can be directly simulated, it also yields easily to the slice sampler. Indeed, applying
the formulas above, we have

U |x ∼ U
(

0,
1
2
e−
√
x

)
, X|u ∼ U

(
0, [log(2u)]2

)
.

We implement the sampler to generate 5000 variates and plot them along with
the density in Figure 7.8, which shows that the agreement is very good. The
right panel does show some strong autocorrelations, which is typical of the slice
sampler. J

Exercise 7.11 Referring to Example 7.10 and the density fX(x) =
(1/2) exp (−

√
x):

a. Verify that the conditional distributions are

U |x ∼ U
(
0, (1/2) exp (−

√
x)
)

and X|u ∼ U
(
0, [log(2u)]2

)
,

and implement a Gibbs sampler to generate random variables from fX(x).
b. Make the transformation Y =

√
X and show that Y ∼ G(3/2, 1). Use this

fact to simulate directly X. Compare this algorithm with the slice sampler.

There is an obvious extension to the 2D slice sampler above, akin to the
multistage extension to the two-stage Gibbs sampler. If the target density is
written as a product of functions,

f(x) =
n∏
i=1

gi(x) ,



7.4 Missing data and latent variables 219

Fig. 7.8. A slice sampler histogram and target density for Example 7.10 using 5000
iterations. The left panel is the histogram with the true density overlaid, and the
right panel shows the autocorrelation function.

as for instance in the case of a posterior distribution associated with a sample
of n observations (where the gi’s are then the componentwise densities), an
associated completion is

f(x, u1, . . . , un) =
n∏
i=1

I {0 < ui < gi(x)} ,

which leads to a slice sampler with (n + 1) steps, X(t) then being uniformly
generated over the set

A(t) =
n⋂
i=1

{
x : gi(x) > u

(t)
i

}
.

Example 7.11. Recall logistic regression, which we first saw in Example 4.11
and fit with a Metropolis–Hastings algorithm in Exercise 6.13. The model is

Yi ∼ Bernoulli(p(xi)), p(x) =
exp(α+ βx)

1 + exp(α+ βx)
,

where p(x) is the success probability and x is a unidimensional covariate. The
likelihood associated with a sample (y,x) = (y1, x1), . . . , (yn, xn) is

L(α, β|y) ∝
n∏
i=1

(
eα+βxi

1 + eα+βxi

)yi ( 1
1 + eα+βxi

)1−yi
.



220 7 Gibbs Samplers

Using a flat prior on (a, b), the posterior distribution can be associated with a
slice sampler based on uniform

Ui ∼ U
(

0,
eyi(α+βxi)

1 + eα+βxi

)
variables. Generating a uniform distribution over the set{

(a, b) : yi(a+ bxi) > log
ui

1− ui

}
being rather unwieldy, we can further decompose the uniform simulation by con-
secutively simulating

a(t) ∼ U

(
max
i;yi=1

log
u

(t)
i

1− u(t)
i

− b(t−1)xi, min
i;yi=0

log
1− u(t)

i

u
(t)
i

− b(t−1)xi

)

and

b(t) ∼ U

(
max
i;yi=1

[
log

u
(t)
i

1− u(t)
i

− a(t)

]
/xi, min

i;yi=0

[
log

1− u(t)
i

u
(t)
i

− a(t)

]
/xi

)
,

if we assume without loss of generality that all xi’s are positive. However, running
the corresponding slice sampler on the challenger dataset described in Exercise
6.13 exhibits a random walk behavior on the chain (a(t), b(t))t, as shown in Figure
7.9. We therefore introduce instead normal N (0, σ2) priors on both a and b. The
modification on the slice sampler is minimal in that both uniform distributions
above are replaced with truncated normals N (0, σ2), the truncation intervals
being those used above. The core of the R code is then

> for (t in 2:Nsim){
+ uni=runif(n)*exp(y*(a[t-1]+b[t-1]*x))/
+ (1+exp(a[t-1]+b[t-1]*x))
+ mina=max(log(uni[y==1]/(1-uni[y==1]))-b[t-1]*x[y==1])
+ maxa=min(-log(uni[y==0]/(1-uni[y==0]))-b[t-1]*x[y==0])
+ a[t]=rtrun(0,sigmaa,mina,maxa)
+ minb=max((log(uni[y==1]/(1-uni[y==1]))-a[t])/x[y==1])
+ maxb=min((-log(uni[y==0]/(1-uni[y==0]))-a[t])/x[y==0])
+ b[t]=rtrun(0,sigmab,minb,maxb)
+ }

with sigmaa equal to 5 and sigmab equal to 5 divided by the standard deviation
of the xi’s. J



7.5 Hierarchical structures 221

Fig. 7.9. Evolution of the chain (a(t), b(t))t along 103 final iterations of a slice
sampler for the challenger dataset under a flat prior.

7.5 Hierarchical structures

We have seen the multistage Gibbs sampler applied to a number of examples,
most arising from missing-data structures. However, it is equally well-suited
to sample in a straightforward way from any hierarchical model.

A hierarchical model is defined by a sequence of conditional distributions
as, for instance, in the two-level generic hierarchy

Xi ∼ fi(x|θ), i = 1, . . . , n , θ = (θ1, . . . , θp) ,
θj ∼ πj(θ|γ), j = 1, . . . , p , γ = (γ1, . . . , γs) ,
γk ∼ g(γ), k = 1, . . . , s.

The joint distribution from this hierarchy is



222 7 Gibbs Samplers

n∏
i=1

fi(xi|θ)
p∏
j=1

πj(θj |γ)
s∏

k=1

g(γk) .

Assuming that the xi’s are observations, the corresponding posterior distri-
bution on (θ, γ) is associated with the full posterior conditionals

θj ∝ πj(θj |γ)
n∏
i=1

fi(xi|θ), j = 1, . . . , p ,

γk ∝ g(γk)
p∏
j=1

πj(θj |γ), k = 1, . . . , s .

In standard hierarchies, these densities are straightforward to simulate from
and are therefore naturally associated with a Gibbs sampler. In more com-
plex hierarchies, we might need to use more sophisticated methods, such as
a Metropolis–Hastings step or another slice sampler, to sample from the con-
ditionals (as explained in Section 7.6.3). However, our main message here is
that the full conditionals are quite easy to write down given the hierarchi-
cal specification, while they considerably reduce the dimension of the random
variables to simulate at each step.

� When a full conditional in a Gibbs sampler cannot be simulated directly, it
is sufficient to run instead a single step of any MCMC algorithm associated
with this full conditional. The theoretical validation is the same as with
any MCMC sampler. In the event a slice sampler is used for this purpose,
the auxiliary variable is simply added to the vector of parameters.

Example 7.12. A benchmark hierarchical example in the Gibbs sampling liter-
ature describes multiple failures of ten pumps in a nuclear plant, with the data
given in Table 7.2. The modeling is based on the assumption that the number of

Table 7.2. Number of failures and times of observation of ten pumps in a nuclear
plant (source: Gaver and O’Muircheartaigh, 1987).

Pump 1 2 3 4 5 6 7 8 9 10

Failures 5 1 5 14 3 19 1 1 4 22
Time 94.32 15.72 62.88 125.76 5.24 31.44 1.05 1.05 2.10 10.48

failures of the ith pump follows a Poisson process with parameter λi (1 ≤ i ≤ 10).
For an observation time ti, the number of failures Xi is thus a Poisson P(λiti)
random variable. The standard prior distributions are gamma distributions, which
lead to the hierarchical model



7.5 Hierarchical structures 223

Fig. 7.10. Histograms of marginal distributions of λ1, λ2, and β from the pump
failure data of Example 7.12. The corresponding bottom panels are autocorrelation
plots. The hyperparameter values are α = 1.8, γ = 0.01, and δ = 1.

Xi ∼ P(λiti), i = 1, . . . 10,
λi ∼ G(α, β), i = 1, . . . 10,
β ∼ G(γ, δ).

The joint distribution is thus

π(λ1, . . . , λ10, β|t1, . . . , t10, p1, . . . , p10)

∝
10∏
i=1

{
(λiti)xi e−λiti λα−1

i e−βλi
}
β10αβγ−1e−δβ

∝
10∏
i=1

{
λxi+α−1
i e−(ti+β)λi

}
β10α+γ−1e−δβ ,

leading to the full conditional distributions

λi|β, ti, xi ∼ G(xi + α, ti + β), i = 1, . . . 10,

β|λ1, . . . , λ10 ∼ G

(
γ + 10α, δ +

10∑
i=1

λi

)
.



224 7 Gibbs Samplers

The associated Gibbs sampler is quite straightforward, with core R code

> for(i in 2:Nsim){
+ for(j in 1:nx)
+ lambda[i,j]=rgamma(1,sh=xdata[j]+alpha,ra=Time[j]+beta[i-1])
+ beta[i]=rgamma(1,sh=gamma+nx*alpha,ra=delta+sum(lambda[i,]))}

The result of a run over 5000 iterations is shown in Figure 7.10. J

Exercise 7.12 One reason for collecting the pump failure data is to identify
which pumps are more reliable.

a. Run the Gibbs sampler for the pump failure data and get 95% posterior
credible intervals for the parameters λi.

b. Based on the analysis, can you identify any pumps that are more or less
reliable than the others?

c. How does your answer in b. change as the hyperparameter values are varied?

7.6 Other considerations

In this last section, we look at a few issues that could arise in the implemen-
tation of a Gibbs sampler.

7.6.1 Reparameterization

Many factors contribute to the convergence properties of a Gibbs sampler. For
example, convergence performance may be greatly affected by the choice of
the coordinates (or, in other words, the parameterization). If the covariance
matrix Σ of the target has a wide range of eigenvalues, the Gibbs sampler
may be very slow to explore the entire range of the support of the target.

Example 7.13. Recall Example 7.1, where we saw a first Gibbs sampler for
the bivariate normal in (7.1). For that bivariate normal distribution, Figure 7.11
shows the autocorrelation for ρ = .3, .6, .9. The higher correlation results in a
sampler that will have more trouble exploring the entire space and thus require
more iterations. It is also interesting to note that no matter what is the value of
ρ, X+Y and X−Y are independent, and thus changing coordinates from (x, y)
to (x+ y, x− y) would lead to an immediately converging Gibbs algorithm. J

Exercise 7.13 For the bivariate normal distribution (7.1):

a. prove that X + Y and X − Y are independent.



7.6 Other considerations 225

Fig. 7.11. Autocorrelations in one marginal of a bivariate normal generated from
a Gibbs sampler for ρ = 0.3 (left), ρ = 0.6 (middle), and ρ = 0.9 (right).

b. Suppose now that X and Y are bivariate normal with mean 0, correlation ρ,
and var(X) = σ2

x and var(T ) = σ2
y, which are not necessarily equal. Study

the effect on autocorrelation of varying ρ, σ2
x, and σ2

y.
c. If σ2

x 6= σ2
y, then X + Y and X − Y are no longer independent. Find a pair

of random variables that are.

Convergence of both Gibbs sampling and Metropolis–Hastings algorithms
may thus suffer from a poor choice of parameterization. As a result of this, the
MCMC literature has considered changes in the parameterization of a model
as a way to speed up convergence in a Gibbs sampler. It seems, however,
that most efforts have concentrated on the improvement of specific models,
resulting in a lack of general methodology for the choice of a “proper” param-
eterization. Nevertheless, the overall advice is to try to make the components
“as independent as possible” and to use several parameterizations simultane-
ously to intermingle the conditionals.

Example 7.14. (Continuation of Example 7.5) A reparameterization of
the one-way random effect of Example 7.5 is to introduce the overall mean at the
observation level, as in

Xij ∼ N (µ+ θi, σ
2), i = 1, . . . , k, j = 1, . . . , ni,

θi ∼ N (0, τ2), i = 1, . . . , k,(7.10)
µ ∼ N (µ0, σ

2
µ).



226 7 Gibbs Samplers

Fig. 7.12. Autocovariance plots for the Gibbs sampler associated with model (7.7)
and the Gibbs sampler associated with its reparameterization (7.10). The top row
gives the autocovariances for µ, θ1, θ2 (left to right) for model (7.7), and the bottom
row gives them for model (7.10).

While the hierarchy looks the same, the conditionals are different (Exercise 7.14)
and the properties of the corresponding Gibbs sampler are as well. When applied
to the Energy dataset, the new Gibbs sampler is not as good. For instance, Figure
7.12 shows the autocorrelations, which, to the eye, seem only slightly better for
the first model. However, if we look at the covariance matrix of the subchain
(µ(t), θ

(t)
1 , θ

(t)
2 ), its estimate is 1.056 −0.175 −0.166
−0.175 1.029 0.018
−0.166 0.018 1.026

 and

1.604 0.681 0.698
0.681 1.289 0.278
0.698 0.278 1.304

 ,

for model (7.7) and model (7.10), respectively, so the variances and covariances
are larger for the reparameterized model. Thus, we clearly should use the param-
eterization of model (7.7). J

Exercise 7.14 For the reparameterized model of (7.10):

a. Show that the full conditionals of θi and µ are



7.6 Other considerations 227

θi ∼ N
(
B1(X̄i − µ), (σ2/ni)B1

)
, B1 =

niτ
2

niτ2 + σ2
, i = 1, . . . , k

µ ∼ N
(
(1−B2)µ0 +B2(X̄ − θ̄), (σ2/n)B2

)
, B2 =

nσ2
µ

nσ2
µ + σ2

,

where n =
∑
i ni and θ̄ =

∑
i niθi/n.

b. Write a Gibbs sampler for this model, and compare the autocovariances with
those of the Gibbs sampler based on model (7.7).

c. The covariance matrix of the parameter estimates is the inverse of the Fisher
information matrix. Calculate this matrix for both parameterizations using the
R functions cor and solve.

7.6.2 Rao–Blackwellization

We have already seen Rao–Blackwellization in Section 4.6, where conditioning
on a subset of the simulated variables may produce considerable improvement
upon the standard empirical estimator in terms of variance by a simple “recy-
cling” of the rejected variables. However, as the Gibbs sampler accepts every
simulated value, this type of recycling cannot apply. Nonetheless, Gelfand
and Smith (1990) propose a type of conditioning that we will call parametric
Rao–Blackwellization to differentiate it from the form studied in Section 4.6.

For (X,Y ) ∼ f(x, y), parametric Rao–Blackwellization is based on the
marginalization identity (iterated expectation)

E[X] = E[E[X|Y ]].

Defining δ(Y ) = E[X|Y ], we have E[δ(Y )] = E[X] and var[δ(Y )] ≤ var(X),
showing that δ(Y ) is the better estimator (provided it can be computed).

