
MULTIDISCIPLINARY
SCHEDULING
Theory and Applications

Graham Kendall, Edmund Burke
Sanja Petrovic and Michel Gendreau

1st Multidisciplinary International

Conference on Scheduling

Theory and Applications

Multidisciplinary Scheduling:
Theory and Applications

Multidisciplinary Scheduling:
Theory and Applications

1" International Conference, MISTA '03
Nottingham, UK, 13-1 5 August 2003
Selected Papers

edited by

Graham Kendall
Edmund Burke
Sanja Petrovic
Michel Gendreau

Q - Springer

Graham Kendall Edmund K. Burke Sanja Petrovic Michel Gendreau
Univ, of Nottingharn Univ. of Nottingham Univ. of Nottingham Universitt? de Montrkal
United Kingdom United Kingdom United Kingdom Canada

Library of Congress Cataloging-in-Publication Data
A C.I.P. Catalogue record for this book is available
from the Library of Congress.

ISBN 0-387-25266-5 e-ISBN 0-387-25267-3 Printed on acid-free paper.

Copyright O 2005 by Springer Science+Business Media, Inc..
All rights reserved. This work may not be translated or copied in whole or in
part without the written permission of the publisher (Springer Science +
Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except
for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now
know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and
similar terms, even if the are not identified as such, is not to be taken as an
expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 1 1052258

Table of Contents

Fundamentals of Scheduling
Is Scheduling a Solved Problem?
Stephen E Smith

Formulations, Relaxations, Approximations, and Gaps
in the World of Scheduling .. .19
Gerhard J. Woeginger

Order Scheduling Models: An Overview 37
Joseph Z-2 Leung, Haibing Li, Michael Pinedo

Multi-criteria Scheduling
Scheduling in Software Development
Using Multiobjective Evolutionary Algorithms 57
Thomas Hanne, Stefan Nickel

Scheduling UET Tasks on Two Parallel Machines
.............. with the Criteria of Makespan and Total Completion Time 83

Yakov Zindel; Van Ha Do

Personnel Scheduling
Task Scheduling under Gang Constraints 113
Dirk Christian Mattjield, Jiirgen Branke

Scheduling in Space
Constraint-Based Random Search for Solving
Spacecraft Downlink Scheduling Problems 133
Angelo Oddi, Nicola Policella, Amedeo Cesta, Gabriella Cortellessa

Scheduling the Internet
..... Towards an XML based standard for Timetabling Problems: TTML 163

Ender 0zcan

vi Table of Contents

A Scheduling Web Service 187
Leonilde Varela, Joaquim Aparicio, Silvio do Carmo Silva

Machine Scheduling
An 0(N log N) Stable Algorithm for Immediate Selections
Adjustments 205
Laurent Peridy, David Rivreau

An Efficient Proactive-Reactive Scheduling Approach to Hedge
Against Shop Floor Disturbances 223
Mohamed AH Aloulou, Marie-Claude Portmann

A Dynamic Model of Tabu Search for the Job-Shop
Scheduling Problem 247
Jean-Paul Watson, L. Darrell Whitley, Adele E. Howe

Bin Packing
The Best-Fit Rule For Multibin Packing: An Extension of
Graham's List Algorithms 269
Pierre Lemaire, Gerd Finke, Nadia Brauner

Educational Timetabling
Case-Based Initialisation of Metaheuristics for Examination
Timetabling 289
Sanja Petrovic, Yong Yang, Moshe Dror

An Investigation of a Tabu-Search-Based Hyper-heuristic for
Examination Timetabling 309
Graham Kendall and Naimah Mohd Hussin

Sports Scheduling
Round Robin Tournaments with One Bye and No Breaks in
Home-Away Patterns are Unique 331
Dalibor Froncek, Mariusz Meszka

Table of Contents vii

Transport Scheduling
Rail Container Service Planning: A Constraint-Based Approach 343
Nakorn Indra-Payoong, Raymond S K Kwan, Les Proll

Rule-Based System for Platform Assignment in Bus Stations 369
B. Adenso-Diaz

Measuring the Robustness of Airline Fleet Schedules 381
F. Bian, E. K. Burke, S. Jain, G. Kendall, G. M. Koole, J. D. Landa Silva,
J. Mulder, M. C. E. Paelinck, C. Reeves, I. Rusdi, M. O. Suleman

Author Index 393

Preface

The First Multidisciplinary International Conference on Scheduling: The-
ory and Applications (MISTA) was held in Nottingham, UK on 13—15th Au-
gust 2003. Over one hundred people attended the conference and 67 abstracts
and papers (including four plenary papers) were presented. All of these pre-
sentations were chosen for the conference after being refereed by our inter-
national Programme Committee which consisted of 90 scheduling researchers
from across 21 countries and from across a very broad disciplinary spectrum
(see below). After the conference, we invited the authors of the 67 accepted
presentations to submit a full paper for publication in this post conference vol-
ume of selected and revised papers. This volume contains the 19 papers that
were successful in a second round of rigorous reviewing that was undertaken
(once again) by our Programme Committee.

The main goal of the MISTA conference series is to act as an interna-
tional forum for multidisciplinary scheduling research. As far as we are aware,
there is no other conference which is specifically aimed at exploring the inter-
disciplinary interactions which are so important (in our opinion) to future
progress in scheduling research. As such, MISTA aims to bring together re-
searchers from across disciplinary boundaries and to promote an international
multi-disciplinary research agenda. The first conference was particularly suc-
cessful in bringing together researchers from many disciplines including oper-
ational research, mathematics, artificial intelligence, computer science, man-
agement, engineering, transport, business and industry.

MISTA was one of the outcomes of a highly successful interdisciplinary
scheduling network grant (GRlN35205) which was funded by the UK's En-
gineering and Physical Sciences Research Council (EPSRC)—which is the
largest of the seven UK research councils. The network was launched in
May 2001 and was funded for a period of three years. It provided an inter-
disciplinary framework for academia and industrialists to meet, exchange ideas
and develop a collaborative multi-disciplinary scheduling research agenda. The
MISTA conference was the culmination of the network's dissemination activ-
ity and it enabled the network to reach out to an international audience. The
aim is that the MISTA conference series will become an ongoing international
legacy of the network's activity.

The International Society for Interdisciplinary Scheduling (ISIS) was an-
other initiative which arose from the network. Indeed, this society represents
the network's international continuation strategy. The goal is that the society
will carry the network's activity forward-but from an international rather than
national perspective. The society currently has a healthy and growing mem-

x Preface

bership and is open to anybody with an interest in interdisciplinary schedul-
ing. The Journal of Scheduling (published by Kluwer) represents the society's
journal and the MISTA conference represents the society's main international
event.

The first MISTA conference could not have taken place without the help and
support of many people and organisations. We would, firstly, like to acknowl-
edge the support of EPSRC, the London Mathematical Society, Sherwood
Press Ltd, Kluwer Academic Publishers and the University of Nottingham who
all supported the conference with help, advice and (most importantly) finan-
cial contributions. We are particularly grateful to our international Programme
Committee who worked extremely hard over two separate rounds of reviewing
to ensure that the standards of the conference, and of this volume, were of the
highest quality. We are very grateful to our Local Organising Committee (see
below) who spent a significant amount of time to make sure that the confer-
ence ran smoothly. Very special thanks go to Alison Payne, Eric Soubeiga and
Dario Landa Silva who deserve a particular mention for their hard work which
really was above and beyond the call of duty. Thanks should also go to every-
body else in the Automated Scheduling, Optimisation and Planning research
group at Nottingham who all pulled together to help with all the little jobs that
needed carrying out during the conference organisation. Special thanks should
go to our copy editor, Piers Maddox, who has done such a wonderful job of
putting this volume together in such a professional and careful manner. We
would also like to acknowledge the significant support that we received from
Gary Folven and his staff at Kluwer which was so important in launching a
brand new conference series. We would like to say a particularly big thank
you to the International Advisory Committee for their past and ongoing work
in bringing you this and future MISTA conferences. Finally, we would like to
thank the authors, delegates and (in particular) our plenary speakers for making
the conference the great success that it was.

The Second MISTA conference is due to take place in New York on 18-20th
July 2005. We are looking forward to it and we hope to see you there.

Graham Kendall
Edmund Burke
Sanja Petrovic
Michel Gendreau

October 2004

MISTA Conference Series
International Advisory Committee

Graham Kendall (chair)

Abdelhakim Artiba

Jacek Blazewicz

Peter Brucker
Edmund Burke
Xiaoqiang Cai

Ed Coffman
Moshe Dror
David Fogel
Fred Glover

Bernard Grabot

Claude Le Pape
Toshihide Ibaraki
Michael Pinedo
Ibrahim Osman
Jean-Yves Potvin
Michael Trick

Stephen Smith
Steef van de Velde
George White

The University of Nottingham, UK

Facultes Universitares Catholiques de
Mons (CREGI - FUCAM), Belguim
Institute of Computing Science, Poznan
University of Technology, Poland
University of Osnabrueck, Germany
The University of Nottingham, UK
The Chinese University of Hong Kong,
Hong Kong
Columbia University, USA
The University of Arizona, USA
Natural Selection Inc., USA
Leeds School of Business, University of
Colorado, USA
Laboratoire Genie de Production - Equipe
Production Automatisee, France
ILOG, France
Kyoto University, Japan
New York University, USA
American University of Beirut, Lebanon
Universitt5 de Montreal, Canada
Graduate School of Industrial Adminis-
tration, Carnegie Mellon University, USA
Carnegie Mellon University, USA
Erasmus University, Netherlands
University of Ottawa, Canada

MISTA 2003 Programme Committee

Graham Kendall (co-chair)
Edmund Burke (co-chair)
Sanja Petrovic (co-chair)
Michel Gendreau (co-chair)

Uwe Aickelin
Hesham Alfares

Abdelhakim Artiba

Belarmino Adenso-Diaz
Philippe Baptise
James Bean

Jacek Blazewicz

Joachim Breit
Peter Brucker
Xiaoqiang Cai

Jacques Carlier
Edwin Cheng

Philippe Chretienne
Ed Coffman
Peter Cowling
Patrick De Causmaecker
Mauro Dell'Amico

Erik Demeulemeester
Kath Dowsland
Andreas Drexl
Moshe Dror
Maciej Drozdowski
Janet Efstathiou
Wilhelm Erben

The University of Nottingham, UK
The University of Nottingham, UK
The University of Nottingham, UK
Universitk de Montreal, Canada

The University of Bradford, UK
King Fahd University of Petroleum &
Minerals, Saudi Arabia
Facultes Universitares Catholiques de
Mons (CREGI - FUCAM), Belguim
University of Oviedo, Spain
IBM T. J. Watson Research Centre, USA
Department of Industrial and Opera-
tions Engineering, University of Michi-
gan, USA
Institute of Computing Science, Poznan
University of Technology, Poland
Saarland University, Germany
University of Osnabrueck, Germany
The Chinese University of Hong Kong,
Hong Kong
Compibgne cedex France
The Hong Kong Polytechnic University,
Hong Kong
Paris 6 University, France
Columbia University, USA
The University of Bradford, UK
KaHo St.-Lieven, Ghent, Belgium
University of Modena and Reggio Emilia,
Italy
Katholieke Universiteit Leuven, Belgium
Gower Optimal Algorithms Ltd, UK
University of Kiel, Germany
University of Arizona, USA
Poznan University of Technology, Poland
University of Oxford, UK
FH Konstanz - University of Applied Sci-
ences, Germany

xiv Organization

Dror Feitelson
Gerd Finke

Peter Fleming
David Fogel
Dalibor Froncek
Celia A. Glass

Fred Glover

Bernard Grabot

Alain Guinet

Jin-Kao Hao
Martin Henz

Jeffrey Herrmann
Willy Herroelen

Han Hoogeveen
Toshihide Ibaraki
Jeffrey Kingston
Hiroshi Kise
Wieslaw Kubiak
Raymond Kwan
Claude Le Pape
Chung-Yee Lee

Arne Lokketangen

Dirk C. Mattfeld
David Montana
Martin Middendorf
Alix Munier
Alexander Nareyek
Klaus Neumann
Bryan A. Norman
Wim Nuijten
Ibrahim Osman
Costas P. Pappis
Erwin Pesch

The Hebrew University, Israel
Laboratory LEIBNIZ-IMAG, Grenoble,
France
University of Sheffield, UK
Natural Selection, USA
University of Minnesota, USA
Department of Actuarial Sciences and
Statistics, City University, UK
Leeds School of Business, University of
Colorado, USA
Laboratoire Genie de Production - Equipe
Production AutomatisCe, France
Industrial Engineering Department, INSA
de Lyon, France
University of Angers, France
National University of Singapore, Singa-
pore
University of Maryland, USA
Department of Applied Economics,
Katholieke Universiteit Leuven, Belgium
Utrecht University, The Netherlands
Kyoto University, Japan
University of Sydney, Australia
Kyoto Institute of Technology, Japan
MUN, Canada
University of Leeds, UK
ILOG, France
The Hong Kong University of Science
and Technology, Hong Kong
Department of Informatics, Molde Col-
lege, Norway
University of Bremen, Germany
BBN Technologies, USA
University of Leipzig, Germany
LIP6, University Paris 12, France
Carnegie Mellon University, USA
University of Karlsruhe, Germany
University of Pittsburgh, USA
ILOG, France
American University of Beirut, Lebanon
University of Piraeus, Greece
University of Siegen, Germany

Organization

Dobrila Petrovic
Michael Pinedo
Chris Potts
Christian Prins
Jean-Yves Potvin
Kirk Pruhs
Vic J. Rayward-Smith
Colin Reeves
Celso C. Ribeiro

Andrea Schaerf
Guenter Schmidt
Roman Slowinski
Stephen Smith
Vincent T'Kindt
Roberto Tadei
Jonathan Thompson
Michael Trick

Edward Tsang
Denis Trystram
Steef van de Velde
Greet Vanden Berghe
Stefan Voss
Jan Weglarz
Dominique de Werra

George White
Darrell Whitley
Gerhard J. Woeginger

Yakov Zinder

Qingfu Zhang

Coventry University, UK
New York University, USA
University of Southampton, UK
University of Technology, Troyes, France
UniversitC de Montreal, Canada
University of Pittsburgh, USA
University of East Anglia, UK
Coventry University, UK
Catholic University of Rio de Janeiro,
Brazil
University of Udine, Italy
Saarland University, Germany
Poznan University of Technology, Poland
Carnegie Mellon University, USA
University of Tours, France
Politecnico di Torino, Italy
Cardiff University, UK
Graduate School of Industrial Adminis-
tration, Carnegie Mellon University, USA
University of Essex, UK
ID - IMAG, France
Erasmus University, Netherlands
KaHo St.-Lieven, Ghent, Belgium
University of Hamburg, Germany
Poznan University of Technology, Poland
IMA, FacultC des Sciences de Base, Lau-
sanne, Switzerland
University of Ottawa, Canada
Colorado State University, USA
Faculty of Mathematical Sciences, Uni-
versity of Twente, The Netherlands
University of Technology, Sydney, Aus-
tralia
University of Essex, UK

xvi Organization

MISTA 2003 Local Organizing Committee

Samad Ahmadi
Edmund Burke
Diana French
Jon Garibaldi
Steven Gustafson
Graham Kendall (chair)
Natalio Krasnogor
Dario Landa
Djamila Ouelhadj
Alison Payne
Eric Soubeiga
Sanja Petrovic
Razali Bin Yaakob

De Montfort University, UK
University of Nottingham, UK
University of Nottingham, UK
University of Nottingham, UK
University of Nottingham, UK
University of Nottingham, UK
University of Nottingham, UK
University of Nottingham, UK
University of Nottingham, UK
University of Nottingham, UK
University of Nottingham, UK
University of Nottingham, UK
University of Nottingham, UK

Fundamentals of Scheduling

IS SCHEDULING A SOLVED PROBLEM?

Stephen F. Smith
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh PA 15213, USA
sfs@cs.cmu.edu

Abstract In recent years, scheduling research has had an increasing impact on practical
problems, and a range of scheduling techniques have made their way into real-
world application development. Constraint-based models now couple rich rep-
resentational flexibility with highly scalable constraint management and search
procedures. Similarly, mathematical programming tools are now capable of ad-
dressing problems of unprecedented scale, and meta-heuristics provide robust
capabilities for schedule optimisation. With these mounting successes and ad-
vances, it might be tempting to conclude that the chief technical hurdles under-
lying the scheduling problem have been overcome. However, such a conclusion
(at best) presumes a rather narrow and specialised interpretation of scheduling,
and (at worst) ignores much of the process and broader context of scheduling
in most practical environments. In this note, I argue against this conclusion and
outline several outstanding challenges for scheduling research.

Keywords: scheduling.

1. STATE OF THE ART
More than once in the past couple of years, I have heard the opinion voiced

that "Scheduling is a solved problem". In some sense, it is not difficult to un-
derstand this view. In recent years, the scheduling research community has
made unprecedented advances in the development of techniques that enable
better solutions to practical problems. In the case of AI-based scheduling re-
search (the field I am most familiar with), there are now numerous examples of
significant success stories. Constraint satisfaction search with dynamic back-
tracking has been used to successfully solve an avionics processor scheduling
problem involving synchronisation of almost 20,000 activities under limited re-
sources and complex temporal constraints (Boddy and Goldrnan, 1994). Pro-
gram synthesis technology has been used to derive efficient constraint prop-
agation code for large-scale deployment scheduling problems that has been

4 Smith

demonstrated to provide several orders of magnitude speed-up over current
tools (Smith et al., 1995). Genetic algorithm based scheduling techniques
(Syswerda, 1991) have transitioned into commercial tools for optimising man-
ufacturing production. Incremental, constraint-based scheduling techniques
have been deployed for large-scale operations such as space shuttle ground
processing (Zweben et al., 1994) and day-to-day management of USAF airlift
assets (Smith et al., 2004a).

These examples of application successes reflect well on the effectiveness
and relevance of underlying research in the field of scheduling. However, to
extrapolate from such examples to the conclusion that the chief technical hur-
dles underlying the scheduling problem have now been overcome is a consid-
erable leap. The scheduling research community has become a victim of its
own success.

Summarising the current state of the art, we can indeed identify several
technological strengths:

Scalability. Current scheduling techniques are capable of solving large
problems (i.e. tens of thousands of activities, hundreds of resources) in
reasonable time frames.

Modelling$exibility. Current techniques are capable of generating sched-
ules under broad and diverse sets of temporal and resource capacity con-
straints.

Optimisation. Research in applying various global, local and meta-
heuristic based search frameworks to scheduling problems has produced
a number of general approaches to schedule optimisation, and increasing
integration of AI-based search techniques with mathematical program-
ming tools (e.g. linear, mixed-integer constraint solvers) is yielding quite
powerful optimisation capabilities.

Taken together, there is a fairly transferrable set of techniques and models
for efficiently generating high quality schedules under a range of constraints
and objectives.

On the other hand, claims that these technological strengths demonstrate
that the scheduling problem is solved, and hence research funds and activity
would be better focused elsewhere, must be considered more carefully. At best,
these claims presume a narrow (perhaps classical) definition of scheduling as
a static, well-defined optimisation task (a sort of puzzle solving activity). But,
even under this restricted view of scheduling, one can argue that the conclusion
is debatable. Despite the strengths of current techniques, the problems being
addressed by current scheduling technologies are generally NP hard and solved
only approximately; there is considerable room for improvement in techniques
for accommodating different classes of constraints and for optimising under

Is Scheduling a Solved Problem? 5

different sets of objective criteria. However, at a broader level, scheduling is
rarely a static, well-defined generative task in practice. It is more typically
an ongoing, iterative process, situated in a broader planningtproblem solving
context, and more often than not involving an unpredictable and uncertain ex-
ecuting environment. Each of these additional aspects raises important and
fundamental questions for scheduling research. The scheduling problem is far
from solved.

2. RESEARCH CHALLENGES
Taking the broader view of scheduling just summarised, many important re-

search challenges can be identified. Several are outlined in the sections below.

2.1 Generating Schedules under Complex Constraints,
Objectives and Preferences

Though scheduling research has produced a substantial set of reusable tools
and techniques, the generation of high-quality solutions to practical scheduling
problems remains a custom art and is still confounded by issues of scale and
complexity. More often than not, it is necessary to incorporate specialised
heuristic assumptions, to treat selected constraints and objectives in an ad hoc
manner, and more generally to take advantage of problem-specific solution
engineering to obtain a result that meets a given application's requirements.
There continues to be great need for research into techniques that operate with
more realistic problem assumptions.

One broad area where prior research has tended to simplify problem formu-
lation is in the treatment of scheduling objectives and preferences. Mainstream
scheduling research has focused predominately on optimisation of selected,
simple objective criteria such as minimising makespan or minimising tardi-
ness. These objectives provide concise problem formulations but often bear
little relationship to the requirements of practical domains. For example, most
make-to-order manufacturing organisations strive to set reasonable due dates
and avoid late deliveries; a scheduling objective such as minimising tardiness
does not match this requirement. In many problems, there are multiple, con-
flicting objectives that must be taken into account. In others, there are complex
sets of so-called "softy' constraints that should be satisfied if possible but do
not necessarily have to be, and the problem is most naturally formulated as
one of optimising the overall level of satisfaction of these preferences. In still
other domains, the scheduling objective is tied to the expected output of the
process rather than its efficiency, with the goal being to optimise the quality
(or utility) of the tasks that can be executed within known deadline constraints.
Recent work in such areas as multicriteria scheduling (Della Croce et al., 2002;
T'kindt and Billaut, 2002; Landa Silva and Burke, 2004), scheduling with

6 Smith

complex preferences (Burke and Petrovic, 2002) and scheduling to maximise
process quality (Ajili and El Sakkout, 2003; Schwarzfischer, 2003; Wang and
Smith, 2004), has made some progress in generating schedules that account
for more realistic objective criteria, but there is considerable room for further
research here.

A second continuing challenge is the design of effective heuristic procedures
for generating high quality solutions to practical problems. There has been a
large body of research into the design of scheduling rules and heuristics for
various classes of scheduling problems (Morton and Pentico, 1993). Although
such heuristics can be effective in specific circumstances, they are not infallible
and their myopic nature can often give rise to suboptimal decisions. At the
other extreme, meta-heuristic search techniques (Voss, 2001) provide a general
heuristic basis for generating high quality solutions in many domains, but often
require extended execution time frames to be effective.

One approach to overcoming the fallibility of scheduling heuristics is to
exploit them within a larger search process. Systematic search techniques
such as limited discrepancy search (Harvey and Ginsberg, 1995) and depth-
bounded discrepancy search (Walsh, 1997) take this perspective; each starts
from the assumption that one has a good heuristic, and progressively explores
solutions that deviate in more and more decisions from the choices specified
by the heuristic. A similarly motivated idea is to use a good heuristic to bias
a non-deterministic choice rule and embed this randomised solution generator
within an iterative sampling search process (Bresina, 1996; Oddi and Smith,
1997; Cicirello and Smith, 2002). In this case, the search is effectively broad-
ened to cover the "neighbourhood" of the trajectory that would be defined by
deterministically following the heuristic. Both of these approaches to using a
heuristic to direct a broader search process been effectively applied to complex
scheduling problems.

A second approach to overcoming the limitations of any one scheduling
heuristic is to attempt to combine the use of several. It is rarely the case that a
heuristic can be found that dominates all others in a particular domain. More
frequently, different heuristics tend to perform better or worse on different
problem instances. Following this observation, a number of recent approaches
have begun to explore techniques that take advantage of several heuristics (or
heuristic problem solving procedures) in solving a given instance of a schedul-
ing problem. In some approaches (Talukdar et al., 1998; Gomes and Selman,
2001) different heuristic search procedures are executed in parallel, with the
possibility of sharing and building on intermediate results. In other work, the
development of adaptive scheduling procedures is considered, which utilise
some form of online learning procedure to determine which heuristic or heuris-
tic procedure is best suited to solve each specific problem instance (Hartmann,
2002; Burke et al., 2003; Cicirello and Smith, 2004b). Work in the direction of

Is Scheduling a Solved Problem? 7

combining multiple scheduling heuristics and procedures has produced some
interesting and promising results. At the same time, there are still significant
challenges in extending and scaling these ideas to meet the requirements of
practical domains.

One important general direction for research into more effective schedule
generation procedures is to explore integration of approximate and exact meth-
ods, and other cross-fertilisation of techniques that have emerged in differ-
ent disciplines. Growing research activity in the area of combining constraint
logic programming with classical optimisation (McAloon and Tretkoff, 1996;
Hooker, 2000; Regin and Rueher, 2004), for example, has shown the poten-
tial for significant advances in solving complex and large-scale combinatorial
problems, and this work is starting to find application in scheduling domains
(Baptiste et al., 2001; Hooker, 2004). Another important direction for future
research is more principled analysis of scheduling search procedures. Recent
work in this direction (Watson et al., 1999; Watson, 2003) has produced results
that show the inadequacy of using randomly generated problems as a basis for
evaluating real-world algorithm performance and the importance of problem
structure on algorithm design. Better understanding of the behaviour of search
algorithms in scheduling search spaces should ultimately lead to development
of more effective scheduling procedures.

2.2 Managing Change
If the goal of scheduling is to orchestrate an optimised behaviour of some

resource-limited system or organisation over time, then the value of a sched-
ule will be a function of its continuing relevance to the current environmental
state. One can categorise scheduling environments along a continuum ranging
from highly predictable and stable to highly uncertain and dynamic. Current
techniques are best suited for applications that fall toward the predictable end
of the spectrum, where optimised schedules can be computed in advance and
have a reasonable chance of being executable. Many spacecraft mission plan-
ning and scheduling problems have this character. Although things can cer-
tainly go wrong (and do), predictive models of constraints are generally pretty
accurate, and the time and cost put into obtaining the most optimised schedule
possible is worth it.' Unfortunately, though, most practical applications tend
to fall more toward the other end of the continuum, where advance schedules
can have a very limited lifetime and scheduling is really an ongoing process of
responding to unexpected and evolving circumstances. In such environments,
insurance of robust response is generally the first concern.

'An extreme example was the most recent Jupiter flyby, where it is estimated that somewhere on the order
of 100,000 person hours went into construction of the 1-2 week observing schedule (Biefeld, 1995).

8 Smith

Managing change to schedules in such dynamic environments remains a sig-
nificant challenge. For any sort of advance schedule to be of ongoing value,
the scheduler (or re-scheduler) must be capable of keeping pace with execu-
tion. But even supposing this is not a problem, it is typically not sufficient to
simply re-compute from scratch with a suitably revised starting state. When
multiple executing agents are involved (as is the case in most scheduling ap-
plications), wheels are set in motion as execution unfolds and there is a real
cost to repeatedly changing previously communicated plans. Explicit attention
must be given to preserving stability in the schedule over time and localising
change to the extent possible. While there has been some work in this direction
over the past several years (Smith, 1994; Zweben et al., 1994; El Sakkout and
Wallace, 2000; Montana et al., 1998; Bierwirth and Mattfeld, 1999; Zhou and
Smith, 2002; Kramer and Smith 2003, 2004; Hall and Posner, 2004), there is
still little understanding of strategies and techniques for explicitly trading off
optimisation and solution continuity objectives.

An alternative approach to managing execution in dynamic environments is
to build schedules that retain flexibility and hedge against uncertainty. Work
to date has focused principally on scheduling techniques that retain various
forms of temporal flexibility (e.g. Smith and Cheng, 1993; Cesta et al., 1998;
Artigues et al., 04; Leus and Herroelen, 2004; Policella et al., 2004a) and on
transformation of such schedules into a form that enables efficient execution
(Muscettola et al., 1998, Wallace and Freuder, 2000). A similar concept of
producing solutions that promote bounded, localised recovery from execution
failures is proposed in Ginsberg et al. (1998) and also explored in Branke and
Mattfeld (2002) and Hebrard et al. (2004). However, with few exceptions
these approaches take a strict constraint satisfaction perspective, and exploit
flexibility only as defined by current time and capacity constraints. Only re-
cently (e.g. Aloulou and Portmann, 2003; Policella et al., 2004b) has any work
considered the problem of generating flexible schedules in the presence of ob-
jective criteria. Likewise, strategies for intelligently inserting flexibility into
the schedule based on information or knowledge about various sources of un-
certainty (e.g. mean time to failure, operation yield rates) have received only
limited attention (e.g. Mehta and Uzsoy, 1998; Davenport et al., 2001) and
remain largely unexplored. A somewhat related idea is to use uncertainty in-
formation as a basis for developing contingent schedules. This approach is
taken in Drummond et al. (1994) to deal with activity duration uncertainty.
Other recent work (McKay et al., 2000; Black et al., 2004) has focused on the
development of context-sensitive scheduling rules, which adjust job priorities
in the aftermath of unexpected events to minimise deleterious consequences.

Is Scheduling a Solved Problem? 9

2.3 Self-Scheduling Systems
A third approach to managing execution in dynamic environments that has

gained increasing attention in recent years involves the development of so-
called self-scheduling systems, where (in the extreme) schedules are not com-
puted in advance but instead scheduling decisions are made only as needed
to keep execution going. Such systems are composed of a collection of inter-
acting decision-making agents, each responsible for brokering the services of
one or more resources, managing the flow of particular processes, etc. Agents
coordinate locally to make various routing and resource assignment decisions
and global behaviour is an emergent consequence of these local interactions.

Such approaches are attractive because they offer robustness and simplic-
ity, and there have been a few interesting successes (Morley and Schelberg,
1992). At the same time, these approaches make no guarantees with respect to
global performance, and very simple systems have been shown to have tenden-
cies toward chaotic behaviour (Beaumariage and Kempf, 1995). Some recent
work has approached this coordination problem as an adaptive process and has
leveraged naturally-inspired models of adaptive behaviour to achieve coherent
global behaviour in specific manufacturing control contexts (Parunak et al.,
1998; Campos et al., 2000; Cicirello and Smith 2004a). But speaking gener-
ally, the problem of obtaining good global performance via local interaction
protocols and strategies remains a significant and ill-understood challenge.

Self-scheduling approaches do not preclude the computation and use of ad-
vance schedules, and indeed their introduction may offer an alternative ap-
proach to overcoming the above-mentioned tendencies toward sub-optimal
global performance. Distributed, multi-agent scheduling models are also im-
portant in domains where problem characteristics (e.g. geographical separa-
tion, authority, security) prohibit the development of centralised solutions. A
number of agent-based approaches, employing a variety of decomposition as-
sumptions and (typically market-based) interaction protocols, have been inves-
tigated over the past several years (Malone et al., 1988; Ow et al., 1988; Sycara
et al., 1991; Lin and Solberg, 1992; Liu, 1996; Montana et al., 2000; Wellman
et al., 2001 ; Goldberg et al., 2003). More recently, protocols and mechanisms
for incremental, time-bounded optimisation of resource assignments (Mailler
et al., 2003; Wagner et al., 2004) and for self-improving self-scheduling sys-
tems (Oh and Smith, 2004) have begun to be explored. However, the ques-
tion of how to most effectively coordinate resource usage across multiple dis-
tributed processes is still very much open.

2.4 Integrating Planning and Scheduling
Though scheduling research has historically assumed that the set of activi-

ties requiring resources can be specified in advance, a second common charac-

teristic of many practical applications is that planning-the problem of deter-
mining which activities to perform, and scheduling-the problem of allocating
resources over time to these activities, are not cleanly separable. Different
planning options may imply different resource requirements, in which case
the utility of different planning choices will depend fundamentally on the cur-
rent availability of resources. Similarly, the allocation of resources to a given
activity may require a derivative set of enabling support activities (e.g. po-
sitioning, reconfiguration) in which case the specification and evaluation of
different scheduling decisions involves context-dependent generation of activ-
ities. Classical "waterfall" approaches to decision integration, where planning
and scheduling are performed in sequential lockstep, lead to lengthy inefficient
problem solving cycles in these sorts of problems.

The design of more tightly integrated planning and scheduling processes is
another important problem that requires research. One approach is to repre-
sent and solve the full problem in a single integrated search space. A survey
of such approaches can be found in Smith et al. (2000). However, use of a
common solver typically presents a very difficult representational challenge. It
has also recently been shown that the use of separable planning and schedul-
ing components can offer computational leverage over a comparable integrated
model, due to the ability to exploit specialised solvers (Srivastava et al., 2001).
In resource-driven applications, where planning is localised to individual jobs,
it is sometimes possible to incorporate planning conveniently as a subsidiary
process to scheduling (Muscettola et al., 1992; Sadeh et al., 1998; Chien et al.,
1999; Smith et al., 2003; Smith and Zimmerman, 2004). For more strategy-
oriented applications, though, where inter-dependencies between activities in
the plan are less structured and more goal dependent, it is necessary to develop
models for tighter and more flexible interleaving of planning and scheduling
decisions. One such model, based on the concept of customising the plan to
best exploit available resources, is given in Myers et al. (2001).

2.5 Requirements Analysis
Despite the ultimate objective of producing a schedule that satisfies domain

constraints and optimises overall performance, scheduling in most practical
domains is concerned with solving a problem of much larger scope, which
additionally involves the specification, negotiation and refinement of input re-
quirements and system capabilities. This larger process is concerned most ba-
sically with getting the constraints right: determining the mix of requirements
and resource capacity that leads to most effective overall system performance.

It is unreasonable to expect to fully automate this requirements analysis
process. The search space is unwieldy and ill-structured, and human expertise
is needed to effectively direct the search process. At the same time, problem

Is Scheduling a Solved Problem? 11

scale generally demands substantial automation. The research challenge is to
flexibly inject users into the scheduling process, without requiring the user
to understand the system's internal model. In other words, the system must
bear the burden of translating to and from user interpretable representations,
conveying results in a form that facilitates comprehension and conveys critical
tradeoffs, and accepting user guidance on how to next manipulate the system
model.

Work to date toward the development of mixed-initiative scheduling sys-
tems has only taken initial steps. One line of research has focused on under-
standing human aspects of planning and scheduling, examining the planning
and scheduling processes carried out in various organisations and analysing the
performance of human schedulers in this context (McKay et al., 1995; Mac-
Carthy and Wilson, 2001). This work has provided some insight into the roles
that humans and machines should assume to maximise respective strengths,
and in some cases guidance into the design of more effective practical schedul-
ing techniques. But there are still fairly significant gaps in understanding how
to integrate human and machine scheduling processes.

From the technology side, there has been some initial work in develop-
ing interactive systems that support user-driven scheduling. In Smith et al.
(1996), Becker and Smith (2000), and Smith et al. (2004a) parametrisable
search procedures are used in conjunction with graphical displays to imple-
ment a "spreadsheet" like framework for generating and evaluating alternative
constraint relaxation options. Ferguson and Allen (1998) alternatively exploit a
speech interface, along with techniques for dialogue and context management,
to support collaborative specification of transportation schedules. An interac-
tive 3D visualisation of relaxed problem spaces is proposed in Derthick and
Smith (2004) as a means for early detection and response to capacity shortfalls
caused by conflicting problem requirements. In Smith et al. (2003, 2004b),
some preliminary steps are taken toward exploiting a scheduling domain on-
tology as a basis for generating user-comprehensible explanations of detected
constraint conflicts. But in general there has been very little investigation to
date into techniques for conveying critical decision tradeoffs, for explaining
system decisions and for understanding the impact of solution change.

2.6 E-Commerce Operations
Finally, I mention the emerging application area of Electronic Commerce as

a rich source for target problems and an interesting focal point for scheduling
research. Current electronic marketplaces provide support for matching buyers
to suppliers (and to a lesser extent for subsequent procurement and order pro-
cessing). However, once the connection is made, buyers and suppliers leave
the eMarketplace and interact directly to carry out the mechanics of order ful-

Smith

filment. In the future, one can easily envision expansion of the capabilities of
eMarketplaces to encompass coordination and management of subscriber sup-
ply chains. Such E-Commerce operations will include available-to-promise
projection and due date setting, real-time order status tracking, determination
of options for filling demands (optimised according to specified criteria such
as cost, lead-time, etc.) and order integration across multiple manufacturers.

All of these capabilities rely rather fundamentally on a flexible underlying
scheduling infrastructure, and taken collectively they provide a strong forcing
function for many of the research challenges mentioned earlier. Scheduling
techniques that properly account for uncertainty, enable controlled solution
change, and support efficient negotiation and refinement of constraints, are
crucial prerequisites, and the need to operate in the context of multiple self-
interested agents is a given. The advent of E-Commerce operations also raises
some potentially unique challenges in scheduling system design and config-
uration, implying the transition of scheduling and supply chain coordination
technologies from heavyweight back-end systems into lightweight and mobile
services.

3. CONCLUSIONS
The field of scheduling has had considerable success in recent years in de-

veloping and transitioning techniques that are enabling better solutions to prac-
tical scheduling applications. Given this success, it might be tempting to con-
clude that major technical and scientific obstacles have now been cleared. In
this brief note, I have argued against this notion and highlighted several out-
standing challenges for scheduling research. There is plenty that remains to be
done.

Acknowledgments
Thanks are due to Larry Kramer and David Hildum for useful comments on

an earlier draft of this paper. This work was supported in part by the Depart-
ment of Defence Advanced Research Projects Agency and the U.S. Air Force
Research Laboratory, Rome under contracts F30602-97-2-0666 and F30602-
00-2-0503, by the National Science Foundation under contract 9900298 and
by the CMU Robotics Institute.

References
Ajili, F. and El Sakkout, H. (2003) A probe-based algorithm for piecewise linear optimization

in scheduling. Annals of Operations Research, 118:3548.
Aloulou, M. A. and Portmann, M.-C. (2003) An efficient proactive reactive scheduling approach

to hedge against shop floor disturbances. In Proceedings of the 1st MultiDisciplinary Inter-
national Conference on Scheduling Theory and Applications, Nottingham U K , pp. 337-362.

Is Scheduling a Solved Problem? 13

Artigues, C., Billaut, J.-C. and Esswein, C. (2004) Maximization of solution flexibility for robust
shop scheduling. European Journal of Operational Research, to appear.

Baptiste, P., LePape, C. and Nuijten, W. (2001) Constraint-Based Scheduling: Applying Con-
straint Programming to Scheduling Problems, Kluwer, Dordrecht.

Beaumariage, T. and Kempf, K. (1995). Attractors in manufacturing systems with chaotic ten-
dencies. INFORMS-95 Presentation, New Orleans.

Becker, M. and Smith, S. F. (2000). Mixed-initiative resource management: the amc barrel al-
locator. In Proceedings of the 5th International Conference on AI Planning and Scheduling
(Breckenridge, CO), AAAI Press, Menlo Park, CA, pp. 3241 .

Bierwirth, C. and Mattfeld, D. C. (1999). Production scheduling and rescheduling with genetic
algorithms. Evolutionary Computation, 7:l-17.

Biefeld, E. (1995) Private communication.
Black, G. W., McKay, K. N. and Messimer, S. L. (2004) Predictive, stochastic and dynamic

extensions to aversion dynamics scheduling. Journal of Scheduling, 7:277-292.
Boddy, M. and Goldman, R. P. (1994) Empirical results on scheduling and dynamic backtrack-

ing. In Proceedings of the 3rd International Symposium on Artijicial Intelligence, Robotics
and Automation for Space, Pasadena CA, pp. 431434.

Branke, J. and Mattfeld, D. C. (2002), Anticipatory scheduling for dynamic job shops. AIPS-
02 Workshop on On-line Planning and Scheduling, Toulouse, France, G. Verfaillie (Ed.),
pp. 3-10.

Bresina, J. (1996) Heuristic-biased stochastic sampling. In Proceedings of the 13th National
Conference on Artijicial Intelligence, AAAI Press, Menlo Park, CA, pp. 271-278.

Burke, E. K. and Petmvic, S. (2002) Recent research trends in automated timetabling. European
Journal of Operational Research, 140:266-280.

Burke, E. K., Hart, E., Kendall, G., Newall, J., Ross, P. and Schulenburg, S. (2003) Hyper-
heuristics: an emerging direction in modern search technology. In Handbook of Meta-
Heuristics, F. Glover and G. Kochenberger (Eds.) Kluwer, Dordrecht, pp. 457474.

Campos, M. , Bonabeau, E., Theraulaz, G. and Deneubourg, J. (2000) Dynamic scheduling and
division of labor in social insects. Adaptive Behavior, 8:83-96.

Cesta, A., Oddi, A. and Smith, S. F, (1998) Profile-based algorithms for solving multi-capacitated
metric scheduling problems. In Proceedings of the 4th International Conference on A1 Plan-
ning and Scheduling, Pittsburgh PA, pp. 214-223.

Chien, S., Rabideau, G., Willis, J, and Mann, T. (1999) Automated planning and scheduling of
shuttle payload operations. Artificial Intelligence, 114:239-255.

Cicirello, V. and Smith, S. F. (2002) Amplification of search performance through randomiza-
tion of heuristics. In Proceedings of the 8th International Conference on Principles and
Practice of Constraint Programming (Ithaca, NY), Lecture Notes in Computer Science,
Vol. 2470, pp. 124-138.

Cicirello, V. and Smith, S. F. (2004a) Wasp-based Agents for Distributed Factory Coordination.
Journal of Autonomous Agents and Multi-Agent Systems, 8:237-266.

Cicirello, V. and Smith, S. F. (2004b) Heuristic selection for stochastic search optimization:
modeling solution quality by extreme value theory. In Proceedings of the 10th International
Conference on Principles and Practice of Constraint Programming, Toronto, CA.

Davenport, A. J., Gefflot, C. and Beck, J. C. (2001) Slack-based techniques for building robust
schedules. In Proceedings of the 6th European Conference on Planning (Toledo, Spain),
pp. 181-192.

Della Croce, F., Tsoukias, A. and Moraitis, P. (2002) Why is it difficult to make decisions under
multiple criteria? In Working Notes AIPS-02 Workshop on Planning and Scheduling with
Multiple Criteria (Toulouse, France), pp. 41-45.

14 Smith

Derthick, M. and Smith, S. E (2004) An interactive 3D visualization for requirements anal-
ysis. Robotics Institute Technical Report CMU-RI-TR-04-65, Carnegie Mellon University,
Pittsburgh, PA.

Drummond, M., Bresina, J. and Swanson, K. (1994) Just-in-case scheduling. In Proceedings of
the 12th National Conference on Artificial Intelligence (Seattle, WA), pp. 1098-1 104.

El Sakkout, H. and Wallace, M. (2000) Probe backtrack search for minimal perturbation in
dynamic scheduling. Constraints, 5359-388.

Ferguson, G. and Allen, J. (1998) TRIPS: An integrated intelligent problem-solving assis-
tant. Proceedings of the 15th National Conference on Artificial Intelligence (Madison, WI)
pp. 567-572.

Ginsberg, M., Parkes, A. and Roy, A. (1998) Supermodels and robustness. In Proceedings of
the 15th National Conference on Artificial Intelligence (Madison, WI), pp. 334-339.

Goldberg, D., Cicirello, V., Dias, M. B., Simmons, R., Smith, S. E and Stentz, T. (2003)
Market-based multi-robot planning in a distributed layered architecture. In Proceedings of
the 2nd International Workshop on Multi-Robot Systems (Washington, DC), Kluwer, Dor-
drecht, pp. 27-38.

Gomes, C. P, and Selman, B. (2001) Algorithm portfolios. Artificial Intelligence, 126:4342.
Hall, N. G. and Posner, M. E. (2004) Sensitivity analysis for scheduling problems. Journal of

Scheduling, 7:49-83.
Hartmann, S. (2002) A self-adapting genetic algorithm for project scheduling under resource

constraints. Naval Research Logistics, 49:433448.
Harvey, W. and Ginsberg, M. (1995) Limited discrepancy search. Proceedings of the 14th In-

ternational Joint Conference on Artijkial Intelligence (Montreal, QC), Morgan Kaufmann,
pp. 607-615.

Hebrard, E., Hnich, B. and Walsh, T. (2004) Robust solutions for constraint satisfaction and
optimization. In Proceedings of the European Conference on Artificial Intelligence.

Hooker, J. N. (2000) Logic-Based Methods for Optimization, Wiley, New York.
Hooker, J. N. (2004) A hybrid method for planning and scheduling. In Principles and Practice

of Constraint Programming (CP 2004) (Toronto, ON), Lecture Notes in Computer Science,
Vol. 3258, M. Wallace (Ed.), pp. 305-316.

Krarner, L. A. and Smith, S. E (2003) Max-flexibility: a retraction heuristic for over-subscribed
scheduling problems. In Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI-03) (Acapulco, Mexico), pp. 1218-1223.

Kramer, L. A. and Smith, S. F. (2004) Task Swapping for Schedule Improvement: A Broader
Analysis. In Proceedings of the 14th International Conference on Automated Planning and
Scheduling (Whistler, BC), pp. 235-243.

Landa Silva, J. D. and Burke, E. K. (2004) A tutorial on multiobjective metaheuristics for
scheduling and timetabling. In Multiple Objective Meta-Heuristics, X . Gandibleux, M. Se-
vaux, K. Sorensen and V. T'Kindt (Eds.), Lecture Notes in Economics and Mathematical
Systems, Springer, Berlin.

Leus, R. and Herroelen, W. (2004) Stability and resource allocation in project planning. IIE
Transactions, 36:667-682.

Lin, G. and Solberg, J. (1992) Integrated shop floor control using autonomous agents. IIE Trans-
actions, 24:57-7 1.

Liu, J. S. (1996). Coordination of multiple agents in distributed manufacturing scheduling.
Ph.D. Thesis, The Robotics Institute, Carnegie Mellon University.

MacCarthy, B. L. and Wilson, J. R. (Eds.) (2001) Human Performance in Planning and Schedul-
ing, Taylor and Francis, New York.

Is Scheduling a Solved Problem? 15

Mailler, R., Lesser, V. and Horling, B. (2003) Cooperative negotiation for soft real-time dis-
tributed resource allocation. In Proceedings of the 2nd International Joint Conference on
Autonomous Agents and Multi-Agent Systems, pp. 576-583.

Malone, T. W., Fikes, R. E., Grant, K. R. and Howard, M. T. (1988) Enterprise: a market-like
task scheduler for distributed computing environments. In The Ecology of Computation, B.
A. Huberman (Ed.), Elsevier, Amsterdam.

McAloon, K. and Tretkoff, C. (1996) Optimization and Computational Logic, Wiley, New York.
McKay, K. N., Safayeni, F. R. and Buzacott, J. A. (1995) Schedulers and planners: what and

how can we learn from them? In Intelligent Scheduling Systems, D. E. Brown and W. T.
Scherer (Eds.), Kluwer, Dordrecht, pp. 41-62.

McKay, K. N., Morton, T. E., Ramnath, P. and Wang, J. (2000) "Aversion dynamics" scheduling
when the system changes. Journal of Scheduling, 3:71-88.

Mehta, S. and Uzsoy, R. (1998). Predictable scheduling of a job-shop subject to breakdowns,
IEEE Transactions on Robotics and Automation, 14:365-378.

Montana, D., Brin, M., Moore, S. and Bidwell, G. (1998) Genetic algorithms for complex,
real-time scheduling. In Proceedings of the 1998 IEEE Conference on Man, Systems and
Cybernetics.

Montana, D., Herrero, J., Vidaver, G. and Bidwell, G. (2000) A multiagent society for military
transportation scheduling. Jountal of Scheduling, 3:225-246.

Morley, D. and Schelberg, C. (1992) An analysis of a plant specific dynamic scheduler. Final
Report, NSF Workshop on Intelligent Dynamic Scheduling for Manufacturing Systems, L.
Interrante and S. F. Smith (Eds.).

Morton, T. E. and Pentico, D. (1993) Heuristic Scheduling Systems: With Applications to Pro-
duction Systems and Project Management, Wiley, New York.

Muscettola, N., Smith, S. F., Cesta, A. and D'Aloisi, D. (1992) Coordinating space telescope op-
erations in an integrated planning and scheduling framework. IEEE Control Systems, 12:28-
37.

Muscettola, N., Moms, P. and Tsamardinos, I. (1998) Reformulating temporal plans for efficient
execution. In Proceedings of the 6th International Conference on Principles of Knowledge
Representation and Reasoning, pp. 444-452.

Myers, K. L., Smith, S. F., Hildum, D., Jarvis, P. and de Lacaze, R. (2001) Integrating planning
and scheduling through adaptation of resource intensity estimates. In Proceedings of the 6th
European Conference on Planning (Toledo, Spain), pp. 133-144.

Oddi, A. and Smith, S. F. (1997) Stochastic procedures for generating feasible schedules. In
Proceedings of the 14th National Conference on Artificial Intelligence (Providence, RI),
pp. 308-3 14.

Oh, J. and Smith, S. F. (2004) Learning user preferences in distributed calendar scheduling. In
Proceedings of the 5th International Conference on the Practice and Theory of Automated
Timetabling (Pittsburgh, PA).

Ow, P. S., Smith, S. F. and Howie, R. (1988) A cooperative scheduling system. In Expert Systems
and Intelligent Manufacturing, M. Oliff (Ed.), Elsevier, Amsterdam.

Parunak, V., Baker, A. and Clark, S. (1998) The AARIA agent architecture: from manufacturing
requirements to agent-based system design. In Proceedings of the ICRA'98 Workshop on
Agent-based Manufacturing (Minneapolis, MN), pp. 1-17.

Policella, N., Smith, S. F., Cesta, A. and Oddi, A. (2004a) Generating robust schedules through
temporal flexibility. In Proceedings of the 14th International Conference on Automated Plan-
ning and Scheduling (Whistler, BC), pp. 209-218.

Policella, N., Oddi, A., Smith, S. F. and Cesta, A. (2004b) Generating robust partial order sched-
ules. In Principles and Practice of Constraint Programming, 10th International Conference

16 Smith

(CP 2004) (Toronto, ON), M. Wallace (Ed.), Lecture Notes in Computer Science, Vol. 3258,
Springer, Berlin.

Regin, J.-C. and Rueher, M. (Eds.) (2004) Proceedings CP-AI-OR'04: International Confer-
ence on Integration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems (Nice, France).

Sadeh, N., Hildum, D. W., LaLiberty, T. J., McNulty, J., Kjenstad, D. and Tseng, A. (1998) A
blackboard architecture for integrating process planning and production scheduling. Con-
current Engineering: Research and Applications, 6:88-100.

Schwarzfischer, T. (2003) Quality and utility-towards a generalization of deadline and anytime
scheduling. In Proceedings of the 13th International Conference on Automated Planning and
Scheduling (Trento, Italy), pp. 277-286.

Smith, D. E., Frank, J. and Jonsson, A. K. (2000) Bridging the gap between planning and
scheduling. Knowledge Engineering Review, 1561-94.

Smith, D. R., Parra, E. and Westfold, S. (1995). Synthesis of high performance transportation
schedulers. Technical Report KES.U.95.1, Kestrel Institute.

Smith, S. F. and Cheng, C. (1993) Slack-based heuristics for constraint satisfaction scheduling.
In Proceedings of the I lth National Conference on Artijicial Intelligence (Washington, DC),
pp. 139-144.

Smith, S. F. (1994) OPIS: An Architecture and Methodology for Reactive Scheduling. In Intel-
ligent Scheduling, Chapter 2, M. Zweben and M. Fox (Eds.), Morgan Kaufmann, San Mateo,
C A.

Smith, S. F., Lassila, 0. and Becker, M. (1996) Configurable systems for mixed-initiative plan-
ning and scheduling. In Advanced Planning Technology, A. Tate (Ed.), AAAI Press, Menlo
Park, CA. ISBN 0-929280-98-9.

Smith, S. F., Becker, M. A. and Kramer, L. A. (2004a) Continuous management of airlift and
tanker resources: a constraint-based approach. Journal of Mathematical and Computer Mod-
eling, Special Issue on Defence Transportation: Algorithms, Models and Applications for the
21st Century, 39581-598.

Smith, S. Fa, Cortellessa, G., Hildum, D. W. and Ohler, C. M. (2004b) Using a scheduling do-
main ontology to compute user-oriented explanations. In Planning and Scheduling, . Castillo,
D. Borrajo, M. A. Salido and A. Oddi (Eds.), Frontiers in Artificial Intelligence and Appli-
cations Series, IOS Press, Amsterdam, forthcoming.

Smith, S. F., Hildum, D. W. and Crimrn, D. (2003) Interactive resource management in the
comirem planner. IJCAI-03 Workshop on Mixed-Initiative Intelligent Systems (Acapulco,
Mexico), pp. 100-106.

Smith, S. F. and Zimmerman, T. L. (2004) Planning tactics within scheduling problems. In
Proceedings ICAPS-04 Workshop on Integrating Planning into Scheduling (Whistler, BC),
pp. 83-90.

Srivastava. B., Kambhampati, S. and Minh, B. D. (2001) Planning the project management
way: efficient planning by effective integration of causal and resource reasoning in Realplan.
Artijicial Intelligence, l31:73-134.

Sycara, K., Roth, S. F,, Sadeh, N. and Fox, M. S. (1991) Resource allocation in distributed
factory scheduling. IEEE Expert, 6:29-40.

Syswerda, G. (1991) Schedule optimization using genetic algorithms. In Handbook of Genetic
Algorithms, L.D. Davis (Ed.), Van Nostrand-Reinhold, New York.

Talukdar, S., Baerentzen, L., Gove, A. and de Souza, P. (1998) Asynchronous teams: coopera-
tion schemes for autonomous agents. Journal of Heuristics, 4:295-321.

T'kindt, V. and Billaut, J. C. (2002) Multicriteria Scheduling, Springer, Berlin.

Is Scheduling a Solved Problem? 17

Voss, S. (2001) Meta-heuristics: the state of the art. In Local Search for Planning and Schedul-
ing, A. Nareyek (Ed.), Lecture Notes in Artificial Intelligence, Vol. 2148, Springer, Berlin,
pp. 1-23.

Wagner, T., Phelps, J., Guralnik, V. and VanRiper, R. (2004) COORDINATORS: coordination
managers for first responders. In Proceedings of the 3rd International Joint Conference on
Autonomous Agents and Multi-Agent Systems (New York).

Wallace, R. and Freuder, E. (2000) Dispatchable Execution of schedules involving consumable
resources. In Proceedings of the 5th International Conference on AI Planning and Schedul-
ing (Breckenridge CO), AAAI Press, Menlo Park, CA, pp. 283-290.

Walsh, T. (1997) Depth-bounded discrepancy search. In Proceedings of the 15th International
Joint Conference on Art$cial Intelligence, pp. 1388-1395.

Wang, X, and Smith, S. E (2004) Generating schedules to maximize quality. Robotics Institute
Technical Report CMU-RI-TR-04-25, Carnegie Mellon University, Pittsburgh, PA.

Watson, J.-P., Barbulescu, L., Howe, A. E., and Whitley, L. D. (1999) Algorithm performance
and problem structure for flow-shop scheduling. In Proceedings of the 16th National Con-
ference on Art$cial Intelligence (Orlando, I%), pp. 688-695.

Watson, J.-P. (2003) Empirical modeling and analysis of local search algorithms for the job-
shop scheduling problem. Ph.D. Thesis, Department of Computer Science, Colorado State
University.

Wellman, M. P., Walsh, W. E., Wurman, P. R. and MacKie-Mason, J. K. (2001) Auction proto-
cols for decentralized scheduling. Games and Economic Theory, 35:271-303.

Zhou, Q. and Smith, S. E (2002) A priority-based preemption algorithm for incremental
scheduling with cumulative resources. Robotics Institute Technical Report CMU-RI-TR-02-
19, Carnegie Mellon University.

Zweben, M., Daun, B., Davis, E. and Deale, M. (1994) Scheduling and rescheduling with iter-
ative repair. In Intelligent Scheduling, M. Zweben and M. Fox (Eds.), Morgan Kaufmann,
San Mateo, CA.

FORMULATIONS, RELAXATIONS,
APPROXIMATIONS, AND GAPS IN
THE WORLD OF SCHEDULING

Gerhard J. Woeginger
Department of Mathematics and Computer Science, TU Eindhoven
PO. Box 513, 5600 MB Eindhoven, The Netherlands
g.j.woeginger@tue.nl

Abstract

Keywords:

We discuss a number of polynomial time approximation results for scheduling
problems. All presented results are based on the technique of rounding the opti-
mal solution of an underlying linear programming relaxation. We analyse these
relaxations, their integrality gaps, and the resulting approximation algorithms,
and we derive matching worst-case instances.

approximation algorithm, worst-case analysis, performance guarantee, linear
programming relaxation, integrality gap, scheduling.

INTRODUCTION
Most real-world optimization problems are NP-hard, and most NP-hard

problems are difficult to solve to optimality. We conclude: most real-world
problems are difficult to solve to optimality. A standard way of working around
this (rather pessimistic) conclusion is to forget about exact optimality, and to
satisfy oneself instead with near-optimal or approximate solutions. This leads
us into the area of approximation algorithms for combinatorial optimization
problems.

A combinatorial optimization problem consists of a set Z of instances, and
a family F (I) of feasible solutions for every instance I E 2. Every feasible
solution F E F(1) comes with a non-negative cost c (F) . In this paper, we
will only consider minimisation problems, where the objective is to determine
a feasible solution of minimum possible cost. An approximation algorithm is
an algorithm that for every instance I E Z returns a near-optimal solution. If it
manages to do this in polynomial time, then it is called a polynomial time ap-
proximation algorithm. An approximation algorithm for a minimisation prob-
lem is called a p-approximation algorithm, if it always returns a near-optimal

Woeginger

solution with cost at most a factor p above the optimal cost. Such a value p 2 1
is called a worst-case per3Pormance guarantee of the algorithm.

Approximations through relaxations. One standard approach for de-
signing polynomial time approximation algorithms for a (difficult, NP-hard)
optimisation problem p is the following:

(Sl) Relax some of the constraints of the hard problem P to get an easier
problem P' (the so-called relaxation).

(S2) Compute (in polynomial time) an optimal solution St for this easier re-
laxed problem p'.

(S3) Translate (in polynomial time) the solution St into an approximate solu-
tion S for the original problem P.

(S4) Analyse the quality of solution S for P by comparing its cost to the cost
of solution S' for P'.

Let Cop' denote the optimal cost of the original problem instance, let CRk
denote the optimal cost of the relaxed instance, and let C A p p denote the cost of
the translated approximate solution. To show that the sketched approach has
a performance guarantee of p, one usually establishes the following chain of
inequalities:

CR'" < - c o p t 5 c A p p 5 p . CRk 5 p . COP' (1)

The first and the last inequality in this chain are trivial, since problem P' results
from problem P by relaxing constraints. The second inequality is also trivial,
since the optimal solution is at least as good as some approximate solution. The
third inequality contains the crucial step in the chain, and all the analysis work
goes into proving that step. This third inequality relates the relaxed solution
to the approximate solution; both solutions are polynomial time computable,
and hence their combinatorics will be nice and well-behaved. Thus, the chain
yields the desired relation C A P p 5 p . Cop' by analysing nice, polynomial time
computable objects. The analysis avoids touching the original NP-hard prob-
lem whose combinatorics is messy and complicated and hard to grasp.

Worst-case gaps and integrality gaps. Of course, we would like to
make the value of the parameter p as small as possible: The closer p is to 1, the
better is the performance of the approximation algorithm. How can we argue
that our worst-case analysis is complete? How can we argue that we have
reached the smallest possible value for p? That is usually done by exhibiting a
so-called worst-case instance, that is, an instance I that demonstrates a worst-
case gap of p for the approximation algorithm:

cApp I = p . ~ I o p ' and c,"t = cy (2)

Formulations, Relaxations, Approximations, and Gaps 21

Here the left-hand equation establishes the gap, and together with the chain (1)
it yields the right-hand equation. The worst-case instance (2) illustrates that
our analysis of the combined approach (Sl)-(S3) is tight. Is this the end of
the story? Not necessarily. We could possibly start with the same relaxation
step (S I), then solve the relaxation with the same step (S2), and then come up
with a completely new (and better) translation step. How can we argue that
this is not possible? How can we argue that the value p is already the best
performance guarantee that we possibly can get out of the considered relax-
ation? That is usually done by exhibiting an instance J that demonstrates an
integrality gap of p between the original problem and the relaxation:

The equation on the left-hand side establishes the gap, and with (1) it yields
the equation on the right-hand side. In particular, we have C? = p . C$Lr. For
instance J the third inequality in the chain (1) is tight, and there is no way of
proving a better performance guarantee for an approximation algorithm built
around the considered relaxation. We stress that such a better approximation
algorithm around the relaxation might well exist, but we will never be able
to prove that its performance guarantee is better than p within the framework
described above.

For p > 1, the conditions in (2) and in (3) cannot be satisfied by the same
instance, as they would be contradictory. Hence, a complete analysis of an
approximation algorithm within our framework always must provide m o sep-
arate bad instances, one for the worst-case gap and one for the integrality gap.

Overview of this paper. We will illustrate the approach (S1)-(S4) with
three examples from scheduling theory presented in the following three sec-
tions. For each example we provide an integer programming formulation, a
relaxation, an approximation algorithm, a worst-case analysis, and two gap in-
stances. In the conclusions section we give some pointers to the literature, and
we pose one open problem.

Throughout the paper, we use the standard three-field scheduling notation
(see e.g. Graham et al., 1979; Lawler et al., 1993).

1. MAKESPAN ON PARALLEL MACHINES
As our first example we will study P I I C,,, the problem of minimising

makespan on parallel identical machines. The input consists of m identical
machines M I , . . . , M, together with n jobs J 1 , . . . , Jn with processing times
p l , . . . , pn. Every job is available for processing at time 0. The goal is to
schedule the jobs such that the maximum job completion time (the so-called
makespan C,,) is minimised. Problem P I I C,, is known to be NP-hard in

22 Woeginger

the strong sense (Garey and Johnson, 1979). The goal of this section is to give
a first, simple illustration for the topics discussed in this paper.

Exact formulation and relaxation. Consider the following integer pro-
gramming formulation (4) of problem P I I C,,. For machine Mi and job J j ,
the binary variable xij decides whether Jj is assigned to Mi (in which case
xij = 1) or whether Jj is assigned to some other machine (in which case
xij = 0). The continuous variables Li describe the total load (i.e. the total job
processing time) assigned to machine Mi. Finally, the continuous variable C
denotes the makespan:

min C

Cjn,lxijpj = Li fori = 1, ..., m

Li I C f o r i = 1, ..., m
(4)

P j l c f o r j = 1, ..., n

X i j E {O,1) f o r i = l , ..., m a n d j = 1 ,..., n

The first family of constraints states that every job has to be assigned to pre-
cisely one machine. The second family of constraints connects the assigned
jobs to the machine loads, and the third family of constraints connects the ma-
chines loads to the makespan. The fourth family of constraints requires that
the makespan is at least as large as any job processing time.

Since P I I C,, is an NP-hard problem, the equivalent integer program-
ming formulation (4) will also be NP-hard to solve. Therefore, we relax this
formulation to get something simpler: We replace the integrality constraints
"xij E {O,l)" by continuous constraints "0 5 xij < 1". NOW all the vari-
ables are continuous variables, and so this relaxation is a linear program that
can be solved to optimality in polynomial time. From now on we will use
P = Cy=l pj to denote the overall job processing time. Furthermore, we de-
note the optimal objective value of (4) by Cop', and the optimal objective value
of the LP-relaxation by CLP. Setting x:; - lplm and L y "P Pplm gives us
a feasible solution for the LP-relaxation. In fact, it can be verified that this
feasible solution is an optimal LP-solution with objective value

CLP = max -P, maxpj {: J:l 1
The approximation algorithm. Now let us design a polynomial time

approximation algorithm for P I I C,, that is based on the above ideas. Since

Formulations, Relaxations, Approximations, and Gaps 23

CLP is an under-estimation of the true optimal objective value Cop', we will
multiply CLP by an appropriate stretching factor ,6 := 2m/(m + 1) and reserve
a time interval of length P . CLP on each machine:

Turn every machine into a corresponding bin of capacity /3 . CLP

Pack the processing times pl, . . . , p, one by one into these m bins. Ev-
ery processing time is packed into the first bin (the bin with smallest
index) into which it will fit.

That is a very simple and fairly natural algorithm. In the case all n process-
ing times can be fit into the bins, the makespan of the corresponding schedule

This would yield a worst-case performance guarantee of P = 2m/(m + 1).
Hence, it remains to be shown that we indeed can pack all the jobs into the
bins. Suppose for the sake of contradiction that this is not possible. Consider
the first moment in time where some job, say job Jy with processing time py,
does not fit into any bin. Let B1,. . . , Bm be the contents of the bins at that
moment, and let B, = mini Bi denote the smallest contents. Since p, does
not fit into any bin,

In particular, this implies that all bins are non-empty. Next, we claim that

Indeed, if i < x then every job in B, was too big to fit into Bi, and if i > x
then every job in Bi was too big to fit into B,. This proves (7). Adding up the
m inequalities in (6) yields

Since py + Czl Bi L: P, the left hand side in (8) is bounded from above by
P + (m - l)py, which by (5) in turn is bounded from above by me CLP + (m -
l)py. Plugging this upper bound into (8) and simplifying yields that

By adding the m - 1 inequalities in (7) to the inequality (9), we get that

24 Woeginger

The left-hand side in (10) is bounded from above by P + (m - 2)B,, which
by (5) in turn is bounded from above by m CLP + (m - 2)B,. Plugging this
upper bound into (8) and simplifying yields that

Combining (9) with (I 1) leads to

Since this blatantly contradicts (5), we have arrived at the desired contradic-
tion. To summarise, the described bin packing algorithm indeed has a worst-
case performance guarantee of at most P = 2m/(m + 1).

Analysis of the two gaps. Is our worst-case bound of P for the bin pack-
ing algorithm best possible? Yes, it is; consider the instance that consists of
m jobs of length l / (m + 1) followed by m jobs of length m/(m + 1). Then
Copt = 1, whereas CApp = 0. (This instance also illustrates that for stretching
factors strictly less than P, the bin packing algorithm does not necessarily end
up with a feasible solution.)

Gap 1.1 There exist instances for P I I C,, for which the gap between the
optimal makespan Copt and the makespan produced by the bin packing algo-
rithm equals P = 2m/(m + 1).

What about the integrality gap of the LP-relaxation? Consider the instance
with n = m + 1 jobs and processing times pj s m/(m + 1). Since the optimal
solution must put some two of these m + 1 jobs on the same machine, we have
Copt > 2m/(m+ 1). For the LP-relaxation, the formula in (5) yields CLP = 1.

Gap 1.2 The integrality gap of the linear programming relaxation forprob-
lem P I I C,, is p = 2m/(m + 1). For large m, the gap goes to 2.

The results derived in this section for P I I C,, are fairly weak. The main
motivation for stating them was to illustrate the basic relaxational approach.
The literature contains much stronger approximation results for P (I C,,. Al-
ready back in the 1960s, Graham (1966, 1969) investigated simple greedy
algorithms with worst-case performance guarantees 413 - 1/(3m). In the

Formulations, Relaxations, Approximations, and Gaps 25

1980s, Hochbaum and Shmoys (1987) designed a polynomial time approxi-
mation scheme for P I I Cm,: for every E > 0, they provide a polynomial time
approximation algorithm with worst-case performance guarantee at most 1 + E.

The LP-relaxation of (4) essentially describes the preemptive version
P I pmtn I C,, of makespan minimisation, and the formula in (5) states the
optimal preemptive makespan. Woeginger (2000) discusses preemptive versus
non-preemptive makespan for uniform machines (that is, machines that run at
different speeds). Woeginger (2000) shows that the integrality gap between
Q I I C,, and Q I pmtn I Cm, is at most 2 - l l m , and that this bound is the
best possible. Lenstra et al. (1990) discuss similar relaxations for the problem
R I I C,, with unrelated machines. They establish an upper bound of 2 for the
integrality gap of the preemptive relaxation.

2. MAKESPAN UNDER COMMUNICATION DELAYS
Communication delays (see Papadimitriou and Yannakakis, 1990; Veltman

et al., 1990) take the data transmission times between machines into account.
We will look at one of the simplest problems in this area, where all jobs have
unit processing times and where all the communication delays are one time-
unit long.

There are n unit-length jobs J1, . . . , J, that are precedence constrained in
the following way: if there is a precedence constraint Ji -+ Jj between jobs
Ji and Jj, then job Jj cannot be started before job Ji has been completed.
Furthermore, if jobs Ji and Jj are processed on different machines, then it
takes one time-unit to transmit the data generated by job Ji over to job Jj; in
this case, Jj cannot start earlier than one time-unit after the completion time
of Ji. The number of machines is not a bottleneck, and may be chosen by the
scheduler. All jobs are available at time 0, and the objective is to minimise the
makespan.

This problem is denoted by Pco I prec, pj=l, c=l I Cm,. Picouleau (1992)
has proved its NP-hardness.

Exact formulation and relaxation. We introduce the notation Succ(j) =
{i : Jj -+ Ji) and P R E D (~) = {i : Ji -+ Jj) to encode the successor and
predecessor sets of job Jj. Consider the following integer programming formu-
lation (13) of problem Pco (prec, pj=l, c=l I C,,. The continuous variable
Cj denotes the completion time of job Jj . For every pair of jobs Ji + Jj , the
binary variable xij decides whether there is a unit-time communication delay
between Ji and Jj (in which case xij = I), or whether there is no delay and Jj
is run immediately after Ji on the same machine (in which case xij = 0). The

26 Woeginger

continuous variable C denotes the makespan:

min C

xiESucc(j) X j i 2 ISUCC(~)I - 1 for j = 1, . . . , n

Ci+ 1+Xij < C j for Ji -+ Jj
(13)

l < C j < C f o r j = l , ..., n

X i j E {O,1) for Ji 4 J j

Consider some fixed job Jj that completes at time C j on machine M, in
some fixed feasible schedule. All predecessors of Jj that are processed on
machines # Mz must complete at time C j - 2 or earlier. And all predecessors
of J j that are processed on machine Mz (with the exception of the last prede-
cessor) must also complete at time C j - 2 or earlier. Hence, at most one of the
communication delays xij with i E PRED(~) can be 0, and all the others can
be set to 1. All this is expressed by the first family of constraints. The second
family of constraints states a symmetric condition for the successor sets. The
third family of constraints connects the job completion times to the communi-
cation delays, and the fourth family of constraints connects the job completion
times to the makespan.

Next, we will relax the integer programming formulation by replacing the
integrality constraints "xij E {O,l)" by continuous constraints "0 5 xij 5 1".
We get the corresponding LP-relaxation that can be solved in polynomial time.
We denote an optimal solution of this LP by xt;, C y , and CLP.

The approximation algorithm. Now let us translate the LP-solution into
a "nearly" feasible IP-solution. The trouble-makers in the LP-solution are the
delay variables xf; that need not be integral, whereas we would like them to
be binary. A simple way of resolving this problem is threshold rounding: if
xf; < 112, then we define a rounded variable Sij = 0, and if x$' 2 112,
then we define a rounded variable 5ij = 1. Then we run through the jobs and
fix the job completion times; the jobs are handled in topological order (that is,
we handle a job only after all of its predecessors already have been handled).
For a job Jj without predecessors, we define a rounded job completion time
Cj = 1. For a job with predecessors, we define a rounded completion time

That is, we place every job at the earliest possible moment in time without
violating the precedence constraints and communication delays. Finally, we
compute the rounded makespan C = maxj{Cj} . Altogether, this gives us a
rounded solution for (13).

Formulations, Relaxations, Approximations, and Gaps 27

Let us verify that the rounded values iij, Cj, and c constitute a feasible
solution of (13): if they violate a constraint from the first family of constraints,
then 5ij = 5 k j = 0 must hold for some i , k E PRED(~) . But this would
mean x;' < 112 and x g < 112, whereas for all other E P R E D (~) we have
x g 5 1. Consequently,

and xg, C y , CLP would not be feasible for the LP-relaxation; a contradiction.
A symmetric argument shows that the rounded solution also satisfies the sec-
ond family of constraints. The third and fourth family are satisfied by the way
we have computed the values Cj and 6. Hence, the rounded solution is indeed
feasible for (13). What about its quality? Let us first observe that

4
1 + 5ij 5 - (1 + x;;)

3
for all Ji 4 J j (1.5)

First, consider the case Zij = 0. Then in the inequality (15) the left-hand side
equals 1, the right-hand side is at least 413, and the statement clearly is true.
Secondly, consider the case Zij = 1. Then the inequality (15) is equivalent to
xi$' 2 112, and that was precisely the condition for setting Eij = 1. These two
cases establish the correctness of (15). Next, let us analyse the rounded job
completion times. We claim that

4 6. < - C Y 3 - 3 3 forall j = 1, ... ,n (16)

This statement clearly holds true for all jobs without predecessors, since they
satisfy cj = C y = 1. For the remaining jobs, we use an inductive argument
along the topological ordering of the jobs:

Here the first equation comes from (14); the first inequality follows from (15)
and (16); the second inequality follows from the third family of constraints in
(13). Finally, since all rounded job completion times are at most a factor of

28 Woeginger

413 above the job completion times in the LP-solution, the rounded makespan
satisfies

Hence, the described approximation algorithm has a worst-case performance
guarantee of at most 413. This result is due to Munier & Konig (1997).

Analysis of the two gaps. Now let us find a worst-case instance for the
approximation algorithm: we use n = 3k + 1 jobs that we call J1, . . . , Jk+l,
and J i , . . . , J i , and J f , . . . , J l . For j = 1 , . . . , k we introduce the precedence
constraints J j -+ J,! -+ Jj+1 and J j -, J,!' -+ Jj+l.

An optimal solution sequences all jobs on a single machine such that job
J j completes at time 3 j - 2, job J,! completes at time 3 j - 1, and job J,!'
completes at time 3 j. This yields a makespan of 3k + 1.

rn An optimal LP-solution may set all delay variables x$' = 112. Then the
completion time of J j becomes 3 j - 2, the completion times of J,! and J,!'
become 3 j - ;, and the optimal objective value becomes CLP = 3k + 1.

In the rounded solution, all delay variables are Zij = 1. Job J j completes
at time 4 j - 3, and jobs Ji and J,!' complete at time 4 j - 2. Hence, the
rounded makespan is 6 = 4k + 1.

Gap 2.1 There exist instances for P m I prec, pj =1, c=l I C,, for which
the gap between the optimal makespan and the makespan produced by the
rounding algorithm comes arbitrarily close to 413.

And what about the integrality gap of the LP-relaxation for problem Pca
Iprec, pj=l, c=l I C,,? Consider an instance with 2k - 1 jobs, where the
precedence constraints form a complete binary out-tree of height k - 1. That
is, every job (except the leaves) has exactly two immediate successors, and
every job (except the root) has exactly one immediate predecessor.

Consider a non-leaf job J j that completes at time C j in the optimal so-
lution. Only one of its two immediate successors can be processed on
the same machine during the time slot [Cj; C j + 11, whereas the other
immediate successor must complete at time C j + 2. This yields that the
optimal makespan equals 2k - 1.

rn Now consider an LP-solution in which all delay variables are x:: r 112.
Then jobs at distance d from the root complete at time 1 + gd. Therefore,
C" = ;(3k - 1).

Formulations, Relaxations, Approximations, and Gaps 29

Gap 2.2 For problem P m I prec, pj=l, c=l I C,,, the integrality gap of
the LP-relaxation is 413.

The approximation result described in this section is the strongest known
result for Poo Iprec,pj=l, c=lJ C,, (Munier and Konig, 1997). It is an
outstanding open problem to decide whether there exists a better polynomial
time approximation algorithm, with worst-case performance guarantee strictly
less than 413.

The literature contains a remarkable negative result in this direction: Hoogeveen
et al. (1994) have shown that the existence of a polynomial time approximation
algorithm with worst-case performance guarantee strictly less than 716 would
imply P = NP.

3. PREEMPTIVE MAKESPAN UNDER JOB
REJECTIONS

In this section, we consider an environment with n jobs J1, . . . , J, and with
m unrelated parallel machines M I , . . . , M,.

Job J j has a processing time pij on machine Mi, and moreover job Jj has
a positive rejection penalty fj. All jobs are available at time 0. Preemption of
the jobs is allowed (that is, a job may be arbitrarily interrupted and resumed
later on an arbitrary machine). A job may be processed on at most one machine
at a time. For each job J j , it must be decided whether to accept or to reject it.
The accepted jobs are to be scheduled on the m machines. For the accepted
jobs, we pay the makespan of this schedule. For the rejected jobs, we pay
their rejection penalties. In other words, the objective value is the preemptive
makespan of the accepted jobs plus the total penalty of the rejected jobs.

This scheduling problem is denoted by R I pmtn I Rej + C,,; it is NP-hard
in the strong sense (Hoogeveen et al., 2003).

Exact formulation and relaxation. Once again, we will start by stating
an integer programming formulation. For job J j , the binary variable yj decides
whether J j is rejected (y j = 0) or accepted (y j = 1). The continuous variables
xij describe which percentage of job Jj should be processed on machine Mi.
The continuous variable C denotes the optimal preemptive makespan for the

Woeginger

accepted jobs:

min C + Cjn=l(l - yj)fj

s.t. CFl xijpij 5 C for i = 1, . . . , m

Czl Xijpij 5 C for j = 1, . . . , n
(17)

C z ~ x i j = ~j f o r j = 1, ..., n

xij 2 0 f o r i = l , ..., m a n d j = 1 ,..., n

Y j (0, 1) f o r j = 1, ..., n

The first family of constraints states that for every machine the total assigned
processing time is at most C. The second family of constraints states that the
total processing time of any accepted job cannot exceed C. The third family
of constraints connects the binary decision variables yj to the continuous vari-
ables xij: if a job is accepted (yj = I), then the percentages xij should add up
to 1 = yj; if a job is rejected (yj = 0), then the percentages xij should add up
too = yj.

As soon as we have fixed all the values xij, the remaining makespan min-
imisation problem is essentially makespan minimisation in a preemptive open
shop. It is well known (Gonzalez and Sahni, 1976; Lawler et al., 1993) that
for a preemptive open shop, the smallest value C fulfilling the first and second
family of constraints in (17) yields the optimal preemptive makespan. To sum-
marise, the integer program (17) is a complete and correct description of the
problem R I pmtn I Rej + C,,.

We define the LP-relaxation of the integer programming formulation (17)
by replacing the integrality constraints "yj E {O,l)" by continuous constraints
"0 5 yj 5 1". This LP-relaxation can be solved in polynomial time, and we
denote an optimal solution by x$', yy , and CLP.

The approximation algorithm. Now we want to translate the LP-solution
into a reasonable feasible solution for (17). We mainly have to take care of the
decision variables yj; however, this time we also must pay attention to the con-
tinuous variables xij, since their values depend on the values yj via the third
family of constraints in (17).

We randomly choose a threshold a from the uniform distribution over the
interval [l/e, 11; here as usual e E 2.71828 denotes the base of the natural
logarithm. If y y 5 a, then we define a rounded decision variable jjj := 0,
and otherwise we define fij := 1. Jobs Jj with jjj = 0 are rejected in the
rounded solution, and we set all their variables Zij = 0. Jobs Jj with jjj = 1
are accepted in the rounded solution; we set all their variables Zij := x g l y y .

Formulations, Relaxations, Approximations, and Gaps

Finally, we define the rounded makespan by

It can be verified that the rounded solution Z i j , fij, and C? constitutes a feasible
solution of (17): all variables Qj are binary. For j with f i j = 0, the variables
Zi j add up to 0. For j with f i . - 1, the variables Z i j add up to xi x$'/yy = 1.

j--

Finally, in (18) the value of C is fixed in order to fulfil the first and the second
family of constraints.

Now let us analyse the quality of this rounded solution. For any fixed value
of a , the rounded variable Zij is at most a factor of l / a above x g . Hence,
by linearity also C? is at most a factor of l / a above CLP. Then the expected
multiplicative increase in the makespan is at most a factor of

In the LP-solution, the contribution of job J j to the total rejection penalty is
(1 - y y) f j . The expected contribution of J j to the rejection penalty in the
rounded solution is

All in all, the expected objective value for the rounded solution is at most a fac-
tor of e/(e - 1) z 1.58 above the optimal objective value of the LP-relaxation.
Hence, our procedure yields a randomised polynomial time approximation al-
gorithm with a worst-case performance guarantee of e/ (e - l) .

How can we turn this randomised algorithm into a deterministic algorithm?
Well, the only critical values for the threshold parameter a are the values y y
with j = 1,. . . , n. All other values of a will yield the same solution as for
one of these critical values. Hence, it is straightforward to derandomise the
algorithm in polynomial time: we compute the n rounded solutions that cor-
respond to these n critical values, and we select the solution with smallest
objective value.

Analysis of the two gaps. Our next goal is to give a worst-case instance
for the above approximation algorithm for R Ipmtn I Rej f C,,. The instance

32 Woeginger

is based on an integer parameter q. There are m = (q + 1)q - qq machines Mj
that are indexed by j = qq + 1, . . . , (q + 1)q. For every machine M j , there are
two corresponding jobs Jj and J,! that have infinite processing requirements
on all other machines Mi with i # j ; this implies that these two jobs either
have to be rejected or have to be processed on Mj . The processing time of job
J j on M j is j - 44, and its rejection penalty is (j - q q) / j . The processing time
of job J,! on M j is qq, and its rejection penalty is q q l j . Note that the overall
processing time of J j and J,! is j , and that their overall penalty is 1.

One possible feasible solution accepts all the jobs J,! and rejects all the jobs
Jj . The resulting makespan is C = qq, and the resulting objective value equals

It can be verified that this in fact is the optimal objective value. Next, assume
that the approximation algorithm starts from the following feasible solution for
the LP-relaxation: for j = qq + 1 , . . . , (q + l) q the two jobs J j and J,! both
get an acceptance value y y = q Q / j . Then on every machine M j , the overall
accepted processing time is (j - q q) y y + qq y p 3 = qQ. The penalty of job Jj
plus the penalty of job J,! equals 1 - y y = (j - q q) / j . Hence, the objective
value of this LP-solution equals the value in (19).

Consider the rounding step for some fixed threshold a. Since the values
yy = q q / j are decreasing in j , there exists some index k such that for j < k
the values y y = q q / j all are rounded up to 1 (and the corresponding jobs are
accepted), whereas for j 2 k + 1 the values yy = q q / j all are rounded down
to 0 (and the corresponding jobs are rejected). Then the makespan becomes k
(the load on machine Mk), the total rejection penalty is (q + 1)q - k, and the
objective value is (q + 1)q. Thus, the objective value in the rounded solution
always equals (q + l) q , and does not depend on a or k.

The ratio between the optimal objective value in (19) and the approximate
objective value of (q + 1)q equals

We estimate the sum in (20) by

Since the integrals on the left- and on the right-hand side both converge to 1
when q goes to infinity, the same holds true for the sum in between. Hence, the

Formulations, Relaxations, Approximations, and Gaps 33

ratio in (20) behaves roughly like ((q + 1)q - qq) / (q + 1)q. For large q, this
ratio tends to (e - l) / e .

Gap 3.1 There exist instances for R I pmtn I Rej + C,, for which the gap
between the optimal makespan and the makespan produced by the rounding
algorithm comes arbitrarily close to e / (e - 1).

Our final goal in this section is to get the matching lower bound of e / (e - 1)
for the integrality gap of the LP-relaxation for R I pmtn I Rej + C,,. We use a
slight modification of the instance constructed above. Again, we use an integer
parameter q, and again there are m = (q + 1)q - qq machines Mj that are
indexed by j = qq + 1 , . . . , (q + l)Q. For every machine Mj, there is one
corresponding job J j . The processing requirements of J j are pj j = j, and
pij = cm for i # j. The rejection penalty is uniformly f j E 1.

Consider a "reasonable" feasible schedule with makespan T : then the jobs
on machines Mj with j 5 T will be accepted, and the jobs on machines Mj
with j > T will be rejected. This yields a total rejection penalty of (q + l) q - T ,
and an optimal objective value of (q+l)q . Next, consider the following feasible
solution for the LP-relaxation: we set $' = qq/ j for j = qq + 1, . . . , (q + l) Q ,
and we set CLP = qq. The objective value of this solution is equal to

Since this LP-value is equal to the value in (19), and since the optimal value
is equal to (q + l) q , the ratio of these two values equals the ratio in (20).
The arguments around (20) show that as q becomes large, this ratio tends to
(e - l) / e .

Gap 3.2 For problem R I pmtn I Rej + C,,, the integrality gap of the LP-
relaxation is e / (e - 1).

The results presented in this section are essentially due to Hoogeveen et
al. (2003). It would be nice to get a polynomial time approximation algorithm
with a worst-case performance guarantee better than e / (e - 1) . Hoogeveen
et al. (2003) also show that problem R I pmtn 1 Rej + C,, is APX-hard; this
implies that unless P = NP, this problem cannot possess a polynomial time
approximation scheme.

4. CONCLUDING REMARKS
We have discussed approximations through relaxations for three scheduling

problems. For all three problems, we have presented a complete worst-case

34 Woeginger

analysis of a polynomial time approximation algorithm. For all three prob-
lems, we gave instances that illustrate the worst-case behaviour of the approxi-
mation algorithm (the worst-case gap), and we gave instances that illustrate the
integrality gap of the linear programming relaxation. For all three problems,
the worst-case gap and the integrality gap coincided. The scheduling literature
contains many other results that fit into this framework.

For 1 Iprec I C wjCj, the problem of minimising the total weighted job
completion time on a single machine under precedence constraints, the
literature contains three different LP-relaxations: one by Potts (1980),
one by Dyer and Wolsey (1990), and one by Chudak and Hochbaum
(1999). Hall et al. (1997) and Chudak and Hochbaum (1999) show that
these LP-relaxations have integrality gaps of at most 2. Chekuri and
Motwani (1999) design instances that yield matching lower bounds of 2.

Chekuri et al. (2001) investigate the preemptive relaxation for
1 I rj I C wjCj, the problem of minimising the total weighted job com-
pletion time on a single machine under job release dates. They show
that the integrality gap of the preemptive relaxation is at most e/(e -
1). Torng and Uthaisombut (1999) complete the analysis by providing
matching lower bound instances.

Kellerer et al. (1996) discuss 1 1 rj I C F', the problem of minimising
the total flow time of the jobs on a single machine under job release
dates. By studying the preemptive relaxation, they derive a polynomial
time approximation algorithm with worst-case performance guarantee
O(&); here n denotes the number of jobs. Up to constant factors, the
analysis is tight. Moreover, Kellerer et al. (1996) exhibit instances for
which the integrality gap of the preemptive relaxation is a(&).

A difficult open problem is to analyse the preemptive relaxation for the open
shop problem 0 I I C,,. In an m-machine open shop, every job Jj consists
of m operations Olj , . . . , Omj with processing times plj, . . . , pmj that have
to have processed on machines MI, . . . , Mm. The processing order of the m
operations Olj , . . . , Omj is not prespecified; it may differ for different jobs,
and it may be decided and fixed by the scheduler. At any moment in time,
at most one operation from any job can be processed. The goal is to min-
imise the makespan. The preemptive version of the open shop is denoted by
0 I pmtn I C,,. Whereas the non-preemptive problem 0 I I C,, is strongly
NP-hard (Williamson et al., 1997), the preemptive version 0 I pmtn I C,, can
be solved in polynomial time (Gonzalez and Sahni, 1976).

A folklore conjecture states that the integrality gap of the preemptive re-
laxation for 0 I I C,, should be at most 312. Settling this conjecture would
mean a major breakthrough in the area. Here is an instance that demonstrates

Formulations, Relaxations, Approximations, and Gaps 35

that the integrality gap is at least 312: consider an open shop with m machines
and n = m + 1 jobs. For j = 1, . . . , m the job Jj consists of the operation
O j j with processing time pj j = m - 1 on machine Mj, and with processing
times 0 on the other m - 1 machines. The job Jm+l has m operations all with
processing time 1. Then the optimal preemptive makespan is m, and the opti-
mal non-preemptive makespan is [m / 2] + m - 1. As m becomes large, the
ratio between non-preemptive and preemptive makespan tends to 312.

Acknowledgments
I thank Martin Skutella for showing me the worst-case instance for preemp-

tive makespan under job rejections.

References
Chekuri, C. and Motwani, R. (1999). Precedence constrained scheduling to minimize sum of

weighted completion times on a single machine. Discrete Applied Mathematics, 98:29-38.
Chekuri, C., Motwani, R., Natarajan, B. and Stein, C. (2001). Approximation techniques for

average completion time scheduling. SIAM Journal on Computing, 31: 146-166.
Chudak, E and Hochbaum, D. S. (1999). A half-integral linear programming relaxation for

scheduling precedence-constrained jobs on a single machine. Operations Research Letters,
25: 199-204.

Dyer, M. E. and Wolsey, L. A. (1990). Formulating the single machine sequencing problem with
release dates as a mixed integer program. Discrete Applied Mathematics, 26:255-270.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability. Freeman, New York.
Gonzalez, T. and Sahni, S. (1976). Open shop scheduling to minimize finish time. Journal of

the ACM, 23:665-679.
Graham, R. L. (1966). Bounds for certain multiprocessing anomalies. Bell System Technical

Journal, 451563-1581.
Graham, R. L. (1969). Bounds on multiprocessor timing anomalies. SIAM Journal on Applied

Mathematics, 17:416-429.
Graham, R. L., Lawler, E. L., Lenstra, J. K. and Rinnooy Kan, A. H. G. (1979). Optimization

and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete
Mathematics, 5287-326.

Hall, L. A., Schulz, A. S., Shmoys, D. B. and Wein, J. (1997). Scheduling to minimize average
completion time: Off-line and on-line approximation algorithms. Mathematics of Operations
Research, 225 13-544.

Hochbaum, D. S. and Shmoys, D. B. (1987). Using dual approximation algorithms for schedul-
ing problems: Theoretical and practical results. Journal of the ACM, 34: 144-162.

Hoogeveen, J. A., Lenstra, J. K. and Veltman, B. (1994). Three, four, five, six, or the complexity
of scheduling with communication delays. Operations Research Letters, 16: 129-137.

Hoogeveen, H., Skutella, M. and Woeginger, G. J. (2003). Preemptive scheduling with rejection.
Mathematical Programming, 94:361-374.

Kellerer, H., Tautenhahn, T. and Woeginger, G. J. (1996). Approximability and nonapproxima-
bility results for minimizing total flow time on a single machine. In Proceedings of the 28th
Annual ACM Symposium on the Theory of Computing (STOC'96), pp. 418-426.

36 Woeginger

Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G. and Shmoys, D. B. (1993). Sequencing and
scheduling: Algorithms and complexity. In Logistics of Production and Inventory, Hand-
books in Operations Research and Management Science 4, S. C. Graves, A. H. G. Rinnooy
Kan and P. H. Zipkin (Eds.), North-Holland, Amsterdam, pp. 445-522.

Lenstra, J. K., Shmoys, D. B. and Tardos, 8. (1990). Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming, 46:259-27 1.

Munier, A. and Konig, J. C. (1997). A heuristic for a scheduling problem with communication
delays. Operations Research, 45: 145-147.

Papadimitriou, C. H. and Yannakakis, M. (1990). Towards an architecture-independent analysis
of parallel algorithms. SIAM Journal on Computing, 19:322-328.

Picouleau, C . (1992). Etude des problkmes d'optimisation dans les systbmes distributs. Thbe,
1'Universitt Paris 6.

Potts, C. N. (1980). An algorithm for the single machine sequencing problem with precedence
constraints. Mathematical Programming Study, 13:78-87.

Torng, E. and Uthaisombut, P. (1999). A tight lower bound for the best-alpha algorithm. Infor-
mation Processing Letters, 71: 17-22.

Veltman, B., Lageweg, B. J. and Lenstra. J. K. (1990). Multiprocessor scheduling with commu-
nication delays. Parallel Computing, 16:173-182.

