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1

General Introduction

It is certainly true that an actual economy will be
changing all the time.

J.R. Hicks

Change is a universal phenomenon in all systems.
All equilibria are temporary.

K.E. Boulding

Life is change, and without changing it would be
inexplicable.

N.A. Berdjajew

Everybody knows that life is a process. But not
everybody remembers that a process will be no
longer a process if it reaches an equilibrium.

M. Feldenkrais

Πάντα
c
ρεeı.

Heraklit

One of the most prominent ideas in economics undoubtedly is that of equi-
librium. Even branches of economics which by their very nature are concerned
with non-equilibrium states of economic systems draw on the notion of equi-
librium, at least as a fundamental point of reference. Equally central to eco-
nomics, however, is the idea of the evolution of an economic system over time.
In fact, the understanding of an equilibrium as a final state of rest which has
been borrowed from thermodynamics being prevalent in economics is obvi-
ously completely at odds with the idea of evolution. To avoid an inappropri-
ate bipolarity of these two key concepts in economics, however, a synthesis of
both seems to be desirable. Fortunately, economic theory has proposed ways
to tie the two strings together. A first proposal comes from economic growth
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theory, which formalizes a dynamic economic system as a system of difference,
or differential, equations. There equilibria mean ‘equilibrium trajectories’ of
the whole evolution that, in a certain sense, are optimal. A particularly unsa-
tisfactory feature of this conceptualization of an equilibrium, however, is the
fact that the intertemporal optimizing approach completely predetermines the
whole future of the economic system. This “closed loop” approach gives rise
to the common reproach that economic theory is predominantly concerned
with the question of ‘how the economic system ought to behave’ rather than
with the question of ‘how does it behave actually’. This is the point at which
the new branch of evolutionary economics has made its entrance.

In contrast to growth or business cycle theory, evolutionary economics
perceives the evolution of the economic system as essentially “open” to true
novelties that are unforeseeable by their very nature. This view clearly makes
obsolete any conception of equilibrium that resorts to the idea of a final state
of rest, or to the idea of an intertemporally optimizing trajectory which is
prespecified ab initio by a system of differential equations and initial condi-
tions. To be sure, there have been attempts to reconceptualize the notion of
equilibrium from the evolutionary viewpoint. However, these proposals also
appear, in one way or another, to hinge on the ideas of rest. This particu-
larly applies to the branch of nonlinear dynamics and deterministic chaotic
motion. More specifically, this approach assumes the dynamic behavior of a
system as being governed by a fully deterministic process, namely by iterative
application of a fixed “generator” mapping. Then ‘attractors’ are sought, i.e.
a family of states that are finally run through again and again by the system
under consideration. What this approach still lacks, however, is an analytical
framework for the evolving economy which allows for a new and truly ‘open’
conceptualization of equilibrium.

To further the latter idea we will put forth here a new attempt to synthesize
the two ideas of economic equilibrium and evolution. The basic idea of our
approach is to take elaborate, but equally intuitive, models of mathematical
economic equilibrium theory as our starting point and to ‘animate’ them, or,
say, ‘let them evolve’.

This naturally leads us to the conception of an equilibrium as a “transitory
coordination solution”. As we will see, this notion of equilibrium meets the
requirement of an ‘open evolutionary’ equilibrium concept quite satisfactorily.
Before we proceed to sketch our approach and our aims, we should, however,
clarify our understanding of the term ‘evolution’ in the present study. In fact,
we will adopt a broad understanding of the term ‘evolution’. This means, we
do not think of any connotation of progress, or directed development in any
sense (anagenesis) when speaking of an evolving economic system. Particu-
larly, we may, but need not necessarily, think of an evolving economic system
as being governed by ‘evolutionistic’ rules in the sense of variation, selection,
and retention. Moreover, we will employ two understandings of an evolution: a
temporal understanding of an evolution as a process in historical time, and an
atemporal understanding of an evolution as an “artificial” evolution generated
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“in the mathematical economist’s laboratory”. In any of these two conceptual-
izations an evolution consists of a succession of states of the economic system
under consideration. As a general remark we would like to emphasize that
throughout our whole study geometrical imagination is always a good guide
for intuition.

Intuition, Scope, and Aims of the Book

Our study consists of three main Parts. In Part I, the concept of an evolu-
tion of economies is formalized analytically. This will be done on the basis
of nine different general equilibrium models, which are henceforth refered to
as the “basic models”. They have been partly adopted from the literature,
partly they are new. The necessary mathematical tools are introduced in the
‘Mathematical Preliminaries’ following this Introduction. They are mainly
intuitive concepts from geometry, general topology, homotopy theory, alge-
braic geometry, and differential topology. At the heart of our analytical for-
malization of evolution lies the notion of a “continuous one-parametrization
of states of the economy”. This way of analytically formalizing evolutions
is not only intuitive, but it also appears to be the only reasonable one for
our purposes. To aid the reader’s intuition, the single states of the evolution
correspond to the single shots of a movie, if one compares an evolution of
economies to a movie. The roots of this conceptualization as well as of further
analytical treatment can be traced back to early publications by Lehmann-
Waffenschmidt (1983, 1985, special aspects have been analysed by the author
in 1987, 1994, 1995, 2005, 2006). Moreover, continuously one-parametrized
economies have also been analyzed for instance by A. Mas-Colell in his com-
prehensive monograph from 1985 (Chapters 5 and 8). Indeed, both approaches
have originated in complete independence of each other. The reader should
note, however, that the study by Mas-Colell only provides an analytical treat-
ment of one-parametrized economies, but gives no further economic applica-
tions. Nevertheless, Mas-Colell’s contribution will be an important point of
reference for our formal analysis in Part II of the present study. But there is a
clear distinction from the mathematical viewpoint: Our constructions primar-
ily draw on algebraic parametrized fixed point theory, whereas Mas-Colell’s
constructions come from the field of differential topology. It is noteworthy
that our approach nowhere resorts to differentiability assumptions. All our
constructions and results are solely based on assumptions of continuity.

The main task in Part I is to formalize the concept of evolutions in our
nine basic set-ups and to fit these formalizations into a unifying analytical
setting. This is done in order to make them accessible for an application of a
crucial result from one-parametrized algebraic fixed-point theory. In Chapter
4 evolutions in three basic models from the Walrasian exchange framework,
one of which is a model of large exchange economies will be formalized. In
fact, this model is similar to the one used by Mas-Colell as a basis for one-
parametrizations (1985, Section 5.8).
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In Chapter 5, evolutions are formalized in two basic models which relax the
usual assumptions of Walras’ law (the budget identity) and of homogeneity
of degree zero of the excess demand functions. These models are inspired
by a former model by N. Schulz (1985) the purpose of which has been to
model a subsystem of the system of all conceivable markets in an economy.
Nevertheless, the relaxation of these two standard assumptions will prove to
be of great help later in our study when a new formalization of an economy
evolving in historical time is developed (Section 19.2.2).

In Chapter 6, evolutions are formalized in two models with production,
tax, and subsidy schemes originally developed by T. Kehoe (1985b). Finally,
in Chapter 7 evolutions are formalized in two models from the quantity con-
strained equilibrium framework. More precisely,a micromodel with effective
demand of the Benassy type is employed, which we have slightly adapted for
our purposes. Furthermore, a new model is designed with many productive
sectors on a medium level of aggregation.

In Part II of our study, the main analytical results which will provide the
basis for later applications in Part III are derived. Any proofs in Part II which
employ advanced mathematical results are relegated to the appendices at the
end of this monograph.

The central analytical results of this study are given in Chapter 10. Using
a certain core result from parametrized algebraic fixed point theory it is shown
that for any evolution of each one of the nine types introduced in Part I, there
is a certain structural property of its equilibrium set. This structural property
ensures the existence of what we call ‘near-equilibrium paths’. This result is
certainly not at all clear from the outset since even for simple examples a total
indeterminacy of the equilibrium set of one-parametrizations can be observed.
The intuitive geometrical meaning of a near-equilibrium path is that of a
polygonal path, which lies in the graph of the Walras correspondence of the
given evolution of economies. For the pure exchange framework a related result
has been formerly shown by Lehmann-Waffenschmidt (1983, 1985). Another
related result for a basic model of a large exchange economy has been provided
by Mas-Colell (1985, 5.8.24).

A mathematical criterion is provided for checking which points lie on near-
equilibrium paths. In Chapter 11, it is shown how any evolution can be approx-
imated so that there even exists a geometrically, nicely behaved equilibrium
path, i.e., a path consisting only of true equilibrium points. To our knowledge
so far there is no precursor in the literature of our class of well-behaved paths
and our approximating evolutions. From Mas-Colell’s extension of the regular
theory to the one-parametrized case merely follows the existence of approxi-
mating evolutions in the basic exchange framework. We will come back to this
below. To achieve our aims, we have to accomplish three tasks. First, we must
design a general class of paths that deserve the qualification “well-behaved”.
Second, we must provide a general construction of approximating evolutions
for each of our basic models, and third we have to verify that our appro-
ximating evolutions always possess an equilibrium path from the designed
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well-behaved class. While this makes some analytical efforts necessary, in our
eyes they are fully justified by the achievements that become possible with
their help.

Actually, it is the notion of a (near-)equilibrium path which will later pro-
vide the basis for our new concept of a ‘homeostatic equilibrium’ of an evo-
lution. In Section 11.1 two alternative methods of approximating evolutions
of exchange economies are developed. The first one is based on piecewise lin-
ear functions, whereas the second one is based on polynomial approximation.
Both methods have advantages. While the first one is completely constructive,
the second one can easily be generalized to other basic frameworks.

It is noteworthy that as a byproduct of our constructions it can be shown
that the graphs of the equilibrium correspondence of each of the nine basic
models from Part I are “maximally well-connected”. This result significantly
extends the related global results on the arc-connectedness of the graph of
the Walras correspondence by Y. Balasko and others (see Balasko 1988, 1996
for surveys, see also Balasko, Lang 1998 and Bonnisseau, Cayupi 1999). At
this point it is also natural to examine the relationship of our results in this
monograph to the results of the so-called law of demand (Hildenbrand 1989,
1994, 1998, 1999a, b). Actually, the validity of the law of demand would
ensure uniqueness of the equilibrium set of any single state economy of an
evolution. Then the existence of geometrically well-behaved (near)-equilibrium
paths of our type would directly follow from the continuity of evolutions.
Unfortunately, all theoretical and empirical results supporting the validity of
the law of demand pertain to special static equilibrium model types different
from any one of the nine basic models developed here. What’s more, the law
of demand cannot hold true for the exchange model, as simple computation
shows.

Chapter 12 provides further natural interpretations and extensions of the
general concept of an economic evolution developed here. Obviously our con-
ceptualization of economic evolution by one-parametrizations gives room for
two economic interpretations. On the one hand, one may emphasize the aspect
that a one-parametrization connects its initial state with its terminal state. In
this case, we speak of a “connection evolution”. On the other hand, one may
understand an evolution in this context as starting from its initial state and
openly evolving in some continuous way. In this case we speak of a “course
evolution”. A particularly interesting question is whether for each of the basic
models there is always a connection evolution for any two given economies.
Fortunately, it can not only be shown that the correct answer is “yes”, but
also general standard constructions of connection evolutions for each basic
model can be provided.

Whether one adheres to the understanding of an evolution as the perfor-
mance of the economic system in historical time, or one employs the formal
understanding of evolution as any succession of states, be it chronological,
or artificial, it seems to be desirable to admit both cases of ‘new comodities’
appearing on markets and of ‘old commodities’ disappearing from markets
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during the evolution. This will be our theme in Section 12.2 where we provide
the analytical constructions that are necessary to realize this in each of the
nine basic models.

The structure results of the existence of (near)-equilibrium paths from
Chapters 10 and 11 raise the following natural question: Is this the only
structural property of the equilibrium set of evolutions that generally holds?
In Chapter 13 the answer to this question will be given as affirmative for the
basic models from the exchange framework in Chapters 4 and 5. Moreover,
the one-parametrized extension of Mas-Colell’s famous result from 1977 which
extended the celebrated decomposition result of market excess demand func-
tions by Sonnenschein, Debreu, and Mantel will be achieved. More precisely,
our result shows that in the one-parametrized case of an evolution of econo-
mies there is a structural property of the equilibrium set, whereas Mas-Colell’s
result has verified the total lack of restriction on the equilibrium price set of
a static exchange economy. As a notable corollary of our result, any two non-
empty compact subsets of the price domain can be realized as the equilibrium
sets of two arbitrarily close exchange economies.

Our results are also closely related to the results on the local surjectiveness
of the graph of the Walras correspondence by B. Allen (1981). As we will see
in Chapter 13 our results and those by B. Allen neither extend, nor contain
each other, but are complementary in their characterization of the graph of
the Walras correspondence. Together with the above mentioned global results
by Y. Balasko and others, these results provide a fairly detailed understanding
of the shape of the graph of the Walras correspondence.

In Chapter 14, we present a detailed comparison of our results with re-
lated results in the literature. As a general remark we repeat that our approach
nowhere resorts to differentiability assumptions. All of our conceptualizations
and results are based solely on continuity. In Section 14.1 we summarize the
achievements of our results compared with the well-known global structural
results on the graph of the Walras correspondence. Section 14.2 deals with the
relationship of our approach and its results to the theory of regular economies
and its extension to regular one-parametrizations by Mas-Colell (1985, Chap-
ter 8). In a nutshell our conclusion is that the static regular theory produces
stronger results than ours in the local sense, but if one leaves a connected
component of the subspace of regular economies, these strong results break
down. In this case our results have significant advantages.

There is certainly a close relationship between the theory of regular one-
parametrizations and the approximation results in Section 11.1. However,
there are advantages of our approach: Our method of achieving approxima-
ting evolutions by well-behaved equilibrium paths is constructive, whereas the
theory of regular one-parametrizations merely provides an abstract existence
result. Of course, equilibrium paths for an evolution are just selections from
its equilibrium set. Thus they are non-unique in general, since the equilibrium
set may well exhibit irregularities such as multifurcations, or ‘thick’ parts, i.e.
continua. On the other hand, though they are isomorphic to linear segments,
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the ‘regular equilibrium paths’ found by the regular theory may exhibit geo-
metrically wild features. For instance, they may have infinite Euclidean length
as simple considerations show. Moreover, we can show here that the compart-
mentalization of the space of exchange economies as well as of the space of
exchange one-parametrizations by the subspace of critical economies and crit-
ical one-parametrizations, respectively, is fairly complicated. We emphasize
that this weakens the structure results of the regular theory considerably. Ac-
tually, slightly perturbing a critical economy, or one-parametrization, leads
to a regular economy with probability one. But the complex structure of the
subspace of critical economies makes it almost impossible to predict the pro-
perties of the obtained regular economy, or one-parametrization,respectively.
A last issue concerns the labels ‘critical’ and ‘regular’. In fact, speaking of ‘non-
regular’, or ‘critical’, economies (one-parametrizations) means that they are
exceptional, or negligible. To be precise, this implicitly presumes a uniform
probability distribution on the space of economies (one-parametrizations).
However, so far no consistent underpinning has been provided by economic
theory which would justify the assumption of negligibility. Instead, experience
with real social systems strongly suggests that ‘critical’ states are not at all
negligible.

In Part III of the study the economic content of the preceding concep-
tualizations and results are explored. Following the common classification, a
distinction is made between applications on the temporal and on the atem-
poral field.

On the atemporal field, i.e. in the mathematical economist’s laboratory,
two major strings of applications are presented (Chapter 17). The first one
has to do with the computation of equilibria, and the second one with eman-
cipating comparative statics from its paralysis through the indeterminateness
phenomenon. More precisely, it is shown that our results, in a certain sense,
achieve an extension of the well-known path following computational method
of equilibria of regular exchange economies (see e.g. Mas-Colell, 1985, Section
5.6 for a survey on the topic). The method used here works in each of our nine
basic set-ups and, particularly, is not confined to regular economies. This is,
however, at the cost of loss of algorithmic comfort.

In our second atemporal application the notorious paralysis of compar-
ative statics caused by multiplicity of equilibria is dealt with. In fact, it is
our conviction that the multiplicity phenomenon is intrinsically linked to the
present-day way of economic thinking. Our conclusion from this is that a way
should be sought to give comparative statics a meaning, also in the multi-
plicity case. In Section 17.2 will be demonstrated that our preceding results
indeed provide a way to reconstruct comparative statics when equilibria are
multiple. Moreover, our main result from Chapter 13 implies that the pro-
posed ‘genetic comparative static method’ in fact is the only general way to
achieve this.

The main economic applications of our approach and of our results, how-
ever, are on the temporal field. In Chapter 18, the methodological viewpoint
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and the scope of the analysis are explained at some length. We will not strive
for an analysis which is dynamic, or even evolutionary, in the strict sense,
but confine ourselves to an analysis that is something like a continuous, or
evolutionary comparative analysis (a ‘genetic comparative analysis’; for an
evolutionary approach see e.g. Bosch 1990, Kirzner 1990, Loasby 1991, and
Faber, Proops 1998, Witt 2003). From physics we have borrowed the term ‘ki-
netic’ for our approach. As already mentioned the procedure used here is to
conceptualize and formalize different types of classes of reasonable evolutions
by means of continuous one-parametrizations, and then to analyze them for
their general structural properties. Kinetics does not inquire into the causal
explanation of the individual evolution of the real economic system in histor-
ical time, but searches for general regularity, or structural, properties of the
dependent evolutions of the endogenous key variables. Thus, one can say, that
while dynamics studies the ‘laws of motion’ of the economic system, kinetics
studies the ‘laws of the effects of motion of the economic system’. In this sense
our temporal applications can be seen as being complementary to dynamics,
and especially to evolutionary economics.

Having clarified our method, we will start with applications in discrete
historical time (Chapter 19.1). The first step is to formalize evolving economies
in discrete historical time for the nine basic models. This is achieved in a
natural way by employing the common ‘period approach’. Essentially our
applications in this context are based on the atemporal applications given in
Chapter 17.

The main body of our temporal applications, however, are applications in
historical time (Sections 19.2–19.4). In Section 19.2 we begin by designing two
alternative models of evolving economies in continuous time. While the first
one is based on the idea of continuous flows of commodities and services, the
second one provides an entirely new approach. Its main idea is to describe the
evolution of a market over time by varying time intervals between two succes-
sive demand, or supply, events. In our opinion, the resulting ‘frequency model’
achieves a realistic theoretical framework describing an evolving economy in
continuous historical time. The main ingredient of the frequency model is the
basic framework of an exchange economy that relaxes Walras’ law and the
homogeneity assumption on excess demand functions from Section 5.1.

What are the economic achievements of the application of the analytical
work from Part II to these conceptualizations of evolving economies in his-
torical continuous time? In a nutshell, it provides the opportunity to tune
equilibria, at least piecewise, continuously to their changing values when the
economy undergoes an evolution. In other words, we establish the existence
of a ‘homeostatic equilibrium’ for evolving economies. It should be empha-
sized that this result merely ensures the opportunity for some policy making
institution to achieve a (piecewise) fine tuning of equilibrium values, but does
not endogenously model the policy making institution itself. In particular, our
understanding of the notion of equilibrium is not that of a description of the
real state of an economy. Indeed, this is made impossible by the multiplic-
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ity of equilibria. Instead, we understand the equilibria of a given momentary
state of an evolving economy here solely as momentary, or transitory, coordi-
nation solutions to this state. Consequently, it is not our concern to explain
the actual states of an evolving economy, but rather to support the provision
of the opportunity for ‘equilibrium engineering’, i.e. for continually selecting
equilibrating solution values with the least possible friction. Regarding the
underlying evolution of the economic system, two model approaches will be
applied: In the first one the open evolution of the economic system is not
touched by the “equilibrium engineering” procedure, in the second one cer-
tain “backtracking” phases in the open evolution of the economy have to be
employed. We will come back to this issue shortly.

At this point, however, we would like to mention a direct application of this
result to the issue of time consuming equilibrium adjustment processes. It has
been known for a long time that, in general, a time consuming equilibrium ad-
justment process faces a moving target (e.g. Kloek 1984, for a comprehensive
survey see e.g. Fisher 1983). This has already been illustrated by V. Pareto in
a different context by his famous ‘courbes de pursuite’. The adjustment of a
moving equilibrium is symbolized by him as a running hare being tracked by
a hound. To our knowledge we show for the first time that for any evolution
of any of our basic models there is something like ‘the path of the hare’ which
can be actually tracked by an agent purposed to “catch the hound” (Section
19.3).

So far the results just show that a ‘frictionless equilibrium engineering’, or
tuning, in general is only piecewise possible, i.e., up to finitely many discrete
jumps. In the final Section 19.4 we will show, however, that this deficiency
can also be removed. The key idea for this is to “re-manipulate” the evolu-
tion of economies continuously without bringing new momentary states into
play such that no discrete jumps in the equilibrium values are necessary when
tuning them. In fact, three of the nine basic models are, from their econo-
mic conceptualization, suitable for this. These are the two models from the
framework with production, taxes, and subsidies (Chapter 6) and the multi-
sectoral quantity constrained model (Chapter 7). All these models have in
common that they contain explicit parameters that are, in principle, acces-
sible to an external control by some economic policy institution. These are
prices and wages in the case of the quantity constrained multi-sectoral model
from Chapter 7, and tax and subsidy rates in the case of the two models from
Chapter 6.

In order to ensure a perfect homeostatic equilibrium, i.e., a continually
frictionless tuning of equilibrium values during an evolution, it is only neces-
sary for a policy institution to intervene at finitely many dates. In concrete
terms, an effective intervention means that the evolution of the control param-
eters governing the evolution of the economic system is partly backtracked,
i.e., is in parts repeated in a continuous way. The reader should be well aware
that we have a tuning on two different levels, namely on the level of economic
state parameters and on the level of equilibrium values, whereas in Section
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19.2 there is only a tuning of equilibrium values. We also want to emphasize
again that our result only provides the general opportunity to realize a perfect
homeostatic equilibrium during an evolution to an external policy institution,
but does not endogenously model policy institutions, or their actions.

The pros und cons of a continuous fine tuning of economic state parame-
ters such as taxes, subsidies, or prices, according to the applied basic model
set-up, have been, for the first time, extensively discussed in the literature
during the debate on gradual versus bang-bang tax reform in the seventies
(e.g. Hatta 1977, Hettich 1979). This controversy has later experienced a re-
vival in a slightly different context, namely in the debate on macroeconomic
policy design (e.g. Fellner et al. 1981, Zodrow 1985, Marangos 2002). To sum
up, the following arguments are in favor of a continuous ‘fine tuning’ policy:
Enactment of an “bang-bang”, “cold turkey”, or shock therapy policy en-
tails greater administrative as well as greater social and political costs. This
may largely be attributed to the agents’ attitude of risk aversion and con-
servatism in economic affairs, which appears to be predominant in reality.
Moreover, gradual control makes at least partial foresight possible for the
economic agents. In economics this is generally considered as favorable for a
stabilized evolution of the economy. This argument is beyond the scope of the
model framework developed and employed in this book, but the reader should
note that a discontinuous monitoring of equilibrium prices will not only cause
sudden changes in consumed quantities, but also of individual wealth and thus
of the agents’ economic status. Last, but not least, tuning equilibria follow-
ing a “well-behaved” path while the economy evolves is clearly much more
comfortable for the agency than searching for new equilibria anywhere in the
domain of all possible equilibria.

However, this does not mean that we take a one-sided position favouring
a strict gradualism in economic policy making. For both positions of a gradu-
alistic policy and a shock therapy there are striking metaphors: How would it
be possible on one hand to change moving forward to moving backward other
than gradually? The shock therapy position, on the other hand is favoured by
the metaphor of changing from driving on the left to driving to the right in
a state. We are well aware of the disadvantages of the gradualistic principle.
The German reunification, for instance, may serve as an example of how po-
litical motives and uncertainties concerning the future evolution of boundary
conditions may well favour a quasi bang-bang policy enactment of reforms.
What we want to say is that it seems to be worthwhile investigating the condi-
tions and opportunities for enacting a gradual, shock-free policy. A thorough
assessment to decide whether a gradual adjustment, or a shock therapy policy
adjustment is preferable can only be made on a case-by-case basis.

The monograph is rounded off in Part IV by general conclusions, an out-
look on further possible research work and the Appendices A to C.

I have now reached the point where I would like to take the opportunity
to thank all who have helped me with their comments and suggestions. In
fact, there is a number of people who have contributed to the evolution of
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my personal ideas and views on my subject over the years and who have
helped me to make them precise and comprehensible. Particular thanks are
due to the Konrad Lorenz Institute for Evolution and Cognition Research in
Altenberg near Vienna where I found the environment to do the last “finish”
on this monograph, and to Barbara Feß from Springer Verlag for her help
and encouragement as well as all people who gave technical support to the
realization of this book.
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Notations and Mathematical Preliminaries

Notations

Rn
+, Rn

++ closed (open) positive orthant of Rn

Rn−, Rn−− closed (open) negative orthant of Rn

∂Rn
+ boundary of Rn

+, i.e. Rn
+\Rn

++

Δn−1 closed (n − 1)-dimensional unit simplex in Rn, i.e.
{x ∈ Rn

+|
∑

xi = 1}
∂Δn−1 boundary of the (n − 1)unit simplex, i.e.

{y ∈ Δn−1|yi = 0 for at least one i = 1, . . . , n}
Δ̊n−1 boundaryless, or open, (n−1)-dimensional unit sim-

plex, i.e. Δn−1\∂Δn−1

Δn−1
i i-facet of Δn−1, i.e. the subspace {x ∈ Δn−1|xi =

0} of the boundary ∂Δn−1(i ∈ {1, . . . , n})
Δn−1

ε for ε > 0 the inscribed “ε-unit simplex”, i.e.
{x ∈ Δn−1|∀i=1,...,n xi ≥ ε} (note that clearly the
Euclidean distance from any i-facet of Δn−1 to the
i-facet of Δn−1

ε is greater than ε)
Δn−1

εi
the i-facet of Δn−1

ε , i.e. the subspace {x ∈
Δn−1

ε |xi = ε}
Δn−1,α for any real number α > 0 the (n − 1)-dimensional

simplex {y ∈ Rn
+|
∑n

i=1 yi = α}, also called the
“α − (n − 1)-simplex”; thus Δn−1,α is parallel to
the unit simplex with intercepts α on the coordinate
axes. For α ≤ 1 it is also called the “α-section of
T n” (see below); α is also called the “simplex-level”
of Δn−1,α

Δ̊n−1,α open α − (n − 1)-simplex Δn−1,α ∩ Rn
++

〈v1, . . . , vk+1〉 for k + 1 points v1, . . . , vk+1 in Rn the m-
dimensional simplex generated by them, i.e. their
convex hull
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(m ≤ k ≤ n)
Sn−1 (n−1)-dimensional unit sphere, i.e. {x ∈ Rn|||x|| =

1}
Sn−1

+ closed positive part of Sn−1, i.e. {x ∈ Rn
+|||x|| = 1}

Sn−1
++ strictly positive part of Sn−1, i.e. {x ∈ Rn

++|||x|| =
1}

Sn−1
ε for ε > 0 the contained closed ε-unit sphere, i.e.

{x ∈ Sn−1
+ |∀i=1,...,n xi ≥ ε}

T n,α for any real number α > 0 the orthogonal projection
of Δn,α ⊂ Rn+1

+ := Rn
+ × R+ into the coordinate

hyperplane Rn
+, i.e. T n,α := {x ∈ Rn

+|
∑n

i=1 xi ≤
α}, also called “embedded α-n-simplex”

◦
T

n,α

the open embedded α-n-simplex
{x ∈ Rn

++|
∑n

i=1 xi < α}
T n abbreviation of T n,1, also called “embedded n-

dimensional unit simplex”
0n the null vector of Rn

T n
0 the pointed embedded n-dimensional unit simplex

T n\{0n}
T n,α

γ for arbitrarily large real positive α and arbitrarily
small real positive γ the “inscribed embedded α-γ-
n-simplex”

{x ∈ R
n
+|

nX
i=1

xi ≤ α and xi ≥ γ for all i = 1, . . . , n}

T n
γ T n,1

γ

{pt} the single point space (singleton set)
en the vector (1, 1, . . . , 1) of Rn

ei the i-th unit vector (0, . . . , 0, 1, 0, . . . , 0) of Rn

(x1, . . . , x̂i, . . . , xn) the n − 1-vector (x1, . . . , xi−1, xi+1, . . . , xn)
x ≥ y, x > y for n-vectors x and y means that the weak (strong)

inequality holds for every component
xy for n-vectors x and y the (straight line) segment

with endpoints x and y
x′ for a column vector x ∈ Rn the transposed row

vector
Y \X for spaces X ⊂ Y the difference set {y ∈ Y |y 
∈ X}
Xc for spaces X ⊂ Y the complement of X in Y, i.e.

Y \X
coX for a subspace X ⊂ Rn denotes the convex hull of

X in Rn
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dist(F, G) means for any two nonempty compact subsets F, G
of a metric space X the Hausdorff distance, i.e.

min{ε ≥ 0|F ⊂ Bε(G) and G ⊂ Bε(F )}

where Bε(Y ) = {x ∈ X |d(x, y) < ε for some y ∈ Y }
for any Y ⊂ X

Bn
r (x) the closed n-ball with center x and radius r ≥ 0,

i.e.
{y ∈ Rn| ||y − x|| ≤ r}

im f for a mapping f : X → Y the image f(X) ⊂ Y
Fix f for a self-mapping f : X → X the fixed point set,

i.e. {x ∈ X |f(x) = x}
FixF for a homotopy F : X × [0, 1] −→ X the set

{(x, s) ∈ X × [0, 1]|F (x, s) = x}
X × [0, 1] homotopy space, i.e. the domain of a homotopy

F : X × [0, 1] → Y ; due to their geometrical
shape the special homotopy spaces Δn−1 × [0, 1]
and T n−1 × [0, 1] are called “homotopy prisms”

X × {s} for 0 ≤ s ≤ 1 the “s-slice” of the homotopy space
X × [0, 1]

N natural numbers including 0
M(n × m; R) the set of n × m-matrices with real entries
|A| for an m×n-matrix A = (aij) with real entries the

m×n-matrix (|aij |) of absolute values of the entries

Mathematical Preliminaries

Now we are going to provide the reader with the formal standard notions from
general and algebraic topology and algebraic geometry as well which will play
an important role in our analysis1. Our exposition will be self-contained as re-
gards our subsequent analysis. The reader who still misses further background
informations is referred to the relevant textbook literature.

At the heart of our formalizations stands the notion of a continuous
one-parametrization. Generally a continuous one-parametrization, or evolu-
tion, homotopy, deformation, family or perturbation, is a continuous mapping
F : X × [0, 1] −→ Y where X and Y are topological spaces. To be sure,
the notion of a continuous one-parametrization has intuitive appeal since it
can be viewed as a continuous one-parameter family of “ordinary” continuous
mappings (Fs)s∈[0,1] : X −→ Y where Fs(x) := F (x, s). For instance, any
continuous movement process is an example of a continuous one-parametri-
zation (cf. Figure 2.1). The subspace X × {s}, s ∈ [0, 1], is called the s-slice

1 As this Section consists of a collection of definitions we will omit the term ”defi-
nition” throughout.
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Fig. 2.1: Formal Representation of a Movie as a Homotopy

of the homotopy space X × [0, 1] (corresponds to the snap–shot photo at time
t = s in Figure 2.1). We furthermore call s the homotopy, deformation, or
evolution, parameter and the mapping Fs(−) = F (−, s) the s-state mapping
of the one-parametrization F. Thus one can visualize a one-parametrization
F : X × [0, 1] −→ Y for Euclidean subspaces X ⊂ Rm and Y ⊂ Rn by
the continuous evolution of the graphs of the n component functions Fi(x, s).
Evolutions of economic systems which we will employ in our study will always
be formally representable by one-parametrizations. Recall from the General
Introduction that in our study we neither restrict the term ‘evolution’ to eco-
nomic systems which are characterized by ‘evolutionary’ (technical) progress,
nor do we even stick to the narrow understanding of evolutions as necessarily
being evolutions over (historical) time. Rather, we will introduce evolutions of
economic systems in the general notion of any continuous changes governed
by a scalar parameter s. In Part III of our study we will study evolutions of
economies in both interpretations of the evolution parameter s: in the techni-
cal atemporal interpretation, and in the interpretation as elapsing historical
time.

Clearly, one can combine, or say compose, two homotopies F 1, F 2 : X ×
[0, 1] −→ Y when F 1

1 = F 2
0 , i.e. F 1(x, 1) = F 2(x, 0) for all x ∈ X. We also say

that the obtained homotopy F : X × [0, 1] −→ Y,
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F (x, s) =

{
F 1(x, 2s) if s ∈ [0, 1/2],
F 2(x, 2s − 1) if s ∈ [1/2, 1],

is the composition of the two homotopies F 1 and F 2, or the composite homo-
topy of F 1 and F 2. Composing k homotopies in this way accordingly leads to
a (k − 1)-fold composite homotopy.

A contractible topological space X is homotopic to the single point space,
i.e. there is a homotopy F : X × [0, 1] −→ X with F (−, 0) = idX , and F (−, 1)
is a constant mapping into some point x ∈ X. Contractible spaces are special
examples of acyclic spaces. The Lefschetz number of a space is an algebraic
topological characteristic. For an acyclical space it is +1 (the interested reader
is referred to Brown, 1971, II). A subspace X of Rn which is not convex can
still be star-shaped, that means there is a point x0 ∈ X such that any two
points x, y ∈ X can be connected by the two segments xx0 and x0y. Clearly,
a star-shaped space is contractible.

If the homotopy space equals the unit interval a special type of a homotopy
called “path” obtains. Indeed, the concept of a Euclidean path w : [0, 1] −→ Rn

will be crucial for our study, and it especially gives rise to the following concept
of a connected component of a space.

A connected component Z of some topological space X cannot be separated
into two disjoint open subsets, i.e. there are no disjoint open subsets A, B of X
with (A∪B)∩Z = Z. For any two points x, y of a path (connected) component
Z ′ of X there is a continuous path w : [0, 1] −→ X with w(0) = x, w(1) = y.
w is a path in X connecting x with y. A path connected component is maximal
with this property.

One has to distinguish carefully between the notion of a path w and of
its arc, i.e. its image w[0, 1] in X ⊂ Rn. Identifying [0, 1] with {y} × [0, 1] a
path w : [0, 1] −→ X can also be viewed as a continuous one-parametrization
w : {y} × [0, 1] −→ X of its arc w[0, 1]. Note particularly that in a graphic
representation the parameter t ∈ [0, 1] in general is not identifiable on the
coordinate axes. The Euclidean length of a path w : [0, 1] −→ X ⊂ Rn is
defined as supWk

L(w, Wk) where Wk denotes a subdivision of [0, 1] by k + 1
points 0 = t0 < t1 < . . . < tk = 1 and L(w, Wk) :=

∑k
j=1 d(w(tj−1), w(tj)) =∑k

j=1 ||w(tj) − w(tj−1)||. If supWk
L(w, Wk) is finite then one says that w is

of finite length, or w is rectifiable. It is well-known that a path w is rectifiable
if and only if each of its component functions wi, i = 1, . . . , n, is of bounded
variation over [0, 1], that means

sup
Wk

k∑
j=1

||wi(tj) − wi(tj−1)|| < ∞.

The everyday connotation of the term ‘path’ clearly is ‘to be viable, or pass-
able’ in the intuitive geometrical sense. This is also our intuition in this study.
Unfortunately, arcs of continuous paths can still have wild shapes as the fol-
lowing examples show: the graph of the continuous function x · sin 1/x on
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[−1, 1] has infinite length (one estimates from below by the divergent har-
monic series). But even if the arc of a continuous path is of finite length, it
still may oscillate, or tremble, infinitely often, as the function

x �→
{

x3 sin 1/x, x ∈ [−1, 0[ ∪ ]0, +1]
0, x = 0

shows (‘a damped oscillation’, see Fig. 5).

Fig. 2.2: Damped Oscillation

Fortunately, there is a way to analytically design a broad class of paths
whose arcs are really “nice” in the intuitive geometrical sense. In other words
they do not display any features of impassableness. We will come back to this
later in our study (Section 11.1).

A gluing (hat) function α : Δn−1 −→ [0, 1] which continuously glues some
continuous function f : Δn−1 −→ Rm with some other continuous function
g : Δn−1 −→ Rm over the area Δn−1

ε \Δ̊n−1
2ε such that f prevails on the inner

part Δn−1
2ε and g on the boundary area Δn−1\Δn−1

ε is a continuous function
with the properties

α|Δn−1\Δn−1
ε

≡ 0
α|Δn−1

2ε
≡ 1.

The glued function is given by the convex, or linear, combination

α(x)f(x) + (1 − α(x))g(x).

An “(affine) simplex of dimension k ≥ 0 embedded into Rn” is the convex
hull of k+1 different points v0, v1, . . . , vk in Rn which moreover are in general
position. The latter means that the affine linear subspace of Rn{

y ∈ Rn

∣∣∣∣∣y = v0 +
k∑

i=1

λi(vi − v0), λi ∈ R

}
spanned by v0, v1, . . . , vk is not spanned by any subset of {v0, v1, . . . , vk}.
Thus, the affine simplex 〈v0, . . . , vk〉 ⊂ Rn generated by v0, v1, . . . , vk is the
subspace
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k∑

i=0

λivi

∣∣∣∣∣
k∑

i=0

λi = 1, every λi ≥ 0

}
.

v0, . . . , vk are also called the vertices of the simplex 〈v0, . . . , vk〉. Each subset
{vi0 , . . . , vil

} of the set of vertices spans an affine subsimplex 〈vi0 , . . . , vil
〉 of

〈v0, . . . , vk〉. 〈vi0 , . . . , vil
〉 is also called an l-dimensional face of the simplex

〈v0, . . . , vk〉. In this terminology, the vertices are precisely the 0-faces, and the
1-faces are called the edges of the simplex. The maximal dimension of an affine
simplex in Rn is clearly n.

A subspace X of Rn is a finite simplicial complex
∑

X of dimension k if it
is the union of finitely many affine simplices of dimension ≤ k which satisfy
the following rules of adjacency: for any simplex from

∑
X each of its faces

also belongs to
∑

X . The intersection of any two simplices from
∑

X is either
empty or is a common face.

One also calls X =
⋃

σ∈P
X

σ the support of the simplicial complex
∑

X ,

and says that X is finitely simplicially decomposed, or finitely triangulated,
by the simplicial complex

∑
X . In this study we will only deal with finite

simplicial decompositions of simple Euclidean subspaces like Δn−1 or Δn−1
ε ,

for instance.
There is obviously no difficulty to extend a given simplicial triangulation∑

X of Δn−1
ε to Δn−1, i.e. to provide a simplicial decomposition

∑′
X of Δn−1

whose restriction to Δn−1
ε equals

∑
X . Furthermore it is straightforward for

these simple spaces to obtain a finite triangulation
∑

X for any two given
triangulations

∑′
X and

∑′′
X which is a common refinement of

∑′
X and

∑′′
X ,

i.e. which contains both complexes
∑′

X and
∑′′

X as subcomplexes.
The spaces Δn−1 and Sn−1

+ are standard examples of neighborhood retracts
in a Euclidean space. Generally, a Euclidean neighborhood retract A in Rn is
a subspace which is a retract of some of its neighborhoods, i.e. there is a
neighborhood U(A) of A in Rn and a continuous mapping

r : U(A) −→ A with r|A = idA.

For the purpose of our present study, i.e. for the equilibrium analysis of
evolutions of economic systems, the notion of a homotopy is still not quite sat-
isfactory. The reason for this is that the continuity of a homotopy is a fairly
weak property still allowing for some pathologies of the one-parametrized fam-
ily of state mappings if the domain is not a compact space. More formally, the
continuity of a homotopy F is equivalent to C0-uniform convergence of the
state mappings Fs on compacta, i.e. to convergence of the state mappings Fs

on any compact subset A ⊂ X with respect to the maximum norm. However,
if X is an open subspace of Rn this admits for instance the following pathol-
ogy for a continuously one-parametrized family of excess demand functions
(ζs)s∈[0,1] : Δ̊n−1 −→ R (see Figure 2.3): The sequence of excess demand
functions (ζk)k=1,2,... obviously converges to the excess demand function ζ0
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Fig. 2.3: Convergence Pathology

on compacta, though there is an increasing deviation of the functional val-
ues for the critical arguments P 1, P 2, . . . . This is possible since the critical
arguments run to the boundary of the non-closed domain. Clearly such a be-
havior strongly contradicts the intuition underlying the notion of a continuous
evolution of economic behavior functions. That means that neighboring state
functions of an evolution should have similar values on their whole domain
– not only on compacta. Thus, throughout our whole study we will employ
the stronger concept of overall C0-uniform convergence for one-parametriza-
tions instead of mere continuity, i.e. the state functions must converge on their
whole domain with respect to the usual supremum norm.

Given subspaces X ⊆ Y ⊆ Rn, a real ε > 0, and a function g : X −→ Rm,
we say that a function f : Y −→ Rm ε-approximates g uniformly on X when
the restriction f3

X is in the ε-neighbourhood of g, i.e.

||f(x) − g(x)|| =

√√√√ m∑
i=1

(fi(x) − gi(x))2 < ε for all x ∈ X.

Now we are going to introduce the concept of semi-algebraic subsets of Rn.
We will employ these sets since they have very nice geometrical properties
and help us to formalize the notion of “nice paths”. Let us first recall some
elementary definitions from algebraic geometry: a polynomial in n-variables
over R is a continuous mapping f : Rn −→ R of the form

f(x1, . . . , xn) =
∑

ai1...in · xi1 · . . . · xin

where the coefficients ai1...in are fixed real numbers and the sum is taken over a
finite set of n-tuples (i1, . . . , in) of positive integers. R[x1, . . . , xn] denotes the
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set of all polynomials in n variables over R. Thus, R[x1, . . . , xn] particularly
contains all linear equations with real coefficients in n variables.

For our purposes the zero sets of polynomials are crucial. A subset A ⊂
Rn is called algebraic if it is the simultaneous zero set of a finite number of
polynomials f1, . . . , fr ∈ R[x1, . . . , xn], i.e.

A = {x ∈ Rn|f1(x) = . . . = fr(x) = 0}.
A subset A ⊂ Rn is called semi-algebraic of the first kind, if there exists a
polynomial f ∈ R[x1, . . . , xn], such that

A = {x ∈ Rn|f(x) > 0} = f−1(]0,∞[).

A subset X ⊂ Rn is called semi-algebraic, if it can be written in the form

X =
⋃
i∈I

⋂
j∈J

(Aij\Bij)

where I, J are arbitrary finite index sets, and the sets Aij , Bij are semi-
algebraic of the first kind. Evidently, the semi-algebraic subsets of Rn form a
rich class.

Notice the following obvious properties of semi-algebraic sets which will
be helpful for our later analysis:

(i) If X ⊂ Rn is algebraic, then X is semi-algebraic.
(ii) Let f1, . . . , fr ∈ R[x1, . . . , xn] be polynomials. Then the set

X = {x ∈ Rn|f1(x) > 0, . . . , fr(x) > 0}
=

r⋂
i=1

f−1
i (]0,∞[)}

is semi-algebraic.
(iii) If the sets X, Y ⊂ Rn are semi-algebraic, then the sets X∩Y, X∪Y, X\Y

are also semi-algebraic.

As our last geometrical concept we introduce the central projection map-
ping in Rn together with its inverse. The central projection from the origin is
the homeomorphism

ϕ : T n\Δn−1 ≈−→ Rn
+

x �→

⎛⎜⎜⎝ 1

1 −
n∑

i=1

xi

⎞⎟⎟⎠x.

That means ϕ is one-to-one and onto, and ϕ and its inverse ϕ−1 are both

continuous (ϕ−1(y) =
[
1 −

∑n
i=1 yi

1 +
∑n

i=1 yi

]
y). By ϕ any vector x ∈ T n\Δn−1
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is radially stretched by the factor
1

(1 −∑n
i=1 xi)

≥ 1. This factor grows beyond

all finite bounds when x approaches Δn−1. For a point x ∈ Rn
+ we denote by∑n

i=1 xi the ‘simplex level’ of x. Thus, the simplex level of the image point

ϕ(x) is
∑n

i=1 xi

1 −∑n
i=1 xi

. ϕ particularly is “simplex-preserving”, i.e. it maps an

α-section Δn−1,α, 0 < α < 1, of T n\Δn−1 one-to-one onto Δn−1, α
1−α , or in

other words, the simplex-level of the image simplex equals α
1−α . For example,

the (n − 1)-dimensional unit simplex is the ϕ-image of Δn−1, 1
2 (see Figure

2.4).

Fig. 2.4: Variants of the (n-1)-Dimensional Unit Simplex

A sequence (μn)n∈N of measures on a metric space T is said to converge
weakly to a measure μ on T if

∫
fdμn

n−→∞−→ ∫
fdμ for any continuous and

bounded real-valued function f on T. (For further details see Hildenbrand
(1974), Section I. D, or Mas-Colell (1985), Chapter 1.E, and the references
given there. A compilation of equivalent characterizations of weak convergence
is given by Lehmann-Waffenschmidt (1985), pp. 56–57.)

Finally, let us summarize the notion of an explicit finite exchange economy
in the notations used by Mas-Colell (1977) (cf. also Hildenbrand, 1974, and
Shafer/Sonnenschein, 1982). By an explicit finite exchange economy we de-
note an exchange economy with finitely many commodities and finitely many
agents characterized by preferences and initial endowments. Formally, an ex-
plicit finite exchange economy with l agents and l commodities is denoted by
(�i, ωi)l

i=1. ωi ∈ Rl
++ is agent i’s initial endowment vector. His preference

relation �i on the commodity space Rl
+ is an element of P0

mo
sco

, the space of



2 Mathematical Preliminaries 23

the continuous, monotone, and strictly convex preference relations on Rl
+.

Thus, agent i’s individual demand set for any given price vector p ∈ Sl−1
++ , i.e.

gi(p) = {x ∈ Rl
+|px ≤ pωi and ∀y∈Rl

+
py ≤ pωi implies y �i x}, is a singleton.

Given a continuous and monotone preference relation � on Rl the closed upper
contour set, or indifference-or-preference set, of any point x ∈ Rl is denoted
by ψ(x) := {y ∈ Rl|x � y}.

Given an l-tuple of pairs (�i, ωi)l
i=1 with �i∈ P0

mo
sco

and ωi ∈ Rl
++ for all

i, . . . , l the function
fi : Sl−1

++ −→ Rl

p �→ {x ∈ Rl
+|px ≤ pωi, and py ≤ pωi for any y ∈ Rl

+ implies y �i x} − ωi =

gi(p) − wi

is the individual excess demand function derived from (�i, ωi), and

f(p) :=
l∑

i=1

fi(p)

is the market excess demand function derived from the l-consumer exchange
economy (�i, ωi)l

i=1 (cf. Mas-Colell, 1977, p. 118). The function f has the
usual properties: it is continuous and bounded from below, i.e. there is some
k < 0 such that f(p) > ke, and satisfies Walras’ law and the desirability
condition: for every sequence (pn) in Sl−1

++ which converges to a point of the
boundary ∂Sl−1

+ one has ||f(pn)|| −→ +∞. One also says that the pair (�i, ωi)
(the economy (�i, ωi)l

i=1) generatesthe individual (the market) excess demand
function fi(f) on Sl−1

++ .
Naturally the notion of a continuous one-parametrization of exchange eco-

nomies with l agents is central for our analysis. Formally it is given by a
continuous one-parametrization

(Es)s∈[0,1] : {1, . . . , l} × [0, 1] −→ P0
mo
sco

× Rl
++

(i, s) �→ (�is , ωis).

One also could say that (Es)s∈[0,1] is an l-tuple of continuous paths
(�is , ωis), i = 1, . . . , l, in the space P0

mo
sco

× Rl
++. While the meaning of a

continuous path (ωis)s∈[0,1] in Rl
++ is clear, we still have to explain what to

understand under a continuous path of preferences (�is)s∈[0,1] in P0
mo
sco

. Here
we will employ the following intuitive notion which is in the lines of Debreu
(1969) (cf. also the discussion by W. Hildenbrand (1974), Notes 1.2, pp. 108–
109). Roughly speaking a continuous path (�is)s∈[0,1] in P0

mo
sco

means that the
upper contour sets change continuously in the Hausdorff sense. More formally:
the closed upper contour set ψis(x) of any x ∈ Rl

+ with respect to some
fixed preference relation �is is Hausdorff-continuously deformed when s ∈
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[0, 1] varies continuously, i.e. ψis(x) is Hausdorff-continuously deformed into
upper contour sets ψis(xs) with suitable vectors xs ∈ Rl

+. Particularly this
means that any upper contour set ψis(x0) for fixed x0 ∈ Rl

+ varies Hausdorff-
continuously with the continuously varying homotopy parameter s ∈ [0, 1].



Part I

Conceptualization and Definition of Evolutions

of Economies in Four General Equilibrium
Frameworks



3

Introduction to Part I

In Part I nine static equilibrium models will be introduced. They provide the
basic set–ups in which the notion of an evolution will be defined. Some of
our basic set–ups are adopted from the literature (Chapters 4 and 6), whereas
the others are new (Chapters 5 and 7). Naturally, these are also inspired by
existing frameworks.

These nine basic models are grouped into four equilibrium frameworks: the
Walrasian exchange framework (Chapter 4), an exchange framework which re-
laxes the traditional assumptions of Walras’ law and homogeneity of degree
zero of the excess demand functions (Chapter 5), the framework with produc-
tion, taxes, and subsidies developed by T. Kehoe (1982, 1985 a,b, Chapter 6),
and the quantity constrained temporary fixed price framework (Chapter 7).

The notion of an evolution of an economic system usually has the conno-
tation of historical time. In the present study, we take the view of a theorist
who is generally interested in a comprehensive equilibrium analysis of evol-
ving economies – be it evolutions over historical time, or evolutions in logical,
artificial time in the laboratory. Thus, in this study, an “evolution of eco-
nomies” will denote any succession of states of the economic system under
consideration, whether the states are changing, or not. This can be compared
with a cinematic study of a movement process in sports. On the one hand,
one can use it for recording and representing the movement process in real
time. On the other hand, if one wants purposed to perform specific analyses,
one can employ certain cinematographic techniques that make it possible to
re-manipulate the representation by slow motion, fast motion, backtracking,
and so on.

The metaphor of a movie recording naturally suggests how to analytically
formalize an evolution. In fact, this is most naturally achieved by a one–
parametrization, or say a one-parameter family, of single shot states of the
economic system considered. This will be our approach in this study. In order
to stress our generalized usage of the notion of an evolution with respect to
the aspect of historical time, we generally use the symbol s, and not t, for
the scalar evolution (or say variation, or deformation) parameter throughout
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the book. In his book, Mas-Colell (1985, Section 5.8) introduces a generalized
concept of parametrizing economies by parameters which are not necessarily
scalars. Nevertheless, he attributes the greatest importance to the one-para-
metrized case (ibid., p. 235). The analysis of one-parametrized economies by
Mas-Colell is, however, confined to a certain of large exchange economies (see
Chapter 7 below).

Each chapter of Part I is devoted to one model framework and will be
organized according to the same scheme: Each section deals with one specific
basic model and is further divided into three subsections. Subsection (i) mo-
tivates the model and specifies the notions of an economy, an equilibrium,
and an evolution of economies in this set–up. Subsection (ii) presents the con-
struction of the most important technical tool of our analysis, a continuous
self–mapping of some compact Euclidean space which equivalently transforms
the zero–problem of the existence of equilibria into a fixed–point problem. This
is done in order to make the equilibrium analysis amenable to the powerful
tools of the one–parametrized fixed–point theory (see Part II). We will call the
addressed mapping an ‘equilibrium equivalent self–mapping’. Finally, subsec-
tion (iii) contains the verification that any admissible evolution of economies
in the present basic set–up actually yields a continuous one-parametrization
of associated equilibrium equivalent self–mappings. In fact, it is this property
of an evolution of economies as we formalize it that will turn out to be the
essential prerequisite the results in Part II. Fortunately, the technical work
done in the subsections (ii) and (iii) of the chapters in Part I settles the ma-
jor part of the technical efforts that are necessary for our central analytical
results in Chapters 10 and 11 in Part II.



4

Evolutions in the Traditional Walrasian
Exchange Equilibrium Framework

We start our analysis in the traditional Walrasian general equilibrium frame-
work of pure exchange. There are two main reasons for us to do so. The
first reason is that, as most economists certainly will agree, the Walrasian
general equilibrium framework stands at the very heart of economics as a
fundamental point of reference. Or, as Balasko (1988, p. viii) puts it: “. . .
for them [the pure exchange economies], the hidden and intricate structure
of the equilibrium model is most easily brought to light. Besides the intrinsic
interest in such an undertaking, the insights gained from understanding the
mathematical structure of the simpler pure exchange model can be invaluable
when dealing with more general models.” Thus, it will hardly be surprising
that also for our present analysis the Walrasian framework will turn out to be
most useful from the viewpoint of economic intuition as well as from the view-
point of technical convenience. Indeed, several times in our study we easily
can transfer an analysis which we have carried out for the Walrasian set–up
to other basic set–ups.

The second reason mentioned above derives from the well-known result of
indeterminateness of the exchange framework which was developed in the early
seventies by Sonnenschein, perfected by Debreu (1974) and further generalized
by Mas-Colell (1977) (see also Shafer/Sonnenschein (1982) for a survey). Our
main concern is with the result by Mas-Colell (1977) who has shown that the
feature of indeterminateness also pertains to the equilibrium set itself. More
precisely, this means that any compact set of the price simplex can be realized
as the equilibrium set of some reasonable exchange economy described by
individual preferences and endowments.

In Part II of our study we will extend the examination of indeterminateness
from the static level to the one-parametrized level. It has been shown that in
contrast to the static exchange framework there is some general global struc-
ture property of the equilibrium set on the one-parametrized level (Lehmann-
Waffenschmidt 1983, 1985; Mas-Colell 1985; see also Chapter 10 in the present
study). Actually, we can show more, namely that this is even the only global
structure property which generally holds (Lehmann-Waffenschmidt 1988; see
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Chapter 13 here). Taken together these findings achieve a complete charac-
terization of the graph of the equilibrium correspondence of the exchange
framework on the static and on the one-parametrized level.