Example 7.15. (Continuation of Example 7.1) In the case where the tar-
get is the bivariate normal distribution, the full conditionals are

Xt+1 | yt ∼ N (ρyt, 1− ρ2),
Yt+1 | xt+1 ∼ N (ρxt+1, 1− ρ2),

and thus it follows that E[X|Y ] = ρY . Since X and Y have the same marginal
distribution, the variance of the Rao–Blackwellized version is then obviously re-
duced by a factor ρ2. J

Unfortunately, the variance reduction from using δY does not hold in gen-
eral, due to the correlation in the MCMC sample. However, Liu et al. (1994)
have shown that, in particular, the improvement holds for any two-stage Gibbs
sampler.

We now look at another example of Rao–Blackwellization in a missing-data
Gibbs sampler for a common occurrence where possible gains occur.



228 7 Gibbs Samplers

Example 7.16. For 360 consecutive time units, consider recording the number
of passages of individuals per unit time past some sensor. This can be, for instance,
the number of cars observed at a crossroad. Hypothetical results are

Number of passages 0 1 2 3 4 or more
Number of observations 139 128 55 25 13

The data involves a grouping of the observations with four passages or more. This
can be addressed as a missing-data model, where we assume that the ungrouped
observations are Xi ∼ P(λ). The likelihood of the model is

`(λ|x1, . . . , x5) ∝ e−347λλ128+55×2+25×3

(
1− e−λ

3∑
i=0

λi/i!

)13

for x1 = 139, . . . , x5 = 13. For π(λ) = 1/λ and z = (z1, . . . , z13), the vector of
the 13 units larger than 4, we can derive a completion Gibbs sampler from the
full conditionals

Z
(t)
i ∼ P(λ(t−1)) Iy≥4, i = 1, . . . , 13,

λ(t) ∼ G

(
313 +

13∑
i=1

Z
(t)
i , 360

)
.

The Rao–Blackwellized estimate of λ is then given by

T∑
t=1

E
[
λ
∣∣, z(t)

1 , . . . , z
(t)
13

]
=

1
360T

T∑
t=1

(
313 +

13∑
i=1

y
(t)
i

)
,

and the evolution of this estimator, along with the empirical average, is shown in
Figure 7.13. It exhibits a massive variance reduction. J

Exercise 7.15 Referring to Example 7.16:

a. Verify the likelihood function and the Gibbs sampler.
b. Write R code to reproduce Figure 7.13.
c. The truncated Poisson variable can be generated using the while statement

> for (i in 1:13){while(y[i]<4) y[i]=rpois(1,lam[j-1])}

or directly with

> prob=dpois(c(4:top),lam[j-1])
> for (i in 1:13) z[i]=4+sum(prob<runif(1)*sum(prob))

Compare the efficiencies of these two algorithms. In theory, the value of top
should be infinity. In practice, what value would you use?



7.6 Other considerations 229

Fig. 7.13. For the counting data of Example 7.16, the histogram of λ (left) and its
conditional expectation E(λ|Z) = 313+

P13
i=1 zi (right). Note the difference in scale

of the histograms. The center panel shows the evolution of the cumulative averages
of the empirical average (black) and the Rao–Blackwellization (grey).

There also exist non-parametric Rao–Blackwellized estimators in missing-
variable settings. When considering an approximation to the marginal dis-
tribution fX associated with f(x, y1, . . . , yp), a Rao–Blackwellized estimator
associated with the Gibbs chain (x(t),y(t))t is given by

(7.11) f̂X(x) =
1
T

T∑
t=1

f(x|y(t)) ,

which converges at a parametric speed to fX(x). This estimator gives a smooth
approximation to the marginal, which can be plotted on top of the marginal.

As studied in Exercises 3.15, 4.1, and 4.2, the approximation of the Bayes
factors calls for specific solutions. Chib (1995) proposes an alternative ap-
proach based on a Rao–Blackwellization that is much more efficient when it
can be implemented.

Exercise 7.16 In a missing-variable setting where the sampling density can be
written as

f(x|θ) =
∫
Z
g(x, z|θ) dz,

we assume the prior π(θ) is such that a two-stage Gibbs sampler based on the
simulation of g(z|x, θ) and π(θ|x, z) can be implemented. Using a Bayes’ Theorem



230 7 Gibbs Samplers

representation of the marginal density,

m(x) =
f(x|θ)π(θ)
π(θ|x)

,

deduce a converging estimator of m(x) based on the Rao–Blackwellized estimate
of the posterior density π(θ|x) above. Apply to the settings of Examples 7.7 and
7.9.

7.6.3 Metropolis within Gibbs and hybrid strategies

A point worth emphasizing about the implementation of a Gibbs sampler is
that it can easily be extended to settings where some of the full conditionals
cannot be simulated by standard random generators. If, within a set of full
conditionals f1, . . . , fp, some density fi is unconventional, for example (5.15)
in Example 5.17, this does not jeopardize the resulting Gibbs sampler in the
sense that the following Metropolis-within-Gibbs strategy can be adopted: In-
stead of simulating

X
(t+1)
i ∼ fi(xi|x(t+1)

1 , . . . , x
(t+1)
i−1 , x

(t)
i+1, . . . , x

(t)
p ) ,

you can run one single step of any MCMC scheme associated with the sta-
tionary distribution fi(xi|x(t+1)

1 , . . . , x
(t+1)
i−1 , x

(t)
i+1, . . . , x

(t)
p ). A simple solution

is for instance to use a random walk Metropolis algorithm centered at x(t)
i .

While at first this sounds like a crude approximation, as the full conditional
is not exactly simulated, the validity of the resulting algorithm is exactly the
same as with the original Gibbs sampler since the joint distribution f remains
the stationary distribution of the corresponding Markov chain.

You may then wonder what the point is in using a Gibbs sampler if com-
ponentwise simulations have to be replaced with Metropolis–Hastings steps,
as using a Metropolis–Hastings algorithm targeted at the joint distribution f
is more “natural”. While there is nothing restraining you from using a joint
Metropolis–Hastings algorithm, it is most often the case that designing such a
Metropolis–Hastings algorithm on a large-dimensional target is challenging or
even impossible. The fundamental gain in using a Gibbs-like structure is that
it breaks down a complex model into a large number of smaller and simpler
targets, where local Metropolis–Hastings algorithms can be designed at little
expense.

Example 7.17. If we consider the target distribution (5.15), we mentioned in
Example 5.17 that this is not a standard distribution. While Booth and Hobert
(1999) designed a specific Accept-Reject algorithm to simulate from (5.15), a
random walk proposal on each ui, as in



7.6 Other considerations 231

> for (i in 1:n){
+ mu=u[i]
+ u[i]=factor*sigma[iter-1]*rnorm(1)+mu
+ if (log(runif(1))>gu(u[i],i,beta[iter-1],sigma[iter-1])-
+ gu(mu,i,beta[iter-1],sigma[iter-1])){
+ u[i]=mu
+ }
+ }

produces a sample of ui’s at iteration iter conditional on the current values of
the parameters and the sample of ui’s at iteration iter-1. In the overall Gibbs
sampler, the parameters are then simulated by

> sigma=c(sigma,1/sqrt(2*rgamma(1,0.5*n)/sum(u^2)))
> tau=sigma[iter]/sqrt(sum(as.vector(x^2)*pro(beta[iter-1],u)))
> betaprop=beta[iter-1]+rnorm(1)*factor*tau
> if (log(runif(1))>likecomp(betaprop,sigma[iter],u)-
+ likecomp(beta[iter-1],sigma[iter],u))
+ betarop=beta[iter-1]
> beta=c(beta,betaprop)

in a straightforward manner. (See Example 8.1 for the complete implementation.)
The calibration term factor can further be tuned against the acceptance rate of
Section 6.5, as described in Section 8.5. J

While remaining close to this idea of incorporating Metropolis–Hastings steps
when direct simulation is not possible, we may also signal the possible ex-
tension to hybrid strategies.4 The concept is once again based on the sta-
tionarity of the right target distribution, even though intuition may disagree.
When given a (univariate or multivariate) target where several natural MCMC
schemes are available, a hybrid algorithm merges those different schemes al-
together. Schematically, if local or global (meaning componentwise or joint)
MCMC update functions mcmc.1(x,y), . . ., mcmc.q(x,y) are available, the
transition kernel defined by

mcmc(x,y)=function(x,y){
switch(sample(1:p,1),
mcmc.1(x,y)

...
mcmc.p(x,y))
}

remains a valid MCMC update function against the same target distribu-
tion. While this sounds like a ludicrous idea because poor schemes are mixed
4 Hybrid strategies should not be confused with hybrid Monte Carlo (Neal, 1999),

also called Hamiltonian MCMC, which is a form of Langevin implementation
aimed at reducing the waste of simulation in random walk proposals.



232 7 Gibbs Samplers

with good ones, the blind mixing of all available strategies is nonetheless (a)
valid from the perspective of producing the correct stationary distribution
and (b) risk-free in the sense that if the list of functions contains a single well-
performing algorithm, the hybrid version will perform at least as well, simply
requiring a p-fold extension of the computing time. For instance, if several
blocking or reparameterization strategies are simultaneously available, they
can all be incorporated within the same algorithm. This solution could well
appear as a waste of computing time, but our advice on this matter is that,
unless some of the mcmc.i functions clearly do work, the time spent (wasted)
running the hybrid solution is time saved on designing and selecting the more
efficient mcmc.i functions. In other words, it is more efficient to let the com-
puter sort among the available solutions than to run preliminary tests to sort
those solutions “by hand”.

7.6.4 Improper priors

This section discusses a particular danger resulting from careless use of the
Gibbs sampler. We know that the Gibbs sampler is based on conditional
distributions derived from the joint distribution. However, what is particularly
insidious is that these conditional distributions may be well-defined and may
be simulated from but may not correspond to any joint distribution!

This problem is not a defect of the Gibbs sampler, or even a simulation
problem, but rather a problem of inadvertently using the Gibbs sampler in a
situation for which the underlying assumptions are violated. It is nonetheless
important to warn the user of MCMC algorithms against this danger because
it corresponds to a situation often encountered in Bayesian noninformative
(or “default”) models.

The construction of the Gibbs sampler directly from the conditional dis-
tributions is a strong incentive to bypass checking for the propriety of the
posterior, especially in complex setups. But such checking is essential, as the
following simple example shows.

Example 7.18. The following model was used by Casella and George (1992)
to point out the difficulty of assessing the impropriety of a posterior distribution
through the conditional distributions. The pair of conditional densities

(7.12) X|y ∼ Exp(y) , Y |x ∼ Exp(x) ,

are well-defined conditional distributions, but these conditional distributions do
not correspond to any joint probability distribution. Figure 7.14 shows a histogram
and cumulative average for a sample generated using the Gibbs sampler corre-
sponding to those conditionals. The pictures are extremely curious and in fact
are absolute rubbish! (This is not a recurrent Markov chain.) Indeed, the only
function that could be the joint distribution is

f(x, y) ∝ exp(−xy),

which does not have a finite integral. J



7.6 Other considerations 233

Fig. 7.14. Histogram and cumulative average of the X variable from the Gibbs
sampler of (7.12). Note the ranges on the graphs that signal convergence issues.

Exercise 7.17 For the Gibbs sampler based on (7.12)

a. Write an R program to reproduce Figure 7.14.
b. The Hammersley–Clifford Theorem (Robert and Casella, 2004, Section 9.1.4)

says that the joint density must satisfy

f(x, y) = f(y|x)

/∫
[f(y|x)/f(x|y)] dy .

Show that applying this result to (7.12) leads to f(x, y) ∝ exp(−xy).
c. Show that if the exponential distributions are restricted to (0, B), B < ∞,

the resulting figure is reasonable. Exhibit the stationary density of the Markov
chain in this case. (Hint: Apply the Hammersley–Clifford Theorem.)

Given the results of Example 7.18, it may appear that a simple graphical
monitoring is enough to exhibit deviant behavior of the Gibbs sampler. How-
ever, this is not the case in general and there are many examples, some of
which are published (see Casella, 1996), where the output of the Gibbs sam-
pler seemingly does not differ from a convergent Markov chain. Often, this
phenomenon takes place when the divergence of the posterior density occurs
“at 0”; that is, at a specific point whose immediate neighborhood is rarely
visited by the chain, as in the following random effects example. The only
way to make sure the Gibbs sampler you are using is valid is to check that
the joint distribution has a finite integral.

Example 7.19. Consider a random effects model,



234 7 Gibbs Samplers

Yij = β + Ui + εij , i = 1, . . . , I, j = 1, . . . , J,

where Ui ∼ N (0, σ2) and εij ∼ N (0, τ2). The Jeffreys (improper) prior for the
parameters β, σ, and τ is

π(β, σ2, τ2) =
1

σ2τ2
.

The conditional distributions

Ui|y, β, σ2, τ2 ∼ N
(
J(ȳi − β)
J + τ2σ−2

, (Jτ−2 + σ−2)−1

)
,

β|u, y, σ2, τ2 ∼ N (ȳ − ū, τ2/JI),

σ2|u, β, y, τ2 ∼ IG

(
I/2, (1/2)

∑
i

u2
i

)
,

τ2|u, β, y, σ2 ∼ IG

IJ/2, (1/2)
∑
i,j

(yij − ui − β)2

 ,

are well-defined, and a Gibbs sampler can be easily implemented in this setting.
However, there is no proper joint distribution that corresponds to these condi-
tionals! And, in many instances, as you may check for yourself, this is impossible
to detect by monitoring the output. J

Exercise 7.18 In the setting of Example 7.19:

a. Generate data according to the model and run a corresponding Gibbs sampler
on the parameters of the model. Monitor histograms and cumulative averages.
Can you detect the fact that there is no proper joint distribution?

b. The variation on the model (7.6) given in Exercise 7.6, where µ is given a
flat prior, is a Gibbs sampler with improper priors. Since there is no guarantee
that the posterior distribution is proper, check to see if it is in fact proper.

� If improper priors are used in a Gibbs sampler, the posterior must always
be checked for propriety. However, it is often the case that improper priors
on variances cause more trouble than those on means.

7.7 Additional exercises

Exercise 7.19 The gamma distribution with parameters a and b, G(a, b), has density
baxa−1e−bx/Γ (a). Show that if X ∼ IG(a, b), then 1/X ∼ G(a, b). (This means that



7.7 Additional exercises 235

generating from a gamma distribution is equivalent to generating from an inverted
gamma distribution.)

Exercise 7.20 From the hierarchy (7.6), show that the joint distribution can be ob-
tained by multiplying the densities together. Then, using the strategy of Exercise 7.4,
verify that the full conditionals are given by (7.7).

Exercise 7.21 A truncated normal generator is based on the R function

rtnorm=function(n=1,mu=0,lo=-Inf,up=Inf){

qnorm(runif(n,min=pnorm(lo,mean=mu,sd=sigma),

max=pnorm(up,mean=mu,sd=sigma)),

mean=mu,sd=sigma)}

where mu and sigma are the mean and standard deviation of the normal, lo is the lower
truncation point, up is the upper truncation point, and n is the number of random
variables desired. For Z ∼ N (0, 1) with truncation (i) −1 < Z < 1, (ii) Z < 1, and
(iii) Z > 3, generate 1000 random variables and compare the histograms with the
density functions.