Williamson, D. P., Hall, L. A., Hoogeveen, J. A., Hurkens, C. A. J., Lenstra, J. K., Sevastianov,
S. V. and Shmoys, D. B. (1997). Short shop schedules. Operations Research, 45:288-294.

Woeginger, G. J. (2000). A comment on scheduling on uniform machines under chain-type
precedence constraints. Operations Research Letters, 26: 107-109.

ORDER SCHEDULING MODELS: AN OVERVIEW

Joseph Y-T. Leung and Haibing Li
Department of Computer Science
New Jersey Institute of Technology
Newark, NJ 07102, USA
{ leung, h127) @njit.edu

Michael Pinedo
Stem School of Business
New York University
New York, NY 10012, USA
mpinedo@stern.nyu.edu

Abstract Order scheduling models can be described as follows: A machine environment
with a number of non-identical machines in parallel can produce a fixed variety
of different products. Any one machine can process a given set of the different
product types. If it can process only one type of product it is referred to as a
dedicated machine, otherwise it is referred to as a flexible machine. A flexible
machine may be subject to a setup when it switches from one product type to
another product type. Each product type has certain specific processing require-
ments on the various machines. There are n customers, each one sending in one
order. An order requests specific quantities of the various different products and
has a release date as well as a due date (committed shipping date). After the
processing of all the different products for an order has been completed, the or-
der can be shipped to the customer. This paper is organised as follows. We first
introduce a notation for this class of models. We then focus on various different
conditions on the machine environment as well as on several objective functions,
including the total weighted completion time, the maximum lateness, the num-
ber of orders shipped late, and so on. We present polynomial time algorithms
for the easier problems, complexity proofs for NP-hard problems and worst case
performance analyses as well as empirical analyses of heuristics.

Keywords: order scheduling, models, complexity results, heuristics.

38 Leung, Li and Pinedo

1. INTRODUCTION
We consider a facility with m different machines in parallel. There are

k different product types that can be produced on these m machines. Each
product type 1 = 1,2, . . . , k can be produced on a subset of the machines,
namely Ml C {1,2, . . . , m). To produce one unit of type 1 on a machine
i E Ml requires a processing time tli. When a machine i E {1,2, . . . , m)
produces a batch of type 1 products, a setup time of sli is required before the
batch can be started. Assume there are n orders from n different clients. Order
j requests a quantity qlj 2 0 of product type 1, j = 1,. . . , n, 1 = 1,. . . , k.
For order j , the processing time required to produce items of type 1 on machine
i E Ml is plij = qlj.tli. Order j may have a release date rj , a due date (delivery
date) dj , and a positive weight wj. The completion time of order j , denoted by
C j , is the time when the last product for order j has been completed on one of
the machines. Let Cl j denote the completion time of the type I production for
order j on one of the machines. Clearly,

C j = max{Clj)
1

The idea of measuring the overall completion time of an entire set of jobs
(i.e. all the jobs required by one order) rather than the individual completion
times of each part of any given order is somewhat new. There are several rea-
sons for considering the orders rather than the individual jobs within the orders.
First of all, shipping partial orders inevitably causes additional shipping cost.
Secondly, it also causes extra management effort. Finally, some customers
may require suppliers to ship complete orders. Therefore, suppliers have to
wait until all products for an order are ready.

With regard to the completion times C l , . . . , C, of the n orders several
objectives are of interest, namely, the makespan C,,, the maximum late-
ness L,,, the total weighted completion time x wjCj of orders, the total
weighted tardiness x wjTj of orders, and the total weighted number of late
orders x wj Uj .

Clearly, the class of models described above is very rich. Several special
cases are of interest, namely:

(i) The fully dedicated case: there are m machines and m product types;
each machine can produce one and only one type.

(ii) Thefully flexible case: the m machines are identical and each machine
is capable of producing all k products.

(iii) The arbitrary case: there are no restrictions on the subsets ML.

The classes of models have a large number of practical applications. Any
Make-To-Order environment at a production facility with a number of flexible
resources in parallel gives rise to models of the type described above.

Order Scheduling Models: An Overview 39

Julien and Magazine (1990) presented two interesting applications of the
models described above. The first example involves a manufacturer of com-
puter peripherals such as terminals, keyboards and disk drives. Small busi-
nesses that purchase new computer systems order different quantities of each
of these peripherals, and often require their entire order to be shipped together.
From the manufacturer's point of view, it is advantageous to aggregate the de-
mand of each peripheral and produce large batches in order to minimise the
number of setups.

A second example that illustrates the models described is a pharmaceutical
company that can produce different types of pills. Each type of pill needs to
be bottled separately. However, for a given pill type, it is often necessary to
have different bottle sizes. The pills and the bottles may be produced based
on forecasts. However, the bottling and packaging stage is order driven. The
customers, which may be drugstores or hospitals, order certain quantities of
each product type (a product type being a bottle of a given size of a given pill
type). The production setups are the switch-overs in the bottling facility.

Yang (1998) presented another example in the form of a car repair shop.
Suppose each car has several broken parts that need to be fixed. Each broken
part can only be fixed by a certain set of mechanics in the shop. Several me-
chanics can work on different parts of the same car at the same time. The car
will leave the shop when every broken part is fixed.

In manufacturing systems that consist of two stages, different types of com-
ponents (or subassemblies) are produced first in a pre-assembly stage, and then
put together into final products (jobs) in an assembly stage. The pre-assembly
stage consists of parallel machines (called feeding machines), each of which
produces its own subset of components. Each assembly operation cannot start
its processing until all the necessary components are fed in. As shown in sev-
eral papers (Duenyas, 1994; Lee et al., 1993; Potts et al., 1995), there are many
examples of such two-stage assembly systems. An interesting example arises
in parallel computing systems, in which several programs (or tasks) are first
processed independently on certain processors, and then gathered at a main
processor for final data-processing. The main processor can only start its pro-
cessing after all the programs have fed in their results. As noted by Sung and
Yoon (1998), our models only deal with the pre-assembly stage in such two-
stage systems.

The general problem has not received much attention in the literature. Some
of the concepts underlying the general problem were introduced by Julien and
Magazine (1990), who were probably the first to identify this type of problem
as order scheduling. The problem was studied in more detail in a dissertation
by Yang (1998).

Various special cases of the general problem have been considered in the
literature. However, most of these special cases are significantly less compli-

40 Leung, Li and Pinedo

cated than the general problem. An important special case is the case in which
each order requests just a single product type. If, in addition, the machines are
fully flexible and no product type requires any setup, then the problem imme-
diately reduces to the standard parallel machine environment which is usually
referred to as P m I P I y in the literature. If the machines are not fully flex-
ible and there is no setup time for any product type, the problem reduces to
a more general parallel machine environment that is often referred to as unre-
lated machines in parallel (R m (P I y). There is a very rich literature on these
parallel machine scheduling problems. For an overview, see Brucker (1995)
and Pinedo (2002).

We propose the following notation for our class of scheduling problems.
Our notation is an extension of the cu I 0 I y notation introduced by Graham
et al. (1979). In what follows, we always assume that there are m machines in
parallel and n orders that come in from n different customers. The fully dedi-
cated case of this parallel machine environment is denoted by PDm, the fully
flexible case by PFm, and the arbitrary case by PAm; when the m is omitted
we assume that the number of machines is arbitrary. In the ,O field we include
nk to refer to the fact that we have k different product types; the absence of
the k indicates that the number of different product types may be arbitrary. In
addition, we include in the P field an s when the setup times for all product
types are identical, an sl when the setup times for the various product types are
different but identical for each machine, and an sli when the setup times are
dependent on both product types and machines. The absence of sli, sl, and s
indicates that there is no setup time for any product type. Note that setup times
do not make sense for the fully dedicated case. In addition, if all machines are
identical, then sli = sl for each machine i = 1,2, . . . , m. As an example of the
notation, PF6 I prmt, s, n3 1 L,,, refers to the fully flexible case with six
machines in parallel and three different product types. Each product type has
the same setup time s, order j has a due date d j , and preemptions are allowed.
The objective is the minimisation of maximum lateness.

In the next section, we consider the fully dedicated case. The fully flexible
case is considered in Section 3. Finally, we draw some conclusions in the last
section.

2. THE FULLY DEDICATED CASE
As mentioned before, in the fully dedicated case, there are m machines and

the number of product types is equal to m ; each machine can produce only one
type. Since machine i is the only machine that can produce type i and type i
is the only type that can be produced on machine i, the subscript i refers to a
machine as well as to a product type. We note that Wagneur and Sriskandarajah
(1993) referred to this model as "open shops with job overlaps", while Ng et

Order Scheduling Models: An Overview 41

al. (2003) called this model "concurrent open shops". This case is considerably
easier than the other cases because there is no freedom in the assignment of
jobs to machines. Each machine can start processing at time 0 and keeps on
producing as long as there is a demand. The main issue here is the assignment
of finished products to customers. For dedicated machines, the setup times do
not play a role in scheduling, and can therefore be dropped from consideration.

For unweighted objectives, the following structural properties can be shown
easily.

Lemma 1 (i) The makespan C,, is independent of the schedule, provided
that the machines are always kept busy whenever there are orders avail-
able for processing (i.e. provided unforced idleness is not allowed).

(ii) I f all rj = 0 and fj(Cj) is increasing in Cj for all j, then there exists
an optimal schedule for the objective function f,, as well as an opti-
mal schedule for the objective function C f j (C j) in which all machines
process the orders in the same sequence.

(iii) Iffor some machine i there exists a machine h such that pij 5 phj for
j = 1, . . . , n, then machine i does not play any role in determining the
optimal schedule and may be ignored.

Some remarks with regard to these properties are in order. The second prop-
erty does not hold for the more general problem in which the function f j (Cj) is
not monotonic (e.g., problems that are subject to earliness and tardiness penal-
ties). The third property is useful for reducing the size of an instance of a
problem.

Consider the problem PD I P (C f j (Cj) . Since this problem is strongly
NP-hard, it is advantageous to develop dominance conditions or elimination
criteria. We can prove the following order dominance result.

Lemma 2 I f in the problem PD 1 1 C fj(Cj) there are two orders j and k
such that pij 5 pik for each i = 1,2, . . . , m, and

then there exists an optimal schedule in which order j precedes order k.

Let us consider the total weighted completion time objective, C wjCj.
Sung and Yoon (1998) showed the following result.

Theorem 3 The problem PD2 I I C wjCj is strongly NP-hard.

Wagneur and Sriskandarajah (1993) considered the C Cj objective. They
presented a proof claiming that PD2 I I C Cj is strongly NP-hard. Unfortu-
nately, as pointed out by Leung et al. (2005), their proof is not correct. The

42 Leung, Li and Pinedo

complexity status of this two machine problem remains open so far. However,
Leung et al. (2002a) obtained the following result for three machines.

Theorem 4 The problem PD3 I I x Cj is NP-hard in the strong sense.

Since the problem to minimise C Cj is strongly NP-Hard with three or more
machines, it makes sense to develop and analyse heuristics for this problem.
A number of researchers have focused their attention on the development of
heuristics and the following heuristics have been proposed for PD I I C Cj .

Definition 1 The Shortest Total Processing Time first (STPT) heuristic gen-
erates a sequence of orders one at a time, each time selecting as the next order
the one with the smallest total amount of processing over all m machines.

Definition 2 The Shortest Maximum Processing Time first (SMPT) heuris-
tic generates a sequence of orders one at a time, each time selecting as the next
order the one with the smallest maximum amount of processing on any one of
the m machines.

Definition 3 The Smallest Maximum Completion Time first (SMCT) heuris-
tic first sequences the orders in nondecreasing order of pij on each machine
i = 1,2, . . . , m, then computes the completion time for order j as C; =

max& {Cij) , and finally schedules the orders in nondecreasing order of c;.
Definition 4 The Shortest Processing Time first on the machine with the

largest current load (SPTL) is a heuristic that generates a sequence of orders
one at a time, each time selecting as the next order the one with the smallest
processing time on the machine that currently has the largest load.

Definition 5 The Earliest Completion Time first (ECT) heuristic generates
a sequence of orders one at a time; each time it selects as the next order the
one that would be completed the earliest.

The STPT and the SMPT heuristics have been studied by Sung and Yoon
(1998). They focused on two machines. Wang and Cheng (2003) studied the m
machine case. Besides the STPT and the SMPT heuristics, they also analysed
the SMCT heuristic. The last two heuristics, i.e. SPTL and ECT, were proposed
by Leung et al. (2002a).

It turns out that all these heuristics may perform quite poorly in their worst
case. For example, Wang and Cheng (2003) obtained the following worst-case
bound.

Theorem 5 For the problem PDm I I x Cj,

C c m < m
C Cj (OPT) -

Order Scheduling Models: An Overview

where H E {STPT, SMPT, SMCT).

Leung et al. (2002a) showed that SPTL is unbounded. They also obtained
the following result.

Theorem 6 For the problem PDm I I Cj,

It is not clear whether the worst-case bound is tight for these heuristics. For
two machines, Leung et al. (2002a) presented an instance for which the ratio
is 1.618 for the STPT heuristic. They also gave an instance for which the ratio
is f i for both ECT and SMCT.

Leung et al. (2002a) performed an extensive empirical analysis showing
that among the five heuristics described above, the ECT rule performs on the
average clearly the best.

For minimising C wjCj, the performance bounds of the weighted version
of STPT, SMPT, SMCT remain unchanged (Wang and Cheng, 2003). Leung
et al. (2003a) also modified the ECT and SPTL heuristics to take the weights
of the orders into account. The new heuristics are referred to as the WECT
and WSPL rules. In detail, the WECT heuristic selects the next order j* which
satisfies

Cj - Ck
j* = arg min -

jsn { wj }
where Ck is the completion time of the order that was scheduled immediately
before order j * . A postprocessing procedure interchanges order j* with order
Ic in case Cj* 5 Ck in order to obtain a better (at least no worse) solution. Note
that the case Cj* 5 Ck occurs only when ppj* = 0, where i* is the machine
on which order k has, over all machines, the largest finish time. Assume that
after the swap the order immediately before order j* is order I . If Cj* 5 Cl,
we proceed with an interchange of order j* with order 1. We continue with
this postprocessing until Cj* is larger than the completion time of the order
that immediately precedes it. Note that after each swap, the finish time of j*
either decreases or remains unchanged, while the finish time of each order that
is swapped with j* remains unchanged. This is due to the fact that order j*
has zero processing time on the machine on which the swapped order has its
largest finish time. Thus, the postprocessing, if any, produces a solution that is
no worse than the one without postprocessing. Note that following the WECT
heuristic, there may at times be ties. Since ties may be broken arbitrarily, the
WECT heuristic may lead to various different schedules. For the performance
of WECT, we can show the following result.

Leung, Li and Pinedo

Theorem 7 For the problem P D m I I C wjCj,

The proof of the above theorem turns out to be much more complicated
than that of Theorem 6. With additional constraints of processing times for
each order, we can show that the performance bounds of the heuristics can be
much better (close to 2 or 3). For details, see Leung et al. (2003a).

We also note that Wang and Cheng (2003) proposed an approximation al-
gorithm which has a worst-case ratio of 1613. The algorithm is based on a
linear programming relaxation which is formulated on the time intervals geo-
metrically divided over the time horizon. Leung et al. (2003a) also presented
a 2-approximation algorithm which is based on a linear programming formu-
lation on the completion time of the orders. However, the implementation of
this algorithm is quite complicated.

Leung et al. (2003a) did an extensive experimental analysis of the five sim-
ple heuristics listed above as well as of the 1613-approximation algorithm.
Experimental results show that among the five simple heuristics, WECT is the
best. For instances with certain characteristics, the WECT rule performs even
better than the 1613-approximation algorithm.

The NP-hardness of problem P D 1 I n1 I C Tj is a direct consequence of
the NP-hardness of 1 1) C Tj, see Du and Leung (1990).

The maximum lateness L,, can be minimised by the Earliest Due Date
rule; i.e., the next finished product is assigned to the customer with the earliest
due date. Through an adjacent pairwise interchange argument the following
theorem can be shown.

Theorem 8 The Earliest Due Date rule solves the problem P D 1 1 L,,,
and the Preemptive Earliest Due Date rule solves the problem P D I prmt, rj I

In a more general setting, the processing of the orders are subject to prece-
dence constraints and the objective function is the more general f,,. Lawler
(1973) developed an algorithm based on (backwards) dynamic programming
that solves the single machine version of this problem in polynomial time.
Lawler's algorithm can be extended in such a way that it generates optimal
solutions for the more general P D machine environment.

Theorem 9 The problem P D I prec I f,, can be solved in 0(n2) time.

The problem P D 1 I rj, n l I L,, is NP-hard, which is a direct conse-
quence of the NP-hardness of 1 I rj I L,,.

The total number of late jobs objective, C wjUj, is also of interest. When
wj = 1, Wagneur and Sriskandarajah (1993) showed the following result.

Order Scheduling Models: An Overview 45

Theorem 10 The problem P D 2 I I x Uj is NP-hard in the ordinary sense.

In fact, Cheng and Wang (1999) showed that there exists a pseudo-poly-
nomial time algorithm for every fixed m 1 2. When the number of machines
is arbitrary, Ng et al. (2003) showed the following result.

Theorem 11 The problem P D I I x Uj is NP-hard in the strong sense. The
NP-hardness in the strong sense remains in effect even for the very restricted
case P D Ipij E {O,l),dj = d I XUj .

For the problem P D (dj = d I C Uj, Leung et al. (2002b) showed that the
problem reduces to the Multiset Multicover (MSMC) problem (Rajagopalan
and Vazirani, 1998). Thus, any algorithm solving the MSMC problem also
solves the problem P D I dj = d (C U j . Leung, Li and Pinedo (2002b)
adapted Rajagopalan and Vazirani's greedy algorithm for MSMC in such a
way that it is also applicable to the P D (dj = d (C Uj problem. In the
next theorem this modified version of the Rajagopalan and Vazirani algorithm
is denoted by Hg. Leung et al. (2002b) obtained the following result for the
H, algorithm.

Theorem 12 For P D I dj = d I C Uj, ifall pij and d are integers, then

where = GCD(pil,pia,. . . ,pin,d) for i = 1,2, . . . ,m, and N(k) -
~ f = ~ (l / i) is the harmonic series. In addition, the bound is tight.

It should be noted that Rajagopalan and Vazirani's greedy algorithm was
designed for the weighted MSMC problem. If in our problem each order has
a weight wj, then it is also easy to adapt the greedy algorithm to solve P D I
dj = d I C wj Uj. The approximation ratio of the revised greedy algorithm for
PD I dj = d I C wjUj remains unchanged. Another observation for P D I
d j = d I C wjUj is that it is in fact the dual problem of the multidimensional
0-1 knapsack problem (MKP) with an arbitrary number of dimensions. Thus,
the resolution methods for MKP also shed light on solving P D 1 dj = d I
C wjUj. For a very recent survey for the MKP problem, the reader is referred
to Frkville (2004).

For the restricted case P D (p j E (0, I}, dj = d I C Uj, Ng et al. (2003)
proposed a (d + 1)-approximation algorithm based on a linear programming
relaxation. However, if we apply the greedy algorithm for P D I dj = d I
C Uj to solve P D (pij E {0,1}, dj = d I C Uj, the approximation ratio
is at most N(m). Thus, if m < ed, the approximation ratio of the greedy
algorithm would be better than that of the LP-based heuristic. In fact, by our

46 Leung, Li and Pinedo

reduction, the P D I pij = 0 or 1, dj = d I C Uj problem turns out to be
a set multicover (SMC) problem, since the elements in each constructed set
are unique but each element requires to be covered multiple times. Thus, any
approximation algorithm for the SMC problem can be applied to solve P D I
pij = 0 or 1, dj = d I C Uj with the approximation ratio being preserved.
Hochbaum (1996) presented several LP-based p-approximation algorithms for
weighted SMC, where

Clearly, these p-approximation algorithms can be applied to solve P D I pij =
0 or 1, d j = d I C wjUj. Since X(p) < p for p 2 2, it is easy to see that the
approximation ratio of our greedy algorithm is still better.

Heuristics for P D 1 1 C Uj can be designed based on the ideas of the
Hodgson-Moore (1968) algorithm which solves the single machine version
of this problem, i.e. P D 1 I n l I C Uj, to optimality. The Hodgson-Moore
algorithm for the single machine version generates a schedule by inserting the
jobs in a forward manner one at a time according to the EDD rule. Whenever
a job is completed after its due date, the procedure selects among the jobs that
are currently still part of the schedule the longest one and takes it out of the
schedule. Once a job has been taken out of the schedule, it never can get back
in. Using the main idea behind the Hodgson-Moore algorithm the following
heuristic can be designed for P D 1 I C Uj. The orders are put in the schedule
S in a forward manner one at a time; whenever an order j' that is put into the
schedule is completed after its due date, one of the orders that are currently
part of the schedule has to be taken out.

The selection of the order that has to be taken out can be done based on a
priority ranking system. In order to make sure that not more than one order
has to be deleted from the schedule, it pays to keep a set of candidate orders Sc
with the property that the removal of any one order in S, from S ensures that
the rest of the orders in S are completed before their due dates.

First of all, the tardy order j' itself is already a candidate order, since all the
orders that precede j' in S can be completed before their due dates. For each
order j E S, j # j ', if its removal from S enables order j' to be completed
in time, then j becomes a candidate in S,, otherwise, j will not become a
candidate. It is clear that 1 < IS,I 5 IS(.

Secondly, for each candidate order j E S,, a weighted sum of all its pro-
cessing times pij on the m machines, denoted by W(SC)j, has to be computed.
The weight of machine i, denoted by wi, is a function of the current load on
machine i, denoted by CLi, and the future workload of machine i due to all
the orders that still have to be considered, denoted by FLi. A typical weight

Order Scheduling Models: An Overview

function can be
wi = wlCLi + w2FLi

where wl and w2 are the weights for CLi and FLi, respectively, for any i, 1 _<
i 5 m. With wi, the weighted sum of each candidate order j E S, is computed
as

Finally, the candidate order to be taken out is the one with the maximum
weighted sum, i.e. order j* such that

Leung et al. (2002b) have done an extensive empirical analysis of the heuris-
tic above. They also proposed an exact algorithm that uses constraint propaga-
tion, backtracking, and bounding techniques. Their result shows that the exact
algorithm can solve instances of moderate size in a reasonable running time;
and the results of the above heuristic are quite close to those of the exact algo-
rithm. Recently, Leung et al. (2005) generalised the heuristic above so that it
is applicable to the weighted case.

3. THE FULLY FLEXIBLE CASE
In the fully flexible case, the m machines are identical and each machine

is capable of producing all k products. Two sets of problems are of interest,
namely

(i) the fully flexible cases without setup times,

(ii) the fully flexible cases with arbitrary setup times.

Clearly, the fully flexible case is more difficult than the fully dedicated case,
the reason being that we have to take care of two issues for this case: besides
sequencing the orders, we need also to assign the product types to the ma-
chines. Recall that for the fully dedicated case, we need only to consider the
issue of sequencing the orders.

3.1 The Fully Flexible Case Without Setup Times
The problem PF1 I nk,P I y is identical to the problem 1 I P I y. In the

following we will consider m 2 2 only. As we shall see, there are similarities
as well as differences between the case P F m I nk, P I y and the standard
parallel machine environment P m I /3 I y.

48 Leung, Li and Pinedo

For the objectives of C,,, L,, and C wjTj, the complexities follow
closely those of the standard parallel machine scheduling environment. Thus,

PF 1 prmt, nk 1 C,, and PF 1 prmt, nk 1 L,,
are solvable in polynomial time, whereas

are NP-hard (since PF1 1 nl I C Tj is NP-hard).
On the other hand, the complexities are different for the C Cj objective. It

is well known that P 1 1 Cj and P I prmt I C Cj can be solved by the
Shortest Processing Time first (SPT) rule (Pinedo, 2002). The following result
was obtained by Blocher and Chhajed (1996).

Theorem 13 The problem PF2 I nk I C Cj is NP-hard in the ordinary
sense.

When k = 2, Yang (1998) showed that the problem remains NP-hard.

Theorem 14 The problem PF2 1 n2 1 Cj is NP-hard in the ordinary
sense.

But it is not known whether or not there exists a pseudo-polynomial time
algorithm for the above ordinary NP-hard problem. When the number of ma-
chines is arbitrary, Blocher and Chhajed (1996) showed the following result.

Theorem 15 The problem PF I nk I C Cj is NP-hard in the strong sense.

Consider now the preemptive version of this same problem. One can think
of two different sets of assumptions for a preemptive version of this problem.

Under the first set of assumptions, the processing of a particular product
type for a given order may be shared by multiple machines and the various
machines are allowed to do this processing simultaneously. It is easy to show
that the class of problems in this case, i.e. PF I prmt, I y is identical to the
class of problems 1 I prmt, P I y. This equivalence implies that this particular
preemptive version is very easy.

Under the second set of assumptions for a preemptive version of this prob-
lem, any product for any given order can be processed partly on one machine
and partly on an other. However, now we assume that if a product type for a
given order is done on more than one machine, then these different process-
ing times are not allowed to overlap. Leung et al. (2002~) showed that this
particular preemptive version is hard.

Order Scheduling Models: An Overview 49

Theorem 16 The problem PF2 I prmt, n2 I x Cj is NP-hard in the ordi-
nary sense.

It is possible to design for PF I nk I x Cj heuristics that have two phases.
The first phase determines the sequence of the orders, and the second phase
assigns the different products of an order to the machines. Based on these
ideas, Blocher and Chhajed (1996) developed two classes of heuristics.

The first class of heuristics can be referred to as the static two phase heuris-
tics. In these two phase heuristics, the orders are sequenced first, and then
the different products for each order are assigned to the machines. Rules for
sequencing the orders include:

The smallest average processing time first (SAPT) rule sequences the
orders in increasing order of c:=, pU/m.

The smallest maximum completion timefirst (SMCT) rule sequences the
(j 1 di 1 orders in increasing order of CLPT, j = 1,2,. . . , n, where CLPT is

the makespan of the schedule that is obtained by scheduling the differ-
ent product types of order j on the m parallel machines according to
the longest processing time first (LFT) rule, assuming each machine is
available from time zero on.

After the sequence of orders is determined by one of the above rules, the
product types of each order can be assigned to machines following one of the
two assignment rules below:

The Longest Processing Timefirst rule (LFT) assigns in each iteration an
unassigned product type with the longest processing time to a machine
with the smallest workload, until all product types are scheduled.

The Bin Packing rule (BIN) starts by determining the completion time of
an order using the LPT assignment rule above (just as a trial, not being
the real assignment). This completion time is used as a target completion
time (bin size). In each iteration, the BIN rule assigns an unassigned
product type with the longest processing time to one of the machines
with the largest workload. If the workload of the machine exceeds the
target completion time after the assignment, then undo this assignment
and try the assignment on the machine with the second largest workload.
This procedure is repeated until the product type can be assigned to a
machine without exceeding the target completion time. If assigning the
product type to the machine with the smallest workload still exceeds
the target completion time, then assign it to this machine, and reset the
target completion time to the completion time of the product type on this
machine.

50 Leung, Li and Pinedo

Combinations of the sequencing rules with the assignment rules lead to four
different heuristics: namely, SAPT-LPT, SAPT-BIN, SMCT-LPT, and SMCT-
BIN.

The second class of heuristics may be referred to as the dynamic two-phase
heuristics. In these heuristics, the sequence of orders is not fixed prior to the as-
signment of product types to machines, i.e., the sequence is determined dynarn-
ically. The heuristics still use the LPT rule or the BIN rule for the assignment.
However, to determine the next order to be sequenced, a greedy approach is
applied to make a trial assignment of the product types of all remaining orders
by using either the LPT or the BIN rule, and the order that gives the small-
est completion time is selected as the next order in the sequence. These two
heuristics may be referred to as Greedy-LPT and Greedy-BIN.

Blocher and Chhajed (1996) did not obtain performance bounds for these
heuristics. However, they did an experimental analysis and found that the re-
sults obtained with the heuristics are very close to the lower bound they devel-
oped. They also found that not one of the heuristics consistently dominates any
one of the others. It turns out that these heuristics do have certain performance
bounds. For details, the reader is referred to Leung et al. (2003b).

3.2 The Fully Flexible Case With Setup Times
The scheduling problems become considerably harder with arbitrary setup

times, even for a single machine. Leung et al. (2003b) considered P F 1 1 sl I
L,, and P F 1 I sl I C U j and proved the following theorem.

Theorem 17 Theproblems PF1 1 sl I L,, and P F 1 I sl I Uj are both
NP-hard in the ordinary sense.

This result is rather surprising, since 1 1) L,, can be solved by the Earliest
Due Date rule and 1 I I C U j can be solved by the Hodgson-Moore algorithm.

Minimising C,, on one machine is solvable in polynomial time. All we
need to do is to batch all requests of the same product type together and se-
quence the product types in an arbitrary order. In this way, each product type
will incur its setup time at most once and C,, will be minimised. Unfortu-
nately, Leung et al. (2003b) showed that we lose polynomiality when we have
two or more machines.

Theorem 18 The problems PF2 I sl I C,, and P F 2 I prmt, sl I C,,
are both NP-hard in the ordinary sense.

For the objective of minimising the total completion time, some work has
been done recently for the single machine case. Ng et al. (2002) showed the
following result.

Order Scheduling Models: An Overview 5 1

Theorem 19 The problem PF1 I s, nk,plj E {O,l) I C Cj is strongly
NP-hard.

Interestingly, they mentioned that the complexity of PF1 I sl,rk,plj >
0 I C Cj remains an open problem. If there is a requirement for all the
operations of any given product type to be scheduled contiguously (i.e. the
operations for each product type must be scheduled in one batch), then the
process is said to follow the group technology (GT) approach (see Gerodimos
et al., 1999; Ng et al., 2002). While Gerodimos et al. (1999) showed that
PF1 I sl, nk, GT, plj > 0 I C Cj is polynomially solvable, Ng et al. (2002)
obtained the following complexity result.

Theorem 20 The problem PF1 I s, nk, GT, plj E {0,1) I C Cj is strongly
NP-hard.

For two machines, we can derive the following result from Theorem 16.

Theorem 21 The problem P F 2 I prmt, s, nk I C Cj is NP-hard in the
ordinary sense.

Consider now the case in which the orders have different release dates. Le-
ung et al. (2003b) showed that no online algorithm (i.e. algorithms that operate
without any knowledge of future order arrivals) can do as well as an optimal
offline algorithm.

Theorem 22 There is no optimal online algorithm for PF1 I rj , s, nk I
C,, and PF1 I prmt, rj, s, nk I C,,.

4. CONCLUDING REMARKS
Order scheduling models have many real world applications. It is a rela-

tively new idea to optimise the objective functions of the completion times of
orders rather than individual completion time of the jobs included in the orders.
Some work has been done in the past for special cases. Our goal has been to
classify the previous work in a single framework based on the characteristics
of machine environment and objectives. While the complexity of some of the
problems are known, many remain open. It will be interesting to settle these is-
sues in the future. Developing heuristics with provably good worst case bounds
andlor good empirical performance is also a worthwhile direction to pursue.

References
Blocher, J. and Chhajed, D. (1996) The customer order lead-time problem on parallel machines.

Naval Research Logistics, 43:629-654.
Brucker, P. (1995) Scheduling Algorithms. Springer, Berlin.

52 Leung, Li and Pinedo

Cheng, T. and Wang, G. (1999) Customer order scheduling on multiple facilities. Technical
Report 11198-9, Faculty of Business and Information Systems, The Hong Kong Polytechnic
University.

Du, J. and Leung, J. Y.-T. (1990) Minimizing total tardiness on one machine is NP-hard. Math-
ematics of Operations Research, 15:483-495.

Duenyas, I. (1994) Estimating the throughput of acyclic assembly system. International Journal
of Production Research, 32:403-1410.

FrCville, A. (2004) The multidimensional 0-1 knapsack problem: An overview. European Jour-
nal of Operational Research, 155: 1-21.

Gerodimos, A., Potts, C., and Tautenhahn, T. (1999) Scheduling multi-operation jobs on a single
machine. Annals of Operations Research, 92:87-105.

Graham, R., Lawler, E., Lenstra, J., and Rinnooy Kan, A. (1979) Optimization and approxima-
tion in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics,
5:287-326.

Hochbaum, D. (1996) Approximating covering and packing problems: set cover, vertex cover,
independent set, and related problems. In Approximation Algorithms for NP-Hard Problems,
D. Hochbaum (Ed.), PWS Publishing Company, Boston, MA, pp. 94-143.

Julien, E and Magazine, M. (1990) Scheduling customer orders-an alternative production
scheduling approach. Journal of Manufacturing and Operations Management, 3: 177-199.

Lawler, E. (1973) Optimal sequencing of a single machine subject to precedence constraints.
Management Science, 19544-546.

Lee, C., Cheng, T., and Lin, B. (1993) Minimizing the makespan in the 3-machine assembly-
type flowshop scheduling problem. Management Science, 39:616-625.

Leung, J. Y.-T., Li, H. and Pinedo, M. (2002a) Order scheduling in an environment with dedi-
cated resources in parallel. Journal of Scheduling, accepted for publication.

Leung, J. Y.-T., Li, H., and Pinedo, M. (2002b) Scheduling orders for multiple product types
with due date related objectives. European Journal of Operational Research. Accepted for
publication.

Leung, J. Y.-T., Lee, C. Y., Young, G. H. and Ng, C. W. (2002~) Minimizing total flow time in
generalized task systems. Submitted.

Leung, J. Y.-T., Li, H., Pinedo, M. and Sriskandarajah, C. (2005) Open shops with jobs overlap-
revisited. European Journal of Operational Research. Accepted for publication.

Leung, J. Y.-T., Li, H., and Pinedo, M. (2003b) Order scheduling in a flexible environment with
parallel resources. Working Paper.

Leung, J. Y.-T., Li, H., and Pinedo, M. (2003~) Scheduling multiple product types with weighted
objectives. Working Paper.

Leung, J. Y.-T., Li, H., and Pinedo, M. (2003a) Scheduling orders for multiple product types to
minimize total weighted completion time. Working Paper.

Moore, J. (1968) An n job, one machine sequencing algorithm for minimizing the number of
late jobs. Management Science, 15: 102-109.

Ng, C., Cheng, T., and Yuan, J. (2002) Strong NP-hardness of the single machine multi-operation
jobs total completion time scheduling problem. Information Processing Letters, 82: 187-191.

Ng, C., Cheng, T., and Yuan, J. (2003) Concurrent open shop scheduling to minimize the
weighted number of tardy jobs. Journal of Scheduling, 6:405-412.

Pinedo, M. (2002) Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Englewood
Cliffs, NJ.

Order Scheduling Models: An Overview 53

Potts, C., Sevast'janov, S., Strusevich, V., Wassenhove, L., and Zwaneveld, C. (1995) The two-
stage assembly scheduling problem: complexity and approximation. Operations Research,
43:346-355.

Rajagopalan, S. and Vazirani, V. (1998) Primal-dual rnc approximation algorithms for set cover
and covering integer programs. SIAM Journal on Computing, 28(2):525-540.

Sung, C. and Yoon, S. (1998) Minimizing total weighted completion time at a pre-assembly
stage composed of two feeding machines. International Journal of Production Economics,
54247-255.

Wagneur, E. and Sriskandarajah, C. (1993) Open shops with jobs overlap. European Journal of
Operational Research, 71:366-378.

Wang, G. and Cheng, T. (2003) Customer order scheduling to minimize total weighted comple-
tion time. In Proceedings of the 1st Multidisciplinary Conference on Scheduling Theory and
Applications, pp. 409-416.

Yang, J. (1998) Scheduling with batch objectives. Ph.D. Thesis, Industrial and Systems Engi-
neering Graduate Program, The Ohio State University, Columbus, OH.

Multi-criteria Scheduling

SCHEDULING IN SOFTWARE DEVELOPMENT
USING MULTIOB JECTIVE EVOLUTIONARY
ALGORITHMS

Thomas Hanne and Stefan Nickel
Fraunhofer Institute for Industrial Mathematics (ITWM)
Department of Optimisation
Gottlieb-Daimler-Str: 49
67663 Kaiserslautern
Germany
{ hanne, nickel) Qitwm.fhg.de

Abstract We consider the problem of planning inspections and other tasks within a soft-
ware development (SD) project with respect to the objectives quality (no. of
defects), project duration, and costs. The considered model of SD processes
comprises the phases of coding, inspection, test, and rework and includes as- - -
signing tasks to persons and generating a project schedule. Based on this model
we discuss a multiobjective optimisation problem. For solving the problem (i.e.,
finding an approximation of the efficient set) we develop a multiobjective evolu-
tionary algorithm. Details of the algorithm are discussed as well as results of its
application to sample problems.

Keywords: multiple objective programming, project management and scheduling, software
development, evolutionary algorithms, efficient set.

1. INTRODUCTION
Today, the software industry is facing increasing requirements for the qual-

ity of its products. At the same time, controlling the costs and keeping the
deadlines of software development (SD) projects have become increasingly
important issues. Up to now there have been few formal approaches in practi-
cal use for supporting project managers, e.g., by the simulation and optimisa-
tion of SD processes, presumably because of uncertainties in these processes
and complexities in the causal relationships. Within the last couple of years,
simulation models have been developed for improving the understanding and
planning of SD processes. Mostly, these models (for a survey see Kellner et al.,
1999) are based on a system dynamics approach, which is particularly useful

5 8 Hanne and Nickel

for modelling feedback loops on a macro-level but hardly supports a detailed
representation of the considered system. For that purpose, a discrete-event
simulation approach is better suited and allows for an individual representa-
tion of objects such as persons and items produced in an SD process (design
documents, source code modules, etc).

Within two larger research projects, we developed a discrete-event simula-
tion model for supporting project managers in the software industry (Neu et
al., 2002; Neu et al., 2003; Miinch et al., 2002). It is planned to use that model
either as a direct decision support tool for software project managers or within
the context of consulting. Training applications, e.g. for students in computer
science, are also envisioned. In our model, the assignment of tasks to persons
(e.g., items to be coded, items to be inspected) is done arbitrarily, thus on a
first-come-first-served (FCFS) basis. This means that items are treated in a
given arbitrary order and the developers being next available become their au-
thors. The assignment of coding and other SD tasks to people is relevant since
the duration of the project, i.e. the makespan, depends on this assignment and,
in general, the time required for performing a task depends on a person's pro-
ductivity which is, for instance, influenced by their experience.

Our model focuses on the planning of inspections as a key technology for
finding defects and, thus, for ensuring the quality of a software product (see
Basili and Boehm, 2001). Questions to be answered are, for example, whether
inspections should be applied, which documents should be inspected and by
how many persons. The relationships between the inspection team size and the
inspection technique on the one hand and the inspection effectiveness on the
other hand has been analysed during many experiments and in real-life settings
(see e.g. Briand et al., 1997). It is generally assumed that finding defects (at an
early stage) in inspections is more effective (i.e. lower costs per found defect)
than at a later stage, i.e. during testing, and that some inspection techniques
seem to be superior to others. More differentiated results in combination with
the planning of a specific SD project are, however, not available. As well as
inspections, coding activities, rework, and testing are also represented in the
model. Other activities such as those in the requirement and design phases are
neglected for the moment.

For the model, it is assumed that a source code item of a length known
in advance is coded first. Then it is to be inspected and, after that, subject
to rework. After that, an item is going to be tested and is then again subject
to rework. During coding, defects are produced, some of which are detected
during inspection and testing, and removed during rework. For doing so, a
person has to be assigned to an item as its author who performs the coding.
For the inspection, several persons have to be assigned as inspectors. These
persons must not be the same as the author. Also for the testing, one person
(not the same as the author) has to be assigned. The reworking of a document

Scheduling Using Multiobjective Evolutionary Algorithms 59

is done again by its author. Details on the organisation of such a process can
be found in Ebenau and Strauss (1995) and Humphrey (1989).

Because of the unsatisfactory FCFS task assignment and the missing possi-
bility of optimising other planning parameters within the discrete-event simu-
lation model, we have reformulated the SD model as a combined assignment
and parameter optimisation problem that can be solved separately (i.e. without
connection to the original discrete-event model) by some tools for optimisa-
tion.

Here we discuss an evolutionary algorithm (EA) approach for planning in-
spections and scheduling staff. Evolutionary algorithms such as genetic algo-
rithms (Holland, 1975) or evolution strategies (Schwefel, 1981; Back et al.,
1991) have been shown to be robust approaches applicable to a wide range of
optimisation problems. Applications in the area of scheduling can be found in
Wang and Uzsoy (2002), Herrmann and Lee (1995), Herrmann et al. (1995),
Della Croce et al. (1995) and Yun (2002).

For the last 15 years, evolutionary algorithms have also increasingly been
developed and used for multiobjective optimisation problems. Surveys on such
multiobjective evolutionary algorithms (MOEAs) are given in the papers by
Fonseca and Fleming (1995) Horn (1997) and Tamaki et al. (1996), and in the
monographs by Coello Coello et al. (2002), Deb (2002) and and Zitzler (1999).
More recent research results are included in the proceedings of the first and
the second International Conferences on Evolutionary Multi-Criterion Optimi-
sation (Zitzler et al., 2001; Fonseca et al., 2003). Other multiobjective meta-
heuristics such as simulated annealing (see Czyzak and Jaszkiewicz, 1998) and
genetic local search (see Ishibuchi and Murata, 1998) have also led to competi-
tive results for multiobjective optimisation problems but are not discussed here
for lack of space. For surveys, comparative studies and further bibliography on
various multiobjective metaheuristics, see Hansen (1998), Jaszkiewicz (2001)
and Ehrgott and Gandibleux (2002).

Results on applying MOEAs to specific scheduling problems can be found
in Celano et al. (1999), Cochran et al. (2003) or Esquivel et al. (2002). Gen-
eral results on multicriteria scheduling problems are presented in T'kindt and
Billaut (2002). A survey on using metaheuristics for multiobjective scheduling
is provided by Landa Silva and Burke (2002).

This paper is organised as follows. In Section 2 we present our model for the
planning of inspections and the scheduling of staff. In Section 3, the MOEA
for solving the corresponding multiobjective optimisation problem is outlined.
Section 4 presents results of applying the MOEA to the multiobjective SD
planning problem. The paper ends with some conclusions and an outlook to
future work.

60 Hanne and Nickel

Coding Rework

Figure I . Sequence of tasks in software development.

2. A MULTIOBJECTIVE SOFTWARE INSPECTION
PROBLEM

The basic assumption of our software process model is that a given number
n of source code items has to be produced. The size of each item and a measure
of its complexity are known in advance.' The coding tasks are done by a team
of m developers such that each item is coded by one person called its author.
After coding, an item may be subject to an inspection. This means that one
or several persons from the team read the item and try to find defects. After
the inspection, the item is subject to some rework for eliminating the found
defects. After that, a document may be subject to some testing (and subsequent
rework), which also serves the purpose of finding defects. The sequence of
tasks for each item is represented in Figure 1. We assume all these tasks to be
done by a team of m persons, each of them being able to perform any task.

Unlike the other tasks, inspections are assumed to be done in a preempting
way such that persons involved in coding or testing may interrupt their tasks
and read the documents to be inspected in between. This is necessary because
inspections in practice require some kind of synchronisation of the inspectors
(e.g., a common meeting). This means that inspections of the same document
(unlike other tasks) must be scheduled in parallel. Inspections themselves are
assumed to be non-preemptive. Similar problems in scheduling with priorities
specific to the task occur in real-time operating systems (see e.g. Larnie, 1997,
and Maki-Turja et al., 1999).

2.1 Assigning Tasks (Decision Variables)
According to our general assumptions each item has to be coded by exactly

one person. Therefore, we consider the assignment of persons to coding tasks
by an n-dimensional vector author with

f o r i ~ (1, ..., n).
For the inspection team size, no-inspectorsi, we assume

no-inspectorsi E (0, . . . , no-inspectors,,) for all i E (1, . . . , n) (2.2)

 his and similar simplifications are necessary in order to make the problem treatable. In subsequent re-
search it is planned to analyse a stochastic version of this problem which should allow a better representation
of the situations in reality.

Scheduling Using Multiobjective Evolutionary Algorithms 6 1

with a 0-component indicating that the corresponding item is not subject to
inspection and considering a maximum team size no-inspectors,, 5 m - 1.

For i E (1 , . . . , n) , k E (1 , . . . , no-inspectorsi) let

indicate which persons are assigned to the inspection of item i . The restrictions

inspectorik # authori for all i, k , (2.4)

indicate that the author of a document is not allowed to be an inspector of the
same document and, of course, the inspectors must be pairwise different, i.e.

inspectorik # inspectoril for k # 1 and i E (1 , . . . , n) . (2.5)

Similarly, persons are assigned for testing an item, i.e.

testeri E {I, . . . , m) (2-6)

with
testeri # authori for all i E (1 , . . . , n) . (2.7)

While for the other activities the duration genuinely depends on item and
person attributes (see below) allowing them to be endogenously determined
within the model, the test time is given exogenously as a decision variable.
The reason is that more and more testing increases the number of defects found
(although with a decreasing rate). Thus, test times are determined, for instance,
by using a pre-specified test intensity, t i , used as a multiplicative factor, i.e.

thus defining the test times as proportional to the size of an item weighted by its
complexity. In reality it may be the case that the test time is not pre-specified
but depends on the number of defects found per time unit: for example, with
the motivation to reach a desired quality of the source code. This case is con-
sidered in the simulation model but will be neglected here for simplicity.

For determining the temporal sequence for scheduling tasks, we use priority
values for the coding and testing activities as further decision variables of the
model,

priority-q E [O , l] , (2 .9)

for i E (1 , . . . , n) . A higher priority value indicates that the corresponding
task should be scheduled before a task with a lower value, if possible. For the
inspections such priority information is not required since we assume them to

62 Hanne and Nickel

be done directly after the coding of the item (allowing the inspectors to inter-
rupt other current activities). In general, we assume that developers perform
all their coding tasks within a project before starting the first testing activities.

In the original discrete-event simulation model constructed with the simula-
tion tool Extend, the above decision variables are set implicitly by some kind of
FCFS logic. This means that at the start of a simulation run, items are batched
with persons according to a given order (determined by item and person num-
bers) as long as persons are available. Later on, items waiting for their next
processing steps are batched with the next person becoming available. While
determining an FCFS solution, for all the above decision variables, values con-
sistent with that solution are determined. Within our optimisation model such
an FCFS solution can be reproduced and serves as a benchmark solution for
judging the quality of solutions generated by the MOEA.

2.2 Working Times and Effectiveness of Work
For the processing times, we assume that these depend on the jobs to be pro-

cessed, i.e. the sizes of the items, their complexities and their domains, and the
programmers assigned, especially their experiences, skills, and other human
factors. Since not all of these factors can be modelled explicitly (especially
because of a lack of data) we consider only skills as determining factors for
the individual productivities. For each developer Ic E (1,. . . , m), skill val-
ues are considered for the different activities, i.e. coding (coding productivity
skill, cpsk) and inspection (inspection productivity skill, ipsk). The skills are
assumed to be measured on the [O, 11 interval. Multiplied by given values for
maximum productivities (corresponding to skill values of l), i.e. a maximum
coding productivity, mcp, and a maximum inspection productivity, mip, the
productivities of developers for the various tasks can be determined. Multi-
plied by the size of an item, sizei, and considering an adjusting factor for the
complexity of the item, cpZxi, the specific working times can be calculated as
follows (in the case of variables specific to coding, test, and rework we omit
for clarity the indexes specific to the unique persons assigned to these tasks):

Coding times:
cti = sizei . cplxi/(mcp - cpsk) (2.11)

Inspection times:

The rework times depend on the number of defects to be reworked and on
the skills of the person doing the rework. Since the rework activities are closely
connected to the coding activities, the same skill values are also used for de-
termining the rework times, rti. This is done by using a factor expressing

Scheduling Using Multiobjective Evolutionary Algorithms 63

the relationship between rework productivity (number of defects per hour) and
coding productivity (number of lines of code per hour), and the average defect
size, ads:

rti := fdi cpl . / (ads mcp . cpsk) (2.13)

In this way, we calculate the times for rework after inspection, r t l , and after
testing, rt:, depending on the found defects fdi and f 4 , respectively.

As for the working times, the quality of work measured by the number of
defects produced, found, and removed during the various activities depends on
attributes of an item, i.e. its size and complexity, and attributes of the person
assigned to the task. As for the times, we assume specific skill attributes for
the persons measuring the quality of work on a [O, 11-scale. The number of
defects produced when an item i is coded by author k is assumed to be

where cqsk is the coding quality skill of k and mdd denotes the minimum
defect density, i.e. the defect density of a highly skilled developer.

For an individual inspector k, it is assumed that the probability of finding a
defect is a result of his or her defect detection skill, ddsk E [0, 11, multiplied
by a factor, itf, expressing the effectiveness of the inspection technique and the
influence of other organisational factors. Thus, inspector k's individual proba-
bility of overlooking a defect is 1 - itf. ddsk. For the inspection team, the effect
of double counting found defects is considered by using the team probability
of overlooking a defect (which is the product of the individual probabilities)
for calculating the number of found defects:

no-inspectors,
fd: = pdi . (1 - 11 (1 - itf. ddsk)) (2.15)

k=l
For the rework, it is assumed that all found defects are removed but some of

them not correctly, or that new defects are produced in a proportional relation-
ship to the correctly removed ones:

rd: = rdf fd:

with rdf being a rework defects factor with rdf < 1. For the defects found
during test, we assume that these are as follows in an exponential relationship
to the testing time:

fd: = di . (1 - e-dfr.tq~~.tti 1 (2.18)

where di are the defects remaining after coding, inspection, and rework. tqsk
is the testing quality skill of k and dfr is a defect find rate. The rework after
testing is done similarly as after inspection leading to new defects rd: which
are calculated according to (2.17).

64 Hanne and Nickel

In the discrete-event simulation model, the skill values are dynamically var-
ied, especially by employing a learning model. These effects are neglected in
the simplified model used for optimisation.

In general, the result of an activity (e.g., the number of defects produced
during coding or found during an inspection) as well as the time needed for
performing it can be considered as random since many human effects cannot
be predicted with a sufficiently high accuracy. In the discrete-event simula-
tion model (see Neu et al., 2002, 2003) these influences are represented by
stochastic distributions. For the model considered here, however, we apply a
deterministic approach based on expected values. It is easily possible to con-
sider a "security span" in these deterministic values. A general discussion of
the motivation and validity of the above formulas for working times and effec-
tiveness of work is provided by Neu et al. (2002,2003).

2.3 Objectives
From a practical point of view (see, e.g., Abdel-Hamid and Madnick, 1991),

the following three objectives are frequently considered for software develop-
ment processes:

(a) the quality of the product measured by the eventual overall number of
defects of the documents produced during a project,

(b) the duration of the project (its makespan), and

(c) the costs or total effort of the project.

Based on the model above, the corresponding objective functions can be
formalised as follows for the optimisation:

(a) The total number of defects, t d , at the end of the project is a simple and
effective measure for the quality of a software project. t d is calculated
by

t d = C di. (2.19)
i

where
di = pdi - fd: + rd: - fd: + rd: (2.20)

is the total number of defects in item i at the end of the process.

(b) Assuming that there are no specific dependencies among the coding
tasks and that inspections tasks are done in an "interrupt fashion", wait-
ing times do not occur prior to the testing of items.

Interrupts for the inspection of other author's documents are done in
between where it is assumed that associated inspectors are immediately

Scheduling Using Multiobjective Evolutionary Algorithms 65

available when an item is finished with coding. This assumption can be
justified because inspection times are comparably small and, in practice,
people usually have some alternative tasks for filling "waiting times".

For a person assigned to the testing of an item he or she has to wait
until the item is finished with coding, inspection, and rework. An item
can therefore not be tested until it is ready for testing and its tester is
available. The specific times of each task are calculated by constructing
a schedule for all tasks to be done, i.e. a complete schedule for the SD
project which comprises several weeks or months. Based on this, the
project duration, du, can simply be calculated by the maximum finishing
time of the tasks.

(c) Project costs can be assumed to be proportional to the project effort
which is the total time spent by the team members for accomplishing
all tasks of the project:

where c are the unit costs of effort [EUlUh]. Thus, in the case of wait-
ing times, we assume that the persons can do some tasks outside the
considered project, i.e., that these times are not lost.

The considered multiobjective optimisation problem can then be formulated
as

"minW(td (x) , d u (x) , t c (x)) (2.22)

for the decision variables

x = (author, no-inspectors, inspector, tester, t t , priori ty-c,priori ty-t)
(2.23)

subject to the above constraints (2.1)-(2.21).
"min" means that each of the objectives should be minimised. Usually, the

objectives can be considered to be conflicting such that there exists no solution
that optimises all objectives simultaneously. As a solution in the mathemat-
ical sense, generally the set of efficient solutions is considered. An efficient
solution is an alternatives for which there does not exist another one which is
better in at least one objective without being weaker in any other objective, or
formally: A multiobjective optimisation problem is defined by

"min" f (x) (2.24)

with x E A (set of feasible solutions) and f : Rn + RQ being a vector-valued
objective function. Using the Pareto relation " < " defined by

66 Hanne and Nickel

for all x, y E R4, the set of efficient (or Pareto-optimal) alternatives is defined
by

E(A, f) := {x E A :BY E A : f (Y) I f (x)) (2.26)

See Gal (1986) for more details on efficient sets.
When the efficient set is determined, or a number of (almost) efficient so-

lutions is calculated, then further methods may be applied to elicit preference
information from the decision maker (the project manager) and for calculating
some kind of compromise solution (see Zeleny, 1982; Steuer, 1986; Vincke,
1992; Hanne, 2001a). For instance, some interactive decision support may be
applied for that purpose. Below, a multicriteria approach based on the calcula-
tion of the (approximately) efficient set is presented.

3. A MULTIOB JECTIVE EVOLUTIONARY
ALGORITHM FOR SCHEDULING SD JOBS

3.1 General Framework
In the following, we sketch a new MOEA suitable for approximating the

efficient set of the considered multiobjective SD scheduling problem.
The basic idea of EAs is that from a set of intermediary solutions (popula-

tion) a subsequent set of solutions is generated, inspired by concepts of natural
evolution such as mutation, recombination, and selection. From a set of "parent
solutions" (denoted by Mt) in generation t E N , a set of "offspring solutions"
(denoted by Nt) is generated using some kind of variation. From the offspring
set (or the offspring set united with the parent set) a subsequent solution set
(the parents of the next generation) is selected. Note that the described algo-
rithm is based on the more technical treatment of MOEAs outlined in Hanne
(1999, 2000, 2001b). Due to the distinguishing of a parent and an offspring
population, a separate archive (as frequently used for MOEAs) is not required.
Specific mechanisms for supporting the diversity of a population, such as fit-
ness sharing, did not turn out to be necessary according to the numerical results
with the problem and have, therefore, not been used.

Figure 2 illustrates the general framework of the evolutionary algorithm.
Aspects of adapting an EA to the given problem, an approach of considering
its multiobjective nature and other details are treated below.

3.2 Data Structures
One of the most important issues in applying evolutionary algorithms to

specific types of problems is their problem-specific adaptation (Michalewicz,
1998). This concerns the choice of data types for representing instances of
solutions to the given problem and tailoring the evolutionary operators to the
data types and the considered class of problems. One of the main reasons for

Scheduling Using Multiobjective Evolutionary Algorithms

Start

Initialization of
control parameters

Initialize and
evaluate M0

Copy & mutate
N t (from M t)

Recombine Nt t : = t + l & a d a p t
control parameters

+
Evaluate N t 1 +
Select Mt+'
from Nt u Mt

t
Stop

Figure 2. General framework of the MOEA.

this is that, in this way, the search space can be represented adequately without
losing too much search effort and time in exploring "uninteresting" regions or
for "repairing" infeasible solutions.

For the given problem, an essential amount of data is required to define a
specific instance of the problem. This concerns the characterisation of items
by their attributes, e.g. their sizes, complexities, and domains, the characteri-
sation of persons by attributes such as their skills, and other global parameters
relevant for a specific SD project, e.g. maximum inspection team sizes. A so-
lution instance to the problem (i.e. a feasible alternative) is defined by those
data specified in (2.23). Discrete variables are represented by integer numbers,
real variables by floating-point numbers.

Hanne and Nickel

3.3 The Starting Population
For the starting population we require 2 1 feasible solutions to the given

project. In our implementation, we generate these solutions as random solu-
tions. This is done by assigning a random author to each item, i.e.

authori := uniform(1,. . . , m) for i E (1 , . . . , n) , (3-1)

where uniform(1, . . . , m) denotes a random number according to the discrete
uniform distribution on (1 , . . . , m).

The inspection team size for each item is set to a default value: for exam-
ple, 3. For each item the inspectors and testers are assigned in the same fashion
as the author but assuring that author and inspectors are not the same and that
inspectors are mutually different for one item.

The priority values for tasks are assigned by

with uniform[O, 11 denoting a random variable according to the continuous dis-
tribution on the interval [O , l] .

In our MOEA software it is also possible to generate FCFS solutions (see
above) similar to those used in the simulation model. Experiments have shown
that these FCFS solutions are usually much better, especially with respect to
the makespan, than the random solutions. Unfortunately, these solutions turned
out to be bad as starting solutions for the MOEA, presumably because FCFS
solutions constitute some kind of local optima which bound the algorithm's ef-
fectiveness. However, after just a small number of generations the MOEA
started with random solutions as above has generated better solutions than
FCFS solutions.

3.4 Mutation
For each item i E (1 , . . . , n) do with probability p, the following re-

assignment: the persons responsible for each of the tasks related to that item
are re-assigned according to the mechanism (3.1) used in creating a random
starting solution.

The inspection team size is varied by mutations which are distributed around
the previous inspection team size. This is done by normally distributed muta-
tions similar to those used in evolution strategies, i.e.

no-inspectorsi := no-inspectorsj + round(normal(0, a)) (3.4)

where normal(0, a) denotes a random variable according to the normal dis-
tribution with expected value 0 and variance a. For the new inspection team

Scheduling Using Multiobjective Evolutionary Algorithms 69

size, the restriction (2.2) has to be observed. This is done by delimiting the
value for no-inspectorsi at the interval borders 0 and no-inspectors,,. So in
the case of an increased inspection team size, additional inspectors have to be
determined randomly.

All these re-assignments of decision variables are done ensuring that the
restrictions (2.1)-(2.22) are kept. In the case of infeasible values, new random
values are calculated.

3.5 Recombination
For performing the recombination of solutions, all offspring entities are ran-

domly grouped into pairs. For each such pair of solutions, say a and b, perform
a recombination of data with probability p,,,,l. If a recombination is going to
be performed, then for each item i , i E (1, . . . , n), with a probability of preWa
the assigned authors, inspectors, testers, testing times, and priorities of tasks
are exchanged. This always leads to new feasible solutions.

3.6 Evaluation
In contrast to many other applications of evolutionary algorithms, the con-

sidered SD scheduling software requires complex procedures for evaluating
an alternative (i.e. the calculation of the objective values) specified by data as
in (2.23). While the calculation of the total number of defects, t d (x) , and the
total costs, t c (x) , is rather trivial for an alternative x , the calculation of the
project duration, du(x) , requires the construction of a specific schedule. This
proceeding necessitates the consideration of restrictions concerning the prece-
dence of tasks (see Figure 1) and their preemption (see above).

The high-level procedure for calculating a schedule is as follows: All the
tasks of one phase are planned before those of a subsequent phase. So first all
coding tasks are scheduled. Then all inspections tasks are planned. It is as-
sumed that inspections should take place as soon as possible after finishing the
coding of an item. Since inspection tasks have a higher importance (require-
ment of some synchronisation) than other tasks it is assumed that they interrupt
a coding activity of an inspector, which leads a prolongation of this task and a
corresponding postponement of the subsequent coding tasks. Rework and test
are scheduled after that without allowing interrupts of other tasks.

For the (non-preemptive) scheduling of the tasks of one type, there are two
basic approaches implemented. Method 1 is based on observing the given
assignment of persons to tasks and scheduling the tasks for one person accord-
ing to the priorities, priority-c for coding and rework, priority-t for tests.
Method 2 is based on the FCFS logic discussed above. This means that, ignor-
ing pre-specified assignments and priorities, tasks are scheduled according in

70 Hanne and Nickel

the sequence of their first possible starting times being assigned to the earliest
available person.

Computational experiments with these scheduling methods have indicated
that the MOEA has difficulties in finding solutions being scheduled by method 1
that are better with respect to the project duration compared with a complete
FCFS solution. While an FCFS solution works economically by avoiding wait-
ing times, these are a significant problem in the case of pre-specified assign-
ments and priorities. Here, the MOEA has difficulties in finding good solu-
tions in the high-dimensional search space. On the other hand, a pure FCFS
solution may lead to unnecessarily long project durations, for instance, be-
cause of starting time-demanding tasks too late. Trying out combinations of
methods 1 and 2 (and other variants of these methods) has shown that using
method 1 for scheduling coding and rework and method 2 for testing leads
to superior results. So the comparatively long-lasting coding tasks at the be-
ginning are scheduled by optimised assignments and priorities while the later
testing tasks are scheduled in an FCFS fashion, which allows the filling of
waiting time gaps. This concept of constructing a schedule has been employed
for the numerical results described in Section 4.

3.7 Selection
The selection step of the MOEA is the only one that requires a special con-

sideration of the multiobjective nature of the optimisation problem. For or-
dinary, scalar optimisation problems the objective value of each alternative is
used for evaluating its fitness and for determining whether or in which way an
alternative contributes to the subsequent generation. For instance, in canonical
genetic algorithms, the probability for an alternative to reproduce is propor-
tional to its fitness and in evolution strategies, only the best alternatives are
selected as parents for the next generation (elitist selection).

For multiobjective optimisation problems, several criteria are to be consid-
ered for judging an alternative's fitness. A simple traditional approach to this
problem is to find some mapping of the q criteria to a single one. This can,
for instance, be done by weighting the objective values or applying a different
kind of scalarisation to them. A common disadvantage to this approach is that
it does not lead to a representative calculation of efficient solutions. Instead,
solutions may concentrate in a specific region of the efficient set (genetic drift).
In particular, in many cases not all efficient solutions are solutions to the scalar
substitute problem (Fonseca and Fleming, 1993, 1995).

Therefore, various approaches have been developed for a more sophisticated
multiobjective selection. One of them is the straightforward idea of just us-
ing information included in the dominance (Pareto) relation. For instance, the
dominance grade (see Hanne, 1999, 2001b) of an alternative a E A is defined

Scheduling Using Multiobjective Evolutionary Algorithms

by the number of alternatives which dominate it, i.e.

If several alternatives have the same dominance grade, those from the parent
population are preferred to ensure certain conservative properties (strong elite
preservation) required for the convergence analysis of the MOEA (see Hanne,
1999). In particular, alternatives being efficient within the parent population
may only be replaced by offspring alternatives which dominate them. This
selection approach has been applied for the numerical experiments described
below. It may, however, be the case that other selection rules not satisfying
these properties show a faster progress towards the efficient frontier. These
issues are still open questions in the research of MOEAs.

4. RESULTS

4.1 Test Problems and Settings of the MOEA
For performing numerical tests we have implemented the above MOEA and

procedures related to the handling of SD projects within MATLAB. For testing
the evolutionary algorithm, test problems have been generated choosing the
following technical parameters with respect to problem size etc:

w number of items: n = 100

w number of staff members: m = 20

w maximum coding productivity: m c p = 25 [loch]

w minimum defect density: m d d = 0.02 [defectslloc]

w maximum inspection productivity: m i p = 175 [loch]

w inspection technique factor: itf= 0.45

w test intensity: ti = 0.05

w defect find rate: dfr = 0.1

w rework defects factor rdf = 0.1

w average defect size: ads = 8 [loc]

w unit costs: c = 150 [EURIh].

Item and person attributes were initialised with random values for defining
a test problem instance. For the skill attributes, a normal distribution with
an expected value 0.5 and a variance of 0.1 is assumed (but ensuring that the
values are in [0, 11). This means that the persons on the average reach 50%

72 Hanne and Nick1

of the optimum skill values. For the item size, a lognormal distribution with
expected value 300 [loc] and variance 120 is applied. For the item complexity,
a normal distribution with expected value 1 and variance 0.1 is assumed.

For the applied evolutionary algorithm, the following parameters have been
chosen:

rn no. of generations: t,, = 1000

rn population size (no. of parent solutions): p = 30

rn no. of offspring solutions: X = 30

rn strategy type = + (consider parents and offspring for selection)

mutation probability: p,,t = 0.15

recombination probabilities: p,,,~ = 0.45

The above probability values for the MOEA are determined by choosing the
best parameters from a series of systematic experiments based on varying them
over an interval in equidistant steps. Altogether, 74 runs of the MOEA have
been performed for finding good parameter values. As a criterion for judging
the performance of an MOEA the average relative improvement (compared
with respect to the FCFS solution) for the maximum improvement (over the
population) in the three objective values and for three stochastic repetitions of
the MOEA run have been chosen. Because of running time reasons, for these
experiments a smaller population size (p = 10, X = 10) and a smaller number
of generations t,, = 20) than above have been used. Another approach for
determining parameter values for an EA based on the idea of applying another
(meta) EA is outlined in Hanne (2001a). A more refined analysis of these
parameter values did not seem to be necessary since their effect on the MOEA
was not that high according to Table 1. Thus, the MOEA works rather robustly
with respect to these parameters.

4.2 Numerical Results of the MOEA
In Figures 3-8 the basic results of applying an MOEA with the above prop-

erties to a given test problem are shown. The figures correspond to a single
run of the algorithm but are typical for the algorithm applied to SD scheduling
problems. In Figures 3-5, the results with respect to one of the three objective
functions are shown. The distributions of respective objective values within
the populations is visualised for some of the generations by using box plots.
Especially, the box plots show the maximum, median, and minimum values.
In Figures 6-8, for the populations of some selected generations the values for

Scheduling Using Multiobjective Evolutionary Algorithms 73

Table 1. Some sorted results from the systematic variation of MOEA control parameters.

p m ~ t preco p,,,,z Avg. rel. improvement

Figure 3. Costs of solutions depending on the generation no.

two objective functions are represented in the two-dimensional space for each
combination of two objectives.

The box plots show that the most significant improvements with respect to
the best values for the objectives costs and duration take place within the first
200 generations of the MOEA (Figures 3 and 4). Therefore, the corresponding
two single-objective problems could be solved quite easily using an evolution-
ary optimisation approach. With respect to the number of defects, there are
enhancements until about generation 500. But even after that generation, there
is no steady state of the populations. For instance, worst and median objective

Hanne and Nickel

Durations in each EA generation for the SD project
1100

4001
-200 0 200 4W 600 800

generation

Figure 4. Duration (makespan) of solutions depending on the generation no.

NO. of defects in each EA generation for the SD project
550,

200
-200 0 200 400 MK) 800

generation

Figure 5. Defects of solutions depending on the generation no.

values for the duration can be improved without impairing the other objec-
tives. In general, the bandwidth of objective values does not decrease beyond
a specific level during the evolution. This reflects the fact that the objectives
are conflicting. Therefore, an approximation of the efficient set consists of a

Scheduling Using Multiobjective Evolutionary Algorithms

Costs vs. duration of the SD project solutions generated by an EA

+ gen. 1
0 gen. 20
0 gen. 50
I gen. 200

Figure 6. Costs and durations in solutions of several generations.

Costs VS. defects of the SD project solutions generated by an EA

0 gen. 20
gen. 50

I gen. 200

Figure 7. Costs and defects in solutions of several generations.

diverse set of solutions and requires a higher amount of computation than for
optimising each single objective.

This result also becomes evident by considering the two-dimensional pro-
jections of the populations for several generations (Figures 6-8). As can be
seen, there is a continuing progress towards the minimisation of the objectives

Hanne and Nickel

Duration vs. defects of the SD project solutions generated by an EA
550

I + am. 1

gem 50
r gen. 2M)

Figure 8. Durations and defects in solutions of several generations.

and the diversity of the solutions. For instance, considering the population of
generation 1,000 in Figure 6, there are several solutions which are better with
respect to the duration and the costs although there is no significant progress
with respect to the best values in these objectives. Figures 7 and 8 show for
generation 1,000 significant progress in the no. of defects (compared with gen-
eration 200) leading to a more diverse population. For some part, this is only
possible by decreasing other objective values, e.g. by allowing higher costs.
Altogether, a more diverse population provides a better basis for decision mak-
ing. Of course, it is always possible (if desired) to decrease this scope: for
example, by applying aspiration levels for some or all of the objectives. On
the other hand, it is possible to get a denser representation of the efficient set
by increasing the population size which, however, increases the computational
effort.

Even for a population size of 30 and an evolution of 1000 generations, the
computational requirements of the Matlab code are quite high. After perform-
ing some improvements of the algorithm by profiling it, the running times are
still about six hours on an 850 MHz computer for a 1,000 generation MOEA
with the above parameters. About 90% of the running time is required for
evaluating the fitness function, i.e. calculating project schedules. An analysis
of the Matlab code has shown that major parts of the running time are used for
operations which can be significantly speeded up by using more specific data
structures. Therefore, porting the code to C/C++ and replacing inefficient data
structures will be an issue of our future work.

Scheduling Using Multiobjective Evolutionary Algorithms

Table 2. Results for the MOEA compared with an FCFS solution.

td du tc Avg

Avg 7.13 6.87 10.87 8.29
Min 4.98 5.30 5.99 6.47
Max 9.15 8.27 20.36 11.04

In Table 2, results from 10 stochastic repetitions of the MOEA with a given
problem instance are shown. The average, minimum, and maximum improve-
ments (in percent) in each criterion, and for the unweighted average of all
criteria are listed. The results indicate a sufficient robustness of the MOEA for
producing improved solutions.

Further numerical experiments with other project sizes and varying hetero-
geneity of the material showed the following general results. With an increas-
ing heterogeneity of a project, there is on the average more potential of opti-
misation which the MOEA can exploit. Small projects show a larger range of
improvement for the MOEA with respect to the total number of defects. With
respect to the project duration, the results are not that unique. For small and
rather homogeneous projects, the FCFS scheduling delivers very good results
which could, on the average, not be beaten by the MOEA. In contrast to that,
the improvements for the MOEA are enormous for small but rather heteroge-
neous projects. For medium-size projects the improvement potentials of the
MOEA are significant in both cases. For larger projects the improvement pos-
sibilities seem to decrease. With respect to the costs, the MOEA improvements
are largest for medium-size projects with a large heterogeneity.

5. SUMMARY AND CONCLUSIONS
In this paper, we have presented a novel model of the software development

process comprising the phases coding, inspection, test, and rework. For this
model, originally developed as a discrete-event simulation model, there are
various variables to be fixed corresponding to process parameters, task assign-
ment, and scheduling. With respect to the usually important aspects of quality,
costs, and projects duration, we have formulated the model as a multiobjective
optimisation problem. For solving it, an evolutionary algorithm has been de-
signed based in part on some additional scheduling heuristics. The application
of the algorithm to test instances of the problem has shown significant improve-
ments with respect to all of the objectives compared to a first-come first-served
solution implicitly used within the original simulation model. The populations
generated by the MOEA are broadly distributed with respect to the approx-

78 Hanne and Nickel

imation of the efficient set such that a decision maker may revert to clearly
distinguishable alternatives for planning a software development project.

As yet, there have been no studies comparing our algorithm with other ap-
proaches. With respect to the pure MOEA a comparative study with other
metaheuristics is in preparation. With respect to the specific scheduling prob-
lem, a comparison with other techniques is difficult because of the various
problem-specific adaptations of the algorithm such as the usage of a priority-
based subalgorithm for constructing schedules. Moreover, a comparison of
the results of our algorithm to those of a "real scheduler" is impeded by the
multiobjective nature of our problem and the combination with a parameter
optimisation problem.

For the future development of our basic SD model, a number of extensions
are planned. On the one hand, the behavioural model of the developers is go-
ing to be refined, especially by considering human effects such as learning or
fatigue. On the other hand, we aim at a better consideration of the stochas-
tic nature of SD processes. Also a re-scheduling approach is envisioned for
project accompanying usage of the model. To some extent, these extensions
are already considered in the discrete-event simulation model, though not in
the optirnisation model (in order to keep it simple). A stochastic model vari-
ant will be used for a further study which should serve for the analysis of the
robustness of our optimisation method.

Up to now, the optimisation model has been used as a stand-alone tool. This
will be changed by coupling it with the simulation software such that solutions
calculated by the optimisation model may serve as solutions to be used for the
simulation model. In this way, the inefficient FCFS solutions can be replaced
by better ones.

Both the discrete-event simulation model as well as the optimisation model
will be validated andor adapted to a specific industrial setting by the usage
of real-life data on processes in software development. It is also planned to
equip the model with a user-friendly interface to facilitate its application into
practice.

Acknowledgments
The authors gratefully acknowledge the support of this research given in

connection with the SEV project and the ProSim project by the German Bun-
desministerium fiir Bildung und Forschung (SEV) and the Stiftung Rheinland-
Pfalz fiir Innovation (ProSim, project no. 559). The authors also thank several
anonymous referees for helpful comments on an earlier version of this paper.

Scheduling Using Multiobjective Evolutionary Algorithms

References
Abdel-Hamid, T. and Madnick, S. E. (1991) Sofiware Project Dynamics. An Integrated Ap-

proach, prentice-Hall, Englewood Cliffs, NJ.
Bbk, T., Hoffmeister, F. and Schwefel H.-P. (1991) A survey of evolution strategies. In: Genetic

Algorithms, Proceedings of the 4th International Conference, R. K. Belew, and L. B. Booker
(Eds.), Morgan Kaufmann, San Mateo, CA, pp. 2-9.

Basili, V. and Boehm, B. (2001) Software defect reduction top 10 list. Computer, 34: 135-137.
Briand, L. C., Laitenberger, 0, and Wieczorek, 1. (1997) Building resource and quality manage-

ment models for software inspections, Technical Report, International Software Engineering
Research Network ISERN-97-06.

Celano, G., Fichera, S., Grasso, V., La Commare, U. and Perrone, G. (1999) An evolutionary
approach to multi-objective scheduling of mixed model assembly lines. Computers and In-
dustrial Engineering, 37:69-73.

Cochran, J . K., Homg, S.-M. and Fowler, J. W. (2003) A multi-population genetic algorithm to
solve multi-objective scheduling problems for parallel machines. Computers and Operations
Research, 30: 1087-1 102.

Coello Coello, C. A,, Van Veldhuizen, D. A. and Lamont, G. B. (2002) Evolutionary Algorithms
for Solving Multi-objective Problems, Kluwer, New York.

Czyiak, P. and Jaszkiewicz, A. (1998) Pareto simulated annealing-a metaheuristic technique
for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Anal-
ysis, 7:3447.

Deb, K. (2002) Multi-objective Optimization Using Evolutionary Algorithms Wiley, Chichester.
Della Croce, F., Tadei, R. and Volta, G. (1995) A genetic algorithm for the job shop problem.

Computers and Operations Research, 22: 15-24.
Ebenau, R. G, and Strauss, S. H. (1994) Sofiware Inspection Process, McGraw-Hill, New York.
Ehrgott, M, and Gandibleux, X. (Eds.) (2002) Multiple Criteria Optimization: State of the Art

Annotated Bibliographic Survey. Kluwer, Boston, MA.
Esquivel, S., Ferrero, S., Gallard, R., Salto, C., Alfonso, H. and Schiitz, M. (2002) Enhanced

evolutionary algorithms for single and multiobjective optimization in the job shop schedul-
ing problem. Knowledge-Based Systems, 15: 13-25.

Fonseca, C. M. and Fleming, P. J. (1993) Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization. In Genetic Algorithms: Proceedings of the 5th
International Conference, S. Forrest (Ed.), Morgan Kaufmann, San Mateo, CA, pp. 416-
423.

Fonseca, C. M. and Fleming, P. J. (1995) An overview of evolutionary algorithms in multiob-
jective optimization, Evolutionary Computation 3: 1-16.

Fonseca, C. M., Fleming, P. J., Zitzler, E., Deb, K. and Thiele, L. (Eds.) (2003) Evolution-
ary Multi-Criterion Optimization. Proceedings of 2nd International Conference, EM0 2003,
Faro, Portugal, April 8-1 1, Springer, Berlin.

Gal, T. (1986) On efficient sets in vector maximum problems-A brief survey, European Jour-
nal of Operations Research 24:253-264.

Hanne, T. (1999) On the convergence of multiobjective evolutionary algorithms, European Jour-
nal of Operational Research 117553-564.

Hanne, T. (2000) Global multiobjective optimization using evolutionary algorithms, Journal on
Heuristics 6:347-360.

Hanne, T. (2001a) Intelligent Strategies for Meta Multiple Criteria Decision Making Kluwer,
Boston, MA.

80 Hanne and Nickel

Hanne, T. (2001b) Global multiobjective optimization with evolutionary algorithms: Selection
mechanisms and mutation control. In Evolutionary Multi-Criterion Optimization, E. Zitzler,
et al. (Eds.), Springer, Berlin, pp. 197-212.

Hansen, M. P. (1998) Metaheuristics for multiple objective combinatorial optimization, Ph.D.
Thesis, IMM-PHs-1998-45, Technical University of Denmark, Lyngby.

Herrmann, J. W. and Lee, C.-Y. (1995) Solving a class scheduling problem with a genetic algo-
rithm. ORSA Journal of Computing 7:443-452.

Herrmann, J. W., Lee, C.-Y. and Hinchman, J. (1995) Global job shop scheduling with a genetic
algorithm. Production and Operations Management 4:30-45.

Holland, J. H. (1975) Adaptation in Natural and Artificial Systems, The University of Michigan
Press, Ann Arbor, MI.

Horn, J. (1997) Multicriterion decision making. In Handbook of Evolutionary Computation, T.
BLk, D. B. Fogel, and Z. Michalewicz (Eds.), IOP Publishing and Oxford University Press,
Bristol and New York, pp. F1.9:l-F1.9:15.

Humphrey, W. S. (1989) Managing the Software Process, Addison-Wesley, Reading, MA.
Ishibuchi, H. and Murata, T. (1998) Multi-objective genetic local search algorithm and its ap-

plication to flowshop scheduling. IEEE Transactions on Systems, Man, and Cybernetics
28:392403.

Jaszkiewicz, A. (2001) Multiple objective metaheuristic algorithms for combinatorial optimiza-
tion. Habilitation Thesis, Poznan University of Technology, Poznan.

Kellner, M. I., Madachy, R. J. and Raffo, D. M. (1999) Software process simulation modeling:
Why? What? How? Journal of Systems and Software 46:91-105.

Lamie, B. (1997) Preemption threshold. Real-Time Magazine 97(3):46-47.
Landa Silva, J. D. and Burke, E. K. (2002) A Tutorial on Multiobjective Metaheuristics for

Scheduling and Timetabling, paper presented at the 1st Workshop on Multiobjective Meta-
heuristics, Paris,

M&i-Turja, J., Fohler, G. and Sandstrom, K. (1999) Towards efficient analysis of interrupts in
real-time systems. In Proceedings of Work-in-Progress Session, 1 l th EUROMICRO Confer-
ence on Real-Time Systems, York.

Michalewicz, Z. (1998) Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn,
revised and extended. Springer, Berlin.

Munch, J., Berlage, T., Hanne, T., Neu, H., Nickel, S., von Stockum, S. and Wirsen, A. (2002)
Simulation-based evaluation and improvement of SW development processes. SEV Progress
Report No. 1.

Neu, H., Hanne, T., Munch, J., Nickel, S. and Wirsen, A. (2002) Simulation-based risk reduction
for planning inspections. In Product Focused Software Process Impmvement, M. Oivo, and
S. Komi-Simio, (Eds.), Lecture Notes in Computer Science, Vol. 2559, Springer, Berlin,
pp. 78-93.

Neu, H., Hanne, T., Munch, J., Nickel, S. and Wirsen, A. (2003) Creating a Code Inspec-
tion Model for Simulation-Based Decision Support. Paper presented at ProSim '03, Portland
State University, May 3-4.

Schwefel, H.-P. (1981) Numerical Optimization of Computer Models, Wiley, Chichester.
Steuer, R. E. (1986) Multiple Criteria Optimization: Theory, Computation, and Application,

Wiley, New York.
Tamaki, H., Kita, H. and Kobayashi, S. (1996) Multi-objective optimization by genetic algo-

rithms: A review. In Proceedings of the 3rd IEEE International Conference on Evolutionary
Computation, T. Fukuda, and T. Furnhashi, (Eds.), IEEE Press, Piscataway, NJ, pp. 517-522.

T'kindt, V. and Billaut, L C . (2002) Multicn'teria Scheduling, Springer, Berlin.

Scheduling Using Multiobjective Evolutionary Algorithms 81

Vincke, P. (1992) Multicriteria Decision-Aid, Wiley, Chichester.
Wang, C.-S. and Uzsoy, R. (2002) A genetic algorithm to minimize maximum lateness on a

batch processing machine, Computers and Operations Research, 29: 1621-1640.
Yun, Y. S. (2002) Genetic algorithm with fuzzy logic controller for preemptive and non-preempt-

ive job-shop scheduling problems, Computers and Industrial Engineering 43623444.
Zeleny, M. (1982) Multiple Criteria Decision Making, McGraw-Hill, New York.
Zitzler, E. (1999) Evolutionary Algorithms for Multiobjective Optimization: Methods and Ap-

plications, Swiss Federal Institute of Technology (ETH) Zurich TIK-Schriftenreihe Nr. 30,
Diss ETH No. 13398, Shaker, Aachen.

Zitzler, E., et al., (Eds.) (2001) Evolutionary Multi-Criterion Optimization, Proceedings of 1st
International Conference (EM0 2001), Zurich, Switzerland, March 2001, Springer, Berlin.

SCHEDULING UNIT EXECUTION TIME TASKS
ON TWO PARALLEL MACHINES WITH
THE CRITERIA OF MAKESPAN AND
TOTAL COMPLETION TIME

Yakov Zinder and Van Ha Do
Department of Mathematical Sciences, University of Technology, Sydney, Australia
Yakov.ZinderQuts.edu.au and vhdoOit.uts.edu.au

Abstract Two extensions of the classical scheduling model with two parallel identical ma-
chines and a partially ordered set of unit execution time tasks are considered. It
is well known that the Coffman-Graham algorithm constructs for this model a
so-called ideal schedule: that is, a schedule which is optimal for both makespan
and total completion time criteria simultaneously. The question of the existence
of such a schedule for the extension of this model, where each task has a release
time, has remained open over several decades. The paper gives a positive an-
swer to this question and presents the corresponding polynomial-time algorithm.
Another straightforward generalization of the considered classical model is ob-
tained by the introduction of multiprocessor tasks. It is shown that, despite the
fact that a slightly modified Coffman-Graham algorithm solves the makespan
problem with multiprocessor tasks for arbitrary precedence constraints, gener-
ally an ideal schedule does not exist and the problem with the criterion of total
completion time turns out to be NP-hard in the strong sense even for in-trees.

Keywords: scheduling, parallel machines, precedence constraints, multiprocessor tasks.

1. INTRODUCTION
This paper is concerned with two extensions of the classical scheduling

model which can be stated as follows. Suppose that a set of n tasks (jobs,
operations) N = (1, . . . , n) is to be processed by two parallel identical ma-
chines. The restrictions on the order in which tasks can be processed are given
in the form of an anti-reflexive, anti-symmetric and transitive relation on the
set of tasks and will be referred to as precedence constraints. If task i precedes
task k, denoted i -+ k, then the processing of i must be completed before the
processing of k begins. If i -+ k, then k is called a successor of i and i is
called a predecessor of k . Each machine can process at most one task at a

84 Zinder and Do

time, and each task can be processed by any machine. If a machine starts to
process a task, then it continues until its completion, i.e. no preemptions are
allowed. The processing time of each task i is equal to one unit of time. Both
machines become available at time t = 0. Since preemptions are not allowed
and the machines are identical, to specify a schedule a it suffices to define for
each task i its completion time Ci(o). The goal is to find a schedule which
minimizes some criterion y (a).

In the standard three-field notation this problem is denoted by

where P2 specifies that tasks are to be processed on two identical machines,
prec indicates presence of precedence constraints, and pj = 1 reflects the fact
that each task is a unit execution time (UET) task, i.e. requires one unit of
processing time.

The criteria of makespan

and total completion time

are among the most frequently used in scheduling theory. Several algorithms
have been developed for the P2 (prec,pj = 1 1 Cm, problem. One of them,
known as the Coffman-Graham algorithm (Coffman and Graham, 1972), also
solves the P2 I prec, pj = 1 1 Cc problem (see Lawler et al., 1993; Coffman
et al., 2003). Following Coffman et al. (2003), we will say that a schedule is
ideal if it is optimal for both (2) and (3) simultaneously.

A straightforward generalization of (1) is the P2 I prec, rj , pj = 1 I y prob-
lem, which differs from the former one only by the assumption that the pro-
cessing of each task j cannot commence before the given integer release time
rj. Section 2 gives a positive answer to the open question of the existence of an
ideal schedule for the model with release times. A polynomial-time algorithm,
presented in Section 2, combines the ideas of the Coffman-Graham algorithm
and the Garey-Johnson algorithm (Garey and Johnson, 1977), which solves the
P2 I prec, rj , pj = 1 I L,,, problem with the criterion of maximum lateness,
where

and di is a due date associated with task i. A relevant result can also be found
in Zinder (1986), which is concerned with the problem of finding a schedule

Scheduling Unit Execution Time Tasks

tasks not
from the chain -

7

1 + 2k tasks of the chain

Figure 1. Schedule a1

tasks not
from the chain

1 + 2k tasks of the chain

Figure 2. Schedule 02.

with the smallest value of Cc among all schedules optimal for the criterion of
maximum lateness.

Another way of generalizing (1) is the introduction of multiprocessor tasks.
The new problem, denoted by P 2 I prec,pj = 1, sizej (y differs from the
original one only by the assumption that each task requires for processing ei-
ther one or two machines simultaneously, which is indicated by the parameter
sizej. If sizej = 1, then task j needs only one machine. If sizej = 2, then
task j can be processed only if two machines are used simultaneously. An
arbitrary instance of the model with multiprocessor tasks does not necessarily
allow an ideal schedule. Indeed, for arbitrary positive integers k and 1, where
1 > k , consider the set of 4k + 1 tasks such that 1 + 2k tasks form a chain and
all remaining tasks do not precede or succeed any other tasks. The first 1 tasks
in this chain require two machines simultaneously and all other tasks can be
processed on one machine. It is easy to see that in any schedule, optimal for
the criterion C,,,, each task which does not belong to the chain must be pro-
cessed in parallel with one of the last 2k tasks from the chain. Such a schedule,
say 01, is depicted in Figure 1, where shaded tasks are the tasks constituting
the chain.

Figure 2 depicts another schedule, say az, where all tasks which do not
belong to the chain are processed during the first k time units, followed by the
tasks constituting the chain.

86 Zinder and Do

It is easy to see that 0 2 is not optimal for the criterion C,,, and that

Section 3 shows that the P2 Iprec,pj = 1, sizej I Cc problem is NP-hard
in the strong sense even if the precedence constraints are restricted to in-
trees. This result strengthens the result in Brucker et al. (2000), where NP-
hardness has been proven for series-parallel graphs, and complements Zinder
et al. (2002), where NP-hardness has been proven for out-trees.

2. IDEAL SCHEDULES WITH RELEASE TIMES

2.1 Algorithms
The model considered in this section assumes that each task j is assigned

a non-negative integer rj (referred to as a release time) and that processing of
this task cannot commence before time rj. Without loss of generality it will
be assumed that the relation i -t j implies the inequality ri 5 rj - 1 and that
miniEN ri = 0.

The algorithm presented in this section uses the ideas introduced in Coffman
and Graham (1972) and Garey and Johnson (1977). The central concept of
Garey and Johnson (1977) is the notion of consistent due dates. In the process
of constructing an ideal schedule, consistent due dates will be calculated for
different subsets of the set N. Let J 2 { I , . . . ,n). Let {Di : i E J) be a
set of arbitrary positive integers associated with tasks constituting J. We will
refer to such integers as due dates. For any task u E J and any two numbers s
and d such that

r, 5 s I Du I d , (4)

S(u , s, d, J) will denote the set of all tasks k E J such that k # u, Dk 5 d,
and either u -t k or rk 2 s. Similar to Garey and Johnson (1977), we will
say that the set of due dates {Di : i E J) is consistent or that the due dates are
consistent if r, 5 D, - 1, for all u E J , and for every task u E J and any two
integers s and d satisfying (4), either IS(u, s, d, J)I = 2(d - s) and D, = s,
or IS(u, s, d, J)I < 2(d - s).

Garey and Johnson (1977) developed a procedure which for any given set of
positive due dates {di : i E J) either determines a set of consistent due dates
{Di : i E J) satisfying the inequalities Di 5 di, for all i E J , or determines
that such consistent due dates do not exist at all. If due dates {di : i E J) are
consistent, then the procedure returns these due dates as the set {Di : i E J) .
The complexity of this procedure is o(I JI3). Some important results from
Garey and Johnson (1977) are presented below in the form of three theorems.
In what follows, the expression "schedule a for the set J" means that only
tasks belonging to J are considered with precedence constraints which exist

Scheduling Unit Execution Time Tasks 87

between these tasks in the original problem. In other words, such a schedules
only tasks from J and ignores the existence of other tasks.

Theorem 1 Let {di : i E J) be a set of arbitrary positive due dates. If
the procedure from Garey and Johnson (1977) fails to determine the set of
consistent due dates, then there is no schedule a for the set J satisfying the
inequalities Ci (a) 5 di, for all i E J.

Theorem 2 Let {di : i E J) be a set of arbitrary positive due dates and let
{Di : i E J) be the set of the corresponding consistent due dates calculated by
the procedure from Garey and Johnson (1977). Then a schedule a for the set
J satisfies the inequalities Ci (a) 5 di, for all i E J, if and only if it satisfies
the inequalities C i (a) 5 Di, for all i E J.

The third theorem shows how to construct a schedule that meets all due
dates if such a schedule exists. The theorem uses the notion of list schedule.
A list schedule is a schedule constructed by the following algorithm (known as
the list algorithm). Suppose that all tasks are arranged in a list.

1. Among all tasks select a task j with the smallest release time. Let T =
r j .

2. Scan the list from left to right and find the first task available for pro-
cessing in time interval [T, T + 1). Assign this task to the first machine
and eliminate it from the list.

3. Continue to scan the list until either another task available for processing
in the time interval [T,T + 11 has been found, or the end of the list
has been reached. If another task has been found, assign this task to
the second machine and eliminate it from the list. Otherwise leave the
second machine idle.

4. If all tasks have been assigned, then halt. Otherwise among all tasks,
which have not been assigned for processing, select task i with the small-
est completion time. Set T = max{T + 1, r i) and go to Step 2.

Theorem 3 Let {Di : i E J) be a set of consistent due dates. Then any
list schedule a for the set J , corresponding to a list where tasks are arranged
in a nondecreasing order of consistent due dates Di, meets these due dates,
i.e. Ci (a) < Di, for all i E J.

