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Preface

Agent-based computational models, generally named “Artificial eco-
nomics” (AE), represent a new methodological approach where econom-
ies, and more generally social structures, are modeled as evolving sys-
tems consisting of heterogeneous interacting agents with some degree
of cognitive skills. Assuming a precise mechanism that regulates the
interaction among different agents, this approach allows through simu-
lation to compute numerically the aggregate behavior of the economy
and to discover the regularities emerging from the micro-behavior of the
agents. The AE approach has provoked a great deal of academic interest
among social scientists because it represents an alternative to both the
fully flexible but not computable and testable descriptive models, and
the logical consistent but highly simplified analytical models. With AE
the researcher retains much of the flexibility of pure descriptive mod-
els in the specification of the interaction structure and the individual
behavior, while having the precision and consistency imposed by the
computer language. The methodology opens up new avenues for ana-
lyzing decentralized, adaptive, emergent systems. The use of computer
simulations provides an experimental format allowing free exploration
of system dynamics, and, at the same time, the opportunity to check the
various unfolding behaviors for plausibility. An early use of agent-based
models was by R.M. Axelrod in his research on the evolution of cooper-
ation. He employed extensive computational simulations to study indi-
vidual strategic behavior in the iterated prisoner’s dilemma. This work
has stimulated a new approach to game theory based on computational
ideas. The research on complex adaptive systems has received a great
impulse starting from the mid-eighties with the foundation of the Santa
Fe Institute, a non-profit institution specifically devoted to understand
the basic principles of human and natural systems, following a multi-
disciplinary approach and using computer-based modeling. A new field
of scientific inquiry, called Artificial Life (AL), has emerged with the
aim to study biology by attempting to synthesize biological phenom-
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ena such as life, evolution, and ecological dynamics within computers.
This approach has led to wider ideas such as complexity, evolution,
auto-organization, and emergence that have influenced social scien-
tists. The initial attempts to mix computational methods and social
sciences include pioneering AE work in finance, specifically the “Santa
Fe Artificial Stock Market Model” of W.B. Arthur, J.H. Holland, B.
LeBaron, R.G. Palmer, and P. Taylor. This model, based on bounded
rationality and inductive reasoning, has led to a new generation of
agent-based computational models aimed to reproduce stock market
dynamics and to explain financial market puzzles. Recently, there has
been a surge of interest in studying social interaction, the process by
which people form and transmit ideas and information. The emergence
of this new topic has been driven by the recognition that understand-
ing the formation and dynamics of social networks may represent the
missing element to uncover the functioning of complex systems such as
asset markets. Agent-Based Computational Economics, with its intrin-
sic multidisciplinary approach, is gaining increasing recognition in the
social sciences. The methodology is now widely used both to compute
numerically analytical models and to test them for departures from
theoretical assumptions, and to provide stand-alone simulation models
for problems that are analytically intractable.

This book collects a selected range of refereed papers that have been
gathered in five sections, each of them devoted to one the following
topics:

• Macroeconomic Issues
• Market Mechanisms and Agents Behavior
• Market Dynamics and Efficiency
• Analysis of Economic and Social Networks
• Methodological Issues and Applications

The first section includes papers using an agent-based approach to
give micro-foundations to macro-economic analyses. The second section
is dedicated to papers developing agent-based computational models
aimed to investigate the dynamics of financial markets in order to un-
derstand their properties. In this section relevant issues such as the
fairness of different trading mechanisms and the evaluation of the per-
formance of technical trading are analyzed. The third section is devoted
to models simulating the process of market adjustment towards equi-
librium. The section covers different interesting applications spanning
from the introduction of an option market, to a model with endogenous
costly information acquisition. The fourth section is devoted to papers
investigating networks formation and evolution with applications to
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the labor market and to the R&D industry. Finally, the last section in-
cludes more methodological contributions and some applications such
as a model of the venture capital market where the quality of the in-
vestment projects is only imperfectly available and venture capitalists
play the function of screening high-quality investments.
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• Silvano CINCOTTI - University of Genova, Italy
• Christophe DEISSENBERG - GREQAM, France
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• Marco JANSSEN - Arizona State University, USA
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• Marco LI CALZI - University of Venice, Italy
• Michele MARCHESI - University of Cagliari, Italy
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• Akira NAMATAME - National Defense Academy, Japan
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IV, France
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Part I

Macroeconomic Issues



1

Beyond the Static Money Multiplier: In Search
of a Dynamic Theory of Money

Michele Berardi

University of Manchester
School of Social Sciences
Michele.Berardi@manchester.ac.uk

1.1 Introduction

Though we all live in a monetary economy where credit money plays
a fundamental role, the process through which money is created in
the economy is largely neglected by modern macroeconomic theory. A
common approach maintains that the process starts with an exogenous
increase in the monetary base made by the central bank, and that
this, through a fixed multiplier, gives rise to a proportional increase in
the amount of money in the economy. The multiplier is usually taken
as constant in this process, at least on short time scales, and most
importantly, independent from the money creation process itself. The
result is essentially a static, aggregate theory, with very poor behavioral
micro-foundations, that completely neglects the process through which
money is generated in an economy.

As a consequence of this representation, money is taken to be ex-
ogenously determined and its quantity explained through changes in
the monetary base magnified proportionally by the fixed multiplier.
Unfortunately, this theory is not able to provide any insights about
the process that generates money in a credit economy, apart from as-
suming that changes in the monetary stock are originated by central
bank interventions, and proportional to them. It misses completely the
idea that money is created and destroyed endogenously, through the
interactions of the many actors (mainly banks, households and firms)
participating in the monetary and credit markets.

An important drawback of the traditional theory, as represented
by the static multiplier,1 is that it does not allow for a proper theory
1 We dub the traditional multiplier as static, to emphasize its lack of attention to

the dynamics involved in the process of money creation.
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of endogenous money creation that many economists think would be
necessary.2 Presenting the whole process of money creation as a pure
deterministic response of the monetary stock to an exogenous change
in the monetary base is deeply misleading. In the words of Goodhart
(1984), the standard multiplier theory of money creation is “ . . . such
an incomplete way of describing the process of the determination of the
stock of money that it amounts to misinstruction”.

In modern economies, where the central bank wants to control the
interest rate, money is necessarily endogenous to the system as the
policymaker must provide enough monetary base so that the equilib-
rium interest rate on the market is the desired one. Though this fact is
often recognized even in standard macroeconomic textbooks, then an
exogenous and fixed multiplier is still considered to be the link between
the monetary base and the amount of money available in the economy.
It is completely neglected the fact that the ratio between these two
aggregates can vary according to the behavior of the system and must
not be assumed fixed a priori.3

In this work we take a narrow perspective regarding the creation of
money in a credit economy and focus our attention only on its process.
In particular, our analysis should help explain the short term variabil-
ity in the amount of money, for the part that can be imputed to the
volatility in the multiplier.4 Our work does not try to analyze the de-
terminants of the behavior of banks and households but puts emphasis
on the heterogeneity of the actors involved in the monetary and credit
market and tries to provide a better understanding of the dynamics
of the process of money creation, stripped down to its mechanics and
deprived of any behavioral content. Still, we believe that this approach
can provide useful insights and help build a more comprehensive theory
of money in a credit economy.

2 Post-Keynesian economists, in particular, have long argued about the need of
an endogenous theory of money, one that recognizes the fact that the financial
system is able to generate monetary liabilities in response to real sector’s needs.
But also on the other side of the macroeconomics spectrum (see, e.g., Kydland
and Prescott, 1990) there is support for the view of endogenous money.

3 These issues are somewhat related to the debate between verticalists and hori-
zontalists that was popular in the 1970s. For a detailed exposition and analysis
of the two positions, see Moore (1988).

4 Moore (1988) shows that variations in the monetary base can explain only about
40% of the variability in the M1 aggregate on a monthly base, while this pro-
portion raises to about 65% with quarterly data and to 90% over horizons of
one year. Over short time horizons, therefore, a lot of variability in M1 is left
unexplained by the standard theory.
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1.2 Models of money creation

1.2.1 The static multiplier

Standard macroeconomic theory explains the amount of money avail-
able in an economy starting from the monetary base (H), which is
composed of currency held by the public (CU) and reserves held by
the banking sector (R).5 The money multiplier is simply derived as
the ratio between the monetary base provided by the central bank and
a monetary aggregate (M), composed of currency (CU) and deposits
(D):6

H = CU + R (1.1)
M = CU + D, (1.2)

from which, dividing everything by D and defining cu = CU/D, re =
R/D, it follows that

m =
M

H
=

1 + cu

cu + re
. (1.3)

The standard money multiplier represents therefore an aggregate char-
acteristic of the economy, with essentially no behavioral content. Nev-
ertheless, the ratios re and cu are often taken to represent agents’ indi-
vidual preferences, assumed constant and homogeneous. The whole ap-
proach is essentially static and neglects completely the process through
which money is created.

1.2.2 A dynamic version of the multiplier

We present here a different way to obtain the multiplier: instead of
using ratios of aggregate quantities, we consider the dynamic process
that unfolds through monetary and credit transactions. We start with
an increase in monetary base, in the form of an increase in funds avail-
able to the public. Suppose we are in a situation where households
have exactly the proportion of cash/deposits (cu) that they wish, and
banks have the proportion of reserve/deposit (re) that they want to
hold. Therefore households will split the additional funds they receive

5 It is customary not to distinguish between households and firms, and consider
them as an aggregate entity (the public). We will follow here this simplification
as well.

6 In this work we will refer to a generic monetary aggregate M, which could be
understood as M1 in US or Europe.
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between deposits and cash, in the proportion cu. Banks in turn will
keep a fraction (re) of the additional deposits they receive as reserves
and use the rest to extend new loans (L) to the public, who will split
them again into cash and deposits, and the process continues.7

From the definitions above, we get that at each step i of the process:8

CUi =
cu

1 + cu
Li (1.4)

Di =
1

1 + cu
Li (1.5)

Li+1 = (1 − re)Di (1.6)

which lead to

Mi =
(

1 − re

1 + cu

)i

M0 (1.7)

and therefore

m =

∞∑
i=0

Mi

M0
=

∞∑
i=0

(
1 − re

1 + cu

)i

=
1

1 − 1−re
1+cu

=
1 + cu

cu + re
, (1.8)

where M0 is the original increase in monetary base, in the currency
component. This alternative derivation of the static multiplier shows
its micro-foundations when the behavioral parameters cu and re are
constant and homogeneous. But once we introduce heterogeneity in
those individual parameters, the system changes significantly its be-
havior.

To better analyze the importance of heterogeneity, the aggregate de-
scription for the process (1.4)-(1.8) must be replaced with a distributed
one, where each single bank and household are represented and explic-
itly considered. This implies that in general a closed form solution for
the multiplier will not exist, and computer simulations will be used to
gain insights into the behavior of the system.

7 The following restrictions apply: 0 ≤ re ≤ 1, cu ≥ 0.
8 Here CUi is the additional amount of cash available at time i with respect to

time i− 1, not the total cash available at time i. The same for the other variables
here used.



1 Beyond the Static Money Multiplier 7

1.2.3 Introducing heterogeneity

In a heterogeneous setting, each bank has its own reserve/deposit ratio
and each household its own currency/deposit ratio. If we assume that
each agent (bank or household) in linked to only one agent of the other
type, so that the flow of money is never split into different streams, it
is then possible to express the multiplier (for a unitary increase in the
monetary base) as

md = 1 +
∞∑
i=0


 i∏

j=1

1 − rej

1 + cuj


 , (1.9)

where the index i refers to a “ round” in the process (i.e., household
i deposits money in bank i; bank i extends a loan to household i + 1,
who will deposit money into bank i+1). A bank or household can be
activated in more than one round during the process, as the index does
not identify an agent uniquely, only the action of an agent.

We can see that if rez = 1, or cuz = ∞, for some generic z, then
the terms in (1.9) for i ≥ z are all zero, because agent z acts as an
absorbing state in the system and interrupts the multiplicative process
of money creation. This implies that heterogeneity is important, and
can not be simply averaged out. In fact, the value of the multiplier
computed with (1.9) is different from the one we would obtain by using
averages of all the reserve/deposit and currency/deposit ratios:

ma =
1 + 1

n

n∑
h=1

cuh

1
n

n∑
h=1

cuh + 1
k

k∑
b=1

reb

, (1.10)

where k is the number of banks and n the number of households in the
economy. Here indexes represent individual banks and households. Un-
der homogeneity (∀b, reb = re; ∀h, cuh = cu), (1.8) = (1.9) = (1.10).
But with heterogeneous agents, this is not in general true, as it can
be seen from a simple experiment. We create 100 different economies,
each characterized by 1000 banks and 1000 households with randomly
drawn individual ratios and derive the empirical cumulative distribu-
tion function (cdf) for the dynamic multiplier computed using (1.9)
and for the one computed using averages as in (1.10). As can be seen
in Figure 1.1, the average multiplier ma varies over a restricted range
of values, as much of the variability is washed out by the averaging.
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Fig. 1.1. Empirical CDF of average (dotted line) and dynamic (solid line)
multipliers.

When the behavioral parameters are heterogeneous, the value of
the dynamic multiplier depends, among other things, on the position
where the process starts (for an exogenous intervention, where the CB
“drops” the monetary base). The system is in fact path dependent and
the order by which agents take part in the process becomes relevant.
This is confirmed by our simulations when we compute the dynamic
multiplier 1000 times for the same economy, each time changing the
order by which agents are activated. Results show that the multiplier
can vary over a wide range of values, for the same economy, depending
on the order by which agents take part in the process.9

The standard way to represent the multiplier is therefore mislead-
ing, as in that representation the coefficients re and cu are not really
behavioral parameters, as it may appear by their definitions, but simply
ratios of aggregate quantities.

Note then that equation (1.9) is valid only when all the money re-
mains in a unique stream and never gets split into different branches.
If we allow each agent (bank or household) to be connected with more
than one counterpart, we then need to keep track of all the streams

9 In one of the experiments that we ran, the dynamic multiplier showed a distribu-
tion of values in the interval 1-2.5. Of course ma was instead constant (and equal
to 1.06).
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of money that get generated, and the analytic formula becomes in-
tractable.

1.2.4 Monetary network

We therefore build an artificial economy and try to gain some insights
into the process of money creation by means of simulations. We abstract
from any considerations involving the real side of the economy and only
model the structure of monetary and credit transactions, considering
different possible network topologies at the base of the system and their
impact on the multiplicative process.

The network composed of banks and households is a bipartite net-
work, where edges exist only between nodes belonging to different
classes. In the process that we describe, each node (bank or house-
hold) receives some money from its incoming links, keeps part of it
(as reserves or cash holdings) and passes along the rest through the
outgoing edges. We can uniquely define each node by its ratio of re-
serve/deposit or currency/deposit, and build two matrices, one for the
links from banks to households (where the edges of this network rep-
resent the flow of credit that banks extend to households), and one for
the links from households to banks (where the edges represent the flow
of deposits from households to banks).

We will consider three different network topologies and try to un-
derstand how they impact on the size distribution of the multiplier:
a random graph, a regular graph and star graph. Other topologies of
course could be considered (e.g., small-world á la Watts and Strogatz
(1998) or scale-free á la Albert and Barabasi (2002)), but we restrict
for now to these more common structures.

We start by considering a random network, where banks and house-
holds are assigned random behavioral ratios (cuh and reb)10 and are
randomly linked to each other. The system is composed of 5 banks
and 100 households, with each bank receiving money from and ex-
tending loans to a random number of households. We simulate 100
economies and compute for each the average and the dynamic multi-
plier. In Figure 1.2 we show the distributions (as histograms) of the
two measures. We can see that the variability in the dynamic multi-
plier is much higher than in the average one, where the part due to
heterogeneity gets washed out.

We then consider one single economy with a fixed set of parameters
(thus fixing the average multiplier) and simulate 1000 different pro-

10 With reb and cuh
1+cuh

uniformly distributed between 0 and 1.
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Fig. 1.2. Histograms of average (grey) and dynamic (black) multiplier with
a random network of monetary transactions.

cesses of money creation by randomly inject money on different sites.
Figure 1.3 shows the empirical cdf of the resulting dynamic multiplier:
as it can be seen, the monetary system is path dependent and the final
size of the money multiplier depends, among other things, on the po-
sition where money is injected into the economy. This means that the
multiplier could change even when behavioral ratios for banks’ reserves
and households’ currency remain fixed, an aspect that is completely
neglected by the standard theory.

The next topology that we consider is a regular structure, where
banks and households are laid down on a bi-dimensional lattice. Each
bank is linked to four households, and each household to four banks.
Each link is bi-directional, for deposits and loans (though some can
have zero weight). We simulate the process of money creation on a
lattice composed by 18 banks and 18 households, and show the dis-
tribution (histograms) for the average and the dynamic multipliers in
Figure 1.4. Compared with the case of a random graph, the variability
in the dynamic multiplier is now reduced, as the presence of absorbing
states does not disconnect entire regions of the system.

To conclude, we look at the extreme case of a star topology, where
all households are linked to one single bank which receives deposits and
extends loans to them. We simulate the process of money creation on
a structure of this type with 100 households and one bank, and show
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Fig. 1.3. Empirical cdf of the dynamic multiplier in a random economy with
different paths of propagation.
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Fig. 1.4. Histograms of average (grey) and dynamic (black) multiplier with
a regular network of monetary transactions.
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the results in Figure 1.5. As we can see, the variability in the dynamic
multiplier increases again now, because the presence of only one bank
makes the whole system dependent on the behavior of that bank.
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Fig. 1.5. Histograms of average (grey) and dynamic (black) multiplier with
a star network of monetary transactions.

1.2.5 Monetary cascades and the sandpile model: an attempt
at perspective

We try to suggest here an alternative but somewhat complementary
interpretation of the process through which money is created in a credit
economy, viewing it as an avalanche that propagates across the economy
through monetary and credit transactions.

An interesting phenomenon that has been studied in physics is that
of self-organized criticality (SOC), where a system drives itself on the
edge of a critical state, right between stability and instability.11 The
classical example is that of the sandpile model developed by Bak et al.
(1987).

We think that this interpretation could provide useful insights for
the explanation of the process of money creation in a credit economy. If
the system operates right on the edge of a critical state, the introduc-
tion of new monetary base could have a final effect on the monetary
11 For a review of the concept, see Turcotte (1999).
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aggregate that is unpredictable and can vary across a wide range of
values.

Suppose that banks try to keep an average reserve/deposit ratio
in line with legislation requirements, but take actions and extend new
loans only when their individual reserve/deposit ratio reaches a fixed
threshold; and that households try to keep an average currency/deposit
ratio according to their individual needs/preferences, but take actions
and deposit funds into a bank only when their ratio reaches a certain
upper bound. So that when banks extend new loans and households
make new deposits, they will do it for an amount that exceeds the
marginal availability of funds beyond their own threshold.12 In this
way, as time passes, the system could drive itself towards a critical
state, on the edge between stability and instability.

Once in this critical state, for each increase in monetary base we
could see a final increase in the monetary aggregate M of any size.
At times, the process of money creation would end soon, when money
reaches an agent that is below its threshold and therefore hoards the
additional money he receives; but at times the process could spread
out and generate an avalanche, if many nodes involved reach their own
threshold and pass along money to others.

This interpretation could provide a good explanation of the vari-
ability observed in the multiplier, and if the analogy with the sandpile
model is correct, the size of monetary cascades should be distributed
according to a power-law.13 14

We now turn to data to see if a power law characterizes the size
of the multiplier. In this respect, there are a number of issues to keep
in mind. First, the central bank does not ”drop” monetary base con-
stantly and regularly in fixed amounts in the economy; secondly, the
temporal scale is such that different avalanches may overlap, as there is
no guarantee that the time between one central bank intervention and
the next is enough for the system to fully respond and adjust to the
12 Technically, these behaviors prevent the system from reaching a stationary state

of equilibrium, where all agents have just the desired reserve and currency ratios
and simply pass along any additional funds they receive.

13 A feature that is crucial in the sandpile model is the dispersion of the sand
involved in the avalanche. In the monetary system, of course, there is no dispersion
of money, so that the ”pile” of money keeps growing in absolute size, but the
relative size with respect to deposits, that is what matters here, remains constant.

14 While earlier studies of the sandpile model were done using a regular lattice
to represent the interactions among sand grains, Goh et al. (2003) study the
avalanche dynamics of the sandpile model on a scale-free network with heteroge-
neous thresholds and find that the avalanche size distribution still follows a power
law.
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first intervention; third, we have data available at regularly intervals
(bi-weekly or monthly), but an avalanche of money may take different
lengths of time to reach its full extent at different times; finally, we
detrend the multiplier, as its trend is likely to derive from long-run
changes in behaviors that we do not try to explain here and want to
abstract from.15 Having all these limitations in mind, we test for the
presence of a power law in the size distribution of the multiplier.16 Fig-
ure 1.6 (in a log-log scale) shows the best fit of the estimated Pareto
distribution for the right tail (dashed-dotted line) with the vertical dot-
ted line showing the point from which the Pareto distribution has been
identified. Out of the 568 observations available (bi-weekly data for
US, February 1984–November 2005),17 only 157 were identified to be
distributed according to a power-law, and the estimated coefficient is
2.55.

According to this test, the evidence for a Pareto distribution in the
data for the multiplier seems rather weak so far, though we believe that
a more careful analysis is required. In particular, it has to be identified
the measure that better captures the avalanche style behavior of the
system, since the multiplier, suffering from the limitations described
above, might be a poor indicator of such a behavior.

1.3 Conclusions

This paper is a tentative contribution in the field of monetary eco-
nomics and offers a representation of the money creation process in
a credit economy that is alternative to the standard one provided by
the static multiplier. We have focused our attention on the mechanics
of the process, and we have shown the importance of the role played
by the heterogeneity of the actors involved and their interactions. An
important feature that has been shown here is the path dependence of

15 The series is detrended using the Hodrick-Prescott filter.
16 We apply a procedure that first tests for the presence of a Pareto distribution

in the data, identifies a region that with a 95% confidence interval follows such a
distribution and then applies bootstrapping techniques to find the Hill estimator
for the coefficient of the distribution.

17 We also applied the same procedure to a constructed series for the multiplier,
obtained as the ratio between the monetary aggregate M1 and the monetary
base, using US monthly data for the period 01/1959-08/2006, with the resulting
multiplier then detrended using the HP filter. We obtained similar results in terms
of the proportion of data appearing to be Pareto distributed, though the estimate
for the coefficient was lower, about 2.25.
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Fig. 1.6. Empirical distribution of the detrended money multiplier. The
dashed-dotted line indicates the best fit for a power-law.

the system, which implies that position and timing of CB’s interven-
tions on the money market will have an impact on their effectiveness.
Finally, the structure of the monetary system has been shown to af-
fect the variability of the multiplier and therefore the process of money
creation. It is therefore important that some effort be devoted in order
to understand the empirical structure of monetary and credit transac-
tions.

The approach we have adopted in this work, we believe, is well suited
for supporting a theory of endogenous money, as it does not imply a
deterministic and causal relationship between the monetary base and
the quantity of money. Emphasis is placed on the monetary and credit
transactions, and though we did not try to link these transactions to
the economic activity, the two aspects are clearly interrelated.

Our analysis is just an initial step and much road has still to be
covered in order to develop a theory that can properly account for the
process of money creation, but we hope that our work will stimulate
others to join the ride.
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2.1 Introduction

A large part of the macroeconomic literature is dedicated to identifying
the determinants of two phenomena: the growth and fluctuations of the
aggregate output. Among the proposed explanations, the one concern-
ing financial factors (see Gertler, 1988, for a survey) is that adopted in
this study.

Our goal is to investigate how the interest rate affects the growth
rate and fluctuations (represented by the growth volatility) of the econ-
omy when the banking sector matters. 1 Intermediaries and especially
the banking sector have been the object of increasing interest in recent
years, because it could be the cause of serious crisis due to the interac-
tions on the interbank market and the consequent contagion effect of
an eventual bank failure. In real life, the importance of bank’s finan-
cial soundness was recognized by the Basel accords (Basel Committee,
2003, 1998) that impose a minimum capitalization level on banks.2 As
we’ll see shortly this is a basic ingredient of the model presented in this
paper.

The paper is organized as follows. After this introduction, the agents
and their behavior are presented and discussed in section 2.2. In sec-

1 The literature on this topic is wide. As examples one can see Levine (1997) for
a survey on financial development and growth; Greenwald and Stiglitz (1993) for
a theoretical model on financial markets imperfections and business cycles, and
Beck et al. (2006) for an empirical paper on financial intermediary development
and growth volatility.

2 The relationship between adequate capital ratios and bank failure is analyzed by
Estrella et al. (2000).
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tion 2.3 the microeconomic equations obtained in section 2.2 are turned
into macroeconomic ones. This allows us to derive our main theoretical
result: the growth rate of the economy and to analyze its determinants.
The aggregation in this section employs the commonly used device of
the representative agent. Although it is a very convenient makeshift,
this way of obtaining macroeconomic results hides several drawbacks
(see Kirman, 1992, for example). In section 2.4 we show and discuss
the results of an agent based implementation of the model. Simulat-
ing the model using a bottom up approach is useful for at least two
reasons. The first one is that it is a way to check the reliability of
the theoretical results that may have been biased by the representative
agent hypothesis. In the simulations the agents are heterogeneous, but
we have no problem of aggregation having the possibility to compute
the variable we are interested in (bottom-up approach). Secondly, and
more importantly, agent based models allow a very detailed analysis of
the results of a model. The analysis of simulated data gives us the pos-
sibility to study how the growth volatility (basically the fluctuations of
the economy) varies with the interest rate. Section 2.5 concludes the
study.

2.2 Microfoundations

In this model we have two types of agents (firms and banks) and a policy
maker. The behavior of firms and banks is similar to that presented by
Delli Gatti et al. (2005). In the following subsections we describe the
behavior of these agents.

2.2.1 Firms

Firms obtain the production (Yit) implementing a linear production
function using only capital (Kit) (we assume for simplicity that Yit =
φKit where φ is the capital productivity), they sell the output and real-
ize the economic result (πit) (profit or loss). After having observed the
economic result, a firm adjusts its capital stock before starting a new
cycle of production, deciding the investment level (Iit+1). Investment
is financed first by profit and, if that is not enough, changing the debt
stock (∆Lit+1). The firm’s stock variables are tied by the balance sheet
identity Kit = Lit+Ait where Ait is the equity base. For future reference
it is useful to define the equity ratio ait = Ait/Kit and the debt ratio
lit = Lit/Kit. From the balance sheet equation we have ait + lit = 1.
The dynamics of capital and equity base are Kit+1 = Kit + Iit+1 and
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Ait+1 = Ait + πit+1 respectively. Looking at the last equality, it is
worth noting that a loss (πit+1 < 0) decreases the firm’s equity base
and when it becomes negative (due to a sequence of losses) the firm
goes bankrupt.

Our main interest is in deriving the production of the firm. Accord-
ing to the description above, it depends on the investment that, in
turn, depends on credit. In the following we describe in a detailed way
the investment decision and the consequent change in the demand for
credit.

Investment

Firms use the following rule to decide the investment level:

Id
it = γπit−1 with γ > 1, (2.1)

where the d superscript stands for demanded.
This behavior can be justified in two different ways. The first one

is based on the empirical evidence (Hubbard, 1998). The second one
is that a similar rule can be obtained from the profit maximization
(Giulioni et al., 2002).

The γ > 1 assumption ensures that investment decisions involve
credit so that investments are financed by past profits and debt. A
natural way to express this is

Id
it = πit−1 + ∆Ld

it. (2.2)

This equation tells us also that investment depends on credit. In fact,
if the firm obtains all the credit it wants it can attain its desired invest-
ment, but nothing ensures that this will happen: the realized invest-
ment Iit is different from the desired one if the firm is credit constrained
(∆Lit < ∆Ld

it). We present here an alternative way to express the de-
pendence of the investment on credit. This alternative presentation will
be useful later on.

Let’s start with the investment rule (equation (2.1)). Using this it
is possible to verify that the debt ratio converges to its steady state
value l∗ = γ−1

γ (see the appendix). 3

3 The existence of an optimal financial structure in firms’ balance sheets is in line
with the view adopted in this work. Here banks exist and are important. Economic
theory tells us that banks gain importance in a world where market imperfections
are present. But, if these phenomena exist, the Modigliani-Miller theorem does
not hold true so that an optimal financial structure for firms exists.
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A convenient way to define investment is using the steady state debt
ratio instead of equation (2.1). Indeed from

Lit

Kit
=

Lit−1

Kit−1
= l∗ we have

Lit−1 + ∆Lit

Kit−1 + Iit
=

Lit−1

Kit−1

and rearranging 4

Iit =
γ

γ − 1
∆Lit. (2.3)

So, the change in debt is the only determinant of the investment.

The desired change of credit demand

Plugging equation (2.1) into (2.2) one obtains:5

∆Ld
it = (γ − 1)πit−1. (2.4)

In equation (2.4) the economic result is involved. Let’s give its def-
inition:

πit = uitYit − (rLit + rAAit) − βKit (2.5)

where uit is the selling price, rLit + rAAit are financing costs and βKit

are production costs. Assuming that the remuneration of the equity
base is equal to that of debt6 (rA = r) we can write equation (2.5) as
πit−1 = uit−1φKit−1 − r(Lit−1 + Ait−1)−βKit−1 and using the balance
sheet identity we get

πit−1 = uit−1φKit−1 − rKit−1 − βKit−1. (2.6)

Substituting (2.6) into (2.4) one obtains

∆Ld
it = (γ − 1)(uit−1φ − r − β)Kit−1. (2.7)

4 Developing on the last written formula one can go through the following passages
(Lit−1 + ∆Lit)Kit−1 = Lit−1(Kit−1 + Iit) ⇒ Iit = (K/L)∆Lit = (l∗)−1∆Lit =
[γ/(γ − 1)]∆Lit.

5 Note that, if firms are not rationed so that ∆L = ∆Ld
it, inserting (2.4) into (2.3)

one recovers equation (2.1).
6 In Delli Gatti et al. (2005) this simplifying assumption is also present.
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2.2.2 Banks

Banks extend loans to firms being limited by a Basel like rule. Bank’s
j balance sheet is Ljt = Djt + Ejt where Ljt =

∑
i∈ω Lit is the total

loan of the bank (ω is the bank’s set of costumers), and Djt and Ejt

are the bank’s deposits and equity base respectively. The bank realizes
an economic result πB

jt given by the difference between the interest
earned on loans (rLjt) and the one paid on deposits (rDDjt) and to
shareholders (rEEjt). It has further losses if any of its costumers goes
bankrupt. We’ll refer to these losses as “bad debt” (Bjt). We mentioned
before that a firm goes bankrupt when Ait < 0. Using the firms’ balance
sheet identity (Kit = Lit +Ait) this implies Kit < Lit, that is, the bank
lent Lit but can only receive Kit so that the bad debt due to firm’s i
bankrupt is Lit − Kit.

In this part of the paper, our goal is to determine the desired change
in the credit supply. It will be used in section 2.3 together with the de-
sired change in credit demand to derive the growth rate of the economy.

The desired change in credit supply can easily be derived using the
Basel rule

Ls
jt ≤ αEjt with α � 1.

It is sufficient to express it in terms of variations and, assuming further
that lending is preferred by banks to other activities, we can use the
equality sign

∆Ls
jt = α∆Ejt. (2.8)

The sole determinant of the desired change in credit supply is the
change of the bank’s equity base. As mentioned before, this change
is given by the sum of the bank’s economic result (πB

jt−1) and bad debt
(Bjt−1):

∆Ejt = πB
jt−1 − Bjt−1. (2.9)

πB
jt−1 and Bjt−1 are defined hereafter.

Economic result

The bank’s economic result is:

πB
jt−1 = rLjt−1 − rDDjt−1 − rEEjt−1.

For the sake of simplicity we assume that rD = 0 and, like above as we
did for firms, that rE = r so that we can write

πB
jt−1 = r(Ljt−1 − Ejt−1).
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According to the Basel rule Ejt−1 = α−1Ljt−1 so that the bank’s eco-
nomic result can be written as

πB
jt−1 = rηLjt−1 with 0 < η =

(
1 − 1

α

)
< 1. (2.10)

Bad debt

The total bad debt for a bank can be modeled as a share (σ) of loans:

Bjt−1 = σjt−1Ljt−1. (2.11)

Such a share is positively related to the probability of a firm’s loss.
This probability can be endogenously derived. Imposing the condition
πit−1 < 0 and assuming that uit−1 has a uniform distribution with
bounds 1 − ν and 1 + ν (where 0 < ν ≤ 1) it is given by

Pr(uit−1 < ūit−1) =
1
2ν

r + β

φ
.

We put σjt−1 proportional to the calculated probability (σjt−1 =
ϑPr(uit−1 < ūit−1) where 0 < ϑ � 1 is a constant):

σjt−1 = ξ

(
r

φ
+

β

φ

)
where ξ =

ϑ

2ν
. (2.12)

Substituting equation (2.12) in (2.11), the total bad debt is

Bjt−1 =
[
ξ

(
r

φ
+

β

φ

)]
Ljt−1. (2.13)

The desired change in credit supply

Substituting profits and bad debt (equations (2.13) and (2.10)) into
(2.9) and the result of this substitution into (2.8) we get:

∆Ls
jt = α

[
rη − ξ

φ
(r + β)

]
Ljt−1. (2.14)

2.2.3 The Policy maker

The role of the policy maker is limited to setting the interest rate r.
To avoid complications we assume that banks apply this interest rate
to all their customers.
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2.3 The macroeconomic model

2.3.1 From micro to macro

Our aim in this section is to derive the growth rate of the economy.
The aggregation here is made by the commonly used device of the
representative agent. The representative agent’s variables are obtained
using the average versions of the equations presented in the previous
section. The variables we need are: the investment, the desired change
in credit demand and the desired change in credit supply (equations
(2.3), (2.7) and (2.14)): 7

It =
γ

γ − 1
∆Lt. (2.15)

∆Ld
t = (γ − 1)(φ − r − β)Kt−1. (2.16)

∆Ls
t = α

[
rη − ξ

φ
(r + β)

]
l∗Kt−1. (2.17)

2.3.2 The growth rate of the economy

Our main point is that the effective level of the change of credit (∆Lt)
is the minimum between the desired change in credit demand (in this
case banks’ lending activity is limited by the low level of credit demand)
and the desired change in credit supply (in this case banks are not able
to satisfy firms’ requests and as a result credit rationing appears):

∆Lt = min(∆Ld
t ,∆Ls

t ).

Plugging this into investment (equation(2.15)) we get:

It = min

{
γ(φ − r − β)Kt−1

γ
γ−1α

[
rη − ξ

φ(r + β)
]
l∗Kt−1

.

Dividing by Kt−1, using the result on l∗ in the appendix and re-
membering that η = α−1

α it is possible to express the growth rate of
capital in terms of the parameters. With a linear production function
the growth rate of capital is equal to the growth rate of the aggregate
output:

7 In averaging (2.7) remember that E[uit−1] = 1. To obtain (2.17) we use the fact
that Lt−1 = lt−1Kt−1 and that l converges to l∗.
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gY = gK =
It

Kt−1
= min

{
γ(φ − β) − γr(
α − 1 − αξ

φ

)
r − α ξβ

φ

. (2.18)

The two relationships are linear; the second one is upward sloping
(being α � 1) and the other one is downward sloping so that when
equating them it is possible to determine the interest rate that maxi-
mizes the growth rate:

r∗(α, γ, φ, ξ, β) =
γφ2 − γφβ + αξβ

(α − 1)φ − αξ + γφ
. (2.19)

Figure 2.1 is the graphical representation of these results.

r∗

gY (r∗)

gY

r

γ(φ − β)

gY (∆Ls)

gY (∆Ld)

Fig. 2.1. The graphical representation.

It is evident from the figure that if r > r∗ the growth rate is a
decreasing function of the interest rate. For 0 ≤ r < r∗ the relationship
is positive. A very important task for the policy makers comes out: they
should set the interest rate to the level that maximizes the growth rate.
The above results have a very clear explanation. For high interest rates
banks make profits and increase their lending capacity, but firms are
penalized and the investment decreases. Decreasing the interest rate
in this situation is good because the investment increases and can be
funded by banks. For 0 ≤ r < r∗ firms want to increase investments
but banks cannot satisfy their demand for credit.
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2.4 The agent based implementation

In this section we simulate the model using an agent based approach.
Our implementation is easily understandable by looking at figure 2.2.

Bank 0

Bank 1

Bank 2Bank 3

Bank 4

Fig. 2.2. The simulated model.

At the beginning of the simulation a certain number of firms and
banks are created (in figure 2.2 we have 50 firms (circles) and 5 banks
(ovals)). A link between a firm and a bank means that the firm is a
customer of that bank. In the case of the figure, the number of links a
firm has is an integer randomly chosen number between 1 and 3. The
network here is static in the sense that the links remain the same for
the entire life of the firm. When a firm goes bankrupt it disappears and
the links are canceled, a new firm enters the market (replacement of
exiting firms is one to one), but in this case the links may be different
to those of the replaced firm. The size of the circle representing a firm
reflects the firm’s size.

Firms and banks behavior basically follow the equations showed in
section 2.2, but there are two differences.

First of all, differently from the representative agent case, firms have
to decide how much credit they want from each bank they are linked
with. In our simulations we use a simple rule: the firm asks each bank



26 Gianfranco Giulioni

for the same amount.8 So if ni is the number of banks firm i is tied to,
the amount of debt firm i demands to bank j (denoted with Ld

it(j)) is
Ld

it(j) = Ld
it/ni.

Secondly, the banks’ equity base dynamics can be computed pre-
cisely as the amount of bad debt can be calculated. As explained earlier,
a firm’s bankrupt causes a bad debt to the banks for a total amount
equal to (Lit − Kit). This is shared proportionally among the banks
that the firm is linked with, so that the bad debt for bank j is: 9

Bit(j) =

{
Lit(j)

(
1 − Kit

Lit

)
if Ait < 0

0 if Ait ≥ 0
.

As a consequence the bank’s equity base dynamic is

∆Ejt = r(Ljt−1 − Ejt−1) −
∑
i∈ω

Bit−1(j).

The other equations are the same as in section 2.2.

2.4.1 Growth

The output from the simulations confirm the theoretical results and
are shown in figures 2.3 and 2.4.

Simulations relate to a scenario with 5 banks and 500 firms.
Figure 2.3 reports the time series of the logarithm of the aggregate

production for 5 different levels of the interest rate. The figure shows
how the growth rate is not monotonic in the interest rate.

The results of a more detailed experiment are reported in figure 2.4.
Here the average growth rate (µ) of the time series is plotted against
the interest rate used to obtain the series. Each line is obtained running
100 simulations raising the interest rate from 0 to 10% by a factor of
0.001. The shape of the lines is basically what we expected from the
theoretical investigation (compare figure 2.4 to figure 2.1). The results
of two comparative static exercises are also reported. Starting with the
case γ = 2 and β = 0.5, an increase in γ increases both the “optimal”
interest rate and the “optimal” growth rate, while an increase in the
firms’ variable costs (an increase in β) leads to a reduction of both the
variables.

8 This seems to be a good rule in this context, because all the banks have the same
interest rate.

9 Due to the presence of the Basel rule, the amount of obtained credit from bank
j, Lit(j), can be less than the demanded one: Lit(j) ≤ Ld

it(j).
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The peculiarity of these results is the upward sloping part of the
lines showed in figure 2.4. An explanation of this phenomenon based
on the microeconomic principles illustrated earlier is as follows. When
the interest rate is low, firms have high profits and this increases the
credit demand. Investments are limited by the low level of credit sup-
ply, but limiting investment means limiting the size of the firm and
therefore the next period’s profit (remember that the firm’s profit is
proportional to its dimension). The reduced level of profit lowers the
desired investment.

The voluntary reduction in investment produced by the model urges
us to look for parallel mechanisms in the real world. The economic
theory attributes to banks the goal of selecting the most productive
projects and helping firms to realize them. The key issue here is that
these mechanisms, improving the growth rate of the economy, work well
if the lending activity is profitable for banks. Indeed, if the revenues
from lending to firms are low, banks have no incentive to bear the costs
of the selection activities and they could decide to dedicate the available
funds to financial investments or lending to families. On the other hand
it can be argued that the firms don’t know the exact productivity of
their investment projects. The banks evaluation could in this case be
a signal for the entrepreneur of the validity of the project. Now if, due
to a low interest rate, banks reject firms applications for financing new
investment, the entrepreneurs could think that the proposed investment
was bad even though it was good.

These are possible explanations why a low interest rate reduces the
growth rate of the economy.
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2.4.2 Fluctuations

From a simulated time series of the aggregate production it is easy to
recover the distribution of the growth rates relative to that series. In
the previous sections we took a first step in the investigation of this
distribution: figure 2.4 reports how the average value of this distribution
changes with the interest rate. The second step is to analyze how the
dispersion of the distribution changes with the interest rate and the
parameters.

But, before taking this step we have to answer a crucial question:
does the distribution of the growth rate generated by the simulations
possess moments? Indeed recent scientific investigations show how sys-
tems with a large number of heterogeneous and interacting components
(the so called complex systems) give rise to a particular kind of dis-
tribution (see Bak, 1997, for instance). These distributions are usually
characterized by the fact that some or all their moments don’t exist.
If this is the case one can compute the moments from the simulated
data, but they are completely meaningless. Fortunately the output of
our model suggests that the distribution we are interested in has mo-
ments.10

Once checked that figures obtained from simulated data are mean-
ingful, we verify how the standard deviation of the growth rate changes
with the interest rate. The result of the exercise is reported in figure
2.5 where one can see that in this model the relationship between the
growth volatility (σ) and the interest rate is not linear. Moving the in-
terest rate affects the volatility and the policy maker should also take
this into consideration.

Figure 2.5 prompts two more questions. The first one is whether
there is a relationship between the interest rate that maximizes the
growth rate and the one that minimizes the aggregate output volatility.
The second is if this property exists in the real data. We have left both
these issues for future investigation; however, a hint to the answer of
the first question is briefly addressed hereinafter.

We ran simulations for two different values of the capital require-
ment parameter (α = 10 and 15). Figure 2.6 reports the averages and
the standard deviations of the growth rate distribution in the two cases.
The interest rate that minimizes the growth volatility changes with the
parametrization and it seems to move together with the interest rate

10 In Delli Gatti et al. (2007) it is also shown how the growth rate distribution
conforms to the empirical one and is of the Laplace type (see also Canning et al.,
1998). This kind of distribution possesses moments.
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that maximizes the growth rate. If this is confirmed by future empir-
ical investigations, it could be very good news for the policy maker:
setting the “optimal” interest rate the policy maker could achieve the
maximum growth rate with the minimum level of fluctuations.

2.5 Conclusions

Economists think that lowering the interest rate is a good way to pos-
itively affect the aggregate economic activity. The basic principle is,
of course, that a low level of the interest rate increases firms’ invest-
ments. In this paper we highlight that this is an incomplete reasoning,
the firms being only one of the economic actors. The previous principle
is true if entrepreneurs have no difficulties in funding their projects, or
putting it another way if banks are viewed as cash dispensers where
entrepreneurs obtain the money whenever they need to fund invest-
ments. In this paper banks have a crucial role in the supply of funds.
In this context it is of course true that a low level of the interest rate
fosters firms’ investment, but it also penalizes banks’ by reducing their
profit. The low level of profits slows down the banks’ equity base accu-
mulation and, if a Basel rule on capital adequacy is considered, their
lending activity. Of course when this reasoning is considered, the level
of investment may decrease when the interest rate is lowered because
of funds shortage. Abstracting from the model and thinking in the
real world, a low level of growth rate accompanied by a low interest
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rate level has a different explanation. It is widely accepted that banks
improve resource allocation because they are able to select the best
investment projects. But these activities are costly. Our results suggest
that banks undertake monitoring and screening activities if they are
profitable: if the interest rate is not too low! In this case banks put
effort into inducing firms to undertake investments. On the contrary, if
the interest rate is low banks have no incentive in financing even good
investments making no effort to induce firms to invest. In recent years
some countries have experienced long periods where low growth rates
have been associated with low interest rates (Japan and the Euro Area
are two relevant examples). The effect outlined in this work may have
had a role in these facts.

The second and more fruitful thing we have done in this paper is
to build an agent based implementation of the theoretical model. We
concentrate our attention on the aggregate output series provided by
simulations and in particular on the distribution of the growth rate one
can obtain from each time series. After checking for the existence of
the moments of this distribution we analyze how average and standard
deviation varies with the interest rate. The behavior of the average
confirms the theoretical results. Analyzing the behavior of the standard
deviation means getting insight into the fluctuations of the economy.
Our results show how the growth volatility depends on a non linear
path of the interest rate (it reaches two local maximum and of course
one minimum in the relevant range of the interest rate).

These considerations could be useful for the policy maker in setting
the interest rate. In fact, knowing how the average and standard devi-
ation of the growth rate varies with the interest rate represents one of
the pillars that economic policy should be based on.
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Appendix

From the definition of equity ratio and the dynamics of A and K we
can write:

at =
A0 +

∑
t πt

K0 +
∑

t γπt
=

A0 + tπ

K0 + tγπ
where π =

∑
t πt

t
.

The derivative with respect to t is

dat

dt
= π(K0 + tγπ)−1 − (A0 + tπ)(K0 + tγπ)−2γπ.



32 Gianfranco Giulioni

The analysis of the sign goes as follows

dat

dt
� 0 ⇒ 1 − A0 + tπ

K0 + tγπ
γ � 0 ⇒ A0 + tπ

K0 + tγπ
� 1

γ
,

but the left hand side of the last inequality is the definition of at we
started from, so that we can conclude that

dat

dt
� 0 ⇔ at � 1

γ
.

Summing up, the steady state values of the equity and debt ratios are

a∗ =
1
γ

and l∗ =
γ − 1

γ
.
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3.1 Introduction

The agent-based framework provides an useful computational facility
for economics, where performing experiments on policy design issues
in a realistic environment, characterized by non-clearing markets and
bounded rational agents (see Tesfatsion and Judd, 2006, for a recent
survey). Under this respect, this study addresses the issue of mone-
tary policy design by investigating an appropriate rule for the central
bank interest rate. Our work consists in pursuing a general equilibrium
approach to the problem by considering a multi-market economy char-
acterized by a goods, a labor and a credit market, where agents are price
makers on the supply side and act according to sensible rules of thumb.
A previous paper (Raberto et al., 2006) by the authors showed the ab-
sence of real effects of monetary policy in an agent-based model char-
acterized by price-taking agents. However, if agents are price makers,
prices may be set far away from their market clearing values, thereby
allowing potential real effects of monetary policy.

The concept of price stickiness as a source of monetary non-neutrality
is central in the new-Keynesian literature (Clarida et al., 1999; Mankiw
and Romer, 1991; McCallum and Nelson, 2004), where models are usu-
ally characterized by a limited number of dynamic forward-looking
equations, derived from a log-linear approximation of a general equi-
librium model with optimizing, representative and homogenous agents,
e.g., a representative consumer and a continuum of homogeneous firms.
While recent developments regarded the introduction of learning within
the usual new-Keynesian framework (see e.g. Casaccia et al., 2006;
Evans and Honkapohja, 2003), this paper may offer a new contribution
to the study of monetary policy from the perspective of the economics of
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heterogenous and interacting agents. In particular, we study the effects
of a nominal interest rate as the operational instrument of monetary
policy, according to the current approach within monetary economics
(see e.g. Walsh, 2003; Woodford, 2003) we investigate an interest rate
rule which depends on the gap between the current output of the econ-
omy and the full-employment output (i.e., all households that apply for
a job are hired). Being labor the only factor of production, when a full
employment state is reached, the output can not be further increased,
causing the price-setting productive sector to strongly increase prices
if it faces a higher demand with respect to its productive capacity, thus
generating an price inflation. This may give rise to instability and un-
dermine the economy. In order to keep the inflation monitored and to
guarantee stability, a monetary policy that keeps the output somewhat
below the maximum potential output may be effective. It is worth not-
ing that, in the optimizing sticky price model of the new-Keynesian
literature (Clarida et al., 1999), a concept of output gap, defined as the
deviation of output from its level under flexible prices, plays a central
role both as a source of fluctuations in inflation (represented by the
new-Keynesian Phillips curve), and as a policy target (e.g., the well-
known Taylor’s rule Taylor (1993)). It is worth noting that, irrespective
of the different definition provided in our model, the output gap has
a similar role here both as a determinant of inflation dynamics and as
key policy variable. Furthermore, the maximum potential output is not
fixed in the model but it is an endogenous variable, because the produc-
tive capacity of the firm is bounded by the households’ labor supply,
and this in turn depends on the current real wage. Indeed, the principal
driver of the labor supply dynamics resides in the heterogeneity of the
reservation wages, i.e., each household is characterized by a reservation
real wage that indicates the wage that makes households indifferent
between taking a job or remaining unemployed. These features gives
rise to a very rich economic behavior which poses challenging issues to
the monetary policy maker.