Chapter 4 presents three well–known models of a pure exchange economy
and puts them into the forms needed for our later analysis. In fact, the first
model, borrowed from Arrow and Hahn (Section 4.1) contains the model by
Dierker (Section 4.2) as a special case. Nevertheless, Dierker’s version is also
explicitly considered here since it allows for a different and more flexible formal
treatment. It will later turn out to be considerably well–suited for generaliza-
tion to other basic set–ups.

In his analysis of one-parametrized economies A. Mas-Colell (1985, Section
5.8) employs a certain model of a large exchange economy as basic set–up
(see ibid., Sections 5.2, 5.4).1 Here we employ a slightly different model of a
large exchange economy (Section 4.3) which follows the lines of Dierker (1974,
Chapter 12). The differences basically lie in the fact that Mas-Colell uses
preferences and initial endowments as primitives, whereas Dierker’s version
directly builds on demand functions.

4.1 Evolutions Based on the Model of an Exchange
Economy by Arrow and Hahn

(i) Let us start with a brief review of the well–known model of a pure exchange
economy by Arrow and Hahn (1971, Chapter 2, particularly Sections 2.7, 2.8).
There are n markets as it will be the case throughout the whole study. Excess
demand is defined on the boundaryless (n–1)–dimensional price simplex Δ̊n−1

and possibly also in points from the boundary ∂Δn−1. Furthermore, the excess
demand function

ζ : Δn−1 \ L → Rn

p �→

⎛⎜⎝ ζ1(p)
...

ζn(p)

⎞⎟⎠
is bounded from below and is continuous on its domain Δn−1\L where the
exception set L ⊆ ∂Δn−1 is an arbitrary closed subset of the boundary. ζ
satisfies the budget identity (Walras’ law) p · ζ(p) = 0 and the following well–
known boundary condition which reflects desirability of each commodity:

given any sequence (pk) in Δn−1\ L which converges to some p ∈ L,
then

lim
pk→p

n∑
i=1

ζi(pk) = +∞

1 When proceeding to the regular analysis, however, Mas–Colell (1985, Section 8.8)
confines himself to finitely many agents.
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(cf Assumption 6 (C′) in Arrow/Hahn (1971), p. 31.)

From all these assumptions on ζ follows immediately that the last condition
really means desirability for each commodity, i.e. that

ζi(pk) → +∞ when (pk
i ) → 0, i = 1, . . . , n

To gain further economic insight let us quote here Arrow and Hahn’s
comment on their choice of the domain Δn−1\L (1971, p. 21, last paragraph):
“. . . this means that the demand for a free good . . . [may be] bounded [if
L 
= ∂Δn−1]. Every individual becomes satiated with respect to any particular
good. Unfortunately this assumption comes close to being inconsistent with
the reasoning underlying Walras’ law, which requires that at any point the
household is unsatiated with respect to at least one good.” (Square brackets
by the author.)

In the pure exchange framework the set of equilibria is defined as the set
of price vectors clearing all markets simultaneously, i.e. as the zero set of the
excess demand function, ζ−1(0n) =

⋂n
i=1 ζ−1

i (0). Arrow and Hahn, however,
generalize this notion of equilibrium in the following way (1971, Chapter 2,
Definition 1): a price vector p ∈ Δn−1 is an equilibrium (price vector) for the
economy ζ if ζ(p) ≤ 0n. Note that this particularly means that excess supply
on some, or even on all markets, is not inconsistent with equilibrium. This
means that free disposal is implicitly assumed for all commodities. However,
from the assumptions on ζ follows immediately that excess supply in equi-
librium can only occur for free goods. Formally this means that if ζ(p) ≤ 0n

and ζi(p) < 0, then pi = 0 (Arrow/Hahn 1971, Chapter 2, Theorem 1). Con-
sequently, if for a given economy ζ equilibria with free goods do not occur
then the set of equilibria in the sense of Arrow and Hahn equals the zero set
of ζ.

If one desires to exclude equilibria with free goods – be it for economic
or for technical reasons – the following additional mild assumption on ζ will
obvioulsy help:

choose an arbitrarily small ε > 0. Then for any p ∈ Δn−1 the relation
pi < ε implies that ζi(p) > 0.

Clearly this assumption does not mean a severe restriction from the economic
viewpoint. Consistency with the previous assumptions is evident.

Now we come to the crucial notion of an evolution of economies in our
present set–up.

Definition 4.1. An evolution (of economies) based on the model of an ex-
change economy by Arrow and Hahn, or for short, an exchange–I–evolution,
is formally given by a C0–uniformly continuous one-parametrization, or say
one–parameter family, perturbation, or homotopy, of economies



32 4 Evolutions in the Traditional Walrasian Framework

(ζs)s∈[0,1] : (Δn−1\L)× [0, 1] → Rn
+

(p, s) �→ ζs(p) =

⎛⎜⎝ ζ1s(p)
...

ζns(p)

⎞⎟⎠
from the homotopy price prism (Δn−1\L) × [0, 1] into the commodity space
Rn

+. s ∈ [0, 1] is called the state, or variation parameter. For any s ∈ [0, 1] ζs

is called the s–state economy of the evolution (ζs)s∈[0,1], and ζis is called
the s–state excess demand function of commodity i. In accordance with
intuition ζ0 is also called initial state, or initial state economy, and ζ1

the terminal state, or terminal economy, of the evolution (ζs)s∈[0,1].

We will see below that for our purposes the C0–uniform continuity as-
sumption can be replaced by the following ‘uniformization’ of the desirability
condition: given any sequence (pk, sk) in (Δn−1\L)× [0, 1] which converges to
a point (p,s) ∈ L × [0, 1], then

n∑
i=1

ζi
sk

(pk) → +∞ .

We introduce this uniformized desirability condition for two main reasons.
First, it is weaker than the C0–uniform continuity assumption on the one-
parametrization, and second it will later turn out to be most useful for the
formalization of an evolution of large exchange economies (see Section 4.3
below).

Analogously to the static case the uniformized desirability condition pre-
vents the equilibria of an evolution from coming arbitrarily close to those
points of the boundary where the exess demand state functions are not de-
fined. Figure 4.1 ( = Figure 2.3) provides a simple one-dimensional example
where this assumption is violated.

Convention When addressing an evolution of economies henceforth we will
call the underlying static model the basic model, or the basic set–up.

It is easy to get a geometric intuition of the presented analytical formaliza-
tion of an evolution of economies. Actually, each initial component function
ζi0 , i.e. each single market excess demand function of the initial state eco-
nomy ζ0 = (ζ10 , . . . , ζn0)T is continuously deformed, or say perturbed, when
the variation parameter s ∈ [0, 1] moves from 0 to 1. Or, to put it more for-
mally, the continuous perturbation (ζis )s∈[0,1] is continuously governed by the
scalar parameter s ∈ [0, 1].

To make our analysis compatible with concepts frequently used in the
literature we emphasize the fact that our set of exchange–I–evolutions can be
identified with a certain subset of the set of continuous paths in the space
of exchange economies Eex endowed with the usual product topology of C0–
uniform convergence on compacta.
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Fig. 4.1: Convergence Pathology (cf. Fig. 2.3)

Proposition 4.2. An exchange–I–evolution (ζs)s∈[0,1] : (Δn−1\L) × [0, 1] →
Rn canonically generates a continuous path of economies Z : [0, 1] → Eex

in the topological space of exchange economies Eex by the canonical rule
Z(s) := ζs. Conversely, any continuous path Z : [0, 1] → Eex of exchange eco-
nomies generates an exchange-I–evolution (ζs)s∈[0,1] if the one-parametrized
family (ζs)s∈[0,1] canonically generated by ζs := Z(s) satisfies the uniformized
desirability assumption. Moreover, if we endow Eex with the stronger topology
of overall C0–uniform convergence then any exchange–I–evolution generates
a continuous path, and vice versa.

We will postpone the proof of Proposition 4.2 until Chapter 5. There it
will turn out to be a Corollary of the more general result of Proposition 5.2
below.

(ii) Now let us proceed to the second item on our agenda. This means that we
have to provide a continuous self–mapping of the closed price simplex for any
economy ζ such that the fixed point set equals the equilibrium set ζ−1(0n). We
will call such a mapping an equilibrium equivalent self–mapping in the sequel.

To this end let us recall the well-known equilibrium equivalent self–
mapping provided by Arrow and Hahn (1971, Section 2.8, pp. 31–32): first,
define
Kζ(p) :=

n∑
i=1

ζi(p). Now choose a continuous gluing function

α : R → [0, 1]
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x �→

⎧⎪⎨⎪⎩
0 for x ≤ 0
x for 0 < x < 1
1 for x ≥ 1.

Let us define the mapping

Nζ : Δn−1 → Rn
+

by
Nζi : Δn−1 → R+

p �→
{

[1 − α(Kζ(p)] max(0, ζi(p)) + α(Kζ(p)) for p ∈ Δn−1\L
1 for p ∈ L.

Obviously Nζi is continuous. Note that Nζi equals max(0, ζi(p)) for ar-
guments p with Kζ(p) ≤ 0. Particularly, this is true for equilibrium price
vectors.

Now the zero problem of the existence of equilibrium price vectors is equiv-
alently transformed into a fixed point problem by the following natural map-
ping

ϕζ : Δn−1 → Δn−1

p �→

⎛⎜⎜⎝ 1
n∑

j=1

(pj + Nζj (p))

⎞⎟⎟⎠ (p + Nζ(p))

(More detailed: ϕζi(p) =
pi + Nζi(p)

n∑
j=1

(pj + Nζj (p))
.)

In fact, ϕζ is an equilibrium equivalent self-mapping (see Arrow/Hahn, 1971,
p. 32, for verifications).

(iii) Our last item fortunately is straightforward. From the construction of the
equilibrium equivalent self–mapping ϕζ and the definition of an exchange–I–
evolution follows immediately that an exchange–I–evolution (ζs)s∈[0,1] induces
a continuous one–parametrization of equilibrium equivalent self–mappings

(ϕζs)s∈[0,1] : Δn−1 × [0, 1] → Δn−1

(p, s) �→ ϕζs(p).

4.2 Evolutions Based on Dierker’s Version of the
Model of an Exchange Economy

(i) Dierker’s version of the model of an exchange economy (1974, Chapter
1) is a special case of the model by Arrow and Hahn. More precisely, the
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exception set L equals the whole boundary ∂Δn−1. Nevertheless, as we have
argued before from the economic viewpoint this case might be well considered
as the most plausible one. Let us call an evolution based on Dierker’s version
of the model of an exchange economy an exchange–II–evolution.

Actually, what we here are primarily interested in is Dierker’s approach to
achieve a convenient equilibrium equivalent self–mapping. Actually, his con-
struction will prove to be most useful for generalizations later in our analysis.

(ii)What we are going to present now is a slight modification of Dierker’s
original construction in (1974, proof of Theorem 8.3). Let an exess demand
function (an economy)

ζ : Δ̊n−1 → Rn

be given. The equilibrium set is given by the zero set ζ−1(0n) =
⋂n

i=1 ζ−1
i (0)

of ζ. Consider now the derived mapping

fζ : Δ̊n−1 → Rn

p �→

⎛⎜⎝p1 + p1ζ1(p)
...

Pn + pnζ(p)

⎞⎟⎠
Clearly, ζ−1(0n) = Fix (fζ). Note that Walras’ law and boundedness from

below imply that piζi(p) is bounded from above for i = 1, . . . , n. Thus fζ

is bounded from below and from above as well. This will become important
later. Due to Walras’ law the image of fζ lies in the affine hyperplane H in
Rn through Δn−1. For h ∈ {1, . . . , n} let us now define

V ζ
h :=

{
p ∈ Δ̊n−1

∣∣∣∣ζh(p) > 0 and ph <
1
n

}
V ζ :=

n⋂
h=1

V ζ
h ,

and Kζ := Δ̊n−1\V ζ = (V ζ)co.

Evidently ζ−1(0n) ⊆ Kζ . It is clear that Kζ is closed in Δ̊n−1. Moreover,
it is even compact in Rn. To verify this we have to show that no sequence
(pk) in Kζ converges to a point of the boundary ∂Δn−1 : for a sequence (pk)
in Δ̊n−1 with pk → ∂Δn−1 the set N (pk) := {h ∈ {1, . . . , n}|pk

h → 0} is not
empty. Assume now that there is no index h ∈ N (pk) so that excess demand
for commodity h becomes positive on a whole tail of the sequence (pk). To
put it more formally: for no h ∈ N (pk) there exists a natural number k(h)
with ζh(pk) > 0 for all k ≥ k(h).

But then the desirability condition implies that there is at least one index
i ∈ {1, . . . , n}\N (pk) with

ζi(pk) → +∞.
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Furthermore by Walras’ law an index j ∈ {1, . . . , n} must exist with ζj(pk) →
−∞. But this contradicts the assumption that ζ is bounded from below.

Consequently there is at least one index h ∈ N (pk) and an index k(h) ∈
{1, . . . , n} so that ζh(pk) > 0 for all k ≥ k(h). But h ∈ N (pk) implies that
there is natural number (h) with pk

h ∈ V ζ
h for all k ≥ max(k(h), (h)). This

means that pk ∈ V ζ for all k ≥ max(k(h), (h)). In other words, there is a
tail (pk) which is in V ζ , and this proves the compactness of Kζ = (V ζ)co.

In the next step we extend the mapping fζ to the boundary ∂Δn−1 in
a continuous way so that it remains unchanged on Kζ and thus particularly
also on ζ−1(0n). Since Kζ is a compact subset of Δ̊n−1 the number

dist (Kζ , ∂Δn−1) =: γζ

is well–defined and positive. Consider the inscribed closed simplex Δn−1
εζ

with
εζ = (5/6)γζ which still contains Kζ. Now choose a continuous ‘hat function’

λζ : Δn−1 → [0, 1]

with
λζ |Δn−1

εζ
≡ 1 and λζ |∂Δn−1 ≡ 0.

By means of λζ we will glue fζ with the constant mapping which maps all
points of the closed price simplex into its center (1/n, . . . , 1/n).
The resulting mapping

f̃ζ : Δn−1 → H ⊂ Rn

p �→
{

λζ(p)fζ(p) + (1 − λζ(p)) · (1/n, . . . , 1/n) for p ∈ Δ̊n−1

(1/n, . . . , 1/n) for p ∈ ∂Δn−1

is continuous and equals fζ on the critical set Kζ , i.e.

f̃ζ |Kζ = fζ|Kζ .

Now choose an arbitrary retraction of H on Δn−1, i.e. a continuous map-
ping r : H → Δn−1 with the property r|Δn−1 = idΔn−1 and r(H\Δn−1) =
∂Δn−1. We assert that the composition

r ◦ f̃ζ : Δn−1 → Δn−1

achieves the desired equilibrium equivalent selfmapping. To show this it only
remains to verify that Fix(r ◦ f̃ζ) = ζ−1(0n).

Clearly Fix (r ◦ f̃ζ) = Fix (f̃ζ) ⊃ Fix(fζ) = ζ−1(0n). Thus, if we can
show that Fix (r ◦ f̃ζ) ⊂ Kζ we are done since Kζ ⊂ Δn−1

εζ
and

r ◦ f̃ζ|Δn−1
εζ

= f̃ζ|Δn−1
εζ

= fζ |Δn−1
εζ

.
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To establish the inclusion Fix(r◦f̃ζ) ⊂ Kζ choose an arbitrary p ∈ Fix (f̃ζ) =
Fix (r ◦ f̃ζ). Consequently, p 
∈ ∂Δn−1. Assume now that p 
∈ Kζ , i.e. there
is an h ∈ {1, . . . , n} so that p ∈ V ζ

h . Then from the definition follows:

(f̃ζ)h(p) = λζ(p)(f̃ζ)h(p) + (1 − λζ(p))1/n
= λζ(p)(ph + phζh(p)) + (1 − λζ(p))1/n
> λζ(p)ph + (1 − λζ(p))ph

= ph.

But this means p 
∈ Fix f̃ζ in contradiction to our assumption. Hence, p ∈
Δ̊n−1\V ζ = Kζ.

(iii) We are still left to verify that any exchange–II–evolution Z := (ζs)s∈[0,1]

induces a continuous one-parametrization of equilibrium equivalent self–
mappings. From the C0–uniform continuity of Z and the compactness of the
prism Δn−1 × [0, 1] follows immediately that one can choose a positive real
number γZ with 0 < γZ < dist(Kζs , ∂Δn−1) for all s ∈ [0, 1]. Correspondingly
to the construction above we choose a continuous hat function

λZ : Δn−1 → [0, 1]
with λZ |Δn−1

γZ
≡ 1,

and λZ |∂Δn−1 ≡ 0.

With the function λZ as gluing function the given exchange–II–evolution
Z induces a continuous one-parametrization of equilibrium equivalent self–
mappings as desired

(r ◦ f ζs
)s∈[0,1] : Δn−1× [0, 1] → Δn−1

(p, s) �→ (r ◦ fζs
)(p)

where

fζs
: Δn−1 × [0, 1] → H

(p, s) �→

⎧⎪⎨⎪⎩
λZ(p) · fζs(p) + (1−
λZ(p))(1/n, . . . , 1/n) for (p, s) ∈ Δ̊n−1 × [0, 1]
(1/n, . . . , 1/n) for (p, s) ∈ ∂Δn−1 × [0, 1].

4.3 Evolutions Based on a Model of a Large
Exchange Economy

(i) The last model from the traditional exchange framework which we will
employ as a basic model in our study is a model of a large exchange eco-
nomy. Actually, a model of a large exchange economy has also been used
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by Mas-Colell (1985, Chapter 5, especially Sections 5.2, 5.4.) as basic set–up
for one-parametrized economies (Section 5.8, pp. 235-241). While Mas-Colell,
however, uses individual preferences and endowments as primitives, here we
basically will follow the lines of Dierker (1974, Chapter 12) who directly builds
on demand functions (see also Hildenbrand 1974). Below we will discuss these
differences in greater detail.

The space of characteristics of the agents is given by D0 × (Rn
+\{0n}). D0

denotes the set of continuous individual demand functions

f : Δ̊n−1 × R++ → Rn
+

which satisfy Walras’ law: p · f(p, w) = w for all (p, w) ∈ Δ̊n−1 × R++, and a
slightly strengthened desirability condition:

for any sequence (pk, wk) in Δ̊n−1 × R++ which converges to a pair
(p, w) ∈ ∂Δn−1 × R++ the norm ‖ f(pk, wk) ‖ of the demand vectors
grows beyond all finite bounds.

In order to ensure later that evolutions satisfy a uniformized desirability con-
dition we still impose an additional boundary assumption on any individual
demand function. For any positive real number β there is an (arbitrarily small)
εβ > 0 such that for any f ∈ D0

fi(p, w) > β for any (p, w) ∈ Δ̊n−1 × R++ with pi < εβ.

Rn
+\{0n} is the admissible space of initial endowments, and R++ is the

space of individual wealth. Given an endowment bundle ω ∈ Rn
+\{0n} and a

price vector p ∈ Δ̊n−1 individual wealth is given by the evaluation ωp ∈ R++.
D0×(Rn

+\{0n}) is topologized by the product topology of uniform convergence
on compacta (cf Dierker, 1974, p. 9, pp. 119–121).

The space of large exchange economies MT is given by the set of all pro-
bability measures μ on (T, B(T )) where T is any non–empty compact subset
of the characteristics space D0× (Rn

+\{0n}), and B(T ) is the associated Borel
algebra. Thus, a large exchange economy μ ∈ MT is completely characterized
by the distribution of demand and initial endowment characteristics. Given
an economy μ ∈ MT the mean excess demand function is the function

ζμ : Δ̊n−1 → Rn

p �→ ζμ(p) =
∫

f(−,−, p)dμ −
∫

ω(−,−, p)dμ

where

f : (D0 × Rn
+\{0n}) × Δ̊n−1 → Rn

+

(f, ω; p) �→ f(p, ωp)

is the natural evaluation mapping, and
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ω : (D0 × (Rn
+\{0n}) × Δ̊n−1 → Rn

+\{0n}
(f, ω; p) �→ ω

is the projection on the second argument. Hence, the integrals
∫

f(−,−, p)dμ

and
∫

ω(−,−, p)dμ are in the usual sense vector–valued.

Note that the term (− ∫ ω(−,−, p)dμ) is uniformly bounded from below

on Δ̊n−1 since the economy subspace T is compact. Naturally, the set of
equilibria of an economy μ is the set of zeroes of ζμ.

A simple example of a large economy shall be mentioned here: if T is finite,
or if μ has a finite support with k elements, then the following mean excess de-

mand function obtains: ζμ(p) :=
k∑

i=1

αif
i(p, pωi)−

k∑
i=1

αiω
i with (α1, . . . , αk) ∈

Δ̊k−1. If μ, moreover, is equally distributed, then the so–called ‘per–capita ex-

cess demand function’ obtains: ζμ(p) := 1/k
k∑

i=1

f i(p, pωi) − 1/k
k∑

i=1

ωi.

Now let us topologize the space MT of economies in a way so that similar
economies also have similar mean excess demand. Actually, this is achieved
by the topology of weak convergence of probability measures. Moreover, MT

becomes a compact, separable, and complete metric space (cf Dierker, 1974,
p. 122). Consequently, the mapping

ζ : MT × Δ̊n−1 → Rn

(μ, p) �→ ζμ(p)

is continuous. Particularly, ζμ is continuous for any μ and has the usual pro-
perties of an excess demand function (see ibid.).

Trying to formalize the notion of an evolution of economies in this basic
set–up shows that the model of a large exchange economy is considerably more
abstract than the ordinary exchange model. In fact, we cannot any longer use
the geometrically intuitive notion of perturbed behavior functions. Instead,
we have to switch to the concept of a continuous path in the topological
space of large economies (see Mathematical Preliminaries). Accordingly, let us
formalize an evolution of large exchange economies, or an exchange–
III–evolution for short, by a continuous path

(ζs)s∈[0,1] : [0, 1] → MT

s �→ μs.

(Lehmann-Waffenschmidt (1985, pp. 55–56) provides alternative characteri-
zations of continuous paths of large exchange economies which help to make
this notion economically more intuitive.)

Finally, let us come back to the aforementioned differences between the
model of a large exchange economy adopted here and that employed by Mas-
Colell (1985, Section 5.2, 5.4). Mas-Colell uses as space of agents’ charac-
teristics the economically more immediate space M0

b,sc × Rn
++, where Rn

++
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represents the admissible space of agents’ initial endowments, and M0
b,sc is

the space of individual preference relations on the commodity space Rn
++

which are continuous, monotone, strictly convex, and which satisfy a suit-
able boundary condition (1985, 5.2, and Definition 2.3.16).2 In this context
an economy is specified as a map E : I → M0

b,sc × Rn
++ where the set of

agents’ names I is finite or equal to the unit interval [0, 1]. Thus, an economy
is completely described by the number of agents and by the distribution ν of
the agents’ characteristics. Note that (ν(B) = λ(E−1(B) for I = [0, 1] where
λ is the Lebesgue measure on R and B is an element of the Borel algebra of
M0

b,sc × Rn
++ (see Mas-Colell, 1985, p. 184).

Convention Let us for the sake of better distinction subsequently call an
economy in Mas-Colell’s set–up an explicit large exchange economy. Ac-
cordingly, if the set of agents’ names is finite we will speak of an explicit
finite exchange economy.

The space of explicit exchange economies M is endowed with the topo-
logy which is derived from the following natural concept of nearness: a se-
quence of economies En : In → M0

b,sc × Rn
++ is converging to an economy

E : I → M0
b,sc × Rn

++ when (i) 1/�In → 1/�I, (ii) supp γn → supp γ in the
Hausdorff distance, and (iii) γn → γ weakly (see Mas-Colell, 1985, Def. 5.4.1).

(ii) The provision of an equilibrium equivalent self–mapping for our basic
model of a large exchange economy is straightforward. Actually, all necessary
preparations have already been done in the preceding Subsection. The mean
excess demand function ζμ(−) of a large economy μ has the same properties
as an excess demand function in Dierker’s version, and can consequently be
treated in the same way (see Dierker, 1974, p. 122).

(iii) Likewise it is entirely straightforward to check that an evolution of large
exchange economies induces a continuous one-parametrization of equilibrium
equivalent self–mappings. The composition

Δ̊n−1 × [0, 1]
idΔ̊n−1×(ζs)s∈[0,1]−→ Δ̊n−1 ×MT

tr→ MT × Δ̊n−1 ζ→ Rn

(p, s) �→ (p, μs)} �→ (μs, p) �→ ζμs(p)

clearly is continuous and satifies the uniformized desirability condition as
exchange-II–evolutions do it. The latter is due to the additional boundary
assumption on the individual demand functions of D0.

2 Mas-Colell (1985) primarily considers preference spaces with differentiabil-
ity properties (p. 168). However, to make it comparable to our analysis here
we report the general continuous case.
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Evolutions in an Exchange Equilibrium
Framework Without Walras’ Law and

Homogeneity

It is appealing for a theoretical economist for several reasons to relax the
traditional assumptions of Walras’ law, i.e. of the budget identity, and of
homogeneity of degree zero of the excess demand function. To begin with
the purely economic aspects, Walras’ law and the homogeneity property of
the excess demand function clearly do not make sense anymore when one
studies a subsystem of all conceivable markets, thus placing oneself in a partial
equilibrium framework (cf. Schulz, 1985, introductory remarks).

Relaxing the budget identity will furthermore turn out to be essential for
our analysis of evolving economies in Chapter 19. Apparently, the budget iden-
tity does not make any sense for our “frequency model” (see Section 19.2.2)
which models demand and supply over time by time intervals between two
demanded (supplied) commodity units. Relaxing homogeneity furthermore
allows one to take into account inflationary effects and effects from currency
reforms on excess demand hurting the assumption of freedom of money illu-
sion.

However, there is still a second type of motive for studying such a general
framework. Traditionally, existence proofs of general equilibrium essentially
hinge on Walras’ law and homogeneity. This raises the natural question how
deeply the consistency of the model under consideration depends on these
assumptions.

The two model versions of an exchange economy without Walras’ law and
homogeneity which we are going to present in this Chapter are in the spirit of
Schulz’s model (1985). Nevertheless, our second model (Section 5.2) general-
izes Schulz’s model in that it also allows for bounded demand for free goods.
Actually, in the present context satiation with free goods no longer conflicts
with the other assumptions. The main difference between Schulz’s and our
framework lies in the fact that we use a fixed–point approach for formal treat-
ment whereas Schulz employs a degree theoretical approach. While the degree
theoretical approach certainly has its merits the fixed–point approach will be
crucial for our later results.
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The question may arise whether the presented models do really general-
ize the traditional Walrasian exchange model. Actually, it is not hard to see
that the presented models can easily be expanded further by adding one more
appropriate excess demand function so that a Walrasian economy of the Ar-
row/Hahn type obtains (cf. Section 4.1). But this is precisely what we are not
allowed to do. We have to cope with a given system of n markets, no more
and no less. Playing the role of an “advocatus diaboli”, however, we even ask
the more serious question whether possibly there is an n + 1. market already
contained in the given system of n markets which may balance the model in
the Walras sense. Actually, we will find one, namely the “market” where all
cross entries of units of account are registered which are associated with any
planned excess demand or excess supply on the n commodity markets. But
we will be able to show that the obtained system of n + 1 excess demand
functions generally does not satisfy the boundary conditions of the Walrasian
framework.

5.1 Evolutions Based on a Model of an Exchange
Economy Without Walras’ Law and Homogeneity

(i) A basic economy without Walras’ law and homogeneity of type I
is given by a continuous excess demand function

ζ : Rn
+ −→ Rn

p �→

⎛⎜⎝ ζ1 (p)
...

ζn (p)

⎞⎟⎠
with the following properties:

(1) Let (pm) be an arbitrary unbounded sequence in Rn
+. Define J(pm) :=

{i ∈ {1, . . . , n}|limm pm
i = +∞ and there is a ki ∈ N such that for all

k ≥ ki one has pk
i /(
∑n

j=1 pk
j ) ≥ 1,1

10n}. (This means that an index i is in
J(pm) when the i–th component sequence pm

i converges to infinity “so
fast” that a whole tail of the i–th component sequence (pm

i /
∑n

j=1 pj)
of the intersection points of the rays λpm with Δn−1, λ > 0, lies in the
interval [ 1,1

10n ,∞[. Clearly, J(pm) is always non–empty.) Then the following
holds: there is an index ĩ ∈ J(pm) and a k0 ∈ N such that ζei(pk) < 0 for
all k ≥ k0.

(2) Choose an arbitrary y ∈ ∂Rn
+. Then at least for one index j̃ ∈ {1, . . . , n}

with yej = 0 the following is true: ζej(y) > 0.

(3) There is a positive real number b such that for all i = 1, . . . , n and any
p ∈ Rn

+ one has ζi(p) > −b.

Let us comment on this definition. The choice of the positive orthant Rn
+

as price space is natural since we have no homogeneity property. Possibly, the
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reader may feel some uneasiness about the zero–vector beeing not excluded
from the price domain. Actually, the zero–vector has only been included here
in order to lower notational expense and to simplify the formal analysis in the
Subsections (ii) and (iii) below. We will see that it also can be excluded in
the more general setting of the following Section 5.2. Property (3) simply ex-
presses the fact that supply cannot grow beyond all finite bounds. Properties
(1) and (2) characterize the boundary behavior of ζ. While Property (2) re-
flects an intuitive weak desirability property of each commodity, Property (1)
deserves more attention. Though it may give the impression of being some-
what artificial, it, nevertheless, formalizes an economically reasonable idea:
whenever the prices of some commodities become arbitrarily large, then at
least one of these commodities will eventually be in excess supply. To para-
phrase it in another way the second one of the two conditions defining the
index subset J(pm) just rules out an index j when the j–th component se-
quence (pm

j ) of (pm) converges “so slowly” to infinity that the corresponding
j–th component sequence of the intersection points of the vectors pm with the
(n − 1)–unit–simplex Δn−1 does not eventually exceed 1,1

10n .
The shaded area in the following illustrating Figure 5.1 shows the subspace

of R2
+ which contains all sequences (pm) with J(pm) = {1, 2}. Note that by

Fig. 5.1: Boundary Condition Areas I

Property (1) the market excess demand function of at least one commodity i,
where i is an element of the distinguished index subset J(pm), is negative for
the terms of a whole tail of the price sequence (pm). Admittedly, the bound
1,1
10n seems to be somewhat arbitrary. However, it can be replaced, for example,
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by any number 1+ε
α·n with an arbitrarily small positive real number ε and an

arbitrarily large positive real number α. This follows immediately from the
construction of the mapping g̃sh

in Subsection (ii) below.
Apparently, the class of basic economies in this set–up is considerably

large. To gain some intuition let us look at the following subclass: choose ar-
bitrarily large positive real numbers α and β and an arbitrarily small positive
real number γ < 1,1

10n . A function ζ : Rn
+ −→ Rn is a basic economy when it

meets the following conditions:

(a) if p ∈ Rn
+ with pi > α and pi/(

∑n
j=1 pj) ≤ 1,1

10n , then −β ≤ ζi(p) < 0.
(b) if q ∈ Rn

+ with qi < γ, then ζi(q) > 0.

Figure 5.2 gives the geometric intuition. In the introductory remarks to this

Fig. 5.2: Boundary Condition Areas II

Chapter we have given a general economic justification to consider a theoreti-
cal framework of pure exchange without Walras’ law and homogeneity. Now
we have to ensure that a basic economy in the present context is not essen-
tially the same as a basic economy from the traditional Walrasian exchange
framework.

To show this we will proceed in the following way. We start with playing
the role of an “advocatus diaboli” trying to make a reasonable proposal to
show the opposite. Afterwards we will see that his proposal does not work:
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Let a basic economy ζ =

⎛⎜⎝ ζ1

...
ζn

⎞⎟⎠ : Rn
+ −→ Rn with n commodity markets

from our present set–up be given. First we have to transform ζ into a mapping
with the unit simplex as price domain in order to make it comparable with
the traditional Walrasian set–up. We will achieve this by means of the two
canonical homeomorphisms

ϕ : T n\Δn−1 ≈−→ Rn
+,

p �→ 1
1 −∑n

j=1 pj
p,

i.e. the central projection homeomorphism from the origin (see p.),
and

π : Δ(n+1)−1\Δn−1 ≈−→ T n\Δn−1,

(p1, . . . , pn, pn+1) �→ (p1, . . . , pn),

i.e. the orthogonal projection (recall that T n = {p ∈ Rn
+|
∑n

i=1 pi ≤ 1}). In
order to give the advocatus diaboli a chance let us for the moment consider
of the composite mapping

ζ ◦ ϕ : T n\Δn−1 −→ Rn.

Actually, this composition almost looks like a basic economy in the model by
Arrow and Hahn with the domain exception set Δn−1. To fit (ζ◦ϕ) still better
into the set–up by Arrow and Hahn it appears natural to replace the domain
T n\Δn−1 by the homeomorphic unit simplex Δ(n+1)−1\Δn−1 ⊂ Rn+1

+ . Now,
we need an n + 1. market excess demand function which achieves Walras’
law. Clearly, introducing a new commodity market from outside the given
economy ζ would break the rules. However, there is a reasonable candidate for
an n+1. excess demand function which already is inherent in ζ. According to
the sign convenience any planned excess demand (ζi◦ϕ)(p) > 0 (excess supply
(ζi ◦ ϕ)(p) < 0) on some market i at price vector p naturally involves a
nominal “cross entry” – [(ζi ◦ ϕ)(p)] · pi < 0 (−[(ζi ◦ ϕ)(p)] · pi > 0) of
excess supply (excess demand) of units of account. Now let us take as n + 1.
market the “market” where all supplies and demands of units of account
caused by commodity excess demands and supplies are registrated. Thus,
taking pn+1 = 1 as fixed price of one unit of account one can derive the
following economically appealing mapping from the basic economy ζ :

ζ =

⎛⎜⎜⎜⎝
ζ1
...

ζn

ζn+1

⎞⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎝
ζ1

...
ζn

ζn+1

⎞⎟⎟⎟⎠ :

(T n\Δn−1) × {1} −→ Rn+1

(p, 1) �→

⎛⎜⎜⎜⎝
(ζ1 ◦ ϕ)(p)

...
(ζn ◦ ϕ)(p)

−∑n
i=1[(ζi ◦ ϕ)(p)] · pi

⎞⎟⎟⎟⎠
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Obviously, ζ fulfills Walras’ law ζ(p, 1) · (p, 1) = 0 for all (p, 1) ∈ (T n\Δn−1)×
{1}. Furthermore, the domain (T n\Δn−1)×{1} is canonically homeomorphic
to Δ(n+1)−1\Δn−1 ⊂ Rn+1

+ by means of the inverse of the orthogonal pro-
jection π. Consequently, ζ strongly gives the impression of being a Walrasian
exchange economy with n + 1 markets and domain exception subset Δn−1 in
the set–up by Arrow and Hahn.

However, up to now we still have neglegted the boundary assumptions of
the Arrow/ Hahn model. In fact, a brief calculation will show us that they are
generally not satisfied by ζ. In the context of the price domain (T n\Δn−1)×
{1} used here the boundary assumption by Arrow and Hahn requires that
for any sequence (pm, 1) in (T n\Δn−1) × {1} which converges to some point
(p◦, 1) ∈ Δn−1 × {1} the sum

∑n+1
i=1 ζi(p

m) approaches infinity. By definition

n+1∑
i=1

ζ(pm) =
n∑

i=1

(ζi ◦ ϕ)(pm) −
n∑

i=1

[(ζi ◦ ϕ)(pm)]pm
i .

However, from 0 ≤ pm
i ≤ 1 and from the boundedness from below of ζ follows

that

+
n∑

i=1

[(ζi ◦ ϕ)(pm)] · pm
i

is bounded from below on Δ(n+1)−1\Δn−1. Consequently, the sum
Pn+1

i=1 ζi(p
m)

can reach infinity only if at least one of the n component sequences
((ζi ◦ ϕ)(pm)), i = 1, . . . , n, does. But apparently, this need not be the case
in general, and we are finished with the proof that a basic economy in the
present context is essentially not the same as an economy from the traditional
Walrasian framework.

After this digression we come to the precise notion of an evolution of
economies in the present context.

Definition 5.1. An evolution of economies based on the presented model
of an exchange economy without Walras’ law and homogeneity of type I, or
an exchange–III–evolution for short, is a C◦–uniformly continuous one–
parametrization of basic economies

(ζs)s∈[0,1] : Rn
+ × [0, 1] −→ Rn.

As for the Walrasian case from Chapter 4 the C◦–uniform assumption
can be replaced by the following weaker uniformized boundary condition: for
any sequence (pm, sm) in Rn

+ × [0, 1] with an unbounded component sequence
(pm) and with (sm) converging to some s◦ ∈ [0, 1] there is at least one index
ĩ ∈ J(pm) and one subsequence (pmk , smk) such that for all natural k

ζeismk
(pmk) < 0.
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This assumption is a uniformization of Property (1) of a basic economy. Cor-
respondingly to the uniformized desirability condition for Walrasian exchange
evolutions it prevents the equilibria of exchange–III–evolutions from running
to the boundary of the homotopy price space. Actually, it is not hard to find
examples of continuous one-parametrizations which violate this assumption.
However, from the economic viewpoint it is clearly not a restrictive assump-
tion.

To make evolutions in the present context intuitive let us consider as an
example the following continuous one-parametrizations

(ζs)s∈[0,1] : Rn
+ × [0, 1] −→ Rn

(p, s) �→

⎛⎜⎝ (ζ̂1s ◦ ϕ−1)(p)
...

(ζ̂ns ◦ ϕ−1)(p)

⎞⎟⎠
where any component function ζis = ζ̂is ◦ ϕ−1 : T n −→ R meets the two
following conditions:

(a) ζ̂is(p) > 0 if pi > 0,

(b) ζ̂is(p) < 0 if p ∈ Δn−1 and pj > 1,1
10n .

Again the reader is well–advised to geometrically envisage the functions
(ζ̂is ◦ ϕ−1). In Section 4.1, Proposition 4.2, we addressed the result on the
equivalence of evolutions and paths of economies in the appropriately topolo-
gized space of Walrasian exchange economies.

Now we are going to prove the corresponding result in the present context
without Walras’ and law homogeneity:

Proposition 5.2. Let Enwh denote the space of economies in the present con-
text endowed with the product topology of uniform convergence on compacta.
An exchange–III–evolution

(ζs)s∈[0,1]

canonically generates a continuous path z : [0, 1] −→ Enwh by the rule
z(s) := ζs. Conversely, if z : [0, 1] −→ Enwh is a continuous path such that the
one-parametrization (ζs)s∈[0,1] generated by the canonical rule ζs := z(s) satis-
fies the uniformized boundary assumption, then (ζs)s∈[0,1] is continuous, i.e.
is an exchange–III–evolution. Moreover, if we endow the space of economies
Enwh with the stronger topology of overall C◦–uniform convergence, then an
exchange–III–evolution generates a continuous path in Enwh, and vice versa.

Proof. We have first to show (1) that z is a continuous mapping, and (2) that
(ζs)s∈[0,1] is a continuous one-parametrization which satisfies the additional
global boundary assumption.

(1) Let us show for an arbitrarily given exchange–III–evolution (ζs)s∈[0,1] that
z : s �→ ζs is a continuous mapping into Enwh. This means we have to show
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that for any convergent sequence sm −→ so in [0, 1] the sequence ζsm

converges to ζso in Enwh with respect to the product topology of uniform
convergence on compact sets, i.e.,

∀A⊂Rn
+compact∀ε>0∃lε∈N∀l≥lε max

i∈{1,....n}
max
p∈A

|ζi
sl

(p) − ζiso (p)| < ε.

Let us assume that z is not continuous. This means:

∃A⊂Rn
+compact∃εA>0∃subsequence (smk ) max

i∈{1,...,n}
max
p∈A

|ζism
k

(p) − ζiso (p)| ≥ ε.

Thus, there is at least one index j ∈ {1, . . . , n} and a subsequence (smek) of
(smk) so that for each mek a point pmek ∈ A can be choosen which realizes
the double maximization i.e.

maxi∈{1,...,n}maxp∈A|ζi
s

mek (p) − ζiso (x)| = |ζjsmek
(pmek) − ζjso (pmek)| ≥ ε.

As A × [0, 1] is compact there is a subsequence (pm′
, sm′

) of (pmek , smek)
which converges to a point (po, so) ∈ A × [0, 1]. Clearly εA ≤ |ζjso (pm′

) −
ζj

sm′ (pm′
)| ≤ |ζjso (pm′

) − ζjso (po)| + |ζjso (po) − ζj
sm′ (pm′

)| for any m′.

The first summand |ζjso (pm′
) − ζjso (po)| of the right side converges to

zero since ζjso is continuous and pm′ −→ po. Hence, |ζjso (po)−ζj
sm′ (pm′

)|
cannot converge to zero. However, this contradicts our assumption that
particularly the j–th market evolution (ζjs)s∈[0,1] : Rn

+ × [0, 1] −→ R is
continuous at (po, so). Thus the continuity of the path z is proven.

(2) It remains to show that (ζs)s∈[0,1] : Rn
+ × [0, 1] −→ Rn is continuous if

z : s �→ ζs is continuous. Choose a converging sequence (pm, sm) −→
(po, so) ∈ Rn

+ × [0, 1]. We have to show that ζism (pm) −→ ζiso (p◦) for
every i ∈ {1, . . . , n}. Choose a compact subset K ⊂ Rn

+ which contains
all terms of the sequence (pm). Consider the following inequality which is
true for every i :

|ζiso (po) − ζism (pm)| ≤ |ζiso (po) − ζiso (pm)| + |ζiso (pm) − ζism (pm)|.
Choose an arbitrary i ∈ {1, . . . , n} and an arbitrary ε > 0. There is a whole
tail (pm′

) of (pm) so that |ζiso (po)− ζiso (pm′
)| < ε

2 since ζso is continuous.
Furthermore, there is a tail (pm′′

, sm′′
) of (pm, sm) so that |ζiso (pm′′

) −
ζi

sm′′ (pm′′
)| < ε

2 since z is continuous. This proves the continuity of the
one-parametrization (ζs)s∈[0,1].
The last statement of Proposition 5.2 follows directly as a simple special
case from the above proof. �

Evidently the proof of Proposition 5.2 directly carries over to Proposition 4.2
from Section 4.1.

(ii) Now we are going to provide an equilibrium equivalent self–mapping
for our present basic model of an exchange economy without Walras’ law and
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homogeneity of type I. This time Dierker’s constructions in (1974, proof of
Theorem 8.3) only serve as a rough guideline.

We start with an arbitrary basic economy ζs with fixed s ∈ [0, 1]. We
introduce the state index s already here in order to make the constructions
in Subsection (iii) below more intuitive. Note that the equilibrium set of ζs

Gζs = ζ−1
s (0)

equals the set ϕ[(ζs ◦ ϕ)−1(0n)].
This equation holds because (1) for p ∈ ζ−1

s (0n) one gets (ζs◦ϕ)(ϕ−1(p)) =
0n, and (2) the relation y ∈ ϕ[(ζs◦ϕ)−1(0n)] can be transformed into ϕ−1(y) ∈
(ζs ◦ ϕ)−1(0n) ⇔ (ζs ◦ ϕ)(ϕ−1(y)) = 0n. As ϕ is a homeomorphism, the
equilibrium analaysis, i.e. the zero analysis, of ζ is equivalent to the zero
analysis of ζ ◦ ϕ. Moreover, we can transform the zero problem into a fixed–
point problem by means of the mapping

gs = ζs ◦ ϕ + id : T
n\Δn−1 −→ Rn

p �→ (ζs ◦ ϕ)(p) + p.

Certainly,
Fix (gs) = (ζs ◦ ϕ)−1(0n).

Thus
Gζs = ζ−1

s (0n) = ϕ[(ζs ◦ ϕ)−1(0n)] = ϕ[Fix (gs)].

Consequently, the zero problem in Rn
+ has been drawn back to T

n\Δn−1 and
has been equivalently transformed into a fixed–point problem.

We need two preparatory technical results on the boundary behavior of
ζs.

(1) For any z ∈ T
n

define the index subset H(z) := {i|zi > 1
10n} ⊂ {1, . . . , n}.

Choose an arbitrary p ∈ Δn−1. (Of course, H(p) 
= ∅.) Then there exists
an εp > 0n so that the following holds:

∀
y∈

◦
B

n

εp
(p)∩

◦
T

n [H(y) ⊇ H(p) and ∃iy∈H(y)(ζs ◦ ϕ)iy (y) < 0].

Proof. Clearly there is an ε′p > o so that the following holds:

∀
y∈

◦
B

n

ε′p (p)∩
◦
T

nH(y) ⊇ H(p).

We still have to show that there exists an εp > 0 (εp ≤ ε′p) so that the following
is true:

∀
y∈

◦
B

n

εp
(p)∩

◦
T

n∃iy∈H(y)(ζs ◦ ϕ)iy(y) = ((ζs)iy(ϕ(y)) < 0.

Suppose there is no εp > 0 with this property. Then in every relatively open

neighbourhood
◦
B

n

1/m
(p)∩

◦
T

n

of p, m ∈ N and m ≥ 1/ε′p, there is a ym with
the following property:
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(∗) ∀i∈H(ym)(ζs ◦ ϕ)i(ym) ≥ 0.

Obviously (ym) is a sequence in
◦
T

n

converging to p. Furthermore, there
exists a subsequence (ymk) of (ym) so that the following holds:

∀k′,k′′∈N,k′ �=k′′H(ymk′ ) = H(ymk′′ ⊇ J(ϕ(ymk)).

(Clearly, the image sequence (ϕ(ymk)) is unbounded.)

To prove the last assertion note that H(ym) is non–empty for the
terms of a tail of (ym) and that furthermore there are only finitely
many different subsets of the set {1, . . . , n}. Thus, there is a subse-
quence (ymek) of (ym) so that the index subsets H(ymek) and H(ymel)
are equal for any two different indices k̃ and l̃.
Consider the sequence (zmek) of the intersection points of the rays
λ · ymek , λ > 0, with Δn−1 (i.e., zmek = (ymek)/(

∑n
j=1 y

mek
j )). Since

(ymek)ek converges to p, consequently also (zmek) converges to p, and
J(ϕ(ymek)) is non–empty. This yields the following implication:

j ∈ J(ϕ(ymek)) ⇒ pj ≥ 1, 1
10n

.

Thus, there exists a tail (ymfk′ ) of (ymek) with y
mfk′
j > 1

10n for any
k′ ∈ N. This means that ∀k′∈N j ∈ H(ymfk′). Since J(ϕ(ymek)) is finite,
there exists an intersection tail (ymk) of (ymek) so that J(ϕ(ymk)) ⊆
H(ymk) for any ∈ N, and the proof is finished.
Consequently, supposition (∗) from above implies

∀i∈J(ϕ(ymk ))∀k∈N ζis(ϕ(ymk)) ≥ 0n.

But Property (1) of the economy ζs guarantees the existence of a tail of
(ϕ(ymk)) so that the market excess demand function for at least one com-
modity i with i ∈ J(ϕ(ymk)) is negative for the terms of this tail.

This contradiction proves assertion (1).

(2) Choose an arbitrary y ∈ ∂T
n\Δn−1. Then there exists an εy ∈]0, 1

15n [ and
a δ > 0 such that

∃iy with yiy=0∀
z∈

◦
B

n

εy
(y)∩(T

n\Δn−1)
(ζs ◦ ϕ)iy (z) > δ.

This follows immediately from Property (2) and from the continuity of ζs.

From our efforts we have achieved a relatively open covering Uo of ∂T n in
T n :

Uo := (∪p∈Δn−1

◦
B

n

εp
(p) ∩ T

n
) ∪ (∪y∈∂T

n\Δn−1

◦
B

n

εy
(y) ∩ T

n
).
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Clearly ∂T n is compact. Therefore, finitely many of these sets are sufficient
to cover ∂T n :

∂T n ⊂ U1 := ∪vi∈{v1,...,vk}
◦
B

n

εvi
(vi) ∩ T

n
.

Of course,

θ :=
dist [∂T

n
, T

n\U1]
2

> 0.

Define γ := min {θ, 1
20n}. Let us now consider T n,1−γ

γ which is inscribed into
T n and whose faces are parallel to those of T

n
with distance γ. Apparently,

U1 is a relatively open covering of T
n\Tn,1−γ

γ in T
n
. Furthermore, the above

statements (1) and (2) clearly imply that (T
n\Tn,1−γ

γ )∩(ζs◦ϕ)−1(0) is empty.

Note that the point M = ( 1
10n , . . . , 1

10n ) lies in the interior of T
n,1−γ

γ . It will
be crucial for the following construction.

Choose a continuous separating function

λ : T
n −→ [0, 1] with

λ|
T

n,1−γ
γ

≡ 1

λ|∂T
n ≡ 0n.

Let us glue gs = (ζs ◦ ϕ + id) together with the constant mapping

M : T
n −→ M

by means of λ. Thus we obtain a continuous mapping

g̃s : T
n −→ Rn

defined by

g̃sh
(p) =

{
λ(p) · [(ζsh

◦ ϕ)(p) + ph] + (1 − λ(p)) 1
10n , for p ∈

◦
T

n

,

1/10n, for p ∈ ∂T n

h = 1, . . . , n. Obviously, g̃s|T n,1−γ
γ

= ζs ◦ ϕ + id and g̃s|∂T
n = M. g̃s has the

following crucial property:

Fix (g̃s) ∩ (T
n\Tn,1−γ

γ ) = ∅.
Let us prove the last assertion. For y ∈ ∂T

n
the image g̃s(y) is precisely

the point M. Therefore the only possible candidates for fixed–points are the

points of
◦
T

n

\Tn,1−γ

γ . Choose an arbitrary p ∈
◦
T

n

\Tn,1−γ

γ . U1 ⊃ T
n\Tn,1−γ

γ

implies furthermore that there is a vi ∈ {v1, . . . , vk} so that

p ∈
◦
B

n

εvi
(vi)∩

◦
T

n

.

According to the statements (1) and (2) above, at least one of the following
two statements is true:
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(1) ∃ei∈{1,...,n}(ζs ◦ ϕ)ei(p) < 0, and 1
10n < pei.

(2) ∃ej∈{1,...,n}(ζs ◦ ϕ)ej(p) > 0, and 1
10n > xej .

Since g̃sh
(p) = λ(p)[(ζs◦ϕ)h(p)+ph]+(1−λ(p)) 1

10n , the following implications
immediately obtain:

(1) ⇒ g̃sei < pei, and
(2) ⇒ g̃sej (p) > pej.

Consequently, p is not a fixed–point of g̃s, and the assertion is proved.
Thus, Fix(g̃s) = Fix(gs).
Finally we choose an arbitrary retraction r : Rn −→ T

n
of Rn onto T

n

with
r|T n = idT

n ,

and
r(Rn\

◦
T

n

) = ∂T
n
.

Obviously the self–mapping

r ◦ g̃s : T
n −→ T

n

has no fixed–points in T
n\Tn,1−γ

γ . Consequently, Fix(r ◦ g̃s) ⊂ T
n,1−γ

γ . But

Fix(r ◦ g̃s) = Fix(g̃s) = Fix(gs),

since
r ◦ g̃s|T n,1−γ

γ
= g̃s|T n,1−γ

γ
= gs|T n,1−γ

γ
.

This means, r ◦ g̃s is an equilibrium equivalent self–mapping.
There is a last remark in order: the preceding constructions make it evident

that the bound 1,1
10n in Property (1) of a basic economy may equally be replaced

by 1+ε
αn , where α is an arbitrarily large and ε an arbitrarily small positive

real number. Then M = (1/10n, . . . , 1/10n) has to be replaced by M ′ =
( 1

αn , . . . , 1
αn ), γ by γ′ = min (ϑ, 1

2αn ), and εy in the statement of the technical
result (2) by εy ∈]0, 1

1,5αn [.

(iii) It remains to verify that an exchange–III–evolution (ζs)s∈[0,1] induces a
continuous one-parametrization (r◦ g̃s)s∈[0,1] of the corresponding equilibrium
equivalent self–mappings. To show this let us first extend the statements (1)
and (2) from Subsection (ii) to the whole evolution (ζs)s∈[0,1].

(1’) Choose an arbitrary (p, s) ∈ Δn−1× [0, 1] ⊂ ∂T
n× [0, 1]. Then there exists

an ε(p,s) > 0 so that the following holds:

∀
(y,s)∈

◦
B

n+1

ε(p,s)
(p,s)∩

◦
T

n

×[0,1]
[H(y) ⊇ H(p) and ∃i(y,s)εH(y)(ζs◦ϕ)i(y,s)(y) < 0].
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Proof. As the additional component s does not matter for H(y) and
H(p), it remains to show in complete analogy to the unparametrized case
from Subsection (ii):

∃ε′′(p,s)>0∀
(y,s)∈

◦
B

n+1

ε′′(p,s)
(p,s)∩

◦
T

n∃i(y,s)∈H(y) (ζs ◦ ϕ)i(y,s) (y) < 0.

Assume again that there is no ε
′′
(p,s) with this property. Thus, one finds a

(ym, sm) in every neighbourhood
◦
B

n+1

1/m (p, s)∩
◦
T

n

, m ∈ N, with the property

∀i∈H(ym)(ζm
s ◦ ϕ)i(ym) = ζism (ϕ(ym)) ≥ 0.

Consider the component sequence (ym). According to the considerations from
the proof of (1) in Subsection (ii) there is a subsequence (ymk) with the
property that all index subsets H(ymk) are identical and, furthermore, contain
J(ϕ(ymk)).
Consider now the sequence (ymk , smk). The above assumption implies

∀i∈J(ϕ(ymk ))∀k∈N ζismk
(ϕ(ymk)) ≥ 0.

However, this contradicts the uniformized boundary property of the evolution
(ζs)s∈[0,1].

(2’) Choose an arbitrary (y, s̃) ∈ (∂T
n\Δn−1) × [0, 1]. Then there exists an

ε(y,es) > 0 so that

∃i(y,es)∈{1,...,n}∀
z∈

◦
B

n+1

ε(y,es)
(y,es)∩T

n×[0,1]
ζi(y,es)(z) > 0.

Again, this is clear from Property (2) of the basic economy ζes and the
continuity of (ζs)s∈[0,1].