The algorithm described in this section constructs an ideal schedule, denoted
6, in iterative manner. At each iteration the procedure determines a fragment
of 6 referred to as a block. A task can be included in a block only if all its
predecessors have been already included in the same or previously constructed

88 Zinder and Do

blocks. Each block is a fragment of some list schedule. In constructing this
list schedule the procedure associates with each task i , which has not been
included in the previously constructed blocks, a positive integer pi, referred to
as a priority, and forms a list by arranging tasks in the decreasing order of their
priorities (no two tasks have the same priority). Although both criteria Cma,
and Cc do not assume any due dates, the calculation of priorities is based on
some consistent due dates. The subroutine, which calculates priorities, will
be referred to as the p-algorithm. In order to describe the p-algorithm it is
convenient to introduce the following notation. For an arbitrary integer t and
an arbitrary task i , K(i , t) will denote the set of all tasks j such that rj < t
and i -+ j. Suppose that K(i , t) # 0 and each task j E K(i , t) has been
already assigned its priority pj. Denote by w(i, t) the 1K(i, t)l-dimensional
vector (&I , . . . , PjlK(i,t)l)7 where &I > . . . > Pj l~ (i , t) l and jk E K(i , t) for
all 1 5 k 5 I K(i , t)l. In other words, w(i, t) lists all successors j of task i ,
satisfying the condition rj < t, in the decreasing order of their priorities.

Let J 2 (1, . . . , n) be the set of all tasks that have not been included in the
previously constructed blocks. In constructing a new block, only these tasks
are considered and all tasks which have been already included in the previously
constructed blocks are ignored. The construction of the first block and some
other blocks will require calculating for each task i E J a priority pi using the
following algorithm.

p-algorithm

1. Set a = 1.

2. Among all tasks from J, which have not been assigned their priorities,
select a task with the largest due date. Denote this due date by d. If
several tasks from J, which have not been assigned their priorities, have
due dates equal to d, select among them any task without successors.
If every task i E J with di = d, which has not been assigned pi, has
a successor, select among these tasks any task with the smallest in the
lexicographical order vector w(i, d). Let u be the selected task.

3. Set pu = a and a = a + 1. If there is a task in J, which has not been
assigned its priority, go to step 2. Otherwise halt.

The idea behind the algorithm, constructing an ideal schedule, can be de-
scribed as follows. Suppose that we know that for any instance of the con-
sidered scheduling problem there exists an ideal schedule. Since any ideal
schedule is optimal for both Cma, and Cc, even without knowing any ideal
schedule, it is not difficult to find integers dj such that

cj (v) F dj, for some ideal schedule v and all j E N (5)

Scheduling Unit Execution nme Tasks

Figure 3. Partially ordered set of tasks.

By (3 , the set of schedules that meet the due dates dj is not empty. Therefore,
using Garey and Johnson (1977), it is possible to construct a schedule, say o ,
such that Cj(o) 5 dj for all j E N. If due dates dj are sufficiently tight,
a coincides with an ideal schedule. The Main Algorithm, described below,
is an iterative procedure that at each iteration either tightens the current due
dates, or determines that these due dates are already tight enough and specifies
a fragment of an ideal schedule.

The following example illustrates this idea. Consider the partially ordered
set of tasks depicted in Figure 3, where nodes represent tasks and arrows rep-
resent precedence constraints. The corresponding release time is given next to
each node.

It can be shown that for the considered problem there exists an ideal sched-
ule (a proof that such a schedule exists for any instance of the problem with two
parallel identical machines, precedence constraints, and unit execution time
tasks with release times is given in the next section and is closely related to
the analysis of the Main Algorithm). Denote this ideal schedule by v. Observe
that the partially ordered set of tasks is comprised of 13 tasks. Taking into
account that v is optimal for both C,, and Cc, it is easy to see that (5) holds
if dj = rj + 13 for all 1 5 j 5 13. The priorities pj, calculated for these dj
according to the p-algorithm, are presented in the table below.

taskj 1 2 3 4 5 6 7 8 9 10 11 12 13
p 13 1 2 1 1 1 0 7 9 2 5 6 8 1 3 4

For example, we have d5 = 15 and dlo = 15. Since according to the prece-
dence constraints both 5 and 10 have successors, in order to determine p5 and

Zinder and Do

Figure 4.

Figure 5.

p10 we need to compare vectors w(5,15) and w(10,15). Because w(5,15) =
(2,l) is smaller in the lexicographical order than w(10,15) = (4,3, I), p5 = 7
whereas plo = 8.

Consider the list schedule o, corresponding to the list 1, 2, 3, 4, 6, 10, 5,
9, 8, 13, 12, 7, 11, where tasks are arranged in the decreasing order of pj.
Schedule a is depicted in Figure 4.

The smallest integer 0 < t < C,,(o) such that at most one task is pro-
cessed in the time interval [t - 1, t] is t = 5. By the list algorithm, each task j,
satisfying the inequality C8(o) < Cj(a), either is a successor of task 8 in the
precedence constraints or has rj 2 5. Therefore, in any schedule, where task 8
has the completion time greater than C8(o), only tasks 1, 2, 3,4,6, 5, 10 and
9 can be processed in the time interval [0, C8(o)]. Hence, this schedule cannot
be optimal for the criterion Cc, because in a task 8 is also processed in this
time interval. Therefore Cg(v) < C8(a) = 5, and the replacement of d8 = 16
by d8 = 5 does not violate the inequality C8(v) < d8.

The table below presents consistent due dates Dj, calculated according to
Garey and Johnson (1977) for the new set of due dates {dj : 1 < j < 13)
that differs from the original one only by the value of d8 which now equals 5.
By Theorem 2, C~(L/) < Dj for all 1 < j < 13. The above-mentioned table
also contains new ~ l j , calculated according to the p-algorithm for the set of
consistent due dates {Dj : 1 < j < 13).

Again, denote by o the list schedule, corresponding to the list where tasks
are arranged in the decreasing order of pj . This schedule is depicted in Fig-
ure 5.

taskj
D.j
pj

1
4

2
4

3
4

1 3 1 2 1 1 1 0 6

4
4

5
15

6
14
8

7
18

8
5

2 9 5

9
16

10
15
7

11
20

12
17

1 3

13
17
4

Scheduling Unit Execution l h e Tasks

Figure 6,

Using o and reasoning analogous to that presented above for the task 8,
it is easy to see that C g (v) I Cg(o) = 5. Therefore, the set of due dates
{dj : 1 < j < 13), where d j = D j for all j # 9 and dg = 5, satisfies (5).
The table below presents consistent due dates { D j : 1 < j < 131, calculated
according to Garey and Johnson (1977) for this new set { d j : 1 I j I 13). By
Theorem 2, these new consistent due dates satisfy the inequalities Cj (v) < D j
for all 1 I j < 13. Analogously to the previous iteration, the table below
also contains new pj , calculated according to the p-algorithm for the new set
of consistent due dates { D j : 1 5 j 5 13).

Again, let o be the list schedule, corresponding to the list where tasks are
arranged in the decreasing order of C L ~ . This schedule is depicted in Figure 6.

Analogously to the above, o indicates that Clo(v) I C l o (n) = 5. There-
fore, the set of due dates { d j : 1 < j < 131, where d j = D j for all j # 10
and dlo = 5, satisfies (5). The new set { d j : 1 5 j 5 13) leads to a new set
of consistent due dates { D j : 1 5 j < 131, calculated according to Garey and
Johnson (1977). These new due dates D j are presented in the following table.

taskj
Dj
~ l j

By Theorem 2, these new consistent due dates satisfy the inequalities
C j (v) < D j for all 1 < j < 13. In other words, now we know that C s (v) 5 5,
C9(v) < 5, C10(v) I 5, C1(v) I 4, C2(v) L 4, C3(v) < 47 C4(v) 5 4
and C s (v) 5 4. In order to decide whether these consistent due dates are
tight enough to determine a fragment of v, we need to calculate new priorities
pj and to construct a new list schedule a . Using { D j : 1 5 j < 131, the
yalgorithm first assigns pll = 1, and then, in the decreasing order of D j ,
p7 = 2, p12 = 3, p13 = 4 and pg = 5. Since the next three tasks, 10, 9 and
8, have equal due dates and since w(10,5) = w (9 ,5) = w(8,5) , the priorities
6 , 7 and 8 can be assigned to these three tasks in any order. Let plo = 6,
pg = 7, and ps = 8. Now tasks 1 , 2, 3, 4 and 6 have equal due dates, but
w(1,4) = w(2,4) = w(3,4) = w(4,4) = (8 ,7 ,5) whereas w(6,4) = (6).

1
4

2
4

3
4

1 3 1 2 1 1 1 0 5

4
4

5
15

6
14
7

7
18

8
5

9
5

2 8 9 6

10
15

11
20

12
17

1 3

13
17
4

Zinder and Do

Figure 7,

Figure 8.

Because in the lexicographical order (6) is smaller than (8,7,5), p6 = 9. The
priorities 10, 1 1, 12, 13 can be assigned to the remaining tasks 1,2,3 and 4 in
any order. Let pq = 10, p3 = 11, p2 = 12 and p l = 13.

Again, let o be the list schedule, corresponding to the list where tasks are
arranged in the decreasing order of p j . This schedule is depicted in Figure 7.

Now Clo(a) = dlo = 5 and we cannot tighten dlo. Consider the largest
integer 0 < t < Clo(a) , satisfying the condition that there exists a task j
such that C j (a) = t and p j < p10. It is easy to see that t = 3 and j = 5.
Observe that for i E {8,9,10) either 6 -, i or ri 2 3. Hence, in any schedule,
where task 6 has the completion time greater than C6(o) = 3, tasks 8-10 are
processed in the time interval [3, oo] and therefore tasks 7, 11, 12 and 13 are
processed in the time interval [5, oo] (see Figures 4-7). Hence, in this schedule
only tasks 1-5 can be processed in the time interval [0, C6(#)] . Such a schedule
cannot be optimal for the criterion Cc, because in a task 6 is also processed
in this time interval. Therefore, C6(v) 5 C 6 (~) = 3 and the set of due dates
{ d j : 1 5 j < 131, where d j = Dj for all j # 6 and d6 = 3, satisfies (5).

Now the due dates { d j : 1 5 j 5 13) are tight enough. Indeed, consider the
list schedule, depicted in Figure 8 and corresponding to the list, where tasks
are arranged in a nondecreasing order of d j . It is obvious that the part of this
schedule, corresponding to the time interval [O, 71, is a fragment of an ideal
schedule (actually, in this example, the entire schedule, obtained in the process
of constructing the first fragment, is ideal).

Reasoning in the above example was based on the assumption that an ideal
schedule exists. As will be shown in the next section, this assumption is not
necessary and can be replaced by two weaker conditions. The remaining part
of this section presents the Main Algorithm, which constructs an ideal schedule
block by block. The construction of each block commences with determining
the starting time of this block, denoted by 7. So, in the above example, we

Scheduling Unit Execution Time Tasks 93

started with T = 0. The parameter T increases from iteration to iteration. So,
if T' and T" are two successive values of T , then the block is a fragment of
b corresponding to the time interval [T I , T"]. In the above example, the next
value of T is 7. In what follows, for an arbitrary schedule a and an arbitrary
integer t , R(a, t) will denote the set of all tasks i such that Ci(a) 5 t .

Main Algorithm

1. Set J = (1,. . . ,n), T = minlliln T i , and di = ri + n, for all 1 < i <
n.

2. Using the procedure from Garey and Johnson (1977) and the set {di :
i E J) , determine the set of consistent due dates {Di : i E J) such that
Di < di for each i E J .

3. Using the set of consistent due dates {Di : i E J) and the p-algorithm,
calculate pi for every task i E J . Arrange tasks, constituting the set J,
in a list in the decreasing order of their priorities and construct from time
point T a list schedule a.

4. Select the smallest integer T < t < Cmax(a) such that at most one task
is processed in the time interval [t - 1, t] . Denote this integer by t(a, T) .

If t(a, T) does not exist or t(u, T) = Cmax(a), then construct the last
block of b by setting Ci(6) = Ci(u) for each task i E J and halt.

5. Among all tasks i satisfying the inequality Ci(u) > t(o, T) select a
task with the earliest release time and denote this release time by r. If
r 2 t (a, T) , then construct a new block of 6 by setting Ci(d) = Ci(a)
for each task i, satisfying the inequalities T < Ci(a) < t(u, 7). This
block corresponds to the time interval [T, r]. Set T = r, J = J - R(6, r)
and return to step 4.

6. Set i (~) = j , where j is the task satisfying the equality Cj(a) = t(a, T) .

7. If Di(,) > Ci(,)(u), then set di(,) = C+)(u) and dk = Dk, for all
other tasks k E J , and return to step 2. If Di(,) = Ci(r)(u), then
select the largest integer T < t < Ci(,)(u) such that at least one task,
which is processed in the time interval [t - 1, t] , has priority less than
pi(r). Denote this integer by t'. If either t' does not exist, or both tasks
processed in the time interval [t' - 1, t'] have priorities less than pi(,).,
then construct a new block of 6 by setting Ci(6) = Ci(a) for each task z,
satisfying the inequalities T < Ci(u) < t(u, 7). This block corresponds
to the time interval [T, t(u, T)] . Set J = J - R(6, t(a, 7)) . Assign a
new release time to every i E J as the maximum between the old release
time and t(a, T) . Recalculate, if necessary, the release times of all tasks

Zinder and Do

to satisfy the condition that the relation i + j implies the inequality
ri 5 rj - 1. In doing this, consider the release times in increasing order
and for any i and j such that i -+ j and ri = rj replace rj by rj + 1. Set
T = t(u, T) and return to step 4.

8. Let task j be the task satisfying the conditions Cj(u) = t' and pj >
pi(,). Set i(r) = j and return to step 7.

The validity of the algorithm is established by the following lemma.

Lemma 1 For any set {di : i E J) , utilized at step 2, the procedure from
Garey and Johnson (1977) constructs a set of consistent due dates {Di : i E
J) satisfying the inequalities Di 5 di for all i E J.

Pro08 By Theorem 1, if for some set of due dates {di : i E J) the pro-
cedure from Garey and Johnson (1977) fails to determine the set of consistent
due dates, then there is no schedule a for the set J satisfying the inequalities
Ci(a) 5 di for all i E J . Hence, if such a schedule exists, then the proce-
dure from Garey and Johnson (1977) is able to calculate a set of consistent
due dates, and it remains to show that for each set of integers {di : i E J) ,
utilized at step 2, there exists a schedule a such that Ci(a) 5 di for all i E J .
It is easy to see that this holds at the first execution of step 2. Suppose that a
set of consistent due dates {Di : i E J) has been determined in accord with
step 2 using a set of integers {di : i E J) . The schedule u, constructed as a
result of the subsequent execution of step 3, is a list schedule corresponding
to a list where tasks are arranged in a nondecreasing order of consistent due
dates. Then by Theorem 3, Ci(o) < Di for all i E J , and hence at the next
execution of step 2, Ci(u) 5 di for all i E J', where J' is the set of tasks and
{di : i E J ') is the set of due dates considered at this execution of step 2. 0

2.2 Proof of Optimality
The execution of any step of the main algorithm, apart from the very first,

starts with some value of the parameter T, some set of tasks J , and some set of
due dates {di : i E J) assigned either during the execution of step 1 or step 7.
For the purpose of the following discussion, it is convenient to introduce the
notion of a regular call. In conditions (cl) and (c2), stated below, T is the value
of this parameter at the start of execution of the considered step, J is the set of
tasks which have not been included in the blocks constructed prior to this call,
and {di : i E J) are due dates associated with tasks from J at the moment of
this call. A call of a step is regular if

(cl) there exists a schedule 7 for the set N, which is optimal for the crite-
rion C,, , coincides with 6 on the time interval [minlliln Ti, TI, and
satisfies inequalities Ci(q) 5 di for all i E J ;

Scheduling Unit Execution Time Tasks 95

(c2) there exists a schedule P for the set N, which is optimal for the criterion
Cc, coincides with 6 on the time interval [rninl<iln - ri, T] , and satisfies
inequalities Ci(P) I di for all i E J .

Lemma 2 Ifthe Main Algorithm terminates at a regular call of step 4, then
6 is an ideal schedule.

Pro03 According to (cl) and (c2), schedule 6 coincides with P and 7 in
the time interval [minlliln ri, TI, and these two schedules are optimal for the
criteria Cc and C,,, respectively. The tasks, which are not processed in this
time interval, form the set J and are processed in the current schedule a in the
most efficient manner from the viewpoint of both criteria, since in this schedule
both machines are busy in the time interval [T, C,,,(a) - 11. Therefore, the
resulting schedule 6 is optimal for both criteria Cc and C,,,. 0

The following lemmas show that any regular call results in another regular
call.

Lemma 3 Ifa call of step 5 is regular; then the next call is also regular

Pro08 If the next call is a call of step 6, then this new call is also regular,
because in this case neither value of T , nor sets J and {di : i E J) are changed.

Suppose that the call of step 5 results in a call of step 4, and let T, J and
{di : i E J) be the value of the parameter T , the set of tasks and the set of
due dates corresponding to this call of step 5. Let J' be the set of tasks which
remain not included in the already constructed blocks after the completion of
step 5. Since the call of step 5 is regular, there exists a schedule 0 , specified in
(c2). Construct a new schedule P' by setting

for all i E R(o, t(o, r))
Ci(P), forall i $ R (o , t (a , ~))

where t(a, T) and o are the point in time and the list schedule considered during
the execution of step 5. Since ri 2 t(a, T) for all i E J - R(a, t(a, T)) ,

This relation together with the observation that in P' both machines are occu-
pied in the time interval [T, t(o, r) - 11 leads to the conclusion that schedule
,O' is optimal for the criterion Cc.

On the other hand, step 5 does not change the set of due dates {di : i E J) ,
and the inequalities Ci(/3) 5 di and Ci(o) 5 di9 which hold for all i E J ,
imply that Ci(P1) 5 di for all i E J'. Hence, (c2) holds after the completion
of step 5.

96 Zinder and Do

Let q be a schedule specified in (cl). Then the result that (cl) holds af-
ter the completion of step 5 can be proven analogously to the one above by
constructing a new schedule r f , where

for all i E R(o, t (a , r))
Ci(q), forall i $ R(a, t (o ,r))

So, the call of step 4 is a regular one.

Suppose that a regular call of step 7 is followed by either a call of step 2
or a call of step 4. Suppose that this call of step 7 corresponds to some r , J ,
{di : i E J) , {Di : i E J) , a ,and i (~) .

Lemma 4 Let a be an arbitrary schedule for J such that Cv(a) 5 dv,
for all v E J, and let a satisfy at least one of the following two conditions:
either CqT) (a) 2 Ci(,) (a) , or there exists a E J such that p, > pi(,) and
C, (a) = Di(,). Then

Pro08 Suppose that the considered call of step 7 is the kth call of this step
since the last call of step 6. Consider a sequence of tasks g l , . . . , gk and a se-
quence of sets of tasks JO, J1, . . . , Jk determined as follows. Task gl satisfies
the equality Cgl (0) = t (o , T) . Each task gi, 1 < i 5 k, is the task selected as
a result of the (i - 1)st call of step 8. Set J O is the set of all tasks i satisfying
the inequality Ci(a) > Cgl(o). Each Ji, 1 < i < k, is comprised of task
gi and all tasks v such that Cgi+,(u) < Cv(a) < Cgi(a). Set Jk is defined
as follows. If Cgk (a) < Dgk, then Jk = {gk). If Cgk (a) = Dgk, then Jk
depends on whether or not t' has been calculated as a result of the kth call of
step 7. If t' has been calculated, then Jk is comprised of task gr, and all tasks
v such that t' < Cv(u) < Cgk (a). If t' has not been calculated, then Jk is
comprised of task gk and all tasks v such that T < Cv(o) < Cgk (a) .

Consider a sequence of tasks yl, . . . , yk, where for all 1 < i < k

cyi (a) = max Cv (a)
V E J i

For any task yi, Dyi and the corresponding Dgi satisfy the inequality Dyi 5
Dgi, because pyi 2 pgi. On the other hand, Cv(a) < dv for all v E J,
and therefore by Theorem 2, Cyi (a) 5 Dyi. Hence, Cyi (a) 5 Dgi for all
l < i < l c .

Observe that gl -+ v for all v E J0 such that rv < Cgl (a) , because o is a
list schedule and one of the machines is idle during the time interval [Cgl (a) -
1, Cg, (a)] . Moreover, for all 1 < i < k, gi --+ v for all v E Ji-' such that rv <
Cgi(u), because the list corresponding to u arranges tasks in the decreasing

Scheduling Unit Execution Time Tasks 97

order of their priorities and during the time interval [Cgi (a) - 1, Cgi (o)] one
of the machines processes a task with a priority less then priorities of tasks in
J~- ' . Therefore, if Cgi (a) 1 Cgi (o) , then

min Cv (a) 2 min C,(o)
V E J ~ - ' V E

Suppose that there exists a task q such that p, > psi and C,(a) = Dgi. By
Theorem 2, C,(a) 5 D,. The inequality p, > pgi implies that D, 5 D,,
which together with Dgi = Cq(a) 5 D, gives D, = Dgi. Since D, = Dgi
and p, > pgi, ~ (q , D,) is greater than or equal to w (gi, Dgi) in the lexico-
graphical order. This is equivalent to the statement that q -+ v for all v E J ~ - ~
such that r, < Cgi (o), which again gives (7).

The above reasonings lead to the conclusion that (6) holds if k = 1, because
in this case gl = i (r) and consequently either Cg, (a) 2 Cgl (o) , or C x (a) =
Dgl . Suppose that k > 1, then Cgi (a) = Dgi for all 1 I i < k and gk = i (r) .
Since either Cgk (a) 2 Cg, (o) , or there exists x E J such that p, > pgk and
Cx(a) = Dgk'

min Cv(a) 2 min C,(o)
V E Jk-I V E Jk-I

which gives Cyk-,(a) = Dgk-,. On the other hand, for any 1 < i < k ,
either yi = gi, or yi # gi and pyi > pgi. Therefore the equality CYi(a) =
Dgi implies (7), which analogously to the above gives Cyi-l(a) = Dgi-l.
Consequently, CYk-, (a) = Dgk-, implies Cyl (a) = Dgl, which in turn gives

min Cv (a) 2 min C, (o)
V E J0 V E J0

and therefore (6). 0

Lemma 5 Ifa call of step 7 is regulal; then the next call is also regulal:

Pro08 Let a regular call of step 7 correspond to some T , J , {di : i E J) ,
{Di : i E J) , i(r) and u. Since this call is regular, there exist schedules q and
p specified in (cl) and (c2). If this call is followed by a call of step 8, then the
latter call is also regular, because in this case neither the parameter T , nor the
sets J and {di : i E J) change during the execution of step 7.

Suppose that the call of step 7 is followed by a call of step 2. Then step 7
results in the replacement of {di : i E J) by due dates {d!, : i € J) , where
di(r) = Ci(r) (o) and dv = D, for all other v E J. If Ci(,) (q) I Ci(,) (o)
and Ci(r) (P) < Ci(r)(o) , then Ci(r) (v) I d;(,) and Ci(r)(P) I d:(,). On the
other hand, by Theorem 2, Cv(q) < Dv = d!,, and C,(P) I D, = d!,, for all
other v E J. Hence, in this case, the call of step 2 is also regular.

98 Zinder and Do

If Ci(,) (P) > Ci(,)(u), then consider schedule P', where

Ci(P1) =
for all i E R(u, t(a, 7))

Ci(p), for all i $ R(u, t (0, 7))

By Lemma 4

Since in cr both machines are busy in the interval [T, t (u, 7) - 11, Cc(P1) <
Cc(P). Therefore, schedule P' is optimal for the criterion Cc. On the other
hand, Ci(,)(u) = d;(,), and by Theorem 3, Ci(u) I Di = di for all other
i E R(u, t(u, 7)) . Furthermore, by Theorem 2, Ci(P) 5 Di = di for all i E J
such that i $ R(u, t(a, 7)) . Therefore, CV(P1) 5 d; for all v E J, and 0'
satisfies (c2) for {d: : v E J).

Similarly, if Ci(,) (77) > Ci(,) (cr), then, at the moment of the call of step 2,
(cl) holds for schedule ql, where

for all i E R(u, t(u, 7))

Ci (q), for all i $ R(u, t(u, 7))
(9)

Hence, the call of step 2 is regular.
Suppose that the call of step 7 is followed by a call of step 4. Consider

schedule P' defined by (8). Let J' be the set of all tasks v satisfying the in-
equality C, (P I) > t (a, 7) . Since P satisfies (c2), C,(P1) < d , for all v E J1,
and in order to prove that satisfies (c2) at the moment of the call of step 4, it
remains to show that is optimal for the criterion Cc. Let

t', if t' has been found during the execution of step 7
7, otherwise

Consider the set of tasks J I which is comprised of i(7) and all tasks v such that
T < C,(o) < Ci(,)(u). It is easy to see that C,(P) > T for all v E j. On
the other hand, for any v E J", p, 2 pi(,) and therefore D, 5 Dq,). Since,
by Theorem 2, C,(P) 5 D,, all tasks constituting J" are processed in P in the
time interval [T, Di(,)]. Hence C,(P) = Di(,) for some v E J. Then again by
Lemma 4

and because both machines are busy in the time interval [T, t(u, 7) - 11, so
Cc(P1) I Cc (P) , which implies that P1 is optimal for the criterion Cc. Thus,
at the moment of the call of step 4, satisfies (c2). The proof that Q', defined
by (9), satisfies (cl) is similar. Hence, the call of step 4 is regular. 0

Scheduling Unit Execution Time Tasks 99

Theorem 4 The procedure constructs an ideal schedule and has complexity
0(n6).

Pro08 Each block of schedule 6 corresponds to a particular value of the
parameter T and this parameter takes on at most n different values. Each di
satisfies inequalities ri < di 5 ri + n and if its value changes, then a new
value is at least one unit less than the previous one. Therefore, the number of
calls of step 2 is 0(n2) . Since the calculation of consistent due dates according
to step 2 requires 0(n3) operations, the total complexity is 0(n6).

It is easy to see that the first call of steps 2 is regular. On the other hand,
Lemmas 3 and 5 guarantee that all subsequent calls are regular too. Therefore,
by Lemma 2, the resulting schedule is ideal. 0

3. COMPUTATIONAL COMPLEXITY OF THE
P2lin-tree, pj = 1, sizej ICE PROBLEM

This section shows that the problem P2lin-tree,pj = 1, sizejICc is NP-
hard in the strong sense by a reduction of the 3-partition problem which is
NP-complete in the strong sense (Garey and Johnson, 1979). The 3-partition
problem can be stated as follows:

Instance: A set of positive integers A = {al,. . . , a3,) together with
a positive integer b such that C:zl ai = zb and 2 < ai < $, for all
i € {I , . . . ,3z}.

Question: Does there exist a partition of the set A into subsets
d l , . . . ,A,, such that Ai n Aj = 8 for all i # j, and the sum of the
elements of each subset is equal to b?

For any instance of the 3-partition problem, the corresponding scheduling
decision problem will contain 32 chains (one for each integer in A), an in-tree,
and a set of 2-tasks. Following Brucker et al. (2000), a task j requiring sizej
machines is referred to as a sizej-task. Analogously to Zinder et al. (submit-
ted), for each integer aj E A, the corresponding scheduling problem contains
a chain of 2aj tasks, where the first a j tasks in the chain are 2-tasks, and the
remaining tasks are 1-tasks. The chain for some ai E A and the in-tree are
depicted in Figure 9. The set of a j 2-tasks associated with a j will be denoted
by Mi. Similarly, the set of all remaining tasks associated with a j will be de-
noted by M;. Let MI = u!&M{ and M2 = u&M;. Thus, all tasks in MI
are 2-tasks, whereas all tasks in M2 are 1-tasks.

In contrast to Zinder et al. (submitted), where the out-tree is comprised of
1-tasks only, the in-tree contains both 1-tasks and Ztasks. It is convenient to
group these tasks into several sets denoted K:, where Ki for 1 5 i < z, Ki
for 1 5 i 5 z - 1, and Ki for 1 5 i 5 z - 1 consist of 1-tasks, and K: for

Zinder and Do

Figure 9.

1 < i < z - 1 consist of Ztasks. These sets have the following cardinalities:
I K i I = b, I K i 1 = I K i I = 2zb2, 1 K: 1 = 2z2 b3. The tasks constituting each set
form a chain. These chains will be referred to as Kt-chains and are linked as
follows. For each 1 5 i 5 z - 1

rn the last task in the K f -chain precedes the first task in the Ki-chain;

the last task in the K:-chain precedes the first task in the Ki-chain;

the first task in the ~;+l-chain has two immediate predecessors: the last
task in the Ki-chain and the last task in the Ki-chain.

Let Kl = U ~ = ~ K ; , K2 = u~z~K; , K3 = U~Z;K~, and K4 = U~Z~K:,
and let K5 be the set of Ztasks, where

and each task of the set K5 does not precede nor succeed any other task. Then
thesetofalltasksis N = MI U M2 U K1 U K2U K3U K4U Kg.

Let a^ be a schedule, probably infeasible, satisfying the following conditions:

(tl) for each 1 5 i < z, b tasks from MI are processed in the time interval
[(2b + 2zb2 + 2z2b3)(i - I), (2b + 2zb2 + 2z2b3)(i - 1) + b];

Scheduling Unit Execution Time Tasks 101

(t2) for each 1 5 i 5 z, b tasks from Ki and b tasks from M2 are processed
in parallel in the time interval [(2b + 2zb2 + 2z2b3)(i - 1) + b, (2b +
2zb2 + 2z2b3) (i - 1) + 2b];

(t3) for each 1 5 i < z - 1, 2z2b3 tasks from Ki are processed in the time
interval [(2b + 2zb2 + 2z2b3)(i - 1) + 2b, (2b + 2zb2 + 2z2b3)(i - 1) +
2b + 2z2b3].

(t4) for each 1 5 i 5 z - 1, 2zb2 tasks from K; and 2zb2 tasks from K; are
processed in parallel in the time interval [(2b + 2zb2 + 2z2b3)(i - 1) +
2b + 2z2b3, (2b + 2zb2 + 2z2b3)i].

(t5) all tasks from K5 are processed in the time interval [(2b + 2zb2 +
2z2b3)(z - 1) + 2b, (2b + 2zb2 + 2z2b3)(z - 1) + 2b + I K51].

Let C = CjEN Cj(Z). Then the scheduling decision problem is a prob-
lem requiring to answer the question: does there exist a feasible schedule a
satisfying the inequality Cc (a) 5 C?

In what follows, for any positive integer t the time interval [t - 1, t] will be
called a time slot t.

Lemma 6 For any schedule a, optimal for the criterion Cc,

and
max Cj (o) + 1 = min Cj (a)

jEN-K5 jEK5
(1 1)

Pro08 Let a be an arbitrary optimal schedule. It follows from the optimal-
ity of a that the time interval [O, maxj,cN Cj(o)] does not contain any time
slot in which both machines are idle. Suppose that a does not satisfy (10).
Since each task in K5 is a 2-task and does not have any successor, o can be
transformed into a schedule r] in which all tasks from N - K5 are processed
in the same order as in o, all tasks from K5 are processed after all tasks from
N - Kg, and

max Cj (7) = max Cj (0)
JEN jEN

Because the set K5 is comprised of Ztasks, the optimality of o implies the
optimality of r] , and since a does not satisfy (10)

It is easy to see that there exists a feasible schedule p such that all 2-tasks
comprising MI are processed in the time interval [0, (MII]; all 2-tasks consti-
tuting K4 are processed in the time interval [I MI 1, I MI I + I K41]; all I-tasks

102 Zinder and Do

from K1 U K2 are processed in the time interval [I MI I + I K4 I , I MI I + I K4 I +
lKi1 + IK21J each in parallel with some task from M2 u K3; and all 2-tasks
from K5 are processed in the time interval [I Ml I + 1 K41 + IKl 1 + 1 K2), I M ~ I +
lK41+ 1Kil + lK21 + 1K511.

Because sets MI and K4 are comprised of Ztasks,

and

we have

which contradicts the optimality of v, and therefore the optimality of cr.
Let a be an optimal schedule, then (10) implies that every task from Kl U K2

is processed in o in parallel with a task from K3 U M2. Hence, the time
slot rnaxjEN-K5 CJo) contains two 1-tasks: the last task in the Kf-chain
and a task from M2. Since the set K5 is comprised of 2-tasks, the opti-
mality of o implies that all these tasks are processed in o after the time slot
maxj€l\r-~~ Cj(o) , which is equivalent to (1 1). 0

In what follows, only schedules u, satisfying (10) and (1 I), will be consid-
ered. For any two tasks j and g, let

if Cj(u) < Cg(o) and j is a Ztask
if Cj (o) < Cg (a) and j is a 1-task
if j = g

(0 otherwise

Let A2,(o) be the sum of all djg(o), where both j and g are Ztasks; All(o)
be the sum of all hjg (a) , where both j and g are 1-tasks; A12 (o) be the sum of

Scheduling Unit Execution Time Tasks 103

all bjg(o), where j is a 1-task and g is a 2-task; and Azl(a) be the sum of all
Jjg(a), where j is a 2-task and g is a 1-task.

Since all 1-tasks are processed in a in pairs, for any g E N,

and consequently,

It is easy to see that Aa2(a) + All(a) is a constant and does not depend on a.
Therefore, for any two schedules a and r] , satisfying (10) and (1 l),

Cc(a) - Cc(r]) = A12(a) - Aia(r]) + A21 (a) - A21 (v)
Let j be a 1-task and g be a 2-task. Then

and therefore

1
%(a) - C E (~) = p 2 1 (~) - A21(d) (12)

Let a be an arbitrary schedule. Consider a new schedule r] such that

Cj (7) = Cj (a) for all j 4 K4 U K3;

{Cj(r]) : j E K4) = {Cj(o) : j E K4);

Cjl (7) < Cj2 (r]) for any two tasks jl E ~2 and j2 E ~2 such that
il < i2;

Cjl (7) < Cj2 (11) for any two tasks jl and j2 from the same set Ki such
that Cjl (a) < Cj2 (a) ;

rn {Cj (7) : j E K3) = {Cj(a) : j E K3);

Cjl (r]) < Cj,(r]) for any two tasks jl E K$ and j2 E K$ such that
il < i2;

Cjl (r]) < Cj2 (r]) for any two tasks jl and j2 from the same set Ki such
that Cjl (a) < Cjz (a).

It is easy to see that r] is feasible and Cc(r]) = Cc(o). In what follows,
only schedules 7 satisfying the conditions

m?Cj(7)< min Cj(q), f o r a l l l < i < z - 1
jEK; ~EK;+'

(13)

104 Zinder and Do

and
m e C j (q) < min Cj(r]), f o r a l l l < i < z - 1
jEK; j € ~ ; + '

(14)

will be considered.
Let a be an arbitrary schedule, and suppose that for some i

m e Cj (a) + 1 < min Cj (a)
jEK; jEK;

Let

Cjl (a) = m e Cj (a) and Cj2 (a) = min Cj (a)
jEK; j ~ K 4

Then consider a new schedule q, where

Cx (0) if Cx (a) < Cjl (a) or Cx (a) 1 Cj2 (a)
Cx (a) - 1 if Cjl (a) < Cx (a) < Cj2 (a)
Cj2(o) - 1 if x = jl

Since jl is a Ztask which has only one immediate successor, task j2, this
schedule is feasible and Cc(r]) 5 Cc(o). In what follows, only schedules q
satisfying the condition

will be considered.
Furthermore, let a be an arbitrary schedule, and suppose that for some i

there exist two tasks jl E Ki and j2 E Ki such that Cj, (a) + 1 < Cj, (a) and
j $ Ki for any j satisfying the inequalities Cjl (a) < Cj(a) < Cj2 (a). Then
consider a new schedule q where

Cx(0) if Cx (a) < Cjl (a) or Cx (0) 2 Cj2 (o)
Cx (a) - 1 if Cjl (0) < Cx (a) < Cj2 (a)
Cj2(o) - 1 if x = jl

Since jl is a Ztask and j2 is its only immediate successor, it is obvious that r]

is a feasible schedule and Cc(q) 5 Cc(a). Similar reasoning can be used if
tasks jl and j2 belong instead of K: to some M;. Therefore, in what follows,
only schedules q satisfying the conditions

and

m q Cj (a) - min, Cj (a) = I M: 1 - 1, for all 1 5 i 5 32 (17)
jEM; jEM;

Scheduling Unit Execution Time Tasks 105

will be considered.

Lemma 7 For any schedule r], optimal for the criterion Cc, each task from
Kl is processed in parallel with a task from M2.

Proofi Suppose that there exists an optimal schedule q which does not sat-
isfy this lemma. Since r] is an optimal schedule, by Lemma 6, each task from
Kl U K2 is processed in this schedule in parallel with some task from the set
M2 U K3. Consider the first time slot containing a task from Kl, say task
u E K;, together with a task from K3, say task v. Suppose that h > 1.
Since j 4 g for each j E u ~ < ~ < ~ K ~ and each g E K;, the processing of all
tasks constituting u ~ ~ ~ < ~ K ~ completed in r] before the processing of tasks
from ~ , h begins. Each j E u ~ ~ ~ < ~ K ~ is processed in r] in parallel with some
task from u ~ ~ ~ < ~ K $, because all tasks constituting u ~ ~ ~ < ~ K ~ are processed
in parallel with tasks from M2. Since I Ul<i<h KiI = I Ulli<h KiI, no other
tasks from K3 are processed in parallel with tasks from U I < ~ < ~ K ~ . Hence
v is the first task in the K:-chain. Suppose that h = 1, then any task from
K3 preceding v is to be processed in parallel with some task from K:, which
contradicts the selection of v. Hence v is the first task of the K!-chain.

Among all tasks j E M2, satisfying the condition Cj(r]) > Cu(q), select
the task with the smallest completion time. Let it be task w and suppose that
this task corresponds to a,. Let %: be the set of all tasks j E M: such that

By Lemma 6 and by the selection of w, each time slot in the time interval
[Cu(r]), Cw(r]) - 11, containing a 1-task, contains one task from Kl U K2 and
one task from K3. Let El be the set of all tasks j E K1 which are processed in
r] in the time interval [C,(r]), Cw (r])] , Z2 be the set of all tasks j E K2 which
are processed in r] in the time interval [C, (q), Cw (r])] , and i 73 be the set of all
tasks j E K3 which are processed in r] in the time interval [Cu(r]), Cw (r]) - 11.
Let fi be the set of all tasks j such that

Observe that all tasks in N are Ztasks.
Among all j E E3 select a task with the largest completion time Cj(q). Let

it be task y and let y E Kg for some r 2 h. Then by (14) and the fact that, for
any i, I K ; ~ = IKiI,

min Cj(r]) (18)

and for any h 5 i < r

m q Cj (7) + 1 < min Cj (r])
jEK; j E K;+'

106 Zinder and Do

Consider a new schedule a where

C, (a) = C, (r]) if either C, (7) < min Cj (r]) , or C, (r]) > Cw (77);
j € K t

rn tasks comprising E: are processed in the time interval

in the same order as in r] ;

Cu(a) = Cw (a) = min Cj (r]) + 1 ;
j€K,h

tasks comprising K; are processed in the time interval

in the same order as in r] ;

rn tasks comprising kl U & U % are processed in the time interval

in the same order as in r] ;

rn tasks comprising k3 are processed in parallel with tasks from kl U k2
in the same order as in r].

The feasibility of a follows from (16), the selection of w, (18) and (19). On
the other hand, by (12),

which contradicts the optimality of q. 0

Theorem 5 For any instance of the 3-partition problem, a 3-partition exists
if and only if there is a feasible schedule r] for the corresponding scheduling
problem such that Cc(7) I C.

Scheduling Unit Execution Time Tasks 107

Suppose that a 3-partition A1, . . . ,A, exists, and that for each i , Ai =
{ail, ai2, ai,). Consider a schedule r] in which

for each 1 < i < z, tasks from M:' U M? U M? are processed in the
time interval [(2b+2zb2 +2z2b3)(i - l) , (2b+2zb2 +2z2b3)(i - 1) + b],
and tasks from U M? U M? are processed in the time interval
[(2b + 2zb2 + 2z2b3)(i - 1) + b, (2b + 2zb2 + 2z2b3)(i - 1) + 2b] in
parallel with tasks from Ki;

tasks from Ks and from all Ki, K;, Ki are processed in accord with
(t3), (t4) and (t5).

This schedule is feasible, and since r] satisfies all the conditions (t1)-(t5),
C c (d l C .

Suppose that a 3-partition does not exist. Consider any schedule a , probably
infeasible, satisfying conditions (t1)-(t5), and an optimal schedule 7 . Denote
by Mi(a) the set of all tasks j E M2 which are processed in a in parallel with
one of the tasks from Ki, and denote by Mi(q) the set of all tasks j E M2
which are processed in r] in parallel with one of the tasks from Ki. It is easy
to see that for any 1 5 i < z and any g E Ki U Mi(o)

6, (a) = bi + 2z2b3i
jEMlUK4

Similarly, taking into account (13), (14), (15), (17) and Lemmas 6 and 7, for
any 15 i < tandany g E Kf U Mi(r])

and for at least one i , say i*,

6,(r]) > bi* + 2z2b3i* + 1
jEMluK4

Hence by (20)-(24) and (12),

Zinder and Do

Since q is an optimal schedule, there is no feasible schedule with the criterion
value less than or equal to C. 0

Since the 3-partition problem is NP-complete in the strong sense, Theorem 5
implies that P2lin-tree,pj = 1, sizejlCc is NP-hard in the strong sense.

4. CONCLUSIONS
The classical Coffman-Graham-Geray result establishing the existence of

an ideal schedule for the problem with two identical parallel machines, arbi-
trary precedence constraints and unit execution time tasks can be extended in
two different ways:

as has been shown above, an ideal schedule exists and can be found in
polynomial time if each task has a release time;

as has been proven in Coffman et al. (2003), an ideal schedule exists and
can be found in polynomial time if preemptions are allowed.

The question of the existence of an ideal schedule and a polynomial-time
algorithm for the model, obtained from the original one by introducing both
release times and preemptions, still remains open and can be viewed as a di-
rection of further research.

As has been proven above, the P2lprec,pj = 1, sizej ICc problem is NP-
hard in the strong sense even if the precedence constraints are restricted to
in-trees. Although this proof together with Zinder et al. (submitted), where
NP-hardness has been proven for out-trees, strengthens the original result of
Brucker et al. (2000), these two results do not provide the full characteriza-
tion of the P2lprec,pj = 1, sizej ICE problem and its complexity status also
requires further research.

References
Bmcker, P., Knust, S., Roper, D. and Zinder, Y. (2000) Scheduling UET task systems with con-

currency on two parallel identical machines. Mathematical Methods of Operations Research,
52/3:369-387.

Coffman Jr, E. G. and Graham, R. L. (1972) Optimal scheduling for two-processor systems.
Acta Infomatica, 1:200-213.

Coffman, E. G., Sethuraman, J. and Timkovsky, V. G. (2003) Ideal preemptive schedules on two
processors. Acta Informatica, 39:597-612.

Scheduling Unit Execution Time Tasks 109

Garey, M. R. and Johnson, D. S. (1977) %o-processor scheduling with start-time and deadlines.
SIAM Journal of Computing, 6:416426.

Garey, M. R, and Johnson, D. S. (1979) Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman, San Francisco.

Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G. and Shmoys, D. B. (1993) Sequencing
and scheduling: algorithms and complexity. In Logistics of Production and Inventory, S. C .
Graves, A. H. G. Rinnooy Kan and P. H. Zipkin (Eds.), Elsevier, Amsterdam.

Zinder, Y. (1986) An efficient algorithm for deterministic scheduling problem with parallel ma-
chines. Cybernetics, N2 (in Russian).

Zinder, Y., Do, V. H. and Oguz, C. (2002) Computational complexity of some scheduling prob-
lems with multiprocessor tasks. Discrete Applied Mathematics. Submitted.

Personnel Scheduling

TASK SCHEDULING UNDER GANG CONSTRAINTS

Dirk Christian Mattfeld
Technical University of Braunschweig,
Institute of Business Administration,
Spielmannstr: 8,

38106 Braunschweig,
Germany

Jiirgen Branke
University of Karlsruhe,
Institute AIFB,
76128 Karlsruhe,

Germany
branke@aifb.uni-karlsruhe.de

Abstract In this paper, a short-term manpower planning problem is considered where
workers are grouped into gangs to support reliable and efficient operations. The
goal is to minimise the total number of workers required by determining an ap-
propriate gang structure, assignment of tasks to gangs, and schedule for each
gang. We model such a problem as a multi-mode task scheduling problem with
time windows and precedence constraints. While the gang structure and as-
signment of tasks is optimised by a tabu search heuristic, each gang's schedule
is generated by solving the corresponding one-machine scheduling problem by
an iterated Schrage heuristic. Because the evaluation of a tabu search move is
computationally expensive, we propose a number of ways to estimate a move's
impact on the solution quality.

Keywords: manpower planning, multi-mode scheduling, gang constraints, precedence con-
straints, tabu search, local search, one-machine scheduling.

1. INTRODUCTION
We consider a task scheduling problem as it arises: e.g., from the tranship-

ment of finished vehicles (Mattfeld and Kopfer, 2003). The inter-modal split
in the logistics chain requires the intermediate storage of vehicles at a stor-

114 Mattfeld and Branke

age area of an automobile terminal. The storage or retrieval of a charge of
vehicles forms a task. Since a charge can only be retrieved after it has been
stored, precedence constraints between pairs of storage and retrieval tasks are
introduced. Temporal constraints with respect to the availability of transport
facilities are modelled by time windows.

A task can be processed in different modes determined by the number of
drivers executing the task. In order to warrant a safe and reliable relocation
of vehicles, drivers are grouped into gangs. The gangs do not change over the
course of the planning horizon, typically a time span covering a work shift.
Therefore all tasks assigned to one gang are processed in the same mode. The
number of gangs as well as their sizes are subject to optimisation, as is the
sequence of operations within a task. Time windows of tasks and precedence
constraints complicate the seamless processing of tasks within a gang. The
objective is to minimise the sum of workers over all gangs established.

As long as the same gang processes two tasks coupled by a precedence con-
straint, gang scheduling can handle the constraint locally. Whenever a prece-
dence relation exists across gang boundaries, it becomes globally visible, and
is modelled as a dynamically changing time-window constraint for its asso-
ciated tasks. If many precedence constraints exist, the seamless utilisation of
manpower capacity within the various gangs is massively hindered by dynam-
ically changing time windows. Managing this constraint will be the greatest
challenge while searching for a near-optimal solution to the problem.

In this paper we propose a tabu search procedure which moves single tasks
between two gangs. The performance of a move requires the re-scheduling
of the two gangs involved. The associated sub-problems are modelled as one-
machine problems with heads and tails and varying modes of processing. Since
such a sub-problem is already NP-hard for a single mode of processing (Car-
lier, 1982), an efficient base-heuristic is iteratively applied to determine the
manpower demand. Because the evaluation of a move's impact on the solution
quality is computationally expensive, the selection of a move in the tabu search
heuristic is based on estimates of the move's impact on the manpower.

In Section 2 we discuss related problems and develop a mathematical model.
In Section 3 we describe the algorithm in detail, namely, the tabu search frame-
work, the neighbourhood definition, the procedure of scheduling a gang, and,
finally, the approximation proposed for selecting a move. We perform a com-
putational investigation for a set of problem parameters in Section 4 before we
conclude.

2. RELATED WORK AND PROBLEM MODELLING
We first describe some related problems before we develop a model for the

problem considered.

Task Scheduling Under Gang Constraints 115

The consideration of multiple modes in the resource constrained project
scheduling allows a trade-off between a task's processing time and its resource
consumption (Brucker et al., 1999). Mode-identity constraints for prescribed
subsets of tasks have been introduced in order to allow the assignment of iden-
tical personnel to a group of related tasks (Salewski et al., 1997).

In the audit staff scheduling problem, auditors are assigned to engagements
each consisting of various subtasks. All subtasks of an engagement have to be
performed by the same auditor in prescribed time windows. The duration of
subtasks differ depending on the performing auditor (Dodin et al., 1998).

Besides the apparent analogies to resource constrained project scheduling,
there is also a similarity to the vehicle routing problem with time windows.
There, a fleet of vehicles serves a number of customers, even though not every
vehicle has to be used. The problem is to assign customers to vehicles, and to
generate a route for each of the vehicles, such that a performance criterion is
optimal (Bramel and Simchi-Levi, 1997, Chapter 7).

Another related problem appears to be the assignment of non-preemptive
computing tasks to groups of processors of a multi-processor system (Droz-
dowski, 1996). The size and number of groups of processors performing a set
of tasks can vary, and time windows for the execution of tasks as well as prece-
dence relations between computing tasks exist (Blaiewicz and Liu, 1996). The
term "gang scheduling" has been introduced in the context of multi-processor
scheduling (Feitelson, 1996), but also relates to standard terms of port opera-
tions.

We model the logistics problem at hand as a multi-mode gang scheduling
problem. Let A be the set of (non-preemptive) tasks involved in a problem.
For each task j E A, a certain volume 4 is to be processed in a time interval
specified by its earliest permissible starting time ESTj and its latest permissi-
ble finishing time LFTj. The predecessor task of task j of an existing pairwise
precedence relation is denoted by r l j . If no predecessor is defined, qj = 0.

Time is modelled by 1, . . . , T discrete time steps, which are treated as peri-
ods rather than as points in time. If one task is complete at time t, its immediate
successor task cannot start before t + 1.

The workers are grouped into a set of G gangs 9 = { S 1 , S2 , . . . , S G) . Each
gang Si is assigned a subset of the tasks Ai A with uZ1 Ai = A and

G ni=l Ai = 0. The number of workers in gang Si is denoted by pi, the number
of tasks assigned to gang Si is denoted by hi = lAi I. At any time step, a gang
can only work on a single task.

A solution is described by the number of workers in each gang, an assign-
ment of tasks to gangs (i.e. a partition of A into &), and a sequence of tasks
for each gang.

Let the task on position k in gang i's permutation of tasks be denoted by
r i , k (i.e. task ~ i , k with k > 1 is processed after task Starting times

116 Mattfeld and Branke

of tasks s j E [I,. . . ,TI can be derived from such a task sequence by assum-
ing left-shifted scheduling at the earliest possible starting time. Similarly, the
completion times cj E [I, . . . , T] of tasks are fully determined by the starting
times and the manpower demand.

The model can be stated as follows:

Equation (1) minimises the sum of workers pi over all gangs. Time windows
of tasks are taken into account by (2) and (3). Precedence relations among
tasks are considered by Eq. (4). Equation (5) ensures a feasible order of tasks
belonging to the same gang. The completion time of each task is calculated
in (6). Finally, Eqs. (7)-(9) make sure that each task is assigned to exactly one
iwg .

3. THE TABU SEARCH ALGORITHM
As already stated in the previous section, a solution has to specify three

things:

1. The number of gangs G and the number of workers pi for each gang Si
2. the assignment of tasks to gangs, and

3. the sequence of operations in each gang.

In this paper, we are going to use a tabu search algorithm to assign tasks to
gangs. For every such assignment, inside the tabu search heuristic, an appro-
priate schedule for each gang is derived by applying a simple Schrage sched-
uler (Carlier, 1982).

Task Scheduling Under Gang Constraints 117

The basic idea of tabu search is to iteratively move from a current solution
s to another solution st E N(s) in the current solution's neighbourhood. The
neighbourhood definition allows "small" changes to a solution, called moves,
in order to navigate through the search space. The move to be executed is
selected based on costs C (s , s') associated with the move from s to st. For
minimisation problems, the deepest descent, mildest ascent strategy is applied
for selecting moves.

In order to avoid cycling in a local optimum, recently performed moves are
kept in a list of currently forbidden ("tabu") moves for a number of iterations.
This tabu list is maintained and updated each time a move has been carried
out (Glover and Laguna, 1993). We use a variable tabu list length.

In the remaining sections, the following four issues will be addressed in
more detail:

rn What is a suitable neighbourhood definition?

rn How to build an initial solution?

rn How to perform a move?

rn How to estimate the cost of a move?

3.1 Neighbourhood and Tabu List
The purpose of the tabu search framework is the integration and disintegra-

tion of gangs by re-assigning tasks. We have chosen the most elementary move
possible, namely the re-assignment of a single task from one gang to another,
resulting in a neighbourhood size of roughly H . G with H being the number of
tasks involved in a problem instance. We refrain from engaging more complex
neighbourhood definitions like the exchange of two tasks between two gangs,
because determining the costs C (s , st) for all st E N(s) is computationally
prohibitive and, as we will see, the remedy of estimating the costs becomes
almost intractable for complex neighbourhoods.

As a move attribute we consider a task entering a gang. Consequently, a
tabu list entry forbids a task to leave a certain gang for a certain number of
iterations. Not every move is permissible. For example, for a certain interval
of the planning horizon, whenever there are more tasks to be scheduled than
there are time steps available, the move is excluded from N(s). Also, moves
which disintegrate and integrate a gang at the same time are not considered.

3.2 Building an Initial Solution
The construction of a competitive and feasible solution is not trivial, because

the necessary number of gangs is not known. We build an initial solution by
separating tasks into as many gangs as possible. Tasks without precedence

118 Mattfeld and Branke

relations are placed in a gang of their own, whereas pairs of tasks coupled by
a precedence relation are processed by the same gang. In this way, precedence
relations can be handled within the local scope of individual gangs, and it is
guaranteed that the initial solution is feasible.

For each gang, we determine the minimum number of workers required to
process the tasks. For each task j, the number of workers required is rj =

[V,/((cj - sj) + 1)l.
In the event that only one task is assigned to a gang i, its minimum number

of workers is thus pi = [V,/((LFTj - ESTj) + 1)l
If two tasks j and k with r]k = j share a gang, the number of workers

required is at least as high as the maximum required for each task separately,
and at least as high as if the two tasks would be treated as one:

We start with the maximum of these two lower bounds and check for fea-
sibility. If the number of workers is not sufficient to ensure feasibility, we
iteratively increase the number of workers by 1 until the schedule becomes
feasible.

3.3 Performing a Move
A move is performed in three steps: first, we move the task from one gang

to the other. Then, these two gangs are re-scheduled, and contingently their
mode (number of workers) is adapted. Finally, it is checked whether the re-
scheduling of the two directly involved gangs can also lead to improvements
in other gangs due to dynamically changed time windows. These aspects shall
be discussed in the following.

Scheduling a Single Gang Let us first assume that the number of workers
is given. This problem can be seen as a one-machine scheduling problem with
heads and tails, where the head of a task denotes the non-available interval from
t = 1 to ESTj , and the tail denotes the corresponding interval from t = LFTj
up to the planning horizon T . The head of task no. 5 in Figure 1 ranges from
time unit 1 to 8, whereas its tail comprises only time unit 18. Consequently,
the time window of task no. 5 covers time units 9-17. In the current mode of
processing, two time units are covered.

For our purpose, we extend the notion of heads and tails by the consider-
ation of precedence relations of tasks placed in different gangs. Since only
one gang is modified at a time, predecessor and successor tasks placed in other
gangs may additionally constrain the temporal placement of tasks. The func-
tions est() and 1 f t () restrict the time window of a task to its currently largest

Task Scheduling Under Gang Constraints

Figure 1. Example of Schrage schedule consisting of seven tasks to be scheduled in 18 time
units. Dark grey rectangles represent the time of processing while light grey rectangles depict
the time windows given. Critical tasks are indicated by a black border.

permissible extension. est(j) returns ESTj if no predecessor rlj exists and
max{ESTj, cV3 + 1) otherwise. Similarly, 1 f t (j) returns LFTj if no succes-
sor task r;j exists and min{LFTj, sK3 - 1) otherwise.

For the objective of minimising the makespan, this problem has been shown
to be NP-hard (Carlier, 1982). Carlier proposes a branch & bound algorithm,
which alters a schedule built by the Schrage heuristic and solves the problem
optimally. However, because we have to schedule many gangs for each tabu
search move, we have to rely on a very fast heuristic. We therefore rely on
a single run of the Schrage heuristic which schedules all tasks of Ai in the
planning horizon 1, . . . , T in a given mode pi.

Basically, the Schrage heuristic schrage() schedules tasks sequentially with
respect to the smallest permissible finishing time. In every iteration, one task
is placed starting at time unit t . For this purpose, all tasks with est() 5 t enter
the selection set S. If IS1 = 0, then t is increased to the minimum est() of all
tasks not yet scheduled. Otherwise, from S, the task j with the smallest 1 f t ()
is selected. If it can be placed at time unit t in mode pi without violating its
time window, starting and completion time of j are determined, t is updated
and finally j is removed from further consideration.

Figure 1 shows a schedule built by the Schrage heuristic. Initially, tasks
no. 1 and 2 can be scheduled at t = 1. Task no. 1 is given preference because
of its smaller 1 f t(1) = 3. In the second iteration only task no. 2 can be placed
at t = 3. In iteration three, no task is available at t = 6 and therefore t is
updated to the minimal starting time of the remaining tasks t = 7. Task no. 3
dominates no. 4 due to its smaller l f t () . Then, no. 4 is placed at its latest

120 Mattfeld and Branke

permissible time of placement. Finally, the placement of tasks no. 5, 6, and 7
complete the schedule.

The number of workers required is determined in a similar way as for the
initial solution described in the previous section. First, let us generalise the
calculation of a lower bound to an arbitrary set of tasks Jli. The number of
workers required is at least as high as the maximum of the numbers required
for any single task, assuming each task can utilise its entire time window (p').
Also, it is at least as high as if the set of tasks is treated as one task (ptt).

More formally, the lower bound calculation looks as follows:

function lower-bound(Jli)
for all j E .Ai do rj = [V, / ((l f t j - estj) + 1)l
p' = maxjEA{rj)
u = CT=l usable(t,Jli)
P" = I(CjcJL, V,)/uI
return max{pl, pt')

end function

where function usable() returns 1 if time step t can be utilised by at least one
task, and 0 otherwise.

As for the initial solution, we first set pi = lower-bound(&) and contin-
gently increase pi by one as long as the Schrage heuristic fails to place all tasks
without violating a time window.

procedure schedule(Jli)
pi = lower-bound(&)
while schrage(Jli,pi) = false do

pi = pi + 1
end while

end procedure

Propagation of Time Windows Scheduling the tasks of a gang may also
entail the re-scheduling of other gangs. In the event that tasks of gang i and k
involved in the move have precedence constraints with tasks of other gangs, a
change of i's or k's schedule may change the time windows of tasks in other
gangs, which might lead to different (better or worse) schedules if the Schrage
heuristic were applied again.

In particular, we exploit new opportunities due to an enlargement of a time
window in the event that the completion time cj of task j impedes an earlier
starting time sl of the successor task 1 in another gang. Thus, whenever cj+l =
sl holds, and cj decreases because the gang of task j is re-scheduled, also the
gang of task 1 is noted for re-scheduling. Similarly, whenever the starting time
sl of task 1 has impeded a later completion at cj of the predecessor task j

Task Scheduling Under Gang Constraints 121

in another gang, that gang is noted for re-scheduling. Once noted, gangs are
re-scheduled in a random order.

Since time windows can be recursively extended, we call this procedure
time-window propagation. The prerequisites for propagating a time window
are rarely satisfied, such that the number of re-scheduling activities triggered
is limited. If, however, gang i is noted for re-scheduling, there is a reasonable
chance to decrease the number of workers pi.

3.4 Estimating the Cost of a Move
Since the simulation of a move implies at least two, but often many more

calls to the Schrage heuristic, it would be computationally very burdensome.
Therefore, we estimate a move's effects on the two gangs directly involved and
neglect further effects of the propagation of time windows.

To estimate the costs of a move we determine a contingent savings of work-
ers pi - fi due to the removal of a task j from gang i. Next, we determine
the additional effort j& - pk spent on integrating j into another gang k. We
calculate the difference of the two figures, i.e. fii +ak -p i - pk, and select the
move with the highest approximated gain (or the lowest approximated loss) for
execution.

Schedule Properties In order to estimate yji and l j k for gangs i and k,
we discuss some properties of schedules which will help to derive appropriate
estimates. Central notions of our arguments are the block of tasks and the
criticality of tasks.

Definition 1 A block consists of a sequence of tasks processed without in-
terruption, where the first task starts at its earliest possible starting time, and
all other tasks start later than their earliest possible starting time.

Tasks of a block are placed by the Schrage heuristic independent of all other
tasks not belonging to this block. Therefore, blocks separate a schedule into
several parts, which can be considered independently. Another interesting
property concerning blocks is that slack can occur only at the end of blocks
or before the first block.

In Figure 1 we identify three blocks. Block 1 consists of tasks no. 1 and
2 and is easily distinguished from block 2 consisting of tasks no. 3, 4, and 5
by the idle-time of time unit 6. Block 3 consisting of tasks no. 6 and 7 can be
identified by considering EST6 = sf3 = 14.

Definition 2 A task is said to be critical if it is involved in a sequence of
tasks (called a critical path), which cannot be shifted back or forth in any way
without increasing the number of workers involved.

122 Matgeld and Branke

In a Schrage-schedule, a critical block causes the violation of a time-window
constraint if the number of workers is decreased by one. Obviously, all tasks
of a critical path belong to the same block, but not every block necessarily
contains a critical path. However, if a critical path exists, it starts with the first
task of a block. A critical path terminates with the last critical task of its block.
Thus, it completes processing at its latest finishing time, although there may
exist additional non-critical tasks scheduled later in the same block.

Only one critical path can exist in a block. In the event that a task j sched-
uled directly before a critical task k causes k's criticality, obviously j itself
must be critical. Accordingly, if we classify any task to be critical, all preced-
ing tasks of its block are critical too.

In Figure 1 none of the tasks no. 1 and 2 forming the first block are critical,
because the entire block could be shifted to the right by one time unit without
delaying other tasks. Tasks 3 and 4 form a critical path within the second block.
Although task no. 5 cannot be shifted, it is not critical by definition, because
it does not complete at its latest finishing time. Task no. 6 is again critical
without the participation of other tasks placed.

As we will see, the notions of blocks and critical tasks make a valuable
contribution to the estimation of a move.

Estimating the Manpower Release of a Task Removal Obviously, ev-
ery schedule has at least one critical block (a block containing a critical path),
which impedes a further decrease of the number of workers pi. For that reason,
the only way to obtain a benefit from removing a task from a gang is to break
a critical block. If two or more critical blocks exist, and one critical block
breaks, at least one other critical block remains unchanged and consequently
no benefit can be gained. For instance, in Figure 1 the removal of the block
consisting of task no. 6 cannot lead to an improvement because tasks no. 3 and
4 still remain critical. If only one critical block exists, but a non-critical task
is removed, again no saving can be expected. In all these cases the estimation
procedure returns pi.

Estimating the Manpower Demand of the Critical Block Removing a
critical task from the only critical block existing can lead to a decrease of the
number of workers involved. Here we have to distinguish the removal of a task
(a) within a critical path, (b) at the beginning of a critical path, and finally,
(c) at the end of a critical path.

(a) In case of the removal of a task inside a path we determine the time-
span stretching from the starting time sj of the first task j of the block
to the completion time cl of the last critical task 1 of the block. We
sum the volumes of all tasks but the one to be removed from the critical
path, and divide the sum of volumes through the extension of the time-

Task Scheduling Under Gang Constraints 123

span. Consider a critical path consisting of tasks 1 , 2 and 3. If task 2 is
removed, the new number of workers is estimated by (Vl + V3)/((c3 -
81) + 1).

(b) The removal of the first task j of a critical path alters the starting con-
dition of the path. Therefore the path can start at the maximum of the
earliest possible starting time estl of the second task 1 of the path, and
the completion time c, + 1 of the predecessor task m of task j to be
removed (if m does not exists, set c, = 0). For the example of a criti-
cal path consisting of tasks 1 ,2 and 3, the new number of workers after
removing task 1 is estimated by (V2 + V3)/((c3 - cV1) + 1).

(c) Similarly, the removal of the last task of a critical path alters the ter-
minating condition of the path. Therefore the path can complete at the
minimum of the latest possible completion time 1 f t j of the last but one
task j of the path, and the starting time sl - 1 of task 1 succeeding the
path (if 1 does not exist, set sl = T + 1).

Integrating the Bound Imposed by Non-critical Blocks The approxi-
mated manpower demand refers to one critical block only. After the removal
of a critical task from this block, other, so far non-critical, blocks may become
critical, and for that reason may limit a further decrease of the manpower de-
mand.

Consider a critical block b, for which the removal of a critical task has been
estimated. For blocks in '8 = {bl,. . . , bc-l, b,+l, . . . , b,) a lower bound on
the number of workers required is calculated by prorating the sum of volumes
of its tasks onto the time-span used by the block plus a contingent idle-time
following the block. The number of workers applicable is then approximated
by the workers fi, determined for block c and for the other blocks of '8 by
6i = max{fic, maxkG!3{fik)).

The procedure accurately identifies the vast majority of non-improving task
removals. If the removal of critical tasks in the only critical block existing may
lead to a benefit, this benefit is limited by the manpower capacity required for
other blocks. In all these cases a conservative estimate fii is returned by the
procedure.

Estimating the Manpower Demand of a Task Insertion For estimating
the effect on pk caused by the insertion of a task v into gang k, we first try to fit
this task into an existing gang schedule. If v integrates a new gang, we calculate
the exact manpower demandpk of the new gang k aspk = [V,/((l f t j -estj)+
I)]. In all other cases, we estimate the additional number of workers (fik - pk)
required in order to produce a feasible schedule.

124 Mattfeld and Branke

We start by determining the task w in an existing gang schedule, before
which the new task v will be inserted. To identify w, we scan the tasks of the
schedule in the order produced by the Schrage heuristic and stop at the first task
w with est, I est, and 1 f t, < I f t,. After having found w, we determine
the earliest permissible starting time s, and the latest permissible completion
time c, with respect to the existing gang structure.

If v has to be appended to the end of the schedule, we easily check whether
contingent idle-time T - cj after the last task j suffices to integrate v.

If v is to be inserted, we are going to verify the available idle-time. Idle-time
to the left of w can be available only if w is the first operation of a block. In
this case v may start right after the completion time of w's predecessor u, i.e.
at time step c, + 1. The utilisation of the idle-time, however, is limited by est,,
thus S, = max{c, + 1, est,).

Idle-time on the right can be available only if w is non-critical. In this case
w and its non-critical successor tasks can be shifted to the right in order to
obtain additional idle-time. The maximal amount of idle-time available can be
determined by placing the tasks right-shifted in the opposite order of the task
sequence given in the Schrage schedule. We refer to the resulting starting time
of task w as 3,. Thus, c, = min{B, - 1, 1 ft,).

In the event that rV,/((c, - s,) + 1)l is smaller than or equal to the number
of workers currently engaged, task v can be integrated in the schedule without
engaging additional workers. The procedure returns I j i = pi and terminates.

Whenever the number of workers does not suffice to integrate task v, the ad-
ditional manpower demand has to be estimated. Since task v for sure becomes
critical, the blocks merged by v are considered for prorating v's volume by
means of function lower-bound(). The approximated increase of the number
of workers Iji is returned to the calling procedure.

Summary of the Approximation Effort Summarising, the estimation
scheme proposed accurately identifies the vast majority of task removals which
do not yield savings of workers. In other cases the estimation tends to produce
a conservative estimate of savings to be gained. Apart from some special cases,
only those insertions are estimated correctly which do not require additional
workers. In other cases again a conservative estimate on the additional number
of workers required is determined. Whether the approximation quality suffices
in order to guide the search successfully will be examined in the following
section.

4. COMPUTATIONAL INVESTIGATION
To assess the performance of our tabu search algorithm, we will evaluate it

empirically. To that end, we will first propose a benchmark generator, and then

Task Scheduling Under Gang Constraints

time

Figure 2. Exemplary optimal solution to a problem instance.

compare our tabu search algorithm with a simple local search approach on a
variety of benchmark problems.

4.1 Generating Problem Instances
In this section, we present a way to produce benchmark instances for which

the optima are known. The basic idea is to view a schedule as a rectangu-
lar plane, where the horizontal extension represents the time dimension and
the vertical extension denotes the number of workers involved. Obviously,
an entirely filled rectangle means that all workers are occupied for the whole
planning horizon, i.e. an optimal schedule.

The example in Figure 2 shows a schedule with 13 tasks organised in 4
gangs. The planning horizon comprises of 25 time units for which 20 workers
are utilised. Time windows and precedence relations are not yet specified, but
can be easily added to the schedule.

A benchmark instance is generated based on the following input parameters:

the number of time units in the planning horizon T

the total number of tasks H

the number of gangs G.

rn the minimal and maximal number of workers in a gang p,i, resp. p,,

rn the percentage of tasks involved in a precedence relation y E [O,1]

a parameter w E [O,1] determining the extension of time windows.

To produce a benchmark instance we proceed as follows:

1. The number of tasks hi for gang i is determined by prorating the H tasks
uniformly upon the G gangs. This can be implemented by first initialis-
ing array K of dimension [0, GI and setting K[O] = 0 and K[G] = H.

126 Mattfeld and Branke

Table 1. The mean relative error of the local optima found by the local hill-climber.

Small problems Large problems

y /w 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25

0.00 2.5 6.3 10.4 18.0 2.1 5.9 10.4 17.3
0.25 2.6 6.5 10.6 16.8 2.1 6.0 10.2 16.2
0.50 2.7 8.1 11.9 17.2 2.3 6.5 10.9 15.9
0.75 3.3 9.9 14.6 18.6 3.1 9.1 13.6 17.1
1 .OO 5.8 13.3 17.1 20.5 6.0 12.8 16.8 18.7

Then, we assign uniformly distributed random numbers in the range
[I , H - 11 to K [l] , . . . , K [G - 11. Next, we sort K in ascending or-
der, and finally we determine hi := K [i] - K [i - 11.

2. The starting times sj of task j E Jli in gang i are determined by dis-
tributing the hi tasks onto the T time units. We proceed in analogy to
the procedure described for Step 1. The completion times cj of tasks are
determined by means of the gang's task chain: %j := sj - 1.

3. The number of workers pi of gang i is drawn uniformly distributed
from the range bmi,, p,,]. Finally we calculate the task volume by
multiplying the task's duration with its manpower demand, i.e. Vj :=
((cj - sj) + 1) .pi.

4. A task can have a precedence relation with every other non-overlapping
task of the schedule. For example, in Figure 2 task no. 2 can have a
precedence relation with tasks in {1,3,4,5,8,11,13). We iteratively
select random non-overlapping pairs of tasks not yet involved in a prece-
dence relation and insert a precedence relation until a fraction y of the
tasks are involved in a precedence relation or there is no pair of non-
overlapping tasks left.

5. Finally time windows are specified in percent w of the examined time
horizon. In particular, we determine ESTj := [sj w] and LFTj :=

+ (T - c j) . ~] .

4.2 Empirical Results
To assess the potential of our tabu search procedure, we generate problem

instances in two sizes, namely with 10 gangs and 100 tasks (small problems)
and with 20 gangs and 200 tasks (large problems). For each size, we addi-
tionally vary the extension of time windows w and the percentage of tasks

Task Scheduling Under Gang Constraints

Table 2. Mean number of hill-climbing moves performed.

Small problems Large problems

y l w 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25

0.00 37.4 52.5 59.2 65.9 80.3 104.8 118.5 133.9
0.25 31.7 45.7 51.4 59.3 70.9 91.1 103.1 120.2
0.50 26.0 36.4 42.5 52.7 58.1 78.1 88.1 110.0
0.75 18.8 25.2 33.9 50.2 42.7 54.2 72.9 104.8
1.00 3.8 11.7 28.3 47.7 10.5 27.3 55.8 99.0

involved in precedence relations, y. Time windows are generated with w E
{0.25,0.50,0.75,1.00), and the percentage of tasks coupled by a precedence
relation are given by y E {0.0,O.25,O.5O,O.75,l.OO).

As parameters for the tabu search algorithm, we use a variable tabu list
length of [5, a] where H is the number of tasks involved in the problem,
and the stopping criterion is fixed at 10,000 iterations.

For every combination of size, time-window extension and number of prece-
dence relations specified, 10 benchmark instances are generated which are
solved three times each, because of the non-deterministic nature of the vari-
able sized tabu list length used. Overall, every figure given in Tables 3 and 4
represents the mean over 30 samples observed.

In order to gauge the competitiveness of the tabu search procedure, addi-
tionally a local hill-climber is applied. The algorithm starts from the same
initial solution as proposed in Section 3.2 and uses the same neighbourhood
definition as the tabu search procedure, refer to Section 3.1. Different from
tabu search, the local hill-climber calculates its C (s , s f) exactly by simulating
all moves in advance. Iteratively, the move yielding the greatest reduction in
the number of workers is performed until a local optimum is reached.

For the local hill-climber, the mean relative error (against the optimal so-
lution) over the 10 benchmark instances is presented in Table l. For uncon-
strained problems, the relative error is quite small, with 2.5% and 2.1% for
small and large instances respectively. However, with an increasing tightness
of the constraints imposed, the relative error increases drastically to approxi-
mately 20% for y = 1.00 and w = 0.25.

Obviously, the search space becomes more rugged, which goes along with a
decreasing performance of the hill-climber. However, as shown in Table 2, the
number of hill-climbing moves performed does not directly reflect the rugged-
ness of the space to be searched. As one may expect, the hill-climbing paths
get shorter with an increasing number of precedence constraints imposed (7).
The reasonable relative error of ~ 6 % for y = 1.0 and w = 1.0 is obtained by

128 Mattfeld and Branke

Table 3. The mean relative error of the best solutions found by the tabu search procedure.

Small problems Large problems

a mere 3.8 moves on average for small problems and 10.5 for large problems
respectively.

By narrowing the time windows starting from the entire planning horizon
(w = 1.0) towards 114th of the horizon (w = 0.25), the number of moves
performed on a downhill walk increases significantly. Apparently, tight time
windows introduce a locality to search such that only tiny improvements per
move can be obtained. Although with w = 0.25 more than 100 moves are
performed for large problems, the relative error obtained increases with an
increasing tightness of time windows.

Despite performing an increasing number of moves, an increasing relative
error is observed. Thus, a further improvement in searching a rugged search
space requires the temporary deterioration of the objective function value. Al-
though the tabu search procedure provides this feature, the large number of
iterations needed requires a considerably faster estimation of move costs.

Table 3 presents the mean relative error observed for the tabu search pro-
cedure. For a maximal time-window extension w = 1.00 the relative error
comprises ~ 4 % regardless of the number of precedence relations specified.
This is twice the relative error observed for the hill-climber, and pinpoints at
the shortcoming of the estimation procedure. Obviously, the estimation deliv-
ers poor approximation of the changes in the number of workers imposed by a
move in the case of loose constraints.

Narrowing the time windows increases the relative error of the tabu search
procedure only slightly up to ~ 1 0 % for w = 0.25. This figure is approxi-
mately half of the relative error observed for the hill-climber, which convinc-
ingly demonstrates the advantage of tabu search for problem instances with
tight constraints.

The tighter the constraints are, the better the costs of a move are approxi-
mated by our estimation procedure, because the time span onto which process-
ing times are prorated decreases with an increasing tightness of constraints.
Therefore, the estimation procedure is able to guide the search more accu-

Task Scheduling Under Gang Constraints

Table 4. Number of gangs recorded with the best solution observed.

Small problems Large problems

ylw 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25

0.00 70.2 30.5 16.2 11.2 138.5 61.3 29.3 20.5
0.25 64.6 29.1 14.1 11.0 125.5 51.3 23.9 19.4
0.50 57.1 20.5 14.6 11.3 115.3 54.4 27.7 19.0
0.75 49.8 18.7 14.9 10.8 100.7 56.2 25.8 18.3
1.00 39.5 28.8 13.3 10.5 82.9 36.1 21.4 18.4

rately. The algorithm proposed seems pleasantly robust against the existence
of precedence relations and an increasing problem size.

Table 4 shows the mean number of gangs recorded with the best solution
observed. This figure demonstrates how well the gang structure of the optimal
solution has been reproduced by the tabu search procedure. For large time win-
dows (w = 1.00) an enormous number of gangs have been integrated. Since
only the integer condition on the number of workers restricts the algorithm
from finding the optimal solution, there is no need to reduce the number of
gangs. However, merely the existence of precedence relations (which has only
a small influence on the solution quality) cuts the number of gangs in half.

For higher constrained problems with y 1 0.5 and w < 0.5 the gang struc-
ture of the optimal solution is successfully approximated. Here, for small prob-
lem instances ~ 1 0 gangs are integrated, whereas the 200 tasks of large problem
instances are essentially distributed among ~ 2 0 gangs. For highly constrained
problems an effective gang structure is a prerequisite for obtaining high quality
solutions. Obviously, this structure is identified by the algorithmic approach
proposed.

5. CONCLUSION
In this paper, we have addressed the problem of finding a suitable gang

structure for a task scheduling problem. For this problem, we have presented a
model and we have proposed a way to generate benchmark instances of varying
properties. We have developed an efficient tabu search procedure in order to
solve such gang scheduling problems.

Particular attention has been paid to the design of the Schrage-scheduler
acting as a base-heuristic in the tabu search framework. Although the move
of a task from one gang to another modifies just these two gangs directly, the
other gangs are indirectly affected by the change of time-window constraints
and have to be rescheduled as well.

130 Mattfeld and Branke

Since the move neighbourhood is large and the calculation of the cost or
benefit is computationally expensive, we have proposed a cost estimation pro-
cedure, which approximates the outcome of a move before it is actually per-
formed. Although an estimate must be imperfect in the face of the move's
complexity, experience has confirmed the applicability of the estimate devel-
oped. For a wide range of benchmark instances a promising solution quality
has been achieved.

References
Bla2ewicz, J. and Liu, Z. (1996) Scheduling multiprocessor tasks with chain constraints. Euro-

pean Journal of Operational Research, 94:23 1-241.
Bramel, J. and Simchi-Levi, D. (1997) The Logic of Logistics. Operations Research Series.

Springer, Berlin.
Bmcker, R, Drexl, A., Mohring, R., Neumann, K., and Pesch, E. (1999) Resource-constrained

project scheduling: Notation, classification, models, and methods. European Journal of Op-
erational Research, 112:341.

Carlier, J. (1982) The one-machine scheduling problem. European Journal of Operational Re-
search, 11:4247.

Dodin, B., Elimam, A. A,, and Rolland, E. (1998) Tabu search in audit scheduling. European
Journal of Operational Research, 106:373-392.

Drozdowski, M . (1996) Scheduling multiprocessor tasks-an overview. European Journal of
Operational Research, 94:215-230.

Feitelson, D. G. (1996) Packing schemes for gang scheduling. In Feitelson, D. G. and Rudolph,
L. (Eds.), Job Scheduing Strategies for Parallel Processing, Lecture Notes in Computer Sci-
ence, Vol. 1162, Springer, Berlin, pp. 89-1 10.

Glover, F. and Laguna, M. (1993) Tabu search. In Reeves, Colin R. (Ed.), Modern Heuristic
Techniques for Combinatorial Problems, Blackwell, Oxford, pp. 70-150.

Mattfeld, D. C. and Kopfer, H. (2003) Terminal operations management in vehicle transship-
ment. Transportation Research A, 37.

Salewski, F., Schirmer, A., and Drexl, A. (1997) Project scheduling under resource and mode
identity constraints: Model, complexity, methods, and application. European Journal of Op-
erational Research, 102:88-110.

Scheduling in Space

CONSTRAINT-BASED RANDOM SEARCH
FOR SOLVING SPACECRAFT DOWNLINK
SCHEDULING PROBLEMS

Angelo Oddi, Nicola Policella, Amedeo Cesta, and Gabriella Cortellessa
Planning and Scheduling Team
ISTC-CNR Italian National Research Council
Kale Marx 15, 1-00137 Rome, Italy
{a.oddi, policella, a.cesta, corte) @istc.cnr.it

Abstract This paper introduces a combinatorial optimisation problem called the MARS
EXPRESS Memory Dumping Problem (MEx-MDP), which arises in the Euro-
pean Space Agency programme MARS EXPRESS. The domain is characterised
by complex constraints concerning bounded on-board memory capacities, lim-
ited communication windows over the downlink channels, deadlines and ready
times imposed by the scientists using the spacecraft instruments. This paper lays
out the problem and analyses its computational complexity showing that MEX-
MDP is NP-hard. Then the problem is modelled as a Constraint Satisfaction
Problem and two different heuristic strategies for its solution are presented: a
core greedy constraint-based procedure and an iterative sampling strategy based
on random search. The algorithms are evaluated both against a benchmark set
created on the basis of ESA documentation and a lower bound of the minimised
objective function. Experimental results show the overall effectiveness of the
approach.

Keywords: constraint reasoning, random sampling, greedy heuristic search.

1. INTRODUCTION
MARS-EXPRESS is a European Space Agency (ESA) programme that

launched a spacecraft toward Mars on June 2, 2003. The space probe has
been orbiting around the Red Planet since the beginning of 2004 for two years
operating seven different payloads. MARS-EXPRESS represents a challenging
and interesting domain for research in automated problem solving. The sup-
port of a complete mission planning activity is a challenging goal involving
several sub-activities. The dumping of the on-board memories to the ground
station is one such sub-activity that the authors have tackled in a study within
the MARS-EXPRESS programme. The problem has been formalised as the

134 Oddi, Policella, Cesta, and Cortellessa

MARS-EXPRESS Memory Dumping Problem (MEx-MDP), an optimisation
problem that involves the sequencing of dumping operations under complex
constraints such as maximal data rate in communication links, limited commu-
nication windows, operation ready times and bounded on-board packet store
capacities.

Problems similar to MEX-MDP arise in satellite domains such as the ones
described in Verfaillie and Lemaitre (2001) and Bensana et al. (1999). These
works concern a set of Earth observation operations to be allocated over time
under a set of mandatory constraints such as no overlapping images, suffi-
cient transition times (or setup times), bounded instantaneous data flow and
on-board limited recording capacity. The problems are addressed with a va-
riety of solving techniques ranging from Integer Linear Programming, Con-
straint Programming, Branch&Bound and Local Search techniques like tabu
search. The papers show that the best solutions are not always obtained with
a single solving technique. Different needs, and different trade-offs between
quality and computation time, are addressed by different algorithms or combi-
nations of solving techniques through a meta-heuristic schema.

A similar approach is followed in this paper, which proposes a meta-heuristic
strategy based on the integration of Random Search (Motwani and Ragha-
van, 1995; Resende and Riberio, 2002) and Constraint Satisfaction Problem
(CSP) solving. It turns out that such combination, also used to approach other
scheduling problems (i.e. Nuijten and Aarts, 1996; Oddi and Smith, 1997;
Cesta et al., 2002b), is effective to tackle the MEX-MDP problem.

The paper is structured as follows. Section 2 introduces the domain of work
and the modelling process followed to define MEX-MDP. In addition, the
problem's computational complexity is studied and the problem is shown to be
NP-hard. Section 3 describes a formalisation of the problem as a CSP while
Section 4 presents the solving algorithms. Section 5 introduces a set of bench-
marks for MEX-MDP, computes a lower bound for the problem instances and
analyses the experimental results. A discussion and some concluding remarks
close the paper.

2. THE MEMORY DUMPING PROBLEM
In a deep-space mission like MARS-EXPRESS, data transmission to Earth

is a key issue. The space probe continuously produces a large amount of data
which derives from the activities of its payloads (the on-board scientific in-
struments) and from on-board device monitoring and verification tasks (the so-
called housekeeping data). All this data, usually referred to as telemetry, is to
be transferred to Earth during downlink time intervals (the temporal windows
in which the spacecraft points to Earth). MARS-EXPRESS is endowed with
a single pointing system, thus during regular operations it will either point

Constraint-Based Random Search

SSMM Paeket S t a m

DUMP 1 STORE

SSMM Riority Scheme

DMS
e .

VC I Real-Time
TFO TM Router

VC 0 TM

Figure I . On-board telemetry flow.

to Mars and perform payload operations or point to Earth and transmit data
through the downlink channel. As a consequence, data are first stored on the
on-board solid state mass memory and then transferred to Earth. The prob-
lem solving goal consists in synthesising spacecraft operations for emptying
the on-board memory during downlink time intervals, so allowing the space-
craft to save new information without losing previous data. A further goal is
to minimise a given objective function. For example, the turnover time--or
flow-time--of a single scientific operations is the time interval from the end of
data production on board and its availability on Earth. An objective function
used in practice is the average turnover time over a set of scientific operations.

Several constraints conflict with the problem solving goal. Besides the just-
described communication channel availability, different transmission rates are
to be taken into account during different communication intervals. Addition-
ally, constraints arise from the specific use of the on-board memory which is
subdivided into different memory banks (or packet stores) with a finite capac-
ity. For each piece of information produced inside the probe, one or more
packet stores are defined in which such data are stored. Each packet store can
be seen as a file of a given maximal size where data are inserted with a cyclic
policy-so previous information is overwritten if the amount of data overflows
the packet store capacity. Overwriting has to be maximally avoided because it
implies loss of data and consequent failure of certain observation programs.

We have formalised this problem as the Mars Express Memory Dumping
Problem (MEx-MDP) whose different features are described in the rest of this
section.

2.1 Basic Modelling
Figure 1 schematically illustrates the parts of the spacecraft that are rele-

vant for the MEX-MDP. The figure shows the different telemetry (TM) data

136 Oddi, Policella, Cesta, and Cortellessa

produced on-board and then stored in the solid state mass memory (SSMM)
that is subdivided into packet stores. Data accumulated by memory stores are
downloaded to Earth with different dumps.

The basic objects that are relevant to the MEX-MDP domain can be subdi-
vided into either resources or activities. Resources represent domain subsys-
tems able to give services, while activities model tasks to be executed using
resources over time.

Resources used in our model of MARS-EXPRESS are:

Solid State Mass Memory (SSMM). The SSMM is able to store both
science and housekeeping (HK) information. SSMM is subdivided into
a set of packet stores { p k s l , pks2, . . . , pks,), each one with a fixed
capacity cj and a priority pi for dumping data.

rn Communication Channels. The downlink connections to Earth for trans-
mitting data. These resources are characterised by a set of separated
communication windows CW = { w i) that identify time intervals for
downlink. Each element wi is a 3-tuple (dr i , s i , e i) , where dri is the
available data rate during the time window wi and si and ei are respec-
tively the start and the end time of wi .

It is worth noting that data are stored or downlinked according to a fur-
ther subdivision into data packets {plcj). A data packet is a set of sequential
data with a header containing information like size (a constant value for each
packet), application ID, sequence source counter, time, flags, etc. A discrete
model of time has been used such that all the events happen within an integer
interval of time [0, H] (time horizon). Moreover, all data quantities (data rates)
have been expressed in data units (data units per second), where a data unit
coincides with the size of a single data packet.

Activities describe how resources can be used. Each activity ai is charac-
terised by a fixed duration di and two variables si and ei which respectively
represent its start time and end time. Two basic types are relevant to MEX-
MDP: store operations st i and memory dumps mdi .

rn Store Operation. Each sti "instantaneously" stores an amount of data qi
at its end time in a destination packet store pks j .

rn Memory Dump. An activity that transmits a set of data packets from a
packet store to the ground station. It models a telecommand executed
by the spacecraft. A memory dump operation md, transfers a set of data

Constraint-Based Random Search 137

packets { p k j) from a packet store to a transfer device (the transfer frame
generator (TFG) shown in Figure 1).

In the MEX-MDP domain there are two different sources of store operations
sti: the Payload Operation Request @ori) and a set of sources of housekeeping
data, which can be seen as a continuous stream of data with a given flat rate;
we call these sources Continuous Data Stream (CDS).

A Payload Operation Request is a model for a scientific observation which
generates a set of data distributed over a subset of the available packet stores.
According to this model, the produced data are decomposed in a set of different
store operations such that, pori = { s t i j) , all of them with the same durations
and start times.

On the other hand, a Continuous Data Stream models an on-board process
which works in "background" with respect to the scientific activities. It gen-
erates a flow of data with constant rate which has to be stored in the SSMM.
Examples of data streams are the housekeeping data collected on a regular
basis to control the behaviour of the on-board sub-systems.

These are different types of data sources. In fact, a pori is a time bounded
activity, which stores data at its end time, whereas a CDS is a continuous data
flow over the domain horizon. However, we choose to also model a CDS as
a periodic sequence of store operations. In particular, given a CDS with a flat
rate r , we define a period Tcds, such that, for each instant of time t j = j . Tcds
0' = 1,2, . . .) an activity sti j stores an amount of data equal to r .Tcds. Hence,
we can consider as input data for the problem just an equivalent set of store
operations containing data packets, such that each packet contains a pointer to
its source.

2.2 Problem Definition
Given these basic domain entities, let us now define the MEX-MDP. A

set of scientific observations, POR = {porl , por2, . . . , por,) and a set of
housekeeping productions, CDS = {cdsl , cds2, . . . , cds,), are both reduced
to a set of store operations on the on-board memory. A solution to a MEX-MDP
is a set of dumping operations S = { m d l , md2, . . . , md,) such that

rn the whole set of data are "available" on ground within the considered
temporal horizon 3-t = [0, HI.

rn Each dump operation starts after the generation of the corresponding
data. For each packet store, the data are moved through the communica-
tion channel according to a First In First Out (FIFO) policy.

Each dump activity, mdi, is executed within an assigned time window
wj which has a constant data rate r j . Moreover, dump operations cannot
reciprocally overlap.

138 Oddi, Policella, Cesta, and Cortellessa

rn At each instant t E 3-1, the amount of data stored in each packet store
pLsi has to be less or equal to the packet store capacity Q (i.e. overwrit-
ing is not allowed).

The additional goal is to find high-quality solutions with respect to a set of
evaluation parameters: a high-quality plan delivers all the stored data as soon
as possible according to a definite policy or objective function. A relevant
piece of information to define an objective function is the turnover time of a
payload operation pori:

t t b o r i) = del (pori) - e(pori)

where del(pori) is the delivery time of pori and e(pori) is its end time. Thus,
we introduce as an objective function the mean a-weighted turnover time
MTT, of a solution S:

Given an instance of a MEX-MDP, an optimal solution with respect to a weight
vector a is a solution S which minimises the objective function MTT,(S).
Two vectors a have been found to be interesting, namely data priority and data
volume generated by the observations (see Cesta et al., 2002a for a detailed
description). The experimental evaluation in this paper considers the Mean
Turnover Time (MTT) with ai = 1, i = 1 , . . . , n .

2.3 Complexity Analysis
This section analyses the complexity of MEX-MDP and in particular shows

how the minimisation of the Mean Turnover Time of a problem instance is
NP-hard. This is done by showing that a particular NP-hard single-machine
scheduling problem can be reduced to MEX-MDP.

We call LP the scheduling problem llchains; T i ; pmtnl C Ci '. LP is a
single-machine scheduling problem that is NP-hard (Lenstra, 2002) 2. An in-
stance of LP is composed of n activities, each one having a ready time ri and
a duration d w i . In this problem preemption (pmtn) is allowed, hence the exe-
cution of an activity ai can be suspended while a new one is resumed or started
from scratch. Finally, the whole set of activities { a i) is partially ordered using
the operator 4, which relates the execution of a pair of activities. If ai + a j
then aj can start only if activity ai has been completed. Such a partial order

' According to the a(0ly-notation (Graham et al., 1979).
Referenced in http://www.mathematik.uni-osnabrueck.de/~se~c~OWclass/

Constraint-Based Random Search 139

subdivides the set of activities into a set of separate chains, where each chain
is a totally ordered subset of activities.

Theorem 1 The MEX-MDP optimisation problem is NP-hard.

Pro08 The theorem is proved in two steps. Starting from LP, a new
scheduling optimisation problem, named LP', is first defined and proved to
be NP-hard. Second, LP' is reduced to MEX-MDP to prove its NP-hardness.

LP' differs from LP for how the ready times rl are defined. In particular,
whereas in LP no constraints are imposed on the ready times ri, in LP' the
ready times along the activities of each chain are non-decreasing. Being part
of a chain the execution of a generic activity ai cannot start before the minimal
instant of time t i . That is,

This means that in LP' the constraints ri = ti are imposed for each activity
ai. Given a generic instance p of LP the corresponding instance p' of LP' is
such that its optimal solution C Ci is also an optimal solution for p. Hence, by
contradiction, if LP' is not NP-hard, then LP cannot be NP-hard. This proves
that LP' is NP-hard.