The paper is organized as follows. The model is outlined in Section
2. Computational experiments and results are discussed in Section 3.
Section 4 provides some concluding remarks.

3.2 The model

The model is composed by a labor, a goods and a credit market. House-
holds supply the labor force in the labor market and are organized in a
trade union that sets the nominal wage. Each worker is characterized
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by a reservation wage, i.e., a minimum real wage in order to apply for a
job. A monopolistic firm hires workers to produce the scheduled quan-
tity of output. The firm acts in the goods market as a price setter, and
supplies the output according to a profit maximizing behavior. The ag-
gregate demand is given by the sum of each household’s demand, which
is modeled according to a rule of thumb proposed by Deaton (1991a,b),
based on the assumption that households, if liquidity constrained, save
in order to smooth consumption over time. The individual consumption
rule has been adapted here to our framework. The firm borrows money
from the central bank in the credit market in order to pay wages, the
bank sets an the interest rate according to the policy rule.

3.2.1 Households

Households take two key decisions in the model, determining the labor
supply, according to their heterogeneous reservation wages, and how
much to save or to consume in order to smooth consumption over time.
Furthermore, a trade union sets the nominal wage w in order to in-
crease the aggregate real labor income U , given by (w/p)N , henceforth
workers’ utility, where N is the number of workers (with N ≤ M , M
being the total number of households) and w/p is the real wage (being
p the price level). The wage policy of the trade union is based on a
backward looking behavior. If the correlation ρ(dU, dw) between nomi-
nal wage variations dw and variations of workers’ utility dU , computed
in a backward time window TU , is positive, i.e., nominal wage incre-
ments dw led in the past to an increase of workers’ utility, the trade
union raises the nominal wage. If the correlation is negative, the trade
union keeps the nominal wage unchanged. In the former case, the wage
bill is increased according to a fixed rate π∗ set by the central bank,
corresponding to a fixed planned rate of inflation. The trade union’s
decision rule can be summarized as:

wt =
{

wt−1(1 + π∗) if ρ(dU, dw) ≥ 0 ,
wt−1 if ρ(dU, dw) < 0 .

(3.1)

This wage indexation rule has been selected in accordance with the
current practice in some European countries, e.g., Germany and Italy.

Reservation wages

Households’ labor supply depends on the comparison between the cur-
rent real wage and the reservation wage of each household. If the current
real wage exceeds its reservation wage, then household i-th applies for
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a job, if not, the household does not apply for a job unless its financial
condition does not allow it to buy the essential goods for survival. For-
mally, the i-th household applies for a job according to the following
rule, 


(wi

t
pt

≥ wR
i ) ∪ (

Xi
t−1

pt
≤ SC) −→ job application ,

(wi
t

pt
< wR

i ) ∩ (
Xi

t−1

pt
> SC) −→ no job application ,

(3.2)

where wR
i is the i-th household real reservation wage, Xi

t−1 is its avail-
able cash at the end of the previous period and SC , expressed in real
terms, represents the indispensable quantity of goods to consume, that
we call survival real cash, taken as homogeneous among agents and
constant in the model. This is due to the fact that we consider SC as a
parameter that characterizes the whole population of households with a
cultural attitude towards spending. SC has therefore to be interpreted
as a minimal arbitrary quantity of goods for a decent living rather than
as a survival level tout court. Reservation wages wR

i , defined as the wage
that makes households indifferent between taking a job or remaining
unemployed, are heterogeneous but constant. They represent a sort of
social stratification for households that is kept constant along time. It
is worth noting that in this model reservation wages are not, at least di-
rectly, a determinant of the actual wage, that is fixed by the trade union
in order to increase workers’utility, but they have an essential part in
determining the unemployment rate (see Hogan, 2004, for empirical
evidence on these topics). Each household is endowed with a specific
reservation wage according to a uniform distribution that varies form
a minimum level wR

min (generally set to zero) to a maximum level wR
max

that is used as a varying parameter for computational experiments.

Consumption rule

Household consumption choice is based on the theory of buffer-stock
saving pioneered by Deaton (1991a,b), which states that households,
if restricted in their ability to borrow to finance consumption, have a
precautionary demand for saving in order to smooth consumption in
case of bad draws of income, e.g., unemployment. The theory proposes
accordingly a rule-of thumb as an approximation of the usual intertem-
poral maximization problem for the determination of the consumption
path. The rule-of-thumb has been modified in order to take into account
price inflation and is based on the comparison between the current in-
come and past income stream realized in the last time window T i. Let
us define as Xi

t−1 the quantity of cash at the i-th household disposal
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before its consumption choice ci
t at period t. The households’s dispos-

able income for consumption Ii
t is composed by the previous period

wage, wt−1, and the dividends from profits that the firm made in the
previous period, i.e., Ii

t = δi
t−1wt−1 + mi

t−1dt−1, where δi
t−1 is equal to

0 or 1, depending on the employment status of the household at time
t − 1 and the integer mi

t−1 is the number of shares in the portfolio of
household i at the end of previous period. Dividends dt−1 are given by
pt−1Πt−1/K, where Πt−1 are the real profits realized by the firm in the
previous period and K is the total number of shares of the monopolistic
firm. The households’ target is to maintain a stable rate of consump-
tion, i.e., saving when income is high in order to accumulate cash for
periods of low income. Deaton assumes that individuals consume cash
as long as current nominal income Ii

t is less, in real terms, than the
average past real income Īi

t , while, if the income exceeds Īi
t , households

save a constant fraction (1 − υ) of the excess income. Thus, given the
price pt set by the firm in the current period, Deaton’s decision rule
can be formalized as:

ci
t =

{
min

(
Īi
t , (Ii

t + Xi
t−1)/pt

)
if Ii

t/pt ≤ Īi
t ,

Īi
t + υ(Ii

t/pt − Īi
t) if Ii

t/pt > Īi
t .

(3.3)

Aggregate goods demand Y d
t is then given by Y d

t =
∑

i c
i
t.

3.2.2 The monopolistic firm

The model includes a single monopolistic firm whose role is:

• to set the price and the quantity of the goods to be produced, ac-
cording to a profit maximizing behavior,

• to hire workers, to produce and sell the goods,
• to distribute profits to households.

The firm produces an homogeneous perishable good according to a
production function whose only input is labor:

Yt = ζNα
t . (3.4)

The parameters ζ > 0 and α > 0 are determined by the current tech-
nology and are kept constant in our computational experiments. The
firm knows the nominal wage wt that has been already set by the trade
union, and acts as a price setter, facing the problem to decide the price
pt of the good and the quantity Yt of goods to be produced. The firm
also knows the labor supply N s

t and has a perfect knowledge of the
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demand elasticity. In order to set the price, the firm takes into con-
sideration a set of hypothetical prices ph

t , that lie in a neighborhood
of the last market price pt−1. The prices ph

t are chosen inside a grid
parameterized by (1+ jε)pt−1, with j = −n,−n+1, . . . , n−1, n, where
ε represents the minimum relative variation of the price and nε is the
higher bound for variation. Consequently, the firm calculates the exact
goods’ demand relative to each price, i.e., Y d

t (ph
t ). Therefore, the firm

computes, for each pair
(
ph

t , Y d
t (ph

t )
)
, the value of real profits, consid-

ering nominal costs given by:

Ct = (1 + rL
t )wtNt , (3.5)

where rL
t is the interest that has to be paid on the loan wtNt, and

Nt = (Yt/ζ)1/α, with the constraint Nt ≤ N s
t . The price and quantity

couple (p, Y )t is therefore chosen as the one that corresponds to the
higher real profits, i.e.,

(p, Y )t = argmax(p,Y )t
Πt , (3.6)

where
Πt = Yt − Ct/pt . (3.7)

Finally, the firm distributes profits to households. Each household will
receive dividends at the beginning of the next period, proportionally
to the number of stocks it owns.

3.2.3 The central bank

The model incorporates a bank, which fulfills the functions of both a
commercial bank and a central bank. The bank performs the following
actions:

• to set an inflation target π∗,
• to remunerate the household’s cash account at a fixed rate rD,
• to provide credit to firms at a lending rate rL

t ,
• to set rL

t according to a monetary policy rule.

The rate on deposit rD is set by the bank at the target level of inflation
π∗, in order to let the money aggregate of the households grow at the
same rate of inflation. A policy rule, that uses the nominal interest rate
rL as the operational instrument, has been designed. It is based on the
control of the output gap, and sets the lending rate rL

t as:

rL
t = rLmin + φ exp

(
− β

Y p
t − Yt

Y p
t

)
, (3.8)
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where β is a policy tuning parameter, φ represents the policy strength,
varied to compare different monetary policies in the computational ex-
periments, and Y p

t is the potential output, given by the quantity of
goods that would have been produced if all the available labor force
had been employed, i.e., Y p

t = ζ(N s
t )α. The effect of the rule on the

economy is discussed in Section 3.3.

3.2.4 Rationing and accounting

As described in Section 3.2.2, the firm knows in advance the aggregate
demand curve. Accordingly, it sets the price and chooses the goods
supply in order to match the goods demand at that price. Therefore,
the firm is never rationed in the goods market. The firms also knows in
advance the labor supply. Consequently, while taking price and quantity
decisions, it considers its possible rationing in the labor market. If there
is not enough labor supply to produce the desired quantity, the firm
hires all the households applying for a job and produces a quantity
of goods lower than the demand level, implying that households will
be rationed in the goods market. Furthermore, households are often
rationed in the labor market. In both cases, households are rationed
according to a random priority list, drawn from a uniform distribution.

After transactions in the goods and in the labor markets, households
cash is reallocated for the next period, i.e., for the i-th agent:

Xi
t = Xi

t−1 + δi
t−1wt−1 + mi

t−1dt−1 − ptc
i
t + rDXi

t−1 , (3.9)

where rD is the fixed rate on deposit of the bank, δi
t−1 indicates the

employment state of agent i at time t − 1 (i.e., δi
t−1 = 1 or δi

t−1 =
0 denote employment or unemployment state at t − 1 respectively),
and mi

t−1dt−1 denotes the capital income due to mi
t−1 stocks paying

dividend dt−1. The term ptc
i
t takes into account the nominal expenses

for consumption and rDXi
t−1 is the remuneration of the saving account.

3.3 Computational results and discussion

We present a study on the effects of using a nominal interest rate as
the operational instrument of monetary policy. The interest rate rL has
an influence on the economy through the decision making of the firm,
which borrows money to pay wages. Given the nominal wage set by the
trade union, nominal labor costs incurred by the firm depend directly
on the interest rate level, as shown by Eq. 3.5. As an example, a rise of
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Fig. 3.1. The dynamics of price and output for three different values of the
monetary policy strength parameter φ.

the interest rate at time t implies an increase of costs, and determines
at the same time step an upward shift of the firm’s supply curve in the
(Y,p) plane. Due to the fact that the aggregate demand curve at time
t is not yet affected by this interest rise, the goods market clears at
a higher price and at a lower quantity. However, a rise of the interest
rate, if negative in the short run, may have positive effects in the long
run by keeping the economy below its full capacity.

The computational experiment presented here have been realized
considering the following parameters values: M = 1000, TU = 20,
π∗ = 0.5%, ζ = 1, α = 0.9, δ = 0.1, n = 50 (implying a maximum price
variation of ±5%, rD = 0.005, rL

min = 0.1, and wR
min = 0. No stock trad-

ing is considered, and each household has been endowed with the same
amount of stock holdings mi = K/M which is keep constant over time.
Different values for the maximum reservation wage wR

max and for the
monetary policy strength parameter φ have been considered. Figure 1
shows the dynamics of price and output for three different values of the
monetary policy strength parameter φ. Figure 1 points out the presence
of price spikes and simultaneous falls of production; they occur when
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the economy reaches its full capacity. In that case, the firm can not
hire more workers to increase production and profits. Thus, obeying to
its profits maximizing behavior, it has to rise the price. Consequently,
consumers’ demand is depressed and this reduces the market clearing
output of the economy. Furthermore, the price rise reduces the real
wage and therefore the labor supply, which is a binding production
factor when the economy is running at its full capacity. The objective
of the monetary policy rule, outlined in Eq. 3.8, is to prevent, by rising
the interest rate, the firm from scheduling a production level that could
not be sustained by the labor supply, i.e., to prevent the economy from
reaching its full capacity. The policy strength parameter φ weights the
importance of the output gap in the interest rate setting. The mone-
tary policy experiments showed in Figure 1 point out that a monetary
policy which takes into account the output gap, i.e., φ > 0, gives rise to
an higher inflation rate and lower output growth in the short run, but
it is able to contain output negative fluctuations and to significatively
reduces the volatility of prices and output in the long run. Furthermore,
it is worth remarking that caution has to be payed in tightening the
monetary policy, and a tradeoff is necessary between a lower inflation
rate (φ = 0.5) and an higher output growth rate (φ = 0.3). Figure
3.2 shows how reservation wages affect the labor market dynamics and
therefore the output level of the economy. Simulation shown in Figure
3.2 has been performed with the usual monetary policy rule with φ
set at 0.1. The reservation wages are heterogeneous among households
and uniformly distributed between zero and a maximum value wR

max.
Raising wR

max, the reservation wages range becomes larger and there
are more households that require a higher salary to work. Figure 3.2
allows one to observe that a higher lever of the maximum reservation
wage wR

max has a clear depressive effect on the labor supply, e.g,. for
wR

max = 0.35, there is a few number of households that are disposable to
work (around 250). Thereby, this contraction on the labor supply has
a depressive effect on the long-term level of production in the economy.
An effective monetary policy should then take into account this feature
in order to address the usual trade-off between long-run output level
and inflation control. Figure 3 shows the mean value of the relative
output gap, i.e., (Yp − Y )/Yp, relative to the last 500 time steps. Each
bin represents an output gap value calculated for a couple (wR

max, φ)
where wR

max varies from 0.1 to 0.5 with a step interval of 0.025 and φ
varies from 0.1 to 0.5 with a step interval of 0.1. As expected, the value
of relative output gap diminishes with the increasing monetary policy
strength. Furthermore, it is worth noting that the relative output gap
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Fig. 3.2. The dynamics of labor supply and output for three different values
of the maximum reservation wage wR

max.

shows a clear dependence on the maximum reservation wage. Indeed,
according to our model, the maximum value of the reservation wage,
setting the labor supply, determines the potential output of the econ-
omy, i.e., higher wR

max correspond to lower Yp. Besides, Figure 3 points
out that also the relative value of the output gap decreases for rising
values of wR

max. This results suggests that a milder monetary policy,
i.e., lower values of φ, should be considered as more appropriate in the
case of lower wR

max.

3.4 Concluding remarks

The model presented should contribute to the agent-based approach for
monetary policy design along two main different perspectives. First, it
provides a sensible micro-foundation to a monetary policy rule based
on output gap control, with a complementary approach to the new-
Keynesian Phillips curve literature. Under this respect, it shows that
the optimizing behavior of a price setting monopolistic firm is sufficient
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to produce inflation when the economy reaches full employment. Sec-
ond, the model shows how an effective monetary policy design should
to take into account the distributional property of reservation wages
among agents, i.e, an individual heterogeneous feature which deter-
mine aggregate labor supply, and, thus, the potential output of the
economy at full employment.
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4.1 Introduction

Artificial stock markets are models designed to capture essential prop-
erties of real stock markets in order to reproduce, analyze or under-
stand market dynamics with computational experiments. Despite re-
search advances in modern finance many questions remain unsolved:
market dynamics exhibit, for instance, particular statistical properties,
called stylized facts, which origins are not clear. As real markets are
complex systems, it is really hard to study them directly because too
many parameters stay out of control. Hence, multi-agents simulations
of these markets seem to be a key for a better understanding of their
properties.

Building such models implies to simplify reality as most as it can
be in order to keep markets most representative and characteristic fea-
tures. In the literature (see for example LeBaron et al. (1999), Cincotti
et al. (2006) or Ghoulmie et al. (2005)) real markets structure com-
plexity is often circumvented by the use of an equation weighting the
balance between bids and offers as a price formation model. This sim-
plification is in complete contradiction with the reality of stock markets
where prices emerge from agents interactions through an order book
which do not act as a central weighting entity but as a peer-to-peer
meeting point used by agents to exchange stocks. However, such studies
manage to reproduce realistic price series, which seems odd regarding
market models used. We can then wonder if some of these models are
more suited than others to capture market dynamics.
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To answer this question, it seems that a comparison between these
models needs to be realized in order to put them to the proof and in-
vestigate their robustness. Hence, we propose in this article a generic
market model architecture based on four independent entities, each of
which can be modeled in different ways. We show that existing mod-
els found in literature fit well in this architecture. We then propose
an artificial stock market model which takes into account real mar-
kets characteristics: trading activity takes place continuously through
an asynchronous mechanism. Agents interact through the market by
posting orders in an order book, as it happens on real market places. We
show that without making any strong assumption on agents behaviors,
this model exhibits many statistical properties of real stock markets.

4.2 Quick review of different ASMs architectures

Since the first artificial stock market was developed in the early nineties
at the Santa-Fe Institute Palmer et al. (1994), many market models
have been developed. Though almost all of them aim to reproduce the
same market properties (the so-called stylized facts) with the same
multi-agents simulation methods, they all exhibit different properties:
some are synchronous, while others are asynchronous. Some of them
require agents to emit realistic orders (direction/price/quantity) while
others only require a direction (buy/sell) to compute the new stock
price. Without pretending to be completely exhaustive, we investigate
in this section some of these models in order to identify the most rep-
resented microstructures and trading rules in artificial stock markets.

The Santa-Fe artificial stock market

Historically, the first model to be developed was the Santa-Fe Artifi-
cial Stock Market. This model is mainly characterized by the use of
a macroscopic equation based on demand and supply law to compute
the new traded stock price. Hence, agents take their decisions syn-
chronously and emit their desires as a direction ai,t (buy ai,t = 1 or sell
ai,t = −1) to the market, which calculates the imbalance between de-
mand and supply (It =

∑
i ai,t), to finally compute the price according

to equation 4.1.

pt+1 = pt(1 + β × It) (4.1)

Though this model may seem attractive due to its relative simplic-
ity, its lack of realism regarding real market microstructure is obvious:
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agents take their decisions synchronously without being able to reason
about others beliefs; moreover, agents are not even aware of the quan-
tity of stocks they will trade due to the clearing process used to realize
exchanges between agents once the price is calculated.

The $-game

To solve the question of market clearing, a possible solution is to add
a market maker to the model, so agents are always satisfied with the
quantity they want to trade. This feature was incorporated in the $-
game ASM Andersen and Sornette (2003). As the market maker pro-
vides liquidity to the market (e.g. he buys excess stocks and provides
supplementary stocks when needed), his position needs to be covered to
avoid bankruptcy. Hence, Andersen et al. use in their model a slightly
modified version of the previous price calculation equation. Instead of
only considering the current imbalance between demand and supply,
they also take into account the global imbalance since the beginning of
the simulation, which is the market maker current position. Using the
same naming as above, the price update equation is then given by 4.2.

(ln(pt) − ln(pt−1)) =
It +

∑i=t−1
i=0 Ii

λ
(4.2)

Though this model correctly addresses the problem of stock liquidity
and market clearing, it can’t be considered as a realistic one: agents
still interact synchronously with the market and only emit a desired
quantity to trade, without having the ability to associate it with a
desired price for the transaction.

The Genoa artificial stock market

To bring more realism to synchronous models, researchers from Genoa
proposed a model called the Genoa artificial stock market in which
agents are allowed to emit classical limit orders to the market (see
Raberto et al. (2001), Cincotti et al. (2003) or Raberto et al. (2003)).
In this model, agents still take their decisions synchronously, but as
they associate a limit price to the desire they pass to the market, a
different clearing mechanism needs to be used to ensure that agents do
not buy or sell stocks for a different price than the limit they asked
for. This is achieved by computing a clearing price, which is defined as
the crossing of the demand quantity curve function of price and of the
supply quantity curve function of price (see equations 4.4 and 4.3 for a
definition of these two series).
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ft+1(p) =
∑

u|pu≥p

qb
u (4.3)

gt+1(p) =
∑

v|pv≥p

qs
v (4.4)

Though this model is more realistic than the previous ones, it still
lacks an essential feature of real markets microstructure: the asynchro-
nism of transactions.

Toy model of an asynchronous double auction

In order to get a more realistic time handling process in artificial mar-
kets, some researchers proposed models in which transactions take place
asynchronously. This is the case of the toy model proposed in Bak et al.
(1996). In this model, there are only N

2 stocks on the market, where
N is the number of agents. Agents do not have the right to own more
than one share at a time. They can therefore be sellers if they own a
share, or buyers if they own nothing.

At each time step, an agent is given speak randomly and has the
possibility to emit a desire according to the pre-cited rules. This desire
is a composed of a price and a direction. If this agent finds an other one
who is willing to make the opposite transaction with a compatible price,
they immediately exchange one share. If no counterparts are available,
the agent’s order is saved in a list until a counterpart is found.

Even if it is a toy model, this model is one of the first to take into
account the asynchronism of exchanges on real market places. Agents
act in a random order and a simplified order book is used to save agents
desires. A criticism which can be made is that the market rules used
(an agent can at most own one share) tend to make the market illiquid
and prevent from testing realistic investment strategies.

We have seen in this section that many different market models are
used to reproduce high frequency dynamics from real stock markets.
Despite of their heterogeneity, they are used to reproduce the same
three main stylized facts: the shape of the return distribution (which is
fat-tailed and leptokurtic), the autocorrelation of absolute returns and
clustered volatility. We can notice strong differences in the way agents
express their desires, in the set of information they are able to get from
the market, and in the way they are given speak by the market. This a
major problem regarding our main goal, which is to be able to compare
heterogeneous market models in similar experimental environment.
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4.3 A generic market model architecture

In the previous section, we have presented some of the most represen-
tative market models microstructures and trading rules found in the
literature. Their diversity is so great that it seems difficult to correctly
identify which of these models parts are responsible for the statistical
properties of computed price dynamics: are they due to the microstruc-
ture of the market ? to the way time is handled ? to the agent invest-
ment strategies ? In order to address these open questions, we expose in
this part a generic model of market architecture which allows to unify
these different models. We also show that this formalization allowed
us to develop a concrete implementation of this generic architecture,
which will make us able to compare artificial stock markets.

4.3.1 The abstract generic model

External
World

Agents Market
informs

desiresinfluence

influence

Fig. 4.1. General market model architecture.

If we look at how markets operate, we can decompose them in three
parts: the market, which allows agents to exchange stocks, agents, who
trade through this market, and the external world, which can for ex-
ample influence agents with information. This situation is summed up
in figure 4.1: agents communicate their desires to the market, being
influenced by their peers or exogenous information. They can also be
influenced by public information available from the market. If we make
a parallel between this abstract model and multi-agents models of mar-
kets, we can see from the previous section that each of these three
components can be modeled in different ways: the market can be an
averaging equation or a complex microstructure; agents can be either
cognitive, reactive or replaced by equations.

4.3.2 The concrete generic model

In order to experiment the influence of each of these modules on price
dynamics, we need to be able to compose heterogeneous modules com-
ing from the literature. For example, to investigate the influence of
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market microstructure on prices, it seems interesting to study some
of their different implementations for a given set of agents behaviors.
Unfortunately, as we have seen in section 4.2, most of market models
require agents to emit their desires in many different ways: there are
sometimes expressed as a direction, sometimes as a quantity or even
as limit orders. Hence, it seems obvious that to make our generic ar-
chitecture practical, we need to propose some concrete details on its
implementation.

Information

In our formalism (see figure 4.1), we showed that agents were able
to use some information coming from the market in order to take a
decision. As we saw in the first section, information required by agents
or published by market models are heterogeneous: some market models
only publish the last transaction price, while others make all of the
agents current positions public. Hence, to be able to compose any agents
model with any market model, it is necessary to define the maximum
set of information needed by agents models and to define how all of
these information can be approximated when they are not present in a
given market model.

According to our literature review, agents use at most the following
information from the market:

• the last transaction price, which is an information available on every
market model

• other agents desires (which represent the order book in asyn-
chronous models).

• current demand and supply disequilibrium, which is available in
most synchronous models. In asynchronous model, it is easy to de-
duce this information from the current order book state by summing
quantities available in both sides of the order book.

To be able to compose any market model with any agent model, we
have to define a set of translators able to fill missing information from
some market models if it is required by the agents. An example of such
a translator (or wrapper) is described in table 4.1. Though we provide
in our framework a full set of information translators which allow to
translate any type of emitted information in any type of required in-
formation, the effect of these translators on experimental results still
has to be investigated.
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emitted by market required by agent translator description
(price, agents posi-
tions)

(price, disequilib-
rium)

translator sums up quantity as-
sociated to agents positions in
order to compute the global de-
mand/supply imbalance

Table 4.1. An example of information translator.

Agents desires

In figure 4.1, we identified that agents emit trading desires to the mar-
ket, which are then interpreted according to market model trading
rules. These desires, in artificial markets as well as on real ones, are
defined by a composition of the three following characteristics: a di-
rection, a price and a quantity. Obviously, the direction is the minimal
requirement in order to get a valid desire (emitting a desire to a market
without saying if one wants to buy or sell makes no sense). The two
others desires properties (price and quantity) are optional according to
the agent or market model. As we would like to compose any agents
and markets models which emit or require different types of desires, we
need to define a translation system to make this composition possible.

Assuming that a direction is the minimum required to express an
economic desire and that the maximum is a direction, a price and a
quantity (which was deduced from our intensive literature investiga-
tion), it is possible to propose a first set of translators (which are called
wrappers in computer science) that are required to allow communica-
tion between any agent model and any market model. The effect of
these wrappers on agents and market behaviors still has to be investi-
gated. An example of such a translator is described in table 4.2.

emitted by agent required by market translator description
(d, , q) (d, p, q) interpret order as a market order,

and fill the missing price with the
best offer in opposite direction

Table 4.2. An example of desire wrapper.

Time handling

In addition to the differences between information required or emitted
by the different modules of a market, time handling is managed in very
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different ways regarding the market model used: some are synchronous
while others are asynchronous. Moreover, each of this time handling
philosophy can be implemented in several different ways. These differ-
ences are a major problem to solve while trying to compose hetero-
geneous modules: if an agent strategy is built to operate in an asyn-
chronous context, is it possible to make its strategy make sense in a
synchronous one ?

To address this problem, we have split time handling from the mar-
ket module and separated it in what we call a simulation engine. This
additional module is responsible for giving the ability to talk to the
agents and for making the market treat agent desires when it is time to
do so. For example, a synchronous simulation engine will give to all of
the agents the ability to talk, and will then ask the market to compute
the new stock price, whereas an asynchronous one will perhaps pick
randomly an agent and then immediately ask the market to take his
desire in account.

Global framework layout

Due to lack of space, we can not explain further all of the implementa-
tion details that are needed to allow free market modules composition.
Figure 4.2 sums up the general layout of our simulation framework,
which we detail step by step:

DesireWrapper

MarketAgents

Simulation
Engine

give
speak do

clearing

Accumulator

InformationWrapper

traduced
informations

traduced
desire

5

2

6

3

2

1

desire_valid?4

World
informations

update world

desire

informations

Fig. 4.2. Framework functioning.

• step 1 : The simulation engine gives speak to the agent(s) who are
allowed to speak at current time according to the time policy in use.
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• step 2 : Before taking a decision, agents are able to ask the mar-
ket some information about its current state (best offers, current
stock price, demand/supply imbalance, etc). As each market model
can exhibit different public information, they need to be treated by
a wrapper which traduce them so they can be used by any agent
model. Agents can also ask external world about its current state if
their decision making process requires such an exogenous informa-
tion.

• step 3 : Once agents have sufficient information to take their deci-
sions, they can emit a desire to the market. As we have seen before,
this desire can be expressed in many different ways, so it needs to
be traduced by a wrapper to be understood by any market model.
These desires are then stored in an accumulator, which is useful to
keep track of agents desires, in particular if the simulation engine is
synchronous.

• step 4 : Each time the market receives an agent desire, it immedi-
ately informs the emitter about its validity. This is required as some
market models require agents to meet specific conditions to be able
to emit desires.

• step 5 : Once the simulation engine has given speak to the agents
allowed to do so, it notifies the market that it is time to take the
agents desires into account. If the market is order book based, this
means “insert new desires in the book”, whereas in equation-based
models, this means “enter in a clearing phase and compute a new
price”.

• step 6 : The simulation engine finally gives the possibility to the
world model to update itself.

Limitations

Even if our generic architecture is implemented and practical, it still
has some limitations inherent to the major differences between models
we try to compose one with another.

For example, some information translators need to be able to trans-
late an information expressed as a single price in an information ex-
pressed as other agents positions. Even if other agents positions may
be assimilated to the current stock price, impact of such translations
on agent trading strategy have still to be investigated. The same obser-
vation can be made about the composition of agents designed to work
in an asynchronous context with market models designed to work in a
synchronous one.
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Hence, our generic architecture still has to be improved and vali-
dated with intensive experiments, in order to make sure that translators
do not bias simulations results. Even at this early stage, this generic
architecture can however be merely considered as a formalism able to
describe any artificial stock market model through their components.

4.3.3 An example of application: the market component as
double auction

We have seen in section 4.2 that most of existing market models lack re-
alism: some do not respect real markets asynchronism while others over
simplify the way agents emit desires to the market. In consequence, we
choose to illustrate the use of our generic market simulation framework
by implementing a simple asynchronous double auction model following
our formalism. This model can be linked up to the one used in Raberto
et al. (2005). We will detail in this section how each module is defined
according to the formalism we presented before.

The market component

The market component is a classical order book similar to the one used
on market places such as Euronext. This order book requires agents
desires to be expressed as a direction, a price and a quantity, which
defines an order. These orders are all limit prices orders, which means
that the price associated to the order is the maximum (respectively
minimum) price the agent is willing to buy (sell) stocks. When an or-
der is received by the market, it is stored in the order book according
to price and time priorities if it has no counter part. When a counter-
part is found, a transaction occurs immediately and the price of this
transaction is published.

The simulation engine component

In order book based markets, time handling does not follow the same
logic as in equation-based ones: central quotation system does not ag-
gregate agents decisions at particular time steps and market partici-
pants are free to talk when they want. Hence, we need to implement
the simulation engine component as a process which asks agents to
speak asynchronously and which asks the market to update its current
state each time an agent has spoken.

Our choice is to give randomly an agent the opportunity to talk
regardless to the fact he has already spoken or not. The major incon-
venient of this method is that some agents can be out of the market
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(have never the opportunity to speak) because of the random generator
used in the scheduler. However, on real markets, some agents are very
active (speak a lot) whereas others rarely interact with the market. For
these reasons, this is the scheduling principle we choose.

The agent component

Following the works of Gode and Sunder (1993), our agents are designed
as purely reactive ones (as simple as possible), which implies that we do
not make any strong hypothesis about the agents reasoning capabilities,
nor on the information set they use to take their decisions, as it is done
in most of other studies. The choice of using simple agents behaviors in
this article is hence deliberate: our goal, here, is not to design realistic
agents but to validate our microstructure model separately from the
two other components of the market architecture.

These agents can be assimilated to zero intelligence traders who post
orders with a random direction, a random price for a random quantity
of stocks. When an agent emits a new order, he stops emitting new
ones until his order is fulfilled or until the order reached his timeout.
This timeout is randomly assigned to each agent at the beginning of
the simulation and stays constant over time. This mainly guarantees
that an order with a price too far from the current limits of the order
book won’t stay in it for an endless time.

4.4 Experiments

We present in this section some experiments we have designed to test
our generic framework. Only a part of the statistical tests we made are
reproduced here due to lack of space. Full experimental tools and results
used to produced data presented in this paper may be downloaded
at http://cisco.univ-lille1.fr/papers/ae2007. This experiments
are realized using the market model, agents and scheduler exposed in
previous section. All of our experiments are run on 20 000 time steps
with 100 agents.

First, we interested ourselves to the returns distribution as its shape
is one of the major characteristic of real price dynamics. This distri-
bution, on real markets, is leptokurtic and exhibits fat tails. Table 4.3
shows some statistical results: the excess kurtosis measured oscillates
around 4.5 which is similar to what can be observed with real mar-
kets data (see right column for a comparison). To further illustrate this
property, figure 4.3 shows one of our experimental returns distribution
compared to a theoretical normal distribution.
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Description
Value
(experimental)

Value
(real data)

Excess kurtosis 4.52 4.158
Aug. Dickey-Fuller -20.47 -18.47

ARCH 100% 100%
Table 4.3. Statistical results obtained with our interaction-based model, com-
pared to the one obtained on real data (BMW daily stock returns coming from
DAX30).
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Fig. 4.3. Experimental returns distribution compared to a theoretical normal
distribution with same mean and variance.

Another major characteristic of returns is that they do not exhibit
significant autocorrelation but that a short-range autocorrelation de-
caying over time exists when looking at their absolute value. Figure
4.4 presents the ACF plot for both returns and absolute returns. Com-
paring them to the ones obtained with real market data, we can see
that returns properties similar to reality can be obtained with our
interaction-based model. These properties are further verified by the
use of the Augmented Dickey-Fuller test which tests for the null hy-
pothesis “The serie has a unit root”. Table 4.3 shows its result on our
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time series: the presence of a unit-root is rejected at a high confidence
level as with real data (right column).
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Fig. 4.4. ACF of returns and squared returns obtained in our experiments.

We have seen in this section that time series obtained with our
model exhibit the same statistical properties as real data sets. This
results improve the preliminary ones obtained by Raberto et al. (2005).
This shows that our asynchronous and continuous auction model is
able to reproduce most of markets characteristics without making any
assumption on agents behaviors or on an external world model.

4.5 Conclusion

In this article, we introduced a generic architecture of artificial market
models. This architecture is composed of four independent parts: a
model for the external world, another for agents behaviors, one for the
market structure and a last for time handling. We have shown that
most of existing market models can fit in this architecture, so it can
therefore be considered as a description formalism of artificial stock
markets. Moreover, our generic architecture allows to compose existing
market and agent models, which is a major benefit if one plans to
compare market models between them: it is now possible to do such
comparisons in identical environments (e.g. with the same agents) and
to draw strong conclusions from these experiments, which was not the
case before. However, some of the effects of our generic model still needs
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to be investigated in order to make sure that translators do not bias
simulation results.

We have also presented and tested an artificial stock market com-
ponent based on an order book, which implies that quotation is asyn-
chronous and continuous as on real markets. This is opposed to classical
approaches, which aggregates agents decisions synchronously with an
equation as a substitute for market interaction mechanism. First re-
sults show that it is possible to reproduce most of the stylized facts
observable on real markets with a pure multi-agents model based on
local interactions. This may confirm recent statements implying that
most market features are due to the exchange process more than to
agents behaviors.

We argue that such continuous and asynchronous models should be
used in stock markets simulations. The order book model is so close
to reality that no validation problems subsist about the mechanism
used to make the agents exchange stocks. Moreover, developing agents
behaviors is simplified: real traders investment strategies could be im-
plemented “as is”, without having to modify their output to match the
model requirements.

Concerning technical issues, we can notice that the order book does
not require specific parameters: this ensures that no hazardous tweak-
ing is necessary to make the market model work in a proper way. More-
over, our model is carefully designed with respect to multi-agents mod-
eling paradigms: by adapting blackboard mechanism and well-known
techniques of scheduling to the field of market simulation, we reduce
the probability to get unwanted side effects due to technical issues in
our simulations.

Now that we both have a realistic market model and a generic mar-
ket architecture, we are going to be able to compare our model with
other ones from the literature. By doing such intensive experiments, we
hope to bring some more elements to the theories which impute most
of the stylized facts to the market structure. We will also be able to
test new investment strategies coming from classical economic litera-
ture such as the self referential agents proposed in Orlean (1999).

Acknowledgement. This work is supported by European funds of FEDER and
the CPER TAC of Nord-Pas-de-Calais region.
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5.1 Introduction

The major part of research dedicated to technical analysis and active
trading (i.e., the management of financial portfolios using chartism or
moving average indicators for instance) generally focuses on single “sig-
nals” giving the opportunity to buy or sell a financial commodity fre-
quently a well diversified portfolio (see the extensive survey of Park and
Irwin, 2004). In this context, it has been extensively argued that tech-
nical analysis is useless in order to outperform the market (Jensen and
Benington, 1969). The reason for that is, assuming informational effi-
ciency (Fama, 1970), all relevant piece of information is instantaneously
aggregated in prices. Therefore, there is nothing to extract from pre-
vious quotations relevant for one willing to trade on this basis. Since
information is, by definition, unpredictable, next price fluctuations will
be driven by innovation and the price motion will fluctuate randomly
as a result. Nevertheless, empirical investigations tackling this ques-
tion of “technical trading” exhibit heterogeneous results. On the one
hand, a large part of these researches shows that, once risk taken into
account, no-one can seriously expect any rate of return over what can
be earned with a simple Buy and Hold strategy (henceforth B&H). On
the other hand, some intriguing results seem to attest that technical
analysis is useful to a certain extent (Brock et al., 1992; Dempster and
Jone, 2005; Detry and Gregoire, 2001). More generally speaking, this
idea is trusted and shared by many practitioners.
We argue here that this confusion depicted by this heterogeneous set of
results comes from ill-defined concepts, confusing measures and fuzzy
evaluation procedures. We propose in this paper some elements to cor-
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rect these imprecision and to elaborate a conceptual framework for
technical analysis evaluation.

We consider these elements using an Agent-Based approach because
we ultimately would like to investigate large sets of technical trading
strategies, to encompass automatic trading issues and to generalize as
much as possible our investigations. Thus, in this research, an agent is
systematically an artificial agent, that is, a virtual entity endowed with
Artificial Intelligence, mimicking a real investor, and able to deal with
information, learning, and adaptation procedures.
Therefore, our propositions are a contribution to organize as rigorously
as possible the large set of problems linked to the evaluation of au-
tomatic trading, technical analysis and related topics including those
where Artificial Intelligence is used to investigate large sets of invest-
ment strategies.
This paper is organized as follows. In section 1, we discuss the basis
upon which technical analysis is usually analyzed. We show why it must
be distinguished between signals, strategies and behaviors although this
distinction is seldom done in other researches. Section 2 focuses on the
problematic link between technical indicators received by the traders
and their ability to benefit from them when they try to implement
them in “winning” strategies. Section 3 deals with the value added by
increasing cognitive capabilities of the agents in plugging sets of tech-
nical signals rather than a single signal in their rationality. Section 4
enlarges the discussion to several strategies and addresses several ques-
tions around the design of tests for weak-form Market efficiency and
automatic trading. It also serves as a conclusion.

5.2 Why confusing elements have lead to a controversy

If one considers the basic elements in most researches dealing wit tech-
nical analysis or weak-form market efficiency, it is often the case that
one specific “strategy” (or a limited set of strategies) is systematically
replicated over various time windows, using real stock market data.
Performance is computed comparing this active-investment strategy to
a specific benchmark, like a simple B&H behavior. Some refinements
concerning the statistical properties of the performance distribution is
also usually proposed, such as Monte-Carlo simulations or Bootstrap
Reality Checks (see for instance White, 2000).
However, no one can seriously sustain that these tests directly assess
what a real technical trader would do. This practitioner would certainly
mix a large number of “receipts” to strategize his behavior. His perfor-
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mance is supposed to be grounded on various “signals”, “special skills”
allowing him to have a correct diagnosis, and a professional “know-
how” : this mix makes any evaluation complex because the origin of
performance (or lack of performance) is not easily observable. To make
this point clearer, let’s consider briefly figure 5.1. A large part of the
evaluation complexity arises from the interaction between:

• elements constituting investors’ intelligence (and consequently, vir-
tual agents’ artificial intelligence) : their cognition is a structured
mix of information – extracted from market observation – and
knowledge coming from the organization of these information plus
the result of their past behavior,

• and external constraints : what kind of commodity are they allowed
to trade? Are they subject to budget or credit constraints? Can they
go short or not?

Fig. 5.1. Elements of complexity in performance evaluation

Every evaluation problem has to take into account these elements
to be satisfying. The most difficult of them, and clearly the less treated
in the literature, tackles the ability of technical traders to evolve and
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to mix various elements to achieve good performance in the market.
We will present this point at the end of the following example : to
introduce the discussion, we propose first a basic situation, a very di-
rect evaluation problem where trader’s intelligence is limited since she
applies systematically a strategy based on a “Mixed Moving Average
90-10 signal” (MMA90−10). A “moving average” of range K (K be-
ing equal, in our example, to 10 and 90 since we mix these indicators)
and a “mixed moving average (n, p)” are respectively proposed in the
following expressions 5.1 and 5.2 :

MAK,t =
1
K

t∑
t−K+1

pt (5.1)

MMAn,p = {MAn,t,MAn,t} (5.2)

Chartists consider the situation in which the short-term moving average
crosses the long term one from the bottom to the top as a “buy” signal
(resp. from the top to the bottom as a “sell” signal). We use the daily
closing value of the Dow-Jones from 26/05/1896 to 22/11/2005 (27424
quotation days) to generate a series of 478 signals (figure 5.2 shows a
subset of this signals from 21/05/1996 till the end). We consider that it
is always possible to trade a tracker based on this index. The allocation
rule for the trader is simply maximum investment (that is, to buy as
much trackers as possible or to sell them massively).

On the basis of the signals, the agent trades the DJ-tracker 477 times
(the first signal being a “sell” signal). Do these chartist signals actu-
ally signal something useful for trading or not (question 1)? Would a
portfolio, solely composed of trackers based on the Dow-Jones Indus-
trial, have benefited from such a trading rule if one considers various
performance indexes (question 2)? Especially, do these signals al-
low smart traders to elaborate strategies that outperform the market
(question 3)? Is it possible to improve dramatically this Limited In-
telligence Trader’s performance in endowing her with higher cognitive
skills (question 4)?

question 1:

The idea behind this question is the actual power of chartist signals
to predict correctly, regularly and with a sufficient reliability, the next
moves of one specific market. We can quantify this power with a very
simple indicator called “Hit Rate”:

HRMMA90−10 =
correct signals

total number of signals
(5.3)
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Fig. 5.2. Moving Averages 10 and 90 over 10 years of DJI

Others definitions of such indicator can be found in the literature (Hell-
ström and Holmström, 1998).The average score of our chartist signal,
in terms of Hit Rate is here of 52%. This score may vary significantly
over sub samples of time, and to some extent, it is hard to say that this
52% score is better than what a pure random rule would do. Never-
theless, we can still hypothesize that a subset of rules (whatever these
rules are) in the infinite space of possible rules actually performs well.

question 2:

Assuming the MMA90−10 signal has been selected by a trader, would
she be able to obtain a good performance implementing it in a ba-
sic strategy 3? Graphs 5.2 shows the evolution of a trader’s portfolio
composed of one tracker (at date 26/05/1896) and managing her port-
folio with a basic strategy using MMA90−10 signals against a passive
trader receiving at the same date the same tracker, and playing a B&H
strategy. Rules for managing the portfolio are as follows: when a trader
3 in other terms, following what the signals suggest: to buy when the market is

supposed to rise, to sell when it is supposed to decrease
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decides to sell her portfolio, all the trackers she holds are sold. When
she decides to buy, she invests all her cash in trackers (considering she
will have to pay in both cases transaction costs at x%). One can easily
observe that when transactions costs are zero (graph 5.3), the basic
MMA90−10 seems to perform well whereas it is a good road to ruin
when transaction costs are non-zero, even if they are extremely low
(graph 5.4).

Fig. 5.3. Without trans. costs Fig. 5.4. With 0.5% trans. costs

question 3:

The previous graphical analysis is obviously not sufficient. When
applying standard performance indexes, especially those including a
risk/return analysis (a Sharpe ratios as instance), one can clearly see
that all supposed advantages for a MMA90−10 vanish as soon as trans-
action costs are considered (see Table 5.2).

Transaction Costs 0% 0.5%

Buy&Hold

Mean return 2.0344 E-4
σ 0.01145
Sharpe Ratio 0.0177
Portfolio 10871.43

Basic
Strat.

Mean return 2.0964 E-4 1.2267 E-4
σ 0.00724 0.0073
Sharpe Ratio 0.02893 0.01679
Portfolio 12852.61 1183.57

Table 5.1. Performance evaluation based on a MMA90-10
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question 4:

Do increasing cognitive abilities for the agents lead to better results
in terms of risk/return performance? In other terms, assuming that
“perceiving good signals” necessarily leads to “achieving a good strat-
egy” – and this assertion will be extensively discussed – can we design
agents sufficiently smart to adapt their behavior to many signals and
many external constraints to outperform the market? Would this kind
of agents prove really any ability in this game? How should we de-
sign an evaluation framework taking these elements into account if we
want to design automatic trading platforms and/or tests of market effi-
ciency with agents duplicating as well as possible the behavior and the
cognition of true technical traders? What kind of implications, both
theoretical and practical, these considerations can highlight?

5.3 On the link between good market signals and the
capacity for building up simple good strategies

In this section, empirical investigations use daily data from the Eu-
ronext Paris Stock Exchange between 1988 and 2005. The traded
tracker is now based on the CAC40 index. Agents have access only
to past values of this index. We first present some technical/theoretical
arguments and propose a series of illustrations afterwards.
We first propose to distinguish two fundamental concepts that must be
considered separately previously to be articulated. Technical trading is
always based on “signals” indicating either that the market is about to
increase or to decrease, and “strategies” based on these signals as well.

1. As evoked previously, a “signal” is generally grounded on the (con-
troversial) idea that profitable persistence or inertia characterize the
price motion in stock markets. One difficulty here is to detect which
“signal” is actually able to reveal such persistency. We consider in
this paper a large number of instances of signals; these instances
are based on several generally accepted technical rules (moving av-
erages, rectangle, triangle, RSI, momentum ...), each of them being
modeled as a parametric function. These signals will be active or
not, depending on the existence of “patterns” in prices provoking
their activation. Once activated, the signal sends a recommenda-
tion to the trader expressed like: “according to my own logic”, “the
market should increase” or “should decrease”.

2. A “strategy” is the way agents use these signals to build a trading
behavior.
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a) Some agents will only observe one signal (some being endowed
with multiple signals), and will follow it systematically (we call
this behavior “Basic Strategy”).

b) Others will be “contrarians” (i.e. will follow an “Inverse Strat-
egy”)

c) Others will choose sometimes to follow the signals, sometimes
to ignore them. We call them “Lunatic” traders.

d) ...

Extracting best candidates from a large soup of signals

In this section, a limited sample of results from a series of massive em-
pirical investigations is reported. We select, among many thousands of
chartist/technical signals, some of them exhibiting good “Hit Rates”
(HR, see equation 5.3) and a minimum activity (that is, signals fre-
quently activated and useful to manage a portfolio – at least one signal
per week –). Table 5.3 shows a limited subset of this “good signals” (a
“signature” is simply the name and the parameters used to compute
this signal).

Num. of signals with HR ≥ 50% with min activity
110288 6640 97

(6.02%) (0.08%)
Signature

MMA-1-4 ; MMA-1-6 ; MMA-1-7
Momentum-2-1 ; Momentum-5-0
Variation-1-1-4 ; Variation-1-5-1

Variation-1-7-1 ; Variation-1-8-1 ; Variation-1-9-1
Table 5.2. Subsets of “good signals”

Executing these best candidates with a simple strategy

We show how we can use the signals selected in section 5.3 to design
“pseudo-good” strategies.