In complete analogy to the unparametrized case treated in Subsection (ii) one
can find a finite relatively open covering U ′

1 of the “prism jacket” ∂T
n × [0, 1]

in the prism T
n × [0, 1],

U ′
1 := ∪(wi,ti)∈{(w1,t1),...,(wl,tl)}(

◦
B

n+1

ε(wi,ti)
(wi, ti)) ∩ (T

n × [0, 1]).

Like before we define γ′ := min { dist [∂T
n×[0,1],(T

n×[0,1])\U ′
1]

2 , 1
20n}. Thus

((T
n × [0, 1])\(Tn,1−γ′

γ′ × [0, 1]))∩ (∪t∈[0,1](ζt ◦ϕ)−1(0)) = ∅. This means that
the equilibrium price vectors of the whole exchange–III–evolution (ζs)s∈[0,1]

are uniformly kept away from the prism jacket ∂T
n × [0, 1].

In complete analogy to the preceding Subsection let us choose a separating
functional

λZ : T
n −→ [0, 1]

with
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λZ |T n,1−γ′
γ′

≡ 1

λZ |∂T
n ≡ 0.

Hence, we can define the continuous one-parametrization

(g̃s)s∈[0,1] : T
n × [0, 1] −→ Rn

(x, s) �→ g̃s(x)

by

g̃sh
(p) := λZ(p)[(ζsh

◦ ϕ)(p) + ph] + (1 − λZ(p))
1

10n

= λZ(p)(gsh
(p)) + (1 − λZ(p))

1
10n

, h = 1, . . . , n.

In complete analogy to Subsection (ii) one sees that the one-parametriza-
tion (g̃s)s∈[0,1] leads to the continuous one-parametrization (r ◦ g̃s)s∈[0,1] :
T

n × [0, 1] −→ T
n

of equilibrium equivalent self–mappings of T
n
.

From the considerations in (ii) follows directly that

∪s∈[0,1]Fix (gs) = ∪s∈[0,1]Fix (g̃s) = ∪s∈[0,1]Fix (r ◦ g̃s) ⊂ T
n,1−γ′

γ′ × [0, 1].

Consequently,

∪s∈[0,1]ζ
−1
s (0) = ∪s∈[0,1]ϕ(Fix (gs)) = ∪s∈[0,1]ϕ(Fix (r ◦ g̃s))

is contained in the compact subspace ϕ(T
n,1−γ′

γ′ )× [0, 1] of Rn
+ × [0, 1], and we

have achieved our aim.

5.2 Evolutions Based on a Model With Weakened
Boundary Assumptions

(i) It might be argued that the presented model of an exchange economy
without Walras’ law and homogeneity from the preceding Section 5.1 is still
not quite satisfactory from the viewpoint of economic intuition on account of
its boundary assumptions. Actually, one may desire that excess demand need
not be finite for all price vectors from the boundary. Rather, it should also
be admitted that excess demand for a commodity may reach infinity when
its price tends to zero. Furthermore, it might be argued that the somewhat
artificial looking, though economically reasonable index subset J(pm) from
Property (1) should be replaced by the more immediate set I(pm) := {i ∈
{1, . . . , n}|(pm

i ) is unbounded}.
The main question is clearly whether it will be still possible to provide

an equilibrium equivalent self–mapping if the basic model from Section 5.1
is modified in this way. Actually, we will be able to show that at the cost of
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some additional technical effort the constructions from the preceding Section
can suitably be adapted. Let us take these points one at a time.

First let us state the complete definition of a basic exchange economy
without Walras’ law and homogeneity of type II. We will present it in the
most general form where each market excess demand function may have an
individual “exception subset” where it is not defined.

Thus, let us first choose for each i ∈ {1, . . . , n} an arbitrary closed subset
Di of the coordinate hyperplane {p ∈ ∂Rn

+|pi = 0} of Rn
+. Furthermore, for

economic reasons the origin 0 shall be contained in every set Di. A basic
economy without Walras’ law and homogeneity of type II is now given by n
continuous market excess demand functions

ζi : Rn
+\Di −→ R, i = 1, . . . , n,

with the properties:

(1) Let (pm) be an arbitrary unbounded sequence in Rn
+. Define I(pm) :=

{i ∈ {1, . . . , n}|(pm
i ) is unbounded}. Then there is an index ĩ ∈ I(pm)

and a natural number ko ∈ N such that

ζei(pk) < 0

for all k ≥ ko.
(2) Let y be an arbitrary point of ∂Rn

+\(∪n
i=1Di). Then at least for one index

j̃ ∈ {1, . . . , n} with yej = 0 one has

ζej(y) > 0.

If (zm) is a sequence in Rn
+\Di which converges to some z ∈ Di, then

limm ζi(zm) = +∞.

(3) There is a positive real number b such that for all i = 1, . . . , n and any
p ∈ Rn

+\Di one has
ζi(p) > −b.

Let us briefly comment on this definition. Actually, it generates a set of spaces
of economies parametrized with n–tuples (D1, . . . , Dn) of exception subsets.
To be sure it is well possible to endow this parametrized set of spaces of
economies with a topology, namely with the topology which is derived from the
Hausdorff–distance between any two admissible sets Di1 and Di2 , i = 1, . . . , n.
However, we will not pursue this further since we will not need this topology
in our study.

Note particularly that there is no trouble with admitting (pm) to lie in
the whole Rn

+ in Property (1) since any exception subset Di is contained in
{p ∈ ∂Rn

+|pi = 0}.
Corresponding to the n market specific domains of a basic economy one

needs n one–parametrizations, i.e. n market evolutions, to define an evolution
of economies in the present basic set–up:
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Definition 5.3. An evolution of economies in the presented basic model with-
out Walras’ law and homogeneity and with weakened boundary assumptions,
or an exchange–IV–evolution for short, is given by n Co–uniformly conti-
nuous market evolutions, i.e. n market evolutions

(ζis )s∈[0,1] : (Rn
+\Di) × [0, 1] −→ R, i = 1, . . . , n.

Analogously to the preceding basic model from Section 5.1 again we can re-
place the Co–uniform continuity assumption by the following uniformized
boundary condition: for any sequence (pm, sm) in Rn

+ × [0, 1] where (pm) is
unbounded and (sm) converges to some so ∈ [0, 1] there is at least one index
ĩ ∈ I(pm) and one subsequence (pmk , smk) such that for all k

ζeismk
(pmk) < 0.

We are still left here to ensure that the considerations in Subsection 5.1
(i) establishing the essential differences to the Walrasian exchange model
also apply to the present model. Nevertheless, this is immediate. Moreover,
in the present set–up it is even necessary to impose further bounding re-
strictions on each market excess demand function ζi in a neighborhood of
the exception subset Di. Otherwise, the additional n + 1. “buffer” market
ζn+1(p, 1) :=−∑n

i=1[(ζi ◦ϕ)(p)] ·pi need not be bounded from below. In other
words, the differences to the traditional Walrasian model are still increased.

(ii) In the introductory remarks to this Chapter we have already indicated
that the weakening of the boundary assumptions involves some additional
technical effort with the construction of the equilibrium equivalent self–
mapping. Particularly, this applies to the introduction of the more intuitive
index subset I(pm).

On the other hand, the generalization of the price domain easily fits into
the constructions provided in Section 5.1 (ii). However, there is one point
where we have to be cautious. We must replace the term (ζsh

◦ ϕ)(p) in the
definition of g̃sh

by the term min [(ζsh
◦ ϕ)(p); α] with some arbitrary real

number α greater than +1. This is necessary because otherwise the mapping
g̃s need not be continuous. Actually, the first summand

λ(p) · [(ζsh
◦ ϕ)(p) + ph] + (1 − λ(p))

1
10n

of g̃sh
need not converge to zero for a sequence (pm) in T

n
whose image

sequence (ϕ(pm)) converges to some point from Dh.
Now let us examine which adaptions of the constructions from Section

5.1 (ii) are necessary through the introduction of the simplified index subset
I(pm). Actually, the only thing we must adapt is the homeomorphism

ϕ : T n\Δn−1 ≈−→Rn
+.
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What we need instead is a geometrically intuitive homeomorphism χ which is
not only simplex–preserving, but also “collar–preserving”. The latter means
that the “ 1

10n–collar” of T n, i.e. the 1
10n–neighborhood of the subspace of the

boundary ∂T n\Δn−1 in T n, is in a simple way mapped into the 1
10n–collar of

Rn
+, i.e. into the 1

10n–neighborhood of the boundary of Rn
+ in Rn

+. Together
with the simplex–preserving property this means that the χ–image of the

1
10n–collar of any simplex, 0 < t < 1, is just the 1

10n–collar of the χ–image
of Δn−1,t. Clearly, the 1

10n–collar of Δn−1,t is the intersection of Δn−1,t with
the 1

10n–collar of Rn
+. Figure 5.3 gives an illustration.

Fig. 5.3: Boundary Condition Areas III

Writing ε instead of 1
10n the basic idea for constructing a geometrically

intuitive homeomorphism

χ : T
n\Δn−1 −→ Rn

+

with the desired characteristics is to take for χ the identity mapping on
T n,nε := ∪0<t≤nεΔ

n−1,t ∪ {0} and to extend it over the remaining area
(T

n\Δn−1)\T n,nε of the domain in the following way: any t–simplex Δn−1,t

with nε < t < 1 is parallelly stretched outwards onto the simplex Δn−1,σ(t),
where

σ :]nε, 1[−→]nε,∞[

is an arbitrary continuous, onto, and strictly monotonically increasing map.
Thus the ε–collar of Δn−1,t is canonically one–to–one mapped onto the ε–collar
of the image simplex Δn−1,σ(t). The inner part of Δn−1,t, {y ∈ Δn−1,t|∀ i =
1, . . . , n : yi > ε}, is stretched by central projection from the center (ε, . . . , ε).
For n = 2 this means that the ε–collar of Δn−1,t is just parallelly shifted
outwards (see Figure 5.3).
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In higher dimensions the ε–collar is not only shifted, but also stretched,
but in a very canonical way (imagine n = 2, or 3). The following Figure 5.4
illustrates the collar–preserving homeomorphism χ in the case n = 2. It still

Fig. 5.4: Boundary Condition Areas IV

remains to verify that χ is indeed a homeomorphism. An appropriate criterion
for this is the following standard result from general topology.

Proposition 5.4. A map f : X −→ Y between topological spaces X and Y is
a homeomorphism if and only if f is (1) continuous, (2) f is one–to–one and
onto, and (3) f−1 is also continuous.

The geometrical description of χ immediately reveals the three required
properties. However, it is a natural question how this intuitive, geometrical
representation of χ and its inverse can be translated into exact analytical
terms.

To spare room we just present the solution to this question (the reader in-
terested in a detailed construction which is further supported by geometrical
heuristics is referred to Lehmann–Waffenschmidt (1987c, Section 3). For nota-
tional convenience we abbreviate

∑n
i=1 xi by

∑
x . For our task the following

intuitive “cutting” mapping will turn out to be of major value

α : (T
n\Δn−1)\Tn−1,nε −→

[
0,

1
10n

]
x �→ mini=1,...,n

(
xi;

1
10n

)
.
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Now, χ is given by

χ : T̄ n\Δn−1 ≈→ Rn
+

x �→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x, for x ∈ T

n,nε⎛⎜⎜⎝
a(x)

...
a(x)

⎞⎟⎟⎠+
nε

“
1−nε
1−P

x

”
−na(x)P

x −na(x)

⎛⎜⎜⎝
x1 − a(x)

...
xn − a(x)

⎞⎟⎟⎠ , otherwise

Its inverse χ−1 is given by

χ−1 : Rn
+ −→ T

n\Δn−1

y �→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y, for y ∈ T

n,nε⎛⎜⎜⎝
a(y)

...
a(y)

⎞⎟⎟⎠+

h“
1−nε 1−nεP

y

”
−na(y)

i
P

y −na(y)

⎛⎜⎜⎝
y1 − a(y)

...
yn − a(y)

⎞⎟⎟⎠ , otherwise.

Verifications are not hard. They are made explicit in the step–by–step con-
struction in Lehmann–Waffenschmidt (1987c, Section 3).

For our concluding considerations, however, the intuitive geometrical de-
scription of χ is the more convenient one. Going through the constructions
from Section 5.1 (ii) it is evident that everything equally works for a basic
economy in our present context where ϕ is replaced by χ. Actually, the proof
of the preparatory result (1) is even shorter. From the definitions it follows
immediately that I(χ(ymk)) ⊆ H(ymk). To be accurate the formulation of
the technical result (2) must be changed into “. . . ζsiy

(χ(z)) > δ whenever
χ(z) 
∈ Diy .” Accordingly, the corresponding result (2’) for an exchange–III–
evolution must also be changed.

(iii) It remains to ensure that an exchange–IV–evolution induces a continu-
ous one-parametrization of equilibrium equivalent self–mappings. But this is
completely straightforward from the preceding considerations.



6

Evolutions in a General Equilibrium
Framework With Production, Taxes, and

Subsidies

In this Chapter we are going to present a notably comprehensive static frame-
work of general equilibrium which includes production and also a wide variety
of tax and subsidy schemes. We employ the formulation by Kehoe (1985b).
He ensures overall consistency of the model by providing a proof of existence
of equilibrium that is both simpler and more general than those given previ-
ously by, for example, Shoven and Whalley (1973) and Todd (1979). Kehoe
considers this framework particularly intended for researchers who employ
empirical general equilibrium models for policy analysis (cf. Kehoe, 1985b, p.
315). Actually, for the purposes of our study this framework has still a fur-
ther remarkable advantage: it contains parameters which in principle can be
controlled by an economic policy institution. This will become important for
our later applications in Chapter 19.

Kehoe’s first model which we will present in Section 6.1 below allows for
production and taxes, whereas his second model (see Section 6.2 below) also
includes subsidies.

An equilibrium in these models means a state of the endogenous variables
which simultaneously makes all interdependent plans by the government and
the individuals consistent. Thus, from the equilibrium theoretical viewpoint
there is no circularity problem with the mutually dependent tax redisbursals
and tax payments.

We will present both of Kehoe’s model versions following our usual agenda.
As in the preceding Chapter for the sake of easier understanding we first will
carry out all necessary verifications for the first version of the model and then
point out the extensions needed for the generalized second one. According to
our principles we carefully fit our notations into Kehoe’s.
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6.1 Evolutions Based on a General Equilibrium Model
With Production and Taxes

(i) In Kehoe’s first version of an equilibrium model with production and
taxes (1985b, pp. 318–321) an agent can be a consumer, a producer, or the
government. Aggregate excess demand on the n commodity markets is given
by a C1 function

ζ : Rn
+\{0n} × R+ −→ Rn

(p, r) �→ ζ(p, r).

r stands for the total tax revenue. ζ is homogeneous of degree zero, bounded
from below, and satisfies the following intuitive boundary assumption

∗) kζ : R+ −→ R+

r �→ inf
p∈Rn

+\{0n}
{||ζ(p, r)||}

satisfies lim
r−→∞ kζ(r) = ∞.

In words the boundary assumption∗) just means that with the r-argument
growing beyond all finite bounds the absolute value of the excess demand
function ||ζ(p, r)|| also grows beyond all finite bounds all over the price space
Rn

+\{0n}. This property of the excess demand function particularly ensures
the intuitive requirement that for any real α > 0 there is a real β > 0 such that
for all p ∈ Rn

+\{0} one has: r > β ⇒ ||ζ(p, r)|| > α. Later we will see that this
implies that the equilibrium set in fact is contained in a compactum which is
essential for the construction of an equilibrium equivalent self-mapping (see
Kehoe, 1985b, p. 321 first paragraph). Unfortunately, Kehoe’s original condi-
tion

given any p ∈ Rn
+\{0n}

lim
r−→∞ ||ζ(p, r)|| = ∞ (6.1)

is too weak to ensure that. (Actually, it is not hard to find counterexamples.)
However, the following additional requirement to (6.1) obviously makes it
sufficient for the purposes of the later analysis: the family of partial functions

ζ(p,−) : R+ −→ Rn

which is parametrized by the admissible price vectors p ∈ Rn
+\{0n}, is C0-

uniformly convergent on the whole domain R+ for varying p.
The tax payments generated by consumption and income taxation are

specified by a C1 function

t : Rn
+\{0n} × R+ −→ R+

(p, r) �→ t(p, r)
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which is homogeneous of degree one, i.e. t(λp, λr) = λt(p, r) for λ > 0. Tax
payments t(p, r) and the tax revenue r are expressed in the same units of
account as expenditures ζ(p, r)p. The function t furthermore satisfies an ap-
propriately modified version of Walras’ law, namely the aggregate budget
constraint

ζ(p, r)p + t(p, r) = r

for all admissible (p, r). Note that this aggregate budget constraint still does
not indicate how the total tax revenues r is actually generated. Generation of r
will be become clear below when also the production sphere will be introduced.

To enhance the reader’s intuition on this specification let us have a
look on Kehoe’s example (1985b, pp. 318–319) of an economy with
h consumers. At prices p the j-th consumer’s income is given by the
value of his initial endowment bundle

h∑
i=1

piω
j
i

plus his share of tax revenue,

θjr.

Clearly, the vector of share coefficients (θ1, . . . , θh) lies in Δh−1. For
instance, θ1 = . . . = θh−1 = 0 and θh = 1, where agent h is the govern-
ment. The endowment income

∑h
i=1 ρiω

j
i of each consumer j is taxed

at a rate ρj ∈ [0, 1[, and consumer j’s final demand for commodity i
is taxed ‘ad valorem’ at a rate τij ∈ [0, 1[ on its value. Accordingly,
the utility maximization problem of consumer j is the following:

max uj(x
j
1, . . . , x

j
n)

so that
h∑

i=1

pi(1 + τij)x
j
i ≤ (1 − ρj)

h∑
i=1

ρiω
j
i + θjr

xj
i ≥ 0 for all i, j.

uj is a strictly concave and monotonically increasing utility function.
Thus, agent j’s derived excess demand function

ζj : Rn
+\{0n} −→ R+ −→ Rn

(p, r) �→

⎛⎜⎝ xj
1(p, r) − ωj

1
...

xj
n(p, r) − ωj

n

⎞⎟⎠
is continuous and the aggregate excess demand function

∑h
j=1 ζj

satisfies for any p ∈ Rn
+\{0n} the condition ||ζ(p, rm)|| −→ +∞ as

rm −→ +∞. This condition means that, anything else being equal,
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if tax revenue becomes arbitrarily large, then the income of at least
one consumer (the government for instance) becomes arbitrarily large,
which in turn implies that excess demand for some good becomes arbi-
trarily large (cf. Kehoe, 1985b, p. 319). Accordingly, the tax payment
function t is specified by

t(p, r) =
r∑

j=1

ρj

(
n∑

i=1

piω
j
i

)
+

h∑
j=1

(
n∑

i=1

τijpix
j
i (p, r)

)
.

t is C1 and homogeneous of degree one as long as the xj
i are. Since

each individual demand function satisfies the budget constraint with
equality, ζ and t satisfy the modified Walras’ law. (For a further ex-
ample which also allows for tax rates and revenue shares varying with
income the reader is referred to Kehoe (1985b, p. 319, last paragraph).

Now let us come back again to the general model. The production sphere is
specified by an n × m activity analysis matrix A = (aij) with the following
properties:

(1) A induces n free disposal activities, one for each commodity. Formally,
this means that the last n columns of A form the negative n-dimensional
unit-matrix.

(2) There is no output without inputs, i.e.

{x ∈ Rn|x = Ay, y ≥ 0n} ∩ Rn
+ = {0n}.

Production taxes are specified by an n × m matrix A∗ = (a∗
ij) with a∗

ij =
aij − σij |aij | where σij ∈ [0, 1]. This means, input or output of commodity i
in activity j is taxed at a rate of σij ∈ [0, 1]. Thus,

(3) −2|A| ≤ A∗ ≤ A

Furthermore, there are no taxes at free disposal activities. Accordingly, the
revenue generated by production taxes at prices p and at activity levels y ∈ Rm

+

is
p′(A − A∗)y ≥ 0.

An economy is now defined as a quadruple (ζ, t, A, A∗). An equilibrium of
an economy is a pair (p0, r0) ∈ Δn−1 × R+ of a price system p0 and a tax
revenue amount r0 that satisfies the following conditions,

(E.1) p0′
A∗ ≤ 0m.

(E.2) there is a y0 ∈ Rm\{0m} such that ζ(p0, r0) = Ay0.
(E.3) r0 = t(p0, r0) + p0′

(A − A∗)y0
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Let us briefly comment on these equilibrium conditions. From (E.2) and
Walras’ law follows immediately (E.3) ⇔ p0′

A∗y0 = 0. Actually, it is this
equivalent formulation of equilibrium condition (E.3) which we will use in our
later constructions.

Together with (E.1) the alternative formulation of (E.3) implies that after-
tax profits are maximized at an equilibrium.
(E.2) means that excess demand actually can be supplied by the producers.
(E.3) expresses the fact that in equilibrium the redisbursals of the total tax
revenue equal the total tax receipts t(p0, r0)+p0′

(A−A∗)y0. The normalization
expressed by p0 ∈ Δn−1 is obviously permitted by the homogeneity properties
of ζ and t.

The formalization of an evolution of economies with production and taxes
is straightforward:

Definition 6.1. An evolution of economies with production and taxes
is a quadruple of four continuous one-parametrizations (ζs, ts, (aijs), (a∗

ijs
))s∈[0,1]

such that, moreover, the two component one-parametrizations (ζs)s∈[0,1] and
(ts)s∈[0,1] are C0-uniformly continuous and the one-parametrization
(aijs)s∈[0,1] = (As)s∈[0,1] satisfies the condition that for any w ∈ Rn

+ with
ζs(−,−) ≥ −w for all s ∈ [0, 1] on the whole domain (Rn

+\{0})× R+ the set

{x ∈ Rn|∃y ≥ 0, ∃s ∈ [0, 1] : x = As(y) and x ≥ −w}
is bounded.

Note that the last assumption is just a uniformization of the assumption (2)
‘no output without inputs’ on the production matrix of static economies. This
is formalized by the second equivalence of the following chain of equivalences.

Proposition 6.2. ∀w∈Rn
+
{x ∈ Rn|x ∈ ⋃

s∈[0,1] As(Rm
+ ) and x ≥ −w} is

bounded, i.e. there is an αw > 0 such that ||x|| < αw for all x from this
set
⇔ {x ∈ Rn|x ∈ ⋃s∈o,1] As(Rm

+ ) and x ≥ (−1, . . . ,−1)} is bounded
⇔ ⋃

s∈[0,1] As(Rm
+ ) ∩ Rn

+ = {0n}
⇔ there is a closed subspace K ⊂ Rn with

⋃
s∈[0,1] As(Rm

+ ) ⊂ K and
K ∩ Rn

+ = {0n}.
Proof. The first and the last equivalence are trivial, whereas the crucial
middle one is not.
“⇒:” Let us abbreviate N :=

⋃
s∈[0,1] As(Rm

+ ) and assume that there is an
x ∈ N ∩ Rn

+ with x 
= 0. Then there is a sequence xk in N with xk −→ x.
Without loss of generality we may assume that ||xk|| = ||x|| = 1 and xk

i ≥ −1
for all k and 1 ≤ i ≤ n. Define

mk := max{|xk
i ||xk

i < 0}.
Note that the right set is non-empty since N ∩ Rn

+ = {0n}. The latter is
due to the assumption ‘no output without inputs’. Since xk −→ x ∈ Rn

+,
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the sequence mk converges to zero. Put yk := xk

mk . Clearly yk ∈ N and
||yk|| −→ ∞ for k −→ ∞. If we can show that yk ≥ (−1, . . . ,−1) for all k,
then the presumption that {x ∈ N |x ≥ (−1, . . . ,−1)} is bounded contradicts
||yk|| −→ ∞. Consequently, the assumption that there is an x ∈ N ∩Rn

+ with
x 
= 0 is wrong. Now let us choose any j ∈ {1, . . . , n}. Clearly, yk

j < 0. From

|xk
j | ≤ mk follows |yk

j | =
|xk

j |
mk ≤ 1. But this means that yk

j ≥ −1, and we are
done.
“⇐”: We begin with the observation that K := N ∩ Sn−1 is compact.

Define

λ : K −→ R+

x �→ min
i with
xi<0

1
|xi| =

1[
max
i with
xi<0

|xi|
] .

Actually, λ is well-defined since K ∩ Rn
+ = ∅ by presumption. Moreover, λ is

continuous. Consequently, there is a λ0 > 0 with

∀x∈K λ(x) ≤ λ0.

Choose now any x ∈ N with 0n 
= x and x ≥ (−1, . . . ,−1). Define z :=
x

||x|| ∈ K. There is an ĩ ∈ {1, . . . , n} such that zei < 0 and λ(z) = 1
|zei| . Clearly,

1
|zei| = ||x||

|xei| ≤ λ0, and from −1 ≤ xei ≤ 0 follows

||x|| ≤ λ0|xei| ≤ λ0.

This means that any x ∈ N with x ≥ (−1, . . . ,−1) lies in the n-ball Bn
λ0

(0n),
and this completes the proof. �

(ii) Now, we are going to provide an equilibrium equivalent self-mapping for
the presented model. Before reporting on Kehoe’s construction we have to do a
last preparatory step (cf. Kehoe (1985b), p. 321, first paragraph). We have to
ensure that in equilibrium tax revenues cannot exceed some fixed upper bound
β > 0. This implies that all candidates for equilibria lie in the compact convex
set Δn−1 × [0, β] which will be crucial for our constructions. The existence of
such a β can be seen in the following way: the boundedness from below of ζ,
say by −w, w ∈ Rn

+, and assumption (2) on the production sphere clearly
imply that the production possiblity set P := {x ∈ Rn|x ≥ −w, x = Ay

for some y ≥ 0m} is bounded, i.e. there is a real α > 0 such that P ⊂
◦
B

n

α .
Furthermore, due to boundary assumption∗ there is clearly a real β > 0 so
that ||ζ(p, r)|| ≥ α for any pair (p, r) ∈ Δn−1 × [β,∞[. But this implies that
all equilibria already must lie in Δn−1 × [0, β].

Kehoe proposes the following construction for an equilibrium equivalent
self-mapping (1985b, pp. 321–322):



6.1 Evolutions Based on a General Equilibrium Model With Production and Taxes 67

g : Δn−1 × [0, β] −→ Δn−1 × [0, β]
(p, r) �→ (x, y)

where (x, y) solves the following program:
min 1/2[(x − p − ζ(p, r))(x − p − ζ(p, r)) + (y − t(p, r))2]
so that

(1) (x, y) ∈ Δn−1 × [0, β]
(2) x′A − (1 + y − r)p′(A − A∗) ≤ 0m.

We have to verify four issues:

(1) The constraint set is non-empty.

This follows directly from assumption (2) on the production sphere.

(2) The constraint set is a subset of Δn−1 × [0, β].

This follows from the assumption that there are no taxes on free disposal
activities.

(3) g(p, r) is continuous.

This follows from the facts that for any pair of arguments (p, r) the constraint
set obviously is closed and convex and varies continuously as a point-to-set
mapping, and the objective function of the program is strictly convex. The
latter follows from the positive definiteness of the Hesse matrix of the objective
function (recall that (p, r) is fixed): its gradient is

1/2

⎛⎜⎜⎜⎝
2x1 − 2(p1 + ζ1(p, r))

...
2xn − 2(pn + ζn(p, r))

2y − 2t(p, r)

⎞⎟⎟⎟⎠ ,

and consequently the (n + 1) × (n + 1) Hesse matrix becomes

1/2

⎛⎜⎝2 0
. . .

0 2

⎞⎟⎠ =

⎛⎜⎝1 0
. . .

0 1

⎞⎟⎠ .

4) (p0, r0) is an equilibrium of (ζ, t, A, A∗) if and only if it is a fixed point of
the associated mapping g.

This is shown in the proof of Theorem 1 by Kehoe (1985b, p. 322).

(iii) From the assumptions on an evolution of economies in the present con-
text, from the definition of the equilibrium equivalent self-mapping g, and
from the considerations in (3) above it follows directly that any admissible
evolution of economies with production and taxes induces a continuous one-
parametrization of equilibrium equivalent self-mappings, as desired.
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6.2 Evolutions Based on a General Equilibrium Model
With Production, Taxes, and Subsidies

(i) In his paper (1985b) Kehoe finally extends the model with production and
tax schemes we have dealt with to a model also allowing for a wide variety of
subsidy schemes (Kehoe, ibid., pp. 329–331).

“We allow the same sorts of subsidies as we do taxes: ad valorem and
specific subsidies on production and consumption and linear and non-
linear subsidies on income. We need to be able to guarantee, however,
that the government can pay these subsidies out of its tax revenues. To
do this, we introduce another variable γ, that is equal to the fraction
of the subsidy payments the government can afford to make: If γ =
1, the government has enough tax revenues to make all the subsidy
payments. If γ = 0, the government cannot afford to make any subsidy
payments.“ (Kehoe, 1985b, pp. 329–330)

Analogously to the first model version aggregate excess demand is given by a
C1 function

ζ : Rn
+\{0n} × R+ × [0, 1] −→ Rn

(p, r, γ) �→ ζ(p, r, γ),

and tax payments by consumers net of subsidies to consumers are specified
by a C1 function

t : Rn
+\{0n} × R+ × [0, 1] −→ R+

(p, r, γ) �→ t(p, r, γ).

For any fixed γ ∈ [0, 1], ζ and t are assumed to satisfy the same assumptions
as for the first model. Walras’ law is now to be read as

ζ(p, r, γ)p + t(p, r, γ) = r.

Furthermore, it is assumed that

t(p, r, 0) > 0

for any pair (p, r) ∈ (Rn
+\{0n}) × R+.

Subsidies to producers are modelled by an (n × m)-matrix A∗∗ = (a∗∗
ij ) =

(χij |aij |) where χij ≥ 0 is the ad valorem subsidy rate on the output or the
input of commodity i in activity j. There are no subsidies on the n free disposal
activities, that means χij = 0 for i = m − n + 1, . . . , m, and j = 1, . . . , n.

Extending the example from the preceding Section to our new situation
consumer j’s problem becomes the following maximization program

max uj(x
j
1, . . . , x

j
n)
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so that
n∑

i=1

pi(1 + τij − γσij)x
j
i ≤ (1 − ρj)

n∑
i=1

piω
j
i − γq(p)ηj + θjr.

σij ∈ [0, 1[ is the ad valorem subsidy rate on consumer j’s final demand for
commodity i, ηj ≥ 0 is some fixed income transfer to consumer j, and q(p) is
some price index which is homogeneous of degree one.

To sum up an economy is given by a quintuple (ζ, t, A, A∗, A∗∗). An equi-
librium is a triple (p0, r0, γ0) ∈ Δn−1 × R+ × [0, 1] of a price system p0, a
tax revenue amount r0, and a subsidies realization rate γ0 which satisfies the
reasonable properties

(E’.1) p0′
(A∗ + γ0A∗∗) ≤ 0m

(E’.2) ζ(p0, r0, γ0) = Ay0 for some y ∈ Rm
+

(E’.3) r0 = t(p0, r0, γ0) + p0′
(A − A∗ − γ0A∗∗)y0

(E’.4) If γ0 < 1, then r0 = 0.

Thus equilibria are from the subspace {(p, 0, s)} ∪ {(p, r, 1)} of Δn−1 ×
R+ × [0, 1]. Analogously to the preceding model (E’.3) can be equivalently
reformulated:

(E′.3) ⇔ p0′
(A∗ + γ0A∗∗)y0 = 0.

Again, it will be this reformulated form which will be crucial for our later
constructions.

The new condition (E’.4) says that in equilibrium the first committment
of the government’s tax receipts is to subsidies, and only after making all the
subsidy payments can it transfer revenue to consumers. Furthermore, (E’.3)
and (E’.4) together imply that if γ0 = 0 then t(p0, r0, 0) + π0′

(A−A∗)y0 = 0
(Kehoe, 1985b, p. 330).

Definition 6.3. An evolution of economies with production, taxes,
and subsidies is in complete analogy to the preceding model in Section
3.1 given by a quintuple of C0-uniformly continuous one-parametrizations
(ζs, ts, (aijs ), (a∗

ijs
), (a∗∗

ijs
))s∈[0,1]). Again the uniformized boundary condition

is required:
for any sequence (p, rm, γ, sm) in (Rn

+\{0n}) × R+ × [0, 1]2 with sm −→ s0

and rm −→ +∞ one has ||ζsm(p, rm, γ)|| −→ +∞.

(ii) The following extension of the mapping g from the preceding Section
serves as equilibrium equivalent self-mapping for the present model version
(see Kehoe, 1985b, pp. 330–331):

g′ : Δn−1 × [0, β] × [0, 1] −→ Δn−1 × [0, β] × [0, 1]
(p, r, γ) �→ (x, y, v)

where (x, y, v) solves the minimization program
min 1/2[(x − p − ζ(p, r, γ)) · (x − p − ζ(p, r, γ)) + (y − t(p, r, γ))2

+ (r − γ − t(p, r, γ))2]
so that
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(1) (x, y, v) ∈ Δn−1 × [0, β] × [0, 1]
(2) x′A− (1 + y − r + v − γ)p′(A−A∗ −A∗∗)− (1 + v− γ)(1− γ)p′A∗∗ ≤ 0m.

The gradient of the objective function for fixed (p, r, γ) is given by

1/2

⎛⎜⎜⎜⎜⎜⎝
2x1 − 2(p1 + ζ1(p, r, γ))

...
2xn − 2(pn + ζn(p, r, γ))

2y − 2t(p, r, γ)
2v − 2(α + t(p, r, γ)).

⎞⎟⎟⎟⎟⎟⎠
Thus the (n + 2) × (n + 2) Hesse matrix is again the identity mapping

1/2

⎛⎜⎝2 0
. . .

0 2

⎞⎟⎠ =

⎛⎜⎝1 0
. . .

0 1

⎞⎟⎠ .

The issues (1) to (3) at the end of Subsection 6.1 (ii) immediately carry
over to the present situation. The analogue to item (4), i.e. that the set of
equilibria of an economy (ζ, t, A, A∗, A∗∗) equals the fixed point set of g′, is
proven on p. 331 in Kehoe (1985b).

(iii) In complete analogy to Subsection 6.1 (iii) follows that an evolution of
economies with production, taxes, and subsidies in fact induces a continuous
one-parametrization (g

′
s)s∈[0,1] of equilibrium equivalent self-mappings, and

we are done.



7

Evolutions in the Temporary Fixprice
Equilibrium Framework

We are now going to leave the class of general equilibrium models where all
prices are flexible turning to the framework of temporary fixprice equilibrium
with quantity constraints. We will present two new models which are suitable
for our purposes.

The first model is a modified version of the well-known rationing micro-
model with effective demand of the Benassy type and a deterministic rationing
scheme. The modifications are intuitive and will be crucial for the construction
of an equilibrium equivalent self-mapping for this model.

The second model has not been adapted from the literature. It conceptu-
alizes an economy with quantity rationing under temporarily fixed prices and
wages in a multi-sectoral set-up. The model combines in an intuitive way the
principles of the well-known quantity constrained macromodel with the idea of
several interdependent sectors (industries). From the macromodel it inherits
the opportunity of a geometrical representation in two dimensions. What it
makes particularly appealing to the economist is that the prerequisitory prob-
lem of existence of equilibrium reduces to a remarkably simple mathematical
situation which furthermore is formalizable by an intuitive function. Moreover,
it allows for a natural extension of the well-known quantity tâtonnement pro-
cess of the macromodel (the reader is referred to Lehmann-Waffenschmidt
1987, Section 4, for details).

The primary motivation for such a model is given by the lack in the litera-
ture of a model framework with quantity rationing which allows for analyzing
the economywide effects of sectorspecific policy measures on employment and
production. Thinking for instance of the virulent discussion in the European
countries on supportive measures for high-technology firms, or on subsidies
for the ‘sun-set industries’ makes the need for such a theoretical framework
apparent. Actually, the traditional micromodels from the quantity constrained
framework do not provide a useful device for an analysis of sectorspecific pol-
icy measures since there are too many and too complex interdependencies due
to the complete disaggregation.
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Like the models from the preceding Chapter also the two models of the
present Chapter have the advantage of containing explicit parameters which
in principle can be controlled by some policy institution. For the microversion
presented in Section 7.1 these are prices, wages, and the rationing schemes,
and for the multi-sectoral version presented in Section 7.2 only prices and
wages.

7.1 Evolutions Based on a Quantity Constrained
Micromodel With Effective Demand à la Benassy

(i) We consider an economic system where m economic agents interact on
n commodity markets. As usual, demand is given positive sign, and sup-
ply negative. Prices on all markets are given at a temporarily fixed level
p = (p1, . . . , pn) ∈ Rn

+\{0n}. Furthermore, each agent a ∈ {1, . . . , m} indi-
vidually perceives upper and lower rationing bounds on each of the n markets
for his potential demands and supplies. Let us represent the rationing bounds
which are subjectively perceived by agent a for his demand by an n-vector
za ≥ 0n and the perceived bounds for supply by an n-vector za ≤ 0n. Un-
der these circumstances each agent a communicates his individual planned
effective demand/supply signals

z̃a := z̃a(p; za, za) ∈ Rn

of the Benassy type to all markets. Particularly this means that agent a’s
planned effective demand/supply on the i-th market z̃a

i (p; za, za) is not neces-
sarily contained in the interval [za

i , za
i ]. Furthermore, every z̃a is a continuous

function. For the microeconomic foundation of z̃a by an optimization program
we refer to the literature.

Final allocation in case of a non-market-clearing price system p is achieved
through a deterministic rationing scheme. Formally, the rationing scheme is
specified by an m-tuple of composite continuous functions (F a)a=1,...,m, with

F a :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1

...
zm

z1

...
zm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
ez�→

⎧⎪⎪⎪⎪⎪⎪⎪⎩
z̃1(p; z1, z1)

...
z̃m(p; zm, zm)

⎫⎪⎪⎪⎪⎪⎪⎪⎭

eF a�→

⎧⎪⎪⎪⎪⎪⎪⎪⎩
F a

1 (z̃1(p; z1, z1)), . . . , z̃m(p; zm, zm)),
...

F a
n (z̃1(p; z1, z1)), . . . , z̃m(p; zm, zm))

⎫⎪⎪⎪⎪⎪⎪⎪⎭
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where F a
i (z̃1(p; z1, z1), . . . , z̃m(p; zm, zm)) ∈ R denotes agent a’s realized de-

mand/supply on market i. (Subsequently we will also write F a
i (z̃1, . . . , z̃m) for

short.)
It is reasonable to require the following properties for a rationing scheme

(F a)a=1,...,m :
given planned effective demand/supply signals z̃1, . . . , z̃m by the agents

(1) all realized transactions F a
i must be voluntary. Formally this means

that for every i ∈ {1, . . . , n} and a ∈ {1, . . . , m} the following holds:
if z̃a

i (p; za, za) ≤ 0, then for all admissible (zj , zj), j = 1, . . . , î, . . . , m,
we have z̃a

i (p; za, za) ≤ F a
i (z̃1(p; z1, z1), . . . , z̃m(p; zm, zm)) ≤ 0, and if

z̃a
i (p; za, za) ≥ 0, then for all admissible (zj , zj), j = 1, . . . , î, . . . , m we

have 0 ≤ F a
i (z̃1(p; z1, z1), . . . , z̃m(p; zm, zm)) ≤ z̃a

i (p; za, za).
(2) the allocated transactions always must be feasible, i.e. for every

i ∈ {1, . . . , n} we have
∑m

a=1 F a
i (z̃1, . . . , z̃m) = 0.

We furthermore assume that all perceived rationing bounds za
i and za

i , and all
realized demand and supply transactions F a

i (. . .), a = 1, . . . , m, are contained
in a compact interval [−bi, ci], i = 1, . . . , n, with bi and ci > 0. Denote the
cuboid [−bi, 0]× . . .× [−bn, 0] by G−, and the cuboid [0, c1]× . . . × [0, cn] by
G+. (Note that G− × G+ ⊂ Rn

− × Rn
+.) Thus,

z̃a : {p} × G− × G+ −→ Rn

for a = 1, . . . , m, and

F a : (G−)m × (G+)m −→ [−b1, c1] × . . . × [−bn, cn].

(Naturally, one may view z̃a as a function in za and za parametrized with the
price system p ∈ Rn

+\{0n}.)
Clearly, this is not a restrictive assumption. Particularly, all planned trans-

actions by the agents z̃a
i (p; za, za) need not be contained in the interval [−bi, ci].

To sum up an economy in our present context with temporarily fixed prices,
quantity constraints and effective demand à la Benassy is specified by a (2m+
1)-tuple

(p; z̃1, . . . , z̃m; F 1, . . . , Fm)

with the described properties.

Definition 7.1. Accordingly an evolution of economies with tempora-
rily fixed prices, quantity constraints and effective demand à la Be-
nassy is formally described by a (2m + 1)-tuple of one-parametrizations

(ps; z̃1
s , . . . , z̃m

s ; F 1
s , . . . , Fm

s )s∈[0,1]

which are continuous in the natural sense such that any s-state forms an
economy as defined above. In other words, ps is a continuous path in Rn

+\{0n},
and z̃i

s and F i
s are continuous one-parametrizations of functions in the usual

sense.
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An equilibrium of an economy is prevailing when for each agent the realized
demands and supplies on all markets are consistent with the previously per-
ceived rationing bounds on which he based his effective demand/supply sig-
nals. In other words, in an equilibrium no plan revisions are necessary since
the supposed bounds for all individual plans turn out to be correct. To put it
formally:

Definition 7.2. For an economy (p; (z̃a)a=1,...,m; (F a)a=1,...,m) a system of
rationing bounds (za, za)a=1,...,m with za ∈ G−, za ∈ G+ is an equilibrium
if the following holds:

if z̃a
i (p; za, za) < zi, then F a

i (z̃1, . . . , z̃m) = za
i ,

if z̃a
i (p; za, za) > zi, then F a

i (z̃1, . . . , z̃m) = za
i ,

and if za
i ≤ z̃a

i (p; za, za) ≤ za
i , then F a

i (z̃1, . . . , z̃m) = z̃a
i (p; za, za) for every

i = 1, . . . , n, a = 1, . . . , m.

(ii) As a reasonable candidate for an equilibrium equivalent self-mapping we
propose the following intuitive mapping



7.1 Evolutions Based on a Quantity Constrained Micromodel à la Benassy 75

g : (G−)m × (G+)m −→ R2nm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1

...
zm

z1

...
zm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝ z1
1
...

z1
n

⎞⎟⎠
...⎛⎜⎝ zm
1
...

zm
n

⎞⎟⎠
−−⎛⎜⎝ z1

1
...

zm
n

⎞⎟⎠
...⎛⎜⎝ zm
1
...

zm
n

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎝ l11
...
l1n

⎞⎟⎠
...⎛⎜⎝ lm1
...

lmn

⎞⎟⎠
−−⎛⎜⎝ u1

1
...

u1
n

⎞⎟⎠
...⎛⎜⎝um
1
...

um
n

⎞⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where

lai =

⎧⎪⎨⎪⎩
za

i + F a
i (z̃1(p; z1, z1), . . . , z̃m(p; zm, zm))

− max(za
i ; z̃a

i (p; za, za)) for z̃a
i (p; za, za) ≤ 0.

za
i for z̃a

i (p; za, za) ≥ 0

and

ua
i =

⎧⎪⎨⎪⎩
za

i for z̃a
i (p; za, za) ≤ 0.

za
i + F a

i (z̃1(p; z1, z1), . . . , z̃m(p; zm, zm))
− min(za

i ; z̃a
i (p; za, za)) for z̃a

i (p; za, za) ≥ 0

with i = 1, . . . n, and a = 1, . . . , m.

We have to verify several things.

(1) g is continuous. This follows directly from the assumption that realized
transactions must be voluntary, i.e.
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0 ≤ |F a
i (p; z̃1, . . . , z̃m)| ≤ |z̃a

i (p; za, za)|.
The following Figure 7.1 gives an illustration. The thick line is the graph

Fig. 7.1: Continuity of the Equilibrium Equivalent Self-Mapping

of the function

z̃a
i �→

{
max(za

i ; z̃a
i ) for z̃a

i ≤ 0
min(za

i ; z̃a
i ) for z̃a

i ≥ 0.

Accordingly, the closure of the shaded areas shows the range of F a
i .

(2) That the fixed-point set of g equals the set of equilibria of an economy is
obvious from the definitions.

(3) It remains to verify that g actually is a self-mapping, i.e. is a mapping
into (G−)m × (G+)m.
To show this let us start with the lai -components of g. We have to show
that

−bi ≤ za
i + F a

i (z̃1, . . . , z̃m) − max(za
i ; z̃a

i (za, za)) ≤ 0.

The second relation is an immediate consequence of za
i ≤ 0 and F a

i (. . .) ≤
0, and

0 ≥ max(za
i ; z̃a

i (za, za)).

To verify the first relation we have to distinguish the following two cases:
(I) Assume that F a

i (. . .) ≤ za
i . From the assumptions then follows that

z̃i(. . .) ≤ F a
i (. . .) ≤ za

i ≤ 0

and F a
i (. . .) ≥ −bi.

Then max(za
i ; z̃a

i (. . .)) = za
i . Consequently,

za
i + F a

i (. . .)− max(za
i ; z̃a

i (. . .)) = za
i + F a

i (. . .) − za
i = F a

i (. . .) ≥ −bi.
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(II) Assume that F a
i (. . .) > za

i . Then we have

z̃a
i (. . .) ≤ F a

i (. . .) ≤ 0, and − bi ≤ za
i .

We have to make a further distinction of subcases:
(IIa) max(za

i ; z̃a
i (. . .)) = z̃a

i (. . .). Then za
i + [F a

i (. . .) − z̃a
i ] ≥ za

i ≥ −bi

since the term in the square brackets is non-negative, and we are
done.

(IIb) max(za
i ; z̃a

i (. . .)) = za
i . Then za

i + F a
i (. . .) − za

i = F a
i (. . .) ≥ −bi,

and we are done.
�

The following Figure 7.2 depicts the situation on the real line:

Fig. 7.2: Equilibrium Equivalent Self-Mapping Characteristics

Obviously, the corresponding problem with the ua
i -components of our mapping

g is completely symmetric: just reflect the whole problem from the negative
real half line onto the positive one (cf. Figures 7.1 and 7.2).

(iii) From the definition of g it is immediately clear that an evolution of
economies in the presented basic set-up in fact induces a continuous one-pa-
rametrization of associated equilibrium equivalent self-mappings as desired.

7.2 Evolutions Based on a Quantity Constrained
Multi-Sectoral Model

(i) Our model economy to presented now is made up by m sectors (industries).
Agents are households or firms. Each sector i, i = 1, . . . , m, is completely char-
acterized by its sectoral labor market, its sectoral commodity market and the
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interplay of the two markets. The activities of the agents in each sector i are
as follows: sector-specific labor li is demanded by the firms of the sector and is
supplied by the households of the economy. Households and firms demand the
commodity of sector i, which is supplied by the firms of sector i. The prices
for the m commodities y1, . . . , ym and for the m sector-specific labor types
l1, . . . , lm are temporarily fixed at levels (p1, . . . , p2m) =: p. In each sector
i the temporarily fixed price-wage-system determines the aggregate notional
(Walrasian) demand intentions for labor and for the commodity, ld

∗
i , yd∗

i , and
the aggregate notional supply intentions ls

∗
i , ys∗

i . These notional plans are re-
presented in the box diagram of Figure 7.3 by the two points Fi = (ld

∗
i , ys∗

i )
and Hi = (ls

∗
i , yd∗

i ). To simplify notation the vector p will be subsequently
suppressed.

Fig. 7.3: Notional Quantity Constrained Supply and Demand Intentions in Sector i

For our later analysis we need the further assumption that all notional
supply and demand intentions are bounded from above. This means that
there are 2m positive real numbers l1max , . . . , lmmax ; y1max , . . . , ymmax which
give the upper bounds of physical availability of the corresponding commodity
or labor type. Evidently, this is not a restrictive assumption. Note that Fi, as
usual, represents the notional plans of the firms of sector i, whereas Hi now
represents the notional labor supply intentions of the households on sector i
and the notional commodity demand intentions of the households on sector i
and firms of the economy under the given temporarily fixed price-wage system.

The inner-sectoral spillovers are modelled in complete analogy to the well-
known one-sectoral macromodel. The commodity supply reactions of the firms
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of sector i to perceived quantity constraints li on the sectoral labor market are
represented by a reaction function ys

i (li). Correspondingly, the labor demand
reactions of the sectoral firms to quantity constraints on the sectoral com-
modity market are represented by a function ldi (yi). Together the functions
ys

i (li) and ldi (yi) form the “reaction wedge” F r
i . Accordingly, the aggregated

commodity demand reactions yd
i (li) of households to labor supply constraints

on sector i, and the labor supply reactions lsi (yi) to commodity demand con-
straints together form the “reaction wedge” Hr

i . The reaction functions ys
i (−)

and yd
i (−) are assumed to be continuous, weakly monotonically increasing

functions of sectoral labor constraints li, and the reaction functions lsi (−) and
ldi (−) are continuous, weakly monotonically increasing functions of sectoral
commodity constraints yi such that the intersection of the two wedges Hr

i

and F r
i forms a non-empty wedge with a unique vertex. This corresponds to

the well-behavedness of the quantity constrained macromodel usually adopted
in the literature (cf. Böhm 1982, 1989, for example).

In other words, in each sector firms plan to reduce their output if they
become rationed on the sectoral labor market, and plan to reduce their labor
input if they cannot realize their planned commodity sales. The possibility to
hold inventories leads to the wedge. On the other hand, in each sector house-
holds will reduce (maintain) their labor supply by substituting leisure for labor
if the commodity which is produced in the sector is (is not) a consumer good
and demand is rationed on the commodity market. If it is (is not) a consumer
good, households will reduce (maintain) their demand for the commodity of
the sector if they get rationed on the sectoral labor market. The wedge is due
to the possibility of saving.

Particularly, all supply intentions ys
i (li) and lsi (yi) must be technologically

and physically feasible for the economy. (For the derivation from optimization
programs cf. the literature on the subject, particularly Böhm 1982, 1989.)

The unique sectoral quantity constrained temporary equilibrium for sector
i is given by the well determined vertex Gi = (l̃i; ỹi) of the (entirely shaded)
intersection wedge of the two reaction wedges F r

i and Hr
i . (Note that the ex-

ample drawn in Figure 7.3 shows the case which is analogous to the Keynesian
regime of the well known macromodel).

At this point one might object the following: “while the firms’ reaction
functions ldi (yi) and ys

i (li) express well-founded causal relationships, the re-
action functions of the Hr

i -wedge do not.” Actually, it is not hard to think of
examples where the overall demand for the product of a sector is not sensi-
tively related to employment in this very sector, and where on the other hand
the intentions of households to supply type-i-labor are not sensitive to demand
rationing on the commodity market of this sector. But the reader should note
that this is not inconsistent with our model, since constant reaction functions
are admitted. Moreover, all inter-sectoral constraint spillovers will be incor-
porated in the next step. (Furthermore, constant reaction functions strongly
favour equilibrium adjustment processes which are naturally derived from the
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well-known quantity tâtonnement process of the macromodel. The reader in-
terested in details is referred to Lehmann-Waffenschmidt, 1987, Section 4.)

The following Figure 7.4 schematically summarizes the four well known
macro-rationing regimes (phases) together with the five intermediate cases.
The usual regime terminology shall also be maintained – here now character-
izing, however, the state in each sector.

Clearly, our depicted regime figures are prototypes in so far as lsi (yi) and
ldi (yi), or ys

i (li) and yd
i (li) respectively, may have points in common without

violating our assumptions.
Thus, for our model with m sectors there are 9m different combinations of

sectoral rationing regimes possible.
Unfortunately, so far the model obviously is still unsatisfactory since each

sector is isolated from any possible quantity rationing signals from the other
sectors. In fact, up to now the model has the flavour of a partial analysis. Let
us now show how to remedy this deficiency.

Our proposal to take the inter-sectoral spillovers into account is to con-
tinuously parametrizing the 4 reaction functions lsi (yi), ldi (yi), ys

i (li), y
d
i (li) of

each sector i with constraint signals lj and yj from [0, ljmax ] and [0, yjmax ]
transmitted from the other sectors. Thus, one obtains 4m continuous func-
tions

lsi (l1, . . . , l̂i, . . . , lm; y1, . . . , yi, . . . , ym)

ldi (l1, . . . , l̂i, . . . , lm; y1, . . . , yi, . . . , ym) (7.1)
ys

i (l1, . . . , li, . . . , lm; y1, . . . , ŷi, . . . , ym)
yd

i (l1, . . . , li, . . . , lm; y1, . . . , ŷi, . . . , ym), i = 1, . . . , m,

where lsi and ldi are continuous functions from the sub-cuboid [0, l1max ]× . . .×
[0, li−1max ] × [0, li+1max ] × [0, lmmax ] × [0, y1max ] × . . . × [0, ymmax ] into [0, limax ]
(denote C2m := [0, l1max ]× . . .× [0, lmmax ]× [0, y1max]× . . .× [0, ymmax]). ys

i and
yd

i are continuous functions from [0, l1max ]× . . .× [0, lmmax ]× [0, y1max ]× . . .×
[0, yi−1max ]×[0, yi+1max ]×. . .×[0, ymmax ] into [0, yimax ]. We will assume that for
each i and any parametrizing constraint tuple (l1, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . ,
ym) the functions (7.1) form one of the rationing regimes compiled by Figure
7.4. Equivalently, we can formally represent the system (7.1) by m pairs of
parametrized reaction wedges

F r
i (l1, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . , ym)

Hr
i (l1, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . , ym), i = 1, . . . , m. (7.2)

Up to now, the question is still open which signals are perceived by each
sector as parametrizing constraint signals from the other sectors. Generally
spoken these will be the (l, y)-coordinates of the states of the other sectors.
However, whether these states are the sectoral equilibria or are any other
states we will not decide in this study. We can do so since this question has
no relevance for the equilibrium analysis we are purposed to do here.
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Thus, under a given tuple of parametrizing quantity constraint signals from
outside, i.e. ceteris paribus, the agents in each sector plan their reactions to
inner-sectoral quantity constraints as in the traditional macromodel version.
In particular, the geometrical representation in two dimensions familiar from
the macromodel can be maintained (see below). More specifically, we now have
m 2-dimensional parametrized diagrams characterizing to economy. Clearly,
like in the unparametrized case above all demand and supply reactions of the
fully parametrized model (7.1) must also be feasible.