As a second step we now reduce LP' to MEX-MDP. Let us consider the
following relaxations on MEX-MDP: (i) each packet store has an infinite ca-
pacity; (ii) the communication channel has a uniform data rate dr over the
total problem horizon; (iii) the problem horizon is not bounded; (iv) each pori
stores data in a single packet store and there is no pair of PORs that store data
in the same packet store at the same time. We now reduced LP' to MEX-MDP.
The single-machine corresponds to the communication channel. The number
of packet stores equals the number of chains. Each chain of activities corre-
sponds to a set of activities in MEX-MDP which stores data in the same packet
store and has the same temporal total order imposed by the chains (remember
that each packet store is a FIFO buffer). In particular, each activity ai, with
duration duri and ready time ri , holding the constraint (2), corresponds to a
pori which contains a single store activity with end time e(pori) = r,l, duration
duri equal to the ratio between the data size of the pori and the channel data
rate dr. Finally, we observe that the completion time Ci and the turnover time
t t i are equivalent objective functions. In fact, C,! = t t i + ri , hence a solution is
optimal with respect to C Ci if and only if is optimal with respect to C t t i .

The complexity of MEX-MDP is a clear limitation to problem scalability
in finding an optimal (or near-optimal) solution. For this reason, this paper
proposes a set of heuristic strategies for solving MEX-MDP.

Oddi, Policella, Cesta, and Cortellessa

Input: A CSP instance
Output: A consistent assignment to all variables Xi

1.
2. while not(so1ved or infeasible) do
3. {
4. RemoveInconsistentValues
5. SelectDecisionVariable
6. SelectValueForVariable

Figure 2. A backtrack-free CSP search procedure.

3. A CONSTRAINT-BASED MODEL FOR MEX-MDP
The approach we have pursued for the resolution of MEX-MDP is based

on its representation as a CSP (Tsang, 1993), a generic problem solving
technique that consists in modelling the problem as a set of variables X =
{ X I , X2,. . . , X,), each associated with a domain Di of values, and a set of
constraints C = {Cl, C2, . . . , Cq) denoting the legal combinations of values
for the variables s.t. Ci C_ Dl x D2 x . . . x D,. A solution to the CSP consists
of assigning to each variable one of its possible values so that all the constraints
are satisfied. Figure 2 shows a generic, backtrack-free algorithm for solving a
CSP instance. The resolution process can be seen as an iterative search proce-
dure where the current (partial) solution is extended on each cycle by assigning
a value to an unassigned variable.

As a new decision is made during the search, a set of automatic deductions,
called "propagation rules", can remove elements from domains Di which can-
not be contained in any feasible extension of the current partial solution (Step 4
of the algorithm). In general it is not possible to remove all inconsistent values
through propagation alone. Choices have to be made among possible values
for some variables, giving rise to the need for variables and values ordering
heuristics (Steps 5 and 6 in Figure 2).

A CSP representation for a problem should focus on its important features.
In the case of MEX-MDP, the following characteristics have been selected:

1. the temporal horizon 3-1 = [0, HI

2. the amount of data stored at the end time of each operation

3. the channel communication windows

Constraint-Based Random Search 141

4. the finite capacity ci of each memory bank pksi and its FIFO behaviour.

It is worth noting that the FIFO behaviour of the packet stores allows us to
make an important simplification. In fact, it is possible to consider both the
data in input and those in output tolfrom the memory as flows of data, neglect-
ing the information about which operations those data refer to. In this way,
given a generic time window over the communication channel, it is possible
to split the problem into two levels of abstraction. A first one, where we just
consider the constraints on the flows of data: for each generic dump window
and each packet store the amount of residual data in the packet store should not
exceed its capacity. And a second level, where a sequence of memory dump
operations (generation of data packets) is generated over the communication
link. In particular, we divide the temporal horizon 'FI into a set of contigu-
ous temporal windows wj = tj], with j = I . . . m, according to the
domain's signiJicant events.

Significant events are assumed to be the start and the end of the temporal
horizon, the time instants where a memory reservation on a packet store is
performed, and the time instants where a change on the channel data rate is
operated. This partition is constructed in order to have such events only at
the edges of the windows; this allows us to consider temporal intervals, wj, in
which store operations do not happen (except for its upper bound tj) and the
data rate is constant.

Figure 3 sketches a representation of the problem domain, where the tempo-
ral horizon is partitioned into contiguous time windows. At data dump level,
the set of CSP decision variables are defined according to this set of windows,
such that, for each packet store p h i (i = 1, . . . , n) and for each time window
wj (j = 1, . . . , m) the following variables are introduced:

each one with an initial domain [O,oo). They represent the amount of data
dumped from the packet store pksi within a window wj. To formally represent
the domain constraints, for each packet store pksi (i = 1, . . . , n) and for each
time window wj (j = 1,. . . , m) some additional definitions are needed:

dij: amount of data memorised in the packet store pksi at t j , where the
variables dio 5 ci represent the initial level of data in the packet store
pksi;

lij: maximal level (amount of data stored) allowed at the instant t j for
the packet store pksi, lij E [0, ci];

Oddi, Policella, Cesta, and Cortellessa

Packet
Stores

Figure 3. Packet stores and channel vs time windows.

b j : maximal dumping capacity available in wj.

In the following, the values d i j , l i j and bj are used to integrate the CSP
model of MEX-MDP with the definition of constraints the variables ~5~ should
satisfy.

3.1 Constraints on the Decision Variables
Three classes of constraints are defined on the decision variables. A first

constraint captures the fact that for each window wj the difference between
the amount of generated data and the amount of dumped data cannot exceed
l i j the maximal imposed level in the window (overwriting). Additionally, the
dumped data cannot exceed the generated data (overdumping). We define the
following inequalities (4) as conservative constraints:

In the MARS EXPRESS domain a reasonable hypothesis is that the set of communication links are "mu-
tually exclusive", hence a single link representation with variable data rate is enough to represent the real
situation.

Constraint-Based Random Search 143

A second class of constraints considers the dumping capacity imposed by
the communication channel. The following inequalities, called downlink con-
straints, state that for each window wj it is not possible to dump more data
than the available capacity b j , j = 1, . . . , m:

Each decision variable di j has a potential interval of feasible values [lbai,, ubai,]
defined by its lower and upper bounds lbaij and ubsi,. For i = 1 , . . . , n, j =
1 , . . . , m:

Equation (6) states that a lower bound of dij is represented by the difference
between the amount of data generated at tj over the packet store capacity l i j

dik - l i j) and the maximal amount of data which is "downloadable" by
t j - l (max{x iz i bk, ddi,k)). Equation (7) claims that an upper bound of
bij is the minimal value between bj and the maximal amount of data which is
really "downloadable" within the window wj (xi.: dik -max{O, ~ j k , ; dik-
l i (j - l))) . Grounded on these constraints, a set of propagation rules (or domain
filtering rules) are defined to further reduce the domain intervals [lba,,, uba,,].

3.2 Domain Filtering Rules
In a constraint-based solver, domain filtering rules have a fundamental role

to prune the search space by removing inconsistent values in the decision vari-
able domains. The next two theorems allow us to generate propagation rules
from the conservative and the downlink constraints, obtaining a reduction of
the domain interval [ha,, , ubgij] of the involved variables d i j .

Theorem 2 For each decision variable dik, the set of its feasible values is
contained in the interval

144 Oddi, Policella, Cesta, and Cortellessa

Pro08 BY contradiction, let dlk be a value such that hik > 'j& dij -
C ? = l , j # k lbbij; this implies to dump from the packet store pksi an amount
of data dlk + C?=l,j#k lbgij > x;=l dij greater than the amount of data
stored, x;=l di j . On the other hand, taking a value 6rk < C;=l dij - lip -

C;=l .#k ubbij means to store an amount of data
J

greater than the maximal level allowed. 0

Theorem 3 The feasible values for each decision variable dkj are bounded
by the following upper bound:

Pro08 Let dktj be a value such that dktj > bj - CEl,ifkt lbsi j ; it is possi-
ble to verify that the downlink constraint (5)

is violated. 0

From Theorem 2 the following two propagation rules can be defined:

for i = 1,. . . , n, p = 1,. . . , m, and k = 1,. . . ,p. A further rule stems from

Constraint-Based Random Search 145

f o r i = 1 ,..., n a n d k = 1 ,..., m.
The application of these filtering rules updates the domain associated with

the variable hij, both increasing the lower bound lbai, and reducing the upper
bound ubsi,. In the case that the condition lbaij 5 ubai, is violated for at least
one window wj, the current situation will not admit a feasible solution.

It is worth remarking that, due to their incompleteness, the application of
the rules (8)-(10) does not guarantee that any assignment of hij E [lbaij , u b c j]
is a solution of the MEX-MDP instance. In Section 5 we will show how these
rules affect our solving methods and highlight their role in achieving a feasible
solution.

4. SOLVING METHODS
The complexity of the MEX-MDP is a strong limitation to problem scalabil-

ity in finding optimal (or near-optimal) solutions under tight temporal bounds
on the computation time. For this reason in this section we propose two dif-
ferent solving heuristic strategies: (a) a core greedy procedure that uses the
propagation rules defined in Section 3 and (b) an iterative random sampling
strategy based on such greedy procedure. As a matter of fact, in many cases
a randomised search algorithm is faster and simpler than its deterministic and
systematic counterpart. In Section 5 we will show that a few iterations of the
random sampling algorithm are able to find high quality solutions quite close
to a solution lower bound.

4.1 The Greedy Solver
The core procedure for solving MEX-MDP is shown in Figure 4. The al-

gorithm, called GreedyCspSolver(), takes as input a MEX-MDP instance (that
is, a temporal horizon H, a set of store activities, a description of the com-
munication links, and the set of packet stores) and returns as output either a
sequence S of memory dumps over the communication link consistent with
all the domain constraints or a failure in case the procedure could not find a
feasible solution. This algorithm is based on the above CSP model and uses
the two levels of abstraction for the MEX-MDP problem previously described,
as shown in the two-step procedure described in what follows.

Data dump level. Figure 5 shows the algorithm MakeConsistentDataD-
ump(). At first (Step 2) a propagation procedure is called. This procedure
implements the propagation rules described above (see Section 3) and basi-
cally sets the domains [lbQ,, ubsi,] of possible values for all the decision vari-
ables hij. In addition, each time the algorithm takes a decision (Step 5), the
Propagation() procedure is called again in order to further reduce the domains
[lbbij , ubgij] (Step 6).

Oddi, Policella, Cesta, and Cortellessa

Input: mexmdp instance
Output: sequence S of memory dumps over the communication links

Figure 4. The greedy constraint-based solver.

MakeConsistentDataDump:

Input: mexmdp instance, random seed
Output: a consistent assignment of the set of decision variables dij

1. {
2. Propagation (mexmdp)
3. j t l
4. while (j < m and Feasible(mexmdp)) {
5. AssignDecision VariablesA(j)
6. Propagation (mexmdp)
7. j=j+l

8- 1
9. 1

Figure 5. The constraint-based algorithm to assign the 6ij variables.

If the condition lb6ij > ubsij holds for at least one variable S i j , the algo-
rithm terminates without producing a solution. The function Feasible0 just
reports the feasibility state of the current partial solution under construction.
Basically, the algorithm considers the set of windows wl , w2, . . . , w, in in-
creasing order of time and, for each window wj, it sets the amount of data bj
that can be dumped within the window using AssignDecisionVariablesA(), the
sub-procedure that iteratively executes the following steps:

1. Select a packet store according to a given priority rule. In the current
algorithm, two rules are implemented: a first one selects the packet store
with the highest percentage of data volume (CFF, Closest to Fill First);
a second selects the packet store with the highest priority (HPF, Highest
Priority First); in the case of same priority, the packet store with the
smallest store as outcome data is chosen.

Constraint-Based Random Search 147

2. Assign an amount of data to be dumped from the selected packets store.
Such an amount of data is computed according to the upper bound of d i j ,
ubai,, and the remaining availability of the channel in the window wj of
bj :

3. Update the lower bound of the domain of the involved decision variable
and the availability of the channel b j . This is accomplished using the
rules described in Section 3.2.

These steps are executed, for each window wj, until a solution is achieved
or a failure state occurs.

Packet level. The second step inside GreedyCspSolver() is called Gen-
erateDataPackets() and creates the final solution S, that is the sequence of
memory dump operations. It is worth remarking that, given a solution at the
Data Dump level, finding a final solution S can be accomplished by a polyno-
mial algorithm. In fact, when all the variables di j are consistently assigned,
it is possible to generate the sequence of data dumping operations without
the risk of finding inconsistent states. The procedure works in an analogous
way to MakeConsistentDataDump() with the difference that no propagation
function is called. In particular, the algorithm considers the set of windows
wl, wz, . . . , w, in increasing order of time, such that for each packet store
pksi and window wj , given the value of the decision variable dij, it gener-
ates a sequence of memory dumping operations (stream of data packets) for an
amount that equals that value.

Similarly to the previous level, it is also possible to define different priority
rules. To obtain the results is Section 5 we have implemented the following
heuristic: select the packet store with the smallest value of the decision variable
bij first (SDF-Smallest to Dump First).

4.2 Iterative Random Sampling
In this section we describe the meta-heuristic strategy for optimisation using

the greedy procedure just discussed. In short, this method iteratively performs
a random sampling of the space of feasible solutions until a termination con-
dition is met. A solution is sampled by a randomised greedy procedure which
incrementally generates a solution or a failure. The overall process generates a
stream of feasible solutions with different values of the objective function to-
gether with a set of failures. When the procedure stops, the best solution found
is returned.

Oddi, Policella, Cesta, and Cortellessa

IterativeRandomSampling:

Input: mexmdp instance, termination conditions
Output: best solution found S*

1. {
2. S* + 0
3. while (termination conditions not met) {
4. S t GreedyRandomSampling(mexmdp)
5. UpdateBestSolution(S, S*)
6. 1
7. 1

Figure 6. The iterative random sampling algorithm.

It is worth noting that the greedy solver is based on the composition of a dis-
patching strategy that takes decisions proceeding ahead in time and the effects
of the propagation rules on the CSP representation that propagate decision for-
ward and backward on the structure, adjusting values according to problem
constraints. The integration of a propagation mechanism inside the random
sampling procedure has the main benefit of increasing the probability of find-
ing feasible solutions during each iteration. This property is very useful when
the optimisation problem is formulated within a set of tight constraints, such
that the set of feasible solutions is sparse over the search space.

The complete algorithm is given in Figure 6. It takes as input an instance
of the MEX-MDP problem and a set of termination conditions (for example,
a maximal number of iterations or a CPU time bound). The output of the
algorithm is either the best solution found S* (sequence of memory dumps
over the communication link) consistent with all the domain constraints or a
failure, in the case no iteration finds a feasible solution.

The sampling procedure is composed of two steps: first, a procedure called
GreedyRandomSamplingO builds a solution S, while a second step updates
the best solution S* found during the search. GreedyRandomSarnpJing() (see
Figure 7) is very similar to GreedyCspSolver() shown in Figure 4, the only
difference being the priority rule used inside the step MakeConsistentDataD-
ump(): in this case the rule is randomly generated. In particular, for each
window wj, a set of random priority values are assigned to each packet store,
then the packet stores are selected with the same HPF rule (the packet store
with the highest priority first) defined in Section 4.1.

Constraint-Based Random Search

Input: mexmdp instance
Output: sequence S of memory dumps over the communication links

1. {
2. seed c InitialiseRandomSeed()
3. MakeConsistentDataDump(mexmdp, seed)
4. GenerateDataPackets(mexmdp)
5. 1

Figure 7. The greedy random sampling procedure.

5. EXPERIMENTAL EVALUATION
In the first part of the paper we have introduced a combination of solving

techniques: (a) a CSP formalisation and the associated set of propagation rules,
(b) a greedy solver and (c) an iterative sampling strategy based on a randomisa-
tion of the greedy solver. In this section we present an experimental analysis to
show the effectiveness of the approach. Before presenting the evaluation itself
we discuss a problem analysis that has been followed to set up the experimental
setting.

Finding meaningful benchmark sets has been an additional problem because
in the period of our work for ESA (December 2000-May 2002) no real data
were available. For this reason a problem generator has been built (described
in Cesta et al., 2002a) that creates problem instances from a set of test data
provided by ESA mission planning experts. The generator uses these data
in order to create random problems on different configurations of the space-
craft domain. Using the problem generator we created 27 MEX-MDP problem
instances with the following domain parameters: 1 spacecraft housekeeping
packet store, 1 science housekeeping packet store, 11 science packet stores,
8 payloads and a channel data rate at 228 Kbps. From the set of the 27 prob-
lems a subset of 6 MEX-MDP instances has been selected with a number of ob-
servation requests ranging from 12 to 96 (corresponding to three days of satel-
lite work). The remaining ones are not considered because either the number
of payload operation requests was too small or there was too little interaction
among the packet stores. From this core benchmark set, we generated four new
benchmark sets by removing/adding payload operations from the original six
problems, reducing the packet stores capacities andlor the transmission data
rates 4.

The benchmark sets, named B1-B4, are available at http://mexar.istc.cnr.it/

150 Oddi, Policella, Cesta, and Cortellessa

To analyse the generated benchmarks we have developed a broad classifica-
tion schema of the MEX-MDP problems, that allows us to distinguish between
easy and hard instances. In addition, to better understand the effectiveness of
the solvers we have identified a lower bound for the optimal value of the mean
turnover time. This allows us to evaluate the distance between an optimal solu-
tion and the corresponding best solution found by any of the proposed solving
methods.

5.1 Analysing Problem Features
To analyse the MEX-MDP instances and understand the factors that gener-

ate hard instances we have defined two parameters: the Communication Coef-
jicient (CC) and the Load Coeficient (LC).

Given a MEX-MDP instance, the CC is the ratio between the total volume
of data generated, both by the set of payload operations and by the housekeep-
ing activities, and the total data volume downloadable in the time windows
[mini{s(pori)), maxi {e(pori))], where, mini {s(pori)) (maxi {e(pori))) is
the minimal start time (maximal end time) among the set of store activities
in the payload operations set.

The second parameter, the LC, compares for each packet store pksj the total
amount of stored data Q j with the packet store capacity cj. We define the load
coefficients LC,, as

Using CC and LC,, a broad classification of problem instances in four dif-
ferent classes is defined that allows a qualitative mapping in terms of difficulty
(see Figure 8):

1. CC 5 1 and LC,, < 1. These are the easiest instances because there
is surely time to dump all the data (CC 5 1) and also it is not possible
to overwrite data in the packet stores (LC,, 5 1).

2. CC 5 1 and LC,, > 1. In this case the different instances of MEX-
MDP could present a risk of overwriting (LC,, > 1).

3. CC > 1 and LC,, 5 1. This class of problems show another kind of
criticality, there is no risk of overwriting, however the higher is the value
CC, the higher is the probability that a subset of packet stores remains
with some residual data.

4. CC > 1 and LC,, > 1. This class of instances exhibits both kinds of
criticality. We expect that the most difficult instances are in this subset.

Constraint-Based Random Search

Figure 8. Problem classification.

5.2 A Lower Bound for the Objective Function
When working on the hard instances of MEX-MDP it is not easy to obtain

a reference solution to be compared with the heuristic solution produced with
our algorithms. For this reason, for the minimisation problem we compare the
current best value of the objective function with a lower bound 5 .

In general, computing a lower bound involves two separate steps: first, a
relaxation of the problem is defined (some of the original problem constraints
are removed); second, the optimal value of the objective function is computed
(in this case the value MTT). Since the number of solutions of the relaxed
problem is greater or equal to the number of solutions of the original problem,
the optimal solution of the relaxed problem has an objective function value
lower than or equal to the optimal solution of the original problem. To find
a representative lower bound we consider two relaxed formulations of MEX-
MDP:

First, we consider the relaxed version of the problem such that each
packet store has an infinite capacity and there are no chain constraints
among the activities. Under this hypothesis, the problem can be reduced
to the classical optimisation scheduling problem of minimising the mean

In contrast, in the case of a maximisation problem an upper bound is requested.

Oddi, Policella, Cesta, and Cortellessa

flow time (in our case called MTT) on a single machine (i.e. the com-
munication channel) where preemption is allowed. For this problem a
polynomial strategy which gives the optimal value is given by the Short-
est Remaining Processing Time (SRPT) (Lenstra et al., 1977).

rn The second relaxed version of MEX-MDP considers that each packet
store has a dedicated communication channel with identical character-
istics to the original one. In this way any linear sequence of activities
(chain) which stores data in a packet store has a dedicated channel for
data dumping and the optimal solution can again be computed in poly-
nomial time.

Based on these two relaxed versions of MEX-MDP, a lower bound has been
defined as the maximum mean turnover time between the two relaxed formu-
lations of the problem.

5.3 Experimental Results
In this section we present the results for two of the benchmark sets, B4 and

B 1, each composed of 17 instances. With respect to the qualitative classifica-
tion just introduced, B4 instances are mapped around the "difficult problems"
(CC > 1 and LC,, > I), whereas B1 instances are around the "easy prob-
lem" zone. Somehow the two benchmark sets explore different facets of the
problem. Using them we can both clarify the role of the propagation rules and
analyse the effectiveness of the iterative sampling procedure in finding near
optimal solutions.

All the algorithms presented in this paper are implemented in Java and the
results presented in the tables and in the figures are obtained on a PC Athlon
1800 MHz machine under Windows XP. We represent three types of results:

rn the lower bounds of the M T T values;

rn the values generated by the greedy (one-pass) strategy;

rn the best MTT values obtained with the iterative sampling optimisation
strategy.

It is worth noting that inside the random sampling procedure it is possible to
use the different propagation rules defined in Section 3 with noticeable differ-
ences in performance both with respect to the CPU time and to the number of
solved problems.

We consider two versions of the iterative random sampling algorithm: (a) one,
identified by letter " H , for "Heavy", which uses the set of propagation rules
@)-(lo) of Section 3.2; (b) another, identified by letter "L", for "Light", that
uses only the rule (10). It is worth recalling that the L and H versions require

Constraint-Based Random Search

(a) MTT values with a bound of 10 seconds.

(b) MTT values with bounds of 10 and 100 seconds.

Figure 9. Performance on benchmark B4.

different computational complexity. In fact, rule (10) takes only O(n), where n
is the number of packet stores. This rule has only a local effect within a single
transmission window wj. On the other hand, the other two rules have a com-
putational complexity 0(m2)-with m number of windows on the horizon-
because they propagate the effects of a single choice over the entire horizon.

154 Oddi, Policella, Cesta, and Cortellessa

Experiment 1. Figure 9 shows the algorithms' performance on bench-
mark B4 when a time limit of 10 seconds is imposed on the computational time.
In particular, problem instances are labelled with integer numbers (1-17) and
the following convention is adopted for the solving methods: GDY labels the
results obtained by the greedy one-pass procedure, RS-L-10 the results gener-
ated with the randomised strategy which uses only the propagation rule (lo),
RS-H-10 uses all the propagation rules, and LB labels the lower bound values.

We start by focusing our attention on the effects of the propagation rules (8)-
(10) on the iterative sampling algorithm. It is worth highlighting that within
the same temporal bound the two versions of the iterative sampling algorithm
perform a different number of iterations. In fact, for RS-L-10, which uses a
"lighter" domain filtering rule, it is possible to make more iterations than RS-
H-10 within the same period of time 6 .

From the results in Figure 9(a) we also observe a clear partition between the
first eight instances and the remaining ones. For the former there is the possi-
bility to find better quality solutions with respect to the greedy performance. In
fact, in Figure 9(a) both the two random iterative sampling strategies improve
up to 70% over the greedy strategy and obtain results quite close to the lower
bounds.

A further interesting aspect is that even if RS-L-10 shows an apparently
better behaviour than RS-H-10 it is not able to find a feasible solution for all
the instances. In fact, without the use of the propagation rules (8) and (9),
the problem instances 11-15 remain unsolved (in this case we do not report
any results on the graph of Figure 9(a)). This confirms the usefulness of the
propagation rules (8) and (9), when the problems have tight constraints, as in
the case of the problems B4.

Experiment 2. In order to better understand the trade-off between the
use of the propagation rules and the number of iterations, Figure 9(b) shows an
additional set of results, without the greedy algorithm and with the addition of
the iterative sampling strategy where a 100 seconds time limit has been used 7.

As it is possible to see, the same set of problems remain unsolved (problems
11-15), when propagation rules (8) and (9) are not used. Moreover, we observe
that, also in this case, within the subset of problems solved by all the strate-
gies, the best results are provided by the iterative sampling algorithm without
propagation rules, RS-L-100. In other words, when a problem has not tight
constraints (all the algorithms solve it), within an iterative sampling strategy,

Each run of the core greedy procedure takes in average 0.21 seconds with the use of propagation rules and
0.01 seconds without.

The same data are also shown in Table 1, where the character "-" indicates unsolved instances. For each
instance the number of scientific observations is also given (column size).

Constraint-Based Random Search

p m b h lnstsna

(a) MTT values with a bound of 10 seconds.

\

pmblwn instsm

(b) Best M T T values rules with bounds of 10 and 100 seconds,

Figure 10. Performance on benchmark B 1.

the best choice is a light core greedy strategy. This result is confirmed by the
experiments carried out on benchmark B 1.

Experiment 3. In Figure 10 we show the performance on the benchmark
B 1 by using the same set of algorithms used for B4. A similar pattern of results
can be observed, the only difference being that the whole set of problems is

156 Oddi, Policella, Cesta, and Cortellessa

Table I . MTT values with bounds of 10 and 100 seconds w.r.t. benchmark B4.

Size RS-L-10 RS-H-10 RS-L-100 RS-H-100 LB

1 60 48476 51160 47774 49020 35775
2 66 46971 49320 46678 47886 34741
3 86 45878 48636 45715 46660 33544
4 76 45682 47150 44886 45630 32239
5 87 50496 52251 49842 51194 39220
6 66 49804 50681 49519 50185 38529
7 66 47667 50697 46851 48217 36001
8 58 37220 37666 36839 37509 32064
9 81 28221 28296 28221 28221 28037

10 62 24686 24686 24686 24686 24476
11 66 22216 22045 19615
12 91 21948 21948 19615
13 96 25079 24863 22480
14 56 23083 22780 20641
15 71 22760 22760 20641
16 15 50021 50537 49818 50100 45167
17 12 48538 48970 48294 48452 42738

solved by all the strategies. In fact since B1 belongs to the "easy problems"
category (see Figure 8) the iterative algorithm which uses the rule (10) ensures
that we obtain the best solution over the set of all instances.

Experiment 4. To conclude, a complementary perspective of the experi-
mental results has been obtained by evaluating the performance of the iterative
sampling algorithms as a function of the number of iterations. In other words,
we evaluate the speed of the iterative sampling strategies to converge toward
optimal solutions.

Figure 1 l(a) shows, for the benchmark B4, the performance of the iterative
sampling algorithm RS-H(nite,), where nit,, represents the number of itera-
tions.

On benchmark B1 the iterative algorithm which uses only rule (lo), RS-
L(nit,,), is used (Figure 1 l(b)). The results are given for three different num-
ber of iterations: 10, 100 and 500.

We observe that even if the best results are generated with a limit of 500
iterations, the 10 iterations ensure high quality solutions. This confirms that
the proposed randomised search algorithm is an efficient method for finding
high-quality solutions.

Constraint-Based Random Search

l w o o l " " " " " " " '
1 2 3 4 6 6 7 8 B 10 11 12 19 14 16 16 17

pmblm Imlam

(a) MTT value8 for benchmark B4.

@) MTT values for benchmark B1.

Figure 11. Efficiency of the iterative sampling algorithms.

6. DISCUSSION
The goal of the study we have conducted for ESA has been not only to

analyse the problem, but also to create an interactive software tool for solving
MEX-MDPS. Such a tool, named MEXAR, is described in Cesta et al. (2002a,
2003). The system has a bipartite architecture: (a) a problem solving module

158 Oddi, Policella, Cesta, and Cortellessa

contains a set of CSP-based algorithms and (b) an interaction module facilitates
the interaction of human planners with different aspects of a problem and its
solutions. The choice of following a CSP approach has been driven not only
by our in-house expertise but also by the need to interface the solver with the
user interaction module. In fact both parts of the software work on the internal
symbolic model developed in terms of resources and activities (Section 2).

It is worth noting that MEX-MDP is a quite difficult scheduling problem, be-
cause it involves preemption as well as resource constraints and a complex set
of temporal constraints, such as ready times, deadlines and chain constraints.
Even if some works in the literature (Verfaillie and Lemaitre, 2001; Bensana
et al., 1999) describe problem domains which may resemble the MEX-MDP
domain, none of them matches exactly its features. The problem can be faced
by adapting existing optimisation techniques such as Integer Linear Program-
ming, Constraint Programming, and many others. The integration of different
techniques is the approach we have followed. In this paper we have described
the combination of constraint satisfaction and iterative random sampling pro-
cedure while in a companion work (Oddi et al., 2003) we have additionally
proposed a tabu search procedure to improve the mean turnover time of a
MEX-MDP. In a more recent work (Oddi and Policella, 2004) a different char-
acteristic of a solution is considered, the so-called robustness. This measures
the ability of a solution to adsorb unexpected modifications to the problem
specification and to maintain consistency. In this work the main goal is a bal-
anced distribution of data on the various packed stores to minimise peaks in
memory usage. As expected, this different optimisation criterion worsens the
mean turnover time measure.

There are several additional directions that have not been explored. Among
them some are on our agenda for the immediate future:

(a) Improvements in the integration of constraint programming techniques.
For example, some existing results in single-machine scheduling with
preemption (e.g., those in Baptiste et al., 2001) might be used in con-
junction with results on consumable resource constraint propagation (La-
borie, 2003), since packet stores can be seen as a particular kind of such
resources.

(b) Definition of new GRASP-like strategies (Feo and Resende, 1995; Re-
sende and Ribeiro, 2002). The idea is to extend the iterative sampling
procedure presented here with a local search step to be executed each
time the greedy step has sampled a solution. Somehow the goal is to
improve the directions in Oddi et al. (2003) relying on the simple and
powerful idea that the greedy step samples different solutions in distant
areas of the search space while the local search operates a refinement in
order to further improve the objective function.

Constraint-Based Random Search 159

(c) The definition of multi-objective optimisation algorithms in line, for ex-
ample, with Dasgupta et al. (1999). This can be used to develop algo-
rithms able to take into account various optimisation criteria, including
the definition of robustness, in an integrated way.

7. CONCLUSIONS
This paper has introduced a challenging scheduling problem arising in a

spacecraft domain called the MARS EXPRESS Memory Dumping Problem
(MEx-MDP). Even though the problem comes from a specific study, its char-
acteristics are quite general and many of the conclusions reported in this paper
can be extended to other space programs. In this respect, it is worth noting that
two of the next ESA missions, namely ROSETTA and VENUS EXPRESS, will
adopt spacecrafts that use a model of on-board memory similar to the one of
MARS EXPRESS.

The paper contains several contributions:

(a) it has defined a new scheduling problem coming from a real domain and
analysed its computational complexity;

(b) it has proposed a model of the problem as a CSP and two different solv-
ing heuristic strategies: a core greedy procedure based on the propaga-
tion rules defined in Section 3 and an iterative random sampling optimi-
sation strategy which uses the basic core greedy procedure;

(c) it has built an experimental setting for the problem based on realistic
problem descriptions and shown the effectiveness of the solving algo-
rithms according to different experimental perspectives.

ACKNOWLEDGMENTS
This work has been supported by the European Space Agency (ESA-ESOC)

under contract No. 14709/00/D/IM. The authors would like to thank the ESA-
ESOC personnel that have been involved in the MEXAR study. In particular,
they are grateful to the project officer Fabienne Delhaise and to the MARS-
EXPRESS mission planners Michel Denis, Pattam Jayaraman, Alan Moorhouse
and Erhard Rabenau for introducing them to the MARS-EXPRESS world and
for a number of prompt clarifications during the difficult steps of the study.
They also would like to thank Professor J. K. Lenstra for his useful notes about
the complexity of the single-machine scheduling problem.

References
Baptiste, P., Le Pape, C. and Nuijten, W. (2001) Constraint-Based Scheduling. Kluwer, Dor-

drecht.

160 Oddi, Policella, Cesta, and Cortellessa

Bensana, E., Lemaitre, M. and Verfaillie, G. (1999) Earth observation satellite management.
Constraints: An International Journal, 4:293-299.

Cesta, A., Cortellessa, G., Oddi, A, and Policella, N. (2003) A CSP-based interactive decision
aid for space mission planning. In Proceedings of AI'IA-03, Lecture Notes in Artificial In-
telligence, Vol. 2829, Springer, Berlin.

Cesta, A,, Oddi, A., Cortellessa, G. and Policella, N. (2002a) Automating the generation of
spacecraft downlink operations in MARS EXPRESS: Analysis, algorithms and an interactive
solution aid. Technical Report MEXAR-TR-02-10 (Project Final Report), ISTC-CNR [PST],
Italian National Research Council.

Cesta, A., Oddi, A, and Smith, S. E (2002b) A constraint-based method for project scheduling
with time windows. Journal of Heuristics, 8:109-135.

Dasgupta, D., Chakrabarti, P. and DeSarkar, S. C. (1999) Multiobjective Heuristic Search.
Vieweg, Braunschweig.

Feo, T. A. and Resende, M. (1995) Greedy randomized adaptive search procedures. Journal of
Global Optimization, 6: 109-133.

Graham, R. L., Lawler, E. L., Lenstra, J. K, and Rinnooy Kan, A. H. G. (1979) Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics, 4:287-326.

Laborie, P. (2003) Algorithms for propagating resource constraints in A1 planning and schedul-
ing: Existing approaches and new results. Artificial Intelligence, 2: 151-188.

Lenstra, J. K. (2002) Notes from Berkeley, July 11, 1980. Personal Communication.
Lenstra, J. K., Rinnooy Kan, A. H. G. and Brucker, P. (1977) Complexity of machine scheduling

problems. Annals of Discrete Mathematics, 1:343-362.
Motwani, S. and Raghavan, P. (1995) RandomizedAlgorithms. Cambrige University Press, New

York.
Nuijten, W. and Aarts, E. (1996) A computational study of constraint satisfaction for multiple

capacitated job shop scheduling. European Journal of Operational Research, 90:269-284.
Oddi, A, and Policella, N. (2004) A max-flow approach for improving robustness in a space-

craft downlink schedule. In Proceedings of the 4th International Workshop on Planning and
Scheduling for Space, IWPSS'04, ESA-ESOC, Darmstadt, Germany.

Oddi, A., Policella, N., Cesta, A. and Cortellessa, G. (2003) Generating high quality schedules
for a spacecraft memory downlink problem. In Principles and Practice of Constraint Pro-
gramming, 9th International Conference, CP 2003, Lecture Notes in Computer Science, Vol.
2833, E Rossi (Ed.), Springer, Berlin, pp. 570-584.

Oddi, A. and Smith, S. (1997) Stochastic procedures for generating feasible schedules. In Pro-
ceedings of the 14th National Conference on Artificial Intelligence, AAAI-97. AAAI Press,
Menlo Park, CA.

Resende, M. and Ribeiro, C. (2002) Greedy randomized adaptive search procedures. In Hand-
book of Metaheuristics, E Glover and G. Kochenberger (Eds.), Kluwer, Dordrecht, pp. 219-
249.

Tsang, E. (1993) Foundation of Constraint Satisfaction. Academic, London.
Verfaillie, G. and Lemaitre, M. (2001) Selecting and scheduling observations for agile satellites:

some lessons from the constraint reasoning community point of view. In Principles and
Practice of Constraint Programming, 7th International Conference, CP 2001, Lecture Notes
in Computer Science, Vol, 2239, T. Walsh (Ed.), Springer, Berlin, pp. 670-684.

Scheduling the Internet

TOWARDS AN XML-BASED STANDARD
FOR TIMETABLING PROBLEMS: TTML

Ender Ozcan
Yeditepe University, Istanbul, Turkey
eozcan@cse.yeditepe.edu.tr

Abstract A variety of approaches have been developed by researchers to solve different
instances of timetabling problems. In these studies different data formats are
used to represent a timetabling problem instance and its solution, causing diffi-
culties in the evaluation and comparison of approaches and sharing of data. In
this paper, a model for timetabling problems and a new XML data format for
them based on MathML is proposed.

Keywords: timetabling, standard data format, scheduling, XML, MathML.

1. INTRODUCTION
Timetabling problems consist in feasible assignment of time-slots to a set

of events, subject to a set of constraints. The timetabling problem is an NP
complete problem (Even et al., 1976). There are a growing number of so-
lutions to different types of timetabling problems having different types of
constraints (Abramson et al., 1999; Alkan and ~ z c a n , 2003; Causmaecker et
al., 2002; Burke et al., 2003; Burke et al., 1994; Burke et al., 1996; Burke
et al., 1997; Colorni et al., 1992; Come et al., 1994; Cladeira and Rosa,
1997; Dignum et al., 1995; Erben and Keppler, 1995; Hertz, 1992; Monfroglio,
1988; Ozcan and Alkan, 2002; Schaerf, 1996; Schmidt and Strohlein, 1979; De
Werra, 1985). Since there is no common standard on specifying a timetabling
problem instance and its solution proposed by a researcher, most of the re-
sults cannot be compared and benchmarking becomes almost impossible. The
proposal for a common data format for timetabling was initiated by Andrew
Cumming at ICPTAT'95. Studies in the area yield a language named SSTL
(Burke et al., 1997; Kingston, 2001). SSTL has not become a common format
as expected, possibly because it is not easy to convert existing data to SSTL.
Furthermore, most of the research in timetabling is due to some practical need,
causing researchers to concentrate on solving the problem at hand, and to ig-
nore the data format.

164 Ozcan

Causmaecker et al. (2002) argue that the timetabling research community
can benefit from Semantic Web, focusing the timetabling ontology, rather than
one of the layers of the architecture that requires definition of an Extensible
Markup Language (XML). XML lets users create their own set of tags, en-
abling them to specify the structure of their documents. Furthermore, XML
can be used to define a set of grammar rules to define markup languages. It
is an efficient way of representing data on the web as a basis for machine to
machine communication. XML documents can be considered to be a globally
linked database. There are already defined XML-based languages. For exam-
ple, MathML provides a means to use mathematical expressions on the web;
Scalable Vector Graphics (SVG) is a language for describing two-dimensional
graphics in XML. Details about technologies related to XML can be found on
the W3C site (W3C, 2004).

Timetabling problems can be formulated using set theory as described in
Section 3, where a constraint is a function operating on the sets. Hence,
MathML provides a basis for the representation of timetabling components.
For example, MathML allows users to define completely new content symbols
that represent a function or a type or another content markup element. This
important feature can be used to standardise some timetabling constraints, pro-
viding flexibility for users to define their own constraints as well.

In this paper, Timetabling Markup Language (TTML), an XML-based data
format for timetabling problems, is presented utilising MathML content markup.

2. TTML: TIMETABLING MARKUP LANGUAGE
It is vital to clearly define and represent the elements of a timetabling prob-

lem using TTML. The same requirements explained in previous works will be
considered during the process (Burke et al., 1997; Kingston, 2001).

This section is an overview of TTML tags for content markup to generate
a well-formed document. For a world-wide accepted format for representing
timetabling problems, a working group should come together under W3C from
researchers and vendors. TTML will be developed further whether this action
is taken or not. Instead of creating a new approach, TTML extends MathML,
intensifying the importance of modelling. The elements of TTML are built
around MathML. The aim is to address the underlying issues, and come up
with possible solutions during the modelling. Note that the conversion between
different XML documents with similar contents is easy and this conversion
does not require a valid document. Hence, XML Schema is left as a further
study. All bold TTML elements are optional elements, "I" denotes or and "[I"
denotes one or more occurrence of the element enclosed.

Towards an XML-Based Standard for Timetabling Problems: TTML

2.1 MathML
MathML is an XML based standard for describing mathematical expres-

sions (W3C, 2004). Presentation markup defines a particular rendering for an
expression, while content markup in the MathML provides a precise encoding
of the essential mathematical structure of an expression. Some of the con-
tent markup elements include relations, calculus and vector calculus, theory of
sets, sequences and series, elementary classical functions and statistics. Note
that declare element is a MathML constructor for associating default attribute
values and values with mathematical objects. In TTML, declare is used to
associate a name with the defined sets. Attributes desc and name are proposed
for declare element in TTML, denoting a short description of the declared
item and a unique name associated with it, respectively. Unless mentioned
otherwise, the order of TTML elements are strict.

2.2 Modelling Timetabling Problem Instances
An XML document requires one unique root element. The root element

is chosen to be time-tabling for a timetabling problem instance. Our first
aim should be enabling data exchange; hence a TTML document must include
input data and the constraints for the problem instance. Additionally, for the
research community, in order to make comparisons, test results obtained from
applying an algorithm to the input data should be attached. Further attachments
might be required, such as output formats for the solution. For example, course
section meeting schedules can be generated as a solution to a timetabling prob-
lem, but both schedules of all teachers and students can be required as an out-
put. Hence, a TTML document might declare multiple output formats for the
same solution. Main and first level of child elements of a TTML document
are illustrated in Figure l(a). A TTML document can include an output format
or test results, optionally. Element time-tabling can have attributes such
as last update, problem type (e.g., university course timetabling, highschool
timetabling, exam timetabling, employee shift timetabling), etc.

3. MODELLING INPUT DATA
Timetabling problems are constraint optimisation problems that can be rep-

resented using (V, L, C), forming input data, where V = {vI, ~ 2 , . . . , vi,
. . . ,up) is a set of variables, L = {dl, da, . . . , di, . . . , d p) , is a nonempty
set of domains of variables, defining the set of possible values for each vari-
able in V, and C is a set of constraints, where each constraint is defined for
some subsets of the variables, specifying the allowable combinations of values
for it. This 3-tuple forms the input data for a timetabling problem.

Ozcan

+<input-data>
+<output>
+<tes t-resul t s>

Figure I . Main and lower level of child elements of a TTML document.

In a timetabling problem, a list or a higher dimensional array of attributes
(properties) belonging to a set might be required. Let attributed set indicate a
set where all the members have attributes. For example, the number of students
registered to each course, the distances between classrooms, capacity of the
classrooms can be considered as attributes of the related sets. Then the set
of courses and the set of classrooms are attributed sets. Note that attribute
values might be used while defining the constraints. Considering timetabling
problems, we can limit the domain of the attribute values to R, Z, and 9.

The main and first level of child elements of input data are illustrated in
Figure l(b). Elements author, desc and aref describe the author of the
timetabling input data, a brief description of the problem and associated ref-
erences (which might be more than one), respectively. Element variables
contains a declaration of a single set of variables, identifying each member
(Figure 2(a)).

3.1 Attributed Sets
Two approaches can be applied to support attributed sets, so that attribute

values could be entered as input data. Assuming that higher dimensions can
be mapped into a single dimension, a vector can be associated with each set
member as shown in Figure 2(b). If there are more than one set of attributes,
then it is not straightforward how to distinguish between them, since they will
all be together in the attribute vector. So, TTML shall support the second
approach, allowing declaration of single or higher dimensions of attributes as-
sociated with the set using attrset as shown in Figure 2(c).

Element attrset contains two or more declarations. First declaration is
a set, and the rest of the declarations (at least one) are the related attributes
of it. Attribute declarations must contain vector or matrix elements where
each attribute value will be accessible via selector function in MathML (Fig-

Towards an XML-Based Standard for Timetabling Problems: TTML

:attrset>
:!- Assume V is
declared in here-->
<declare>
<ci>NoOfStudents</ci>
<vector>
<cn>24c/cn>

Figure 2. Possible approaches to support attributed sets as input data in TTML.

ure 2(c)). All set declarations can be replaced by attributed set declarations in
TTML. If the element a t t r s e t is used to represent a set, then although the first
declaration is a set, the order of the elements in the set becomes important, and
for the rest of the attribute declarations, that order will be used to identify an
attribute value. For example, 24 is the number of registered students. Note that
an attributed set might contain more than one set of attributes. It is assumed
that the corresponding attribute value of a set member is associated by keep-
ing the same order, wherever the member is defined. For example, assuming
CSE462 is the first member of the attributed set then the NoOfStudents attribute
value of it will be the first entry of the corresponding declaration, which is 24
as shown in Figure 2. Thus one defines the a t t r v a l element, accepting the at-
tributed set member and attribute set name as input and returning the attribute
value of an attribute set member.

4. MODELLING DOMAINS OF VARIABLES
A candidate solution V' of a timetabling problem is defined by an assign-

ment of values from the domain to the variables:

where v: E di and

While defining the constraints this assignment function might be needed. For
this reason, a TTML element assignvar is defined as a unary function requir-
ing a single argument which must be a member of the set of variables, returning

the assigned value. For example, assignvar(vi) returns vf. A domain con-
sists of either time intervals (time set) or Cartesian product of several sets, one
of them being the time set (Dl = T). If a domain is a Cartesian product of
multiple sets then domainsvar element should be used for domain declaration
in TTML. In such a case, the assignment might be an n-tuple, represented by
a vector in TTML, allowing access of any dimension via s e l ec to r function.
For example, assuming a set of courses as a set of variables, assignvar(vi)
might return (4, A200), indicating an assignment of the ith course to the fourth
time interval in the timetable which will meet in the classroom A200. Selecting
the first element in the vector returns 4; the second element returns A200.

It is possible that in some timetabling problems, durations might be also in
the domain of a variable. TTML shall support declaration of duration set using
durat ion element. Each member of duration set must be of type duration as
explained in the following section. All of the related sets must be declared in
a TTML document as domains of variables as shown in Figure l(c).

In timetabling problems, a timetable is either discrete or continuous. In
TTML, a combination of both is also supported for generality. Time intervals in
a timetable might have equal or unequal length, or be periodic or non-periodic.
In some problems date, in some others date and time, might be required. TTML
shall support all.

4.1 Modelling Time Interval and Duration
A time interval can be represented using a starting time and a duration.

MathML does not contain any type definition related to time or duration, but
it allows user-defined types. Similar definitions for dateTime and durat ion
types in XML schema are proposed to describe a time interval in TTML. In
order to get rid of the confusion and be able to use a total order on time,
Coordinated Universal Time (UTC) is chosen using the syntax CCYY-MM-
DDThh:mm:ss. Duration type syntax is PnYnMnDTnHnMnS, indicating the
number (n) of years (Y), months (M), and so on. Any substring generated us-
ing the syntaxes defined above will be valid, assuming that the string includes
at least one time item. Duration set as a domain of a variable will be composed
of members that are of duration type. This set shall be bound to a name using
a declaration as shown in Figure l(c), if used. TTML shall support three func-
tions; t i s t a r t , t idura t ion and t iend returning the starting time, duration
and end of a time interval, requiring a single parameter.

4.2 Modelling Timetables
A user should be able to define hisher own formatting string, emphasising

the time elements relevant to the problem and then the timetable. In TTML,
r e s element will be used to state the format of the time used in the timetable

Towards an XML-Based Standard for Timetabling Problems: TTML 169

definition. For example, the quantity 10-lOT10 : 00 <sep/> PIH represents
a time interval on the 10th day of October with duration 1 hour, based on the
formatting string <res>MM-DDThh:mmc/res>. A timetable is, ultimately, a set
of time intervals. TTML shall support this most general approach, enabling
shortcuts. An attribute, named as interval is added to the set element to
identify, whether the time intervals are continuous or discrete. For example,
the time set in Figure 3(a) identifies a discrete timetable with four time in-
tervals, where on the first day, the first interval starts at 10 with 50 minute
duration, the second one starts at 11 with 50 minute duration, and on the sec-
ond day, the first interval starts at 10 with 50 minute duration, and the sec-
ond one starts at 11 with 50 minute duration. A timetable can be assumed to
be a two-dimensional structure, as the name suggests. We can consider that
this structure contains a number of columns. Each column element is ordered
within itself and each column is ordered as well, providing a total order on
time. Three functions are proposed for defining a timetable as a domain of
variables: spread, spreadcolumn, and tmatrix. Usage of these functions
is illustrated in Figures 3(b)-(d). The spreadcolumn function repeats a given
set of time intervals for a given number of times by interleaving a given dura-
tion in between them and returns a time set (Figure 3(b)). The spread function
repeats a given time interval for a given number of times, forming a column,
and then applies spreadcolumn, using a given interleave and repetition (Fig-
ure 3(c)).

In some discrete timetabling problems, instead of time intervals, indices in-
dicating a timetable slot can be used. Function tmatrix generates a discrete
timetable of a given number of rows and columns, in which each timetable slot
is identified by its row and column index and time line proceeds in column ma-
jor order on the matrix generated (Figure 3(c)). Both spreadcolumn and spread
own interval attribute indicating whether the timetable is discrete or continu-
ous. Furthermore, in the discrete case, constraints will refer to timetable slots
using start times for the corresponding time interval, by default. It has been
observed that time slots in a discrete timetable might also be referred to us-
ing two indices, their row and column indices, or using a single index, while
defining the constraints.

For example, Figures 3(a)-(c) describes the timetable illustrated in Figure 4.
Ignoring the dashed lines, Figure 3(d) identifies the very same table. There are
three ways to refer to the marked time slot in the timetable: 2T10, (1,2), 3 or 2.
Single indices 3 and 2 are produced by a column major and row major scan on
the timetable, respectively. TTML shall support row-column and column ma-
jor order single indexing for referrals during constraint declarations other than
the default. For this reason, for all table defining functions having discrete in-
tervals, an additional attribute named itype is proposed, indicating the type
of the indexing mechanism to be used for timetable slots. The supported val-

apply>
<spreadcolumn interval:

discreten/><ci><set>
<cn>lTlO<sep/>P5OM</cn>
<cn>lTll<sep/>PSOM</cn>
</set> </ci>

c!-- interleave - - >

<cn>PlD</cn>
<!-- repetition - - >

ccn>2c/cn>

/apply>

(b)

capply >
<!-column major order-->
&matrix/>
<cn>2c/cn><!--row-->
<cn>2 </cn><!--column-->

<a~olv>

Figure 3. Defining a timetable in TTML.

l~olurnn Major Scan I

ow Major Scan

Figure 4. Timetable described in Figure 3 and indexing mechanisms using a single index.

ues are default , row-column, and column-maj or. Depending on the itype,
TTML shall allow a user to identify the start index to be (0,O) or (1 , l) for
row-column, or 0 or 1 for column-major. The start attribute belonging to
table defining functions will take value of either 0 or 1.

Towards an XML-Based Standard for Timetabling Problems: TTML

5. MODELLING CONSTRAINTS
Constraints are classified as hard and soft for timetabling problems. Hard

constraints are the most common constraints. Soft constraints are the prefer-
ences that are strongly desired. In general, six different constraint types can
be identified for TTPs: edge constraints, exclusions, presets, ordering con-
straints, event-spread constraint and attribute constraints (includes capacity
constraints). Details about these constraints can be found in Fang (1994).

The problem of determining the minimum number of time slots needed
subject to some basic constraints (edge constraints, exclusions, presets), is a
graph colouring problem, studied by many researchers (Leighton, 1979; De
Werra, 1985). Constraints are functions to be applied on variables or subsets
of variables or their related attributes. Since MathML supports user-defined
functions, constraints in TTML are proposed to be declaration of functions
grouped as hard/soft.

Example Assume that we have two sets of courses; ES and CS and it is
required that no pair of variables should be scheduled at the same time, where
each pair is an element of the Cartesian product of ES and CS.

Pairing up all the events that should not overlap and using that as input data
would not be practical, yet a feature that should be supported in TTML. In-
stead, while defining the constraint function, the sets in question can be used
directly and computation of the Cartesian product of sets can be supported by
TTML, possibly as in Figure 5. Being a function, each constraint requires
parameters in TTML. Hence, TTML should allow users to define subsets of
variables via classijiers, representing logical groupings in a hierarchical way.
In this way, the user will be able to use the same constraint function for differ-
ent sets defined in the same TTML document.

Define a classijier to be a set which is either a subset of variables, named
as base classijier, or a set of classifiers. Notice that classifiers can form a
hierarchy, just like rooted trees. For this reason a similar terminology will be
used. Aparent classijier is a classifier having non-base classifiers as members.
Each member of a parent classifier is called child classijier. By default, the
variables set forms a base classifier that should not be redeclared. Revisiting
the example, ES and CS classifiers can be defined as base classifiers, and then
the constraint function in Figure 5 would be supported.

In TTML, before the constraint functions are defined, classifiers that will
be used in the constraint functions must be declared. Element s e t is used
to declare child and base classifiers in a recursive manner. Element roo t c l
is used to declare root classifiers only. Each set is bound to a name using
the dec lare element. A parent classifier might contain a classifier that is
already defined. TTML should avoid redeclarations of the same classifiers.

Ozcan

Figure 5. A constraint function imposing that no two events, one from ES and the other from
CS sets, should overlap, assuming a discrete timetable.

Considering all the above concerns, the cons t ra in ts element is designed as
illustrated in Figure 6.

Additionally, a function is needed to convert a parent classifier into a subset
of variables. For example, assume that we have two base classifiers, one iden-
tifying courses with laboratories (ESL), the other identifying courses without
labs (ESN) with ES code and ES being a parent classifier such that ES = (ESL,
ESN). Assume the same for the courses in CS: CS = (CSL, CSN). Then the
constraint function in Figure 5 cannot be applied on ES and CS. A union of
all the members of base classifiers of ES and CS should be generated. De-
fine self-projection of a parent classifier to be a base classifier, generated by
applying union on each member classifier recursively down to the base classi-
fiers. Hence applying self-projection on ES and CS would return the expected
arguments for the constraint function in Figure 5. Define child projection of
a parent classifier to be a set of base classifiers, generated by applying self-
projection on each member classifier recursively down to the base classifiers.
As an example, applying child projection on a parent classifier ALL, defined
as ALL = {ES, CS), would return a two-member set of self-projections of ES
and CS. TTML shall support self-projection using the self -project element
and child projection using the child-pro j ec t element, requiring a single ar-
gument that is a parent classifier.

The constraints part includes a set of constraint items, indicated by co i el-
ement, where each item can be defined as a function with or without binding

Towards an XML-Based Standard for Timetabling Problems: TTML

Figure 6. Main and the lower level child elements of constraints, where function element
represents a specific constraint function.

of the returned result to an identifier using the declare element. The reason
that the user is allowed to bind the result to an identifier is to support a sequen-
tial filtering mechanism. The output of applying a constraint can be fed into
another constraint as an input. The output of a constraint is discussed in the
following section.

5.1 TTML Constraint Functions
Leaving all the constraints to be defined by the user might lead to some

problems during data sharing. For example, two different ways can be used
to define the semantically same function. For this reason, some basic standard
functions should be identified covering at least most of the constraint types.
This would also reduce the effort of writing all well known constraint functions
in MathML.

It is assumed that constraint functions are control functions checking some
conditions and with the elements that do not satisfy a constraint being decided
by the problem solver. Table 1 displays the standard constraint functions sup-
ported by TTML. Functions 00-05 return the set of variables (or pairs of
variables) that do not satisfy the related constraint. 0 5 returns all the pairs of
variables that do not satisfy the event spread constraint along with the real gap
between two events.

Functions 0 6 and 0 7 are used to define how a group of events should be
distributed over the timetable. Function 0 6 is used for determining the distri-
bution of filled slots, while 07 is used for determining the distribution of empty
slots between filled slots due to a set of events. For example, a user might im-
pose a constraint of a workload for a student per day. Note that the workload
might be required to be distributed to a whole week, or the workload might be
required to exclude the days when a student does not have any courses. Also,
in a student course schedule, minimum empty slots might be required between

ID Functions Explanation Semantic

vi and vk are not same assignvardh (vi) #
assignvardim (vk)

< eventspr
comp = " < (>
I=1112"/> . vi

vk . d
< fullspr per =
"duration"
all = "yeslno"
comp = " > 1
< I = lavr
1512H/> . Vi . d
< f reespr per =
"duration"
block = "onloff"
all = "yeslno"
comp = " > I
< I = lav
rlIIL"/> . vi

No overlap between vi and vk

Include the set S as the domain
of vi

Exclude the set S from the do-
main of vi

vi is after (smaller) I before
(larger) I same as (equal to) vk

The difference between vi and
vk must be less than I greater
than I equal to I greater than or
equal to 1 less than or equal to d

tiend(assignvart (vi)) 5
tistart (assignvart (vk))

assignvart (vi) $ S

tiend(assignvart (vi))+
d(>l<I=li12)
tistart (assignvart (vk))

The total number of assignments of each variable in set Vi per
duration throughout the whole timetable has to be greater than
I less than I equal to I on average I less than or equal to I
greater than or equal to d (if the interval contains any assign-
ment (all=no))

The total number of empty slots between each variable assign-
ment (assuming consecutive assignments as single block of as-
signment, if block = on) in set per duration throughout the
whole timetable has to be greater than I less than I equal to I on
average I less than or equal to I greater than or equal to d (if the
interval contains any assignment (all = no))

Towards an XML-Based Standard for Timetabling Problems: TTML 175

ID Functions Explanation Semantic

08 < attrcomp Compares the selected attribute attrval
comp = M > I p value of the variable vi along (assignvara(vi), p)
< [= I < a defined dimension a and se- (> I < 1 = 1 < I 2)
I > " / > lected attribute T value of the attrval(assignvarb (vi), r)

vi assignment along a defined di-
e a mension b

09 <resnoclash/> If the assignments of the se- If
vi lected dimension (domain) are assignvardim(v,))
vk same for a pair of variables, == assignvardim (vk))

then there must be no overlao then
between the time assignment of tiend(assignvart (vi))
vi and vs , I

tistart (assignvart (vk))

010 < chksum per = Forms a data structure where each entry spans time slots of the
"duration" timetable duration long. If T is default and tt is common, then
tt = "commonl the function scans assignment of all the elements in V, and using
separate" the timetable mappings of each entry, it increments the related
comp = " > I field in the data structure, After the scan is complete, quantity at
< I = lav each field is compared with d, using the selected criterion. If r
r l < I > " / > is a selected attribute, then the quantity in a field is incremented . Vi by the corresponding attribute value of an element in K. Setting . d tt to separate creates a data structure for each member classifier

r in Vi.

Table I . Functions assuming that assignvart(vi)< assignvart(vk), where vi and vk are
variables and assuming that t represents the time dimension of the assignment.

course meeting blocks. 0 6 and 0 7 return a positive real value as compared
to d.

Function 0 8 is for comparing attribute values. For example, the number of
students taking a course should not exceed the capacity of a classroom. The
number of student is an attribute of a variable, while capacity is an attribute
of a classroom. The 0 8 function is supported for such constraint declarations,
returning the variables that do not satisfy the related constraint.

The 0 9 function checks whether two assigned values along a dimension are
the same or not. If they have the same value, then it checks for time overlap.
This function is for scheduling resources, other than the ones variables repre-
sent, without a clash. For example, the constraint imposing that the courses

should not be scheduled to the same classrooms at the same time can be de-
fined using 0 9 (Figure 7(c)). The 0 9 function returns all the pairs of variables
that do not satisfy the constraint.

The 010 function returns an array having an equal size with the timetable
divided by the duration, where each entry is an aggregation of a selected quan-
tity at a group of timetable slots determined by the duration. An entry of the
array is a pair. One of the pairs is the absolute difference between the total sum
and the entered value and the other is a Boolean flag indicating the comparison
result. For example, in a final exam timetabling problem, a schedule disallow-
ing 1500 students to be seated at the same time might be required. 010 is a
useful construct to define such constraints.

For no overlap, we know that comparison is made with a pair of time interval
items, so no dimension selection is needed, even if the timetabling problem in-
volves a Cartesian product of multiple sets as domains of variables. But in such
a case, for other functions, the dimension should be selected using the dim at-
tribute, where the corresponding value should be either an index or a name, in-
dicating a domain set, otherwise the n-tuple resulting from assignvar should
be used. Except for the 0 1 and 06-08 functions, all the rest have the dim
attribute in TTML. 0 9 cannot have time as a value of its dim attribute and the
0 8 function accepts dimension as an input. 01, 0 6 and 0 7 can be used to
define only time-related constraints on a variable set, whereas the rest can be
used to define constraints on a selected dimension (domain).

There are three input cases for 01-05, other than single events:

1 A binary function accepting a single set

2 A binary function accepting two sets

3 A unary function accepting a single set

For these cases, self-projections of the input sets will be taken, and then
the related function will be applied on the resulting base classifier. For exam-
ple, nooverlap function can accept a base classifier as input, indicating that
no pair in the set should overlap, or it could accept a parent classifier which
will be reduced to a base classifier by self-projection. Case 1 can be enriched
by several more interpretations. Single set parameter might be a parent clas-
sifier and the user would like to apply the binary function on any pair in each
child projection. For binary and unary functions accepting sets as their pararn-
eters, attribute pro jec t ion is proposed with values "single I s e l f I child",
indicating a base classifier, self-projection of a parent classifier or a child pro-
jection of a parent classifier, respectively. Note that 06, 0 7 and 010 do not
accept a single variable as their parameter. Using this feature, the function def-
inition in Figure 5 reduces to the function call in the constraint declaration in
Figure 7(a).

Towards an XML-Based Standard for Timetabling Problems: TTML

coi>
<declare>
<ci>Sl</ci>

<apply>
cnooverlap

rojection ="single"/>
cci>ESc/ci>
cci>CSc/ci>

</apply>
</declare>
/coi>

(4

< c o b

capply >
cnot same
dim="room"/>
cci>Sl
c/ci>

</apply>
c/coi>

:coi>

<apply>
cresnoclash
dim="roomW/>
<ci>ALL
c/ci>

</apply>
:/coi>

Figure 7. Declaration of a constraint as a function (a), a filtering example (b), the same effect
of (b) requiring no filtering, where ALL = ES U CS (c).

A filtering example is illustrated in Figure 7(b). It is more appropriate to use
standard functions, although the same affect can be obtained using filtering as
shown in Figures 7(a)-(c).

6. MODELLING OUTPUT AND TEST RESULTS
Modelling output is necessary for a general tool to be able to generate ex-

pected visual timetables for a given timetabling problem instance. For exam-
ple, the schedules of each instructor orland the schedule of students belonging
to the same set can be asked to be produced. In the schedule, the user might
prefer to see the classroom assignments as well. For this reason, the output
element should allow the display of listed items, where each item is a different
view of variable assignments. Each li is assigned info, an attribute indicating
the assigned values of dimensions that will be printed out into the timetable
slot. More than one dimension can be referred to in info, separated by com-
mas. Furthermore, a user might expect to see the classroom schedules. For this
reason, info can get var iab les as an attribute value. Then, selecting a class-
room in li and variables an info attribute value will yield a timetable output of
the selected classroom schedule.

Each item can be a single variable, a set of variables (a base classifier) or
sets of set of variables (a parent classifier). If it is a set of variables, the user
might require an output for each variable (each), or a single output for all
variables (a l l) . If it is a parent classifier, the user might require an output
for each variable in the set of self-projection (each), or a single output for
all variables in the set of self-projection (all), or an output for each child

Figure 8. The main and the lower level child elements of (a) output, (b) test results, (c) best
assignment of variables.

projection (child). For this reason, another attribute is supported to be used
with li, which is gentype, requiring one of the values each, a l l or child.

Test results are for researchers, containing the best assignment of variables,
author of the test results, references, a short description about the problem
solver (algorithm), the best result obtained and the evaluation function. Each
assignment of a variable is marked by a s i element. The order of each as-
signment is assumed to be in the order of how variables are defined. Since
each assignment might consist of several values, depending on the domains of
variables, each domain item is included inside the element d i . The main and
the lower level child elements of output, test result and the best assignment of
variables are shown in Figures 8(a)-(c), respectively.

In most timetabling applications, penalising an unsatisfied constraint is tra-
ditional. For supporting related evaluation functions TTML allows an optional
declaration of a penalty value using penalty element for each defined con-
straint.

7. CONCLUSIONS
TTML can model all real-world timetabling problems based on MathML. In

some situations, the user might be required to use some non-standard variable,
domain and constraint declarations. TTML is not a widely accepted standard,
but using TTML with standard constraint functions, most of the university
course timetabling, highschool timetabling, final exam timetabling and some
of the shift timetabling problems can be modelled. TTML requires standardi-
sation of more constraint functions to cover more of the employee timetabling
problem instances.

TTML is designed to include even the test results for comparison. For the
time being, test results consist of the best results compiled from different tests.
This definition can be modified to include more information for each test on
the runs, such as statistics of number of evaluations, statistics of timings, or

Towards an XML-Bused Standard for Timetubling Problems: TTML 179

properties of the machine on which the experiments are performed, etc. A
full TTML document can be retrieved from a web site by an expert applica-
tion for timetabling. This application can perform experiments on the given
data subject to given constraints, and then compare its results with the best re-
sults obtained previously. Furthermore, the application can update the TTML
document using its best results by modifying the test results part of the re-
trieved TTML document. TTML requires more work in modelling the evalua-
tion function, additional to determining more standard constraint functions.

TTML provides all the advantages and strengths of XML. Applications can
be carried to the Internet, becoming services. A TTML processor can be de-
signed having three major components: a parser, problem solver and a solution
interpreter. A multipurpose TTML processor is the ultimate goal that solves
different types of timetabling problems. Using TTML, data sharing will be
easy and fast. Additionally, TTML provides means to include different parts
of other TTML documents in order to make use of previously defined com-
ponents and their features (variables, constraints, etc), using Xlink and Xpath
technologies (W3C, 2004), where the same functionality is provided by SSTL
using an object-oriented methodology. The requirements for a standard data
format can be summarised as universality (assuming a closed world), com-
pleteness and convertibility. The latter requirement is satisfied by TTML, just
by being an XML standard. TTML, powered by MathML, is a strong candidate
for satisfying all these requirements.

Furthermore, recent studies concentrate on case-based reasoning approaches,
which can benefit from the use of TTML. Burke et al. (2003) define similar-
ity measures to support such approaches. In some problems, it is important to
determine the strongly connected components (possibly the largest one) in a
graph, mapping timetabling problem into a graph colouring problem. Finding
maximal clique is an NP complete problem. If TTML is used and the variables
are grouped into classifiers, then the problem of determining the strongly con-
nected components reduces to locating classifier sets as parameters of a related
constraint.

A TTML validator is not implemented, since there are many general val-
idators available over the Internet. Figure 10 includes a well-formed TTML
document. The first TTML application, named CONFETI, is implemented
as a Java applet, providing a user interface to convert final exam timetabling
text data into a TTML document. CONFETI will be used to build an instance
repository providing TTML documents for final exam timetabling using ex-
isting data. Initially, Carter's benchmark data sets are converted to TTML,
based on the constraints defined in Burke et al. (1996), successfully. The
second application will be available soon: a full TTML processor based on a
memetic algorithm for final exam timetabling, named FES (Final Exam Sched-
uler). The results will be reported soon. The latest developments in TTML

Ozcan

<?xml version="i.O"?>
<time-tabling>

<input-data type="University-Course-Timetabling"
lastUpdate="2003-01-22T13:20:00.000-05:001'>
<author>Ender Ozcan</author>
<desc>An example TTML document</desc>
<variables>
<attrset>
<declare> <ci>V</ci>
<vector>

<ci duration="2"> CSE2ll. 0l</ci>
cci duration="2"> CSE211.02</ci>
<ci> CSE3ll.Ol</ci>
<ci> CSE462.01</ci>

</vector>
</declare>
<declare> <ci>noOfStudents</ci>
<vector>
<ci> 34</ci>
<ci> 27</ci>
<ci> 20</ci>
<ci> 25</ci>

</vector>
</declare>
</attrset>

</variables>
<domains>
<time>
<declare> <ci>T</ci>

'apply>
ctmatrix itype=l'row-column" start="ltt>
<cn> 9</cn> <cn> 5</cn>

</tmatrix>
</apply>
</declare>

</time>
<attrset>
<declare> <ci>classrooms~/ci>
<vector>
<ci> AiOO</ci>
<ci> BlOl</ci>
<ci> B103</ci>
<ci> A20l</ci>

Towards an XML-Based Standard for Timetabling Problems: TTML

</vector>
</declare>
<declare> <ci>capacity</ci>
<vector>
<ci> 50</ci>
<ci> 50</ci>
<ci> 50</ci>
<ci> 30</ci>
</vector>
</declare>

</attrset>
<domainmar>
<declare><ci>R</ci>

<apply><cartesianproduct/>
<ci> T </ci>
<ci> classrooms </ci>

</apply>
</declare>

</domainsvar>
</domains>
<constraints>
<classifiers>
<rootcl> <declare> <ci>lecturers</ci>

<set> <ci> <declare> <ci> Ender Ozcan </ci>
<set>
<ci> CSE2il.Ol</ci>
<ci> CSE3il.Ol</ci>
</set>
</declare> </ci>
<ci> <declare> <ci> Ferda Dogan </ci>
<set>
<ci> CSE2ii.O2</ci>
<ci> CSE462.0i</ci>
</set>
</declare> </ci>

</set> </declare> </rootcl>
<rootcl> <declare> <ci>curriculum-terms</ci>

<set> <ci> <declare> <ci> TermM </ci>
<set>
<ci> CSE2il.Oi</ci>
<ci> CSE211.02</ci>
<ci> CSE3il.Ol</ci>
</set>
</declare> </ci>

182 Ozcan

<declare> <ci> Term#3
<set>
<ci> CSE462.0K/ci>

</set>
</declare> </ci>

</set> </declare> </rootcl>
</classifiers>
<hard>

<coi>
<apply>

<nooverlap projection="child"/>
<ci>curriculum-terms</ci>

</apply>

<coi>
<apply>

<nooverlap projection="child"/>
<ci>lecturers</ci>

</apply>
</coi> <coi>

<apply>
<preset dim="classroom"/>

<ci>CSE211.0K/ci>
<cn>A100</cn>

</apply>

<coi>
<apply>
<exclude dim="T"/>

<ci>CSE311.0K/ci>
<cn><vector> <cn>Ksep/>K/cn>

<cn>2<sep/>2</cn></vector>
</cn>

</apply>

<coi>
<apply>
<resnoclash projection="single"
dim="classrooms"/>

</apply>
</coi>

</hard>

Towards an XML-Based Standard for Timetabling Problems: TTML

<soft>
<COO
<apply>
cattrcomp pro jection="singlel' comp="< ;=I1/>

<ci>V</ci>
<ci>T</ci>
<ci>noOfStudents</ci>
~ci>classrooms</ci>
<ci>capacity</ci>

</apply>
</coi>

</soft>
</constraints>
</input -data>
<output >

<li pro j e~tion=~~child~~>lecturers
</output >
<test-results>
<result>

<author>Ender Ozcan</author>
<desc> Problem is solved by TEDI, following is

the best solution obtained in 50 runs
</desc>
<best>
<asi> <di>4<sep/>l</di> <di>AlOO</di> </asi>
<asi> <di>4<sep/>2</di> <di>BlOl</di> </asi>
<asi> <di>4<sep/>3</di> <di>A20l</di> </asi>
<asi> <di>4<sep/>4</di> <di>B103</di> </asi>

</best>
</result >

</test-results>
</t ime-tabling>

Figure 9. An example TTML definition of a timetabling problem instance.

Ozcan

and instance repositories will be available at http://cse.yeditepe.edu.tr/ eoz-
canlresearch1TTML.

References
Abramson, D., Dang, H. and Krisnamoorthy, M. (1999) Simulated annealing cooling schedules

for the school timetabling problem. Asia-Pac& Journal of Operational Research, 16:l-22.
Alkan, A, and Ozcan, E. (2003) Memetic algorithms for timetabling. In Proceedings of 2003

IEEE Congress on Evolutionary Computation, pp. 1796-1802.
Causmaecker, P. D., Demeester, P., Lu, Y. and Vanden, G. (2002) Using web standards for

timetabling. In Practice and Theory of Automated Timetabling IV, Lecture. Notes in Com-
puter Science, Vol. 2740, Springer, Berlin, pp. 238-258.

Burke, E. K., Eckersley, A. J., McCollum, B., Petrovic S, and Qu, R. (2003) Similarity measures
for exam timetabling problems. In Proceedings of the let Multidisciplinary International
Conference on Scheduling: Theory and Applications, pp. 120-135.

Burke, E. K., Elliman, D. and Weare, R. (1994) A genetic algorithm based timetabling system.
In Proceedings of the 2nd East-West International Conference on Computer Technology in
Education, pp. 35-40.

Burke, E. K., Newall, J. P., Weare, R. F. (1996) A Memetic Algorithm for University Exam
Timetabling. In Practice and Theory of Automated Timetabling I, Lecture Notes in Computer
Science, Vol. 1153, Springer, Berlin, pp. 241-250.

Burke, E. K., Pepper P. A. and Kingston, J. H. (1997) A standard data format for timetabling
instances. In Practice and Theory of Automated Timetabling 11, Lecture. Notes in Computer
Science, Vol. 1408, Springer, Berlin, pp. 213-222.

Colorni, A., Dorigo, M. and Maniezzo, V. (1992) A genetic algorithm to solve the timetable
problem. Technical Report 90-060 revised, Politecnico di Milano, Italy.

Come, D., Ross, P., Fang, H. L. (1994) Evolutionary timetabling: practice, prospects and work
in progress, Proceedings of the UK Planning and Scheduling SIG Workshop.

Cladeira, J. P. and Rosa, A. C. (1997) School timetabling using genetic search. In Practice and
Theory ofAutomated Timetabling I, Lecture Notes in Computer Science, Vol. 1408, Springer,
Berlin, pp. 115-122.

Dignum, F, P. M., Nuijten, W. P. M., Janssen, L. M. A. (1995). Solving a Time Tabling Problem
by Constraint Satisfaction, Technical Report, Eindhoven University of Technology.

Erben, W. and Keppler, J. (1995), A Genetic algorithm solving a weekly course-timetabling
problem. In Practice and Theory of Automated Timetabling I, Lecture Notes in Computer
Science, Vol. 1153, Springer, Berlin, pp. 21-32.

Even, S., Itai, A. and Shamir, A. (1976) On the Complexity of Timetable and Multicommodity
Flow Problems, SIAM Journal of Computing, 5691-703.

Fang, H . L. (1994) Genetic algorithms in timetabling and scheduling, Ph.D. Thesis.
Hertz, A. (1992) Finding a feasible course schedule using a tabu search, Discrete Applied Math-

ematics, 35:255-270.
Kingston, J. H. (2001) Modelling timetabling problems with STTL. In Practice and Theory of

Automated Timetabling 111, Lecture Notes in Computer Science, Vol. 2079, Springer, Berlin,
p. 309.

Leighton, E T. (1979) A graph coloring algorithm for large scheduling problems, Journal of
Research of the National Bureau of Standards, 84:489-506.

Monfroglio, A. (1988) Timetabling Through a Deductive Database: A Case Study, Data and
Knowledge Engineering, 3:l-27.

Towards an XML-Based Standard for Timetabling Problems: lTML 185

~ z c a n , E. and Alkan, A. (2002) Timetabling using a steady state genetic algorithm. In Practice
and Theory of Automated Timetabling 11, Lecture Notes in Computer Science, Vol. 1408,
Springer, Berlin, pp. 104-107.

Schaerf, A. (1996) Tabu Search Techniques for Large High-School Timetabling Problems, Pro-
ceedings of the 14th National Conference on AI, pp. 363-368.

Schmidt, G. and Strohlein, T. (1979) Time table construction-an annotated bibliography, The
Computer Journal, 23: 307-3 16.

De Werra, D. (1985) An introduction to timetabling, European Journal of Operations Research,
19:151-162.

W3C (2004) World Wide Web Consortium web site: http://www.w3c.org.

A SCHEDULING WEB SERVICE

Leonilde Varela
Department of Production and Systems, University of Minho
Campus Azurem, 4800-058 Guimaraes, Portugal
leonilde0dps.uminho.pt

Joaquim Aparicio
Department of Computer Science, New University of Lisbon
Quinta da Torre, 2829-516 Monte de Caparica, Portugal
jna@di.fct.unl.pt

Sflvio do Carmo Silva
Department of Production and Systems, University of Minho
Campus Gualtar; 4710-057 Braga, Portugal
scarmo@dps.uminho.pt

Abstract This paper describes a web system for supporting manufacturing scheduling
in practice. Within this system scheduling concepts like problems and solving
methods are modelled through XML. Furthermore, the Internet remote methods'
invocation is also based on the XML language and performed using the XML-
RPC communication protocol. The architecture and underlying approach of the
web system is oriented for solving a large variety of manufacturing scheduling
problems based on a continuously updatable distributed knowledge base, which
allows a network of peers to provide the scheduling service to users and the dy-
namic enlargement of the number of methods that can be accessed. This is done
in an easy and interactive way.

Keywords: manufacturing scheduling, XML modelling, web service and remote procedure
call.

1. INTRODUCTION
The scheduling activity in an organisation seeks to optimise the use of avail-

able production means or resources, ensuring short time to complete jobs and,
in addition, to satisfy other important organisation objectives. Thus, it can sig-

188 Varela, Aparicio and do Carmo Silva

nificantly contribute to good service to customers and to high profitability of
an organisation. Manufacturing Scheduling may be defined as the activity of
allocating tasks to production resources, or vice versa, over time. The result of
this is usually expressed in a production schedule.

With this work we make a contribution for the better resolution process of
scheduling problems by means of a web-based system. This system requires,
first of all, the specification and identification of each problem to be solved and,
then, the access to resolution methods, which are available for solving them.
When there are different methods available we can obtain alternative solutions,
which should be evaluated against specified criteria or objectives to be reached.
Thus, we are able to properly solve a problem, through the execution of one
or more scheduling methods. These methods can either be local or remotely
accessible through the Internet.

The remote invocation of the methods is performed by a web service through
the XML-RPC (extensible markup language, remote procedure call) protocol.
The web service accepts as input a problem definition, i.e. data for running a
method, and returns outputs from the method's execution.

To be able to implement the web service and the other important functionali-
ties of the web system, it is essential to specify the scheduling problems, which
in our case is done by means of a scheduling problem classification model.

Manufacturing scheduling problems and related concepts, including solving
method information are modelled through XML. This kind of data modelling
also allows remote method invocation to enable one to establish the necessary
communication for execution through the web.

This paper is organised as follows. The next section describes the schedul-
ing situations for which this system is intended and the underlying schedul-
ing problems classification model. Section 3 presents a general outline of the
web system architecture and briefly describes the main modules and associ-
ated processes of the web system. Sections 4, 5 and 6 describe and illustrate
the scheduling methods specification, the methods searching in a distributed
knowledge base and the remote methods invocation processes, respectively.
Section 7 briefly refers to some related work and the last section presents some
conclusions.

2. MANUFACTURING SCHEDULING
Scheduling problems belong to a much broader class of combinatorial op-

timisation problems, which, in many cases, are hard to solve, i.e. are NP-hard
problems (Ceponkus, 1999; Jordan, 1996; Blazewicz, 1996; Brucker, 1995).
In the presence of NP-hard problems we may try to relax some constraints
imposed on the original problem and then solve the relaxed problem. The
solution of the latter may be a good approximation to the solution of the orig-

A Scheduling Web Service 189

inal one. Many times, due to the short time we have to make decisions, we
do not have a choice and have to draw upon what we may generally call ap-
proximation methods (French, 1982). These include both those of which we
know how near their solutions may be from optimum ones and also a vari-
ety of heuristic methods. Important techniques on which many of such meth-
ods are based are dynamic programming, branch and bound techniques and
meta-heuristics. Typical examples of meta-heuristics, also known as extended
neighbourhood search techniques, widely used nowadays, include genetic al-
gorithms, tabu search and simulated annealing (Osman, 1996; Arts, 1997). We
should also mention other successful scheduling approaches, frequently used,
based on simulation, bottleneck theory, neural networks and Petri nets, among
others.

2.1 Scheduling Scenarios
We can encounter in practice, in manufacturing environments, a huge vari-

ety of scheduling problems that have to be solved. In general, this means to
solve jointly or separately a set of interrelated and complementary actions or
stages that the scheduling activity involves. These usually include order re-
lease, task assignment and sequencing on resources and also detailed schedul-
ing. Here detailed information about when each task should start and finish on
particular resources, main and auxiliary resources, must be established.

The web system here presented enables the selection and use of methods
for solving a large variety of real-world manufacturing scheduling problems.
These may be subject to several combinations of constraints related to tasks
and resources. A classification model is used for specifying the wide range of
scheduling problems that can occur in different manufacturing systems. This
model is briefly described here.

2.2 Specification of Scheduling Problems
Due to the existence of a great variety of scheduling problems there is a need

for a formal and systematic manner of problem classification that can serve as
a basis for their specification. A classification model for achieving this was
developed by Varela (1999) and Varela et al. (2002a, b), based on published
work by Conway (1967), Graham et al. (1979), Brucker (1995), Blazewicz
(1996) and Jordan (1996), as well as on other information presented by Morton
(1 993), Artiba (1 997) and Pinedo (1 995). This model allows identification of
the underlying characteristics of each problem to be solved and is used as a
basis for the XML-based problem specification model used in this work.

The referred classification model for problem specification includes three
classes of notation parameters for each corresponding class of problem char-
acteristics, in the form of culP1-y. The first class of characteristics, the cr class,

190 Varela, Aparicio and do Carmo Silva

Table I. Scheduling problem characteristics.

Class Factor Description Value

Manufacturing system type 00, P, Q, R, X, 0, J , F, PMPM, EJ,
Number of machines Om
Job preemption 80, pmtn
Precedence constraints 0, prec, chain, tree, sp-graph, . . .
Ready times 00, r j
Restrictions on processing times 0, pj=l, pji=l, pj=p, pins Spj <psUP, . . .
Due dates (deadlines) 00, dj
Batch 00, batchj
Complex jobs 61, compj
Number of jobs or tasks in a job n
Job priorities 07 wi
Machine eligibility 0, Mjs
Dynamic machine availability 0, availi
AdditionaVauxiliary resources 0, auxk
Buffers 0, bufferjipo-wait

P14 Setup (changeover) 0, setup
7 y Performance measure Cmmz, Fm,,, CCj9 CwjCj, Lmamr CT~, . . .

is related with the environment where the manufacturing is carried out. It spec-
ifies the manufacturing system type and, when necessary, the number of ma-
chines that exists in the system. This parameter enables definition of the main
class to which scheduling problems belong. Examples of these are parallel ma-
chines, flow-shops, open-shops, job-shops, manufacturing cells, flexible sys-
tems and extended job-shops (EJ). The EJ assumes manufacturing of batches
of either simple or complex products (Almeida et al., 2003). The former prod-
ucts are made of single parts. The latter include the manufacturing of parts
and their assembly into products. The P class, which includes the PI to fi4
parameters, allows specification of the job and resources characteristics. Some
important constraints are imposed by the need for auxiliary resources, such as
tools, handling devices andlor the existence of buffers. The class y deals with
the performance criteria, which can be based on a single criterion performance
measure or on multi-criteria measures. Table 1 gives an overview of this three-
field problem classification model. More detailed information about this model
can be found in Varela et al. (2002a, b).

An example of use of this notation is "F31n,dj, batchj ICmax" which can
be read as: "Scheduling of an arbitrary number of jobs with defined due dates
and batch sizes, on a pure flow-shop, with three machines, to minimise the
maximum completion time". Due to the absence of a number of parameters, in

A Scheduling Web Service

Problem I ciassificatim

I Remote methods
invocation

Figure 1. Main system processes.

the problem representation notation, this means that the related characteristics
are either absent from the problem or specified by default, corresponding to
the 0 symbol.

3. WEB SYSTEM DESCRIPTION
This web system is a tool for aiding users to solve scheduling problems in

manufacturing. Figure 1 shows the main system's processes. These processes
are carried out by four main modules: a user interface module (UIM), a knowl-
edge specification module (KSM), a method searching module (MSM) and a
method invocation module (MIM). The UIM enables one to input problems and
methods specification data and also to present results in different formats. The
KSM enables the updating of a distributed knowledge base (DKB). The DKB
is a distributed repository about scheduling knowledge, i.e. specified schedul-
ing problems and also methods for supporting the manufacturing scheduling
process. One important piece of the MSM is a Prolog-based searching mecha-
nism for finding suitable methods for solving a given scheduling problem. The
MIM module is used for remotely accessing methods to solve problems.

The application area and potential of the web scheduling system is mainly
dependent on its ability to specify and deal with scheduling problems to be
solved. This very much depends on the contents of the DKB and, to a certain
extent, also on the ability of problems to be clearly specified into the system.
This is restricted by the classification model above described. Although much
effort has already been put by the authors into developing a comprehensive
model, capable of allowing the specification of a largc variety of problems, it

Varela, Aparicio and do Carmo Silva

-Distributed Knowledge Base-

Figure 2. Web-system architecture.

can always be extended to enlarge the set of problems that can be dealt with by
the system.

The contents of the DKB are critical because they provide the methods
which can be identified and used for solving a specified scheduling problem.

The DKB is embedded in a peer-to-peer (P2P) network (for details see
http://www.oreilly.com/catalog/peertopeer/).

The peers communicate with each other in a searching process for adequate
scheduling methods to solve problems specified by the user. He or she can
connect to one of the peers for finding methods, in the local knowledge base
or in other peers' knowledge bases, for solving a given scheduling problem. If
available, a method can be executed under request.

Figure 2 illustrates a general outline of the web system architecture.
XML was considered suitable and important to support the development

of the web system here described (Varela et al., 2002a, b)). Some important
XML applications, also relevant to manufacturing, are PDML (Product Data
Markup Language), RDF (Resource Description Format), STEPml (Harper,
2001), JDF (Job Definition Format), PSL (Process Specification Language),
PIX-ML (Product Information Exchange), PIF (Process Interchange Format)
and XML-based workflow (Abiteboul et al., 2000).

In the knowledge base component of each peer the scheduling data are
stored in XML documents and each document is validated using an associated
DTD (document type definition), before being updated in the corresponding
XML repository.

Elements on the DTD for problems precisely characterise scheduling prob-
lems, meaning that in order to interact with the system a problem must be
described according to that grammar (Varela et al., 2002a, b).

A Scheduling Web Service 193

The UIM is mainly controlled by DTD and XSL (extensible stylesheet lan-
guage) documents stored in the local knowledge base of each peer. The system
has been designed and implemented as a web service (http://www.w3.org) and
will be available soon through the http://www.dps.uminho.pt/ web site.

XML-RPC (Laurent et al., 2001; Varela et al., 2002) is the communication
protocol that is used for remote method invocation. Other protocols could be
considered, namely SOAP (Simple Object Access Protocol), UDDI (Universal
Description, Discovery, and Integration of business for the web), WSDL (Web
Services Description Language), or other well known ones, such as CORBA
(Common Object Request Broker Architecture), RMI (Remote Method Invo-
cation) or DCOM (Distributed Component Object Model).

4. METHODS SPECIFICATION
The DKB is easily and dynamically updatable by users, which include not

only end-users willing to solve problems but also domain experts wishing to
specify methods into the system. This is done using the KSM module and
requires using the problem classification model, which is essential for the web
system to work.

Many implementations of a given method may be accessible through the
Internet. From the point of view of the web system two implementations of
the same method may differ if, for example, they differ in outputs. Moreover,
not all implementations work in the same way. Therefore, for the system to be
able to match problem instances to resolution methods and to retrieve and use
implemented methods available they must be specified into the system. This
specification must include, among other things, the uniform resource locator to
run a method, the communication protocol identification and the implemented
method's signature, which, in turn, must include the definition of the parame-
ters that are necessary for its invocation, i.e. the inputs, and its output format.

Figure 3 illustrates the method's signature specification of an implementa-
tion of the branch and bound method proposed by Ignall and Schrage (1965)
for a flow-shop problem. The signature inputs, in this example, include the def-
inition of a parameter n for number of jobs to be processed, which is of integer
type, a parameter m for number of machines in the production system and also
a set of three items in a matrix structure, which represent the job name, the ma-
chine name and an additional parameter p that corresponds to job processing
time. There is also the definition for the method's output following the same
lines. This information is subsequently inserted in an XML document in order
to enable repeated executions of methods, information retrieval and automatic
generation of interfaces for the implemented methods' inputs and outputs.

194 Varelu, Aparicio and do Curmo Silva

Figure 3. Method signature definition.

For the example given, after the insertion of the Ignall and Schrage's method
definition, any method search that is a match for the FmJnlCmax problem class
will include this method in the search results.

5. METHODS SEARCHING
The MSM, referred to in Section 3, for finding suitable methods for solving

scheduling problems, is based on the classification model referred to in Section
2.2. The MSM includes a searching mechanism that selects, from each local
knowledge base of the DKB, the scheduling method(s) that can be used for
solving a specified problem. This is a built-in Prolog engine using an internal
inference mechanism developed using the SWI-Prolog V.5.2.1. free software
tool available at http://www.swi-prolog.org/. The searching mechanism identi-
fies a list of problem classes from the DKB that matches the characteristics of
the user-specified problem. The user is presented with this list, from which the
problem to be solved can be identified.

An example of a list of problem classes, resulting from specified character-
istics of a practical problem, is presented in Figure 4. The referred to charac-
teristics can be seen on top of the figure.

After the user has selected one or more suitable problems from the list and
submitted a request to search for solving methods, the system shows a list of

A Scheduling Web Service 195

Figure 4. Problem class selection.

Figure 5. Method implementation for solving problem classes.

those referred to in the DKB. The list includes author(s) and literature refer-
ence, details for aiding on the selection of adequate scheduling methods for
solving the problem and the links for method executions, if they are available.

An example of the output of the searching methods process is presented
in Figure 5. As illustrated, the system has one method available, which the
user selected, for solving FmlnlCmax problems. This method is the branch-
and-bound method from Ignall and Schrage (Ignall and Schrage, 1965; Baker,
1974). Further information is available, such as, in this case, that the method
belongs to the class of exact mathematical programming methods and is an
exponential time complexity method. The Figure 5 also includes the Johnson
method (Johnson, 1954; Baker, 1974) for solving F2lnlCmax problems.

If no method is available in the DKB for solving a given problem, the user
is encouraged to relax some of the problem constraints or introduce further
problem characteristics and repeat the searching process.

6. METHODS INVOCATION
Our web service is provided through the MIM module. This, as previously

referred to, performs the remote method invocation for solving manufacturing
scheduling problems.

In the web service a certain method accepts as input a problem definition and
returns a result in some particular form. Therefore, the system has to exactly

196 Varela, Aparicio and do Carmo Silva

know the implemented methods' signatures. All this information is described
in a corresponding DTD file (Varela et al., 2002a, b).

Different implementations may provide results in different formats. There-
fore, the system must have a description of them in order to format them ac-
cording to the problem output to be returned to the client. This is the last step
of the service. The result from running a method implementation on the given
problem instance can then be delivered to the client as an XML file andlor can
be transformed into some more expressive output, like tables or Gantt charts.

The web service uses XML to encode both the message wrapper and the
content of the message body. As a result, the integration is completely inde-
pendent of operating system, language or other middleware product used by
each component participating in the service. The only fundamental require-
ment is that each component has the ability to process XML documents and
that each node connected in a distributed environment supports HTTP as a
default transport layer.

The XML-RPC protocol is the sequence and structure of requests and re-
sponses required to invoke communications on a remote machine. The exten-
sible Markup Language provides a vocabulary for describing remote procedure
calls, which are transmitted between computers using the Hyper Text Transfer
Protocol (HTTP). XML-RPC clients make procedure requests to XML-RPC
servers, which return results to the XML-RPC clients. XML-RPC clients use
the same HTTP facilities as web browser clients, and XML-RPC servers use
the same HTTP facilities as web servers. XML-RPC requires a minimal num-
ber of HTTP headers to be sent along with the XML method request for solving
a given scheduling problem instance (Varela et al., 2003).