An agent decides, at each time step and according to the set of in-
formation it accesses, to manage the portfolio, selling, buying or letting
the number of held trackers unchanged. This set of information is as
follows:

• S1, S2, ..., Sn, the set of signals exploited by her strategy.
• HR1,HR2, ...,HRn, the corresponding set of Hit Rates.
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One can notice here that we did not design a very complex set of
information, including performance evaluation in terms of risks-returns,
rate of activity, memory etc... This is obviously possible but leads to
an increasing computing time and a huge amount of data to analyze.

We focus here on the simplest imaginable strategy: one signal, one
Hit Rate, no evolution, and a strict application of what the signal
suggests : if the market is identified as a rising market, ”Buy”, if iden-
tified as a decreasing one, ”Sell”. In all other circumstances, “stay un-
changed”. Table 5.3 presents the results for 10 strategies based on the
signals in Table 5.3, for two transaction costs levels. It is illustrated
that no strategy is able to outperform the market when transaction
costs are fixed at 0.5%.

0% rate 0.5% rate
Signature Mean σ Sharpe Rank Mean σ Sharpe Rank

(10−4) (10−2) Ratio /97 (10−4) Ratio /97
B&H 3.0879 1.09 0.0283 – 3.0879 0.0109 0.0283 –
MMA-1-4 3.9428 0.74 0.0529 * 13 -0.010 0.00870 -0.1151 88
MMA-1-6 4.4715 0.74 0.0599 * 2 -6.006 0.00852 -0.07043 69
MMA-1-7 4.1877 0.74 0.0562 * 7 -5.6647 0.00845 -0.06701 67
Mom.-2-1 3.2710 0.81 0.0402 * 51 -9.3296 0.00915 -0.10194 83
Mom.-5-0 4.1035 0.74 0.0552 * 8 -6.3746 0.00835 -0.07630 70
Var.-1-1-4 3.9915 0.74 0.0535 * 12 -6.5312 0.0083 -0.0778 72
Var.-1-5-1 3.1547 1.07 0.0294 * 67 1.5685 0.01081 0.01450 23
Var.-1-7-1 3.0960 1.08 0.0285 * 70 2.8503 0.01087 0.02622 5
Var.-1-8-1 3.0403 1.08 0.0279 71 2.8839 0.01088 0.02650 4
Var.-1-9-1 2.9761 1.08 0.0273 73 2.9091 0.01088 0.0267 3
MMA: mixed moving average, Mom.: momentum, Var.: Variation
* stands for “actually outperform the Market”

Table 5.3. Performance evaluation of 10 strategies based on “good signals”

In figure 5.5 we show that a good signal (MMA 1-4) can lead to
disastrous results when transaction-costs are non-zero, while it can be
profitable when transaction costs are not paid. This is linked to the
fact that a good Hit Rate can produce a lot of activity that will not
be profitable because the costs for transacting exceed the benefits one
can obtain with small upwards or downwards in prices.

In figures 5.6 and 5.7 and we have extended this analysis including
the entire set of agents endowed with signals presenting a HR > 50%
(6640 signals, see section 5.3). They are plotted in a risk/return space.
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Agents under the market line (black plain line) underperform the B&H
strategy.
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It appears that once transaction costs are implemented, the number
of agents being able to exploit their signals in order to “outperform” the
market decreases extremely rapidly with limited increments for these
costs. It is noticeable that the agents seemingly well-performing are not
those endowed with best signals.
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5.4 Do intelligent agents outperform ZIT?

In this section, we want to address the following question: do agents
endowed with a set of signals of size N behave systematically better
than agents endowed with a set of signals of size N − i, i ∈ [1, N − 1]?
Do “smart” agents behave better than Zero Intelligence Traders (ZIT)?
In other terms, does increasing cognitive skills, that is, the ability to
detect potential opportunities to trade, actually lead to a better per-
formance? This is a recurrent question in economics and finance that
has provoked many intriguing results (see for instance Gode and Sun-
der, 1993; Greenwald and Stone, 2001). As stated previously, a first
obstacle is the profitable implementation of good signals in the agent.
One potential solution could be to allow the agents to select the signals
upon which they trade on the basis of their individual Hit-Rate (or
some indicator based on this measure).

Technical elements

The first step here consists in allowing each agent to let her rationality
evolve along time. To a certain extent, we must consider agents endowed
with learning capabilities or adaptive reasoning. This is a specific topic
in Agent Based literature (see for example Weiss, 1996), which is not
developed here. We just exhibit a limited treatment for this problem:

1. Agents are endowed with N signals (in the following examples N ∈
[1, 11]), previously selected on a large set of signals in order to ensure
some (arbitrary) level of “effectiveness” 4.

2. At each time-step, agents compute for each signal the corresponding
Hit-Rate.

3. Every P time steps, agents observe which signal has performed well
in terms of HR and select this predictor to trade over the next
P time steps. In the following developments, and for the sake of
simplicity, P = 100.

It is relatively easy to imagine various learning and adaptive procedure
that may lead to better results, and it could be argued here that the
results shown might be dramatically improved. This is presumably true,
although this should be done with a correlative increased complexity
of agents’ design, solution which has not been retained in this article.

4 We mix three indicators: individual Hit-Rate, number of emitted signals, balance
between “buy” and “sell” signals.
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Basic strategies based on sets of best signals

We present now one typical answer to an instance of the generic ques-
tion proposed at the beginning of this section: “On the basis of the 10
best signals proposed in Table 5.3, is it possible to create basic strategies
using many signals (2, 3, ..., 10) in order to outperform the market?”
It is particularly contra-intuitive to imagine that adding cognitive skills
to the agents should lead to a decrease in performance. One should ex-
pect to observe a rise in performance for agents accessing a larger set
of decision rules when evolving in the market. This is not actually the
case.

To answer these questions we create a series of agents endowed with
an increasing number of signals, from 1 to 10, Agenti being endowed
with the i − th first signals in terms of Hit-Rate. We then investigate
their relative performance when transaction costs are respectively fixed
at a 0% rate and 0.5% using the adaptive procedure proposed in the
technical discussion above. Figure 5.8 and 5.9 clearly show that increas-
ing the number of signals in the agents do not systematically allow for
obtaining a higher level of performance in terms of Sharpe Ratio. This

Fig. 5.8. With 0% trans. costs Fig. 5.9. With 0.5% trans. costs

is obvious when transaction costs affect the agents’global performance,
but it is also generally true with no transaction costs. We have tested
all possible values for P between 10 to 500 days, and obtained simi-
lar results. These considerations suggest that either the complexity of
agents is not appropriate to increase their performance, either an other
kind of rule should be implemented to select “good signals” (like their
average profitability in terms of return, which is especially complex), or
that the market being efficient, technical trading is definitively useless.
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5.5 On the validity of technical trading arguments

A last point must be explicitly evoked now: technical trading, and more
generally speaking the weak-form market efficiency have been studied
using sophisticated statistical tests5 to verify if simple technical rules
can convincingly outperform the market. Nevertheless, a research tack-
ling the question of the relative performance for complex technical trad-
ing rules, including artificial intelligence agents, able to evolve in a wide
decision-rules universe, has still to be done.

This would be the ultimate stage to obtain a strong test for market
efficiency. As it has been shown in a previous communication Brandouy
and Mathieu (2006), even if one explores an enormous number of signals
individually “plugged” in artificial traders playing a “Basic” strategy, it
seems to be impossible to obtain risk-adjusted rates of return in excess
to a simple Buy and Hold strategy. This is an empirical evidence that
strongly support the weak-form EMH.

The following illustrations suggest that if one does not accept to
increase significantly the complexity of the agent-based architecture
used in this kind of research, it will certainly not be possible to obtain
strong evidence of an abnormal over-performance.

Four strategies and the Tale of Technical trading efficiency

In this last empirical investigation, we report results that clearly illus-
trate the previous discussion. We consider here four strategies using
various sets of “good signals”. These four strategies are:

1. Basic strategy, that will serve as a benchmark.
2. Inverse Strategy
3. Deterministic Lunatic Strategy
4. Stochastic Lunatic Strategy

Firstly, we focus on agents endowed with multiple signals6 apply-
ing them on the daily closing price of the Dow-Jones (see section 5.2).
These signals have been selected considering their Hit-Rate over a sub-
sample of observations. Agents try to exploit these signals using various
strategies, as proposed previously. Their relative performance are com-
pared to a simple Buy and Hold behavior on the same sample. In this
example there is no transaction costs.

5 Including risk/return measures, in-sample selection and out-of sample tests, data-
snooping control procedures see Lo and MacKinlay (1990) for a technical point
and Park and Irwin (2004) for a general survey about these topics.

6 RSI42−20, RSI15−34, Momentum17−6, Momentum13−10.
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Strategy Mean return Standard deviation
of returns

Sharpe Ratio

BH 2.0152 10−4 0.0113 0.0177
Basic 1.6459 10−4 0.0072 0.0227 *
Inverse 1.9481 10−4 0.007466 0.02608 *
Lunatic D. 1.8826 10−4 0.0080 0.0234 *
Lunatic S. 1.0989 10−4 0.008160 0.01346 *

* stands for “actually outperform the Market”
Table 5.4. Performance of 4 strategies based on “(pseudo)good signals”

Considering this simple illustration, one can see that the best strat-
egy here consists in doing exactly the opposite of what the signals sug-
gest (i.e. to follow an Inverse Strategy, see table 5.5) . One can also
achieve a better Sharpe Ratio with the “Deterministic-Lunatic” strat-
egy than with the “Basic” strategy. One has to keep in mind that this
result does not prove any inefficiency in the market because it might
well be due to data-snooping, because its stability and robustness has
not been checked, and last but not least, because it has been obtained
without transaction costs. It is proposed for the sake of illustration and
we therefore do not argue that it proves any dominance in performance.
We only highlight the fact that whatever the “strategy” we consider,
one can achieve a similar result with any other kind of strategy (apart
“Stochastic-Lunatic”, which basically is similar to a coin toss).

Some other amazing results

We now briefly propose some results of massive investigation on French
data (see section 5.3) leading to similar conclusion.

Cheating is not playing: The following “strategy” is only given to fix
some kind of boundaries. We call it the “cheating strategy”. It has
been designed to allow the agents to know at date t what will hap-
pen at date t + 1. They can therefore directly benefit from this
information to (easily) outperform the market. The result of this
behavior (Sharpe Ratio = 0.46349) is presented in figure 5.10. Our
best non-cheating agent using a single signal is only able to produce
14.35% of this performance.

Good performance on bad basis: It is perfectly possible to design good
agents (obtaining a Sharpe Ratio over the B&H one). As instance,
signals “Variation-2-7-14” and “MA-85” obtain very bad Hit-Rates.
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When these signals are “plugged” in an agent playing a Basic strat-
egy and switching from one to the other every 500 dates (with
respect to their relative Hit-Rate at these dates) we obtain a very
satisfying performance with a Sharpe Ratio of 0.0288, while B&H
Sharpe Ratio is 0.0283.

Signals do not signal anything: As quoted previously, it is frequently
better to do exactly the opposite of what the signals suggest: if one
wants to trade using a signal “indic-7-18-5” with an “Inverse Strat-
egy” one should obtain a Sharpe Ratio of 0.0666 while following
this signal would lead to a Sharpe equal to -0.0292 with a “Basic
Strategy”.

On the nature of the best strategies: Our set of signals is composed of
360.288 elements, 250.000 of them being “periodic signals”: they
propose to go long after “n” days and to go short after “m” other
days. They cannot really be called “technical” signals but they can
catch some special patterns such as the so-called “Monday Effect”.
Nevertheless, many of them can simply be analyzed as stochastic
signals or zero-intelligence signals. Nevertheless, each of the 200 first
agents ranked by Sharpe Ratio use these kind of signals. The best
agent is therefore plugged with a “periodic signal 21-56” (obtaining
a Sharpe Ratio equal to 0.0467). It is easy to find a similar agent
using an “Inverse” strategy based on periodic signals, and behaving
nearly as well as this pseudo-champion.

Thus, if one only scratches the surface of weak-form market effi-
ciency, there is nothing to expect from technical trading. In other words,
little evidence in terms of superior performance should arise from a cau-
tious analysis of simple active trading rules. Nevertheless one cannot
seriously affirm that these last tests completely answer the question.

This set of results as well of the elements we have discussed in this
paper strongly suggest that:

1. Automatic trading based on technical analysis depends upon exter-
nal factors such as leverage, transaction costs. There is an enormous
variability in performance linked to these parameters.

2. It appears necessary to separate at least “signals” and “strategies”.
Näıve increases in agents cognitive skills are also useless to achieve
satisfactory levels of performance(once incorporating risk). A fine-
tuning aiming to balance the complexity of agents’ capabilities and
information resources is necessary.

3. To go deeper in this analysis would imply the definition of generic
strategies describing learning procedures, adaptation and decision
making processes.
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Fig. 5.10. With 0% trans. costs

Therefore, from a conceptual point of view, a robust framework for
the evaluation of Agent-Based trading and technical analysis should
systematically answer each of these 3 points at least, which obviously
constitute a first step before rigorous statistical examinations.
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6.1 Introduction

The evaluation of an exchange market is a multi-faceted problem. An
important criterion is the ability to achieve allocative efficiency. Gode
and Sunder (1993) shows that a continuous double auction for single-
unit trades leads to an efficient allocation even when the traders ex-
hibit “zero-intelligence”; in other words, market protocols are active
contributors in the search for a better outcome. Under reasonable cir-
cumstances, most of the commonly used market protocols share the
ability to help traders discover an efficient allocation.

As suggested in Hurwicz (1994), however, the attainment of alloca-
tive efficiency is only a necessary condition for the effectiveness of a
trading protocol and one should take into account other dimensions.
Assuming zero intelligence, LiCalzi and Pellizzari (2007) compares the
performance of different market protocols with regard both to alloca-
tive efficiency and other criteria such as excess volume or price dis-
persion. Their study considers agents with decreasing marginal utility
that can repeatedly make single-unit trades and examines four common
protocols: batch auction, continuous double auction, nondiscretionary
dealership, and a hybrid of these latter two. All protocols exhibit a
remarkable capacity to achieve allocative efficiency. However, stark dif-
ferences in performance emerge over the other dimensions. These differ-
ences persist even when the assumption of zero intelligence is removed;
LiCalzi and Pellizzari (see 2006).

The general conclusion is that although common market protocols
may be close substitutes in helping (even zero-intelligent) traders to
attain efficiency, they behave quite differently in many respects. This
paper expands this line of research moving from the evaluation of al-
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locative effectiveness to the assessment of allocative fairness. See Fehr
et al. (1993) for a different line of attack on this theme.

Any trading protocol that attains allocative efficiency has two ef-
fects. From a static point of view, it moves the traders from their initial
endowment to a final (efficient) position where no further paretian im-
provements are possible and all gains from trade are realized. This abil-
ity to help traders discover and exploit all gains from trade pertains to
the allocative effectiveness of a market protocol. From a dynamic point
of view, on the other hand, the denouement of a trading session decides
how these gains are distributed among the traders. The performance
of a trading protocol in this respect pertains to its allocative fairness.

A protocol that is allocatively efficient never leaves unrealized gains
from trade. A protocol that is allocatively fair makes sure that these
gains are equitably distributed among the traders. While many defi-
nitions of equitability are possible, there is a general sense that each
traders should be entitled to a share of the gains from trade that his
being in the market creates. In this paper, we consider the same four
common protocols that we have shown to be allocatively efficient (even
under zero intelligence) and we ask the following question. Suppose
that the market is populated with only two families of agents. Both
families are using trading strategies that are individually rational, but
the second family enjoys a potential trading advantage on the first one.
Which of these market protocols is more effective in making sure that
the first family of agents overall loses the least on his “fair share” of
gains from trade?

The organization of the paper is the following. Section 6.2 describes
the model tested in our computational experiments and formalizes our
research question. Section 6.3 details the experimental design and pro-
vides detailed instructions for its replication. Section 6.4 reports on the
results obtained and Section 6.5 offers our conclusions.

6.2 The model

We use the same setup as in LiCalzi and Pellizzari (2007), where a sim-
ple exchange economy admits a unique efficient allocation for the single
good to be traded. Given that the market protocols attain allocative
efficiency, this implies convergence to the same final allocation of the
good and facilitates comparisons.
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6.2.1 The environment

We consider an economy with n traders. There is cash and one good,
which we call “stock”. Each trader i has an initial endowment of cash
ci ≥ 0 and shares si ≥ 0. Each trader i has CARA preferences over
his final wealth, with a coefficient of risk tolerance ki > 0. Therefore,
trader i’s excess demand function for stock (net of his endowment si)
is the linear function

qi(p) = τki(µ − p) − si. (6.1)

where µ is the mean and τ = 1/σ2 is the reciprocal of the variance
(a.k.a. as the “precision”) of the distribution of the final value of the
stock. Each trader knows µ and τ as well as his endowment and his
demand function, but otherwise has no information on the other agents.

Let K =
∑

i ki be the sum of traders’ coefficients of risk toler-
ance, while S =

∑
i si and C =

∑
i ci are the total stock and cash

endowments. The unique efficient allocation of shares in this econ-
omy requires that trader i holds s∗i = (S/K)ki shares of the stock.
This is also achieved in the (unique) competitive equilibrium at price
p∗ = µ−S/(τK); see Wilson (1968). Clearly, the unique efficient alloca-
tion of shares is associated with a continuum of feasible allocations for
cash; each of these determines a different apportionment of the gains
from trade. Therefore, allocative efficiency corresponds to handing out
stock in a unique way; allocative fairness has to do with how cash is
redistributed during the trading that takes place before the efficient
stock allocation is attained.

We emphasize that our setup is not meant to replicate the struc-
ture of a stock market; in particular, informational effects are ruled
out. The underlying economy can be described as an exchange market
for one good, where traders have strictly decreasing linear demands
and heterogeneous preferences that are driven by a particularly simple
parameterizations.

6.2.2 The market protocols

We compare the performances of four market protocols: a batch auc-
tion, a continuous double auction, a nondiscretionary dealership, and
a hybrid of these last two. The first protocol is simultaneous, while
the other three are sequential. The following features are common to
all protocols. See LiCalzi and Pellizzari (2006, 2007) for a complete
description of the protocols and details on their implementation.
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A protocol is organized in trading sessions (or days). Agents partic-
ipate in every trading session, but each of them can exchange at most
one share per session. Reaching an efficient allocation requires multi-
ple rounds of trading. If the protocol is sequential, the order in which
agents place their orders is randomly chosen for each trading session. If
the protocol is simultaneous, all order are made known and processed
simultaneously so the time of their submission is irrelevant. The books
are completely cleared at the end of each trading session. Prices are
ticked and, for convenience, the tick is set equal to 1; in other words,
prices must be integers.

6.2.3 Behavioral assumptions and fair shares

The following behavioral assumptions hold for each trader. An agent is
restricted to trade one unit at a time. Budget constraints must be satis-
fied. Given the demand function (6.1), trader i has decreasing marginal
utility for additional units. If the current endowment of a trader is s,
his valuation for the next unit to trade is

vi(±1) = µ − s ± 1
τki

(6.2)

where the ± sign depends on whether the attempted trade is a pur-
chase or a sale. Hence, his reservation price depends on the side of the
transaction he is entering and on his current endowment si. Moreover,
his certainty equivalent for holding quantities c and s of cash and stock
is

mi(c, s) = c +
(

µ − s

2τki

)
s (6.3)

It is worth noting that the certainty equivalent mi accounts for c at face
value but evaluates s using an individual “price of risk” µ− [s/(2τki)].

The initial endowment (c0
i , s

0
i ) of a trader i provides him with a

certainty equivalent m0
i = mi(c0

i , s
0
i ). We define his “fair share” m∗

i
of gains from trade as the certainty equivalent he would attain under
the fictitious protocol of Walrasian tâtonnement, where a centralized
market maker iteratively elicit traders’ excess demand functions and
keeps adjusting prices to equilibrate them before trade takes actually
place. Under standard conditions, this protocol is a natural benchmark
because it attains allocative efficiency in one giant step, while simulta-
neously minimizing both the volume of transactions and price disper-
sion. For later use please note that, under this protocol, a trader with
ex ante knowledge of the equilibrium price p∗ would attain exactly the
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same final certainty equivalent and thus would not be able to increase
his fair share.

Under the Walrasian protocol, a trader i ends up with cash c∗i =
c0
i −p∗i (s

∗
i −s0

i ) and stock s∗i = (S/K)ki. After substitution, the certainty
equivalent of his fair share is

m∗
i = c0

i − p∗(s∗i − s0
i ) + s∗i

(
µ − s∗i

2τki

)
=

c0
i +

(
µ − S

2τK

)
s0
i +

S

2τK

(
S

K
ki − s0

i

)

which nicely decomposes into the sum of three terms. The first one is
the initial cash endowment of trader i; the second is the “value” of his
initial stock endowment at the market price of risk; the third one is
a positive correction term that is increasing in the difference between
the efficient and the initial stock endowment for i. Since trading is
voluntary, individual rationality implies that the difference between
the fair share and the initial certainty equivalent for each i is positive:

m∗
i − m0

i =

(
Ks0

i − kiS
)2

2τkiK2
≥ 0

We expect that market protocols affect how much of their fair share
different families of agents manage to obtain in the end. This requires
to aggregate social welfare over groups of agents. We measure the social
welfare of a group G by the sum of the certainty equivalents across the
traders in G. Given the initial endowments (c0

i , s
0
i ) of each trader i,

the (initial) social welfare of the entire traders’ population is M0 =∑
i mi(c0

i , s
0
i ). After reaching an efficient allocation, the social welfare

increases to

M∗ =
∑

i

m∗
i = C +

(
µ − S

2τK

)
S (6.4)

which is the analog of Equation (6.3) at the market level. We slightly
abuse notation here, because M∗ is achieved by any efficient alloca-
tion including (but not limited to) the one induced by the Walrasian
procedure. Looking at the left-hand side of Figure 6.1, efficient trading
expands the pie from M0 to M∗.

Consider now a strict subset G of traders. They start with an initial
endowment that corresponds to a social welfare M0

G =
∑

i∈G m0
i for the

group G. The fair share of this group is M∗
G =

∑
i∈G m∗

i ≥ M0
G. In the

right-hand side of Figure 6.1, we represent M0
G as the circular sector

from the inside circle and M∗
G as the union of M0

G and the annular sector
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Fig. 6.1. Gains from trade and fairness.

topping it. In general, M∗
G expands but need not be proportional to M0

G.
Suppose now that at the end of a trading protocol, the social welfare
of a group G is M∗

G ∪AG so that the group G is extracting higher gains
from trade than its fair share. Then we say that the protocol has been
too favorable to the traders in G or, equivalently, that it has been unfair
to the traders in the complementary set Gc. Hence, allocative fairness
is about how the larger pie created by trading is redistributed among
different groups of traders. Similarly to a zero-sum game, a trader gets
more than his fair share by taking away a piece of someone’s else fair
share.

Our approach to study allocative fairness is to split the traders’
population into two families and compare the ability of market proto-
cols to prevent one group from exploiting the other one. For realism,
we assume that all agents are individually rational: regardless of which
family he belongs to, each agent accepts a trade only if this cannot
decrease his current certainty equivalent. An agent who undertakes a
sequence of trades over time increases (possibly, weakly) his own cer-
tainty equivalent in each transaction. This assumption, for instance, is
consistent with zero-intelligence.

Our two families of interacting traders are chosen to emphasize dif-
ferences in the ability to appropriate gains from trade. Notably, individ-
ual rationality alone cannot prevent a purchase from an inframarginal
seller even if this reduces the potential gains from a specific trade. Put
differently, individual rationality protects a buyer from making a per-
sonal loss on a trade but does not imply that he is trading with the
“right” counterpart. This stronger guarantee requires knowledge of the
equilibrium price p∗ in order to spot and refuse inframarginal trades.
We assume that some traders satisfy only individual rationality while
others can do better because they know p∗ as well.1

The first group is formed by the truth-telling (from now on, TT)
traders described in LiCalzi and Pellizzari (2007). At the start of a

1 An alternative assumption is that only the second type of traders are able to
compute or deduce p∗ from the available information.
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trading session, a TT trader chooses with equal probability on which
side of the market (buy or sell) he attempts to trade one unit. Suppose
he goes for a purchase; the case of a sale is analogous. Given his current
endowment, the agent knows that his valuation for the next unit to buy
is vi(+1) from Equation (6.2). In a batch auction, he truthfully bids
vi(+1). In a sequential protocol, he checks first if the best current ask
price is p ≤ vi(+1); if so, he buys one unit at p. Otherwise, he places a
bid equal to vi(+1). In other words, when no better deal is available, a
TT buyer posts a bid equal to his current valuation for the next unit to
buy and thus “truthfully” reveals his reservation value. Compared to
zero-intelligence trading, a TT agent is less greedy because he posts the
largest bid that is individually rational given his own valuation. When
a TT agent buys one unit at a price p higher than the equilibrium price
p∗, he increases his certainty equivalent but eats up a piece (p − p∗) of
his fair share.

The second group of agents consists of traders that know the correct
equilibrium price; we call them price-informed (from now on, PI). This
extreme assumption is a very parsimonious way to endow these agents
with the ability to cut down on inframarginal trades and make sure
that they never lose on their fair share. Given his current endowment,
a PI agent knows that he should be a buyer if vi(+1) ≥ p∗ and a seller
if vi(−1) ≤ p∗. Therefore, he never needs to guess which side he should
take.

Suppose that the PI agent should be a buyer; the opposite case
is analogous. In a batch auction, he simply bids p∗. In a sequential
protocol, a PI trader must take action when he is called out and cannot
wait for better terms. When it is his turn, he first looks for “sure deals”
by checking whether the best current ask price is pa ≤ p∗ or the best bid
price is pb ≥ p∗; if so, he buys or sell one unit, respectively. Otherwise,
and limitedly to the two book-based protocols, a PI agent places a
bid that improves the current best bid pb by one tick and achieves
time-price priority at a buying price never greater than p∗. In general,
the trading strategy of a PI agent has three characteristics: first, he
never fails to exploit opportunities for trading off the equilibrium price;
second, he never trades at a price worse than p∗ (and hence never
loses on his fair share); third, conditional on these two constraints,
he maximizes the probability of trading in the right direction. This
last restriction is chosen to emphasize the ability of PI traders to take
advantage of TT agents.

Depending on the protocols and the random sequence of trades,
the attainment of full allocative efficiency may sometimes fail. For
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instance, in the nondiscretionary dealership, the existence of a fixed
bid-ask spread may prevent two or more TT agents from completing
their few last trades. This may (albeit marginally) reduce the overall
gains from trade and lower allocative efficiency, confusing our study
of allocative fairness. To rule out this spurious effect, after all trad-
ing opportunities within the protocol are exhausted, we force agents to
carry out all residual efficient trades at price p∗. We emphasize that
this has the only purpose of actually realizing the full pie M∗ so that
we can concentrate on its redistribution; in particular, none of these
final trades eats up on the fair share of a trader.

Let MT
G be the final fair share of a group G when trading takes

place using a trading protocol T . Given their information and trading
strategies, only PI agents can “exploit” TT traders. Therefore, when-
ever allocative efficiency is attained, MT

G ≥ M∗
G for G = PI and any

protocol T among the four we consider. We can thus test the ability of
a trading protocol T to foster a fair allocation by comparing MT

G −M∗
G

for G = PI.
Clearly, the ability of the PI group to exploit TT traders depends

also on the proportion π of PI traders in the market. The more the
exploiters, the harder becomes the competition for trades at prices
different from p∗. Therefore, we study how allocative fairness is affected
by the proportion π in (0, 1). Endpoints of the interval are ruled out to
avoid trivialities.

6.3 Experimental design

6.3.1 Identification

The global parameters are the number n of traders, the mean µ and
the variance σ2 of the realization value of the asset, the number t of
trading sessions, and the number λ of PI traders. (The proportion of
PI agents is π = λ/n.) Individually, a trader i is characterized by his
coefficient ki of risk tolerance and by his endowment of cash ci and
asset shares si. Finally, for protocols involving the dealer, we need to
select her initial quotes and a (fixed) spread.

The exemplar for our simulations is similar to that one used in
LiCalzi and Pellizzari (2006). The basic parametric configuration is
reported in Table 6.1. The ratio S/K = 2 implies that the competitive
equilibrium price is p∗ = µ − σ2(S/K) = 760. The initial dealer’s
quotes in the nondiscretionary dealership are a bid of 755 and an ask
of 765, with a fixed bid-ask spread of 10. In the hybrid protocol, where
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Parameters Initialization
Global n = 1, 000

µ = 1, 000
σ2 = 120
t = 500
λ = integer in (0, n)

Trader ki = divisors of σ2 in {10, . . . , 40}
ci = 50, 000
si = permutation of 2ki

Table 6.1. Exemplar for identification.

the dealer’s presence restricts the ability of PI traders to steal better
deals, the initial bid and ask prices of 745 and 775 exactly straddle the
equilibrium price of 760, with a fixed spread of 30.

The robustness tests reported in Section 6.4.1 change one parameter
at a time with respect to this exemplar. We have worked out simula-
tions where the ratio S/K is 1 (or 3), making the equilibrium price
higher (lower); where the dealer’s fixed spread in the nondiscretionary
dealership is 6 (or 30), making the market more (less) liquid; and where
the fixed spread in the hybrid protocol takes different values between
4 and 300, making the dealer’s presence more or less influential.

6.3.2 Simulations and data representation

A round of testing simulates traders’ behavior in 4 different protocols
for different values of λ. A typical cycle is run as follows. We fix an inte-
ger value of λ in the range {1, . . . , n−1} and then we randomly choose
different queues of traders for each trading session. These choices are
kept fixed across the four protocols, so that each of them is tested using
the same fraction of PI traders and the same orderings in each trading
sessions. All other parameters are instantiated as per the exemplar in
Table 6.1. The number of agents is n = 1000; we run 999 trials per cycle
and test each value of λ from 1 to 999. At the end of each simulation,
we compute and record all relevant statistics. The simulations are run
using a package of routines written in Pascal. The statistical and graph-
ical analysis of the data are made using R, an open-source environment
for statistical computing available at http://www.r-project.org/.

We use two (normalized) measures to assess the allocative fairness
of a protocol. Let MT

G be the final share of the group G when trading
takes place using a trading protocol T and M∗

G their fair share (using
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the Walrasian protocol). As discussed above, only PI agents can “ex-
ploit” TT traders; hence, we fix G = PI for the rest of the paper. The
first measure is the absolute excess gain (MT

G −M∗
G)/M0 for the group

G. The division by the size M0 of the initial pie is a normalization
introduced to make the index scale–free and allow direct comparisons;
however, for simplicity, in the rest of the paper we write the absolute
excess gain as MT

G −M∗
G and leave the normalization implicit. The sec-

ond measure is the relative excess gain (MT
G −M∗

G)/M∗
G. The absolute

excess gain reports how much welfare PI traders collectively take away
from TT traders with respect to the initial pie. The relative excess gain
measures how much (on average) a PI trader is expected to improve
his final welfare by trading within a given protocol.

A graphical representation of each set of data is obtained as fol-
lows. Given a protocol T , we plot the 999 data points produced in a
simulation. We then fit a smoothing function generated by applying
a Friedman smoother to all the data points associated with the same
protocol; see Venables and Ripley (2002). Reading Figure 6.2 from left
to right exemplifies this procedure for the case of a continuous double
auction.
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Fig. 6.2. Realizations (left) and a superimposed Friedman smoother (right).

6.4 Results

Figure 6.3 shows two representative pictures based on our exemplar.
The figure on the left reports the (normalized) absolute excess gain
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MT
G −M∗

G collectively achieved by the PI traders as a function of their
cardinality λ for four protocols: batch auction, continuous double auc-
tion, nondiscretionary dealership, and the hybridization of these two
latter protocols. Note that dividing λ by n = 1000 gives the proportion
π of PI agents active in the market.
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Fig. 6.3. Absolute (left) and relative (right) excess gain for PI traders.

The first comment is that the batch auction protects the TT traders
much more effectively than any other protocol for both measures and
for any number of PI traders. This is not surprising: the batch auc-
tion protocol requires simultaneous submission of trading orders and is
therefore much more difficult for PI agents to exploit. By posting an
order at p∗, each PI trader maximizes the probability of trading under
the constraint of never losing on his fair share. Whenever the trading
price issued in a session of the batch auction is different from p∗, he
cuts away a piece of a TT trader’s fair share. However, because the
batch auction aggregates all the orders received in a trading session,
it is very unlikely to issue a trading price different from p∗. We can
thus shift our focus of interest to the three sequential protocols. For
completeness, however, we report also the data relative to the batch
auction.

The second comment is that in general the absolute excess gain
for sequential protocols is a unimodal function of λ. Therefore, the
collective ability of PI to exploit TT traders peaks at some intermediate
value of λ. In this respect, there is a natural ordering of protocols from
dealership to hybrid protocol to continuous double auction that appears
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twice. First, the maximum excess gain for PI traders is increasing in
the natural ordering of protocols. Simultaneously, the value of λ that
maximizes the PI excess gain is decreasing. In other words, PI traders
can achieve a greater excess gain in a continuous double auction, but
their most effective proportion in such protocol is lower.

The result that the excess gain is increasing in the natural ordering
is a direct consequence of the “protection” that the dealership provides.
Because the dealer posts bid and ask prices that tend to straddle the
correct p∗, the transaction price is never too different from this lat-
ter price; hence, no much fair share can be lost. The result that the
λ’s maximizing total excess gain are decreasing in the natural ordering
can be heuristically explained by the combination of two effects. Intu-
itively, PI traders are most effective to exploit TT traders when their
proportion is neither too low (there must be enough exploiters around)
neither too high (there must be enough people to exploit). But we can
put a bit more flesh on this explanation.

Consider the continuous double auction. The overall fair share for
the TT group that PI traders can appropriate is roughly proportional
to (1 − π). On the other hand, taken as a group, the TT traders can
lose a piece of their fair share only when one of them trades with a
PI agent at a price different from p∗. The probability of a PI agent
being matched for trade with a TT agent is roughly proportional to
π(1−π). Therefore, the excess gain appropriated by the PI group in the
continuous double auction are approximately proportional to π(1−π)2

and the maximum should be attained around π̂ = 1/3, corresponding
to λ = nπ̂ = 333 in our exemplar. The actual value is somewhat lower
because some matchings between PI and TT agents do not lead to any
trade.

Consider now the dealership. The overall fair share that PI traders
can appropriate is still roughly proportional to (1 − π). Moreover, be-
cause they can only trade with an impersonal dealer, the probability
of a trade involving a PI agent is roughly proportional to the fraction
π. Therefore, the excess gain for the PI group is now approximately
proportional to π(1 − π) and the maximum should be attained around
π̂ = 1/2, corresponding to λ = 500 in our exemplar. As before, the ex-
act value of the maximizer is affected by microstructural considerations
that this heuristic argument does not capture. Finally, the correspond-
ing values for the hybrid protocol are a convex combination of those of
the parent protocols.

The third comment is that there are no important differences among
sequential protocols when π (or λ) is sufficiently large, because there
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are too few TT traders to be exploited. The overall fair share to be
appropriated is roughly proportional to (1−π) and for large π there is
simply too little to be taken away by the PI group. Moreover, markets
with a high proportion of PI traders tend to exhibit a similar degree
of allocative fairness because a PI agent never loses on his fair share.
Therefore, we restrict the following comparisons to π ≤ 40%, corre-
sponding to λ ≤ 400 in our exemplar. For any proportion π ≤ 40%, the
ranking over sequential mechanisms concerning their ability to prevent
PI agents from eroding TT traders’ fair shares is clear-cut and follows
the natural ordering.

The right-hand side of Figure 6.3 reports the relative extra gain
(MT

S −M∗
S)/M∗

S collectively achieved by the PI traders as a function of
their number λ for the three sequential protocols. Unsurprisingly, this
shows that increasing the number of exploiters makes their “looting”
less effective for each protocol. Moreover, the ranking is again clear-
cut and follows the natural ordering. Finally, this effect is essentially
unchanged in all the additional tests reported in the following section.

6.4.1 Tests of robustness

We have run some robustness tests by changing one parameter at a
time in the exemplar. The first test looks at differences in the total
endowment of stock, leading to a different equilibrium price p∗. The
exemplar has a ratio S/K = 2 yielding p∗ = 1000 − 120(S/K) = 760
and generates the left-hand side of Figure 6.3. We keep the same ki for
each trader i, but endow him with a different multiple of his original
endowment si. This changes the ratio si/ki and of course S/K as well.
Figure 6.4 reports data when S/K = 1 (on the left) and S/K = 3
(on the right), corresponding respectively to a smaller and to a larger
total endowment of stock. The equilibrium prices are now 880 and 640,
respectively. We adjust the initial dealer’s quotes accordingly, making
sure that they always exactly straddle the equilibrium price.

Comparing the two figures from Figure 6.4 (as well as the right-hand
side of Figure 6.3) shows that a larger stock endowment S increases
the relative excess gain (MT

G − M∗
G)/M∗

G of PI for each protocol and
each λ. We do not report the figures for the absolute excess gain to
preserve space, but they exhibit a similar increasing effect. In fact,
the following argument shows that, over our range of choices for S/K,
an increasing relative excess gain implies an increasing absolute excess
gain. The quantity M∗

G is roughly proportional to πM∗; in turn, M∗ is
increasing in (S/K) as far as τµ ≥ (S/K) — as seen by differentiating
(6.4) with respect to S. As this inequality holds for our choices of S/K,
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Fig. 6.4. Different equilibrium prices: S/K = 1 (left) and S/K = 3 (right).

the denominator of the relative excess gain is increasing and the claim
follows. Put differently, this shows that a higher stock endowment S
brings about a roughly proportional increase in the absolute excess
gain.

The increase in the relative excess gain exhibited by Figure 6.4 is
a stronger property that is explained by a second perhaps less obvious
effect. Ceteris paribus, a larger S increases the number of trades that
need to be carried out in order to reach the allocative efficiency. Each of
these trades is a potential opportunity for PI agents to exploit, making
them more likely to extract excess gain from the TT agents. This second
effect accounts for the increase in the relative excess gain.

The second test considers the effect of changing the dealer’s fixed
spread in the nondiscretionary dealership, while keeping his initial
quotes centered around the equilibrium price. The exemplar has a fixed
spread of 10. Figure 6.5 reports the absolute excess gain when the fixed
spread is 6 (bottom), 10 (middle), or 30 (top). The lower the spread,
the more influential is the dealer’s ability to constrain prices within a
narrow band that individually rational trading naturally tends to keep
around the equilibrium price p∗. Forcing the transaction price to lie in a
band, of course, protects TT agents from more serious mispricings and
hence reduces the ability of PI traders to exploit them. Accordingly,
we see in Figure 6.5 that the absolute excess gain is increasing in the
dealer’s fixed spread for any number λ of PI traders.

A third test checks the effect of changing the dealer’s fixed spread
in the hybrid protocol dealership where an agent has access both to the
dealer’s quotes and to a book fed with limit orders from other traders.
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Fig. 6.5. Different fixed spreads in the dealership: 6, 10, 30 (bottom to top).

The exemplar has a fixed spread of 30. Figure 6.6 reports the absolute
excess gain when this fixed spread takes five different values from 4
(bottom) to 300 (top). The absolute excess gain is increasing in the
dealer’s fixed spread for any number λ of PI traders. This effect and
its explanation are analogous to the above. There is a second more
interesting effect to note. In terms of the ability to control the absolute
excess gain, the continuous double auction is the limit case of the hybrid
protocol as the fixed spread goes to +∞. When the dealer posts bid
and ask that are too far apart, trading takes place only on the book.
Accordingly, as we move from a low to a high spread, the excess gain
curve morphs from the shape associated with a dealership to the shape
associated with a continuous double auction; for instance, the peak
increases and shifts leftward.

6.5 Conclusions

We have studied the performance of four market protocols with regard
to their ability to equitably distribute the gains from trade among two
groups of participants in an exchange economy. We assume Walrasian
tatônemment as benchmark and define the fair share that should ac-
crue to a trader as the certainty equivalent he would attain under this
procedure.

When necessary, the first group of traders bids or asks their reser-
vation value; this makes sure that trading never decreases their own
certainty equivalent but exposes them to a possible loss on their fair
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Fig. 6.6. Different dealer’s spreads in the hybrid protocol: 4, 10, 30, 100, 300
(bottom to top).

share. The second group of traders knows (or can compute) the equi-
librium price p∗ and uses this information to make sure that trading
cannot reduce either their certainty equivalent or their own fair share.

We test the allocative fairness of protocols by running (computer-
ized) experiments where these two families of traders interact with each
other. We find that there is a clear-cut ranking of protocols with respect
to allocative fairness, defined as their ability to prevent PI agents from
eroding TT traders’ fair shares. Going from best to worst, this ranking
is: batch auction, nondiscretionary dealership, the hybridization of a
dealership and a continuous double auction, and finally the pure con-
tinuous double auction. The same ranking holds when we replace the
absolute excess gain for PI traders with their relative excess gain.
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Marta Posada, Cesáreo Hernández, and Adolfo López-Paredes
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7.1 Introduction

The experiments discussed below are an attempt to examine two con-
cepts of instability which stem from two different models of market
adjustment used in Economics: Walrasian (W) and Marshallian (M)
instability. The M model views volume as adjusting in response to the
difference between demand price and supply price at that volume. The
W model views price as changing in response to excess demand at that
price. Do the M and the W models have a firm foundation on micro-
motives, or are they just macro abstractions that we could dispense of
in Microeconomics?

If there is an awkward question one has to suffer when teaching
economics, this is who does the job of the so called market adjustment?
In contrast with the usual microeconomic models, these processes of
adjustment do not represent any optimization of the economic agents’
behavior, but just differential equations brought out from nowhere.
As Nicholson (1997, chapter 19) states in his well known microeco-
nomics book: ”in the last instance this speculation on the adjustment
mechanism hardly makes any sense, because neither the Walrasian nor
the Marshalian adjustment reflect the real behavior of the economic
agents”. Being virtual market adjustment models taken from the me-
chanical analogy of vector fields, they can be compatible with different
micro behaviors of the participant agents. Nevertheless it is interest-
ing to further asses the relevance of both concepts of instability, and
to which extent they emerge from individual agents’ behavior. To this
end we will use the empirical evidence obtained from the simulation
with an Multi Agent Based Model (MABS).
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MABS has become a popular tool to theorize about distributed
but interacting phenomena as markets and economic activity are. Eco-
nomics is a Social Science. Being social inherits complexity and being
a science calls for experimentation. Historical records are not enough
to test economic theories. Experimental Economics with humans has
provided a replicable Lab that provides further empirical data to sug-
gest new solutions to economic problems and to test standing models
and theories. But human behavior in the experiments is not directly
controllable and the question of what the agents’ behavior is remains
open. Artificial Economics, mainly MABS, has broadened the scope of
Experimental Economics, allowing the experimenter to check alterna-
tive individual behavior. In this sense MABS is a ”killer application”
of Economic Theory.

This paper addresses four questions: Can both stable and unstable
equilibria be observed in a Continuous Double Auction? If markets do
exhibit instability, which of the two models, M/W, will lead to the right
equilibria prediction? How robust are the results against alternative
learning agents? In view of these results, what is the interest of both
instability concepts for policy modeling and simulation?

7.2 Scope and related work

Some comments are convenient to asses the scope of the paper. There
are two strands of researchers in Artificial Economics: people interested
in the computational properties and policy issues of a given aggregated
market and those interested in growing markets with desirable proper-
ties from agents with micromotives. Since in microeconomics we work
with aggregated markets at a higher level of abstraction than in MABS,
an important issue is often overlooked. The market has three dimen-
sions (Smith, 1989): the institution (it is both the exchange rules and
the way the contracts are closed, and the information network), the en-
vironment (agents’ endowments and values, resources and knowledge)
and the agents’ behavior. These dimensions are frequently overlooked
in Economics, leading to confusing terms such as market adjustment.

In the theory of general equilibrium it was undoubtedly the imposi-
tion of high standards of mathematical formalism that led to the almost
exclusive concern with the existence and characterization of equilibria
rather than the adjustment process that lead to them. In the nineties
there was an upsurge in interest to determining the adjustment pro-
cess and how the economic agents might learn their way into equilibria.
But these works have been focused on the question of learning about
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the parameters of the model as captured by some (Walrasian or not)
equilibrium model. They have concentrated on proving the existence
of such an equilibrium and perhaps some evolutionary mechanism that
will lead to the fixed point equilibrium, under the forceful assumption
of rational expectations.

Real markets are information gathering tools that will allow many
reasonable and realistic heuristic learning-decision models from agents
yet achieving market convergence and equilibrium. Assuming that
learning is primary focused towards finding the true parameters, that
may describe the macroscopic market behavior as a ”virtual” entity, is
just totally unnecessary and even unrealistic. Why should the agents
have a ”virtual correct” macro model in mind and try to capture the
parameters of the model? Their search may be local and no super agent
such as the Walrasian auctioneer is needed for a market clearing-price
as the evidence form Experimental Economics has proved.

The advantage to move from human to artificial agents (from Ex-
perimental to Artificial Economics) is that in our experiment we have
control over the agents’ behavior (Lopez-Paredes et al., 2002).

An extreme case was the Zero-Intelligent agents model of Gode and
Sunder (1993) and Sunder (2004). It is a simple artificial model that
does a reasonable job of capturing the dynamics of the competitive mar-
ket and assures convergence and efficiency without any tâtonnement
process. Of course such a challenging fact has been questioned recently
by Brewer et al. (2002); Cliff and Bruten (1997); Gjerstad and Dickhaut
(1998); Posada (2006). The main conclusions are that the institutional
design matters and so does the agents’ intelligence. That perfect com-
petition is compatible with strategic agent’s behaviour.

Our paper is not about solving an M or a W set of general equilib-
rium system of equations, along the lines of Colander (1995) although
we grow a model that, yes, at the same time computes the solution.
We do not intend to inquire about the microfoundations of top-down
models e.g. differences between Keynesian and Walrasian economics,
although again, this will be an interesting application of MABS in a
similar vein to this paper.

In this paper we replicate and generalize with artificial agents the
results of Plott and George (1992) and Brewer et al. (2002) experiments
of M/W instability with humans and a forward falling supply function.
They found that in a continuous double auction the M stability model
captures the observed phenomena whereas the W model does not. We
wonder as well if their results depend on the particular human agents’
behavior because nothing is said about this issue.
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The choice of the environment to introduce instability is essential to
isolate the two sources of instability: either from the agents’ behavior or
from the environment. In environments where the supply is positively
sloped and the demand is negatively sloped (as in Figure 1.a), there is
only one equilibrium and it is both W and M stable (MS/WS). The
controversy arises when a priori there are several points that should
be M (W) stable (unstable). For example, in Figure 1.b, if the supply
is negatively sloped and if the demand cuts the supply from above
(below), the equilibrium is W unstable (MU) and M stable (WS) and
Marshallian unstable (MU).

The forward falling supply is not an exceptionally abnormal supply,
although this issue is of a secondary relevance for our arguments. It
is the case, for instance, in information technologies products where
marginal costs are practically zero and externalities and learning are
present.

Fig. 7.1. Environments: (a) standard, (b) forward falling supply

7.3 The model

The main features of our model are described using the triple (IxExA):

a) The institution, I. Under the continuous double auction (CDA) rules,
any trader can send (or accept) an order at any time during the trading
period. A new bid/ask has to improve previous pre-existing bid/ask. A
trade occurs when a new ask is made that is less than a pre-existing bid,
or when a new bid is made that is greater than a pre-existing ask. The
trading is equal to that of the pre-existing bid/ask, whose acceptance
is triggered automatically by the new entry.
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b) The environment, E. We use a forward falling supply (Figure 1b).
We have used the same valuations which were used in Plott and George
(1992)’s experiments with human agents.

In the demand side, there are six buyers (each one with six units).
There are two buyers of each type. Each buyer of a given type has
identical reserve price given by [960, 600, 440, 350, 330, 0], [880, 640,
410, 390, 310, 0] and [800, 720, 410, 390, 290, 0], respectively. Buyers
know their reserve price with certainty.