As it is usual for the macromodel (see e.g. Böhm 1982), also in this study
uniqueness of sectoral quantity constrained equilibrium is assumed for every
sector and every parametrizing tuple. For our later purposes we furthermore
need the following intuitive assumption (see remark (3) in Subsection (ii) be-
low for a discussion): for every sector i, i ∈ {1, . . . , m}, the unique sectoral
quantity constrained temporary equilibrium, i.e. the vertex

(̃li(l1, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . , ym);
ỹi(l1, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . , ym))

of the intersection wedge of the two parametrized reaction wedges

F r
i (l1, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . , ym) and

Hr
i (l1, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . , ym),

moves continuously in [0, limax ]×[0, yimax ] ⊂ R2
+ when the parametrizing (2m−

2)-tuple (l1, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . , ym) is changed continuously in its
domain cuboid

[0, l1max ] × . . . × [0, li−1max ] × [0, li+1max ] × . . . × [0, lmmax ]×
[0, y1max ] × . . . × [0, yi−1max ] × [0, yi+1max ] × . . . × [0, ymmax] ⊂ R2m−2

+ .

To sum up, an economy in our present multi-sectoral quantity constrained
set-up is specified by a system (7.1).

The total interdependence of the reaction functions of an economy (7.1)
can geometrically be visualized by parametrizing the reaction functions in
the i-th sector box-diagram by a constraint (2m− 2)-tuple (l1, . . . , l̂i, . . . , lm;
y1, . . . , ŷi, . . . , ym). Thus, in each of the m two-dimensional sectoral box-
diagrams the reaction functions are shifted when the constraint signals from
the other sectors change. To support intuition let us look at an example:

Households may reduce their demand yd∗
i (−) on the commodity market of

the i-th sector if supply rationing on the labor market of some other sector j
is strengthened. At the same time those households may increase their supply
ls

∗
i (−) on the labor market of the i-th sector who are also skilled for labor
of type i. The two reaction functions lsi (−;−, yi,−) and yd

i (−, li,−;−) which
start from Hi(−) = (ls

∗
i (−); yd∗

i (−)) are changed accordingly. Geometrically
this results in a right-downwards shifting of the Hr

i -wedge (cf. Figure 7.3).
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On the other hand, the firms of sector i may reduce their supply ys∗
i (−), if

the firms of sector j are labor-constrained and the commodity of sector j
is needed for production in sector i. If there are firms in sector i which use
technologies with fixed proportions of labor and commodity inputs, also labor
demand yd∗

i (−) in sector i will diminish. This will result in a left-downwards
shifting of the F r

i -wedge.
Let us briefly summarize the economic characteristics of the model. It in-

terlinks internal planning of the economic agents in each sector which only
takes account of inner-sectoral constraint signals with externally determined
planning depending on the signals from the other sectors. More precisely, there
is a hierarchy of these two principles of planning: the sector-internal planning
is completely carried out under every perceived tuple of sector-external signals.
Thus, the model has a feature of “parametrized”, or “damped”, interdepen-
dency. Or to say it in other words, in each sector the agents plan as regards
the constraint signals from the other sectors.

In general, in each sector i any shiftings of the two sectoral reaction wedges
will also lead to a displacement of the sectoral quantity constrained temporary
equilibrium Gi, i.e., of the vertex of the intersection wedge of the wedges F r

i

and Hr
i (cf. Figure 7.3). Formally, we write

Gi = Gi[F r
i (l1, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . , ym),

Hr
i (li, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . , ym)]

= Gi(l1, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . , ym) (7.3)

= (̃li(l1, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . , ym);

(ỹi(l1, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . , ym)).

Let us now come to the notion of an equilibrium of an economy (7.1) in
the present set-up. Obviously, there is only one reasonable way to define a
multi-constrained general equilibrium, or say an equilibrium for short, namely
by a 2m-tuple

(l̃1, . . . , l̃m; ỹ1, . . . , ỹm) =

(̃l1(̃l2, . . . , l̃m; ỹ2, . . . , ỹm), . . . , l̃m(̃l1, . . . , l̃m−1; ỹ1, . . . , ỹm−1);

ỹ1(̃l2, . . . , l̃m; ỹ2, . . . , ỹm), . . . , ỹm(̃l1, . . . , l̃m−1; ỹ1, . . . , ỹm−1)) ∈
C2m ⊂ R2m

+

where each pair

(̃li; ỹi) = (̃li(̃l1, . . . , l̂i, . . . , l̃m; ỹ1, . . . , ŷi, . . . , ỹm);
ỹi(̃l1, . . . , l̂i, . . . , l̃m; ỹ1, . . . , ŷi, . . . ỹm)) ∈ R2

+

for i = 1, . . . , m denotes the unique sectoral quantity constrained tempo-
rary equilibrium of sector i. Thus, in an equilibrium the m sectoral quantity



7.2 Evolutions Based on a Quantity Constrained Multi-Sectoral Model 83

constrained equilibria (̃li; ỹi) are simultaneously mutually consistent. Or, in
other words, all sectoral equilibrium signals are just mutually reproduced by
the reactions of the agents when the reaction functions in each sector become
reparametrized by the sectoral equilibrium values of the other sectors.

Definition 7.3. An evolution of economies in the presented multi-
sectoral quantity constrained basic set-up is given in the natural way by
a 4m-tuple of continuous one-parametrizations of sectoral reaction functions

(ls1s
(−), ld1s

(−), ys
1s

(−), yd
2s

(−); . . . ; lsms
(−), ldms

(−), ys
ms

(−), yd
ms

(−))s∈[0,1]

such that any s-state forms an economy.

It is noteworthy that in contrast to the other basic models here any evolution
can be geometrically visualized.

(ii) Constructing an equilibrium equivalent self-mapping for a given economy
is straightforward.

Choose an arbitrary i ∈ {1, . . . , m} and an arbitrary admissible parametriz-
ing constraint tuple (l1, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . , ym) for sector i. Drop-
ping the parametrizing constraint tuple for the moment in order to simplify
notation the sectoral reaction functions ys

i (li), l
d
i (yi), lsi (yi), and yd

i (li) can be
extended beyond the vertices Fi and Hi by constant functions up to the upper
bounds limax and yimax respectively. This is indicated in the box-diagram of
Figure 7.3 by broken segments.

Re-establishing now the parametrization notation we propose the following
natural mapping from the 2m-dimensional compact cuboid

C2m = [0, l1max ] × . . . × [0, lmmax ] × [0, y1max ] × . . . × [0, ymmax ] ⊂ R2m
+

into itself:

G : (l1, . . . , lm; y1, . . . , ym) �→ [̃l1(l2, . . . , lm; y2, . . . , ym), . . . ,
l̃m(l1, . . . , lm−1; y1, . . . , ym−1);
ỹ1(l2, . . . , lm; y2, . . . , ym), . . . ,
ỹm(l1, . . . , lm−1; y1, . . . , ym−1)].

Each pair (̃li(l1, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . , ym);
ỹi(l1, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . , ym)) denotes the sectoral constrained equi-
librium of sector i as defined in (4.2.2), i.e. the vertex of the intersection wedge
of the two sectoral reaction wedges Hr

i (−) and F r
i (−), under the parametriz-

ing (2m − 2)-tuple (l1, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . , ym)).
Clearly, the properties of the mapping G are essentially determined by the

properties of the economy. It follows immediately from the definition and the
assumptions that G is a well-defined continuous self-mapping of C2m whose
fixed-point set equals the set of equilibrium of the economy.

Finally, some remarks are in order.
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(1) There is some noteworthy peculiarity with this model concerning the
equality of the fixed-point set and the equilibrium set which at the first
glance seems to produce a paradox: assume that we are given a cer-
tain parametrization of the m sector diagrams by a parameter tuple
(l1, . . . , lm; y1, . . . , ym) so that the corresponding m sectoral equilibria con-
stitute a fixed point of the mapping G. Actually, this generally does not
mean that re-parametrizing the reaction functions in each sector diagram
by the coordinates of the sectoral equilibria of the other sectors necessarily
leaves the reaction functions unchanged. What it means is just that no
changes of any reaction functions are possible which also change the posi-
tion of any sectoral equilibrium. However, a further re-re-parametrization
does not change the reaction functions anymore. These considerations also
apply to the converse case when a configuration of the reaction functions
in the m sector diagrams is given whose sectoral equilibria form a multi-
constrained general equilibrium.

(2) It might be argued that for each sector i the coordinates of the sectoral
equilibria which are perceived as parametrizing constraints by the other
sectors may well be a priori restricted to a certain subset Ci ⊂ [l′i, l

′′
i ] ×

[y′
i, y

′′
i ] with 0 ≤ l′i ≤ l′′i ≤ limax and 0 ≤ y′

i ≤ y′′
i ≤ yimax . Accordingly, the

system (7.2) and the mapping G should be restricted to C̃ := C1 × . . . ×
Cm ⊂ C2m. Clearly, G| eC is a self-mapping of C̃. The reader may easily
note that our construction of an equilibrium equivalent self-mapping also
works for this case if G| eC : C̃ −→ C̃ can be continuously extended to a
mapping G : C2m −→ C̃. Thus, all fixed points are in C̃. A simple example
for this is given by Ci being an interval for each i = 1, . . . , m. In this case
Brouwer’s Theorem can directly be applied to G| eC .

(3) Our main assumption only requires that in each sector the sectoral equi-
librium moves continuously with continuously changing parametrizing
constraint signals form the other sectors. Particularly, it does not re-
quire that also the vertices of the reaction wedges move continuously.
If one thinks of the parametrized reaction functions in each sector as
derived from four aggregate sectoral maximization programs, continuous
movements of the parametrized reaction wedges in each sector i mean
that the four objective functions must be sufficiently well behaved so
that continuous parameter changes in fact lead to continuous changes of
maximizing arguments ls

∗
i (−), ld

∗
i (−), ys∗

i (−), yd∗
i (−) and lsi (−;−, yi,−),

ldi (−;−, yi,−), ys
i (−, li,−;−), and yd

i (−, li,−;−). (For instance this is the
case if shortages in a sector are continuously ‘redistributed’ to the other
sectors.) On the other hand, if one thinks of the sectoral reaction functions
as being the outcome of individual decisions, their continuous movements
can be justified by aggregation. On the whole, continuous movements
of the sectoral reaction functions do not appear to be more restrictive
than the continuity of the reaction functions themselves in the traditional
macromodel.
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(4) Though by assumption in every sector there is always a unique sectoral
temporary equilibrium for any given parametrizing constraint tuple, it may
well happen that there are multiple equilibria for an economy. This means
that also our multi-sectoral model has the familiar feature of indetermi-
nacy as regards the equilibrium set. This can be illustrated by a graphical
example:
Let us for instance choose m = 5, and accordingly ten real positive num-
bers as upper bounds l1max , . . . , l5max ; y1max , . . . , y5max . Now draw for each
sector a box-diagram (cf. Figure 7.3) so that the vertex Gi = (̃li; ỹi)
of the intersection wedge of the reaction wedges F r

i and Hr
i constitutes

the unique sectoral equilibrium. Now choose an i ∈ {1, . . . , 5} and con-
sider the i-th sector’s diagram. Write the 8 (= 2m − 2) parametrizing
coordinates (̃l1, . . . , l̂i, . . . , l̃5; ỹ1, . . . , ŷi, . . . , ỹ5) of the sectoral equilibria
of the remaining 4 sectors at the i-th sector’s reaction functions and at
its points Fi, Hi, and Gi = (̃li; ỹi). Now draw a second series of 5 sectoral
box-diagrams with different reaction functions and different sectoral equi-

libria G
′
i = (̃l

′

i; ỹ
′
i) and parametrize them in the way just described. Every

system of 4 · 5 reaction functions

lsi (l1, . . . , l̂i, . . . , l5; y1, . . . , y5)
ldi (l1, . . . , l̂i, . . . , l5; y1, . . . , y5)
ys

i (l1, . . . , l5; y1, . . . , ŷi, . . . , y5)
yd

i (l1, . . . , l5; y1, . . . , ŷi, . . . , y5), i = 1, . . . , 5,

which admits these two situations has at least these two multi-constrained
general equilibria. (Extension of this type of example to produce continua
of equilibria is obvious.) Actually it is not hard to think of inner- and inter-
sectoral interdependencies (i.e. shifting rules for the reaction functions)
which are economically reasonable and lead to these general equilibria.

(iii) From the construction of the equilibrium equivalent self-mapping G and
from the definition of an evolution of economies follows directly that an evo-
lution of economies

(ls1s
(−), ld1s

(−), ys
1s

(−), yd
1s

(−); . . . ; lsms
(−), ldms

(−), ys
ms

(−), yd
ms

(−))s∈[0,1]

induces a continuous one-parametrization of equilibrium equivalent self-map-
pings (Gs)s∈[0,1].
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Fig. 7.4: The 9 Regime Types of the Quantity Constrained Multi-Sectoral Model

(a) Walrasian Case

(b) Regime of Classical Unemployment (c) Regime of Under Consumption

(d) Intermediate Case (b)-(f) (e) Intermediate Case (c)-(f)

(f) Keynesian Regime

(g) Intermediate Case (b)-(i) (h) Intermediate Case (c)-(i)

(i) Regime of Repressed Inflation

(quantity constrained equilibria are marked by ◦, the broken lines indicate possible
alternative positions of reaction functions)
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Conclusions

In Part I of this monograph the fundamentals for the subsequent formal and
economic analysis have been laid. This was done by introducing and analyzing
nine models of general equilibrium, which we have called ‘basic models’, or
‘basic set–ups’. Some of them have been adopted from the literature (Chapters
4 and 6), while the others are new (Chapters 5 and 7). Thus the basic models
have not been introduced as an end in themselves, but as basic set–ups for
constructing the main subject of investigation, i.e., evolutions. All nine types
of evolutions of economies have been constructed on the same formal principle
as continuous one-parametrizations, or say one–parameter families, of econo-
mies. It has been emphasized that in the study any successions of states that
satisfy our assumptions, not only evolutions of an economic system ongoing
over historical time, have been admitted.

The findings in the subsection iii provide the basis for systematically and
comprehensively tackling the fundamental question of how the equilibrium
set changes when the underlying economy evolves continuously. In fact, this
has become one of the major concerns of theoretical economics since the fun-
damental indeterminateness of the basic exchange framework was discovered
in the early 1970s. More specifically we are searching for general structural
regularities, or say ‘laws’, of the induced evolution of equilibria. Actually, the
results in the following Part II will be fairly surprising to the reader who
is familiar with the examples illustrating regular equilibrium theory, which
strongly suggest that there is a maximal arbitrariness of the dependently
evolving equilibrium set.



Part II

Formal Analysis
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Introduction to Part II

Part II of the study provides the reader with our analytical results on evo-
lutions of economies. All results are economically motivated and discussed.
Nevertheless, their main economic significance will become clear through the
applications in Part III of the study.

Before we start describing the approach and the results of Part II the con-
cepts and findings of Part I are briefly recalled. Thus, the reader who is mainly
interested in the analytical results of Part II can start here. Each chapter of
Part I has been devoted to one model framework and has been organized
according to the same scheme: Each section deals with one specific basic mo-
del and is further divided into three subsections. Subsection (i) motivates the
model and specifies the notions of an economy, an equilibrium, and of an evo-
lution of economies in this set–up. Subsection (ii) presents the construction of
the most important technical tool of the analysis, a continuous self–mapping
of some compact Euclidean space which equivalently transforms the zero–
problem of the existence of equilibria into a fixed–point problem. This is done
in order to make the equilibrium analysis amenable to the powerful tools of
the one–parametrized fixed–point theory here in Part II. We will call the ad-
dressed mapping an ‘equilibrium equivalent self–mapping’. Finally, subsection
(iii) contains the verification that any admissible evolution of economies in the
present basic set–up actually yields a continuous one-parametrization of as-
sociated equilibrium equivalent self–mappings. In fact, it is this property of
an evolution of economies as we have formalized it that will turn out to be
the essential prerequisite for the results in Part II. Fortunately, the technical
work done in subsections (ii) and (iii) of the chapters in Part I has covered the
major part of the technical effort necessary for the central analytical results
in Chapters 10 and 11.

The central analytical result is given in Chapter 10. It ensures that the
equilibrium set of any evolution considered in Part I has a certain structural
property. Loosely speaking, this means that above any evolution of economies,
there is a path of equilibria in the graph of the equilibrium correspondence
which is either itself geometrically well-behaved, or which can be approxi-
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mated by a well-behaved path. This result has also been given independently
for the basic model of a large exchange economy by Mas-Colell (1985, Section
5.8). However, the methods used by Mas-Colell are completely different from
ours. Comparing this result to the well-known indeterminateness result of the
static exchange framework we see that the degree of indeterminateness on the
one-parametrized level is significantly smaller than on the static level.

The existence of approximating “near”-equilibrium paths naturally raises
a further question. How large is the subclass of those evolutions that already
have well-behaved equilibrium paths in each basic set-up? Or, to formulate
it more stringently, can any evolution be approximated by one that has a
well-behaved equilibrium path?

In Chapter 11, it is shown that the affirmative answer to this question
is right for each of the nine basic set-ups. For the exchange framework a
closely related result has been shown by A. Mas-Colell using the concept of
open-density of ‘regular’ evolutions. Nevertheless, here we provide construc-
tive methods to achieve nice approximating evolutions, whereas Mas-Colell
just gives an abstract existence result. From our constructions, we derive a
further new result that shows that the equilibrium correspondence of each of
the nine basic models introduced in Part I is extremely regularly connected.
This result considerably extends the result of the manifold property of the
graph of the Walras correspondence by Y. Balasko (see Balasko’s various ar-
ticles in the reference list).

Our conceptualization of an evolution of economies admits two obvious
economic interpretations, which will be analyzed in Chapter 12. On the one
hand, one may stress the aspect of course. Then an evolution describes an eco-
nomy, which from its initial state economy, evolves somewhere in the space of
economies – the only restriction being that it has to obey the weak conditions
indicated in Part I. On the other hand, one may stress the aspect that an evo-
lution connects its initial state economy to its terminal state economy. This
interpretation immediately raises the question of whether there is always an
evolution connecting any two given economies. In Section 12.1, we show that
this is in fact possible.

When considering evolutions as evolutions in historical time, it seems to
be most natural to also include new commodities entering the economy during
its evolution and old commodities leaving it. The formal extensions necessary
to achieve this in all basic set-ups are provided in Section 12.2.

However, the natural question remains whether there are possibly other
structural properties of the equilibrium set of evolutions that also generally
hold. In Chapter 13 a definitive answer will be given to this question for the
basic models from the exchange framework (Chapters 4 and 5): there are no
other general structural properties. Our result is the one-parametrized gener-
alization of Mas-Colell’s famous result on the non-restrictedness of the equi-
librium set of a static exchange economy from 1977. Furthermore our result is
to be seen as complementary to the related results on the local surjectiveness
of the graph of the Walras correspondence by B. Allen (1981).
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The gains and losses of our approach and our analytical results compared
with related ones from the literature are discussed in detail in Chapter 14.

In a nutshell our results significantly extend those from regular equilibrium
theory and those on the global properties of the graph of the Walras corre-
spondence – both developed in the 1970ies and 1980ies – as far as these are
related to ours.
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Near-Equilibrium Paths

In this Chapter we will reap the first fruits of our technical efforts in Part I.
Actually, our constructions in subsections (ii) and (iii) of the Chapters 4 to 7
put us in a position to show for any presented type of evolution that there is
a certain general structure property of its equilibrium set.

To be more specific, in Section 10.1 we will prove that to each type of a
continuous one-parametrization of equilibrium equivalent self-mappings con-
structed in Part I a certain result from algebraic topology applies which en-
sures the following: there is a connected component of the equilibrium set of
the underlying evolution of economies which joins bottom and top of the
homotopy space. (Loosely speaking we will also say that the connected com-
ponent ‘expands over the whole evolution’.) The existence of such a joining
connected equilibrium component in turn ensures the existence of a nicely
behaved joining path which approximates the equilibrium set of the evolution
arbitrarily closely. This we will accordingly call a ‘near-equilibrium path’. Ac-
tually, it is the existence of near-equilibrium paths which proves to be crucial
for our further applications in Part III of the monograph.

In principle the addressed result from algebraic topology has already been
known since 1960 when Felix Browder published his paper “On continuity of
Fixed Points under Deformation of Continuous Mappings”. Browder, however,
presented his result in a fairly general setting unfortunately obscuring his
achievements somewhat. Applied to our situation his result, however, does
not allow for boundary equilibria. Fortunately, there is an extended result by
Dieter Puppe (1979, Corollary 5.6) which proves to be a more appropriate
mathematical tool for our purposes.

Having achieved the general structure property of the existence of near-
equilibrium paths for evolutions it is most natural to ask whether possibly
there are still further general structure properties of the equilibrium sets of
evolutions. We will settle this question in Chapter 13 for the exchange frame-
work. Actually, we will be able to demonstrate that the existence of a joining
connected equilibrium component is the only structure property which is gen-
erally valid.
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The existence of at least one near-equilibrium path for any admissible
evolution from Part I is ensured by Theorem 10.2 in Section 10.1. Theorem
10.10 in Section 10.2 gives an answer to the important question of how one can
distinguish whether an arbitrary point in the homotopy space lies on a joining
connected equilibrium component of a given evolution, or not. Moreover, the
method which we will provide is particularly powerful for detecting initial
points of joining connected equilibrium components.

10.1 Existence of Joining Equilibrium Components
and of Near-Equilibrium Paths for Each Type of
Evolution From Part I

We begin this Section with the precise definition of a near-equilibrium path.

Definition 10.1. Let any admissible evolution (ζs)s∈[0,1] in any basic model
from Part I be given. Let be X ∈ {Δn−1\L, Δ̊n−1, Rn

+, Rn
+\(

⋃n
i=1 Di), Δn−1 ×

[0, β], Δn−1 × [0, β]× [0, 1], (G−)m × (G+)m, C2m} the corresponding domain.
Then for any ε > 0 an ε-near-equilibrium path for the evolution (ζs)s∈[0,1]

is a finitely piecewise linear path, or say a finitely polygonal path,

π : [0, 1] −→ X × [0, 1]

whose arc π[0, 1] lies in the ε-neighborhood of the equilibrium set of (ζs)s∈[0,1]

in X × [0, 1] and furthermore joins the bottom X × {0} and the top X × {1}
of X × [0, 1].

The reader should be well aware that an ε-near equilibrium price path ε-ap-
proximates the equilibrium set of an evolution on the whole. In particular,
this means that it need not ε-approximate every s-state equilibrium set when
the equilibrium set of the whole evolution decomposes into several path com-
ponents. Figure 10.1 below shows an example for this. Nevertheless, we will

Fig. 10.1: Approximation Pathology of an ε-Near Equilibrium Path

see that for a large class of evolutions any ε-near equilibrium path indeed also
ε-approximates any s-state equilibrium set (Corollary 10.5).

Now we are ready to state the following result which will be central for
our study.
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Theorem 10.2. For any admissible evolution (ζs)s∈[0,1] basing on any one of
the nine basic models from Part I there is at least one ε-near equilibrium path
for any given ε > 0.

The following proof of Theorem 10.2 will not only provide the reader with
the logical chain of mathematical arguments establishing the statement of the
Theorem, but also with a detailed discussion on its meaning and the surround-
ings. This is also the reason why we will not relegate it to the appendix.

Proof. Fortunately, the major part of work has already been done in Part
I. Actually, from the subsections (iii) of the Sections 4.1 to 7.2 follows that
the given evolution (ζs)s∈[0,1] induces a continuous one-parametrization of
equilibrium equivalent self-mappings

(gs)s∈[0,1] : K × [0, 1] −→ K

with appropriate K ∈ {Δn−1
, T

n
, Δ

n−1× [0, β], Δ
n−1× [0, β]× [0, 1], (G−)m×

(G+)m, C2m}.
Let us now look at the properties of K. K is compact, and, particularly,

it is a Euclidean neighborhood retract. Since K is furthermore contractible,
it is also acyclic. Hence, any self-mapping of K has Lefschetz number +1 (see
Brown (1971), II.c).

This means that we have posed ourselves in a situation to which the fol-
lowing result from one-parametrized algebraic topological fixed point theory
applies:

Proposition 10.3. Let K be a compact subset of Rn and a neighbourhood
retract. Let (gs)s∈[0,1] : K × [0, 1] −→ K be a continuous family of maps, and
let F be the union of the fixed-points of the mappings gs, i.e.,

F :=
⋃

s∈[0,1]

Fix (gs) ⊂ K × [0, 1].

Then the fixed-point index λ of gs equals the Lefschetz number of gs, and is
independent of s. If λ 
= 0, then F has a connected component C which meets
bottom K × {0} and top K × {1} of the homotopy space.

We also need the following

Definition 10.4. We will call a connected component of the equilibrium set
of an evolution of economies which meets bottom and top of the homotopy
space a joining equilibrium component of the evolution.

The Proposition has been proven by Puppe (1979, Corollary 5.6). Apparently,
the existence of a joining equilibrium component C for the evolution (ζs)s∈[0,1]

brings us more closely to our goal. However, such a connected joining equi-
librium component may still display some bad geometrical features. Let us
come back to this after the proof will be finished.
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Before continuing the proof, however, a further remark on Proposition
10.3 is in order. A closely related result has been proven by F. Browder (1960,
Theorem 2, p. 186). However, Browder uses a more restrictive boundary as-
sumption. He does not admit fixed-points (x, s) on the boundary of K × [0, 1]
(cf. also the corollary of Browder’s result by Mas-Colell, 1974, Theorem 1).
Actually, this result would not work for those of our basic models which ad-
mit boundary equilibria, i.e. the exchange model by Arrow/Hahn, the tax
equilibrium models by Kehoe, and the models from the temporary quantity
constrained equilibrium framework. Nevertheless, in another respect, which
however is less important for our purposes, Browder’s result is more general
than Puppe’s: K may be from a more general class of spaces.

Now, let us do the last step of our proof of Theorem 10.2 by demonstrating
that there is a near-equilibrium path in any relatively open ε-neighborhood[ ⋃

x∈C

◦
B

n+1

ε (x)

]
∩ (K × [0, 1]) =:

⋃
x∈C

◦
B

n+1

εr
(x) =: Cε

of any joining component C of the equilibrium set of the given evolution

(ζs)s∈[0,1] (note that by definition a relatively open εr-ball is
◦
B

n+1

εr
(x) =

◦
B

n+1

ε (x) ∩ (K × [0, 1])).

As C is compact, finitely many relatively open εr-balls
◦
B

n+1

εr
(x1), . . . ,

◦
B

n+1

εr

(xk) of the ε-neighbourhood Cε are sufficient to cover C. Denote their union
by Cf

ε .
Now consider all pairs (xi, xj), i 
= j, of centers of the relative εr-balls

◦
B

n+1

εr
(xi), and consider the graph g′C consisting of all segments xixj which

are contained in Cf
ε . If one adds all segments to g′C which are orthogonal

to Rn
+ × {0} and connect a center xi ∈ {x1, . . . , xk} with Rn

+ × {0} or with

Rn
+ × {1} within

◦
B

n+1

εr
(xi), one obtains a finitely polygonal graph gC in Cf

ε

which contains a near-equilibrium price path as desired. �

In his monograph (1985, Proposition 5.8.2) Mas-Colell presents the ana-
logue of our Theorem 10.2 for the basic model of an explicit finite exchange
economy (for this notion cf. the Section ‘Mathematical Preliminaries’ above).
Actually, Mas-Colell’s method of deriving the result is quite different from
ours.

We now proceed by pointing out the reasons why it is generally necessary
to approximate a joining equilibrium component by near-equilibrium paths in
order to get a nicely behaved path in the homotopy space. Let us use the notion
of a ‘nicely behaved path’ for the moment in the intuitive geometric sense
which means a particle moving along a nicely behaved path in a highly regular
manner. Particularly, there should not occur any complicated movements like
infinitely many oscillations for instance. Thus, a finitely piecewise linear near-
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equilibrium path is a prototype of a nicely behaved path. In Chapter 11 we will
give an analytically precise and comprehensive characterization of the class of
nicely behaved paths and of the class of evolutions which produce them.

Let us now look at the possible geometrically bad behavior of joining equi-
librium components. First and foremost a joining equilibrium component need
not be path connected. In other words, it may for instance contain parts like
the closure of the graph of sin 1/x. We will give an example of an evolution
producing this below. However, even if a joining equilibrium component is
path connected, it may well happen that some of its points can only be con-
nected by paths with infinitely long arcs caused by infinitely many oscillations.
The reader finds simple examples for this in the Mathematical Preliminaries
at the beginning of our study.

Another example of a path whose arc is of finite length though it undergoes
infinitely many oscillations is given by a “saw tooth path”. It consists of
infinitely many segments whose lengths can be estimated from above by the
terms of a sequence which generates a convergent series.

Unfortunately, any of these complications actually can occur in the equi-
librium set of an evolution. They even cannot be removed by additional dif-
ferentiability conditions on the evolution. The following example makes this
clear. ζ0 is a smooth function with a linear part over [y, z] (use the function

(a) Regular Equilibrium (b) Continuum of Critical Equilibria

Fig. 10.2: Initial State and Final State of a Smoothly Oscillation Movement

x �→
{

0, x ≤ 0
e−1/x2

, x > 0
at the bends ζ0(y) and ζ0(z)). Actually, the following

movement of ζ0 yields a smooth one-parametrization (ζs)s∈[0,1] : R+×[0, 1] −→
R; ζs is linear over [y, z] for any s, and ζs(y) performs a damped oscilla-
tion whose time path looks like x · sin 1

x . If ζs(z) correspondingly oscillates
in counter-rhythm, this results in a smoothly oscillating movement (ζs)s∈[0,1]

with final state ζ1 as in Figure 10.2. Thus, the trace (Gs)s∈[0,1] of the oscil-
lating unique zero in the homotopy space R+ × [0, 1] looks like the closure of
the graph of sin 1

x .
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From the construction of the last part of the proof of Theorem 10.1 follows
immediately

Corollary 10.5. If at least one joining equilibrium component of an evolution
(ζs)s∈[0,1] is even path connected, then for any ε > 0 there is an ε-near equi-
librium price path for (ζs)s∈[0,1] which particularly also ε-approximates every
s-state equilibrium set.

Proof. Just exclude from the construction of the finitely polygonal graph
gC in the final part of the proof of Theorem 5.1 all segments xixj with the
following property: the endpoints xi and xj cannot be connected by a path

which lies in C and in
◦
B

n+1

εr
(xi)

⋃ ◦
B

n+1

εr
(xj). Figure 10.3 shows the example

of a segment which will be excluded. �

Fig. 10.3: Exclusion of a Pathological Approximating Segment

Finally, to advance the reader’s intuition of an ε-near equilibrium path let
us present three natural notions of approximating equilibria for evolutions of
economies.

I. For the exchange framework we begin with a generalization of the well-
known and fairly weak approximation criterion using the supremum norm.

Definition 10.6. Let (ζs)s∈[0,1] be an evolution of economies in one of the
basic exchange models from Chapters 4 or 5, and let (p, s) be any point in
the homotopy space X × [0, 1]. Then (p, s) is an ε-approximating equi-
librium of the first kind for the evolution (ζs)s∈[0,1] for some ε > 0 if
maxh=1,...,n |ζhs(p)| < ε.

As Figure 10.4 below illustrates it an ε-approximating equilibrium of the first
kind need not be close to a true equilibrium of the evolution.

II. The following notion applies to any of our basic set-ups.

Definition 10.7. Let (ζs)s∈[0,1] be an evolution of economies in any one of
the basic models introduced in Part I, and let (p, s) be a point in the homotopy
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Fig. 10.4: Approximation Pathology of an ε-Near Equilibrium Path of the Second
Kind I

space X × [0, 1]. Then (p, s) is an ε-approximating equilibrium of the
second kind for the evolution (ζs)s∈[0,1] for an ε > 0 if there is point (p0, s0)
in the (relative) ε-neighborhood of (p, s) in X×[0, 1] which is a true equilibrium
of the s0-state economy ζs0 of the given evolution.

10.5

Fig. 10.5: Approximation Pathology of an ε-Near Equilibrium Path of the Second
Kind II

Figure 10.5 illustrates the definition for the special case where (ζs)s∈[0,1] is an
evolution of exchange economies. Note that this notion still allows for shifts
in the state-parameter in order to achieve a true equilibrium. Thus, an ε-
approximating equilibrium of the second kind (p, s) still may be far distant
from a true equilibrium of the s-state economy ζs.
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III. This, however, is excluded by the following last notion of approximating
equilibria of evolutions.

Definition 10.8. Let (ζs)s∈[0,1] be an evolution of economies in any of the
basic models introduced in Part I, and let (p, s) be a point in the homotopy
space X × [0, 1]. Then (p, s) is an ε-approximating equilibrium of the
third kind for the given evolution for some ε > 0 if there is a point p0 in the
(relative) ε-neighborhood of p in X such that (p0, s) is a true equilibrium of
the s-state economy ζs of the given evolution.

Fig. 10.6: ε-Near Equilibrium of the Third Kind

What are the precise interrelationships of these three concepts of approxima-
ting equilibria? Clearly, an ε-approximating equilibrium of the third kind is
also one of the second kind, but the converse is obviously not true. Moreover,
it is clear from the figures that neither an ε-approximating equilibrium of
the third, nor of the second kind is necessarily also an ε-approximating equi-
librium of the first kind. Also the converse directions do not generally hold.
Nevertheless, given an ε-approximating equilibrium (p, s) of the third, or of
the second kind there is for any ε′ > 0 an ε′-approximating equilibrium of the
first kind in the relative ε-neighborhood of (p, s). This is immediate from the
definitions.

Applying now these notions to the concept of an ε-near equilibrium path
we arrive at the following conclusion:

Conclusion 10.9 Any point on an ε-near equilibrium path for an evolution
of economies is an ε-approximating equilibrium of the second kind, and under
the hypothesis of Corollary 10.5 there is an ε-near equilibrium path all of whose
points are even ε-approximating equilibria of the third kind.
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10.2 A Criterion for Identifying Points on Joining
Equilibrium Components

The existence result of near-equilibrium paths naturally raises the general
question of how to find near-equilibrium paths in the homotopy space for a
given evolution. Apparently, this amounts to the general question of how one
can discern for any given evolution whether a certain point in the homotopy
space lies on one of its joining equilibrium components or not.

Here is a criterion which identifies starting points of joining equilibrium
components. More formally speaking, we are going to provide a sufficient
criterion for a point to be the starting point of a joining equilibrium component
based on a local algebraic topological invariant. Moreover, we will see that this
result also provides a partial answer to our general question.

Theorem 10.10. Let (ζs)s∈[0,1] be any evolution basing on any one of the ba-
sic models from Part I. Let furthermore X ∈ {Δn−1\L, Δ̊n−1, Rn

+,
Rn

+\(
⋃n

i=1 Di), Δn−1 × [0, β], Δn−1 × [0, β]× [0, 1], (G−)m × (G+)m, C2m}
denote the domain of the basic model. Choose an arbitrary connected compo-
nent A ⊂ X of the 0-state equilibrium set ζ−1

0 (0) of the given evolution. (For
instance, A could be an isolated equilibrium vector of ζ0.) Consider now that
connected component RA of the whole equilibrium set of the evolution which
contains A × {0}. Denote the intersection of RA with the bottom X × {0} of
the homotopy space by A. (Notice that A ⊇ A.)

Then the following condition is sufficient for RA to meet bottom and top
of the homotopy space:
(∗) There is a neighborhood V0 of A in X ×{0} so that for any open neigh-
borhood W̃ of A in X ×{0} which is contained in V0 and has no equilibria of

ζ0 on its boundary W̃\W̃ the local fixed point index i(g0, W̃ ) of the equilibrium
equivalent self-mapping of the 0-state economy is non-zero.

We will not give the details of the proof of Theorem 10.10. The reader
can find them in Lehmann-Waffenschmidt (1985, pp. 33–34, Satz 2) for the
special case X = Δ̊n−1. All steps of the proof given there immediately carry
over to the general situation of Theorem 10.10. Here we confine ourselves to
briefly commenting on the proof and then discussing the assumptions and the
result of Theorem 10.10.

Theorem 10.10 follows from Theorem 3 by Browder (1960). However,
Browder uses in his proof of Theorem 3 a stronger assumption than he re-
quires in his formulation of the Theorem (‘condition e’). Actually, one easily
finds counterexamples against Browder’s Theorem 3 as it is stated. Condition
(∗) in the formulation of our Theorem 10.10 is an adaption to our present
situation of the stronger assumption actually used by Browder in his proof.

The following Figure 10.7 makes the hypothesis of Theorem 10.10 intuitive
for the special case X = Δn−1. All ‘testing neighborhoods’ W̃ contain A and
are contained in the ‘reference neighborhood’ V0 of A.
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Condition (∗) requires to compute the local fixed point index of g0 for
open neighborhoods W̃ . Naturally this requires explicit knowledge of the self-
mapping g0 to some extent. However, since we will not make here further
use of the result of Theorem 10.10 we refer the interested reader to the ex-
tensive literature in algebraic topology on the topic of effective local index
computation.

We are still left to demonstrate that Theorem 10.10 also gives at least a
partial answer to the general question of how one can realise for an arbitrary
point (p, s) from the homotopy space X×[0, 1] whether it lies in a joining equi-
librium component of some given evolution (ζs)s∈[0,1], or not. Nevertheless,

Fig. 10.7: Identifying Joining Equilibrium Components

this is straightforward. Just apply Theorem 10.10 twice, once to (p, s) as a
point of the domain of the initial state of the ‘truncated’ evolution (ζs)s∈[s,1],
and once to (p, s) as a point of the domain of the initial state of the remaining
part (ζs−σ)σ∈[0,s] of (ζs)s∈[0,1] which is reversely parametrized. When both
times the criterion of Theorem 10.10 is satisfied, then (p, s) clearly lies on a
joining equilibrium component of the whole evolution (ζs)s∈[0,1].

Notice, however, that this method only identifies points (p, s) on such
joining equilibrium components which are separated by the s-slice of the ho-
motopy space into two connected parts completely lying below and above the
s-slice respectively. This means, the dotted case in Figure 10.7 for example is
not within the scope of this method.
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Equilibrium Paths

Time has now come to fulfill our promise from Chapter 10. There we have
resorted to geometrical intuition arguing that geometrically bad parts of a
joining equilibrium component are always on account of a more or less “patho-
logical” variation of economic states. Unfortunately the term “pathological”
only can serve as an intuitive guide, not as a firm base of further analysis.
What we will do now is to show precisely that intuition actually led us the
right way.

Obviously one possible way to do that would be to classify all “bad parts”
which may appear in joining equilibrium components and then to show that
they are always generated by pathologically looking evolutions. Unfortunately,
however, this program would not only mean a hard piece of technical work.
Still worse, it is also grounded on an unsound base because it essentially relies
on the reseracher’s subjective opinion as to which evolutions should be judged
as pathological.

Thus, we will adopt another way – starting from the opposite direction.
To be more specific we will show that for any of our basic models there is a
large class of evolutions which are highly well-behaved and reasonable from
the mathematical and from the economic viewpoint as well, and which, parti-
cularly, have nicely behaved joining equilibrium paths. This especially means
that none of the geometrically bad features discussed in Section 10.1 above
can occur. Moreover, we will also be able to show that it is even possible to
approximate any evolution arbitrarily closely by such a well-behaved evolu-
tion.

Our specific procedure will be first to provide a thorough analysis of these
issues in Section 11.1 for our reference basic model of pure exchange of the
Dierker type. Actually, we will provide two different classes of well-behaved
and approximating exchange evolutions in Section 11.1. The first one is es-
sentially based on the method of polynomial approximation which is fairly
popular in economies. The second one is based on an approximation method
which is even simpler than polynomial approximation and which has the fur-
ther advantage of being entirely constructive.
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In Section 11.2 then we will point out the necessary modifications to gener-
alize the two developed methods to the other basic models. In the last Section
11.3 of this Chapter we demonstrate that these methods immediately yield
several refined connectedness results on the graphs of the equilibrium cor-
respondences of our basic models. The main justification for the attribute
“refined” will be given in Section 14.1 where we will provide a comparison
with Balasko’s well-known connectedness results on the graph of the Walras
correspondence.

Let us conclude this Introduction by the following remark. There is also a
close relationship of our results given in this Section to a result by Mas-Colell
given in his book (1985, Section 8.8). To be more specific Mas-Colell shows
for the Walrasian exchange model that the subspace of so-called “regular
one-parametrizations” is open dense in the space of one-parametrizations (i.e.
exchange evolutions). Particularly, regular one-parametrizations have rather
well-behaved joining equilibrium components. Unfortunately, however, we will
see that unlike our well-behaved joining equilibrium paths the well-behaved
joining equilibrium components in Mas-Colell’s sense still allow for some of
the geometrically bad features which we have discussed in Section 10.1 for
path-connected joining equilibrium components.

Nevertheless, Mas-Colell’s result, remarkable as it is, only gives existence
of approximating one-parametrizations with well-behaved joining equilibrium
congruents. It does not provide any constructive method how to achieve them.
In this Chapter we will go beyond this abstract existence result in that we
explicitly provide methods to construct approximating evolutions with nicely
one-parametrizable joining equilibrium components. In Section 14.2 the reader
can find a comprehensive discussion on the relationship of our approach and
results to those of the differentiable approach employed by Mas-Colell.

11.1 Approximating Evolutions of Exchange
Economies With Nice Equilibrium Paths Based on
Dierker’s Model from Section 4.2

We start our investigations with the basic model of the Dierker type. We do
so since this model notably well suits as a reference model for later general-
izations.

We are going to present two intuitive general methods for approximating
any given Walrasian exchange evolution by a well – behaved and economi-
cally intuitive evolution of this type having, moreover, nicely behaved joining
equilibrium paths. Our first method (Subsection 11.1.1), grounded on ap-
proximation by polynomials, has the advantage that the construction of a
well – behaved approximating evolution is straightforward. To prove the well
– behavedness of the equilibrium set, however, requires an advanced result
from algebraic geometry. Even though, this method is far more constructive
than the addressed abstract existence result by Mas-Colell. The reader should
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note, however, that the attribute constructiveness can, to be honest, only be
credited to it as far as the current state of mathematical approximation the-
ory justifies it. This reservation does not apply to our second method, which,
however, is a little bit more laborious. It achieves approximating evolutions
in a completely constructive manner using as main analytical tool piecewise
linear functions. This construction has the further advantage that it makes
the well – behavedness of the equilibrium set still more intuitive.

11.1.1 Polynomial Approximating Exchange Evolutions

Let an evolution ζ = (ζis)
n
i=1
s∈[0,1]

basing on Dierker’s version of a Walrasian
exchange economy and any ε > 0 be given. Now we have a twofold purpose.
First we will set about providing a general and intuitive construction of a
Walrasian exchange evolution which ε–approximates the given one, and then
we have to convince ourselves that our achieved evolution indeed possesses a
“nicely behaved” joining equilibrium component, i.e. a nicely behaved equi-
librium path.

Before we can set to work constructing a suitable ε–approximating evolu-
tion, however, we clearly first have to render precise the notion of a “nicely
behaved joining equilibrium component”. Nevertheless, from the discussion in
Chapter 10 it is intuitively clear what we expect from a joining equilibrium
component deserving this attribute. In a word it should be well passable in
the intuitive geometrical sense from bottom to top of the homotopy price
prism. To call it to the reader’s mind this particularly means that it contains
at least one joining path consisting exclusively of equilibria which, first and
foremost, is continuous and of finite Euclidean length, and, moreover, does
nowhere perform infinitely many oscillations.

But how can we formalize this in a precise analytical way? Actually, it is
not hard to specify certain unwelcome characteristics of continuous paths as
we have just done, or to rigorously eliminate any complications by confining
ourselves to the very restricted class of finitely piecewise linear paths, as we
did in Chapter 10. On the other hand, it is not at all clear from the outset how
to design the proper class of all “well passable” continuous paths in a com-
prehensive and comprehensible way. Moreover, difficulties are still increased
by the fact that any such design clearly must be intimately linked to our
later construction of ε–approximating evolutions. Actually, however diligent
we may design a class of all well passable continuous paths, it is surely not
much use if we later cannot make out the joining equilibrium components of
our ε–approximating evolutions falling into this class.

Fortunately, we can present a class which serves all of our purposes. From
our construction the reader will immediately see that it is built on a geomet-
rically intuitive principle. To start now we call a path in Euclidean space

w : [a, b] −→ Rn
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(real) analytical if there exist real numbers c < a and d > b and n analytical
functions

w̃i :]c, d[−→ R, i = 1, . . . , n,

such that each w̃i extends the i–th component function wi of w, i.e.

∀i=1,...,n w̃i|[a,b] ≡ wi.

Remember that the arc of a path w is its image w([a, b]) ∈ Rn. This means
that the path w represents the one-parametrization of the arc. Or, in other
words, the arc shows the geometric configuration shaped by the moving para-
meter w(t), t ∈ [a, b]. Any of the subsequent concepts and results in this
Section are valid for general paths which, in particular, may be non one-to-
one maps, which means that they may “intersect themselves”, or in other
words, that the path essentially differs from its arc. However, in this study,
paths are usually one-to-one maps, in accordance with the purpose of mod-
elling and analyzing “passability”. In fact, analytical paths are geometrically
remarkably well–behaved curves. This will be made lucid by the characteriza-
tions provided by Proposition 11.1 below. Proposition 11.1 has both virtues of
being intuitive and precise. It makes essential use of what we call a normalized
tangent direction. More specifically, let us denote the derivative function of
an analytical path

w : [a, b] −→ Rn

by
w′ = (w′

1, . . . , w
′
n) : [a, b] −→ Rn.

Furthermore, as suggested by geometrical intuition, for any t0 ∈ [a, b] with
w′(to) 
= 0n we call the straight line in Rn

w(t0) + α · w′(t0), α ∈ R,

the tangent line at w(t0) (see Figure 11.1).
Furthermore, we call any vector of the form α·w′(to), α ∈ R\{0}, a tangent

direction at the point w(to) corresponding to to. (Note that possibly w(to) =
w(t1) for t1 
= to.) Evidently the tangent direction is only determined up to a
multiple. Nevertheless, under the additional assumption that w′

1(to) 
= 0 it is
possible to make a unique choice v = (v1, . . . , vn) of the tangent direction by
normalizing it such that v1 = 1. Accordingly,

v(to) =
1

w′
1(to)

· w′(to).

Actually, the normalized tangent direction gives us an intuitive and exact
instrument to study the behaviour of an analytical path in dependence of the
parameter t. This is realized by Proposition 11.1 below which demonstrates
that analytical paths particularly cannot oscillate infinitely often. Note in
particular that for any t ∈]ai, ai+1[, i = 0, . . . , r − 1, the vector
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Fig. 11.1: Tangent Line

(
1,

w′
2

w′
1

(t), . . . ,
w′

n

w′
1

(t)
)

with
w′

j

w′
1

(t) =
w′

j(t)
w′

1(t)

is a normalized tangent direction.

Proposition 11.1. Let any analytical path w′ : [a, b] −→ Rn be given whose
component functions w′

1, . . . , w
′
n are all non-constant. Then there exists a fi-

nite subdivision

a = a0 < a1 < . . . < ar = b of the interval [a, b]

such that the following properties hold for all j = 1, . . . , n and i = 0, . . . , r− 1

(i) w′
j is strictly monotonic on each closed subinterval [ai, ai+1],

(ii) w′
1(t) 
= 0 on each open subinterval ]ai, ai+1[,

(iii) w′
j/w′

1 is constant, or strictly monotonically increasing, or decreasing on
each open subinterval ]ai, ai+1[.

Proof. The Proposition is an immediate Corollary to the following standard
result on analytical functions:

Proposition 11.2. Let h1, h2 :]c, d[−→ R be analytical functions such that h2

has no zeroes in ]c, d[. Then

(i) h1 ≡ 0, or h1 has at most finitely many zeroes in any compact subinterval
[a, b] ⊂]c, d[.

(ii) h′ and h1/h2 are analytical where h′
1 denotes the derivative of h1.

Some remarks on Proposition 11.1 seem worthwhile. Clearly, the assumption
that no component function of w′ is constant obviously is not restrictive.
In fact, a constant component function w′

j only reduces the problem by one
dimension, since w′ : [a, b] −→ Rn−1 × {pt}.

To illuminate Proposition 11.1 further let us have a look at the following
examples of Figures 11.2a and 11.2b showing two analytical paths with a
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convex and a concave arc respectively. The reader should particularly note
that in both examples both components w1, w2 of the analytical path w :
[a, b] −→ R2 are strictly monotonically increasing.

(a)
w′

2
w′

1
Strictly Monotonically In-

creasing Curve

(b)
w′

2
w′

1
Strictly Monotonically De-

creasing Curve

Fig. 11.2

To sum up, Proposition 11.1 guarantees that the arc of an analytical path
consists of finitely many parts which are either linear segments, or which
essentially look like the highly regular arcs of Figures 11.2a and 11.2b.

Actually, the notion of an analytical path leads us close to our aim of
designing the class of all “well passable” paths. However, the following example
exhibits that we are still not quite done. Consider the subspace of R2 formed
by the two coordinate axes. Clearly, there exists an analytical path joining
(1, 0) and (0, 0), and one joining (0, 0) and (0, 1). But, there is no analytical
path joining (1, 0) and (0, 1)! This follows immediately from the following

Proposition 11.3. Let w : [a, b] −→ Rn be an analytical path and f : Rn −→
R be any polynomial from R[x1, . . . , xn]. Then either w([a, b]) ⊂ f−1(0), or
the set w−1(f−1(0)) is finite. (In words the latter means that the arc of w
intersects the zero set of f in at most finitely many points.)

Proof. Proposition 11.3 is also an immediate Corollary of Proposition 11.2.

Designing a class of “well passable” paths which rules out right angles
clearly would be highly inadequate. Nevertheless, there is a simple way to
cure our approach from this unwelcome oversharpness. We just admit finite
compositions of analytical paths, i.e. “finitely piecewise analytical paths”.
More precisely, we define:

Definition 11.4. A continuous path w : [a, b] −→ Rn is called a (finitely)
piecewise analytical path if there exists a finite subdivision
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a = a0 < a1 < . . . < am = b

such that all restrictions w[ai,ai+1] are analytical paths. (Thus, a (finitely)
piecewise analytical path may have finitely many undifferentiable kinks.) Let
us call a subset A ⊂ Rn finitely piecewise analytically path connected if any
two points of A can be joined by a (finitely) piecewise analytical path which
lies entirely in A. A (finitely) piecewise analytical path component of some
space B accordingly is a subset of B which is maximal with this property.

The following Figure 11.3 shows an example of a piecewise analytically path
connected set.

Fig. 11.3: Piecewise Analytically Path Connected Set

Actually, the class of finitely piecewise analytical paths is our desired class
of well passable paths. A finitely piecewise analytical path is intuitively well
passable, and over and above that, it seems hard to conceive of intuitively
well behaved paths which are not from this class.

Now we are prepared to tackle our main task of this Section. That means
we are going to show that the method of polynomial approximation which
is fairly popular in economics is also useful for our present purposes. More
specifically, employing the polynomial approximation method we will first
provide an evolution ζ which ε–approximates the initially given evolution ζ,
and then we will demonstrate that the equilibrium set of ζ actually contains
a joining piecewise analytical equilibrium path.

At the outset of our construction let us choose a positive δ < 1/n with the
property that for any p ∈ Δ̊n−1\Δn−1

δ with pi < δ and any s ∈ [0, 1] one has
ζis(p) > 2. Accordingly, the equilibrium set of ζ is contained in Δn−1

δ × [0, 1].
(The reason for choosing 2 as bounding value will become clear during the
construction.) Our construction is essentially based on the famous Weierstraß
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Approximation Theorem (see e.g. Lang, 1969, p. 152, Corollary). Without loss
of generality let us assume that 0 < ε < 1. Now for each of the first n − 1
restricted market evolutions

(ζis)s∈[0,1] |Δn−1
δ/2 ×[0,1], i = 1, . . . , n − 1,

of the given evolution we choose a polynomial

Qi : Rn × R −→ R

which η–approximates ζi uniformly on Δn−1
δ/2 × [0, 1] with η := δ·ε

4·n . Due to
Walras’ law one has the following equality for any p ∈ Δn−1

δ/2 and s ∈ [0, 1]

ζns(p) = − 1
pn

n−1∑
i=1

pi · ζis(p).

Consequently the function

Qn : Δn−1
δ/2 × [0, 1] −→ R with

Qn(p, s) := − 1
pn

n−1∑
i=1

pi · Qi(p, s)

[2(n − 1) · η/δ]–approximates the n-th component function ζn uniformly on
Δn−1

δ/2 × [0, 1]. (Clearly the function Qn is not a polynomial, but this does not
matter for our purposes.) Let

Q : Δn−1
δ/2 × [0, 1] −→ Rn

be the function with components Q1, . . . , Qn. By construction it satisfies Wal-
ras’ law. Furthermore, due to the choice of η we get

||ζs(p) − Q(p, s)|| < ε for all (p, s) ∈ Δn−1
δ/2 × [0, 1].

Now let us choose some continuous gluing function

α : Δ̊n−1 −→ [0, 1]
with α|Δn−1

δ
≡ 0, and

α|Δ̊n−1\Δ̊n−1
δ/2

≡ 1.

We define the continuously one–parametrized family

ζ = (ζis
)

n
i=1
s∈[0,1] : Δ̊n−1 × [0, 1] −→ Rn

(p, s) �→ α(p)ζs(p) + (1 − α(p))Q(p, s).

Thus we obtain a family of mappings which on the inner part Δn−1
δ × [0, 1]

of the price prism equals Q and on the δ/2–neighborhood of the boundary
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equals the given evolution ζ. On the area in between, i.e. on Δn−1
δ/2 \Δn−1

δ , Q

is continuously transformed into ζ.
From the construction it is immediately clear that ζ is an evolution which

ε–approximates the given evolution ζ uniformly on the whole price space
Δ̊n−1 × [0, 1].

Thus it remains to us to verify

Proposition 11.5. ζ possesses at least one joining piecewise analytical equi-
librium path.