For a better illustration, let us consider an instance of the previously de-
scribed FmlnlCmax problem class: namely, a problem with four jobs, which
have to be processed in a flow-shop with three machines in order to minimise
the maximum completion time (Cmax), with the time required for processing
each job j on each machine i, as shown in Table 2.

For solving the problem instance under consideration, which belongs to
class FmlnlCmax, with rn equal to 3 and n equal to 4, we can select the Branch
and Bound method of Ignall and Schrage, shown in Figure 5, implemented in
C++ and running under the XML-RPC protocol.

After having selected the implemented method for solving our problem, we
only need to feed the system with the problem instance data and run it.

The problem data, as well as the information related to methods, are spec-
ified through XML; the system enables an easy automatic generation of inter-
faces for problem data insertion for each particular problem instance. Figure 6
illustrates the interface for the problem instance under consideration, accord-
ing to the previously chosen method, whose signature is known by the system,
due to its previous specification in the web system.

A Scheduling Web Service

Table 2. Scheduling problem data.

Figure 6. Interface for inserting problem data.

Upon receiving an XML-RPC request, an XML-RPC server must deliver a
response to the client. The response may take one of two forms: the result
of processing the method or a fault report, indicating that something has gone
wrong in handling the request from the client. If everything has gone well, once
having executed the implemented method, the system automatically generates
the interface for presenting the results, again accordingly to the predefined
method's signature. Figure 7 exemplifies the interface generated by the system
for presenting the results obtained for our problem.

The system also enables another kind of result presentation, namely Gantt
charts, which are also automatically generated by the system, from the outputs
provided by the execution of methods. This is easily achieved because the
output data are expressed in XML and XSL documents, which enables an easy
method of output conversion into different presentation forms.

Figure 8 shows the Gantt chart representing the optimal solution obtained
for the problem instance considered, with a completion time of 39 time units.

Gantt charts continue to be widely used due to their expressive power, giving
an easy way of comparing results obtained from the execution of several differ-
ent implemented methods available. Other alternatives for displaying outputs
are available, including direct output presentation through XML documents.

Varela, Aparicio and do Carmo Silva

Figure 7. Interface for presenting problem results.

I

Figure 8. Gantt chart.

7. RELATED WORK
We have noticed a recent increase in scheduling systems accessible through

the Internet. These usually involve solvers or a community of solvers, each one
addressing the resolution of a restricted range of scheduling problems, using
specific techniques or tools, such as mathematical programming. They are not
usually designed to easily incorporate new method implementations by users.

An example of a web system that can be used for scheduling is the NEOS
Server, developed under the auspices of the Optimisation Technology Centre
of Northwestern University and Argonne National Laboratory, for optimisation
problem solving. It makes nearly 50 solvers available through a broad variety
of network interfaces. According to the authors, although having evolved along
with the web and the Internet, it is limited to some degree by early design
decisions (http://www-neos.mcs.anl.gov/).

We also mention the BBN Vishnu scheduling system, a web-based opti-
misation scheduling system (http://vishnu.bbn.com) and the FortMP, a Math-
ematical Programming Solver, from Mitra's Group at Brunel University (see
http://www.brunel.ac.uk/depts/ma/research/com).

The e-OCEA, a portal for scheduling, intends to help identifying schedul-
ing problems, to help development of new algorithms and to conduct bench-
marks through the Internet. However, this system will only consider elements

A Scheduling Web Service 199

(algorithms, data sets, schedules and modules) that are e-OCEA compatible
(http://www.ocea.li.univ-tours.fr/eocea).

The LekiNET, a prototype Internet scheduling environment, by Benjamin
et al. (Yen et al., 2004) which is evolved from LEKIN, a flexible job shop
system, is a system that has some similarities to our system, focusing more on
cost effective choice of scheduling agents for solving problems. The authors
propose a migration scheme to transform existing standalone scheduling sys-
tems to Internet scheduling agents that can communicate with each other and
solve problems beyond individual capabilities. They treat each system as an
agent and build the relations between the systems. Therefore, wrappers need
to be specifically designed for each system.

In our case, any method which is accessible through the Internet, provided
its signature and location are specified within our web system, can be used
for solving problems put by users. No further requirements are necessary for
being able to remotely use available methods. The association of scheduling
problems with resolution methods is done using the information available in
the DKB, about both problems and solving methods. We have not come across
systems with identical architecture and underlying approach, i.e. oriented for
solving a large variety of manufacturing scheduling problems based on a con-
tinuously updatable distributed knowledge base, which allows a network of
peers to provide the scheduling service to users and the dynamic enlargement
of the number of methods that can be accessed.

8. CONCLUSION
In manufacturing enterprises, it is, nowadays, important, as a competitive

strategy, to explore and use software applications, now becoming available
through the Internet and Intranets, for solving scheduling problems.

This work presents a web-based system for aiding manufacturing scheduling
in practice. The essential processes available include the ability to specify
scheduling problems and to find appropriate methods for solving them. This is
based on a problem classification model that allows the specification of a large
variety of scheduling problems that may occur in different types of real world
manufacturing environments.

Manufacturing scheduling data specification using the XML language is one
important aspect underlying this work. This modelling and specification con-
tributes to the improvement of the scheduling process, by allowing an easy
selection of several alternative available methods for problem solving, as well
as an easy update of the distributed knowledge base that supports this web sys-
tem. This knowledge primarily includes scheduling problems and resolution
methods. The methods may be implemented on different programming lan-

200 Varela, Aparicio and d o Carmo Silva

guages and running on different platforms and can be easily invoked through
this web system, when available through the Internet.

As a prototype, some methods are accessible through the web system allow-
ing comparison of different solutions obtained by different methods for solving
each given scheduling problem.

Although the main goal is the service for scheduling problem solving, the
system is also expected to be used for teaching purposes, and from this point
of view, some additional features are being introduced into the system. These
include historical and referencing information about each problem class and
solving method. The system will grow as more knowledge is included in the
distributed knowledge repository.

References
Abiteboul, S., Buneman, P. and Suciu, D. (2000) Data on the Web-From Relations to Semistruc-

tured Data and XML, Morgan Kaufmann, San Mateo, CA.
Almeida, A. Ramos C. and Silva, S. C. (2003) Product Oriented Scheduling through Job Schedul-

ing Patterns, Proceedings of International Conference on Industrial Engineering and Pro-
duction Management (IEPM'03, Porto, Portugal).

Artiba, A. and Elmaghraby, S. (1997) The Planning and Scheduling of Production Systems,
Chapman and Hall, London.

Arts, E. and Lenstra, J. K. (1997) Local Search in Combinatorial Optimization, Wiley, New
York.

Baker, K (1974) Introduction to Sequencing and Scheduling, Wiley, New York.
Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G. and Weglarz, J. (1996) Scheduling Computer

and Manufacturing Processes, Springer, Berlin.
Brucker, P. (1995) Scheduling Algorithms, Springer, Berlin.
Ceponkus, A. and Hoodbhoy, E (1999) Applied XML, Wiley, New York.
Conway, R. W., Maxwell, W. L., and Miller, L. W. (1967) Theory of Scheduling, Addison-

Wesley, London.
French, S. (1982) Sequencing and Scheduling-An Introduction to Mathematics of the Job-

Shop, Wiley, New York.
Graham, R. L., Lawler, E. L., Lenstra, J. K. and Rinnooy Kan, A. H. G. (1979) Optimization

and approximation in deterministic sequencing and scheduling: a survey, Annals of Discrete
Mathematics, 5:287-326.

Harper, F. (2001) XML Standards and Tools, Excelon Corp., USA.
Ignall, E. and Schrage L. (1965) Application of the branch-and-bound technique to some flow-

shop problems, Operations Research, 13:400-412.
Jordan, C. (1996) Batching and Scheduling, Springer, Berlin.
St Laurent, S., Johnston, J. and Dumbill, E. (2001) Programming Web Services with XML-RPC.

O'Reilly, Cambridge, MA.
Morton, T. and Pentico, D. (1993) Heuristic Scheduling Systems, Wiley, New York.
Osman, I. H. and Kelly, J. P. (1996) Meta-Heuristics: Theory and Applications, Kluwer, Dor-

drecht.
Pinedo, M. (1995) Scheduling Theory, Algorithms and Systems, Prentice-Hall, Englewood Cliffs,

NJ.

A Scheduling Web Service 20 1

Varela, L., Apdcio, J. and Silva, S. (2003) A scheduling web service based on XML-RPC. In
Proceedings of the Doctoral Consortium, Unger H, et al., ICAPS'03 Conference (Trento,
Italy) NASA Ames, USA.

Varela, L., Aparfcio, J. and Silva, S. (2002a) An XML knowledge base system for scheduling
problems. In Proceedings of the Innovative Internet Computing Systems, by Unger H . et al.,
during the Innovative Internet Computing System Conference (Kuhlungsborn, Germany),
Lecture Notes in Computer Science, Springer, Berlin.

Varela, L., Aparfcio, J. and Silva, S. (2002b) Scheduling problems modeling with XML. In
Proceedings of Research in Logistics, J . C. Carvalho et al., 4th International Meeting for
Research in Logistics (Lisbon, Portugal).

Varela, M. L. R. (1999) Automatic scheduling algorithms selection, M.Sc. Dissertation, Depart-
ment of Production and Systems, University of Minho, Portugal. .

Yen, B. and Wu, 0. (2004) Internet scheduling environment with market-driven agents. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 34(2).

Machine Scheduling

AN O (N log N) STABLE ALGORITHM FOR
IMMEDIATE SELECTIONS ADJUSTMENTS

Laurent Peridy and David Rivreau
Institut de Mathimatiques Appliquies, Universiti Catholique de I'Ouest, France
{ la~rent.~erid~,david.rivreau) @irna.uco.fr

Abstract Using local operations within branch-and-bound methods for job-shop schedul-
ing problems has been proved to be very effective. In this paper, we present an
efficient algorithm that applies ascendant set-like adjustments for the immediate
selections. This procedure is given within an original framework that guarantees
a good convergence process and an easy integration of other classical disjunctive
elimination rules.

Keywords: disjunctive scheduling, edge finding, local adjustments, elimination rule, job-
shop.

INTRODUCTION
Many scheduling problems found in a typical factory environment involve

the processing of jobs on a fixed set of machines that can handle at most one
job at a time. If we focus on one machine, we are given a set of operations to be
processed without interruption in their time windows. The purpose of local ad-
justments is to narrow these time windows in order to speed up the enumerative
approaches used for the whole problem. This kind of elimination rule has been
in particular successfully applied to solve to optimality notoriously difficult
scheduling problems such as job-shops (Carlier and Pinson, 1989; Brinkkiitter
and Brucker, 2001). In this paper, we consider the immediate selections due
to Carlier (1975) and give an O(n logn) procedure that finds all adjustments
associated with these selections.

The paper is organised as follows. In the first section, we recall the main
classical adjustment procedures and give some properties that entitle to design
stable algorithms. Section 2 is devoted to the presentation of the new elim-
ination rule. Then, in Section 3, this procedure is implemented by a stable
procedure that it is proved to run in O(n log n) time. Finally, we report some
experimental results on job-shop in Section 4 and draw some conclusions in
Section 5.

206 Piridy and Rivreau

1. LOCAL ADJUSTMENTS FOR DISJUNCTIVE
PROBLEM

1 . Disjunctive Scheduling Problem
As mentioned before, we concentrate on the process of a set 0 of n opera-

tions on a single machine that can process only one operation at a time. Each
operation i from 0 is given an integer processing time pi and must be pro-
cessed in a certain time window [ri, di]. No pre-emption is allowed. There-
fore, any feasible schedule of O is characterised by a set {ti) of starting times
for operations such that the following two relations hold:

The main goal of local operations is precisely to reduce the time windows
bounds of operations in order to reduce the problem size. Since adjustments
of release dates and of deadlines are clearly symmetrical, we will henceforth
only consider release date adjustments.

1.2 Local Adjustments
One of the first local adjustments has been proposed by Carlier (1975). This

elimination rule attempts to deduce an adjustment from the relative positioning
of two given operations i and j. It can be stated as follows:

Immediate selections adjustments (Carliel; 1975). If rj + pj + pi > di
then i precedes j in any feasible solution. In that case, we can let

These immediate selections have been extended by Carlier and Pinson (1989).
To this end, they evaluate the relative positioning of an operation i in a given
subset J such that i $ J. Three cases are distinguished:

(C 1) Operation i cannot be scheduled before subset J if

(C2) Operation i cannot be scheduled inside subset J if

An O(n logn) Stable Algorithm for Immediate Selections Adjustments

(C3) Operation i cannot be scheduled afer subset J if

Carlier and Pinson deduce the so-called ascendant sets adjustments from
those conditions:

Ascendant sets adjustments (Carlier and Pinson, 1989). If (Cl) and
(C2) are satisfied then i is processed after all operations from J in any
solution. In that case, we can let

It can be noticed that the potential ascendant set adjustment of ri corre-
sponds to the optimal makespan of the pre-emptive schedule of J.

It has been proved by Carlier and Pinson (1990, Theorem 1) that the ascen-
dant set adjustment of i leads to the immediate selection rj + pj +pi > di for
all j E J. However, some of the precedence relations identified by immediate
selections cannot be found by the ascendant sets procedure. It follows that a
better adjustment is missed, even when ascendant sets adjustments are used
with classical immediate selections.

In the remainder of the paper, we present a procedure that allows us to apply
the ascendant set adjustments to all the precedence relations found by imme-
diate selections and, by extension, induced by Carlier and Pinson (1990, The-
orem I), to all precedence relations found by the ascendant sets procedure. To
distinguish our immediate selection adjustments from the original version of
Carlier, we speak from now on of improved immediate selection adjustments.

1.3 Properties
We recall the main concepts given in Pkridy and Rivreau (2005) to qualify

the properties of local operations and related algorithms. In particular, we
focus on the characteristics that allow us to define a class of methods for which
several adjustments of release dates can be combined in a single stable pass.

So, let E be the set of n-dimensional vectors of possible release dates for
a given one-machine problem. Clearly, any local adjustment can be seen as
a function f from E to E. A few questions arise naturally. First of all, is it
necessary to apply a local adjustment procedure in several runs to reach the
fixpoint of f (in other words, does the local adjustment procedure is stable or
not)? How to combine several local adjustment procedures? In what order?
These questions have been investigated in Pbidy and Rivreau (2005) for the

208 Piridy and Rivreau

classical adjustment procedures, but in this paper, we are only interested in the
first question, since we specifically focus on a single adjustment rule. Never-
theless, it remains the case that improved immediate selections adjustments are
easy to integrate in the more general framework defined in Ptridy and Rivreau
(2005).

The stability of our general framework is based on two properties of the
underlying adjustments:

the adjustments must be increasing;

w the adjustments must be non-anticipative.

The increasing characteristic is a property defined on the following partial
order 5 on E (which defines (E, 5) as a lattice):

Increasing property (monotonicity). A function f from E to E--or a
local adjustment-will be said to be increasing if the following relation holds:

V(u, v) E E x E, u 5 v + f (u) 1: f (v)
This monotonicity characteristic is crucial to reach a unique fix-point when

several adjustment procedures are involved. For more details, see Tarski (1955)
and Ptridy and Rivreau (2005). There is also a second, more interesting, out-
come to monotonicity due to the fact that adjustments of release dates can only
occurs at specific point of the planning horizon: clearly, with this property you
can "jump" from two consecutive critical time breakpoints without checking
the in-between values. These points-the so-called critical time breakpoints-
are defined more precisely in the next section and roughly correspond to the ini-
tial release dates and to the completion times of some specific sets. Finally, this
increasing characteristic seems a priori to be a natural property: finding less
information from a more constrained problem is a little bit counter-intuitive.
However, if the great majority of local adjustments are indeed monotonic, it
should be noted that some of them-for instance Fix Triple Arcs (Brucker et
al., 1994)-are non-increasing.

Non-anticipative property. A local adjustment f is said to be non-
anticipative if the final adjustment value cui of any release date is independent
of the final adjustment values of release dates of operations such that O L ~ 2 ai.

This second core property means that the final adjustment ai of initial re-
lease date ri is only a function of all processing times, all deadlines and of final
adjustments values olj of operations such that aj < cri. This characteristic al-
lows in particular a chronological study of critical time breakpoints: at each

An O(n log n) Stable Algorithm for Immediate Selections Adjustments 209

time breakpoint we can check if a given release date reaches its final adjust-
ment value or not. Moreover, since this value does not rely on future adjusted
release dates, the overall procedure can be proved to be stable (f o f = f).

Not-first, immediate selections and ascendant set adjustments have been in
particular shown to satisfy these properties (Pkridy and Rivreau, 2005). In this
paper, this framework is completed with the improved immediate selections.

2. IMPROVED IMMEDIATE SELECTIONS
ADJUSTMENTS

2.1 Object
For the sake of clarity, the ascendant set-like adjustments for immediate

selections will be precisely stated as follows:

Improved Immediate selections adjustments. Let i E O and also J =
{ j E O \ {i) I + p i + pj > d j) . Operation i must be processed after
all operations from J. Hence, we can let

ri +- max ri ; rnax min r j + C pj (.IGJ })
One can observe that these improved immediate selections adjustments are

increasing and non-anticipative. Indeed, increasing the value of a release date
can only add new selections and also result in an increase of the values of ad-
justments made. Hence, improved immediate selections are increasing. More-
over, once the adjustments are stabilised, we necessarily have for any opera-

Since all durations are positive, it follows that any final adjustment value a i of a
release date only relies on the final adjustment values o ~ j of operations such that
olj < a i , and thus improved immediate selections are also non-anticipative.

As already mentioned, these properties correspond to the framework of
Pkridy and Rivreau (2005): therefore, we can use here the same technique
which consists in a chronological study of potential adjustment dates (the crit-
ical time breakpoints).

The present contribution will mostly concern

the quality (value) of adjustments performed;

the stability of the algorithm;

210 Pe'ridy and Rivreau

the O(n log n) complexity of this procedure.

However, we should add that there still remains an important open question:
is it possible to design an effective and stable algorithm that is able to simul-
taneously perform adjustments of release and due dates? Indeed, like most
adjustment procedures in the literature, when the adjustment of release dates
is performed it is assumed that the due dates are fixed (and vice versa). There-
fore, if we consider the whole process, which implies adjusting both release
and due dates, any adjustment of a due date requires us to start again the ad-
justment procedure on release dates (and reciprocally). Finally, it appears that
the overall stability is probably a difficult problem to handle if we consider the
literature, which remains very discrete on that particular subject.

2.2 Notation and Basic Properties
In order to explain and justify our procedure, we need to introduce some

auxiliary notation and exhibit some properties. In the following sections we
will assume that operations are numbered in increasing di - pi order, i.e.

Let us recall that our algorithm proceeds by a chronological examination
of critical time breakpoints at which adjustments can occur. For each critical
breakpoint t, some operations can either reach their final adjustment value,
or be delayed (i.e. adjusted on a later date). We will denote by D the set of
operations that are at least delayed up to t (those who satisfy ri < t < ai) and
by L the set of operations that are not available before t (with t 5 ri). Please
note that for operations from L U D we will necessarily have ai 2 t at the end
of the algorithm, and that operations that do not belong to L U D have been
necessarily adjusted before t. For reasons of convenience, at a given critical
time breakpoint t, the ai-values of unfixed operations-those in L U D-are
arbitrarily set to +m.

Now, let us consider a given subset of operations at time t. We denote

By definition, if J contains one operation from L U D, then C (J) is arbitrarily
set to +m. We will also denote by Kl the following set:

We can now express the improved immediate selections with this notation.
Let us assume that we are at a given critical time breakpoint t. We need to

An O(n logn) Stable Algorithm for Immediate Selections Adjustments 21 1

evaluate for operations in D and those in L with rj = t , if they must be
delayed or, on the contrary, if their final adjustment value aj is equal to t. Let
us denote by j a given operation from D U {k E L I rk = t) and let operation
i be defined as follows:

i = min { l E O (C (K l) > t)

Clearly, for all k < i, we have k 4 L U D (otherwise, C (K k) = +oo, which
is in contradiction with the definition of i). In other words, i is the only one
operation from Ki that can be in L U D.

If j # i then clearly j must be delayed if t + pj > di - pi. Indeed, in that
case we have t + pj > dk - pk for all k in Ki. Hence, Ki is a valid set of
predecessors for j. Since the completion time C(Ki) of Ki is greater than t ,
then j should be delayed. On the other hand, if t + pj 5 di - pi, then any
potential set K of predecessors is strictly included in Ki. By construction of
Ki, we have necessarily C (K) 5 t : it follows that j cannot be delayed at time
t , with respect to the improved immediate selections.

So, let us assume now that j = i. Clearly, operation i cannot be in the set of
its potential predecessors. So we must remove i to this set and define if as

if = min { l E O I C(Kl \ {i)) > t)
The same reasoning as used for j applies, and thus, we conclude that operation
i must be delayed if and only if t + p i > di1 - p g . For i $! L U D, we will
arbitrarily set i' = i + 1, so in any case we have if > i. Please note that if
L U D = {i)-in other words, if i = n-then operation i cannot be delayed
by any operation at time t (indeed, we have C(O \ {i)) 5 t). In that case
operation if is not considered.

There is a strong relation between sets Ki and Ki! that guarantees we avoid
any removal of operation from these sets during the execution of the algorithm.
Therefore, the sequence of sets Ki and Kit will always be increasing for the
inclusion operator. This property is stated in the next proposition.

Proposition 1 Let i and if be deJined as above for a given critical time
period t . Then, we have

C(Ki!-i) = C(Ki)

Proo$ If i $- L U D, the result is straightforward since if = i + 1. Now, if
i E L U D, we have C(Ki!-i \ {i)) 5 t by definition of i'. Since operation
i belongs to L u D, we have ai > t . It follows that the value of C(Kit-i) is
given by the completion time of i, and C(Kit-1) = C(Ki) . 0

2.3 Example
Before describing the details of the algorithm, we will illustrate its operating

mode and main characteristics through the following example.

Piridy and Rivreau

ri 6 0 4 14
pi 7 2 7 4
di 18 15 22 26

d i - p i 11 13 15 22

As already mentioned, we proceed by a chronological examination of criti-
cal time breakpoints that correspond to initial release dates and potential final
adjustment values. For a given critical breakpoint t, operations i and it, and
sets L and D are defined as in the previous section.

At every critical time, the next potential adjustment date for operations of
(L U D) \ {i) is given by C(Ki). If the final adjustment value ai has not yet
been determined (if i E L U D), it is also necessary to take into account its
possible adjustment date C(Kil \ {i)).

For brevity purposes, we start our presentation at time t = 6: final ad-
justment values a 2 and a 3 for operations 2 and 3 have been already deter-
mined to be equal to the initial release dates (since 7-2 + p2 < dl - pl and
r3 + P3 I dl - ~ 1) .

Operation i is equal to 1 and C(Ki) = +co since operation i still belongs to
L. The related operation i' is 3 because C(K2 \ (1)) = 2 < 6. Since operation
3 has been adjusted, the exact C(K3 \ (1))-value is known and is equal to 11.

Critical time breakpoint t = 6.

8 Operation 1 becomes available: we have t + pl < dil -pi!, then 1 is not
delayed, and a1 = 6

ai is fixed: we can determine C(Ki) = 13. Operation i is adjusted, so
C(Kil \ {i))-value becomes useless: we set C(Kil \ {i)) = +oo

The next critical time breakpoint is given by the minimum value over the
release dates of operations from L and the C(Ki)-value: so t = 13.

Critical time breakpoint t = 13.

C(Ki) = t: i and i' must be updated. From Proposition 1, we know that
the next i-value is necessarily greater or equal than the current value of
i'. So, we have i 2 3. Moreover C(K3) = 18 > t, it follows that i = 3.
Once i updated, we need to reevaluate i'. Necessarily, i' is greater than
the new i-value. Since operation 4 belongs to L U D, we deduce i' = 4
and C(Kif \ {i)) = +co.

The next critical time breakpoint is given by the minimum value over
the release dates of operations from L and the C(Ki)- and C(Kit \ {i))-
values: so t = 14.

An O(n log n) Stable Algorithm for Immediate Selections Adjustments

Figure 1. Example 1 .

Critical time breakpoint t = 14.

Operation 4 becomes available: t + p4 > di - pi, so 4 is delayed: D +-

D U (41

rn The next critical time breakpoint is given by the minimum value over the
release dates of operations from L and the C(Ki)-values: so t = 18.

Critical time breakpoint t = 18.

C(Ki) = t: save operation it = 4, no operation allows to increase
C(Ki)-value, so the release date of operation 4 is definitively adjusted
t o t = 18.

rn All operations are considered, the algorithm is completed.

3. IMPLEMENTATION

3.1 Notation and Basic Properties
In our algorithm, we reuse the main notation given in Section 2.2. For im-

plementation reasons, two sets K and K' related to Ki and Kit \ {i) are intro-
duced. The C(Ki) and C(Kit \ {i)) values are abbreviated in C and C'. Sets
K and K' are implemented by means of red-black trees in order to be able to
get in constant time the C(K)-value and to insert a new operation in O(1og n).
Please note that i and i' are inserted in K and K t only when final values ai

and sit are known.
As said before, the property described in Section 2.2 is the basis of the effi-

ciency of our algorithm, since it guarantees that sets K and K' can be updated
in an incremental fashion, without any removal of operation. Indeed, when K
must be updated (that is when i needs to be incremented), we know that all
operations between the current values of i and i' must be added to K , since
we have C(Kit-l) = C(Ki). In more precise terms, if we note ik, i;,
ii+l the consecutive values of i and it during the execution of the procedure,
we have

i k < i i I ik+l < i;+l

214 Pkridy and Rivreau

Thus, this property enables us to gradually add operations in K and K' when
necessary, that it is to say each time i or it reaches its final adjustment value.

Finally, in the algorithm, it is implicitly assumed that there is a dummy
operation n + 1 4 0, with the following characteristics: = d,, p, = 0.

3.2 Algorithm
The main algorithm is detailed below. At the beginning, all the operations

are still to be considered and the first critical time breakpoint is the minimum
release date (lines 1-2). In the main loop, we are given a current time break-
point t .

For this critical time breakpoint, it is necessary to determine the relevant
operations i and it , the related K and Kt sets and C and C1 values (procedure
updateii', line 4). With this information we can evaluate if the new avail-
able operation or previously delayed ones must be delayed or not (procedure
updateLD, line 5). After this step, all delayed operations at time t are in D.

If operation i reaches its final adjustment value at time t , it is inserted in red-
black tree K and we deduce the exact value of C(Ki) (line 7). Since operation
i cannot be adjusted any more, this operation is also inserted in red-black tree
Kt (line 8). In the same way, if i' reaches its final adjustment value, it is added
in K' and C(Ki f) is updated (line 10).

At last, the next critical time breakpoint to consider is updated, according to
the fact that operation i can still be adjusted to C' (line 12) or not (line 13). The
main loop is finished when all operations have been considered (L U D = 0).

procedure adjustments(r, a)
{

1. L c 0, D t 0 , t t minjELrj
2. i e 1, K c 0, C c +m, it t 2, Kt t 0, C' t +m
3. while (L u D # 0) do

update-iir(t, L, D, i , K , C , i', K', C')
update-LD(t, L, D, i , i')
if (a i = t)

then
{

C c insert(K, i)
insert(K1, i)

1
i f (ai, = t)

then C' t insert(K1, i t)
if (i E LUD)

An O(n log n) Stable Algorithm for Immediate Selections Adjustments

12. then t' t min{minjGr, rj ; C ; C')
13. else t' +- min{minjEL rj ; C)

1
1

Procedure updateii' is reproduced below.
First, we consider operation i and related set K: if C = t then the set K

cannot delay any operation after t. Therefore, it is necessary to increase i to add
operations in this set (procedure updatec) until we get either a new operation
i which has not yet reach its final adjustment value, or a definitively adjusted
operation such that C(Ki) > t. In both cases, operations between i' + 1 and
i - 1 are added in the set K'. If the new operation i is not yet adjusted (lines 3-
6), we need to evaluate the new related i'. For that purpose, a call to updateC
beginning at index i + 1 is made (lines 5-6). On the other hand, if i is already
adjusted, then i' is not necessary for the current operation: in that case, we add
i in K' for further computations, we set i' = i + 1 and insert i' in Kt if ai, is
known (lines 7-10).

The same modus operandi is used to update operation i' (lines 11-12).

procedure updateiit(t, L, D, i , K, C, i t , K', C')
{

1. i f (C = t)
then

2.
{

updateC(C, i , K, t , L, D)
3. i f (i ~ L u D)

then

4.
{

forall k E [i' + 1; i - 11 do insert(K1, k)
5. i' t i
6. updateC(C1, i', K', t , L, D)

1
else
{

forall k E [i' + 1; i] do insert(K1, k)
i t c i + l
i f (i' q! L u D) and (i' # n + 1)

then insert(K1, i')
1

11.
1
i f (i E L u D) a n d (C 1 = t)

12. then updateC(C1, i', K', t , L, D)

216 Pe'ridy and Rivreau

The code of procedure updateC is basic: operations are inserted in the given
set-in fact a red-black tree-in increasing order of di -pi, until we get either
an operation which is not yet adjusted or a set with a completion time strictly
greater than t .

procedure updateC(Completion, index, Set, t , L, D)

do
{

index c index + 1
i f (index E L U D) or (index = n + 1)

then Completion c +cm
else Completion c insert(Set, index)

1
while (Completion I t)

1
Finally, procedure updateLD is also easy to state. Please note that sets L

and D are implemented as heap data structures: function top returns-without
removal-the operation with minimum release date for L and with minimum
processing time for D.

In the first place, operations that have been delayed to t are considered
(lines 1-8): all operation j from D that is not selected in respect to i-such
that t +pj 5 di - pi-is removed from D, since it reaches its final adjustment
value at t (lines 2-5). If i was previously delayed, we check if this operation
is still selected in respect to it. If it is not the case, operation i also reaches its
final adjustment value (lines 6-8).

In the same way, operations from L that become available at time t may
either be delayed t (line 13) or simply not adjusted (line 14).

procedure update-LD(t, L, D, i, i')
{

1. i f (D # 0) then j c top(D)
2. while (D # 0) and (t + pj 5 di -p i)

3.
{

remove(D, j)
4. aj +- t
5. i f (D # 0) then j c top(D)

1

An O(n log n) Stable Algorithm for Immediate Selections Adjustments

6. if (i E D) and (t + pi I dil - pit)
then

7.
{

remove(D, i)
8. w t t

1
9. if (L # 0) then j +- top(L)
10. while (L # 0) and (r j = t)

{
11. remove(L, j)
12. if ((j # i) and (t + p i 5 di - pi)) or ((j = i) and

(t + ~j I di' - pi]))
13. then insert(D, j)
14. else olj c rj
15. if (L # 0) then j t top(L)

1
1

3.3 Proofs
Proposition 2 Algorithm adjustments is a stable procedure that per3orms

improved immediate selections adjustments.

Proo$ As mentioned in Section 2, improved immediate selections adjustments
are monotonic and non-anticipative. This means that any increase of a release
date value necessarily induces better adjustments (monotonicity) and that the
final adjustment value of any adjustment is only based only previously adjust-
ments made (non anticipation). These properties allow to focus on the chrono-
logical study of potential adjustment dates (which correspond to initial release
dates, C-values for all operations except operation i and Cf-value for opera-
tion i) without having to test the in-between values or to go back on earlier
decisions. Since the C- and C'-values correspond to the makespan of sets Ki
and Kit as defined in Section 2.2, we deduce that adjustments procedure is a
stable procedure that performs improved immediate selections adjustments.

Proposition 3 Algorithm adjustments runs in O(n log n) time.

Proofi As mentioned above, the critical time breakpoints correspond to the
initial release dates and the potential adjustments dates C and C' that are given
by the makespan of sets K and K'. These sets are implemented by mean of
red-black trees. In the Appendix, it is shown that insert procedure runs in
O(1ogn) time. These sets only strictly increase during the algorithm, so the
overall complexity to insert at most n operations is O(n1og n). In the same
way, each operation is inserted and removed at most once in sets D and L.

218 Pe'ridy and Rivreau

Clearly, insert and remove procedures can be done in O(1og n) by mean of
a heap data structure. In consequence, the overall complexity for algorithm
adjustments is O(n log n). 0

4. COMPUTATIONAL EXPERIMENTS
To evaluate the efficiency of our procedure, we performed to kind of test

for our procedure: qualitative tests to check if improved immediate selection
can contribute to get more information, and performance tests to see if this
procedure can compete with less sophisticated ones.

4.1 Qualitative Test
In table 1, we give some results on classical job-shop scheduling problems.

LB1 and LB2 are obtained by bisection search on the value of the makespan
until no infeasibility is derived. LB 1 corresponds to classical immediate selec-
tions whereas LB2 is related to improved immediate selections. Lower bounds
LB3 and LB4 are also obtained by bisection search, but global operations (Car-
lier and Pinson, 1994)-also called shaving (Martin and Shmoys, 1996)-are
performed respectively on classical and improved immediate selections.

One can observe that improved immediate selections clearly outperform
classical immediate selections in terms of pruning.

4.2 Performance Test
In order to see if the fact that our procedure is stable and in O(n1ogn)

counterbalance its use of a time consuming red-black tree, we compare the
relative performance of two algorithms that both perform improved immediate
selection adjustments: the first one is the O(n log n) stable algorithm proposed
in this paper and the second one is a basic non-stable 0(n2) algorithm.

Table 2 reports a comparison between the CPU times obtained for lower
bounds given by shaving on 10 x 10 job shop scheduling problems from the
literature. The first column "Stable version" is given as the reference. Table 2
shows that on average the O(n log n) stable algorithm can favourably be com-
pared with the non-stable one. It seems that the stable algorithm especially
allows one to avoid large deviations on non-stable instances.

5. CONCLUSION
In this paper, we have introduced a stable algorithm that improves imme-

diate selections adjustments. This led to a stable procedure that can adjust
release dates with these local operations in a single pass in O(n log n). Com-
putational results confirm that this new algorithm outperforms the classical one
in adjustments with comparable CPU time. This algorithm can be introduced

An O(n log n) Stable Algorithm for Immediate Selections Adjustments

Table I . Lower bound on hard instances of job-shop scheduling problems

Instance C* n m LB 1 LB2 LB3 LB4

in the framework given in (P6ridy and Rivreau, 2005): indeed improved imme-
diate selection adjustments are proved to be monotonic and non-anticipative.
Since all precedence relations found by ascendant sets adjustments are selected
by ascendant sets adjustments (from Theorem 1 in (Carlier and Pinson, 1990)),
the use of ascendant sets combined with improved immediate selections allows
us to perform ascendant set-like adjustments for both kinds of selections. Fu-
ture work may include a domain splitting feature, in order to integrate a better
support for Constraint Programming approaches, and an incremental feature.

220 Pe'ridy and Rivreau

Table 2. CPU comparison hard instances of Job-Shop Scheduling Problems.

Instance O(n log n) Stable version 0(n2) Classical version

ORB 1
ORB2
ORB3
ORB4
ORB5
ORB6
ORB8
ORB9
ORB10
MTlOlO

Average 100 127.2

APPENDIX. C(Ki) COMPUTATION WITH A RED-BLACK
TREE

At each step, we need to compute

Let us define a red-black data structure to compute C(Ki).
Let 7 be a red-black tree. In the tree, we denote for any node k associated

with operation k:
a kl, k,, kf, its left successor, its right successor and its predecessor in 7.

a Ck, Rk, its associated left and right subtrees (if Ck = 0 (resp. Rk = $
then k, = 0 (resp. kl = 0)).

a Fk, the subtree of root k.

a v, the root of 7.

7 verifies the property

Let us assign to any node lc, the following quantities:

m a j e r k { a j + G E F k l O i > ~ j if Fk ' (A.2)
i k = {

-00 otherwise

An O(n log n) Stable Algorithm for Immediate Selections Adjustments

From (A. 1)-(A.2), we can deduce the following recursive definitions:

with the convention that 00 = 0, TO = 0 and Q = 0.
Indeed, we have

In particular, it is straightforward to check that

In a red-black tree, the following property holds: "if a function f for a node
x can be computed using only the information in nodes k , kl and k,, then we
can maintain the values of f in all nodes of 7 during insertion and deletion
without affecting the O(1og n) performance of these operations." (See Cormen
et al., 1989.) The relations (A.3)-(A.5) verifying this property in the red-
black tree 7, we can compute C(Ki) in O(1og n). The procedure insert(K, i)
inserts operation i in the red-black tree K and returns the [-value of the root,
fv = C(Ki) according to relation (A.6).

References
Brinkkotter, W. and Bmcker, P. (2001) Solving open benchmark instances for the job-shop

problem by parallel head-tail adjustments. Journal of Scheduling, 453-64.
Bmcker, P., Jurisch, B. and Krtimer, A. (1994) The job-shop problem and immediate. selection.

Annals of Operations Research, 50:73-114.
Carlier, J. (1975) These de 3e cycle, Paris VI.
Carlier, J, and Pinson, 8. (1989) An algorithm for solving the job-shop problem. Management

Science, 35: 165-176.
Carlier, J. and Pinson, 8. (1990) A practical use of Jackson's preemptive schedule for solving

the job-shop problem. Annals of Operations Research, 26:269-287.
Carlier, J. and Pinson, 8. (1994) Adjustment of heads and tails for the job-shop problem. Euro-

pean Journal of Operational Research, 78: 146-161.

222 Pe'ridy and Rivreau

Cormen, T., Leiserson, C. and Rivest, R. (1989) Introduction to Algorithms. MIT Press, Cam-
bridge, MA.

Martin, P. and Shmoys, D. B. (1996) A new approach to computing optimal schedules for the
job-shop scheduling problem, in: Proceedings of the 5th International IPCO Conference,
pp. 389-403.

Pkridy, L, and Rivreau, D. (2005) Local adjustments: a general algorithm. European Journal of
Operational Research, 16424-38.

Tarski, A. (1955) A lattice-theoretical fixpoint theorem and its applications, Pac$ic Journal of
Mathematics, 5285-309.

AN EFFICIENT PROACTIVE-REACTIVE
SCHEDULING APPROACH TO HEDGE
AGAINST SHOP FLOOR DISTURBANCES

Mohamed Ali Aloulou* and Marie-Claude Portmann
MACSI team of INRIA-Lorruine und LORIA-IJHP-INPL
Ecole des Mines de Nancy Pare de Saurupt,
54042 Nancy Cedex, France
aloulou@larnsade.dauphine.fr, portmannQloria.fr

Abstract We consider the single machine scheduling problem with dynamic job arrival
and total weighted tardiness and makespan as objective functions. The machine
is subject to disruptions related to late raw material arrival and machine break-
downs. We propose a proactive-reactive approach to deal with possible pertur-
bations. In the proactive phase, instead of providing only one schedule to the de-
cision maker, we present a set of predictive schedules. This set is characterised
by a partial order of jobs and a type of associated schedules, here semi-active
schedules. This allows us to dispose of some flexibility in job sequencing and
flexibility in time that can be used on-line by the reactive algorithm to hedge
against unforeseen disruptions. We conduct computational experiments that in-
dicate that our approach outperforms a predictive reactive approach particularly
for disruptions with low to medium amplitude.

Keywords: scheduling, single machine, flexibility, robustness, total weighted tardiness, ge-
netic algorithms.

1. INTRODUCTION
Scheduling is an important element of production management systems be-

cause it allows improving system performance and serves as an overall plan
on which many other shop activities are based. For numerous scheduling
problems, many techniques have been proposed to generate a unique schedule
that provides optimal or near-optimal performance. However, when this pre-
computed or predictive schedule is released for execution, continual adapting

"Since September 2003, Mohamed Ali Aloulou is a member of laboratory LAMSADE, UniversitC Paris
Dauphine, Place du Mar6chal de Lattre de Tassigny, 75775 Paris Cedex 16, France.

224 AIoulou and Portmunn

is required to take into account the presence of uncertainties. These uncer-
tainties are related, for example, to machine breakdowns, staffing problems,
unexpected arrival of new orders, early or late arrival of raw material and un-
certainties in processing times (Davenport and Beck, 2000). When the first
perturbations arise, the schedule is slightly modified and the performance is a
little bit affected. But when there are more important perturbations, the per-
formancc of thc final schedulc bccomcs generally much worsc than thc initial
one. Besides, the predictive schedule is also used as a basis for planning activ-
ities, such as raw material procurement, preventive maintenance and delivery
of orders to external or internal customers (Mehta and Uzsoy, 1999). Conse-
quently, if the obtained schedule deviates considerably from the initial predic-
tive schedule, then this may delay the execution of many activities related to
internal customers. It may also add some costs due to early procurement of
raw material from suppliers or late delivery of finished products to external
customers. Therefore, we are interested in developing an approach that builds
predictive schedules that provide a sufficiently detailed sketch of the schedule
to serve as the basis for other planning requirements and retain enough flex-
ibility in order to hedge against perturbations that may occur on-line and/or
minimise their effects on planned activities.

Many approaches of scheduling and rescheduling have been proposed in the
literature to take into account the presence of uncertainties in the shop floor.
They can be classified into four categories: completely reactive scheduling,
predictive reactive scheduling, proactive scheduling and proactive-reactive
scheduling; see for example Davenport and Beck (2000) and Herroelen and
Leus (2003).

"Completely reactive approaches are based on up-to-date information re-
garding the state of the system" (Davenport and Beck, 2000). No predictive
schedule is given to the shop floor and the decisions are made locally in real
time by using priority-dispatching rules. These approaches are so widespread
in practice because they are easy to implement and use. They are particulary
competitive when the level of disturbances is always important or when the
data are known very late, making impossible the computation of predictive
schedules. In predictive reactive approaches, a predictive schedule is gener-
ated without considering possible perturbations. Then, a reactive algorithm
is used to maintain the feasibility of the schedule and/or improve its perfor-
mances; see for example Church and Uzsoy (1992) and Vieira et al. (2003).
The goal of proactive or robust scheduling is to take into account possible dis-
ruptions while constructing the original predictive schedule. This allows one
to make the predictive schedule more robust. A robust schedule is defined by
Leon et al. (1994) as a schcdulc that is inscnsitivc to unforcsecn shop floor
disturbances given an assumed control policy. This control policy is generally
simple. Clearly, robust scheduling is appropriate only if, while generating the

A Proactive-Reactive Approach in the Presence of Disturhunces 225

predictive schedule, the uncertainty is known or at least some suspicions about
the future are given thanks to the experience of the decision maker.

"A scheduling system that is able to deal with uncertainty is very likely to
employ both proactive and reactive scheduling" (Davenport and Beck, 2000).
Indeed, it is very difficult to take into account all unexpected events while
constructing the predictive schedule. Consequently, a reactive algorithm more
elaborate than those used in proactive or robust approaches should be used to
take into account these improbable events. However, due to the constraints
on the response time of the reactive algorithm, one cannot expect an optimal
or near-optimal decision. That is why it is interesting that the proactive algo-
rithm provides solutions containing some built-in flexibility in order to min-
imise the need of complex search procedures for the reactive algorithm. Sev-
eral approaches that more explicitly use both off-line (proactive) and on-line
(reactive) scheduling have been developed in the literature: see for example
Artigues et al. (1999), Billaut and Roubellat (1996) and Wu et al. (1999).

The approach we present here is a proactive-reactive approach. Tn the first
step, we build a set of schedules restricted to follow a partial order of jobs,
which allows us to introduce some flexibility in the obtained solution. Then,
this flexibility is used on-line to hedge against some changes in the shop envi-
ronment. It can also be used by the decision maker to take into account some
preferences or non-modelled constraints.

In this paper, we consider the problem of scheduling a set N = (1, . . . , n)
of jobs on a single machine. Each job j E N has a processing time pj > 0,
a release time rj > 0, a due date dj 2 0 and a weight wj > 0. The shop
environment is subject to perturbations that can be modelled by the increase
of the release dates of some jobs and by machine breakdowns. The objective
functions considered here are the total weighted tardiness 5% = C7=Z=l wjTj
and the makespan C,, = rnax{Cj), where Cj and T, = n&{0, Cj -
dj) are, respectively, the job completion time and the tardiness of job j , j =
1, . . . , n, of a given schedule. The preemption of job processing is allowed
only if a machine breakdown occurs.

The rest of the paper is organised as follows. Sections 2 and 3 are dedicated,
respectively, to the proactive algorithm and the reactive algorithm. Before con-
cluding, our approach is compared, in Section 4, to a predictive-reactive ap-
proach in a supply chain context and in stochastic shop conditions.

2. THE PROACTIVE ALGORITHM
Tn this section, we define a solution to the single machine scheduling prob-

lem presented in the introduction and explain its interest. Then, we present
different measures to evaluate a solution performance and flexibility. Finally,

Aloulou and Portmunn

Job j rj pj clj wj

1 0 3 6 1
2 1 3 8 1
3 0 2 9 1
4 9 2 1 2 1

Figure I . A four-job problem: (a) a numerical example, (b) a partial order.

we present the genetic algorithm used to compute solutions providing a good
trade off between the defined quality measures.

2.1 Definition of a Solution to the Problem
As noticed in the surveys of Davenport and Beck (2000) and Herroelen and

Leus (2003) on scheduling with uncertainty, introducing flexibility in the so-
lutions computed off-line allows for increasing the robustness of the system.
Hence, we consider that a solution to the problem is not a particular schedule
but a set of schedules characterised by a structure defined by a partial order
of jobs and a type of schedules. The schedule type can be semi-active, ac-
tive or non-delay, see for example Baker (1974). For a semi-active schedule,
a job cannot be shifted to start earlier without changing the job sequence or
violating the feasibility (here precedence constraints and release dates). An
active schedule is a schedule where no job can be shifted to start earlier with-
out increasing the completion time of another job or violating the feasibility.
A schedule is called non-delay if the machine does not stand idle at any time
when there is a job available at this time. Observe that the set of non-delay
schedules is a subset of the set of active schedules which is in turn a subset of
the set of semi-active schedules.

In Figure 1, we consider a four-job problem and a partial order where the
only restrictions are that job 1 precedes jobs 3 and 4 and job 2 precedes 4.
This partial order represents two non-delay schedules S1 and S2, three active
schedules S1, S2, and S:< and five semi-active schedules Sl, . . . , S5, see Fig-
ure 2. The corresponding objective function values are also given in the same
figure.

It is clear that proposing several good schedules is more interesting than
proposing only one. The decision maker can consequently choose the sched-
ule that better responds to hisher preferences and possibly to non-modelled
constraints. It is even more interesting if some proposed schedules have com-
mon characteristics allowing one to switch from one schedule to another easily.
In this case, the decision maker can postpone the choice of the schedule to be

A Proactive-Reactive Approach in the Presence of Disturbances

Figure 2. Represented non-delay, active and semi-active schedules.

executed. It is only on-line that he makes this decision, taking into account
up-to-date information regarding the state of the system.

The structure defined by the couple (partial order of jobs, type of sched-
ules) allows one to represent several schedules having common precedence
constraints between jobs. In order to switch from one schedule to another, or
from one subset of schedules to another subset, one or several edges in the
disjunctive graph representing the partial order should be oriented without cre-
ating cycles in the obtained graph. Furthermore, a partial order is a natural
structure used in iterative methods. hl such approaches, one or several arcs
are added in each solution step. The use of transitive graphs allows one to
guarantee the feasibility of the obtained schedule.

2.2 Definition of the Quality of a Solution
The example discussed in Section 2.1 shows that the quality a priori of a

parlial order depends on the type of schedules considered. Indeed, for semi-
active schedules, there are fewer restrictions and this allows one to obtain five
represented schedules instead of two and three for, respectively, non-delay and
active schedules. The number of represented schedules can measure the ilex-
ibility in job sequencing of a solution. Considering semi-active schedules al-
lows one to improve the flexibility of a solution according to the proposed mea-
sure. However, the worst performance of the represented schedules is worse
than when considering active or non-delay schedules (see the performance of
schedules S4 and Ss).

In our first implementation, we consider that the schedules are restricted
to be semi-active. According to this choice, we define in the following the
different quality measures of a solution.

Aloulou und Portmunn

Figure 3. A solution S in (Cm,, Ed,) space.

2.2.1 Performance of a Solution.

2.2.1.1 Definition of the performance. Let S be a solution to the
problem. It is a partial order that represents a set of semi-active schedules 0s.
To each schedule os E S is associated a vector r(0.s) = (r l (os) , r2 (os)) ,
where r l (os) is the makespan of os and rz (os) its total weighted tardiness.
Hence, a solution S is represented by the set of vectors r (os) . Figure 3 repre-
sents the vectors l?(os) in the (C,,, T,) space.

The performance of solution S is closely related to the objective function
values of all represented schedules 0s. Since the number of these schedules
can be rather large, it is natural to consider only their most important repre-
sentatives. We suggest using only the best- and the worst-case performances
to evaluate the performance of a flexible schedule. The best-case performance
provides a lower bound of the performance when following the partial order,
whereas the worst-case performance gives a guarantee regarding how poorly
the schedules may perform when following the partial order. They can be
obtained by solving corresponding minimisation and maximisation problems.
Hence, we have to determine the coordinates of points A, B, C, and D shown
in Figure 3. The rectangle formed by these points represents the range of the
objective function values of all the schedules following the considered solu-
tion.

We denote by goal point the point in (C,,,,, T,) space whose coordinates
are respectively the best makespan C;, and the best total weighted tardiness
T G of the problem (without additional precedence constraints brought by the
partial order given by S), see Figure 3.

A solution S is all the more efficient that the distance between the goal point
to each point A, B, C , and D is small. Hence, a performance measure of a
solution S can be defined as a linear combination Ds of the distances between

A Proactive-Reactive Approach in the Presence of Disturbances 229

the goal point and the four points A, R, C , and D (see Figure 3). These points
are determined by computing the best and worst makespan, denoted by BC,,
and WC,,, and best and worst total weighted tardiness, denoted by BT, and
wT,. Wc have

The lower is Ds, the higher the performance of solution S is.

2.2.1.2 Computation of the performance. The objective functions
we consider are the total weighted tardiness T,, and the makespan C,,. It
is proved that the problem of minimising the makespan w.r.t. precedence con-
straints, denoted by Ilprec,rjlCn,,, can be solved in 0 (s a 2) time (Lawler,
1973). The problem of minimising the total weighted tardiness, denoted by
llprec, rjl C w j q is NP-hard in the strong sense, see for example Lawler
et al. (1993). Consequently, for this latter problem we implemented a genetic-
algorithm-based heuristic and made comparison with known dynamic dispatch-
ing rules like ATC, X-RM, and KZRM (Morton and Pentico, 1993). The re-
sults showed that the genetic algorithm we implemented is efficient but is time
consuming for a large number of jobs, see Aloulou and Portmann (2001).

In order to compute the worst makespan and the worst total weighted tar-
diness that can be reached when considering a partial order S, we introduced
in Aloulou et al. (2004) new optimisation problems. These are maximisation
problems denoted by l(sa)lprec,rjl(F -+ m a) , where F is the objective
function to be maximised, and notation su means that semi-active schedules
are considered.

We proved that the problem 1 (su) lprec, rj I (C,, + max) can be solved in
0 (n 2) times and the problem l(sa)lprec, r jI(C wjTj -+ max), is NP-hard in
the strong sense (Aloulou et al., 2004). We developed several heuristics based
on genetic algorithms and dispatching rules. We obtained the same conclusions
as for minimisation problems, see Aloulou and Portmann (2001).

As a result, for a given solution (a set of schedules w.r.t. a partial order),
we use polynomial-time algorithms to compute the exact minimal and maxi-
mal makespan and approximate algorithms based on dispatching rules for es-
timated minimal and maximal total weighted tardiness.

230 Aloulou and Portmann

2.2.2 Flexibility of a Solution. One of the main characteristics of a
solution to the problem is its flexibility. According to the example presented in
the previous section, a solution is all the more flexible if the number of repre-
sented schedules is great. Indeed, when we have many schedules, it would be
possible to dispose on-line, every time a decision has to be taken, of more than
one alternative. This could allow one to hedge against some perturbations such
as raw material availability. This flexibility, callcdflexibility in jab sequencing,
can be measured by the number of different schedules feasible w.r.t. the par-
tial order. However, the problem of calculating this number is #P-complete
(Brightwell and Winkler, 1991). Thus, we propose another measure Flex,,,
equal to the number of non-oriented edges in the transitive graph representing
the partial order. If this number is great, then the associated solution is flexible.
Notice that the number of non-oriented edges in a transitive graph is inversely
proportional to the number of arcs in the same graph. In our proactive algo-
rithm, we use a transformation of the number of arcs into a qualitative scale
defining several flexibility levels. Each level is characterised by an interval
[n.bArcsMin! nbArcsMax] giving the minimal and maximal number of arcs
that a solution contains.

Furthermore, another type of flexibility can be provided according to the
time window in which the jobs are executed. This flexibility is calledflexihil-
ity in time. A measure of this flexibility Flexti,, can be given by the ratio
between the time window in which the jobs can be executed and the total pro-
cessing time of the jobs:

where WC,, is the worst makespan of the considered solution and P is the
total processing time of all the jobs.

2.3 A Genetic Algorithm to Achieve Scheduling
Flexibility

In this section, we present a genetic algorithm whose goal is to build-up
off-line the set of Pareto solutions conciliating good shop performance and
flexibility presence (see T'kindt and Billaut (2002) for the definition of Pareto
optimal solution). These solutions are determined by an exploration of the
whole solution space. In practice, this exploration may be limited to a sub-
space of solutions satisfying possible preferences of the decision maker. These
preferences are accounted for thanks to an interactive support decision tool,
which is not presented in this paper.

In the following, we present the general scheme of the genetic algorithm we
implemented. Then, we describe the selection and reproduction strategies, the

A Proactive-Reactive Approach in the Presence of Disturbances 23 1

encoding used to represent a solution to the problem and the genetic operators
that generate new solutions.

2.3.1 General Scheme of the Genetic Algorithm. The aim of this
algorithm is to generate for a given problem a set of solutions that yields a good
compromise between flexibility and performance. According to the previous
section, a solution S is judged better when the distance D,(S) is minimal, the
flexibility in job sequencing f l e~ ,~ , , (S) is maximal, and the flexibility in time
f lextim, (S) is maximal.

The principle of the algorithm is to work on different populations of solu-
tions that belong to a same level of flexibility in job sequencing. Recall that
a level of flexibility is defined by an interval [nbArcsMin, nbArcsMnx] giv-
'ing the minimal and maximal number of arcs that a solution partial order can
contain. The objective is to find, in the space of solutions that belong to the
same flexibility in job sequencing level, the solutions realising a good com-
promise between the performance (measured by D,) and the flexibility in time
(measured by Flextim,). We use a linear combination of these two criteria to
compute the fitness of a chromosome representing a solution S :

Fitness(S) = OD,(S) - (1 - O)Flezti,,,(S), where 0 E [0, 11 (5)

For a fixed parameter 0, the algorithm works as described in Figure 4. In
this algorithm, we use the following notation:

nbGen is the number of generations;

Pi is the population of individuals in iteration i = I : . . . , nbGen;

nbLeve1.s is the number of levels of flexibility in job sequencing;

EliteLlg0, is the elite population obtained at the end of the algorithm for
a fixed value 0 E [0, 11 and for the level of flexibility in job sequencing
L ~ , 1 = 1,. . . , nhLeve1.s.

In order to find the Pareto optimal solution set of this multi-criteria problem,
we vary the value of 6 between O and 1 and apply the previous algorithm for
each value of 0.

2.3.2 Selection and Reproduction Strategy. We use two selection
procedures in each iteration of the genetic algorithm. The first selects NpOp
couples of chromosomes for reproduction. The second selection procedure
selects, among the generated children and the old population, Np, chromo-
somes that will survive and form the new population. Our implementation
uses roulette selection by rank for the two previous procedures. Denote by
NpWI, the number of chromosomes of the initial population from which the

232 AIoulou and Portmann

For 1 = I to nb.Levels -
Generate a population of solutions Po belonging to a level of flexibility in job
sequencing L';
Evaluate the chromosomes in Po and initialise EliteLc,e;
For i = 0 to nbGen & -

Select, from Pi, N,,, couples of chromosolnes for reproduction;
Cross the selected couples of chromosomes;
Evaluate the generated children and update EliteL1 ,,;
Mutate with a small probability n,,t the generated children;
Evaluate the mutated children and update EliteLlIe;
Select, from Pi and the generated children, N,,, chromosomes for survival;

EndFor
EndFor

Figure 4. The genetic algorithm for a fixed value of 0.

procedure selects NpoPOut chromosomes for reproduction or survival. The best
chromosome is assigned a new fitness equal to Npopln, the second best chro-
mosome a fitness equal to NpwIn - 1 and the last one a fitness equal to 1. The
chromosomes are selected with a chance proportional to their rank.

2.3.3 Encoding. To encode a given solution S (partial order), we use
a ternary precedence constraint-oriented matrix A, which represents the set of
precedence constraints contained in the transitive graph representing the partial
order. This matrix A = (u ~ ~) ~ ~ ~ , ~ ~ ~ is defined as follows:

1 if job i precedes job j,
a - - { - 1 if job j precedes job i ,

0 if i = j or 1: and :j are permutable

This matrix is transitive and anti-symmetric. Only n,(n - 1)/2 elements
are kept inside the computer memory, but the complete matrix is used here for
clarity sake.

It is a direct encoding because there is a one-to-one correspondence between
the ternary matrix space and the solution space (Djerid and Portmann, 1996;
Portmann et al., 1998).

Example 1 Consider a five-job problem. A solution to this problem is
given by the partial order represented in Figure 5. In this solution, the only
restrictions are that job 2 precedes jobs 3, 4, and 5; and job 4 precedes job
3. This solution represents 15 schedules. It is encoded by the ternary matrix
given in Figure 5.

A Proactive-Reactive Approach in the Presence of Disturbances

Jobs 1 1 2 3 4 5
1 1 0 0 0 0 0

Fig~rre 5. A solution and the corresponding encoding.

Step I.

Step 2.

Step 3.

Step 4.

Compute F = -;//integer division: the value is truncated to 0
when obtaining or -
Update n,bArcs(F);

Make a decision on the value of one f,j to ensure, if possible, that the
child will be different from both mates;
Update nbArcs(F);

While nbArcs(F) < nbArcs(A1) &
Select randomly mate 1 with probability .rr or mate 2 with probability
1 - 7T;
Select randomly two jobs i and j such that fij = 0 and aij # O;l/A is
the matrix of the selected mate
set tij = a.ij;
set fjl = - fij;
Compute the transitive closure of F and update n,bArcs(F);

Endwhile

if nbArcs(F) 5 nbA~csMax then F is kept; -
& F is discarded;

Figure 6. The modified MT3 crossover,

2.3.4 Modified MT3 crossover. In order to generate two children
from two mates, we use an adaptation of the crossover MT3 proposed by Djerid
and Portrnann (1996), which was used for the job shop scheduling problem.
Consider two mates (mate 1 and mate 2) represented respectively by matrix
A' and matrix A? The algorithm corresponding to the crossover that generates
the first child, represented by matrix F, works as described in Figure 6.

Step 1. allows us to keep the common precedence constraints in the two
parents. In step 3, we add 1 and -1 (precedence constraints) in the matrix of
the child according to the parents until reaching nbArcs(A1) (or nbArcs(A2)).
The probability n, which we choose equal to 0.6 in the implementation of
the algorithm, allows that child 1 (resp. child 2) resembles more to mate 1

Aloulou and Portmann

Solution S1 (&Arcs-15) solution s2 (nbArcs~13)

step 1 + Step 2 (4 precedes 3) step 3

Obtained solution (nbArcs=16)

Figure 7. MT3 crossover example.

(resp. mate 2). In Figure 7, we present an example that illustrates the proposed
crossover.

Remarks

The crossover presented below guarantees an interesting property: ifi
precedes j in both mate 1 and mate 2, then i precedes j in the gener-
ated offspring. This allows the maintenance of important properties of
a good solution. Furthermore, it guarantees that imperative precedence
constraints, if they exist, are usually respected.

rn If the obtained offspring F is such that nbArcs(F) > nbArcsMaz,
then we can withdraw the obtained solution and reiterate or try to
eliminate some arcs in order to obtain nbArcs(F) almost equal to
nbArcsMa,z.

w Unlike the crossover proposed by Djerid and Portmann (1996), the pre-
sented crossover stops adding 1 and -1 when the number of arcs in
the generated offspring reaches the number of arcs of the corresponding

A Proactive-Reactive Approach in the Presence of Disturbances 235

Step 1. Initialise F' = fi,; I* F; is the matrix representing the imposedprece-
dence constraints * I

Step 2. Select randomly two jobs i and j such that a i j # 0;
set f i j = - a i j ;

set f j . - -f. ..
z - yr

While nbArc(F) < nbArc(A)
Select randomly two jobs i and j such that .fi, = 0 and a i j # 0;
set f i j = u i j ;

set f j i = - f i j ;

Compute the transitive closure of F ;
EndWhile

Step 3. if nbArcu(F) 5 n.bArcsh1tcz then F is kept ;
& F is discarded ;

Figure 8. The mutation MUT3.

mate. Besides, step 2 is used to ensure that the generated child is differ-
ent from his parents. This step is motivated by the chosen scheme of the
genetic algorithm: Davis reproduction (Davis, 1991).

2.3.5 MUT3 Mutation. The mutation operator is used to guarantee
the diversity of the population of chromosomes. The mutation we propose
consists in changing the order of at least two jobs. It is described in Figure 8,
where A is the matrix of the considered mate.

3. THE REACTIVE ALGORITHM
The reactive algorithm has three important roles. The first role is to make

the remaining scheduling decisions on-line w.r.t the precedence constraints im-
posed by the chosen partial order. The second role is to react when a pertur-
bation occurs. The third role is to detect when the solution in use is infeasible
w.r.t. the decision maker objectives.

A reactive algorithm is efficient if it

1 offers, if possible, every time a decision has to be made, more than one
alternative w.r.t. the partial order and consequently be able to absorb
possible late arrival of raw material,

2 exploits the flexibility in time when a machine breaks down, and

3 obtains good performance for the realised schedule.

Aloulou and Portmann

S e t X = N a n d t = O ;
W X # 4 &

Determine X+;
Determine the set YI = {i E X f PRIOR^(^, t) =

maxjex+{PRIOR~ (j, t)));
Select a job i* E YI such that PRIORz(i8 , t) =

U ~ ~ X ~ E Y , {PRIO&(j , t)));
Set X = X\{i*);
Set t = ~n.c~:z{l,, ri*) +pi*;

endwhile

figure 9. The general scheme of the proposed algorithms.

Clearly, it is impossible to satisfy these objectives simultaneously. Hence,
we designed different procedures to achieve an acceptable compromise be-
tween the aforementioned objectives. The following notation is used in the
remainder of the paper:

For a set of jobs X , X+ is the subset of available jobs. An unsched-
uled job is available if all its predecessors (w.r.t. the partial order) are
scheduled and if i~ satisfies the restrictions on the constructed schedules
(semi-active, active or non-delay schedules).

PRIORl (i , t) and PRIOR2 (i, t) are two functions that give the prior-
ity of a job i at time t.

The general scheme of the reactive algorithms we propose, in absence of
disruptions, is given in Figure 9. At a given time t , the algorithms sched-
ule the job i* that maximises PRIORl(i , t) among the available jobs i, i.e.
i E X+. When two or more jobs are in competition, the job that maximises
PRIOR2(i, t) is selected.

Clearly, the algorithms depend on the priority functions PRIORl(i7 1) and
PRIOR2(i , t) . They also depend on the definition of the job availability. In-
deed, even though the partial order was computed off-line while considering
that the represented schedules are semi-active, we may decide on-line to con-
struct active or non-delay schedules for a performance improving purpose.

When a disruption occurs, an analysis module is used. In the case of a break-
down, this module uses some results developed in Aloulou (2002) to compute
an upper bound of the increase on the worst total weighted tardiness and to pro-
pose, if possible, one or several decisions to minimise it. The increase on the
worst makespan can be computed with a polynomial time algorithm (Aloulou
et al., 2004). We consider now the second type of disruptions: late job arrival.

A Proactive-Reactive Approach in the Presence of Disturbances 237

Suppose that, at time t, the algorithm chooses to schedule a disrupted job j
such that ry > t , where ry is the new release date of the job. If there exists
an available non-disrupted job i, it can be scheduled without any increase on
the worst-case objective function's values. If such a job does not exist, then
this perturbation can be considered as a breakdown and an upper bound of the
increase on the worst total weighted tardiness can be computed. When the loss
of performance is small (under a given threshold), we schedule the job that
minimises the loss. When the loss of performance is too important, we can
either restrain the partial order in order to have an acceptable increase or re-
calculate a new solution (partial order) for the remaining non-scheduled jobs
(re-scheduling).

4. COMPUTATIONAL RESULTS
We conducted several experiments to evaluate the proactive algorithm and

the use of the proposed approach both in deterministic and stochastic shop
conditions. The first type of experiment concerns the proactive algorithm and
its ability to construct solutions providing a good trade-off between the mea-
sures of flexibility and performance. The experiments showed that every so-
lution S, computed by the proactive algorithm, has a best-case performance
BT~(s) < 1.04 x T:. This implies that S contains at least one schedule
that has a comparable performance to the best schedule given by the heuristics
ATC, X-RM and KZRM. Further, in some cases, the best performance is even
improved by 20%. We also noticed that the genetic algorithm allows one to
provide an acceptable trade-off between flexibility and performance when the
dispersion of job arrival is not very high. Otherwise, the job permutation must
be limited to a low flexibility level in order to preserve correct performance
(Aloulou, 2002).

In the second type of experiments, we tested the application of the approach
in deterministic shop conditions. We showed that the best two algorithms in de-
terministic shop conditions are Perf i V D and Flexl-ND. Per f -ND con-
structs non-delay (ND) schcdulcs using ATC cost as the first priority funclion
(PRIORl(i, t)) and the non-decreasing order of release dates as the second
priority function (PRIOR2(i, t)). Flexl-ND tries to maximise the use of the
flexibility in job sequencing contained in the considered solution by maximis-
ing the number of possible choices in the following step. The second priority
rule is ATC (Aloulou, 2002). In this paper, only experiments in stochastic shop
conditions case are detailed.

4.1 Experimentation in Stochastic Shop Conditions
In order to evaluate the proposed proactive-reactive approach, we compare

it to a predictive reactive approach. In the proactive-reactive approach, the re-

238 Aloulou and Portmann

active algorithm, presented in thc previous section, allows only small modifica-
tions on the partial order characterising the retained solution. In the predictive
reactive approach, a predictive schedule is computed using KZRM heuristic
without taking into account the presence of future disruptions. This schedule
is then proposed to the shop for execution. When a disruption occurs, areactive
algorithm, based on ATC heuristic, is used to control the shop until the next
rescheduling. For both approaches, the rescheduling is assumed to be made
after the period concerned by the experimentations. In our implementation, we
try not to favour, or handicap, either of these two approaches.

We show in the following sections that our proactive-reactive approach has
a better behaviour then the predictive reactive approach when disruptions have
low or medium amplitude.

4.1.1 Description. The experimentation's context is inspired from
problems we met in a supply chain environment (Growth project V-chain GRDl-
2000-25881). In this environment, in order to process final products, several
components are needed: principal components and secondary components.

Principal components are delivered by an upstream shop. The release
dates r j of the jobs, used by the proactive and predictive algorithms, are
equal to the arrival dates of the corresponding components.

Secondary components are bought and used for the transformation of the
principal components. We suppose that two different principal compo-
nents do not need the same secondary components.

After acquisition, secondary components are stored in the shop until their
use. We associate with each secondary component a storage cost proportional
to its storage duration. Obtained products are then delivered to a downstream
shop. A penalty is associated with each job if it is tardy w.r.t. the due dates d j
given by the downstream shop.

Two solutions and spred are computed off-line using, respectively, the
proactive algorithm and the predictive algorithm. The computation of these
solutions takes into account the delivery time of principal components r j and
the due dates d j . In order to rninimise the cost of secondary component storage,
the purchase date of these components is a function of the starting time of
the corresponding principal products in SpTu or PTed. The finishing time of
the principal components can determine their new delivery dates that can be
communicated to the downstream shop. A second penalty is associated with
each job if it is tardy w.r.t. the new delivery dates.

The following notation is used (see Figure 10). For each job j , we denote

by

pj its processing time;

A Proactive-Reactive Approach in the Presence of Disturbances

(a) Proactive schedule (b) Predictive schedule

(c) Realized schedule

Figure 10. The different parameters for a job j in the proactive solution. the predictive sched-
ule and the realised schedule.

w tjpPed its starting time in sped;
w tjpro its earliest starting time w.r.t. the partial order defining SpTo;

w t;p,o its latest starting time w.r.t. the partial order defining STwo;

w t j e f f its effective starting time in the realised schedule ST;

m sj the secondary component acquisition date used to produce j:

tjpr,, - O1 for the predictive reactive approach
" j =

for the proactive-reactive approach
(6)

t L "

where O1 is a constant (see Figure 10);

w d j its due date asked by the downstream shop;

w d j its new delivery date given by the following:

t j p T d + p j + 02 = $""or the predictive reactive approach
d j = t 2 + pj = (pro

J P V O 3 for the proactive-reactive approach
(7)

where O2 is a constant (see Figure 10);

w Tj (resp. ~j6) its tardiness w.r.1. d j (resp. d j) .

240 Aloulou and Portmann

The performance of the realised schedule ST is function of three measures:
the storage cost storageCost(ST), the tardiness W T (S T) w.r.t. the due dates
dj and the tardiness WT~(S, .) w.r.t. the delivery dates 4. These measures are
given by thc following equations:

where c is the unitary storage cost;

To be fair to the predictive approach, constants 19, and $2 are chosen in such
a way that the predictive schedule ST"%S given a flexibility equivalent to the
flexibility contained in the proactive solution ST0. Constant 19~ is such that
the obtained storage costs are equivalent when considering SpT" or s p e d . The
value of 02 is such that

4.1.2 Problem's Generation Scheme. The generation scheme is the
one used by Mehta and Uzsoy (1999). The job's number is equal to n = 40.
The processing times pj are generated from a discrete uniform distribution
Uni f orrn(pmi,,p,,). The job release times rj are generated by a discrete
uniform distribution between 0 and pn,pav, where pa, is the expected process-
ing time. The parameter p controls the rate of job arrivals. The job due dates dj
are generated as dj = rj + yp,, y is generated from a continuous distribution
Uni f orm[a, b] . The job weights ulj are either all equal to 1 or generated by a
discrete uniform distribution between 1 and 10.

4.1.3 Disruption's Generation Scheme. Two types of disruptions
are considered: machine breakdowns and late arrival of principal components
(increase of some T , ~) . The breakdowns are characterised by their occurrence
time and their duration. The number of breakdowns is denoted by nbBreak.
The scheduling horizon is divided into equal nb.Break intervals such that in
each interval a breakdown occurs. The breakdown durations are generated
from a uniform distribution Uni f orm(durMin, durA8ax).

The disruptions related to late arrival of the principal components are gen-
erated according to the considered predictive schedule or proactive solution.

A Proactive-Reactive Approach in the Presence of Disturbances 241

When using a predictive schedule SprCd, a perturbation is generated by as-
sociating a new earliest starting time r y = tjp,,, + aug, where tjpve, is the
starting time of job j in Sped and aug is generated from a uniform distribution
Uni f orm(augMin, augMa.z). When considering a proactive solution Pro,
rSm = t1 + aug, where tjp,.o is the earliest starting time of job j w.r.t. the

3 3pro
partial order defining SpTO. For each problem, we consider a proactive so-
lution and a predictive schedule to be compared. 50% of disruptions related
to late raw material arrival are generated according to the predictive schedule
and 50% according to the proactive solution. The number of delayed jobs is
denoted nbllelay.

4.2 Analysis of the Obtained Results
We implement two heuristics of the reactive algorithm in the predictive re-

active approach: ATC-dj and ATC-Sj. These are ATC-based heuristics that
construct non-delay schedules. The first takes into account the due dates dj
and the second the delivery dates Sj. For the proactive-reactive approach, we
use the heuristics presented in Section 3: Perf X D and Flexl-ND. The
comparison is based on the criteria W T and WT' given respectively by (9)
and (10). The performance is measured by evaluating W T + WT'.

We consider the following parameters to generate problems and disruptions:

rn p = 0.5,l: grouped or dispersed job arrivals,

(a , b) = (1,3) or (2,5) to generate the due dates.

For the four parameter combinations, we generate five problems. For each
problem, we use the KZRM heuristic to generate a predictive schedule and the
proactive algorithm to compute a flexible solution belonging to the flexibility
level characterised by nbArcs E [620,700]. Recall that the number of jobs is
equal to n = 40 and the maximum number of arcs is 780 (= n(n - 1)/2). This
means that the proactive algorithm search space is formed by job partial orders
where the proportion of non oriented arcs is between 10% and 20% of the total
number of arcs. The predictive schedule and the proactive flexible solution are
executed subject to disruptions characterised by the following parameters:

rn the number of breakdowns nbBreak E {O,1,2,3);

rn [durMir~, durMuz] = [3,6] for breakdown durations;

Aloulou und Portmann

@&,pax)l(l,ll) ; r S O ; (r,b)l(1,3) ; solation with nbAres-680
nbDehy-8 and nbBmab0

c Paw-ND
-A- ATC d-i

Figure 11. Results for nbBwuk = 0.

For each combination of these parameters, a couple (predictive schedule,
proactive solution) is experimented in 1000 different scenarios. The per-
formance of each reactive algorithm Flexl-ND, Per f -ND, ATCdi and
ATC-Gi in terms of total weighted tardiness (WT + W T ~) is evaluated for
each scenario. The average value is then computed and associated with each
algorithm. The reactive algorithm with best performance is assigned a perfor-
mance equal to 100%. Any of the three remaining algorithms is assigned the
ratio between the best performance and its performance.

Figures 1 1-14 sum up the obtained results for the family of problems cor-
responding to p = 0.50, (a, b) = (1,3), nbDelay = 8 and nbBreak =
0,1,2,3 and nbArc.9 = 680 for the proactive solution.

We can notice that algorithms ATC-dj and MC-Gj are dominated by al-
gorithms Fles l -ND and Perf -ND for late arrival disruptions characterised
by [augMin, augMa,x] E { [I , 61, [6,12], [12,24], [24,36]). The superiority
of Flexl-ND and Per f -ND is very clear when nbBreak = 2. For im-
portant late anival disruptions, notably when [augMin, augMax] = [60,90],
the performance of Flesl-ND and Perf -ND become less than 86%. Be-
sides, in all cases Perf _ND outperforms Flexl-ND. This is also the case
for ATC-Gj when compared to ATC-dj. We obtain the same conclusions
when (a , b) = (2,s) .

We applied the same experimentations for more flexible solutions with
n,bArcs x 540. We remarked that algorithms Flexl-ND and Perf -ND
become rapidly dominated by algorithms ATC-Gj and ATC-dj. This means
that asking for more flexibility is in this case penalising w.r.t. to the realised
performance.

A Proactive-Reactive Approach in the Presence of Disturbances

(pmin,pmax)l(l,ll) ; r S O ; (a,b)=(l,3) ; solution with nbAms-680
nbDeLyl8 and nbBnak-1

Figure 12. Results for nbBreo,k = 1.

@mh,pmax)=(l,ll) ; 1-50 ; (a,b)=(1,3) ; solutbn with nbAm680
nbDeLy-8 and nbBnalr2

Figure 13. Results for nbBreuk = 2.

When the dispersion of job arrival is high (p = 1.00), our algorithms
Flexl-ND and Perf -ND outperform the other algorithms when the level
of disruptions on job arrival is low ([augMin,augMax] 5 [12,24]) and
nbBreak = 0 or 1. When the number of breakdowns is greater, notably for
nbBreak = 2, the performance of ATC-Gj and ATC-dj are less than 50%.
Besides, in all cases Perf -N D outperforms Flexl-ND. This is also the case
for ATC-dj when compared to ATC-dj.

AIoulou and Portmann

@min,pmax)l(l,ll) ; r S O ; (a,b)r(l,3) ; solution with nbArcsL680
nbDelnj-8 and nbBnak-3

-t PI@x~-ND
+ Perf-ND
-A- ATC d,l
X A T C dolt. I C

I

Figure 14. Results for nbBreak = 3.

To summarise, when the job arrivals are grouped (p = 0.50), our approach
is usually superior to the predictive reactive approach when the amplitudes of
disruptions on job arrival are such that [augMin, augMax] 5 [36,48] and
nbBreak = 0,1,2,3. For dispersed job arrivals (p = 1.00), our approach is
very superior when abBreak 2 2. When r~bBreak < 2, it also outperforms
the other approach for disruptions on job arrival with low amplitude.

In conclusion, according to the experiments presented in this paper, our
proactive-reactive approach outperforms the predictive reactive approach for
low and medium disruption amplitude, especially when the flexibility level of
the computed solutions is not too high (The number of non-oriented arcs is
about 15% of the maximum number of arcs). Notice that the reactive algo-
rithm of the predictive reactive approach can be considered as a rescheduling
process since it uses the ATC heuristic, which is known to give good solutions
w.r.t. total weighted tardiness criteria (Jouglet, 2002). Oppositely, the reactive
algorithm used in our proactive approach is simple and allows only small mod-
ifications on the retained solution. However, in the presence of high-amplitude
disruptions, such modifications may appear insufficient. Indeed, the proactive
solution may become very bad and rescheduling is then necessary to regain
some performance. That's why the predictive reactive approach seems to dom-
inate the proactive-reactive one for very high disruption amplitude.

5. CONCLUSION
We have considered in this paper the single machine scheduling problem

with dynamic job arrival and total weighted tardiness and makespan as objec-

A Proactive-Reactive Approach in the Presence of Disturbances 245

tive functions. The shop environment is subject to perturbations related to late
raw material arrival and to machine breakdowns. We proposed a proactive-
reactive approach to solve the problem. The proactive algorithm is a genetic
algorithm which computes partial orders providing a good trade-off between
flexibility and performance. These solutions are built up while taking into
account the shop constraints, the decision maker preferences and some knowl-
edge about possible future perturbations. The reactive algorithm is used to
guide on-line the execution of the jobs. In the presence of disruptions, the
reactive algorithm is uscd to absorb thcir effects by exploiting the flexibil-
ity introduced in the proactive algorithm. We made several experimentations
to compare our approach to a predictive reactive approach in stochastic shop
conditions. In this comparison, we tried to be fair to the predictive reactive ap-
proach. We gave an equivalent flexibility range, on average, to the predictive
schedule compared to the range of flexibility contained in a proactive solu-
tion. The results showed that our approach outperform the predictive reactive
approach for low and medium disruption amplitude. This confirms that antic-
ipating the presence of disruptions proactively allows to obtain good realised
schedules and to plan other shop activities.

The results obtained for single machine scheduling problems gave us some
insight to extend our approach to more complex scheduling problems. Cur-
rently, we are adapting the proposed proactive algorithm for flow shop schedul-
ing problem with maximum cost functions. A solution to this problem is char-
acterised by a partial order on each machine. This extension is motivated by a
polynomial time algorithm developed in Aloulou (2002) to compute the worst-
case performance for the flow shop case.

References
Aloulou, M. A. (2002) Structure flexible d'ordonnancements 2 performances contr6lCes pour le

pilotage d'atelier en presence de perturbations. Ph. D. Thesis, lnstitut National Polytechnique
de Lorraine.

Aloulou, M. A., Kovalyov, M. Y. and Portmann, M. C. (2004) Maximization in single machine
scheduling. Annals of Operations Research, 129:21-32,

Aloulou, M. A. and Portmann, M. C. (2001) Incorporating flexibility in job sequencing for the
single machine total weighted tardiness problem with release dates. In Proceedings of 10th
Annual Industrial Engineering Research Conference, on CD-ROM.

Artigues, C., Roubellat, F. and Billaut, J.-C. (1999) Characterization of a set of schedules in a
resource constrained multi-project scheduling problem with multiple modes. International
Journal oflndustrial Engineering, Applications and Practice, 6:112-122.

Baker, K. R. (1 974) Introduction to Sequencing and Scheduling. Wiley, New York.
Billaut, J. C. and Roubellat, F. (1996) A new method for workshop real time scheduling. Inter-

national Journal of Production Research, 34:1555-1579.
Brightwell, G. and Winkler, P. (1991) Counting linear extensions. Order, 8:225-242.

246 Aloulou and Portmunn

Church, L. K. and Uzsoy, R. (1992) Analysis of periodic and event-drive rescheduling policies
in dynamic shops. International Journal of Computer Integrated Manufacturing, 5: 153-163.

Divenport, A. J. and Beck, J. C. (2000) A survey of techniques for scheduling with uncertainty.
http:/hwweil.utoronto.cdpr-r?file~s/chris/chri.s.~~upers.h~il.

Davis, L. (1991) Handbook of Genetic Algorithms. Van Nostrand-Reinhold, New York.
Djerid, L. and Portmann, M. C. (1996) Genetic algorithm operators restricted to precedent con-

straint sets: genetic algorithm designs with or without branch and bound approach for solv-
ing scheduling problems with disjunctive constraints. In Proceedings of IEEE International
Conference on Systems, Man and Cybernetics (Oct. 14-17), Vol. 4, pp. 2922-2927.

Herroelen, W. and Leus, R. (2003) Project scheduling under uncertainty: Survey and research
potentials. European Journal of Operational Research, in press, available online 1 June
2004.

Jouglet, A. (2002) Ordonnancer sur une machine pour minimiser la somme des coilt. Ph.D.
Thesis, Universitk de Technologic de Compibgne.

Lawler, E. L. (1973) Optimal sequencing of a single machine subject to precedence constraints.
Managemcnt Science, 19:544-546.

Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G. and Shmoys, D. B. (1993) Sequencing and
scheduling: algorithms and complexity. In Logistics of Production and Inventory, Handbook
in Operations Research and Management Science, Vol. 4 , Elsevier, Amsterdam, pp. 445-
452.

Leon, V. J., Wu, S. D. and Storer, R. H. (1994) Robustness measures and robust scheduling for
job shops. IIE Transactions, 26:32-43.

Mehta, S. V. and Uzsoy, R. (1999) Predictable scheduling of a single machine subject to break-
downs. International Journal of Computer Integrated Manufacturing, 12: 15-38.

Morton, T. E. and Pentico, D. W. (1993) Heuristic Scheduling with Apllications to Production
Systems and Project Management. Wiley, New York.

Portmann, M. C., Vignier, A., Dardilhac, C. D. and Dezalay, D. (1998) Branch and bound
crossed with ga to solve hybrid flowshops. European Journal of Operational Research,
107:389-400.

T'kindt, V. and Billaut, J. C. (2002) Multicriteria Scheduling. Springer, Berlin.
Vieira, G. E., Herrmann, J. W. and Lin, E. (2003) Rescheduling manufacturing systems: aframe-

work of strategies, policies, and methods. Journal ofScheduling, 6:35-58.
Wu, S. D. Byeon, E. S. and Storer, R. H. (1999) A graph-theoretic decomposition of thejob shop

scheduling problem to achieve scheduling robustness. Operations Research, 47: 1 13-1 24.

A DYNAMIC MODEL OF TABU SEARCH FOR THE
JOB-SHOP SCHEDULING PROBLEM

Jean-Paul Watson
Sandia National Laboratories
P. 0. Box 5800, MS 11 10
Albuquerque, NM 87185-1 110, USA
jwatson0sandia.gov

L. Darrell Whitley and Adele E. Howe
Computer Science Department
Colorado State Universiry
Fort Collins, CO 80523, USA
{ whitley,howe) @cs.colostate.edu

Abstract Although tabu search is one of the most effective meta-heuristics for solving
the job-shop scheduling problem (JSP), very little is known about why this ap-
proach works so well and under what conditions it excels. Our goal is to develop
models of tabu search algorithms for the JSP that answer these and other related
research questions. We have previously demonstrated that the mean distance be-
tween random local optima and the nearest optimal solution, denoted &opt-opt, is
highly correlated with problem difficulty for a well-known tabu search algorithm
for the JSP introduced by Taillard. In this paper, we discuss various shortcom- -
ings of the dlopCopt model and develop new models of problem difficulty that
correct these deficiencies. We show that Taillard's algorithm can be modelled
with exceptionally high fidelity using a surprisingly simple Markov chain. The
Markov model also enables us to characterise the exact conditions under which
different initialisation methods can be expected to improye performance. Fi-
nally, we analyse the relationship between the Markov and dlopt-op models.

Keywords: tabu search, job-shop, scheduling.

INTRODUCTION
Taillard (1989) first demonstrated the effectiveness of tabu search algo-

rithms for the job-shop scheduling problem (JSP). Since then, researchers have
introduced numerous improvements to Taillard's original algorithm (Blaiewicz

248 Watson, Whitley and Howe

et al., 1996). This effort has been rewarded: tabu search algorithms are widely
regarded as among the most effective approaches for generating high-quality
solutions to the JSP (Jain and Meeran, 1999). Yet, over the same time period,
researchers have made little progress in developing a theoretical understand-
ing of these algorithms. Specifically, little is known about why tabu search is
so effective for the JSP and under what conditions we can expect such strong
performance.

To gain insight into the behaviour of tabu search algorithms for the JSP, we
recently performed an extensive analysis of the relationship between various
features of the fitness landscape (i.e. the underlying search space) and search
cost for Taillard's algorithm (Watson et al., 2003; Watson, 2003). Our initial
findings were largely negative: many features that are widely believed to influ-
ence problem difficulty, such as the number of optimal solutions, the backbone
size (i.e. the number of solution attributes with identical values in all optimal
solutions), fitness-distance correlation, and the mean distance between ran-
dom local optima are in fact only weakly correlated with search cost. Drawing
from research on problem difficulty for local search in MAX-SAT (the optimi-
sation formulation of the Boolean Satisfiability decision problem), we showed
that the mean distance between random local optima and the nearest optimal
solution, which we denote ~IoP,op,, is highly correlated with the cost required
by Taillard's algorithm to locate optimal solutions to the JSP. We also demon-
strated that &oP,opr accounts for much of both the variability in the difficulty
of locating sub-optimal solutions and differences in the relative difficulty of
square (n lm = 1) versus rectangular (n lm > 1) JSPs.

The ~,op,opr model also has several shortcomings (Watson et al., 2003). First,
the model was developed and validated using small problem instances, leaving
open the question of scalability. Second, despite good overall accuracy, model
errors frequently exceed 112 an order of magnitude in search cost, and the
model is least accurate for the most difficult problem instances. Third, the
model provides no direct insight into the dynamic behaviour of the underlying
search process: it is unclear why ~lop,op, should be so highly correlated with
search cost.

In this paper, we correct these deficiencies by introducing a dynamic model
of problem difficulty that is based on an analysis of the run-time behaviour of
Taillard's algorithm. In doing so, we make the following contributions toward
a theoretical understanding of tabu search algorithms for the JSP:

1. The accuracy of the ~IoP,op, model can be significantly improved by con-
sidering the set of solutions visited by Taillard's algorithm during search.

2. Taillard's algorithm can be modelled with exceptionally high fidelity
using a surprisingly simple Markov chain whose states represent both
the current distance from the nearest optimal solution and the current

A Dynamic Model of Tabu Search 249

search gradient, i.e. whether search is progressing toward or away from
the nearest optimal solution. The Markov model accounts for nearly all
of the variability in the cost required to locate optimal solutions to both
small (6 x 4, 6 x 6) and large (10 x 10) random JSPs. The model also
provides insight into the exact conditions under which different initiali-
sation methods can be expected to improve performance.

3. We identify a relationship between the Markov and &op,op, models, which
enables us to account for why &OP,Opf is so highly correlated with search
cost.

The remainder of this paper is organised as follows. First, in Section 1,
we summarise the key features of Taillard's algorithm and discuss our exper-
imental methodology. We summarise the key features of the ;iIoP,, model in
Section 2 and discuss several deficiencies of the model. In Section 3, we show
that the mean distance between solutions visited during search and the nearest
optimal solution is more highly correlated with search cost than &,p,op,. We
develop a dynamic Markov model of the behaviour of Taillard's algorithm in
Section 4 and use the resulting model to explore the conditions under which
heuristic initialisation can be expected to improve performance in Section 5.
We conclude by discussing the implications of our results in Section 6.

1. PROBLEM, ALGORITHM, AND METHODOLOGY
We consider the well-known n x m static JSP (Blaiewicz et al., 1996) in

which n jobs must be processed exactly once on each of m machines. Each job
i (1 5 i 5 n) is routed through each of the m machines in a pre-defined order
G, where r i (j) denotes the jth machine (1 5 j 5 m) in the routing order. The
processing of job i on machine ni(j) is denoted oij and is called an operation.
An operation oij must be processed on machine ~ (j) for an integral duration
rij 2 0. Once processing is initiated, an operation cannot be pre-empted, and
concurrency is not allowed. For 2 5 j 5 m, oij cannot initiate processing un-
til oij-1 has completed. The scheduling objective is makespan minimisation,
i.e. to minirnise the maximum completion time of the last operation of any job.

An instance of the n x m JSP is defined by the set of n m operation durations
ru and n job routing orders ni. We define a random JSP as an instance gener-
ated by (1) sampling the ru independently and uniformly from a fixed-width
interval and (2) constructing the ni from random permutations of the integers
[l.,m]. Most well-known JSP benchmark instances (available from the OR
Library: www.ms.ic.ac.uk/info.html) are random JSPs; exceptions include in-
stances such as swvll-15 in which the ni are more constrained (e.g., they
possess workflow or flowshop partitions).

Our analysis is based on a tabu search algorithm for the JSP introduced by
Taillard (1989, 1994), which we denote TSTaillard. We observe that T S ~ a i ~ a r d

250 Watson, Whitley and Howe

not the best available tabu search algorithm for the JSP: the algorithms of Now-
icki and Smutnicki (1996) and Chambers and Barnes (1996) provide stronger
overall performance. We chose TSTaillard because it is particularly amenable
to analysis (for reasons discussed below) and serves as a basis for more ad-
vanced algorithms. Relative to TSTaillardr state-of-the-art tabu search algorithms
for the JSP employ more effective move operators and frequently re-intensify
search around high-quality solutions. Instead of tackling state-of-the-art algo-
rithms, our (pragmatic) approach is to first develop models of a basic algorithm
(TSTai~lard) and to subsequently extend this model to account for algorithmic
features found in state-of-the-art algorithms.

TSTaillard is a relatively straightforward implementation of tabu search and
is based on the well-known N1 move operator introduced by van Laarhoven
et al. (1992). The neighbourhood of a solution s under N l consists of the set
of solutions obtained by inverting the order of a pair of adjacent critical opera-
tions on the same machine. Taillard's original papers (Taillard, 1989; Taillard,
1994) provide a detailed description of T S T ~ ~ N ~ ~ ~ A key feature of TSTaillard
is the dynamic tabu tenure, which is periodically and uniformly re-sampled
from a fixed-width interval [Lmin, L,-1. The combination of a dynamic tabu
tenure (which prevents cycling) and the N l move operator (which guaran-
tees that a path exists from an arbitrary solution to some optimal solution, see
van Laarhoven et al., 1992) endows TSTaillard with a key property: for reason-
able values of Lmin and L,-, the algorithm is (at least empirically) guaranteed
to eventually locate an optimal solution (see our discussion in Watson et al.,
2003).