Exercise 7.22 Referring to Exercise 7.5:

a. Calculate the third and fourth moments of the density in question a of that exercise.
b. If X ∼ Np(0, Σ), show that the density of X1|x(−1) is

Np(Σ12Σ
−1
22 x(−1), Σ11 −Σ12Σ

−1
22 Σ

′
12),

where the covariance matrix is partitioned in the obvious way. Use this formula to
verify (7.5).

c. The matrix (1 − ρ)I + ρJ is only positive definite if ρ > −1/(p − 2). Verify this
result.

Exercise 7.23 Referring to model (7.8), the (uncompleted) posterior distribution is
available as

π(θ1, θ2|x) ∝ (a1θ2 + b1)x1(a2θ2 + b2)x2(a3θ1 + b3)x3(a4θ1 + b4)x4

× (1− θ1 − θ2)x5+α3−1θα1−1
2 θα2−1

1 .

a. Show that the marginal distributions π(θ1|x) and π(θ2|x) can be explicitly computed
as polynomials when the αi’s are integers.

b. Give the marginal posterior distribution of ξ = θ2/(1−θ1−θ2). (Note: See Robert,
1995a, for a solution.)

c. Evaluate the Gibbs sampler based on (7.9) by comparing approximate moments of
θ1, θ1, and ξ with their exact counterparts derived from the explicit marginal.

Exercise 7.24 The alternate parameterization of model (7.6) produced in Example
7.14 modifies the relations between the variables. Show that θi and µ are a priori inde-
pendent for this parameterization and that this is not the case in model (7.6).

Exercise 7.25 Rao–Blackwellization can be applied to most of the Gibbs samplers
in this chapter. For each of the following examples, verify the conditional expectations
provided there and compare via an R experiment the empirical average with the Rao–
Blackwellization.



236 7 Gibbs Samplers

a. Example 7.2: E[θ|x] = x+ a/(n+ a+ b).

b. Equation (7.4): E[θ|x, σ2] = σ2

σ2+nτ2 θ0 + nτ2

σ2+nτ2 x̄.

c. Equation (7.7): E[θi|X̄i, σ2] = σ2

σ2+niτ2 µ+ niτ
2

σ2+niτ2 X̄i.

d. Example 7.6: E[θ|x, z] = mx̄+(n−m)z̄
n

.
e. Example 7.12: E[λi|β, ti, xi] = (xi + α)/(ti + β).



8

Convergence Monitoring and Adaptation
for MCMC Algorithms

“Why does he insist that we must have a diagnosis? Some things are
not meant to be known by man.”

Susanna Gregory
An Unholy Alliance

Reader’s guide

The goal of this chapter is to present different monitoring methods (or diag-
nostics) proposed to check (for) the convergence of an MCMC algorithm when
considering its output and to answer the most commonly asked question about
MCMC, namely “when do we stop our MCMC algorithm?” We distinguish here
between two separate notions of convergence, namely convergence to stationarity
and convergence of ergodic average, in contrast with iid settings. We also discuss
several types of convergence diagnostics, primarily those contained in the coda
package of Plummer et al. (2006), even though more accurate methods may be
available in specific settings.

Since assessing convergence is a preliminary step in comparing algorithms
when several are considered, we also cover in this final chapter (albeit briefly)
adaptive MCMC algorithms, pointing out the dangers of basic adaptivity and dis-
cussing the amcmc package developed by Rosenthal (2007) for a specific adaptive
random walk proposal.

C.P. Robert, G. Casella, Introducing Monte Carlo Methods with R, Use R,  
DOI 10.1007/978-1-4419-1576-4_8, © Springer Science+Business Media, LLC 2010 



238 8 Monitoring and Adaptation for MCMC Algorithms

8.1 Introduction

In each of the previous two chapters, we have introduced the MCMC algo-
rithms and, although we skipped most theoretical details, we argued that,
under fairly general conditions, these algorithms are convergent because the
chains they produce are ergodic. While such developments are obviously neces-
sary as a theoretical validation of the MCMC algorithms, they are nonetheless
insufficient from the point of view of the implementation of MCMC methods.
Indeed, theoretical guarantees do not tell us when to stop these algorithms
and when to produce our estimates with enough confidence. The ideal setting
would be to provide you with clear convergence markers that could be in-
cluded in your R program so that no sequential processing would be needed!
In practice, this is nearly impossible, and several runs of your program are
usually required until you are satisfied with the outcome (or you run out of
time and/or patience).

As in Chapter 4, the techniques we present in this chapter are mostly
empirical, with additional difficulties because we are only approximately sim-
ulating from the target density. We are mostly in the situation of describing
a sequence of incomparable techniques with widely varying degrees of theo-
retical justification and usefulness, while the assessment derived from those
techniques is partly subjective and clearly not foolproof.

Historically, there was a flurry of papers at the end of the 1990s concerned
with the development of convergence diagnoses (see Robert and Casella, 2004,
Chapter 13), including the construction of an R package called coda, which
we will discuss below. This flurry has now quieted down, the main reason
sadly being that no criterion is absolute. It is somewhat of an illusion to think
we can control the flow of a Markov chain and assess its convergence behavior
based only on a few (hundred or thousand or even million) realizations of this
chain. There always are settings that, for most realizations, will invalidate
an arbitrary diagnostic, and the randomness inherent in the nature of the
problem prevents any categorical guarantee of performance.

8.2 Monitoring what and why

Before describing the monitoring tools, we need to discuss the target of those
tools, that is, the three different types of convergence for which assessment is
necessary.

8.2.1 Convergence to the stationary distribution

The first requirement for the convergence of an MCMC algorithm is that the
distribution of the chain (x(t)) should be the stationary distribution f . This



8.2 Monitoring what and why 239

sounds like a minimal requirement for an algorithm that was introduced as an
approximate generator from f ! Unfortunately, this issue is not as straightfor-
ward as it seems. Indeed, assessing that, for a given t, x(t) is exactly distributed
from f is first a difficult goal when f is a complex target and second a the-
oretical impossibility if we only consider a single realization (or path) of the
Markov chain (x(t)). Both these issues can be settled by aiming at a slightly
less ambitious goal, namely to experimentally assess the independence from
the starting point x(0) based on several realizations of the chain using the
same transition kernel.

In Robert and Casella (2004), we assumed that, in a standard statistical
setup where the support of f is approximately known, this primary conver-
gence issue is marginal, namely that the initial value x(0) can be chosen (as if)
generated from the distribution f . When looking at a single chain, this means
acting as if the chain is already in its stationary regime at the start, meaning
in practice that x(0) belongs to an area of likely (enough) values for f . This
assumption is harder to maintain in higher dimensions, however, when the
support of f is generally unknown.

� When running an MCMC algorithm, the important issues are the speed
of exploration of the support of f (that is, the region that supports most
of the probability mass of f) and the degree of correlation between the
x(t)’s. However, this is not to say that stationarity should not be tested.
As Section 8.3.2 will explain, regardless of the starting distribution, the
chain may be slow to explore the different regions of the support of f , with
lengthy stays in some subregions. A stationarity test comparing several
chains may then be useful in detecting such difficulties.

The major tool for assessing (convergence to) stationarity is to use sev-
eral chains in parallel in order to compare their performances. Obviously, this
means that the slower chain in the group governs the convergence diagnos-
tic and that the choice of the initial distribution is extremely important in
guaranteeing that the different chains are well-dispersed (with regard to the
target distribution f). But the availability of multiprocessor machines is an
incentive for using parallel chains since the Markovian nature of MCMC algo-
rithms prevents the use of parallel processing. Checking for the convergence
of an MCMC algorithm by using several chains at once is therefore not much
more costly than using a single chain, while the output of all the chains can
be recycled later for approximation (Monte Carlo) purposes.

Looking at a single path of the Markov chain produced by an MCMC
algorithm makes it difficult to assess convergence unless something is known
about the target f or the transition kernel K. In general, MCMC algorithms
suffer from the major defect that “you’ve only seen where you’ve been” in the



240 8 Monitoring and Adaptation for MCMC Algorithms

sense that the part of the support of f that has not (yet) been visited by the
chain at time T is almost impossible to detect. This “missing mass” problem
is a quite central difficulty with most MCMC algorithms, much more than the
failure to explore the tails of f .

8.2.2 Convergence of averages

Once the issue of convergence to the stationary distribution is (approximately)
settled, we are faced with the same goal as in regular Monte Carlo settings,
namely convergence of the empirical average

(8.1)
1
T

T∑
t=1

h(x(t))

to Ef [h(X)] for an arbitrary function h. While the tools derived in Chapter 4
can be considered in this setting, there are two features that distinguish sta-
tionary MCMC outcomes from iid ones, namely the probabilistic dependence
in the sample and, consequently, the mixing behavior of the transition, that
is, how fast the chain explores the support of f .

While exploring the support of f may sound more like a stationarity con-
straint, we insist on separating these issues. An ergodic Markov chain that
starts from one mode of f can be correctly deemed to be in its stationary
regime, but it may still require many iterations to reach the other modes of
this distribution, another occurrence of the “missing mass” problem. Thus, er-
godicity, understood in the sense of an independence from initial conditions, is
not to be confused with ergodicity taken in the sense of correct approximation
of f by the empirical distribution.

Additional assessments are thus necessary to guarantee that the standard
diagnostics of Chapter 4 are still appropriate in the Markovian case. For in-
stance, the strong reliance on the Central Limit Theorem found in Chapter 4
needs to be tempered by the fact that the Central Limit Theorem does not
hold for all ergodic Markov chains (Meyn and Tweedie, 1993). This second
convergence perspective is therefore the one central to the assessment and
comparison of MCMC algorithms.

8.2.3 Approximating iid sampling

Ideally, the approximation to f provided by MCMC algorithms should extend
to the (approximate) production of iid samples from f . The most practical
solution to this independence issue is to use subsampling (or batch sampling) to
reduce or eliminate correlation between the successive points of the Markov
chain. This technique subsamples the chain (x(t)) with a (deterministic or



8.2 Monitoring what and why 241

random) batch size k, considering only the values y(t) = x(kt). If the covariance
covf (x(0), x(t)) decreases monotonically with t, the motivation for subsampling
is obvious. However, checking for the monotone decrease of covf (x(0), x(t)) is
not always possible and, in some settings, the covariance oscillates with t,
which complicates the choice of k.

As noted in Chapter 4, assessing convergence almost inevitably leads to a
“waste” of simulation in that it takes longer to diagnose convergence than it
takes for convergence to “occur”. Subsampling illustrates this general feature
since it loses in efficiency with regard to the second convergence goal.

Exercise 8.1 Suppose both Ef [h(X)] and Ef [h2(X)] are well-defined and
(x(t)) is a Markov chain with stationary distribution f . We compare an estimator
that uses all of the Markov chain (δ1) with one that subsamples (δ2):

δ1 =
1
Tk

Tk∑
t=1

h(x(t)) and δk =
1
T

T∑
`=1

h(x(k`)) .

Show that the variance of δ1 satisfies var(δ1) ≤ var(δk) for every k > 1.

In the remainder of the chapter, we consider only independence issues in
cases where they have bearing on diagnoses.

8.2.4 The coda package

Following the review in Cowles and Carlin (1996) and Brooks and Roberts
(1998) of major convergence diagnostics, Plummer et al. (2006) have written
an R package called coda that contains many of the tools we will be discussing
in this chapter. While this coda package was primarily intended for processing
the output of a BUGS run (Lunn et al., 2000), it can also be utilized directly
to handle an arbitrary output from your own MCMC programs. Given that
we will use some coda functions in the following sections, we need to introduce
the basic features of this package at this early stage, referring you to the latest
version of the coda manual for further details. (The manual is available in the
same CRAN depository as the package.)

The coda package is available for download from the CRAN depository and
works on all platforms.1 Once installed on your machine, you can download
all coda functions using the command library(coda).

The generic functions of the coda package are:

codamenu gives a menu interface to the coda functions
coda.options queries and sets options of the coda functions
multimenu gives additional plotting options
read.coda reads data in the format provided by BUGS

1 Since the package is open-source, it is part of the major Linux distributions such
as Ubuntu, Red Hat, and Debian.



242 8 Monitoring and Adaptation for MCMC Algorithms

and an essential family of functions called mcmc. These functions transform
an MCMC output made of a vector or a matrix into an MCMC object that
can be processed by coda, as in

> summary(mcmc(X))

(where X is a (T, n) matrix whose n columns are the outputs of the MCMC al-
gorithm for each component of the simulated object). Its derivative mcmc.list
is used to represent parallel runs of the same chain toward specific convergence
diagnoses. Specific multidimensional plots are also provided in levelplot,
acfplot, qqmath, densityplot, and xyplot. More specific diagnoses con-
tained in coda will be discussed along with their generic description.

8.3 Monitoring convergence to stationarity

8.3.1 Graphical diagnoses

A first empirical approach to convergence control is to draw pictures of the
output of simulated chains, componentwise as well as jointly, in order to detect
deviant or nonstationary behaviors, with the obvious drawback that chains
“stuck” in a particular region of the parameter space, far away from the main
bulk of the target f , may well exhibit a stationary pattern. For instance, coda
provides this crude analysis via the plot command, which, when applied to
an mcmc object, produces both a trace of the chain across iterations and a
non-parametric estimate of its density, parameter by parameter (rather than
a standard plot).

Example 8.1. We again consider the random effect logit model already pro-
cessed in Example 5.17 using a Monte Carlo EM strategy. Opting for a standard
random walk Metropolis–Hastings algorithm, we simulate both the random effects
ui (i = 1, . . . , n) and the logit coefficient β from normal distributions centered
at the previous values of those parameters. (Note that the ui’s are independent
given the parameters β and σ.) The scale parameter σ of the random effect can
be simulated directly from an inverse gamma distribution. The core of the code
is then

> T=10^3
> beta=mlan
> sigma=1
> u=rnorm(n)*sigma
> samplu=matrix(u,nrow=n)
> for (iter in 2:T){
+ u=rnorm(n)
+ for (i in 1:n){
+ mu=samplu[i,iter-1]
+ u[i]=sigma[iter-1]*rnorm(1)+mu



8.3 Monitoring convergence to stationarity 243

+ if (log(runif(1))>gu(u[i],i,beta[iter-1],sigma[iter-1])
+ -gu(mu,i,beta[iter-1],sigma[iter-1]))
+ u[i]=mu}
+ samplu=cbind(samplu,u)
+ sigma=c(sigma,1/sqrt(2*rgamma(1,0.5*n)/sum(u^2)))
+ tau=sigma[iter-1]/sqrt(sum(as.vector(x^2)*
+ pro(beta[iter-1],u)))
+ betaprop=beta[iter-1]+rnorm(1)*tau
+ if (log(runif(1))>likecomp(betaprop,sigma[iter],u)
+ -likecomp(beta[iter-1],sigma[iter],u))
+ betaprop=beta[iter-1]
+ beta=c(beta,betaprop)
+ }

using some of the functions already defined in Example 5.17. Calling plot on
mcmc(cbind(beta,sigma)) then leads to the graphs presented in Figure 8.1. It
is clear from both traces (on the left) that both components of the chain move
very slowly over the range of possible values. As could have been predicted, both
components are, in addition, heavily correlated. This example is thus characteristic
of a case where plot is sufficient to identify convergence problems and signals
that 103 iterations are insufficient to ensure proper mixing. J

Another natural graphical diagnosis that is appropriate both for this set-
ting and for the convergence of averages is to check for the stabilization of
the empirical cdf derived from the Markov chains using for instance the func-
tion cumuplot of coda. Figure 8.2 illustrates the application of this function
for the MCMC sample of Example 8.1, with a clear lack of stability calling
for more simulations (or another sampler!). Note the sudden dip in the lower
2.5% quantile evaluation for the β sequence. It could correspond either to the
sudden discovery of another region supported by f or an outlying excursion
of the Markov chain. Given that the median sequence hardly moves at this
stage, the second explanation is more likely.