In the supply side, there are six sellers. Each seller is uncertain
about his marginal costs because they depend on their own output
and the output of all other sellers. The externality implies that, as
market volume increases, the marginal cost decreases even though the
individual seller’s marginal cost increases with an increase in his own
volume. Each seller has eight units to trade. There are two sellers of
each type (a, b, c). In Table 1 we show the marginal costs of type-
a sellers. Each seller of a given type has identical marginal cost. The
marginal cost of the first unit when the volume of others is 0, is 820
(for type-b is 800 and for type-c is 780). As unit increases, the marginal
cost value increases by 80. Note that as the volume of others increases,
the marginal cost value decreases by 30 per unit. The exceptions are
every fifth unit starting at 5 (at 3 for type-b and at 1 for type-c ) at
which point the increment is 80 as opposed to 30.

Table 7.1. Marginal costs of a type-a sellers

Volume of others
0 1 2 3 4 5 6 . . . 18

1st unit 820 790 760 730 700 620 590 . . . 130
2nd unit 900 870 840 810 780 700 670 . . . 210
3rd unit 980 950 920 890 860 780 750 . . . 290

...
...

...
...

...
...

...
...

. . .
...

8th unit 1380 1350 1320 1290 1260 1180 1150 . . . 690

Table 7.2 lists the equilibria according to both Walrasian and Mar-
shallian theories.

c) Agent’s behavior, A. The first decision which is taken by each seller
is to estimate the volume sold in the market by others. Sellers are
uncertain about their marginal costs, because they depend on their
output and the output of all the other sellers. Sellers form expectations
q̂n+1 on the volume using their own past experience. They update their
volume expectations according to the actual volume observed in the
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Table 7.2. Equilibria according to both Walrasian and Marshallian theories

Price Quantity Marshall Walras
500-540 12 stable unstable
380-410 18 unstable stable
140-180 30 stable unstable

market (qn). In particular, any seller uses the following simple updating
rule:

q̂n+1 = (1 − λ)q̂n + λqn .

The learning rate λ measures the responsiveness of sellers’ volume es-
timates to new data (a memory weighting factor). If λ = 1 the agents
believe that the quantity sold by others in the next period will be
equal to the traded volumes observed in the current period, and they
will under-estimate their marginal cost. If λ = 0 the agents do not use
the information generated in the market to improve the estimation of
the initial traded volume (myopic behaviour).

Buyers do not need to estimate their reserve prices because they
know them with certainty.

In the next step, agents (sellers and buyers) face the following three
decisions: How much should they bid or ask? When should they submit
an order? When should they accept an outstanding order? To take these
decisions each agent only knows his own valuations, which are private,
and the information generated in the market.

How much should he offer? We try two alternative bidding strate-
gies: ZI (Gode and Sunder [6]) and GD (Gjerstad and Dickhaut [4]).
Each bidding strategy has different answers to this question. Each ZI
agent chooses his order randomly between his private valuations and
the best order outstanding in the market. Each GD agent chooses the
order that maximizes his expected surplus, defined as the product of
the gain from trade (price minus private valuation) and the probability∏

a for an order to be accepted:

max
∏
a

(price − MaC) , (7.1)

where GD agents estimate the probability
∏

a learning to modify their
beliefs using the history of the recent market activity. GD sellers calcu-
late a belief value q(a) for an order a using AAG (accepted asks greater
than a), BG (bids greater than a) and RAL (rejected asks less than
a). Interpolation is used for values at which no orders are registered.
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q(a) =
AAG(a) + BG(a)

AAG(a) + BG(a) + RAL(a)
. (7.2)

When should he submit an order? When an agent is active, he
may submit an order (a new or a replacement an open order). The
agents have a constant activation probability of 25%. Of course, orders
must be also in agreement with spread reduction rule of the institution.

When should he accept an outstanding order? A seller accepts
the current bid if his ask (submitted or not) is equal to or greater than
the current bid. A buyer accepts the current ask if his bid (submitted
or not) is equal to or less than the current ask.

7.4 Some results

Note that the agents have two basic learning tasks: learning about
the externality as represented by the total amount to be traded, and
learning how to bid/ask. How is the performance of humans, ZI and
GD agents in these two tasks? Following we discuss the meaning of the
results of prices and volume.

Price volatility. Figure 2 shows the price distributions of the transac-
tions in ten trading periods (each one with 100 rounds). Here we can see
that for homogeneous ZI populations, the transaction prices are more
volatile than for homogeneous GD populations, where the price con-
vergence is very clear. The learning rate plays an important role on the
convergence to the Marshallian stable equilibrium. All transactions in
GD populations are much closer to the Marshallian stable equilibrium
(540-500) when their λ learning rate is 0.9 than when their λ learning
rate is 0.1 (myopic behaviour).

Price convergence. Although the transaction prices in homogeneous
ZI populations are widely distributed, there is a false convergence ap-
pearance. In Figure 3 we show the time series of price transactions. We
observe that for ZI homogeneous populations, there is no price conver-
gence to the equilibrium price.

Figure 4 shows the time series of transaction with a GD population.
We have represented with a discontinue line the price range (540-500)
which is Marshallian stable and Walrasian unstable equilibrium. Here
we observe that the transaction prices remain slightly over 540 when
λ = 0.1, with a positive bias, as it happens with the experiment with
humans . The transaction prices are unbiased and they cluster around
the theoretical equilibrium of (540-500) when λ = 0.9.
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Fig. 7.2. Pricing distribution of both ZI and GD homogeneous populations
under extreme learning rates (λ = 0.1 and λ = 0.9)

Do humans make mistakes when they estimate the volume sold by
others as GD sellers with a low learning rate make? In CDA markets,
efficiency is achieved even by ZI agents. This is a consequence of the ro-
bustness of the CDA institution against learning. It was not surprising
to find in our experiment a market volume of 12 which is Marshallian
stable and Walrasian unstable, in every period and for any population.

In GD populations the bias comes from a poor estimation of the
externality effect, as measured by the traded volume. The ZI agents
make their offers randomly, but they estimate well the traded volume.
If we assume that the human agents are more intelligent than the ZI
agents, we can conclude that they also achieve the right estimates of the
traded volume. We may then conjecture that for humans the source of
the bias towards the M equilibrium comes from the offering decisions.
This example shows that Experimental Economics and MABS can be
used for testing economic aggregated models. But MABS allows us also
to calibrate to what extent the results from Experimental Economics
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Fig. 7.3. Price dynamics for Homogeneous ZI populations

Fig. 7.4. Price dynamics for Homogeneous GD populations
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are robust against the unknown behaviour of the participants in the
experiment.

7.5 Conclusions

MABS is a ”killer” application in Economics. We can validate and cali-
brate the results from Experimental Economics with humans that have
enlightened Economics for the last two decades, since we can control
for agents’ behavior. If we go down to micro behavior we can grow a
market model for some fixed set of AxIxE.

Grown markets, as the real ones, are information gathering tools
that will allow many reasonable and realistic heuristic learning-decision
models from agents yet achieving market convergence and equilibrium
The agents search may be local and no super agent such as the Wal-
rasian auctioneer is needed for a market clearing-price as our experi-
ment shows. This focus opens the way to a new strand of research into
microfoundations of aggregated economic models.

Growing Agent-Based Models in Economics, we could dispense of
some of the concepts used to describe microeconomic equilibrium since
we can trace the full process towards equilibrium and can calibrate it
for different arrangements of the AxIxE. Nevertheless aggregate models
are, no doubt, useful for policy design. However, to assume that the
behavior that is true for the agents is also true for the aggregated
system, may be wrong and should always be checked.

Our simulation results show that the theoretical predictions of the
Walrasian market adjustment are wrong and that the agents behavior
is compatible with the Marshalian model for the chosen environment
(E), confirming previous results in Experimental Economics. The re-
sults are not robust against alternative agents learning models. M and
W equilibrium adjustment is an analogy taken from vector fields that
is unnecessary if not confusing. We have the tools (MABS) to model a
market fully, allowing individual and social learning, and richer equi-
librium concepts.

In view of the results, the following comment by Axtell (2005) is very
appropriate: “In the end we advocate not the jettisoning of this use-
ful abstraction (Walrasian equilibrium) but merely its circumspect use
whenever focused on questions for which it has limited ability to adju-
dicate an appropriate answer: distributional issues and actual prices.a
direct consequence of the results described above is to at least cast a
pale on the utility of such analysis, if not vitiate them altogether.”
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8.1 Introduction

The growth of e-commerce and the development of distributed process-
ing systems have led to interest among computer scientists in methods
for resource allocations across multiple participants (Chevaleyre and
Dunne, 2005). GRID systems, for example, allow multiple users ac-
cess to some resource, such as computer processing power or use of an
electron microscope (Foster and Kesselman, 1999).

If resources are limited, each agent in a GRID system or other online
marketplace faces the possibility of not being able to obtain resources
when needed. If resources are allocated according to a market mech-
anism (either with real-world money or with tokens), agents also face
the possibility of not being able to afford to purchase resources, even
when they are available. As computational resource allocation systems
become increasingly common, participants will require agents able to
reserve future resources on their behalf, and hedge against future risks.

Derivatives are financial products whose values depend on the value
of some other asset, usually a physical product. Option derivatives pro-
vide traders with the right to purchase or the right to sell the underly-
ing assets at agreed future times, under agreed conditions. In this way,
traders attempt to hedge against falls in the price of the underlying
asset or to gain from price rises, and so manage the risks associated
with the uncertainty of asset prices.

Elsewhere, a multi–agent framework has been presented in which
BDI–type agents could be vested with decision rules allowing them to
trade some product (Espinosa et al., 2005). We use this framework to
create agents with similar decision rules for trading of option deriva-
tives, and then undertake a Monte Carlo simulation to compare the
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marketplace performance of agents trading options with those which
do not.

Our contribution comprises the results of the Monte Carlo simula-
tion for which the paper concludes with a discussion of the work. It is
important to stress that our focus throughout is not on the exchange
mechanism by which agents trade options, or its properties; rather, our
concern is with the relative benefits or disbenefits to agents undertaking
Options trading.

8.2 Model description

We created a multi agent market framework based on the model of
Palmer and Arthur (1994). In our model we consider goods instead
of stock, the goods cannot be divided, we only consider one type of
good or asset and the price of the asset is fixed from a external price
series. In addition to the standard asset trading mechanism, our model
provides means to exchange Option contracts among the agents. We
make use of the basic properties of real financial Option contracts to
define the Options that agents can trade. Price series of the underlying
asset is set from an exogenous discrete time series and Option prices
are calculated at each step using the Black and Scholes (1973) model
for Option pricing.

8.2.1 The market

The market is composed of a set of agents A = {1, 2, 3..., N}. Ai is
composed of two subsets of agents, agents that can trade options and
goods Ao and agents that can only trade goods (assets) Ag.

We consider discrete time points t = {0, 1, 2, 3..., T} and refer to a
period of time as the tth period (or step t) [t, t + 1]. The market has
also a risk free rate of return r.

At each t each agent i has a number of goods gi(t) and an amount
of cash ci(t). The total number of goods in the model is fixed, being∑

i gi(t) = G for all t. Each agent also has an Option portfolio Oi =
Ow

i ∪ Oh
i which is composed by the Options the agent holds (Oh) and

the ones it wrote (Ow).
An Option α is defined as:

α = 〈Xα, tα, vα, τα〉 (8.1)

Where Xα is the exercise price of that Option (the price agreed to pay
for each good); tα is the expiration time; vα is the volume (the quantity
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of goods to trade with that Option) and τα is the type of Option (call
or put). Each Option α has a corresponding premium price pα(t). This
is the price an agent will have to pay its counter–party to hold the
Option.

The Options provided by the market are a set of standard templates
for Option contracts that the agents can trade. Agents are only allowed
to exchange Options that comply with the specified templates, this is
similar to a real Option regulated market. The number of available
Option templates is constant over all time steps.

Pricing mechanism

The asset price p(t) will be provided to the model from an external time
series. Option pricing is calculated each step using the Black-Scholes
model for option pricing defined in Black and Scholes (1973)1. Using
this model, the price of an Option is calculated from the price of the
good p(t), the variance of the asset price (σ) and a predefined exercise
price Xα. The exercise price of an Option is obtained by the following
formula:

Xα = p(t) × (1 + k)

Where k is a uniformly distributed pseudo-random number within the
range [−SPk, SPk].

Market timeline

Each period of time starts when the market publishes the new price
for the asset. After obtaining this price the Option clearing phase will
run where the market will receive instructions from the agents to ex-
ercise any Option that expires at this time. The agents holding any
expiring Option must either decide to exercise or lose the Option at
this time. Any non exercised Option should be removed from agent’s
held Options set Oh

i . Any request to exercise an already expired Op-
tion will be ignored by the market. In the event of an Option being
exercised, the agents will clear the Option, trading the corresponding
asset immediately.
1 It is worth noting that other option pricing mechanisms could have been used, in

fact some experiments were also ran using the binomial option pricing model by
Cox et al. (1979) without any relevant difference in the outcomes.
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Afterwards, the market will publish the different Option templates to
trade on that period and the trading phase will start where the agents
will submit their offers to buy and sell assets or hold and write Options.
Next, the market will try to match match randomly the asset buy and
sell offers and will also try to match the hold and write offers. Finally,
the market will clear the matched offers by making the agents exchange
the assets or confirming the matched Option contracts. A graphical
representation of the time-line is shown in Figure 8.1.

Fig. 8.1. Timeline for one time step of the market

8.2.2 Trading Agents

An agent i is defined by the tuple:

〈gi, ci, wi,Oi,Si,Fi〉 (8.2)

At time t, the term gi(t) is the number of goods the agent owns at
time t; ci(t) denotes the quantity of cash the agent has. The term w(t)
denotes the wealth of the agent which is obtained by the equation:

w(t) = p(t) × g(t) + c(t) (8.3)

The agent also owns a set of Option contracts O which represent a
contract to buy or sell one asset at a specific time. The set of Options
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is composed by two subsets, Oα is the set containing the held Options
and Oβ contains the Options written. Specifically O = Oα ∪ Oβ.
The term S is the agent’s strategy (See 8.2.4) comprising an action or
chain of actions to execute. The set of actions an agent can execute
are listed in Table 8.1. Finally, Fi is the forecast strategy used by the
agent.

Action Description
buy(g, t) Make an offer to buy an asset at time t.
sell(g, t) Make an offer to sell an asset at time t
hold(α, t) Make an offer to hold Option α at time t
write(α, t) Make an offer to write an Option at time t

Table 8.1. Available actions for the agents at time t.

8.2.3 Forecasting and perceived risk

The forecasting process of the agent is comprised by two parts, firstly
the agent obtains forecasted price of the asset for future time steps and
secondly it uses these forecasts to obtain its perceived risk of executing
the possible actions. At each time step agents calculate a forecasted
price for future time steps. Agents obtain this price using a forecasting
function. Although other types of time series forecasting formulae could
be used, our model implements two forecasting mechanisms.

Simple moving average forecasting

The first forecasting mechanism is based on the Simple Moving Average
(SMA). Prices at future times are obtained by first calculating the SMA
for the interval [t − n, t] as pSMA(t) and then the price at future time
steps is obtained by extrapolating the price at current time using the
formula:

pi(t + m) = p(t) + m × (p(t) − pSMA(t)) (8.4)

Where pi(t + m) is the agent’s forecasted price for time t + m and p(t)
is the market price at time t.

α–perfect forecasting

Using the second forecasting mechanism called the α–perfect forecast
the agent will obtain the future prices from the real time series with
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some added random variability (noise). The forecasted price will be
calculated as:

pi(t + m) = p(t + m) × (1 + rα) (8.5)

Where pi(t+m) is the agent’s forecasted price at t+m, p(t+m) is the
real market asset price at time t + m and rα is a uniformly distributed
pseudo–random number within the range [1−α,α− 1], being α within
the range of [0, 1]. Using this mechanism, it is possible for the agent to
have complete knowledge of the future prices when α equals 0.

Perceived risk

Inspired by Holton (2004), we model risk as the probability that the
agent loses wealth when it carries out a specific action. We assume
prices are distributed Normally. Under this assumption each agent can
calculate the probability of wealth loss ρ(a) for each possible action a
at each step in time t.
This is achieved by using the cumulative standard normal distribution
to obtain the cumulative probability of the agent forecasted price being
in the wrong direction, assuming that the distribution’s mean is pi(t +
m) (the price at the forecasted time step).

8.2.4 Trading strategies

There are two types of agents trading in the market, asset traders and
Option traders; asset traders can only trade the underlying asset in the
market whereas Option traders can trade assets and Option contracts.

Asset trading strategies

Asset traders trade in the market using one of two strategies: the Ran-
dom trading strategy in which the agents select an action randomly
and Speculator strategy in which agents select an action to buy or sell
an asset according to their forecast of the price at the next step.

Option trading strategies

Option traders can trade using the Minimize Risk strategy in which
agents create an action tree with all the possible combinations of ac-
tions for a specific number of time steps and select the path which
yields the minimum combined risk. An agent that uses this strategy



8 The Performance of Option–Trading Software Agents 119

will choose the sequence of actions from the action tree (a path) where
the combination of the actions’ risk loss factor ρ is the minimum from
all possible combinations. Let a strategy S be defined by the sequence
of actions 〈a1, a2, ...an〉 and also let ρ(ai) be the risk loss factor for
doing some action, the combined risk loss ρs(S) for such strategy is
defined as:

ρs(S) =
n∏
i

ρ(ai) (8.6)

Option trading agents can also use the Maximize wealth strategy with
which they select the next action after selecting the path which yields
the maximum sum of wealth from an action tree. An agent that uses
this strategy will choose the sequence of action from the action tree
where the combination of each of the action’s wealth difference is the
maximum from all possible combinations. Let a strategy S be defined
by the sequence of actions 〈a1, a2, ...an〉 and let ∆w(ai) be the perceived
wealth difference for doing an action (the wealth before executing the
action substracted from the wealth after executing the action), the
combined wealth ∆w(S) is defined as:

∆w(S) =
n∑
i

∆w(ai) (8.7)

8.3 Experiments

Several experiments were run to compare the performance of agents
under two different aspects. Firstly to test which of the strategies gen-
erated higher profits and secondly to compare the correlation between
the agents’ wealth and the price of the asset. Our hypothesis was that,
the wealth of agents using Options would be lower than that of the
ones trading only assets.

8.3.1 Environment setup

A simulation run for our model requires the specification of the param-
eters of Table 8.2 for the market setup and for the agents.The parame-
ters are explained in Section 8.2 excepting Os which is used to set the
distance between the expiration time (tα) of the Options generated at
each step and σ(0) which is the initial value for the standard deviation
of the price series. These parameters were fixed for all the experiments.
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Initial parameters for the market
Parameter Initial value
Simulation duration (T ) 500
Number of available Option templates (|O|) 3
Steps between available Options (Os) 1
Strike Price multiplier (SPk) 15
Risk free rate (r) 0.005
Initial price variance (σ(0)) 1

Initial parameters for agents
Parameter Initial value
Initial cash (ci(0)) 1000
Initial goods (gi(0)) 100

Table 8.2. Initial parameters for the experiments

For all the experiments we also populated the market with 4 sets of
20 agents. All agents within one set were initialized with the same
parameters (including strategy and forecast function). Each set used
one of the four defined strategies. All the experiment were done using
each of the price series to be described.

Price series

To set the price of the underlying asset we used several price series
in order to test the performance of the agents under different market
conditions. We defined three categories for the price series: stock prices
series, which were obtained from the closing prices of different stocks
2; random prices, which are uniformly distributed pseudo–randomly
generated series; and linear prices which are manually generated.
Some statistical information for the price series is summarized in Ta-
ble 8.3. The Dell, Microsoft, HP, and IBM price series were obtained
from the stock prices of the corresponding companies; the RANDOM1
and RANDOM2 price are the pseudo–randomly generated; finally, the
Increment price series was generated as a constantly increasing time se-
ries and the Decrement was generated as a constantly decreasing time
series.

8.3.2 Experiments using SMA forecasting

For the experiments with the Simple Moving Average forecasting, all
the agents were assigned this same forecasting function (Fi) with the
number of periods tFi

= 10. We ran 50 repetitions of each experiment
2 Freely available online at http://finance.yahoo.com/
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N Minimum Maximum Mean Std. Deviation
DELL 500 16.15 30.63 25.78 2.44
HP 500 10.75 37.80 21.46 6.34
IBM 500 54.65 125.00 95.66 17.37
MICORSOFT 502 41.75 73.70 58.43 7.40
RANDOM1 500 1.20 200.00 103.18 58.30
RANDOM2 500 4.00 996.80 501.54 293.44
INCREMENT 500 10.00 510.00 260.00 144.77
DECREMENT 500 10.00 509.00 259.50 144.48

Table 8.3. Descriptive statistics of the used price series

and averaged the results. We also calculated the mean of the wealth
for each set of agents to obtain the performance for each strategy.

Performance of strategies

We measured the performance of each strategy by obtaining the differ-
ence between the wealth of the agent at the last time step and the first
time step, this resulted in the profits that each agent obtained for each
simulation (see Table 8.4). In order to compare the profits among the

Opton Traders Asset Traders
MinRisk MaxWealth Speculator Random Mean

DELL 210.890 -171.660 -74.060 34.830 960.000
IBM -177.342 45.537 -9.782 141.587 -558.827
HP -363.480 292.750 38.980 31.750 -1393.000
MICROSOFT -3.892 -1.262 -39.422 44.578 817.003
RANDOM1 -259.283 265.357 -2384.593 2378.518 -11979.998
RANDOM2 2373.450 -946.150 -21119.950 19692.650 51073.250
INCREMENT 9922.925 -8430.975 8441.825 -9933.775 49899.975
DECREMENT -3547.801 -2561.132 509.389 5599.545 -47310.719

Table 8.4. Average profit for each strategy with SMA forecasting.

agents we calculated the mean of the average profits (last column in
Table 8.4) and subtracted it from the strategy profit. Figure 8.2 shows
the relative profits for each strategy among the simulations; from this
figure it can be seen that there is no clear advantage in the profits using
any strategy.

Performance correlation with price

The second test we performed was an analysis correlation between the
price series and the wealth of the agents. This test was conducted to
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Fig. 8.2. Relative profit for each strategy with SMA forecasting

see whether the fluctuations on the price of the asset had less incidence
in the wealth of an agent trading Options, the results3 on Table 8.5
suggest so, as the correlation between the wealth of the Option trading
strategies is slightly less than of the asset trading strategies for three
of the four stock market strategies.

Opton Traders Asset Traders
MinRisk MaxWealth Speculator Z.I.

DELL 0.994 0.974 0.998 0.999
HP 0.999 0.997 1.000 1.000
IBM 1.000 1.000 1.000 1.000
MICROSOFT 0.999 0.999 1.000 1.000
RANDOM1 0.999 1.000 0.970 0.985
RANDOM2 1.000 1.000 0.982 0.990
INCREMENT 1.000 1.000 1.000 1.000
DECREMENT 1.000 1.000 1.000 1.000

Table 8.5. Correlation between agents’ wealth and price series with SMA.

3 All correlations were calculated as two tailed Pearson correlation significant to
the 0.01 level.
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8.3.3 Experiments using α–perfect forecasting

For the experiments with the α–Perfect forecasting function, all the
agents were assigned this forecasting function (Fi) with three different
α values of 10, 20 and 40. We ran 50 repetitions of each experiment
and averaged the results. We also calculated the mean of the wealth
for each set of agents to obtain the performance for each strategy.

Strategies performance

As with the SMA experiments, the performance of each strategy was
measured by obtaining the difference between the wealth of the agent
at the last time step and the first time step, resulting in the profits
that each agent obtained for each simulation. Figures 8.3 shows the
resulting relative profit for each strategy with the different α values.

Fig. 8.3. Relative profit for each strategy with α–Perfect forecasting with
different α values.

The wide difference in the performance of the Option trading strategies
against the asset trading strategies suggests a clear advantage on the
use of Options in the case of the α–Perfect forecasting.
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Performance correlation with price

Finally, the correlation between the price series and the wealth of the
agents was calculated for the α–Perfect experiments. The results of
this are listed on Table 8.6, the lower correlation of the Option Trad-
ing strategies particularly appear to indicate that the use of Options
decreases the influence of the price in the wealth of the agents trading
them.

Correlation for α = 0.10
Opton Traders Asset Traders

MinRisk MaxWealth Speculator Random.
DELL 0.988 0.831 0.998 0.999
HP 0.999 0.993 1.000 1.000
IBM 0.999 0.997 1.000 1.000
MICROSOFT 0.997 0.992 1.000 0.999
RANDOM1 0.999 0.718 0.841 1.000
RANDOM2 0.999 0.718 0.841 1.000
INCREMENT 1.000 1.000 1.000 1.000
DECREMENT 1.000 1.000 1.000 1.000

Correlation for α = 0.20
Opton Traders Asset Traders

MinRisk MaxWealth Speculator Random.
DELL 0.984 0.884 0.999 1.000
HP 0.998 0.991 1.000 1.000
IBM 0.999 0.997 1.000 1.000
MICROSOFT 0.997 0.992 1.000 1.000
RANDOM1 0.999 0.761 0.861 1.000
RANDOM2 0.999 0.765 0.879 1.000
INCREMENT 1.000 1.000 1.000 1.000
DECREMENT 1.000 1.000 1.000 1.000

Correlation for α = 0.40
Opton Traders Asset Traders

MinRisk MaxWealth Speculator Random.
DELL 0.994 0.985 0.998 1.000
HP 0.997 0.992 1.000 1.000
IBM 1.000 0.999 1.000 1.000
MICROSOFT 0.998 0.998 1.000 1.000
RANDOM1 1.000 0.833 0.889 1.000
RANDOM2 0.999 0.833 0.904 1.000
INCREMENT 1.000 0.999 1.000 1.000
DECREMENT 1.000 1.000 1.000 1.000

Table 8.6. Correlation between agents’ wealth and price series with α–Perfect
forecasting.

8.4 Conclusions

In this paper we demonstrated some of the results from the experiments
performed in our proposed Option Market framework. The experiments
so far show promising results. It is worth nothing that, although the
differences in the results of the tests between Option traders and asset
traders are low, we argue that the reason for this could be due to
the simplicity of the market. Allowing the agents to trade more than
one asset at each step in time and providing them with Options with
a higher volume (more than one asset traded on each Option) might
increase the differences among the agent’s performance. Also, it would
be interesting to introduce the concept of magnitude of risk into the
agents reasoning process.
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9.1 Introduction

In the past thirty years, options have become an important financial
instrument, and now they account for a substantial percentage of total
trading activity. From a research perspective, a lot of research have been
carried out about the theoretical computation of option prices, starting
from the seminal works of Black and Scholes (1973) and Merton (1973).
Several researchers also examined the issue of to which extent options
interact with their underlying stocks, and in particular their possible
effects on stock returns and volatility, and on the overall quality of the
underlying security market.

Some studies claim that option trading may have a positive impact
on the underlying asset market, reporting a decrease in volatility af-
ter the introduction of option trading. Among them, we may quote
Nathan Associates (1974), perhaps the first to study the impact of list-
ing options on the Chicago Board of Exchange. They reported that the
introduction of options seemed to have helped stabilizing trading in
the underlying stocks. Ross (1976) and Hakansson (1982) affirm that
the options introduction improve incomplete asset markets by expand-
ing the opportunity set facing investors, and reduce the volatility of
the underlying stock. Kumar et al. (1998) claim that option listings
have a beneficial impact on the stock market quality in terms of higher
liquidity and greater pricing efficiency.

Other researchers affirm, on the other hand, that option trading
causes an increase in volatility. because it favors large positions and
increases the bid-ask spread. For instance, Wei et al. (1997) report an
increase in volatility of options on OTC stocks in the USA.
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A third opinion among researchers claims that option trading has
no significant impact on price volatility of the underlying stock market.
Among these, Bollen (1998) affirms that option introduction does not
significantly affect stock return variance, while Kabir (2000) examined
option listing in the Netherlands, studying the impact of option trading
on the underlying market. He founds a significant decline in stock price,
but no significant effect on the volatility.

In the past ten years, a significant new stream of research works
introduced modeling and simulation using heterogeneous, boundedly-
rational interacting agents as a new tool for studying financial markets
(see LeBaron, 2006, for a recent survey). This new approach, while it
is still debated and challenged, especially among classical economists
relying on the “efficient market hypothesis”, is able to give new insight
into how markets work. For instance, it is able to explain the so called
“stylized facts”1 shown by virtually every market price series, using en-
dogenous mechanisms. Very many papers appeared proposing different
models based on heterogeneous agents, and studying many different
aspects of financial market trading. However, to our knowledge, no one
has yet tried to study the effect of option trading using this approach.

This paper uses the heterogeneous agents, simulation approach to
study the interaction between a stock option market and the under-
lying stock market. We analyze the effects of realistic option trading
strategies on the stylized facts of financial time series, the long wealth
distribution of traders and the price volatility. We consider three basic
kinds of traders: traders who trade only in the stock market, traders
who trade in the stock market, covering their positions using the option
market, and a central Bank which issues option contracts in the option
market, and trades in the stock market to cover these contracts, upon
their expiration. There are four types of trading strategies in the stock
market: random, fundamentalist, momentum and contrarian trading.
Each trader consistently applies just one strategy, and cannot change
it.

A given percentage of traders – spanning over all kinds of strategies
– use options to cover their positions. Each time one of these traders
places an order in the stock market, she also cover herself buying option
contracts from the Bank, or uses a strategy based on the combination
of call and put options, like a ”Straddle”.

1 The main “stylized facts” are: (i) unit root property of asset prices; (ii) power-
law distribution of returns at weekly, daily and higher frequencies; (iii) volatility
clustering of prices.
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9.2 Method and model

In our model there is a market in which N agents trade a single stock,
which pays no dividends, in exchange for cash, with no transaction
costs. Each trader is modeled as an autonomous agent and is charac-
terized by a wealth, constituted by the sum of her cash and stocks,
valued at the current price. Traders’ initial endowment – both in cash
and stocks – is obtained by dividing agents into groups of 20 traders,
and applying Zipf’s law to each group, so that the difference in wealth
among the richest and poorest traders at the start of the simulation is
about twenty-fold.

The agents are divided into sub-populations that adopt different
trading strategies. Besides the stock itself, which is traded in the stock
market, there is an European option contract on the stock. A fixed
percentage of traders is also enabled to buy and exercise options. We
call them option traders.

Another, special type of trader is the Bank ; only one Bank is present
in the market. The Bank issues option contracts and, upon their expi-
ration, guarantees their exercise.

At each simulation step, which roughly corresponds to a day of trad-
ing, each trader can place a buy or sell limit order to the stock market.
This happens with a probability of 10%, so each trader is active on
average every 10 time steps. The pricing mechanism of the stock mar-
ket is based on the intersection of the demand-supply curve (Raberto
et al., 2003).

At each time step, option traders may also buy from the Bank one
or more European option contracts, in order to hedge their investment.
These traders have a long position in the option market. Since we deal
only with European options, their owners are allowed to exercise their
rights only at the expiration date. The pricing of options is based on
Black-Scholes formula.

Upon expiration, options can be classified as being in the money
(ITM), at the money (ATM) and out of the money (OTM). A call
(put) option is ITM if the strike price is less (greater) than the current
market price of the stock, so it is profitable to exercise the option. On
the other hand, OTM options are not exercised because they are not
profitable, resulting in a net loss of the traders who bought them. A
call or put option is ATM if the strike price is exactly equal to the
current market price, making irrelevant to exercise or not the option.
In practice ATM options are not exercised, and are equivalent to OTM
ones.
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Traders owning ITM options exercise them, asking the Bank to sell
them, or to buy from them, the corresponding stocks at the strike price.
If the total number of stocks sold to these traders is not equal to the
total number of stocks bought from them, the Bank places on the stock
market a market order to cover the imbalance.

The Bank sets all components of the option contract: strike price
(which depends on the current price of the stock p(t), expiration date,
underlying quantity, premium (Hull, 2002). The computation of the
price of the options is made using the formula first introduced by Black
and Scholes (1973).

9.2.1 Trading strategies

Stock market traders play the market according to four different kinds
of strategies, that roughly mimic traders’ behaviors in real markets.
These strategies are described in depth in Raberto et al. (2003), and are
summarized below. Some strategies require a time window to compute
some significant parameters. In this case, each trader has a specific time
window whose length is an integer randomly extracted from a uniform
distribution, in the interval 2 − 10.

Random traders: Random traders are characterized by the simplest
trading strategy, representing the “bulk” of traders who do not
try to beat the market, but trade for exogenous reasons linked to
their needs. They are traders with zero intelligence, issuing random
orders. If a random trader decides to issue an order, this may be a
buy or sell limit order with equal probability. The order amount is
computed at random with uniform probability, but cannot exceed
the trader’s cash and stock availability. The limit price is set at
random too, in such a way to increase the probability the order is
satisfied.

Fundamentalist traders: Fundamentalist traders believe that stocks
have a fundamental price due to factors external to the market,
and that, in the long run, the price of the stock will revert to this
fundamental price, pf . Consequently, they sell stocks if the price
p(t) is higher than fundamental price and buy stocks in the opposite
case. The fundamental price is the same for all fundamentalists and
corresponds to the “equilibrium” price, when the total cash owned
by all traders, Ctot is equal to the value of all the stocks owned by
all traders, Stot. The order amount is proportional to the distance
between the current price and pf . The limit price is equal to pf , or
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to the current price p(t) plus or minus 20%, whichever is closer to
the current price.

Momentum traders: Momentum traders speculate that, if prices are
rising, they will keep rising, and if prices are falling, they will keep
falling. Their orders are buy orders if the past price trend is posi-
tive, and sell orders if the trend is negative. The order amount is
computed at random in the same way as random traders, while the
limit price is set by extrapolating the price trend.

Contrarian traders: Contrarian traders speculate that, if the stock
price is rising, it will stop rising and will decrease, so it is better
to sell near the maximum, and vice-versa. So, their orders are sell
orders if the past price trend is positive, and buy orders if the trend
is negative. The order amounts are computed in the same way as
random traders, while limit prices are set by reversing the trend,
using as pivot the current price.

9.2.2 The Bank

The Bank is a special trader with infinite wealth, able to issue and sell
call and put European options to other traders. The components of an
option contract are:

Expiration date: it is fixed on the third Friday of the month. In our
model, all months are nominally 20 working days long, thus the
expiration dates are days 15, 35, 55, ..., 20k + 15, .... We use realistic
expiration dates, that depend whether the option is bought before
or after the third Friday of the current month (see Hull, 2002). In
the former case, the expiration month can be the current month,
or the month whose index is equal to the current one, plus 1, 3 or
6. In the latter case, the expiration month can be the month whose
index is equal to the current one, plus 1, 2, 3 or 6.

Premium: the premium to be paid for an option is computed us-
ing the Black and Scholes formula (Black and Scholes, 1973; Hull,
2002). This formula uses five parameters: the stock price p(t) at the
time the option is valued, the strike price X, the time to expiration
∆T , the price volatility, computed in a given time window whose
length is in our case 50 time steps, and the short-term interest rate,
which in our case is set to zero. The basic idea underlying Black
and Scholes formula is that the prices of the stocks follow a ran-
dom walk, implying that the underlying asset prices are lognormally
distributed with a constant mean and standard deviation. In our
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artificial stock market model, however, the price process is char-
acterized by a strong mean reverting behavior toward a price, pf ,
equal to the ratio between the total number of stocks and the total
cash owned by traders (Raberto et al., 2001), due to the finiteness
of resources of the traders. This leads to overpricing the options,
causing steady losses to option traders. For this reason, the option
premium computed using Black and Scholes formula is multiplied
by a correction factor C that depends on time to expiration ∆T
and typically varies between 0.75 (in the case ∆T = 120) and 0.96
(in the case ∆T = 10). These values has been empirically computed
through many simulations. Using the correction factor C(∆T ), we
were able to use an option premium that is fair with respect to our
finite resources, mean reverting market model.

Strike price: it is the price X at which the option can be exercised.
It depends on the current price p(t) of the stock. We consider three
different possible strike prices, given by eq. 9.1.

X ∈ {p(t) − δ, p(t), p(t) + δ} (9.1)
The value of δ depends in turn on p(t). In US Dollar-quoted markets,
δ is given by the following formula (Hull, 2002):

δ =




1.5$ if p(t) ≤ 25$
3$ if 25$ < p(t) ≤ 200$
6$ if p(t) > 200$

(9.2)

For instance, if p(t) = 42.7$, then δ = 3, and the possible three
strike prices are X = 39.7$, X = 42.7$, or X = 45.7$.

When the Bank sells an option contract, it earns the premium, up-
dating its cash. On expiration dates, that is every 20 simulation steps, if
option traders have expiring ITM options, they ask the Bank to honor
the contracts, selling them the stocks at the strike price in the case of
call options, and buying from them the stocks at the strike price in
the case of put options. If required, the Bank places a buy or a sell
limit order on the market, at the market stock price, plus or minus a
proper percentage (set to 2% in our model), to cover its position and
be able to satisfy all its obligations. The Bank has unlimited wealth. In
practice, it starts with a cash and a number of stocks set to zero, but
these values are unbounded, and can assume any value, even negative.

9.2.3 Option traders

Option traders are those traders who are allowed to trade both in the
option market and in the underlying stock market. As regards the stock
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market, they exhibit one of the four possible trading strategies de-
scribed in section 9.2.1. When they trade in the option market, they
can only buy options and possibly exercise them on their expiration
dates. Option traders can buy option contracts from the Bank only if
their residual cash is higher than the premium of the option contract.

To be more specific, let us call mi(t) the cash owned by option
trader i at simulation step t, and si(t) the stocks owned by the same
trader at the same step. Let us also suppose that, at step t, option
trader i has pi put option contracts not yet expired. These put options
refer to quantity qp

j , at a strike price of xp
j , j = 1, 2, ..., pi respectively.

Conversely, let us suppose that at step t, option trader i has ci call
option contracts not yet expired. These call options refer to quantity
qc
j , at a strike price of xc

j , j = 1, 2, ..., ci respectively.
The total cash balance expected when all undersigned options are

expired, mB is estimated by eq. 9.3.

mB =
pi∑

j=1

qp
j x

p
j −

ci∑
j=1

qc
jx

c
j (9.3)

The total stock balance expected when all undersigned options are
expired, sB is estimated by eq. 9.4.

sB =
ci∑

j=1

qc
j −

pi∑
j=1

qp
j (9.4)

Note that in computing the balances we don’t consider the options
to be ITM or OTM with respect to the current price p(t), but for the
sake of simplicity we give all the options the chance to be ITM.

On the expiration date, if the option is ITM and if the trader holding
it has enough money or stocks, she exercises it. Otherwise, she gets back
the difference between the actual price and the strike price from the
Bank.

If the option is OTM, the trader places on the stock market a buy
limit order (if the option is a call), or a sell limit order (if the option
is a put) at the current stock price for the underlying quantity. This
quantity is reduced if the trader has no cash or stock enough to cover
it completely.
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Using options to cover a position

If options are used to cover a position, when option traders decide to
place a buy or sell order, they also buy from the Bank a corresponding
option to cover their position, provided they have cash enough to buy
the option. The expiration date is always three months from the current
month, so ∆T ≈ 90. If the order is a buy, they buy a put option, with
a strike price X equal to the current price p(t) minus δ as in eq. 9.2.
If the order is a sell, they buy a call option with X = p(t) + δ. In this
way, option traders are guaranteed against losses exceeding δ, but have
to pay the option premium, that is in any case subtracted from their
cash.

Using straddles

If option traders use straddles, they simultaneous buy a put and call
on the same underlying security, with the identical strike price and
expiration month. The value of the strike price is the same of the current
price of the underlying asset. So, both call and put options are ATM at
the moment of purchase. Typically, the buyer of a straddle anticipates a
substantial movement in the stock price, but is uncertain what direction
it will be. Because the trader is betting on an large stock movement, the
odds of losing are high. The buyer of a straddle risks only the amount
of the premium. The maximum loss occurs when the price of the stock
on the expiration date of the options is exactly equal to the strike price.
In our model, in order to ease comparison with the case when option
are bought to cover a position, option traders buy a straddle when they
place an order on the stock market. The stock quantity of the straddle
is the same of the stock market order, provided that the trader has
cash enough to pay for the straddle premium.

9.3 Results and conclusion

In this section we describe the results of the computational experiments
we performed. Each simulation was run with 5000 time steps and 400
agents. We varied the composition of the population performing various
runs, and eventually decided to hold at 10% the percentage of funda-
mentalist, momentum and contrarian traders. Option traders can be
0%, 20% or 40%, equally divided in the four possible types. Random
traders account for the remaining percentage.
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The price volatility used in Black and Scholes formula is computed
using a time window of 20 trading days. Also in the presence of option
trading, our artificial stock market consistently exhibits realistic price
series from a statistical point of view, showing the classical stylized
facts, with fat tails of returns and volatility clustering.

During the simulation, when option traders decide to buy or sell
stocks, they also buy options from the Bank. In doing this, these traders
do not directly interfere with the stock market. The only indirect effect
on the stock market is that they spend money to undersign options, so
that in subsequent buy orders they can buy a smaller amount of stocks.

On expiration dates, on the contrary, the option traders interact
with the underlying stock market. This may happen in three ways.
The first is when the Bank needs to buy or to sell stocks to cover
its cumulative position with respect to the owners of expiring ITM
options. These stocks are bought or sold in the stock market, creating
an unbalance.

The second way is when option traders have OTM options. In this
case, they often buy or sell the stock, placing a buy or sell order of the
amount of the option on the stock market.

The third, indirect way is that, by exercising the options, option
traders change the composition of their portfolios, and this has an im-
pact on their subsequent trading activity.

We divided the performed simulations in two main categories – op-
tion traders covering their positions, and option traders buying strad-
dles. In principle, the effects of these two strategies could be quite
different, because covering a position implies buying a single option
contract at a time, while buying straddles is a more speculative strat-
egy, and options are bought in pairs.

In both cases, we found that, despite the high percentage of option
traders, the price series exhibit the “stylized facts” of real financial
markets, and do not substantially differ from the case with no option
trader.

9.3.1 Results when options cover a position

In the case option traders use options to cover their positions, as de-
scribed in section 9.2.3, we performed many simulations, checking the
behavior of trader wealth and of price volatility. Fig. 9.1 shows the
wealth dynamics for a typical simulation.

Note that contrarian and fundamentalist traders, who use the
“right” strategy for a mean-reverting price behavior, tend to increase
their wealth, as already reported and discussed in Raberto et al. (2003).
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Fig. 9.1. Dynamics of wealth of all kinds of traders for a typical simulation
where option traders cover their positions using options. The total percentage
of option traders is 40%.

On the other hand, the same kinds of traders using options to cover
their positions tend to be much less profitable. This is because they
spend money to buy options to cover positions that are unlikely to
yield strong losses. The situation of momentum and random traders
is completely different. These traders employ losing strategies, and in
fact tend to lose wealth. Their option counterparts, however, tend to
be much more profitable, because it is convenient to cover themselves
with options, when the underlying strategy is bad.

9.3.2 Results when option traders use “straddles”

In another series of simulations, we considered a market where option
traders use “straddles”, as defined in section 9.2.3. Fig. 9.2 shows the
wealth dynamics for a typical simulation. Here the traders tends to gain
less than in the other case, and only contrarian traders and fundamen-
talists – the latter both using and not using options – gain something.
All other kinds of traders tend to lose money. All traders, but funda-
mentalists, who use straddles tend to lose money with respect to traders
with the same strategy, not active in the option market. This is not
unexpected, however, because in a limited resources, mean-reverting
market, a strategy betting on high price variations, like the ‘straddle”,
is unlikely to win.
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Fig. 9.2. Dynamics of wealth of all kinds of traders for a typical simulation
where option traders use “straddles”. The total percentage of option traders
is 40%.

Table 9.1. Price volatility with and without option trading; each reported
value refers to 20 simulation runs. The values are multiplied by 103.

No option 20% option 40% option
Strategy Quantity trader traders traders

Cover mean 0.45 0.3 0.25
Cover std. dev. 0.13 0.07 0.06
Straddle mean 0.45 0.23 0.14
Straddle st. dev. 0.13 0.07 0.03

In Table 9.1 we show how price volatility changes in the presence
of option trading. In general, our simulations show a consistent, strong
decrease in price volatility when options are traded. This despite the
fact that once in every month the Bank places an order that might be
very large, at a limit price able to cause strong price variations. When
straddles are used, the number of traded options is doubled, and the
volatility decreases even more. The presented figures refer to averaging
volatility, computed every 50 time steps, on the whole simulation, and
then averaging on 20 different simulation runs. Note that volatility does
not show significant trends across a single simulation. These results
seem to confirm the empirical findings that option trading stabilizes the
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market and reduces the volatility (Hakansson, 1982; Nathan Associates,
1974; Ross, 1976).

Clearly, all the presented results are still preliminary, and more tests
are needed to assess them. Future research directions we are working
on include: (i) modeling dividends and interest rates; (ii) opening the
market to external influences so that is is no longer mean-reverting, at
least in the short run; (iii) studying other strategies using options; (iv)
giving traders the ability to sell options.
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10.1 Introduction

Since Black (1986) introduced noise as “expectations that need not
follow rational rules”, noise traders are welcome in modelling financial
markets as they provide liquidity and solve theoretical problems like
the information-paradox formulated by Grossman and Stiglitz (1980).
Unfortunately, those traders cannot expect to be honored for their con-
tributions, or, as Black (1986) states, “if they expect to make profits
from noise trading, they are incorrect”.

This paper presents a simulation model where traders can decide
endogenously whether to rely on costly information or to act as a noise
trader by adopting a random trading strategy. We show that, espe-
cially for traders with a low market impact, a random strategy may be
the only rational choice as it promises higher returns than trading on
incomplete information.

The paper is structured as follows: Sect. 10.2 presents the simula-
tion model. To check the value of additional information in this model,
Sect. 10.3 discusses an exogenously defined strategy allocation. Sects.
10.4 and 10.5 analyze equilibrium situations where every trader en-
dogenously chooses his optimal strategy in terms of returns and market
efficiency. Robustness checks are discussed in Sect. 10.6, and Sect. 10.7
concludes.

10.2 Simulation model

We simulate a one-period call market where one security is traded. The
market consists of 1,023 computerized traders who can be classified
according to their market impact. Category Tj∈{1,2,...,10} consists of
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210−j traders, each of them trading 2j−1 shares each period. With this
categorization, the market impact of all traders in the market roughly
follows Zipf’s law (see Zipf, 1949). It results in one single trader in
group T10, transacting 512 shares per period, while each of the 512
traders in category T1 trades only one security per period.

All traders are risk-neutral expected wealth maximizers and are
free to act as random traders (I = 0) by deciding to buy or sell the
security in period 0 with equal probability, or to use a fundamental
trading strategy by adopting one of ten discrete information levels (I ∈
{1, 2, . . . , 10}). To keep our traders in the market even though some of
them will suffer losses, it is assumed that all traders have an exogenous
motivation to trade. However, they have to make a decision whether to
base trades on a fundamental strategy or to behave as a noise trader.

To model the information system, we state that the intrinsic value
V in period 1 is given by the product of 11 individual signals αi, written
as

V =
11∏
i=1

exp(αi); α ∼ N(µ = 0, σ = 0.05) . (10.1)

Like in real markets we assume that what the poorly informed
traders know should be known to the better informed traders as well.
Therefore, a trader adopting information level I will receive the signal
αi=I as well as all signals αi<I . Assuming a risk-free interest rate of
zero, this trader will predict the fair price in period 0 as

E(V ) =
I∏

i=1

exp(αi) + ε; ε ∼ N(µ = 0, σ = 0.00001) .1 (10.2)

As (10.1) describes a random process,2 the expected relative predic-
tion error ς = ln(E(V )) − ln(V ) is normally distributed with a mean
of 0 and a standard deviation of 0.05 ×√

(11 − I) (see Table 10.1 for
exact values). The cost of information levels is rising progressively with
the quality of the information, given by

1 Contrary to α, the error term ε is individually computed for every trader in each
run. This creates a certain divergence of opinion among traders adopting the same
information level.

2 Note that the formula used to model the signals can also be used to model a
random-walk process (geometric Brownian motion). Many dynamic models apply
the same method by assuming that informed traders can predict the value of a
security (following a random-walk process) in future periods.
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CI = (2I − 1) × c; c = 0.02 . (10.3)

As can be seen in Table 10.1, adopting information level I = 1 is
quite cheap. For a trader in class T1, the expenses will lower his absolute
returns by 0.02. The cost function increases progressively, so adopting
higher information levels will only be reasonable to traders in higher
classes. As a trader in T10 trades 512 shares, adopting I = 9 will lower
his absolute returns per share also only by 0.02.