Our results are based on our own implementation of TSTaillard9 which de-
viates from Taillard's original algorithm in three respects. First, instead of
initiating search from a lexicographic solution (constructed by scheduling the
jobs in index order), we use a local optimum generated by applying steepest-
descent (under the N1 operator) to a random semi-active solution (Mattfeld et
al., 1999); we investigate alternate initialisation methods in Section 5. Sec-
ond, we compute the makespan of neighbouring solutions exactly; Taillard's
original algorithm employed an estimation scheme. Third, we do not use the
long-term frequency-based memory mechanism introduced by Taillard. Our
modifications enable us to control for any possible impact of these mechanisms
on the development of accurate behavioural models of TS~ai~ard.

The key behaviour of interest when analysing TS~aillard is the cost required
to locate optimal solutions to problem instances. For individual trials, this cost
is naturally defined as the number of iterations c required to locate an optimal
solution. Because TSTaillard is stochastic (due to the choice of initial solution,
random tie-breaking when multiple "best" moves are available, and the tabu
tenure), search cost is in fact a random variable with an approximately expo-
nential distribution (Taillard, 1994). Consequently, we run 1,000 independent

A Dynamic Model of Tabu Search 25 1

trials of TSTaillard for a given instance, and define search cost as either the mean
(E) or median (~ ~ 2) number of iterations required to locate an optimal solution,
depending on the context (estimates of cQ2 are less sensitive to extreme values
and are used when possible).

As in our previous research (Watson et al., 2003), we develop and validate
our models of TSTaillard using sets of 6 x 4 and 6 x 6 random JSPs containing
1,000 instances each, with the rij uniformly sampled from the interval [I, 991.
Additionally, due to recent advances in computing power, we are now able to
assess model scalability using a set of one hundred 10 x 10 random JSPs (also
generated by sampling the rij uniformly from the interval [l, 991). We also
consider the following well-known 10 x 10 random JSP benchmark instances:
la1 6 - l a2 0 and a b z 5-abz 6. We ignore several other well-known instances
(e.g., Fisher and Thompson's infamous 10 x 10 instance and orb01-orb10)
because the job routing orders are far more structured than that of a typical
random JSP. We are unable to consider larger rectangular problem instances
(i.e. instances with n >> m) due to the large number of optimal solutions. For
experiments involving our 6 x 4 and 6 x 6 problem sets, we set the Lmin and
L,, parameters of TSTaillard to 6 and 14, respectively; for our 10 x 10 problem
set, we let Lmin = 8 and Lmin = 14. The models we develop are functions of
the set of all optimal solutions to a given problem instance. We use Beck and
Fox (2000)'s constraint programming algorithm to both compute the optimal
makespan and to enumerate the set of optimal solutions for our test instances.
Our models are also based on the notion of distance between pairs of solutions,
which we take as the well-known disjunctive graph distance: see Mattfeld et
al. (1999). Informally, the disjunctive graph distance between two solutions is
the number of differences in the relative order of distinct pairs of operations on
the same machine.

2. A SUMMARY AND CRITIQUE OF PRIOR
RESULTS

Previously, we analysed the relationship between various fitness landscape
features and problem difficulty for TSTaillard (Watson et al., 2003; Watson,
2003). We used regression methods to develop statistical models relating one
or more of these features to the cost loglo(cQ2) required to locate optimal solu-
tions to 6 x 4 and 6 x 6 random JSPs. Because they are based on static (i.e. in-
dependent of meta-heuristic) features of the fitness landscape, we refer to these
models as static cost models. The accuracy of a static cost model can be quan-
tified as the model r2, i.e. the proportion of the total variability in search cost
accounted for by the model. We found that the accuracy of static cost mod-
els based on well-known features such as the number of optimal solutions, the

252 Watson, Whitley and Howe

backbone size, and the average distance between random local optima is only
weak-to-moderate, with r2 ranging from 0.22 to 0.53.

Drawing from research on problem difficulty for local search in MAX-SAT
(Singer et al., 2000), we demonstrated that a static cost model based on the
mean distance between random local optima and the nearest optimal solution,
which we denote &op,opt, is significantly more accurate, yielding r2 values of
0.8260 and 0.6541 for 6 x 4 and 6 x 6 random JSPs, respectively. The &oP,opt

model is a descriptive model indicating that search cost is largely an exponen-
tial function of the total distance that must be traversed, i.e. between the initial
(random) solution and the nearest optimal solution. For illustrative purposes,
we provide a scatter-plot of ~iop,opt versus C Q ~ in the left side of Figure 1 for
6 x 6 random JSPs. The actual cQ2 are typically within an order of magnitude of
the predicted cQ2; in a few exceptional cases, the error can reach two orders of
magnitude. Additionally, we showed that &oP,opt accounts for most of the vari-
ability in the cost required to locate sub-optimal solutions, i.e. with makespans
larger than the global minimum, to these same problem instances (providing
an explanation for the existence of cliffs in the search cost at particular offsets
from the optimal makespan) and differences in the relative difficulty of square
(n lm = 1) versus rectangular (n lm > 1) problem instances.

We also identified several deficiencies of the ~IoP,op, model. First, as shown
in the left side of Figure 1, there is evidence that model accuracy is inversely
proportional - to &op,-op,, i.e. the magnitude - of the average residual at a particular
value of dlop,op, is proportional to dlop,op,. Of particular concern is the fact that
the model is least accurate for the most difficult problem instances. Second,
the model fails to account for a non-trivial proportion (~ 1 1 3) of the variability
in problem difficulty for the 6 x 6 instances. Third, the differences in accuracy
observed for the 6 x 4 and 6 x 6 instances raises concerns regarding scalability
of the model to larger, more realistically sized problem instances. Fourth, and
perhaps most importantly, the model provides little direct insight as to why the
mean distance between random local optima and the nearest optimal solution
should be so highly correlated with search cost.

To assess the scalability of the &op,op, model, we computed &op,op, for the 92
instances of our 10 x 10 problem set with 550 million optimal solutions; the
computational costs are currently prohibitive for the remaining eight instances.
For each instance, we use 5,000 random local optima (generated by applying
steepest-descent to random semi-active solutions) to estimate ~lop,pt. We show -
a scatter-plot of dlop,op, versus C Q ~ for these instances in the right-hand side of
Figure 1. The r2 value for the corresponding regression model is 0.4598, a 33%
decrease in model accuracy relative to the 6 x 6 problem set. This result clearly
demonstrates the failure of the ~lop,opt to scale to larger problem instances.

One obvious extension to our research would involve the development and
analysis of more complex static cost models: e.g., those based on multiple

A Dynamic Model of Tabu Search 253

Figure I . Scatter-plots of &opr~opt versus C Q ~ for 6 x 6 (left figure) and 10 x 10 (right figure)
random JSPs; the least-squares fit lines are superimposed.

features or features that capture more detail of the fitness landscape. However,
we found in pilot experiments that more complex models appear to yield at best
only marginal (less than 5%) improvements in model accuracy. This result is
consistent with our intuition: static cost models explicitly ignore the dynamic
behaviour of TSTaillard. TO develop truly accurate (i.e. r2 > 0.9) cost models,
we thought it necessary to account for the dynamic behaviour of the algorithm
under consideration. We now explicitly test this hypothesis, by developing
both simple (Section 3) and complex (Section 4) cost models that are functions
of the set of solutions visited by TSTaillard during search.

3. THE IMPACT OF SEARCH BIAS
Attractor basins of local optima in the JSP are surprisingly weak (i.e. nar-

row and shallow): they can be escaped with high probability by accepting one
or two dis-improving moves and re-initiating greedy descent (Watson, 2003).
Thus, search under TSTaillard is generally restricted to the sub-space of solutions
containing both local optima and solutions very close (in terms of distance) to
local optima. The intuition behind &oP,opt is that it represents the effective size
of this sub-space (by taking into account the number of optimal solutions) and
as a consequence is highly correlated with search cost. However, the deficien-
cies of the ~lop,opt static cost model (specifically, the lack of scalability) suggest
that either (1) ~lop,~opt is not an entirely accurate indicator of the size of the local
optima sub-space or (2) the size of the local optima sub-space is not completely
indicative of search cost. We now focus on the first alternative, by developing
a more accurate measure of the size of the local optima sub-space.

The ~IoP,op, measure is a function of the distribution of the distance between
random local optima and the nearest optimal solution (do,,). Consider instead
the distribution of do,, for solutions visited by TSTaillard during search. Both

254 Watson, Whitley and Howe

Figure 2. Histograms of the distance to the nearest optimal solution (dopt) for (a) 100,000
random local optima and (b) 100,000 solutions generated by TSTaillard for two 10 x 10 random
JSPs.

distributions are typically Gaussian-like, although we have observed skewed
distributions both with and without heavy tails. We provide examples of these
distributions for two 10 x 10 instances in Figure 2. Although the two distribu-
tions are often identical (especially in 6 x 4 instances and to a lesser extent in
6 x 6 instances), they can also possess very different means and variances, as
shown in the right side of Figure 2. Further, we commonly observe such dis-
crepancies in our 10 x 10 instances-the same instances for which the 2,0P,0pt
model is least accurate.

These observations led us to conjecture that the mean do,, for solutions vis-
ited during search, which we denote ztabu-opr, may be a more accurate indicator
of the size of - the local optima sub-space than zloP,op,. For a given instance,
We Compute using a Set of 100,000 sohtions visited by TSTaiNard Over
a variable number of independent trials. Each trial is initiated from a random
local optimum and terminated once an optimal solution is located; we impose
the termination criterion because there exist optimal solutions from which no
moves are possible under the Nl operator (Nowicki and Smutnicki, 1996). We
terminate the entire process, including the current trial, once we obtain 100,000
samples.

Regression models of ztabu-opr versus 10g10(~Q2) yielded r2 values of 0.8441
for our 6 x 4 instances and 0.7808 for our 6 x 6 instances; this corresponds
to roughly 4% and 20% increases in accuracy over that of the ~IoP,op, model,
respectively. The scatter-plot for the 6 x 6 instances is shown in the left-hand
side of Figure 3. In either case, the absolute accuracy is remarkably high.
The variable impact on accuracy is due to frequency of instances in which the
distributions of dopt for random local optima and solutions visited during search
are dissimilar. The actual C Q ~ typically deviate from the predicted C Q ~ by no
more than 112 an order of magnitude, and we observe fewer and less extreme

A Dynamic Model of Tabu Search

Figure 3. Scatter-plots of &bu-opt versus search cost (cQ~) for 6 x 6 (left figure) and 10 x 10
(right figure) random JSPs; the least-squares fit lines are superimposed.

high-residual instances than under the &,P,,t model. Finally, although beyond
the scope of this paper, the &abu-opt model provides similar improvements in
the ability to predict the cost of locating sub-optimal solutions to these same
problem instances.

We next assess the accuracy of the LbU, model on the set of forty-two 10 x
10 instances with <100,000 optimal solutions; the computation of &abu.opt is
prohibitively expensive for the remaining instances. Given the relatively poor
correlation between the number of optimal solutions and search cost (Watson
et al., 2003), our selection criterion does not lead to a clean distinction between
easy and hard problem instances; the hardest instance in our 10 x 10 problem
set has approximately 1.5 million optimal solutions. However, on average,
instances with < 100,000 optimal solutions are generally more difficult, with
a median cQ2 of 65,710, versus 13,291 for instances with more than 100,000
optimal solutions.

A regression model of &bu-opt versus loglo(cQ2) for these 10 x 10 instances
yielded an r2 value of 0.6641; we show the corresponding scatter-plot in the
right-hand side of Figure 3. The resulting r2 represents an approximately 41%
increase in accuracy over the &op,,t model. The model residuals typically vary
from between 112 and 1 order of magnitude, leaving a moderate proportion of
the variability in search cost unexplained. The difference in model r2 between
the 6 x 6 and 10 x 10 problem sets is only ~0.14. We have also annotated the
scatter-plot with data for five of the seven 10 x 10 random JSPs found in the OR
Library; both la16 and la17 have approximately 6.8 and 11.8 million op-
timal solutions, respectively, making computation of &,bu-opt prohibitive. The
abz5 and la19 instances are known to be significantly more difficult than
their respective counterparts (i.e. abz6, la18, and la20) for numerous lo-
cal search algorithms (Jain and Meeran, 1999), which is consistent given the
observed differences in &abu-opt.

256 Watson, Whitley and Howe

Our results clearly demonstrate that the mean distance between solutions
visited during search and the nearest optimal solution (&abu.opt) is highly corre-
lated with the cost required by Taillard's algorithm to locate optimal solutions
to random JSPs. However, two key issues remain. First, as shown by the dif-
ference in r2 obtained for the 6 x 6 and 10 x 10 instances, there is still some
evidence that the LbU., model may fail to scale to even larger problem in-
stances. Second, as was the case with &oP,opt, it is unclear why &abu-opt is SO

highly correlated with search cost. To address these issues, we now examine
the dynamic behaviour of TS~ai~ard in more detail.

4. A DYNAMIC COST MODEL OF TABU SEARCH
The dynamic behaviour of memoryless local search algorithms (e.g., simu-

lated annealing or iterated local search) can, at least in principle, be modelled
using Markov chains: the set of feasible solutions is known and the transition
probabilities between neighbouring solutions can be computed. Although ex-
act, such models require an exponential number of states for most interesting
(i.e. NP-hard) problems and therefore provide little insight into the qualitative
nature of the search process. The challenge is to develop lumped models, in
which large numbers of solutions are grouped into individual states, yielding
more tractable and consequently understandable Markov chains. A similar ap-
proach is possible when modelling tabu search, although we must additionally
embed the contents of short-term memory into the state definition. We then
face two questions: "What criterion do we use to aggregate solutions?' and
"How do we model short-term memory?'

Given the objective of makespan minimisation, we aggregate solutions based
on their distance to the nearest optimal solution. To model the impact of short-
term memory, we analyse how search progresses in terms of consistent trends
either toward or away from the nearest optimal solution. In Figure 4, we show
a time-series of the distance to the nearest optimal solution for a random walk
(left figure) and TSTaillard (right figure) for a 10 x 10 random JSP; these partic-
ular time-series were selected to yield figures with identical ranges in the dis-
tance to the nearest optimal solution. As expected, the random walk exhibits
minimal trending behaviour. In contrast, TSTai[lard exhibits distinct trending be-
haviour, often maintaining the current search gradient for extended periods of
time. Similar results hold in a limited sampling of our 6 x 4,6 x 6, and 10 x 10
instances. This suggests that TSTaillard's short-term memory mechanism influ-
ences the search process simply by consistently biasing search either toward or
away from the nearest optimal solution.

Given strong trending behaviour, we define a state Si,grad in our Markov
model as a pair representing (1) the set of solutions distance i from the nearest
optimal solution and (2) the current search gradient grad. We define grad as

A Dynamic Model of Tabu Search

Figure 4. Time-series of the distance to the nearest optimal solution for the solutions visited
by a random walk (left figure) and TSTaillard (right figure) for a typical 10 x 10 random JSP.

the difference in do,,, for solutions from the current and immediately preceding
iteration of TSTaillard. Although grad E {-1,0,1), for clarity we denote these
numeric values symbolically by closer, equal, and farther, respectively. In
effect, we are modelling the impact of short-term memory as a single scalar
(grad) and embedding this scalar into the state definition. Given a maximum
possible distance of D from a solution to the nearest optimal solution, our
Markov model consists of exactly 3 . (D + 1) states (the "+I" state represents
the set of optimal solutions).

Next, we specify the transition probabilities between pairs of states Si,grad
and Sj,grad in our model. We let the conditional probability
P(Si,grad, ISj,,,.ad) denote the probability of simultaneously altering the search
gradient from grad to grad' and moving from a solution at distance j from
the nearest optimal solution to a solution at distance i away from the near-
est optimal solution. The majority of these probabilities obviously equal 0:
specifically, for any pair of states Si,grad and Sj,grad with li - jl > 1, or when
simultaneous changes in both gradient and distance to the nearest optimal so-
lution are logically impossible, such as from state &,closer to state Si+l,closer.
For each i such that 1 < i < D, exactly nine non-zero transition probabilities
are possible:

The set of transition probabilities is also subject to the total-probability con-
straints:

25 8 Watson, Whitley and Howe

Figure 5. The transition probabilities for moving closer to (left figure) or farther from (right
figure) the nearest optimal solution under TSTaillard for a typical 10 x 10 random JSP.

In order to complete our Markov model, we impose a reflective barrier
at i = D and an absorbing state at i = 0 by imposing the constraints
P (S ~ + l , f a r t h e r (S ~ f a r t h e r) = 0 and P (S ~ , ~ q u a l ~ S ~ , ~ ~ ~ a l) = 1, respectively.

We estimate the set of transition probabilities for a given problem instance
by analysing the set of solutions visited by TSTaillard over a large number of
independent trials. At each iteration k 2 1 of each trial, we compute (1) the
distance j from the current solution s to the nearest optimal solution and (2) the
current search gradient grad, which is a function of solutions encountered in
both the current (kth) and previous, (k - l)th, iterations. Given the neigh-
bour s' of s selected for the next, (k + l)th, iteration, we then compute (3) the
distance i from st to the nearest optimal solution and (4) the search gradient
grad' given the solutions s' and s . We denote the total number of occurrences
of state Sj,grad by #(Sj,grad) and the total number of occurrences of a suc-
cessor state Sitgrad/ given a current state Sj,gr+ by #(Si,grad/lSj,grad); both
quantities are tracked over all iterations of all tnals. We execute TSTaillard un-
til #(Si,closer) 2 50 for 1 5 i 5 rint(~IoP,op,). Individual trials are initiated
from random local optima and terminated once an optimal solution is located;
the rint function returns the integer nearest the input, rounding up when the
fractional component equals 0.5. Because TSTaillard is empirically guaranteed
to eventually locate an optimal solution and there is a non-zero probability of
initiating a trial from a random local optimum that is distance i 2 rint(~loPtIopt)
from the nearest optimal solution, the termination criterion will eventually be
satisfied as the number of trials approaches m.

We compute estimates of the transition probabilities using the obvious for-
mulae, e.g. P(Si-~,c~oserISi~~oser) = # (Si- l ,c~o~~~l Si,c~oser) /#(Si,c~oser). For i >
rint(~lap,op,), #(Si,closer) 2 50 is relatively common. Consequently, we take
D = X - 1 where X is the minimal value satisfying #(Sx,closer) < 50.

A Dynamic Model of Tabu Search 259

Empirically, omitting states Si,grad with i >> &opr.opr has negligible impact on
model accuracy. Estimates of the transition probabilities are largely insensitive
to both the random initial local optima and the sequence of solutions visited
during individual trials, i.e. the statistics appear to be isotropic.

In Figure 5, we show the estimated probabilities of moving closer to (left
figure) or farther from (right figure) the nearest optimal solution for a typical
10 x 10 random JSP; the probability of maintaining an equal search gradient is
negligible (p < 0.1) for all i. We observe qualitatively similar results for all
of our test instances. These results indicate that tabu search in the JSP can be
viewed as a diffusion process with a central restoring force-the probability of
moving closer to (farther from) the nearest optimal solution is proportional (in-
versely proportional) to the current distance from the nearest optimal solution.
In other words, there is pressure toward solutions that are equi-distant from
the nearest optimal solution and solutions that are maximally distant from the
nearest optimal solution, which is consistent with the Gaussian-like histograms
of d,,, observed for TSTaillard (as shown in Figure 2). The impact of short-term
memory is also evident, in that the probability of continuing to move along the
current gradient is very strong and exceeds 0.5 independently of i for nearly
all problem instances. This bias accounts for the strong trending behaviour
observed in the time-series of do,, for TSTaillard, as shown in the right-hand side
of Figure 4. Finally, in contrast to the transition probabilities under a random
walk, as i -+ 0 the probability of continuing to move closer to the optimal
solution actually rises, typically approaching 1 at some i 2 5.

To validate our Markov model, we compare the predicted versus actual
mean search cost F for our 6 x 4,6 x 6, and 10 x 10 problem sets. For a given in-
stance, we estimate the predicted F by repeatedly simulating the Markov chain
defined by D, the set of states and the estimated transition probabili-
ties P(Si,gradt ISj,grad); analytic results for mean time-to-absorption are, to the
best of our knowledge, unavailable for this form of Markov chain in the gen-
eral case. Let vi denote the mean number of iterations (with statistics taken
over 10,000 samples) required to achieve a state So,clo,,r given an initial state
Si,x. We set the initial value of X to equal either closer or farther with equal
probability, given that the probability of maintaining an equal search gradient is
negligible. Let b = rint(~loPt~opt). We define the predicted mean search cost
(F) as va: i.e. search is initiated from solutions that are, on average, roughly -
distance d,op,-opt from the nearest optimal solution.

For our 6 x 4 and 6 x 6 instances, loglo-loglo regression models (i.e. in
which the loglo transformation is applied to both the independent and depen-
dent variables) of the predicted versus actual F yielded r2 values of 0.9941 and
0.9939, respectively; we show the corresponding scatter-plot for the 6 x 6 in-
stances in the left-hand side of Figure 6. Model accuracy is exceptionally high
in both problem sets, and for all instances the predicted F is within a factor of 2

260 Watson, Whitley and Howe

Figure 6. Scatter-plots of the observed versus predicted mean cost (Z) to locate an optimal
solution under TSTaillard for 6 x 6 (left figure) and 10 x 10 (right figure) random JSPs; the
least-squares fit lines are superimposed.

of the actual F. To assess the scalability of our Markov model, we consider
the subset of forty-two 10 x 10 instances with 1100,000 optimal solutions;
the estimation of the transition probabilities is computationally prohibitive for
the remaining instances. For these instances, a loglo-loglo regression model
of the predicted versus actual F yielded an r2 value of 0.9877. We show the
corresponding scatter-plot in the right-hand side of Figure 6, which addition-
ally includes the results for the benchmark instances l a 1 8 - l a 2 0 and abz5-
abz6 . These results clearly demonstrate that the behaviour of Taillard's algo-
rithm can be modelled with high fidelity as a simple one-dimensional random
walk. In contrast to both the &op,opf and &;irabu-opr models, the Markov model
appears scalable. Finally, we note that our Markov model is equally successful
in accounting for the variability in the cost of locating sub-optimal solutions to
these same problem instances.

4.1 The Relationship Between the Models
In hindsight, the success of the &op,opf model was due to the fact that &oP,opf

and &,bu-opr are highly correlated for small problem instances. What remains
is to establish a link between the &abu,pf model and the Markov model. As
previously noted, the qualitative forms of the estimated transition probabilities
(e.g., see Figure 5) are identical for all of the problem instances we examined.
Any major differences are due to variability in D, which (like &abu-opt) can be
viewed as a measure of the size of the local optima sub-space. We also observe
that these transition probabilities are roughly symmetric around 0 1 2 and that
search in TSTaillard is necessarily biased toward solutions that are approximately
distance 0 1 2 from the - nearest optimal solution. But the latter quantity is es-
sentially equivalent to dfabu-opt, and consequently &,bu-opt M 012. Thus, we

A Dynamic Model of Tabu Search 261

believe the success of the &,bu.opt model is due to the fact that it estimates a key
parameter (D) of the Markov model.

5. THE IMPACT OF INITIALISATION METHOD ON
PERFORMANCE

Our models of TSTaillard are based on the assumption that search is initi-
ated from a random local optimum. But can our models yield any insight into
the impact of heuristic initialisation on algorithm performance? Although re-
searchers generally agree that high-quality initial solutions can improve the
performance of tabu search algorithms (e.g., see Jain et aL, 2000), the exact
conditions under which improvements can be achieved, and the expected de-
gree of improvement, are poorly understood. In this section, we explore a
particular aspect of this broader issue: What impact do different initialisation
methods, both heuristic and random, have on the cost required by TSTaillard to
locate optimal solutions to problem instances?

To validate our Markov model, we only computed us: the mean number of
iterations required to locate an optimal solution, given a starting point that is
(modulo rounding) distance &oP,-opt from the nearest optimal solution. But what
does our model predict if search is initiated from a solution that is either closer
to or farther from the nearest optimal solution than d? In Figure 7, we show
plots of the predicted costs vi over the full range of i for a 6 x 6 (left figure)
and 10 x 10 (right figure) random JSP. For the 6 x 6 instance, search cost rises
rapidly between i = 3 and i = 10, but only gradually increases once i > 10.
In contrast, search cost for the 10 x 10 instance rises rapidly between i = 2
and i x 15, but is roughly constant (modulo the sampling noise) once i > 15.
Even when i = 2, our model predicts that search cost is still significant: if
the initial search gradient is not closer, search is driven toward solutions that
are distant from the nearest optimal solution and any benefit of a favourable
initial position is lost. We observed qualitatively identical behaviour in a large
sampling of our problem instances: for easy (hard) instances, the approach
toward an asymptotic value as i -+ D is gradual (rapid).

Our Markov model predicts that the distance to the nearest optimal solution,
and not the fitness, dictates the benefit of a particular initialisation method. The
distinction is especially key in the random JSP, where fitness-distance corre-
lation is known to be comparatively weak (Mattfeld, 1996). In particular, our
model predicts that an initialisation method will at best have a minimal impact
on search cost unless the resulting solutions are very close to the nearest opti-
mal solution. To test this hypothesis, we analysed the performance of TSTaillard

using a variety of heuristic and random initialisation methods. Following Jain
et al. (2000). we consider the following set of high-quality priority dispatch
rules (PDRs), used in conjunction with Giffler and Thompson's procedure for

262 Watson, Whitley and Howe

Figure 7. Predicted cost required by TSTaillard to locate an optimal solution, given an initial
solution that is distance i from the nearest optimal solution, for a 6 x 6 (left figure) and a 10 x 10
(right figure) random JSP.

generating active schedules (Giffler and Thompson, 1960): FCFS (First-Come,
First-Serve), LRM (Longest ReMaining work), MWKR (Most WorK Remain-
ing), and SPT (Shortest Processing Time). We additionally considered both
active and non-delay solutions (Giffler and Thompson, 1960) generated using
random PDRs, which we respectively denote RNDactive and RNDnondelay. We
denote our baseline random semi-active solutions by RNDsemiactive. Finally, we
examined Taillard's original lexicographic solution method, denoted LEXICO,
and the insertion procedure introduced by Werner and Winkler (1995), which
we denote WW, the latter is one of the best constructive heuristics available
for the random JSP (Jain et al., 2000). As with RNDSemiac,.,, we post-process
the resulting solutions by applying steepest-descent under the N l operator to
generate a local optimum.

For each initialisation method, we computed &oP,opt (by substituting the op-
tima generated by a particular initialisation method for random local optima)
for the forty-two 10 x 10 instances with L100,OOO optimal solutions. With the
exception of LEXICO, all of the methods we consider are stochastic. Conse-
quently, we define &oP,op, as the mean distance between 5,000 random solu-
tions and the nearest optimal solution. We show the resulting i lop,,, for each
initialisation method in Table 1. We also provide the p-values for the statistical
significance of the mean difference in aIoP,opt between the various methods and
RNDsemiaCtive, which we obtained using a Wilcoxon signed rank test. With the
exception of SPT, we observe significant differences in &oP,opt between our
baseline method (RNDsemi,ctive) and the other initialisation methods. Initially,
these data appear to suggest that it may be possible to improve the perfor-
mance of TSTaillard using initialisation methods with low &oP,,. However, the
lowest absolute values of &op,,t (obtained using the LEXICO and WW meth-
ods) are still large. For our 10 x 10 instances, our Markov model predicts that

A Dynamic Model of Tabu Search 263

Table I . The differences in both the mean distance to the nearest optimal solution (&opt~opf)
and search cost (Q2) for various initialisation methods, measured relative to random semi-active
solutions (RNDsemiactive).

Initialisation method
FCFS LRM M WKR SPT RNDsemiactive

dlopt-opt
58.49 97.41 97.94 64.97 70.92

Significance of mean difference in dlopt~opf relative to RNDsemiaCtive
p < 0.0001 p < 0.0001 p < 0.0001 p = 0.1256 p = 1.0

Percent mean difference in CQ2 relative to RNDsemiactive
1.76 2.32 2.94 1.55 0.0 - ~

Significance of mean difference in loglo(cQ2) relative to RNDsemiactive
v = 0.0594 v = 0.0836 v = 0.0727 v = 0.0769 w = 1.0

Initialisation method
LEXICO RNDactive RNDnondelay WW RNDsemiactive

Significance of mean difference in dIopt~opt relative to RNDsemiactive
v < 0.0001 v < 0.0001 v < 0.0001 v < 0.0001 v = 1.0

Percent mean difference in cQ2 relative to RNDsemiactive
1.44 1.07 0.06 -2.79 0.0

Significance of mean difference in loglo(cQ2) relative to RNDsemiactive
p = 0.5129 p = 0.5730 p = 0.5555 p = 0.3090 p = 1.0

these solutions are typically too far from the nearest optimal solution to have
any impact on search cost (e.g., see the right-hand side of Figure 7).

To test this hypothesis, we computed cQ2 under each initialisation method
(using 1,000 independent trials of TSTaillard) for each of the forty-two 10 x 10
instances with 1100,000 optimal solutions. We then computed the percent
difference in C Q ~ for each method relative to our baseline initialisation method
RNDsmiWtive; the results are shown in Table 1. We observe a worst-case devi-
ation of less than 3%, and the best improvement (obtained under WW) is only
2.70%. Further, all observed discrepancies can be attributed to sampling error
in the estimates of cQ2, and in no case was the difference in search cost statis-
tically significant (we provide the p-values resulting from a Wilcoxon signed-
rank test in Table 1). The data clearly support the hypothesis predicted by our
dynamic model: for difficult problems, the choice of initialisation method has
no significant impact On the performance of TSTai[lard.

The results presented in this section concern the impact of initialisation
method on the cost required by TSTaillard to locate optimal solutions to di8-
cult problem instances. Although beyond the scope of this paper, our Markov

264 Watson, Whitley and Howe

model also predicts that initialisation methods can significantly impact the cost
of locating both optimal solutions to easy or moderate problem instances and
good sub-optimal solutions to a wide range of problem instances. We have
confirmed these predictions experimentally (Watson, 2003). Finally, we note
that our model says nothing about the impact of initialisation method on the
performance of tabu search algorithms that employ re-intensification, such as
Nowicki and Smutnicki (1996)'s algorithm; we are currently investigating this
issue.

6. IMPLICATIONS AND CONCLUSIONS
Our results provide a significant first step toward understanding the dynam-

ics underlying tabu search. We have introduced a dynamic Markov model of
Taillard's tabu search algorithm for the JSP. Despite its simplicity, this model
accounts for nearly all of the variability in cost required to locate optimal solu-
tions to both small and large random JSPs. The model indicates that Taillard's
algorithm can be viewed as a straightforward one-dimensional random walk,
with a bias toward solutions that are roughly equi-distant from the nearest opti-
mal solution and solutions that are maximally distant from the nearest optimal
solution. In contrast to static cost models of problem difficulty, which are based
on fitness landscape features, the dynamic model is scalable and provides di-
rect insight into the dynamics of the search process. We also identified a link
between static and dynamic models of problem difficulty, providing a hitherto
lacking explanation for the success of static models. Finally, we used our dy-
namic model to gain some insight into the conditions under which different
initialisation methods can be expected to improve performance.

Our research also has implications for the design of meta-heuristics. Prob-
lem difficulty is dictated by both the size of the local optima sub-space and
the strength of the bias toward solutions that are roughly equi-distant from
the nearest optimal solution and solutions that are maximally distant from the
nearest optimal solution. Given a fixed representation, move operator, and cost
function, problem difficulty can be reduced by reducing the strength of this
bias. In the limit, when the probabilities of moving both closer to and farther
from the nearest optimal solution are 0.5, search cost is known to be poly-
nomial. We conjecture that the most effective meta-heuristics are those that
minimise this bias.

Although beyond the scope of the present paper, we have also extended the
dynamic model along a number of dimensions (Watson, 2003). First, we have
demonstrated that estimation of neighbouring solution makespans, as occurs
in Taillard's original algorithm, has no impact on the form or accuracy of the
dynamic model. Second, the dynamic model is extensible, in terms of accuracy
and to a lesser extent qualitative form, to a variant of Nowicki and Smutnicki's

A Dynamic Model of Tabu Search 265

TSAB algorithm (Nowicki and Smutnicki, 1996) that does not perform elite
solution recovery (i.e. reintensification); we are currently analysing the impact
of elite solution recovery on the dynamic model. Third, the dynamic model
also accounts for nearly all of the variability in problem difficulty for more
structured JSPs, i.e. those with workflow and flowshop partitions. We have
also shown that the qualitative form of the transition probabilities induced by
Taillard's algorithm is in fact predictable from the structure of the underlying
representation, i.e. the binary hypercube. Another open question regarding our
research is generalisation: Do similar results hold for when modelling tabu
search algorithms for other NP-hard problems? Here, preliminary evidence
indicates that similar models can be constructed for tabu search algorithms for
the Quadratic Assignment and Permutation Flow-Shop Problems.

Acknowledgments
Sandia is a multipurpose laboratory operated by Sandia Corporation, a Lock-

heed-Martin Company, for the U.S. Department of Energy under contract DE-
AC04-94AL85000. This work was sponsored in part by the Air Force Office
of Scientific Research, Air Force Materiel Command, USAF, under grant num-
ber F49620-00-1-0144. The U.S. Government is authorised to reproduce and
distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon.

References
Beck, J. C. and Fox, M. S. (2000) Dynamic problem structure analysis as a basis for constraint-

directed scheduling heuristics. Artijicial Intelligence, 117:3 1-8 1.
Blaiewicz, J., Domschke, W. and Pesch, E. (1996) The job shop scheduling problem: Conven-

tional and new solution techniques. European Journal of Operational Research, 931-33.
Chambers, J. B. and Barnes, J. W. (1996) New tabu search results for the job shop scheduling

problem. Technical Report ORP96-10, Graduate Programme in Operations Research and
Industrial Engineering, The University of Texas at Austin.

Giffler, B. and Thompson, G. L. (1960) Algorithms for solving production scheduling problems.
Operations Research, 8:487-503.

Jain, A. S, and Meeran, S. (1999) Deterministic job-shop scheduling: Past, present, and future.
European Journal of Operational Research, 113:390-134.

Jain, A. S., Rangaswamy, B. and Meeran, S. (2000) New and "stronger" job-shop neighbor-
hoods: A focus on the method of Nowicki and Smutnicki (1996) Journal of Heuristics,
6:457-480.

Mattfeld, D. C. (1996) Evolutionary Search and the Job Shop. Physica-Verlag, Heidelberg.
Mattfeld, D. C., Bierwirth, C. and Kopfer, H. (1999) A search space analysis of the job shop

scheduling problem. Annals of Operations Research, 86:441-453.
Nowicki, E, and Smutnicki, C. (1996) A fast taboo search algorithm for the job shop problem.

Management Science, 42797-813.

266 Watson, Whitley and Howe

Singer, J., Gent, I. P. and Smaill, A. (2000) Backbone fragility and the local search cost peak.
Journal of Artificial Intelligence Research, 12:235-270.

Taillard, 8. D. (1989) Parallel taboo search technique for the jobshop scheduling problem. Tech-
nical Report ORWP 8911 1, DMA, Ecole Polytechnique Fkdkrale de Lausanne, Switzerland.

Taillard, 8. D. (1994) Parallel taboo search techniques for the job shop scheduling problem.
ORSA Journal on Computing, 6:108-117.

van Laarhoven, P. J. M, Aarts, E. H. L. and Lenstra, J. K. (1992) Job shop scheduling by simu-
lated annealing. Operations Research, 40: 113-125.

Watson, J. P. (2003) Empirical modeling and analysis of local search algorithms for the job-
shop scheduling problem. Ph.D. Thesis, Department of Computer Science, Colorado State
University.

Watson, J. P., Beck, J. C., Howe, A. E. and Whitley, L. D. (2003) Problem difficulty for tabu
search in job-shop scheduling. Artificial Intelligence, 143:187-217.

Werner, F. and Winkler, A. (1995) Insertion techniques for the heuristic solution of the job shop
problem. Discrete Applied Mathematics, 58: 19 1-21 1.

Bin Packing

THE BEST-FIT RULE FOR MULTIBIN PACKING:
AN EXTENSION OF GRAHAM'S
LIST ALGORITHMS

Pierre Lemaire, Gerd Finke and Nadia Brauner
Laboratoire Leibniz-IMAG
46 avenue Felix Wallet, 38031 Grenoble cedex, France
{ pierre.lemaire, gerd.finke, nadia.brauner } @irnag.fr

Abstract In this paper, we deal with multibin packing problems. These problems are
linked to multiprocessor-task scheduling as well as to bin packing problems:
they consist of n objects to be packed into m bins, with each object requiring
space in several bins.

We propose an intuitive greedy approach (the best-fit rule), which extends the
well-known list algorithms for multiprocessor scheduling, to solve the case when
objects have fixed height and size. We prove that it provides a 2-approximation,
and even a413-approximation if the objects are sorted by non-increasing heights.
Based on this method, a polynomial time approximation scheme (PTAS) will be
developed.

Keywords: multibin packing, approximation algorithms, list algorithms, PTAS.

1. MULTIBIN PACKING
The concept of multibin packing, presented in Lemaire et al. (2003), is

closely linked to the well-known problems of bin packing and multiprocessor-
task scheduling. In a multibin problem, there are n objects to be packed into
m bins, and each object occupies a certain height in several bins. Different
models and objectives exist: Lemaire et al. (2003) propose a classification for
multibin packing problems, based on the one that exists for multiprocessor-task
scheduling (see Blazewicz et al., 1994; Drozdowski, 1996).

Actually, multibin packing problems are very close to multiprocessor-task
scheduling problems. Indeed, the former is a relaxation of the latter: the con-
straint that the different parts of a task are performed in parallel is dropped.
Hence, to get a multibin packing, one can turn by 90' the Gantt chart of a
multiprocessor-task scheduling problem, and then let the tasks drop (see Fig-
ure 1).

Lemaire, Finke and Brauner

(a) (b)

Figure I . (a) A multiprocessor-task schedule; (b) the corresponding multibin packing.

Multibin packing problems are not just a mere relaxation of multiprocessor-
task scheduling problems. They also include several well-known problems
such as parallel machine scheduling (Chen et al., 1998), bin packing (Coff-
man Jr et al., 1997), bipartition, knapsack problems (Kellerer et al., 2004),
and ring loading problems (Schrijver et al., 1998). Above all they have a wide
range of applications of their own, for instance document analysis, telecommu-
nication network design, project building, drug testing (Lemaire et al., 2003).
Typically, whenever some tasks have to be performed by several operators
without any synchronisation requirement, it is a multibin object packing prob-
lem. To give a better feeling on what kind of problem we deal with, the docu-
ment analysis problem is describe with more details below. Before this, let us
formalise the model we are interested in.

In this paper, we focus on the so-called B 1 sizej I H,, problems. There are
n objects. Each object Oj is defined by its height hj and its width (number of
parts) sizej. The sizej parts of an object Oj must be packed into distinct bins,
where they occupy the height hj . Let h,, be the height of the highest object:
h,, = rnaxj=l,,, h j .

Consider a feasible multibin packing with m identical bins. Let the height
Hi of a bin Bi be the sum of the heights of the objects packed into it. The order
of the objects within a bin is of no importance. Let H,, be the height of the
highest bin: H,, = maxi=^,., Hi.

The objective is to minirnise H,,; we call the optimal value HA,.
To give an illustration, let us describe the document analysis problem. A

group of experts have to examine documents, and each document must be ex-
amined by several experts according to its importance. A certain time is al-
located for analysing each of the documents. The objective is to expertise all
documents as quickly as possible. In this problem, the experts correspond to

The Best-Fit Rule for Multibin Packing

Figure 2. Applying the BF rule to the example of Figure 1; (a) natural order; (b) non-
increasing height order.

the bins, the documents to the objects and the objective is to minimise the total
height packed into the highest bin.

Blsizej 1 H,, problems are strongly NP-hard in the general case, and
weakly NP-hard if the number of bins m is fixed (i.e. case BmlsizejIHm,).
For more details, in particular concerning a pseudo-polynomial algorithm to
solve this last case, we refer the reader to Lemaire et al. (2003).

The remainder of this paper deals with a greedy principle that we call the
"best-fit rule", which can be seen as a generalisation of the list algorithms by
Graham (1969): in Section 2, we introduce the best-fit rule and we use it to
design some very efficient algorithms with good performance guarantees. In
Section 3, we extend these results to derive a PTAS (Polynomial Time Approx-
imation Scheme) for Bmlsizej I H,,.

2. THE BEST-FIT RULE
In this section, a simple packing rule called the Best-Fit rule is described

and its properties are analysed.
The Best-Fit (BF) rule may be seen as an adaptation to multibin packing of

the well-known "list scheduling" for multiprocessor scheduling presented in
Graham (1969). The BF rule is to always pack the sizej parts of an object Oj
into the sizej lowest bins1, the height of a bin being the sum of the heights of
the objects packed into it (see Figure 2(a)). Note that the solution computed
according to the BF rule strongly depends on the order on the objects (Fig-
ure 2(b)). In particular sorting the objects by non-increasing height leads to
better guarantees, as proved in Section 2.2.

'Our "best-fit" rule is very similar to the "worst-fit" rule of bin packing. However, there is no contradiction
and the name is reasonable since we consider the dual objective.

272 kmaire, Finke and Brauner

A BF algorithm may be implemented in time O(nm) (there is no need to
sort all bins at each iteration). Hence, one has a polynomial-time approxima-
tion algorithm for the problem Bmlsizej IH,,, but only a pseudo-polynomial
approximation algorithm for the general case Blsizej I H,,. For practical pur-
poses, however, it is very fast and efficient.

2.1 Properties of the BF Rule
The BF rule provides several guarantees on the solutions built, as shown by

the following properties. Note that most of these properties do not require that
a solution is entirely built according to the BF rule: some initial assignment
may be fixed for some objects, and so we introduce the "initial difference of
height between bins i and j", i.e. the difference of height Aij(0) that exists
because of pre-assignments and before the BF phase starts. Similarly we define
the "initial difference of heighty' A(0) which is the maximal initial difference
of height between two bins.

Property 1 Let n objects be packed according to the BF rule. Let Aij(k)
be the height-difference between bins Bi and Bj a fer the kth object, of height
hk, is packed. Then,

with A,(O) being the initial difference of height before applying the BF rule.

Proofi Let Hi(k) be the height of bin i after object Ok is packed. Because of
the definition of Aij(0), the property is initially true. Suppose now that it is
true for k - 1 < n. If Ok is neither packed into Bi nor Bj, then Aij(k) =
A,(k - 1). If it is packed into both then, again, Aij(k) = Aij(k - 1) . If it
is only packed into one bin, then it must be the smallest one (say Bi). In this
last case: if Hj (k) 2 Hi(k) then Aij (k) = Aij(k - 1) - hk 5 Aij (k - 1) ;
otherwise Aij(k) = hk - Aij(k - 1) . 0

A direct consequence of this property is the following.

Property 2 With the same assumptions as for Property I , let h,, be the
greatest height of an object packed according to the BF rule. Then,

(a) ifA,(k) 5 h,, then Vk', k 5 kt 5 n : Aij(kf) 5 hmax

(b) ifA,(n) > h,, then Vk, k 5 n : Aij(k) > h,,.

A similar result as for Aij is obtained for A, the maximal difference of
heights between two bins.

The Best-Fit Rule for Multibin Packing 273

Property 3 Let n objects be packed according to the BF rule. Let A (k)
be the greatest height-difSerence between any two bins after the kth object, of
height hk, is packed. Then,

Vk = 1,2,. . . n : A (k) 5 max(A(k - I) , h k)

with A (0) being the initial greatest difference of heights before applying the
BF rule.

Pro05 This is a direct consequence of Property 1. We use the same notation.
For any k, there are two bins B,, Bb such that A (k) = Ha(k) - Hb(k) =
Aab(k) . We obtain

which is the claim. 0

These properties, together with the following lemma, yield guarantees on
the quality of a solution computed by the BF rule.

Lemma 1 Let S be a feasible solution for instance I of value Hm,(S).
Then,

m - 1
Hmax(S) I H;, + - m

A

where A is the greatest dzrerence of heights between two bins of S .

Pro05 There is in S at least one bin of height Hm,(S). Then m - 1 bins are
of height at least Hm,(S) - A. As every object is packed at most (indeed
exactly) once,

n

hj.sizej > Hm,(S)+ (m- l)(Hm,(S) -A) = mHm,(S) - (m- l) A
j=1

Furthermore, the following clearly holds:

By combining these two inequalities, we obtain

Lemaire, Finke and Brauner

Figure 3. An example where the bound of Theorem 4 is tight. (a) Worst case for BF; (b)
optimal solution.

which is the claim. CI

Theorem 4 Let S be a solution obtained from a BF algorithm. Then,

m - 1
Hrn,(s) 5 HAax + - A with A 5 max(hm,, A(0)) m

and this bound is tight.

Pro05 From Property 3, induction leads to A (j) 5 max(h,,, A(0)) for all j .
In particular, A = A(n) 5 max(hm,, A(0)) . Applying Lemma 1 completes
the proof. 0

The bound given in Theorem 4 is tight: we cannot expect a BF algorithm
to be more efficient than the above guarantee (unless some further assump-
tions are made on the order of the objects), even with objects of size 1. For
example, consider the following instance: m bins and m2 + 1 objects of size
1 with heights: hl = h2 = . . = hmz = 1 and h , ~ + ~ = m. On such
an instance, a BF algorithm builds a solution S of value Hm,(S) = 2m =

m-lh
HA, + ,,, if the objects are considered in the order they are defined
(see Figure 3).

Corollary 1 A BF algorithm is asymptotically optimal for all uniformly
bounded instances of Bmlsizej I Hm, (i.e. there are uniform bounds h,, >
hmi, > 0 such that for any object Oj, then h,, 2 hj 2 hmi,).

Pro05 The upper bound on hj guarantees that A is bounded, whereas the lower
bound on hj guarantees that H&, is unbounded (the hj cannot be the terms
of a convergent sequence) when we add objects. That is,

A A ~ m = (s) 5 1 + - and - +n+m 0
1 I HA, H;,

HkX

The Best-Fit Rule for Multibin Packing 275

a
This corollary has some practical importance: it implies that the larger the

instance is, the better BF algorithms are. Some tests on randomly generated
instances confirm this. Moreover, as h,, 5 H;,, we get a multiplicative
performance ratio for BF algorithms.

Corollary 2 Let S be a solution completely2 obtained from a BF algorithm.
Then,

1
Hmax(S) L (2 - ;)HLP < 2HLm

and this bound is tight.

This bound is indeed the same as the one proved in Graham (1969), for the
special case of objects of size one. Moreover, Graham shows that this bound
is tight for his special case, so it is tight in our case too. For the special case of
equal-height objects, we have the following corollary.

Corollary 3 BF algorithms are optimal for B 1 s izej, h j = 1 I H,,.

Proofi If h,, = 1, then Theorem 4 implies that HE: < HA, + 1. Because
of the integrality of the values, we have HE: = H* max . 0

A consequence is that BF algorithms are polynomial time algorithms to
solve Bmlsizej, h j = lIH,, but only pseudo-polynomial time algorithms
for Blsizej, hj = lIHmm (i.e. if the number of bins is not fixed). However
Lemaire et al. (2003) propose an algorithm-which is essentially a special
implementation of the BF rule-that solves this latter case in polynomial time.

Theorem 4 can also be extended to the case where some objects have a pre-
assignment.

Theorem 5 Let I be an instance of Blsizej I H,,. Let 0 1 , 0 2 be a parti-
tion of its set of objects 0. Let S(OIO1) be a solution for all objects 0, given
an assignment S (O 1) of 0 1 , and let H&,(OIO1) be the value of an optimal
solution with regard to this assignment. Complete S (O 1) with 0 2 according
to the BF rule to build a solution S for I. We have

(b)
(m - 112

Hmax(S) L HLax(OIO1) + m hmax(O2)
where h,,(Oz) = m={hj, O j E 0 2) ,
and A(01) = max{lHi(S(O101)) - Hj(S(OIOl)) l , 1 I i < j 5 m) .

2S is "completely" obtained from a BF algorithm means that A(0) = 0.

276 Lernaire, Finke and Brauner

Pro05 Since the order of the objects within the bins is of no importance, we
can assume without any loss of generality that for all solutions, the objects of
O1 are at the bottom of the bins.

Part (a) is indeed a reformulation of Theorem 4. We now turn to the (b)
part. The proof is done by induction on the number m of bins. Our induction
hypothesis is that Theorem 5(b) is true for every instance with k < m bins.
We have to prove that this implies that Theorem 5(b) is true for any instance
with m bins.

In the case m = 1, there is no instance with k < m bins. Hence the
induction hypothesis is true. If m = 2, every solution for one bin is optimal
and the induction hypothesis is true too.

Let I be an arbitrary instance defined on m bins.
First, suppose that, at the end of the procedure, the maximal difference of

heights verifies: A 5 (m - l)hrn,(02). In this case, we do not even require
the induction hypothesis: by Lemma 1, we know that

with HL, being the value of an optimal solution of I, and thus HL, 5
HA,(O 101) .

Now, suppose that A > (m - l)hrn,(02). Let us normalise the solution S
so that the bins B1, B2,. . . , Bm are sorted in non-increasing height at the end
of the procedure.

Since A > (m - l)hrn,(02), there must be an index i such that Hi >
Hi+1 + hrn,(02). Property 2(b) implies that the height Hj for any Bj, j 2
i + 1 satisfies Hj < Hk for all Bk, k 5 i at each step of the BF phase. So,
according to the BF rule, any object of O2 put into a bin Bk, k < i has also
been packed into &l bins Bj , j > i.

Therefore the solution S satisfies the following: every object Oj with
sizej 5 m - i is completely packed into bins Bi+1, Bi+2,.. . , Bm; and ev-
ery object Oj with sizej > m - i occupies all bins Bi+1, Bi+2,, . . . , Bm and
sizej - (m - i) of the bins B1, B2, . . . , Bi. This means that for all solu-
tions with the same assignment for 01, one cannot put less volume into bins
B1, B2,. . . , Bi.

Therefore, we can reduce the problem to the first i bins, B1, B2, . . . , Bi.
The set O2 is reduced to objects that have sizej > m - i , replacing sizej by
size? = sizej - (m - i) . The solution S is reduced to sR by keeping only the
first i bins (for this reduced solution, the fixed part is OF, and 0% is packed
according to the BF rule).

Since i < m, we can use the induction hypothesis on the reduced problem

The Best-Fit Rule for Multibin Packing 277

We also know that H,,(s~) = Hl = Hm,(S) and H & (o ~ I o ~) 5
H&,(OIO1) since we cannot put less into bins B1, B2, . . . Bi, as explained
above. Thus,

and as < m and hm,(OF) 5 hm,(02), we obtain

This concludes the proof. 0

The natural question that arises from the previous theorem is: What if the
assignment used for O1 is optimal? To answer this question, we adopt a dif-
ferent approach based on reducing solutions of m bins to solutions of m - 1
bins.

Definition 1 Let I be an instance of BlsizejI H,, with m bins. Let S be
a solution for I. We dejine a reduction R of S by Bk, Ic E {1,2, . . . , m) as S
with the bin Bk removed (with everything it contains). We dejine IR as I with
everything in Bk removed, and m - 1 bins. If0 is the set of objects of I, we
note oR the set of objects of lR.

Note that R is a valid solution for I ~ . Furthermore, reducing solutions pre-
serves optimality and BF construction, as shown by the two following lemmas.

Lemma 2 Let I be an instance of Blsizej IHm, with m bins. Let S* be
an optimal solution for I. Let Bk E S* such that Hk < HZ, and let R be a
reduction of S* by Bk. Then,

(a) R is an optimal solution for IR,

(b) if St is an optimal solution for IR, then St U Bk is an optimal solution
of I,

(c) I and IR share the same optimal value.

ProoJL: Statement (a). If SR is not optimal then consider an optimal solution for
IR and add the removed objects to bin Bk : one obtains, in this way, a solution
for I which is strictly better than S*, which is impossible.

Statements (b) and (c). By statement (a), sR is optimal for IR, and thus has
the same value as St. As a consequence, Hk < H;; and thus S' U Bk is a
feasible solution for I , of the same value as S*. As a consequence, S' U Bk is

278 Lemaire, Fink and Brauner

optimal, and St and S* have the same value (that is, I and IR share the same
optimal value). 0

Lemma 3 Let S be a solution computed by BF with regard to a given ordel:
Let R be a reduction of S by a certain bin Bk. Then,

$ B F (I ~) is computed with regard to the same ordel: This equality means that
both solutions have not only the same value, but also that objects are packed
in the same bins (up to equal objects).

Pro05 This is proved recursively: the first part (not in Bk) of the first object is
placed in the lowest bin, which is the same in R and BF(IR).

Now suppose every part so far had been placed in the same bin in R and
B F (I ~) . Then consider the next part p of a certain object Oj.

If, in S, p was packed in Bk, then it had been removed from IR.
If, in S, p was packed in bin Bi # Bk, i.e. Bi was the lowest bin without

any part of the same object. The induction assumption implies that the same
parts are packed in equivalent places in R and BF(IR), thus p is packed in Bi
for solution BF(IR) too.

As a conclusion, R and B F (I ~) are the same solution (except for equal
objects, of which some parts may have been exchanged). 0

Theorem 6 Let I be an instance of B [sizej I H,,. Let 01, 0 2 be a parti-
tion of its set of objects 0. Let S* be an optimal solution for all objects 0 and
let H& be its value. Let S*(O1) be an optimal assignment of Ol and let S
be a solution built by completing S*(O1) with 0 2 according to the BF rule.
We have

and this bound is tight, even for unit-height objects.

Pro05 The proof is done recursively on the number of bins m: we prove that,
if there is no instance with m bins such that Hmm(S) > Hz, + hm,(Oz),
for a certain partition 0 = O1 U 0 2 , then there is no instance with m + 1 bins
and the given property either.

To initiate the recurrence, note that, if there is only 1 bin, every solution is
optimal and thus there is no solution such that H,,(S) > H& + hmW(O2).

Now let us suppose there exists S, a solution with m + 1 bins built as de-
scribed in the theorem and such that Hm,(S) > H;, + hm,(02). We

The Best-Fit Rule for Multibin Packing

Figure 4. An example where the bound of Theorem 6 is tight. (a) An optimal solution; (b) a
solution computed according to Theorem 6, with 01 = {Oa,03,04,05) and 01 = (01).

shall prove that, if such a S exists, then it exists a similar S form bins, which
contradicts the induction assumption.

Let Bk be a bin of S such that Hk < H,,(S). Bk exists: otherwise, S
would be optimal. Let R be the reduction of S by Bk.

We can apply Lemma 2 and R(O1) is an optimal assignment of OF. Fur-
thermore, by Lemma 3, the BF phase packed the objects in the same places.
Thus, R is built as S: an optimal assignment of OF, then a BF procedure for
OF. Furthermore,

Hmax(R) = Hmax(S) (Bk < Hmax(S))
> H a (+ h (0) (S is a counter-example)
L H a R + a (0) (H , L (I) = H , L (I ~) [lemma 2(c)l;

hmax(02) 2 hmax(Of)!
Altogether, if S is a counter-example for I on m + 1 bins, then R is a

counter-example for on m bins. Hence, we have the announced contradic-
tion, which proves the theorem.

To prove that this bound is tight even in the case of unit-height objects,
consider the following instance. There are m bins, and n = 2m - 1 objects of
height hj = 1, V j . Furthermore: sizel = 2, and sizej = 1,V3 5' 2. As shown
in Figure 4, the optimal solution has value 2, whereas a solution computed
according to Theorem 6 may have value 3 = 2 + h,,(02), with O2 = (01)
and 0 2 = 0 \ 0 2 . 0

Notice that this last theorem does not require any of the previously proved
properties on BF solutions. Furthermore, it also implies that the BF rule has
the guarantee of not exceeding the optimal solution by more than h,,, and
thus that it is a 2-approximation. We can add the following corollary.

Corollary 4 Let S be a solution built by packing optimally the Ic highest
objects and then by packing the remaining objects according to the BF rule.
Such a S satisjies

280 Lernaire, Finke and Brauner

Pro05 Let O 1 be the set of the k highest objects, and let 0 2 be the set of all
remaining objects. Let hm,(02) be the highest height of an object of 02.

There are at least k + 1 objects of height hm,(02) or more. Thus, at least
one bin contains at least 1+ LklrnJ such objects. Therefore, hm,(02) satisfies

that is

By Theorem 6, the solution S satisfies

that is l

2.2 The Decreasing BF Case

So far, no assumption on the order of the objects was made. We turn now to a
particular case. We call a BF algorithm a Decreasing Best-Fit (DBF) algorithm
if it considers the objects by non-increasing height, i.e. hl 2 h2 2 - . 2 h,.

Lemma 4 DBF is optimal ifany of the following holds:
(a) YOj E 0 : hj > H&/3;
(b) at most two objects are packed in the highest bin of a DBF solution;
(c) there is an optimal solution with at most two objects packed in any bin.

Pro05 It is clear that (a) follows from (c) , so we shall prove (c). The technique
was already used in Graham (1969) for a similar result. Consider an optimal
packing, with at most 2 objects per bin. We shall transform it into a DBF
packing of same value.

Step 1: as long as there are two bins Bj and Bk with two objects 0, and
Ob in Bj and just one object 0, in Bk such that: ha > h, and Ob # 0,, pack
Ob and 0, in Bj and pack 0, in Bk. This transformation is always valid, and
does not worsen the solution.

Step 2: as long as there are two bins Bj and Bk with objects 0, and Ob
in Bj and objects 0, and Od in Bk such that: ha > h,, hb > hd, 0, f
Od and Ob # O,, pack Ob and 0, in Bj and pack 0, and Od in Bk. This
transformation is always valid, and does not worsen the solution.

Step 3: sort the bins by non-increasing height of their highest object.

The Best-Fit Rule for Multibin Packing 28 1

Eventually, we get a normal form of an optimal solution, which indeed is a
DBF solution.

Proof of (b). If there is just one object in the highest bin of a solution, then
this solution is optimal. Suppose that there are two objects packed into the
highest bin (say, Bi) of a DBF solution. Let 0, be the first one packed and Ob
the second one. Since two objects are packed together, then there is no empty
bin left and, because of the BF rule, 0, is the smallest object that can be packed
with Ob. Because of the order on the objects, Ob is the smallest object packed
so far. There may be objects between 0, and Ob but those objects must be
packed by two (otherwise, 0, would not be chosen by the BF rule), and they
are at least as big as Ob (thus, exchanging them with Ob would worsen the
solution). Hence, any solution where 0, and Ob are not packed together is
worse than the DBF solution: this latter solution is optimal. 0

Remark 7 Assumption (c) cannot be weakened to: "there is an optimal so-
lution with at most two objects packed in its highest bin" (e.g. consider the
instance: m = 2, n = 6, V j : sizej = 1 and hl = 5, h2 = 3, h3 = h4 = h5 =
h6 = 2).
Assumption (b) is not implied by COjEO sizej I 2m (e.g. consider the in-
stance: m = 2, n = 4, V j : sizej = 1 and hl = 5, h2 = h3 = h4 = 2).
Indeed, in this latter case, DBF is not always optimal (e.g. consider the in-
stance: m = 4, n = 8, V j : sizej = 1 and hl = h2 = 8 , h3 = 5, h4 =
3, h5 = h6 = h7 = h8 = 2).

Theorem 8 Decreasing Best-Fit (DBF) is a 413-approximation.

Pro05 Let US define O 1 = {Oj E 0, hj > H&,/3) and 0 2 = {Oj E
0, hj 5 H&,/3). DBF packs first the objects of O 1 . By lemma 4(a), these
objects are packed optimally. Thus, by Theorem 6, we have the guarantee that

2.3 Best-Fit Algorithms vs Graham's List Algorithms
The bounds of Theorems 4,6, and 8 generalise the well-known bounds by

Graham (1969) and Coffman and Sethi (1976) for PIIC,, (i.e. Blsizej =
lIH,,). When applied to Blsizej = 11 H,,,

(a) BF algorithms are (2 - &)-approximation algorithms;

Lemaire, Finke and Brauner

DBF algorithms are (8 - &)-approximation algorithms;

to pack the k highest objects optimally, and then to pack the other objects

by a BF algorithm is a (1 + $&)-approximation algorithm;

DBF algorithms are exact if r = 1,2 and (1 + - &)-approximation
algorithms otherwise (with r being the number of objects packed into a
bin of maximal height).

Parts (a)-(c) were proved in Graham (1969), and the (d) part is due to
Coffman and Sethi (1976). The (c) part includes both (a) and (b) as special
cases, but those are the best-known bounds: (a) is the general bound for list-
scheduling algorithms, whereas (b) is the bound for LPT (Longest Processing
Time first) algorithms.

In our case, with no restriction on the size of the objects, the bound (a) still
holds (Corollary 2).

The bound (b) is weakened: if the objects are all of size 1, Graham proves a
guarantee of 4 - & whereas we have a guarantee of 4 for DBF (Theorem 8).
It is an open question whether this corrective term (-&) is also valid in our
multibin case. However, for m = 2, DBF meets the 3 - & performance ratio;
furthermore, since Graham's bound is tight, one can get as close to our bound
as one wants, as m grows.

With Theorem 6, we generalise both the problem (the objects are not re-
quired to be of size 1) and the assumptions on O1 (which is not necessary the
set of the highest objects), with regard to the (c) part. In the process, as for the
DBF case, we lose a corrective term when going back to the case when O1 is
the set of the k highest objects: Graham proved a performance of 1 +

1 whereas we have 1 + (Corollary 4).
The (d) part is a possible further extension. Note that we have already

proved that DBF are exact if r is 1 or 2 (Lemma 4).

3. A PTAS FOR MULTIBIN PACKING
In this section we describe a PTAS (Polynomial Time Approximation Sche-

me) for the problem BmlsizejlHm,, that is an algorithm which is a (1 + 6)-
approximation and which runs in polynomial time for any fixed m and 6.

A classical approach for the design of a PTAS is to split the set of objects
into "big" ones and "small" ones. Then, exhaustive search is performed on the
big objects (that can be done if they are not too numerous) whereas small ob-
jects are coped with using a fast heuristic with performance guarantee (which
is good if the objects are small enough). The key is to find a good compromise
so as to actually have neither too many big objects, nor small objects that are

The Best-Fit Rule for Multibin Packing 283

too large. Such a method has already been successfully applied to related prob-
lems (see Khanna, 1997; Chen and Miranda, 2001). In our case, we propose
the following scheme.

Consider an instance of Bmlsizej I H,,, and let P be a positive real num-
ber. We split the set 0 of objects into (respectively) the big and the small
objects as follows: Ohg = {Oj E 0, hj > P) and Osrnall = {Oj E 0, hj 5
p). Then, for an optimal assignment of the objects in Ohg, we complete the
solution with a DBF algorithm on the small objects.

We now claim that, for a correct choice of p, this leads to a PTAS for
Bmlsizej IH,, (see Algorithm 1).

Algorithm 1: (instance I, positive real c)
1. compute Happrox = DBF(I) .
2. compute ,8 = E ~ H 4 approx.
3 . partition the object set 0 into:

Ohg = {Oj E O) hj > P)
Osrnall = {Oj E 0, hj < P)

4. find an optimal assignment for Ohg.
5. complete this assignment with Osrnall by DBF

Theorem 9 Algorithm I is a PTAS for Brnlsizej IH,, that runs in poly-

nomial time O(n ln(n) + nm + 2 g) .

ProoJ In step 1, Happox is computed by a DBF algorithm. By Theorem 8,

Hence, the highest object of OSrnal1 verifies

3
hrnax(osrnal1) I P I fqHapprox < .H&nx

By Theorem 6, a solution S computed by Algorithm 1 verifies

Hence, Algorithm 1 is a (1 + 6)-approximation.
The running time of step 1 is O(n ln(n) + nm); step 2 is O(1); step 3 is

O(n); step 5 is O(nm). For step 4, an optimal assignment can be found by
exhaustive search. Let K be the number of possible assignments of Okg:

284 Lernaire, Finke and Brauner

Note that
mH& 4m

IOwgl 5 C sizej 5 -
P L-

OjCObi,
3E

The first inequality is trivial since sizej is always a strictly positive integer.
Suppose now that the second inequality does not hold. Then the total volume
of Owg is strictly more than mH& that is strictly more than the total volume
for all objects, which is not possible. The third inequality comes from the
definition of P.

Combining the two equations, we obtain

and an exhaustive search on Oh can be done in time ~ (2 %) .

The overall running time is then O(n ln(n) + nm + 2 $1. 0

A similar algorithm was proposed in Lemaire et al. (2003), based on the
weaker Theorem 5. For this previous PTAS, every assignment of the "big"

2m m - 1 2
objects had to be considered, and the algorithm runs in time 0 (2 (

nm).
The principles were, however, the same.

The above PTAS, designed for multibin packing, has better performances
on special cases, for instance partition or multiprocessor scheduling. How-
ever, it is outperformed by algorithms designed specifically for these particular
cases. In particular, Hochbaum and Shmoys (1987) use an alternate approach
based on dual approximation. They design an approximation scheme for mul-
tiprocessor scheduling that runs in time O ((n l ~) ' / ' ~) even if the number of
processors m is not fixed. For further details, see Ausiello et al. (1999) and
Hochbaum (1997).

Another important remark is that, using a different approach, a Fully Poly-
nomial-Time Approximation Scheme (FPTAS) may be designed for problem
BmlsizejIHm,. Indeed, the classical scaling technique (see Ausiello et aL,
1999 for details), used together with the pseudo-polynomial algorithm pro-
posed in Lemaire et al. (2003), leads to a FPTAS that runs in time O(n($)").

However, the existence of our PTAS, based on a BF algorithm, has conse-
quences on the asymptotic behaviour of this greedy algorithm.

For an instance I, let SDBF be a solution computed by a DBF algorithm.
For every E such that Owg is empty, Hmax(S~BF) < (1 + e)Hkax. That is,
for every E such that

The Best-Fit Rule for Multibin Packing

using Happroa: = Hmax(SDBF). Thus we have the following guarantee.

Property 10 Let S be a solution computed b y a DBF algorithm. Then,

This property implies that DBF algorithms are asymptotic FPTAS if there
is a bound on h,, (that is: for every E there is a H such that H:: <
(1 + E) H;, for every instance such that H;, 2 H). This has a practical
consequence: BF algorithms are very good on large instances (i.e. with a lot
of objects), especially if these objects are small. This is very similar to Corol-
lary 1.

4. Conclusions
In this paper we consider a particular case of multibin packing, the

BlsizejlHm, case. We first propose a greedy principle called the "best-fit
rule" that leads to algorithms which are very fast and very efficient (both in
theory and in practice). A refinement of this rulesorting the objects by non-
increasing height-leads to even better guarantees (and to improved experi-
mental results), without increasing much the running time.

The approach is extended to design a polynomial time approximation scheme
that solves the Bmlsizejl H,, case in polynomial time and within a factor of
(1 + E), for any fixed number of bins m and any accuracy E.

To go further with this work, two main issues would be the following.

rn There is still a gap between Graham's or Coffman and Sethi's bounds
for multiprocessor scheduling, and our bounds. It is an open matter if
this gap can be filled or not.

rn It would also be interesting to look for a polynomial time approximation
scheme for an arbitrary m, maybe by adapting techniques in Hochbaum
and Shmoys (1987). Notice that there cannot exist a fully polynomial
approximation scheme for an arbitrary m, unless P = NP.

References
Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A. and Protasi, M.

(1999) Complexity and Approximation: Combinatorial Optimization Problems and Their
Apprmimability Properties, Springer, Berlin.

Btaiewicz, J., Drozdowski, M., and Weglarz, J. (1994) Scheduling Multiprocessor Tasks-a
survey. International Journal of Microcomputer Applications, 13:89-97.

Chen, B., Potts, C. N, and Woeginger, G. J. (1998) A Review of Machine Scheduling: Complex-
ity, Algorithms and Approximability. in: Du, D.-Z. and Pardalos, P. M. (Eds.), Handbook of
Combinatorial Optimization, Kluwer, Dordrecht, pp. 21-169.

286 Lernaire, Finke and Brauner

Chen, J. and Miranda, A. (2001) A Polynomial Time Approximation Scheme for General Mul-
tiprocessor Job Scheduling. SIAM Journal on Computers, 31: 1-17.

Coffman Jr, E. G. and Sethi, R. (1976) A generalized bound on LPT sequencing. Revue Bleue
dlAFCEI; (R.A.O. Informatique), 10:17-25.

Coffman Jr, E. G., Garey, M. R. and Johnson, D. S. (1997) Approximation Algorithms for
Bin-Packing: a survey. in: Hochbaum, D. S. (Ed.), Approximation Algorithms for NP-hard
Problems, PWS, Boston, MA, Chapter 2, pp. 46-93.

Drozdowski, M. (1996). Scheduling multiprocessor tasks-an overview. European Journal of
Operational Research, 94:215-230.

Graham, R. L. (1969) Bounds On Multiprocessor Timing Anomalies. SIAM Journal of Applied
Mathematics, 17:41W29.

Hochbaum, D. S. (Ed.) (1997) Approximation Algorithms for NP-hard Problems, PWS, Boston,
MA.

Hochbaum, D. S, and Shmoys, D. B. (1987) Using Dual Approximation Algorithms for Schedul-
ing Problems: Theoretical and Practical Results. Journal of the Association for Computing
Machinery, 34: 144-162.

Kellerer, H., Pferschy, U, and Pisinger, D. (2004) Knapsack Problems, Springer, Berlin.
Khanna, S. (1997) A Polynomial Time Approximation Scheme for the SONET Ring Loading

Problem Bell Labs Technical Journal, Spring, 36-41.
Lemaire, P., Finke, G. and Brauner, N. (2003) Packing of Multibin Objects, in: IEPM'03,

International Conference on Industrial Engineering and Production Management, Vol. 1,
pp. 422-431, Porto, Portugal. Updated version: www- leibniz . imag . f r/"lemaire.

Schrijver, A,, Seymour, P. and Winkler, P. (1998) The Ring Loading Problem. SIAM Journal on
Discrete Mathematics, 11:l-14.

Educational Timetabling

CASE-BASED INITIALISATION OF
METAHEURISTICS FOR
EXAMINATION TIMETABLING

Sanja Petrovic, Yong Yang
School of Computer Science and Information Technology,
The University of Nottingham, Nottingham NG8 IBB, UK

Moshe Dror
University of Arizona, Tucson, AZ 85721, USA

Abstract Examination timetabling problems are traditionally solved by choosing a solu-
tion procedure from a plethora of heuristic algorithms based either on a direct
construction principle or on some incremental improvement procedure. A num-
ber of hybrid approaches have also been examined in which a sequential heuris-
tic and a metaheuristic are employed successively. As a rule, best results for a
problem instance are obtained by implementing heuristics with domain-specific
knowledge. However, solutions of this kind are not easily adoptable across dif-
ferent problem classes. In order to lessen the need for a problem-specific knowl-
edge we developed a novel solution approach to examination timetabling by in-
corporating the case-based reasoning methodology. A solution to a given prob-
lem is constructed by implementing case-based reasoning to select a sequential
heuristic, which produces a good initial solution for the Great Deluge meta-
heuristic. A series of computational experiments on benchmark problems were
conducted which subsequently demonstrate that this approach gives compara-
ble or better results than solutions generated not only by a single Great Deluge
algorithm, but also the state-of-the-art approaches.

Keywords: case-based reasoning, heuristic selection, graph matching and retrieval.

1 INTRODUCTION
Examination timetabling problem is a difficult combinatorial optimisation

problem. The task is to assign a set of examinations into a limited number of
time periods and classrooms subject to constraints (Carter et al., 1996). The
constraints are usually divided into two categories: hard and soft constraints.
Hard constraints are those that must not be violated. One such constraint is

290 Petrovic, Yang and Dror

that no student can attend two examinations at the same time. An examination
timetable is considered to be feasible only when it meets all hard constraints.
On the other hand, soft constraints are not essential to a timetable, but highly
desirable. For example, students might wish to have a two or three day interval
between two consecutive examinations. The quality of a timetable is measured
in terms of its satisfaction of soft constraints. A good review of a variety of
constraints that are usually imposed on examination timetabling is given in
Burke et al. (1996).

A timetabling problem can be modelled by a graph where each vertex rep-
resents an examination while an edge represents a conflict between two exam-
inations (e.g. two examinations have some students in common and therefore
cannot be scheduled into the same period). Thus, a timetabling problem is
analogous to a graph colouring problem when neglecting soft constraints and
resource requirements, with colour-coding for time slots (Welsh et al., 1967).
The vertices of the graph have to be coloured in such a way so that no two
adjacent vertices share the same colour. Note that finding a minimal number of
colours to colour a graph is one of the classical NP-complete problems (Garey
and Johnson, 1977).

1.1 Examination Timetabling
Over the last 40 years, various approaches to examination timetabling have

been developed. A number of review papers discuss approaches and research
issues in examination timetabling (Burke and Petrovic, 2002; Carter, 1986;
Carter and Laporte, 1996). Approaches based on applications of graph colour-
ing heuristics for solving timetabling problems were widely employed in the
early days of timetabling research (Carter, 1986; Foxley and Lockyer, 1968).
The idea behind these heuristics is to schedule examinations sequentially com-
mencing with the examinations estimated to be the most difficult to schedule
and ending with the easiest ones. By the beginning of the 1990s, sequential
heuristics had been superseded by various metaheuristics such as Tabu search
and Simulated Annealing (SA), which take into consideration soft constraints
and therefore produce more satisfactory solutions (Carter and Laporte, 1996).

Recently, there has been a growing interest in employing various sequential
heuristics to generate initial solutions for metaheuristics. Saleh Elmohamed
et al. (1998) used sequential heuristics which consider size of examinations
to find a feasible solution and handled soft constraints by simulated anneal-
ing. Burke and Newel1 (1999) used sequential heuristics to decompose a large
problem into several sub-problems, which were then solved by memetic algo-
rithm. Di Gaspero and Schaerf (2001) designed sequential heuristics, which
are hybridised with Tabu Search. The hybrid approaches (Burke and Newel1
1999; Casey and Thompson, 2003; Merlot et al., 2003; White et al., 2004)

Case-Based Initialisation of Metaheuristics for Examination Rmetabling 29 1

produced the best results on a number of benchmark problems, and represent
the state of the art in timetabling. Sequential heuristics serve an important role
in the successful subsequent implementation of metaheuristics because they
cannot only shorten the search time but may also greatly enhance their perfor-
mance (Burke et al., 1998; Burke and Newell, 2002).

However, a successful development of such a metaheuristic is a difficult task
since it usually involves incorporation of problem domain-specific knowledge.
For example in a simulated annealing timetabling algorithm (Merlot et al.,
2003), a sophisticated neighbourhood structure (such as the Kempe chains),
and an appropriate cooling schedule, which involves choosing a cooling for-
mula and setting values for parameters such as initial temperature and cool-
ing factor, have to be defined. Similarly, a Tabu Search timetabling algorithm
(White et al., 2004) requires an appropriate setting of parameters such as the
length of the tabu list, the stopping criteria, and a candidate list strategy to re-
strict the neighbourhood size. Generally, the current approaches suffer from
limitation in their applicability when faced with changes in problem descrip-
tion.

It is well known in the timetabling community that a solution procedure
which generates good results at one university might perform poorly for time-
tabling problems in another university (Carter and Laporte, 1996). Naturally,
the following question arises: which sequential heuristic should be used with
a given metaheuristic for solving a timetabling problem at hand? In practice,
a preferred solution for a given problem is usually obtained after appropriately
selecting and "tailoring" both sequential heuristics and metaheuristics based
on domain-specific knowledge of the problem.

In light of the above limitations, Burke et al. (2003a) applied a local search
method, the Great Deluge algorithm (GDA), to solve timetabling problems.
The "beauty" of the GDA is that it is much easier to develop a GDA algorithm
compared to other metaheuristics, because it only requires one input parameter
and therefore requires the least effort to "tailor" it for a given problem. It is
worth noting that the authors showed that GDA is effective even by using a
very simply defined neighbourhood structure. Burke and Newel1 (2002,2003)
extended this research further by applying an adaptive initialisation heuristic
before running GDA. This adaptive heuristic firstly solves the problem a num-
ber of times in order to learn how to adjust the heuristic's parameters. Both
methods produced best-published results on a range of benchmark problems.

It is desirable to develop a general timetabling system which works equally
well for a variety of problem descriptions from different universities. Hyper-
heuristic solution methodology, which is "an emerging methodology in search
and optimisation" (Burke et al., 2003a) aims at addressing these needs. Broadly
speaking, the term of hyper-heuristics is defined as "the process of using
(meta-)heuristics to choose (meta-)heuristics to solve the problem in hand"

292 Petmvic, Yang and Dror

(Burke et al., 2003b). Terashima-Marin et al. (1999) presented a hyper-heuristic
Evolutionary Approach for solving examination timetabling problems. The
choices of different sequential heuristics, parameter value settings and the con-
ditions for swapping sequential heuristics during the search process are en-
coded as chromosomes and evolved by a genetic algorithm. The timetable is
built by the best chromosome founded by the genetic algorithm. Petrovic and
Qu (2002) proposed a novel case-based hyper-heuristic to intelligently select
sequential heuristics. A timetable is constructed by applying iteratively a num-
ber of sequential heuristics. The selection of a heuristic to improve the current
partial solution is based on the performance of each heuristic in a similar situ-
ation. Their system requires a training process using the knowledge discovery
techniques.

1.2 Case-Based Reasoning in Scheduling
Case-Based Reasoning (CBR) is an artificial intelligence methodology in

which a new problem is solved by reusing knowledge and experience gained
in solving previous problems (Leake, 1996; Kolodner, 1993). A case contains
a description of the problem, and its solution. Cases are stored in a case base.
The CBR process is divided into four phases (Aarnodt and Plaza, 1994): re-
trieval of the case most similar to the new problem, reuse and revision of its
solution, and inclusion of the new case in the case base.

Only a few applications of CBR to scheduling have been reported. The work
on CBR so far can be classified into two categories. Approaches in the first
category reuse the past problem solving methods or operators within a method
for solving a new problem. Miyashita and Sycara (1995) built a CBR system
CABINS, which improves sub-optimal solutions for job scheduling problems
by applying iteratively a number of moves, chosen by CBR. A case in CAB-
INS consists of a move operator and the context in which it proved to be useful.
Schirmer (2000) applied CBR to choose the most suitable heuristic for solv-
ing different project scheduling problems. Petrovic et al. (2003a) developed
a CBR system for nurse rostering problems, which stores scheduling repair
knowledge of experts as cases and uses CBR to drive the constraint satisfac-
tion procedure.

The second category of CBR approaches to scheduling reuse the whole solu-
tions to a problem. Coello and Santos (1999) solved the real-time job schedul-
ing problem by reusing solutions to similar problems. Similarly, Burke et al.
(2001) established a CBR scheduler in which a new course timetabling prob-
lem is solved by revising the solution of a previously stored similar timetabling
problem.

In this paper, (an early version of which appeared in Petrovic et al., 2003b),
we aim to develop a new approach which enhances the performance of GDA

Case-Based Initialisation of Metaheuristics for Examination Emetabling 293

on examination timetabling problems by intelligently applying an appropriate
sequential heuristic for its initialisation. Section 2 briefly introduces a GDA
and different sequential heuristics. The CBR approach developed for exami-
nation timetabling is described in Section 3. Section 4 presents experimental
results and related discussion. Conclusions and future research work are given
in Section 5.

2. GREAT DELUGE ALGORITHM AND
SEQUENTIAL HEURISTICS

2.1 Great Deluge Algorithm
The GDA is a local search method introduced by Dueck (1993) that has

been successfully applied to examination timetabling problems (Burke et al.,
2003b). It represents a modification of the SA approach (Kirkpatrick et al.,
1983). Apart from accepting a move that improves the solution quality, GDA
also accepts a move that results in a decrease of the solution quality as long
as the decrease of the solution quality is smaller than a given upper boundary
value, referred to as "water-level". In this work, the water-level is initially set
to be the objective function value of the initial solution multiplied by a prede-
fined factor. The neighbouring solutions of the current solution are obtained
by moving an examination to a different time slot. After each move, the water-
level is iteratively decreased by a fixed rate, which is equal to the initial value
of the water-level divided by the time that is allocated to the search (expressed
as the total number of moves). Not surprisingly, the GDA produces better so-
lutions with the prolongation of the search time of the algorithm. This does
not hold for a number of other local search algorithms where the user does not
control the search time.

2.2 Sequential Heuristics
A variety of sequential heuristics can be used to construct initial solutions

for GDA. They sort examinations based on the estimated difficulty of their
scheduling. A number of sequential heuristics are briefly described as follows.

1 Largest degree (LD). Examinations with the largest number of conflicts
are scheduled first.

2 Largest enrolment (LE). A modification of LD: it schedules examina-
tions with the largest student enrolment first.

3 Largest colour degree (CD). A dynamic version of LD: it prioritises ex-
aminations by the largest number of conflicts with other examinations,
which have already been scheduled.

294 Petrovic, Yang and Dror

4 Largest weighted degree (LWD). LWD is a combination of LD and LE.
The highest priority is given to the examination with the largest sum of
the weighted conflicts, where each conflict is weighted by the number of
students who are enrolled in both examinations.

5 Least saturation degree (SD). Examinations with the least number of
available periods for placement should be scheduled first (Brelaz, 1979).

These sequential heuristics can be enriched in a variety of ways. The most
common ones are listed below:

1 Maximum clique detection (MCD). The maximum clique is the largest
completely connected subgraph of a graph. The cardinality of the max-
imum clique determines the lower bound on the number of time periods
needed for the timetable (Carter, 1986). Finding the maximum clique
is an NP-complete problem (Garey and Johnson, 1977). Vertices of
the maximum clique are regarded as the most difficult examinations to
schedule and therefore should be scheduled first (Carter et al., 1996). In
this research, a tabu search heuristic approach proposed by Gendreau et
al. (1993) was implemented to find the vertices in the maximum clique
of a given graph.

2 Adding random elements (ARE). The examination to be scheduled next
is selected from a subset of randomly chosen examinations (Burke et al.,
1998). The size of the subset is given as the percentage of the full set of
examinations.

3 Backtracking (BT). Some examinations cannot be assigned to any time
period without violating hard constraints. In order to schedule these ex-
aminations, some previously scheduled examinations that are in conflict
with the examinations at hand are rescheduled. Several rules are used to
prevent cycles (Laporte and Desroches, 1984).

Sequential heuristics investigated in this research are hybridized with MCD,
andlor BT, andlor ARE where 30%, 60% or 90% of examinations not yet
scheduled are chosen randomly to form the subset of examinations to choose
from. Selecting a suitable heuristic to generate an initial solution for the GDA
is of high importance, because it can significantly affect the quality of the final
solution.

3. CBR SYSTEM FOR EXAMINATION
TIMETABLING

It is not an easy task to select an appropriate sequential heuristic to construct
a good initial solution for GDA. It would be computationally very expensive to

Case-Based Initialisation of Metaheuristics for Examination Timetabling 295

try every combination of sequential heuristics and GDA. Thus, we developed
a CBR system, which selects a sequential initialisation heuristic for GDA in
order to produce a high quality solution for a given problem. The rationale
behind this study is that given an effective hybridisation of a certain sequential
heuristic and GDA for a specific timetabling problem, it is likely that it will
also be effective for a "similar" problem.

In our CBR system, a case memorises an examination timetabling problem
and an effective sequential heuristic, which has generated an appropriate initial
solution for GDA. For solving a new input timetabling problem, the sequential
heuristic of the most similar case is proposed. The main research issue is how
to define the "similarity" measure between two timetabling problems.

3.1 Case Representation
In this section, we explain how the important features of examination time-

tabling problems are incorporated into the case representation. An exami-
nation timetabling problem is represented by an undirected weighted graph
G = (V, E, a, p), where V is the set of vertices that represent examinations,
E C V x V is the finite set of edges that represent conflicts between examina-
tions, a : V H N+ assigns positive integer weights to vertices that correspond
to the number of students enrolled in the examination, and P : E H N+ is
an assignment of weights to edges which correspond to the number of students
enrolled in two examinations that are in conflict. IVI is used to denote the
cardinality of the set V For illustration purpose, a simple example is given in
Figure 1. In this figure the weight of Math is 2 because two students are en-
rolled in this course. The edge connecting A1 and Physics is assigned weight 1
because there is one student who is enrolled in both examinations. Important
features of the timetabling problem, such as number of examinations, number
of enrolments, and number of constraints, are incorporated into the weighted
graph case representation. Moreover, the weighted graph case representation
is capable of describing highly inter-connected constraints that are imposed
between examinations and on examinations themselves.

A solution to an examination timetabling problem is denoted by a vector
S = (sl , ~ 2 , . . . , s I V I) , where s,, n = 1 , . . . , IVI, represents the time period
assigned to the examination n. A feasible (conflict free) solution is a solution
in which for any two vertices a E V and b E V, then s,, must be different from
sb if (a, b) E E. The cost function often used in timetabling community for
solution evaluation soft constraints was proposed by Carter et al. (1994). The
common cost function enables comparison of quality of solutions produced by
different approaches. The cost function gives a cost w, to a solution whenever
a student has to sit two examinations s periods apart. Costs that are used are
wl = 16, w2 = 8, ws = 4, ws = 2, ws = 1. The cost function sums all the

296 Petmvic, Yang and Dmr

tudent ID. Enrolled Examination
000101 AI, PRl C.
000102 AI; PRl C.
000103 AI; PRl C.
000104 AI, Physics.
000105 Math; PR1 C.
000106 Math; PR1 C.
000107 Ph sics: PR1 C. f

Figure I . An examination timetabling problem represented by a graph.

costs of each student and divides the obtained sum by the number of students.
The value obtained is the average cost for each student.

A case C can be formally represented by an ordered pair (G, H), where G
is the graph representation of an examination timetabling problem, while H is
the sequential heuristic that produced an initial solution appropriate for GDA.

3.2 Similarity Measure
An adequate definition of similarity measure is of great importance for a

CBR system because it enables the retrieval of the case that is most closely
related to the new problem. Since weighted graphs are used to represent
timetabling problems, the retrieval of the most similar case from the case base
requires solving a graph isomorphism problem, which is known to be NP-
Complete (Garey and Johnson, 1977).

The following notation will be used. We denote a new timetabling prob-
lem to be solved (a query case) by Cq and a source case in the case base by
C,, while their weighted graphs are denoted by Gq = (Vq, Eq, aq , Pq) and
G, = (V,, E,, a,, P,), respectively. In order to compute the similarity degree
between Cq and C,, a vertex-to-vertex correspondence has to be established
that associates vertices in Vq with those in V,. The correspondence is repre-
sented by the function f : Vq + V,.

Latin and Greek letters are used to denote vertices and edges in Gq and G,,
respectively. For instance, f (a) = x denotes that vertex a E T/p is mapped to
the vertex x E V, by the correspondence f . In this research, the computation of
the similarity degree between pairs of vertices, edges and graphs proposed by
Wang and Ishii (1997) is modified to include the concept of weights employed
in our problem.

Case-Based Initialisation of Metaheuristics for Examination Timetabling 297

The similarity degree between two vertices in G, and G, determined by the
correspondence f is denoted by DSf (a, x):

Similarly, DSf (x, 9) represents the similarity degree between two edges
determined by the correspondence f , where x = (a, b) E E, and y = (x , 6) E
Es :

We use the label 4 to denote an extraneous vertex or edge in a graph,
which is not mapped by the correspondence f . We set DSf (a, q5), DSf (4, x),
DSf ((a, b), 4) and DSf (4, (x, 6)) to be equal to 0. Finally, the similarity de-
gree DSf (G,, G,) between G, and G, determined by the correspondence f is
calculated in the following way:

Note that the value of DSf (G,, G,) E [O, 11 is subject to correspondence
f . The task is to find the correspondence f that yields as high a value of
DSf (G,, G,) as possible.

3.3 Case Retrieval
The goal of the case retrieval is to find a case in the case base whose graph

is the most structurally similar to that of the new problem. The retrieval of the

298 Petrovic, Yang and Dror

Reuse of the Retrieved
Heuristic with GDA I

Figure 2. Architecture of the CBR system for heuristic initialisation of meta-heuristics.

graph-structured cases is a difficult process. Firstly, it is difficult to develop a
valid indexing scheme to manage the organisation of graph-structured cases in
the case base. Secondly, there is an expensive computational cost for calculat-
ing the similarity degree between two cases that involves graph matching.

For case retrieval we employ a two-stage Tabu Search described in more
detail in Petrovic et al. (2002). The search procedure is guided by the short-
term and long-term adaptive memories (Glover and Laguna, 1997). The short-
term memory is used to prevent the search process from cycling by forbid-
ding moves, which have been made recently. The long-term memory holds
the history of all moves and is used to guide the search process to vicinities of
elite solutions or regions that have not yet been explored. In order to reduce
the computational cost required in the retrieval process, it is divided into two
phases. Firstly, the simple Tabu Search with its short-term memory is used to
quickly select a subset of cases from the case base considered to be similar
enough to the new problem. Then the advanced Tabu Search enriched with
long-term memory is used for the final more precise retrieval of the case.

3.4 Architecture of the CBR System
The architecture of our CBR system is depicted in Figure 2. The retrieval

process is performed by the simple and advanced Tabu Search algorithms. The
sequential heuristic, which has been shown to be the most appropriate for gen-
erating the initial solution for GDA for solving the retrieved case, is then pro-
posed for the initialisation of GDA to be applied to the new problem. Once
the problem is solved, the new problem together with the retrieved sequential
heuristic will be stored as a new case in the case base.

Case-Based Initialisation of Metaheuristics for Examination Timetabling 299

4. EXPERIMENTS
The purpose of the designed experiments is twofold: evaluation of effective-

ness and efficiency of the case retrieval and evaluation of system performance
on a range of real world examination timetabling problems. Experiments were
run on a PC with an Athlon 1400 Mhz CPU and 256 MB RAM.

4.1 Description of Seeding Cases
A number of real-world examination problems that are often used as bench-

mark problems within the timetabling community are used for the construction
of cases, which will form a case base. The characteristics of these timetabling
problems are given in Table 1. The conflict matrix is used to represent conflicts
between pairs of examinations. Rows and columns of the matrix represent ex-
aminations, while each element of the matrix shows the number of students
common for a pair of examinations. The density of the conflict matrix is cal-
culated as the ratio of the number of exams in conflict to the total number of
exams.

Seven benchmark problems (ear-f-83, hec-s-92, kfu-s-93,lse-f-91, sta-f-83,
tre-s-92, and yor-f-83) and their specially designed variations were used to
seed the case base. Variation problems were created by adding or deleting a
given a number of students and examinations from the benchmark problem.
Each variation problem is denoted by x/y, where x gives the percentage of
both examinations and students of a benchmark problem which were added,
and y gives the same percentage of those which were deleted. We defined five
categories of variation problems: 5/15, 5/10, 515, 1015, 1515. For example,
the expression 5/15 denotes a variation problem that was created by randomly
adding and deleting 5% and 15% of the numbers of examinations and students
of an associated corresponding benchmark problem, respectively. Two case
bases of different sizes were created. The large case base contains ten vari-
ations of each seeding benchmark problem (two for each category). Thus it
contains 77 cases (seven benchmark problems and 70 variations). The small
case base contains five variations of each benchmark problem, which gives in
total 42 cases (seven benchmark problems and 35 variations).

For each seeding problem, all possible sequential heuristics were used to
produce initial solutions for GDA. The sequential heuristic, which led to the
best final solution, was stored in the case. In this experiment, GDA was run
for 20,000,000 iterations while water-level was set to be 1.3. The number of
iterations was set empirically and the "water-level" was taken from (Burke et
al., 2003b).