The graphs produced by coda are not easily open to calibration, as shown
by the poor rendering in Figure 8.2. This is especially true when monitoring
several parameters at the same time, as shown by plot(mcmc(t(samplu)))
in the example above. Note that using plot on an mcmc.list object (made
of the mcmc output of several chains run in parallel) produces a comparison
of the chains. Also, be warned that using cumuplot on a long MCMC chain
without first thinning out the chain is quite time-consuming since quantiles
are computed on the partial chain for each iteration!

8.3.2 Nonparametric tests of stationarity

If we want more confidence (than a mere graphical check) about the station-
arity of the Markov chain (x(t)), we need to check, in a statistical way, that



244 8 Monitoring and Adaptation for MCMC Algorithms

Fig. 8.1. Outcome of the plot.mcmc function applied to a sample of 103 values
produced by a random walk Metropolis–Hastings algorithm based on a simulated
dataset from the random effect logit model of Example 5.17 with n = 20, m = 30,
β = −3, σ = 1, and the xij ’s distributed uniformly over {−1, 0, 1}.

Fig. 8.2. Outcome of the cumuplot function applied to the same MCMC sample
as in Figure 8.1. The lower plot corresponds to the lower 2.5% quantile, the central
plot to the median, and the upper plot to the .975% quantile.



8.3 Monitoring convergence to stationarity 245

the distribution of the chain does not change over time. This can be done
using a single chain or multiple chains, the setting being obviously easier on
multiple chains given their independence.

For instance, standard non-parametric tests of fit, such as Kolmogorov–
Smirnov or Cramer–von Mises tests, can be applied to a single output of the
chain (x(t)) to compare the distributions of the two halves (or other sub-
parts) of this sample, (x(1), . . . , x(T/2)) and (x(T/2+1), . . . , x(T )). Since non-
parametric tests are calibrated in terms of iid samples, there needs to be a
correction for the Markov correlation between the x(t)’s.

The solution is fairly simple and is also used to achieve the independence
reproduction mentioned in Section 8.2.3. The correction can be achieved by
introducing a batch size G and subsampling, leading to the construction of
two (quasi-) independent samples. (Selecting G can be done along the way,
for instance deducing G from the autocorrelation of the chain via acf or
waiting until the stationarity test is accepted.) The corresponding subsamples
(x(G)

1 , x
(2G)
1 , . . .) and (x(G)

2 , x
(2G)
2 , . . .) can be processed by ks.test in order

to assess whether or not the Kolmogorov–Smirnov statistic

(8.2) K =
1
M

sup
η

∣∣∣∣∣
M∑
g=1

I(0,η)(x
(gG)
1 )−

M∑
g=1

I(0,η)(x
(gG)
2 )

∣∣∣∣∣
is small enough. For multidimensional chains, (8.2) can be computed on either
a function of interest or each component of the vector x(t).

Besides the static perspective of deciding whether or not a given number
T of iterations is large enough, the statistic K can be processed to derive
a stopping rule, computing the corresponding p-value using ks.test for a
sequence of T ’s until it gets above a given level. A graphical indicator can be
used as well, representing the sample of

√
M KT ’s against T and checking for

stabilization.

Example 8.2. Considering again the nuclear pump failures of Example 7.12, we
monitor the subchain (β(t)) produced by the algorithm. Figure 8.3 (top) gives the
value of the Kolmogorov–Smirnov p-values produced by ks.test as T increases
to 103. This is a sequential graph in that each dot is based on the sample of
β(t)’s produced at time T and then thinned by a lag of G = 10 and separated
into both halves. Note that the Gibbs sampler is initialized at the MLE of the
λi’s. Since Figure 8.3 (top) exhibits a lack of pattern and a fair spread of the
p-value over [0, 1], there is no indication of a lack of stationarity to deduce from
this graph. If instead we compare two different chains with the same tool, Figure
8.3 (bottom) indicates a longer time pattern. Indeed, while the Kolmogorov–
Smirnov p-values remain far away from low probabilities, the pattern exhibited in
this comparison means that, while around iterations 4000 to 6000 both samples
provide very similar empirical cdfs, they explore differently the space in the later
iterations. Thus 104 iterations are not sufficient to provide a stable evaluation of
the stationary distribution (for at least one chain). J



246 8 Monitoring and Adaptation for MCMC Algorithms

Fig. 8.3. Plot of 100 Kolmogorov–Smirnov p-values resulting from 104 iterations of
the Gibbs sampler of Example 7.12 applied to the nuclear pump failure dataset. (top)
Each dot corresponds to a Kolmogorov–Smirnov test applied to the two halves of
the thinned sample of size T ; (bottom) similar graph for two thinned parallel MCMC
chains of size T .

We do not want to get into a debate about the p-value here, but note that,
while its most objective definition is that it is uniformly distributed under the
null hypothesis, that is rarely the case. Larger numbers of simulations from the
Gibbs sampler still produce patterns as in Figure 8.3 (bottom), even though
both chains are clearly from the same distribution and close to independent
for M large enough. For G extremely large, the p-values end up being almost
always close to 1, which, following Jeffreys (1939), would mean rejecting the
null hypothesis because of the lack of uniformity!

Exercise 8.2 Reproduce Figure 8.3 for two independent Gibbs samples of size
105, and evaluate the impact of the lag G on the shape of those graphs. (Try
G = 2, 5, 10, 100, 1000.)

Heidelberger and Welch (1983) instead use the Cramer–von Mises statistic
that approximates the L2 distance between two distributions,



8.3 Monitoring convergence to stationarity 247

C =
∫

(F (x)− Fn(x))2 dF (x) ,

where F and Fn denote the reference cdf and the empirical cdf, respectively.
In the case of two samples, (x(1g))1≤g≤M and (x(2g))1≤g≤M , the corresponding
comparison of the empirical cdfs is based on a normalized version of the rank
variance. The test is implemented in the coda function heidel.diag as its
first part (the function unfortunately does two tests at once). When used on
the output of Example 8.2 (with 105 iterations), its output is

> heidel.diag(mcmc(beta))

Stationarity start p-value
test iteration

var1 passed 1 0.212

which complements the stationarity check brought by the Kolmogorov–Smir-
nov test.

� Figure 8.3 provides a forceful illustration of the fact that an assessment of
stationarity based on a single chain is open to misinterpretation: In cases
of strong attraction from a local mode, the chain will most likely behave
as if it was simulated from the restriction of f to the neighborhood of
this mode and thus lead to a positive convergence diagnosis (this is the
“you’ve only seen where you’ve been” defect mentioned before). Using
several chains with dispersed starting values is a precaution against this
faulty conclusion, although not always foolproof if the dispersion is not
adequate.

8.3.3 Spectral analysis

While we neither can nor want to get into theoretical details, there exist
several practical convergence assessment devices based on spectral analysis
(also known as Fourier analysis). For instance, Geweke (1992) uses the spectral
density of h(x(t)),

Sh(w) =
1

2π

t=∞∑
t=−∞

cov
(
h(x(0)), h(x(t))

)
eιtw,

where ι denotes the complex square root of 1 (that is, eιtw = cos(tw) +
ι sin(tw)) to derive the asymptotic variance of (8.1) as γ2

h = S2
h(0). Estimating

Sh by appropriate non-parametric methods, the coda function geweke.diag
then constructs the equivalent of a t test to assess the equality of the means of
the first and last parts of the Markov chain. More specifically, Geweke (1992)



248 8 Monitoring and Adaptation for MCMC Algorithms

takes the first TA and last TB observations from a sequence of length T to
derive

δA =
1
TA

TA∑
t=1

h(x(t)), δB =
1
TB

T∑
t=T−TB+1

h(x(t)) ,

and the estimates σ2
A and σ2

B of Sh(0) based on both subsamples, respectively.
The test statistic produced by geweke.diag is then the asymptotically normal
so-called Z-score

√
T (δA − δB)

/√
σ2
A

τA
+
σ2
B

τB
,

with TA = τAT , TB = τBT , and τA + τB < 1.
For instance, when used (again) on the output of Example 8.2 (with 105

iterations), Geweke’s (1992) statistic is

> geweke.diag(mcmc(beta))

var1
0.2139

and it is thus compatible with stationarity. In the event geweke.diag returns a
negative statement (that is, a value incompatible with a N (0, 1) distribution),
geweke.plot can be used to see how much of the sample must be removed
before achieving stationarity.

The function geweke.diag may sometimes result in an error message like

> geweke.diag(mcmc(xmc))
Error in data[1:nobs, , drop = FALSE] : incorrect number
of dimensions

without further explanation. It actually seems that the sample size is limited
to 105 − 1.

Another approach also using the spectral approximation to the asymptotic
variance is found in Heidelberger and Welch (1983) and in the second half of
heidel.diag, as in

> heidel.diag(mcmc(sigma))

Halfwidth Mean Halfwidth
test

var1 passed 1.05 0.00793

since the so-called halfwidth test uses the estimated asymptotic variance to
normalize the difference between overall and partial means.



8.3 Monitoring convergence to stationarity 249

An ideal stationarity diagnosis would be to use an estimate of the “missing
mass”; that is, of the area of the support of f that has not yet been explored by
the MCMC chain. Unfortunately, that is very rarely the case! For one thing,
the normalizing constant of the target f is almost never known in realistic
situations. For another, if f̃ ∝ f , producing an estimate of∫

f(x) dx

based on a sample simulated from f is much harder than it seems, and checking
for the stabilization of this estimate faces the same difficulty as with other
estimates, thanks to the “you’ve only seen where you’ve been” defect.

Exercise 8.3 Show that if ϕ is an arbitrary density with the same support as f ,
if (x(t)) is a Markov chain with stationary distribution f , and if f(x) = Cf̃(x),
then

1
T

T∑
t=1

ϕ(x(t))
/
f̃(x(t))

is converging (in T ) to 1/C. Discuss the constraints to impose upon ϕ to ensure
this estimator has a finite variance.

As a final warning about the relative worth of convergence assessments,
we provide below an example where every indicator gives a green light, except
that the main mode of the target is missed by the Markov chain.

Example 8.3. Consider an AR(1) model xt+1 = %xt + εt (t ≥ 1), where
εt ∼ N (0, 1), observed through yt = x2

t + ζt, where ζt ∼ N (0, τ2). If we focus
on the conditional distribution of xt given (xt−1, yt, xt+1), π(xt|xt−1, yt, xt+1),
proportional to

exp−
{
τ−2(yt − x2

t )
2 + (xt − ρxt−1)2 + (xt+1 − %xt)2

}
/2,

it is not a standard distribution and, to approximate it, we can run a random
walk Metropolis–Hastings chain started at

√
yt (assuming yt > 0). If the random

walk relies on a scale of 0.1, both Geweke’s (1992) and Heidelberger and Welch’s
(1983) criteria give a positive assessment of the MCMC sample xmc:

> geweke.diag(mcmc(xmc))

Fraction in 1st window = 0.1
Fraction in 2nd window = 0.5

var1
-0.6162
> heidel.diag(mcmc(xmc))

Stationarity start p-value



250 8 Monitoring and Adaptation for MCMC Algorithms

test iteration
var1 passed 1 0.83

Halfwidth Mean Halfwidth
test

var1 passed 1.76 0.000697

Similarly, graphical tests all indicate a perfect fit to the target, as shown in the
upper half of Figure 8.4. This is a special case where superimposing the true target
on top of the histogram is possible because the dimension is one, π is known up
to a normalizing constant, and this constant can be approximated by fitting the
maximum of π with the maximum of a density approximation, as in

> ordin=apply(as.matrix(seq(min(xmc),max(xmc),le=200)),1,
+ FUN=function(x){exp(-.5*((xm*rho-x)^2+(x*rho-xp)^2+
+ (yc-x^2)^2/tau^2))})
> lines(seq(min(xmc),max(xmc),le=200),
+ ordin*max(density(xmc)$y)/max(ordin))

The upper left-hand graph thus shows a perfect fit between the histogram of xmc
and the target, while a Kolmogorov–Smirnov test applied to xmc thinned by a
factor of G = 50 exhibits an almost periodic trend but no low p-value. If we now
switch to another scale in the random walk, .9, both diagnoses conclude with a
lack of stationarity and the Kolmogorov–Smirnov test represented on the lower
right-hand side of Figure 8.4 gives a similar warning. However, when looking at
the correspondance of the histogram and the target π, it is clear that the Markov
chain has managed to escape the attraction of the lower mode to move to the
most important mode. The lack of stationarity pointed out by the diagnostics is
due to the initial values, but it also signals that proper coverage of both modes
of the target π would require many more simulations than 105. J

8.4 Monitoring convergence of averages

8.4.1 Graphical diagnoses

The initial and most natural diagnostic tool is to plot the evolution of the
estimator (8.1) as T increases. If the curve of the cumulated averages has not
stabilized after T iterations, the length of the Markov chain must be increased.
The principle can be applied to multiple chains as well. The functions cumsum,
plot.mcmc(coda), and cumuplot(coda) can be used for this purpose.

Example 8.4. (Continuation of Example 8.3) If we use several starting
points located near either

√
y
t

or −√y
t
, with a scale of 0.5,

> plot(mcmc.list(mcmc(smpl[,1]),...,mcmc(smpl[,M])))



8.4 Monitoring convergence of averages 251

Fig. 8.4. Comparison of two scales in a random walk Metropolis–Hastings eval-
uation of the posterior distribution of xt in the noisy AR model of Example 8.3
when (xt−1, yt, xt+1, τ, ρ) = (−0.94, 3.17,−1.12, 0.2, 0.85) based on Markov chains
of length T = 105. (top) Scale equal to 0.1 with histogram and fit (left) and Kolmo-
gorov–Smirnov p-values; (bottom) same graphs for a scale of 0.9.

results in Figure 8.5, which clearly exhibits the problem with the convergence of
the Metropolis–Hastings algorithm in this case. (The matrix smpl is made of the
M parallel runs of the MCMC algorithm.) Note that using cumsum on a single
chain started near −xt (and staying there) does not exhibit any deficiency because
the chain remains stable in the vicinity of this secondary mode. J

Note the drawback, when using mcmc.list, in having to enter
each separate simulation as mcmc(smpl[,i]). Defining smpl directly by
smpl=c(smpl,mcmc(xmc)) in the loop for the parallel chains does not work.