Table 10.1. Relative prediction error ς and absolute costs C of information
levels.

I 0 1 2 3 4 5 6 7 8 9 10
ς 0.69 0.16 0.15 0.14 0.13 0.12 0.11 0.10 0.09 0.07 0.05
C 0.00 0.02 0.06 0.14 0.30 0.62 1.26 2.54 5.10 10.22 20.46

After each trader has chosen his information level (we will explain
how our traders learn to find their optimal strategies in Sect. 10.4), all
informed traders place limit orders to buy the security if the market
price P < E(V ) and to sell the security if P > E(V ). Random traders
will decide to buy the security (placing a limit buy order for P < 2)
or to sell for P > 0.5 with a 50% chance for both options. Orders are
matched at the price allowing for the highest possible market volume.
If this condition is met by a steady interval of prices, the market price
is computed as the geometric mean of this interval. If the number of
buyers and sellers differs, orders are only partially executed.3 As every
trader class places limit orders for 512 shares, maximum market volume
is 2,560 securities per period.

In period 1, all shares are liquidated at the intrinsic value V . Ac-
cording to this, relative gains/losses per share for buyers in class Tj

(trading s = 2j−1 shares) are calculated as

RTj = ln(
V × s − C

P × s
) . (10.4)

As going short in the security implies that traders receive P in
period 0 and pay V in period 1 to buy back the security, returns for
sellers are given by

3 As a trader in T10 trades 512 securities with the same reservation price, the
median of all reservation prices is likely to correspond to this trader’s prediction.
In this case, the number of buyers and sellers will differ.
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RTj = ln(
P × s − C

V × s
) . (10.5)

For all results presented in the following sections, settings with 1,000
simulation runs were computed. To derive stable results, all random
numbers used in a setting were pre-calculated and recycled when the
simulation had to be re-looped.4

10.3 Reference setting

To get first insights into the value of information in this model, a refer-
ence setting with exogenously defined strategies is analyzed. Suppose
that all traders in class Tj choose information level I = j−1, so traders
in T1 adopt a random strategy while all other traders rely on fundamen-
tal information. Average returns R for trader classes in 1,000 runs with
and without costs (black bars and grey bars respectively) are shown in
Figure 10.1.

Fig. 10.1. Average returns per trader class with/without costs (black/grey
bars). The adopted information level I is plotted above the horizontal axis.

As can be seen, the random traders in T1 receive an average return of
zero although they cannot predict the fundamental value of the security
4 This is especially important for the calculation of equilibria, as an equilibrium

that is stable with a certain set of random numbers might get unstable if random
numbers are re-calculated.
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at all. This is not surprising if we consider that all 512 traders in T1

will randomly decide whether to go long or short. On average we find
50% of them on each side of the market, so their orders have hardly
any impact on market prices. Hence, on average, we will also find 50%
of them to have made the right decision.

If we look at returns before costs (grey bars), the market is a zero-
sum game. We have seen that random traders will receive average re-
turns of zero, as they make an independent, random decision. Looking
at the results for fundamental traders, we find the well-informed trader
classes T[7;10] are able to realize positive returns before costs while the
less-informed traders in T[2;6] suffer losses. Remarkably, the least in-
formed fundamental traders in T2 are not the ones receiving the lowest
returns. Before (and after) costs, this trader class performs clearly bet-
ter than T3 and T4.

The idea that additional information can worsen the investors’ per-
formance is already discussed in several studies (see e.g. Huber et al.,
2007; Samuelson, 2004; Schredelseker, 2001). To explain this result with
the given model, we have to consider two different effects. First, a higher
information level will lower a trader’s prediction error. However, as a
second effect, additional information will also increase the chance of a
trader to make joint mistakes with other trader classes relying on the
same signals αi. Traders in T3 and T4 suffer the most from this kind
of herding behavior, as their price predictions are on the same time
rather unprecise and highly correlated with predictions of other trader
classes. For the least informed traders in T2, the second effect is less
pronounced: as they receive only one signal, their price prediction is
almost independent of that of the rest of the market.

10.4 Equilibrium

So far we have seen that a random strategy is likely to beat low-
information strategies. This leaves us with the question why any trader
should stick with a low-information strategy if he is better off as a
random trader. Picking up this idea, we are interested in equilibrium
situations, meaning strategy allocations where no trader has an incen-
tive to change his strategy if all other traders stick with their strategies
as well.

In a first step, we search for equilibria under the condition that all
traders in one class choose the same strategy. To find equilibria, every
trader class starts with an information level drawn from a discrete
uniform distribution (ITj ,start ∼ U(0, 10)). For every single trader class,
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the incentive to change strategy is calculated as RTj ,best−RTj ,start, with
RTj ,best being the highest possible return for this class when all other
classes stick with their original strategy ITj ,start. Then, the trader class
with the highest incentive to change adopts the best strategy and the
simulation is re-looped. Equilibrium is reached when no trader class
has any further incentive to change strategy.

The calculation of equilibrium is re-looped for several hundred times.
For the setting presented here, we find only one stable equilibrium
with a strategy allocation IT shown in Table 10.2. One can see that in
equilibrium, the 3 traders of T9 and T10 are the only ones who process
information. For all other trader classes it is rational to stick with a
random strategy.

Table 10.2. Strategy allocation in equilibrium.

Class Tj T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

IT 0 0 0 0 0 0 0 0 7 9

This method to find equilibria is then re-applied to several settings,
having the same model parameters but different signals αj and a new
set of random numbers. Not in all settings do we find stable equilibria. If
equilibria are found, strategy allocations turn out to be quite similar to
the setting shown in Table 10.2. Most importantly, in all equilibria only
traders in T9 and T10 process information with the higher information
level always being associated with T10.

Average returns in equilibrium are shown in Fig. 10.2. As can be
seen, only T10 is able to realize positive returns after costs while average
returns before costs are positive for all 3 traders of T9 and T10. For all
other traders, their random strategies now produce negative returns.
Despite that, the equilibrium calculation shows that it is rational for
them to stick with a random strategy as all other strategies will make
their performance even worse. According to this, noise trading is no
longer the result of irrational trading behavior, it may under certain
circumstances be the only rational strategy for an investor.

For all trader classes adopting a random strategy, one can see that a
higher market impact clearly worsens their performance. This is due to
the fact that for a trader in T8, a random strategy implies that he has to
decide whether to go long or short with all 128 shares. Hence, system-
atic behavior (e.g. all 4 traders in T8 go long) is much more likely for
this category than for T1, where 512 traders can decide independently
whether to go long or short with one share. Because of this, market
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Fig. 10.2. Average returns per trader class with/without costs (black/grey
bars) for a strategy allocation as shown in Table 10.2. The adopted information
level I is plotted above the horizontal axis.

impact in our model has a twofold effect on the strategy selection of
traders: a higher market impact makes a fundamental strategy more
profitable as the costs of information per share decline, and it makes a
random strategy less profitable as the price impact increases.

Relating to capital markets, this questions if it is rational for private
investors to buy index-driven products. As many other investors do the
same, those investors choose to play a random strategy with a high
market impact. Considering the results in our model, those products
may perform worse than the market average, as also shown by Hanke
and Schredelseker (2005).

As a second step, we allow for heterogenous choice of strategies in
every trader class. Starting with the allocation in Table 10.2, we sub-
sequently check for all trader classes Tj∈{10,9,...,1} whether every single
trader in Tj already adopts his optimal strategy. If not, the trader with
the highest incentive to change in this class adopts his optimal strategy
and we start again with T10.

After a few loops, a strategy allocation is reached where not a single
one of the 1,023 traders has any better option than the strategy he
already uses. The exact strategy allocation as well as average returns
after costs for T[8;10] are shown in Table 10.3, average returns for all
trader classes in this situation are presented in Fig. 10.3.

As a first result, note that the strategy allocation does hardly change
compared to the equilibrium with homogenous strategies. While one
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Table 10.3. Strategy allocation and average returns in equilibrium with het-
erogenous strategy choice in every trader class.

Class Tj j ≤ 7 T8 T9 T10

Trader t all 1 2 3 4 1 2 1
It 0 0 0 0 1 5 7 9

R in % -1.1 -0.8 -0.8 -1.2 -1.8 -1.3 1.9

trader in T8 leaves his random strategy to adopt I = 1, one of the
two traders in T9 now chooses a lower information level of I = 5. This
leaves us with a situation where only 22.5% of all shares in the market
are traded on information. Note that all fundamental traders in the
market now use an individual strategy.

Fig. 10.3. Average returns per trader class with/without costs (black/grey
bars) for a strategy allocation as shown in Table 10.3.

For the random traders, returns in the new equilibrium have in-
creased markedly. As a higher share of stocks is traded on information
now and the heterogeneity of information increased, the overall market
impact of all random traders declined. Although in the new equilibrium
still more than 75% of all shares are traded upon a random strategy,
the losses of the random traders are quite moderate. Random traders
in T8 (the ones with the highest market impact) on average perform
less than 1% worse than the market average, and they realize higher
returns than the fundamental traders in T8 and T9.
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While returns for T10 did not change significantly, traders in T9 are
now the ones suffering the highest losses. Note that in the new equilib-
rium, they are the ones relying on the medium information levels. As
shown in the reference setting (see Sect. 10.3), this strategy is fraught
with problems: the information processed by T9 is not good enough to
compete with T10. As the signals processed by both traders in T9 are
correlated, they will often make joint mistakes against T10. The reason
for them to lose against traders in T[1;8] is rooted in their market im-
pact: contrary to the random traders, their correlated predictions will
let them act as price-makers, driving market prices away from funda-
mental values and hence leading to higher negative returns. Neverthe-
less, the strategy chosen by traders in T9 is their best available option:
their market impact is too low to adopt very high information levels
like I = 9, and it is too high to adopt a random- or low-information
strategy.

Related to capital markets, the results may explain why Malkiel
(2005) finds that actively managed investment funds on average per-
form worse than their reference indices. The relatively good (and costly)
information processed by fund managers in combination with their mar-
ket impact will work against them and can easily drive their returns
below market average.

10.5 Market efficiency

While analyzing several different settings (see Sect. 10.6), we also find
equilibria in heterogenous strategies where all traders realize negative
returns after costs. In those situations, the simulation shows a mar-
ket that is truly efficient in the sense of Jensen (1978): with respect
to the information system and the cost of information, no trader in
this market is able to realize systematic, above-average gains. But, ac-
cording to Fama (1970), an efficient market should reflect all available
information. Concerning the low number of traders that process infor-
mation in equilibrium (see Section 10.4), one might ask how good this
market performs in predicting fundamental values. We therefore use
raw returns, calculated as r = ln(V ) − ln(P ), to measure the relative
deviation of prices from intrinsic values.

In equilibrium, raw returns from all 1,000 runs have a mean of 0 and
a standard deviation of 0.10, corresponding to the prediction error ς
made by traders processing information level I = 7 (see Table 10.1 for
prediction errors). Considering that less than a quarter of all shares in
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the market are traded on information, prices reflect the intrinsic values
quite well.

Next, we check what happens when we leave equilibrium. The left
panel of Fig. 10.4 shows the standard deviation of returns, depending
on the (homogenous) strategy used by T1. As can be seen, the price
accuracy gets worse if traders in T1 start to process information. Com-
pared to the random strategy played in equilibrium, price accuracy only
increases if traders adopt information levels I ≥ 8.

Fig. 10.4. Standard deviation of returns when trader class T1 (left panel) or
a single trader in T9 (right panel) varies his strategy.

The maximum standard deviation is reached at information level
I = 1. As one trader in T8 plays the same strategy, this information is
already reflected in market prices. If further traders base trading de-
cisions on the same information, they make joint mistakes and prices
become biased. The same explanation holds for the peak at I = 5.
As one trader in T9 already processes this information, further traders
adopting the same information level will make it more likely for all
traders with this strategy to act as price-makers. Although the indi-
vidual prediction error of T1 rises when changing his strategy to I = 3
or I = 4, price fluctuations are lower in those cases. According to that,
herding behavior does not only affect the performance of the herd, it is
also likely to drive prices further away from fundamental values than
trading on noise. This result is inline with the findings in Schredelseker
(2001).

The right panel of Fig. 10.4 shows price fluctuations depending on
the strategy adopted by the two traders in T9. Strategy changes of the
trader playing I = 7 (I = 5) in equilibrium are plotted with black
(grey) bars. The graph shows that the dependence of price accuracy
and information level is transitive for both traders, with one exception
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in each case: for the first trader, I = 4 causes a lower price fluctuation
than I = 5, as the second trader already adopts I = 5. For the second
trader, adopting I = 6 results in a lower price fluctuation than with
I = 7, which is the equilibrium strategy of the first trader.

The graph also shows that the maximum number of noise traders is
reached not only in terms of possible gains; if one trader in T9 leaves
his equilibrium strategy to become a noise trader, the average price
fluctuation increases beyond the prediction error of I = 1.

Although this model states that in equilibrium, certain traders do
have an incentive to process information, it cannot deliver a solution
to the information-paradox as formulated by Grossman and Stiglitz
(1980). By using the intrinsic value to calculate returns, we implicitly
assume that prices converge to the fundamental value. But the model
shows that one might need a large number of noise traders to drive
prices away from fundamental values.

10.6 Robustness checks

We check the robustness of our results by varying model parameters
in several ways: equilibria for homogenous strategies of trader classes
are computed for linear transformations of the original cost function
by changing c in (10.3). We find that the number of random traders in
equilibrium does not change when the cost of information is increased.
Traders in T9 and T10 then adopt lower information levels, which makes
it more difficult to find settings with stable equilibria. When decreasing
costs beyond a certain level, we find that a higher number of traders
process information in equilibrium. With very low costs, also traders in
T8 and T9 can easily afford to adopt an information level of I = 10. In
these situations, T10 cannot stand out from the crowd anymore, leading
to several trader classes using the same (maximum) information level.
According to this, the model seems to be well balanced with c = 0.02,
as the highest information level adopted gets close but does not reach
the maximum of I = 10. Equilibria for different values for c are shown
in Table 10.4.

We also check equilibria for various linear cost functions, following
the equation

CI = I × c . (10.6)

As this makes medium- and low information levels more expensive,
traders in T9 then adopt lower information levels in equilibrium. How-
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Table 10.4. Strategy allocation in equilibrium for different cost functions.

T 1 2 3 4 5 6 7 8 9 10
IT,c=0.0002 0 0 0 0 0 0 2 10 10 10
IT,c=0.002 0 0 0 0 0 0 0 5 10 10
IT,c=0.02 0 0 0 0 0 0 0 0 7 9
IT,c=0.2 0 0 0 0 0 0 0 0 3 5
IT,c=2 0 0 0 0 0 0 0 0 1 2

ever, the proportion of fundamental traders and random traders in
equilibrium does not change.

The information system is also varied in several ways. As shown in
Table 10.1, the prediction error declines progressively with higher infor-
mation levels. Using information systems where the prediction error is
a linear or logarithmic function of the information level does not affect
the main results.

The way random traders place their orders does affect equilibria.
If one limits the price impact of random traders too strictly (e.g. by
setting the rule that in case of more than 50% of all orders in the order
book being buy-orders from random traders, market price is set to
the best sell-order), random trading gets even more profitable. Due to
this, the share of traders processing information in equilibrium declines
below 20% and equilibria become less stable.

Several ways how traders’ strategies converge to equilibrium are
tried, e.g. by varying and randomizing the choice which traders change
strategies first. All equilibria found share the same characteristics as
presented in Sect. 10.4.

10.7 Conclusions

This paper presents a simulation model where traders with heteroge-
nous market impact can endogenously choose to act as random traders,
or to adopt a fundamental strategy by processing costly information. In
equilibrium, less than a quarter of all shares are traded on information.
As the proportion of fundamental traders and random traders in equi-
librium was found to be robust against several variations of the model,
we suggest that for traders with a low or medium investment volume, a
random strategy is likely to perform better than low-information strate-
gies, and it should on average outperform actively as well as passively
managed investment funds.
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By analyzing market efficiency in equilibrium, we show that a small
share of traders processing information is sufficient to keep market
prices close to fundamental values. In equilibrium, prices reflect the
fundamental values even better than in situations where additional
traders process low- and medium-quality information. Referring to
Black (1986), we should rather blame the low- and medium-informed
fundamental traders for making prices behave like “a drunk, tending
to wander farther and farther from his starting point”.
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11.1 Introduction

Since the seminal work of Granovetter (1995), the sociological literature
highlighted the importance of social relationships, like friends, relatives
and acquaintances, as sources of information on jobs in labor markets.
Such importance is also confirmed by a number of empirical studies.3

More recently, economists have devoted considerable attention to this
topic,4 so that the study of individual and aggregate economic outcomes
produced by the presence of social relationships in labor markets is
becoming a fruitful research area in economics.

An important issue in the studies on social networks refers to how
the network structure matters, that is how network characteristics, such
as topology and type of connections play a role in explaining the eco-
nomic effects of the networks. For instance, the effects of networks
symmetry have been often discussed qualitatively in the sociological
literature (e.g. Granovetter (2005)). On the other hand, the quantita-
tive effects that such network’s property may produce on output and
wage inequality have still not received the same attention.

In this paper we tackle this issue and study the effect of symmetry
on workers’ aggregate output and inequality.5 In particular, we adopt a
version with heterogeneous jobs of the model by Calvo-Armengol and

3 See Montgomery (1991) for further discussion and references.
4 See Ioannides and Loury (2004) for a survey.
5 In the extended version of this paper (Lavezzi and Meccheri, 2005a) we also begin

to study the role of other networks’ properties on output and inequality, such as
social exclusion and network density (see Lavezzi and Meccheri, 2005a, also for
more details on the related literature).
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Jackson (2007), in which exogenous social networks facilitate the trans-
mission of information on job vacancies among workers.6 We find that:
a) symmetric networks produce higher output and lower inequality than
asymmetric networks and, b) the introduction of social links, having
the function of “structural holes” (see Burt, 1992), has a larger positive
effect on output and inequality if they are associated with symmetric
networks.

The paper is organized as follows: Section 11.2 presents the theoret-
ical model; Section 11.3 contains the results of the simulations; Section
11.4 concludes.

11.2 A Model of labor market with social networks

11.2.1 Production, wages and turnover

Time is discrete and indexed by t = 0, 1, 2... The economy is populated
by homogenous, risk-neutral, infinitely-lived agents (workers) indexed
by i ∈ {1, 2, ..., N}. In each period a worker can be either unemployed
or employed in a “good” or “bad” job. Thus, by indicating with sit

the employment status of worker i in period t, we have three possible
agents’ states:

sit =




g, employed in a good job
b, employed in a bad job
u, unemployed

On the production side, we consider one-to-one employment rela-
tionships and assume a very simple form of a production function, in
which productivity depends on the job offered by a firm to a worker. In
particular, we denote by yit the output of a firm employing worker i at
time t or, in other words, the surplus generated by the match between
a worker and a firm (output price is normalized to one).

We simply assume that output in a good job is higher than in a
bad job, for instance because it is a hi-tech job. According to these
assumptions, the parameter ys, s ∈ (g, b, u), indexing the productivity
of a match, follows the rule:

yg > yb > 0(= yu).

6 Calvo-Armengol and Jackson (2004) provides some simulations on the role of
networks’ topology for the simpler case of homogeneous workers and jobs.
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Wages are a fraction of the match surplus, and are denoted by
ws = βys with β ∈ (0, 1).7 This produces an ordering of wages ob-
tainable in a given match, which follows the ordering of outputs. Ob-
viously, unemployed workers earn zero wages, and we normalize their
reservation utility to zero.

The labor market is subject to the following turnover. Initially, all
workers are unemployed. Every period (from t = 0 onwards) has two
phases: at the beginning of the period each worker receives an offer of
a job of type f , with f ∈ {g, b}, with arrival probability af ∈ (0, 1).8

Parameter af captures all the information on vacancies which is not
transmitted through the network, that is information from firms, agen-
cies, newspapers, etc. When an agent receives an offer and she is al-
ready employed and not interested in the offer, in the sense that the
offered job does not increase her wage, she passes the information to
a friend/relative/acquaintance who is either unemployed or employed
but receiving a lower wage then the one paid for the offered job. At the
end of the period every employed worker loses the job with breakdown
probability d ∈ (0, 1).

11.2.2 Social links and job information transmission

social networks may be characterized by a graph G representing agents’
links, where Gij = 1 if i and j know each other, and Gij = 0 indicates
if they do not. It is assumed that Gij = Gji, meaning that the ac-
quaintance relationship is reciprocal. Given the assumptions on wages
and arrival probabilities, the probability of the joint event that agent i
learns about a job and this job ends up in agent’s j hands, is described
by pij :

pij(sθ
it, f) =




ab if f = b ∪ j = i ∪ si = u
ag if f = g ∪ j = i ∪ (si = u ∩ si = b)
ab

Gij∑
k:sk=u Gik

if f = b ∪ (si = b ∩ si = g) ∪ sj = u

ag
Gij∑

k:sk �=g Gik
if f = g ∪ si = g ∪ (sj = u ∩ sj = b)

0 otherwise

In the first two cases, worker i receives an offer with probability af ,
f ∈ {g, b}, and takes the offer for herself. This holds if she is either un-
employed or employed in a bad job and receives an offer for a good job.
7 For instance β may represent the bargaining power of workers when wages are set

by Nash bargaining, as is usual in search models. Clearly, profits are (1 − β)ys.
8 That is, each agent can receive both an offer for a good and a bad job.



160 Andrea Mario Lavezzi and Nicola Meccheri

In the third case the worker i is employed and receives with probability
ab an offer for a bad job, that she passes only to an unemployed worker
j(�= i). We assume that among all unemployed workers connected with
i by a social link, i chooses j randomly. Hence, the probability that
worker j receives the information by worker i is equal to Gij∑

k:sk=u Gik
. In

the fourth case worker i receives with probability ag an offer for a good
job when she is already employed in a good job, thus she passes the
offer, with probability Gij∑

k:sk �=g Gik
, to a worker connected to her who

is either unemployed or employed in a bad job. Clearly, pij = 0 in all
remaining cases.

To sum up, a worker who receives an offer makes direct use of it
if the new job opportunity increases her wage. Otherwise, she passes
the information to someone who is connected to her. The choice of
the worker to whom pass the information is “selective”, in the sense
that the information is never passed to someone who does not need it,9

but it is random with respect to the subset of the connected workers
who improve their condition (wage) exploiting such information (for
example, a worker receiving a good job offer is indifferent to pass it to
an unemployed contact or a contact employed in a bad job). Finally, we
assume that a worker receiving both an offer for a bad and a good job
when she does not need them, decides to transmit first the information
about the bad job and then, possibly to the same agent, the information
about the good job, and we exclude that each job information may be
transmitted to more than one (connected) worker.10

Figure 11.1 shows the timing of the events for a generic period t (for
convenience, the period has been represented as composed by four dif-
ferent consecutive sub-periods, with sub-periods t.1, t.2 and t.4 having
negligible length).

9 For the sake of simplicity, we assume that a worker observe the state of her
connections at the end of the previous period to make a decision on passing
information. In other words, she cannot observe if her connections have already
received an offer from someone else. If all of the worker’s acquaintances do not
need the job information, then it is simply lost.

10 Calvo-Armengol and Jackson (2007) provide various extensions on the process of
transmission of job information.
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workers can pass/receive offers to/from the network

t.1 t.2 t.3 t.4

workers can lose the job

workers can receive offers from the market

workers either produce or are unemployed

Fig. 11.1. Timing

11.3 On networks symmetry

In this section we present the results of our simulations.11 Our aim is
to assess how the structure of social networks affects the dynamics of
output and wage inequality in the long run, as well as the correlation of
workers’ wages. We measure output by averaging over time the average
output of the n workers in every period. Inequality is measured by the
average Gini index over time.

As a preliminary general remark, it is important to point out that
in this framework the network structure basically affects the possibility
for the system to be in a state of maximum output (SMO henceforth),
that is a state in which all agents are employed in the good job. Given
our assumptions, SMO would be a steady state if the probability of los-
ing the job was zero, as workers would be in the best possible position
and would turn down any offer they received, directly or indirectly.
In other words, without the exogenous breakdown probability, SMO
would be an absorbing state for the system. In this respect, the net-
work structure regulates the possibility to attain SMO and the speed
at which the system recovers to it, after the occurrence of stochastic
perturbations given by breakdowns of job relationships. Therefore, as
we shall see, high average levels of output and low levels of inequal-
ity obtain when the system, driven by the network structure, reaches
faster and persistently remains in SMO (note that in SMO inequality
is clearly absent).

11 Simulations are run for 500,000 periods and the parameters are: ab = 0.15, ag =
0.10, d = 0.015, β = 0.4, yg = 5, yb = 1. All simulations are programmed
in R (http://www.r-project.org/). Codes are available upon request from the
authors.
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11.3.1 Symmetric vs. asymmetric networks

We begin by considering a simple case of symmetric vs. asymmetric
networks. Technically speaking, symmetry implies that all agents are
connected to the same number of other agents. Consider the network

1 2

3 4

1 2

3 4

Fig. 11.2. Networks GA and GB

structures in Figure 11.2, GA and GB .12 Both networks have the same
number of agents, n, and links, N (N = n = 4), and the same average
number of links for each agent, that is µ = 2.13 However, they have a
different geometry: network GB is obtained from GA by simply rewiring
one link. This introduces an asymmetry, as in network GB agent 2 has
three links and agent 3 has one link, while agents 1 and 4 maintain the
same number of links. In other words, agents 1, 2 and 4 form a cluster
of interconnected agents, from which agent 3 is partially excluded. In
addition, there exists a difference in the number of links of the agents
to whom every agent is connected. In network GA any agent has two
links with agents who have two links. Differently, in network GB agents
1 and 4 have one link with an agent with two links (respectively agents
4 and 1), and one link with an agent with three links, agent 2. Agent
2 has two links with two agents, 1 and 4, who have two links, and one
link with agent 3, who has one link. As we show in Table 11.1, this has
consequences for both output and inequality.

We observe that, moving from GA to GB , output decreases and
inequality increases. The emergence of a local cluster makes the network
asymmetric, and affects both output and wage inequality. In particular,
the decrease in output and the increase on inequality depend on the

12 This case corresponds to Example 1 in Calvo-Armengol (2004) where, differently
from here, workers and jobs are both homogeneous. In general, in our examples
we will consider networks where not all possible links are formed as a simple way
to consider the fact that link formation is costly. See Calvo-Armengol (2004) for
a full treatment of network formation with costly links.

13 The simple formula to obtain µ, the average number of links per agent, is 2N/n.
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relative isolation of agent 3. Agent 3’s average wage is sharply lower in
network GB . In this case the increase in the average wage of agent 2,
due to an increase in the number of her connections, is not sufficient to
counterbalance the decrease in the average wage of agent 3. Also notice
that the variance of agent 2’s wage is lower while the variance of agent
3’s wage is higher in network GB .

Table 11.1. Output, inequality and wages, networks GA and GB

Network Output Ineq. Av. wages [1, 2, 3, 4] Var. wages [1, 2, 3, 4]
GA 4.818 0.034 1.927, 1.927, 1.928, 1.928 0.122, 0.123, 0.121, 0.120
GB 4.802 0.038 1.924, 1.945, 1.889, 1.924 0.126, 0.091, 0.183, 0.127

Results are also different for agents 1 and 4 although the number of
their connections is the same. In particular their average wage is lower
and the variance is higher in network GB . This can be explained by
the fact that the number of links of their “connections” is different in
network GB , in particular they are both connected to agent 2 who has
three links. This implies that their probability of receiving information
on vacancies from agent 2 is lower in network GB , as they have more
“competitors” for information. This result is not so obvious since there
could be also a positive effect deriving from a connection with an agent
with many links, which should guarantee a more stable position in the
state of employment and therefore have a higher propensity to transmit
information on vacancies. We term the first effect as competition effect,
and the second as connection effect, and note that the former dominates
the latter in network GB .

These results highlight the complexity of capturing the externalities
produced by the structure of the network. In the present framework, the
network exerts externalities on agents’ utilities as it affects their job op-
portunities. However, to put these network externalities in closed form
is not an easy task, as they derive from a network stochastic process.14

Our numerical results, however, clearly show that such externalities
differ across individuals depending on their location in the network.
Moreover, switching from a symmetric to an asymmetric structure, it
appears that the negative externalities that derive seem to prevail on
positive externalities, since in symmetric networks aggregate results
improve.

14 In a different setting, strategic and static, Ballester et al. (2006) studies analyti-
cally the variance of network externalities.
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worker 1 2 3 4
1 1 0.031 0.026 0.025
2 0.031 1 0.027 0.026
3 0.026 0.027 1 0.020
4 0.025 0.026 0.020 1

worker 1 2 3 4
1 1 0.038 0.014 0.048
2 0.038 1 0.022 0.038
3 0.014 0.022 1 0.010
4 0.048 0.038 0.010 1

Table 11.2. Correlation of workers’ wages. Left panel, network GA; right
panel, network GB.

The creation of a local cluster also affects the distribution of wage
correlations across each pair of agents in the network; from Table 11.2
we see that, as predictable, the values of the correlation of wages of
the agents in the cluster (i.e. agents 1, 2 and 4) increase.15 In network
GB agent 3’s correlations with any other agent decreases. Note that
the correlation between agent 3 and 2’s wages is lower, despite the fact
that the two agents share a link as in network GA. In network GB ,
however, agent 2 has one extra link and, in practice, this weakens the
connection between 2 and 3. Finally, the correlation between 3 and 4
is lower in network GB because they are not directly connected.16

To sum up, the introduction of asymmetry in a network which pre-
serves the same average number of links, causes output to decrease and
inequality to increase.17 Next section takes a step further.

11.3.2 Symmetry and relational heterogeneity

In this section we go deeper on the role of social networks’ symmetry
in explaining economic outcomes. In fact, as remarked for instance by
Ioannides and Loury (2004, p. 1064), there exist results related to social
networks structure that may be explained by symmetry, while they have
been often attributed to other network properties. Indeed, much of the
early sociological research on the effects of job networks’ properties

15 All these numerical results are in accordance with the analytics of Calvo-Armengol
and Jackson (2007).

16 Other examples with larger networks, not reported here but available upon re-
quest, confirm these results.

17 These results are in line with those of Calvo-Armengol (2004) on welfare and un-
employment. However, this depends on the fact that we introduced heterogeneity
in jobs but preserved the homogeneity of workers. In fact, in the setting with
heterogeneous jobs and workers of Lavezzi and Meccheri (2005b), we provide an
example in which, when productivity differentials are sufficiently high, more sym-
metry can be associated to lower output. A full treatment of this aspect is beyond
the scope of the present work.
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mainly focused on relational heterogeneity, emphasizing that not all
social relations (contacts) have the same role or strength in affecting
employment outcomes. Here we aim to disentangle in our framework
the effects of network symmetry on output and inequality with respect
to some traditional concepts related to relational heterogeneity.

An important argument in the theory of social networks refers to the
role of structural holes. As is well-known, Burt (1992) defines structural
holes as the “gap” of non-redundant links: agents placed at structural
holes of a network allow information to flow between otherwise uncon-
nected groups of agents. The structural holes argument implies that
networks with more non-redundant links (i.e. more agents placed at
structural holes) can provide more information than network of the
same size, but with more redundant links (see Ioannides and Loury,
2004, p. 1063). Thus, networks in which (structural holes) agents link
otherwise unconnected groups should be characterized by more efficient
outcomes, since information in such networks circulates more widely.18

Consider the different network structures in Figure 11.3, with n = 8,
N = 12 and µ = 3.

1 2

8 7

GC

3 4

6 5

1 2

8 7

GD

3 4

6 5

1 2

8 7

GE

3 4

6 5

Fig. 11.3. Networks GC , GD, GE : symmetry and structural holes

18 Note that the “structural hole effect” amplifies when information can be transmit-
ted to indirect relationships (more than two-links away) by means of sequential
passages, while in our simulations information may be transmitted only one time
between direct contacts. However, in a long-run perspective, since the transmis-
sion of information can improve the state of one (connected) agent in a given
period and this allows her to be more prone to transmit information to others in
future periods, the same effect should apply.
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In network GC , there are two separated groups of four agents and,
in each group, each agent is linked to each other. Clearly, this is a
symmetric network, since all agents are connected to the same number
of other agents (three, in this case). It is important to point out that,
according to the theory of structural holes, some links in network GC

are, at least partially, redundant, since each pair of agents could be
(indirectly) linked anyway via other agents in their group (e.g. agents
1 and 2 are linked via agent 7), and it would be more efficient to have
some links to agents in the other group.

In network GD some agents become structural holes: 1 and 8 for
the first subgroup, 3 and 6 for the second. The two groups are linked
through a bridge provided by structural holes. The network is not sym-
metric, since there are agents with a different number of links: i.e. agents
3 and 6 have now four links, while agents 2 and 7 have just two links.
Finally, network GE is a symmetric network with the same number of
“structural holes agents” (1, 3, 5 and 7 in this case) of GD.

Running simulations for these networks, we obtain the following
aggregate results:

Table 11.3. Networks GC , GD, GE : output and inequality

Network Output Inequality
GC 4.863 0.027
GD 4.862 0.027
GE 4.867 0.026

We note that the introduction of structural holes and asymmetry in
network GD slightly reduces output and leaves inequality unchanged,
while output is higher and inequality slightly lower in GE . Also, even
if the results are fairly close, this example seems to suggest that, in
the aggregate, the positive effect on output which may derive from the
introduction of “bridges” between different groups (as can be the case
in a passage from GC to GE) could be counterbalanced if those bridges
are created by rendering asymmetric the structure of the network and,
consequently, the position of different agents.

This appears more transparent if we look at Table 11.4, in which
we report individual (average) wages of three workers (1, 2 and 3)19

19 The situation of the chosen workers changes differently when we move from net-
work GC to network GD; in this sense, they have been chosen as representing
typical cases. Of course, the same qualitative results also hold for other workers
in analogous situations.
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in GC , GD and GE . Table 11.4 also shows the wage correlation of two
workers with no direct connections (1 and 6) in the different networks.

Table 11.4. Networks GC and GD: individual wages [1,2,3] and correlation
[1;6]

Network Av. wage [1] Av. wage [2] Av. wage [3] Corr. wages [1;6]
GC 1.944 1.944 1.944 0.000
GD 1.947 1.929 1.959 0.010
GE 1.947 1.947 1.948 0.012

Wages of agents 1 and 3 increase in network GD. While the increase
of agent 3’s wage is largely due to the fact that she has now one extra
link, the increase of agent 1’s wage is related to a “structural hole”
effect: given that the number of her connections is unchanged, now
she is linked to the other group and can take advantage, directly or
indirectly, from the presence of all workers in the economy. Agent 2 loses
one link in GD and her wage becomes lower than in GC . In principle
agent 2 could have benefited from the presence of a bridge connecting
her group to the other, but this appears not sufficient to outweigh the
negative effect of losing one link. Moreover, this negative effect appears
so powerful that, although some agents become structural holes and
have more links, aggregate output (which is proportional to wages)
slightly decreases in network GD.20

In network GE agents maintain the same number of links as in GC ,
but some agents (1, 3, 5 and 7) become structural holes. The wage
of agents 1 and 3 increases with respect to GC , indicating that these
agents benefit from a better circulation of information. The wage of
agent 2, who is not a structural hole, increases as well with respect to
GC even if the number of links is the same, and is much higher than
in GD. The latter effect clearly depends on 2 having more links in GE

than in GD.
Finally, note from Table 11.4’s last column that the presence of

bridges between the two groups of workers affects the structure of wages
correlations. While wages of workers 1 and 6 are not correlated in net-
work GC , where they belong to two separated groups, the correlation
becomes positive in networks GD and GE , even if those workers are
not directly connected.

20 This suggests the presence of decreasing returns from increases in the number
of social links. This aspect is analyzed in more detail in Lavezzi and Meccheri
(2005a).
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Overall, the positive effects of bridges creation can be better appre-
ciated in network GE in which symmetry is preserved. In such a case,
output increases and inequality slightly decreases with respect to other
networks. This happens because the advantages of a wider circulation
of information can be exploited at no costs for agents, in the sense that
they maintain the same number of links.

11.4 Conclusions

In this paper we have provided an initial study of the effects of network
symmetry on output and inequality. In particular, our results allow for
a first set of considerations.

The relevance of symmetric social architectures, which appeared
in our examples, points to the relevance of having an “egalitarian”
society in which individuals are relatively similar in their degree of
social interaction. Moreover, the importance of symmetry also appears
in relation to the presence of structural holes, which effects may depend
on their being related to symmetry or asymmetry of the network. More
precisely, the importance of structural holes is in fact related to the
possibility of connecting two or more otherwise disconnected groups of
individuals by establishing a symmetric geometry.21
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C. Ballester, A. Calvó-Armengol, and Y Zenou. Who’s who in networks.
wanted: the key player. Econometrica, 74(5):1403–1471, 2006.

R. S. Burt. Structural Holes. Harvard University Press, 1992.
A. Calvo-Armengol. Job contact networks. Journal of Economic The-

ory, 115(1):191–206, March 2004.
A. Calvo-Armengol and M. O. Jackson. Networks in labor markets:

Wage and employment dynamics and inequality. Journal of Eco-
nomic Theory, 127(1):27–46, January 2007.

A. Calvo-Armengol and M. O. Jackson. The effects of social networks
on employment and inequality. American Economic Review, 94(3):
426–454, June 2004.

M. S. Granovetter. The impact of social structure on economic out-
comes. Journal of Economic Perspectives, 19(1):33–50, Winter 2005.

21 In Lavezzi and Meccheri (2005a) we study symmetry with respect to the “strength
of weak ties hypotheses” of Granovetter (1973).



11 A Note on Symmetry in Job Contact Networks 169

M. S. Granovetter. The strength of weak ties. American Journal of
Sociology, 78(6):1360–1380, 1973.

M. S. Granovetter. Getting a Job: a Study of Contacts and Careers.
University of Chicago Press, 1995.

Y. M. Ioannides and L. D. Loury. Job information networks, neighbor-
hood effects, and inequality. Journal of Economic Literature, 42(4):
1056–1093, December 2004.

A. M. Lavezzi and N. Meccheri. Social networks in labor markets:
The effects of symmetry, randomness and exclusion on output and
inequality. Computing in Economics and Finance 2005 277, Society
for Computational Economics, Nov 2005a.

A. M. Lavezzi and N. Meccheri. Job contact networks, inequality and
aggregate output. In N. Salvadori and R. Balducci, editors, Inno-
vation, Unemployment and Policy in the Theories of Growth and
Distribution, pages 145–167. Edward Elgar, 2005b.

J. D. Montgomery. Social networks and labor-market outcomes: Toward
an economic analysis. American Economic Review, 81(5):1407–1418,
December 1991.



12

Innovation and Knowledge Spillovers in a
Networked Industry

Jose I. Santos1, Ricardo del Olmo1, and Javier Pajares2

1 University of Burgos, Spain
{jisantos,rdelolmo}@ubu.es

2 University of Valladolid, Spain
pajares@eis.uva.es

12.1 Introduction

Knowledge and proximity are key concepts in the Geography of Innova-
tion literature (Boschma, 2005). Innovating processes are uncertain be-
cause they often take place under unsure conditions and fierce business
competitiveness. Geographical proximity can reduce this uncertainty
since it potentially facilitates labor movement and knowledge inter-
change through personal contacts. Supporting this hypothesis, some
scholars have highlighted the greater agglomeration of RD activities in
technological industries where knowledge plays a significant economic
role (Audretsch and Feldman, 1996a).

Our concept of proximity is not strictly geographical. There are other
dimensions beyond spatial nearness, such as social proximity and cogni-
tive proximity that could have diverse effects on innovation (Boschma,
2005). The social dimension can be modeled using a network of rela-
tions that shape agents’ opportunities to interact, whereas the cognitive
dimension can be captured using the absorptive capacity concept (Co-
hen and Levinthal, 1990): a firm’s capacity to understand, learn and
apply the knowledge generated outside itself.

The objective of this paper is to study the impact of network struc-
ture and knowledge proximity on the process of innovation and diffu-
sion of knowledge through spillovers. We use agent-based modeling and
computer simulation to implement and explore a formal model of an
innovative industry, which could not be studied using other analytical
approaches (Pajares et al., 2004).
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12.2 The Model

In order to have a clearer vision of the proposed problem, we use a
simplified abstraction of an innovative industry: a set of N innovating
firms indexed in i and endowed with a scalar knowledge Ki ∈ R which
is assumed to affect their innovative effort.

Firms are organized in an undirected graph built following the well-
known algorithm proposed by Watts and Strogatz (1998). We start
with a one-dimensional ring of N vertices where each vertex links to
its k closest neighbors; then, we randomly rewire every individual edge
in the graph with probability p. This simple algorithm generates a
family of networks that exhibit different values for their average path
length and their clustering coefficient, depending on the value of the
parameter p: from a fixed, highly clustered and ordered network where
the average path length is large (p = 0), to the set of pure random
networks (p = 1), which is characterized by low clustering coefficients
and relatively short average path lengths.

Each firm can innovate and increase its knowledge. Following an evo-
lutionary economic approach (Nelson and Winter, 1982) the innovating
activity is modeled as a stochastic process. We define firm i’s probabil-
ity of innovating at time t, P in

i (t), as an exponential function:

P in
i (t) = pin

max − (
pin

max − pin
min

)
exp

(−αmax
(
0,KV i − K

))
(12.1)

This equation integrates two common concepts of the Innovation lit-
erature: the technological opportunities and the innovative effort. Inno-
vating can be more difficult in some industries than in others (Klevorick
et al., 1995); the possibilities to create significant technological novelties
define the technological opportunities of an industry. The parameters
pin

max and pin
min, which represent the maximum and minimum proba-

bility of innovating, determine the technological opportunity regime in
the model.

Not every firm invests the same resources and time in innovative ac-
tivities, and they are not equally efficient. In our model the intensity
of the innovative effort varies from one firm to another according to
the firm’s relative advantage in knowledge over the industry, which is
quantified as the difference between the average knowledge in the firm’s
neighborhood1 KV i and the average knowledge in the industry K. The
equation (12.1) shows a positive effect of knowledge spillovers because
1 It is the average knowledge of a firm and its immediate neighbors: vertices directly

linked to it in the network.
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knowledge interchange between a firm and its neighbors reinforces their
innovative efforts, and therefore their probabilities of innovating. The
effectiveness of this innovative effort depends on the parameter α that
governs the growth rate of the probability function.

The assumption about the innovative effort responds to a simple cu-
mulative causation: having comparatively greater knowledge gives firms
an economic advantage that enhances their very process of innova-
tion, and it therefore reinforces the probability of creating even greater
knowledge. Thus, there is a positive feedback in the process of innova-
tion: the more you innovate the more likely you are to innovate even
more.

The increase in knowledge derived from a successful innovation is cal-
culated using (12.2), where β controls the innovation jump.

Ki(t + 1) = Ki(t) (1 + β) (12.2)

Before the firm i has an opportunity to innovate, it can learn form its
immediate neighbors j in the network, according to (12.3).

∆Ki(t + 1) = ACij(t)max (0,Kj(t) − Ki(t)) (12.3)

The expression above describes a knowledge spillover from firm j to
firm i as an interactive diffusion process modulated by the absorptive
capacity ACij between the firms. The absorptive capacity ACij denotes
the fraction of the (positive) difference in knowledge between the two
firms (Kj −Ki) that firm i acquires. The value of ACij depends on the
corresponding knowledge proximity (Ki − Kj), according to another
exponential function (12.4).

ACij(t) =
c0

1 + exp (γ (Kj(t) − Ki(t) − d))
(12.4)

The absorptive capacity ACij is close to the default value c0 for short
knowledge distances, gets the value c0/2 for a knowledge distance equal
to d and falls down to zero for larger distances. The parameter γ con-
trols the sharpness of the fall, and the parameter d determines the
distance where this fall happens. The last parameter is a measure of
the firm’s sensitivity to knowledge distance, the larger it is the more
different knowledge a firm can learn. Fig. 12.1 depicts the functions
(12.3) and (12.4) for different values of the parameter γ.
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Fig. 12.1. On the left, the absorptive capacity function (12.4) for c0 = 1,
d = 0.5 and different values of γ; on the right, the corresponding effective
knowledge gain function (12.3).

Scheduling can be summarized as follows: each time-step one randomly
chosen firm is given the opportunity to learn from its neighborhood
and innovate, as described above. The model allows us to simulate
complementary scenarios:

• Considering the technological opportunity regime: an industry with
a few (pin

max ≈ pin
min ≈ 0) or many technological opportunities

(pin
max >> pin

min ≈ 0).
• Looking at the knowledge spillovers process: a tacit knowledge

regime with low values of the parameter d versus a codified knowl-
edge regime with high values of d.

• Modifying the structure of the network with the parameter p we can
compare innovation processes in highly regular networks of diffusion
(low values of p) versus innovation processes in random networks of
diffusion (values of p close to 1).

12.3 Simulations

Under the hypothesis of homogeneous firms (endowed with similar ini-
tial knowledge and capacity to learn through spillovers), we are inter-
ested in studying the impact of network structure (using parameter
p) on innovation dynamics in an industry, using the rest of the model
parameters to define different industry scenarios. In this section we
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summarize the main simulation results that allow us to advance some
conclusions of this work2.

The industry dynamics are summarized here using the average knowl-
edge (computed as the mean of the firms’ knowledge). This industrial
rate follows an increasing path without steady states, so we evaluate
them close to the horizon of simulations, arbitrary fixed3.

In the proposed model the innovative advantage of any firm depends
mainly on its innovative effort, measured by the difference between the
average knowledge in the firm’s neighborhood and the average knowl-
edge in the industry. We can intuitively infer that clustered networks
(p << 1) will get better rates because individual innovations diffuse
to close neighbors, reinforcing their knowledge advantage above the
rest faster than random networks (p >> 0) where diffusion are like
scattered showers. But inferences are not so obvious when we analyze
the technological opportunities and the knowledge proximity effects on
industry dynamics.

12.3.1 Innovation, networks and technological opportunities

We define a first scenario of an industry with few technological oppor-
tunities, which corresponds to the following parameterization: pin

max =
0.11, pin

min = 0.1 and ACij = co = 0.1. Fig. 12.2 shows the evolution of
the average and the coefficient of variation of knowledge for a clustered
network (p = 0) and a random network (p = 1). The graph depicts an
expected phenomenon: knowledge dispersion drops due to knowledge
diffusion, and the average knowledge grows due to firms’ innovations.
The simulation horizon of 300 time units is enough to evaluate the pa-
rameters’ effects on the industry performance. We infer an interesting
conclusion: when an industry is characterized by a few technological
opportunities, modeled as a low probability of innovating similar for
all agents, network structure does not play a critical role, although,
unlike expected, a random network gets better results than a clustered
network because the clustering effect is non significant in these cases.

2 The model has been implemented in Repast (North et al., 2006) and replicated
in Netlogo. The simulation model is composed of N = 500 firms endowed with
a scalar knowledge, which is initialized from a Uniform distribution U(0, 1). We
set the value of k = 6, β = 0.01, c0 = 0.1 and γ = 10.

3 A simulation run is composed of 300 periods, and 50 replications are recorded for
each one. The standard error is less than 1% for all average statistics shown in
the graphs of this paper.
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Fig. 12.2. The evolution of the average and the coefficient of variation of
knowledge for a clustered network (p = 0) and a random network (p = 1)
when there are a few technological opportunities in the industry (pin

max = 0.11,
pin

min = 0.1). The industry evolution is very similar for all network structures,
although a random networked industry always gets better results than a clus-
tered industry.

The next scenario represents an industry characterized by more tech-
nological opportunities: pin

max = 0.3, pin
min = 0.05 and ACij = co = 0.1.

Now the parameter α in (12.1), which modulates the firm’s innovative
effort, has an important meaning: the firm’s ability to apply its inno-
vative effort successfully. Note that we have translated the absorptive
capacity concept (Cohen and Levinthal, 1990) into the corresponding
absorptive capacity coefficient (12.4) and this skill, represented by α,
which can be interpreted as the necessary firm’s know-how to turn the
knowledge advantage into more possibilities to innovate (12.1).