Proof. Let us choose some joining equilibrium component C of ζ according
to Theorem 10.2. Note that due to Walras’ law C is contained in the set

n−1⋂
i=1

((
ζis

)
s∈[0,1]

)−1

(0).

If we can show that this intersection set is semi–algebraic (see the “Mathe-
matical Preliminaries”) then the following Proposition 11.6 tells us that C is
finitely piecewise analytically path connected, and we are done.

Proposition 11.6. Let A ⊂ Rn be a semi–algebraic set. Then any connected
component Z of A is even finitely analytically path connected.

We will postpone the proof of Proposition 11.6 to the end of the main line
of our proof of Proposition 11.5.

To see that the above intersection set actually is semi–algebraic is not
hard. Note that by construction it equals the set

{(p, s) ∈ Rn × R|Q1(p, s) = . . . = Qn−1(p, s) = 0} ∩ (Δn−1
δ × [0, 1]).

It is easy to see that this intersection is semi–algebraic: the first set is semi–
algebraic by property (i) of semi–algebraic sets (see “Mathematical Prelimi-
naries”). Δn−1

δ × [0, 1] is semi–algebraic by properties (ii) and (iii), and the
intersection again is semi–algebraic by property (iii).

The reader should note that our argumentation not only shows that ζ
possesses a joining finitely piecewise analytical equilibrium path, but even
that any connected component of the equilibrium set of ζ is finitely piecewise
analytically path connected.

Finally we are left to prove Proposition 11.6.

Proof of Proposition 11.6 The proof is essentially based on the following deep
mathematical result by B. Teissier (1975, Prop. 3, p. 313) which, nevertheless,
will be easy to understand for the reader:

Theorem 11.7. Given a semi–algebraic subset A ⊂ Rn there exists for any
y ∈ A an arbitrarily small open neighborhood U(y) ⊂ Rn such that U(y) ∩ A
is piecewise analytically path connected.
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To start the main line of the proof of Proposition 11.6 let us choose a
connected component Z ⊂ A and an arbitrary point x ∈ Z. We define the
following subset of Z

Z(x) := {z ∈ Z| there exists a piecewise analytical path
in Z connecting x and z}.

(This means that Z(x) is the piecewise analytical path component of Z which
contains x.)

Clearly we are done when we can show that Z = Z(x).

Let us start with recalling the following elementary facts about Z and
Z(x) :

(1) Z ⊂ A is an open and closed subset.

(2) If Y ⊂ Z is non–empty and open and closed relatively to Z, then Y = Z.

(3) If w : [a, b] −→ A is a continuous path which meets Z, then actually
w : [a, b] −→ Z.

(4) If w : [a, b] −→ A is a piecewise analytical path which meets Z(x), then
actually w : [a, b] −→ Z(x).

Due to (2) it suffices to prove that Z(x) is a relatively open and closed subset
of Z.

(i) Z(x) ⊂ Z is open in Z : choose an arbitrary y ∈ Z(x) and an open
neighbourhood U(y) ⊂ Rn as in the result by B. Teissier cited above.
From (4) follows that U(y) ∩ A ⊂ Z(x). This proves the assertion.

(ii) Z(x) ⊂ Z is closed in Z, i.e. Z\Z(x) ⊂ Z is open: let y ∈ Z\Z(x) and
choose an open neighborhood U(y) ⊂ Rn as in (i) such that U(y) ∩ A is
piecewise analytically path connected. We prove that U(y)∩A ⊂ Z\Z(x).
By (3) above U(y)∩A is contained in Z. Assume now that there exists a
point z ∈ U(y) ∩ Z(x). Then it is clear from the construction that there
are two piecewise analytical paths in Z connecting z with y and z with
x respectively. But then y ∈ Z(x), and this is a contradiction. Therefore
U(y)∩A ⊂ Z\Z(x). Since this is true for all y, the set Z\Z(x) is open in
Z, and Proposition 11.6 is proved. �
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11.1.2 Piecewise Linear Approximating Exchange Evolutions

In the preceding Section we have employed the popular polynomial approxi-
mation method in order to achieve approximating exchange evolutions with
nicely behaved joining equilibrium components. This method clearly is more
constructive than the pure existence result by Mas-Colell addressed in the
Introduction to this Chapter and in the General Introduction. Nevertheless,
our method clearly can be viewed only as constructive as far as the current
state of mathematical approximation theory justifies it.

Thus the natural question remains whether it is possible to provide a fully
constructive method serving our purposes. We will see in this Section that this
is possible. Actually, the method we are going to present fulfills both require-
ments of being intuitive from the economic as well as from the mathematical
viewpoint. Comparing this method to the preceding polynomial method the
reader may find that the construction of an approximating evolution is more
laborious, even though it is straightforward. However, in our eyes, this is more
than compensated by the fact that it is already clear from the construction
that joining equilibrium components are well–behaved. The latter can also be
obtained as a special case from Proposition 11.6 above.

Our basic idea to achieve a fully constructive method of approximating
any Walrasian evolution by one with a nicely behaved equilibrium set is to
exclusively use convex transitions of excess demand functions whose graphs
over Δn−1

ε consist of finitely many simplices. It will be intuitively clear that
choosing the simplices small enough and taking sufficiently many convex tran-
sitions achieves any desired approximation quality. Let us now see the details.

Let any evolution ζ = (ζis)
n
i=1
s∈[0,1]

basing on Dierker’s version of a Wal-
rasian exchange economy and any ε > 0 be given. As before we aim at pro-
viding an evolution ζ̃ = (ζ̃is)

n
i=1
s∈[0,1]

from this class which ε–approximates ζ

on the whole domain Δ̊n−1 × [0, 1] and which has joining finitely piecewise
analytical equilibrium paths.

Let us begin with a brief outline of our construction. As before let us
choose a δ > 0, such that for any p ∈ Δ̊n−1\Δn−1

δ with pi < δ one has
ζis(p) > 2 for any s ∈ [0, 1]. Thus, the equilibrium set of ζ is contained in
Δn−1

δ × [0, 1]. Now we focus on the s–state economy ζs = (ζis)n
i=1 for some

arbitrarily chosen s ∈ [0, 1]. Actually, instead of approximating the whole
evolution ζ on Δn−1

δ/2 × [0, 1] as we did before, we now first approximate the
s–state economy ζs on Δn−1

δ/2 . Then, like previously, we will glue the approxi-

mating component functions ζ̃is with the given component functions ζis over
the area Δn−1

δ/2 \Δn−1
δ by means of the convex transition. In a final step then

we will convince ourselves that finitely many convex connection economies
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between such approximating state economies actually are enough to achieve
an evolution with the desired properties.

Let us now see how the construction works. We start with ε/2–approximat-
ing the first n − 1 restricted component functions ζis |Δn−1

δ/2
, i = 1, . . . , n − 1,

by means of piecewise linear functions. (The reason for choosing ε/2 will
become clear from our later construction.) To this end we choose for each
i = 1, . . . , n − 1 a finite triangulation

∑
is

of Δn−1
δ/2 , i.e. a decomposition

of Δn−1
δ/2 into finitely many (n − 1)–simplices σ1, . . . , σkis

, such that the fol-
lowing holds: for i = 1, . . . , n − 1 consider any decomposing domain sim-
plices σj ∈ ∑

is
and the convex hull σj in Δn−1

δ × R of the n points
(vrj , ζis(vrj )) where vrj are the vertices of σj . Loosely speaking, σj is the
(n− 1)–simplex in Δn−1

δ ×R ⊂ R(n−1)+1 whose vertices are the images under
ζis |Δn−1

δ
of the vertices of the domain simplex σj . Clearly, it is possible to

choose the triangulation
∑

is
fine enough so that any σj , j = 1, . . . , kis , η/2–

approximates the graph ζis(σj) of ζis over σj with η := δ·ε
4n . Now extend

the triangulations
∑

is
, i = 1, . . . , n − 1, from Δn−1

δ to Δn−1
δ/2 . Let us denote

the obtained triangulation of Δn−1
δ/2 by

∑′
is

, and its restriction to the area

Δn−1
δ/2 \Δ̊n−1

δ by
∑′′

is
. Again let us choose the triangulation

∑′′
is

fine enough so
that we arrive at a function defined on Δn−1

δ/2 whose graph consists of kis +k′
is

(n−1)–dimensional simplices, i.e. which is finitely piecewise linear, and which
η/2–approximates ζis on Δn−1

δ/2 .

Now let us choose a finite triangulation
∑′

s = {σ′
1, . . . , σ

′
2} of Δn−1

δ/2 which
refines the triangulations

∑′
1s

, . . . ,
∑′

n−1s
. Denote the restriction of

∑′
s to

Δn−1
δ/2 \Δ̊n−1

δ by
∑′′

s , and for each i = 1, . . . , n − 1 denote by ζ̃is |Δn−1
δ/2

the
finitely piecewise linear function which is constructed on the above principles
using the triangulation

∑′
s . As before let us define

ζ̃ns |Δn−1
δ/2

(p) = − 1
pn

n−1∑
i=1

ζ̃is(p) · pi.

(ζ̃ns |Δn−1
δ/2

((n−1) ·η/δ)–approximates the given ζns |Δn−1
δ/2

.) It follows immedi-

ately from the construction that ζ̃s|Δn−1
δ/2

= (ζ̃is |Δn−1
δ/2

)n
i=1 ε/2–approximates

ζs on Δn−1
δ/2 .

In the next step we glue ζ̃s|Δn−1
δ/2

together with ζ over the area Δ
n−1

δ/2 \Δn−1
δ

in the same manner as before using the gluing function α : Δ̊n−1 −→ [0, 1]
with

α|Δn−1
δ

≡ 0 and
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α|Δ̊n−1\Δ̊n−1
δ/2

≡ 1.

Thus, we arrive at the function

ζ̃s : Δ̊n−1 −→ Rn

p �→

⎧⎪⎪⎨⎪⎪⎩
ζ̃s|Δn−1

δ/2
(p) for p ∈ Δn−1

δ

α(p)ζs(p) + (1 − α(p))ζ̃s(p) for p ∈ Δn−1
δ/2 \Δn−1

δ

ζs(p) for p ∈ Δ̊n−1\Δn−1
δ/2

Clearly, ζ̃s is an economy which ε/2–approximates the given s–state economy
ζs. Due to its properties we will call ζ̃s (ζ̃is) in the sequel a finitely piecewise
linear ε/2–approximating s–state economy (market).

Let us now look at the whole evolution ζ. Clearly it would be both eco-
nomically and geometrically appealing to construct an approximating evo-
lution by exclusively using convex transitions of finitely piecewise linear ε–
approximating state economies. Actually, this will be our approach.

First let us fix any i ∈ {1, . . . , n−1} and any s–state market ζis , s ∈ [0, 1].
The following simple observation provides the key for our later construction.
Due to the construction of ζ̃s and the allover uniform continuity of ζ there
is a positive real number ϑs such that ζ̃is ε/2–approximates ζis′ for all s′ ∈
]s−ϑs, s+ϑs[ ∩ [0, 1]. Now, the remainder of our construction will essentially
be an exploitation of the compactness of [0, 1], and a piece of handcraft.

Let us start with choosing a finite relatively open subcovering {[0, ϑi0, [,
]si

1 − ϑis
1
, si

1 + ϑsi
1
[, . . . , ]si

l − ϑsi
l
, si

l + ϑsi
l
, [, ]1 − ϑil+1 , 1]} of [0, 1]. Now let us

focus on the overlapping open intervals ]si
j+1 − ϑsi

j+1
, si

j + ϑsi
j
[, j = 0, . . . , l,

where we take the convention that si
0 := 0 and si

l+1 := 1. Denote furthermore
the midpoint of any overlapping interval ]si

j+1 − vsi
j+1

, si
j + vsi

j
[ by Si

j . Hence

Si
j = si

j + vsi
j
− 1/2(si

j + vsi
j
− (si

j+1 − vsi
j+1

))

= si
j+1 − vsi

j+1
+ 1/2(si

j + vsi
j
− (si

j+1 − vsi
j+1

)),

j = 0, . . . , l, lies in [Si
j , S

i
j+1], but generally does not equal the midpoint

Si
j+Si

j+1
2 of this interval. The following Figure 11.4 summarizes that. Thus we

have (2l + 3) distinguished points si
0 = 0 < Si

0 < si
1 < Si

1 < si
2 < Si

2 < . . . <
si

l < Si
l < si

l+1 = 1 forming a partition of [0, 1]. What we are heading for is
the approximating market evolution composed of the 2l+2 convex transitions
between any two approximating economies with neighboring indices from this
ordered list (symbolized by the dotted lines in Figure 11.4). However, in view
of our ultimate aims there is the last difficulty that the triangulations

∑′ of
Δn−1

δ/2 associated with each of these points according to our previous consid-
erations clearly need not coincide. But we can easily overcome this problem
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Fig. 11.4: Construction Scheme for an Approximating Market Evolution

by just taking a common refinement
∑

i of these 2l + 3 triangulations. This
means we now form the 2l + 3 finitely piecewise linear η/2–approximating
markets ζ̃i(−) for commodity i at the 2l + 3 points of the above list on the
basis of the refined triangulation

∑
i . Thus we are in a position to form the

(2l + 2)–fold composite market evolution ζ̂i composed of the 2l + 2 convex
connection market evolutions between any two η/2–approximating markets
with neighboring indices from the above ordered list. The reader can easily
convince himself that ζ̂i actually η/2–approximates the given market evolu-
tion ζi. Furthermore, there are simple examples showing that this is no longer
true if one would omit the “overlapping midpoints” Sj from the construction.

Now the last steps of our construction are as follows. First we have to
perform the outlined procedure for each of the first n − 1 market evolutions
ζi, i = 1, . . . , n − 1, using a common refinement

∑
of the triangulations∑′

i, i = 1, . . . ,
n − 1. Then we take the common refinement R of the n − 1 partitions si

0 =
0 < Si

0 < si
1 < Si

1 < . . . < si
l < Si

l < si
l+1 = 1, i = 1, . . . , n − 1, and

again have to re–perform our procedure for the first n − 1 market evolutions
ζi, i = 1, . . . , n − 1, with the refined partition R of [0, 1]. Using the Walras
formula as before we achieve an n − th market evolution ζ̂n which (n−1)·η

δ –
approximates the given n−th market evolution ζn. To sum up, ζ̂ = (ζ̂is )

n
i=1
s∈[0,1]

is a Walrasian variation economy which, as a simple calculation shows, ε–
approximates the given evolution ζ, and whose equilibrium set is contained
in Δn−1

δ × [0, 1].

Now, we are still left with the crucial question: can we show that ζ̂ pos-
sesses a well passable equilibrium path? Fortunately, as we have indicated
above, all preparatory work needed for this has already been done in the pre-
vious Section. Actually, our situation here turns out to be a special case of
the Situation in Section 11.1.1. Roughly speaking, this is due to the fact that
the equilibrium set of ζ̂ is contained in Δn−1

δ × [0, 1] and ζ̂ is linear over any
subspace, or say subprism, σ × [ρj , ρj+1] where σ is a simplex from the trian-
gulation

∑
of Δn−1

δ and [ρj , ρj+1] is a subinterval from the refined subdivision
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R of [0, 1]. To be more precise, consider ζ̂|σ×[ρj ,ρj+1] =
(
ζ̂i|σ×[ρj ,ρj+1]

)n

i=1
for

any σ × [ρj , ρj+1]. The first n − 1 component functions are linear in p ∈ σ

and in s ∈ [ρj , ρj+1], and the equilibrium set of ζ̂|σ×[ρj ,ρj+1] is contained in

∩n−1
i=1

(
ζ̂i|σ×[ρj ,ρj+1]

)−1

(0).

Thus, from the analysis from the last part of Section 11.1.1 we know that
any connected component of the equilibrium set of ζ̂|σ×[ρj ,ρj+1] actually is
finitely piecewise analytically path connected. Since the whole inner prism
Δn−1

δ × [0, 1] is decomposed into only finitely many subprisms σ × [ρj , ρj+1]
which are, moreover, closed and therefore overlapping, this means that any
connected equilibrium component of the whole evolution ζ̂ is finitely piece-
wise analytically path connected. Thus, particularly any joining equilibrium
component is finitely piecewise analytically path connected, and we are done.

Perhaps the reader may feel a bit unsatisfied with our last reasoning having
the impression that we took a sledgehammer to crack a nut. Actually, it seems
to be immediately clear from geometrical intuition that the highly regular
evolution ζ̂ cannot produce any unpassable, or in any other way pathological,
equilibrium components. In fact, a closer look at the geometrical performance
of the evolution ζ̂ confirms intuition to be right.

To this end again pick up any simplex σ =< v1, . . . , vn > from the
triangulation

∑
of Δn−1

δ and any interval [ρj , ρj+1] from the refined sub-
division R of [0, 1]. Now imagine geometrically the two image simplices
σ1ρj

:= ζ̂1ρj
(σ) ⊂ σ × R ⊂ Rn and σ1ρj+1

:= ζ̂1ρj+1
(σ) ⊂ σ × R ⊂ Rn

of σ under the first component function of ζ̂ at the two parametrizing
points ρj and ρj+1. Recall that σ1ρj

is the convex hull of the n image
points ζ1ρj

(vn), . . . , ζ1ρj
(vn), and σ1ρj+1

is the convex hull of the n image
points ζ1ρj+1

(v1), . . . , ζ1ρj+1
(vn). By construction of the one–parametrization

((ζ̂|σ)s)s∈[ρj ,ρj+1 ] any vertex ζ1ρj
(vh) of σ1ρj

, h = 1, . . . , n, moves linearly
along the straight line {vh} × R ⊂ σ × R ⊂ Rn, which is orthogonal on σ in
vh, to the corresponding vertex ζ̂1ρj+1

(vh) of the simplex σ1ρj+1
for s running

from ρj to ρj+1.

Now let us focus on the intersections of the moving image simplices
σ1s , s ∈ [ρj , ρj+1], with the fixed domain simplex σ ⊂ Δn−1

δ . It is imme-
diately clear from the construction that the union of all intersections recorded
in the subprism σ× [ρj , ρj+1], i.e. z1 :=

⋃
s∈[ρj ,ρj+1](σ1s ∩σ, s) ⊆ σ× [ρj , ρj+1]

consists of at most finitely many most well–behaved components which par-
ticularly are well passable.

Now take the image simplex σ2ρj
:= ζ̂2ρj

(σ) under the second component

function of ζ̂ and from the reiterated intersection set
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z2 :=
⋃

s∈[ρj ,ρj+1]

(σ2s ∩ z1, s) ⊆ σ × [ρj , ρj+1].

By construction the finitely many components of z2 are equally well–behaved
like those of z1. Iterating this intersection process we finally arrive at

zn−1 :=
⋃

s∈[ρj ,ρj+1]

(σn−1s ∩ zn−2, s) ⊆ σ × [ρj , ρj+1].

Due to Walras’ law the equilibrium set of ζ̂|σ×[ρj ,ρj+1] equals zn−1.

To sum up we have convinced ourselves that under each successive step
generating the equilibrium set zn−1 of ζ̂|σ×[ρj ,ρj+1] the well–behavedness of the
connected components remains unaffected. Since there are only finitely many
simplices σ and subintervals [ρj , ρj+1] our findings show that any component

of the whole equilibrium set of ζ̂ is well–passable.

11.2 Approximating Evolutions With Equilibrium
Paths for the Other Basic Models From Part I

In the preceding Section we have presented two constructive methods how to
approximate an evolution based on the Walrasian exchange model by Dierker
by an evolution from this class which has well-behaved joining equilibrium
components. Having reached this point it is dearly of natural interest how the
presented methods can be adapted to evolutions based on the other models
from Part I. Let us take these points one at a time.

(1) Both presented approximation methods immediately carry over to the
basic model of an exchange economy by Arrow and Hahn (Section 1.1).
Note particularly that the role of Δn−1

δ and Δn−1
δ/2 is now played by (n-1)-

dimensional simplicial complexes Dn−1
δ and Dn−1

δ/2 with

(Δn−1\UL) ⊂ Dn−1
δ ⊂ Dn−1

δ/2 ⊂ Δn−1\L

where UL plays here the role which was played by Δ̊n−1\Δn−1
δ in our pre-

ceding constructions. More precisely, UL is a relatively open neighborhood
of the exception set L in Δn−1 such that if (p, s) ∈ (UL ∩ Δn−1

i ) × [0, 1]
for some i ∈ {1, . . . , n} then ζis(p) > 2. Dn−1

δ is a simplicial complex
contained in Δn−1\L with distance to L equal to or smaller than δ, and
Dn−1

δ/2 is an extension of Dn−1
δ with distance to L equal to or smaller than

δ/2. Figure 11.5 below gives an illustration of these notations.
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Fig. 11.5: Construction of the Domain of Approximating Evolutions with Equi-
librium Paths

(2) Some more technicals efforts, however, are necessary to adapt our approxi-
mation methods from Section 11.1 to evolutions based on our basic model
of a large exchange economy from Section 4.3.

In order to keep things easy we confine ourselves to a compact subspace
T̃ of the space A0 = D0 × (Rn

+\{0n}) of individual characteristics such
that for some arbitrary, but fixed, ε > 0 and some arbitrary, but fixed,
triangulation Σ of Δn−1

ε any individual demand function f : Δ̊n−1 ×
R++ → Rn

+ from prD0(T̃ ) is of the following form: for i = 1, . . . , n−1 any
restriction fi|σ×]o,α[ with σ ∈ Σ and

α := max pω + 1
p ∈ Δn−1

ε

ω ∈ prRn
+\{0n}(T̃ )

is a linear mapping. According to the budget equation pf(p, pω) = pω

one has fn(p, pω) = pω
pn

− 1
pn

∑n−1
i=1 pifi(p, pω) for ω ∈ prRn

+\{0n}(T̃ ) and
p ∈ Δn−1

ε .

On the neighborhood Δ̊n−1\Δn−1
ε of the boundary f has the usual pro-

perties and furthermore satisfies

∀p∈Δ̊n−1\Δn−1
ε

∀ω∈prRn
+\{0n}( eT )∃i(p,ω)∈{1,...,n}fi(p,ω)(p, pω) > ωi(p,ω) .

The latter condition just means that for any p near the boundary and
for any initial endowment vector the demand for some i − th good is
greater than the initial endowment of good i. From this condition follows
that any “individual” equilibrium price vector p0 for any characteristics
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pair (f, ω) ∈ T̃ , i.e. f(p0, p0ω) = ω, is in Δn−1
ε . Consequently, there is

no equilibrium price vector in Δ̊n−1\Δn−1
ε for any large economy μ ∈

M eT . Notice furthermore that any possible wealth p0ω generated by any
individual equilibrium price vector p0 is in ]0, α[.

After these prerequisites let us see how to properly approximate a large
evolution (μs)s∈[0,1] with μs ∈ MeT for any s ∈ [0, 1] such that nice join-
ing equilibrium price paths obtain. Fortunately, this is straightforward.
Since the large evolution (μs)s∈[0,1] is a continuous path in the compact,
complete, separable metric space M eT , it is natural to approximate it
“polynomially” by finitely many convex large connection economies, i.e.
by

M = ((1 − τ)μsj + τμsj+1 )j=0,...,k−1
τ∈[0,1]

where s0 = 0 < s1 < . . . < sk−1 < sk = 1. That M actually is a large
economy evolution follows from our considerations in Section 12.2.

Now we still have to ensure that the piecewise linear approximating evo-
lution M actually has nice joining equilibrium price paths. Nevertheless,
this follows immediately from the following considerations. For any large
s-state exchange economy μs, s ∈ [0, 1], the associate s-state excess de-
mand function

ζμs : Δ̊n−1 −→ Rn

p �→
∫

f
∼
(−,−, p)dμ −

∫
ω∼(−,−, p)dμ

(with, as the reader will remember, f
∼
(fω, p) = f(p, pω), and ω∼(f, ω, p) =

ω) is piecewise linear on Δn−1
ε , i.e. is linear on any σ ∈ Σ. This is

easy to see. Firstly, any f
∼i

, i = 1, . . . , n − 1, is linear on σ since for

any p1, p2, αp1 + βp2 ∈ σ, α, β ∈ R, one has f
∼i

(f, ω, αp1 + βp2) =

fi(αp1 + βp2, ω(αp1 + βp2)) = αfi(p1, ωp1) + βfi(p2, ωp2) due to the pro-
perties of f . Secondly,

∫
f
∼
(−,−, p)dμ is linear on σ according to the follow-

ing standard property of integrals:
∫

h(x, αp1 +βp2)dx = α
∫

h(x, p1)dx+
β
∫

h(x, p2)dx.
∫

ω∼(−,−, p)dμ trivially is linear on σ. Hence, to sum up,

ζμs(αp1 + βp2) = αζμs(p1) + βζμs(p2).

Finally, we again have to convince ourselves that also the one-parametri-
zation of excess demand functions ζM = (ζμs)s∈[0,1] induced by the appro-
ximating large economy evolution M is composed of k convex transitions
(1 − τ)ζμsj

+ τζμsj+1
, 0 ≤ τ ≤ 1, j ∈ {0, 1, . . . , k − 1}. Formally,

ζM = (ζμs)s∈[0,1] : Δ̊n−1 × [0, 1] −→ Rn

(p, s) = (p, (1 − τ)sj) + τsj+1) �→ ζ[(1−τ)μsj
+τμsj+1 ](p).
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Now, by definition and from linearity of the integral operator for α, β ≥
0, α + β = 1 one has

ζ(αμs+βμs′)(p) =
∫

f
∼
(−,−, p)d(αμs + βμs′)

−
∫

ω∼(−,−, p)d(αμs + βμs′)

= α

∫
f
∼
(−,−, p)dμs + β

∫
f
∼
(−,−, p)dμs′

−α

∫
f
∼
dμs − β

∫
ω∼dμs′

= αζμs + βζμs′ .

Particularly, this means

ζ((1−τ)μsj
+τμsj+1 ) = (1 − τ)ζμsj

+ τζμsj+1

for any τ ∈ [0, 1] and j ∈ {0, 1, . . . , k−1}. With each ζμsj
, j = 0, . . . , k−1

being linear on any σ ∈ Σ, we are done.

(3) There is no difficulty at all to carry over our previous analysis for Dierker’s
version of a Walrasian exchange model to the two models from the frame-
work without Walras’ law and homogeneity from Chapter 5. The only
difference is that now the approximation area is T n,α+1

γ/2 , and not Δn−1
δ/2 .

(4) Since the analysis of the two basic models from the equilibrium framework
with production, taxes, and subsidies from Chapter 5 is considerably more
complicated than that of the other basic models we defer it to the end of
this section. Thus let us look now at the two basic models from the tem-
porary equilibrium framework from Chapter 7. To start with the quantity
constrained micromodel with effective demand à la Benassy (Section 7.1)
there is no difficulty to adapt both of our approximation methods. As to
the piecewise linear approximation method one just has to be careful with
choosing a suitable triangulation Σs of (G−)m×(G+)m for approximating
an s-state economy (ps; z̃1

s , . . . , z̃m
s ; F 1

s , . . . , Fm
s ). (The restriction of Σs to

G−×G+ ⊂ ∂[(G−)m×(G+)m] is the relevant triangulation for the function
z̃i

s.) For, due to the construction of the equilibrium equivalent self-mapping
g a suitable triangulation Σs must obviously count for the respective zero
sets of the 3nm functions max(za

i ; z̃i(pi; za; z̄a)), min(z̄a
i ; z̃a

i (pi; za; z̄a)),
and min(0; z̃a

i (p; za, z̄a)). More precisely, having chosen some triangula-
tion of (G−)m × (G+)m which admits an ε-approximation of the func-
tions z̃1

s , . . . , z̃m
s ; F 1

s , . . . , Fm
s one still has to take into account the special

functions forming the equilibrium self-mapping g : (G−)m × (G+)m −→
(G−)m×(G+)m. (Recall that the zero set of a linear function restricted to
a k-dimensional simplex is a simplex of dimension ≤ k.) But, obviously,
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this is straightforward. Replacing g by g − id all previous considerations
also apply to this basic model.

(5) Now we come to the multi-sectoral quantity constrained basic model from
Section 7.2. As we will see, the adaptation of the piecewise linear approxi-
mation method is straightforward. For any s-state economy

Es := (ls1s
(−), ld1s

(−), ys
1s

(−), yd
1s

(−); . . . ;

lsms
(−), ldms

(−), ys
ms

(−), yd
ms

(−))

from a given evolution a piecewise linear approximation is achieved in the
following way. Choose any sector i. Each of the 4 sectoral reaction func-
tions ls,d

is
(l1, . . . , li−1, li+1, . . . lm; y1, . . . , yi, . . . , ym) and ys,d

is
(l1, . . . , li, . . . ,

lm; y1, . . . , yi−1, yi+1, . . . , ym) is a continuous function of 2m−1 variables.
More precisely, the two functions ls,d

is
(l1, . . . , li−1, li+1, . . . , lm; y1, . . . , yi,

. . . , ym) are defined on

[0, yimax ] × Ci := [0, yimax ] × [0, l1max ] × . . . × [0, li−1max
]

×[0, li+1max
] × . . . × [0, lmmax ]

×[0, y1max ] × . . . × [0, yi−1max
]

×[0, yi+1max
] × . . . × [0, ymmax ].

And correspondingly, the two functions ys,d
is

(l1, . . . , li, . . . , lm; y1, . . . , yi−1,

yi+1, . . . , ym) are defined on [0, limax ] × Ci = [0, limax ] × [0, l1max ] × . . . ×
[0, li−1max

]× [0, li+1max
]× . . .× [0, lmmax ]× [0, y1max ]× . . .× [0, yi−1max

]×
[0, yi+1max

] × . . . × [0, ymmax ]. Now choose some finite triangulations
∑1

s

and
∑2

s of the domains [0, yimax ] × Ci and [0, limax ] × Ci respectively
such that the 4 finitely piecewise linear functions l̄s,d

is
(−) and ȳs,d

is
(−)

which are formed in complete analogy to our previous constructions, ε/2-
approximate the four given functions ls,d

is
and ys,d

is
(−) on their respective

domains. Unfortunately, there may still arise a difficulty. There may be
argument tuples (l′1, . . . , l

′
i−1, l

′
i+1, . . . , l

′
m; y′

1, . . . , y
′
i−1, y

′
i+1, . . . , y

′
m) from

Ci for which the associate state diagram in the li − yi−coordinate box
formed by the 4 reaction functions parametrized with this argument tu-
ple, i.e.

lsis
(l′1, . . . , l

′
i−1, l

′
i+1, . . . , l

′
m; y′

1, . . . , y
′
i−1, yi, y

′
i+1, . . . , y

′
m),

ldis
(l′1, . . . , l

′
i−1, l

′
i+1, . . . , l

′
m; y′

1, . . . , y
′
i−1, yi, y

′
i+1, . . . , y

′
m),

ys
is

(l′1, . . . , l
′
i−1, li, l

′
i+1, . . . , l

′
m; y′

1, . . . , y
′
i−1, y

′
i+1, . . . , y

′
m),

yd
is

(l′1, . . . , l
′
i−1, li, l

′
i+1, . . . , l

′
m; y′

1, . . . , y
′
i−1, y

′
i+1, . . . , y

′
m),

is not of the required form, i.e. does not consist of two wedges consti-
tuting a unique sectoral equilibrium. But this can easily be removed by
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appropriately modifying the ε/2-approximating piecewise linear functions
l̄s,d
is

(−) and ȳs,d
is

(−) such that ε/2-approximating finitely piecewise linear
functions ¯̄ls,d

is
(−) and ¯̄ys,d

is
(−) obtain which also satisfy this requirement.

This is always possible since the domain triangulations
∑1

s and
∑2

s are
finite. Let us denote the obtained ε/2-approximating economy by ¯̄es.

Clearly, the same difficulty may arise when we perform the convex transi-
tion between any two ε/2-approximating economies ¯̄Es and ¯̄Es′ . Again, we
can overcome this difficulty thanks to the finiteness by slightly modifying
the finitely piecewise linear reaction functions of ¯̄Es and ¯̄Es′ and putting
in finitely many additional intermediate approximating economies.

Now, everything works as before.

(6) We are now left with the two basic models from the general equilibrium
framework with production, taxes, and subsidies from Chapter 6. While
for the other basic models geometrically elementary modifications were
sufficient to yield an adaptation, this time we must resort to further results
from algebraic geometry and algebraic topology.

The following Theorem gives the desired results.

Theorem 11.8.
For any evolution (ζs, ts, As, A

∗
s)s∈[0,1] basing on the model with production

and tax schemes from Section 6.1 and any evolution (ζs, ts, As, A
∗
s, A

∗∗
s )s∈[0,1]

basing on the model with production and tax and subsidy schemes from Section
6.2, and for any ε > 0 there exist ε-uniformly approximating evolutions

(ζ̂s, t̂s, Âs, Â
∗
s)s∈[0,1] and

(ζ̂s, t̂s, Âs, Â
∗
s, Â

∗∗
s )s∈[0,1]

which have nice, i.e. finitely piecewise analytical, equilibrium paths. Moreover,
if As (A∗

s , A
∗∗
s ) is a finitely piecewise analytical path in Rnm, then one can

even choose Âs = As (Â∗
s = A∗

s , Â
∗∗
s = A∗∗

s ).

The proof of Theorem 11.8 is relegated to Appendix A at the end of the
monograph. In a nutshell the proof provides an appropriate adaptation of the
polynomial approximation method to our present situation.
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11.3 A Strong Connectedness Result for the Graphs of
the Equilibrium Correspondences of the Basic Models
From Part I

In this Section we will show that our conception of an evolution of econo-
mies immediately leads to a certain strong global connectedness result for
the graph of the equilibrium correspondence of each basic model from Part
I. Particularly, our findings go far beyond the well-known results about the
manifold property of the graph of the Walras correspondence developed by
Balasko and others in the seventies and eighties (Balasko 1988).

What we are aiming for in this Section is to present an intuitive and
unifying construction based on connection evolutions which shows for every
of our basic set-ups that any two pairs (E0, P

0) and (E1, P
1) of an associated

economy and an equilibrium, or say any two points from the graph of the
equilibrium correspondence, can be connected in a simple way by such pairs,
that means within the graph of the equilibrium correspondence.

Actually, our method not only allows to considerably strengthen the well-
known global connectedness results on the structure of the graph of the Walras
correspondence by Balasko and others. It is also simple and economically
appealing. We will come back to the precise relationship of our findings to the
investigations on the graph of the Walras correspondence in the literature in
Section 14.1 below.

Generally, our method is based on the following principles. We first con-
struct well-understood auxiliary (intermediate) economies E′

0 and E′
1 contain-

ing P 0 and P 1 in their respective equilibrium sets. A particularly simple exam-
ple are economies E′

0, E
′
1 with unique equilibria P 0, P 1 respectively. Clearly,

the canonical connection evolutions from E0 to E′
0 provided in Section 12.1

possess a ‘stationary’ equilibrium path in P 0. The analogous consideration
applies to E1 and E′

1. Now it just remains to connect E′
0 with E′

1 by a well-
understood connection evolution. As we will see, for some of our basic models
this is straightforward, while for the others it becomes a piece of handcraft.
However, in any case the result is intuitive from both the economic and the
geometrical viewpoint. We will proceed in 7 steps dealing with our various
basic set–ups from Part I one after the other.

(1) Let us this time first explicitly develop the whole method for our basic
models without Walras’ law and homogeneity. Afterwards we will point
to the modifications which are necessary to adapt it to the other models.

Let any two pairs (ζ0, p
0) and (ζ1, p

1) of an exchange economy without
Walras’ law and homogeneity of type I and an associate equilibrium price
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vector from Rn
++ be given. To construct an auxiliary economy ζ′0 = (ζ′i0 )

n
i=1

with unique equilibrium p0 consider the n affine (n-1)-dimensional coor-
dinate hyperplanes H1(p0), . . . , Hn(p0) of Rn × R containing the point
p0. Of course, {p0} is precisely their intersection set. Now choose n func-
tions hi0 : Rn −→ R, i = 1, . . . , n, with the following properties: the
graph of hi0 is an n-dimensional hyperplane of Rn ×R with zero set equal
to Hi(p0) ∩ Rn, hi0(x) > 0 for any x with xi < p0

i , and hi0(x) < 0
for any x with xi > p0

i . The candidates for our component functions
ζ′i0 , i = 1, . . . , n, are the restrictions hi0 |Rn

+
. However, we still have to

bound the functions hi0 |Rn
+

from below by some arbitrary b ∈ Rn
−−. Thus,

ζ′i0 (x) = max(hi0(x), bi) for x ∈ Rn
+. Evidently, ζ′0 is a basic economy with

unique equilibrium p0.

Now let us construct an auxiliary basic economy ζ′1 for ζ1 in complete
analogy. Our next aim is to provide a well-understood connection evo-
lution between ζ′0 and ζ′1 which particularly possesses a well-understood
equilibrium path connecting p0 and p1. To this end let us consider the seg-
ment ((1− s)p0 + sp1, s) in Rn

+ × [0, 1] from (p0, 0) to (p1, 1). Now we are
in the position to propose the following candidate for a connection evolu-
tion between ζ̄′0 and ζ̄1: any s-state economy is constructed on the same
principle as for ζ′0 and ζ′1 with the main difference that now (1−s)p0+sp1

is the unique equilibrium. Clearly, this yields a connection evolution.

Composing this connection evolution with the convex connection evolu-
tions from ζ0 to ζ′0 and from ζ1 to ζ′1, respectively, obviously achieves a
twofold composite connection evolution from ζ0 to ζ1 with a finitely piece-
wise linear equilibrium path consisting of the three segments (p0, s) for
0 ≤ s ≤ 1/3, ((1− 3(s− 1/3))p0 + 3(s− 1/3)p1, s) for 1/3 ≤ s ≤ 2/3, and
(p1, s) for 2/3 ≤ s ≤ 1. This completes our construction. Figure 11.6 gives
an illustration.

(2) With easy modifications the described method can immediately be adapted
to the basic Walrasian exchange models by Dierker and by Arrow/Hahn.

(3) For the basic model of a large exchange economy an adaptation is
equally straightforward. Given two pairs (μ0, p

0) and (μ1, p
1) one chooses

for μ′
0(μ

′
1) that probability distribution on T which concentrates its

whole mass on a pair (f0, ω) ((f1, ω1)) with an excess demand function
f0(−) − ω0(f1(−) − ω1) of an analogous form to ζ′0(ζ

′
1) above. Thus p0

(p1) is the unique equilibrium price vector for the large economy μ′
0 (μ′

1).
With the connection evolution between μ′

0 and μ′
1 whose s-state econo-

mies give the whole mass to analogously shifted pairs (fs, ωs) as before,
0 < s < 1, we are done. (To be more specific, the derived s-state excess
demand function fs(−) − ωs must have the unique equilibrium vector
(1 − s)p0 + sp1).
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Fig. 11.6: Construction Scheme of a Connecting Economy for the Basic Model with-
out Homogeneity and Walras’ Law

(4) Now we come to the general equilibrium framework with production,
taxes, and subsidies from Chapter 6. Let us begin with the first basic model
with production and taxes from Section 6.1. Let two pairs ((ζ0, t0, A0, A

∗
0),

(p0, r0)) and ((ζ1, t1, A1, A
∗
1), (p1, r1)) of an economy and an associate

equilibrium be given. We will provide an intuitive general construction
of a 4-fold convex composite connection evolution whose equilibrium set
particularly contains the “pennant” of the following Figure 11.7. To sim-

Fig. 11.7: Construction Scheme of a Connecting Economy and Equilibrium Subset
for the Basic Model with Production, Taxes, and Subsidies I

plify notations we will consider excess demand functions and tax functions
as defined on Δn−1 × R+ (rather than on (Rn

+\{0}) × R+). We further
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denote the segment (1 − λ)(p0, r0) + λ(p1, r1), 0 ≤ λ ≤ 1 from (p0, r0) to
(p1, r1) in Δn−1 × R+ by G.

Now we are going to provide two auxiliary economies for each of the
two given economies such that the equilibrium set of the first auxiliary
economy contains (p0, r0) ((p1, r1)), and the equilibrium set of the second
one contains the segment G. Moreover, the 4-fold convex transition yields
a connection evolution.

Actually there are several ways to achieve that. Here we propose the fol-
lowing one which has the virtue of being both simple and economically
appealing. Let us denote the two addressed auxiliary economies for the
first of the two given economies (ζ0, t0, A0, A

∗
0) by (ζ0.2, t0.2, A0.2, A

∗
0.2) and

(ζ0.4, t0.4, A0.4, A
∗
0.4), and those for (ζ1, t1, A1, A

∗
1) by (ζ0.8, t0.8, A0.8, A

∗
0.8)

and (ζ0.6, t0.6, A0.6, A
∗
0.6), respectively.

Let us choose two arbitrarily small and bounded relative neighborhoods
U1 � U2 of G in Δn−1 × R+. Now we can continuously glue the zero
function on Δn−1×R+ with some arbitrary excess demand function ζ̃ such
that the obtained function equals the zero function on U1 and ζ̃ on U c

2 =
(Δn−1 × R+)\U2. The obtained function will serve us as excess demand
function ζ0.2 = ζ0.4 = ζ0.6 = ζ0.8. Moreover, t0.2 = t0.4 = t0.6 = t0.8 with
t0.2(p, r) := r− pζ0.2(p, r) clearly has an admissible shape (particularly, it
is nowhere negative on its domain).

With the production and after-tax matrices, however, our choice has to
be more sophisticated. For the 0.2- and 0.8-auxiliary economy it is easy:
we just take A0.2 = A0, A∗

0.2 = A0.4, and A0.8 = A1, and A∗
0.8 = A∗

1.
Likewise, we take A0 for A0.4, and A1 for A0.6. As after-tax matrix A∗

0.4

choose some arbitrary matrix which fulfills

(i) p′A∗
0.4 ≤ 0 for any (p, r) ∈ G′, and

(ii) A∗
0.4 ≤ A0.4 = A0 such that any entry a∗

0,4ij
is generated in the fol-

lowing way: there is a τij ∈ [0, 1] with

a∗
0,4ij

= a0ij − τij |a0ij |,

where A0 = (a0ij )ij and A∗
0.4 = (a∗

0,4ij
)ij .

Accordingly choose some suitable matrix. (Evidently there is no difficulty
with all these choices.)

From Section 12.1 we know that the 4-fold convex transition yields a
connection evolution from (ζ0, t0, A0, A

∗
0) to (ζ1, t1, A1, A

∗
1). (The space of

economies is convex.)
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Moreover, the following brief consideration shows us that the equilibrium
set of this 4-fold composite connection evolution really contains the “pen-
nant” from Figure 11.7 . Let us begin with the first convex connec-
tion evolution from 0 to 0.2. Its equilibrium set contains the segment
(p0, r0) × [0; 0.2] since by construction for 0 ≤ σ ≤ 1

(1 − σ)ζ0(p0, r0) + σζ0.2(p0, r0) = (1 − σ)ζ0(p0, r0)
(E.2)
= (1 − σ)A0y0

= A0[(1 − σ)y0] = [(1 − σ)A0 + σA0.2][(1 − σ)y0]

for some suitable y0 ∈ Rm
+ .

The reader will have noticed that for the sake of simpler notation we
consider the connection evolution from 0 to 0.2 for the moment as quasi
standing by itself, that means with an evolution parameter s running from
0 to 1 instead of running from 0 to 0.2. We will adhere to this simplification
in the following.

For the second convex connection evolution from 0.2 to 0.4 we have

(1 − σ)ζ0.2(π0, r0) + σζ0.4(π0, r0) = (1 − σ)0 + σ0

= A0.40 = A00 = [(1 − σ)A0.2 + σA0.4]0 = 0 ∈ Rm.

The cases 0.6 to 0.8 and 0.8 to 1 are completely analogous. For the middle
convex connection from 0.4 to 0.6 we have for any (p, r) ∈ G the relations

(1 − σ)ζ0.4(p, r) + σζ0.6(p, r) = (1 − σ)0 + σ0

= [(1 − σ)A0.4 + σA0.6]0 = 0 ∈ Rm.

Note particularly that due to our constructions there are no problems
with the equilibrium conditions E.1 and E.3.

This completes our proof that the well-behaved pennant from Figure 11.7
is contained in the equilibrium set of our 4-fold composite convex connec-
tion evolution.

(5) Now let us tackle the second basic model with production, taxes, and
subsidies from Section 6.2. Remember that now the domain of the econo-
mic state functions is Δn−1 × R+ × [0, 1], and equilibria are confined to
D1 ∪ D2 := {(p, 0, γ)} ∪ {(p, r, 1)} ⊂ Δn−1 × R+ × [0, 1].

Let two pairs ((ζ0, t0, A0, A
∗
0, A

∗∗
0 ), (p0, r0, γ0)) and ((ζ1, t1, A1, A

∗
1, A

∗∗
1 ),

(p1, r1, γ1)) of an economy and an associate equilibrium be given.

We will distinguish two main cases.

(1) both equilibria (p0, r0, γ0) and (p1, r1, γ1) lie in the closed space D2,
i.e. γ0 = γ1 = 1,



11.3 A Strong Connectedness Result 131

(2) they do not.

Fig. 11.8: Construction Scheme of a Connecting Economy and Equilibrium Subset
for the Basic Model with Production, Taxes, and Subsidies II

In case (1) everything works in complete analogy to the preceding model.
Just notice that p((1 − s)A∗

0 + sA∗
1 + (1 − s)γA∗∗

0 + sγA∗∗
1 ) = (1 − s)·

p(A∗
0 + A∗∗

1 ) for any (p, r, γ) ∈ G := {(1 − τ)(p0, r0, γ0) + τ(p1, r1, γ1) =
(1−τ)(p0, r0, 1)+τ(p1, r1, 1), τ ∈ [0, 1]}. One has just to be careful that the
neighborhood U2 of the segment G in the new domain Δn−1 ×R+ × [0, 1]
does not intersect the face Δn−1 × R+ × {0} where we have the strict
positivity of the tax function. This is easily achieved, for instance, by
requiring that γ ≥ 1/2 for any (p, r, γ) ∈ U2.

In case (2), however, we now have also to take into account the additional
requirement that t(p, r, 0) = r − pζ(p, r, 0) > 0 for all (p, r) ∈ Δn−1 ×R+.
Let us briefly recall the equilibrium conditions for an equilibrium (p̂, r̂, γ̂)

(E’.1) p̂(A∗ + γ̂A∗∗) ≤ 0

(E’.2) ζ(π̂, r̂, γ̂) = Aŷ for some ŷ ∈ Rm
+

(E’.3) p̂′(A∗ + γ̂A∗∗)ŷ = 0.

Let us first consider the special case that p0 = p1, r0 = 0, 0 ≤ γ0 < 1, and
r1 ≥ 0, γ1 = 1. All other cases will turn out to be simple compositions
of this and the preceding case. See for an illustration of the following
constructions Figure 11.8 above.
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Let us distinguish two further subcases γ0 = 0 and 0 < γ0 < 1. More
formally, (p1, r1, γ1) = (p0, r1, 1), and (i) (p0, r0, γ0) = (p0, 0, 0), and (ii)
(p0, r0, γ0) = (p0, 0, γ0).

(i) Let us begin with the case γ0 = 0. We first construct an auxiliary
economy (ζ0.5, t0.5, A0.5, A

∗
0.5, A

∗∗
0.5) whose equilibrium set contains

the whole rectangular

Rp0 := {(p0, r, γ)|0 ≤ r ≤ r1, γ0 ≤ γ ≤ 1} = {p0} × [0, r1] × [γ0, 1]

in Δn−1×R+ × [0, 1]. (Notice that the two given equilibria (p0, r0, γ0)
= (p0, 0, 0) and (p1, r1, γ1) = (p0, r1, 1) are diagonally opposite cor-
ner points of the rectangular Rp0 .) To this end choose any admis-
sible excess demand function ζ0.5 with the additional property that
ζ0.5(p0, r, γ) = ζ0(p0, r0, γ0) for r0 = 0 ≤ r ≤ r1 and γ0 = 0 ≤ γ ≤ 1,
i.e. on Rp0 (see Figure 11.8).

Actually, there is no difficulty with this choice. For instance, one can
obtain an admissible function ζ0.5 by gluing the constant function
c(p, r, γ) = ζ0(p0, 0, 0) on Δn−1 × R+ × [0, 1] over some open neigh-
borhood U of the rectangle Rp0 with ζ0. The choice of ζ0.5 deter-
mines t0.5(p, r, γ) = r − pζ0.5(p, r, γ). Furthermore, choose A0.5 = A0,
A∗

0.5 = A∗
0, and A∗∗

0.5 = 0. It is easy to cheek that (p0, r0, γ0) = (p0, 0, 0)
is contained in the equilibrium set of any state economy of the convex
connection evolution from (ζ0, t0, A0, A

∗
0, A

∗∗
0 ) to

(ζ0.5, t0.5, A0.5, A
∗
0.5, A

∗∗
0.5) = (ζ0.5, t0.5, A0, A

∗
0, 0).

Furthermore, it is evident that Rp0 is contained in the equilibrium set
of (ζ0.5, t0.5, A0.5, A

∗
0.5, A

∗∗
0.5).

With the two pairs
((ζ0.5, t0.5, A0.5, A

∗
0.5, A

∗∗
0.5), (p1, r1, γ1) = (p0, r1, 1)) and

((ζ1, t1, A1, A
∗
1, A

∗∗
1 ), (p1, r1, γ1)) we are in the situation of case (1)

above.

(ii) Let us now tackle the case 0 < γ0 < 1. The equilibrium conditions
satisfied by (p0, 0, γ0) take the following form:

(E’.1) p′0(A
∗
0 + γ0A

∗∗) ≤ 0

(E’.2) ζ0(p0, 0, γ0) = A0ŷ0 for some ŷ0 ∈ Rm
+

(E’.3) p′0(A
∗
0 + γ0A

∗∗
0 )ŷ0 = 0.

By definition γ0A
∗∗ = (γ0χ0ij |a0ij |)ij with χ0ij ∈ [0, 1]

As before we construct an auxiliary economy
(ζ0.5, t0.5, A0.5, A

∗
0.5, A

∗∗
0.5). ζ0.5 is constructed in complete analogy to
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the preceding case. (Since now γ0 > 0, one has also to take care of the
requirement t0.5(p0, 0, 0) = −p0ζ0.5(p0, 0, 0) > 0 when one employs
the gluing method mentioned above. But this is easily ensured by
choosing U in a way that its distance to Δn−1×R+ ×{0} is positive.)
Again, as before, A0.5 = A0, A∗

0.5 = A1. However, this time we choose
A∗∗

0.5 = γ0A
∗∗
0 .

Now consider the following connection evolution from
(ζ0, t0, A0, A

∗
0, A

∗∗
0 ) to

(ζ0.5, t0.5, A0.5, A
∗
0.5, A

∗∗
0.5) = (ζ0.5, t0.5, A0, A

∗
0, γ0A

∗∗
0 ) : for ζ, t, A, and

A∗ just choose the convex transitions. For the transition from A∗∗
0 =

(χ0ij |a0ij |)ij to A∗∗
0.5 = γ0A

∗∗
0 choose χsij := γ0

(1−2s)γ0+2sχ0ij for any
s ∈ [0, 1/2]. Notice that the choice has been made such that

γsA
∗∗
s =

(
[(1 − 2s)γ0 + 2s]

γ0

(1 − 2s)γ0 + 2s
χ0ij |a0ij |

)
ij

= (γ0χ0ij |a0ij |)ij = γ0A
∗∗
0

for any s ∈ [0, 1/2].

It is immediate that (p0, r0, γ0) = (p0, 0, γ0) is contained in the equi-
librium set of any s-state economy of this connection evolution. Analo-
gously to before, the whole rectangle Rp0 = {(p0, r, γ)|0 ≤ r ≤ r1, γ0 ≤
γ ≤ 1} = {p0} × [0, r1] × [γ0, 1] ⊂ Δn−1 × R+ × [0, 1] is contained in
the equilibrium set of (ζ0.5, t0.5, A

∗
0.5, A

∗∗
0.5).

With the two pairs
((ζ0.5, t0.5, A0.5, A

∗
0.5, A

∗∗
0.5), (p1, r1, γ1) = (p0, r1, 1)) and

((ζ1, t1, A1, A
∗
1, A

∗∗
1 ), (p1, r1, γ1)) we are again in the situation of case

(1).

So far, however, we have only considered the special case that p0 = p1,
r0 = 0, 0 ≤ γ0 < 1, and r1 ≥ 0, γ1 = 1. Nevertheless, all other possible
cases can easily be settled by simple compositions of the constructions
provided so far (see Figure 11.9 below):

(a) p0 = p′1, r0 = r′1 = 0, 0 ≤ γ0 < 1, 0 < γ′
1 < 1 (trivial)

(b) p0 
= p′′1 , r0 = r′′1 = 0, 0 ≤ γ0, γ
′′
1 < 1.

Just construct for the two pairs ((ζ0, t0, A0, A
∗
0, A

∗∗
0 ), (p0, 0, γ0))

and ((ζ1, t1, A1, A
∗
1, a

∗∗
1 ), (p1, 0, γ1)) the two auxiliary canonical

economies (ζI
0.5, t

I
0.5, A

I
0.5, A

∗I
0.5, A

∗∗I
0.5 ) and (ζII

0.5, t
II
0.5, A

II
0.5, A

∗II
0.5 ,

A∗∗II
0.5 ). Then Rp0 = {p0} × {0} × [γ0, 1] and Rp1 = {p′′1} × {0} ×

[γ′′
1 , 1]. With the two pairs ((ζI

0.5, t
I
0.5, AI

0.5, A
∗I
0.5, A

∗∗I
0.5 ), (p0, 0, 1))
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and ((ζI
0.5, t

I
0.5, A

I
0.5, A

∗I
0.5, A

∗∗I
0.5 ), (p′′1 , 0, 1)) one again is in the sit-

uation of case (1).

(c) p0 
= p′′′1 , r0 = 0, r′′′1 > 0, 0 ≤ γ0 < 1, γ′′′
1 = 1.

Construct for ((ζ0, t0, A0, A
∗
0, A

∗∗
0 ), (p0, 0, γ0)) the auxiliary eco-

nomy (ζ0.5, t0.5, A0.5, A
∗
0.5, A

∗∗
0.5).