252 8 Monitoring and Adaptation for MCMC Algorithms

Fig. 8.5. Evaluation of five parallel runs of the Metropolis–Hastings al-
gorithm of Example 8.3 with a scale of 0.5 when (xt−1, xt, yt, xt+1, τ, ρ) =
(−3.13,−3.46, 12.02,−2.75, 0.2, 0.85) based on Markov chains of length T = 104.
(left) Raw sequences and (right) overall histogram.

In addition, the density estimation in cumuplot is also based on the regular
R density function and does not take into account the correlation between
the observations, which means that the estimated density is usually spikier
than it should be. (The same implication applies for summary.mcmc.) Most
functions in coda are written in R, so it is also possible to check their contents
and, if confident enough, modify them to correct, for instance, for the density
estimation.

Thus, in most cases, the graph of either a single raw sequence (x(t)) or the
corresponding cumulated average is unhelpful in the detection of stationarity
or convergence. Paradoxically, it is only when the chain has explored different
regions of the state-space during the observation time that a lack of station-
arity can be detected. (As in other testing setups, it is always easier to reject
the stationarity assumption than to accept it.)



8.4 Monitoring convergence of averages 253

8.4.2 Within and between variances

Since multiple chains are almost always necessary to assess the conver-
gence of the average, we now consider the central convergence tool of Gel-
man and Rubin (1992), implemented in coda as gelman.diag(coda) and
gelman.plot(coda). Using M parallel chains {x(t)

m }t (1 ≤ m ≤ M, 1 ≤ t ≤
T ), possibly transformed into ξ(t)m = h(x(t)

m ), the stopping rule of Gelman and
Rubin (1992) is based on the difference between a weighted estimator of the
variance and the variance of estimators from the different chains.

The between-chain variance is defined as the variance of the averages

BT =
1

M − 1

M∑
m=1

(ξm − ξ)2 ,

while the within-chain variance is the average of the variances

WT =
1

M − 1

M∑
m=1

s2m =
1

M − 1

M∑
m=1

1
T − 1

T∑
t=1

(ξ(t)m − ξm)2

with

ξm =
1
T

T∑
t=1

ξ(t)m , ξ =
1
M

M∑
m=1

ξm .

Those quantities are commonly used in analyses of variance. A first estimator
of the posterior variance of ξ is

σ̂2
T =

T − 1
T

WT +BT .

Since σ̂2
T and WT are asymptotically equivalent, Gelman and Rubin (1992)

build their criterion on the comparison of those two quantities. As long as the
different sequences (ξ(t)m ) remain concentrated around their starting values (or
on different portions of the parameter space), σ̂2

T overestimates the variance
of ξ(t)m because of the large dispersion of the initial distribution, whereas WT

underestimates this variance. For instance, using the same five sequences as in
Figure 8.5, the plot comparing both estimates, as provided by gelman.plot,
is given in Figure 8.6. The criterion (“shrink factor”) being very far from 1
shows, to no surprise, that the five chains have not yet covered (or not yet
converged to) the same region. Note that the quantile in the graph is based on
a t distribution, which amounts to assuming the target distribution to be close
to normal. If this is clearly not the case, the chain should be transformed first
(or the transform=TRUE option should be activated in gelman.plot, changing
the chain via a logit transform).

The shrink factor of Gelman and Rubin (1992) is RT , with



254 8 Monitoring and Adaptation for MCMC Algorithms

Fig. 8.6. Gelman and Rubin’s (1992) evaluation of convergence for the noisy AR
model and for the same chains as in Figure 8.5.

R2
T =

σ̂2
T +

BT
M

WT

νT + 1
νT + 3

,

where νT = 2(σ̂2
T + BT

M )2/WT is the estimated degrees of freedom. While the
approximate distribution of R2

T can be derived from an F approximation,
TBT /WT ∼ F(M − 1, 2W 2

T /$T ) (see Gelman and Rubin, 1992, for details),
with

$T =
1
M2

 M∑
m=1

s4m −
1
M

(
M∑
m=1

s2m

)2
 ,

gelman.diag and gelman.plot only report the value of the shrink factor,
along with the 97.5% credible upper bound.

Example 8.5. (Continuation of Example 8.2) Figure 8.7 describes the
evolution of the shrink factor based on ten parallel chains of β(t)’s. It shows
a clear stabilization around the target value 1 as early as 5000 iterations. The
conclusion is thus in agreement with geweke.diag and heidel.diag. J

This method has enjoyed wide use, in particular because of its simplic-
ity and its intuitive connections with the standard tools of linear regression.



8.4 Monitoring convergence of averages 255

Fig. 8.7. Gelman and Rubin’s (1992) evaluation for the pump failure model and
for ten chains simulated as in Example 8.2.

However, we must warn you about the overconfidence it may induce. While
the indicator RT does converge to 1 under stationarity, its distributional ap-
proximation relies on normal assumptions, whereas the MCMC algorithms
are used in settings where these approximations are at best difficult to satisfy
and at worst not valid. The upper bound plotted by gelman.plot is therefore
not necessarily an asymptotic .975 confidence band.

8.4.3 Effective sample size

In connection with Section 4.4, Section 8.3.3, and Section 8.2.3, we now con-
sider the use of the effective sample size in the specific setting of MCMC al-
gorithms, available as the coda function effectiveSize, because even within
a stationary regime, there is an obvious difference between the number T of
iterations and the size of an iid sample from f that would lead to the same
variability. Indeed, the empirical average (8.1) cannot be associated with the
standard variance estimator

ν̂T =
1

T − 1

T∑
t=1

(
h(x(t))− ST

)2



256 8 Monitoring and Adaptation for MCMC Algorithms

due to the correlations amongst the x(t)’s. The solutions of Geweke (1992)
and Heidelberger and Welch (1983) both take this difficulty into account by
directly estimating the spectral density Sh at zero, while a rough alternative is
to rely on subsampling, as in Section 8.3.2, the lagG possibly being determined
via the autocorrelation function autocorr. For instance, in the setting of
Example 8.5, the call to autocorr.diag over the ten parallel chains returns

[,1]
Lag 1 0.90222644
Lag 10 0.34901530
Lag 20 0.11590444
Lag 30 0.04325814
Lag 40 0.02945172
Lag 50 0.02386088

which means that at least one out of G = 30 points should be considered for
a pseudo-iid sample based on this MCMC output.

In the setting of time series (including Markov chains), the effective sample
size is directly defined as the correction factor τT such that ν̂T /τT is the
variance of the empirical average (8.1). It obviously provides an indication
about the loss in efficiency due to the use of a Markov chain (instead of an
iid sample) and can be computed as in Geweke (1992) and Heidelberger and
Welch (1983) by

τT = T/κ(h) ,

where κ(h) is the autocorrelation time associated with the sequence h(x(t)),

κ(h) = 1 + 2
∞∑
t=1

corr
(
h(x(0)), h(x(t))

)
,

estimated by spectrum0 under coda. Using effectiveSize over the ten par-
allel chains treated above leads to an effective sample size of 2645.168, meaning
a 5% efficiency, which is somehow coherent with the G = 30 lag found above.
When applied to a single sequence of 103 values (β(t), σ(t)) from Example 8.1,
the outcome is

> effectiveSize(mcmc(cbind(beta,sigma)))
beta sigma

55.3948 236.0124

which again agrees with the heuristic message of Figure 8.1.
If you explore coda further, you will notice that it includes another di-

agnostic function called raftery.diag. While this function produces very
explicit evaluations of the number of simulations to use to estimate a given
quantile of the target distribution with a given precision, the theoretical foun-
dations of this method due to Raftery and Lewis (1992) are not sound: The
underlying structure is not a Markov chain (see Robert and Casella, 2004,
Section 12.4.1).



8.4 Monitoring convergence of averages 257

Exercise 8.4 Produce several parallel MCMC chains {β(t)
m }t,m for the pump

data model as in Example 8.2 and study the variability of the number of simula-
tions N proposed by raftery.diag. Compare this with the other stopping rules
contained in coda.

8.4.4 Fixed-width batch means

The previous section indicated a rather rudimentary way to implement the
requirement of Section 8.2.3, which is to replace the original Markov chain
produced by an MCMC algorithm with a pseudo-iid sequence, namely by
subsampling according to the rate given by the effective sample size. It is,
however, feasible to study the convergence of an MCMC sequence by looking
at the approximation error of the MCMC average

δT =
1
T

T∑
t=1

h(x(t)) .

Section 8.3.3 produced an estimator of the asymptotic variance of δT based
on spectral analysis, but there exist alternatives based on batch sampling and
the Central Limit Theorem, such as the one introduced by Jones et al. (2006),
which compares with gelman.diag (Flegal et al., 2008).

Batch sampling was used in Section 8.3.2 for deciding about the station-
arity of the MCMC sequence, but it is also possible to use this technique for
convergence assessment. If batch means are defined by

h̄j =
1
aT

j+aT−1∑
t=j

h(x(t)) ,

and if the sequence aT is increasing slowly enough to infinity, aT = bT νc with
1/2 ≤ ν ≤ 3/4, then the approximation of the asymptotic variance of δT ,

σ̂2
h =

TaT
(T − aT )(T − aT − 1)

T−aT+1∑
t=1

(h̄t − δT )2 ,

converges to the asymptotic variance with T (under some extra regularity
conditions on the chain (x(t))). While only validated by asymptotics (i.e.,
when T goes to infinity), and therefore open to misbehaving2 for a fixed T ,
this result of Jones et al. (2006) allows a quick assessment of the variation
of δT and even for a stopping rule based on the range t1−α/2σ̂h/

√
T being

smaller than a fixed precision for a confidence range of (1 − α). Jones et al.
(2006) also mention the possibility of bootstrapping the h̄j ’s to construct the
confidence interval on Ef [H].
2 When aT is fixed, σ̂2

h is not a convergent estimator of the asymptotic variance
σ2
h, as shown by Glynn and Whitt (1992).



258 8 Monitoring and Adaptation for MCMC Algorithms

Example 8.6. (Continuation of Example 8.5) If we apply this approach to
the chain (β(t)) produced for the pump failure data, computing fixed-width batch
means using the sequence at = bT 5/8c, we obtain the convergence diagnostic
illustrated by Figure 8.8. The computation of the 25 confidence ranges on which
this picture is built is the result of the R code

> Ts=seq(100,T,le=25)
> ranj=matrix(0,ncol=2,nrow=25)
> for (j in 1:25){
+ aT=trunc(Ts[j]^(5/8))
+ batch=rep(mean(beta),le=Ts[j]-aT)
+ for (t in (aT+1):Ts[j]) batch[t-aT]=mean(beta[(t-aT):t])
+ sigma=2*sqrt(sum((batch-mean(beta[1:Ts[j]]))^2)*aT/
+ ((Ts[j]-aT)*(Ts[j]-aT-1)))
+ ranj[j,]=mean(beta[1:Ts[j]])+c(-sigma,+sigma)
+ }

Note that the confidence band decreases much faster than a standard confidence
band for an iid series. J

Exercise 8.5 Build an alternative confidence band on the MCMC output of
Example 8.6 by deriving the variance estimates via a boostrap evaluation based
on the batch means, and compare it with the band of Figure 8.8.

8.5 Adaptive MCMC

8.5.1 Cautions about adaptation

Now that convergence diagnoses have been made available to you, we can con-
sider the next step in constructing MCMC algorithms, which is to calibrate
(and thus rank) them according to their performance against those diagnoses.
This is the area of adaptive algorithms, a recently developed extension of
MCMC algorithms where the transition kernels are tuned on-line according
to the performances observed so far. The goal of using the “best” kernel within
a collection of proposals or the “best” parameters within a family of param-
eterized kernels—such as, for example, random walks with unidimensional
or multidimensional scales—is, however, difficult to implement in practice, if
only because of the potentially lethal impact on the convergence properties of
the corresponding algorithm!

Indeed, if we keep tuning the algorithm according to its outcome until
the present time, it means that the algorithm is no longer Markovian since it
depends on the entire past of the simulation history. There are therefore severe
constraints to be put on the adaptation process if you want to preserve the



8.5 Adaptive MCMC 259

Fig. 8.8. Evolution of a cumulated MCMC average for the pump failure model
of Example 8.2. The grey background corresponds to the 95% confidence range
estimated by the fixed-width batch sampling estimate of Jones et al. (2006).

(theoretical) insurance that your algorithm will converge. While the theory
behind adaptive MCMC algorithms is beyond our reach in this book, we
primarily want to point out the danger of näıve MCMC adaptation before
discussing the existing amcmc package developed by Rosenthal (2007).

Example 8.7. For the pump failure model of Example 8.2, instead of using
the Gibbs steps, we could try to build an independent log-normal proposal with
parameters (µ,Σ) based on the empirical moments of the Markov chain. The
intuition behind this construction would be to approximate the true target by
a (log-)normal distribution with the same moments as the target distribution,
assuming the empirical moments constructed at time t provide convergent ap-
proximations to the true moments. Unfortunately, even if we accept the proposed



260 8 Monitoring and Adaptation for MCMC Algorithms

value (β?, λ?) with the standard Metropolis–Hastings ratio

f(β?, λ?)
f(β(t), λ(t))

ϕ(β(t), λ(t)|µ,Σ)
ϕ(β?, λ?|µ,Σ)

∧ 1 ,

where ϕ denotes the log-normal density, the fact that (µ,Σ) depends on the past
iterations jeopardizes the stationarity properties of the chain. For instance, if

µ =
1
t

t∑
m=1

(β(m), λ(m)) and Σ = 0.2 var

({
β(m), λ(m)

}
1≤m≤t

)
is updated every 100 iterations, as in

> MM=T=10^2
> cbeta=beta[length(beta)]
> clambda=lambda[length(beta),]
> for (m in 1:MM){
+ mu=c(apply(log(lambda),2,mean),mean(log(beta)))
+ Sigma=.2*var(log(cbind(lambda,beta)))
+ for (t in 1:T){
+ prop=exp(rmnorm(1,mu,Sigma))
+ if (log(runif(1))>post(prop[1:10],prop[11])-
+ post(clambda,cbeta)+
+ dmvnorm(log(c(clambda,cbeta)),mu,Sigma,log=T)-
+ dmvnorm(log(prop),mu,Sigma,log=T)-
+ sum(log(c(clambda,cbeta)))+sum(log(prop))) #jacobian
+ prop=c(clambda,cbeta)
+ clambda=prop[1:10]; cbeta=prop[11]
+ lambda=rbind(lambda,clambda);beta=c(beta,cbeta)
+ }}

(which follows T = 102 regular iterations of the Gibbs sampler that produce beta
and lambda, and thus the first estimates µ and Σ), then the chain (β(t), λ(t))
collapses, as shown by Figure 8.9 for β(t). Obviously, there is no particular reason
to pick the shrinkage factor in Σ that way, but our point in this example is to
show that using a perfectly valid Metropolis–Hastings step does not always work
when the parameters of the proposal keep being updated. J

Exercise 8.6 Repeat the experiment conducted in Example 8.7 when Σ is up-
dated as

Sigma=var(log(cbind(lambda,beta)))

and contrast the density estimate of the posterior on β thus obtained with an
estimate resulting from a Gibbs sample as in Example 8.2 and Figure 5.17.