The modifications of benchmark problems were used as seeding cases, be-
cause we noticed that heuristics proven to be the best for GDA initialisation
for variation problems could be different from that of the original benchmark

300 Petrovic, Yang and Dror

Table I . The benchmark problems used for seeding the case base.

Data Institution Periods Number Number of Number of Density of
of exams students enrolments conflict matrix

Carleton University,
Ottawa
Carleton University,
Ottawa
Earl Haig Collegiate
Institute, Toronto
Ecole des Hautes Etudes
Commercials, Montreal
King Fahd University
Dharan
London School of
Economics
Ryeson University,
Toronto
St Andrew's Junior
High School, Toronto
Trent University,
Peterborough, Ontario
Faculty of Engineering,
University of Toronto
Faculty of Arts and
Science, University of
Toronto
York Mills Collegiate
Institute, Toronto

problem. In addition, the system performance will be improved by adding
timetabling problems with different graph structures.

The aim of the first experiment is to show how often each heuristic appears
to be the best for GDA in the timetabling problems of the large case base (77
cases). Note that the best initial solution (with respect to the cost function)
does not necessarily lead to the best final solution produced by the GDA.

Figure 3 shows how many times each of the sequential heuristics appears
in 77 seeding cases. A triplet (a, b, c) is assigned to each heuristic SD, LD,
CD, LE and LWD, which denotes whether the heuristic was enriched with
maximum clique detection (a = 1, otherwise a = 0), backtracking (b = 1,
otherwise b = O), andlor adding random element (c = 30%, or 60%, or 90%).
We can notice that although some heuristics are used more than the others,
there is no single heuristic that outperforms all the rest.

Case-Based Initialisation of Metaheuristics for Examination Emetabling 301

Figure 3. Use of heuristics in GDA initialisation.

4.2 Evaluation of the Case Retrieval Process
Since the retrieval process uses the simple and advanced Tabu Search se-

quentially, our second set of experiments investigates how precisely and with
what computational cost for each of the approaches the similarity degree be-
tween two timetabling problems can be calculated. Due to the NP-complete
nature of the graph isomorphism problem, it is not possible to evaluate the per-
formance of the two Tabu Search algorithms on two randomly chosen graphs.
In this study we used the following method that is based on the experiments of
Luo and Hancock (2001).

In our experiments, for each graph G of the seeding case, a copy of it is de-
noted by G,. The similarity degree between G and G, is 1 when each vertex in
G is mapped to its corresponding vertex in G,. This vertex-to-vertex mapping
is considered as the ideal one. Then for each pair of G and Gc, both simple
and advanced Tabu Search algorithms were run where the initial solution was
a random vertex-to-vertex mapping. We evaluate the performance of our Tabu
Search algorithms by examining whether they could find this. ideal mapping
between G and G,, or how closely they approach it. We use DStah to de-
note the similarity degree obtained after running a Tabu search algorithm. The
closer the value of DStah to 1, the better the vertex-to-vertex mapping that
has been found.

Figure 4 shows the performance and search time of the two Tabu Search
algorithms, respectively. A test running is terminated either when a solution
has not improved for 2,000 moves or when an ideal mapping has been found.
Circles and squares show the average value of DStah obtained for the bench-

302 Petrovic, Yang and Dror

Similarity degree between two graphs Running time

Figure 4. Performance of the simple and advanced Tabu Search.

mark problem (denoted on the x-axis) and its 10 variation problems by simple
and advanced Tabu Search algorithm, respectively. Benchmark problems are
sorted by their number of examinations in ascending order.

In Figure 4, it can be seen that the simple Tabu Search can obtain DStah in
the range from 0.95 to 0.995. The advanced Tabu Search could find the "ideal"
mapping of vertices in five out of seven benchmark problems. For the remain-
ing two problems Sta-f-83 and Yor-f-83, the advanced Tabu Search did not
provide the "ideal" mapping, but the average values of DStah are still high.
On the other hand, the time required for advanced Tabu Search is not signif-
icantly higher than for simple Tabu Search. This justifies the implementation
of the advanced Tabu Search within the retrieval process.

The experimental results show that the simple Tabu Search is capable of cal-
culating the similarity degree approximately within a relatively short time and
is used to filter the cases from the case base and to pass a predefined number
of cases with the highest similarity degree with the new problem to the ad-
vanced tabu search. The advanced Tabu Search then spends more time finding
mapping for graph isomorphism on the smaller set of cases.

4.3 Performance on Benchmark Problems
The purpose of the third set of experiments is to test performance of our

CBR system on benchmark problems. In addition we want to investigate
whether the size of the case base has an impact on the performance of the sys-
tem. For each of the five benchmark problems (Car-f-92, Car-s-91,
Rye-s-93, Uta-s-92, and Ute-s-92), the problem was solved twice by using
the small and the large case base. For each of the other seven seeding bench-

Case-Based Initialisation of Metaheuristics for Examination Zimetabling 303

Table 2. Results obtained using case bases of different sizes.

Small case base Large case base
Data Time (s) Cost Time (s) Cost

Retrieval Run GDA Best Avg. Retrieval RunGDA Best Avg.

Car-f-92 2274 1231 3.97 4.08 3772 1231 3.97 4.08
Car-S-91 3301 1321 4.54 4.65 5788 1321 4.54 4.65
Ear-f-83 1164 1250 34.49 36.06 2158 811 34.49 36.06
Hec-s-92 377 1540 10.92 11.29 699 1540 10.92 11.29
K~u-S-93 1982 735 14.82 15.11 3701 735 14.82 15.11
Lse-f-91 1769 587 11.48 11.60 3077 586 10.60 10.83
Rye-s-93 1775 872 9.0 9.66 3097 930 9.0 9.39
Sta-f-83 373 695 160.29 160.83 673 680 159.89 160.49
Tre-s-92 1878 715 7.96 8.09 2936 786 7.96 8.09
Ute-s-92 430 508 25.74 26.22 786 637 25.64 26.09
Uta-s-92 2534 1271 3.26 3.29 4768 1271 3.26 3.29
Yor-f-83 1096 1300 36.82 37.26 2006 1320 36.69 37.08

mark problems, it was also used as a new problem and solved twice by the two
case bases (the problem itself and its variation problems were removed from
the case base in the retrieval process). Therefore, for each seeding benchmark
problem, the small case base includes the other six benchmark problems and
30 associated variation problems; the large case base includes the other six
benchmark problems and 60 associated variation problems. We ran each ex-
periment five times to obtain the average results. The results are summarised
in Table 2.

We can see that, as expected, the retrieval of more similar cases can lead
to better solutions. For five problem instances Lse-f-91, Rye-s-93, Sta-f-83,
Ue-s-92 and Yor-f-83 (highlighted by bold characters), the large case base
yielded better solutions, while for the remaining instances both case bases gave
the same solutions. The price to be paid is of course longer time spent on the
case retrieval, which is proportional to the number of cases.

Table 3 provides the comparison of the average results obtained by three
other GDA initialisation approaches previously tried in the timetabling litera-
ture on these benchmark problems, namely GDA where SD is used to provide
the initial solution (Burke et al., 2003b), GDA where initial solutions drive the
adaptation of the parameters of the algorithm throughout the search (Burke and
Newell, 2003; Burke and Newell, 2002), and GDA where the combination of
SD, MCD and BT is used to construct an initial solution (Carter et al., 1996).
Again GDA was run for 200 x lo6 iterations, because that was the number
of iterations used in the methods that we compare our approach with. For il-
lustration purpose, we also provide the time spent on the search (in seconds).

304 Petrovic, Yang and Dror

Table 3. Comparison of results for benchmark problems obtained by different initialisation of
GDA.

SD Adaptive SD & MCD & BT CBR
Data GDA Best Avg. GDABest Avg. GDA Best Avg. RetrievalGDA Best Avg.

Time Cost Cost TimeCost Cost Time Cost Cost Time Time Cost Cost

Car-f-92 1120 4.03 4.07 416 - 4.10 1220 3.97 4.04 3772 1231 3.97 4.08
Car-S-91 1400 4.57 4.62 681 - 4.65 1441 4.62 4.66 5788 1321 4.54 4.65
Ear-f-83 806 34.85 36.04 377 - 37.05 767 33.82 36.26 2158 811 34.49 36.06
Hec-s-92 1471 11.27 12.43 516 - 11.54 1411 11.08 11.48 699 1540 10.92 11.29
K~u-S-93 843 14.33 14.64 449 - 13.90 996 14.35 14.62 3701 735 14.82 15.11
Lse-f-91 646 11.61 11.65 341 - 10.82 675 11.57 11.94 3077 586 10.60 10.83
Rye-s-93 845 9.19 9.66 - - - 881 9.32 9.50 3097 930 9.0 9.39
Sta-f-83 675 165.12 169.7 418 - 168.73 674 166.07 166.31 673 680 159.89160.49
Tre-s-92 907 8.13 8.29 304 - 8.35 751 8.19 8.27 2936 786 7.96 8.09
Ute-s-92 716 25.88 26.05 324 - 25.83 653 25.53 26.02 786 637 25.64 26.09
Uta-s-92 1070 3.25 3.30 517 - 3.20 1101 3.24 3.31 4768 1271 3.26 3.29
Yor-f-83 1381 36.17 36.59 695 - 37.28 1261 36.31 37.27 2006 1320 36.69 37.08

Rank 2.58 2.55 2.5 2.08

Although each algorithm was allocated the same number of iterations, the time
is different due to computers of different characteristics. The table shows the
average time spent on the search (each problem instance was solved five times).

In order to examine the performance of each initialisation method further,
we also show the rank of the average cost that a method obtained on problem
instances. This evaluation method was introduced by White et al. (2004). For
example, the rank on the problem instance Car-f-92 is computed as: SD, 2;
Adaptive, 4; MCD&BT&SD, 1; CBR, 3. The bottom row of Table 3 shows the
average of the ranks for the 12 problems (excluding the rank of Rye-s-93 for
the Adaptive initialisation method) of four different approaches.

We can see that our CBR system outperforms other initialisation methods
for GDA. The CBR initialisation obtained the best rank (2.08) among all the
methods. More significantly, we obtained the best average results for four
benchmark problems (highlighted by bold characters). For the remaining seven
problems, the other three methods only slightly outperformed our approach ex-
cept for the problem instance Kfu-s-93. It is evident that our CBR system spent
additional time on the case retrieval. However, the quality of the obtained re-
sults justifies the time spent on the selection of an appropriate heuristic, which
determines a good starting point for the GDA.

Finally, we compare our results with those produced by the state-of- the-art
timetabling metaheuristics: SA (Merlot et al., 2003), Tabu search (White et al.,
2004), and GRASP (Casey and Thompson, 2003) by Table 4.

Case-Based Initialisation of Metaheuristics for Examination i7rnetabling 305

Table 4. Results for benchmark problems obtained by different timetabling approaches.

S A Tabu GRASP CBR
Data Best Avg. Best Avg. Best Avg. Retrieval GDA Best Avg.

Time Cost Cost Time Cost Cost Time Cost Cost Time Time Cost Cost

Car-f-92 233 4.3 4.4 - 4.63 4.69 - 4.4 4.7 3772 1231 3.97 4.08
Car-S-91 296 5.1 5.2 - 5.73 5.82 - 5.4 5.6 5788 1321 4.54 4.65
Ear-f-83 26 35.1 35.4 - 45.8 45.6 - 34.8 35.0 2158 811 34.49 36.06
Hec-s-92 5.4 10.6 10.7 - 12.9 13.4 - 10.8 10.9 699 1540 10.92 11.29
Kfu-S-93 40 13.5 14.0 - 17.1 17.8 - 14.1 14.3 3701 735 14.82 15.11
Lse-f-91 35 10.5 11.0 - 14.7 14.8 - 14.7 15.0 3077 586 10.6 10.83
Rye-s-93 70 8.4 8.7 - 11.6 11.7 - - - 3097 930 9.0 9.39
Sta-f-83 5 157.3 157.4 - 158 158 - 134.9 135.1 673 680 159.89 160.49
Tre-s-92 39 8.4 8.6 - 8.94 9.16 - 8.7 8.8 2936 786 7.96 8.09
Ute-s-92 9 25.1 25.2 - 29.0 29.1 - 25.4 25.5 786 637 25.64 26.09
Uta-s-92 233 3.5 3.6 - 4.44 4.49 - - - 4768 1271 3.26 3.29
Yor-f-83 30 37.4 37.9 - 42.3 42.5 - 37.5 38.1 2006 1320 36.69 37.08

Table 5. Average of the ranks for benchmark problems obtained by different approaches.

SD Adaptive SD & MCD & BT CBR
Approaches SA Tabu GRASP GDA GDA GDA GDA

Average Rank 3.00 6.17 4.0 3.58 3.36 3.67 3.08

We obtained six best average costs and six best costs (highlighted) out of 12
benchmark problems.

Table 5 shows the average of the ranks for the 12 problem instances. Due to
the incomplete results in Burke and Newel1 (2002) and Casey and Thompson
(2003), we exclude the rank of Rye-s-93 for the Adaptive GDA method, and
the rank of Rye-s-93 and Uta-f-92 for the GRASP method.

We can see that SA and the GDA initialised by CBR obtained the best rank
(3.00) and the second best rank (3.08) among the seven different approaches
investigated. However, opposite to SA our approach does not require param-
eter "tuning" for a particular timetabling problem and design of appropriate
neighbourhood structure. In addition, the experience gained in solving one
timetabling problem is not wasted but can be used in solving new similar
timetabling problems.

5. CONCLUSIONS
In this paper we have presented a case-based reasoning system, which se-

lects an appropriate sequential heuristic for generating an initial solution for

306 Petrovic, Yang and Dror

Great Deluge algorithm (GDA). We have shown that with an appropriate defi-
nition of "similarity" measure, such initialisation of GDA provides high-quality
solutions for a range of real-world problems. One of the insights of this study
is that our CBR system significantly contributes to the attempt of building a
general metaheuristic framework for timetabling. Usually in metaheuristics,
a random initialisation is employed or a thorough investigation of heuristics
needs to be performed, which is useful only for a given problem instance.
In this paper, we demonstrated that knowledge gained in initialisation of one
timetabling problem can be used for solving new similar timetabling problems.

The developed CBR system examined in this paper contains cases with com-
plex structures represented by weighted graphs. We have shown that the two-
phase Tabu Search approach is capable of retrieving graph-structured cases
where graphs are of large size and the case base contains hundreds of cases.
We believe that the graph-structured case representation, the similarity mea-
sure, and the proposed case retrieval are applicable to other domains such as
job shop scheduling, planning and other CBR applications.

The results obtained so far provide us with a good foundation for the de-
velopment of a more general CBR system for solving timetabling problems.
Our future research direction will include improvements aimed to shorten the
required time for the case retrieval. We will also investigate hierarchical case
representation that would enable the case retrieval process to examine only a
subset of the case base. Finally, we will investigate the hybridisation of sequen-
tial heuristics and other local search methods such as tabu search and simulated
annealing.

Acknowledgments
The authors wish to thank Dr Jim Newall for offering the source code of the

timetabling library, and the anonymous reviewers for their valuable remarks on
this work.

References
Aamodt, A, and Plaza, P. (1994) Case-based reasoning: foundational issues, methodological

variations and system approaches. The European Journal on ArtiJcial Intelligence, 7:39-59.
Brelaz, D. (1979) New methods to color the vertices of a graph. Communication of ACM,

22:251-256.
Burke, E. K. and Newell, J. P. (1999) A multi-stage evolutionary algorithm for the timetable

problem. IEEE Transactions on Evolutionary Computation, 31:63-74.
Burke, E. K. and Newall, J. P. (2002) Enhancing Timetable Solutions with Local Search Meth-

ods. In The Practice and Theory of Automated lfmetabling IV, Lecture Notes in Computer
Science, Vol. 2740, Springer, Berlin, pp. 195-206.

Burke, E. K, and Newell, J. P. (2003) Solving examination timetabling problems through adap-
tation of heuristic orderings. Annals of Operations Research, accepted for publication.

Case-Based Initialisation of Metaheuristics for Examination Timetabling 307

Burke, E. K. and Petrovic, S. (2002) Recent research directions in automated timetabling. Eu-
ropean Journal of Operational Research, 140:266-280.

Burke, E. K., Elliman, D. G., Ford, P. H. and Weare, R. F. (1996) Examination timetabling
in british universities-A survey. In The Practice and Theory of Automated Timetabling I,
Lecture Notes in Computer Science, Vol. 1153, Springer, Berlin, pp. 76-92.

Burke, E. K., Newall, J. P, and Weare, R. E (1998) Initialisation strategies and diversity in
evolutionary timetabling. Evolutionary Computation Journal, 6:81-103.

Burke, E. K., Newell, J. P. and Weare, R. E (1998) A simple heuristically guided search for the
timetable problem. In Proceedings of the International ICSC Symposium on Engineering of
Intelligent Systems, University of La Laguna, pp. 574-579.

Burke, E. K., MacCarthy, B., Petrovic, S. and Qu, R. (2001) Case-based reasoning in course
timetabling: an attribute graph approach. In Proceedings of 4th International Conference on
Case-Based Reasoning, Lecture Notes in Artificial Intelligence, Vol. 2080, Springer, Berlin,
pp. 90-104.

Burke, E. K., Hart, E., Kendall, G., Newall, J., Ross, P. and Schulenburg, S. (2003a) Hyper-
heuristics: an emerging direction in modem search technology. In Handbook of Meta-Heur-
istics, Chapter 16, pp. 457-474, Kluwer, Dordrecht.

Burke, E. K., Bykov, Y., Newall, J. P. and Petrovic, S. (2003b) A time-predefined local search ap-
proach to exam timetabling problems. IIE Transactions on operations Engineering, 36509-
528.

Carter, M. W. (1986) A survey of practical applications on examination timetabling. Operations
Research, 34: 193-202.

Carter, M. W, and Laporte, G. (1996) Recent developments in practical examination timetabling.
In The Practice and Theory of Automated Timetabling I, Lecture Notes in Computer Science,
Vol. 1153, Springer, Berlin, pp. 3-21.

Carter, M. W., Laporte, G. and Chinneck, J. W. (1994) A general examination scheduling sys-
tem. Intefaces, 24: 109-120.

Carter, M. W., Laporte, G, and Lee, S. Y. (1996) Examination timetabling: algorithmic strategies
and applications. Journal of the Operational Research Society, 47:373-383.

Casey, S. and Thompson, J. (2003) GRASPing the examination scheduling problem. In The
Practice and Theory of Automated Timetabling IV, Lecture Notes in Computer Science,
Vol. 2740, Springer, Berlin, pp. 232-246.

Coello, J. M. A. and Santos, R. C. (1999) Integrating CBR and heuristic search for learning and
reusing solutions in real-time task scheduling. In Proceedings of 3rd International Confer-
ence on Case-Based Reasoning, Lecture Notes in Artificial Intelligence, Vol. 1650, Springer,
Berlin, pp. 89-103.

Di Gaspero, L. and Schaerf, A. (2001) Tabu search techniques for examination timetabling. In
Proceedings of Practice and Theory of Automated Timetabling III, Lecture Notes in Com-
puter Science, Vol. 2079, Springer, Berlin, pp. 104-1 17.

Dueck, G. (1993) New optimization heuristics. Journal of Computational Physics, 10486-92.
Foxley, E. and Lockyer, K. (1968) The construction of examination timetable by computer. The

Computer Journal, 11:264-268.
Garey, M. R. and Johnson, D. S. (1977) Computers and Intractability: A Guide to the Theory of

NP-Completeness, Freeman, San Francisco.
Gendreau, M., Soriano, P. and Salvail, L. (1993) Solving the maximum clique problem using a

tabu search approach. Annals of Operations Research, 41:385-403.
Glover, E and Laguna, M. (1997) Tabu Search. Kluwer, Dordrecht.

308 Petrovic, Yang and Dror

Kirkpatrick, S., Gelatt, C. D, and Vecchi, M. P. (1983) Optimisation by simulated annealing.
Science, 220:671-680.

Laporte, G. and Desroches, S. (1984) Examination timetabling by computer. Computers and
Operations Research, 11:351-360.

Leake, D. B. (1996) CBR in context: the present and future. In Case-Based Reasoning: Experi-
ences, Lessons, and Future Directions, D. Leake (Ed.), AAAI PressMIT Press, Menlo Park,
CA.

Luo, B, and Hancock, E. R. (2001) Structural graph matching using the em algorithm and singu-
lar value decomposition. IEEE Transactions Analysis and Machine Intelligence,
23: 1120-1 136.

Kolodner, J. (1993) Case-Based Reasoning. Morgan Kaufmann, San Mateo, CA.
Merlot, L. T. G., Boland, N., Hughs, B. and Stucky, P. J. (2003) A hybrid algorithm for the

examination timetabling problem. In The Practice and Theory of Automated Timetabling IV,
Lecture Notes in Computer Science, Vol. 2740, Springer, Berlin, pp. 207-23 1.

Miyashita, K. and Sycara, K. (1995) CABINS: A framework of knowledge acquisition and iter-
ative revision for schedule improvement and reactive repair. Artijcial Intelligence, 76:377-
426.

Petrovic, S. and Qu, R. (2002) Case-based reasoning as a heuristic selector in a hyper-heuristic
for course timetabling problems. In Proceedings of Knowledge-Based Intelligent Informa-
tion Engineering Systems and Allied Technologies, Frontiers in Artificial Intelligence and
Applications, Vol. 82, IOS Press, Amsterdam, pp. 336-340.

Petrovic, S., Kendall, G. and Yang, Y. (2002) A tabu search approach for graph-structured case
retrieval. In Proceedings of the STarting Art@cial Intelligence Researchers Symposium, IOS
Press, Amsterdam, pp. 55-64.

Petrovic, S., Beddoe, G. R. and Berghe, G. V. (2003a) Storing and adapting repair experiences
in employee rostering. In Practice and Theory of Automated Timetabling IV, Lecture Notes
in Computer Science, Vol. 2740, Springer, Berlin, pp. 149-166.

Petrovic, S., Yang, Y, and Dror, M. (2003b) Case-based initialisation of metaheuristics for ex-
amination timetabling. In Proceedings of the 1st Multidisciplinary International Conference
on Scheduling: Theory and Applications, pp. 137-155.

Saleh Elmohamed, M. A., Coddington, P. and Fox, G. (1998) A comparison of annealing
techniques for academic course scheduling. In The Practice and Theory of Automated
Timetabling II, Lecture Notes in Computer Science, Vol. 1408, Springer, Berlin, pp. 92-1 12.

Schirmer, A. 2000 Case-based reasoning and improved adaptive search for project scheduling.
Naval Research Logistics, 47:201-222.

Terashima-Marh, H., Ross, P. and Valenzuela-Rendh, M. (1999) Evolution of constraint satis-
faction strategies in examination timetabling. In Proceedings of the Genetic and Evolution-
ary Conference, pp. 635-642.

Wang, Y. and Ishii, N. (1997) A method of similarity metrics for structured representations.
Expert Systems with Applications, 12239-100.

Welsh, D. J. A. and Powell, M. B. (1967) An upper bound on the chromatic number of a graph
and its application to timetabling problems. The Computer Journal, 10:85-86.

White, G. M. Xie, B. S. and Zonjic, S. (2004) Using tabu search with longer-term memory
and relaxation to create examination timetables. European Journal of Operational Research,
lS3:8&91.

AN INVESTIGATION OF A TABU-SEARCH-BASED
HYPER-HEURISTIC FOR EXAMINATION
TIMETABLING

Graham Kendall and Naimah Mohd Hussin
Automated Scheduling, Optimisation and Planning (ASAP) Research Group,
School of Computer Science and Information Technology,
Universiry of Nottingham, Nottingham NG8 IBB, UK

Abstract

Keywords:

This paper investigates a tabu-search-based hyper-heuristic for solving exarni-
nation timetabling problems. The hyper-heuristic framework uses a tabu list to
monitor the performance of a collection of low-level heuristics and then make
tabu heuristics that have been applied too many times, thus allowing other heuris-
tics to be applied. Experiments carried out on examination timetabling datasets
from the literature show that this approach is able to produce good quality solu-
tions.

hyper-heuristic, examination timetabling, heuristics, tabu search.

1. INTRODUCTION
This paper investigates a hyper-heuristic, based on tabu search, and its appli-

cation to examination scheduling. The objective is to design a generic system
that is able to select the most appropriate algorithm for the current instance of
a given timetabling problem. Carter (1986), Carter and Laporte (1996) and
Schaerf (1999) have conducted comprehensive surveys on various methods
and strategies applied by researchers to solve timetabling problems. Many
of these methods have successfully solved given problems and some algo-
rithmsheuristics were reported to work well with particular data sets whilst
others performed better when presented with different data sets. This indicates
that one of the potential research issues in timetabling is to design a high-level
algorithm that automatically, and intelligently, chooses a method suitable for a
given problem instance (Burke and Petrovic, 2002).

This paper will report on our research into the design of a new hyper-
heuristic framework using a tabu list and adaptive memory with the intention of
monitoring and learning the behaviour and performance of low-level heuristics
so as to help in making a well-informed decision of applying the best heuris-

310 Kendall and Mohd Hussin

tics at each decision point. We test our approach on examination timetabling
problem using examination timetabling problem dataset publicly available at
ftp://ftp.mie.utoronto.cdpub/carter/testprob/.

The next section reviews the use of hyper-heuristic methodologies and tabu
search related to timetabling problems. Section 2 gives a description of the
examination timetabling problem. We describe our hyper-heuristic framework
and strategy in Section 3 and Section 4 gives our experimental results and
analysis. Section 5 concludes with a summary and presents future research
directions.

The term hyper-heuristic (Burke et al., 2003b) denotes a method that oper-
ates at a higher level of abstraction and can be thought of as a (meta-)heuristic
that is able to intelligently choose a possible heuristic to be applied at any given
time. We refer to Burke et al. (2003b) for further motivation and discussion
on the emergence of the hyper-heuristic to solve optimisation problems. This
includes references to earlier work that can be categorised as hyper-heuristic
approaches, although they do not use this term.

One example of solving a large-scale university examination timetable prob-
lem using a hyper-heuristic approach can be seen in Terashima-Marin et
al. (1999). Their approach had two phases in the construction of a timetable.
Each phase used a different set of heuristics and a switch condition determined
when to move from one phase to the other. A genetic algorithm, using a non-
direct chromosome representation, was used to evolve the choice of heuristics,
switch condition and strategies.

Burke and Newall (2004) proposed an adaptive method in constructing ini-
tial solutions for the examination timetabling problem. An initial ordering
heuristic produced an order of exams to be scheduled. The ordering heuristic
provides a good solution if the order is ideal, otherwise, it will adapt and im-
prove the order, thus improving the initial solution. The results showed that
the method could substantially improve the solution quality over the original
heuristic (flat ordering, largest degree and smallest degree).

Cowling et al. (2001) use a choice function in their hyper-heuristic to de-
termine which low level heuristic will be called next. The choice function
adaptively ranks the low-level heuristics by considering recent improvement of
each low-level heuristic, recent improvement of consecutive pairs of low-level
heuristics and the number of CPU seconds elapsed since a particular heuristic
was last called. The method was successfully tested on different applications:
sales summit scheduling (Cowling et al., 2001), nurse scheduling (Cowling et
al., 2002c) and project presentation scheduling (Cowling et al., 2002b; Kendall
et al., 2002).

Investigation of a Tabu-Search-Based Hyper-heuristic 311

Cowling et al. (2002a) use a genetic algorithm based hyper-heuristic (Hyper-
GA) to construct a sequence of heuristics that are applied to a trainer schedul-
ing problem.

Nareyek (2001) proposed a learning procedure in a search process that learns
to select promising heuristics based on weight adaptation. Their empirical
study was carried out on two problems: Orc Quest and Logistics Domain.

Burke et al. (2003a) have used a tabu search hyper-heuristic (although dif-
ferent to the one proposed in this paper) and have successfully applied it to
course timetabling and rostering problems. They used a ranking mechanism
to dynamically rank each low-level heuristics. The heuristic with the highest
rank will be applied in the next iteration and if the heuristic does not improve
the solution, it will be placed in a tabu list. This tabu list is used to prevent
non-performing heuristics from being chosen again in the near future. Our
hyper-heuristic differs with respect to how we use the tabu list and how we
choose and apply heuristic. Further details are given in Section 3.

There are other papers published on methods that are similar to the concept
used in hyper-heuristics. It is not our intention to mention all of them, but nev-
ertheless, it would be interesting to carry out a complete survey and categorise
all papers that exhibit hyper-heuristic behaviour. From what we have seen from
existing papers on hyper-heuristics, we believe that further research should be
carried out in order to inject intelligence into the hyper-heuristic that does not
depend on domain knowledge.

1.2 Tabu Search (Timetabling)
In this section, we will discuss briefly how other researchers apply tabu

search approaches in solving timetabling problem. The basic form of tabu
search (TS) is an idea proposed by Glover (1986) to solve combinatorial opti-
misation problems. The following is a definition by Glover and Laguna (1997):

Tabu search is a meta-heuristic that guides a local heuristic search procedure to
explore the solution space beyond local optimality.

The basic concept of tabu search is an extension of steepest descent by in-
corporating adaptive memory and responsive exploration. It uses memory not
only to keep track of the current best solution but it also stores information
related to the exploration process. Starting from the initial solution So, the
algorithm iteratively explores a subset N'(s) of the neighbourhood, N (s) , of
the current solution s. The member with the lowest (assuming minimisation)
value becomes the current solution irrespective of whether its value is better or
worse than the current solution. Accepting a non-improving move will allow
the search to continue to explore areas beyond local optima. However, this will
typically lead to cycling, that is, repeatedly moving between some small set of
solutions. To avoid this, it uses memory to store a tabu list. This list contains

312 Kendall and Mohd Hussin

moves that satisfy some tabu restriction criteria and these moves are prohibited
for a predetermined number of iterations (tabu tenure). Moves that are in the
tabu list are said to have a tabu-active status. An aspiration criteria is used to
make a solution tabu free if the resultant evaluation is of sufficient quality and
can prevent cycling.

Glover and Laguna (1997) also describe two important strategies used in
tabu search: intens$cation and diversification. Intensification strategies in-
volve changing the choice rules to intensify the search to examine neighbours
of elite solutions. The idea is that if certain regions contained good solutions
in the past they may possibly yield better solutions in the future. The diversi-
fication stage encourages the search process to examine unvisited regions and
to generate solutions that differ significantly.

Schaerf and Schaerf (1995) apply tabu search techniques in scheduling lec-
tures to periods for a large high-school. They represented their timetable as an
integer-valued matrix Mmxp such that each row j of M represents the weekly
assignment for teacher t j . The type of moves used are atomic: moving a lecture
to another period, and double moves which are moves made by a pair of atomic
moves. The algorithm used a tabu search with atomic moves interleaved with
a randomised non-ascendant method (RNA) using double moves. The RNA is
used to generate the initial solution and is applied again after TS has given no
improvements for a given number of iterations. The cycle is repeated allowing
TS to start in a different direction. The tabu list is of variable size. Each move
is inserted into the tabu list with a number of iterations I selected at random
within a predetermined range. The tabu tenure therefore varies for each move.
Each time a move is inserted the value I of all moves in the list will be decre-
mented and once it reaches zero the move is removed. The algorithm uses
the simplest aspiration criterion of accepting a tabu move only if it improves
the current best solution. The algorithm gave good results for schools of var-
ious types, and for different settings of the weights of the objective functions.
The timetable produced is better than the manual timetable and it was able to
schedule 90-9596 of the lectures.

Di Gaspero and Schaerf (2001) continued this research using tabu search
for the examination timetabling problem. They modified their objective func-
tion using a shifting penalty mechanism (varying weights on soft and hard
constraints) thus causing the search to explore different solution spaces. In or-
der to decide which exams are to be moved, they maintain two violation lists:
list of exams that violate either hard or soft constraints and list of exams that
violate hard constraints only. During the search, they experiment on various
strategies using shifting penalty mechanisms and the two violation lists. These
two features, combined with a variable-size tabu list and starting the search
with a good initial solution, were found to be helpful in directing the search
into promising regions.

Investigation of a Tabu-Search-Based Hyper-heuristic 313

Di Gaspero (2002) and Di Gaspero and Schaerf (2003) further enhanced
their algorithm by employing a multi-neighbourhood strategy applied to ex-
amination timetabling and course scheduling respectively. In the examination
timetabling problem, Di Gaspero (2002) applied a combination of tabu search
with different neighbourhoods (union and composition). He categorised these
combinations into local search that specialised in optimising objective function
(recolour), perturbing current solution (shake) or obtaining more improvement
(kick). The recolour and shake algorithms were applied in sequence until there
was no further improvement and the algorithm ended with the kick. The final
results on seven benchmark datasets were better compared to the basic tabu
search with single neighbourhood.

Thomson and Dowsland (1998) showed that it is possible to design robust
solutions based on simulated annealing and tabu search by applying the algo-
rithms on different case studies of scheduling, timetabling and staff-rostering
problems in the education and hospital sectors. They apply varying tabu re-
striction on different moves and use a frequency-based diversijication mecha-
nism and penalised attributes that occur very frequently. Some of the modifica-
tions included can improve the tabu search but the implementation frequently
depends on the precise details of the problem. Some of these modifications are
different cost functions, variable tabu length list, combining moves into chains,
strategic oscillation that force the search into different regions and prominent
candidate list strategies.

White and Xie (2001) called their algorithm OTTABU and used it to provide
an examination timetable using data provided by the University of Ottawa. The
problem is modelled as a graph. The initial solution was generated using an al-
gorithm derived from bin packing algorithms (largest enrolment first). The ini-
tial solution does not guarantee a feasible solution. A new solution is obtained
by an atomic move. Their system used recency based short-term memory (TS)
and frequency based long-term memory (TL) to improve the solution quality.
The tenure of the short-term tabu list is found not to be critical if both longer
term and short-term memory are used. Their experiments showed that longer
term memory produced better schedules and since the longer term memory list
can reduce its effectiveness, a quantitative analysis method is used to estimate
the appropriate length of the longer term tabu list and a controlled tabu relax-
ation technique (emptying entries in TS and TL) is used to diversify the search.
White et al. (2004) expand their research to include comparisons between their
results and other published algorithms.

Wright (2001) incorporated sub-cost-guided search in both simulated an-
nealing and tabu threshold acceptance methods. In tabu thresholding, the inten-
sification and diversification are explicitly divided into two separate phases-
the improving (intensifying) phase and the mixed (diversifying) phase. He
used a focus form of diversification by accepting a solution even though the

3 14 Kendall and Mohd Hussin

overall cost had increased but one of the sub-costs had decreased. He experi-
mented on modified school timetabling data and found significantly improved
results.

The tabu search meta-heuristic has been explored in detail and applied to the
examination timetabling problem by the above researchers. The main issues
that were addressed and can be explored further are as follows:

How can we use memory to help in storing history of previous moves
(adaptive, short-term, long-term etc.)?

What items should be stored in the tabu list?

m Neighbourhood size.

Type of moves that dictate the next neighbour of a solution state.

How to balance and decide when to intensify and diversify the search?

Conditions for tabu restriction.

m Factors that affect tabu tenure?

What aspiration criteria can be used to avoid missing a potentially good
solution?

We incorporate some of the above issues into our hyper-heuristic framework
and apply it to the examination timetabling problem.

2. PROBLEM DESCRIPTION
Timetabling is a special case of a scheduling problem (Wren, 1996). The

layman's term for a timetable is normally used in an academic environment,
which refers to a class timetable or examination timetable. A timetable nor-
mally tells you when and where events are to take place. Carter and Laporte
(1996) defined the basic problem in examination timetabling as "the assigning
of examinations to a limited number of available time periods in such a way
that there are no conflicts or clashes". In some cases conflict cannot be avoided
and the objective is to minimise the number of student conflicts.

We can represent the examination timetabling problem using a mathematical
model. From the problem definition we know that it is an assignment type
problem because we need to assign examinations to slots while minimising an
objective function and satisfying a set of constraints. Thus we can formulate
the problem as follows:

E: a set of m examinations El , E2, . . . , Em;

S: asetofnslots S1,S2, ..., S,;

Investigation of a Tabu-Search-Based Hyper-heuristic 315

rn A final exam timetable Tmn such that Tik = 1 if exam i is scheduled in
slot k, 0 otherwise;

rn A conflict matrix Cmm such that Cij = total number of students sitting
for both exams i and j;

Pik is a penalty given if exam i is scheduled in slot k.

The examination timetabling problem is to assign examinations to slots sub-
ject to some hard constraints that must be satisfied, and minimise soft con-
straint violation.

Hard constraints that must be satisfied are:

1 Feasible. The timetable must be feasible such that all exams must be
scheduled and each exam (El, E2,. . . , Em) must be scheduled only
once:

2 Student conjict. No student should sit for more than one exam in the
same slot. If exam i and exam j are scheduled in slot k, the number of
students sitting for both exam i and j(Cij) must be equal to zero, and
this should be true for all exams already allocated:

m m n

We determine the quality of an examination timetable solution based on the
penalty given if certain soft constraints are violated. The soft constraint that
we would like to consider is the proximity constraint and a proximity cost is
given when the proximity constraint is violated. A weighted proximity cost x,
is given whenever a student has to sit for two examinations scheduled s periods
apart: these weights are xl = 16, x2 = 8, x3 = 4, x4 = 2 and xs = 1.
Pik, the total proximity cost if exam i is scheduled in slot k, is as follows:

where j (an exam in conflict with exam i) is scheduled in slot I .
Finally, our objective is to minimise the total proximity cost:

316 Kendall and Mohd Hussin

Other additional soft constraints that are specific to university requirements
can be added to this problem. But in this paper, we apply the same method
of evaluating solution quality so that we can compare our results with other
results published in the literature.

3. HYPER-HEURISTIC FRAMEWORK AND
STRATEGY

A hyper-heuristic framework (Burke et al. 2003a,b) works at a higher level
of abstraction than current (meta-)heuristic approaches and does not require
domain knowledge. It only has access to non-domain-specific information that
it receives from the heuristics that it operates upon. The hyper-heuristic can be
implemented as a generic module that has a common interface to the various
low-level heuristics and other domain-specific knowledge (typically the evalu-
ation function) of the problem being solved. Initially, the hyper-heuristic needs
to know the number of n heuristics provided by the low-level heuristic module.
It will guide the search for good quality solutions by setting up its own strat-
egy of calling and evaluating the performance of each heuristic known by their
generic name H I , H z , . . . , H,. The hyper-heuristic does not need to know
the name, purpose or implementation detail of each low-level heuristic. It just
needs to call a specific heuristic, Hi, and the heuristic may modify the solution
state and return the result via an evaluation function. The low-level-heuristic
module can be viewed as a "black box" that hides the implementation detail
and only returns a value.

3.1 Hyper-heuristic Module
The hyper-heuristic module is the main part of the research area where we

need to design and test strategies that can intelligently select the best heuristic
that will help guide the search to either intensify or diversify the exploration of
the search region.

The general framework for our hyper-heuristic algorithm is as follows:

Step 1. Construct initial solution

Step 2. Do

Consider heuristics that are not tabu

Apply chosen heuristic and make the heuristic tabu

Update solution

Until terminating condition

The initial solution is produced using a constructive heuristic (largest de-
gree or saturation degree (Carter and Laporte, 1996). The initial solution need

Investigation of a Tabu-Search-Based Hyper-heuristic 3 17

not be a good solution and it may not be feasible (i.e. some exams are un-
scheduled). The algorithm works with infeasible solutions since some of the
low-level heuristics specialised in scheduling unscheduled exams. Next, a ran-
domisation (randomly move exams to other valid slots) is carried out to start
different runs with different solutions. In Step 2 we explore the neighbourhood
to search for a better solution or local optima (and possibly global optima).
The framework is similar to a local search except that in Step 2 we explore
the neighbourhood by selecting which heuristic to use to update the current
solution.

Our hyper-heuristic differs from other neighbourhood search algorithms or
meta-heuristics (such as Tabu Search and Simulated Annealing) with respect to
the management of several heuristics. The hyper-heuristic manages the heuris-
tics by selecting which heuristic(s) should be considered and which heuristic(s)
should be applied. In fact, the heuristics being considered can be a local search
algorithm or just a simple move operator.

The hyper-heuristic is like a manager who employs a team of heuristic work-
ers. A good manager does not need to know how the workers do their job but
it must be intelligent in recognising when a good job is done. The workers
may be good or poor and sometimes a good combination of team workers will
produce good solution. Normally when we have a team of workers, rather
than asking them to work in sequence, we can ask them to perform their spe-
cific task simultaneously and whoever produce the best work will be accepted.
Their progress will be monitored so that the manager can learn and recognise
each workers' specialisation and will be able to decide and select the next team
of workers.

Therefore, we can view the hyper-heuristic as a manager and the collection
of heuristics as a team of workers who are given an area in the solution space
(the heuristic search space, which is part of the solution search space) and their
task is to find a good solution and return it. The heuristic may be doing a
complex task by intensively exploring a large neighbourhood search space or
it may just do a simple task of exploiting a very small neighbourhood of so-
lutions. In the search for good quality solutions, the hyper-heuristic exhibits
a kind of reinforcement learning, which will assist in an intelligent action at
each decision point. It monitors the behaviour of each low-level heuristic by
storing information about the performance using adaptive memory. Our hyper-
heuristic uses a tabu list that is of a fixed length n, where n is the number
of low-level heuristics. Instead of storing moves, each tabu entry stores (non-
domain) information about each heuristic i.e., heuristic number, recent change
in evaluation function, CPU time taken to run the heuristic, and tabu status (or
tabu duration, as the term we prefer to use). Tabu duration indicates how long
a heuristic should remain tabu (0-4) and therefore not be applied in the current
iteration. If the tabu duration is zero, the heuristic is said to be tabu inactive

318 Kendall and Mohd Hussin

and can be applied to update the solution. If the tabu duration is non-zero, the
heuristic is said to be tabu active and may not be used to update the solution.
A heuristic is made tabu when it satisfies our tabu restriction conditions. We
do not use any aspiration criteria (changing a tabu active status to tabu inactive
because the heuristic improves the solution) at this point because we wanted
to compare which tabu duration produces the best quality solution. Therefore,
the only time a heuristic changes its status from tabu active to tabu inactive is
when the tabu duration is zero. The tabu duration is set for a heuristic whenever
a tabu restriction is satisfied. After each iteration, the tabu duration is decre-
mented until it reaches zero and the heuristic is now tabu inactive. For each
test on the dataset we fixed the tabu duration at between zero and four and,
in this paper, we compare to find which tabu duration produces better quality
solutions.

We use several strategies when considering the heuristics: consider all heuris-
tics (i.e. no tabu criteria), consider heuristics that are not tabu, or consider
heuristics that lead to improvement only. Each heuristic differs in how it
decides to move, thus creating its own search space region (heuristic search
space) in the solution search space. At each choice point, we need to decide
whether we want to intensify the search in a particular region by applying
the same heuristic or to diversify the search into another region by applying
a different heuristic. At this point, the hyper-heuristic can actually choose
intelligently when to intensify or diversify because we believe that allowing
the low-level heuristics to compete at each iteration and selecting the heuristic
with the best performance will help to balance the diversification and intensifi-
cation of the solution search space. Heuristics that have been applied become
tabu so that in the next iteration we can look at the possibility of other low-
level heuristics that may perform well, but perhaps not as well as the previous
heuristics that are now tabu active. We have implemented the simplest strategy,
i.e. hyper-heuristic with fixed tabu duration (HH-FTD), where we consider all
tabu inactive heuristics and apply the heuristic that has the best improvement
only. The algorithm iterates for a fixed time or until there is no further im-
provement for a given number of heuristic calls.

3.2 Low-Level Heuristics Module
Low-level heuristics are heuristics that allow movement through a solution

space that require domain knowledge and are problem dependent. Each heuris-
tic creates its own heuristic search space that is part of the solution search
space. The idea is to build a collection of possible simple moves or choices
since we would like to provide a library of heuristics that can be selected in-
telligently by a hyper-heuristic tool. This library, at the moment, will only
include simple low-level heuristics and future work will include the possibility

Investigation of a Tabu-Search-Based Hyper-heuristic 319

of adding other meta-heuristics such as Simulated Annealing, Tabu Search or
a Memetic Algorithm.

The heuristics change the current state of a problem into a new state by ac-
cepting a current solution and returning a new solution. Each low-level heuris-
tic can be considered as an improvement heuristic that returns a move, a change
in the penalty function and the amount of time taken to execute the heuristic.
The best performing heuristic should cause a maximum decrease in penalty
(the lowest value). Each move from an individual heuristic may cause the
search to probe into the current neighbourhood or to explore into a different
neighbourhood. A change in the penalty value means changing the penalty
value for each of the soft constraints that were violated (first-order conflict,
second-order conflict, etc) or moving an exam into an unscheduled list (exam
becomes unscheduled and violates hard constraints).

We have implemented the following low-level heuristics, grouped into four
categories:

1 Select and schedule exam. Selecting the next exam to schedule is depen-
dent upon which factor is considered to be important in determining the
difficulty of scheduling an exam. The strategies that have been used in
the literature, and that are adapted from the graph colouring heuristics,
are used here. Once an exam is selected, it will be scheduled into the
best available slot that will maximise the reduction in penalty.

rn Largest enrolment: exam with largest enrolment should be selected
since it might be difficult to schedule at a later time.

rn Largest exam conflict: exam that is in conflict with the largest num-
ber of exams is normally considered to be more difficult to sched-
ule.

rn Largest total student conflict: exam that has maximum total num-
ber of students in conflict.

rn Largest exam conflict already scheduled: exam that has the greatest
number of exams in conflict already scheduled would be difficult
to schedule since it would have less choice of valid slots.

rn Exam with least valid slots: exam that has the least valid slots
should be scheduled now since it may not have any slots available
at a later stage.

2 Move exam i from location x to y.

rn Select an exam at random and move to another random slot.

Move exam i with maximum penalty from randomly selected ex-
ams.

Kendall and Mohd Hussin

rn Move exam i with highest second-order conflict from location x to
a new location y.

Move exam i with highest second order conflict from location x to
a new location y which maximises the reduction in second order
conflict.

rn Move exam i with first order conflict from location x to a new
location y which does not result in first-order conflict.

3 Swap.

rn Random: select an exam at random and find another exam at ran-
dom which can swap slots.

rn Min-max swap: swap the slots for exam with minimum penalty
and exam with maximum penalty.

4 Remove. Remove a randomly selected exam from the examinations al-
ready scheduled.

All of the above low-level heuristics are either 1-opt or 2-opt and there is
also a mixture of some randomness and deterministic selection of exams and
slots. We purposely test low-level heuristics with simple moves rather than
low-level heuristic with intelligence and complex moves because we want to
make sure that the hyper-heuristic can recognise good moves and make an
intelligent decision based on these simple moves. Furthermore, we want to
make the problem-domain knowledge heuristics easy to implement and the
hyper-heuristic more generalised.

4. EXPERIMENTAL RESULTS
We have implemented and tested our tabu-search-based hyper-heuristic

(TSHH) framework on a PC with an AMD Athlon 1 GHz processor, 128 Mb
RAM and Windows 2000. The program was coded in C++ using an object-
oriented approach. We defined and implemented the hyper-heuristic and heuris-
tics as objects that have a common interface and can interact with each other.
Once the hyper-heuristic object is fully defined, implemented and tested with
a set of heuristics object for one application, we can easily reuse the hyper-
heuristic object with another set of heuristic objects for a different application.
This approach should be cost effective because it can reduce the complexity
of building another system. Thus, we can easily produce solutions to users
who require "good enough-soon enough-cheap enough" (Burke et al. 2003a,
2003b) solutions to their problems by implementing several domain specific
low-level heuristics with simple moves.

Therefore, the objectives of our experiments are:

Investigation of a Tabu-Search-Based Hyper-heuristic

Table I . Characteristics of real problems.

No. of No, of
No. of No. of students student Conflict

Code Institution slots exams exams density matrix

Car492 Carleton University, 32 543 18,419 55,522 13.8%
Ottawa

Car-s91 Carleton University, 35 682 16,925 56,877 12.8%
Ottawa

Ear483 Earl Haig Collegiate In- 24 189 1,125 8,109 26.7%
stitute, Toronto

Hec-s92 Ecoles des Hautes 18 81 2,823 10,632 42.0%
Etudes Commercials,
Montreal

Kfu-s93 King Fahd University 20 461 5,349 25,113 5.6%
Of Petroleum and Min-
erals, Dharan

Sta-f83 St Andrew's Junior 13 139 611 5,751 14.4%
High School

Tre-s92 Trent University, Peter- 23 261 4,360 14,901 5.8%
borough, Toronto

Ute-s92 Faculty of Engineering, 10 184 2,750 11,793 8.5%
University of Toronto

rn To establish a well defined interface between our hyper-heuristic module
and our low-level heuristics module;

rn To compare the quality of results produced by our hyper-heuristic with
other known methods published using similar quality measures;

rn To demonstrate that the hyper-heuristic module does not need to rely
upon domain knowledge to make its decisions;

rn To demonstrate that the hyper-heuristic can manage and choose the low-
level heuristics at each decision point in a search;

rn To evaluate the performance of low-level heuristic;

rn To determine further improvement in our hyper-heuristic module.

4.1 Datasets
We tested our implementation with datasets taken from established datasets

made public and used by a number of other examination timetabling researchers.
The datasets were provided by Michael Carter and can be downloaded from

Kendall and Mohd Hussin

Table 2. Results with 10 minute and 4 hour run.

Hyper-heuristic with fixed TD HH-FTD % improve
(best penalty value per student from 8 runs) (TD = 2, with long

File T D = O T D = 1 T D = 2 T D = 3 T D = 4 4hrun) run

ftp://ftp.mie.utoronto.calpub/carter/testprob/. Table 1 shows the characteristics
of each dataset. Each datasets is stored in two files; one file contains a list of
courses and their enrolment, and the other a list of student and their course se-
lections. We test our method on eight of the datasets. We use both data files to
construct a conflict graph and the largest degree algorithm (Carter et al. 1996)
to construct the initial solution. The density of the conflict matrix in Table 1 is
calculated as the average number of other exams that each exam conflicts with,
divided by the total number of exams. For example, a conflict matrix density
of 0.5 or 50% indicates that each exam conflicts with half of the other exams
on average.

The numbers of slots are obtained from results reported by Carter et al.
(1996). They used five different graph colouring heuristics to determine the
minimum number of slots (sessions) required to produce a feasible solution
subject to a no-clash constraint.

4.2 Experimental Results and Analysis
Our hyper-heuristic, with fixed tabu duration (HH-FTD), was tested with

eight benchmark datasets. For each dataset, we experimented with tabu du-
rations varying from 0 to 4 and with two different terminating conditions (no
further improvement for the last 10,000 iterations or running time of 10 min-
utes). In Table 2, the first column shows the file name of each dataset and
the next five columns show our results (best penalty value per student) with a
tabu duration varying from 0 to 4. We do not show here the actual time that it
finds the best solution but the best results are normally found towards the end
of the search. After further analysis on the performance graph we found that
improvements are still being made toward the end of run time. Therefore, we
run the algorithm again for four hours with a tabu duration of 2 (many of the

Investigation of a Tabu-Search-Based Hyper-heuristic 323

datasets work best with tabu duration of 2), to see whether much better solu-
tions can be found if we run the algorithm longer than the 10 minutes that we
used previously. The last column in Table 2 shows that prolonging the algo-
rithm does improve the solution further and it demonstrates that it is robust and
able to avoid being trapped in local optima.

When the tabu duration is 0, the hyper-heuristic does not make any heuris-
tics tabu and, since none of the results is the best among the datasets, we can
conclude that we do need to use a tabu list to guide the hyper-heuristic in its
heuristic selection. In our tabu-based hyper-heuristic strategy, we apply the
concept of heuristics cooperating with each other rather than penalising a non-
performing heuristic. When TD is greater than zero, we apply a tabu restriction
where a heuristic will be tabu active if its solution value has been accepted to
update the current solution. The heuristic will remain tabu active for a number
of steps equal to TD. We made a heuristic that has been applied tabu because
we want to direct the search to other possible heuristic search spaces. Eventu-
ally we may go back to a heuristic search space once it is no longer tabu active
and can give the best solution amongst all tabu inactive heuristics. The best
result for six of the datasets is when TD is two and for two of the datasets, the
best result is when TD = 3. It is interesting to find that two datasets (Emf83
and Hec-s92) obtain best result when TD is higher and has a higher conflict ma-
trix density (see Table I), i.e. 26.7% and 42.0%. An examination timetabling
dataset with higher conflict matrix density would imply that we might have
less and sparsely distributed solution points (feasible solution) in our solution
space since too many exams are conflicting with each other. Thus, a higher
TD may force it to diversify its exploration of the solution search space by al-
lowing it to move from one heuristic search space to another. For each of the
datasets, except one dataset (Hec-s92), the average penalty started to decrease
as we increased the TD and began to increase again once it reached its mini-
mum average penalty. This shows that the hyper-heuristic does need to decide
which TD is best for each dataset because a tabu duration which is too high or
too low will produce worse solutions.

Figure 1 shows the hyper-heuristic performance with different TD on car-
f92 dataset. This dataset is one of the largest dataset with 543 exams to sched-
ule in 32 slots and with a total number of students of 18,419. This graph
demonstrates how the hyper-heuristic explores the search space. The x-axis
represents the iteration steps up to 250,000 moves while the y-axis represents
overall penalty cost. Note that the timetable quality is measured by taking
the average penalty per student. The curve shows that the algorithm begins
with an initial solution and rapidly improves the result in less than 10,000
moves. The graph shows fluctuations because at every move we accept a so-
lution from the best performance heuristic even though it does not improve
the solution. The higher TD means that the heuristics will remain tabu longer,

Kendall and Mohd Hussin

Hyper-heuristic Performance

0 50000 I00000 l5OOOO 200000 250000

Steps

Figure 1. Hyper-heuristic performance with different TD.

,%-Select exam at random and move to a
random slot

steps

Figure 2. Heuristic 6.

thus allowing other heuristics to be applied next. By increasing the TD, we
notice that the next solution accepted may make the solution much worse but
it can still improve the solution in the next move. So, a tabu duration value
does help to improve solution quality, and too high a value may make the so-
lution much worse, making it difficult to improve it again. The simplest form
of this hyper-heuristic does not limit the range of how much a worse solution
may be accepted but further investigation on this hyper-heuristic will limit the
acceptance of worst solution.

The graphs in Figures 2 and 3 show when two of the heuristics were applied
and how the two heuristics change the solution state.

Investigation of a Tabu-Search-Based Hyper-heuristic

H7-Move exam with maximum penalty from

randomly selectedexams

Figure 3. Heuristic 7 .

The larger number of plots in Figure 2 compared to Figure 3 indicates that
heuristic 6 has been applied more than heuristic 7. We do not show graphs
for other heuristics because the shape is almost the same except that some are
applied more than others. We also do not show how each heuristic performs in
all iterations because we only keep track of its performance when it is applied.
We can also see that for different datasets certain heuristics will be applied
more than others, therefore it is justifiable to use several low-level heuristics
that can compete with each other and a hyper-heuristic can than select the best
low-level heuristic to be applied, given not only the point in the search space
but also a specific problem instance.

Table 3 shows our four hour run results compared to other published re-
sults for benchmark datasets. Our objective here is to show that the HH-
FTD is able to produce good quality and feasible solutions for examination
timetabling problems even though it may not produce the best results. The re-
sults show that our generic method is able to produce good quality solutions
compared to the others. The first two that we compare results against are of Di
Gaspero and Schaerf (2001) who use tabu search and Di Gaspero (2002) who
use tabu search with multi-neighbourhood. Our results are better than the tabu
search method in all cases and almost as good as the tabu search with multi-
neighbourhood. We also compare our results with results from other methods:
constructive heuristics with backtracking of Carter et al. (1996); the memetic
algorithm of Burke and Newall (1999); the greedy constructive heuristic with
an optimiser by Caramia et al. (2001); and a hybrid of constraint program-
ming, simulated annealing and hill climbing with Kempe chain neighbourhood
by Merlot et al. (2003). Our results are better than Carter et al. (1996) and

Kendall and Mohd Hussin

Table 3. Comparing our best results and published results.

HH-FTD
(TD = 2, Di Gaspero Di Carter Caramia Merlot Burke and

File 4 h run) and Schaerf Gaspero et al. et al. et al. Newall

Caramia et al. (2001) in four cases. In all cases we could not produce better
results than Burke and Newall (1999) and Merlot et al. (2003).

As a whole, we can see that our method does not perform the worst or best in
any cases, but works reasonably well across all problem instances. We believe
that with further enhancements in our hyper-heuristic selection method and
some adaptive tabu duration, we can improve our results.

5. CONCLUSIONS AND FUTURE WORK
The simplest form of the hyper-heuristic module HH-FTD has been imple-

mented and tested on exam timetabling benchmark data. Preliminary results
showed that it is not able to beat the best results in the literature but it is able
to produce good quality solutions. Our objective is not to beat the best solu-
tion but to show that the hyper-heuristic module produces good solutions that
are feasible and will work across all problem instances and other real-world
problems. Our generic solution methodology can easily be applied to other
problems by just changing the low-level heuristics and the evaluation function
while the search method remains the same.

Currently, we are testing a more advanced hyper-heuristic module that in-
cludes more tabu criteria such as tabu criteria based on CPU time, tabu based
on change in penalty function and a probabilistic heuristic selection. In the
future, we will experiment on adaptive tabu strategies and apply our method
on a larger timetabling instance as well as other applications.

References
Burke. E. K., Kendall, G. and Soubeiga, E. (2003a) A tabu search hyper-heuristic for timetabling

and rostering. Journal of Heuristics, 9:451-470.

Investigation of a Tabu-Search-Based Hyper-heuristic 327

Burke, E. K, and Petrovic, S. (2002), Recent research directions in automated timetabling. Eu-
ropean Journal of Operational Research, 140:266-280.

Burke, E. K. and Newall, J. P. (2004). Solving examination timetabling problems through adap-
tation of heuristics orderings. Annals of Operations Research, 129: 107-134.

Burke, E. K. and Newall, J. P. (1999) A multi-stage evolutionary algorithm for the timetable
problem. IEEE Transactions on Evolutionary Computation, 3:63-74.

Burke, E. K., Hart, E., Kendall, G., Newall, J., Ross, P, and Schulenburg, S. (2003b) Hyper-
Heuristics: An emerging direction in modem search technology. In Handbook of Meta-
Heuristics, F. Glover and G. Kochenberger (Eds.), Chapter 16, Kluwer, Dordrecht, pp. 457-
474.

Caramia, M., Dell'Olmo, P, and Italiano, G. E (2001) New algorithms for examination time-
tabling. In Proceedings of 4th Workshop on Algorithm Engineering, Lecture Notes in Com-
puter Science, Vol. 1982, Springer, Berlin, pp. 230-242.

Carter, M. W. and Laporte, G. (1996) Recent developments in practical examination timetabling.
The Practice and Theory of Automated Timetabling I, Lecture Notes in Computer Science,
Vol. 1153, E. K. Burke and P. Ross (Eds.), Springer, Berlin, pp. 3-21.

Carter, M. W. (1986) A Survey of practical applications of examination timetabling algorithms.
Operations Research Society of America, 342, March-April.

Carter, M. W., Laporte, G, and Lee, S. Y. (1996) Examination timetabling: Algorithmic strate-
gies and applications. Journal of the Operational Research Society, 47:373-383.

Cowling, P., Kendall, G. and Soubeiga, E. (2001) A hyperheuristic approach to scheduling a
sales summit. In Practice and Theory of Automated Timetabling 111, Lecture Notes in Com-
puter Science, Vol. 2079, E. K. Burke and W. Erben, (Eds.), Springer, Berlin, pp. 176-190.

Cowling, P., Kendall, G. and Han, L. (2002a) An Investigation of a hyperheuristic genetic algo-
rithm applied to a trainer scheduling problem. In Proceedings of Congress on Evolutionary
Computation (CEC2002), pp. 1 185-1 190.

Cowling, P., Kendall, G, and Soubeiga, E. (2002b) Hyperheuristics: A tool for rapid prototyping
in scheduling and optimisation. In Applications of Evolutionary Computing: Proceedings of
EVO Workshop 2002, Lecture Notes in Computer Science, Vol. 2279, S. Cagoni, J. Gottlieb,
E. Hart, M. Middendorf and R. Giinther (Eds.), Springer, Berlin, pp 1-10.

Cowling, P., Kendall, G. and Soubeiga, E. (2002~) Hyperheuristics: A robust optimisation
method applied to nurse scheduling. 7th International Conference on Parallel Problem Solv-
ing from Nature, PPSN2002, Lecture Notes in Computer Science, Vol. 2439, Springer, Berlin,
pp. 851-860.

Di Gaspero, L. (2002) Recolour, shake and kick: A recipe for the examination timetabling prob-
lem. In Proceedings of the Fourth International Conference on the Practice and Theory
of Automated Timetabling, Gent, Belgium, August 2002, E. Burke and P. De Causmaecker
(Eds.), pp. 404-407.

Di Gaspero L. and Schaerf A. (2001), Tabu search techniques for examination timetabling. In
Practice and Theory ofAutomated Timetabling 111, E. K. Burke and W. Erben (Eds.), Lecture
Notes in Computer Science, Vol. 2079, Springer, Berlin, pp. 104-1 17.

Di Gaspero, L. and Schaerf, A. (2003) Multi-neighbourhood local search with application to
course timetabling. In Practice and Theory of Automated Timetabling IV, E. Burke and
P. De Causmaecker (Eds.), Lecture Notes in Computer Science, Vol. 2740, Springer, Berlin,
pp. 262-275.

Downsland, K. (1998) Off-the-peg or made to measure: timetabling and scheduling with SA
and TS. In Practice and Theory of Automated Timetabling 11, E. Burke and M. Carter (Eds.),
Lecture Notes in Computer Science, Vol. 1408, Springer, Berlin, pp. 37-52.

328 Kendall and Mohd Hussin

Glover, E (1986) Future paths for integer programming and links to artificial intelligence. Com-
puters and Operations Research, 13533-549.

Glover, F. and Laguna, M. (1997) Tabu Search, Kluwer, Boston, MA.
Gratch, J. M. and Chien, S. A. (1996) Adaptive problem-solving for large scale scheduling

problems: A case study. Journal of ArtiJicial Intelligence Research, 4:365-396.
Kendall, G., Soubeiga, E. and Cowling, P. (2002) Choice function and random hyperheuris-

tics. Proceedings of the 4th Asia-PaciJic Conference on Simulated Evolution And Learning,
SEAL'O2, pp. 667-671.

Merlot, L. T. G., Boland, N., Hughes, B. D. and Stuckey, P. J. (2003) A hybrid algorithm for
the examination timetabling problem. In Practice and Theory of Automated Timetabling IV,
E. Burke and P. De Causmaecker (Eds.), Lecture Notes in Computer Science, Vol. 2740,
Springer, Berlin, pp. 207-231.

Nareyek, A. (2001) An empirical analysis of weight-adaptation strategies for neighborhoods of
heuristics. Proceedings of 4th Metaheuristics International Conference, MIC'2001, pp. 21 1-
216.

Schaerf, A. and Schaerf, M. (1995) Local search techniques for high school timetabling. In
Proceedings of the 1st International Conference on the Practice and Theory of Automated
Timetabling (PATAT'95). E. K. Burke and P. Ross (Eds.), pp. 3 13-323.

Schaerf, A. (1999) A survey of automated timetabling. ArtiJicial Intelligence Review, 1387-
127.

Terashima-Marin, H., Ross, P. M. and Valenzuela-Rendh, M. (1999) Clique-based crossover
for solving the timetabling problem with gas. Proceedings of the Congress on Evolutionary
Computation, Washington, DC, July 6-9, pp. 1200-1206.

White, G. M. and Xie, B. S. (2001) Examination timetables and tabu search with longer term
memory. In Practice and Theory of Automated Timetabling 111, E. K. Burke and W. Erben
(Eds.), Lecture Notes in Computer Science, Vol. 2079, Springer, Berlin, pp. 85-103.

White, G. M., Xie, B. S. and Zonjic, S. (2004) Using tabu search with longer-term memory
and relaxation to create examination timetables. European Journal of Operational Research,
153:80-91.

Wren, A. (1996) Scheduling, Timetabling and Rostering-a special relationship? In Practice
and Theory of Automated Timetabling I, E. K. Burke and P. Ross (Eds.), Lecture Notes in
Computer Science, Vol. 1153, Springer, Berlin, pp. 46-76.

Wright, M. (2001) Subcost-guided search--experiments with timetabling problems. Journal of
Heuristics, 7:251-260.

Sports Scheduling

ROUND ROBIN TOURNAMENTS
WITH ONE BYE AND NO BREAKS
IN HOME-AWAY PATTERNS
ARE UNIQUE

Dalibor FronEek
Department of Mathematics and Statistics, University of Minnesota Duluth
11 17 University Drive, Duluth, MN 55812, USA
and Technical University Ostrava, Czech Republic

Mariusz Meszka
Faculty of Applied Mathematics, AGH University of Science and Technology
Mickiewicza 30, 30-059 Krakow, Poland
meszka9agh.edu.pl

Abstract We examine round robin tournaments with m teams and m rounds, for m 2 3,
with the property that every team plays no game in one round and exactly one
game in each of the remaining m - 1 rounds. We show that for every such m
there exists a unique schedule in which no team plays two consecutive home or
away games.

Keywords: scheduling tournaments, round robin tournament, home-away pattern, complete
graph factorization.

1 INTRODUCTORY NOTES AND DEFINITIONS
Many sport competitions are played as round robin tournaments. A round is

a collection of games in which every team plays at most one game. A k-round
round robin tournament of m teams, denoted RRT(m, k), is a tournament in
which each team meets every other team exactly once and the games are di-
vided into k rounds. A schedule, which is played in the minimum number of
rounds possible is called compact; if more than the minimum number of rounds
is used the schedule is non-compact. Although tournaments where every pair
of opponents meets exactly 1 times (called I-leg tournaments) are very com-

332 FronEek and Meszka

mon, we will discuss only 1-leg tournaments here. An 1-leg tournament can be
indeed scheduled as a 1-leg tournament repeated 1 times with teams exchang-
ing their respective home fields regularly. There are many different models
that are widely used. In some competitions, like North-American NHL, NBA,
NFL and others, the teams are divided into several divisions and it is required
that games "inside" the divisions (called intradivisional games) and "across"
the divisions (called interdivisional games) are distributed according to some
rules. These rules often take into account travel distances. Therefore a team
usually plays several games in a row with teams of another division at their
fields. Then there follow several games played at the team's home field or
with teams of the same division. Many other constraints are also considered.
These can include TV schedules, availability of fields/stadiums, traditional ri-
vals, etc. However, the schedule is usually not strictly divided into rounds and
the number of days when the games are played is therefore larger than the
necessary minimum. Construction of schedules of this kind is usually based
on optimization methods like integer programming or finite-domain constraint
programming (see e.g. Henz, 1999, 2001; Henz, et al., 2003; Nemhauser and
Trick, 1998; Schaerf, 1999; Schreuder, 1992; Trick, 2000). The result is then
an exact schedule in which the dates and fields of all games between particular
pairs of opponents are assigned. A graph-theoretic approach can be used for
leagues with a small number of teams (see e.g. Dinitz and Froncek, 2000).

In other cases the rules are based on certain restrictions resulting from a
limited number of available fields and/or suitable time slots. Schedules of this
type were studied among others by Finizio (1993) and Straley (1983). On the
other hand, most European national football (soccer) leagues are scheduled
as 2-leg compact round robin tournaments (see e.g. Griggs and Rosa, 1996;
UEFA, 2004). These tournaments are usually scheduled in such a way that a
schedule for a 1-leg RRT(2n, 2n - 1) is repeated twice. It is then required
that for each team the home and away games should interchange as regularly
as possible provided that each team meets every opponent in one leg at its own
field and in the other leg at the opponent's field.

In competitions that are played in regular rounds it is usually desirable that
for each team the home games and away games interchange as regularly as
possible. The leagues often have fixed draw tables (or generic schedules)
with teams denoted just 1,2, . . . , m that are used repeatedly every season. The
teams then draw their numbers either from the whole pool of m numbers (if
they have no specific requirements) or from a limited pool (if they have some
specific constraints). In this paper we actually present such generic schedules.
Fundamental theoretical results concerning such generic schedules were stud-
ied by de Werra (1981) and Schreuder (1980).

Round Robin Tournaments with One Bye

2. SCHEDULES WITH ONE BYE
In what follows we consider RRT(2n, 2n - 1) . The home-away pattern

of a team i , denoted HAP(i), is a sequence al(i) , a2(i) , . . . , a2,-1(i), where
aj(i) = H if team i plays in round j a game in the home field and aj (i) = A
if team i plays in round j a game in the opponent's field. If the regularity of
the home-away patterns is our top priority, then the most desirable HAP is in-
deed either AHAH.. . AH or HAHA.. . HA in which no subsequence AA
or HH appears. Obviously, one can never find a schedule in which all teams
would have one of these two HAPs. In this case the teams, which start the
season with a home game would never meet. A natural way to measure how
"good" a given schedule is is to count the number of breaks in HAPs. A break
in the HAP of team i is a subsequence AA or HH. Therefore, if we concen-
trate only on HAPs, we can say that the best schedule is the one with the least
number of breaks. By a break game we mean the second game in any sequence
AA or HH. For instance, in the sequence HHHAA the break games are the
games in rounds 2,3,5. Two teams il and i2 have complementary HAPs if
aj (i l) = A if and only if aj(i2) = H.

The best possible schedule with respect to the number of breaks is given by
the following theorem, which was proved by de Werra (1981).

Theorem 1 In an RRT(2n, 2n - I) , the least number of breaks is 2n - 2.
It can be attained in such a way that there are exactly n - 1 teams with a home
break, n - 1 teams with an away break and 2 teams with no break. There are
exactly n - 1 rounds with break games, each of them containing exactly one
home break game and one away break game.

2.1 Odd Number of Teams
It is well known that a schedule for an odd number of teams, 2n - 1, can be

constructed by taking a schedule for 2n teams and leaving out one team (called
the dummy team). Then the team i that was scheduled to play the dummy team
in round j plays no game in that round and is said to have a bye. We denote a
bye in HAP(i) by aj (i) = B. It is also well known that the most commonly
used schedule, sometimes called the canonical or I-rotational schedule has the
nice property that if we let the dummy team be the team 2n, then the remaining
teams have no breaks in their schedules. This includes also no breaks around
byes, that is, there is no sequence AA, HH, HBH, or ABA in any HAP. The
schedule is described in the following construction.

Construction 2 We construct an RRT(2n + 1,2n + 1) . First we introduce
some necessary notation. When a game between teams i and k is scheduled for
round j, wedenote it by g(i, k) = g(k, i) = j . Set g(i, k) = g(k, i) = i+k-1.
Obviously, g(i , i) = 2i - 1 means that the team i has a bye in the round 2i - 1.

FronZek and Meszka

Table I . RRT(7 ,7) .

7 - 2 4 - 6 1 - 3 5 - 7 2 - 4 6 - 1 3 - 5
6 - 3 3 - 7 7 - 4 4 - 1 1 - 5 5 - 2 2 - 6
5 - 4 2 - 1 6 - 5 3 - 2 7 - 6 4 - 3 1 - 7
1 bye 5 bye 2 bye 6 bye 3 bye 7 bye 4 bye

The addition is modulo 2n + 1 with the exception that 0 is replaced by 2n + 1 .
Home field is determined as follows. In the first round, team 1 has a bye, teams
2,3, . . . , n + 1 play home and teams n + 2 , n + 3, . . . ,2n + 1 play away. We
observe that having scheduled a round j, we can obtain opponents for round
j + 1 by adding n + 1 to each team number. That is, if j = g(i, k) = g(k, i) =
i + k - 1 with i playing home and k away, then

and the team (i + n + 1) plays home while (k + n + 1) plays away.

An example of the schedule for seven teams is shown in Table 1. A game
between teams i and k with i playing home is denoted by Ic - i .

Surprisingly, this schedule is the only one with this property. Notice that
for schedules with byes the definition of complementary HAPS of teams i l , i2
requires the following: If a j (i l) = B for some j , then also aj(i2) = B.

Theorem 3 For every n 2 1 there exists an RRT(2n+ 1,2n + 1) such that
no HAP(i) contains any sequence AA, HH, HBH, or ABA. Moreovel; for
each such n, the schedule is unique up to permutation of team numbers.

Proo$ The existence was proved in Construction 2. Now we prove the unique-
ness. First we observe that there is exactly one team with a bye in each round.
In an RRT(2n + 1,2n + 1) we need to play n(2n + 1) games. Because we
can schedule at most n games in each of the 2n + 1 rounds, it is easy to see
that there must be exactly n games in each round.

As opposed to the notation used in Construction 2, we will assume that a
team i , i = 1 , 2 , . . . ,2n + 1, has a bye in the round i . That is, ai(i) = B.
For clarity, we present in Table 2 the schedule for seven teams again following
the notation used in this proof. We can observe that the schedule here can be
obtained from Construction 2 by the permutation ~ (i) = 2i - 1.

We can without loss of generality (WLOG) assume that a2(l) = H, as (l) =
A and so on. Then, because az(2) = B and teams 1 and 2 cannot play in either

Round Robin Tournaments with One Bye

Table 2. RRT(7 ,7) .

6 - 3 7 - 4 1 - 5 2 - 6 3 - 7 4 - 1 5 - 2
4 - 5 5 - 6 6 - 7 7 - 1 1 - 2 2 - 3 3 - 4
2 - 7 3 - 1 4 - 2 5 - 3 6 - 4 7 - 5 1 - 6
1 bye 2 bye 3 bye 4 bye 5 bye 6 bye 7 bye

Table 3. HAP for RRT(2n + 1,2n + 1).

A H A
H A H
A H A
H A H

H A H
B H A
A B H
H A B

round 1 or 2 since one of them has a bye in each of these rounds, we can see that
a1 (2) = A, a3(2) = H, a4(2) = A and so on. For similar reasons, because
a3(3) = B, we have a1(3) = H,a2(3) = A,a4(3) = H , . . . or otherwise
the teams 2 and 3 can never play against each other. Inductively, we can see
that for teams i and i + 1 one of them has to start the schedule with a home
game while the other one with an away game otherwise they never meet. An
example is shown in Table 3.

We introduce some more notation. By S(i , k) we denote the set of all rounds
in which teams i and k can possibly meet. In other words, j E S(i , k) if and
only if aj (i) = H and a j (k) = A or a j (i) = A and a j (k) = H .

We now proceed inductively. First we observe that the teams 1 and 3 can
meet only in round 2 as after round 3 they have both the home games in even
rounds and away games in odd rounds. In general, for any team i , S (i , i + 2) =
i + 1 and hence there is a unique round in which the game between i and i + 2
can be scheduled (team numbers are taken modulo 2n + 1 with the exception
that 0 is replaced by 2n + 1). In particular, for i = 1 ,2 , . . . ,2n + 1 we have

336 Frontek and Meszka

to set g(i, i + 2) = i + 1. Now the teams 1 and 5 can play each other only in
round 3: in rounds 1 and 5 one of them has a bye, in round 2 the team 1 plays
the game against the team 3, and in round 4 the team 5 plays the game against
the team 3. After round 5 their HAPs are equal. We can also check that for
i = 1,2, ..., n w e h a v e S (i , i + 4) = {i+l , i+2, i+3)astherespective
HAPs are equal before round i and after round i + 4. But the game between i
and i + 4 cannot be played in round i + 1, since there is the uniquely determined
game g (i, i + 2). Or, in our notation, i + 1 = g(i, i + 2). Also, this game cannot
be scheduled for round i + 3, as i + 3 = g(i + 2, i + 4). Therefore, we must
have g(i, i + 4) = i + 2.

We continue inductively and suppose that for every i = 1,2, . . . ,2n + 1 all
values g(i, i + 2) , g(i, i + 4) , . . . , g(i, i + 2s) have been uniquely determined.
This indeed means that also the values g(i, i - 2) , g(i, i - 4) , . . . ,g(i , i - 2s)
have been uniquely determined. We want to show that subsequently the game
between i and i + 2s + 2 is also uniquely determined. We can assume here
that 2s 5 2n - 1 because of modularity. Then S (i , i + 2s + 2) = { i +
1, i + 2, . . . , i + 2s - 1). From our assumption it follows that g(i, i + 2) =
i+1 ,g(i , i+4) = i+2 , ... ,g(i , i+2s) = i+s . A l sog (i+2s , i+2~+2) =
i+2s+l, g(i+2s-2, i+2s+2) = i+2s,. . . , g(i+2, i+2s+2) = i+s+2, and
hence the game between i and i + 2s + 2 must be scheduled for round i + s + 1.
We notice here that because of modularity we get here also all games between
teams i and i + 2t + 1, since i + 2t + 1 r i + 2t - 2n (mod 2n + 1). 0

2.2 Even Number of Teams
One can now ask an obvious question: When it is possible to play an

R R T (2 n + 1,2n + 1) with no breaks, is it possible for an RRT(2n , 2n) as
well? The answer is affirmative. Although it may seem unnatural to construct
a schedule that needs one more round than the necessary minimum, we can
find a motivation in North-American collegiate competitions. The teams are
divided into many conferences and it is required that conference games and
non-conference games are distributed according to certain rules. Sometimes
the non-conference games are scheduled before and after a block of conference
games. However, some conferences have schedules where one or more non-
conference games are scattered among conference games. Thus, the schedule
of the conference games is usually non-compact.

The schedule is actually very simple and as in the case of an odd number
of teams, it is also unique up to permutation of team numbers and reflection
of the order of rounds. We first construct such a schedule and then prove the
uniqueness.

Construction 4 Set g(i, k) = g(k , i) = i + k - 1. The addition is modulo
2n with the exception that 0 is replaced by 2n. Obviously, g(i, i) = 2i - 1

Round Robin Tournaments with One Bye

Table 4. RRT(8,8).

R1 R 2 R 3 R 4 R 5 R6 R 7 R 8

8-2 5-6 1 - 3 6 - 7 2 - 4 7 -8 3-5 8 - 1
7-3 4-7 8 -4 5-8 1 -5 6 - 1 2 - 6 7-2
6 - 4 3-8 7-5 4 - 1 8-6 5-2 1 -7 6-3

2-1 3-2 4-3 5-4
1,5 bye 2,6 bye 3,7 bye 4,8 bye

means that the team i has a bye in the round 2i - 1. So the teams with byes
in the first rounds are 1 and n + 1, and we choose as home teams for the first
round the teams 2,3 , . . . , n. Notice that for i = 1 , 2 , . . . , n the teams i and
i + n have complementary home-away patterns with a bye in round 2i - 1.
By setting gl(i, k) = 2n + 1 - g(i, k) we get a tournament with byes in even
rounds.

An example for eight teams is shown in Table 4.

Theorem 5 For every n 2 2 there exists an RRT(2n, 2n) such that no
HAP(() contains any sequence AA, HH, HBH, or ABA. Moreovel; for
each such n, the schedule is unique up to permutation of team numbers and
rejection of the order of rounds.

ProoJ: The existence was proved in Construction 4. Now we prove the unique-
ness. Clearly, each team has exactly one bye, as there are 2n teams and 2n
rounds. First we observe that there are at most two teams with a bye in each
round. Obviously, the number of bye teams in each round must be even. Sup-
pose there are at least four teams, i l , i2 , i3, and i4, having a bye in round j . At
least two teams of the quadruple i l , i2, i s , i4 play their first game either both
away or both home. This is either in round 1 (if j > 1) or in round 2 (if j = 1).
Suppose il and i2 play both an away game. Then their HAPs are equal and they
can never play each other, because they play in each round either both a home
game or both an away game. This contradicts our definition of a round robin
tournament. We also observe that the two teams i , k that have a bye in a week
j (recall that this is denoted by aj (i) = aj (k) = B) must have complementary
schedules.

Now we show that there are at most two teams with a bye in any two con-
secutive rounds. Suppose it is not the case and there are teams il and in with a
bye in a round j and kl and k2 with a bye in the round j + 1 . Let am(il) = A
for some m # j, j + 1. Then from the complementarity of HAPs of kl and ka it
follows that am(kl) = A and a,(k2) = H or vice versa. Suppose the former

Fronbk and Meszka

Table 5. HAP for RRT(2n, 2n).

holds. Then the HAPs of the teams il and kl are equal with the exception of
rounds j and j + 1. Therefore, they cannot play each other except possibly in
round j or j + 1. But a j (i l) = B and aj+l(kl) = B and hence they cannot
play in rounds j or j + 1 either. This is the desired contradiction.

Next we show that there are exactly two teams with a bye in any two con-
secutive rounds. In other words, we prove that the byes occur either in all odd
rounds, or in all even rounds. We again proceed by contradiction. Suppose to
the contrary that there are two consecutive rounds j and j + 1 without byes.
As there are no consecutive rounds with byes, it must happen that j is even
and the byes occur precisely in rounds 1,3 , . . . , j - 1 , j + 2 , . . . ,2n. But then
there are teams il and i2 with HAP(i l) = BAHA.. . H A and HAP(i2) =
BHAH . . . AH and also teams kl and kg with HAP(kl) = AHA. . . HAB
and HAP(k2) = HAH . . . AHB. Obviously, teams il and k2 can never play
each other since their HAPs are equal except for weeks 1 and 2n, when one
of them has a bye. This contradiction shows that we can WLOG assume that
byes occur in weeks 1,3, . . .2n - 1.

Therefore, we define HAPs of respective teams as follows. For i = 1,2, . . . , n
we have a2i-l (i) = a2i-l (n + i) = B. For i = 2,3, . . . , n we have al (i) = H
and al(n + i) = A. An example is shown in Table 5.

Round Robin Tournaments with One Bye 339

We again proceed by induction. First we observe that for any team i, S(i, i+
1) = {i) and hence there is a unique round in which the game between i and
i + 1 can be scheduled (team numbers are taken modulo 2n with the exception
that 0 is replaced by 2n). In particular, for i = 1,2, . . . , n we have to set
g(i, i + 1) = 2i and g(n + i, n + i + 1) = 2n - 2i. We can also check that for
i = 1,2, ... ,nwehaveS(i , i+2) = S(n+ i ,n+ i+2) = {2i,2i+l,2i+2).
But the game between i and i + 2 cannot be played in round 2i, since there is
the uniquely determined game g(i, i + 1). Or, in our notation, 2i = g(i, i + 1).
Also, this game cannot be scheduled for round 2i + 2, as 2i + 2 = 2(i + 1) =
g(i + 1, i + 2). The games between n + 1 and n + i + 2 can be argued similarly.
Therefore, we must have g(i, i + 2) = g(n + i, n + i + 2) = 2i + 1.

We can now continue inductively and suppose that for every i = 1,2, . . . ,2n
all values g(i, i + I) , g(i, i + 2), . . . , g(i, i + s) are uniquely determined. This
indeed means that also the values g(i, i - I), g(i, i - 2), . . . , g(i, i - s) are
uniquely determined. We want to show that subsequently the game between i
and i+s+l is also uniquely determined. We can assume here that s 5 n- 1 be-
cause of modularity. Then S(i, i + s + 1) = {2i, 2i + 1, . . . ,2i + 2s). From our
assumption it follows that g(i, i + l) = 2i, g(i, i+2) = 2i+l , . . . , g(i, i+s) =
2 i + s - 1. A l s o g (i + l , i + s + l) = 2i + s + l , g (i + 2 , i + s + l) =
2i + s + 2, g(i + s , i + 1) = 2i + 2s, and hence the game between i and
i + s + 1 must be scheduled for round 2i + s. 0

We observe that even if we consider a non-conference game to be scheduled
in each conference bye slot, a schedule with the perfect HAP without breaks
for more than two teams again cannot be found. The reason is the same as
when we considered the compact schedule. Suppose there are more than two
teams with a perfect HAP. Then two of them begin with a home game and no
matter when they play their respective non-conference games, they again never
play against each other.

In this paper we focused on schedules for 1-leg tournaments. Although
there are competitions where 1-leg tournaments are widely used (e.g., chess
tournaments, North-American collegiate football conferences, etc), 2-leg tour-
naments are much more common. It is natural to examine extensions of our
schedules to 2-leg tournaments. The extension for 2n teams is easy and natu-
ral, because after swapping the home and away games in the second leg we get
no breaks. For 2n + 1 teams, however, each team has a break between the first
and second leg, that is, between the rounds 2n + 1 and 2n + 2. This can be
avoided only by reversing the order of rounds in the second leg. This indicates
that the new schedule for 2n teams, which we have constructed here may find
its way to real life and we certainly hope it will.

Finally, we observe that if we number the teams and rounds O,1,. . . ,2n
or O,1,. . . ,2n - 1, respectively, and disregard the home and away games,
the game assignment function can be now defined in both cases as gl(i, k) =

340 Frontek and Meszka

gl(Ic, i) = i + Ic which is corresponding to the additive group of order 2n + 1
or 2n, respectively.

Acknowledgments
Research for this paper was in part supported by the University of Minnesota

Duluth Grant 177-1009 and by AGH University of Science and Technology
Local Grant 11.420.04. The authors would like to thank the anonymous refer-
ees whose thoughtful comments and suggestions helped them to improve the
quality of this paper.

References
de Werra, D. (1981) Scheduling in sports. In Studies on Graphs and Discrete Programming,

North-Holland, Amsterdam, pp. 381-395.
Dinitz, J. and Froncek, D. (2000) Scheduling the XFL. Congressus Numerantium, 147:5-15.
Finizio, N. J. (1993) Tournament designs balanced with respect to several bias categories. Bul-

letin ICA, 9:69-95.
Griggs, T. and Rosa, A. (1996) A tour of European soccer schedules, or Testing the popularity

of GK2,. Bulletin ICA, 18:6548.
Henz, M. (1999) Constraint-based round robin tournament planning. In Proceedings of the In-

ternational Conference on Logic Programming, MIT Press, Cambridge, MA, pp. 545-557.
Henz, M. (2001) Scheduling a major college basketball conference-revisited. Operations Re-

search, 49(1).
Henz, M., Miiller, T. and Thiel, S. (2003) Global constraints for round robin tournament schedul-

ing, European Journal of Operations Research, 153:92-101.
Nemhauser, G. and Trick, M. A. (1998) Scheduling a major college basketball conference. Op-

erations Research, 46: 1-8.
Schaerf, A. (1999) Scheduling sports tournaments using constraint logic programming. Con-

straints, 4:43-65.
Schreuder, J. A. M. (1980) Construction timetables for sports competitions. In Combinatorial

Optimization 11 (Conference Proceedings, University of East Anglia, 1979), Mathematical
Programming Study, 13:58-67.

Schreuder, J. A. M. (1992) Combinatorial aspects of construction of competition Dutch profes-
sional football leagues. Discrete Applied Mathematics, 35301-3 12.

Straley, T. H. (1983) Scheduling designs for a league tournament. Ars Combinatoria, 15193-
200.

Trick, M. A. (2000) A Schedule-then-break approach to sports timetabling. In Practice and The-
ory of Automated Timetabling 111, E. Burke and W. Erben (Eds.), Lecture Notes in Computer
Science, Vol. 2079, Springer, Berlin, pp. 242-253.

UEFA (2004) www.uefa.com/uefalmembersl

Transport Scheduling

RAIL CONTAINER SERVICE PLANNING:
A CONSTRAINT-BASED APPROACH

Nakorn Indra-Payoong, Raymond S K Kwan, Les Proll
School of Computing, University of Leeds, Leeds, LS2 .IT UK
{ nakorn, rsk, lgp) Qcornp.leeds.ac.uk

Abstract This paper considers a container rail service planning problem, in which cus-
tomer demands are known in advance. The existing rail freight optimisation
models are complex and not demand responsive. This paper focuses on con-
structing profitable schedules, in which service supply matches customer de-
mands and optimises on booking preferences whilst satisfying regulatory con-
straints. A constraint satisfaction approach is used, in which optimisation crite-
ria and operational requirements are formulated as soft and hard constraints re-
spectively. We presen; a constraint-based search algorithm capable of handling
problems of realistic size. It employs a randomised strategy for the selection of
constraints and variables to explore, and uses a predictive choice model to guide
and intensify the search within more promising regions of the space. Experimen-
tal results, based on real data from the Royal State Railway of Thailand, have
shown good computational performance of the approach and suggest significant
benefits can be achieved for both the rail company and its customers.

Keywords: rail container service planning, local search, constraint-based approach.

1. INTRODUCTION
The transportation of rail freight is a complex domain, with several pro-

cesses and levels of decision, where investments are capital-intensive and usu-
ally require long-term strategic plans. In addition, the transportation of rail
freight has to adapt to rapidly changing political, social, and economic environ-
ments. In general, the rail freight planning involves four main processes: path
formulation, fleet assignment, schedule production, and fleet repositioning.
This paper addresses an issue in schedule production, constructing profitable
schedules for the container rail service, using a constraint-based approach.

1 . Container Rail Service Planning Problem
Container rail service differs from conventional freight rail in several im-

portant aspects. Because of the high costs of container handling equipment,

Tentative schedule Slack

Indra-Payoong, Kwan and Prull

Fixed schedule

Figure I . A short-term advance booking scheme.

container rail networks have relatively few, and widely spaced, terminals. Net-
works with a small number of terminals are common and the network flows
are relatively simple. A typical container makes few or no stops and may be
transferred between trains only up to a few times on its journey. In addition,
small lot sizes of shipment, frequent shipment, and demand for flexible service
are important characteristics of rail container transportation.

This paper considers the container rail service from a container port to an
inland container depot (ICD). Once containers arrive at the port, there is a need
to move them to their final customers, which can be done by rail or truck via
ICD, or by truck direct to the final destinations.

A rail carrier's profitability is influenced by the railway's ability to con-
struct schedules for which service supply matches customer demand. The need
for flexible schedules is obvious because the take-up of some services in a
fixed schedule may be low and not profitable. In order to create a profitable
timetable, a container rail carrier needs to engage in a decision-making process
with multiple criteria and numerous constraints, which is very challenging.

This paper assumes an advance booking scheme as illustrated in Figure 1.
It also assumes that all containers are homogeneous in terms of their physical
dimensions, and they will be loaded on trains ready for any scheduled departure
times.

Customers are requested to state a preferred departure timeslot or an earliest
departure time in advance. A number of alternative departure timeslots for
each shipment may be specified, which might be judged from experience or
estimated by the customer's delay time functions. These alternatives not only
help a rail carrier consolidate customer demands to a particular train service
with minimum total costs, but also provide flexible departure times for the
customer's transport planning strategy.

1.2 Literature Review
There are two principal areas of work relating to the application domain and

the solution approach.

Rail Container Service Planning 345

Application domain. There is an increasing interest in flexible rail freight
schedules in the literature, which may be distinguished into two types accord-
ing to how the overall demand is met. Huntley et al. (1995), Gorman (1998)
and Arshad et al. (2000) aggregate customers with minimum operating costs
through flexible scheduling. They do not propose to meet individual demands.
Newman and Yano (2000), Yano and Newman (2001) and Kraft (2002) share
the same spirit of our study by being responsive to individual demands.

The models proposed by Newman and Yano (2000), Yano and Newman
(2001) and Kraft (2002) satisfy the operational constraints fully for each cus-
tomer. In contrast, our framework models customer satisfaction, computed
from preferred and alternative departure times, which is then maximised as
one of the business criteria. Hence, some customers might not be given their
most preferred departure times. This framework is more natural for supporting
decision-makers, in which a rail carrier can measure how well their customers
are satisfied and the implications of satisfying these customers in terms of cost.