Then Rp0 = {p0} × {0} × [γ0, 1]. With the two pairs ((ζ0.5, t0.5,
A0.5, A

∗
0.5, A

∗∗
0.5), (p0, 0, 1)) and ((ζ1, t1, A1, A

∗
1, A

∗∗
1 ), (p′′′1 , r′′′1 , 1)) we

are again in the situation of case (1).

The reader should note well, however, that the interval [0, 1] in
Figure 11.9 below represents the space of subsidy rates γ, not of
the evolution parameter s. In order to keep the graphical repre-
sentation simple we have refrained from drawing the homotopy
space.

(6) Finally we have to tackle the two basic models from the quantity con-
strained temporary equilibrium framework from Chapter 7. In doing so
we will also fill in the gap left open in Section 12.2. Let us begin with the
quantity constrained micromodel from Section 7.1.

Let two points

(E0, e0) = ((p0; z̃1
0 , . . . , z̃m

0 ; F 1
0 , . . . , Fm

0 ), (z1
0, z

1
0; . . . ; z

m
0 , zm

0 ))
and (E1, e1) = ((p1; z̃1

1 , . . . , z̃m
1 ; F 1

1 , . . . , Fm
1 ), (z1

1, z
1
1; . . . ; z

m
1 , zm

1 ))

of the graph of the equilibrium correspondence be given, i.e. two pairs of
an economy and an associate equilibrium. Remember that any za

h, h = 0, 1,
is a point of the compact cuboid G− = [−b1, 0]× . . .× [−bn, 0] ⊂ Rn− and
any za

h is a point of the compact cuboid G+ = [0, c1]× . . .× [0, cm] ⊂ Rn
+.

In Section 12.2 we have seen that the space of economies is not convex.
Nevertheless, as we will see immediately it is fortunately not too hard
to take remedial action. As with the other basic models the reader may
well conceive of a great variety of alternative ways to achieve this. Here
we propose the following intuitive method based on the idea of a twofold
composite convex connection evolution.

First remember that

z̃a : G− × G+ −→ Rn,

F a : (G−)m × (G+)m −→ [−b1, c1] × . . . × [−bn, cn],

and that an equilibrium (z1, z1; . . . ; zm, zm) ∈ (G−×G+)m ⊂ (Rn
−×Rn

+)m

is characterized by the conditions that for every i = 1, . . . , n, and a =
1, . . . , m
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Fig. 11.9: Construction Scheme of a Connecting Economy and Equilibrium Subset
for the Basic Model with Production, Taxes, and Subsidies III

(i) z̃a
i (p; za, za) < za

i ⇒ F a
i (z̃1, . . . , z̃m) = za

i

(ii) z̃a
i (p; za, za) > za

i ⇒ F a
i (z̃1, . . . , z̃m) = za

i

(iii) za
i ≤ z̃a

i (p; za, za) ≤ za
i ⇒ F a

i (z̃1, . . . , z̃m) = z̃a
i (p; za, za).

Before we set out our construction let us illustrate the situation of the
pair (E0, e0) by Figure 11.10 below. The reader should, however, be well
aware of the fact that because of its limitation to two dimensions Figure
11.10 may only be considered as symbolizing the real situation.

Now let us construct a simple auxiliary economy E1/3 for E0 whose equi-
librium set contains e0. Take as z̃a

i1/3
and as F a

i1/3
for every i = 1, . . . , n

and a = 1, . . . , m the constant function with value F a
i0(z

1
0, z

1
0, . . . , z

m
0 , zm

0 ).
Clearly, E1/3 is an economy which serves our purposes.

In complete analogy we construct an auxiliary economy E2/3 for E1.

Now, the reader can reasily convince himself that the composition of the
three convex transitions from E0 to E1/3, from E1/3 to E2/3, and from
E2/3 to E1, yields a twofold composite convex connection evolution whose
equilibrium set contains in each diagram (i, a) of the nm diagrams from
Figure 11.10 one of two simple segment patterns.

Clearly, the equilibrium e0(e1) is an equilibrium for any s-state economy
with 0 ≤ s ≤ 1/3 (2/3 ≤ s ≤ 1). Notice further that the equilibrium set
of an economy of the simple linear type of our auxiliary economies E1/3
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Fig. 11.10: Segment Patterns of a Connecting Economy and Equilibrium Subset for
the Basic Models from the Quantity Constrained Temporary Equilibrium Frame-
work

and E2/3 in general has a “large” equilibrium set, as the following Figures
11.11 to 11.14 indicate (za

i , za
i are from an equilibrium).

(7) Now we come to our last basic model which is left, the basic multisectoral
model with quantity constraints from Section 7.2. As before we will cope
with the non-convexity of the space of economies by employing a suitable
twofold composite convex connection evolution for any two given pairs

(E0, e0) = ((ls10
(−), ld10

(−), ys
10

(−)yd
10

(−); . . . ;
(lsm0

(−), ldm0
(−), ys

1m
(−), yd

1m
(−));

l̃10(l̃20 , . . . , l̃m0 ; ỹ20 , . . . , ỹm0), . . . ,
l̃m0(l̃10 , . . . , l̃m−10 ; ỹ10 , . . . , ỹm−10);

ỹ10(l̃20 , . . . , l̃m0 ; ỹ20 , . . . , ỹm0), . . . ,
ỹm0(l̃10 , . . . , l̃m−10 ; ỹ10 , . . . , ỹm−10))

and (E1, e1) of an economy and an associate equilibrium.

Roughly spoken we first make each given economy “rectangular” such
that the given equilibrium is not disturbed. Then we can employ the
convex transition between the two auxiliary rectangularized economies.
To be more specific, “making rectangular” means for the given economy
E0 to perform the convex transition from E0 to the following simplified
economy with linearized reaction functions and unchanged sectoral equi-
libria: choose any sector i and consider the parametrizing signal tuple
(l1, . . . , l̂i, . . . , lm; y1, . . . , ŷi, . . . , ym). Now consider the box of the i-th
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Fig. 11.11: F a
i0(e0) and F a

i1(e1) Have the Same Sign

Fig. 11.12: F a
i0(e0) and F a

i0(e1) Have Different Signs

sector and draw in the “rectangular” crosshair whose intersection point
equals the unique sectoral equilibrium (li, yi). Figure 11.15 below shows
the prototypes of the linearized rectangular crosshairs for the nine possible
sectoral regimes (cf. Figure 7.4 in Section 7.2). Notice that clearly each
rectangular crosshair diagram represents an admissible sector diagram

since only reaction functions of the same type, i.e. ys and ls, or yd and ld,
have more than one point in common.

Now deform each reaction function whose graph contains the intersec-
tion point (li, yi) by a convex transition onto the respective aids of the
crosshair. (Note that depending on the original sectoral regime between
two and four reaction functions are concerned.) The remaining reaction
functions (at most 2) are convexly deformed onto the corresponding con-
stant function through the vertex of the original reaction wedge.
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Fig. 11.13: Equilibrium Pattern of a Connecting Economy for the Basic Models from
the Quantity Constrained Temporary Equilibrium Framework I

Fig. 11.14: Equilibrium Pattern of a Connecting Economy for the Basic Models from
the Quantity Constrained Temporary Equilibrium Framework II

Accordingly, one of the four types of rectangular linearized sectoral
regimes obtains (“flag patterns”) which are shown by Figure 11.16 be-
low. Notice that the described convex deformation leaves the original sec-
toral equilibrium unchanged. Moreover, for the whole economy, it yields
a convex connection evolution whose equilibrium set contains the whole
segment {e0} × [0, 1].

The convex transition between the two linearized auxiliary economies fi-
nally achieves a connection evolution whose equilibrium set contains a
linear equilibrium path from e0 to e1. Putting pieces together the twofold
composite convex connection evolution from E0 to E1, serves all of our
purposes. The concluding Figure 11.17 illustrates the nice piecewise linear
equilibrium path contained in its equilibrium set in the homotopy space
C2m × [0, 1].
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Fig. 11.15: Nine Sectoral Regimes in the Multisectoral Framework with Quantity
Constraints
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Fig. 11.16: Rectangular Linearized Sectoral Regimes

Fig. 11.17: Piecewise Linear Equilibrium Path
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Economic Refinements of the Notion of an
Evolution of Economies

In this sixth Chapter we will discuss the economic content of our notion of
an evolution of economies more thoroughly. In fact, there are two different
interpretations of our notion of an evolution of economies possible. On the one
hand one may emphasize the aspect of process. This means one puts oneself
in a position of an observer who at any point of the evolution parameter
interval s ∈ [0, 1] only knows the current state and the preceding states of
the evolution which have already been passed by. In other words, the observer
“lives through” the exogenously determined course of the varying economic
behavior functions. Let us accordingly henceforth call an evolution which is
understood in this way a course economy.

On the other hand one may emphasize the aspect that an evolution con-
nects its initial state and its terminal state. Accordingly, let us henceforth call
an evolution which is perceived in this way a connection economy.

The notion of a connection economy immediately raises the central ques-
tion whether there is at least one connection economy for any given pair of
economies from any of our basic models. Moreover, it appears to be desirable
to have intuitive and standardized constructions achieving this. For instance,
the convex, or say linear, connection would be a reasonable candidate. We
will see, however, that for some of our basic models the space of economies
is not convex. But, fortunately, all deviations from convexity will turn out to
be curable. More formally this means that we will be able to provide stan-
dardized and intuitive auxiliary constructions which may well be accepted as
reasonable substitutes for the straightforward convex connection.

Later in this study (Section 11.3) we will demonstrate that these construc-
tions even can be extended so as to achieve simple connecting paths in the
graph of the equilibrium correspondence for each basic model type from Part
I. Thus we will prove in a completely constructive way for each of our basic



142 12 Economic Refinements of the Notion of an Evolution

models that the graph of its equilibrium correspondence is most nicely con-
nected. This result significantly extends the well-known result on the manifold
property of the graph of the Walras correspondence (cf. Section 9.2). On the
other hand, however, we will see that the graph of the equilibrium correspon-
dence exhibits wild geometrical behavior if one looks upon it from arbitrary
evolutions (see Chapter 13).

The notion of an evolution of economies in historical time makes it surely
of interest also to include the cases of new commodities appearing on market
for the first time and old commodities disappearing from market. In Section
12.2 we will point out that the notion of an evolution as we have introduced
it here actually also encompasses these cases in a natural way.

12.1 Course Evolutions and Connection Evolutions

The notion of an evolution of economies as we have introudced it naturally
suggests the two different interpretations as an exogeneously determined evo-
lution of economic states, i.e., a course economy in progress, and a connecting
evolution between its initial and its terminal state. To be sure, in our general
setting here it makes no difference whether it is an evolution in historical time
or an artificial evolution in logical time produced in the economist’s labora-
tory. Summing up, for a course evolution one poses oneself in the position of
an external observer who ‘lives through’ the evolution, i.e., who knows at any
value s ∈ [0, 1] of the state parameter only the current and the past states
of the evolution.If one primarily views an evolution under the aspect that it
provides a connection of its initial and its terminal state economy we will
speak of a connection economy.

Let us have a closer look at connection evolutions. A connection economy
provides a continuous connection from its initial to its terminal economy
which, moreover, satisfies the required properties of an evolution of economies.
One also can say that a connection economy provides a continuous path con-
necting its two border economies in the space of economies topologized with
an appropriate topology. In Propositions 4.2 and 5.2 above we have checked
this for the usual topology of the space of exchange economies. However, in
accordance with our principle of preferring intuitive concepts to abstract ones
we will subsequently mainly think of a connection economy as an evolution
and not as a path in the space of economies.

Now, two natural questions arise: is there for any basic model from Part I
at least one connection economy for any two given economies? And is it,
moreover, possible to provide general standard constructions achieving con-
nection evolutions which are also economically appealing? The latter particu-
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larly means that there should not occur any pathological looking characteris-
tics of the constructed connection economies as they have been discussed in
Section 10.1. Clearly, the (piecewise) linear, or straight, i.e. (piecewise) convex
connection, would meet these requirements notably well. Particularly, it pro-
vides a pretty flexible tool with respect to further approximation requirements.
The latter is illustrated by the following Figure 12.1. Taking an appropriate

Fig. 12.1: Polygonal Approximation

finite number of intermediate points pi one can approximate any continuous
path π in Rn arbitrarily closely by the composition of the convex connections
from each adjacent pair (pi, pi+1), i.e. by the polygon (p1p2 . . . pr)1. Actu-
ally, we have already made use of the approximating properties of polygons
in Euclidean spaces in Section 10.1 when we verified the existence of near-
equilibrium paths in the homotopy space.

How the idea of an approximating polygon in Euclidean space can be
transferred to evolutions of economies will be the theme of Sections 11.2 and
11.3 below.

Now let us check for which of our basic models the convex connection
between any two given economies already is an admissible evolution. What
we will find out is that for some basic models the space of economies actually
is not convex. Nevertheless, the deviations from convexity fortunately will
turn out not to be too serious. We will be able to overcome them by providing
general intuitive auxiliary constructions which “circumvent” non-convex areas
of the space of economies.

1 We remind the reader that the arc as a path’s image in general need not give a
proper representation of a path, since a path may be a non-one-to-one mapping
on its arc. However, throughout this study we only consider one-to-one paths
whose arcs give a proper picture of the path itself.
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Before we will go through all of our basic models in order to check convex-
ity, and, if necessary, to investigate how to compensate deficiencies we first
have to state precisely for any basic model what we understand under a con-
vex connection, or transition, in the space of economies. Note that we cannot
speak of a connection economy before we have not verified that the connection
really constitutes an admissible evolution of economies.

Definition 12.1. Let any two economies ζ1 and ζ2 from any basic model from
Part I be given. Clearly, for each basic model, except for the model of a large
exchange economy (see Section 1.3), ζi, i = 1, 2, is formally represented by
a finite tuple (f i,1, . . . , f i,k) of functions from a Euclidean (sub)space into
a Euclidean (sub)space. (For the basic model with quantity constraints and
effective demand à la Benassy f i,1 is chosen to be constant in p ∈ Rn

+\{0n}.)
The convex connection, or transition, from ζ1 to ζ2 is thus formally given
by the one-parametrized k-tuple

(τf2,1 + (1 − τ)f1,1,, . . . , τf2,k + (1 − τ)f1,k), 0 ≤ τ ≤ 1.

For the basic model of large exchange economies ζi is characterized by a proba-
bility measure μi on the agents’ characteristics space. Accordingly, the convex
connection between ζ1 and ζ2 is formally given by the one-parametrization

τμ2 + (1 − τ)μ1, 0 ≤ τ ≤ 1,

where (τμ2 + (1 − τ)μ1)(B) := τμ2(B) + (1 − τ)μ1(B) for any Borel-set B.

Now we have to check for which basic models convex transitions really form
connection evolutions, i.e. admissible evolutions.

Let us start with the basic model of a large exchange economy from Section
4.3. Actually, the only thing we have to make sure is that τμ2 + (1 − τ)μ1

again is a measure. This amounts to show that

(τμ2 + (1 − τ)μ1)

( ∞⋃
l=1

Bl

)
=

∞∑
l=1

[τμ2 + (1 − τ)μ1](Bl)

for any sequence (Bl) of disjoint Borel sets whose union again is a Borel set.
Clearly,

(τμ2 + (1 − τ)μ1)

( ∞⋃
l=1

Bl

)
= τμ2

(∞⋃
l=1

Bl

)
+ (1 − τ)μ1

(∞⋃
l=1

Bl

)

= τ

∞∑
l=1

μ2(Bl) + (1 − τ)
∞∑

l=1

μ1(Bl).

When (τμ2 +(1− τ)μ1)(
⋃∞

l=1 Bl) is infinite, then at least one of the two sums
must also be infinite, and then clearly the following equations hold:
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τ
∞∑

l=1

μ2(Bl) + (1 − τ)
∞∑
l=1

μ1(Bl) =
∞∑

l=1

τμ2(Bl) +
∞∑

l=1

(1 − τ)μ1(Bl)

=
∞∑

l=1

[τμ2(Bl) + (1 − τ)μ1(Bl)]

=
∞∑

l=1

[τμ2 + (1 − τ)μ1](Bl).

Correspondingly, when τμ2 + (1 − τ)μ1)
( ∞⋃

l=1

Bl

)
is finite, then both sums

∞∑
l=1

μ2(Bl) and
∞∑

l=1

μ1(Bl) also must be finite (convergent), and the chain of

equations particularly holds in this case. Thus, we have shown that the space
of large exchange economies actually is convex, or in other words, that the
convex transition between any two large exchange economies is a connection
economy.

Likewise it is straightforward to see that any convex transition in the
economy spaces of the two basic Walrasian exchange models from Sections
4.1 and 4.2 is a connection economy. Actually, the Walras property of an
intermediate state follows from the linearity of the scalar product

p · [τζ2(p) + (1 − τ)ζ1(p)] = τ(p · ζ2(p)) + (1 − τ)(p · ζ1(p)) = 0.

Obviously, it is equally straightforward to see that also in the basic models
with production, taxes, and subsidies by Kehoe (Sections 3.1, 3.2) any convex
transition is a connection economy, i.e. the associated spaces of economies are
convex.

Unfortunately, the two basic models from the quantity constrained tem-
porary equilibrium framework from Chapter 7 cannot be settled in the same
manner. In fact, both spaces of economies are not convex. For the basic quan-
tity constrained micromodel from Section 7.1 one even sees this from a sim-
ple example where the voluntariness condition is violated because z̃a

i0
, F a

i0
and z̃a

i1 , F
a
i1 have different signs for some argument (z1, z1; . . . ; zm, zm) ∈

(G− ×G+)m ⊂ (Rn
− ×Rn

+)m. In the basic multi-sectoral model with quantity
constraints from Section 7.2 a convex transition easily may generate interme-
diate sectoral states which are not admissible. The following Figure 12.2 gives
a simple example.

Nevertheless, for both basic models the deviation from convexity is not
too severe so that it is possible to find reasonable auxiliary constructions
overcoming this deficit. However, we will put the reader off to Section 11.3
where we will provide constructions which even admit to control the equilibria
in some sense.
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Fig. 12.2: Intermediate Sectoral States of a Convex Transition from the Quantity
Constrained Temporary Equilibrium Framework which are not Admissible

Now, there remain the two models from the exchange framework without
Walras’ law and homogeneity from Chapter 5. Actually, they both stray from
the fold. It is not hard to find reasonable examples of convex transitions which
do not satisfy the properties required for an evolution. For instance consider
the following example which works for both model versions of Chapter 5: let
be n = 2 and choose the sequence of prices (pm) = (m, m)m=1,2,.... Thus,
(pm) progresses monotonically on the bisector of the positive quadrant of the
plane. Now let two basic economies (ζ1

i )2i=1 and (ζ2
i )2i=1 be given whose excess

demand functions have the following shape on a subray of the bisector (R+

in the following Figure 12.3 symbolizes the subray): Evidently, the 1/2-state

Fig. 12.3: Intermediate States’ Scheme of a Convex Transition in the Basic Model
Framework without Homogeneity and Walras’ Law which are not Admissible

of the convex transition violates property (1) of an evolution in both basic
model versions, respectively.

Nevertheless, this example immediately suggests reasonable ways out of
this problem. Indeed, the reader may well become aware of a multitude of
general constructions which may even be more refined than that we will pro-
pose here. Nevertheless, the following construction is simple and intuitive and
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has the further advantage that it works for both model versions from Chapter
5. Mathematically spoken this construction makes use of the fact that in both
models the space of economies is still star-shaped even though it is not convex.

To be more specific, let us choose some reasonable economy which qualifies
for a ‘universal middle state economy’ from which any two economies can be
connected by two straight connections in the space of economies, i.e. convex
connection evolutions, as Figure 12.4 suggests: We here propose the following

Fig. 12.4: Star-Shaped Connection Scheme for the Basic Model Framework without
Homogeneity and Walras’ Law

candidate ζ0 = (ζ0
i )n

i=1 : choose n excess demand functions ζ0
i , i = 1, . . . , n,

with the following properties:

(1̄) There is a real α > 0 such that for any p ∈ Rn
+ with pi > α and pi

nP
j=1

pj

>

1,1
10n one has ζ0

i (p) < 0. (For the second model the condition pi
nP

j=1
pj

> 1,1
10n

clearly can be omitted.)

(2̄) For any p ∈ Rn
+ with pj < 1

20n one has ζ0
j (p) > 0.

(3̄) There is a positive real number b such that for any p ∈ Rn
+ and any

i ∈ {1, . . . , n} one has
ζ0
i (p) ≥ −b.

The following Figure 12.5 illustrates conditions (1̄) and (2̄) for the first market
of an economy with two commodities. Evidently the conditions (1̄) and (2̄)
are so designed that they correspond to properties (1) and (2) of a basic
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Fig. 12.5: Construction Scheme of a Connecting Economy for the Basic Model
Framework without Homogeneity and Walras’ Law

economy in our two set-ups without Walras’ law and homogeneity and make
(ζ0

i )n
i=n an admissible economy. The equilibrium set of (ζ0

i )n
i=n is contained in

[ 1
20n , α] ⊂ Rn

+. (This is clear from the construction since (α, . . . α) lies in the
interior of the cone which is spanned by the n vectors vi with i-th component
vi

i = 1 − (n − 1) 1,1
10n and vi

j = 1
10n , j 
= i.)

Now we have to ensure that any twofold composite convex transition from
any economy ζ1 to ζ0 and from ζ0 to any economy ζ2 actually is a evolution.
Formally, the composed, twofold composite convex transition is given by a
family η = (ηis)

n
i=1
s∈[0,1]

with

ηis(p) =

{
(1 − 2s)ζ1

i (p) + 2sζ0
i (p) for s ∈ [0, 1/2]

(2 − 2s)ζ0
i (p) + (2s − 1)ζ1

i (p) for s ∈ [1/2, 1].

Note that it is clear form properties (1̄) to (3̄) of ζ0 that each ζ0
i , i = 1, . . . , n,

can even be chosen so that it equals the 1/2-state economy of the direct convex
transition from ζ1 to ζ2, i.e. 1/2ζ1

i (p) + 1/2ζ2
i (p), for any p ∈] 1

20n − ε, α− ε[n

with an arbitrarily small positive ε and an arbitrarily large positive α.

Now we have to verify that for any s ∈ [0, 1] the s-state mapping (ηis )n
i=1

actually is an economy. Properties (2) and (3) follow directly from the con-
struction of ζ0 and η and from the continuity of all functions. As to Property
(1) choose any s ∈ [0, 1/2] and any sequence (pm) in Rn

+\{0n} with ζ(pm) 
= ∅.
Now choose a k̃ ∈ ζ(pm) so that ζ1ek(pm) is negative for the arguments of a
tail of (pm). Then, due to the construction, also ηeks

(pm) is negative for the
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terms of the tail. Clearly, this argumentation directly carries over to the case
s ∈ [1/2, 1]. Now we still have to check the uniform boundary condition for n.
To see this let (pm, sm) be an arbitrary sequence in Rn

+× [0, 1] with ζ(pm) 
= ∅
and sm −→ s0. Then at least one of the following statements is true:

(a) there is a subsequence (pmk , smk) in Rn
+ × [0, 1/2];

(b) there is a subsequence (pml , sml) in Rn
+ × [1/2, 1].

Together with the above considerations this verifies the boundary conditions,
and we are done completely.

12.2 New and Old Commodities

The idea which underlies the notion of an evolution of economic states, be it
in real time or just in the economist’s laboratory, obviously makes it desir-
able also to include the two cases of new commodities which for the first time
appear in the economy, and of old commodities disappearing from markets.
The question is how this can be incorporated into our set-up such that, more-
over, our whole formal treatment can be maintained without major changes.
To show that this indeed is possible for each of our basic models will be the
purpose of this Section.

Let us start with the group of basic exchange models with finitely many
agents from the Sections 4.1, 4.2, 5.1, and 5.2. Consider first an evolution
ζ = (ζis)

n
i=1
s∈[0,1]

from the Arrow/Hahn or from the Dierker type with k < n−1
new commodities which ‘enter the picture’, i.e. come to market, at l ≤ k values
of the state parameter 0 < s1 ≤ s2 ≤ . . . ≤ sk < 1. This means that there are
n−k commodities in the economy when the evolution ζ starts at s = 0. At the
first glance the requirement of k < n− 1 might appear somewhat artificial to
the reader who whould rather expect k < n. In fact, we have chosen this form
for technical reasons only. It allows us to make demand functions unaffected
by prices of commodities which either are still not, or not anymore, existent in
the economy. However, it can be relaxed to k < n for the two models without
Walras’ law and homogeneity from Chapter 5. We model the market of a new
commodity n − k + j, 1 ≤ j ≤ k, before it enters the picture at sn−k+j in
the following simple way. We first choose some arbitrarily small positive ε and
consider the following canonical compact subspace Dn−1

ε of the open unit price
simplex Δ̊n−1 ⊂ Rn (see Figure 12.6). The compact subspace Dn−1

ε of Δ̊n−1

is just Δn−1
ε/2 with the shaded vertex area removed. From now on we consider

Δn−1
ε as the economically relevant part of the unit price simplex. We will
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Fig. 12.6: Construction of a Market of a New Commodity

be particularly justified in doing so by excluding all equilibria outside Δn−1
ε .

Accordingly the boundary area Δ̊n−1\Δn−1
ε merely has a technical meaning.

From s = 0 to s = sn−k+j any s-state excess demand function of the
(n − k + j)-th market evolution has the following identical shape: supply
and demand are not yet existent and this makes the excess demand function
equal to the zero map on the economically relevant part Dn−1

ε of Δ̊n−1. It
furthermore may have any zero-free shape on the boundary area Δ̊n−1\Dn−1

ε

which makes the s-state economy ζs an admissible basic economy. From its
entry at ‘date’ s = sn−k+j the graph of the (n − k + j)-th excess demand
function over Dn−1

ε may continuously detach from the zero level with growing
s.2 (Clearly, it may also remain further on the zero level when any price vector
from Dn−1

ε also now is an equilibrium price vector for the (n−k+j)-th market.)
Thus we have achieved our aim.

Evidently, the case of h < n − 1 old commodities which are going to
disappear from market can be treated completely symmetrically. Note that
there also might occur the general combined case of commodities which do
not yet exist at s = 0, and do not any longer exist at s = 1. This means they
are new commodities which during the evolution become old ones.

Perhaps the reader may wonder at this point why we made those efforts
to construct Dn−1

ε instead of just taking Δn−1
ε/2 as economically relevant part

of the price simplex. Actually, so far also Δn−1
ε/2 would well have served for

2 Note that ‘date’ has been put into quotation marks in order to emphasize that
its usual temporal connotation is too narrow for our present considerations.
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our purposes. Nevertheless, the construction of Dn−1
ε will turn out to be most

useful for settling the following problem which arises from our approach: what
is the economic role of the prices of such commodities which are not any longer,
or still not demanded or supplied in the economy? Note that also the prices
of commodites which are not existent in the economy during some subinterval
of [0, 1] appear as formal arguments of all excess demand functions during the
whole evolution.

To see how Dn−1
ε can help out of this problem let us fist consider the

case of only one new commodity, say the n-th commodity, which enters the
scene at 0 < sn < 1. Clearly, it would be highly unreasonable when the other
excess demand functions ζis(p), i = 1, . . . , n−1 for s ∈ [0, sn] would really be
affected by the price pn of the n-th commodity, that means as long as there
is no real demand and supply for this commodity at all. Nevertheless, we will
immediately see that one can give pn the status of a purely technical price
argument without any essential effects on the behavior of the agents on the
other markets before the entry of commodity n.

To accomplish this let us first notice that any slice Dn−2
t of Dn−1

ε which
is parallel to the basis Dn−2 of Dn−1

ε and whose points have n-th compo-
nent equal to t is esssentially the same as Dn−2 up to a canonical stretching
homeomorphism ht : Dn−2

t
≈−→Dn−2. This also makes it clear why we chose

Dn−1
ε with the vertex area removed. Now any essential influence of the price

of the n-th commodity, pn, on the other excess demand functions is evidently
ruled out if for any two prices p1 and p2 from Dn−1

ε with p1
n, p2

n ≥ 1− 2ε and
any i ∈ {1, . . . , n − 1} and s ∈ [0, sn[ one has

ζis(hp1
n
(p1)) = ζis(hp2

n
(p2)).

In words this means that for any s-state market excess demand function ζis

with i = 1, . . . , n − 1 and 0 ≤ s < sn the restrictions to the slices Dn−2
pn

of
Δn−2

ε are essentially identical for pn ≥ 1 − 2ε.

Evidently, the case of an old commodity can be treated entirely symmetri-
cally.

It remains now to extend our considerations to the general case of k < n−1
new and h < n − 1 old commodities. Let us first renumber the commodities
such that the first l ≥ 2 commodities are those which are neither new or
old ones. Then follow the h old commodities in the order of their ‘dates’ of
disappearance, and finally the k new commodities in the order of their ‘dates’
of entry. This means that at state 0 the introduced technique has recursively to
be applied k times such that 0-state excess demand on all markets particularly
is not affected by the last k prices of commodities not yet existing. When the
state parameter s moves on the unaffectedness of excess demand by the last
k prices is successively removed at the new commodities’ entry dates. On the
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other hand, in the same recursive way excess demand on all markets becomes
successively unaffected by the prices of the old commodities l + 1, . . . , l + h at
the dates of their disappearance. To be sure there is no technical problem with
this. Furthermore, the reader should note that the recursive process covers the
whole of Δn−1

ε . Therefore it is not necessary, as one possibly might suspect,
to choose a smaller ε1 < ε at the beginning of the process in order to ensure
that finally the whole sub-simplex Δn−1

ε is covered.

Reconsidering our constructions the reader will immediately see that the
situation with the two models from the exchange framework without Walras’
law and homogeneity can even be treated in a simplified way.

So far we have outlined how to incorporate new and old commodities into
the introduced formal framework of evolutions basing on the models of pure
exchange from Sections 4.1, 4.2, 5.1, 5.2. In a next step let us see how this can
be generalized to the basic model 4.3 of a large exchange economy. Also this
case is most straightforward. Note that our previous considerations directly
carry over to the individual demand functions f : Δ̊n−1 × R++ −→ Rn

+ from
the function space D0. Consequently it seems to be most natural to formalize
new and old commodities in this framework by admitting for a certain s ∈ [0, 1]
only such probability measures μs, i.e. economies, which assign 0-probability
to such individual characteristics (f, w) ∈ D0 × (Rn

+\{0n}) which do not fit
into the specific situation of the economy at state s.

To be sure, probability zero does not mean that a certain unreasonable
individual characteristics pair (f, w) may never occur in a model economy
μs. Nevertheless, what it means is that its contribution to the mean excess
demand function of μs is zero.

Actually, it is completely straightforward to adapt our technique just pro-
vided to the two models with production, taxes, and subsidies by Kehoe
(Chapter 3).

Thus, there remain the two models from the quantity constrained tempo-
rary equilibrium framework from Chapter 7. Actually, we will see that they
are equally easy to treat.

Let us start with the micromodel from Section 7.1. Evidently, since not
only the number of commodities is specified by n, but also the number of
agents by m, it seems to be desirable to admit changes of both the number
of commodities and the number of agents during an evolution in this set-up.
Indeed, there is no difficulty to do so. If an agent j ∈ {1, . . . , n} is not ex-
istent, or not active, before sj ∈]0, 1[, then his individual planned effective
demand/supply signals z̃

aj
s = z̃

aj
s (p; zaj , zaj ) ∈ Rn just equal the zero vector

for 0 ≤ s ≤ sj. The same applies to his realized demand/supply vector F
aj
s .

The case of an agent who retires from the economy has to be treated sym-
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metrically. (Notice, however, that the continuity assumption for an evolution
particularly requires that a retiring agent continuously lowers his economic
activities.)

The case of a commodity c ∈ {1, . . . , n} which enters the scene at sc ∈]0, 1[
has to be treated in complete analogy. Up to sc, i.e., for 0 ≤ s ≤ sc, one has

z̃a
s (p; za, za) = 0,

and F a
s (z1, . . . , zm; z1, . . . , zm) = 0

for all a ∈ {1, . . . , m} and all (za; za) ∈ G− × G+. Again, the corresponding
case of a commodity which becomes old is completely symmetrical.

The multi-sectoral quantity constrained model from Section 7.2 is likewise
easy to treat. When a new sector j ∈ {1, . . . , m} arises this obviously means
that up to some sj ∈]0, 1[ there has been no commodity market and no labor
market of the j-th sector. In other words, both reaction wedges F r

js
and Hr

js
of

the j-th sector still entirely “lie” in the origin of the j-th box-diagram, i.e. their
vertices Fjs and Hjs equal (0, 0) ∈ R2 for 0 ≤ s ≤ sc. From sc on the reaction
wedges continuously “move out” of the origin. Again, the corresponding case
of a declining sector (a ‘sunset industry’) which finally disappears from the
economy is treated symmetrically. Thus, we have accomplished the aim to in-
corporate new and old commodities into the formal framework of an evolution
for all of our 9 basic models.
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The Structure of the Equilibrium Price Set of
an Evolution of Exchange Economies

As we have already mentioned the existence result of near-equilibrium paths in
Chapter 10 leaves us with the following natural question: Is this really the only
general structure property of the equilibrium sets of the considered evolutions?
And if this is true, how ”wild” can a joining equilibrium component of an
evolution actually be?

In other words, the question is how complicated the equilibrium set of
evolutions can be on the whole. As the reader will remember there is an ex-
haustive – though disappointing – answer in the literature to the analogue
question for the traditional static Walrasian exchange set-up. More precisely,
after important preparatory work by others Mas-Colell demonstrated in an
influential paper from 1977 that any compact subset of the price space can
be realized as the equilibrium price set of some explicit exchange economy
with finitely many consumers characterized by preferences and initial endow-
ments1 (see Mas-Colell, 1977, Theorem, Corollary 1; for a comprehensive sur-
vey on the topic see also Shafer/Sonnenschein, 1982, Section 4). Though being
an ingenious contribution in the field of mathematical economics, this result
has considerably reinforced the awkward indeterminateness of the exchange
framework which had originally been uncovered by the decomposition result
by Sonnenschein, Debreu, and Mantel in the early seventies.

We, too, will confine ourselves in this Chapter to the models from the
exchange framework(Chapters 4 and 5). We fix our leading question in the
following way: Can any compact subset of the homotopy price space which con-
tains at least one joining connected component be realized as the equilibrium
set of some suitable explicit finite exchange evolution, or of some suitable evo-
lution of economies without Walras’ law and homogeneity, respectively? If we
can show that the affirmative answer is true, then we will have achieved the
1 Mas-Colell provides a restatement of this result in a differentiable set-up in (1985;

Propositions 5.5.8, 5.5.10).
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extension of Mas-Colell’s static 1977–result to the one-parametrized case. The
close assonance of the title of this Chapter to Mas-Colell’s 1977–title suggests
this. In particular, the affirmative answer means that the existence of at least
one near-equilibrium price path in fact is the only general structure property
of the equilibrium price set of an exchange evolution.

It has been shown by the author (1988) that the affirmative answer in
fact is true for the basic model of an explicit finite exchange evolution (ibid.,
Section 3, Theorem). Here we will report on this result and its proof, and will
generalize it further to our basic set-up without Walras’ law and homogeneity.

Following the pattern of Mas-Colell’s proof (1977, Proof of the theorem)
our proof for the Walrasian exchange set-up will proceed in two stages.

In a first stage we will provide a continuous one-parametrization of mar-
ket excess demand functions whose equilibrium set equals the prescribed
compact set. For this we make essential use of an important result in al-
gebraic topological fixed point theory (Schirmer, 1983). In the second stage
we employ Mas-Colell’s decomposing constructions from (1977) to achieve
the desired continuous one-parametrization of exchange economies. Actually
we will show that the continuous one-parametrization of market excess de-
mand functions achieved in the first step in turn induces continuous one-
parametrizations of the relevant decomposition constructions by Mas-Colell.
(Clearly, the second stage is irrelevant for the basic exchange set-ups of the
Dierker type and those without Walras’ law and homogeneity.) It is notewor-
thy that the second stage of our proof, which also proves the first statement
of Corollary 13.2 below, fills in a notorious gap in the line of economic justifi-
cation which is usually given in the literature for this type of decomposition
method for excess demand functions. Actually, it has been left open so far
in the literature whether the usual decomposition method is continuous, i.e.
whether it assigns neighboring explicit exchange economies to neighboring ex-
cess demand functions. (To show that the converse is routine, see for instance
Mas-Colell, 1985, Prop. 2.7.2.) Clearly, lacking this prerequisitory continuity
property any decomposition method appears to be highly artificial and unsa-
tisfactory. The continuity result of decomposition in the differentiable set-up
of Mas-Colell (1985, Section 5.8) has been verified in Lehmann-Waffenschmidt
(2006).

Now we state our one-parametrized analogue of Mas-Colell’s (1977) in-
determinateness result on the equilibrium set of an explicit finite exchange
economy:

Theorem 13.1. Let any compact subset K of the one-parametrized price
space Sl−1

++ × [0, 1], l ≥ 2, be given which contains a connected component
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C̃ joining bottom and top of the one-parametrized price space, i.e. Sl−1
++ ×{0}

and Sl−1
++ × {1}.

Then there exists an explicit finite exchange evolution with l consumers

(Es)s∈[0,1] : {1, . . . , l} × [0, 1] −→ P0
mo
sco

× Rl
++

(i, s) �→ (�is , ωis)

whose equilibrium set precisely equals the prescribed set K.

The analogue result for the basic model of an exchange economy with finitely
many consumers of the Dierker type and for the models from the framework
without Walras’ law and homogeneity is the following:

Corollary 13.2. Let any compact subset K of any one of the following two
one-parametrized price spaces Δ̊n−1×[0, 1] or (Rl

+\{0l})×[0, 1] be given which
contains a joining connected component C̃.

Then for the basic model version by Dierker and for each of the two ba-
sic models from the framework without Walras’ law and homogeneity from
Chapter 5 the following is true: there exists an evolution

(ζs)s∈[0,1] : Δ̊n−1 × [0, 1] −→ Rn

or
(ζI,II

s )s∈[0,1] : (Rl
+\{0l}) × [0, 1] −→ Rl

,respectively, whose equilibrium set equals the prescribed set K.

Being fairly lengthy the proof of Theorem 13.1 will be relegated to Ap-
pendix B at the end of the monograph (cf. Lehmann-Waffenschmidt 2006).
The Corollary will follow directly from the first part of the proof.

After the statement of the results let us summarize our achievements. First,
the results elucidate the structure of the graphs of the equilibrium price corre-
spondences for the addressed basic models of pure exchange. More precisely,
they extend Mas-Colell’s 1977–result on static economies to the “globalized”
case of paths of economies and thus clarify the degree of indeterminateness of
the exchange framework on the one-parametrized level.

Together with our earlier findings in Section 11.3 these considerations lead
to the following summarizing

Theorem 13.3. Global characterization of the graph of the Walras
correspondence (Chapter 4) and of the graphs of the equilibrium
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price correspondences for the two basic models without Walras’ law
and homogeneity from Chapter 5:

There is an intuitive standard method to construct for any two points of
any one of the addressed three graphs, i.e. for any two pairs (ζ0, p0) and
(ζ1, p1) of an economy and an associate equilibrium price vector, a ”well-
behaved” path (ζs, ps)s∈[0,1] in the sense of the constructions in Section 11.3
and in the graph joining these two pairs.

Furthermore, in general nothing more can be said about the equilibrium
set of a path (ζs)s∈[0,1] in any one of the considered spaces of economies than
that it must be compact and must contain at least one joining equilibrium
component admitting a well-behaved (near-)equilibrium price path.

More informally speaking, our findings mean that any of the three consid-
ered graphs is “nicely connected”. But it is still complex enough to admit any
wild configuration of equilibrium prices as long as it is compact and contains
a joining equilibrium component generated by some economy of economies in
the respective model.

For a detailed discussion of the relationship between our results and the
well-known structure results on the graph of the Walras correspondence from
the literature the reader is referred to Section 14.1.

Secondly, there are, nevertheless, still further gains from our results. Par-
ticularly, they extend an important result by B. Allen (1981, Theorem 5.1,
Corollary 5.3) in a certain respect. Let us first briefly recapitulate this result.
Theorem 5.1 by B. Allen says for the Walrasian exchange framework that for
any given smooth one-to-one selection from the graph of the Walras correspon-
dence over some evolution of economies forming a smooth finite dimensional
manifold and for any sufficiently close smooth function into the graph one can
realize also this latter function as a selection from the graph over some ma-
nifold of economies being close to the original one. An immediate implication
of this is that any vector from the price simplex which is sufficiently close to
some arbitrary equilibrium price vector of some economy actually is an equi-
librium price vector of some neighboring economy, which, moreover, can even
be chosen from some sufficiently rich subset of an open and arbitrarily small
neighborhood of the original economy (Allen (1981), Corollary 5.3).

Let us now discuss the relationship of B. Allen’s reported results to our
results from this Chapter. First, we note the following striking consequence
of Theorem 13.1.

Proposition 13.4. For any one of the four spaces of explicit finite exchange
economies (see p. 22), of exchange economies of the Dierker type (Section
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4.2), or of the two types of exchange economies without Walras’ law and ho-
mogeneity (Section 4.3) the following holds:

let any two arbitrary non-empty compact subsets of the price space be given,
then these sets can be realized as the equilibrium sets of two arbitrarily close
economies.

Proposition 13.4 is proven in Appendix B.

This result reinforces the indeterminateness of the static Walrasian ex-
change model which was detected by the decomposition result by Sonnen-
schein/Debreu/Mantel. To paraphrase Proposition 13.4 it says that looking
all around the graphs of the considered equilibrium correspondences one al-
ways finds somewhere two arbitrarily close economies whose equilibrium sets
equal two arbitrarily prescribed compact sets. The reader should well no-
tice, however, that this result provides no further information on the posi-
tion of these economies in the space of economies. Particularly, this means
that our results neither recover, nor extend what B. Allen rightly charac-
terizes as her “localized analogue of Mas-Colell’s (1977) result on the lack
of restrictions on the equilibrium price set”. However, in the other respect
of “which equilibrium sets can be generated at all by evolutions of econo-
mies?” our results go beyond the cited results by B. Allen. To be more spe-
cific, restricting B. Allen’s Theorem 5.1 to the case of paths of economies
our Theorem 13.1 is, apart from relaxing differentiability requirements, more
general in the following way: we are not confined to continuous one-to-one se-
lections from the graph of the Walras correspondence which, moreover, even
must be close to some given one-to-one selection. Instead, we may admit any
compact subset K of the homotopy space containing a joining connected com-
ponent as a candidate for the equilibrium set of some evolution of economies.
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Comparison With Related Results in the
Literature

At the end of Part II of our study we now will point out the precise relation-
ship of our approach and results presented so far to related work from the
literature. We, however, would like to emphasise that this only concerns the
formal results, whereas any further economic applications are new and can be
found in Part III of our study.

In Section 14.1 we draw a comparison between our approach and results
and the studies of the graph of the Walras correspondence mainly developed
and advanced by Y. Balasko. In Section 14.2 then we will point to the gains
and losses of our analysis in relation to the well-known theory of regular
economies which has been initiated by Debreu in his seminal paper from 1970.
A comprehensive presentation of the achievements of the regular approach
has been given by Mas-Colell in his book from 1985. Especially the results
which Mas-Colell provides in the Sections 5.8 and 8.8 are closely related to
ours. Nevertheless, as we will point out there are significant advantages of our
approach and results.

14.1 Studies of the Graph of the Walras Correspondence

Since the seventies the structure of the graph of the Walras correspondence
has been studied in a series of papers, mainly contributed by Y. Balasko (see
Balasko’s contributions in the reference list, particularly his survey monograph
on the topic from 1988, and the surveys by Dierker (1982), and Mas-Colell
(1985, Sections 5.8, 8.8)). In order to make clear the differences between these
results and ours presented so far we first briefly report on the approach and
the results of this research branch. As before we will keep as close as possible
to the original notations.
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There are n commodities and m agents each of whom is characterized by
a fixed Cr-demand function (r ∈ {0, 1, 2, . . .})

f i : Δ̊n−1 × R++ −→ Rn
+, i = 1, . . . , m,

satisfying Walras’ law

∀p ∈ Δ̊n−1 ∀wi ∈ R++ p · f i(p, wi) = wi.

Denoting by Pm = Rnm
+ the space of admissible initial endowment tuples

(ω1, . . . , ωm) of the m agents and by f the m-tuple (f1, . . . , fm) the primary
concern is with the global properties of the graph Ef of the Walras correspon-
dence

W : P m −→ Δ̊n−1

(ω1, . . . , ωm) �→ {p ∈ Δ̊n−1|
m∑

i=1

f i(p, p · ω) =
m∑

i=1

ωi}.

(Of course, the projection of Ef on the space of economies Pm is not onto,
since there are economies (ω1, . . . , ωm) which possess no equilibrium price
vectors.)

Summarizing the results from the literature Ef is path connected and
simply connected. In fact, it is a contractible Cr-manifold and, moreover, it
is Cr-diffeomorphic to the Euclidean space Rnm (Balasko (1975 b), (1988),
Schecter (1979), see particularly also Mas-Colell(1985), Propositions 5.8.22
and 8.8.1 for a survey).

Furthermore, the analysis can be extended to the case of varying demand
functions. Topologizing the set of all demand functions by the compact open
topology and denoting it by K the following is true (Balasko (1975a)): the
union of the equilibrium manifolds associated with a path connected sub-
space G ⊂ K, i.e.,

⋃
f∈G Ef , is a path connected subspace of the Euclidean

subspace Pm × Δ̊n−1. In particular, the whole space K of demand functions
is path connected (since it is convex). Hence, the whole union

⋃
f∈K Ef

is path connected. Therefore any two pairs (ζ1, p
1), (ζ2, p

2) of economies
ζj = (ω1j , . . . , ωmj ; f1j, . . . , fmj), (j = 1, 2), and associate equilibrium price
vectors pj (i.e. for j = 1, 2 the equation

∑n
i=1 fij(pj , pj · ωij)−

∑n
i=1 ωij = 0

holds) in principle can be connected by a continuous path (ζt, p
t) of such pairs

in the product space E ′ × Δ̊n−1. (The space of economies E ′ is topologized by
the topology of C0-uniform convergence on compact subsets.) However, there
is no further information on the connecting path (ζt, p

t) available. Particu-
larly this means that neither the economy ζt nor the equilibrium prices pt are
known for 0 < t < 1.

Having reported on the well-known studies of the graph of the Walras
correspondence we have to point out what the advantages of our results are.
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Besides the fact that we are not confined to the single basic model of pure
exchange there are two major advantages.

(1) In contrast to the reported approach we examine the changes of the
equilibrium set over arbitrary and definite paths of economies (ζs)s∈[0,1]

which we call evolutions of economies. Actually, the existence of a (possi-
bly backtracking) (near-)equilibrium price path (ps)s∈[0,1] for (ζs) cannot
be derived alone from the contractible manifold property of the graph
of the Walras correspondence as the following counterexample shows: a
two-dimensional contractible submanifold in R3 can for instance be twice
folded-over as in the following Figure 14.1 (consider the x1x2-coordinate
plane as space of economies E ′). Consider the evolution of economies which

Fig. 14.1: Two-Folded Equilibrium Manifold

is given by the straight line segment in E ′. Evidently the part of the graph
of the Walras correspondence lying above it consists of two separate pieces
(cf. the “cross-section slice” in the following Figure 14.2).

(2) In Section 11.3 for any of our basic models we have provided an economi-
cally appealing standard method how to provide a simple path connecting
any two points of the equilibrium correspondence within the graph of the
equilibrium correspondence. This not only gives a constructive proof of
the path connectedness of the graph of the equilibrium correspondence,
but over and above that it proves that the graph is even most nicely path
connected. This is clearly not implied by Balasko’s abstract result of the
manifold property of the graph of Walras correspondence.
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Fig. 14.2: Cross-Section Slice of the Two-Folded Equilibrium Manifold

14.2 The Regular Approach

After we have made lucid the differences between our results and those by
Balasko we will point out the relation between our results and the influential
theory of regular economies. Actually, this means two tasks. First we will
report and discuss the original body of the regular theory for static economies
as it has been initiated by Debreu in his seminal paper from 1970. Second we
will report and discuss the important generalization of the regular approach
to one-parametrized paths of economies by Mas-Colell in his comprehensive
monograph from 1985 (especially Section 8.8).

Let us start with the first issue.

The theory of regular economies (see e.g. Debreu (1970, 1976), Dierker
(1974, 1982), Mas-Colell (1985)) works with the usual exchange model: there
are n commodities and m agents. Di denotes the space of m-tuples of indi-
vidual Ci-demand functions

f j : Δ̊n−1 × R++ −→ Rn
+, j = 1, . . . , m,

topologized by the topology of uniform Ci-convergence on compacta, where
the demand function of at least one agent has the well-known desirability
characteristics: if (pk, wk) is a sequence in Δ̊n−1 × R++ which converges to
(p0, w0) ∈ ∂Δ

n−1 × R++, then there is at least one index j ∈ {1, . . . , m} so
that ||f j(pk, wk)|| grows beyond all finite bounds. P m := (Rn

++)m denotes the
space of initial endowment-n-tuples. Any economy (f1, . . . , fm, ω1, . . . , ωm) ∈
D0 × Pm satisfying Walras’ law

∀p∈Δ̊n−1 p · (
m∑

j=1

f j(p, ωj · p)) = p · (
m∑

j=1

ωj)
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has equilibrium price tuples, i.e. the set of all price tuples p with
m∑

j=1

f j(p, ωj · p) =
m∑

j=1

ωj

is non-empty (see e.g. Dierker (1974), Theorem 8.3). The Walras correspon-
dence W : D0 ×P m −→ Δ̊n−1 assigns to every economy (f1, . . . , fm, ω1, . . . , ωm)

its equilibrium set.

For D0 × Pm one can show that W is upper hemi-continuous (Dierker
(1974), Theorem 8.4). This means the equilibrium set cannot ‘explode’ by
slight variations of the data. But it can ‘implode’. More precisely, at ‘critical’
economies certain subsets of the equilibrium set may suddenly disappear, even
if one only permits arbitrarily slight variations of the data. However, at the
economies of a residual subset of D0×P m neither explosions nor implosions of
the equilibrium set may occur if data change appropriately slightly (Dierker
(1974), Theorem 8.5, Corollary). Furthermore, the subset of economies with
finite equilibrium sets is even dense (Dierker and Dierker (1972)).

The theory of regular economies deals with D1 × Pm. A regular economy
has a finite equilibrium set, the number of equilibria is odd, and, furthermore,
is locally constant with respect to varying data (e.g. Debreu (1970,1976),
Dierker (1972, 1982), Dierker and Dierker (1972)). Appropriately small vari-
ations of the initial endowment tuples, or of the demand functions, lead to
continuous and disjoint movements of the finitely many equilibrium price tu-
ples in the price simplex. The main result of the theory is that the subspace
R of regular economies is not only a dense, but even an open subspace of the
whole space D1 × Pm. In fact, the projection mapping R× Δn−1 −→ R is a
covering map (Dierker and Dierker (1972)).

Thus, the theory of regular economies provides a local, strong result: if
the data of a regular economy E vary, the movements of the finitely many
equilibrium price tuples produce continuous traces in the price simplex as long
as the data do not leave that connected component of D1×P m which contains
E.

After this brief report on the regular approach and its achievements in
the static framework we are now going to discuss it against the background
of our analysis. The most striking feature of the regular approach is that
it just excludes all critical economies from the analysis. But it are precisely
the critical economies where the important and interesting changes of the
equilibrium set take place. More formally, no information at all is provided by
the regular theory when one leaves a connected component of the economy
space D1 ×P m. This naturally makes one curious about how many connected
regular components do exist and how complex the subdivision is by connected
components of the space of economies. As to the first question the answer is
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immediately clear from the definition of a regular component: there are at
least as many regular components as there are natural numbers, i.e. numbers
of equilibria. As to the second question the meaningfulness of the regular
theory surely would be the greater the more simply, or say regularly, the
regular components subdivide the space of economies.

Before we start with analytically tackling this question let us support in-
tuition by the following two examples of a subdivision of the plane. Obviously,
points like A in the “winding spider’s web” in Figure 14.4 below make this
subdivision of the plane much more complex than in the example of the “regu-
lar grid” in Figure 14.3. Indeed, arbitrarily slightly different movements away
from A in Figure 14.4 may lead into eight different components each of which
exhibits unpredictable properties. Unfortunately, we will find that it is rather

Fig. 14.3: Regular Grid Subdivision of the State Space

the winding spider’s web than the regular grid which adequately illustrates
the situation with the subdivision of the space of economies by its regular
components.

In fact, the reader can easily convince himself that there are critical econo-
mies which correspond to points like A in Figure 14.4. He just has to perform
different slight perturbations of the simple one-dimensional critical excess de-
mand function ζ1/2 of Figure 14.5. Moreover, regular components in general
are not convex. This is symbolized by the winding lines of the web in Figure
14.4 below. Actually, Figure 14.5 shows an example of a convex transition
from ζ0 to ζ1 generating the critical 1/2-excess demand function ζ1/2. Figure
14.6 transforms this situation into the non-convex subdividable state space
from Figure 14.4. A reader who is keen on experimenting with geometrical
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Fig. 14.4: Non-Convex Subdivision of the State Space

Fig. 14.5: Convex Transition with Critical Mean State in a Functional Diagram

examples easily will find a great variety of other situations which even tend
to complicate the scene further1.

Having discussed now the gains and losses of the well-known regular ap-
proach at some length let us come back to our approach. Besides the fact
that we do not stick to the traditional exchange framework our analysis has
the major advantage that it is not confined to a fixed regular component. In
fact, our evolutions may run anywhere in the space of economies. Particularly,
they not only may connect any two regular economies from any two regular
components, but also even any arbitrary pair of critical economies.

The primary economic consequence of our observations is that the label
‘regular’ must be considered critically. Actually, if we are given a certain regu-
lar economy the regular theory says nothing to us what happens if we perturb

1 In Section 17.1 below we will see in a different context that the subdivision of the
regular subspace by non-regular economies is even still more complex than our
present considerations show.



168 14 Comparison With Related Results in the Literature

Fig. 14.6: Convex Transition with Critical Mean State in the State Space

it to the boundary of the regular component containing it, or beyond. More-
over, if we are given a certain non-regular economy there is evidently great
arbitrariness of which regular component we reach even when we only slightly
perturb. Leaving the propedeutical examples with merely one dimension con-
fusion is even increased.