8.5 Adaptive MCMC 261

Fig. 8.9. A degenerating MCMC adaptation based on an independent proposal and
current moments for the pump failure model of Example 8.2. The grey background
corresponds to the normal range offered by the adaptation, the raw curve is one
realization of the adaptive MCMC, and the lighter curve on top is the sequence of
averages of the normal proposals.

Even more elaborate learning scenarios may fall short from converging, as
shown by the following example.

Example 8.8. (Continuation of Example 8.4) If we use an early MCMC
sample to build a non-parametric estimate of the target density in the shape of
a normal mixture centered at each point in the sample, with a common standard
deviation provided by bw.nrd(xmc), we can keep updating the non-parametric
estimate with each new value of the corresponding Markov chain. The R code
thus looks like

> for (t in (T+1):TT){
+ bw=bw.nrd0(xmc)
+ prop=rnorm(1,mean=sample(xmc,1),sd=bw)
+ prodens=log(density(xmc,from=prop,to=prop,n=1,bw=bw)$y)
+ if ((is.na(prop))||(log(runif(1))>ef(prop)-ef(xmc[t-1])+
+ curdens-prodens)){
+ prop=xmc[t-1]



262 8 Monitoring and Adaptation for MCMC Algorithms

+ prodens=curdens}
+ xmc=c(xmc,prop)
+ curdens=prodens}

where the T = 102 first iterations are based on a standard random walk proposal
to build xmc. The non-parametric density estimate based on xmc is then very
dependent on the starting values and, in this bimodal case, if we initialize the
Markov chain at the lower mode, it will at best correctly reproduce this mode, as
shown in Figure 8.10, and at worst even shrink to a smaller domain. If we now
modify the kernel estimation by using an extremely enlarged bandwidth,

> bw=500*bw.nrd0(xmc)

the Markov chain manages to reach the major mode, as shown in Figure 8.11,
but the approximation of the target distribution is still not satisfactory after 105

iterations. J

Fig. 8.10. Output of a non-parametric MCMC adaptation based on a kernel es-
timate of the target density and 104 iterations for the noisy AR model against the
secondary mode of the target density.



8.5 Adaptive MCMC 263

Fig. 8.11. Recovery of the main mode of the target density for the noisy AR model
when using a non-parametric MCMC adaptation based on a kernel estimate with a
very large bandwidth estimate. (left) Rawplot of the Markov chain; (right) fit of the
histogram against the target.

The usual drawback of adaptive methods is that they rely too much on past
samples and thus emphasize the blind angles of those samples, as Example
8.7 clearly expresses. While a regular Metropolis–Hastings algorithm may find
sufficient energy to overcome this attraction of the local modes, an adaptive
version will find itself mired much more often in this situation, if not always.

The solution found in the literature for this difficulty is to progressively
tone/tune down the adaptive aspect. More precisely, Roberts and Rosenthal
(2009) propose a diminishing adaptation condition that states that the total
variation distance between two consecutive kernels must uniformly decrease
to zero (which does not mean that the kernel must converge!). For instance,
a random walk proposal that relies on the empirical variance of the sample
(modulo a ridge-like stabilizing factor) as in Haario et al. (1999) will satisfy
this condition. Another possibility found in Roberts and Rosenthal (2009) is
to tune the scale in each direction toward an optimal acceptance rate of 0.44,
which is the solution implemented in the amcmc package, described below.
More precisely, for each component of the simulated parameter, a factor δi
corresponding to the logarithm of the random walk standard deviation is
updated every 50 iterations by adding or subtracting a factor εt depending
on whether or not the average acceptance rate on that batch of 50 iterations
and for this component was above or below 0.44. If εt decreases to zero as
min(.01, 1/

√
t), the conditions for convergence are satisfied. (This is exactly

the rule followed by amcmc.)



264 8 Monitoring and Adaptation for MCMC Algorithms

� We must stress that we only skim over the conditions required for an
adaptive MCMC algorithm to converge, mainly to introduce the following
package that has algorithms known to converge. You must refer to the
appropriate (difficult) literature if you want to validate your own adaptive
algorithms!

8.5.2 The amcmc package

Let us start with a few words of warning about the unusual aspects of this
package, developed by Jeff Rosenthal of the University of Toronto. First, the
package does not come through the usual CRAN depository but must be
downloaded from the author’s Webpage (at least at the time this book was
written). Second, the program must be started by calling source("amcmc")
if the corresponding file amcmc is available in the local directory. Third, it
requires the C compiler gcc to be available, as amcmc executes part (or all) of
the computation using a C code compiled by gcc. When the target density f
and possibly the target functional h can be programmed in C as well, Rosen-
thal (2007) shows that the execution time can be improved one hundredfold
compared with an R implementation.

� Due to the C compiler requirements of the amcmc package, the R code
corresponding to the following examples has not been included in our
demo(Chapter.8) program. Note, however, that Example 8.9 is already
provided within the amcmc package, while both following examples need
to be reprogrammed.

These preliminaries having been stated, the program can be tested on any
example, even though it may take a while to execute.

Example 8.9. The resident example provided with amcmc is a famous baseball
dataset used in the James–Stein estimation literature (Efron and Morris, 1975).
It is an analysis of variance model where observables Yi (1 ≤ i ≤ 18) are normally
distributed, Yk ∼ N (θi, σ2), the µi’s being also iid normal, θi ∼ N (µ, α), with the
common mean being distributed as µ ∼ N (0, 1) and the scale as α ∼ IG(2, 2). In
this example, σ2 is replaced with its empirical Bayes estimate, equal to 0.00434.
Calling

> amcmc("baseballlogdens","baseballfirstfunct",logflag=TRUE)
[1] 0.3931286

thus produces 0.393 as the Bayes estimate of θ1 in about one minute. Using
instead the C version



8.5 Adaptive MCMC 265

> cfns("baseball")
gcc-4.2 -std=gnu99 -I/usr/share/R/include -I/usr/share/R/
include -fpic -g -O2 -c baseball.c -o baseball.o
gcc-4.2 -std=gnu99 -shared -o amcmc.so amcmc.o baseball.o
-L/usr/lib/R/lib -lR
> amcmc("baseballlogdens","baseballfirstfunct",log=T,cfn=T)
[1] 0.3917384

leads to the same value in about one second! J

Exercise 8.7 Show that the posterior distribution on µ in Example 8.9 can be
obtained in a closed form, and take advantage of this availability to check the
performances of a standard Gibbs sampler when using geweke, heidel, and the
Kolmogorov–Smirnov assessment of Section 8.3.2.

The amcmc package can be used in conjunction with the coda convergence
assessment tools when adding the option write=T, which saves the output
in the amcmcvals file and the log proposal variances after each batch in the
amcmcsigmas file. Both files are stored as R lists, with components values, a
matrix whose rows correspond to the components of the vector to be simulated
and whose columns correspond to the MCMC iterations. This means they can
be uploaded as source("amcmcvals") and then checked via coda as in, for
instance, summary(mcmc(t(amcmcvals))).

Example 8.10. (Continuation of Example 8.7) For the nuclear pump
failure data model, the only modification required on the definition of the posterior
distribution is a change of parameterization. Indeed, both β and the λi’s being
positive parameters, the random walk proposal used in amcmc requires the use of
a log parameterization on the model, which means defining

apost=function(lambdabeta){
lambda=lambdabeta[1:10]
beta=lambdabeta[11]
return((-exp(beta)*delta)+(((10*alpha)+gamma)*beta)+
sum((-(time+exp(beta))*exp(lambda))+((data+alpha)*lambda)))
}

as the substitute density (note the Jacobian term log(lambda)+beta in this
function). When calling

> amcmc(dens=apost,func=mytarg,logfl=TRUE,num=10^4,vec=11)
[1] 2.491654

(where vec is the abbreviation of vectorlength, which provides the number of
components of density), it quite compares with the expectation obtained from
a regular Gibbs run,



266 8 Monitoring and Adaptation for MCMC Algorithms

> mean(beta)
[1] 2.487719

where beta is the result of T = 5
times104 Gibbs iterations. As noted above, the outcome of the simulation can
be checked by coda, as for instance in

> source("amcmcvals")
> effectiveSize(mcmc(t(amcmcvals)))
var1 var2 var3 var4 var5 var6 var7

9411.0 9308.9 10001.0 10001.0 9357.6 10102.4 8867.6
var8 var9 var10 var11

9253.3 9174.5 9495.4 8106.1

(but be warned that the theoretical validation of those diagnoses is necessarily
limited due to the adaptive nature of the underlying Markov chain). J

� A drawback of using amcmc when compared with standard R packages
is that it requires the C compiler gcc, and, as a result, does not run
under Windows (which of course is only a drawback when you are using
Windows!). The positive side and the reason why we do include amcmc
in the book are that it provides a correct adaptive MCMC algorithm that
applies to any target π and in addition gives an insight on the underex-
ploited possibilities of linking R with C and then gaining several orders of
magnitude in computing time.

Obviously, adaptivity as implemented in amcmc does not solve all conver-
gence issues, as shown below in the case of the noisy AR model of Example
8.3.

Example 8.11. (Continuation of Example 8.8) When using amcmc on
the posterior distribution ef

> ef=function(x){
+ -.5*((xm*rho-x)^2+(x*rho-xp)^2+(yc-x^2)^2/tau^2
+ }
> amcmc(dens="eef",function="firstcoord",init=sqrt(yc),log=T)
[1] 2.900830

the final estimate of xt is 2.9, located on the secondary mode of the posterior,
while the simulated value is xt = −2.896 (with yt = 8.49, xt−1 = −3.795, xt+1 =
−2.603). J



8.6 Additional exercises 267

8.6 Additional exercises

Exercise 8.8 The witch’s hat distribution

π(θ|y) ∝
n

(1− δ) σ−de−‖y−θ‖
2/(2σ2) + δ

o
IC(θ), y ∈ Rd ,

when θ is restricted to the unit cube C = [0, 1]d , has been proposed by Matthews
(1993) as a calibration benchmark for MCMC algorithms.

a. Construct an algorithm that correctly simulates the witch’s hat distribution. (Hint:
Show that direct simulation is possible.)

b. The choice of δ, σ, and d can lead to arbitrarily small probabilities of either escaping
the attraction of the mode or reaching it. Find sets of parameters (δ, σ, y) for which
these two phenomena occur.

c. In each case, test the various convergence diagnoses proposed by coda to check
whether or not they notice the difficulty.

Exercise 8.9 Consider the generator associated with the Markov chain (X(t)) such
that

(8.3) X(t+1) =

(
Y ∼ Be(α+ 1, 1) with probability x(t)

x(t) otherwise

a. Show that the Markov chain is associated with the stationary distribution

f(x) ∝ xα+1−1/{1− (1− x)} I(0,1)(x) = xα−1 I(0,1)(x) ,

that is, with the beta distribution Be(α, 1).
b. Apply the entire range of convergence diagnoses proposed in this chapter to the

first 104 values of the Markov chain when α = .2. Compare this with the outcome
based on the first 106 values.

c. Reproduce the analysis when looking at a Metropolis–Hastings algorithm based on
the same beta proposal Be(α + 1, 1). (Hint: Show that y is then accepted with
probability x(t)/y.)

Exercise 8.10 Reproduce the convergence analysis of Example 8.1 when the logit
structure is replaced with a probit dependence in the generalized linear model. Take
advantage of the normal latent variables inherent in the probit model to compare the
convergence properties of the algorithm inspired by Example 8.1 with a Gibbs sampler
based on the normal latent variables.

Exercise 8.11 Consider the posterior distribution associated with the standard probit
model

nY
i=1

Φ(riβ/σ)diΦ(−riβ/σ)1−di × π(β, σ2) ,

where
π(β, σ2) = σ−4 exp{−1/σ2} exp{−β2/50) ,

and the pairs (ri, di) are the observations, taken from Pima.tr as Pima.tr$ped for ri
and Pima.tr$type for yi.



268 8 Monitoring and Adaptation for MCMC Algorithms

a. Build an R program that simulates from this posterior distribution based on a simple
Gibbs sampler where β and σ2 are alternatively simulated by normal and log-normal
random walk proposals and accepted by a one-dimensional Metropolis–Hastings
step.

b. Evaluate the convergence of this algorithm using multiple chains and gelman.diag.
c. Compare the convergence of this algorithm with that of a traditional Gibbs sampler

based on the completion of the model using the normal latent variables associated
with the normal cdf.

Exercise 8.12 Consider the target density

f(x) =
exp−x2/2√

2π

4(x− .3)2 + .01

4(1 + (.3)2) + .01
.

a. Show that f integrates to 1 and that it is a bimodal density.
b. Implement a normal random walk Metropolis–Hastings algorithm with a small vari-

ance like .04, and use plot.mcmc, cumuplot, and heidel.diag to assess the con-
vergence when starting from x = −2 and x = 2.

c. Compare those assessments with an on-line evaluation of the integral
R
f(x) dx

based on the MCMC sample thus produced.

Exercise 8.13 In the setting of Example 8.2, find a thinning lag G large enough that
the distribution of the Kolmogorov–Smirnov p-values has no visible pattern.

Exercise 8.14 Evaluate the impact of parameterization on gelman.diag for the model
of Example 8.2 using the same MCMC sample on each case.

Exercise 8.15 (Tanner, 1996) Show that if θ(t) ∼ πt and if the stationary distribution
is the posterior density associated with f(x|θ) and π(θ), the weight

ωt =
f(x|θ(t))π(θ(t))

πt(θ(t))

converges to the marginal m(x).

Exercise 8.16 As a summary exercise:

a. Build an R function that takes as input a (T, p) matrix representing the output of
an MCMC run with T iterations and p components and that produces as its output
p spreadsheets (one for every component) made of raw plots, density estimates,
autocorrelation functions, Kolmogorov-Smirnov tests, Geweke’s plots, and outcomes
of cumuplot on a single page.

b. Parameterize the function such that those spreadsheets are automatically saved in
an open format (pdf, eps, jpg, etc.).

Exercise 8.17 Recycling the examples used in this chapter, study whether a graphical
plot of the evolution of the effective sample size across iterations is a trustworthy tool
for assessing convergence.