Fig. 12.3 shows the effect of network structure on the industry average
knowledge for different values of the parameter α.

For low values of α we get similar results than the scenario with a
few technological opportunities: most firms get the same probability
of innovating (close to pin

min) whatever their innovative effort, and ran-
domness in network relationships improves the industry performance.
For higher values of α clustered networks (p << 1) always get bet-
ter industrial rates than random networks (p >> 0). This result is in
agreement with empirical studies of industrial clusters (Audretsch and
Feldman, 1996b). According to our model, this phenomenon would be
related with the existence of technological opportunities in an industry
and firms with the ability to exploit them.
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Fig. 12.3. In the graph above, the effect of network structure (p) on the
average knowledge for different values of the parameter α when there are sig-
nificant technological opportunities (pin

max = 0.3, pin
min = 0.05). In order to

highlight the network structure effect, magnitudes are normalized dividing by
the corresponding value at p = 0. For high values of α clustered networks
(p << 1) always get better industrial rates than random networks (p >> 0).
Moreover, small world networks (0 << p < 0.1), characterized by high clus-
tering and low average path, get better results than a pure clustered network
(p = 0) for values of α high enough. In the graph bellow, the corresponding
normalized network features: clustering C and average path length L.

Another interesting inference is that small world networks (0 << p <
0.1), characterized by high clustering and low average path, get better
results than a pure clustered network (p = 0). When firms randomly
rewired a few local links, they keep the cluster advantage and also
benefit from learning from distant sources.

12.3.2 Innovation, networks and knowledge distance

We can imagine a scenario where the knowledge proximity sensitivity
(d) is imposed to the industry, and firms can decide the randomness
of their relations (p), thus determining the network structure4. This
approach would be in line with the product life cycle theory, which

4 An interesting evolutionary agent-based model that studies in detail the life cycle
approach to innovative industry dynamics is proposed in Pajares et al. (2003).
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argues that knowledge is tacit in the first stages of the life cycle and
more codified in the mature phases (Klepper, 1996).

Fig. 12.4 shows the effect of network structure, considering the knowl-
edge proximity parameter d as an exogenous variable. Here, either there
is no doubt that clustered networks (p << 1) get better industrial rates
than random networks (p >> 0) for every value of d. We see from (12.4)
that low values of d, e.g. d = 1, limit the diffusion though knowledge
spillovers and thus accentuating the positive effect of clustering in the
innovation process. The results are very sensitive to the parameter d,
for a bit higher value, e.g. d = 2, the industry evolution is similar to a
scenario where the knowledge proximity between firms does not affect
their absorptive capacity (d = ∞).
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Fig. 12.4. In the graph above, the effect of network structure (p) on the
average knowledge for different values of the parameter d when there are sig-
nificant technological opportunities (pin

max = 0.3, pin
min = 0.05). Magnitudes

are normalized dividing by the corresponding value at p = 0. The positive
effect of clustering in the innovation process is accentuated when the knowl-
edge proximity between firms affects significantly their absorptive capacity
(d = 1). In the graph bellow, the corresponding normalized network features:
clustering C and average path length L.
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12.4 Conclusions

We have proposed a formal model of an innovative networked industry
with knowledge spillovers. Innovation is modeled as a stochastic pro-
cess where firms’ probability of innovating depends on its innovative
effort and technological opportunities in the industry. The intensity
of the innovative effort varies from one firm to another according to
the firm’s relative advantage in knowledge over the industry, which is
quantified as the difference between the average knowledge in the firm’s
neighborhood and the average knowledge in the industry.
Knowledge spillovers are modeled as a simple knowledge diffusion pro-

cess restricted by the firms’ absorptive capacity, which depends on the
knowledge proximity between firms. Knowledge spillovers have two op-
posite effects on industry dynamics: a positive one since knowledge in-
terchange between a firm and its neighbors reinforces their innovative
efforts, and a negative one since the diffusion process limits knowledge
appropriability cutting any initial innovative advantage.
We study the impact of network structure and knowledge proximity

on industry dynamics. With these hypotheses if an industry is charac-
terized by a few technological opportunities, the clustering effect is non
significant and randomness in network relationships improves industry
dynamics. However, when there are significant technological opportu-
nities, clustered networks get better results than random networks.
This result is in agreement with empirical studies of industrial clusters;
according to our model, this phenomenon would be related with the
existence of both technological opportunities in an industry and firms
with the ability to exploit them. In most cases small world networks
that exhibit high clustering and low average path get better results
than a pure clustered network. Finally, when the knowledge proximity
between firms affects their absorptive capacity and thus limiting the
diffusion through knowledge spillovers, the positive effect of clustering
on the innovation process is reinforced.

Acknowledgement. This work has been supported by the Spanish MICYT,
research project DPI2004-06590 and SIGAME project DPI2005-05676.

References

D. B. Audretsch and M. P. Feldman. R&d spillovers and the geography
of innovation and production. American Economic Review, 86(3):
630–640, June 1996a.



180 Jose I. Santos, Ricardo del Olmo, and Javier Pajares

D. B. Audretsch and M. P. Feldman. Innovative clusters and the in-
dustry life cycle. Review of Industrial Organization, 11(2):253–273,
1996b.

R. A. Boschma. Proximity and innovation: A critical assessment. Re-
gional Studies, 39(1):61–74, January 2005.

W. M. Cohen and D. A. Levinthal. Absorptive capacity: A new perspec-
tive on learning and innovation. Administrative Science Quarterly,
Special Issue: Technology, Organizations and Innovation, 35(1):128–
152, March 1990.

S. Klepper. Entry, exit, growth, and innovation over the product life
cycle. American Economic Review, 86(3):562–583, June 1996.

A. K. Klevorick, R. C. Levin, R. R. Nelson, and S. G. Winter. On the
sources and significance of interindustry differences in technological
opportunities. Research Policy, 24(2):185–205, March 1995.

R. R. Nelson and S. G. Winter. An Evolutionary Theory of Economical
Change. Harvard University Press, 1982.

M. J. North, N. T. Collier, and J. R. Vos. Experiences creating three
implementations of the repast agent modeling toolkit. Transactions
on Modeling and Computer Simulation, 16(1):1–25, January 2006.

J. Pajares, , A. Lopez-Paredes, and C. Hernandez-Iglesias. Industry as
an organisation of agents: Innovation and r&d management. Journal
of Artificial Societies and Social Simulation, 10, 2003. Available at
http://jasss.soc.surrey.ac.uk/6/2/7.html.

J. Pajares, C. Hernandez-Iglesias, and A. Lopez-Paredes. Modelling
learning and r&d in innovative environments: a cognitive multi-agent
approach. Journal of Artificial Societies and Social Simulation, 7(2),
2004. Available at http://jasss.soc.surrey.ac.uk/7/2/7.html.

D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’
networks. Nature, 393(6684):440–442, June 1998.



13

Heterogeneous Agents with Local Social
Influence Networks: Path Dependence and

Plurality of Equilibria in the ACE Noiseless
Case

Denis Phan

GEMAS UMR, 8598 CNRS & University Paris IV
Sorbonne CREM UMR, 6211 CNRS & University of Rennes 1, France.
dphan@msh-paris.fr

13.1 Introduction

In this paper we explore numerically by means of ACE the impact of lo-
cal social influence on binary choices. The basic model of binary choices
with externality presented here (the “GNP model”) is based on Gordon
et al. (2005); Nadal et al. (2005); Phan and Pajot (2006) (see Phan and
Semeshenko (2007) for an introduction and a review of literature). GNP
model has been generalized to a large class of distributions in Gordon
et al. (2006). It allows to study the collective behavior of a population
of interacting heterogeneous agents. Numerous papers in this field con-
cern homogeneous agents with stochastic choices, in particular, among
others: Brock and Durlauf (2001)—hereafter BD model. Our GNP class
of models differs by the nature of the disorder. The former belongs to
the classes of Random Utility Models (RUM): the utility is stochas-
tic. The individual preferences have an identical deterministic part and
the heterogeneity across agents comes from the random term of the
RUM. In our noiseless GNP model, agents are heterogeneous with re-
spect to their idiosyncratic preferences (IWA) which remain fixed and
do not contain stochastic term. This model belongs to the class of the
Quenched Random Field Ising Models, know in statistical physics.

The question of the local topologies of interactions has been recently
examined by Ioannides (2006). In the following, we present equilibria
results for models with a local regular network (cyclical, one and two di-
mensional with nearest neighbor). This work is an extension of the GNP
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model presented previously to the case with local interactions. There-
fore, the reader is assumed to be familiar with these references. Several
important aspects of the analysis and simulation of the model which are
discussed in this paper are not presented here but are mentioned briefly
for the sake of completeness. Section 13.2 introduces the GNP model
and shows how this framework is related to the population games,
by summarizing previous contributions (Phan and Semeshenko, 2007).
Section 13.3 presents and compares both probabilistic calculi for infinite
size population and ACE based simulations for finite size populations
in the case of a simple regular local influence network (lattice). Cal-
culi in Section 13.3.1 and 13.3.2 are based upon a probabilistic method
recently introduced by Shukla (2000) to calculate exactly the hystere-
sis path both starting from a homogeneous state (nobody adopts) and
from any arbitrary initial state. The simulations were conducted using
the multi-agent platform “Moduleco-Madkit” (Gutknecht and Ferber,
2000; Phan, 2004). A special attention is devoted to Sethna’s inner
hysteresis (Sethna et al., 1993). For a given value of the external pa-
rameter (i.e. price), there is a multiplicity of equilibria, depending on
the previous state of the system (path-dependence). Moreover, if this
parameter returns back to the initial value, the system returns precisely
to the same state from which it left. The inner loop illustrates the re-
turn point memory effect, in which the system remembers its former
state.

13.2 GNP framework with local setting

13.2.1 Modelling the individual choice in a social context

We consider a set of N agents i ∈ ΛN ≡ {1, 2, . . . , N} with a classical
linear willingness-to-adopt function. Each agent makes a simple binary
choice, either to adopt (ωi = 1) or not (ωi = 0) (e.g., to buy or not one
unit of a single good on a market, to adopt or not the social behavior,
etc.). A rational agent chooses ωi in order to to maximize its surplus:

max
ωi∈{0,1}

[ωiVi(ω̃−i)] , (13.1a)

where: Vi(ω̃−i) = (Hi − C) +
Jik

Nϑi

∑
k∈ϑi

ω̃k, (13.1b)

C is the cost of adoption, assumed to be the same for all agents, and
Hi represents the idiosyncratic preference component.
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The cost of adoption be subjective or objective - it may e.g. rep-
resent the price of one unit of a good. Each agent i is influenced by
the (expected) choices ω̃k of its neighbors k ∈ ϑi within a neighbor-
hood ϑi ∈ ΛN of size Nϑi

. Denoting Jik/Nϑi
the corresponding weight,

i.e. the marginal social influence on agent i from the decision of agent
k ∈ ϑi, the social influence is then a weighted sum of ω̃k choices. When
the weights are assumed to be positive, Jik > 0, it is possible, according
to Brock and Durlauf (2001), to identify this external effect as strategic
complementarities in the agents’ choices.

In the GNP model agents are heterogeneous with respect to their
idiosyncratic preferences, which remain fixed and do not contain addi-
tively stochastic term. The Idiosyncratic Willingness to Adopt (IWA)
of each agent is distributed according to the Probability Density Func-
tion (pdf) fy(y) of the auxiliary centered random variable Y , such as
H is the average IWA of the population:

Hi = H + Yi, (13.2a)

where: lim
N→∞

1
N

∑
N

Yi = 0 ⇒ lim
N→∞

1
N

∑
N

Hi = H. (13.2b)

If Yi remains fixed, the resulting distribution of agents over the net-
work of relations is a quenched random field : the agents’ choices are
purely deterministic. As mentioned before, this contrasts with the ran-
dom utility approach in the BD model. These two approaches may
lead to different behaviors (Galam, 1997; Sethna et al., 1993, 2005).
One advantage of the GNP model is that it does not constrain the dis-
tribution of the idiosyncratic willingness to adopt to be a priori logistic.
Moreover, the qualitative feature of the results may be generalized to
a large class of distributions (Gordon et al., 2006). We can assume
hereafter without loss of generality that the idiosyncratic preferences
are distributed according to a bounded, triangular pdf. This allows the
analytical exact determination of the equilibrium properties in the case
of complete connectivity (Phan and Semeshenko, 2007). In the follow-
ing, we restrict to the case of regular nearest neighborhood, cyclical
network of dimension one (circle, with Nϑi

= 2) and two dimension
(torus, with Nϑi

= 4, von Neuman’s neighborhood)). Moreover, for
the sake of simplicity, we restrict to the case of positive homogeneous
influences: ∀i ∈ ΛN ,∀k ∈ ϑi : Jik = J > 0. For a given neighbor k
the social influence is J/Nϑi

if the neighbor is an adopter (ωk = 1),
and zero otherwise. Let ηe

i be i’s expected adoption rate within the
neighborhood
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ηe
i ≡ ηe

i (ω̃−i) ≡ 1
Nϑi

∑
k∈ϑi

ω̃k. (13.3)

With these assumptions the surplus of agent i if he adopted is:
Hi − C + Jηe

i . The conditional probability of adoption, for a given ηe
i

is:
P (ωi = 1|ηe

i ) = P (Hi > C − Jηe
i ) (13.4)

13.2.2 Interactions in the neighborhood as a population
game

The interest of studying such idiosyncratic (exogenous) heterogene-
ity becomes clear if one reinterprets the GNP model within a game
theoretic framework. Each agent i has only two possible strategies: to
adopt (ωi = 1) or not adopt (ωi = 0). In the following, we assume
agents have myopic expectations about the behavior of their neighbors:
ω̃−i(t) = ω−i(t − 1) ≡ ω−i: then ηe

i (t) = ηi(t) . The best response of
an agent playing against its neighbors is formally equivalent to that of
an agent playing against a Neighborhood Representative Player (NR)
(Phan and Pajot, 2006; Phan and Semeshenko, 2007). NR player in
turn plays a mixed strategy ωnr = ηi ∈ [0, 1]. In the present case of
finite neighborhood local interaction, ωnr takes its value in a discrete
subset of [0, 1]. For example for Nϑi

= 2, we have ωnr = ηi ∈ {0, 1/2, 1}
and for Nϑi

= 4, we have ωnr = ηi ∈ {0, 1/4, 1/2, 3/4, 1}. The “normal
form” payoff matrix G1 gives the total payoff for an agent i playing
against this fictitious NR player. According to Monderer and Shapley
(1996), the best-reply sets and dominance-orderings of the game G1
are unaffected if a constant term is added to a column (i.e. C − Hi).
The coordination game matrix G2 in Table 13.1 (right) is said to be
“best reply equivalent” to the matrix G1 of Table 13.1 (left). However,
the values in G2 do not indicate the cumulated payoffs, contrary to
the values in G1 , but are a direct measure of the cost—the risk in
the sense of Harsanyi and Selten (1998)—of a unilateral deviation from
the coordinated solution (ωi = ωnr) in the case of the pure strategy
framework.

Figure 13.1 (right) presents a (symmetric triangular) distribution
and related best reply for a given cost C and a particular value of the
IWA. If C −J > Hi, then never adopt (ωi = 0) is the strictly dominant
strategy for all possible values of ηi (agents of type (0) in the light
grey zone on the left). If Hi > C, always adopt (ωi = 1) is the strictly
dominant strategy for all possible values of ηe

i (agents of type (1) in the
dark grey zone on the right). If C > Hi > C−J then the agent’s virtual



13 Heterogeneous Agents with Local Social Influence Networks 185

a-game G1 ωnr = 0 ωnr = 1
ωi = 0 0 0
ωi = 1 Hi − C Hi − C + J

b-game G2 ωnr = 0 ωnr = 1
ωi = 0 C − Hi 0
ωi = 1 0 Hi − C + J

Table 13.1. Payoff matrix for an agent i (left) and best reply equivalent
potential game (right). Player i in rows, fictitious NR Player—indexed nr—in
columns.

surplus Vi ≡ Hi−C +Jηi may be either positive or negative depending
on the rate of adoption within the neighborhood ηi. These agents are
conditional adopters and said to be of type (2). Within these agents,
only those with Vi > 0 will adopt thanks to the social influence (hashed
region). The relevant economic cases are the ones with (at least some)
agents of type (2).

Figure 13.1 (left) exhibits a distribution of agents’ type in the space
(J,H − C) for the symmetric triangular distribution on the interval
[−a, a]. In the south-west light grey zone there are only agents of type
(0), while in the north-dark-zone there are only agents of type (1). In
the white zone there is a mixture of at least 2 types of agents, with
necessarily some agents of type (2). If H − C > a − J , there is no
agents of type (0). Conversely in the south zone, where H − C < −a,
there is no agent of type (1). If both conditions hold then all agents
are of type (2), corresponding to the hashed triangular zone in the east
on Figure 13.2. This implies a sufficiently strength intensity of social
effect, with respect to the dispersion of the preferences, that needs to
be relatively moderate: J > 2a.

Fig. 13.1. Distribution of agents with respect to their type, on the pdf (right)
and in the space (J, H − C) (left) for the symmetric triangular distribution
on the interval [−a, a]. Source: Phan and Semeshenko (2007).
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In the case of global social influence (full connectivity) and bounded
distribution of IWA, dominance-ordering analysis allows us to predict
the issues of some classic configurations (i.e. symmetric Nash equilib-
rium), where all agents have the same structure of best reply. But this
may be done for only some special cases. In general situations, one needs
to use the methods from statistical mechanics. In the case of local neigh-
borhood considered here, any simple result of that kind is available and
probabilistic approach or numerical simulations are required. Within an
approach of ACE as complement of traditional mathematical models,
in the next section we compare results using the probabilistic approach
for infinite size population with results from agent based simulation
for finite size population.

13.3 Collective Behavior, hysteresis and local frozen
domains with local externality: probabilistic approach
for infinite size population and simulation approach for
finite size population

As suggested before, the GNP model, as a socio-economic version of
Quenched RFIM model, has some significantly different properties with
respect to the BD model. First, when changing the external field (i.e.
cost variation) an equilibrium depends on the previous equilibrium,
but does not depend on the order in which the agents change their
behaviour (i.e. adoption or not) through the process called avalanche.
In other words, from the simulation point of view, both parallel and se-
quential updating lead the system to the same equilibrium. Second, the
interesting property of Sethna’s inner hysteresis phenomenon (Sethna
et al., 1993) can be observed. This result from the return point mem-
ory effect : starting from an equilibrium state, if we change the cost by
a given value and reverse the field by the same value, the system re-
members its former state and returns exactly to the equilibrium point
of departure. The corresponding trajectory is called “inner loop” “mi-
nor hysteresis” (Sethna et al., 2005). Finally, in the special case where
we change the cost monotonically for a homogeneous state (everybody
adopts or no-body adopts) the final equilibrium does not depend on the
rate of variation in cost. A dramatic change from C1 to C2 or a suc-
cession of smaller monotonic changes from C1 to C2 leads to the same
state. In this section, we experiment the effect of local social influence in
discrete choice adoption process based on the GNP model by means of
finite size population, agent-based simulation on the multi-agent plat-
form “Moduleco-Madkit” (Gutknecht and Ferber, 2000; Phan, 2004).
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Sections 13.3.1 and 13.3.2 compare analytical results with simulated
outcome in the case of the cyclical one-dimensional nearest neighbor-
hood network (circle). Section 3.2. is devoted to the calculus of the
inner loop. Section 3.3. presents simulation outcome in the case of the
cyclical two-dimensional regular network (von Neuman neighborhood
on a torus).

13.3.1 Starting from a homogeneous state without adoption
adoption and going to the complete adoption and return: the
larger hysteresis loop

Hysteresis within the Quenched RFIM is somewhat different in nature
from the hysteresis used by economists that arise from a delayed re-
sponse of a system (time lags) to a change in the external parameter
(here cost). First accounts of such difference are (Amable et al., 1994)
for the study of the wage-price spiral and zero-rot dynamics. Previous
application of hysteresis in Quenched RFIM in socio-economic models
are Galam (1997); Phan et al. (2004). In the case of a finite popula-
tion, there are a very large number of equilibria and related thresholds
between them. In this section, we use methodology and results from
physics (Shukla, 2000) established for the ferromagnetic case (J > 0)
for one dimensional, nearest neighborhood, cyclical and infinite size
network. In that case the conditional probability of adoption (equa-
tion 13.4) can be expressed in a finite number of occurrences; see Fig-
ure 13.2) and relations (13.5)

Fig. 13.2. Agents’ choices with respect to their IWA and neighborhood state
(symmetric triangular distribution).
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Probability of adoption for a given state of neighborhood ηi ∈
{0, 1/2, 1} with Pi ≡ Pi(C)

P0 = P (Hi > C) = P (type 1, ωi = 1 if η = 0) (13.5a)
P1 = P (Hi > C − J/2) = P (ωi = 1 if η = 1/2) (13.5b)

P2 = P (Hi > C − J) = P (ωi = 1 if η = 1) (13.5c)
P1 − P0(C) = P (C > Hi > C − J/2)

= P (to be of type 2 AND ωi = 1 if η = 1/2). (13.5d)

For a given cost C, the probability of adoption of an agent is:

P (ωi = 1|C) = P (ηi = 1) P2 + P (ηi = 1/2) P1 + P (ηi = 0) P0 (13.6)

where:

η(C) = P (ωi = 1|C) (13.7a)

P (ηi = 1) = P (ωi±1 = 1|C,ωi = 0)2 (13.7b)
P (ηi = 1/2) = 2P (ωi±1 = 1)|C,ωi = 0)P (ωi±1 = 0)|C,ωi = 0)

(13.7c)

P (ηi = 0) = P (ωi±1 = 0|C,ωi = 0)2. (13.7d)

Note that, P (ωi±1 = 1|ωi = 0) ≡ P ∗(C) can be calculated exactly
in the infinite case. The probability that my neighbor adopts before
me is equal to P0 (the probability of type (1), then adopts even if
no neighbor has adopted before). One must add again the probability
for my neighbor to be of type (2) but to adopt as soon as the next
neighbor has adopted, since this next agent (ωi±2) is of type (1). The
corresponding joint probability is equal to [P1 − P0]P0. At the level
3, one must add again the probability for my neighbor and the next
agent to be of type (2) but to adopt as soon as the next neighbor has
adopted, given the probability that this next agent (ωi±3 is of type (1).
This joint probability is equal to [P1 − P0]2P0, and so on. Summing
over all cases:

P ∗(C) ≡ P (ωi±1 = 1|C,ωi = 0)

= lim
m→∞P0

m∑
k=0

[P1 − P0]k =
P0

1 − [P1 − P0]
(13.8a)

[1 − P ∗(C)] ≡ P (ωi±1 = 0|C,ωi = 0) =
1 − P1

1 − [P1 − P0]
(13.8b)
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Fig. 13.3. Theoretic (line) and simulated (dot) values for the main hysteresis
with: N = 1156 agents, Nϑ = 2 (circle), J = 4, H = 0.

Using equations (13.6), (13.8a), and (13.8b) the global equilibrium
rate of adoption in the population for a given cost C is equal to the
probability of adoption of an agent taken at random within a symmetric
triangular distribution of IWA:

η+(C) = P (ωi = 1|C) (13.9)

The upper half branch of the main hysteresis, for decreasing C from
complete adoption to zero can be obtained by symmetry: η−(C) ∼
−η+(−C). Figure 13.3 provides a comparison between these theoretic
values of the main hysteresis and the simulated ones, based on experi-
ments with finite population (here 1156 agents).

13.3.2 The inner hysteresis loop: reversing the Cost from an
arbitrary point on the exterior loop

In the limit of quasi-static driving (the change in prices remains con-
stant within an avalanche), starting from a point on the upstream tra-
jectory (grey) for η = 40% and C = 1.25 a backtracking increase in
cost C induces a less than proportional decrease (avalanche) in the
number of customers (black curve, upper inner loop) until C = 2.49
and η = 30%. Then after reversing the cost changes at C = 2.49, as the
cost decreases back to the initial value (grey curve, lower inner loop)
the system returns precisely to the same state from which it left the
outer loop (C = 1.25, η = 40%). The inner loop can also go from a
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branch of the main hysteresis loop to the other. For example, starting
at C = 1 and η = 68%, a backtracking increase in cost C induces a
cross-trajectory between the upstream and the downstream branch of
the main hysteresis loop. This cross-trajectory finishes at C = 2.93 and
η = 30%, when the equilibrium points are those of the main hysteresis.
As established analytically, that confirms that there is a multiplicity
of equilibria, depending on the previous state of the system (path de-
pendence). Figure 13.4 (right panel) exhibits separated homogeneous
domains (or cluster) in the network, due to the dominance of positive
or negative effects of social influence as well as a particular distribution
of heterogeneous IWA, enforced by both locality and finite size effect.

Fig. 13.4. Right panel, Sethna’s inner hysteresis J = 4, N = 2 (circle). Left
panel, homogeneous domains (1D-clusters) within the network for η = 40%
and C = 1.27.

As previously mentioned, it is possible to provide some hints to
calculate the probability of adoption starting from an arbitrary point
on the exterior loop. The method used here follows the lines of Shukla
(2000). For the reversing formula and complete calculations in the case
of the symmetric triangular pdf, see the long version of this work (to
be presented at CEF 2007). This calculus is more difficult than in the
previous case, because the choice of adoption depends now in a non
trivial way on the rate of adoption in the neighborhood, which depends
itself directly or indirectly on the state of the other agents over the
network. The probability of adoption between the two branches of the
external hysteresis is conditional to the cost C for which the backtrack
starts. These analytical results fit correctly the numerical simulations in



13 Heterogeneous Agents with Local Social Influence Networks 191

the case of finite population experiments (see the long version for CEF
2007)). For a given cost C ′, with backtracking at C, the probability of
adoption of an agent is:

P (ωi = 1|C,C ′) =P (ωi = 1, C) − Q2(C ′, C)+
− Q1(C ′, C) − Q0(C ′, C),

(13.10)

where:

η(C ′, C) = P (ωi = 1|C,C ′) (13.11a)

Q2(C ′, C) = P ∗(C)2
(
P2(C) − P2(C ′)

)
(13.11b)

Q1(C ′, C) = 2P ∗(C)
[
Qa(C ′, C) + Qb(C ′, C)

] (
P1(C) − P1(C ′)

)
Q0(C ′, C) =

[
Qa(C ′, C) + Qb(C ′, C)

]2 (
P0(C) − P0(C ′)

)
(13.11c)

Qa(C ′, C) =
P ∗(C) (1 − P2(C)) + [1 − P ∗(C)] (1 − P1(C))

1 − (P1(C) − P1(C ′))
(13.11d)

Qb(C ′, C) =
P ∗(C) (P2(C) − P2(C ′))
1 − (P1(C) − P1(C ′))

(13.11e)

13.3.3 The two-dimensional von Neuman neighborhood
network (Torus)

There is no analytical result at this time for the two-dimensional, cycli-
cal network with von Neuman neighborhood (Torus). But the example
on Figure 13.5 suggests that both Sethna’s inner loop and homogeneous
domains remain quite similar.

13.4 Conclusion

Using methods from statistical physics, we illustrated the stationary
properties for particular cases of symmetric triangular distribution of
IWA in the presence of local interactions. Simulation results allow us
to observe numerous complex configurations on the adoption side, such
as hysteresis and Sethnas inner-loop hysteresis. This complex social
phenomenon depends significantly on the structure and parameters of
the relevant network. Finally, the last section opens the question of
finite size effects, also addressed by Glaeser and Scheinkman (2002);
Krauth (2006) among others. The preliminary results in the case of a
simple, regular network suggest new fields of investigation, as opposed
to a standard focus on conditions of uniqueness of equilibrium, under a
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Fig. 13.5. Right panel, Sethna’s inner hysteresis J = 4, N = 2 (torus). Left
panel, homogeneous domains (2D-clusters) within the network for η = 40%
and C = 1.41.

moderate social influence assumption (Glaeser and Scheinkman, 2002).
It would be interesting to compare more systematically the analytical
predictions against the simulation results and to study the statistical
properties of such a phenomenon for different values of J and different
network’s structure.
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14.1 Introduction

Agent-based Computational Economics (ACE) is a powerful framework
for studying emergent complex systems resulting from the interactions
of agents either mildly rational, or with incomplete information (Ax-
elrod, 2004; Tesfatsion, 2002, 2006) or driven by the social network
(Bala and Goyal, 2003; Carayol and Roux, 2004; Slikker and van den
Nouweland, 2000).

This paper focuses on the interrelationship between social networks
and economic activities. Compared to the state of the art, the main
originality is that the social network dynamically evolves based on
the rational decisions of agents: a loan granting activity is enabled
by the network and the agents continuously re-shape the network to
optimize their utility. Three classes of agents (rational agents, free rid-
ers and “investors”) are considered. The global welfare is investigated
in relation with the agent diversity, examining the differential advan-
tages/disadvantages of the agent classes depending on their distribution
in the agent population. Lastly, the stability of e.g. the average interest
rate is contrasted with the instability of the network structure.

After describing the state of the art and the problem tackled in
this paper (section 14.2), we present a loan granting game played by a
society of rational agents with a long-term utility function, conditioned
by and shaping their social network (section 14.3). Section 14.4 reports
on the simulation results; the main contributions of the approach are
discussed together with perspectives for further studies in section 14.5.
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14.2 State of the Art and Goal of the Study

Introduced by Epstein and Axtell (1996), Agent-based Computational
Economics established two major results (the interested reader is re-
ferred to Tesfatsion (2002, 2006) for a comprehensive presentation).
Firstly, the lack of a centralized walrasian auctioneer does not prevent
a society of 0th-intelligence agents from converging towards an econom-
ical equilibrium when agents interact and exchange in a decentralized
manner; secondly, this result does not hold any longer if the agents can
die or evolve.

Meanwhile, after the pioneering Milgram (1967)’s experiment and
many further studies (e.g. Watts and Strogatz, 1998), the structure of
social networks is acknowledged a major factor of economics efficiency.
A framework for analyzing social network economics was defined by
Jackson and Wolinsky (1996), and exploited through either analytical
approaches, or various simulation-based extensions (Bala and Goyal,
2003; Carayol and Roux, 2004; Slikker and van den Nouweland, 2000).

While both domains of ACE and social networks are clearly re-
lated, to our best knowledge little attention has been devoted to the
interdependent evolution of social and economical activities, consid-
ering the social network as both a result and an enabling support of
the economical activity. In such a unified perspective, the stress is put
on the complex system emerging through the interaction of social and
economical activities. Along this line, this paper investigates the com-
plex system made of a population of agents engaged in a loan grant-
ing activity, where the activity is simultaneously conditioned by, and
shaping, the social network. Basically, every agent is endowed with an
individual utility function parameterized after its fixed preference to-
ward immediate rewards; it accordingly decides between borrowing or
lending money from/to its neighbors at every time step. While the net-
work thus governs the instant rational optimization problem faced by
the agents, agents can decide to create/delete links and thereby mod-
ify the network. This setting contrasts with former studies (Bala and
Goyal, 2003; Carayol and Roux, 2004; Jackson and Wolinsky, 1996;
Slikker and van den Nouweland, 2000) modeling the social network as
the end of the socio-economic game, that is, where the network only
supports the exchange of information and agents are assessed based on
their position in the network.

Furthermore, agents will not reveal their preference − as opposed
to e.g. Epstein and Axtell (1996) where the exchange price is based
on the preferences of both agents. The fact that agents do not reveal
their preference is relevant to the study of socio-economic games in two
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respects; firstly it is more realistic from a non-cooperative game per-
spective; secondly, the incompleteness of information might adversely
affect the convergence of the game.

Finally, the study examines the impact of the agent models and
strategies on the global welfare in a long term perspective. This con-
trasts with e.g. Jackson and Wolinsky (1996) focussing on the immedi-
ate network efficiency, and discarding the long term impact of current
decisions.

14.3 Overview

This section presents the agent model, the interaction setting and the
observed variables of the system. Due to space limitations, the reader
is referred to Caillou et al. (2007) for details.

14.3.1 Agent model

The agent utility function models the intertemporal choice of the con-
sumer after the standard economic theory (Fisher, 1930). Formally,
agent Ai maximizes the sum over all time steps of its weighted instant
utilities. The utility weight at time t, set to pt

i (0 < pi < 1), reflects
the agent preference toward the present (parameter pi). The instant
utility reflects the current consumption level Ci,t, with a diminishing
marginal utility modeled through parameter bi (0 < bi < 1), standing
for the fact that the agent satisfaction is sublinear with its consumption
level (Menger, 1871). Letting Mi denote the lifelength of agent Ai, it
comes:

Ui =
Mi∑
t=0

(pt
iC

bi
i,t) (14.1)

The instant neighborhood of agent Ai, noted Vi,t involves all agents Aj

such that link (i, j) belongs to the social network at time t. Additional
agent parameters comprise:

• Salary Ri: Ai receives a fixed salary Ri at the beginning of each
time step, and uses it to grant or pay back loans, to buy links, or
for consumption.

• Sociability factor si (0 < si < 1): Ai creates a new link (i, j)
(where j is uniformly chosen) with a probability si at each time
step; in case Ai is isolated, a new link is automatically created.
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• Strategy Si: The social network comes at a cost, i.e. every link
(i, j) must be paid by agents Ai or Aj or both. Three social strate-
gies (classes of agents) are defined:
Optimizers accept to pay for a link iff it was profitable during the
last five time steps (if the utility increase due to this link offsets the
link cost). This strategy, referred to as rational strategy, deletes all
links which are not sufficiently useful.
Free Riders never pay for a link. While the free rider minimizes
its social cost (the link cost), it does not optimize its neighborhood
which might adversely affect its utility (see below).
Investors always accept to pay for a link. On the one hand this
strategy gives the agent every means to optimize its economic activ-
ities, and possibly maintain beneficial relations with isolated agents;
on the other hand, it suffers the cost of possibly many useless links.

Under mild assumptions (Caillou et al., 2007), agent Ai can compute
its threshold interest rate ri (lower bound for grant activities and upper
bound for loan activities). Note that this rate needs be updated after
every elementary transaction as it depends on the agent current and
expected capital.

14.3.2 Interaction protocol

Every agent lives a sequence of epochs, where each epoch involves four
phases: i) salary and loans payback, ii) negotiation, iii) consumption,
iv) social activity (link creation/deletion).

During the first phase, agent Ai receives its salary Ri, reimburses
the money borrowed (plus interests) and is reimbursed for the money
lent (plus interests). The negotiation phase involves a variable number
of transactions. At each step, Ai determines the best possible borrow-
ing and lending rate; it maintains its estimation ri,j of the interest rate
for a transaction (borrow or grant) with every agent Aj in its neigh-
borhood, and proposes the best possible transaction for one currency
unit. Depending on whether the transaction is accepted, ri,j is updated
(Alg. 1). Agent Aj accepts a borrow transaction if the proposed rate is
lower than i) its limit rate rj and ii) its last borrow rates during this
negotiation phase (similar conditions hold for lend transactions).

The transactions proceed until no more transactions are realized.
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BestRate r∗=0;
foreach Aj ∈ Vi such that rij > ri do

Propose Loan(rate=rij);
if accepted then

if rij > r∗ then r∗ = rij ;
Increase(rij)

else
Decrease(rij)

end
end
if r∗ > 0 then Lend one currency unit at rate r∗

Algorithm 1: Lending transactions (borrowing transactions pro-
ceed likewise)

During the consumption phase, the agent computes its optimal frac-
tion of consumption (see Caillou et al., 2007, and scores the correspond-
ing utility)) .

During the social phase, each agent decides whether it maintains its
links depending on its strategy and whether the link has been profitable
in the last five epochs. Link (i, j) is either maintained by agents Ai

and/or Aj , or deleted. Independently, Ai creates a new link (i, j) with
probability si (its sociability factor), where j is uniformly randomly
selected. If Ai has no neighbor, a link (i, j) is automatically created.

After Mi epochs, agent Ai dies. It is then replaced by a new agent
(reinitializing all agent parameters) with same neighborhood.

14.3.3 Fitness and Global Welfare

The socio-economical system will be assessed from the global welfare
of the agents. As the agent utilities cannot be directly compared (pa-
rameters pi and bi depend on the agent), they are normalized w.r.t. the
canonical consumer-only alternative strategy. Each Ai, would it have
adopted the consumer-only strategy, would get utility The consumer-
only agent, spending its whole salary in each time step, gets utility:

U∗
i =

Mi∑
t=0

(pt
iR

bi
i ) = Rbi

i

1 − pMi+1
i

1 − pi

Accordingly, the normalized fitness of Ai is defined as:

Fi =
(

Ui

U∗
i

) 1
bi − 1
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Note that if Ai had spent a fixed fraction α, 0 ≤ α ≤ 1 of its salary in
each time step (without engaging in any borrowing or lending trans-
actions), it would score a normalized fitness α − 1. In brief, agent Ai

benefits from the social network iff its fitness Fi is positive.
The efficiency of the socio-economical system is thus measured from

the average normalized fitness of the individuals, and its standard de-
viation. Further, each class (optimizers, free-riders and investors) will
also be assessed from the average normalized fitness of the individuals
belonging to this class.

14.4 Results

After the description of the experimental setting, this section reports on
the impact of the network and agent dynamics on the global efficiency
of the system.

14.4.1 Experimental settings

The socio-economical game is implemented and simulated within the
Moduleco framework (Phan, 2004). The initial structure of the social
network is a ring, where each agent is connected to its two neighbors.
Agents are initialized by independently drawing their parameters using
Gaussian or uniform laws as follows.

• Time preference pi ∼ N (0.8, 0.075)
• Utility factor bi ∼ N (0.5, 0.1),
• Sociability factor si ∼ N (0.05, 0.05),
• Salary Ri ∼ N (20, 5),
• Life expectancy Mi ∼ U(20, 100),

The link cost is set to .2 in the remainder of the paper. Complemen-
tary experiments with varying values of the link cost are reported in
Caillou et al. (2007). Experiments were conducted with a population
size ranging from 25 to 100, with similar results. All reported results are
averaged over 25 independent experiments conducted with 25 agents
over 1000 epochs. The global (respectively, class) fitness is computed
by averaging the normalized fitness of agents (resp. belonging to the
class) that died before the 1000th. epoch.
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14.4.2 Complete and costless information

The classical economic theory relies on the assumption of a complete
and costless information, e.g. gathered and disseminated by the “wal-
rasian auctioneer”, enforcing the convergence of the interest rate to-
ward the equilibrium rate. As formally shown in Caillou et al. (2007),
the equilibrium rate can be analytically derived from the agent utility
functions.

The first experiment, as a sanity check, thus considers the fully con-
nected social network and compares the empirical interest rate toward
the equilibrium rate. As expected, the average interest rate rapidly
converges toward the equilibrium value τ (τ = .24 in the experimen-
tal setting, Fig. 14.1). The standard deviation (< .0025 after 5 epochs
in the fully connected case) is explained from the experimental noise,
discrete loan amount and limited number of agents.

Interestingly, randomly removing edges in the social network only
delays the convergence toward the equilibrium rate, although the stan-
dard deviation of the interest rate significantly increases for social net-
works with low density. Fig. 14.1 displays the standard deviation vs the
percentage of edges in the social network after 20 epochs.

Fig. 14.1. Interest rate and standard deviation within a complete network

14.4.3 Rational and immortal agents

The second experiment focuses on rational agents (optimizer strategy)
with infinite lifelength. Despite the fact that the social network can
evolve with the rational agent decisions, the empirical interest rate still
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Fig. 14.2. Impact of the network connectivity on the standard deviation of
interest rate after 20 epochs

converges toward the equilibrium rate. Still, the convergence is slower
than in the previous case, and the standard deviation remains high
after 1000 epochs (Fig. 14.3).

Fig. 14.3. Rational and Immortal Agents: Standard Deviation of the Interest
Rate

Most surprisingly, while the interest rate reaches the equilibrium,
it does so with a continuously changing social network; no edge in the
network appears to last more than a few epochs, as agents endlessly
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optimize their neighborhood. Indeed, in either competitive or monop-
olistic situations, there always exists some profitable link creation or
deletion. The canonical case of a 3-agent network, depicted in Fig.
14.4, involves three possible configurations (being reminded that a link
is created automatically when an agent is isolated), all of which are
unstable. In the n-agent case, instability is increased by cascading ef-
fects, the creation/deletion of a link leading to further link deletions or
creations.

Fig. 14.4. 3-agent network configurations; arrows indicate the lender-
borrower pair

1 In the triangle (clique) case, there are two possible situations:
– If A can lend the desired amount to C with a rate higher than

the B limit rate rb, A is not interested in maintaining link AB,
which will thus be deleted.

– If the C limit rate rc decreases (because of the loans contracted
by C) and becomes lower than rb, A will grant loans to B and C
(with a rate lower than rb). Therefore B will be unable to lend
money to C, since C will refuse to borrow money with rate higher
than rb. Thus the BC link becomes useless and will be deleted.

2 In the line case, B borrows from A at rate τAB < rB. C borrows
from B at rate τBC > rB . When A or C will create the link AC, it
will be stable because A will accept to grant loans to C at a rate
τBC − ε which will be higher (and thus more profitable) than τAB.
We are back to case 1.

3 In the star case (case 3a), agent A is the only one lending money.
In this monopolistic situation, A will progressively increase the loan
granting rate, until the BC link becomes profitable and thus stable
when it will be created. We are back to case 1. Same analysis holds
for case 3b (C will decrease its borrow rate).

14.4.4 Mixed populations and global welfare

Let us consider the mixed population cases. Each possible distribution
of the strategies (or classes) in the population is represented as a point
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in the 2D plane, where the x (resp. y) coordinate stands for the propor-
tion of Free Riders (resp. Investors) in the population (Fig. 14.5). Point
(x, y) is associated with the global population welfare or fitness. Con-
sidering the three pure strategies (optimizers only, (0,0); investors only
(0,1); free-riders only (1,0)), the Optimizer strategy is by far the best
one; this fact is explained as the free-rider-only population generates a
sparse random network, while the investor-only population generates a
clique (and pays the price for it).
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Fig. 14.5. Average Fitness vs Strategy Distribution in the Population. Point
(x, y) correspond to the distribution of x% free-riders, y% investors and 1 −
x − y % optimizers. Each fitness level differs by .5 from the neighbor fitness
levels.

Most interestingly, in the case of mortal agents, mixed populations
outperform optimizer-only populations; e.g. the uniform distribution
(1/3 optimizers, 1/3 free-riders and 1/3 investors) gets an average fit-
ness significantly higher than the optimizer-only population (comple-
mentary experiments show that this result also holds when the link
cost is significantly higher or lower, see Caillou et al. (2007)). This fact
is explained as the useless links paid for by investors, are actually very
useful to quickly reorganize the network when an agent dies.

14.4.5 Class behaviors

While agent diversity is beneficial on average, it remains to examine
whether “class behaviors” appear in the population. Two issues will
be specifically investigated. Firstly, do the average class fitness depend
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on its representativity, ie, its percentage of the population (intra-class
effects); secondly, do the class representativity affect the average fitness
of the other classes (inter-class effects).
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Fig. 14.6. Strategy average fitness; each level represents an increase/decrease
of 1 for the strategy average fitness

The free-rider class does present a class behavior (Fig. 14.6): their
fitness is excellent when they are a minority, and it decreases rapidly
as the free-rider representativity increases. The investor class also dis-
plays a class behavior: their fitness is good when the representativity of
optimizers is sufficiently high, as the optimizers share the costs of the
links. In summary, the average fitness of investors and free-riders de-
pends on the class distribution; quite the opposite, the optimizer fitness
does not.

We finally examine the impact on the global and class welfare, of
the arrival of a new agent depending on its class (Fig. 14.7).

Fig. 14.7. Adding a new agent: impacts on the fitness of the other classes

The arrival of an investor is globally beneficial to other classes. and
even more so when there a few optimizers. Indeed, investors fund the
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infrastructure used by the other agents; their impact is greater when
the network is poor (when there are few optimizers).

The arrival of a free rider has a negative impact on the rest of the
economy, except when there are many investors. In this case, the free
rider decreases the graph connectivity level (and cost) and allows a
faster reorganization of the network.

Optimizers, which are not influenced by economic class structure,
do not influence it either. Their impact is mostly neutral, though it
might be positive in the extreme cases where there are no investors or
no free riders.

14.5 Conclusion and perspectives

The socio-economic game presented in this paper, based on autonomous
and diversified agents, leads to two lessons. The first one concerns the
fact that the convergence of economic macro-variables such as the in-
terest rate is compatible with the instability of the social network sup-
porting the economic activities. Secondly, the benefits of the population
diversity have been empirically demonstrated and interpreted in terms
of the emerging class behaviors. While investors and free-riders display
class behaviors (their fitness depends on the population structure, they
have an impact on the welfare of the other classes), the optimizer class
seems to be almost unaffected by the population structure, and exerts
little influence in return.

Further research perspectives are concerned with the dynamics of
the class structure, examining how the best fit agents can influence the
distribution, preferences and strategies of the new-born agents.
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15.1 Introduction

In literature on residential segregation (RS hereafter) there are two im-
portant results about the social optimality of this phenomenon. Firstly,
the maximum level of RS can constitute a social optimum if one part
of the population generates negative externalities on the remaining
one. The population suffering the negative externalities can be called a
prejudiced population. Under these circumstances traditional bid-rent
models with externalities and general equilibrium models have showed
the optimality of RS3. On the other hand, when the individuals’ pref-
erences are to live in balanced neighborhoods, high levels of RS dimin-
ish the aggregated utility, consequently, full integration is the social
optimum. The well known Schelling’s model has stressed this issue,
showing how a population, in an artificial world, can evolve to a segre-
gated society although individuals want to live in a perfectly balanced
neighborhood, reaching a bad, but the only stable, equilibrium. If the
prejudiced population coexist with a population preferring balanced
neighborhood, the literature has proposed the payment of compensat-
ing transfers by the prejudiced population to the non-prejudiced ones
to accept the exclusion (Anas, 2002).

These results rely upon the fact of these models considering just
the individuals’ utility depending on the neighborhood’s characteris-
tics and segregated individuals suffering RS’s negatives consequences

3 See for instance Anas (2002); Ando (1981); Bailey (1959); Kanemoto (1980);
Papageorgiou (1978); Rose-Ackerman (1975); Schnare (1976); Yinger (1976).
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just on their own4. Notwithstanding, here it is argued that the nega-
tive consequences of RS would affect the utility of the non-segregated
population too. This is a quite reasonable statement if the kind of RS
consequences are studied. As a matter of fact, literature has pointed
out that RS can have impact upon the the level of joblessness, out-
of-wedlock births, level of criminality, low educational achievement, in-
come inequality and poverty traps, amongst others. RS can produce
these effects mainly by two mechanisms, namely, lowering the consump-
tion of public good, for instance poor neighborhoods have, in general,
bad quality schools5; and peer-effects. As an example of the latter, there
is fair evidence telling us that the school performance does not depend
just on the individual capabilities, but also upon the desire of the rest
of the classmates for having a good school performance6.

If one part of society is being affected by these sort of difficulties,
it is almost sure that all the population is going to be affected too.
For example, if RS generates spots of criminality, this criminality will
reach, also, the non-segregated population. As another example can be
considered the fact that if RS has a negative impact on educational
achievement, ghettos of low-skilled laborers can emerge, a process that
can be reinforced by itself. Consequently, the society will loss produc-
tivity, and therefore, all individuals’ level of consumption will be lower,
diminishing the welfare of every single individual, being segregated or
not. If that is the case, the prejudiced population is going to face a
trade-off between the desire of living just amongst peers and the lower
level of consumption that RS produces.

Benabou (1993) is the first attempt to formalize the link among
location decision, education investment and productivity. According to
this article, segregation diminishes some communities’ chances to reach
good labor skills and therefore the labor force quality will be lower,
affecting poor and rich households welfare. Education is assumed to be
a local public good affected by community composition. Consequently,
segregation arises because rich households want to live in communities
with a high level of investment in education, bidding out poor families.
Segregation efficiency depends on the form of the function cost of poor
households education.

4 See for instance Charles et al. (2004); Clapp and Ross (2004); Dawkins et al.
(2005); LaVeist (2003); Massey (2001); Wilson and Hammer (2001); Yinger
(2001).