Solution approach. As the size of the problem that needs to be rou-
tinely solved in the rail freight industry is large, local search methods, such
as simulated annealing, tabu search, genetic algorithms, etc, have been em-
ployed to produce near-optimal solutions. For instance, Huntley et al. (1995)
applied simulated annealing to the problem of rail freight routing and schedul-
ing, Marin and Salmeron (1996) evaluated a descent method, simulated an-
nealing, and tabu search for solving large size rail freight networks, Gorman
(1998) used a tabu-enhanced genetic algorithm for solving the freight railroad
operating plan problem, and Arshad et al. (2000) combined constraint pro-
gramming with a genetic algorithm to solve the multi-modal transport chain
scheduling problem. A recent survey of optimisation models for train routing
and scheduling is given by Cordeau et al. (1998). However, these approaches
are complex and highly domain specific; thus they lose flexibility and the sus-
tainability to solve rail container optimisation models in which the rail business
strategy keeps changing.

The concept of domain-independent algorithms is always attractive and may
be appropriate for our problem. There are many algorithms in this class; for ex-
ample, Connolly (1992) introduced general purpose simulated annealing (GP-
SIMAN), Abramson and Randall (1999) extended GPSIMAN to solve integer
programs (INTSA), and Nonobe and Ibaraki (1998) proposed a tabu search
approach as a general solver for a constraint satisfaction problem.

In contrast, our approach is inspired by SAT local search for the satisfiabil-
ity (SAT) problem (Gomes et al., 1998; Selman et al., 1992, 1994). SAT is
a problem of deciding whether a given Boolean formula is satisfiable. When
the problem is not solvable in polynomial time by exact algorithms, SAT local
search might be employed. An attractive framework of SAT local search is that

346 Indra-Payoong, Kwan and Pmll

the structure of the local move is simple. GSAT and WalkSAT are well-known
local search techniques for SAT problems (Selman et al., 1992, 1994). SATz-
Rand, introduced by Gomes et al. (1998) is a recent solver for SAT problems.
Walser (1999) extended WalkSAT to WSAT(O1P) for solving integer program-
ming problems.

However, our problem encoded into a Boolean formula or 0-1 integer con-
straints would be large and the solution structure may be difficult to maintain
by simple local move with a randomised strategy, as performed by SAT local
search and other domain-independent algorithms. One way to enhance the al-
gorithm whilst maintaining a simple structure of local move is to build in learn-
ing capabilities in the algorithm. We propose a predictive choice model that
learns from the search history in order to fix locally some variables, and enforce
the consistency between different sets of variables. The model addresses the
case in which all decision variables are binary. Our predictive learning algo-
rithm has some similarities to other algorithms based on probabilistic models
(Horvitz et al., 2001; Larraaga and Lozano, 2002; Marin and Salmeron, 1996;
Resende and Ribero, 2001). All these algorithms attempt to draw inferences
specific to the problem and therefore can be regarded as processes for learn-
ing domain knowledge implicitly. However, the formulation and application
of the models are different. Our predictive model is based on a discrete choice
theory of human behaviour for choosing a particular value for variables in a
probabilistic way, whilst the others are based on different theories and use the
probabilistic models to limit the search space at different points of process.

The paper is organised as follows. We first define the hard and soft con-
straints and model the problem as a constraint satisfaction problem. The solu-
tion algorithm will be described next. Experimental results, based on real data
from the Royal State Railway of Thailand will be presented. Finally, conclu-
sions are discussed.

2. CONSTRAINT-BASED MODELLING
Real-world problems tend to have a large number of constraints, which may

be hard or soft. Hard constraints require that any solutions will never violate
the constraints. Soft constraints are more flexible, constraint violation is toler-
ated but attracts a penalty. Naturally, a real-world problem can be thought of
as a constraint satisfaction problem (CSP).

There are two critical advantages of using constraint-based modelling.
Firstly, it is a clean separation between problem modelling and solution tech-
nique. If new problem conditions are introduced, we only need to model such
conditions as constraints. Secondly, problem-specific knowledge can influ-
ence the search naturally. This is done by applying problem-specific weights,

Rail Container Service Planning 347

reflecting their relative importance, directly to constraints in order to enhance
a solution algorithm within a CSP framework.

We model the demand-responsive container rail scheduling problem as a
CSP and introduce a constraint-based search for solving this class of CSP. We
consider problems in which the day is divided into hourly slots for weekly
booking and scheduling. The following notation will be used.

Subscripts:
t schedulable timeslot (departure time), t = 1,2 ,3 , . . ., T.
j customer, j = l ,2 ,3 , . . . , M .

Sets:
Sj set of possible departure timeslots for customer j.
Ct set of potential customers for departure timeslot t .
R set of service restrictions for departure timeslots.

Decision variables:
xt 1, if a train departs in timeslot t , 0 otherwise.
ytj 1, if customer j is served by the train departing in timeslot t ,

0 otherwise.

Parameters:
wtj customer j satisfaction in departure timeslot t .
rt train congestion cost in departure timeslot t.
gt staff cost in departure timeslot t.
P2 capacity of a train (number of containers).
Nj demand of customer j (number of containers).

Our problem may be thought of as analogous to a capacitated facility (ware-
house) location problem (CFLP) (Aardal, 1998; Beasley, 1988), with the con-
tainer shippers being the customers, and the train departure timeslots being
analogous to the possible warehouse locations. The CFLP class of prob-
lems also include location and distribution planning, capacitated lot sizing
in production planning, and communication network design (Boffey, 1989;
Kochmann and McCallum, 1981), etc. However, in contrast to the CFLP, our
problem is recurrent with complex interaction between the possible warehouse
locations. We handle non-uniform demands that arrive at the container port
dynamically with distinct target times to their final destinations. In addition,
we include in our model a probabilistic decrease in customer satisfaction as the
schedulable timeslots deviate from the customer target time.

In a CSP-model, optimisation criteria and operational requirements are rep-
resented as soft and hard constraints respectively. The criteria are handled by
transforming them into soft constraints. This is achieved by expressing each

348 Indra-Payoong, Kwan and Proll

criterion as an inequality against a tight bound on its optimal value. As a result,
such soft constraints are rarely satisfied.

A feasible solution for a CSP representation of the problem is an assign-
ment to all constrained variables in the model that satisfies all hard constraints,
whereas an optimal solution is a feasible solution with the minimum total soft
constraint violation (Henz et al., 2000; Lau et al., 2001; Walser, 1999). For
a constraint satisfaction problem, the violation vi of constraint i is defined as
follows:

where au are coefficients, bi is a tight bound and xj are constrained variables.
Note that violations for other types of linear and non-linear constraints can be
defined in an analogous way.

When all constrained variables are assigned a value, the violation of the hard
and soft constraints can be tested and quantified for evaluating local moves.

2.1 Soft Constraints
The number of trains. The aim is to minirnise the number of trains on a

weekly basis, which is defined as

where O is a lower bound on the number of trains, e.g. [(x j ~ j) 1 ~ 2 1 .

Customer satisfaction. This constraint aims to maximise the total cus-
tomer satisfaction. The satisfaction is assigned values from a customer satis-
faction function (e.g., Figure 2). Each customer holds the highest satisfaction
at a preferred booking timeslot, the satisfaction then decreases probabilistically
to the lowest satisfaction at the last alternative booking timeslot, i.e. later than
preferred booking timeslots would cause a decrease in the future demand, and
the rail carrier is expected to take a loss in future revenue. For the evaluation
of a schedule, the probability of customer satisfaction is then multiplied by
demand N j . The customer satisfaction constraint can be expressed as

where R is an upper bound on customer satisfaction, i.e. C W j N j , with W j
j

the maximum satisfaction on the preferred booking timeslot for customer j.

Rail Container Service Planning 349

Timeslot operating costs. This constraint aims to minimise the operating
costs. A rail carrier is likely to incur additional costs in operating a demand
responsive schedule, in which departure times may vary from week to week.
This may include train congestion costs and staff costs. The train congestion
cost reflects an incremental delay resulting from interference between trains
in a traffic stream. The rail carrier calculates the marginal delay caused by
an additional train entering a particular set of departure timeslots, taking into
account the speed-flow relationship of each track segment. The over-time costs
for crew and ground staff would also be paid when evening and night trains are
requested. The constraint is defined as

where (A + 6) is a lower bound on the timeslot operating costs, X = C rt, T,
tET,

is the set of 8 least train congestion costs, 6 = C gt, Tb is the set of 8 least
tETh

staff costs, 8 is a lower bound on the number of trains.

2.2 Hard Constraints
'Rain capacity. This constraint ensures the demand must not exceed the

capacity of a train, which is defined as

Coverage constraint. It is a reasonable assumption that in practice cus-
tomers do not want their shipment to be split in multiple trains, this constraint
ensures that a customer can only be served by one train. The constraint is given

Timeslot consistency. This constraint ensures that if timeslot t is selected
for customer j , a train does depart at that timeslot. On the other hand, if de-
parture time t is not selected for customer j , a train may or may not run at that
time. The constraint is defined as

Service restriction. This is a set of banned departure times. The re-
strictions may be pre-specified so that a railway planner schedules trains to

350 Indra-Payoong, Kwan and Proll

achieve a desirable headway or to avoid congestion at the container terminal.
The constraint is defined as

2.3 Implied Constraints
The soft and hard constraints completely reflect the requisite relationships

between all the variables in the model, i.e. the operational requirements and
business criteria. Implied constraints, derivable from the above constraints,
may be added to the model. While implied constraints do not affect the set
of feasible solutions to the model, they may have computational advantage in
search-based methods as they reduce the size of the search space (Proll and
Smith, 1998; Smith et al., 2000).

Timeslot covering. A covering constraint can be thought of as a set cov-
ering problem in which the constraint is satisfied if there is at least one depar-
ture timeslot xt serving customer j . This constraint favours a combination of
selected departure timeslots that covers all customers. The covering constraint
is defined as

C x t 2 1 W (9)
t€Sj

2.4 Customer Satisfaction
A rail carrier could increase the quality of service by tailoring a service that

satisfies customers. The rail schedule may be just one of the factors including
cost, travel time, reliability, safety, and so forth. As customers have different
demands, it is hard to find a single definition of what a good quality of service
is. For example, some customers are willing to tolerate a delayed service in
return for sufficiently low total shipping costs.

In this paper, we only investigate customer satisfaction with respect to the
rail schedule. To acquire the customer satisfaction data, face-to-face interviews
were carried out. This survey includes 184 customers currently using both rail
and trucking services or using only rail but with the potential to ship by truck in
the future. To quantify customer satisfaction, customer satisfaction functions
were developed. Total shipping costs associated with movement by different
modes are calculated as a percentage of commodity market price or value of
containerised cargo, expressed in price per ton. Average shipping costs of the
cargo from survey data and the market price (Ministry of Commerce, 2002)
are summarised in Table 1.

We assume that all customers know a full set of shipping costs, and can
justify modal preferences on the basis of accurately measured and understood
costs. The freight rate may be adjusted by the relative costs that a customer

Rail Container Service Planning

Table I . Modal cost for a transport mode.

Cost tunit price Market Modal cost (%)
Cargo typestcost Truck Rail price Truck, CT Rail, CR AC

Freight rate
5 p e 1
5 p e 11
Qpe I11
5 p e IV

Terminal handling charge
5 p e 1
5 p e 11
5 p e I11
5 p e IV

Terminal storage charges
(within free time storage)

Overhead cost
(within free time storage)

Total shipping costs
S P ~ I
Q P ~ 11
5 p e I11
5 p e IV

may be willing to pay to receive superior service. For example, some cus-
tomers may have higher satisfaction using a trucking service even if the explicit
freight rate is higher; speed and reliability of the service may be particularly
important if the containerised cargo has a short shelf life.

To determine customer satisfaction between modes, modal cost percentages
are then applied to an assumed normal distribution (Indra-Payoong et al., 1998)
and the difference between modal cost percentages, i.e. AC = CT - CR. The
customer satisfaction derived from the cumulative probability density function
is illustrated in Figure 2.

Once the satisfaction function has been developed, a customer satisfaction
score can be obtained from the modal satisfaction probability. This probability
could also be used to predict the market share between transport modes and to
test the modal sensitivity when the rail schedule is changed.

The customer satisfaction is a probability of choosing rail service; hence sat-
isfaction ranges from 0 to 1. Note that all customers currently using container
rail service may already hold a certain level of satisfaction regardless of taking
the quality of rail schedule into account. Once the rail carrier has been chosen
as transport mode and later the schedule is delayed, customers incur additional

Indra-Payoong, Kwan and Proll

1 .oo
= 0.90
E 0.80

0.70
c 0.60
g 0.50

0.40
'G 0.30 .-
;ii 0.20 * 0.10

0.00

3.75 4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25

Modal cost percentage AC

Figure 2. Customer satisfaction function of cargo type 11.

total shipping costs, i.e. terminal storage and overhead costs involved at the
seaport. This would result in a decrease in customer satisfaction.

2.5 Generalised Cost Function
For the evaluation of a schedule, a cost function taking into account the

number of trains can be expressed in terms of operating costs; but it is hard
to express customer satisfaction using a monetary unit. We shall express the
customer satisfaction on a rail scheduling service in terms of shipping costs
related to the delay time. We introduce the term "virtual revenue loss" as a unit
cost. This term is derived from the difference in probability of choosing the
rail service between the preferred timeslot and the alternatives. The probability
is then multiplied by a demand and freight rate per demand unit. Therefore, a
generalised cost function, GC, is the sum of the operating costs and the virtual
loss of revenue:

where FC is a fixed cost of running a train, F R is a freight rate per demand
unit (ton-container), sl, s2 and s3 are soft constraint violations for the num-
ber of trains, customer satisfaction, and timeslot operating costs constraints
respectively.

3. SOLUTION ALGORITHM
We propose a constraint-based search algorithm (CBS) for solving the con-

straint satisfaction problem. The algorithm consists of two parts: CBS based on
a randomised strategy and a predictive choice learning method, which guides
and intensifies the search.

Rail Container Service Planning

3.1 Constraint-Based Search Algorithm
Points in the search space correspond to complete assignment of 0 or 1 to

all decision variables. The search space is explored by a sequence of sample
randomised moves which are influenced by the violated hard constraints at the
current point.

The CBS starts with an initial random assignment, in which some hard con-
straints in the model can be violated. In the iteration loop, the algorithm ran-
domly selects a violated constraint: e.g., the assigned train timeslot for which
the demands exceed train capacity. Although different constraint selection
rules have been studied for SAT local search (McAllester et al., 1997; Parkes
and Walser, 1996; Walser, 1999), for instance choosing the violated constraint
with maximum or minimum violation, none have been shown to improve over
random selection.

Having selected a violated constraint, the algorithm randomly selects one
variable in that constraint and another variable, either from the violated con-
straint or from the search space. Then, two flip trials are performed, i.e. chang-
ing the current value of the variable to its complementary binary value. Sup-
pose that V, takes the value vi at the start of the iteration, so that A =
(v l , 212, . . . , urn[h) , where m is the total number of variables and h is the total
violation of all hard constraints. Suppose further that V1,V2 are chosen and that
their flipped values are 81, 82 respectively. We then look at the assignments
A1 = (81, v2, . . . , urn 1 h l) , A2 = (v l , 82, . . . , urn 1 h2) and select the alterna-
tive with the smaller total hard violation. Whenever all hard constraints are
satisfied, the algorithm stores the soft violation penalties as feasible objective
values, together with the associated variable values. The algorithm continues
until the stopping criterion is met, i.e. a feasible solution is found or if no
improvement has been achieved within a specified number of iterations. The
procedure of CBS is outlined in Figure 3.

The procedure can be readily modified to give a set of feasible solutions and
to make more use of the soft constraints, which in the procedure of Figure 3
are largely ignored. We do not do so here but do in the context of an enhanced
procedure incorporating the predictive choice model in the following section.

3.2 Predictive Choice Model
The first development of choice models was in the area of psychology (see

Marder, 1997). The development of these models arose from the need to ex-
plain the inconsistencies of human choice behaviour, in particular consumer
choice in marketing research. If it were possible to specify the causes of these
inconsistencies, a deterministic choice model could be easily developed.

These causes, however, are usually unknown or known but very hard to
measure. In general, these inconsistencies are taken into account as random

Indra-Payoong, Kwan and Proll

proc CBS
input soft and hard constraints
A := initial random assignment
while not stopping criterion do

C := select-violated-hard-constraint (A)
P := select-two-variables (C, A)
A1, A2 := flip(A, P)
if (hl < hp) then (A t A1)
else (A c A2)
if h = 0 then A is feasible, record solution A
end if

end while
output a feasible solution found

end proc

Figure 3. The constraint-based search procedure.

behaviour. Therefore, the choice behaviour could only be modelled in a prob-
abilistic way because of an inability to understand fully and to measure all the
relevant factors that affect the choice decision.

Deciding on a choice of value for a variable in a CSP is not obviously similar
to the consumer choice decision. However, we could set up the search algo-
rithm to behave like the consumer behaviour in choice selection. That is, we
consider the behavioural inconsistencies of the algorithm in choosing a good
value for a variable.

For general combinatorial problems, a particular variable may take several
different values across the set of feasible solutions. Thus it may never be pos-
sible to predict a consistently good value for the variable during the search.
However, when the problem is severely constrained and has few feasible solu-
tions, it may well be that some variables take a more consistent value in all the
feasible solutions during the search. The predictive choice model is intended to
discover such values and to use them to steer the search. Note that for the con-
tainer rail scheduling model in Section 2, the problem becomes more severely
constrained as the value of minimum train loading increases (Section 3.3).

Violation history. Once a variable has been selected, the algorithm has
to choose a value for it. The concept is to choose a good value for a variable:
e.g. the one that is likely to lead to a smaller total hard constraint violation
in a complete assignment. In our constraint-based search algorithm, two vari-
ables are considered at each flip trial. The first variable is randomly chosen

Rail Container Service Planning

Table 2. Violation history.

Variable of interest XI Compared variable xj
Flip Current Flipped Current Flipped
trial Val hl Val hi j Val hz Val hi xi

1 1 26 0 22 15 1 26 0 36 0
2 1 2 0 0 1 2 9 0 2 0 1 6 1
3 1 15 0 14 30 0 15 1 10 1
N 0 4 6 1 5 3 8 0 4 6 1 3 1 0

from those appearing in a violated constraint and considered as the variable
of interest; the second variable is randomly selected, either from that violated
constraint or from the search space, and is to provide a basis for comparison
with the variable of interest.

Clearly, the interdependency of the variables implies that the effect of the
variable value chosen for any particular variable in isolation is uncertain. Flip-
ping the first variable might result in a reduction in total hard constraint vio-
lation. However, it might be that flipping the second variable would result in
even more reduction in the violation. In this case, the flipped value of the first
variable is not accepted.

In Table 2, the variable of interest is xl and the compared variable is xj;
the two variables are trial flipped in their values; the violations associated with
their possible values are recorded and compared. In this table, h is the total
hard violation, xTis the value of xl chosen in the flip trial. Note that only hl,
hi, and x? are recorded for the violation history of XI.

In flip trial 1 the selected variables are xl (current value 1) and, separately,
$15 (current value 1). The current assignment has violation = 26. Flipping XI,
with 215 fixed at 1, gives violation = 22; flipping 215, with xl fixed at 1, gives
violation = 36. Hence in this trial the algorithm records xl = 0 as the better
value. At some later iteration the algorithm chooses to flip xl again, this time
(flip trial 2) with compared variable xg. Flipping XI, with x9 fixed at 0, gives
violation = 12; flipping 29, with xl fixed at 1, gives violation = 6. Although
flipping xl to 0 gives a better violation than the current assignment, in this flip
trial the algorithm records xl = 1 as the better value as there is an assignment
with xl = 1 which gives an even better violation. If we view the results of
these flip trials as a random sample of the set of all assignments, we can build
up a predictive model to capture the behavioural inconsistency in the choice
selection and to predict what would be a "good" value for XI.

356 Indra-Payoong, Kwan and Pro11

Utility concept. The predictive choice model is based on the random util-
ity concept (Anderson et al., 1992; Ben-Akiva and Lerman, 1985). Choosing a
good value for a variable in each flip trial is considered as a non-deterministic
task of the search algorithm. The algorithm is designed to select a choice of
value for a variable that has a maximum utility.

However, the utility is not known by the algorithm with certainty and is
therefore treated as a sum of deterministic and random utilities. The utility is
defined as follows:

uo = Vo + €0 (1 1)
where Uo is an overall utility for the algorithm choosing value 0, Vo is a de-
terministic utility for the algorithm choosing value 0, EO represents inconsis-
tencies (uncertainties) in the choice selection, measurement errors and unob-
served choice decision factors, and is a random utility for the algorithm choos-
ing value 0.

For each flip trial, the algorithm selects value 0, when flipping a variable to
0 is preferred to 1. This can be written as follows:

The random utilities EO and ~1 may cause uncertainty in the choice selection,
i.e. Uo might be greater than Ul or Ul might be greater than Uo, even if the
deterministic utility satisfies Vo > Vl. From this point, the probability for
the algorithm choosing value 0 is equal to the probability that the utility of
choosing value 0, Uo, is greater than the utility of choosing value 1, Ul. This
can be written as follows:

where Po is the probability for the algorithm choosing value 0.
Thus,

PO = Prob [(& - 6) > (€1 - EO)] (14)

To derive a predictive choice model, we require an assumption about the joint
probability distribution of the random utilities €1 and EO.

Joint probability distribution. To derive the joint probability distribu-
tion of the random utilities ~1 and EO, the difference between the random util-
ities, i.e. E' = €1 - €0, is used. However, E' is unknown by the algorithm. We
use the difference between deterministic utilities, i.e. V' = Vl - Vi, to inves-
tigate the probability distribution of E' because the deterministic and random
utilities are the components of the overall utility U.

We can now look for an appropriate functional form for the distribution of
V'. From the central limit theorem (Trotter, 1959), whenever a random sample
of size n (n > 30) is taken from any distribution with mean p and variance

Rail Container Service Planning 357

a2, then the sample would be approximately normally distributed. We perform
the Shapiro-Wilk test and Kolmogorov-Smirnov test (Patrick, 1982; Shapiro
and Wilk, 1965) to find out whether the non-deterministic component appears
to follow any specific distribution. From our experiments and the central limit
theorem, we are first encouraged to assume normality of the distribution.

Although the normal distribution seems reasonable based on the central
limit theorem, it has a problem with not having a closed probability function
form, i.e. the PDF is expressed in terms of an integral; thereby it is computa-
tionally intractable. The logistic function is therefore chosen instead because
its distribution is an approximation of the normal law (Kallenberg, 1997). Un-
der the assumption that V' is logistically distributed, applying a standard logis-
tic distribution function and probability theory, a specific probabilistic choice
model, the logit model (Anderson et al., 1992; Ben-Akiva and Lerman, 1985),
can be obtained as follows:

where Po is the probability for the algorithm choosing value 0.

Violation function. For any flip trial, the deterministic utility V may be
characterised by many factors. In this research, the utility is determined by
the total hard constraint violation h. This is because it can easily be measured
by the algorithm and gives a reasonable hypothesis to the choice selection. In
other words, we would like to use a function of deterministic utility for which
it is computationally easy to estimate the unknown parameters.

We define a function that is linear in its parameters. A choice specific pa-
rameter is introduced so that one alternative is preferred to the other when the
total hard violation is not given, i.e. the choice decision may be explained by
other factors. The deterministic utility functions for Vo and Vl are defined as

where PI is the choice specific parameter, P2 is the violation parameter, and ho
and hl are the total hard violations when a variable is assigned a value to 0 and
1 respectively.

We could now use the predictive choice model to predict a value for a par-
ticular variable from an individual flip trial. However, the predictions for an
individual flip trial may not reliably help the algorithm make a decision on
what a good value for a variable would be. Instead, we use an aggregate quan-
tity, i.e. a prediction for the value choice based on a set of trials. We use the
arithmetic mean of the total hard violation to represent the aggregate of N flip

358 Indra-Payoong, Kwan and Pmll

trials, which can be written as

where ho and h1 are the average total hard violations when a variable is as-
signed a value 0 and 1 respectively.

Logit method. When an occurrence of any choice value x* is not ob-
viously dominating (Table 2), the logit method is called. As a statistical way
to estimate the utility's parameter values requires a significant computational
effort, we introduce a simplified estimation, in which logit method only ac-
counts for the constraint violation. We set the choice-specific parameter a to
any small value, e.g. pl = 0.05, so that the utility of one alternative is preferred
to the other. This is because an equal utility lies outside the assumption of the
choice theory. Then, the relative difference between ho and hl, Ah, is used in
order to characterise the value choice selection. Ah is defined as follows:

where ho and h1 are the average total hard violations when a variable is trial
flipped or assigned a value 0 and 1 respectively.

From (19), when the value of Ah is large, the probabilities of two alterna-
tives (value 0 and 1) would be significantly different, and when Ah = 0, the
probabilities of the two alternatives would tend to be equal. Ah is shown in a
proportional scale so that the formulation could be generalised for a combina-
torial problem in which the total hard violation and a number of flip trials can
be varied. Then, we use a simplified estimation of P2 as follows:

where P2 is the violation parameter.

Proportional method. This method is also based on a probabilistic
mechanism in the sense that the algorithm may select the current value of the
variable even though flipping that variable to the other value gives a lower
violation.

The proportional method is more straightforward than the logit method. The
choice selection is only affected by the number of occurrences of choice val-
ues in z*, i.e. the constraint violation is not explicitly considered. This method
is developed and used to enhance the choice prediction by the simplified es-
timation of the utility's parameters when Lo and h1 are close. In this case

Rail Container Service Planning 359

the logit method may not perform well. In addition, this method requires less
computation than the logit method. The proportional method is defined as

where Po is the probability for the algorithm choosing value 0, x;j is the number
of occurrences of value 0 in x*, N is the number of flip trials.

An outcome of the predictive choice model is the probability of choosing a
particular value for a variable. The timeslot and customer's booking variables
(xt and ytj) are chosen for flip trials, but propagation of their values for con-
sistency may not be carried out fully all the time. At the beginning, constraint
propagation is only carried out within each of the sets xt and ytj, but not across
the two sets of variables, in order to promote wider exploration of the search
space.

After a specified number of iterations, the trial violation history is analysed.
Some variables may have high probability of a particular value given by the
predictive choice model. These variables will be fixed at their predicted value
for a number of iterations determined by the magnitude of the associated prob-
ability. At this point, consistency between timeslots and customer's bookings
variables is enforced, leading to intensified exploration of the neighbouring
search space. When the fixing iteration limit, F, is reached, the variable is
freed and its violation history is refreshed.

3.3 Minimum Train Loading
The constraint-based search assigns a fixed number of trains according to

the number of trains expected, which is derived from the minimum train load-
ing. In other words, a fixed number of timeslots used is maintained during the
search process, which can be written as

where Texp is the number of trains expected.
Setting a minimum train loading ensures satisfactory revenue for a rail car-

rier and spreads out the capacity utilisation on train services. The carrier may
want to set the minimum train loading as high as possible, ideally equal to the
capacity of a train. Note that the minimum train loading is directly related to
Tex,, which is defined as

360 Zndra-Payoong, Kwan and Pro11

where Nj is the demand of customer j , and PI is the minimum train loading.
Apart from ensuring satisfactory revenue, minimum train loading is a key

factor in the performance of the search algorithm. The higher the minimum
train loading, the more constrained the problem is and hence the number of
feasible solutions decreases. Using a high minimum train loading allows the
algorithm to focus on satisfying the hard constraints more than the soft con-
straints. In addition, it increases the usefulness of the value choice prediction
mechanism, i.e. the variables in the container scheduling model would take
more consistent values in all the feasible solutions during the search.

However, it would be very hard to prove whether there exists a feasible solu-
tion to the problem constrained by a high minimum train loading. If we could
prove the existence of a feasible solution for the highest possible minimum
train loading, it would imply that the solution is approximately optimal. A
good setting of the minimum train loading helps limit the size of the search
space. Although a few techniques for proving the existence of feasibility have
been proposed (Hansen, 1992; Kearfott, 1998), implementations of these tech-
niques for practical problems have not yet been achieved. In this research, the
minimum train loading is derived from some heuristic rules. We estimate the
minimum train loading by defining a risk parameter R. For example, R = 20%
means that the estimated chance of the problem having no feasible solution is
20%. An initial value of Pl is defined as follows:

where T = L21, pn = ('9t")x(100-R) p
loo , 2 is a capacity of a train, Nj is

the demand of customer j , M is the total number of customers, and pg and ug
are the mean and standard deviation of the total average demand.

Whenever all hard constraints are satisfied (a feasible train schedule is ob-
tained), the minimum train loading is implicitly increased by removing one
train from the current state of the feasible solution, i.e. Tex, = Texp - 1, and
CBS attempts to find a new feasible schedule.

4. HIERARCHICAL CONSTRAINT SCHEME
In SAT local search and its variants, the number of violated constraints (un-

satisfied clauses) is used to evaluate local moves without accounting for how
severely individual constraints are violated. In CBS, a quantified measure of
the constraint violation to evaluate local moves is used. In this case, the vi-
olated constraints may be assigned different degrees of constraint violation.
This leads to a framework to improve the performance of the solving algo-
rithm. The constraints can be weighted in the formulation of train measures of

Rail Container Service Planning 361

violation in order to allow the search to give hierarchical priority to satisfying
some subsets of the constraints.

For the container rail service planning, soft and hard constraints in the model
are treated separately. When all hard constraints are satisfied, the soft con-
straint violations are calculated and used as a measure of the quality of the
solution. Nevertheless, whilst the hard constraint have not yet been fully satis-
fied, our scheme incorporates an artificial constraint, and its weighted violation
measure is designed to exert some influence over the search process based on
an estimation of the soft constraint violation (Section 4.2).

4.1 Feasibility Weights
The principal goal of the CBS is to find feasible solution to the problem,

i.e. points at which the total violation of the hard constraints is zero. For the
container rail service planning model, all sets of hard constraints use weighted
measures of violation according to some heuristic rules.

From (5) , any number of containers in a potential timeslot exceeding a train
capacity is penalised with the same violation h,. An attempt to use different
measures of the violation to different number of exceeded containers on an as-
signed train makes little sense because one can never guarantee whether the
lower number of exceeded containers is more likely to lead to feasible sched-
ules. The violation penalty for a set of capacity constraints is defined as

where h, is the violation penalty for a capacity constraint, and P2 is the ca-
pacity of a train.

From (7), the violation penalty for a set of consistency constraints is defined
as

<xtLt , violation = 0
W

1=1
>xtLt , violation = h,

where h, is a violation penalty for a consistency constraint, and Lt is number of
potential customers for timeslot t. From (9), the algorithm allocates a penalty
if the assigned trains do not serve all customer demands. In other words, the
covering constraint favours a combination of selected timeslots that covers all
customers' bookings. The violation penalty within a set of covering constraints
uses the same quantification, which is defined as

21, violation = 0
vt

=0, violation = h,

where h, is a violation penalty for a covering constraint.

362 Indra-Payoong, Kwan and Proll

4.2 Timeslot Weights
Timeslot violation ht has been introduced artificially so that the search con-

siders an estimation of total soft constraint violation, whilst some other hard
constraints are still to be fully satisfied. The timeslot violation is regarded as if
it were a hard violation until the capacity, consistency, and covering constraints
have all been satisfied, then the timeslot violation is set to zero.

The algorithm assigns a penalty if a timeslot t is selected as a train departure
time. This can be written as

= 1, violation = ht
W

= 0, violation = 0

In contrast to (25)-(27) which imply a fixed penalty for each member of the
associated set of constraints, a violation penalty for the timeslot violation ht
varies from timeslot to timeslot. The timeslot violation penalty depends on
the possibility of assigning a particular timeslot on a train schedule with a
minimum generalised cost.

An attempt to derive the timeslot violation in monetary units by trading off
between the business criteria is not possible. This is because a train schedule
is not a single timeslot, but is a set of the timeslots. Therefore, considering
only a single timeslot separately from the others cannot represent a total cost
for the rail carrier. However, as in practice some business criteria play a more
important role than others, the relative weights for the criteria could be applied.

A rail carrier may assign a relative weight to the number of trains, customer
satisfaction, and operating costs criteria in which the one with the lower weight
is more important. In practice, given the relative weights 0.2, 0.5 and 0.3, the
timeslot violation ht is therefore obtained as

where ht is the timeslot violation if timeslot t is chosen (xt = I), Nt is the
violation cost for the number of trains in timeslot t, St is the violation cost
for the customer satisfaction in timeslot t, and Et is the violation cost for the
carrier's operating costs in timeslot t.

The violation cost Nt. We first assume that the higher the number of
potential customers in timeslot t, the more likely that timeslot would lead to
the minimum number of trains used. However, it is also necessary to consider
the distribution of customer shipment size. Although there are a large number
of potential customers in a timeslot, each customer shipment may be large.
Therefore, such a timeslot could allow only a few customers to be served on a
train so giving a high violation cost (or a priority) to this timeslot is no longer

Rail Container Service Planning

reasonable. Nt is defined as

where nt = at Vt, with at = 9 Vt , with pt the mean of customer
ELI at

shipment sizes in timeslot t, ot the standard deviation of the customer shipment
sizes in timeslot t, and Ct the number of customers in timeslot t.

The violation cost St. Although the virtual loss of revenue in the gen-
eralised cost function could represent customer satisfaction in terms of a mon-
etary unit, it is an indirect cost. In practice, the indirect cost is not obvious
for rail expenditure as it affects the long-term financial plan. Therefore, in a
competitive transport market, the direct cost that affects the short-term cash
flow is regarded as more important. Since satisfaction probability represents
customer satisfaction, we can sum up the satisfaction weight for the violation
cost of each timeslot. St is defined as

where st = bt Vt, with bt = ET$twt Qt, and Wt a total customer
E L 1 bt

satisfaction weight in timeslot t.
The violation cost Et. A rail carrier may have different operating costs

for different timeslots. The operating costs comprise train congestion cost and
staff cost. Although a train schedule is a set of timeslots, we could consider Et
for the operating costs of each timeslot directly. This is because the operating
cost is a cost unit and does not affect the number of timeslots in the optimal
train schedule. The lower the operating costs for the timeslot, the higher the
chance that the timeslot would lead to a schedule with the minimum gener-
alised cost. Et is defined as

where et = Ut Vt.
E L u t

5. COMPUTATIONAL RESULTS
The container rail scheduling model was tested on two sets of four suc-

cessive weeks data from the eastern-line container service of the Royal State
Railway of Thailand (SRT) and 184 shipping companies (customers). Each
train has a capacity of 68 containers. The problem instances are summarised
in Table 3.

364 Indra-Payoong, Kwan and Pmll

Table 3. Problem instances (0 is a lower bound on number of trains).

Test SRT schedules Supply-Demand
case Customer Container 0 Trains Capacity Capacity Trains

W1 134 2907 43 57 3876 969 14
W2 116 2316 35 42 2856 540 7
W3 84 1370 21 28 1907 537 7
W4 109 2625 37 50 3400 775 13
W5 225 4115 61 73 4964 816 12
W6 198 3350 50 59 4012 612 9
W7 126 2542 38 49 3332 748 11
W8 286 4731 70 86 5848 1088 16

Table 4. Comparative results. The unit cost x lo6 Baht (Thai currency), OC: operating costs,
VC: virtual loss of revenue, GC: generalised cost.

Test SRT CBS cost OC
case cost OC VC GC Reduction (%)

These eight instances were solved with the CBS algorithm described in Sec-
tion 3.1 on a Pentium I11 1.5 GHz. Each test case is run ten times using dif-
ferent random number seeds at the beginning of each run. If no improvement
has been achieved within 2000 iterations, the search will terminate. For all test
cases, we set R = 20, (h,, h,, h,) = 1,1,100 respectively. Table 4 compares
the model results with current practice.

Table 4 shows, in all the test cases, there are some reductions in terms of
the number of trains and operating costs, but these are not considerable. This
is because in practice the SRT schedule is not fixed at the same service level
everyday. The rail carrier normally cuts down the number of train services with
short notice if the train supply is a lot higher than the customer demand. This
is done by delaying some customer's departure times according to its demand
consolidation strategy.

Rail Container Service Planning

Table 5. Results obtained by CBS and PCM.

Test CBS schedule PCM schedule
case Train Cost* Time Train Cost* Time

Avg. Avg. (s) Avg. k Avg. SD. (s)

W1 51 5.56 230 47 2 4.18 0.56 105
W2 39 4.49 117 39 2 3.84 0.43 83
W3 24 2.19 74 24 1 2.09 0.27 61
W4 43 4.38 96 41 1 3.90 0.29 79
W5 70 8.06 882 66 3 7.02 0.72 351
W6 59 6.73 310 54 2 5.99 0.61 150
W7 46 5.12 145 43 1 4.93 0.25 92
W8 82 9.27 1170 75 3 8.15 0.66 509

* The generalised cost (x lo6 Baht, Thai currency)

However, the proposed model maximises customer satisfaction-in other
words, minimises the virtual loss of future revenue within a generalised cost
framework. Therefore, the schedule obtained by CBS could reflect the max-
imum degree of customer satisfaction with the minimum rail operating costs
through a demand responsive schedule.

In addition, we demonstrate the performance of the constraint-based search
incorporating the predictive choice model (PCM), and compare the results with
CBS alone. The same test cases are run ten times using different random num-
bers at the beginning of each run. If no improvement has been achieved within
2000 iterations, the search will terminate. For all test cases, we set R = 20,
(h,, h,, h,) = 1,1,100 respectively, the number of flip trials N = 20, choice
specific parameter Dl = 0.05, decision method parameter D = 75, the number
of fixing iterations F = 100, the number of fixing departure timeslots xt = 50,
the number of fixing selected booking timeslots (ytj = 1) = 50, and the number
of fixing unselected booking timeslots (ytj = 0) = 200. The last three parame-
ters govern the maximum number of variables which are allowed to be fixed at
a point in the search and are necessary to allow some flexibility in the search.
The results for the test cases are shown in Table 5.

Table 5 shows that the results of PCM are better than that of CBS alone. On
average, the PCM schedule is 6.04% better in terms of the number of trains,
and gives a reduction of 12.45% in generalised cost. Although in PCM learning
from the search history implies a computational overhead over CBS, it is offset
against a lower run-time required to find near optimal schedules, in particular
for large test cases.

366 Indra-Payoong, Kwan and Proll

6. CONCLUSIONS
The ability to find a profitable train schedule along with satisfying customer

demand using demand consolidation leads to some reductions in total operating
costs, and enhances the level of customer service through demand responsive
schedules.

The viability of using a CSP representation of the problem and solving this
problem by CBS has been shown. CBS only relies on a simple local move
and could accommodate new conditions without any change in the algorithm's
structure. To achieve effective performance, problem-specific violation on a
generalised scale is simply applied to constraints. The problem is first severely
constrained so that few feasible solutions are likely to exist, the variables there-
fore would take consistent values in most of the feasible solutions. A new
learning model is then introduced to predict a likely optimal value for those
variables in order to help CBS target optimality in a probabilistic way. The
predictive choice learning model is developed on theoretical grounds, using an
analogy with discrete choice theory. The experimental results for the container
rail service planning problem have demonstrated that CBS is a convenient and
effective tool in producing good solutions, particularly when the predictive
choice model is incorporated.

References
Aardal, K. (1998) Capacitated facility location: separation algorithm and computational experi-

ence, Mathematical Programming, 81:149-175.
Abramson, D, and Randall, M. (1999) A simulated annealing code for general integer linear

programs, Annals of Operation Research, 86:3-24.
Anderson, P. S., Palma, A. and Thisse, J. (1992) Discrete Choice Theory of Product Differenti-

ation, MIT Press, Princeton, NJ.
Arshad, E, Rhalibi, A. and Kelleher, G. (2000) Information Management within Intermodal

Transport Chain Scheduling, European Project PISCES Report, Liverpool John Moores Uni-
versity.

Beasley, J. E. (1988) An algorithm for solving large capacitated warehouse location problems,
European Journal of Operational Research, 33:314-325.

Ben-Akiva, M. and Lerman, S. R. (1985) Discrete Choice Analysis: Theory and Application to
Predict Travel Demand, MIT Press, Princeton, NJ.

Boffey, T. B. (1989) Location problems arising in computer networks, Journal of the Opera-
tional Research Society, 40:347-354.

Connolly, D. (1992) General purpose simulated annealing, Journal of the Operational Research
Society, 43:495-505.

Cordeau, J., Toth, P. and Vigo, D. (1998) A survey of optimisation models for train routing and
scheduling, Transportation Science, 32:380-404.

Gomes, C. P., Selman, B, and Kautz, H. (1998) Boosting combinatorial search through randomi-
sation. In Proceeding of AAAI-98, AAAI Press, Menlo Park, CA.

Gorman, M. F. (1998) An application of genetic and tabu searches to the freight railroad oper-
ating plan problem, Annals of Operations Research, 7 8 5 1-69.

Rail Container Service Planning 367

Henz, M., Lim, Y. F., Lua, S.C., Shi, X. P., Walser, J. P, and Yap, R. (2000) Solving hierarchi-
cal constraints over finite domains. In Proceedings of the 6th International Symposium on
Art#cial Intelligence and Mathematics (Fort Lauderdale, FL).

Hansen, E.R. (1992) Global Optimisation Using Interval Analysis, Dekker, New York.
Horvitz, E., Ruan, Y., Gomes, C., Kautz, H., Selman, B. and Chickering, M. (2001) A Bayesian

approach to tackling hard computational problems. In Proceedings of UAIOI, pp. 235-244.
Huntley, C. L., Brown, D. E., Sappington, D. E. and Markowicz, B. P. (1995) Freight routing

and scheduling at CSX transportation, Interfaces, 2558-71.
ILOG (2000) ILOG OPL Studio Version 3.5.1 Reference Manual, ILOG Inc.
Indra-Payoong, N., Srisurapanon, V. and Laosirihongthong, T. (1998) Factors influencing modal

choice for freight transportation. In Proceedings of the Civil and Environmental Engineering
Conference, New Frontiers and Challenges (Bangkok, Thailand), 419-26.

Johnson, R. and Wichem, D. (1996) Applied Multivariate Statistical Analysis, Cambridge Uni-
versity Press, Cambridge.

Kallenberg, 0. (1997) Foundations of Modem Probability, Springer, New York.
Kearfott, R. B. (1998) On proving existence of feasible points in equality constrained optimisa-

tion problems, Mathematical Programming, 83:89-100.
Kochmann, G. A. and McCallum, C. J. (1981) Facility location models for planning a transat-

lantic communications network, European Journal of Operational Research, 6:205-211.
Kraft, E . R. (2002) Scheduling railway freight delivery appointments using a bid price approach,

Transportation Research, 36A: 145-165.
Larraaga, P. and Lozano, J. A. (2002) Estimation of Distribution Algorithms: A New Tool for

Evolutionary Computation, Kluwer, Dordrecht.
Lau H. C., Lim, Y. F. and Liu, Q. (2001) Diversification of neighbourhood via constraint-based

local search and its application to VRPTW. In Proceedings of CP-AI-OR, pp. 361-374.
Marder, E. (1997) The Laws of Choice: Predicting Customer Behavior, The Free Press, Simon

and Schuster, New York.
Marin, A. and Salmeron, J.(1996) Tactical design of rail freight networks. Part 11: local search

methods with statistical analysis, European Journal of Operational Research, 94:43-53.
McAllester, D., Selman, B. and Kautz, H. (1997) Evidence for invariants in local search. In

Proceedings of the 14th National Conference on Art@cial Intelligence (AAAI-97). pp. 459-
465.

Ministry of Commerce (2002) Thai Commodity Market Price, Department of Business Eco-
nomics, Ministry of Commerce, Thailand.

Newman, A. M. and Yano, C. A. (2000) Scheduling direct and indirect trains and containers in
an intermodal setting, Transportation Science, 34:256-270.

Nonobe, K. and Ibaraki, T. (1998) A tabu search approach to constraint satisfaction problem as
a general problem solver, European Journal of Operational Research, 106:599-623.

Parkes, A. and Walser, J. (1996) Tuning local search for satisfiability testing. In Proceedings of
AAAI-96, pp. 356-362.

Patrick, R. (1982) Algorithm AS 181: The W test for normality, Applied Statistics, 31:176-180.
Proll, L, and Smith, B. (1998) ILP and constraint programming approaches to a template design

problem, INFORMS Journal of Computing, 10:265-277.
Resende, G. C. and Ribero, C. C. (2001) Greedy Randomized Adaptive Search Procedures,

State-of-the Art Handbook in Metaheuristics, E Glover and G. Kochenberger (Eds.), Kluwer,
Dordrecht.

Selman, B., Levesque, H, and Mitchell D. (1992) A new method for solving hard satisfiability
problems. In Proceedings of AAAI-92, pp. 440446.

Selman, B., Kautz, H. and Cohen, B. (1994) Noise strategies for improving local search. In
Proceedings of AAAI-94, pp. 337-343.

368 Indra-Payoong, Kwan and Pro11

Shapiro, S. S. and Wilk, M. B. (1965) An analysis of variance test for normality (complete
samples), Biometrika, 52591-61 1.

Smith, B., Stergiou, K. and Walsh, T. (2000) Using auxiliary variables and implied constraints
to model non-binary problems. In Proceedings of AAAI-2000, Austin, TX.

Trotter, H. F. (1959) An elementary proof of the central limit theorem, Archives of Mathematics,
10:226-234.

Walser, J. P. (1999) Integer Optimisation by Local Search: A Domain-Independent Approach,
Lecture Notes in Artificial Intelligence, Vol. 1636, Springer, Berlin.

Yano, C. A. and Newman, A. M. (2001) Scheduling trains and containers with due dates and
dynamic arrivals, Transportation Science, 35: 18 1-19 1.

RULE-BASED SYSTEM FOR PLATFORM
ASSIGNMENT IN BUS STATIONS

B. Adenso-Diaz
Engineering School, Universidad de Oviedo, Spain

Abstract Of all the tasks related to bus station management, one of the most important
decisions that greatly affects the quality of the service is the assignment of plat-
forms. A bad assignment procedure may be uncomfortable for frequent passen-
gers who often suffer changes in departure gates, or may even be affected by
the lack of platforms. Assignment is complicated due to the frequent incidents
that cause delays in or the moving forward of services (with the corresponding
changes in assignment), and to increases in services that convert the platforms
into a limited resource. Even though this problem of platform assignment has
been studied in more detail in the field of airport terminals, the difficulties in
road transportation are both distinct and significant. In this paper we develop
an intelligent system employing rule-based models for the daily management of
the platforms of a bus station. The developed system is currently being used in
a real bus station with more than 1,000 daily services.

Keywords: gate assignment, decision support systems, expert systems, bus-station manage-
ment.

1. INTRODUCTION
Within the transport sector, one of the most widespread decisions that must

be taken by those in charge of stations or airports is that of assigning the gate
or platform from which each of the offered services must leave. The chosen
option is highly relevant in relation to the quality of the service offered, since
sub-optimum assignments give rise to dissatisfaction and protests on the part
of customers (who must proceed unnecessarily from one part of the station
to another), protests from transport companies (which may suffer delays as a
result of congestion caused by the lack of correct assignments), etc.

This paper describes a platform assignment system designed for managing
bus stations. These types of models have been mainly designed so far for
airports in an attempt to use gates efficiently (good distribution among com-
panies, minimisation of delays, etc.) Since the mid-1980s (Hamzawi, 1986,
presents one of the first results for this problem using microcomputers), differ-

ent gate assignment algorithms have been proposed for airport terminals, with
real cases such as Singapore airport (Cheng, 1997) or Taiwan (Yan and Chang,
1998).

The basic goal in all these cases is to minimise the walk distance of connect-
ing passengers (or baggage collection) at the terminal, thus reducing connect-
ing times. Some authors (for instance Yan and Huo, 2001) have incorporated
passenger waiting time, defining multi-criteria approaches.

Two different approaches have been considered in the literature for solv-
ing the gate assignment problem: expert systems and simulation (Srihari and
Muthukrishnan, 1991, present a review of the use of ES; Gosling, 1990, intro-
duced one of the first applications in this field, inspiring later papers such as Su
and Srihari, 1993; Yan et al., 2002, present a simulation framework tested in
Taipei airport able to analyse the effects of stochastic flight delays); and exact
procedures (such as Mangoubi and Mathaisel, 1985, using linear program-
ming; Haghani and Chen, 1998, and Bolat, 2000, using a QAP with temporal
constraints, or Yan and Chang, 1998, using network models). Cheng (1997)
presents a third alternative (considered here), a hybrid rule-based system and a
heuristic assignment procedure.

As far as we know, the gate assignment problem has not yet been stud-
ied in the bus management case, an environment with distinct requirements
and constraints. The goal of reducing the distance passengers walk becomes
secondary, since the size of stations is in general much smaller than that of
airports.

However, several new criteria emerge that the station manager must take
into consideration: services with destinations in the same geographical area
or offered by the same company are usually placed close to one another so
that frequent passengers can know their way around the station better and so
that the employees of each carrier are near to the place they have to carry out
their functions; when a high-demand service is covered by several buses, these
must leave in a staggered fashion; if possible, on long-distance services where
passengers usually carry luggage, it would be desirable for adjacent platforms
to be empty at arrival and departure times so as to avoid a pile-up of luggage on
platforms which are normally narrow; not all platforms are valid for all sizes
of buses; some platforms must be reserved as temporary parking for the buses
which depart some time after arriving at the station; and so on.

All this must be considered, together with endeavouring (as occurred in the
air transport sector) to get high demand services to arrive at and depart from
platforms near to the ticket offices or main doors, and above all attempting
to avoid any delay due to a shortage of platforms at the time of offering the
service.

In the case of buses, the choice of criteria is both complex as well as offering
a multiplicity of options. This, together with the need to use more user-friendly

Rule-Based System for Platform Assignment 37 1

tools in view of the generally lower technological level of the bus sector in
comparison with that of the aeronautic sector, leads to the consideration of ap-
proaches of the third type mentioned above: that is, approaches based on rules
that may be dynamically chosen by the person responsible for defining assign-
ments on the basis of the criteria that he or she wishes to take into account at
the time.

This paper presents the solution given to the problem for assigning plat-
forms in a newly built bus station in the North of Spain. Section 2 presents the
framework within which the new system was developed and the architecture
chosen for the solution. Section 3 describes the functioning of the first of the
two modules into which the system was divided, and the algorithm defined to
solve it. Section 4 describes the on-line characteristics of the module.

2. ARCHITECTURE OF THE SYSTEM
The new bus station of the city of Oviedo, the capital of the Principality

of Asturias, in the North of Spain, was inaugurated in 2003. The new station
handles 1,100 bus services per day, and has 44 platforms. It should be noted
that not all the platforms are valid for any type of bus, nor do they all have the
same departure and entry load if the constraints that normal daily operations
impose are respected. One part of their management consists in deciding which
platform each offered service is to arrive at and leave from.

To do so, the station management asks the different companies that operate
there about their needs and preferences as regards platforms and, in view of
the requests of all of these operators, must make an assignment that will be
operative on any particular day, and which is announced to passengers via
information screens.

There are two sources of difficulty when carrying out a valid assignment on
any particular day. Firstly, the one underlying the theoretical assignment that
might initially be constructed in an attempt to satisfy the carriers' requests,
and secondly the one derived from the day to day alterations imposed on this
theoretical plan by delays and unforeseen events that mean that re-assignments
must be made with respect to this theoretical plan. As a result, the system
designed here was structured in two modules (Figure 1):

rn Off-line module. This module generates generic assignment plans for
the bus station, valid for different periods with common specific timeta-
bles (summer, Easter, summer Fridays, etc). The output provides valid
assignments generated using different rules ready to be chosen for a spe-
cific set of days. All these assignments make up a database with different
options (one for each set of chosen rules) valid for different types of days
(timetable of services). A typical couple of dozens of plans are usually
stored in this data base.

372 Adenso-Diaz

Figure I . Structure of the overall system for platform assignment.

rn On-line module. Once one of the generic plans generated in the off-line
module and available in the corresponding database has been chosen for
a specific day, the daily operation at the bus station starts. It is quite
normal for unplanned events to occur (delays, an increase in the number
of buses in a service, etc.) which necessitate the changing of some of
the preset assignments. The re-scheduling is performed by this module,
taking into consideration the defined constraints and the current config-
uration of the station.

3. OFF-LINE MODULE
As mentioned above, the goal of this module consists in generating an as-

signment plan for a specific group of days with services in common, consider-
ing a set of rules defined by the station manager for these days. Therefore, an
important step in this module is to identify which rules the manager wishes to
select for the assignment to fit these rules.

There are two types of rules that are defined by the manager for construct-
ing the assignment: direct rules (DR) and approximate rules (AR). The former
indicate some kind of "hard constraints" that must be satisfied by the solu-
tion. An example could be "Buses going to Madrid must depart from platforms
4,5, . . . ,15" (denoting a preference), or "Buses coming from Madrid must not
arrive at platforms 1.2 or 3" (denoting an exclusion), or "Company X must not
share platforms with company Y" (avoiding assignments in the case of another
assignment having been made previously).

Many different types of rules may be composed with this syntax, as platform
preferences may be chosen depending on destination or origin, geographic ar-
eas, companies, sizes of buses, or temporary parking areas may also be chosen.
A weighting ranked w, E (1, . . . ,9) is associated with each rule that indicates
the importance given by the manager to this rule's specifications being com-
plied with (the higher the weighting, the more important it is).

The approximate rules, on the other hand, are of the fuzzy type (soft con-
straints) and are built with closelfar relationships. Typical examples could be

Rule-Based System for Plagorm Assignment 373

Figure 2. Example of a screen where approximate assignment rules are defined.

"Departure to Madrid must be close to arrivals from Barcelona" (see exam-
ple in Figure 2) or "Platforms used by company X must be far from platforms
used by company Y". Here the rules may be of the closelfar type between dif-
ferent concepts (arrivals, departures, companies, etc) or in relation to certain
platforms. In the former case, the relation is established with respect to other
previous assignments and is therefore a dynamic dependence that varies in ac-
cordance with the assignment history that is being constructed. In the latter,
however, the relationship is established with regard to fixed positions (plat-
forms). We call these last rules ARPs (Approximate Rules associated with
Platforms) and they may be considered from the beginning in the assignment
algorithm, as they do not depend on the previously performed assignment se-
quence.

A TH threshold must be defined for processing the closelfar rules (depend-
ing on the layout of the station) that indicates the distance between two plat-
forms above which they cannot be said to be close, and below which it is un-
derstood that they are not far (Figure 3). The distance between two platforms,
when the layout of the station is approximately linear, could be simply defined
as dij = li - j l .

Adenso-Diaz

Figure 3. Membership function for the variables "close" and "far" related to the distance
between platforms.

A third group of rules are those that indicate the desire to keep platforms
next to those with passengers that will forseeably be carrying a lot of luggage
(for example long-distance services) unassigned.

To avoid introducing rules that are inconsistent with previously defined
ones, any new rule is checked against those introduced previously before it
is accepted. This new rule will then only be accepted if it does not produce any
inconsistencies.

3.1 Approach for Assigning Platforms to Services
Services are sorted according to the number of alternative platforms avail-

able, taking into consideration the direct rules and the timetable incompati-
bilities found so far. The service with fewer alternatives will be the first one
assigned to a platform, and-given that all these alternatives already satisfy
the hard constraints-approximate rules are then used to determine the most
interesting alternative from among these. The idea of first scheduling the items
with the least number of available alternatives (LSD, least saturation degree) is
successfully used in graph colouring algorithms (Brelaz, 1979), and its logic is
easily translated into our problem.

A data structure was created to generate a solution that, in line with this
idea, assigns a platform to each bus while respecting the introduced rules as
far as possible. Figure 4 presents a schematic representation of this structure,
in which each row represents a bus to which a platform must be assigned.

The first column indicates the service that the bus will perform and the sec-
ond the number of buses that will carry out this service. The third column
contains a "Status" array for each bus j, with the same number of positions as
platforms in the station. Each position i may contain: a number 1-9 (the prior-
ity assigned to platform i for service j by a direct assignment rule); the number
0 (if no rule affects this platform for service j); the character "-" (if platform
i is excluded from possible assignment to j due to incompatibility with a rule

Rule-Based System for Plagorm Assignment 375

Figure 4. Scheme of the data structure used for the assignment of platform in the off-line
module.

#-:in Assign
SERVICE #bus STATUS STATE CAPR LAPR ment

or because it is already assigned to another service k # j at the required time).
The character "P" indicates that platform i is assigned to parking, and so is
also excluded from assignment to service j.

The fourth column indicates how many platforms are excluded from assign-
ment to this service (i.e. the number of "-" in Status). This data will be used to
rank the assignment priority of the services according to LSD logic.

The fifth (Capr) and sixth (Lapr) columns gather information about the ap-
proximate rules of the close and far type, respectively. As in the case of Status,
a number in position i of one of these arrays would indicate that an approximate
rule is conferring this weighting to platform i for this service. For example, in
Figure 4, once the Oviedo-Norefia service has been assigned to platform 8, the
"Close rule" (Destination: Lebn; Destination: Norefia) with a weighting of 9
has forced the introduction of the value 9 in the 8th position of the Capr array,
corresponding to two buses whose destination is Le6n (rows 3 and 4).

The seventh column contains the final assignment carried out, and once all
the rows have been completed, the complete solution will have been obtained.

Working on this data structure, the assignment algorithm constructs the final
solution (Figure 5). In the first three steps, the arrays are initialised according
to the DR and ARP rules. In Step 4, DR rules are eliminated if they give
rise to problem infeasibility. Step 5 is a pre-selection of the services S that
have a greater likelihood of being chosen in the current iteration so as to then
search for their assignment (LSD rule), taking into account the fact that a large
cardinal number in the set S in this step would slow down the entire calculating
process in the two following steps.

Oviedo-
Barcelona

S1
Oviedo-
Madrid

1

1

[O,-;,6,6,0,P9 ,... 1

[O,-,-,-,3,O,P,O ,...]

2

2

[0,2,2,3,3,0,9,9 ,... I

[0,0,0,5,5,5,0,0 ,...]

[0,0,0,0,0,7,7,0 1

[02,2,3,3,9,9,9 ,...]

A. Prenare data

1. STATE=CAPR=LAPR='O'

2. Vrule rsDR, update STATE with "P", "-", or assigning its weight

3.Vrule r e ARP, update CAPR & LAPR

B. Iterating for assignment

4. If 3service Si: VJ, STATE,='-', drop the rule rsDA with lowest weight. Go back to step 1

5. Pre-select a set S of services Si ready for immediate assignment:

S is made up of Si's with the highest value in column "# '-' in STATE (rule LSD)

6. Pre-calculate VSieS the best assignment d:.

Let D the set of possible assignments to Si, considering STATE

dk'=arg max &,,(d,CAPR,LAPR)) VdmsD

Ties are broken choosing the d,,, less busy before the departure time

7. Choose the S, ES to be assigned now, and assign dkito it.

Select Si=arg min{g(Sj,d2,STATE)) measuring function g the number of "-" induced in

the other services in case the assignment <Sj,d& is made.

8. Update STATE; VreAR\ARP affecting last assignment, update CAPR & LAPR. Go back to

step 4 in case there are services not assigned yet.

C. Outaut results

9. Output #rules rsDA discarded in step 4; and #rules rsDA that do not hold

10. Output a measure of the fitness F o f assignments, according to r e AR

Figure 5. Algorithm for producing a solution according to the preset rules.

In Step 6, the best assignment according to AR rules is chosen for each
pre-selected service using an fap, function defined as

fapr(dm, Capr, Lapr)
= AVERAGEvj:lj:CaprjZo[Caprj max{-TH; TH - Idk - j l)]

S A V E R A G E ~ ~ : L , ~ + ~ [L ~ ~ ~ ~ . min{TH; Idk - jl - TH)] (1)

that returns a greater value to platform dl, depending on whether there are Capri
weightings in positions close to k , or whether the Lapri weightings of position
k are far.

In Step 7, the assignment that is effectively made in this iteration is chosen
and the arrays are updated in Step 8 to then continue iterating until all the
services are assigned.

Once completed, the final assignment is displayed as well as an assessment
of the quality of the solution found (Figure 6). This assessment is evaluated
(Step 10) using the function F that measures the fitness of the solution in rela-

Rule-Based System for Platform Assignment 377

Figure 6. Screen with the final assignments (centre) and the assessment of their quality
(upper-left). As usual, it is possible to introduce manual corrections in the case of the manager
wishing to consider additional constraints.

tion to the fuzzy rules of type "close/far":

C w T 9 Average {asT}
Vr$DR Service s affected by r

F =
C WT

(2)
Vr(tlDR

a,, €[&I] being a measure of the fitness of the assignment made to service
s in relation to rule r E AR. If we call k the platform assigned to s, and the
closest assigned platform affected by rule r is called d, a definition of a,, for
rules r related to "close" is given by (3), and for "far" rules by (4):

i f i d - k l I 1
1- Id-kl

if 1 < Id- Icl < TH (3)

378 Adenso-Diaz

Although the calculation time depends to a great extent on the number of
services and the number and types of rules introduced, in the station where it is
being tested the system takes 8 minutes on a Pentium III to generate a solution
for 1,100 services using some 50 rules.

4. ON-LINE MODULE
On a normal working day at the station, one of the off-line plans generated

in the above module in accordance with different scenarios is initially loaded.
During the day, however, two types of event may take place that force the pre-
established assignment to be modified:

rn Incidents that alter the arrival or departure of buses (leading, as a result
of a delay, to a platform that is assigned to a service currently being
occupied by the following service assigned to it, with the consequent
need to find a new assignment for the first service) or the number of
buses (since, owing to passenger demand, it has been decided to rein-
force a service with another bus, for which a new platform will have
to be found. In these cases, modifications will have to be made to the
previously realised assignment for the service.

rn The creation of new special services not contemplated in the standard
off-line plan chosen for the time of year or the day under consideration.
In this case, a totally new assignment will have to be made for the ser-
vice.

In both cases, the rules that the manager wishes to consider when making
the re-assignment are chosen via a new screen. In the first case, the rules are
of the type "find the closest platform possible to the pre-assigned platform for
this service", or to another specific platform that is established. In the second
case, rules are used that search among the platforms that are free at the time the
service has to be offered for those that are closest either to those where other
similar services to the new one leave from or arrive at, or those that belong to
the same company, etc.

The algorithm of this module is simpler to implement than the above off-line
algorithm. As the off-line plan is fixed and the time horizon we are dealing with
is as close as it is in this case, being affected by only one service, the possible
re-assignment alternatives are very few in number.

5. CONCLUSIONS
Daily management of a bus station introduces many different types of fuzzy

and hard constraints when assigning platforms to services. A complete system
has been designed for solving the platform assignment problem in bus stations

Rule-Based System for Platform Assignment 379

based on the definition by the management of a set of rules that the assignment
solution should satisfy.

Two different types of rules were considered for the off-line module. Based
on their characteristics, a search procedure looks for a solution satisfying (if
possible) all the hard constraints, maximising the value considering the ap-
proximate rules. The on-line module searches for an alternative assignment
when, in the day to day use of the system, any unplanned event occurs that
forces re-assignment of platforms. This logic could be easily transferred to
other environments where complex rules, which make the use of exact ap-
proaches difficult, have to be defined for the assignment of resources.

The system is currently being used at Oviedo bus station (Northern Spain), a
facility with more than 1,100 daily bus services. The computation time needed
for the off-line calculation in this station is around 10 minutes, being the system
able to find solutions satisfying the current constraints established at the site.

References
Bolat, A. (2000) Procedures for providing robust gate assignments for arriving aircrafts. Eum-

pean Journal of Operational Research, 120:63-80.
Brelaz, D. (1979) New methods to color the vertices of a graph. Communications of ACM,

22:251-256.
Cheng, Yu (1997) A knowledge-based airport gate assignment system integrated with mathe-

matical programming. Computers and lndustrial Engineering, 322337452.
Gosling, G. D. (1990) Design of an expert system for aircraft gate assignment. Transportation

Research A, 2459-69.
Haghani, A. and Chen, M.-Ch (1998) Optimizing gate assignments at airport terminals. Trans-

portation Research A, 32:437454.
Hamzawi, S. G. (1986) Management and planning of airport gate capacity: a microcomputer-

based gate assignment simulation model. Transportation Planning and Technology, 11: 189-
202.

Mangoubi, R. S. and Mathaisel, E X. (1985) Optimizing gate Assignments at airport terminals.
Transportation Science, 19: 173-188.

Srihari, K. and Muthukrishnan, R. (1991) An expert system methodology for aircraft-gate as-
signment. Computers and lndustrial Engineering, 21:lOl-105.

Su, Y. Y. and Srihari, K. (1993) A knowledge based aircraft-gate assignment advisor. Computers
and Industrial Engineering, 25: 123-126.

Yan, S, and Chang, C.-M. (1998) A network model for gate assignment. Journal of Advanced
Transportation, 32: 176-189.

Yan, S. and Huo, C.-M. (2001) Optimization of multiple objective gate assignments. Trans-
portation Research A, 35413-432.

Yan, S., Shieh, C.-Y. and Chen, M. (2002) A simulation framework for evaluating airport gate
assignments. Transportation Research A, 36:885-898.

MEASURING THE ROBUSTNESS OF
AIRLINE FLEET SCHEDULES

F. ~ i a n ' , E. K. ~ u r k e ~ , S. ~ a i n ~ , G. enda all^, G. M. ~ o o l e ~ , J. D. Landa
silva2, J. ~ u l d e r ~ , M. C. E. paelinck5, C. Reeves6, I. Rusdi7, M. 0. sulemanl

' ~niversi ty of Oxford, UK
2 ~ h e University of Nottingham, UK
3 ~ s t o n University, UK
4 ~ r e e University of Amsterdam, The Netherlands
5~~~ Airlines, The Netherlands
'coventry University, UK
7~echnical University of Delft, The Netherlands

Abstract

Keywords:

Constructing good quality fleet schedules is essential for an airline to operate in
an effective and efficient way in order to accomplish high levels of consumer
satisfaction and to maximise profits. The robustness of an airline schedule is an
indicative measure of how good the schedule is because a robust plan allows the
airline to cope with the unexpected disturbances which normally occur on a daily
basis. This paper describes a method to measure the robustness of schedules
for aircraft fleet scheduling within KLM Airlines. The method is based on the
"Aircraft on Ground (ACOG)" measure, it employs statistical methods (although
alternative methods were also considered) and it is shown to provide a good
estimation of the robustness of a given schedule.

modelling, airline scheduling, schedule quality measures,

1. INTRODUCTION
The problem of generating fleet schedules is crucially important to the ef-

ficiency of an airline (Barnhart et al., 1997; Barnhart and Talluri, 1997). An
effective schedule can lead to significant savings. It can also, and perhaps more
importantly, contribute to higher levels of customer satisfaction. Customers
who experience regular delays with a particular airline are likely to take their
custom elsewhere. Of course, delays are inevitable for a wide range of reasons
(e.g. technical breakdowns, security alerts, adverse weather, etc). However, an
indicative measure of the quality of an airline schedule is its level of robust-
ness: How well can a schedule cope with a delay(s) to a particular aircraft(s)?

Bian et al.

Is there enough slack in the schedule to minimise the knock on effect of a de-
lay to a particular aircraft? If there is no slack in the schedule then a delay to
one aircraft could affect a significant proportion of the fleet and this could have
major resource implications. If passengers miss connecting flights then the air-
line has to cover the incurred costs. However, building slack into the schedule
is expensive. It essentially involves aircraft standing idle. One of the goals
in trying to generate a high quality fleet schedule is to build in enough slack
to ensure that the schedule has an acceptable level of robustness while, at the
same time, attempting to keep costs at an effective level. It would be very easy
indeed to build a very robust schedule. However, it would be too expensive to
implement. It would also be possible to build a schedule which minimises cost
by decreasing aircraft idle time. However, this could easily lead to an increase
in the overall incurred costs if one minor delay to one aircraft leads to a chain
of delays. In summary, the goal is to provide an effective balance between
robustness and aircraft idle time.

The integration of schedule optimisation algorithms and other systems in an
airline is crucial to achieve an effective scheduling environment that consid-
ers all functions of the airline (Mathaisel, 1997). Reviews of research on air-
line scheduling are presented in Etschmaier and Mathaisel (1985) and Richter
(1989). A more recent survey on models and solution methods for a range of
problems in aircraft scheduling was carried out by Gopalan and Talluri (1998).

Aircraft scheduling is often addressed simultaneously with other associated
problems. An example is provided by fleet assignment with time windows
where the assignment of aircraft is carried out simultaneously to scheduling
flight departures in order to improve flight connection opportunities and min-
imise costs (Rexing et al., 2000). The scheduling of maintenance operations
and of aircraft are considered simultaneously using network models and a two-
phase heuristic by Feo and Bard (1989), while crew availability and mainte-
nance operations are taken into account while tackling the fleet assignment
problem in Clarke and Hane (2001). The additional constraint of equal air-
craft utilisation when tackling fleet assignment and aircraft routing problems
is considered by(Barnhart et al. (1998). A network model for large-scale fleet
assignment problems that permits the expression of constraints within a unified
framework was presented by Rushmeier and Kontogiorgis (1997).

Integer linear programming techniques have been applied by several re-
searchers to tackle fleet assignment, aircraft routing and related problems
(Abara, 1989; Subramanian, 1994; Hane et al., 1995). Dynamic programming
and heuristics have also been investigated for the problem of fleet assignment
(El Moudani and Mora-Camino, 2000). Recently, meta-heuristic methods have
been used to tackle airline scheduling problems. For example, simulated an-
nealing was applied to the optimisation of airline schedules by Mashford and
Marksjo (2001). Sosnowska and Rolim (2001) showed that by applying sim-

Measuring the Robustness of Airline Fleet Schedules 383

ulated annealing to the fleet assignment and aircraft routing, improvements
of about 10-20% over the method used by the company could be achieved.
A genetic algorithm was applied to generate alternative routes for air traffic
by Oussedik et al. (2000). Also recently, genetic search methods have been
applied to solve the problem of sequencing the arrival of aircraft in airports
(Hansen, 2004; Ciesielski and Scerri, 1997, 1998).

Re-scheduling is a crucial activity for airlines and it has to be carried out on a
daily basis due to a number of uncertainties and unforeseen events. Disruptions
of planned schedules can result in a chain of events that can cause major disrup-
tions throughout the system. A survey of techniques employed to recover from
these disruptions is presented by Filar et al. (2001). A stochastic model is em-
ployed by Rosenberger et al. (2003) to show that the actual performance of an
airline differs greatly from the planned performance while Argiiello and Bard
(1997) propose a GRASP method to reconstruct schedules while minirnising
costs and satisfying constraints. Network models and Lagrangian relaxation
were used by Yan and Lin (1997) for aircraft re-scheduling given a specific dis-
ruption that affects the airline operations greatly and causes substantial decre-
ments in profits and levels of service: the temporary closure of airports (see
also Thengvall et al., 2001, 2004). The problem of changing the assigned air-
craft to specific flights while satisfying existing constraints is addressed by Jar-
rah (2000), Talluri (1996) and Klincewicz and Rosenwein (1995). A steepest
ascent local search heuristic was applied by Love et al. (2002) to re-schedule
aircraft and it was capable of finding good quality schedules in a short amount
of time.

The problem that is addressed in this paper is discussed in the next section.
It represents a real-world problem that faces KLM Airlines on a daily basis.

2. PROBLEM DESCRIPTION
Within KLM, two departments are responsible for the fleet schedule. The

network planning department produces schedules which are then passed to the
operations department who has the responsibility for implementing them and
running them on a day-to-day basis. These two departments have conflicting
objectives. The network department aims to produce a schedule which is as
cost effective as possible. This essentially means maximising aircraft usage by
minimising their idle time. The operations department prefers schedules that
have enough slack to ensure a certain level of robustness. This means having
as much aircraft idle time as possible. Then, the overall aim is to produce a
schedule with the right balance between these two conflicting objectives briefly
described above.

The aim for KLM is to introduce a method that checks the robustness of a
schedule, from the network department, before it is passed to the operations

384 Bian et al.

department for implementation. One way to achieve this is to run a simulation.
However, this is seen as too time consuming and other methods are sought to
test for the robustness of the schedule.

KLM flies to over 150 destinations using 97 aircraft. Four times a year, a
new flight schedule is developed. Though the operational feasibility is taken
into account to a certain degree during the development process, the aim at
that stage is largely to maximise the number of seats that can be sold. Dur-
ing schedule development, KLM considers various commercial aspects such
as the expected demand per destination and the number of possible transfer
connections at Schiphol Airport in Amsterdam.

The realisation of a flight schedule involves a number of parties. As de-
scribed above, the initial plan is developed by KLM's network planning de-
partment. The initial plan is based on commercial and strategic insights and
long term plans for the fleet composition, cabin crew and baggage handling.

Two months before the beginning of a schedule plan, the plan is handed
over to the operational department, the Operation Control Centre. From that
moment on they are the owners of the plan and small adaptations have to be
evaluated and approved by them. This department will try to prevent and solve
problems such as emergencies and bottlenecks and, in case of unsolved prob-
lems, try to minimize the effects on succeeding flights. A final plan is cre-
ated two weeks before the beginning of the plan where passenger bookings are
matched with aircraft capacities

In order to monitor the performance of a flight schedule, some critical per-
formance indicators are defined. These are

The departure and arrival punctuality: that is, the percentage of flights
that departed or arrived on time.

The completion factor: that is, the percentage of accomplished flights.
These are all flights that were not cancelled.

The No Connection Passenger factor: that is, the percentage of transfer
passengers that missed their connections due to operational problems.

The Irregularity-rate: that is, the number of bags that were not delivered
on time.

For the punctuality performance indicator the contribution of each of the
involved parties is also monitored. This introduces the concept of building
blocks. The whole operational process is divided into sub processes, (the so
called building blocks). Each building block is owned by a capacity and ser-
vice provider, these being Ground Services, Front Office, Air Traffic Man-
agement, Engineering and Maintenance, Cabin and Cockpit Crew, Cargo and
Operations Control. Seven Building Blocks have been established, these are
called

Measuring the Robustness of Airline Fleet Schedules

BB1: Flight

m BB2: Arriving aircraft

BB3: Layover aircraft

BB4: Departing aircraft

m BB5: BB5.1 Transferring passengers
BB5.2 Transferring baggage

BB6: BB6.1 Arriving passengers
BB6.2 Arriving baggage

BB7: BB7.1 Departing passengers
BB7.2 Departing baggage.

A diagrammatical representation of the temporal sequence of the building
blocks and their relationships to each other is shown in Figure 1. These have
been delimited in order to provide clear process distinction as well as account-
ability.

The doors being opened and closed are the points at which responsibility
passes from one capacity and service provider to another. The distinction of
theJirst door being opened is made because a door can either be the passenger
door(s) or a baggage door(s). For example, once a plane has physically landed
it is not actually considered to have landed (i.e. with responsibility passed to
the ground staff) until one (passenger OR baggage) door has been opened. In
contrast, responsibility changes back again when all doors have been closed,
not just one door.

All these agreements and the flight schedule itself comes together into an
operational plan. This functions as a contract between Network, Operations
Control and the Building Blocks (Capacity & Service Providers). The plan
covers an operational plan period of between 2 to 4 months spread over the
year. It consists of agreements concerning a schedule plan and a capacity plan
position for each specific period. It contains a demand-driven schedule that
has been fully checked with the Building Block representatives (Capacity &
Service Providers) and Operations Control by means of an operational check.
Eventually the agreements enable each provider to deliver an operational per-
formance forecast. This could deviate from the targets as laid down in the cor-
responding Business Plan. Each operational plan will be finalized two months
(at the latest) prior to each operational plan period.

The schedule is usually published as an Aircraft Rotation Schedule, which
is different each week. This is due to the fact that each day many adaptations
are made so as to minimise delays. For instance, if KLM know that an aircraft
will arrive at Schiphol Airport with a delay, they could assign its next flight to

Bian et al.

Arriving

aircraft 7
Arriving

Figure 1. Figure 1. Building blocks sequence and relationships.

another aircraft so that that flight can still leave on time. Usually, KLM will
also need other adaptations to have all flights fit into the Rotation Schedule
again. When a schedule is first published, KLM do not know the exact layout
of the Rotation Schedule, so they publish a hypothetical "average" one instead.

Before a schedule is published, an estimation of the expected punctuality
(that is the percentage of "on time" flights) is performed using a simple deter-
ministic model. As this model lacks accuracy, a simulation model is currently
being developed in order to enable a better forecast. This model simulates
aircraft movements according to a given schedule. The model subjects the
schedule to a "stress test" by generating various disruptions such as air traffic
congestion, delays during the boarding process or unexpected problems during
maintenance. Throughout the simulation, a Problem Solver algorithm attempts
to resolve delays by swapping flights in the Rotation Schedule, or in extreme
cases, by cancelling flights. More successful runs of the simulation are consid-
ered as better schedules for implementation.

A simulation, though, has several disadvantages. Processing times are usu-
ally too long, which limits the number of schedules that can be assessed Also,
KLM need to collect a huge amount of data about the processes that are being
simulated. For the simulation model currently under development they need
statistics about the variation in the actual flight duration, the variation in the

Measuring the Robustness of Airline Fleet Schedules 387

time it takes to handle an aircraft on the ground (boarding, fuelling, catering,
etc), breakdown times of each aircraft type, etc. Each of these statistics must
constantly be updated to reflect the change in flight routes, working methods,
fleet, etc.

KLM are currently seeking a simpler model that would enable them to make
a comparative statement, such as "Of a number of alternative schedules, sched-
ule X will provide the best performance."

3. MODELS FOR THE PROBLEM
It was anticipated that there should be some features of any schedule that

would be correlated with its performance. The first question is then what fea-
tures should be investigated? A brainstorming session with representatives of
KLM led to some suggestions. It was expected that the number of potential
swaps available to a delayed flight would be an important factor, but measur-
ing this value was not easy. In practice, it might also be necessary to undertake
a cascade of swaps, so another possible measure of performance would be the
length of time andlor the number of swaps needed to restore the schedule to
its normal condition. However, this is also complicated to determine, although
the Problem Solver module of the simulation could be invoked if necessary.

After further discussion, it was agreed to look at a simpler measure, which
could easily be found, and is arguably a surrogate for some of the more com-
plex measures suggested. This is the "Aircraft on Ground" (ACOG) measure
which gives an indication of the number of aircraft on ground. ACOG can be
calculated from the number of arriving aircraft, the number of layover aircraft,
and the number of departing aircraft. Having obtained some features related to
this measure, the next step is the identification of a suitable model for purposes
of prediction. Candidates here include multiple linear regression methods, re-
gression trees, neural nets and other pattern recognition techniques. However,
the fact that the amount of data available was small meant that data-hungry
methods should be avoided if at all possible. Thus it was resolved to begin the
investigation with traditional statistical methods.

4. EXPERIMENTAL RESULTS
Eleven schedules were available (SummerIWinter 2000-02, apart from the

last 13 weeks of 2002). KLM's operation at Schiphol is such that the activity
occurs in four major waves-a deliberate strategy to maximise passengers'
opportunities for making onward connections. Graphing the number of aircraft
available on the ground reveals this pattern clearly. These can be counted in
two ways: the more accurate picture is obtained by subtracting the lengths
of BB2 and BB4, leaving just those aircraft that are actually idle at a given
moment.

388 Bian et al.

Table I . Performance indicators for departure punctuality and arrival punctuality using two
different models. For the predictor sets: pl, 1st peak, m, first moment (mean); sd, second
moment (standard deviation); sk, third moment (skewness); k, fourth moment (kurtosis).

Using BB3 only Using BB2-4

PI Departures
Predictor sets p4m, plsd, plsk, plk p2m, p4m, p2sd, p4sd, p3sk
R-squared 95.6% 91.6%
p-value (F-test) 0.00032 0.01028

PI Arrivals
Predictor sets p4m, plsk, p3sk, p3k plm, p4m
R-squared 95.2% 84.1%
p-value (F-test) 0.00042 0.00064

However, it is a simpler calculation to count the whole of the time on the
ground from "First Door Open" to "Last Door Closed", which comprises the
whole of BBs 2,3 and 4.

In the case of European operations, each day is more or less identical, so
peaks can be defined quite easily. For each peak, the first four moments of the
ACOG values were calculated for each day, using both definitions-BB3 and
BB234. As days are so alike (apart from the very first day of a new sched-
ule), one day can be selected at random as a representative of a schedule. As
there are four peaks daily, we have 16 features as inputs, which we need to
associate with the performance indicators (PIS) already calculated by KLM.
The ones used for the models developed here were simply the departure and
arrival punctualities: the fraction of planes (of those scheduled) that departed
or arrived on time.

As a first step, correlations were calculated between the PIS and the 16 input
variables. The six or seven most highly correlated input variables were than
used in a stepwise regression procedure (using S-plus) to determine the best
balance between parsimony and explanatory power (S-plus uses the Akaike
information criterion for this purpose.) Table 1 summarises the models deter-
mined by this approach.

Of interest is the fact that p4m, the mean number of ACOG, is important
for all four models, but the other predictors seem to be far less important.
From KLM's point of view, this does not matter if the predictions are good
enough, but from a modeller's perspective we would like to see more consis-
tency. However, all models are based on just 11 data points, so perhaps the
lack of consistency is not surprising. Prediction intervals can easily be ob-
tained on the assumption of Normally distributed errors: these vary from &2%
for punctualities in the middle of the range to f 3% at the edges.

Measuring the Robustness of Airline Fleet Schedules

Figure 2. Residuals against fitted values for departure punctuality using BB3 only.

It was surprising that the R-squared values were as high as they were-we
were anticipating that a linear model would be too simple, yet it seems quite
powerful. Of course regression analysis makes certain assumptions about the
errors, and it is necessary to check the residuals to see if these assumptions
are plausible. The plot of residuals against fitted values was obtained for each
model; in no case does a systematic pattern seem plausible, and a random
scatter is obtained, as shown in Figure 2.

The three most extreme outliers (points 5, 7 and 10) are labelled; point
5 might well have been affected by September 11, but possible reasons for
the others are not known. A smooth has been applied, but its slopes are not
very steep, so the assumption that the errors are independent random variables
seems plausible. Similar graphs were obtained for the other three models.

QQ plots of the residuals against Normal quantiles were also obtained. Fig-
ure 3 below shows the same case as in Figure 2.

The tails of the distribution in particular are not well fitted, so the assump-
tion that the errors are Normally distributed is perhaps questionable. Thus any
confidence intervals should be treated cautiously. In any case, the response
variable in all four models is actually a ratio that is confined to remain be-
tween 0 and 1. This means that a better theoretical model would be based on
a logistic transformation, since it is theoretically possible that a simple linear
model could generate predictions outside the possible range of values. For ex-
ample, we can hardly have a punctuality of greater than loo%! Such a model
would also be based on a more plausible probability model than the Normal
distribution.

Bian et al.

Figure 3. Normal QQ plot for residuals for departure punctuality using BB3 only.

However, attempts to fit such a model did not produce an improvement. A
possible explanation is that the data available are all in the region of approxi-
mate linearity of the logistic curve. Consequently, any attempt to identify the
turning points of the curve is likely to be rather speculative. In any case, on in-
specting the coefficients of the models, it seems unlikely that we would predict
bizarre fractions in practice. For example, using the most extreme values ob-
served in the first model above would predict only 80% departure punctuality,
and in the opinion of KLM's experts it is hard to imagine physical circum-
stances in which these values could be exceeded simultaneously (there is just
not enough space to put many more planes, for example).

Thus, despite the attractions of a more plausible theoretical model, the air-
line is comfortable with the predictive ability of a simpler linear model.

5. CONCLUSIONS
An analysis of the expected number of aircraft on the ground has been

shown to provide a good prediction for the robustness of a given schedule. Fur-
ther refinements are possible-and desirable-but even this work has given the
KLM's operations department a better insight into what makes a fleet schedule
easier or harder to implement effectively. Some of the work that still needs
to be done includes an analysis of the effect of day-to-day variations in the
schedule-these variations are small, but preliminary work has suggested that
the definition of activity peaks needs to be tighter, and the possibility of a
day-of-the-week effect should also be explored. Furthermore, the schedules

Measuring the Robustness of Airline Fleet Schedules 391

examined so far have concentrated only on the European operations, where
fleet homogeneity is substantial and diurnal variation is small. Incorporating
the effects of the inter-continental timetable may lead to some changes in these
conclusions.

Acknowledgments
We would like to thank the following bodies for supporting the collaboration

described in this paper:

rn The Lorentz Centre in Leiden: 45th European Study Group for Mathe-
matics with Industry.

The EU Mathematics, Computing and Simulation for Industry Network
(MACSI-net).

rn The Smith Institute for Industrial Mathematics and Systems Engineer-
ing.

References
Abara, J. (1989), Applying integer linear programming to the fleet assignment problem. Inter-

faces, 19:20-28.
Argiiello, M. F. and Bard, J. E (1997), A GRASP for aircraft routing in response to groundings

and delays. Journal of Combinatorial Optimization, 1:211-228.
Bamhart C., Boland N. L., Clarke L. W., Johnson E. L., Nemhauser G. L, and Shenoi, R. G.

(1998). Flight string models for aircraft fleeting and routing, Transportation Science, Special
Issue on Airline Optimization, 32:208-220.

Barnhart C., Lu, E and Shenoi, R. (1997), Integrated airline scheduling. In Operations Research
in the Airlndustry, Gang Yu (Ed.), International Series in Operations Research and Manage-
ment Science, Vol. 9, Kluwer, Dordrecht, pp. 384-403.

Bamhart, C. and Talluri, K. (1997). Airline operations research. In Design and Operations of
Civil and Environmental Engineering Systems, A. McGarity and C. ReVelle (Eds.), Wiley,
New York, pp. 435-469.

Ciesielski V. and Scerri P. (1997), An anytime algorithm for scheduling of aircraft landing times
using genetic algorithms, Australian Journal of Intelligent Information Processing Systems,
4206213.

Ciesielski V. and Scerri P. (1998), Real time genetic scheduling of aircraft landing times. In Pro-
ceedings of the 19% IEEE International conference on Evolutionary Computation (ICEC98).
IEEE, Piscataway, NJ, pp. 360-364.

Clarke L. W., Hane C. A., Johnson E. L, and Namhauser G. L. (2001), Maintenance and crew
considerations in fleet assignment, Transportation Science, 3249-260.

El Moudani, W. and Mora-Camino, E (2000) A dynamic approach for aircraft assignment and
maintenance scheduling by airlines, Journal of Air Transport Management, 6:233-237.

Etschmaier, M, and Mathaisel, D. (1985) Airline scheduling: an overview, Transportation Sci-
ence, 19:127-138.

Feo, T. A. and Bard, J. F. (1989) Flight scheduling and maintenance base planning, Management
Science, 351415-1432.

Bian et al.

Filar, J. A., Manyem, P. and White, K. (2001) How airlines and airports recover from schedule
perturbations: a survey, Annals of Operations Research, 108:315-333.

Gopalan, R. and Talluri, K. T. (1998) Mathematical models in airline schedule planning: a sur-
vey, Annals of Operations Research, 76:155-185.

Hane, C. A., Barnhart, C., Johnson, E. L., Marsten, R. E., Nemhauser, G. L. and Sigismondi, G.
(1995) The fleet assignment problem: solving a large-scale integer program, Mathematical
Programming, 70:211-232.

Hansen, J. V. (2004) Genetic search methods in air traffic control, Computers and Operations
Research, 31:445459.

Jarrah, A. I. (2000) An efficient airline re-fleeting model for the incremental modification of
planned fleet assignments, Transportation Science, 34:349-363.

Klincewicz, J. G., Rosenwein, M. B. (1995) The airline exception scheduling problem, Trans-
portation Science, 294-16.

Love, M., Sorensen, K. R., Larsen, J, and Clausen, J. (2002) Disruption management for an
airline-rescheduling of aircraft, Applications of Evolutionary Computation: Proceedings
of the EvoWorkshops 2002, Lecture Notes in Computer Science, Vol. 2279, Springer, Berlin,
pp. 3 15-324.

Mashford, J. S, Marksjo, B. S. (2001) Airline base schedule optimisation by flight network
annealing, Annals of Operations Research, 108:293-3 13.

Mathaisel, D. F. X. (1997) Decision support for airline schedule planning, Journal of Combina-
torial Optimization, 1:251-275.

Oussedik, S., Delahaye, D. and Schoenauer, M. (2000) Flights alternative routes generator
by genetic algorithms. In Proceedings of the 2000 Congress on Evolutionary Computation
(CEC 2000), IEEE, Piscataway, NJ, pp. 896-901.

Rexing, B., Barnhart, C, Kniker, T., Jarrah, A. and Krishnamurthy, N. (2000) Airline fleet as-
signment with time windows, Transportation Science, 34: 1-20.

Richter, H. (1989) Thirty years of airline operations research, Inter$aces, 19:3-9.
Rosenberger, J. M., Schaefer, A. J., Goldsman, D., Johnson, E. L., Kleywegt, A. J, and

Nemhauser, G. L. (2003) A stochastic model of airline operations, Transportation Science,
36:4.

Ruland, K. S. (1999) A model for aeromedical routing and scheduling, International Transac-
tions in Operational Research, 657-73.

Rushmeier, R. A. and Kontogiorgis, S. A. (1997) Advances in the optimization of airline fleet
assignment, Transportation Science, 31: 159-169.

Sosnowska, D, and Rolim, J. (2001) Fleet scheduling optimization: a simulated annealing ap-
proach. In Practice and Theory ofAutomated Timetabling 111 (PATAT2000), E. Burke and W.
Erben (Eds.), Lecture Notes in Computer Science, Vol. 2079, Springer, Berlin, pp. 227-241.

Subrarnanian, R. (1994) Coldstart: fleet assignment at Delta Air Lines, Inter$aces, 24:104-120.
Talluri, K. T. (1996) Swapping applications in a daily airline fleet assignment, Transportation

Science, 30:237-248.
Thengvall, B. G., Yu, G. and Bard, J. F. (2001) Multiple fleet aircraft schedule recovery follow-

ing hub closures, Transportation Research A, 35:289-308.
Thengvall, B. G., Bard, J. F. and Yu, G. (2004) A bundle algorithm approach for the aircraft

schedule recovery problem during hub closures, Transportation Science, to appear.
Yan, S. and Lin, C. G. (1997) Airline scheduling for the temporary closure of airports, Trans-

portation Science, 31:72-82.

Author Index

Adenso-Diaz, B .
Aloulou, Mohamed Ali
Aparicio, Joaquim
Bian, F.
Branke, Jiirgen
Brauner, Nadia
Burke, E. K.
do Carmo Silva, Silvio
Cesta, Amedeo
Cortellessa, Gabriella
Do, Van Ha
Dror, Moshe
Finke, Gerd
FronEek, Dalibor
Hanne, Thomas
Howe, Adele E.
Indra-Payoong, Nakorn
Jain, S.
Kendall, Graham
Koole, G. M.
Kwan, Raymond S. K.
Landa Silva, J. D.
Lemaire, Pierre
Leung, Joseph Y.-T.
Li, Haibing

Mattfield, Dirk Christian
Meszka, Mariusz
Mohd Hussin, Naimah
Mulder, J.
Nickel, Stefan
Oddi, Angelo
~ z c a n , Ender
Paelinck, M. C. E.
Pbridy, Laurent
Petrovic, Sanja
Pinedo, Michael
Policella, Nicola
Portmann, Marie-Claude
Proll, Les
Reeves, C.
Rivreau, David
Rusdi, I.
Smith, Stephen F.
Suleman, M. 0.
Varela, Leonilde
Watson, Jean-Paul
Whitley, L. Darrell
Woeginger, Gerhard J.
Yang, Yong
Zinder, Yakov