Exercise 8.18 Since the true target in Exercise 8.9 is known, study the convergence
pattern for an adaptive Metropolis–Hastings step whose proposal is a beta Be(αt+1, 1)
distribution with parameter αt updated as the average over the previous iterations.



References

Albert, J. (2009). Bayesian Computation with R, second edition. Springer–
Verlag, New York.

Beaumont, M., Zhang, W., and Balding, D. (2002). Approximate Bayesian
computation in population genetics. Genetics, 162:2025–2035.

Berger, J., Philippe, A., and Robert, C. (1998). Estimation of quadratic
functions: reference priors for non-centrality parameters. Statistica Sinica,
8(2):359–375.

Besag, J. and Clifford, P. (1989). Generalized Monte Carlo significance tests.
Biometrika, 76:633–642.

Booth, J. and Hobert, J. (1999). Maximizing generalized linear mixed model
likelihoods with an automated Monte Carlo EM algorithm. Journal of the
Royal Statistical Society Series B, 61:265–285.

Boyles, R. (1983). On the convergence of the EM algorithm. Journal of the
Royal Statistical Society Series B, 45:47–50.

Brooks, S. and Roberts, G. (1998). Assessing convergence of Markov chain
Monte Carlo algorithms. Statistics and Computing, 8:319–335.

Cappé, O., Douc, R., Guillin, A., Marin, J.-M., and Robert, C. (2008). Adap-
tive importance sampling in general mixture classes. Statistics and Com-
puting, 18:447–459.

Casella, G. (1996). Statistical theory and Monte Carlo algorithms (with dis-
cussion). TEST, 5:249–344.

Casella, G. and Berger, R. (2001). Statistical Inference, second edition.
Wadsworth, Belmont, CA.

Casella, G. and George, E. (1992). An introduction to Gibbs sampling. The
American Statistician, 46:167–174.

Casella, G. and Robert, C. (1996). Rao-Blackwellisation of sampling schemes.
Biometrika, 83(1):81–94.

Casella, G. and Robert, C. (1998). Post-processing accept–reject samples:
recycling and rescaling. J. Comput. Graph. Statist., 7(2):139–157.

Chen, M., Shao, Q., and Ibrahim, J. (2000). Monte Carlo Methods in Bayesian
Computation. Springer–Verlag, New York.

C.P. Robert, G. Casella, Introducing Monte Carlo Methods with R, Use R,  
DOI 10.1007/978-1-4419-1576-4, © Springer Science+Business Media, LLC 2010 



270 References

Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the
American Statistical Association, 90:1313–1321.

Cowles, M. and Carlin, B. (1996). Markov chain Monte Carlo convergence
diagnostics: a comparative study. Journal of the American Statistical As-
sociation, 91:883–904.

Crawley, M. (2007). The R Book. John Wiley, New York.
Dalgaard, P. (2002). Introductory Statistics with R. Springer–Verlag, New

York.
Del Moral, P. and Miclo, L. (1999). On the convergence and applications of

generalized simulated annealing. SIAM Journal on Control and Optimiza-
tion, 37(4):1222–1250.

Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from
incomplete data via the EM algorithm (with discussion). Journal of the
Royal Statistical Society Series B, 39:1–38.

Dickey, J. (1968). Three multidimensional integral identities with Bayesian
applications. Annals Mathematical Statistics, 39:1615–1627.

Doucet, A., Godsill, S., and Robert, C. (2002). Marginal maximum a posteriori
estimation using Markov chain Monte Carlo. Statistics and Computing,
12:77–84.

Efron, B. and Morris, C. (1975). Data analysis using Stein’s estimator and its
generalizations. Journal of the American Statistical Association, 70:311–
319.

Efron, B. and Tibshirani, R. (1993). An Introduction to the Bootstrap. Chap-
man and Hall, New York.

Evans, M. and Swartz, T. (2000). Approximating Integrals via Monte Carlo
and Deterministic Methods. Oxford University Press, Oxford.

Feller, W. (1971). An Introduction to Probability Theory and its Applications,
volume 2. John Wiley, New York.

Flegal, J., Haran, M., and Jones, G. (2008). Markov chain Monte Carlo: can
we trust the third significant figure? Statistical Science, 23(2):250–260.

Gaetan, C. and Yao, J.-F. (2003). A multiple-imputation Metropolis version
of the EM algorithm. Biometrika, 90:643–654.

Gaver, D. and O’Muircheartaigh, I. (1987). Robust empirical Bayes analysis
of event rates. Technometrics, 29:1–15.

Gelfand, A. and Dey, D. (1994). Bayesian model choice: asymptotics and exact
calculations. Journal of the Royal Statistical Society Series B, 56:501–514.

Gelfand, A. and Smith, A. (1990). Sampling based approaches to calculating
marginal densities. Journal of the American Statistical Association, 85:398–
409.

Gelman, A. and Hill, J. (2006). Data Analysis Using Regression and Multi-
level/Hierarchical Models. Cambridge University Press, Cambridge.

Gelman, A. and Rubin, D. (1992). Inference from iterative simulation using
multiple sequences (with discussion). Statistical Science, 7:457–511.



References 271

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions
and the Bayesian restoration of images. IEEE Transaction on Pattern Anal-
ysis and Machine Intelligence, 6:721–741.

Gentle, J. E. (2002). Elements of Computational Statistics. Springer–Verlag,
New York, New York.

Genz, A. and Azzalini, A. (2009). mnormt: The multivariate normal and t
distributions. R package version 1.3-3.

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to
the calculation of posterior moments (with discussion). In Bernardo, J.,
Berger, J., Dawid, A., and Smith, A., editors, Bayesian Statistics 4, pages
169–193. Oxford University Press, Oxford.

Geyer, C. and Thompson, E. (1992). Constrained Monte Carlo maximum like-
lihood for dependent data (with discussion). Journal of the Royal Statistical
Society Series B, 54:657–699.

Glynn, P. W. and Whitt, W. (1992). The asymptotic validity of sequen-
tial stopping rules for stochastic simulations. Annls of Applied Probability,
2:180–198.

Haario, H. and Sacksman, E. (1991). Simulated annealing in general state
space. Advances in Applied Probability, 23:866–893.

Haario, H., Saksman, E., and Tamminen, J. (1999). Adaptive proposal dis-
tribution for random walk Metropolis algorithm. Computational Statistics,
14(3):375–395.

Hàjek, B. (1988). Cooling schedules for optimal annealing. Mathematics of
Operations Research, 13:311–329.

Hastings, W. (1970). Monte Carlo sampling methods using Markov chains
and their application. Biometrika, 57:97–109.

Heidelberger, P. and Welch, P. (1983). A spectral method for confidence
interval generation and run length control in simulations. Communications
of the Association for Computing Machinery, 24:233–245.

Hesterberg, T. (1995). Weighted average importance sampling and defensive
mixture distributions. Technometrics, 37:185–194.

Jacquier, E., Johannes, M., and Polson, N. (2007). MCMC maximum likeli-
hood for latent state models. Journal of Econometrics, 137(2):615–640.

Jeffreys, H. (1939). Theory of Probability. The Clarendon Press, Oxford.
Jelinek, F. (1999). Statistical Methods for Speech Recognition. The MIT Press,

Cambridge, MA.
Johnson, R. and Wichern, D. (1988). Applied Multivariate Statistical Analysis,

second Edition. Prentice-Hall, Englewood Cliffs, NJ.
Jones, G., Haran, M., Caffo, B., and Neath, R. (2006). Fixed-width output

analysis for Markov Chain Monte Carlo. Journal of the American Statistical
Association, 101(476):1537–1547.

Kallenberg, O. (2002). Foundations of Modern Probability. Springer–Verlag,
New York.



272 References

Kendall, W., Marin, J.-M., and Robert, C. (2007). Confidence bands for
Brownian motion and applications to Monte Carlo simulations. Statistics
and Computing, 17(1):1–10.

Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). Optimization by simulated
annealing. Science, 220:671–680.

Kong, A., McCullagh, P., Meng, X.-L., Nicolae, D., and Tan, Z. (2003). A
theory of statistical models for Monte Carlo integration (with discussion).
Journal of the Royal Statistical Society Series B, 65(3):585–618.

Lehmann, E. and Casella, G. (1998). Theory of Point Estimation, revised
edition. Springer–Verlag, New York.

Lele, S., Dennis, B., and Lutscher, F. (2007). Data cloning: easy maximum
likelihood estimation for complex ecological models using Bayesian Markov
chain Monte Carlo methods. Ecology Letters, 10:551–563.

Liu, J. (1996). Metropolized independent sampling with comparisons to rejec-
tion sampling and importance sampling. Statistics and Computing, 6:113–
119.

Liu, J., Wong, W., and Kong, A. (1994). Covariance structure of the Gibbs
sampler with applications to the comparisons of estimators and sampling
schemes. Biometrika, 81:27–40.

Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS
– a Bayesian modelling framework: concepts, structure, and extensibility.
Statistics and Computing, 10:325–337.

Marin, J.-M. and Robert, C. (2007). Bayesian Core. Springer–Verlag, New
York.

Matthews, P. (1993). A slowly mixing Markov chain with implications for
Gibbs sampling. Statistics and Probability Letters, 17:231–236.

McCullagh, P. and Nelder, J. (1989). Generalized Linear Models. Chapman
and Hall, New York.

McCulloch, C. (1997). Maximum likelihood algorithms for generalized linear
mixed models. Journal of the American Statistical Association, 92:162–170.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E.
(1953). Equations of state calculations by fast computing machines. Journal
of Chemical Physics, 21(6):1087–1092.

Meyn, S. and Tweedie, R. (1993). Markov Chains and Stochastic Stability.
Springer–Verlag, New York.

Murrell, P. (2005). R Graphics. Lecture Notes in Statistics. Chapman and
Hall, New York.

Neal, R. (1999). Bayesian Learning for Neural Networks, volume 118 of Lec-
ture Notes in Statistics. Springer–Verlag, New York, New York.

Neal, R. (2003). Slice sampling (with discussion). Annals Statistics, 31:705–
767.

Newton, M. and Raftery, A. (1994). Approximate Bayesian inference by the
weighted likelihood bootstrap (with discussion). Journal of the Royal Sta-
tistical Society Series B, 56:1–48.



References 273

Ó Ruanaidh, J. and Fitzgerald, W. (1996). Numerical Bayesian Methods
Applied to Signal Processing. Springer–Verlag, New York.

Owen, A. and Zhou, Y. (2000). Safe and effective importance sampling. Jour-
nal of the American Statistical Association, 95:135–143.

Peskun, P. (1973). Optimum Monte Carlo sampling using Markov chains.
Biometrika, 60:607–612.

Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). CODA: convergence
diagnosis and output analysis for MCMC. R News, 6(1):7–11.

Pritchard, J., Seielstad, M., Perez-Lezaun, A., and Feldman, M. (1999). Pop-
ulation growth of human Y chromosomes: a study of Y chromosome mi-
crosatellites. Molecular Biology and Evolution, 16:1791–1798.

Raftery, A. and Lewis, S. (1992). How many iterations in the Gibbs sampler?
In Bernardo, J., Berger, J., Dawid, A., and Smith, A., editors, Bayesian
Statistics 4, pages 763–773. Oxford University Press, Oxford.

Robert, C. (1993). Prior feedback: a Bayesian approach to maximum likeli-
hood estimation. Journal of Computational Statistics, 8:279–294.

Robert, C. (1995a). Convergence control techniques for MCMC algorithms.
Statistical Science, 10(3):231–253.

Robert, C. (1995b). Simulation of truncated Normal variables. Statistics and
Computing, 5:121–125.

Robert, C. (2001). The Bayesian Choice, second edition. Springer–Verlag,
New York.

Robert, C. and Casella, G. (2004). Monte Carlo Statistical Methods, second
edition. Springer–Verlag, New York.

Roberts, G., Gelman, A., and Gilks, W. (1997). Weak convergence and optimal
scaling of random walk Metropolis algorithms. Annls of Applied Probability,
7:110–120.

Roberts, G. and Rosenthal, J. (1998). Markov chain Monte Carlo: some prac-
tical implications of theoretical results (with discussion). Canadian Journal
of Statistics, 26:5–32.

Roberts, G. and Rosenthal, J. (2009). Examples of adaptive mcmc. Journal
of Computational and Graphical Statistics, 18(2):349–367.

Rosenthal, J. (2007). Amcm: an R interface for adaptive MCMC. Computional
Statistics and Data Analysis, 51:5467–5470.

Rubinstein, R. (1981). Simulation and the Monte Carlo Method. John Wiley,
New York.

Smith, A. and Gelfand, A. (1992). Bayesian statistics without tears: a
sampling-resampling perspective. The American Statistician, 46:84–88.

Spall, J. C. (2003). Introduction to Stochastic Search and Optimization. John
Wiley, New York.

Spector, P. (2009). Data Manipulation with R. Springer–Verlag, New York.
Stigler, S. (1986). The History of Statistics. Belknap, Cambridge, MA.
Strawderman, R. (1996). Discussion of Casella’s article. TEST, 5:325–329.
Tanner, M. (1996). Tools for Statistical Inference: Observed Data and Data

Augmentation Methods, third edition. Springer–Verlag, New York.



274 References

Tanner, M. and Wong, W. (1987). The calculation of posterior distributions
by data augmentation. Journal of the American Statistical Association,
82:528–550.

Thisted, R. (1988). Elements of Statistical Computing: Numerical Computa-
tion. Chapman and Hall, New York.

Tufte, E. (1990). Envisioning Information. Graphics Press, Cheshire, CT.
Tufte, E. (2001). The Visual Display of Quantitative Information, second

edition. Graphics Press, Cheshire, CT.
Van Laarhoven, P. and Aarts, E. (1987). Simulated Annealing: Theory and

Applications, CWI Tract 51. Reidel, Amsterdam.
Venables, W. and Ripley, B. (1999). Modern Applied Statistics with S-PLUS,

third edition. Springer–Verlag, New York, New York.
Wei, G. and Tanner, M. (1990). A Monte Carlo implementation of the EM

algorithm and the poor man’s data augmentation algorithm. Journal of the
American Statistical Association, 85:699–704.

Wu, C. (1983). On the convergence properties of the EM algorithm. Annals
Statistics, 11:95–103.

Zellner, A. (1986). On assessing prior distributions and Bayesian regression
analysis with g-prior distribution regression using Bayesian variable selec-
tion. In Bayesian Inference and Decision Techniques: Essays in Honor of
Bruno de Finetti, pages 233–243. North-Holland/Elsevier, Amsterdam.