5 For instance, Berglas (1976) introduces skills to the Tiebout’s model.
6 Arnot and Rowse (1987) compute the school optimal composition for different

forms of peer group effects. De Bartolome (1990) studies the inefficiency in the
communities composition due to peer groups effects on education.
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Nevertheless, with the important insights that Benabou (1993) has
provided, there are some aspect of urban structure that standard clas-
sical models cannot treat properly. Meen and Meen (2003) have pro-
vided a detailed discussion on these characteristic, explaining why a
model considering them, must be used to model urban systems. Specif-
ically, the characteristic stressed by Meen and Meen (2003) are self-
organization, heterogeneity between agents, multiple equilibria, unsta-
ble equilibria, with the system being out-of-equilibrium for long periods
of time (therefore dynamics are more interesting than long-run equi-
libria). Cellular automata, or agent-based models, have been largely
used in literature to deal with system of this sort. These models are
attractive for this purpose because they consider explicitly agents het-
erogeneity and their interactions, which can be more complex than in
traditional game theory models. Because of these interactions complex-
ity and self-organization can emerge from agent-based models, where
individual action generates ordered pattern of behavior. Besides, mul-
tiple equilibria and out-of-equilibrium situations can be studied as an
equilibrium formation process: a dynamic process with random events.
Hence, for instance, it is possible to study the probability of a particular
equilibriums emergence.

Because of the elements explained in the above paragraph, a cellu-
lar automaton has been developed here to investigate upon optimality
properties of segregation, formalizing the link between location decision
and productivity, focusing on peer-groups effects. This is the first time
that a model featuring these characteristics is implemented to study
the segregation phenomenon.

In section 15.2 the theoretical model is developed, explaining its
main characteristics. In section 15.3 through the use of simulations the
equilibria and social optima properties are studied and the effects of
some public policies. In section 15.4 conclusions and final remarks are
given.

15.2 The model

The model developed here is an extension of Schelling (1971) and its
first mathematical formalization due to Zhang (2004). Therefore the
first step, it is to define an artificial society made up of an advantaged
prejudiced population and a non-prejudiced disadvantaged population.
Each agent belongs just to a one particular population group. The
proportion of these two populations are given by πj with j ∈ {0, 1},
indexing the population’s types. If j = 1 the agent is a disadvantaged
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one and with j = 0 a non-disadvantaged one. Each one of this society
members, or agents, is allocated in the vertex of a NxN lattice graph
with a periodic boundary condition or, what it is the same under this
feature, embedded on a torus.

Utility. Each agent j’s utility U is made up of two parts: a deter-
ministic one ui and a stochastic term ε. This stochastic term reflects
the assumption of bounded rationality, because agents can make mis-
takes, but also guarantee agents’ heterogeneity. The deterministic part
depends on how many like-type neighbors he has in the local neighbor-
hood and in his level of consumption. The stochastic part is assumed
being independent across agents and locations. As Zhang (2004) points
out, the latter it is because agents value different characteristics, and
different locations have different idiosyncratic traits. The utility func-
tion u is assumed additively separable in two components: a location
term � and a consumption term c. The location term differs depending
on the agent’s type.

�j =




Aj

(
x

nj

)
if x ≤ nj

(2Aj − Bj) + (Bj − Aj)
x

nj
otherwise

(15.1)

where A > B > 0 are parameters guaranteeing a linear kinked shape,
increasing on the left side of nj and decreasing on the right, being nj

the peak as it is showed in Figure 15.1. Therefore, nj is the number
of like-type neighbors in the local neighborhood that maximize �j . The
total number of the local neighborhoods inhabitants can be represented
by Zjnj, where Zj ∈ N. x is the actual number of like-type neighbors
in the local neighborhood.

The consumption term for both agent’s type is just the normalized
level of consumption. Therefore, the deterministic term of the utility
function is given by:

uj = β�j + αc (15.2)

being β and α positives parameters indicating the importance of loca-
tion and consumption for agents. The utility function for any agent i
of type j is:

Uij = uj + ε (15.3)

Finally, the aggregated utility is:



15 Group Effect, Productivity and Segregation Optimality 213

nj
Zjnj0

Like-types agents x

Utility

A

B

Ax/n
(2A-B)+(B-A)x/n

Fig. 15.1. Location Utility

U =
NxN∑

1

Ui (15.4)

Production. Each agent is endowed in every period of time with
one unit of “productivity”. In every period of time the agent can have
just one unit of “productivity”. An important assumption it is made
here is that the agent’s productivity can be affected by the local neigh-
borhood’s characteristics (group effects). In particular, it is assumed
that if in a local neighborhood the majority of inhabitants (more that
the 50%) belong to the disadvantaged population, then the produc-
tivity of that type of agent decreases. Hence, the productivity for a
non-disadvantaged agent is always 1, and for a disadvantaged one is:

p1 =




x − Z1n1

τ − Z1n1
if x > τ

1 otherwise
(15.5)

where τ is the threshold value of like-types neighbors that triggers the
productivity diminishing process as is depicted in Figure 15.2. The
aggregated production is:

P =
NxN∑

1

pi (15.6)
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the level of consumption of every agent is
P
N

. This means that all
the agents, prejudiced and non-prejudiced, are going to be affected
negatively by segregation.

1

Productivity

Type 1 neighbours

Z
1
n

10

Fig. 15.2. Disadvantaged Agents Productivity Function

Log-linear behavioral rule. A Log-linear behavior is observed
when agents change their location based upon their own personal in-
terests. In each period two agents coming from different neighborhoods
are selected and in order to perform a change, every agent will bid in
an sort of auction for a better location, consequently the focus is on
the sum of two chosen agents’ utility. If the sum of switching is bigger
than the sum of not switching, then agents will swap their locations. If
the switch situation is called S and the opposite NS, and, for following
exposition, the chosen agents are agent 1 and agent 2, and they do not
swap locations, then:

U1(·|NS)+ε1+U2(·|NS)+ε2 = U1(·|NS)+U2(·|NS)+ε1+ε2 = V NS+η

but if they do, then:

U1(·|S) + ε1 + U2(·|S) + ε2 = U1(·|S) + U2(·|S) + ε1 + ε2 = V S + ε
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Agents will change location if and only if V NS+η < V S+ε. It is assumed
that η and ε are independent, and that they follow an identical extreme
value distribution. Then, based on McFadden (1973), and following
Zhang (2004), a log-linear switch rule can be settled as follow:

Pr(S) = Pr(V NS + η < V S + ε) = Pr(η < V S − V NS + ε) =

=
∫ +∞

−∞
F (V S − V NS + ε)f(ε)dε =

∫ +∞

−∞
e−e−V S+V NS−ε

e−ε−e−ε
dε =

∫ +∞

−∞
exp

[
−ε − e−ε

(
eV NS

+ eV S

eV NS

)]
dε =

=
∫ +∞

−∞
exp

[−ε − e−εeΦ
]
dε =

= e(−Φ)

∫ +∞

−∞
exp

[− (−ε − Φ) − e−ε−Φ
]
d (ε − Φ) =

= exp (−Φ)
∫ +∞

−∞
f (ε − Φ) d (ε − Φ) =

= exp (−Φ) · 1 =

(
eV NS

+ eV S

eV NS

)
.

Being Φ=ln

(
eV NS

+eV S

eV NS

)
, hence,

Pr(S) =

(
eV NS

+ eV S

eV NS

)

This behavioral rule depends just upon the deterministic utilities,
therefore, it is possible to work avoiding the stochastic utilities, which
are unobservable.

A segregation measure. In order to measure the level of segre-
gation the index of dissimilarity is used. This index, due to Duncan
and Duncan (1955), can be interpreted as the percentage of a group’s
population that would have to change residence for each local neigh-
borhood to have the same percentage of that group as the metropolitan
area overall. The index ranges from 0.0 (complete integration) to 1.0
(complete segregation), and is given by the following formula:
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D =
m∑

i=1

[
gi|ki − K|

2GK(1 − K)

]
(15.7)

where m is the total number of local neighborhoods, gi is the i local
neighborhood’s total population, G is the total population, ki is the
group of interest percentage in the local neighborhood i, and K is the
group of interest total percentage in the city.

15.3 Simulations and well-being analysis

For simulations purposes an artificial society made up by 100 agents is
considered. Hence, N=10. Both type of agents are equally distributed
across the population, therefore π0=π1=0.5. The local neighborhoods
used are Moore neighborhoods, that, for every agent, include the eight
adjacent agents as neighbors. The reasons underlying the latter is be-
cause, as Zhang (2004) shows, using this kind of neighborhood the
model converges faster, besides, the final outcome is independent of the
neighborhood type. It is assumed too, that non-disadvantaged agents
are prejudiced against the disadvantaged ones, therefore the former
prefer just like-type neighbors, meanwhile disadvantaged ones prefer
balanced neighbourhoods7. Consequently, n1 = 4 and 4 < n0 ≤ 8.
As one of the main aims of the present research is the search for the
conditions that define a social optimum linked to a positive level of
segregation, but not absolute segregation, α and β values must be rel-
atively balanced between each other, otherwise either integration or
complete segregation will be the social optimum. Intuition tells us in
a straightforward fashion, that agents must have balanced preferences
between location and consumption. For instance, considering the case
where agents have higher preferences on neighborhoods characteris-
tics than on consumption, i.e. α → 0, with a prejudiced population,
the social optimum will imply complete social exclusion. On the other
hand, if neighborhoods characteristics are not important, i.e β → 0,
then complete integration will be the social optimum. In order to fa-
cilitate calculations and normalize utility functions is picked A0 = 1,
B0 =

n0

n0 + x
, A1 = 1 and B1 = 0.6.

The variable of interest is the optimal level of segregation OS and
the stable equilibrium level of segregation ES. In the first one is the

7 The other two kind of neighborhoods used in the agent-based literature are Von
Neumann and r(2), where the former considers the four surrounding agents as
neighbors and the latter covers 12 agents inside a circle with radius 2.
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level of segregation associated to the maximum level of aggregated util-
ity, and in the second one is the level of segregation that the system
reaches by itself. The basic structure of the algorithm used to obtain
the ES has been already explained in the previous section 15.2. The
way to obtain the OS deserves some further explanation. As the natu-
ral evolution of the problem does not settle at the optimal social utility,
a stochastic search method has been used, namely the Threshold Ac-
ceptance (TA) algorithm, in order to find the best utility neighboring
distribution. This algorithm is related to the general class of Simu-
lated Annealing (SA) type algorithms, enabling the stochastic search
for effective solutions to highly combinatorial optimization problems
but with a much easier implementation. The algorithm is shown in
Figure 15.3.

1. Get an initial system configuration S and an initial threshold
∆new = ∆old

2. While outer loop stop criterion not satisfied do:

a) While inner loop stop criterion not satisfied do:

• Select a trial solution S′

• If C(S′) ≤ C(S) + ∆new, let S = S′

End of inner loop

b) If S has changed reduce threshold:

• ∆old = ∆new,

• ∆new = α · ∆old.

End of outer loop

3. Report best solution found
Fig. 15.3. The threshold acceptance algorithm

As this is an stochastic algorithm, every time that a maximum it
has been searched for in the inner loop, it has been run 100 times, and
the maximum value amongst these 100 “maxima” has been picked up.

Agents’ relevant elements, in order to choose a location, are the value
of the location utility � and the value of consumption utility c. The

parameters values that have been chosen are:
α

β
=

3
4
, n0 ∈ {5, 6, 7, 8}

and τ ∈ {4, 5, 6, 7, 8}. The results of these simulations are shown in
Table 15.1.

The most striking fact arising from simulations is that the system
always converges to the lowest level of segregation after a random per-
turbation (see Figure 15.4). This means that full integration comes to
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Table 15.1. Optimal and equilibrium segregation

n0=8 τ=4 τ=5 τ=6 τ=7 τ=8 n0=7 τ=4 τ=5 τ=6 τ=7 τ=8

OS 0.00 0.12 0.36 0.48 0.96 OS 0.00 0.08 0.32 0.36 0.84
ES 0.04 0.04 0.04 0.04 0.04 ES 0.04 0.04 0.04 0.04 0.04

ES-OS 0.04 -0.08 -0.32 -0.44 -0.92 ES-OS 0.04 -0.04 -0.28 -0.32 -0.80

n0=6 τ=4 τ=5 τ=6 τ=7 τ=8 n0=5 τ=4 τ=5 τ=6 τ=7 τ=8

OS 0.00 0.08 0.12 0.36 0.84 OS 0.00 0.04 0.04 0.20 0.80
ES 0.04 0.04 0.04 0.04 0.04 ES 0.04 0.04 0.04 0.04 0.04

ES-OS 0.04 -0.04 -0.08 -0.28 -0.80 ES-OS 0.04 0.00 0.00 -0.16 -0.76

be a stable equilibrium. This finding is quite different from previous
literature results, where the main fact that has been pointed out is ex-
actly the opposite: the system always converging to the highest levels of
segregation. The element that makes the difference is the agents taking
into account of the segregation’s negative effect on their own level of
consumption.
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Fig. 15.4. Evolution of segregation

As the equilibrium segregation is the lowest possible, the difference
between optimal and equilibrium segregation is almost all the time
negative. This difference gets lower when the level of advantaged agents’
prejudice diminishes, because optimal segregation also diminishes (see
Figure 15.5).
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Fig. 15.5. Equilibrium v/s optimal segregation

An interesting thing is that if the relative consumption importance
gets lower, the system could converge to higher levels of segregation
greater than 0, by means of adjusting the consumption relative impor-
tance parameter α. An interesting question is if, following this process,
the system can reach a stable equilibrium where equilibrium and opti-
mal segregation are equal. After some trials, it was possible to find a
combination of parameters’ values where this situation is fulfilled. The
specific parameters’ values used to find this particular equilibrium were

the following:
α

β
=

1
5
, τ = 4 and n0 = 8. Under this setting the system

converges to an equilibrium level of segregation of 0.64, the same value
of the optimal segregation (see Figure 15.6). Therefore, optimal seg-
regation is not necessarily an out-of-equilibrium situation or a corner
solution.

15.4 Concluding remarks

The first interesting finding of the present research is that positive
levels of segregation, lower than complete segregation, can be a social
optimum. This is quite different to the previous literature, where just
either full integration or full segregation can be a social optimum.
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Fig. 15.6. Evolution to the optimum level of segregation

The optimal segregation value depends on the extend of prejudices
and negative impact of group effects on productivity. For instance, with
highly prejudiced agents and irrelevant groups effects, the social opti-
mum will be full segregation. In the opposite case, the social optimum
will be full integration. However, with more balanced parameters values
the optimal segregation will be lying between 0 and 1 but not reaching
the extremes.

The most striking result is full integration being a stable equilib-
rium. The reason that has made the difference is the agents taking
into account of the segregation’s negative effect on their own level of
consumption at the moment of taking their location decisions. Also, it
has been possible to find a combination of parameters’ values where the
system converges to an optimum level of segregation greater than 0 but
less than 1 too. Therefore, a society can reach by itself an optimal level
of segregation different from the less realistic cases of full integration
and full segregation.

All these findings can have interesting policy implications. First of
all, segregation must not be seen as a bad situation a priori. What is
going to be the optimal level of segregation is something depending
upon of how prejudiced are prejudiced agents, the extend of groups ef-
fects impact and the relative importance amongst local neighborhood
characteristics and consumption on agents’ utility. Consequently, it can
be argued that there is not such a thing like a unique optimal level of
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segregation or an absolute segregation target. If the aim is to improve
welfare, policymakers must have a clear picture of individual prefer-
ences, group effects and other elements, that have not been treated in
this research but it is worthy to mention them, as provision of local
and non local public goods, before to implement any policy with the
objective of reducing segregation. Besides, it is clear that two cities, or
regions, have not the same characteristics, hence, every different city
have different level of optimal segregation, and, therefore needs differ-
ent policies.
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16.1 Introduction

Social and economic networks are becoming increasingly popular in the
last ten years, because of both the application of game theory to the
network formation processes4, and the study of stochastic processes
that fit the statistical properties of real world social networks.5 In the
very recent years there have also been attempts to combine the contri-
bution of these two streams of research, trying to find strategic models
whose equilibria resemble the empirical data.6 A well known source of
debate in the game theoretical approach is the incompatibility between
stability and efficiency: in most of the models Nash equilibria are ac-
tually not the network architectures that maximize the overall sum of
utilities, as surveyed in Jackson (2003). On the other hand the econo-
physics approach is not interested in the utility of single nodes but has
other measures of efficiency, which are essentially the probabilities of
the network to maintain certain properties after random deletion of
links or nodes.

4 The seminal paper is by Jackson and Wolinsky (1996), see Jackson (2006) for a
survey of this literature.

5 The starting point of this second stream of research can be considered Albert
and Barabási (1999), see Newman (2003) for a survey. Let us refer to this second
scientific contribution as the econophysics approach.

6 As an example see Jackson and Rogers (2007).
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We will consider a similar trade–off between stability and efficiency,
in a game theoretical network formation model. The nature of our
model is however such that both the efficient networks, and the most
likely outcomes in real world applications, are different from how clas-
sical social networks look like. The social networks that are usually
brought as examples are those of human informal relations (as friend-
ships). They are strongly connected networks with short minimal paths
between any two of their nodes. There are however different environ-
ments and related theoretical models where the outcomes are likely to
be segregated clusters. Reasonable applications where likely outcomes
are actually segregated clusters could be those where the nodes tend
to mutually control each others. Think for example as an R&D setup
where firms cooperate on secret projects, trying to keep low the risk
of industrial espionage. Consider moreover informal contracts of mu-
tual insurance (such as those in rural villages analyzed by Bramoullé
and Kranton (2007) where reciprocal control is necessary to avoid moral
hazard issues. A third example could be the market of perishable goods
described in Weisbuch et al. (2000). Also Jackson and Wolinsky (1996),
in their original coauthor–model, imagine a set of researchers that have
a utility from working with other colleagues that is increasing in the
number of coauthors, but decreasing in the coauthors of their coauthors.
Moreover there are some costs for maintaining links. For low enough
costs both the efficient outcome and the equilibria of the co–author
model are networks segregated in fully connected clusters.

The present paper considers a particular case of the model proposed
by Kirman et al. (2007), where agents try to maximize the total num-
ber of reciprocal links in their neighborhood. The nodes have a max-
imum number of links they can send to others. Directed networks are
considered so that the notion of Nash equilibrium can be straightfor-
ward applied. This model has a Nash equilibrium network architecture
which is also the efficient one, that is the case where agents cluster
in isolated but complete (i.e. fully connected) subnetworks. However
there are also other, less efficient, equilibria, so that the problem is a
classical one of coordination among players. We use computer driven
simulations, where agents are faced with the possibility to change some
of their connections if better profits are present. It comes out that the
coordination toward the efficient equilibrium is not always the case,
especially if the players have many links to possibly cast, or if they
are heterogeneous in their maximum possible number of links. We have
found out that, amplifying the signal from a change in strategies, so
that it may happen that agents change because they think to improve



16 The Grass is Always Greener on the Other Side of the Fence 225

their situation but this does not happen, the probability for the final
outcome to be efficient, and in general the expected cumulative utility,
increase.

Next Section formalize the model and the algorithm used in the
simulations, while Section 16.3 shows the results. The main result may
seem not surprising to those who know some theoretical physics or
computer science: every heuristic optimization algorithm work with
experimentation to avoid local minima. We will conclude and analyze
this comparison in Section 16.4, arguing that it is not completely exact.

16.2 The model

The game we are considering is a one shot network formation game
between N agents. The network resulting from any strategy–profile is
a directed irreflexive unweighed one, in the spirit of Bala and Goyal
(2000). Each agent i can casts up to li links (this number li will be
the only specification of the agents’ type) to other agents.7 This is the
only action we have considered, so that the strategy set for agent i rep-
resents all the subset of the remaining N − 1 agents, with cardinality
up to li. Let us identify the action of every agent with one such sub-
set, and call it Ri. The strategy profile of the game will determine an
undirected network of N nodes (the agents) and up to

∑N
i li links (the

maximum possible number of links). The structure of the network de-
termines the payoff for each agent. This payoff is a measure of how well
interconnected is the neighborhood of degree one of each agent. Agent
i counts all the links between all the nodes in Ri ∪ {i} (the nodes in
her out-degree neighborhood and herself), in both directions, call this
number πi, i’s payoff is then exactly πi.8

Let us start our analysis from the homogeneous case where all the
li are equal to a certain value l. To simplify the analysis let us also
assume that N is a multiple of l + 1. Given these hypothesis (that
we will maintain in our first group of simulations), it becomes easy to
analyze the welfare of the system. The most efficient network structure
is the one in which the nodes are clustered in segregated fully connected
sub–networks of l + 1 nodes each. It is easy to check that this is the
only possible architecture that guarantees the maximum profit to every
node: every cluster is for everyone of its members exactly the Ri ∪ {i}
7 The limit in the number of links can have many economic explanations, all of

them reducible to a story of limited resources and costly link formations.
8 This game is the “level 2 neighborhood” case of the general model considered in

Kirman et al. (2007).
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neighborhood, in which a maximum of (l + 1) · l links is present. Since
the efficient network is feasible and inside it no agent can improve her
payoff, it is straightforward to check that the efficient network is also a
Nash equilibrium. Unfortunately this is not the only Nash equilibrium,
even when l is low (so that coordination does not seem hard), as shown
in Figure 16.1, where l is set to 2, while N = 6.

Efficient Nash equilibrium Another Nash equilibrium

Fig. 16.1. Comparison between the efficient Nash equilibrium (left) and a
possible non–efficient one. Here N = 6 and li = 2 ∀i ∈ {1, . . . 6}.

The right hand side equilibrium in Figure 16.1 gives an equal utility
to all the agents that is only 2

3 of that received in the optimal left
hand side case (4 links in the neighborhood instead of 6) because every
node’s neighbors are not connected between each other, and changing
neighbors would only make things worse. The suggestion we get from
this comparison is that, without the possibility of coordination between
the agents, suboptimal outcomes cannot be avoided.

As intuition would suggest, the coordination problems will increase
as soon as we introduce heterogeneity in the players of our game. Sup-
pose for example that our N agents are divided in two sub–population
of which one has a given value l′ for the maximum number of allowed
links, while the other has another value l′′. In order to simplify thinks
let us assume that the N ′ agents whose value is l′ are such that N ′ is a
multiple of l′ + 1, and the same for N ′′ and l′′ (clearly N ′ + N ′′ = N).
With similar consideration as the ones for the simpler case, it comes
out that the only efficient network is the one in which agents cluster
in fully connected sub–networks of cardinality l′ + 1 (the N ′ agents of
the first type) and l′′ + 1 (the remaining N ′′ agents). Since this config-
uration maximizes the payoff of every player and no agent can improve
her own profit, the efficient network is also a Nash equilibrium.
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As in the previous case, however, the efficient equilibrium is not
the only one. Consider N = 30 and li = 2 ∀i ∈ {1, . . . 15}, while
lj = 4 ∀j ∈ {16, . . . 30}. The efficient Nash equilibrium would be: 8
segregated clusters (3 quintuplets and 5 triplets). This is however not
the only one. Examples of non–efficient Nash equilibria can be easily
set up for this example as has been done in the homogeneous case

16.2.1 The adaptive mechanism

We describe here a very simple algorithm that would allow us to span
the possible network configurations and search for the equilibria of the
game described above. Imagine a discrete time process where at every
time step we have a network configuration. The initial configuration
is just a random network with the constraint that every node i casts
exactly li links to other nodes (from the way payoff are computed we
can exclude a priori that a rational agent would cast less links than
allowed). At every time step every node: (i) considers all her links and
compute which is the worst one in terms of marginal payoff (in case
it is more than one uniform probabilities are applied); (ii) considers
a random node to whom she is not already linked and compute the
marginal payoff from changing her worst connection for this new one;
(iii) if this change is profitable to her she changes her link for the better
target.

It is not given that, if this algorithm is blocked in a stall network
for all the possible deviations, then this network is a Nash equilibrium,
since a deviation in strategies could happen also changing more than
one single link.9 We know however what the efficient Nash equilibrium
is. Thus the aggregate wealth of every configuration can always easily
be computed, and also the ratio between the aggregate payoff (obtained
when the algorithm stops) and the optimal achievable one.

Formally, at every time step, every node i computes the marginal
payoff from deleting every one (but only that single one) of her links,
call this value ∆λπi for every link λ ∈ {1, . . . li}. She picks a link that
minimizes this payoff: λ ∈ arg min{∆λπi}. Node i is then assigned
randomly (with uniform probabilities) a node j �∈ Ri (j is not in i’s
neighborhood) and she is informed on what would be her marginal
payoff from severing link λ and connecting to j with a link λ→j. She
computes the difference

Dλ→j = ∆λ→j
πi − ∆λπi ,

9 The reverse is however true, the algorithm would surely stop in a Nash equilib-
rium.



228 Simone Giansante et al.

if it is positive she makes the change.
The object of our empirical analysis is then: what would happen

if the perception of the marginal payoff from the new connection is
positively biased? In the formulas it would be as if we had a parameter
α ≥ 1 (the value of bias) that linearly distort the external information.
The perceived difference would become

Dα
λ→j =

(
α · ∆λ→j

πi

)− ∆λπi .

If this new formula is positive the agent will change her connection,
but it is not guaranteed that also the real difference Dλ→j ≤ Dα

λ→j is
non–negative.

16.3 Results

We apply the adaptive mechanism described in previous Section to
computer–based simulations, for different values of α ≥ 1. α is the
positive bias in the perception of the payoff from new links, its value is
exogenously fixed in every simulation and is the same for all the agents
in the system.

The measurement that we will make for those simulations are two.
First of all we will check if the algorithm eventually stops to an ab-
sorbing network configuration.10 As discussed above a stall network is
however not guaranteed to be a Nash equilibrium. This holds even for
α > 1.11 It is plausible to expect from the simulations that, as the
value of α increases from 1, the probability that the algorithm will not
stop in some fixed configuration becomes higher and higher. There will
moreover be a value of α for which the system will never stop because,
no matter the shape of the network and the resulting payoffs, there
will always be an agent willing to change one of her links. Since we are
running several simulations for every starting population and value of
α, we keep track of the percentage of those simulations that happen
to stop in some network configuration. We call this first measure the
Stability of a simulation.

As clarified in Section 16.2 we know what is the optimal achievable
payoff for every agent i, as soon as we know her link–capacity li. This

10 Technically we check if the system does not change for a long enough number of
time–steps.

11 For α > 1 neither the reverse implication can be made: if the system is in a Nash
equilibrium, it can still change configuration because some agents may get wrong
signals and adopt a non–profitable change of a link.
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maximal payoff is the one she gets in a fully connected cluster of similar
agents and is the number of links in such a cluster, namely li · (li − 1).
We choose the starting population so that there is surely an efficient
Nash equilibrium where all the agents reach their optimal payoff. The
second measure we take will identify how far the agents’ final payoff
are from the ideal efficient case. We measure the final utility of each
agent and consider the ratio with the optimal one, then we express as
a percentage the average value of this ratio across all the population.12

This second measure will be called the Wealth of a simulation. We have
then two indices, Stability and Wealth (both expressed in percentage),
for every starting population and bias α.

The first group of simulation has been made with a population of 60
homogeneous agents, each with a link capacity li = 2. This is a 10 times
larger group than the one considered in the example of Figure 16.1, but
the efficient Nash equilibrium is still one in segregated triplets. Figure
16.2 shows the result when α is ranging from 1 to 2.5. For values of
α > 1.5 the stability of the system is not sure anymore. Full wealth
optimality is never reached on average (the Wealth measure is always
below 90%), but a simple second order polynomial interpolation of the
results suggest that an expected maximum Wealth is reached between
α = 1.5 and α = 2. The result is surprising for two reasons. First of all
the higher expected wealth is not reached for α = 1, but for a higher
value. Secondarily this optimum seems to stand where the algorithm
is not surely stable anymore. The effect of bias undermines stability
after a certain αU but, up to a certain point α∗ > αU , it improves the
expected payoff of the agents. As we will see the qualitative outcome
of this first group of simulations will hold also in the following ones.

Figure 16.3 shows the result of simulations when the population
of 60 players is still homogeneous, but now the link capacity of the
agents is li = 4. The efficient Nash equilibrium is a network divided in
12 segregated quintuplets. As expected now the agents’ coordination
problem gets more tricky: the value αU over which instability may
arise becomes smaller, while the value α∗ where there is an optimum
expected wealth seems to increase. As a consequence we get the same
kind of results (i.e. 1 < αU < α∗) as in the previous simpler model.

We have ran simulations also for the case of non–homogeneous pop-
ulations, mixing between the two previous cases. We have considered
the three quartile distributions with 60 agents: 15 agents with a link
capacity of li = 2 and 45 with a link capacity of lj = 4; the 30 − 30

12 When the algorithm is not stable and there is not a final configuration, we measure
the average wealth of the agents on a sufficiently large final time window.
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Fig. 16.2. Simulations on a homogeneous population of 60 agents, with li = 2.
α ranges from 1 to 2.5, with a grid of 0.1. For every value of α in this grid
20 simulations are ran. Small squares show Wealth in every simulation; big
squares are for the average Wealth, which is interpolated with a second order
polynomial; triangles indicate stability.
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Fig. 16.3. Simulations on a homogeneous population of 60 agents, with li = 4.
α ranges from 1 to 2.5, with a grid of 0.1. For every value of α in this grid
20 simulations are ran. Small circles show Wealth in every simulation; big
circles are for the average Wealth, which is interpolated with a second order
polynomial; triangles indicate stability.

case and the 45 − 15 case. All of them have efficient Nash equilibria
where all the two–linked agents (li = 2) cluster in triplets, while the
four–linked ones (lj = 4) segregate in quintuplets. Figure 16.4 (page
231) shows the results. As when increasing link capacity with homoge-
neous populations, an even higher complexity reduces the likelihood of
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Fig. 16.4. Simulations on a heterogeneous population of 60 agents: 15, 30 and
45 respectively with li = 2, the remaining ones with lj = 4. α ranges from 1
to 2.5, with a grid of 0.1. For every value of α in this grid 20 simulations are
ran. Small squares show Wealth of the 2-links agents in every simulation; big
squares are for their average Wealth, which is interpolated with a second order
polynomial; circles are used for the 4-links agents; triangles indicate stability.

coordination, that is less stability and less expected wealth. In all of the
three cases Stability suffer a substantial reduction above α = 2,13 but

13 We observe what physicians call a phase transition.
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already at α = 1.1 stability is not guaranteed (i.e. Stability< 100%),
so that we can locate αU slightly above 1. The points α∗

2 and α∗
4, where

the maxima of expected wealth are located, are now shifted to the
right, even if the agents with only two links seem to suffer less from the
cohabitation, at least when stability is kept safely above 0.

From simulations we have the unexpected result that a value of α >
1, i.e. an encouragement for trying new connections, leads instead to a
more probable and faster type–biased segregation, that is the efficient
equilibrium. The idea is that if agents receive exaggerated incentives
linking, i.e. the false perception of better conditions than the actual
ones, in the long run they do not facilitate connected networks but
instead drive themselves with higher probability to segregation.

16.4 Conclusion

We have a game theoretical network–formation model with multiplic-
ity of equilibria, of which only a very few are the efficient ones. We are
facing a typical coordination problem. We briefly discussed in the In-
troduction which economic applications may have segregated equilibria
as the optimal ones.

The result could have two possible implications, a regulatory one
and a behavioral one. Think for example to openness and mobility in
the job market. Incentives to mobility, even if positively biased in a
misleading way, so that people find worse conditions than expected,
may lead in the long run to more efficient allocations of the resources.
The fact that human beings seem to overestimate the conditions of
their similar in different neighborhoods, and the profit they could get
elsewhere, could be an inborn attitude to implement experimentation.

The model and the results proposed here have clear analogies, at one
side, with other segregation models, at the other side, with the heuris-
tic optimization techniques that allow non–optimal steps in order to
exclude local minima (sub–optimal but stable network configuration
in our case). Our setup of heterogenous agents that cluster in closed
homogeneous subgroups seems very close to the Schelling (1971) Seg-
regation Model (SSM), even if differences should be pointed out. Here
the topology of the problem is unbounded, every agent can cast links
(up to her maximum threshold) to every other agent and there is no
fixed grid. The geometrical constraint is much stronger in that model.
In SSM, moreover, a single agent’s deviation is a jump to a completely
different neighborhood, while our agents can change only one neigh-
bor at time. In this way also the effect on the other agents is reduced
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here in comparison to SSM. Another difference between our hetero-
geneous setup and SSM is that for us the distinction across the two
sub–populations is not in preferences, but in the spread of their neigh-
borhood. We do not reach segregation because of different utilities but
because of different resources.

We think that the achieved result (that is: biased perception in-
creases average wealth) are a counter–intuitive novelty, at least in an
economic setting of individual profit maximization. They may however
not seem so if we consider how our adaptive algorithm has clear analo-
gies with the optimizing simulated annealing algorithm at non–zero
temperature (See Kirkpatrick et al., 1983). Since the latter works well
in finding optima also our process should increase the average wealth.
There are however two considerations that should be made. The first
one is that the simulated annealing works well at a stable temperature
only if the global optimum is distant (i.e. different) enough from the
local ones. This is not something that we have for granted in our model,
where the value of bias α is kept fixed along any single simulation. The
second, more important, point is that in heuristic optimization, when
evaluating a new move, marginal global utility is considered and not
the marginal utility of a single agent. The heuristic optimization would
work exactly in a cooperative game, but not in our non–cooperative
network formation process. In short: when an agent of ours decides to
change a link she does not care about what would happen to her neigh-
borhood, neither the old nor the new one. So, there are at least two
reasons for which our results are in principle not predictable by the
optimizing stochastic processes considered by theoretical physics and
theoretical computer science.
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17.1 Introduction

Venture capital is actually considered a very efficient mean for financing
innovation. Kortum and Lerner (2000) estimate that a dollar invested
in venture capital is three times more effective in stimulating patent-
ing than a dollar invested in traditional R&D. Understanding venture
capital is therefore a central matter for designing innovation policies.
Venture capital has a very peculiar functioning. Venture capitalists fi-
nance young firms whose only activity is to develop radical innovations
(start-ups). These new firms have no access to the banking system be-
cause they are too risky and have no collateral. But their future is
also too uncertain to allow them to enter the financial market. Venture
capitalists are assuming this uncertainty because they are looking for
high-risk/high-reward investments. Venture capitalist are not wealthy
individuals risking their own money (business angels), but fund man-
agers. This means they provide institutional investors (pension funds,
insurance companies, investment bank) with the possibility to invest in
an asset, the venture capital fund, whose risk is manageable with tradi-
tional financial methods, like portfolio diversification. Venture capital
is in fact turning the uncertainty of investing in radical innovations into
a simple, though high, risk.

I propose a model that explicitly describe this essential feature of
the venture capital market. This model is intended to understand what
are the conditions for the existence and for an efficient functioning of
a venture capital market. Following Carlsson and Eliasson (2003), I
consider that venture capitalists are competent actors whose function
is to select and finance the most promising start-ups. This means that
venture capitalists reduce uncertainty in choosing the right start-ups to
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invest in. To formalize this idea, I propose a model of venture capital
as a market of heterogeneous interacting agents. On the one hand there
are start-up projects of different qualities that need financing, and on
the other hand there are venture capitalists of different levels of com-
petence trying to detect and finance the best start-up. The evaluation
of start-up quality by venture capitalist is imperfect, and its accuracy
depends on venture capitalist’s competence. Despite the simplicity of
the model, the interaction of heterogeneous agents in a stochastic en-
vironment makes it tractable only with a simple distribution of agents’
qualities and some restrictive hypotheses. The use of simulation allows
to overcome this limitation.

In a previous paper Mas and Vignes (2006) show under which condi-
tions the competence of venture capitalists allow for an efficient screen-
ing of start-ups. In this paper I investigate the market selection of ven-
ture capitalists and show how an efficient venture capital industry can
emerge from an initial random population of heterogeneous venture
capitalists. I also identify and study the role of a particular institu-
tion of venture capital, the limited partnership, in venture capitalists
selection. I show i) that the accuracy of the selection as well a the risk
taken by institutional investors increases with the size of the limited
partnership, i.e. with the number of investments a venture capitalist
can make before having to raise an other fund, ii) that the size of the
limited partnership has almost no influence on the final distribution
of competence, iii) that the optimal choice for the size of the limited
partnership can be determined by the computation of selection costs
taking type I and type II errors into account.

17.2 Related literature

Kaplan and Stromberg (2001) distinguish three main roles for venture
capitalists, which are screening, contracting and monitoring. The con-
tracting role has been extensively studied both from a theoretical point
of view and from an empirical point of view (Kaplan and Stromberg,
2000). The optimal contract approach has successfully proposed ratio-
nales for some stylized facts of venture capital, like the control right
allocation in venture capital contracts (Hellmann, 1998) and the stag-
ing of venture capital investment (Gompers, 1995). The monitoring role
of venture capitalists is often considered as the specific added value pro-
vided by venture capitalists. The early empirical studies (Gorman and
Sahlman, 1989; Sapienza, 1992) emphasize the time spent by venture
capitalists interacting with the firms of their portfolio. The later ones
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(Hellmann and Puri, 2000, 2002; Lerner, 1995) show evidences of the
active involvement of venture capitalists in the management of start-
ups and the positive impact of this involvement on the start-up success.
But the screening role of venture capitalists has received much less at-
tention. I consider though, like Carlsson and Eliasson (2003), that the
screening of start-ups is the main role of venture capitalists. The model
presented in this paper places this role at the core of the venture capital
market.

My work can be related to two other models. Chan (1983) proposes
a model of the venture capital market in which information about the
quality of investment is costly. These information costs justify the ex-
istence of venture capitalists. In this paper I propose an alternative for
the role of venture capitalists : instead of costly information, I consider
that information about start-up quality is only (imperfectly) available
to competent venture capitalists. Amit et al. (1999) propose a model of
venture capital that takes all agency risk (moral hazard and asymme-
try of information) into account. They also propose a screening com-
petence, called ’due diligence’, that would allow to predict the quality
of a given start-up project (and thus to minimize the asymmetry of
information) : but they have not developed the model based on this
hypothesis. In this paper I adopt a very similar hypothesis for the
screening competence of venture capitalists, I build a model based on
that idea and I simulate its functioning.

17.3 The model

The model contains two types of heterogeneous agents, the start-ups
and the venture capitalists. I first present each agent and then the
dynamics of the model. I only provide the essential equations, see Mas
and Vignes (2006) for a more detailed presentation.

17.3.1 The start-ups

Start-up projects are heterogeneous in quality. The quality of a start-up
project i determines her probability of success pi.

pi = qi p̄ (17.1)

I assume that the mean quality of the start-up projects q̄ is one,
so that p̄ is the mean probability of success of the start-ups projects.
Investing in a start-up is risky, it only generates profit in case of success.
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For an initial investment I in a start-up i the expected profit is given
by the following equation.

E(πi) = (pi g − 1) I (17.2)
Equations (17.1) and (17.2) simply state that the higher the quality,

the higher the probability of success and the higher the expected profit.

17.3.2 Venture capitalists

Competence is defined as the ability of a venture capitalist to evaluate
the quality of a start-up project. For a venture capitalist of competence
cj , the evaluation of the start-up project quality qi is :

q̃ij = cj qi + (1 − cj) uij (17.3)
Here uij is a random noise with the same distribution as qi. The ac-

curacy of the evaluation varies from perfect information, when cj = 1,
to pure noise, when cj = 0. The venture capitalists screen the start-
up projects in sequence. Each venture capitalist evaluates the available
start-up projects and picks the best one according to his own evalua-
tion.

17.3.3 Dynamics

Start-ups only live for one period. They are created as projects and
screened by venture capitalists. If they are selected, they may succeed
and generate profits. Venture capitalists stay on the market as long
as they have enough capital to invest. The failed venture capitalists
are replaced by new ones. The number of start-up projects S and of
venture capitalists V is constant in time.

Each venture capitalist raises a fund LP (Limited Partnership) that
he invests totally, always financing one start-up per period. The even-
tual profits are accumulated by the limited partners. Once the fund
is totally invested the limited partners may decide to give the venture
capitalist a new fund to manage or not, according to his performance.

At each period n, we repeat the following steps:

1. new start-up projects are created.
2. venture capitalists screen the start-ups
3. the financed start-ups generate profits or losses.
4. venture capitalists accumulate the profits or losses realized by their

start-up.
5. venture capitalists whose fund has been totally invested raise a new

fund or are replaced by new ones.
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17.4 Formal analysis

The aim of this section is to find the best estimator of the performance
of venture capitalists and to study its influence on the selection process.

17.4.1 Best selection criterion

The competence of a venture capitalist determines in a non linear way
the expected quality of the start-ups he finances, and hence their ex-
pected probability of success. This probability is also affected by the
market conditions and structure (Mas and Vignes (2006)). Thus I can
define for each venture capitalist j the expected probability of success
pj of his start-ups sj as a function of his competence c and of the mar-
ket conditions M . With given market conditions M , pj only depends
on cj , and ∂pj

∂cj
> 0.

pj = E(qsj ) p̄ = f(cj ,M) (17.4)

The outcome of an investment for the venture capitalist j is a
Bernoulli trial of probability pj. Thus the number of successful invest-
ments out of n follows a binomial law B(n, pj). From these considera-
tions it follows that the average profits of all the investments made by
a venture capitalists converge towards a value that depends linearly on
pj.

π̂j =
1
n

∑
t

πj,t −−−→
n→∞ (pj g − 1) I (17.5)

E(π̂j) =
1
n

(E(B(n, pj))g − n) I = (pj g − 1) I (17.6)

var(π̂j) =
1
n2

var(B(n, pj)) g2 I2 =
1
n

pj (1 − pj) g2 I2 (17.7)

The expected profits of a venture capitalist depend through pj on
his competence cj. After any number of investments made by a ven-
ture capitalist, the average of his realized profits is the best estimator
of his performance. Therefore the best selection criterion for venture
capitalists is π̂j > 0.
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Fig. 17.1. Probability of selection of a venture capitalist at the end of his first
limited partnership as a function of his expected success rate pj for various
number of investments per fund LP = k g with g = 10.

17.4.2 Influence of the size of the limited partnership

For the institutional investor who gives the venture capitalists a fund
to manage, the finite time horizon of the limited partnership provides
both a powerful incentive to the venture capitalist to do his best and
an opportunity to monitor his performance. The institutional investor
can chose the size of the fund LP which correspond to a given number
of investments after which he can choose to give an other fund to the
venture capitalist or to give his chance to a new one. What is the impact
of this choice on the selection of venture capitalists?

Let assume for simplicity that the size of the limited partnership is
a multiple of the return in case of success LP = k g. From the previous
analysis I can compute the probability of meeting the selection criterion
at the end of the first fund.

P (S|pj, LP ) = P (B(k g, pj) g − k g) I > 0) (17.8)
= P (B(k g, pj) > k) (17.9)
= 1 − FB(k g,pj)(k) (17.10)

For a given size of the limited partnership LP = k g the probability
of selection can be expressed as the value at k of the complementary
cumulative distribution function (ccdf) of a binomial law of parameters
k g and pj. Figure 17.1 shows the evolution of the selection function for
various size of funds. As k increases it converges towards an Heaviside’s



17 Market Selection of Competent Venture Capitalists 243

function h(py − 1
g ). The bigger the size of the limited partnership, the

more accurate is the selection. But a bigger size of the fund corresponds
also to a bigger risk for the institutional investor. Thus the choice of
the size of the limited partnership is a balance between the accuracy
of the selection and the risk taken by the institutional investor.

17.4.3 Global selection function

The outcome of the complete selection process is not tractable. In order
to study it, I will simulate the model. After the end of the run it is
possible to retrieve the global selection function using Bayes’ rules. Let
S be the event that the venture capitalist has been selected. Then the
global selection function is :

P (S|c) =
P (c|S) P (S)

P (c)
(17.11)

Where P (c|S) is the final distribution of competence, P (S) the ratio
of the number of selected venture capitalists over the number of the
venture capitalists that once entered the market and P (c) is the initial
distribution of competence.

17.5 Simulations results

I simulate the model with four different settings, with either a gaussian
or an exponential distribution for the quality of start-ups and with a
uniform or triangular distribution for the competence of venture cap-
italists. I then vary the size of the limited partnership. Following the
formal analysis, I choose LP = k g, with g = 10. In each case I ran one
hundred simulations of five thousand periods, with a population of one
hundred venture capitalists that screen five hundred start-ups projects
at each period.

The parameters of the model have been chosen such that the mini-
mum level of competence required to achieve positive profits is cG = 0.5
for the gaussian distribution of quality, and cE = 0.6 for the exponential
distribution. The essential difference between the two distributions of
quality is the spread of the function pj = f(cj,M). With the exponen-
tial distribution the difference between more competent investors and
lesser ones is bigger. It should leads to a more discriminative selection.
The difference between the distributions of venture capitalists’ compe-
tence, uniform and triangular, is the proportion of very competent ven-
ture capitalists. With the triangular distribution sufficiently competent
venture capitalists are rarer, making the selection more challenging.
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Fig. 17.2. Distributions of competence after 5000 periods

17.5.1 Final distribution of competence

Figure 17.2 shows the resulting distribution of competence after five
thousand time periods. These distributions are averaged across the
hundred simulation run with each setting. The plain line represents
the initial distribution of competence.

The first result is that the selection is efficient. For each setting, even
with few very competent venture capitalists in the initial distribution,
the final population in the market is essentially composed of sufficiently
competent venture capitalists.

The second result is that the final distributions of competence are
almost the same for all sizes of the limited partnership. This is surpris-
ing because the formal analysis shows that bigger sizes should lead to
a more accurate selection. This means that even if each selection step
is different, the result of the global selection process does not depends
of the size of the limited partnership.

17.5.2 Market selection function

Figure 17.3 shows the global selection function for each process, com-
puted using Equation (17.11). The plain line represents the perfect
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Fig. 17.3. Selection functions after 5000 periods

selection function. The selection functions are approaching the perfect
selection function, getting closer to it as the size of the limited part-
nership increases.

The selection functions are clearly better with the exponential distri-
bution of quality, which corresponds to a more discriminative spread of
the performance of venture capitalists. The market has its own selection
capability, determined by the market conditions which are essentially
the distribution of agents’ characteristics. The choice of the size of the
limited partnership magnifies this selection capability.

This analysis confirms that even if the size of the limited partnership
does not change the final distribution of competence, it affects the
accuracy of the selection.

17.5.3 Optimal size of the limited partnership

The optimal size for the limited partnership LP corresponds to the
optimal balance between selection accuracy and risk. In order to deter-
mine it, I compute the total selection costs paid to obtain the (identical)
final distribution of competence with the following formula :
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Fig. 17.4. Selections costs as a function of the size of the limited partnership
LP = k g, g = 10

Cselection = E(losses) ∗ failures + csearch ∗ failures (17.12)

The first term is the total losses incurred by the institutional in-
vestors before finding a sufficiently competent venture capitalists. It
corresponds to the costs associated with type I errors (financing a bad
venture capitalist). The second term is the total search costs incurred
when the institutional investors have to look for a new venture capital-
ists to replace a failed one. It corresponds to the costs associated with
type II errors (missing a good venture capitalists).

Figure 17.4 shows on the left the evolution of the number of failures
and of the expected losses in case of failure with the size of the limited
partnership. In both cases, gaussian and exponential distribution of
start-up qualities1, expected losses increases linearly with LP , while
the number of failures fails as a negative power of LP . As already
stated, increasing LP increases both the risk and the accuracy of the
selection.

1 For concision the results are only showed for the uniform distribution of compe-
tence. They do not change with the triangular distribution of competence.
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The graphs on the right of Figure 17.4 allow to determine the opti-
mal size for the limited partnership for different values of the unitary
search cost c. In both cases the institutional investor will prefer the
smallest size in the absence of search costs. If they don’t pay for type
II errors, it is rational for them to minimize the number of type I er-
rors only. As the search costs increase, the optimal size for LP also
increases. In the gaussian case, the selections costs with no search costs
are very close. Thus the optimal size increases very rapidly with c.
In the exponential case, on the contrary the initial difference is much
bigger, and only slowly compensated by increasing search costs. With
the same value of unitary search cost c = 1, the institutional investors
will prefer the size LP = 20 in the exponential case when they already
prefer the size LP = 100 in the gaussian case.