There is still another argument frequently used to justify the regular ap-
proach. This is expressed by the lable ‘generic’ or ‘typical’ for regular econo-
mies, and ‘untypical’, ‘exceptional’, or ‘negligible’ for non-regular, i.e. critical,
economies.

The original motivation of this characterization is clear: the set of non-
regular economies actually is small from the topological and measure theoretical
viewpoint. However, the question remains whether smallness from a purely
mathematical viewpoint really justifies it to consider non-regular economies
as negligible. In defense of the negligibility characterization the argument
is usually advanced that “nature does not act on null sets”. Let us have
a closer look to this kind of argument. It evidently relies on the implicit
hypothesis that — if one accepts the exchange framework as a reasonable
description of real economic systems — any economy from the whole space
of economies has the same probability of being realized (uniform probability
distribution). But, how is this hypothesis justified? Why should nature not
prefer an unequal probability distribution with even higher probabilities in
regions where critical states concentrate? What does justify the confidence in
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critical states having zero probability? Certainly, the practical experience with
real economic systems seems not to support such an optimistic confidence.

So far we have discussed the main body of the ‘classical’ theory of static
regular economies. Now we come to the second item drawn up at the outset
of this Section. In his influential book (1985) Mas-Colell has generalized the
traditional static regular approach to the analysis of the generic properties
of the graph of the Walras correspondence over paths of economies, i.e. over
evolutions (ibid., Section 8.8). The reader should note that here Mas-Colell
confines his analysis to the basic model of an explicit finite exchange economy
(see ibid., p. 344).

In the central Proposition 8.8.2 Mas-Colell shows the analogue of the main
result of the classical regular theory for smooth paths of economies: the “reg-
ular” paths of economies are generic, i.e. form an open and dense subspace
J ′ of the space J of smooth paths of economies. For our purposes it is suf-
ficient to notice that a regular path of economies particularly has a regular
initial and terminal economy. Moreover, it has an equilibrium set which is,
up to diffeomorphism, a finite disjoint union of circles and segments, the end-
points of the segments precisely equalling the intersection of the equilibrium
set with Δn−1 × {0} and Δn−1 × {1} (cf. Mas-Colell, 1985, p. 344). In a fur-
ther result Mas-Colell establishes genericity of those paths of economies whose
equilibrium sets nicely project on the price space Δn−1 of the homotopy prism
Δn−1 × [0, 1]. More specifically:

Proposition 14.1. (Proposition 8.8.5, Mas-Colell 1985): If there are at
least 4 commodities, then there is an open dense subspace J ′′ of the space J
of C∞-paths of economies such that every η ∈ J ′′ is a regular path and the
projection of its equilibrium set Eη ⊂ Δn−1 × [0, 1] on the price simplex is
one-to-one.

In other words, given any path η = (ηs)s∈[0,1] ∈ J ′′ any price vector from
Δn−1 can be an equilibrium price vector for at most one s-state economy
ηs, 0 ≤ s ≤ 1. This is symbolized by the following Figure 14.7. Indeed, the
one-to-one projection on the price space Δ1 is a fairly restrictive property,
and consequently Proposition 8.8.5 appears to be an astonishing result. The
reader should, however, be well aware that Proposition 14.1 actually does not
work for the case depicted in Figure 14.7 where the number of commodities is
only two. Actually, in higher dimensions the result of Proposition 14.1 appears
to be more restricted.

Knowing the result of Proposition 14.1 one naturally may ask whether
there is an analogous result with the second projection on the interval [0, 1]
of state parameters. To be sure such a result would mean that all evolutions
which contain at least one state economy with a non-unique equilibrium set
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Fig. 14.7: Illustration of Proposition 14.1

– particularly all evolutions with a backtracking (near-)-equilibrium path –
would form a closed null set in the space of evolutions. Unfortunately, there is
no such result. Instead, Mas-Colell provides the following significantly weaker
result in this direction:

Proposition 14.2. (Proposition 8.8.3, Mas-Colell 1985): There is an
open and dense subspace J ′′′ ⊂ J such that every path from J ′′′ is regular and
the projection of its equilibrium set on [0, 1] ⊂ R is a Morse function.

Let us recall that a C2-function f : M −→ R from a manifold M into
the reals is a Morse function iff all its critical points, i.e. where ∂f(x) =
0, are nondegenerate, that means satisfy a certain regularity condition with
respect to the second derivation (see Mas-Colell, 1985, p. 39). Particularly,
however, the Morse property does not prevent the occurrence of infinitely
many critical points or of backtracking joining equilibrium paths. The following
Figure 14.8 gives an illustration (cf. Figure H.2.3 in Mas-Colell, 1985): x is a
nondegenerate critical point, whereas x′ is not.

The nice properties of the equilibrium sets of regular paths of exchange
economies naturally lend themselves to an application in the field of computat-
ion of equilibria. Actually, following a joining segment in the equilibrium set of
a regular path which starts at a well-understood regular initial economy and
ends at some terminal regular economy whose equilibrium set is unknown pro-
vides an explicit procedure for computing an equilibrium from the unknown
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Fig. 14.8: Critical and Non-Critical Points Consistent with Morse Property

equilibrium set. Mas-Colell (1985, p. 207) provides a certain regular economy
from which the convex path, i.e the convex connection evolution, to any given
regular economy is regular. Moreover, there is even an explicit path following
algorithm for following the unique joining equilibrium segment. It is based on
an implicit system of differential equations (ibid., p. 209). There is, however,
the severe limitation of this method that it only can detect equilibria with
index +1 (see Mas-Colell, 1985, pp. 209–211).2

After this report on the virtues of the one-parametrized regular approach
in the basic framework of explicit finite exchange economies let us point out
where our results have advantages. The reader certainly will have noticed
that the reported open-density result on regular paths, i.e. Proposition 8.8.2
by Mas-Colell, is closely related to our analysis of the Sections 11.1 and 11.2.

2 The reader can find a comprehensive survey on the theory and applications of the
path following method for computing zeroes of functions for instance in Leininger
(1978). Section 5.3 of Leininger’s study presents the theoretical background of a
path following algorithm based on a system of differential equations. Chapter VI
provides a practical numerical realization of the path following algorithm. Fur-
thermore, in Section 5.4.1 it is demonstrated (Satz 5.4.1) that the path following
method in fact is equivalent to the method introduced by S. Smale in his cele-
brated paper from 1976 (cf. also Mas-Colell, 1985, pp. 211–214). We will come
back to the path following method in Section 10.1. We further refer the inter-
ested reader to the contributions on equilibrium computations for instance by
Manne, Talman and van der Laan, and W.C. Rheinboldt. The last author par-
ticularly stands for the growing branch of equilibrium computation in numerical
mathematics (see the reference list at the end of the monograph).
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There we have constructed approximating evolutions with nice joining equi-
librium paths for any one of our basic set-ups. Now, what are the gains of
our method compared to Proposition 8.8.2 by Mas-Colell? First, we provide
explicit constructions whereas Proposition 8.8.2 just is an abstract existence
result which gives no further information on the specific shape of approxi-
mating paths. To be more specific: perturbing a critical path of economies
only leads with probability 1 to a regular one. Furthermore, its properties ex-
tremely vary with the chosen direction of the perturbation. And second, our
construction principles can directly be generalized to our other basic models,
particularly to the basic model of a large exchange economy. Finally, we need
no differentiability assumptions.

To be sure, the equilibrium set of an approximating regular path is in
general in one respect more well-behaved than the equilibrium set of an ap-
proximating evolution achieved by our methods in Chapter 11 of our study,
but it is less well-behaved in another respect. This means, the equilibrium
set of a regular path is up to diffeomorphisms a finite union of segments and
circles. But, diffeomorphisms still allow for geometrically bad behaviour like
for instance infinitely many oscillations and infinite length for joining equi-
librium segments.

Let us sum up the weaknesses of both approaches: Mas-Colell’s result still
allows for unpleasant features from the viewpoint of geometrical intuition,
whereas in our set-up indeterminateness like bifurcations or “thick” parts of
joining equilibrium components may still occur. Moreover, Mas-Colell’s result
of a regular approximating path does not automatically admit an explicit path
following algorithm for following one of the joining equilibrium segments. This
is for the simple reason that Proposition 8.8.2 only ensures existence of regu-
lar approximating paths, but does not specify them. Furthermore, in general
the regular path following method does not permit to approach equilibria of
critical economies. This, in contrast, is made possible by our method – at the
price of missing a general explicit path following algorithm (cf. Section 17.1
below).

We now conclude our discussion by an important observation on the struc-
ture of the subspace of regular paths. Actually, the following result will show
in complete analogy to the static case that also the space of smooth paths of
Walrasian exchange economies J ′ is subdivided by its regular components in
a way which is at least as complex as the winding web of Figure 14.4 above
illustrates. Indeed, Proposition 14.3 gives the basis for our result that there
are infinitely many components of the subspace of regular evolutions (paths)
of economies:

Proposition 14.3. The mapping ψ : J ′ −→ N which assigns to every regular
path the number of its joining equilibrium components is continuous.



14.2 The Regular Approach 173

Proposition 14.3 immediately implies

Corollary 14.4. There are at least as many regular components as natural
numbers.

The proof of Proposition 14.3 is straightforward and geometrically intu-
itive. Being lengthy, however, we will relegate it to Appendix C.

As for the static case we may easily convince ourselves that the winding
web from Figure 14.4 is an adequate illustration by experimenting with a
simple one-dimensional example. Figure 14.9 shows a non-regular evolution
(a) which generates a ‘pitchfork’ equilibrium set (Figure 14.9a’). Arbitrarily
small variations of the evolution (a) to regular evolutions (b) or (c) lead to
completely different equilibrium sets ((b’) or (c’)). This finishes our descrip-
tion of the complex structure of the subspace of regular paths of Walrasian
exchange economies.
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Fig. 14.9: Patterns of Evolving Equilibrium Sets and their Generating Functional
Evolutions
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Conclusions

Part II of the study contains the analytical results on economic evolutions
that were conceptualized in Part I. Exploiting the unifying constructions in
Part I, we have shown in the present part of the book that any admissible
evolution possesses a geometrically well-behaved equilibrium path, or at least
a well-behaved approximating path in the equilibrium correspondence. Using
an approach tht is completely different from the one used here, A. Mas-Colell
(1985) has independently shown this result for the basic set-up of a large ex-
change economy. In addition, we have given a sufficient algebraic criterion for
identifying points on equilibrium paths for any given evolution. Both results
heavily rely on results from one-parametrized algebraic fixed-point theory.

In Chapter 11, we turn to the question of whether any evolution can be
approximated in the space of economies such that an evolution is obtained,
which has a well-behaved equilibrium path. This question has also been tack-
led in a different context by A. Mas-Colell for the basic model of an exchange
economy.

The advantages of our method are the following ones: We give constructive
methods for achieving approximating evolutions, whereas Mas-Colell merely
provides an abstract existence result. Our constructions particularly allow
for an extension to all of the basic set-ups introduced in Part I. The second
advantage is that we can derive further standardized constructions that show
that for each of the basic models, the graph of its equilibrium correspondence
is extremely well-connected.

In Chapter 12, we outline the two different interpretations of an evolution
as a course evolution on the one hand, and as a connection evolution on the
other hand. In particularly we provide standard constructions that show that
for any of the basic set-ups there is actually a connection evolution for any
two given economies. Furthermore, we show how to extend the formalizations
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of evolutions given in Part I to also include the cases of new commodities
entering the markets, and old commodities leaving them during an evolution.

In Chapter 13, we give an answer to the question of whether our general
structural property of the existence of (near-) equilibrium paths for exchange
evolutions is really the only one which generally holds. In fact, the answer
is yes. This means we have achieved the one-parametrized analogue of Mas-
Colell’s famous 1977 result on the unrestrictedness of the equilibrium set of
static exchange economies. Together with B. Allen’s (1981) ‘localized’ ana-
logue of the addressed 1977 result by Mas-Colell, our result achieves a fairly
comprehensive understanding of the equilibrium sets of evolutions of exchange
economies.

In Chapter 14, we finally make precise the relationships between our ap-
proach and results and the theory of regular economies and the studies of
the graph of the Walras correspondence by Y. Balasko and others. Besides
placing one-parametrizations of economies in a more thorough economic con-
text, our results, in a number of aspects, significantly extend those by the two
established branches of equilibrium theory addressed.



Part III

Economic Analysis
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Introduction to Part III

In Part III of our study, we will explore the economic content of the concepts
from Part I and of the analytical results derived in Part II.

Following the usual classification, we will provide atemporal and temporal
applications. In the atemporal realm, the results lead to extensions of two well-
established techniques of economic theory. More specifically, we are able to
provide a certain kind of an extension of the so-called path following method
to also compute equilibrium points of non-regular economies. Second, based
on the results presented in Part II we will provide a new way for how to give
comparative statics an economic meaningfulness even in the case of multiple
equilibria.

When speaking of a temporal economic analysis one usually thinks of a
dynamic analysis. This, however, will not be the approach in this study when
dealing with temporal applications. We will confine ourselves to what we call a
‘kinetic analysis’. This means we do not attempt to explain the causal relation-
ships between successive states of an economic evolution, but strive towards a
general analysis of the effects of the evolution of the economy on the endoge-
nous solution (=equilibrium) values. This will be the focus of the last three
chapters of the study.

In Chapter 18, we will introduce and discuss the kinetic method at some
length. In Chapter 19 we will conceptualize evolving economies in discrete
and continuous historical time and will apply our results from Part II. The
major focus of our applications, however, is on evolving economies in conti-
nuous historical time (Sections 19.2, 19.3 and 19.4). We will introduce two
alternative models of evolving economies in continuous historical time (Sec-
tion 19.2). The first one, which we will call the ‘flow commodity model’, is
in some sense inspired by continuous growth models – however, without any
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use of differential equations. The second one, which we will call the ‘frequency
model’, is completely new.

Generally speaking, the results state that it is possible for any evolution
of the economic system which is not influenced by any policy agency to per-
manently readjust equilibrium values in a continuous way – generally up to
finitely many dates at which discontinuous jumps are unavoidable. The econo-
mic gains of such a piecewise continuous adjustment over time of equilibrium
variables are best understood when thinking of discontinuous changes. First,
discontinuous changes of equilibrium values make it hard to find new equi-
libria of new states of an evolving economy. Moreover, discontinuous changes
not only entail sudden and abrupt changes of the economic agents’ status and
behavior, but also disturb and destabilize the agents’ expectations. As Y. Ba-
lasko (1988, p. 11) states: “. . . the idea that discontinuity is in itself harmful,
synonymous of catastrophies (sic), is widespread . . . We shall content ourselves
with the idea that, from an economic point of view, a continuous evolution
path is superior to any discontinuous one.”

We want to emphasize, however, that our results only provide the opportu-
nity to piecewise continuously adjust equilibrium values during an evolution
of the economy. We do not claim to model the real functioning of actual
economies.

Another field of fruitful application of our results is that of time consuming
equilibria adjustment processes. These generally face a moving target. From
our results we can ensure that there actually is a moving target which at
least piecewise tracks a continuous path in the space of equilibrium variables.
Moreover, we present a standard way to find targets following unavoidable
discrete jumps.

In Section 19.4 we will give an integrated analysis of continuously tuning
equilibrium variables and economic state parameters (cf. Lehmann-Waffen-
schmidt 2005). We can show that the aim of such a permanently continuous
‘double’ tuning, or ‘fine tuning’ in the language of political practitioners, can
actually be achieved – if the economic agency is willing to backtrack partly
in the control parameter path, at the price of giving the impression of being
somewhat undecided – and if the behavior of the economic agents, which is
steered by the policy control parameters, does not change over time.

The economic pros and cons for such a double fine tuning of economic
solution variables and state parameters have been forwarded in the debate on
piecemeal (or gradual) versus bang-bang (or shock, cold turkey) tax reform
and in the debate on macroeconomic optimal policy design. To summarize
the pro arguments, the shock method roughly speaking produces two types
of costs: administrative costs of enactment because of institutional impedi-
ments, and social as well as political costs for politicians in a democracy and
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the society as a whole. Again, our analysis only ensures the opportunity for
some exogenous policy agency to achieve a double fine tuning, but neither en-
dogenizes the agency, nor pretends to model real processes in actual evolving
economies.



17

Applications of the Analytical Results From
Part II in the Economist’s Laboratory

In Chapter 14 we have discussed two approaches from the literature which
are closely related to ours and we have pointed out how our findings differ
from theirs. In this Chapter now we are going to present two further lines of
application of our results. Actually, they are also atemporal, i.e., so to speak,
they are applications in the economist’s laboratory.

The first line of application to be presented below leads to a generalization
of the well-known path following method for computing equilibria. To be sure,
the conventional application of the path following method only works for reg-
ular economies. Apparently, our result of the existence of (near-) equilibrium
paths naturally lends itself to a generalization of the path following method to
non-regular economies. In Section 17.1 we set out this argument and discuss
its gains and losses with respect to the conventional “regular application.”

Our second application in Section 17.2 below pertains to the field of com-
parative statics. Comparative static analysis notoriously suffers from the inde-
terminateness of the equilibrium set. In fact, how should comparative statics
work reasonably when it is not clear which equilibria shall be compared at
all? However, multiplicity of equilibria is an inherent trait of the most familiar
equilibrium models, and particularly also of those introduced in Part I of this
study. Adopting an intuitive wider understanding of the notion of comparative
statics which we call ‘genetic comparative statics’ we show that the findings
of our study are well suited for rescuing comparative statics from this seeming
dead-end.
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17.1 Extending the Path-Following Method to the
Computation of Equilibria of Non-Regular Economies

When looking at the figures in the previous chapters showing equilibrium
paths the reader may well have the impression that it should be possible
to solve the problem of computing an equilibrium by simply following an
equilibrium path. More precisely: given some economywith an unknown equi-
librium set one has first to choose some well-understood economy, with a
unique equilibrium for instance, and a simple connection economy from there
to the economy in question. Now, following any equilibrium path of this con-
nection economy one finally ends in an equilibrium of the unknown equilibrium
set.

In fact, this method appears to be quite appealing when the economy in
question is regular so that one also may choose a regular connection economy
(see Section 14.2). Actually, this is exactly the approach adopted in the litera-
ture dealing with path following methods (homotopy continuation methods) for
computing equilibria (see e.g. Leininger (1978), Allgower and Georg (1980),
Scarf (1982), and Mas-Colell (1985, pp. 207-214, pp. 242-243, for surveys). Let
us accordingly call it the regular path following method. As Leininger (1978,
Section 5.4) shows the regular path following method is equivalent to the cel-
ebrated global Newton method by Smale (1976). It is the ultimate goal of
this approach to provide explicit algorithms for following equilibrium paths.
Naturally, this is achieved by implicit systems of differential equations (the
reader is referred to the cited literature, particularly to Leininger (1978, Sec-
tion 5.3) and Mas-Colell (1985, pp. 207-214). In Leininger (1978, Chapter
VI) one finds a numerical path following algorithm which is well suitable for
practical implementation.

After this brief report on the regular path following method we start now
our discussion with the obvious remark that it can only be applied to theo-
ries where an elaborated regular theory is available. Given a regular theory,
however, there still remains the apparent shortcoming of this approach that
it only works for regular economies. Moreover, employing a well understood
initial economy with a unique equilibrium one can only reach equilibria with
index +1, see Mas-Colell, 1985, pp. 209-210. Furthermore, there is apparently
no reasonable way to generally extend this method to the computation of
equilibria of critical economies. Let us show why.

It might be argued that the regular path following method could reason-
ably be extended to computing of equilibria of non-regular economies. In fact,
one might think of the following two natural suggestions to achieve this. To be
sure, both methods ground on the principle that approximating a non-regular
economy by an evolution of regular economies also admits an approximat-
ion of the unknown equilibrium set of the non-regular economy under con-
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sideration. Putting it informally, this is due to fact that all equilibria of the
given non-regular economy must lie in the closure of the equilibrium sets of
the approximating economies.

In order to fix ideas let us confine ourselves to the Walrasian exchange
framework. The first suggestion resorts to the reported construction of a well-
understood connection economy, the second one makes essential use of Mas–
Colell’s result on the open–ensity property of the subspace of regular evolu-
tions of economies (see Section 14.2). Unfortunately, it will turn out that none
of these suggestions provides a viable extension of the regular path following
method.

Let us start with the first suggestion. Let any critical Walrasian exchange
economy ζc be given with an unknown equilibrium set. Now, following Mas–
Collel’s construction (see Section 14.2) one may choose the well behaved eco-
nomy

ζq : Δ̊n−1 −→ Rn

p �→
(

1
p · q

)
q − p

for some suitable q ∈ Δ̊n−1 and any regular economy ζa near ζc such that
the convex connection economy from ζq to ζa is regular. Starting from the
unique equilibrium q of ζq, and following an equilibrium price path one finally
clearly arrives at some equilibrium of ζa. Approximating ζc with a sequence
of regular economies (ζk

a ) one could hope to achieve an approximation of an
equilibrium of the given economy ζc.

Let us now check this method more carefully. Obviously it requires that
at least all economies of a whole tail of the sequence (ζk

a ) lie in the same
component of the regular subspace. This component furthermore has to satisfy
the condition that its closure contains the critical economy ζc. But, even
when one has found a regular economy ζ1

a from such a component it can be
a fairly tricky problem to find a sequence (ζk

a ) with the desired properties.
For instance, there might be a situation like that of Figure 17.1 where the
convex connection economy between any ζk

a and ζc crosses infinitely many
regular components. This, clearly, makes the whole suggestion useless. The
following simple example in one dimension actually produces such a situation
(see Figure 17.2 below).

These problems likewise also apply to the second suggestion: as before,
one starts with a regular economy ζq with the unique equilibrium q. Now one
considers the convex connection economy ζqζc between ζq and ζc. Clearly, it
is non-regular. But from Mas-Colell’s open-density result (see Section 14.2)
one may choose some regular evolution (ζs)s∈[0,1] arbitrarily close to ζqζc.
Apparently, (ζs)s∈[0,1] can be chosen so that the initial state economy ζ0,
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Fig. 17.1: Convex Connection Economy Crossing Infinitely Regular Components

Fig. 17.2: Function Generating a Convex Connection Economy Crossing Infinitely
Regular Components

moreover, has a unique equilibrium close to q. Nevertheless, it is obvious that
one has the same problems with the crucial terminal state ζ1 as before with
the approximating sequence (ζk

a ). Thus, also the second suggestion does not
work satisfactorily.

Now, this is where our results from Part II come in: Just choose some
simple connection evolution (see Section 11.3) from any well-understood initial
economy to the economy in question, and follow an equilibrium path.

Actually, our method is much more flexible since all mentioned limita-
tions evidently do not anymore play a role for it. To be sure, however, this is
achieved at the price of lacking explicit numerical path following algorithms.
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17.2 Generalizing Comparative Statics to Economies
With Multiple Equilibria

Comparative statics notoriously suffers from indeterminateness: comparing
two states of a model with multiple equilibria the troubling question arises
which equilibrium of the first state has to be compared with which equilibrium
of the second state. As Arrow and Hahn put it (1971, p. 245): “[The problem
of] giving unambiguous predictions of how the equilibrium of an economy will
be affected by a given parameter change ... must be intimately related to that
of the uniqueness of an equilibrium, and it is pretty clear that we shall not
expect to get very far without stipulating one or the other of the conditions
that ensure such uniqueness. Even so, the kind of parameter changes for which
predictions become possible is pretty limited.”

Fourteen years later Kehoe (1985a, Introduction) even sharpens this nega-
tive conclusion: “Conditions that guarantee the uniqueness of equilibrium in
models of economic competition are crucial to applications of these models in
exercises of comparative statics. The fundamental hypothesis underlying this
type of analysis is that the state of the economic system can be completely
specified by the solution to a mathematical model, which is the equilibrium
of the system. If, for a given vector of parameters, there is more than one
solution to the model, then the comparative statics method breaks down.
Lacking conditions that guarantee uniqueness, we must resort to considera-
tions of historical conditions and dynamic stability, which greatly complicate
the analysis.”

This is what literature tells us. But is this really the only possible conclu-
sion from the multiplicity of equilibria? Does it definitely mean the deadlock
of comparative statics when equilibrium sets are non-unique? It does not.
What we want to say is that this negative view comes from a much to nar-
row understanding of the notion of comparative statics. In our eyes a broader
understanding would be more adequate. Not the comparison of two unique
equilibria at distinct states of the economy is at the very heart of comparative
statics, but, more generally the opportunity to uninterruptedly pursue the evo-
lution of equilibria while the economy continually evolves from one state to an
other. From this “continuous”, or “genetic comparative statics”, as one might
call it, we learn how equilibria of the terminal state have originated from equi-
libria of the initial state. And this is what our result of the existence of (near-)
equilibrium paths ensures for each of our basic models. In addition to that
Chapter 8 shows that – at least for the Walrasian equilibrium framework –
this is precisely the only equilibrium structure property which generally holds
for evolutions.
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The Method of Kinetic Analysis of Evolving
Economies in Historical Time

Tempora mutatur, et nos mutamur in illis.

from medieval Christian Latin

We have still to consider the economical condition
of mankind as liable to change, and indeed as at
all time undergoing progressive changes. We have
to consider what these changes are, what are their
laws, and what their ultimate tendencies; thereby
adding a theory of motion to our theory of equi-
librium.

J.S. Mill

In this Chapter we will leave the purely analytical and atemporal viewpoint
mostly adopted in the previous chapters turning to a temporal conceptualiza-
tion which in the literature has been labelled “kinetics”, or “kinematics”. Like
the terms static and dynamic, also the term kinetic (kinematic) has a long
tradition in physical sciences. There it means the “description of the motion of
objects without considering the forces that cause or result from the motions”
(Encyclopaedia Britannica, Micropaedia, 15th ed. 1985). In the economic lit-
erature the term ‘kinetics’ for this kind of analysis first appears in the early
twentieth century (F. H. Giddings, 1911; F. Oppenheimer, 1916/19/23) with a
status somewhere between comparative statics and dynamics (see Ott (1970),
pp. 16–20, for a historical survey).

The purpose of this Chapter is to lay the methodical foundations for our
subsequent analysis of economic systems evolving in historical time in Chapter
19, particularly in the sections 19.2-19.4. Thus we first will elucidate the re-
lationship of kinetics to comparative statics and comparative dynamics. Due
to the traditional narrow understanding of comparative statics requiring a
unique equilibrium only very few and limited comparative static results which
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may be viewed as kinetic ones can be found in the literature (e.g. Arrow/Hahn
(1971), Chapter ten, Theorem 5; Quirk/Saposnik (1968), Section 6.4, Theorem
5). This encourages us here to maintain the term ‘kinetic’ for characterizing
our approach which is essentially different from the traditional comparative
static approach. In this Chapter we will first give a full characterization of the
kinetic method in the specific context and purpose of our study.

Nowadays, there is no more disagreement among economists what has to
be understood under a dynamic system or model. Actually, a dynamic model
must provide an explicit explanation of how the states of the economy system
under consideration evolve over time (cf R. Frisch’s influential article from
1935). More detailed, a dynamic model must explain for each state how it
developed from the previous state(s), and how the future state(s) will develop
from the present one (see for instance the “classical” contributions on this
issue by Smale (1981), Sonnenschein (1986), or Batten et al. (1987)). Accord-
ingly, the traditional mathematical devices for formal treatment are difference
equations, which lead to a discrete ‘period analysis’, or differential or integral
equations, which in turn lead to a continuous ‘rate analysis’.

The new branch of evolutionary economics widely dispenses with the idea
of describing the evolving economic system by systems of differential, or dif-
ference equations. It is characterizing for the evolutionary approach that it
gives an ‘open’ modelling of the evolving economic system, that means that it
does not predetermine the course of the described system completely as sys-
tems of differential equations do it. Actually, when considering evolutions as
course evolutions we also adopt the open loop modelling view. Moreover, our
approach has in common with the evolutionary approach that it does not view
equilibria as describing the actual states of real economic systems. In fact, for
both approaches equilibria play solely the role of crucial points of reference.
Nevertheless, there is a great difference between the two approaches as regards
the aim of investigation. We will come back to this point below when we will
discuss the differences between the dynamic and the kinetic approach.

However, there is unanimity under the profession that only little progress
has been made so far towards a realistic comprehensive dynamic theory.
(Moreover, there is even a widespread pessimism whether such a theory can
be achieved at all.) Anyhow, the consequence of this is that the economist is
usually left to a comparative static analysis in some static framework when she
wishes to study a changing economic system. Apart from the limited compar-
ative static results in the literature which have a kinetic character and which
we have addressed before a comparative static analysis in the traditional sense
usually either gives a result on the local tendency of the endogenous variables
when the exogeneous parameters are infinitesimally varied, or it compares the
values of the endogenous variables before and after a discrete change of the
exogenous parameters.
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After this brief review of the comparative static method let us recall the
standard criticism on the ‘discrete comparative statics’ mentioned last. Con-
trasting two distinct states of an economic system one does not take any
care of how, or even of whether at all, the second state may evolve from the
first one. As F. Fisher puts it (1983, pp. 15-16): “Comparative static analysis
will show us how the equilibrium corresponding to a particular set of circum-
stances changes when a particular parameter shifts. However, the displaced
equilibrium will not be that to which the disturbed system converges (as-
suming stability). Rather, the very process of convergence, of adjustment to
the displacement, will itself further change the equilibrium. Whether or not
the ultimate equilibrium will be close to the one predicted by comparative
statics, or even whether the ultimate effects of the displacement will be in
the predicted direction is not a question that lends itself to a general answer.
The answer depends on the effects of the parameter shift on the adjustment
path of the system, on comparative dynamics rather than on comparative
statics. Unfortunately, a satisfactory analysis of comparative dynamics lies in
the future.”

Summing up, both lines of comparative statics – the infinitesimal and dis-
crete comparative statics – have the deficiency in common that they provide
no information at all about the two paths between (1) the two states of ex-
ogenous parameters, and between (2) the two states of endogenous variables,
respectively. In particular, conventional comparative statics has a very lim-
ited scope when there are multiple equilibria as for instance Kehoe (1985a)
emphasizes (cf. Section 17.2).

Now, let us come back to the kinetic approach in economics. Unlike the
conventional two lines of comparative statics the kinetic analysis is neither
confined to comparing distinct states nor to giving just qualitative statements
on the effects on the endogenous variables caused by infinitesimally small
variations of the exogenous parameters. Instead, a genuine kinetic analysis:
like ours continually studies the effects of unrestrictedly exogenously changing
state parameters, or even state functions, on the endogenous variables. More
specifically, it is the general aim of kinetic analysis to examine the evolution
of the dependently changing endogenous (solution) variables resulting from an
unrestricted (, but continuous) exogenous evolution of state parameters, or
state functions, for general structure and regularity properties (cf. e.g. Ott
(1970), pp. 16-20).

So far, we only have pointed out the differences between the kinetic and
the comparative static approach. Hence it still remains to clarify the particu-
larly interesting relationship between the kinetic and the dynamic approach.
In contrast to dynamic modelling the kinetic approach neither pretends, nor
even attempts, to explain the evolution of state determining parameters, or
state functions. What kinetics is purposed for is the investigation of the in-
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duced evolution of the dependent endogenous equilibrium variables for gen-
eral structural properties. Using the terminology of Faber/Proops (1998) the
evolution of state determining parameters, or state functions, is considered
‘genotypic’, and thus exogenous and unexplicable. On the other hand, the
merely ‘phenotypic’ evolution of the dependent endogenous equilibrium vari-
ables is well amenable to economic analysis since it is completely determined
by the underlying genotypic evolution of states. Speaking formally, the ki-
netic approach treats both evolutions as “quasi” functions of elapsing time
and does not investigate into the causal intertemporal relationships between
successive states. Thus, both addressed evolutions can be viewed as merely
‘phenomenological’ recordings. Actually, there is made widespread use of such
recordings in daily life. Just think for example of seismograms, electro-cardio-
and electro-encephalograms, time profiles of aggregate economic magnitudes
for business cycle studies, or asset charts. As an illustration Figure 18.1 shows
the chart of prices of the Infineon Technologies share at the stock exchange
of Frankfurt from Januar to December 2003.

Infineon Technologies  [EDF]   WKN: 623100
02.01.2004 O = 11,11 H = 11,45 L = 11,08 C = 11,40 (+2.80%)

01.04.2003 O = 6,19 H = 6,34 L = 6,03 C = 6,24 V = 360538
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Fig. 18.1: Chart of the Infineon Technologies Share

However, the numerous attempts of the so-called ‘chart-analysts’ to de-
velop prediction rules for future stock prices from characteristic chart patterns
in the past bring it to light how ambitious it is to strive for a comprehensive
dynamic theory with true predictive power. In last consequence this amounts
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to the archetypal human desire for being omniscient, or even omnipotent,
which, as we are told by the bible, was the cause for the expulsion of mankind
from Paradise.

Let us summarize: in the spirit of our epigraph “Πάντα
c
ρε̃ı.” (“everything

is fluctuating”) kinetic analysis generally deals with the evolution over time
of some modelled economic system. In contrast to dynamic analysis, however,
kinetic analysis makes no theoretical prespecifications of intertemporal influ-
ences. This means, no intertemporal restrictions are imposed on the evolution
of states of the economic system which is thus just taken as exogenously gen-
erated in a black box. To repeat it, kinetic analysis - faute de mieux - is not
concerned with the causal explanation of the intertemporal forces which de-
termine the evolution of states. What kinetic analysis is concerned with is
the search for general regularity properties of the evolution of the dependently
changing endogenous (solution) variables. Thus, one could also say that the
goal of kinetics is not to investigate ‘the law of the evolution of the economic
states’, but rather ‘the law of evolution of the endogenous dependent (solution)
variables’.

The following Figure 18.2 surveys the methodological position of the ki-
netic approach. Start with choosing some basic model. The path eI drawn in

Fig. 18.2: Methodological Position of the Kinetic Approach1

1 The reader may have noted that eI and eII in Figure 18.2 are not quite correctly
pictured in so far as the mapping B does not assign identical momentary equi-
librium sets to identical states of the economy, like Et and E

t
for instance, as it

should do it correctly, i.e. in Figure 18.2 the t-equilibrium-slices st and s
t

should
have an identical geometrical shape. However, we have accepted this inconsistency
in Figure 18.2 for the sake of a greater easiness in drawing the evolution eII .
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the product space E × [0, 1] of the space of economies E and the time inter-
val [0,1] symbolizes the evolution of states of the modelled economic system.
Of course, eI projects one-to-one on the time interval (‘one state at any mo-
ment of time’). The path eII depicts the evolution of the endogenous solution
variables in the product space S × [0, 1] of the endogenous variable space S
and the time interval [0,1]. Due to the indeterminateness of the underlying
basic model the evolution eII in general is not a path projecting one-to-one
on the time interval, but a complex subset, or correspondence, which projects
onto the time interval (‘at least one solution at any moment of time’). The
arrows A and C symbolize the observed and thus purely phenomenological,
non-causal relation between elapsing time and the recorded evolutions eI and
eII , respectively. In contrast, the arrow B denotes the deterministic relation
how the model associates the corresponding endogenous solution variables
with any state of the economic system. (Thus, C = B ◦ A.)

Now, kinetic analysis takes the ‘genotypic’ evolutions eI as exogenously gi-
ven, and examines the ‘phenotypic’ evolutions eII for general regularity, or say
structure, properties. This is done in the hope for achieving more transparency
and better predictability of what may happen at the phenotypic level at all.
Generally spoken, it is the ultimate purpose of kinetic analysis to explore the
opportunities for precautionary intervention by some governing institution in
favor of a more satisfactory performance of the economic system. We will come
back to this issue extensively in Section 19.4.

Evolutionary economics, in contrast, is concerned with the causal analysis
and explanation of the evolution of economies eI , i.e. with the relation A from
the historical time parameter t to the space of evolutions E × [0, 1].

Let us now conclude this Chapter by specifying our considerations to the
analytical context of our study. The natural way to formalize an evolution eI

of economic states is evidently given by a one-parametrization of economies.
The evolution parameter s in the present context denotes irreversibly pro-
gressing historical time. The state space E is the space of economies of the
chosen basic model, and S accordingly, is the price space for the basic exchange
frameworks of Chapters 4 and 5, the space of prices, tax redisbursals, and sub-
sidy realization rates for the tax equilibrium framework of Chapter 6, and the
space of quantity rationing bounds for the quantity constrained equilibrium
framework of Chapter 7, respectively. In our context of general equilibrium
the normative terms in the last two sentences of the preceding paragraph may
most naturally be specified as continual satisfaction of all individual plans in
a most ‘frictionless’ way. What we precisely mean by ‘frictionless’ will become
clear in Chapter 19 below. For the moment let us content ourselves with the
basic idea that frictions are mathematically reflected by discontinuities and,
to use Balasko’s words, that “discontinuity is in itself harmful, synonymous
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of catastrophies”. This clearly makes “a continuous evolution path superior
to any discontinuous one” (Balasko, 1988, p. 70).

Having reached this point we still have to take up an argument which has
been prominently advocated by J. Hicks (1965, 1985). Putting it short it is
along the following lines: describing an economy in process by a sequence of
static models can never be adequate since at any date all economic relation-
ships are solely between current variables. As Hicks puts it:

“I began with the assertion that there is equilibrium when all ‘individuals’ are
choosing the quantities, to produce and to consume, which they prefer. To a
conception of equilibrium that is of this type we must hold fast. But how can
we make these quantities dependent (in a dynamic economy) upon current
parameter the equilibrium values of time t upon the parameters of time t−
and upon those only? The question did not arise in a static model, since the
parameters, on which the equilibrium depended, were at all dates the same.
Here they are not the same. If (say) population is increasing, an ‘equilibrium’
that is based upon present population, paying no attention to the increase of
population, will not even be a transitory equilibrium; there will be no reason
why the ‘individuals’ should leave the population movement out of account in
their investment decisions; there will be no reason why there should be even a
‘tendency’ in the direction of an equilibrium that is solely based upon present
population. Similarly for other variables. The static equilibrium, entirely based
upon current parameters, is in strictness irrelevant to the dynamic process.
(. . .)

It is (. . .) that the equilibrium of time t could be taken to be determined
by current parameters only: or, as we may put it now that we are using
a sequential framework, that the equilibrium of the single period may be
treated as self-contained. In a fully static theory this is a perfectly harmless
assumption. Nothing has to be said, in statics, about the obvious point that
production takes time, so that it must be oriented, not towards the present,
but towards the future; for if present and future are identical we can substitute
one for the other without making any difference. We can take a demand curve
(for instance) which reflects current wants, and set against it a supply curve
that refers to current supply; for the same demand curve will still be ‘there’
when the process of production is completed; we do not have to bother about
the fact that they refer to different times. But in dynamics these things do
matter; it is of the essence of the dynamic problem that present and future
are not identical.

Proper dynamic theory, even at its single-period stage, must take account of
the fact that many activities that go on within the period are oriented outside
the period; so that what goes on, even within the period, is not only a matter



196 18 The Method of Kinetic Analysis

of tastes and resources, but also of plans and expectations. In statics there is
no planning.”

So far the argument by Hicks on what he calls the ‘static method in dy-
namic theory’.

Now, what are the consequences of this for our kinetic method? Read-
ing Hicks’ line of argumentation for the first time might give the impression
that only his position can be a valid and sound base for a temporal analysis.
However, reading once more carefully what Hicks writes changes the picture
substantially. Hicks’ argument essentially points to the main problem of theo-
retical economics, namely which variables are treated as endogenous when
building a model, and which ones are left outside in the exogenous ‘black
box’. Now, considering our evolutions introduced in Part I as truly temporal
evolutions, i.e. as describing evolutions in historical time, we are not liable to
Hicks’ reproach for the following reason. Taking any one of our basic models
and viewing it as a snap shot from an ongoing economy at a certain date, each
functional economic relationship used there can naturally be viewed as already
embodying all intertemporal interrelations caused by the agents’ experiences
from the past and by their expectations for the future. In other words, the
dated functional relationships of the snap shot are considered as black box
as regards the intertemporal influences. What is explicitly and endogenously
related by the ‘snap shot functional relationships’ are solely contemporaneous
variables (prices, quantity constraints, tax rates, subsidy rates) which are at
the current disposal of the economic agents.

Summing up our argument, the performance of the economy in the course
of time is represented by a succession – be it discrete or continuous – of
‘black box snap shot models’. The characterization ‘black box’ accounts for
the lacking explicit causal intertemporal interconnectedness. Consequently, at
any date only current variables are left to the agents’ current disposal, and
it is this set of current variables from which the chosen model selects the
variables which are related by the dated functional relationships describing
the agents’ economic behaviour.

Before we can proceed to the next chapter we still have to settle a peculiar
issue concerning the term ‘temporary’. Though it is tempting for us to use
the term ‘temporary’ for our snap shot economies, i.e. the state economies, of
an evolution, we, nevertheless, will not do so in our study since it easily could
lead to misunderstandings. Actually, already there are at least two modes of
usage of the term ‘temporary’ which are well established in the literature.

The first one is that used by Hicks in his famous ‘flexprice method’ (1946,
Ch. IX, 1965, Ch. VI), and the second one that used by the French-Belgian
fixprice quantity-rationing school initiated by Malinvaud, Drèze, and others
(see e.g. Grandmont (1982) for a survey; cf. also Chapter 7 of this study).
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However, our approach does neither attempt to explain the formation of actual
prices in an economy, as Hicks does, nor does it always use fixed or rigid prices
as the quantity-rationing school does. To repeat it, our primary concern in
this study is with the analysis of possible regularities which generally hold
in the equilibrium sets of evolutions of economies. In other words, we do not
investigate whether, or how, equilibria are attained in actual economies; in
particular, we even do not claim that observed prices in actual economies
are equilibrium prices in the defined sense. Thus our position is much less
ambitious than the usual position of equilibrium theorists. Throughout the
whole study we just view equilibria as crucial points of reference – from the
economic and drom the analytical viewpoint – which, nevertheless, do not
necessarily reflect real phenomena.

After these clarifications on the relationships of our approach to well-
established branches of economic theory we come back to the main line of
our exposition. In the remaining two chapters of our study we will employ
our previous conceptual insights and analytical results for analyzing ongoing
economies in the kinetic mode. Not surprisingly, also with our kinetic approach
we have the well-known choice between the two familiar ways of modelling
elapsing time. This means, either to divide up time into a sequence of finite
periods, which means a discrete analysis, or to let periods have infinitesimal
length, which leads to the limit case of continuous analysis. Following this
categorization Section 19.1 will be devoted to the discrete and the Sections
19.2–19.4 to the continuous case.
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Evolving Economies in Historical Time

Economic life is extraordinarily continuous, char-
acterized by a getting and spending which does
not even cease at night.

Richard M. Goodwin

As the variables that are usually considered and
observed by the economist are the outcome of a
great number of decisions taken by different oper-
ators at different points of time, it seems natural
to treat economic phenomena as if they were con-
tinuous. . . . A further difficulty of discrete analy-
sis is that usually there is no obvious time interval
that can serve as a “natural” unit.

Giancarlo Gandolfo,
Pietro C. Padoan

When modelling ongoing economies in historical time theoretical econo-
mists usually resort to the discrete period approach referred to in Chapter
19.1. Nevertheless, the subdivision of the time axis into discrete periods raises
several serious questions:

(1) How long are the periods?

(2) How can the period length be the same for all markets?

(3) How sensitively does the whole analysis depend on the chosen period
length?

(4) How sensitively does the whole analysis depend on the choice of the posi-
tion of the origin of the chain of periods?
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Obviously, these problems are in no way marginal ones. Though it is clear
that a period naturally means a planning period the controversy about the
length of the periods is pervasive in economics. So let us have a closer look at
these problems. Particularly, it is hard to conceive the same planning period
for all markets. Just think, for example, of the markets for satellites or nuclear
power stations on the one side, and for everyday’s necessities on the other side.
Finally, it is well known from descriptive statistics that changing the width of
class intervals, or shifting the class intervals on the axis in general has serious
effects on the analytical results.

A way out of these shortcomings of this ‘brick period’ approach, as we will
call it, has been provided by the family of growth models which are formal-
ized by systems of differential equations. In contrast to ‘brick period’ growth
models which are formalized by systems of difference equations these models
basically consider the evolution of economic states as a continuous (and even
differentiable) flow of the relevant economic magnitudes. Formally spoken, one
lets converge the length of the ‘brick’ periods to zero, thus obtaining in the
limit a continuum of infinitesimal, or ‘degenerate’, periods.

In this Chapter we are going to model and to analyze economies evolving
in continuous historical time. In Section 19.2 we will adopt the flow view
we have addressed above. However, we want to emphasize that it is only
the method of modelling the evolving economy by means of continuous flows
which our approach has in common with the approach of differential growth
models. In fact, we do not use differential equations; and particularly we
do not predetermine the evolution of economic states as it is done when a
system of differential equations together with the initial conditions is specified.
Consequently, there is no growth tendency nor any cycles inherent in our
modelling of an evolving economy. Instead, our conceptualization is far more
flexible in that it admits at any state of the evolving economy any ensuing
state - as long as it does not violate the continuity assumption. In the literature
on economic evolution theory one also finds the term ‘open’ for our type of
modelling evolving economies, and ‘closed’ for the predetermining type.

This Chapter is organized as follows. Sections 19.2.1 and 19.2.2 present
two alternative methods of modelling an ongoing economy over continuous
time. Strictly speaking, we are dealing with ongoing economies which are ‘left
on themselves’, i.e. with course evolutions in our terminology from Chapter
12. In Section 19.2 we introduce the ‘flow modelling’ which in some sense is
in the spirit of differential growth models. As we will see, eight of our nine
basic models from Part I well suit as basic set-ups for this approach. The
exceptional role of the quantity constrained basic micromodel from Section
7.1 is due to the fact that it is the only basic model whose functions represent
individual, i.e. non-aggregate behavior. In Section 19.2.2 we propose a new way
of modelling ongoing economies over continuous time which is appealing both
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from the viewpoint of economic intuition and of formal tractability. The basic
idea is to completely give up the idea of successive (brick or infinitesimal) time
periods, and to use a continuously ‘sliding period’ instead. For evident reasons
only the two basic models from the exchange framework without Walras’
law and homogeneity from Chapter 5 suit as basic set-ups for this approach.
Thus, we have further justification for relaxing the traditional assumptions of
Walras’ law and homogeneity.

In a nutshell our conclusion will be that for any ongoing economy in one
of the admissible basic settings it is possible to adjust (near-) equilibrium
values piecewise continuously during elapsing time. The reader should well
note, however, that we only establish the opportunity of doing so, but do
not strive for a theory whether, or how, (near-) equilibrium values from the
evolution of equilibria are actually selected when the economic system evolves.
What are the advantages of the opportunity of adjusting equilibrium values
(piecewise) continuously over time? One advantage is most obvious: following
a continuous path makes it fairly easy to find new equilibria for new economic
states. Further advantages become plain if one thinks of the effects of abrupt
discontinuous changes of equilibrium variables. Surely, even then the aim of
permanent and simultaneous balancing of all markets, the ‘homeostasis’, is
attained. But, discontinuous changes of equilibrium variables in general also
cause discontinuous changes of the economic statuses of the agents. Due to
the widespread attitude of risk aversion and conservatism in economic affairs
discontinuous changes of economic conditions as well as merely the expectation
of discontinuous changes are highly unwelcome in reality (see also Balasko,
1988, p. 70).

In Section 19.3 we will provide a further application of our findings. Pro-
bably Rosenstein-Rodan (1930) was the first to make the problem precise that
any equilibrium adjustment process which is not infinitely fast in general faces
a . In his contribution F. Fisher (1983) revisits this problem. In Section 19.3
we demonstrate that the setting provided in Section 19.2.1 together with our
earlier analytical results allows for a thorough general analysis of this problem.

So far we have dealt with ongoing economies only which are left to them-
selves, i.e. with course evolutions in our terminology. At this point the natural
question arises whether our theoretical setting also provides the opportunity
for some external political economic agency, say a governmental authority, to
beneficially intervene in the evolution of economic states. On the one hand
one either may think of interventions in a course evolution from time to time,
or, on the other hand, of a complete control of a whole connection evolu-
tion. Obviously, this requires explicit control parameters. Fortunately, some
of our basic models contain parameters which, at least in principle, can be
controlled by some external agency. These are the two basic models with pro-
duction, taxes, and subsidies from Chapter 6, and the quantity constrained
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multi-sectoral model from Section 7.2. In the first case it are the tax and sub-
sidy schemes which are controllable, in the second case it is the price/wage
system. For these set-ups we show in Section 19.4 that for any course evo-
lution there is the opportunity for some external agency to adjust (near-)
equilibrium values without any discontinuous leaps by implementing finitely
many continuous repetitions, or backtrackings in the evolution of economic
states. Moreover, the same is true for any prescribed connection evolution
from some undesired state of the economy to a desired one (cf. Lehmann-
Waffenschmidt (2005)). We want to emphasize, however, that we do not model
the controlling agency endogenously, but merely study the opportunities open
to such an agency. In this sense we also do not provide a theory about which
(near-) equilibrium path in the generated evolution of equilibria actually will
be selected and which backtrackings in the evolution of economic states are
chosen. The reader should note, however, that a connection evolution con-
trolled in this sense comes close to a truly dynamic model.

We have already pointed out in the Introduction to Part III the economic
advantages of a permanently continuous, or piecemeal, gradual, frictionless
adjustment of equilibria when the economy evolves. The advantages of con-
trolling the whole evolution of the economy such that the control parameters
as well as the economic states all the time change continuously have been
thoroughly discussed in the literature on piecemeal tax reform in the seven-
ties (Feldstein (1976), Hettich (1979)) and also in a branch of macroeconomic
optimal policy design (see Gandolfo and others, 1984, 1988). Summing up the
tax reform debate there are two categories of reasons speaking against radical
alterations of tax schemes (‘de novo design‘, bang-bang, cold therapy, shock
therapy policy): first, there are administrative costs of implementation, and
second, there are political constraints. The arguments by the macroeconomic
policy design economists which are relevant for us amount to the criticism on
the unsolved, and perhaps even unsolvable, problem of choosing an appropri-
ate length of the periods which has been mentioned by us at the outset of
this chapter and to the continuity-by-aggregation-argument expressed in the
second epigraph of this Chapter.

Our results lead to the following conclusions. A controlling governmental
authority in general is forced to partially and repeatedly backtrack in the
path traced by the control parameters during the course of time. Or in other
words, when the controlling agency has the aim to avoid radical changes of
the state of the economy as well as of the equilibrium values it, in general,
has to backtrack partially and consequently to accept that it appears to be
inconsequent in its actions.
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19.1 Evolving Economies in Discrete Historical Time

Any process of change can be exhibited, if we
choose, as a sequence. The process is divided into
steps, or stages, which can be taken separately,
and analyzed separately . . . Business men think
in time periods, and it is in terms of time periods
that they do their accounts.

J. Hicks

The common economic understanding of any of our basic models from
Part I is that it represents the average performance of an economic system
during a single period of time. Thinking of time as subdivided into periods
of finite length this view readily suggests to model the performance of the
economic system over time in the kinetic mode by a sequence (Et)t=1,2,... of
model specifications, or states. The economic justification of this has been
given in the last part of Chapter 18 where we defended our approach against
the Hicksian argumentation. We will also call (Et)t=1,2,... a discrete evolution
over time based on the basic model E.

At the first glance this procedure seems to be in complete analogy to the
transition from a single snap shot to a cinematographic, or say a stroboscopic,
time and motion study where a movement process is not scanned continuously,
but recorded at discrete points in time producing a series of individual im-
ages. Nevertheless, the reader should be well aware that there is a significant
difference between the succession of economic states as we have described it
and a cinematographic series of shots of a movement process. This concerns
the meaning of the time interval between two successive events, i.e. market
dates, or shots.

While the time interval between two successive single shots simply mea-
sures physical time, the time period between two successive market dates in
addition has a social meaning. It represents the agents’ planning period for
their economic activities which become materialized at the second market
date.

Before we are going to exploit our previous results for the presented dis-
crete conceptualization of evolutions over historical time we would like to
emphasize that all considerations in this Chapter equally apply to each of our
basic models from Part I. This will be no longer the case when we will study
the continuous conceptualization of evolutions over time in Chapter 19.

Now, what are the merits of our results from Part II for the discrete kinetic
conceptualization of an ongoing economy in historical time?
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To the reader who has read the applications of our formal results in Chap-
ter 17 the answer will be obvious. In fact, the following two general ques-
tions are of paramount interest to the economist when modelling an ongoing
economy in the described discrete way: firstly, how to compute equilibrium
vectors for any state economy of a discrete evolution – whether it is regu-
lar or non-regular. And secondly, how to compare equilibrium vectors of two
different state economies, whether they have unique or multiple equilibria.

These are our achievements:

To generalize the path following method to non-regular economies in
Section 17.1 we have developed a tool to cope with the first question.

To tackle the second question one needs a method which is also capa-
ble of managing with multiple equilibria. This has been achieved by
our generalized continuous comparative static method which we have
developed in Section 17.2.

Thus, the applications of our previous conceptualization and results to
economic systems evolving in discrete historical time are straightforward. The
picture will be more complex, however, when we turn to a continuous under-
standing of elapsing historical time in the following Chapter 19. This step,
nevertheless, will be rewarding from the economic viewpoint since there are
severe problems with the discrete approach as we will see immediately.

19.2 Alternative Models of Evolving Economies in
Continuous Historical Time

19.2.1 Flow Commodity Models of Piecewise Continuously
Balanced Evolving Economies

In this Section we will outline our first method how to design kinetic models
of evolving economies in continuous historical time. As mentioned in the In-
troduction to this Chapter the basic idea has been adapted from a certain
constructing principle of growth models. Accordingly, the economic process
is described by continuously fluctuating flows of commodities. These flows
are formally represented by continuously fluctuating cross-section magnitudes.
Thus, at any single moment the size of a commodity flow measured in units
of quantity clearly is zero. On the other hand, the momentary geometrical
cross-section size of a flow is a well-defined nonnegative real number. As an
illustration just think of a faucet with variable opening size where the water
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flows out with constant velocity. The momentary cross-section size of the flow
of water at date t0 is the area of the opening size of the faucet at date t0.