Index of R Terms

!, 34
!=, 34
#, 5, 34
$, 13
%*%, 8
&, 34
&&, 34
|, 34
||, 34
:, 9
<-, 7
=, 7
==, 6, 34
?, 5
%%, 7, 115
%\%, 7

abline, 71
acf, 22, 43, 176
acfplot(coda), 242
all.equal, 38
amcmc, 237, 263–267
amcmc, 3
anova, 20
apply, 10, 12, 131
area(MASS), 62
argument, 12
arima, 22
arm, 20
as.matrix, 62
as.numeric, 68, 160
as.data.frame, 14
assign, 37

attach, 16, 37

backsolve, 11
barplot, 30
BATCH, 36
bayesm, 60
binomial, 21
boxplot, 30
browser, 33
BUGS, 3
bw.nrd0, 262
byrow, 9

c, 6
capabilities, 27
cars, 179
cbind, 85
cex, 28
challenger, 196
chol, 11, 73
chol2inv, 11
coda, 237, 238, 241, 248, 252, 255
coda.options(coda), 242
codamenu(coda), 242
colnames, 10
colors, 28
colours, 28
colSums, 12
contour, 31, 72, 128
cor.test, 16
crossprod, 10
cummax, 131
cumsum, 30, 66
curve, 66, 134



276 Index of R Terms

dbeta, 53
debug, 33
demo, 5
density, 18, 252
dev.copy, 27
dev.list, 27
dev.off, 27
dev.print, 27
dev.set, 27
diag, 10, 13
display, 20
dnbinom, 50
dnorm, 14
download.package, 5
dump, 35

each(rep), 9
effectiveSize(coda), 255
eigen, 11, 13
Energy, 204
expression, 28, 77

factor, 12
FALSE, 5
family, 21
for, 33
foreign, 35
format, 68, 145
forwardsolve, 11
function, 31

gamma, 62
gcc, 264
gelman.diag(coda), 253
gelman.plot(coda), 253
geweke.diag(coda), 248
geweke.plot(coda), 248
glm, 21, 85

binomial, 84, 120
quasi, 22

heidel.diag(coda), 248
heidel.diag, 247
help, 2, 9
help.search, 2
help.start, 2
hist, 27, 30

identical, 38

identify, 28
if, 33, 34
ifelse, 34, 197
image, 26, 31, 72
Inf, 62, 63
install.package, 5
integrate, 62, 65, 83, 114
is.na, 38, 261
is.vector, 8

jitter, 17
jpeg, 27

kruskal.test, 17
ks.test, 176, 245
ks.test, 17

lapply, 13
ldeaths, 22
legend, 28
length, 8
length.out(rep), 9
levelplot(coda), 242
levels, 12
lgamma, 62
library, 5
lines, 28, 30
list, 13
lm, 15, 118
locator, 28
loess(stats), 18
lty, 28
lwd, 28

mar, 27
MASS, 58, 84
matrix, 9, 10, 16
mcmc(coda), 242
mcmc.list(coda), 242, 252
mean, 31
median, 15, 31
mfrow, 27
mnormt, 48
multimenu(coda), 241

NA, 6, 98
names, 9
ncol, 9
nlm, 127



Index of R Terms 277

nrow, 9
ns(splines), 18
NULL, 5

objects, 36
OpenBugs, 3
optimise, 53, 127, 131
optimize, 53, 127
Orange, 38
order, 9
outer, 73, 134, 135

pairs, 31
par, 27
pbinom, 48
pch, 28
pdf, 27
permn, 8
persp, 135, 194
Pima, 21, 84, 119

Pima.tr, 186
plot, 26, 27
plot.mcmc(coda), 252
plotmath(grDevices), 28
png, 27
pnorm, 14
points, 30, 72

warning, 31
polygon, 30, 77
postscript, 27
ppois, 49
prod, 85

q, 36
qnorm, 14, 47
qqmath(coda), 242
qr, 11
quantile, 15, 91
quasi, 22
quit, 36

R, 2–39
help, 2
interface with other languages, 3,

264
randu, 43
range, 31, 97
rank, 9
rbeta, 53

rbind, 11
rcauchy, 45
rchisq, 46, 107
.RData, 37
.RData, 5, 36
read.coda(coda), 241
read.spss(foreign), 35
read.table, 14, 35
rev, 31
rexp, 44
rgamma, 42
.Rhistory, 36
rlogis, 45
rm, 36
rmnorm(mnormt), 48, 260
rmvnorm(mvtnorm), 260
rnbinom, 50
rnegbin, 58
RNG, 42, 47
rnorm, 14
rowMeans, 12
rownames, 10
rowSums, 12
rpois, 49
rt, 50
rtnorm, 235
rtrun, 60
runif, 14, 42

sadmnv(mnormt), 48
sample, 8, 10
sapply, 13
save, 35
scan, 34, 35
sd, 15
set.seed, 43
seq, 9
shapiro.test, 17
solve, 11
sort, 9
source, 33
span(loess), 18
spline, 18
splinefun, 18
splines, 18
str, 5
sum, 8
summary, 18, 118
summary.mcmc(coda), 252



278 Index of R Terms

svd, 11
Sweave, 2
swiss, 190
switch, 34, 231
system, 33
system.time, 7, 34, 38, 46

t, 8
table, 12
tapply, 12
tcrossprod, 11
times(rep), 9
title, 28, 145
trace, 33
TRUE, 5
t.test, 16

unique, 143
uniroot, 160, 161

var, 15, 95
vi, 33

warnings, 10
while, 33, 54
wilcox.test, 17
WinBugs, 3

X11, 27
xlim, 31
xor, 34

ylim, 31



Index of Subjects

ABC, 56

Accept–Reject, 113, 115, 176

and recycling, 124

criticism, 57

tight bound, 55

acceptance probability, 53

acceptance rate, 167, 171, 183

optimal, 195

adaptive algorithms, 258

diminishing adaptation, 263

algorithm

acceleration of, 111

Box–Muller, 47

comparison, 111

EM, 152, 215

greedy, 91

independent Metropolis–Hastings,
176

Langevin , 186

MCEM, 157

MCMC, 169

Metropolis–Hastings, see
Metropolis–Hastings algo-
rithm

optimization, 55, 111

random walk Metropolis–Hastings,
182

simulated annealing, 140

allocation indicator, 164

analysis of variance, 20, 253

analysis, spectral, 248

approximate Bayesian computation
(ABC), 56

approximation, normal, 255
autocorrelation, 22

batch sampling, 240
batch size, 245

Bayes factor computation, 87, 93, 229
Bayesian inference and decision theory,

62
Boltzman–Gibbs transform, 140
bootstrap, 23, 77, 90, 91
Box-Muller algorithm, 47
Brownian motion, 103

calibration, 267
Challenger data, 196
Chib’s approximation, 230
coda convergence assessment, 238
Comprehensive R Archive Network

(CRAN), 3, 264
computing time, 34, 56, 91, 176, 195,

232, 266
conditional distributions, 204
conditioning, 107, 108, 227
confidence band, 89, 90
continuity, 94
control variate, 116, 119, 120
convergence

acceleration, 133
assessment, 111

multivariate, 96
of variability, 91

graphical evaluation of, 242
monitoring of, 67, 90



280 Index of Subjects

of Markov chain Monte Carlo
algorithms, see MCMC
algorithm

slow, 81
test, 65
to the stationary distribution, 239

convergence
assessment, 281

correlation, 111, 113
covariance matrix, 73
Cramer–von Mises test, see test

data
censored, 153
complete, 151
missing, 151

data augmentation, 158
decision theory, 62
defensive sampling, 81
demarginalization, 146, 151
density

instrumental, 51
spectral, 247
target, 51

detailed balance condition, 172
Dickey’s decomposition , 107
distribution

beta-binomial, 122, 202
conditional, 232
conjugate, 119
discrete, 48
empirical, 23
gamma, 58
Gumbel, 88
instrumental, 51, 56, 71, 171, 176
invariant, 169
inverse Gaussian, 193
inverted gamma, 202
normal, 47, 114, 183
Pareto, 81
t, 80
target, 170
truncated normal, 59
uniform, 42, 115
witch’s hat, 267

division by zero, 98
DNA sequence, 143
dyadic

sequence, 114

symmetry, 114

effective sample size, 77, 85, 99, 195,
256

eigenanalysis, 11
EM algorithm, 152

monotonicity, 153
Monte Carlo, 157
steps, 153

empirical cdf, 243
empirical mean, 65, 108, 115, 122, 192,

204, 227, 228, 255
and Rao–Blackwellization, 235
convergence, 240

Ergodic Theorem, 169
ergodicity, 169
estimator

James–Stein
truncated, 112

path sampling, 94
Rao–Blackwellized, 123

exponential family, 120
exponential variate generation, 44, 46

fixed point, 153
Fourier analysis, see spectral
full conditionals, 206, 235
function

log-cumulant, 120
loss, 111

generalized linear models, 21
generator, pseudo-random, 42
genetic linkage, 158
Gibbs random field, 200
Gibbs sampling, 200–234

completion, 209
definition, 206
two-stage, 200–204

gradient, 127, 137
stochastic, 137

Hessian, 127
hybrid strategies, 231

importance sampling, 69, 149
accuracy, 71
by defensive mixtures, 82
efficiency, 81



Index of Subjects 281

identity, 70
instrumental distributions, 69
multiple, 82
principle, 69
self-normalized, 76, 93, 98
variance, 95
weight, 75
weight, normalized, 99

independence, 241
inference

asymptotic, 62
statistical, 62

initial distribution
parallel chains, 239

integer part, 86
integration, 62

approximative, 65
Monte Carlo, 65, 67
numerical bounds, 62

irreducibility, 169

kernel, 168
Kolmogorov–Smirnov statistic, 245
Kullback–Leibler divergence, 99

Langevin algorithm, 186
Law of Large Numbers

extension, 169
strong, 65

linear models, 14, 18
generalized, 21

Linux, 3, 241
local maxima, 133
log-cumulant function, 120
logistic regression, 219

marginalization, 82
Monte Carlo, 88

Markov chain, 137, 167
adaptive algorithms, 258
empirical cdf, 243
Ergodic Theorem, 169
limiting distribution, 169
local exploration, 182
parallel chains, 239
stationary distribution, 169
transition kernel, 168

maxima, local, 137
MCEM algorithm, 157, 161

MCMC algorithm
convergence of, 238
monitoring of, 238

measurability, 94
method

Accept–Reject, 51, 56
gradient, 137
kernel, 247
Monte Carlo, see Monte Carlo
Newton–Raphson, 127, 137
numerical, 126

Metropolis within Gibbs, 230
Metropolis–Hastings algorithm, 141,

232
independent, 176
probability of acceptance, 171
random walk, 193

missing data, 146, 209
missing mass, 240
mixture

defensive, 82
exponential, 163
indicator, 214
normal, 154
for simulation, 50, 81, 107
stabilization by, 81

MLE (maximum likelihood estimator),
85

mode, 132
model

ARMA, 247
augmented, 158
censored-data, 210
choice, 93
completed, 215
generalized linear, 15, 21
hierarchical, 221
logistic, 119, 219
missing-data, 210
mixture, 214
multinomial, 211
probit, 83, 147, 186
random effects, 233

model choice, 188
monitoring of Markov chain Monte

Carlo algorithms, see MCMC
algorithm

monotonicity of covariance, 241
Monte Carlo, 42, 69, 70, 81, 112



282 Index of Subjects

approximation, 147
EM, 157, 159
hybrid, 231
marginalization, 82, 88
validation, 112

∇ (gradient), 127
Newton–Raphson, 127
non-parametric statistics, 14
nonstationarity, 242
normal variate generation, 47
normalizing constant, 93, 175
nuclear pump failures, 222, 245
numerical integration, 62

O-ring, 196
optimization, 56, 62

parallel chains, 239
path, 239
perplexity, 99
Poisson process, 222
prior

feedback, 141
improper, 232

probability
distributions in R, 14
integral transform, 44

probability of acceptance, see accep-
tance probability

R, 2–39
Box–Muller random generator, 47
CRAN, 3
data, 36
data frame, 14
debugging, 33
depository, 31
factor, 12
functions, 31
history, 36
list, 13
matrix, 10, 13
probability distributions, 14
programming, 31
vector, 7
versus BUGS, 3

random effects, 233
random variables

antithetic, 113
beta, 58
Cauchy, 45
discrete, 48
exponential, 44, 46
gamma, 58
logistic, 45
mixture, 50
multivariate normal, 47
negative binomial, 50
noncentral chi-squared, 59
normal, 47
Pareto, 57
truncated normal, 59, 235
uniform, 42, 45, 57

random walk, 169, 193, 194
randu, 57
Rao–Blackwellization, 107–111, 227

implementation, 108
termwise, 123

rate of acceptance, 194
raw sequence plot, 252
recurrence, 169
recycling, 227
regeneration, 91
regression

linear, 254
logistic, 119

resampling
and bootstrap, 92
degeneracy, 77
multinomial, 75
unbiased, 87

running mean plot, 96, 100

saddlepoint, 137
SAME algorithm, 141
sample

independent, 111
uniform, 112

sample size, effective, see effective
sample size

sampling
defensive, 81, 110
importance, 253
stratified, 110

shrink factor, 253
shuttle Challenger, 196
simulated annealing, 182



Index of Subjects 283

temperature schedule, 133, 140,
141

simulation, 62, 232
in parallel, 91
univariate, 206
versus numerical methods, 126

slice sampler, 216
spectral analysis, 247
speed of convergence, 194
stability of a path, 81
stationarity, 239, 240, 242–250, 252
stationary distribution, 169

as limiting distribution, 169
stochastic

approximation, 130
optimization, 174
search, 130

stochastic gradient, 182
stopping rule, 253
stopping time, 238
Student’s t variate generation, 50
subsampling, 240, 245

and convergence assessment, 241
and independence, 245

sudoku, 39
sufficient statistic, 107
support, 51, 65, 175

tail probability estimation, 70
temperature schedule, 133, 140, 141
termwise Rao–Blackwellized estimator,

123
test

Cramer–von Mises, 245
halfwidth, 248
Kolmogorov–Smirnov, 173, 245
likelihood ratio, 69

non-parametric, 245
power of, 69
stationarity, 239

testing, 69
theorem

Central Limit, 62, 65, 90
Donsker, 103
Ergodic, 169, 240
fundamental, simulation, 52
Hammersley–Clifford, 233
Rao–Blackwell, 107

transition kernel, 168
traveling salesman problem, 126, 143

uniform random variable
generation, 45

variable
antithetic, 111, 113
auxiliary, 209
control, 120
latent, 215

variance
between- and within-chains, 253
finite, 79
of a ratio, 93
reduction, 107, 108, 112, 124

and Accept–Reject, 115
and antithetic variables, 123
and control variates, 116, 119
optimal, 111

variate (control), 116

You’ve only seen where you’ve been,
239, 247, 249

Z-score, 248


	1441915753
	Use R!
	1
Basic R Programming
	2
Random Variable Generation
	3
Monte Carlo Integration
	4
Controlling and Accelerating Convergence
	5
Monte Carlo Optimization
	6
Metropolis{Hastings Algorithms
	7
Gibbs Samplers
	8
Convergence Monitoring and Adaptation
for MCMC Algorithms
	References