17.6 Conclusion

The analysis of this agent based model provides a characterization of
the selection process of competent venture capitalists with a noisy se-
lection criterion. It shows that the market selection based on venture
capitalists’ past performance is efficient. It also shows that the accuracy
of the selection increases with the size of the limited partnership, i.e.
with the number of observations used for the evaluation. The final dis-
tribution of venture capitalists’ competence, however, is independent
of the size of the limited partnership.

The choice of the size of the limited partnership for the institutional
investor is a balance between the accuracy of the selection and the risk
he incurs. The optimal size can be determined by the computation of
selection costs. It depends on the relative costs of type I and type II
errors.
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18.1 Introduction

In this paper, we shall show the design of a multi-unit double auction
(MDA) market. It should be enough robust, flexible and sufficiently
efficient in facilitating exchanges. In a MDA market, sellers and buyers
submit respectively asks and bids. A trade is made if a buyers bid ex-
ceeds a sellers ask. A sellers ask may match several buyers bids and a
buyers bid may satisfy several sellers asks. The trading rule of a market
defines the organization, information exchange process, trading proce-
dure and clearance rules of the market. The mechanism is announced
before the opening of the market so that every agent knows how the
market will operate in advance. These autonomous agents pursue their
own interests maximizing their own utilities. Therefore, we can view our
market as a multi-agent system where the market mechanism defines
the structure and rules of the environment in which agents will play
the market game. An efficient market maximizes the total profit ob-
tained by all participating agents (Fudenberg and Tirole, 1991). How-
ever, voluminous game theory literature focuses on auction markets.
Satterthwaite and Williams (1989) were among the early researchers
studying double auction markets. They designed a single-unit double
auction (SDA) market where they eliminated the strategic behavior
on the sellers side. McAfee (1992) allowed strategic behavior on both
sides of a SDA market and required a market maker to balance the
budget. Gjerstad and Dickhaut (1998) allowed agents to use simple
rules to form beliefs about their opponents offers and showed that the
market price converged to competitive equilibrium quickly. Das et al.
(2001) carried over a series of experiments where humans and software
agents competed with each other. Sandholm and Suri (2001) showed
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that if a double auction market allows agents to submit discriminatory
bids, the problem of clearing the market faced by the market maker is
NP-Complete.

In this paper, a binary particle swarm optimization algorithm has
been proposed to solve a quadratic assignment problem to achieve an
optimal solution to a double auction market.
In section 2 it will be proposed the mathematical model, section 3 will
introduce the PSO methodology as proposed by Kennedy and Eber-
hart, a special binary version of PSO will be shown in section 4, and
finally sections 5 and 6 will respectively give results and conclusions.

18.2 Mathematical model

One ideal way of organizing an efficient MDA market is to let the
buyers/sellers submit bids/asks about how many items they want to
purchase/sell and at what reservation prices. Based on this informa-
tion, the market maker solves an optimization problem to determine
how many units each agent should purchase/sell and at what price to
maximize the total profit of the market. In a MDA market with m
buyers and n sellers, each buyer i wants to purchase Zi unit items and
each seller j has Yj unit items to sell. We assume both Zi and Yj are
known to every agent. The reservation prices, which are private, for
buyer i and seller j are bi and sj. We assume the reservation price for
each agent is static. Let qij denote the quantity buyer i buys from seller
j. If all information is public, the maximum total market value can be
obtained by solving the following linear programming problem:

max
m∑

i=1

n∑
j=1

qij(bi − sj), (18.1)

where
m∑

i=1

qij ≤ Yj ∀ j (18.2)

and
n∑

j=1

qij ≤ Zi ∀ i (18.3)

with
qij ≥ 0 for every i, j. (18.4)
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Constraints (2) and (3) state that a seller sells no more than what he
possesses and a buyer will not buy more than he needs. It is interesting
to note that the trading price does not show up in the problem. In fact,
if buyer i buys quantity qij from seller j at price pij, then the market
value this transaction implements is the sum of buyer i utility plus
seller j utility, which is qij(bi −sj) independent of the trading price pij.
However, it is clear that the trading price will affect each agents utility.

18.3 Particle swarm optimization

Particle Swarm Optimization (PSO) is a parallel population-based
computation technique developed by Kennedy and Eberhart (1995).
Their biological inspiration is based on the organisms behavior such as
flocking of birds and schooling of fishes. In these groups the moviment
of the whole swarm is based on his own knowledge and on a leader,
the one with the best performance. From this, one can learn that PSO
shares many common points with genetic algorithm, in fact, they start
with a randomly generated population, evaluate the population with a
fitness function, update the population, search for the optimum with
random techniques and do not guarantee optimality. PSO’s major dif-
ference from genetic algorithm is that PSO uses the physical movements
of the individuals in the swarm as a flexible mechanism to combine
global search and local search avoiding local optima, whereas genetic
algorithm uses genetic operators like mutation and crossover. Each in-
dividual of the swarm has a position in the solution hyperspace and a
velocity, that is changed, at each step, to update individual position.
Each particle knows its position and the value of the fitness function
for that position. Besides each particle keeps track of its coordinates in
the problem space, which are associated with the best fitness value it
has achieved so far. Every particle knows also the best position among
all of the particles and its fitness value. The update of the particle po-
sition is the result of a compromise among three alternatives: following
its current pattern of exploration; going back towards its best previ-
ous position; going towards the overall best position. The updating
processes are accomplished according to the following equations:

xij(k + 1) = xij(k) + vij(k) (18.5)

vij(k) = F · [w · vij(k − 1) + vijlocbest(k − 1) + vijglobest(k − 1)] (18.6)

vijlocbest(k) = c1 · r · (xijlocbest(k) − xij(k)) (18.7)
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vijglobest(k) = c2 · r · (xijglobest(k) − xij(k)). (18.8)

At each step, equation (6) calculates a new velocity for each particle in
the swarm based on its velocity at previous step, the best position it has
been achieved (locbest) and the best position (globest) the population
has been achieved. Then, using the resultant velocity value the position
of each particle is updated by equation (5). About the coefficients in
equation (6), F is a constrictor factor to insure convergence, the use
of an inertia weight w provides to improve performance in a number
of applications, while the (0,1)-random constants r and the coefficients
c1 and c2 represent the weighting of the stochastic acceleration terms
that pull each particle towards xlocbest and xglobest locations. The
PSO algorithm is stopped when the best particle position of the entire
swarm cannot be improved further after a sufficiently large number of
iterations. PSO algorithms were proposed, in many research fields, to
solve continuous optimization problems. Now, it is very interesting the
possibility to solve discrete optimization problems. We do this adopting
the quantum discrete algorithm (Yang et al., 2004). The basic idea is
that, in quantum theory, the minimum unit carrying information is
a bit, that can be in any superposition of state 0 and 1. let R the
swarm size and S the particle’s length, we define the following quantum
particle vector V = [V1, V2, ..., VR] with Vi = [vi1, vi2, ..., viS ] with 0 ≤
vij ≤ 1 to represent the probability of the bit j of the particle i to be 0.
Denoting with X = [X1,X2, ...,XR] with Xi = [xi1, xi2, ..., xiS ] where
xij = {0, 1} a position vector associated with V , to update the position
we made use of the following rule 1:

”for each v generate a random number ρ in [0,1] and a sigmoid(v)
using equation (12), then if ρ < sigmoid(v) then x = 1 else x = 0”.

The equations for updating processes are modified as follows:

vij(k + 1) = w · vij(k) + c1 · vijlocbest(k) + c2 · vijglobest(k) (18.9)

vijglobest(k) = α · xijglobest(k) + β · (1 − xijglobest(k)) (18.10)

vijlocbest(k) = α · xijlocbest(k) + β · (1 − xijlocbest(k)) (18.11)

sigmoid(vij) = (1 + exp(−vij))−1 (18.12)

where α + β = 1, 0 < α, β < 1, 0 < w, c1, c2 ≤ 2.
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18.4 Binary particle swarm optimization for double
auction market

To maximize the collective utility using a Binary PSO algorithm
(BPSO), we solved the following quadratic programming problem:

max
m∑

i=1

n∑
j=1

qijxij(bi − sj) (18.13)

Where
m∑

i=1

qijxij ≤ Yj ∀ j (18.14)

n∑
j=1

qijxij ≤ Zi ∀ i (18.15)

with
xij = {0, 1}, and qij ≥ 0 for every i, j. (18.16)

In the objective function we have two sets of variables xij and qij. We
introduced a binary variable xij that is equal to 1 if there is a transac-
tion between buyer i and seller j independently by the number of units,
qij, each agent should purchase/sell. Then we can solve our problem
as an assignment problem. It is possible summarize the algorithm as
follows:

1. Random initialization of the particles (candidate solutions);
2. Evaluation of their fitness using equation (13);
3. Updating of particles velocity and position using equations (9)-(12)

and rule 1 until a maximal number of iterations.

18.5 Results

Validation of an analytical method through a series of experiments
demonstrates that the method is suitable for its intended purpose. The
algorithm was implemented on a Pentium Centrino Duo in Matlab 6.5.
To realize a robust algorithm, it was very important to obtain proper
values for the control parameters according to problem characteristics.
To do this, the algorithm was run from random initial solutions un-
der many different parameter settings. After many experiments, the
parameters were set as in table 1.
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Table 18.1. control parameters for BPSO algorithm

parameter value

α 0.7
β 0.3
w 1
c1 2
c2 2
F 0.729

Problems of different size were solved to test the efficiency of the
proposed algorithm and to evaluate its performance. Each instance was
run 20 times from different initial solutions. Our result (average of 20
running) is displayed in Fig.1 and proves as, after about 20 iterations,
the process reaches stability. Then we proposed the information entropy
for measuring the similarity convergence among the particle vectors. We
calculated the conditional probability that value 1 happens at the bit
j given the total number of bits that take value 1 in the entire swarm
as follows:

probj =
∑R

i=1 xij∑R
i=1

∑S
h=1 xih

. (18.17)

Then the particle vector entropy can be defined as:

E = −
S∑

j=1

(probj · log2(probj)). (18.18)

If the particle vectors are highly similar to one another, the val-
ues of those non-zero probj would be high, resulting in less entropy
value. Fig.2 depicts the particle vector entropy versus the number of
iterations. This is to testify that the swarm evolves to the same opti-
mization goal and the best solution is not obtained by chance due to
a lucky particle. Obviously, this is because each particle can adjust its
direction and velocity depending on the results of its neighbors. The
results are quite promising and show that the algorithm is applicable
to nonlinear problems.

18.6 Conclusions

In this paper we introduce PSO mechanism into double auction market
with discriminatory bids and asks. The algorithm doesn’t need complex
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encoding and decoding processes and also for this is efficient in run-
ning time. Many problems are left for future research. In particular,
it’s necessary further theoretical analysis for getting a better BPSO
convergency and to investigate how uncertainty in transactions can
influence the solution’s stability. The presented example are merely il-
lustrative. However, the modeling results seem to be very promising for
analysis and planning especially in markets that use fixing procedures.
Future work can be extended to self-adaptive algorithms for dynamic
environments. Moreover, PSO method can be defined as a evolution-
ary technique and it encourages studies about social interaction among
peoples. Some features applications of PSO could focus the own at-
tention on a study concerning special methodologies for prey-predator
problems or for finding the best path to reach a target in robotic field
(DiGesù et al., 2006).
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19.1 Introduction

In every (discrete) period of time a decision maker (for short, an agent)
makes a decision and, simultaneously, Nature selects a state of the
world. The agent receives a payoff which depends on both his action and
the state. Nature’s behavior is ex-ante unknown to the agent, it may
be as simple as an i.i.d. environment or as sophisticated as a strategic
play of a rational player. The agent’s objective is to select a sequence of
decisions which guarantees to him the long-run average payoff as large
as the best-reply payoff against Nature’s empirical distribution of play,
no matter what Nature does. A behavior rule of the agent which fulfills
this objective is called universally consistent1: the rule is “consistent”
if it is optimized against the empirical play of Nature; the word “
universally” refers to its applicability to any behavior of Nature.

A range of problems can be described within this framework. One
example, known as the on-line decision problem, deals with predicting a
sequence of states of Nature, where at every period t the agent makes a
prediction based on information known before t. The classical problem
of predicting the sequence of 0’s and 1’s with “ few” mistakes has been
a subject of study in statistics, computer science and game theory for
more than 40 years. In a more general problem, an agent’s goal is to
predict a sequence of states of Nature at least as well as the best expert
from a given pool of experts2(see Cesa-Bianchi et al., 1997; Freund and
Schapire, 1996; Littlestone and Warmuth, 1994; Vovk, 1998). Another

1 The term “universal consistency” is due to Fudenberg and Levine (1995).
2 By an “ expert” we understand a given deterministic on-line prediction algorithm.

Thus, “ to do as well as the best expert” means to make predictions, on average,
as close to the true sequence of states as the best of the given prediction algoritms.



260 Andriy Zapechelnyuk

example is no-regret learning in game-theory. A regret 3 of an agent for
action a is his average gain had he played constant action a instead of
his actual past play; the agent’s goal is to play a sequence of actions
so that he has “no regrets”(e.g., Cesa-Bianchi and Lugosi, 2003; Foster
and Vohra, 1999; Fudenberg and Levine, 1995; Hannan, 1957; Hart and
Mas-Colell, 2000, 2001).

Action a is called a better reply to Nature’s empirical play if the
agent could have improved upon his average past play had he played
action a instead of what he actually played in the past. In this paper,
we assume that in every period the agent plays a better reply to Na-
ture’s past play. The better-reply play is a natural adaptive behavior
of an unsophisticated, myopic, non-Bayesian decision maker. The class
of better-reply strategies encompasses a big variety of behavior rules,
such as fictitious play and smooth fictitious play.4 Hart and Mas-Colell
(2000)’s “no-regret” strategy of playing an action with probability pro-
portional to the regret for that action; the logistic (or exponential-
weighted) algorithms used in both game theory and computer science
(see Cesa-Bianchi et al., 1997; Freund and Schapire, 1996; Littlestone
and Warmuth, 1994; Vovk, 1998); the polynomial (lp-norm) “no-regret”
strategies and potential-based strategies of Hart and Mas-Colell (2001)
(see also Cesa-Bianchi and Lugosi, 2003).

The agent is said to have m-recall if he is capable of remembering
the play of m last periods, and the empirical frequency of Nature’s
play to which the agent “ better-replies” is the simple average across
the time interval not exceeding the last m periods. A special case of
agent with perfect recall (m = ∞) is well studied in the literature, and
universally consistent better-reply strategies of an agent with perfect
recall are well known (see Cesa-Bianchi and Lugosi, 2003; Foster and
Vohra, 1999; Hannan, 1957; Hart and Mas-Colell, 2000, 2001).

The question that we pose in this paper is whether there are better-
reply strategies for an agent with bounded recall (m < ∞) which are
(nearly) universally consistent if the agent has sufficiently large length
of recall. We show that an agent with long enough recall can approach
the best reply to any i.i.d. environment. However, by a simple example
we demonstrate that an agent cannot optimize his average play against
general (non-i.i.d.) environment, no matter how long (yet, bounded)
3 This paper deals with the simplest notion of regret known as external (or uncon-

ditional) regret (see, e.g., Foster and Vohra, 1999).
4 In the original (Fudenberg and Levine, 1995)’s definition, the smooth fictitious

play is not a better-reply strategy; however, certain versions of it, such as the lp-
norm strategy with large p and the exponential-adjustment strategy with small
η, are better-reply strategies.
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recall he has and no matter what better-reply strategy he employs.
Formally, we say that a family of better-reply strategies with bounded
recall is asymptotically universally consistent if for every ε > 0 and
every sufficiently large m = m(ε) an agent with recall length m has an
ε-universally consistent strategy in this family. We prove the following
statement.

There is no family of bounded-recall better-reply strategies which
is asymptotically universally consistent.

The statement is proven by a counterexample. We construct a game
where if Nature plays a certain form of the fictitious play, then, re-
gardless of what better-reply strategy the agent uses, for every agent’s
recall length m the limit play forms a cycle. The average payoff of the
agent along the cycle is bounded away from the best-reply payoff by a
uniform bound for all m. Intuitively, the reason for a cyclical behavior
is that in every period t the agent’s learns a new observation, a pair
(at, ωt), and forgets another observation, (at−m, ωt−m). An addition of
the new observation shifts, in expectation, the agent’s average payoff
(across the last m periods) in a “ better” direction, however, the loss of
(at−m, ωt−m) shifts it in an arbitrary direction. Since the magnitude of
the two effects is the same, 1/m, it may lead to a cyclical behavior of the
play. Note that with unbounded recall, m = ∞, the second effect does
not exist, i.e., the agent does not forget anything, and, consequently, a
cyclical behavior is not possible.

A closely related work of Lehrer and Solan (2003) assumes bounded
recall of agents and studies a certain form of a better-reply behavior.
Lehrer and Solan describe an ε-universally consistent strategy, where
the agent periodically “ wipes out” his memory. Comparison of this
work with our results brought into our paper an interesting insight
that “better memory multiplies regrets”: an agent can achieve a better
average payoff by not using, or deliberately forgetting some information
about the past (see Section 19.6 for further discussion).

19.2 Preliminaries

In every discrete period of time t = 1, 2, . . . a decision maker (or an
agent) chooses an action, at, from a finite set A of actions, and Nature
chooses a state, ωt, from a finite set Ω of states. Let u : A×Ω → R be
the agent’s payoff function; u(at, ωt) is the agent’s payoff at period t.
Denote by ht := ((a1, ω1), . . . , (at, ωt)) the history of play up to t. Let
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Ht = (A × Ω)t be the set of histories of length t and let H =
⋃∞

t=1 Ht

be the set of all histories.
Let p : H → ∆(A) and q : H → ∆(Ω) be behavior rules of the agent

and Nature, respectively. For every period t, we will denote by pt+1 :=
p(ht) the next-period mixed action of the agent and by qt+1 := q(ht)
the next-period distribution of states of Nature. A pair (p, q) and an
initial history ht0 induce a probability measure over Ht for all t > t0.

We assume that the agent does not know q, that is, he plays against
an unknown environment. We consider better-reply behavior rules, ac-
cording to which the agent plays actions which are “ better” than his
actual past play against the observed empirical behavior of Nature.
Formally, for every a ∈ A and every period t define Rm

t (a) ∈ R+ as
the average gain of the agent had he played a over the last m periods
instead of his actual past play. Namely, let5

Rm
t (a) =

[
1
m

∑t

k=t−m+1
(u(a, ωk) − u(ak, ωk))

]+

for all t ≥ m

and

Rm
t (a) =

[
1
t

∑t

k=1
(u(a, ωk) − u(ak, ωk))

]+

for all t < m.

We will refer to Rm
t (a) as the agent’s regret for action a.

The parameter m ∈ {1, 2, . . .} ∪ {∞} is the agent’s length of recall.
An agent with a specified m is said to have m-recall. We shall distin-
guish the cases of perfect recall (m = ∞) and bounded recall (m < ∞).

Consider an agent with m-recall. Action a is called a better reply
to Nature’s empirical play if the agent could have improved upon his
average past play had he played action a instead of what he actually
played in the last m periods.

Definition 1. Action a ∈ A is a better-reply action if Rm
t (a) > 0.

A behavior rule is called a better-reply rule if the agent plays only
better-reply actions, as long as there are such.

Definition 2. Behavior rule p is a better-reply rule if for every period
t, whenever maxa∈A Rm

t (a) > 0,

Rm
t (a) = 0 ⇒ pt+1(a) = 0, a ∈ A.

5 We write [x]+ for the positive part of a scalar x, i.e., [x]+ = max{0, x}.
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The focus of our study is how well better-reply rules perform against
an unknown, possibly, hostile environment. To assess performance of
a behavior rule, we use Fudenberg and Levine (1995)’s criterion of ε-
universal consistency defined below.

An agent’s behavior rule p is said to be consistent with q if the
agent’s long-run average payoff is at least as large as the best-reply
payoff to the average empirical play of Nature which plays q.

Definition 3. Let ε > 0. A behavior rule p of the agent with m-recall
is ε-consistent with q if for every initial history ht0 there exists T such
that for every6 t ≥ T

Pr(p,q,ht0)

[
max
a∈A

R∞
t (a) < ε

]
> 1 − ε.

A behavior rule p is consistent with q if it is ε-consistent with q for
every ε > 0.

Let Q be the class of all behavior rules. An agent’s behavior rule p
is said to be universally consistent if it is consistent with any behavior
of Nature.

Definition 4. A behavior rule p of the agent with m-recall is (ε-) uni-
versally consistent if it is (ε-) consistent with q for every q ∈ Q.

19.3 Perfect recall and prior results

Suppose that the agent has perfect recall (m = ∞). This case has been
extensively studied in the literature, starting from Hannan (1957), who
proved the following theorem.7

Theorem 19.3.1 (Hannan, 1957) There exists a better-reply rule
which is universally consistent.

Hart and Mas-Colell (2000) showed that the following rule is uni-
versally consistent:

pt+1(a) :=

{
R∞

t (a)∑
a′∈A R∞

t (a′) , if
∑

a′∈A R∞
t (a′) > 0,

arbitrary, otherwise.
(19.1)

6 Pr(p,q,h)[E] denotes the probability of event E induced by strategies p and q, and
initial history h.

7 The statements of theorems of Hannan (1957); Hart and Mas-Colell (2000) pre-
sented in this section are sufficient for this paper, though the authors obtained
stronger results.
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According to this rule, the agent assigns probability on action a propor-
tional to his regret for a; if there are no regrets, his play is arbitrary.
This result is based on Blackwell (1956)’s Approachability Theorem.
We shall refer to p in (19.1) as the Blackwell strategy.

The above result has been extended by Hart and Mas-Colell (2001)
as follows. A behavior rule p is called a (stationary) regret-based rule
if for every period t the agent’s next-period behavior depends only on
the current regret vector. That is, for every history ht, the next-period
mixed action of the agent is a function of R∞

t = (R∞
t (a))a∈A only:

pt+1 = σ(R∞
t ). Hart and Mas-Colell proved that among better-reply

rules, all “ well-behaved” stationary regret-based rules are universally
consistent.

Theorem 19.3.2 (Hart and Mas-Colell, 2001) Suppose that a
better-reply rule p satisfies the following:

(i) p is a stationary regret-based rule given for every t by pt+1 =
σ(R∞

t ); and
(ii) There exists a continuously differential potential P : R

|A|
+ → R+

such that σ(x) is positively proportional to ∇P (x) for every x ∈
R
|A|
+ , x �= 0.

Then p is universally consistent.

The class of universally consistent behavior rules (or “ no regret”
strategies) which satisfy conditions of Theorem 19.3.2 includes the lo-
gistic (or exponential adjustment) strategy given for every t and every
a ∈ A by

pt+1(a) =
exp(ηRm

t (a))∑
b∈A exp(ηRm

t (b))
,

η > 0, used by Cesa-Bianchi et al. (1997); Freund and Schapire (1996);
Littlestone and Warmuth (1994); Vovk (1998) and others; the smooth
fictitious play8; the polynomial (lp-norm) strategies and other strategies
based on a separable potential (Cesa-Bianchi and Lugosi, 2003; Hart
and Mas-Colell, 2001).

19.4 Bounded recall and i.i.d. environment

The previous section shows that the universal consistency can be
achieved for agents with perfect recall. Considering the perfect recall

8 See footnote 4.
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as the limit of m-recall as m → ∞, one may wonder whether the uni-
versal consistency can be approached by bounded-recall agents with
sufficiently large m.

We start with a result that establishes existence of better-reply rules
which are consistent with any i.i.d. environment. Nature’s behavior rule
q is called an i.i.d. rule if qt = qt′ for all t, t′, independently of the
history. Let Qi.i.d. ⊂ Q be the set of all i.i.d. behavior rules. An agent’s
behavior rule p is said to be i.i.d. consistent if it is consistent with any
i.i.d. behavior of Nature.

Definition 5. A behavior rule p of the agent with m-recall is (ε-) i.i.d.
consistent if it is (ε-) consistent with q for every q ∈ Qi.i.d..

Denote by Pm the class of all better-reply rules for an agent with
m-recall, m ∈ N. Consider an indexed family of better-reply rules p =
(p1, p2, . . .), where pm ∈ Pm, m ∈ N.

Definition 6. A family p is asymptotically i.i.d consistent if for every
ε > 0 there exists m such that for every m′ ≥ m rule pm′

is ε-i.i.d.
consistent.

Theorem 19.4.1 There exists a family p of better-reply rules which
is asymptotically i.i.d. consistent.

Proof Let q∗ ∈ ∆(Ω) and suppose that qt = q∗ for all t. Denote by
q̄m
t the empirical distribution of Nature’s play over the last m periods,

q̄m
t (ω) =

1
m

|k ∈ {t − m + 1, . . . , t} : ωk = ω| , ω ∈ Ω.

Suppose that the agent plays the fictitious play with m-recall. Namely,
the agent’s next-period play, pm

t+1, assigns probability 1 on an action
in arg maxa∈Au(a, q̄m

t ), ties are resolved arbitrarily. Thus, the agent
plays in every period a best reply to the average realization of m i.i.d.
random variables with mean q∗. Since maxa∈A u(a, x) is continuous in
x for x ∈ ∆(Ω), the Law of Large Numbers implies that in every period
the agent obtains an expected payoff which is εm-close to the best reply
payoff to q∗ with probability at least 1 − εm, with εm → 0 as m → ∞.
�

19.5 A negative result

In this section we demonstrate that an agent with bounded recall can-
not guarantee his play to be ε-optimized against the empirical play of
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Nature, no matter how large recall length he has and no matter what
better-reply rule he uses.

Definition 7. Family p = (p1, p2, . . .) of better-reply rules is asymp-
totically universally consistent if for every ε > 0 there exists m such
that for every m′ ≥ m rule pm′

is ε-universally consistent.

Theorem 19.5.1 There is no family of better-reply rules which is
asymptotically universally consistent.

The theorem is proven by a counterexample.

L M R
U 1,0 0,1 0, 34
D 0,1 1,0 0, 34

Fig. 19.1.

Consider a repeated game Γ with the stage game given by Fig. 19.1,
where the row player is the agent and the column player is Nature. For
every m denote by pm and qm be the behavior rules of the agent and
Nature, respectively. We shall show that for every m0 ∈ N there exists
m ≥ m0 such that the following holds.

Suppose that the agent with recall length m and Nature play game
Γ . Then for every agent’s better-reply rule pm there exist behavior rule
qm of Nature, initial history ht0 and period T such that for all t ≥ T

Pr(pm,qm,ht0)

[
max

a∈{U,D}
R∞

t (a) ≥ 1
32

]
≥ 1

32
.

Let M = {4j + 2|j = 2, 3, . . .}. For every m ∈ M , let pm be an
arbitrary better-reply rule, and let qm be the fictitious play with m-
recall. Namely, denote by uN the payoff function of Nature as given
by Fig. 19.1, and denote by p̄t the empirical distribution of the agent’s
play over the last m periods,

p̄t(a) =
1
m

|k ∈ {t − m + 1, . . . , t} : ak = a| , a ∈ A.

Then qm
t+1 assigns probability 1 to a state in arg maxω∈{L,M,R}uN (p̄t, ω)

(ties are resolved arbitrarily). Let Pm be the Markov chain with state
space Hm := (A × Ω)m induced by pm and qm and an initial state ht0 .
A history of the last m periods, hm

t ∈ Hm will be called, for short,
history at t. Denote by Hm

C ⊂ Hm the set of states generated along the



19 Better-Reply Strategies with Bounded Recall 267

Fig. 19.2. Closed cycle of Markov chain Pm.

following cycle (Fig. 19.2). The cycle has four phases. In two phases
labeled (U,R) and (D,R), the play is deterministic, and the duration of
each phase is exactly m/2 periods. In the two other phases, the play
may randomize between two profiles (one written above the other), and
the duration of each phase is m/2 or m/2 + 1 periods. First, we show
that this cycle is closed in Pm, i.e., hm

t ∈ Hm
C implies hm

t′ ∈ Hm
C for

every t′ > t.

Lemma 19.5.2 For every m ∈ M , the set Hm
C is closed in Pm.

The proof is in the Appendix.
Next, we show that the average regrets generated by this cycle are

bounded away from zero by a uniform bound for all m.

Lemma 19.5.3 For every m ∈ M , if ht0 ∈ Hm
C , then there exists

period T such that for all t ≥ T

Pr(pm,qm,ht0)

[
max

a∈{U,D}
R∞

t (a) ≥ 1
32

]
≥ 1

32
.

The proof is in the Appendix. Lemmata 19.5.2 and 19.5.3 entail the
statement of Theorem 19.5.1.
Remark 1 In the proof of Theorem 19.5.1, Nature plays the ficti-
tious play with m-recall, which is a better-reply strategy for every m.
Consequently, an agent with bounded recall cannot guarantee a nearly
optimized behavior even if Nature’s behavior is constrained to be in
the class of better-reply strategies.
Remark 2 The result can be strengthened as follows. Suppose that
whenever an agent has no regrets, then he plays a fully mixed action,
i.e.,

max
a′∈A

Rm
t (a′) = 0 ⇒ pm

t+1(a) > 0 for all a ∈ A. (19.2)
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The next lemma shows that if in game Γ the agent plays a better-reply
strategy pm which satisfies (19.2) and Nature plays the fictitious play
with m-recall, then the Markov chain Pm converges to the cycle Hm

C
regardless of an initial history. Thus the above negative result is not an
isolated phenomenon, it is not peculiar to a small set of initial histories.

Lemma 19.5.4 For every m ∈ M , if pm satisfies (19.2), then for every
initial history ht0 the process Pm converges to Hm

C with probability 1.

The proof is in the Appendix.
To see that the statement of Lemma 19.5.4 does not hold if pm

fails to satisfy (19.2), consider again game Γ with the agent playing
a better-reply strategy pm and Nature playing the fictitious play with
m-recall, qm. In addition, suppose that whenever maxa′∈A Rm

t (a′) = 0,
pm

t+1(U) = 1 if t is odd and 0 if t is even. Let t be even and let ht

consist of alternating (UR) and (DR). Clearly, Rm
t (U) = Rm

t (D) = 0,
and Nature’s best reply is R, thus, qt+1(R) = 1. The following play is
deterministic, alternating between (UR) and (DR) forever.

19.6 Concluding remarks

We conclude the paper with a few remarks.
1. Why does the better-reply play of an agent with bounded recall

fail to exhibit a (nearly) optimized behavior (against Nature’s empirical
play)?

For every a ∈ A denote by vt(a) the one-period regret for action a,

vt(a) = u(a, ωt) − u(at, ωt),

and let vt = (vt(a))a∈A. Since Rm
t−1 = 1

m

∑t−1
k=t−m vk, we can consider

how the regret vector changes from period t − 1 to period t:

Rm
t = Rm

t−1 +
1
m

vt − 1
m

vt−m.

Since the play at period t is a better reply to the empirical play over
time interval t−m, . . . , t−1, the term 1

mvt(a) shifts the regret vector, in
expectation, towards zero, however, the term − 1

mvt−m shifts the regret
vector in an arbitrary direction. A carefully constructed example, as in
Section 19.5, causes the regret vector to display a cyclical behavior.

2. The following model was introduced by Lehrer and Solan (2003).
Suppose that the agent has bounded recall m. Divide the time into
blocks of size m: the first block contains periods 1, . . . ,m, the second
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block contains periods m + 1, . . . , 2m, etc. Let n(t) be the first period
of the current block,9 n(t) = m  t/m!+1. The agent’s regret for action
a ∈ A is defined by

R̂m
t (a) =

1
t − n(t) + 1

∑t

τ=n(t)
(u(a, ωτ ) − u(aτ , ωτ )) . (19.3)

That is, R̂m
t (a) is the agent’s average increase in payoff had he played

a constantly instead of his actual past play within in the current block.
Let p∗ be the Blackwell strategy (19.1) with better replies computed rel-
ative to (19.3). Clearly, this strategy can be implemented by the agent
with m-recall. However, the agent behaves as if he remembers only the
history of the current block, and at the beginning of a new block he “
wipes out” the content of his memory. Notice that the induced proba-
bility distribution over histories within every block is identical between
blocks and equal to the probability distribution over histories within
first m periods in the model with a perfect-recall agent. The Blackwell
(1956)’s Approachability Theorem (which is behind the result of Hart
and Mas-Colell (2000) on the universal consistency of p∗) gives the
rate of convergence of 1/

√
t, hence, within each block the agent can

approach 1/
√

m-best reply to the empirical distribution of Nature’s
play.

This result is a surprising contrast to the counterexample in Section
19.5. It shows that an agent can achieve better average payoff by not
using, or deliberately forgetting some information about the past. In-
deed, according to the example presented in Section 19.5, if the agent
uses full information that he remembers, the play may eventually enter
the cycle with far-from-optimal behavior, no matter with what initial
history he starts.

3. Hart and Mas-Colell (2001) used a slightly different notion of
better reply. Consider an agent with perfect recall and define for every
period t and every a ∈ A

Dm
t (a) =

1
t

∑t

k=1
(u(a, ωk) − u(ak, ωk)) .

Note that Rm
t (a) = [Dm

t (a)]+. Action a is a strict better reply (to the
empirical distribution of Nature’s play) if Dm

t (a) > 0 and it is a weak
better reply if Dm

t (a) ≥ 0. According to Hart and Mas-Colell, behavior
rule p is a better-reply rule if whenever there exist actions which are
weak better replies, only such actions are played; formally, whenever
maxa∈A Dm

t (a) ≥ 0,
9 �x� denotes a number x rounded up to the nearest integer.
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Dm
t (a) < 0 ⇒ pt+1(a) = 0, a ∈ A.

The definition of a better-reply rule used in this paper is the same as
Hart and Mas-Colell’s, except that the word “ weak” is replaced by “
strict”; formally, whenever maxa∈A Dm

t (a) > 0,

Dm
t (a) ≤ 0 ⇒ pt+1(a) = 0, a ∈ A.

These notions are very close, and one does not imply the other. To the
best of our knowledge, all specific better-reply rules mentioned in the
literature satisfy both notions of better reply. It can be verified that
our results remain intact with either notion.

Appendix

A-1 Proof of Lemma 19.5.2.

Let k = m−2
4 . Denote by zt the empirical distribution of play, that is,

for every (a, ω) ∈ A×Ω, zt(a, ω) is the frequency of (a, ω) in the history
at t,

zt(a, ω) :=
1
m

|{τ ∈ {t − m + 1, . . . , t} : (aτ , ωτ ) = (a, ω)| .

Let ζt be is the frequency of play of U in the last m periods, ζt =
zt(U,L) + zt(U,M) + zt(U,R).
Fact 1. For every period t,

ωt+1 =




L, if ζt < 1
4 ,

M, if ζt > 3
4 ,

R, if 1
4 < ζt < 3

4 .

Proof. Note that

uN (p̄t,L) = zt(D,L) + zt(D,M) + zt(D,R) = 1 − ζt,

uN (p̄t,M) = zt(U,L) + zt(U,M) + zt(U,R) = ζt,

uN (p̄t,R) =
3
4
.

Since Nature plays fictitious play, at t + 1 it selects

ωt+1 ∈ arg maxω∈{L,M,R}uN (p̄t, ω).

Note that ties never occur, since m ∈ M and ζt is a multiple of 1
m ,

thus ζt �= 1
4 or 3

4 . � Fact 2. Suppose that hm
t ∈ Hm

C such that t is
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Fig. 19.3. Three forms of the (U,M)/(D,M) phase.

the last period of the (D,R) phase, and suppose that the (U,M)/(D,M)
phase preceding the (D,R) phase has form (a), (b) or (c), as shown
in Fig. 19.3. Then the play for the next m/2, m/2 + 1, or m/2 + 2
periods constitute the full cycle as shown in Fig. 19.2, where phases
(D,L)/(U,L) and (U,M)/(D,M) have forms10 (a), (b) or (c).
Proof. Suppose that hm

t contains m/2 (D,R)’s, preceded by the
(U,M)/(D,M) phase in form (a), (b), or (c). We shall show that the
play in the next m/2 or m/2 + 1 periods constitute phase (D,L)/(U,L)
in form (a), (b) or (c), followed by m/2 (U,R)’s. Once this is estab-
lished, by considering the last period of phase (U,R) and repeating the
arguments, we obtain Fact 2.

Case 1. Phase (U,M)/(D,M) preceding phase (D,R) has form (a) or
(b). Note that whether the (U,M)/(D,M) phase has form (a) or (b),
hm

t is the same, since it contains only 2k + 1 ≡ m/2 last periods of the
(U,M)/(D,M) phase. Let t be the last period of the (D,R) phase. We
have ζt = k

m < 1
4 , thus by Fact 1, ωt+1 =L. Also,

Rt(U) = zt(D,L) − zt(D,M) = −zt(D,M) = −k + 1
m

,

Rt(D) = zt(U,M) − zt(U,L) = zt(U,M) =
k

m
,

hence at+1 =D. Further, in every period t+j, j = 1, . . . , k, (at+j , ωt+j) =
(D,L) is played and (at+j−m, ωt+j−m) = (U,M) disappears from the his-
tory. At period t + k we have

10 The forms of the (D,L)/(U,L) phase are symmetric to those of (U,M)/(D,M),
obtained by replacement of (U,M) by (D,L) and (D,M) by (U,L).
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Rt+k(U) = zt+k(D,L) − zt+k(D,M) =
k

m
− k + 1

m
= − 1

m
,

Rt+k(D) = zt+k(U,M) − zt+k(U,L) = 0 − 0 = 0.

There are no regrets, and therefore both (U,L) and (D,L) may occur at
t+k+1. Suppose that (D,L) occurs. Since (at+k−m, ωt+k−m) = (D,M),
it will disappear from the history at t + k + 1, so, we have

Rt+k+1(U) =
k + 1

m
− k

m
=

1
m

,

Rt+k+1(D) = 0 − 0 = 0,

and (U,L) occurs in periods k + 2, . . . , 2k + 2, until we reach ζt+2k+2 =
k+1
m > 1/4. Thus, the phase (D,L)/(U,L) has k + 1 (D,L)’s, then k + 1

(U,L)’s, i.e., it takes form (b). If instead at t+k+1 action profile (U,L)
occurs, then

Rt+k+1(U) =
k

m
− k

m
= 0,

Rt+k+1(D) = 0 − 1
m

= − 1
m

,

and, again, there are no regrets and both (U,L) and (D,L) may occur
at t + 1. If (U,L) occurs, then

Rt+k+2(U) =
k

m
− k − 1

m
=

1
m

,

Rt+k+1(D) = 0 − 2
m

= − 2
m

,

and (U,L) occurs in periods k + 3, . . . , 2k + 1, until we reach ζt+2k+1 =
k+1
m > 1/4. Thus, the phase (D,L)/(U,L) has k (D,L)’s, then k + 1

(U,L)’s, i.e., it takes form (a). Finally, if at t+k +2 (D,L) occurs, then

Rt+k+1(U) =
k + 1

m
− k − 1

m
=

2
m

,

Rt+k+1(D) = 0 − 1
m

= − 1
m

,

and (U,L) occurs in periods k + 3, . . . , 2k + 2, until we reach ζt+2k+2 =
k+1
m > 1/4. Thus, the phase (D,L)/(U,L) has k (D,L)’s, then single

(U,L), then single (D,L), and then k (U,L)’s, i.e., it takes form (c).
Case 2. Phase (U,M)/(D,M) preceding phase (D,R) has form (c).

Then, similarly to Case 1, we have ζt = k
m < 1

4 , and (D,L) is determin-
istically played k + 1 times, until
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Rt+k+1(U) = zt+k+1(D,L) − zt+k+1(D,M) =
k + 1

m
− k

m
=

1
m

,

Rt+k+1(D) = zt+k+1(U,M) − zt+k+1(U,L) = 0 − 0 = 0.

After that, (U,L) is played in periods k + 2, . . . , 2k + 2, until we reach
ζt+2k+2 = k+1

m > 1/4. Thus, the phase (D,L)/(U,L) has k + 1 (D,L)’s
and then k + 1 (U,L)’s, i.e., it takes form (b).

Let t1 = t + 2k + 1 if the phase (D,L)/(U,L) had form (a) and
t1 = t + 2k + 2 if (b) or (c). Notice that at the end of the phase
(D,L)/(U,L) we have zt1(U,M) = zt1(D,M) = 0, hence

Rt1(U) = zt1(D,L) − zt1(D,M) > 0,
Rt1(D) = zt1(U,M) − zt1(U,L) < 0,

Thus, (U,R) is played for the next m/2 = 2k+1 periods, until we reach
ζt1+m/2 = 3k+2

m > 3/4, and phase (U,M)/(D,M) begins. �

A-2 Proof of Lemma 19.5.3.

By Lemma 19.5.2, ht0 ∈ Hm
C implies hm

t ∈ Hm
C for all t > t0. Let

hm
t ∈ Hm

C such that t is the period at the end of the (D,R) phase. Since
the history at t contains only (U,M)/(D,M) and (D,R) phases, we have
zt(D,L) = zt(U,L) = 0. Also, since at the end of the (D,R) phase the
number of U in the history is m+2

4 , it implies that zt(U,M) = 1
4 + 1

2m .
Therefore,

Rt(D) = zt(U,M) − zt(U,L) = zt(U,M) =
1
4

+
1

2m
≡ C

For every period τ , |Rτ (D) − Rτ+1(D)| ≤ 2
m , therefore, in periods t− j

and t + j the regret for D must be at least Rt(D) − 2j/m. Since the
duration of every cycle is at most 2m + 2, the average regret for D
during the cycle is at least

1
2m + 2

(
C + 2

[(
C − 2

m

)
+
(

C − 4
m

)
+ . . . +

+
(

C − 2(m/4 − 2)
m

)])
≥ 1

2m

(
m

2
C − 2

m

m2 − 4
32

)
≥ 1

32
.

Let γm be the limit frequency of periods where at least one of the
regrets exceeds ε,

γm = lim
t→∞

1
t

∣∣τ ∈ {1, . . . , t} : maxa∈{U,D} Rm
τ (a) ≥ ε

∣∣ .
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Clearly, γm > ε implies that for all large enough t

Pr(pm,qm,ht0)

[
maxa∈{U,D} R∞

t (a) ≥ ε
] ≥ ε.

Combining (19.4) with the fact that γm is at least as large as the
average regret for D during the cycle, we obtain γm ≥ 1/32. �

A-3 Proof of Lemma 19.5.4.

We shall prove that, regardless of the initial history, some event
Hm

E ⊂ Hm occurs infinitely often, and whenever it occurs, the pro-
cess reaches the cycle, Hm

C , within at most 2m periods with strictly
positive probability. It follows that the process reaches the cycle with
probability 1 from any initial history.
Fact 3. Regardless of an initial state, L and M occur infinitely often.
Proof. Suppose that M never occurs from some time on. Then at any
t

Rt(U) = zt(D,L) − zt(D,M) = zt(D,L) ≥ 0,
Rt(D) = zt(U,M) − zt(U,L) = −zt(U,L) ≤ 0.

Case 1. zt(D,L) > 0. Suppose that L occurred last time at t − j,
0 ≤ j ≤ m−1. After that U must be played with probability 1 in every
period j′ = t − j + 1, . . ., until frequency of U increases above 3

4 and,
by Fact 1, Nature begins playing M. Contradiction.

Case 2. zt(D,L) = 0, That is, the agent has no regrets, his play is
defined arbitrarily. By assumption (19.2), pm

t+1(U) > 0, and thus there
is a positive probability that U occurs sufficiently many times that the
frequency of U increases above 3

4 and M is played. Contradiction.
The proof that L occurs infinitely often is analogous. �

Fact 4. If ωt =L and ωt+j =M, then j > m
2 . Symmetrically, if ωt =M

and ωt+j =L, then j > m
2 .

Proof. Suppose that ωt =L, then by Fact 1, ζt−1 < 1
4 . Clearly, it

requires j > m
2 periods to reach ζt+j−1 greater than 3

4 , which is required
to have ωt+j =M. The second part of the fact is proved analogously. �
Fact 5. Regardless of an initial state, the event {ωt =L and there are
no more L in hm

t } occurs infinitely often.
Proof. By Fact 3, both L and M occur infinitely often. By Fact 4, the
minimal interval of occurrence of L and M is m

2 , hence if L occurs first
time after M, previous occurrence of L is at least m + 1 periods ago. �
Fact 6. Suppose that ωt =L and there are no more L in the history.
Then after j < m periods we obtain 1

4 < ζt+j < 1
4 + 1

m , and with strictly
positive probability Rt+j(U) > 0 and Rt+j(D) ≤ 0.
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Proof. We have

Rt(U) = zt(D,L) − zt(D,M),
Rt(D) = zt(U,M) − zt(U,L).

By Fact 1, ωt =L implies ζt−1 < 1
4 , that is, U occurs at most k times

in the history at t − 1, thus zt(U,M) ≤ zt−1(U,M) ≤ k
m .

Case 1. Rt(D) > 0 and Rt(U) > 0 Then both (D,L) and (U,L)
may be played. Since history at t − 1 does not contain L, regardless
of what disappears from the history, we have Rt(U) nondecreasing and
Rt(D) nonincreasing. Thus, with positive probability, both (D,L) and
(U,L) are played for j periods, until we obtain 1

4 < ζt+j < 1
4 + 1

m ,
Rt+j(U) > 0 and Rt+j(D) ≤ 0. Note that j < 3

4m + 1, since by Fact 4
the interval between the last occurrence of M and the first occurrence
of L is at least m/2, thus after period t + m/2 there are no M in the
history, Rt+m/2(U) > 0, Rt+m/2(D) < 0, and (U,L) is played at most
k + 1 = m+2

4 times until the frequency of U becomes above 1/4.
Case 2. Rt(D) > 0, Rt(U) ≤ 0. Then (D,L) is played for the next

j′ = (zt(D,L) − zt(D,M)) · m + 1 periods. At period t + j′ we have
Rt+j′(D) > 0 and Rt+j′(U) > 0, and proceed similarly to Case 1.

Case 3. Rt(D) ≤ 0, Rt(U) ≤ 0. That is, the agent has no regrets,
his play is defined arbitrarily. By assumption, pt+1(D) > 0, hence there
is a positive probability that (D,L) occurs for j′ = zt(D,M) ·m periods
which will yield Rt+j′(U) > 0, Case 2.

Case 4. Rt(D) ≤ 0, Rt(U) > 0. Then (U,L) is played for j = 1 or
2 periods (depending whether (at, ωt) = (D,L) or (U,L)), and we have
1
4 < ζt+j < 1

4 + 1
m , Rt+j(U) = Rt(U) > 0 and Rt+j(D) < Rt(D) ≤ 0. �

Using Fact 6, we can now analyze the dynamics of the process.
Suppose that 1

4 < ζt < 1
4 + 1

m , Rt(U) > 0, Rt(D) ≤ 0. Then
I. (U,R) is played in the next jUR ≥ m

2 periods, and we obtain
3
4 < ζt+jUR

< 3
4 + 1

m . Since by now M has disappeared from the history,
the regrets are

Rt+jUR
(U) ≥ zt(D,L) > 0,

Rt+jUR
(D) ≤ −zt(U,L) ≤ 0.

II. (U,M) is played for the next jUM = k+1 periods. Since jUR+jUM ≥
m
2 + k + 1 = 3k + 1, it implies that zt+jUR+jUM

(U,L) ≤ k, and

Rt+jUR+jUM
(D) = zt+jUR+jUM

(U,M) − zt+jUR+jUM
(U,L)

≥ k + 1
m

− k

m
=

1
m

> 0.
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III. With positive probability, (D,M) is played for the next jDM = k+1
periods, and, since by now L is not in the history, we have

ζt+jUR+jUM+jDM
= 1 − jDM

m
=

3k + 1
m

<
3
4
,

Rt+jUR+jUM+jDM
(U) = −zt+jUR+jUM+jDM

(D,M) < 0,
Rt+jUR+jUM+jDM

(D) = zt+jUR+jUM+jDM
(U,M) > 0.

Notice that at period t+jUR+jUM +jDM the last m periods correspond
to phases (U,R) and (U,M)/(D,M) of the cycle (the latter is in form
(b)). �
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