Following the principle that a continuous modellation over time is eco-
nomically meaningful for aggregate economic activities, this general approach
makes sense for all of our basic models from Part I, except for the quantity
constrained micromodel from Section 7.1. This is due to the fact that the
basic models of the first group exclusively use aggregate economic behavior
functions, whereas the primitives of the quantity constrained micromodel are
functions of individual behavior.

Going through the first addressed group of basic models we see that any
function used there naturally represents a real or a nominal flow of economic
quantities: demand, supply, and excess demand of commodities, services, labor
assets, tax receipts and redisbursals, and subsidies.

More precisely, the basic idea with our continuous flow method is that
the independent variables which occur in our basic models, i.e. prices, bud-
gets, tax redisbursals, and subsidy rates, are viewed as ‘ultra-short-run’, i.e.
momentary, determinants of momentary economic behavior. To be more spe-
cific, prices and subsidy rates are considered as determining momentary cross-
section demand, supply, excess demand, and tax payments respectively. This
intuitive kinetic conceptualization of evolving economies in continuous time
naturally lends itself to a formal representation by evolutions of economies as
we have introduced them in Part I. Subsequently we will also speak of conti-
nuous evolutions over time. The question how to measure quantities and their
value over time in this context is straightforward to answer. For example, the
demanded quantity and its value over a certain interval [t1, t2] are expressed
by the natural integrals which are shaded in the following Figure 19.1.

Fig. 19.1: Quantity of Commodity i Demanded in [0, t]

In other words, we consider any evolution in any basic model from the ad-
dressed group as a continuum of evolving markets, or of market events, over
elapsing time. In complete analogy to the static (periodic) interpretation, at
any single moment each cross-section market will be balanced when the inde-
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Fig. 19.2: Price of Commodity i

Fig. 19.3: Total Cost of Demanded Quantity of
Commodity i in [0, t]

pendent momentary variables take equilibrium values. Thus, we have a suc-
cession of momentary equilibria, which we also may characterize as ephemeral,
or transient, or transitory equilibria. In Baumol (1970, Introduction) one finds
the following simple example with one commodity. The example pictures the
history of an economy on a multidimensional graph with time along one of
the axes. This is illustrated in Figure 19.4 below which shows the demand for
and supply of a particular commodity through time under conditions of per-
fect competition. The course of demand through time is given by the surface
D1D2D3D4, which shows how much of the good will be demanded at different
prices at each moment of time, and similarly the course of supply over time
is given by the surface S1S2S3S4. The course of the equilibrium supply and
demand situation, i.e., the time path of the price which continuously equates
supply and demand (the moving equilibrium), is shown by EE′. Now if we take
a cross section of the diagram perpendicular to the time axis at time OT, thus
in effect considering a very thin slice of the diagram at that time, we have
the ordinary static supply and demand curves at time OT, S2S3, and D3D2

respectively. Thus the static method analyzes a “time slice,” a cross section
of the economy, thereby eliminating the passage of time from the problem,
though, as we shall see, not necessarily eliminating the influence of time al-
together” (Baumol 1970). Let us add here that the nice non-backtracking
feature of the equilibrium path EE′ is a consequence of the uniqueness of any
momentary, or say ‘time-slice’, equilibrium. Figure 19.4 shows the ‘manger’
picturing the economy’s history.

We particulary emphasize that in this way we model an open loop evol-
ving economy which is left to itself, i.e. there is no restriction for the evolution



19.2 Evolving Economies in Continuous Historical Time 207

Fig. 19.4: Three Dimensional Graph of a Market Evolution

except for continuity. To put it more stringently, in this Section we do not
explicitly include a political economic agency or institution which takes inter-
vening measures of any kind. Speaking in the terms of Section 12.1 we thus
are exclusively dealing with course evolutions. Now, what is the significance of
our analytical results from Part II for this continuous flow conceptualization
of an evolving economy in historical time?

Let us begin with the results from Chapter 13. There we have argued that
Theorem 13.1 and Corollary 13.2 extend Mas-Colell’s static result from 1977
to the one-parametrized set-up. Now in the light of our kinetic flow inter-
pretation we can even go further and state: these results also give a general
characterization of the degree of indeterminateness of the exchange framework
on the kinetic level. There might, however, be objected that our results from
Chapter 13 would not really mean a true extension of the static decomposition
result in the strict economic sense. In fact, while a static exchange economy
with individually rational agents may well be considered as a reasonable one-
shot of an economic system, it is by no means clear how to apply the criterion
of reasonableness, or rationality, to a certain succession of economic states,
be it historical, or not. To this argument we reply the following: to judge how
reasonable a particular succession of economic states is, i.e. an evolution of
economies, obviously would require well-founded general standards. And it is
furthermore obvious that provision of such standards in turn would require a
well-founded comprehensive dynamic theory. As long as there is no such dy-
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namic theory, however, there is clearly no sound base for sorting out certain
evolutions of economies as being unreasonable.

After this application and discussion of the structure results derived in
Chapter 13 let us now reconsider the results from Chapter 10 to 11 in the new
light of our kinetic flow interpretation. The existence of a (near-) equilibrium
path with backtracking parts means that for any continuous evolution it is
possible to piecewise continuously tune equilibrium values. In other words,
for any continuous evolution one can ensure a ‘homeostasis’, i.e. permanent
perfect balancedness, by piecewise continuous tuning of equilibrium values.
The reader should note that arguing this way we completely leave the com-
mon stationary understanding of equilibrium as a state of rest which Kornai
(1983) calls the “scientific” notion of equilibrium. Instead, to repeat it, our
understanding of an equilibrium vector here is that of an ultra-short run,
momentary solution vector which just balances the current state of the evol-
ving economic system. According to Kornai’s terminology our understanding
pertains to the “bookkeeping” notion of equilibrium.

The following Figure 19.5 illustrates our conclusions for the basic exchange
framework with finitely many agents. Note that this time we use the symbol
t = elapsing time for the evolution parameter.

Fig. 19.5: ε-near Equilibrium Path with Backtracking Parts for a Market Evolution
with Flow Commodities

Now what are the advantages of this result? The first aspect of yielding a
homeostasis has already been discussed before. Secondly, the opportunity of
adjusting equilibrium values along a (piecewise) continuous path during the
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evolution of the economic system means that searching for new equilibria of
new states of the evolving economy is made maximally easy. In order to as-
sess the third advantage let us look at it from the negative.1 What do discrete,
abrupt jumps of equilibrium values during an evolution over continuous time
mean for the economic agents? Well, even though there appear different types
of equilibrium values in the different basic models a general answer to this
question is possible. A discrete abrupt jump of equilibrium values generally
causes discrete abrupt changes of the economic status and behavior of the
agents. Such abrupt changes are commonly disliked by economic agents for
several reasons. First and foremost, they change the agents’ economic sta-
tus. Though this sometimes may be well beneficial to an agent, in reality one
generally observes an attitude of risk aversion and conservatism in economic
affairs. To be more specific: a discrete jump of equilibrium variables means
in the basic models from the exchange framework of Chapters 4 and 5 that
in general both the value of the initial endowments and the consumption in
equilibrium change discontinuously. In the basic models from the framework
with production, taxes, and subsidies of Chapter 6 in addition the expendi-
tures by the government and the produced quantities change discontinuously.
Finally, in the quantity constrained basic multi-sectoral model from Section
7.2 the equilibrium quantities of demanded and supplied types of labor and
commodities change abruptly and discontinuously.

The widespread attitude of economic agents of risk aversion and conser-
vatism is also the source of a second type of reservation about sudden discon-
tinuous changes of equilibria. A sudden discontinuous change in independent
equilibrium variables and in physical economic magnitudes may well create
the expectation of further sudden discontinuous changes. Since the building of
expectations and their intertemporal effects are per definitionem not explicitly
modelled by our kinetic approach, we must here confine ourselves to the re-
mark that expectations of unknown discontinuities of the economic process in
general give rise to negative associations. This has to do with the speculative
distortion of individual plans, and generally with the fear of destruction of the
own economic status and of that of the community by destabilizing the eco-
nomic processes. Empirical observations strongly support this. One may only
think for instance of the international foreign exchange markets and stock
markets, or the oil market. Following K. Galbraith it is even one of the crucial
aims of the large international corporations, which form the ‘planning system’
in his terminology, to ensure a foreseable smooth performance of the whole
economic process.

1 Thus we give a foundation of Balasko’s statement (1988, p. 70): “. . . the idea that
discontinuity is in itself harmful, synonymous of catastrophies (sic), is widespread
. . . We shall content ourselves with the idea that, from an economic point of view,
a continuous evolution path is superior to any discontinuous one.”
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We finally want to emphasize that our result only ensures the opportu-
nity to piecewise continuously adjust equilibrium values during any arbitrary
continuous evolution of the economy. Remember that there is no uniqueness
of a (near-) equilibrium path. Furthermore, to repeat it, we neither provide
a theory of which equilibria from the evolving equilibrium set are actually
selected, or how they are chosen, nor do we even claim that equilibrium states
in a model actually would reflect the observed states of real economies. Our
findings just give reference solutions in reference models.

19.2.2 The Frequency Model of a Piecewise Continuously
Balanced Evolving Economy

In this Section we are going to provide a new approach of modelling and
analyzing an evolving economy in continuous time. In our eyes it has the
strong advantage of being close to reality. As in the preceding Section we
consider ongoing economies which are left to itself, i.e. there is no agency which
systematically would take any intervening measures. The basic intuition for
what we will subsequently call our frequency model of an evolving economy in
continuous time comes from asset chart analysis. As the reader may remember
a tool from descriptive statistics which is frequently used in chart analysis are
curves of sliding averages. (For instance, the curve of sliding 200-days averages
of a certain share plots the arithmetic mean of the last 200 quotations over the
horizontal time axis.) This will give us the basis for the following intuition.

In contrast to the discrete approach in Chapter 19.1, we do not string
‘brick’ periods along the time axis, but let an interval (a period) of fixed pos-
itive length β monotonically slide along the time axis. Considering the left
boundary point t of the sliding period [t, t + β] as the current date we may
think of [t, t + β] as a monotonically sliding (forward) planning period, i.e. as
monotonically sliding time horizon of future planning. Now, in this setting
we have the following natural notion of demand and supply over continuous
time. Let us divide the length β of the sliding planning period at any date t
by the aggregate planned number of demanded (supplied) units of quantity
during [t, t+β]. In other words, we replace the usual measurement of demand
and supply over discrete time by units of quantity per unit time period by its
inverse, i.e. by units of time passing between two successively demanded (sup-
plied) units of quantitiy. Thus a large number of planned demanded (supplied)
units of quantity during [t, t + β] at date t corresponds to a small number of
units of time between two successively demanded (supplied) units of quantity.

Strictly speaking, in this way we design a ‘wavelength model’ of an evolving
economy over continuous time rather than a ‘frequency’ model, since in physics
frequency characterizes the number of events per unit of time, whereas wave-
length measures the distance. Nevertheless, since our basic intuition comes
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from the number of demanded (supplied) units of commodities during the
sliding planning period we will adhere to the term ‘frequency model ’.

This intuition provides the basis for the following general formalization
of an evolving economy in continuous time in the context of the exchange
framework from Chapter 5. At any date t we denote by d̂it(p) the “length of
the time interval between two successive planned demanded units of quantity
on the i-th market resulting from the individual plans of all agents valid for
price vector p”. This holds from time t on until further notice. Analogously,
we define ŝit(p) on the supply side of the i-th market.

This means, at any date t we have a t-state economy ((d̂it), (ŝit))i=1,...,n.
Let us now go one step further and let us consider the n difference functions
ζ̂it(p) := ŝit(p)− d̂it(p). Recalling the economic meaning of ŝit(p) and d̂it(p) it
becomes immediately clear that ζ̂it(p) actually expresses excess demand even
though this time the demand term d̂it(p) is subtracted from the supply term
ŝit(p). In fact, ζ̂it(p) is greater than 0 when the planned time interval between
two successively supplied units of commodity i is greater than the planned
time interval between two successively demanded units of commodity i. But
economically this just means that demand is in excess of supply! Clearly,
p0

t is a momentary equilibrium for the t-state economy ((d̂it), (ŝit))i=1,...,n if
d̂it(p0

t ) = ŝit(p0
t ) for i = 1, . . . , n, i.e. if ζ̂it(p0

t ) = 0 for all i. Thus, we can also
say that the equilibrium price vector p0

t “phases” planned demand and supply
on all markets at date t.

In addition, let us assume that the functions d̂it(−) and ŝit(−) have such
properties that the t-state excess demand system, or say the t-state economy,
(ζ̂it)i=1,...,n has the properties of our basic exchange model without Walras’
law and homogeneity of Section 5.1. (We may equally well require that it
fulfills the generalized properties from Section 5.2.) This is clearly a reason-
able assumption since Walras’ law evidently is completely meaningless for
our frequeny approach. We furthermore call it to the reader’s mind that the
assumptions of our basic models from Chapter 5 are considerably weak.

As in the preceding Section we again are in the fortunate position to have
all analytical results from Part II at our disposal. Thus we can state that we
have provided a frequency model of a piecewise continuously balanced evolving
economy in continuous time. More detailed, the existence of (near-) equi-
librium paths means the following: in our frequency set-up for any evolving
economy in continuous time it is possible to permanently phase, or say syn-
chronize, demand and supply events on each market by piecewise continuously
adjusting equilibrium prices. For the economic achievements of this conclusion
the reader is referred to the discussion at the end of Section 19.2.1.
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In order to further support the reader’s intuition let us give the following
illustration (see Figure 19.6). For each of the n markets of the economy ima-
gine a screen where on two horizontal axes, one below the other, the successive
demand and supply events over time are recorded as light points moving with
constant velocity from the right boundary of the screen to the left. Moreover,
any ‘market screen’ is bisected by a vertical line in the middle whose inter-
section points with the two horizontal axes mark the present moment. To the
right of the vertical middle line on the two horizontal axes planned future de-
mand and supply intervals under the prevailing momentary price vector are
visualized. On the left sides we see the intervals which actually have been real-
ized up to the present moment. When prices are adjusted over time following
an equilibrium price path, then both the realized demand and supply events
on the left sides are phased and particularly also the planned events on the
right sides. Clearly, the length of the planned intervals on the right sides of
the two horizonal axes is of constant length, i.e. planned demand and supply
events are equidistant ‘until further notice’. The realized intervals, however,
are in general not of constant length when the economic behaviour during the
evolution changes and equilibrium prices are adjusted.

Fig. 19.6: Realized and Planned Demand and Supply in an Evolving Market

Figure 19.6 shows realized and planned demand and supply on market i at
the two dates t0 and t0 + δ. At t0 and equilibrium price vector pt0 the planned
length of demand and supply intervals is α1, whereas at t0 + δ demand and
supply plans have changed such that under the new equilibrium price vector
pt0+δ the planned common length of demand and supply intervals is now
α2 < α1.
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To make the reciprocal relationship between the conventional way of for-
malizing demand and supply and our present approach more intuitive we pro-
vide the following illustration. First let us introduce the following technical
monotone one-to-one function (see Figure 19.7)

ϕ : [0,∞[ −→ ]0,∞[

with the properties

ϕ(0) = 1 + 1/ε
ϕ(ε) = 1/ε
ϕ(x) = 1/x for x ≥ ε

where ε is an arbitrarily small positive real number.

Fig. 19.7: Monotonic One-to-One Auxiliary Function

ϕ will serve as a transformation rule for translating magnitudes of quantity
into time intervals. Thus let us define

d̂it(p) := ϕ(dit(p))
ŝit(p) := ϕ(sit(p))

where dit(−) and sit(−) are the conventional t-state demand and supply func-
tion for the i-th commodity respectively. (Note that we did not explicitly
introduce the functions dit(−) and sit(−) in the general exposition of our
basic exchange models without Walras’ law and homogeneity in Chapter 5.
Nevertheless, there is no difficulty to conceive of functions dit(−) and sit(−)
with reasonable properties such that the derived conventional excess demand
function ζit(p) := dit(p) − sit(p) fits into the mentioned models.)

Clearly, our definition is reasonable since ϕ transforms a large number of
units of quantities which are planned for demand/supply during the period



214 19 Evolving Economies in Historical Time

[t, t+β] into a small time interval between any two successive demand/supply
events, and vice versa. The reader will have noticed that, in order to yield
a continuous monotone transformation ϕ which is defined on the whole R+,
we have associated an arbitrarily large “artificial” interval length 1

ε + 1 with
zero demand/supply. Obviously, p0 is an equilibrium price vector for the t-
state economy ((d̂it), (ŝit))i=1,...,n if any pair (d̂it(p0), ŝit(p0)), i = 1, . . . , n, is
“phased”. Equivalently, ζ̂it(p0) := ŝit(p0) − d̂it(p0) = 0 for i = 1, . . . , n.

So we can summarize: since ϕ is one-to-one with strictly positive values,
p0 is an equilibrium price vector of the t-state economy ((d̂it), (ŝit))i=1,...,n if
and only if it is a zero of the excess demand system (ζit)i=1,...,n in the usual
sense with ζit(p) = dit(p)−sit(p). Or, in other words: The formal equilibrium
analysis for the introduced frequency model is all the same as for the exchange
model without Walras’ law and homogeneity from Section 5.2.

Figure 19.8 below gives a summary of the qualitative properties of the func-
tions d̂it(−), ŝit(−), and ζ̃it(−) when the generalized boundary assumptions
of the model version from Section 5.2 are adopted. Comparing ζit with ζ̂it one
sees that both functions have the same equilibrium set.

After this illustration let us come to a concluding brief discussion of our
frequency approach. Actually, the outlined formalization of demand and sup-
ply over continuous time can well be assessed to be fairly realistic. The reader
may think for instance of consumers dropping into a store and taking cans, or
something else, from the shelves, while the storekeeper is putting the articles
into the shelves. Or one may think of successive orders for a certain type of car
written into the sellers’ order book, and of the line of produced cars leaving
the factory. States of disequilibrium, i.e. of unphased sequences of demand
and supply events, manifest by queues of byers or by compulsory stocks.

Admittedly, our formalization means a certain stylization of the real per-
formance of demand and supply over time. In fact, agents do not always
demand or supply only one unit of a commodity at one date. However, the
intuition behind the sliding period lets appear our formalization as a relatively
harmless stylization of reality.

19.3 Time Consuming Equilibrium Adjustment
Processes

Looking more closely at the flow model from Section 19.2.1 one is naturally
led to a problem which has already been addressed in the early days of mathe-
matical economics. In a paper from 1930 Rosenstein-Rodan emphasized that
someone who is adjusting non-equilibrium values to equilibrium ones in a
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Fig. 19.8: Qualitative Properties of the Functions of the Frequency Model
d̂it = ϕ(dit), ŝit = ϕ(sit ), ζit = dit − sit , ζ̂it = ŝit − d̂it , p0 is the p-axis-coordinate of the

tangential point of ζit and ζ̂it and at the same time the p-axis-coordinate of the intersection
point of dit and sit .



216 19 Evolving Economies in Historical Time

gradual way, i.e. not in infinitesimal time, in general faces a moving target
(Rosenstein-Rodan, 1930). As Fisher (1983, Section 1.6) has put it: “In a real
economy . . . trading, as well as production and consumption, goes on out
of equilibrium. It follows that, in the course of convergence to equilibrium
(assuming that occurs), endowments change. In turn this changes the set of
equilibria. Put more succinctly, the set of equilibria is path dependent – it de-
pends not merely on the initial state but on the dynamic adjustment process”.
(For contributions which are more technical see also Kloek (1984), Legendre
(1987).)

It is noteworthy that this issue has a famous predecessor in V. Pareto’s
“courbes de poursuite” (in Cours d’economie politique, § 40, 41, 1896).
Though standing in a somewhat different context the following metaphor by
Pareto will turn out to be of much use for expounding our issue. A hare run-
ning along a wall is chased by a hound. The hound can see the hare in the high
grass merely at a few moments, and always runs into that direction where he
has seen the hare the last time. Consequently, the path of the hound consists
of straight line segments approximating the linear path of the escaping hare.
Figure 19.9 gives an illustration.

Fig. 19.9: Moving Target Adjustment Process

Now, what is the significance of our results presented in Section 19.2 for
the outlined ‘hound-hare-problem’? To speak in terms of this metaphor our
result of the existence of (near-) equilibrium paths ensures that for each of our
basic models there is always something like the “path of the hare” which can
be “hunted” by a time-consuming equilibrium adjustment process. However,
one should be well aware that there is an essential difference between the path
of a hare and a (near-) equilibrium path. The path of a hare is monotonically
one-parametrized by elapsing time, whereas a (near-) equilibrium path may
backtrack with respect to the time parameter.

This leads us to the following summary: for a time-consuming equilibrium
adjustment process a (near-) equilibrium path provides the opportunity to
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Fig. 19.10: Moving Target Adjustment with Jumps at Backtracking Parts

aim at a target which moves continuously - up to finitely many discrete jumps
at critical states of the underlying evolution of economies. Figure 19.10 gives
an illustration with the real time parameter t moving along the horizontal
axis.

Following the backtracking parts of the (near-) equilibrium path, which are
dotted in the example of Figure 19.10, leads to the targets of the unavoidable
jumps. In addition, in Section 10.2 below the reader finds an algebraic criterion
for identifying suitable targets for the jumps.

19.4 Frictionless Tuning of Coordination Signals in
Evolving Economies in Continuous Historical Time

19.4.1 General Conceptualization

In Section 19.2 we have formalized and analyzed evolving economies over
continuous time which evolve “openly”, i.e. which are “left to themselves”.
Speaking in the terms introduced in Chapter 12, we have exclusively dealt with
course evolutions. Nevertheless, in reality one frequently observes regulatory
interventions by political-economic institutions.

Looking more closely at our basic models from the viewpoint of possible
external control we find that three of our basic models which suit for the
modelling over continuous time contain parameters can, at least in principle,
be controlled by the government. These are the quantity constrained multi-
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sectoral model from Section 7.2 and the two basic models from the framework
with production, taxes, and subsidies from Chapter 6.2

Generally speaking there are two types of controlling the evolution of an
economic system possible: first the government can accompany the economic
process with discretionary regulating interventions from time to time. And
second, it can aim at reaching a certain desired state b of the economy which
is different from the present state a. In Section 19.2 we have summarized the
reasons why it is desirable that equilibrium variables, i.e. prices, tax redisbur-
sals, subsidy rates, and rationed quantities of commodities and labor, change
continuously.

In Section 19.2 we have ensured by assumption that the economic process
evolves continuously. Now, in addition to that we give reasons why it is advan-
tageous also to control the economic process in a way such that the economic
system evolves continuously. As before let us assume that this would not be
the case, i.e. that there are discontinuous finite leaps in the control parame-
ters and hence in the evolution of economic states. Then in general one will
face two categories of costs, namely (1) administrative costs, and (2) political
costs. As Hettich (1979) puts it in the context of tax reform: “Obstacles to the
adoption of the preferred tax base have proven too great in the past. Political
constraints and high administrative cost impede reformers. As a result, partial
improvement are a more interesting and more relevant concern for analysis”
(see p. 695). And Hettich continues (p. 706): “Alterations in the tax system
are not free, however. Real resources must be spent in order to accomplish
such change. The cost of reform can be grouped into two broad categories. The
first one may be labelled administrative costs. It includes all the expenditures
of real resources associated with introduction of new tax forms, changes in
reporting, collection, and enforcement. While these costs are generally small
in relation to the revenues collected, they may become large for certain in-
come components included in the Haig-Simons concept of income. The second
type of costs is more difficult to define. The term political costs suggests some
of the connotations, although it is misleading in other respects. Perhaps it is
best to refer to an actual case. When the government of Canada in response
to the Report of the Royal Commission on Taxation started the process of tax
reform, it committed to that end much time and effort by both bureaucrats
and political leaders. These resources could have been spent to achieve (or
at least debate) different social aims or to enact other programs increasing
justice or equity in Canadian society.”

This view was also at the basis of the ‘fine tuning’ policy of the Nixon
administration and of the following famous statement by Woodrow Wilson
which is quoted by Feldstein (1976, p. 77): “We shall deal with our economic
system as it is and as it may be modified, not as it might be if we had a

2 We are dealing with these three models in this order since the quantity constrained
multi-sectoral model from Section 7.2 provides the economic and formal intuition
for the two other models from Chapter 6.
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clean sheet of paper to write upon; and step by step we shall make it what
it should be.” Feldstein resumes (loc. cit.): “Optimal tax reform must take as
its starting point the existing tax system and the fact that actual changes are
slow and piecemeal.”3

In the eighties there has grown another branch of literature which also ad-
dresses the topics of continuous modellation of evolving economic systems and
of gradual versus “bang-bang” control by an agency (see e.g. Gandolfo/Padoan
(1984, esp. Sections 1.2 and 4.5), Gandolfo/Petit (1988)). As to the economic
advantages of a continuous approach to model an evolving economic system
the authors primarily emphasize the “smoothing”4 effect over time of aggre-
gating many individual operations (cf our second epigraph to this Chapter),
and hint to the awkward indeterminateness problem with the length of the
‘period’ (see Gandolfo/Padoan (1984, Section 1.2)). The question whether a
policy strategy should be implemented by a gradual, i.e. continuous, tuning
of control variables, or rather by “bang-bang” or “cold turkey”, i.e. a shock
therapy, is treated by means of comparative simulation scenarios by Gan-
dolfo/Padoan (1984, Section 4.5). In Fellner et alii (1981) one finds a general
discussion on the controversy shock therapy vs. gradualism.

The main result of this Section will be that in our three basic set-ups
addressed above a frictionless control over continuous time is always possible
for any course or conncetion evolution – if the economic behavior which is
not governed by the control parameters remains unchanged.

Definition 19.1. The term “frictionless change (or tuning, control)”
means that all control parameters, economic states, and (near–) equilibrium
vectors change continuously.

To fix ideas let us start with a unifying re-formalization of a continuous
evolution of economies in each of the three addressed basic models5. Let us
formally represent an evolution by a composite continuous mapping

[0, 1] z−→ Ch
Φh

z−→ Eh

s �→ (c1s , . . . , crs) �→ E(c1s ,...,crs)

where Eh, h = 1, 2, 3, denotes the space of economies of the basic model h,
and Ch the Euclidean subspace of control parameters of model h. The symbol
z means any continuous path in the control parameter space Ch, and Φh

z is a
fixed mapping which, nevertheless, may be individually chosen in dependence

3 There is a broad literature on piecemeal tax reform. See for instance also Gues-
nerie (1977), or Hatta (1977). Zodrow (1981) sums up some ciriticisms to this
approach. For a comprehensive survey see Atkinson/Stiglitz (1980), Chapter 12.

4 We use here the term “smooth” in the colloquial sense and do not refer to its
meaning in the differentiability sense.

5 The Subsections 19.4.2 and 19.4.3 below will provide the specifications of the
general formalization to the addressed three basic models.
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on the evolution of the control parameter path z. More specifically, Φh
z as-

sociates an economy E(c1s ,...,crs ) with any admissible control parameter tuple
in a continuous way. Consequently, any admissible evolution is completely
characterized by the evolution (the path) z of control parameters. Again, all
analytical results from Part II are valid.

To illustrate it we can write the vector of control parameters (c1s , . . . , crs)
on any s-slice of the homotopy space Hh × [0, 1] as it is illustrated in Figure
19.11 below. For the example of Figure 19.11 a frictionless control obviously

Fig. 19.11: Frictionless Control in the Homotopy Space

can be achieved by following the (near-) equilibrium path π during the part
from (c10 , . . . , cr0) to (c10,8 , . . . , cr0,8), then running back in the control para-
meter path from (c10,8 , . . . , cr0,8) to (c10,3 , . . . , cr0,3), and finally running for-
ward again from (c10,3 , . . . , cr0,3) to (c11 , . . . , cr1). Extending this observation
to the general case we can sum up: a frictionless control of an evolution Φh

z ◦ z
in any of the addressed three basic models is possible by an appropriate con-
tinuous re-parametrization z̃ of the control parameter path z. Formally z̃ is
obtained by projecting the (near-) equilibrium path π on the space [0, 1] of the
homotopy space Hh × [0, 1], i.e. z̃ = pr2 · π. Hence, both paths, the originally
chosen path π : [0, 1] → Hh × [0, 1] of (near-) equilibria and the appropriately
re-parametrized path z̃ : [0, 1] → z([0, 1]) ⊂ Ch ⊂ Rl are geometrically nicely
behaved.

At this point arises a natural question: Where can we find the historical
time t in this set-up? Do we have to become “younger” in order to accomplish
frictionless tuning in this context? Obviously, the answer to the last ques-
tion is “no” since one has to identify the historical time t with the evolution
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parameter of the re-parametrized evolution Φh
z ◦ z̃. Thus, the vector of control

parameters at time t is z̃(t) = pr2(z(t)), and the state of the economy at time
t is Φh

z (z̃(t)) = Φh
z (pr2(z(t))). This is completely analogous to the situation of

a film which is played with several parts backtracked and then played forward
again. Viewers (economic agents) are not getting younger when the film (the
evolution) is backtracking, but the whole showing is expanded by the length
of time the repeated parts require.

Our findings so far lead to the following general conclusions. We consider
evolutions of economic states in any of the addressed three basic settings which
are either “left to themselves”, i.e. which are openly evolving course evolu-
tions, or are a priori chosen by some exogenous political-economic agency such
that a certain desired state of the economy is approached (connection evolu-
tions). In any way an evolution of economic states is completely determined by
the associate evolution of control parameters. Now, if the political-economic
agency aims at a completely frictionless control in the described sense it gen-
erally has to move back and forth in the evolution of control parameters. This
is due to the backtracking feature of (near–) equilibrium paths. This means
that in the present basic set-ups in general it is inevitable for an (exogenous)
political-economic agency – if it is purposed to ensure a frictionless control –
to give the impression of somewhat being undecided in choosing appropriate
measures.

In the following two subsections we will provide the due specifications of
this general exposition to each of the three basic set-ups addressed above.
(Please note Footnote 2 above concerning the order of model frameworks in
Sections 19.4.2 and 19.4.3.)

19.4.2 Frictionless Tuning in the Quantity Constrained
Multi-Sectoral Model From Chapter 4

The specification of our general conceptualization above to the quantity con-
strained multi-sectoral model from Section 7.2 is straightforward. There is only
one vector of control parameters, namely the 2m-vector of prices and wages
in the m sectors. Thus, the space of control parameters is C1 = R2m

+ \{0}.
Let us assume that there is an authority capable of extraneously control-

ling prices and wages. Then any continuous evolution in the present basic
set-up – be it of the course or of the connection type – can uninterruptedly be
tuned in a frictionless way following a geometrically nicely behaved path in
the space of equilibrium variables C2m. This is achieved by accordingly con-
tinuously reparametrizing the control parameters within the path describing
the evolution. We again recall it that (near–) equilibrium paths in general are
neither locally unique, nor do we explicitly model a selection mechanism. Our
position is that of ensuring the opportunity of exerting a frictionless control
as described.
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19.4.3 Frictionless Tuning in the General Equilibrium Framework
With Production, Taxes, and Subsidies From Chapter 3

In order to specify the general exposition given in 19.4.1 to the first basic
model with production and taxes from Section 6.1 let us confine us to the
example of consumption and income tax schemes presented in Section 6.1.
Recall that there are n commodities, m > n production processes, and h
economic agents in this example. There are four vectors of control parameters:

the n·h - vector of individual ad-valorem consumption tax rates (σij) i=1,...,n
j=1,...,h

∈
Rn·h

+ , the h-vector of individual endowment income tax rates (ρj)j=1,...,h ∈
[0, 1[h, the h-vector of individual share rates of tax revenue (ϑj)i=1,...,h ∈
Δ

h−1
, and the n·m - vector of ad-valorem production tax rates (τij) i=1,...,n

j=1,...,m
∈

[0, 1]n·m.
Clearly, all of these parameters are in principle amenable to control by

some governmental authority. Consequently, we are facing the Euclidean con-
trol parameter space

C2 := Rnh
+ × [0, 1[h×Δ

h−1 × [0, 1]n·m ⊂ R(nh+h+h+nm) = R(nh+2h+nm).

The extension of this framework with consumption and income tax schemes by
subsidy schemes in the second basic model from Section 6.2 adds three further
control parameter vectors: the n·h-vector of the individual ad-valorem subsidy
rates on final demand (δij) i=1,...,n

j=1,...,h

∈ [0, 1]nh, the h-vector of individual income

transfers to the11.4 consumers (ηj)j=1,...,h ∈ Rh
+, and the n · m-vector of ad-

valorem subsidy rates on production (χij) i=1,...,n
j=1,...,m

∈ [0, 1]nm.

11.0Hence, the space of control parameters is now

C3 := C2×[0, 1]nh×Rh
+×[0, 1]nm ⊂ R(nh+h+h+nm+nh+h+nm) = R(2nh+3h+2nm).

As to the question of the possibility of a frictionless tuning the same con-
clusions apply as in Subsection 19.4.1 with the only difference that now the
space of equilibrium variables is Δn−1 × R+ (or Δn−1 × R+ × [0, 1]).
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Conclusions

In Part III, we have applied the analytical results from Part II to the frame-
works of economic evolutions in Part I. We have seen that in the field of
atemporal economic problems the results allow for significant extensions of
two established methods which, in their traditional form, have come to a dead
end. These two methods are the path following method for the computation of
equilibria and the comparative statics method. For the path following method
our results achieve an extension for computing equilibria of non-regular eco-
nomies. Comparative statics is given a new meaning in the case of multiple
equilibria by our results.

The main applications of Part III, however, pertain to evolutions of econo-
mies in historical time. We have first clarified the scope of our investigation.
It is not that of traditional dynamic analysis which is intended to explain the
causal intertemporal relationships of successive states of an evolving economy.
Rather we search for general regularity properties of the dependent evolution
of the endogenous equilibrium values that hold true for any admissible evolu-
tion of the economy. Thus, our approach can well be seen as complementary
to the recent branch of evolutionary economics which strives for a new ‘open’
approach to the explanation of evolutions of economic systems.

Chapter 19.1 analytically conceptualizes ongoing economies in discrete his-
torical time and presents some applications of our extensions of the path
following method and of comparative statics. The main body of our appli-
cations, however, is based on modelling economies evolving in continuous
historical time. Starting from our concepts of economic evolutions given in
Part I, we first provide two alternative new ways to analytically conceptualize
an evolving economy in historical continuous time. Our main results ensure
the opportunity for an exogenous agency to exercise a continuous ‘double
fine tuning’ of both evolutions, that of equilibrium variables and of economic
state parameters. From a formal viewpoint the opportunity of adjusting equi-
librium values along a continuous path during an evolution of the economy
has the undisputable advantage of making it easy to find new equilibria for
new states of the economic system. The pros and cons of a continuous tuning
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policy versus discontinuous cold turkey policy interventions have been dis-
cussed extensively in the 1970ies debate on piecemeal versus shock therapy
tax reform, and later in the macroeconomic optimal policy design controversy.

In a nutshell, our findings are the following. For some of the basic models
in Part I which contain explicit control parameters, a truly permanently con-
tinuous, i.e. a frictionless, gradual double tuning of equilibrium values and of
economic state parameters is possible within any given evolution of the econo-
mic system. However, in general, it is necessary for the controlling agency to
backtrack partly along the path of state parameters, otherwise, discrete jumps
in the equilibrium values are generally unavoidable, as simple examples show.
In other words, the controlling agency can only achieve a frictionless double
tuning at the price of giving the impression of being somewhat undecided in
its controlling activities.
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General Conclusions and Outlook
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General Conclusions and Outlook

The cornerstones of the present book are given by two key concepts of eco-
nomics: equilibrium and evolution. At first glance, these concepts seem to be
contrary, even irreconcilable: while equilibrium usually stands for a final state
of rest of the economic system, evolution means movement and development
by change. Following this common understanding it is only consequent to see
modelling approaches employing the equilibrium concept in strict rivalry to
modelling approaches devoted to the idea of evolution. However, a trickling
question remains: How can two theoretical key concepts that explore the same
subject, i.e. the economy be essentially contrary?

A first answer to this question may be the general remark that rivalling
theoretical positions in the history of the social sciences have always helped to
trigger creative new ideas. But this answer appears not to be satisfactory. In
fact, both concepts of evolution and equilibrium enhance our understanding
of economic systems. Accordingly, they should not appear as mutually exclu-
sive concepts to analyse economies, but rather as complementary ones. One
could even see them as coexistent features of real economic systems. Thus,
endeavours to reconcile, or synthesize, the two concepts in a manner which
accounts for the essentials and the peculiarities of both concepts promise to
be of greater usefulness for economists than the usual statements about their
disparateness and exclusiveness.

Accordingly, the purpose of the present book is to contribute to this pro-
gram of bridging the gap between the two concepts of equilibrium and evolu-
tion. It starts from the idea that an equilibrium in an appropriate understand-
ing should not be a state of final rest as it is in the case of thermodynamics.
Surely the thermodynamic understanding of equilibrium would contradict any
idea of evolution. Rather, an equilibrium in our context denotes a “bookkeep-
ing equilibrium” in the sense of a momentarily balanced state of the evolu-
tionary economic system under consideration. The best intuition for that is
provided by the metaphor of a high wire performer who during his walk is in
equilibrium at every single moment by continuously adapting the balance bar
to his changing positions on the high wire.
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To achieve its aims the present study provides a formal conceptualization of
two crucial elements: first the independent evolution of an economic system,
and second the dependently shaped evolution of momentary equilibria. We
have carried out the first task in Part I of this book, and the second one in Part
II. Speaking in terms of the preceding metaphor we are then looking at Part III
for the question of how the performer has to adapt his balance bar. Or to put
it into a question: Can he always achieve his aim of staying balanced while
walking on the wire by continuously adapting the bar without any sudden
movements, or does he have to perform wild and irregular movements and
leaps with the bar? Speaking in terms of our metaphor, our findings are:
In general the latter cannot been avoided completely if the performer only
progresses forward on his wire, but it can be reduced to certain “critical”
points on the performer’s path. If the performer is prepared to backtrack
from such critical points on his wire, and afterwards moves forward again on
the wire with a suitably different adaptation of his bar he can avoid all sudden
leaps in the bar’s movement.

If the reader wants to re-translate this metaphor into the context of the
present analysis she can do so by considering the following points:

• the high wire corresponds to the evolution of the economic system modelled
by any of the frameworks in Part I of this book,

• the performer’s momentary position on the high wire corresponds to the
economy’s momentary position during its evolution, and

• the balance bar corresponds to the coordination signal vectors, i.e. to the
equilibria.

But what about the re-translation of the usefulness of a continuous adaptation
of the balance bar into the economic context? Surely, for the high wire per-
former it is a matter of survival whether he adapts his balance bar properly,
or not. But mutatis mutandis it is also in two ways useful for the economist
to know about the existence of a “(near) equilibrium path”. First, in a purely
formal sense it helps to compute equilibria and to apply comparative statics
in the case of multiple equilibria. Second, a (near) equilibrium path makes
possible what throughout our study is called a frictionless, i.e. non-disrupted,
continuous tuning of coordination signals, i.e. equilibria, in open loop evolving
economies.

Let us conclude with an outlook on the relevance of the findings for evol-
ving market systems in reality. To simplify things let us think of a real stock
market. The first question is why we do not observe piecewise, or completely
continuous equilibrium price paths during the evolution of a stock market.
A first answer to this question could be the rejection of the question itself
because it contains an incorrect hypothesis. Indeed, as one might argue, we
do observe piecewise continuous equilibrium paths on stock markets: crashes
indicate the sudden leaps of equilibria. However, let us leave this somewhat
tricky controversy and let us look at the real market system evolution of a
stock market more closely. How are prices formed on a real stock exchange?
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Observations of real price forming processes on stock markets strongly sup-
port the hypothesis that prices of stocks are not formed simultaneously and
interdependently by real agents. Rather, the agents find them in a “parame-
trical” manner, i.e. sequentially under a ceteris paribus condition. By that we
mean that the equilibrium price of each individual stock is formed as a mo-
mentary market clearing price given the perceived actual transaction prices,
i.e. momentary equilibrium prices, of all other stocks at that moment. In this
way the agents on a real stock market circumvent the problems coming from
the simultaneous and fully interdependent formation of all equilibrium prices.

However, this argument only applies to the case of “continuous trade”, not
to single, or once-a-day, auctions (producing a “cassa price” for each stock).
In a once-a-day auction stock prices are formed over a period of time, not
at a moment, and thus involve some sort of “tâtonnement” process of the
price formation by the stock market agents. These real “tâtonnement” pro-
cesses, however, might also not be ruled by the strict theoretical assumptions
for tâtonnement processes. Instead they might be characterized by the fact
that real agents on the stock exchange floor can re-shape the excess demand
functions in a way that simplifies the finding of equilibrium solutions. This
is not to be misunderstood as a demand or supply manipulation, but it is a
consequence of the brokers’ professional obligation “to smooth” stock price
evolutions “according to the real market situation”.

At this point the reader might ask a question that is most familiar to a
theoretical economist, namely, what theoretical concepts and analyses are use-
ful if real agents and markets do not behave like the theoretical concepts and
results claim. Of course, an exhaustive answer to this fundamental question
would be unacceptably lengthy. For instance, one would have to employ the
whole arsenal of epistemological and methodological arguments dealing with
the virtues and merits of the (mathematical) modelling approach in economics.
As a first brief answer, however, we might argue that the more real economies
develop their information and telecommunication devices, the more they will
fulfil the requirements of theory. However, this argument does not completely
answer the former question. Since we do not want here to overstretch the
reader’s patience, we confine ourselves to a practical argument forwarded in
particular by Kenneth Arrow in his writings. In a nutshell Arrow’s argument
says that a theoretical framework should not solely be judged from the degree
of its factual coincidence with the empirical evidence. Though it might not
properly fit the real subject, it is meant to describe and to explain a theory or
a model, in fact, it may achieve valuable insights into the nature of its subject.
Considering the discrepancies between a theory and its real subject may well
provide a sound basis for a theorist to develop more appropriate theoretical
approaches in the future, which hopefully better fit their real subjects.
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Appendix A1

Proof of Theorem 11.8

Possibly the following proof might appear somewhat lenghty to the reader.
Nevertheless, it is based on just a few central ideas and follows similar lines as
our constructions in Section 11.1.1. The proof divides up into two main steps.

(I) Let us begin with an evolution (ζs, ts, As, A
∗
s)s∈[0,1] in the basic set-up

with production and tax schemes from Section 6.1. In part (II) of the
proof below we then will point out the modifications needed for evolutions
from the basic set-up with production and tax and subsidy schemes from
Section 6.2. In the sequel we will use the form ζ : Δn−1 ×R+ −→ Rn and
ζ : Δn−1 ×R+ × [0, 1] −→ Rn respectively for the representation of excess
demand functions.
Actually, we will show more than the Theorem alleges, namely that there is
a β0 > 0 such that for any ε > 0 there is an evolution (ζ̂s, t̂s, Âs, Â

∗
s)s∈[0,1]

in our basic set-up which ε-uniformly approximates the given one such
that the equilibrium sets of both evolutions are even contained in the
compact set W := (Δn−1 × [0, β0]) × [0, 1].
The proof of this statement will proceed in three steps. In the first
step we will check that there is a β0 > 0 such that the equi-
librium set of the given evolution is contained in W. In the second
step we will construct ε-uniformly approximating one-parametrizations
(ζ̂s)s∈[0,1], (t̂s)s∈[0,1], (Âs)s∈[0,1], and (Â∗

s)s∈[0,1], and will show that the
equilibrium set of the approximating evolution is also contained in W.
And in the final third step we will demonstrate that the equilibrium set
of the approximating evolution has ‘nice’, i.e. finitely piecewise analytical,
equilibrium paths (see ‘Mathematical Preliminaries’).

1 The author thanks Franz Bilitewski for substantial help and comments in the
proof of Theorem 11.8.
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However, before we can start with the main line of our proof we need some
further concepts from geometrical and algebraic topology which will turn
out to be most useful in the sequel.
First, we need a certain generalization of the notion of semi-algebraic
subsets of Rn (see Section 11.1.1.). To this end we introduce the following

Definition 22.1. Let U ⊂ Rn be an open subset and F a set of continuous
real-valued functions on U. For any A ⊂ U we say that A is described
by F if there are functions fij , gij ∈ F such that

A =
k⋃

i=1

l⋂
j=1

(Aij\Bij),

where Aij := {x ∈ U |fij(x) > 0} and
Bij := {x ∈ U |gij(x) > 0}.

Recall that a function f : U −→ R from an open subset U ⊂ Rn is
called real analytical iff for any z0 ∈ U there exists an ε > 0 and a power
series P which is absolute convergent on {z ∈ Rn|||z − z0|| < ε} such that
f(z) = P (z − z0) for any z from this set. In other words, a real analytical
function is locally represented by power series.
Furthermore, let us introduce the

Definition 22.2. For an open subset U ⊂ Rn and a y ∈ Rm we define

M (U):= {f : U −→ R|f is real analytic}
and M (U)[y1, . . . , ym] := {g : U × Rm −→ R|g(x, y)
=

∑
(ν1,...,νm)∈Nm

hν1,...,νm(x) · yν1
1 · . . . · yνm

m such that all hν1,...,νm ∈ M(U)

and hν1,...,νm ≡ 0 for all but finitely many m-tuples (ν1, . . . , νm)}.
From the definition follows immediately that x ⊂ Rn is semi-algebraic iff
x is described by R[x1, . . . , xn]. Now let us generalize this notion by the
following

Definition 22.3.
(i) We call X ⊂ Rn semi-analytical iff for any a ∈ Rn there is an

open neighborhood U(a) of a in Rn such that X ∩ U(A) is described
by M(U(a)).

(ii) We call X ⊂ Rn × Rm Rm-semi-algebraic-analytical iff for any
a ∈ Rn there is an open neighborhood U(a) of a in Rn such that
X ∩ [U(a) × Rm] is described by M(U(a))[y1, . . . , ym] where the m-
tuple (y1, . . . , ym) denotes the last m components of points x ∈ X.

Figure 22.1 below illustrates part (ii) of this definition. We note the fol-
lowing useful properties of the introduced concepts.
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Fig. 22.1: Semi-Algebraic Analytical Set

Proposition 22.4. (i) The classes of semi-algebraic, semi-analytical, or
Rm-semi-algebraic-analytical sets are closed under finite intersection,
union, and difference.

(ii) If α1, . . . , αk, β1, . . . , βl, γ1, . . . , γr are functions from M(U) or from
M(U)[y1, . . . , ym], then

{z ∈ U |αi(x) > 0, βj(z) = 0, γq(z) 
= 0
for all i = 1, . . . , k, j = 1, . . . , l, and q = 1, . . . , r}

is described by M(U), and

{z ∈ U × Rm|αi(z) > 0, βj(z) = 0, γq(z) 
= 0
for all i = 1, . . . , k, j = 1, . . . , l,
and q = 1, . . . , r}

is described by M(U)[y1, . . . , ym].

The proof is immediate from the definitions. Note furthermore that the
analogous statement clearly is also true for R[x1, . . . , xn] in place of M(U).
After these preparations we can start the main line of our proof of Theorem
11.8. First, let us assume without loss of generality that ε < 1.
Step 1: In the first step we will show that there is a β0 > 0 such

that the equilibrium set of the given evolution even is contained in
W = (Δn−1 × [0, β0])× [0, 1]. From the properties of an evolution and
Proposition 6.2 follows immediately:
(i) there is a w ∈ Rn

+ such that ζs(p, r) ≥ −w+(1, . . . , 1) on Δn−1×R+

for all s ∈ [0, 1].
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(ii) The set {x| there is a y ∈ Rm
+ and an s ∈ [0, 1] such that x =

Asy ≥ −w} is bounded, that means there is a real αw > 0 such
that ||x|| ≤ αw for all x from this set, and

(iii) there is a β0 > 0 such that

||ζs(p, r)|| > αw + 1

for all p ∈ Δn−1, r ≥ β0, and s ∈ [0, 1].
Observations (i)–(iii) imply that the equilibrium set of the given evo-
lution is contained in W.

Step 2: (i) We are going now to construct suitable ε-uniformly appro-
ximating one-parametrizations (ζ̂s)s∈[0,1] and (t̂s)s∈[0,1]. Let be
ε′ := ε

4n . Analogously to the exchange case choose n polynomials
ζi,

i = 1, . . . , n, on Rn × R × R with |ζi(p, r, s) − ζis(p, r)| < ε′ on
Δn−1 × [0, 2β0] × [0, 1] =: W ′ for all i. Clearly, ζ := (ζ1, . . . , ζn)
satisfies

||ζ − ζ|| <
√

nε′

on W ′.

Define further
ts(p, r) := r − p · ζ(p, r, s).

Then

|ts(p, r) − ts(p, r)| ≤ ||p|| · ||ζ(p, r, s) − ζs(p, r)|| ≤ √
nε′

on W ′ because ||p|| ≤ 1. Now put

ts(p, r) := ts(p, r) +
√

nε′,
ζis

(p, r) := ζi(p, r, s) −√
nε′, i = 1, . . . , n,

and ζs := (ζ1s
, . . . , ζns

).

By construction ζs and ts satisfy Walras’ law on W ′ for any fixed
s, and furthermore t ≥ 0 on W ′. Moreover, on W ′ we have

||ζ − ζ|| ≤ ||ζ − ζ|| + ||ζ − ζ|| < nε′ +
√

nε′ < 2nε′ = ε,

and ||t − t|| < 2
√

nε′ ≤ ε. Now let us choose a gluing C1-function

v : R −→ [0, 1]

with v|[0,β0] ≡ 0 and r|[2β0,∞[ ≡ 1, and define
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ζ̂s(p, r) := v(r)ζs(p, r) + (1 − v(r))ζs(p, r)
and t̂s(p, r) := r − p · ζ̂s(p, r)

= v(r)ts(p, r) + (1 − v(r))ts(p, r).

Thus, the functions ζ̂s and t̂s are C1-functions for any s, and on
Δn−1 × R+ × [0, 1] we have

||ζ̂ − ζ|| ≤ (1 − v(r)||ζ̂ − ζ|| < ε,

and
||t̂ − t|| < ε, t̂ ≥ 0.

Furthermore, t̂ is homogeneous of degree one as desired.
(ii) Now we set about constructing the ε-uniformly approximating

one-parametrizations (As)s∈[0,1] and (A∗
s)s∈[0,1]. First consider the

continuous one-parametrization (σs)s∈[0,1] where σs is the n × m
matrix of the tax rates at state s. Or more detailed

a∗
ijs

:= aijs − σijs |aijs |.

Clearly, for all real η > 0 we can choose a finitely piecewise linear
path (σ̂s)s∈[0,1] in M(n×m, R) with σ̂ijs ∈ [0, 1] for all i, j, s such
that

||σ̂s − σs|| < η for all s ∈ [0, 1].

(Notice that (σs)s∈[0,1] particularly is a continuous path in
[0, 1]nm ⊂ Rnm.)
Now let us come back to the given one-parametrization (As)s∈[0,1]

of production matrices and let us begin with the following

Observation From the properties of evolutions as we have con-
structed them in Part I and from Proposition 6.2 we know that
(As)s∈[0,1] is not only a continuous path in the space of all m×n-
matrices with real coefficients, M(m × n, R), but even lies in the
subspace

M(w, αw) := {A ∈ M(n × m, R)|A(Rm
+ ) ∩ Rn

+ = {0n},
Aem−j+1 = −1 for j = 1, . . . , n, and
whenever x ∈ A(Rm

+ ) with x ≥ −w, then
||x|| ≤ αw}

for w ∈ Rn
+ and αw > 0 as in Step 1 above. (Remember that

ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rm denotes the i-th unit vector.)

The following nice property of M(w, αw) provides the key for the
desired approximation of the one-parametrization (As)s∈[0,1] :
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Lemma 22.5. For any w ∈ Rn
+ and any real α > 0 the set

M(w, α) ⊂ M(n × m, Rn) ∼= Rn·m is semi-algebraic.

Let us postpone the proof of Lemma 22.5 a little bit since now the
moment has come to introduce a well-known mathematical result
which will be of eminent significance for our proof.

Theorem 22.6. (Tarski-Seidenberg-Lojasiewicz)
Let be X ⊂ Rn × Rm and p2 : Rn × Rm −→ Rm the canonical
projection p2(x, y) = y. Then

(i) X is semi-algebraic ⇒ p2(X) is semi-algebraic
(ii) X is Rm-semi-algebraic-analytical ⇒ p2(X) is semi-analyti-

cal.

Remark 22.7. In (ii) it would not suffice to require that X is semi-
analytical (there are counterexamples).

The proof of Theorem 22.6 can be found in the articles by Lo-
jasiewicz in the reference list at the end of the book.

Armed with the very strong result of Theorem 22.6 the proof of
Lemma 22.5 is straightforward.

Proof of Lemma 22.5 Denote by p : Rm × M(n × m, R) −→
M(n × m, R) the canonical projection. Define

Z1 := {(y, A)|y ∈ Rm
+ , A ∈ M(n × m, R), Ay ≥ 0, Ay �= 0},

Z2 := {(y, A)|y ∈ Rm
+ , A ∈ M(n × m, R), Ay ≥ −w, ||Ay|| > α},

Z3 := {(y, A)|y ∈ Rm
+ , A ∈ M(n × m, R), Aem + 1 = 0},

Z4 := {(y, A)|y ∈ Rm
+ , A ∈ M(n × m, R), Aem−1 + 1 = 0},

...
...

Zn+2 := {(y, A)|y ∈ Rm
+ , A ∈ M(n × m, R), Aem−n+1 + 1 = 0},

Note that all sets M(n×m, R) ∼= Rnm and Z1, . . . , Zn+2 are semi-
algebraic. Thus by Theorem 1 also the sets p(Z1), . . . , p(Zn+2) are
semi-algebraic. Evidently,

M(w, αw) = (M(n × m, R)\p(Z1)) ∩ (M(n × m, R)\p(Z2))
∩ p(Z3) ∩ . . . ∩ p(Zn+2).

Since finite differences and intersections of semi-algebraic sets
again are semi-algebraic, Lemma 22.5 is proven.
Now we can prove the existence of uniformly approximating paths
of production matrices which even are finitely piecewise analytical
paths in M(n × m, R) ∼= Rn·m.
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Proposition 22.8. For any given continuous path (one-parametri-
zation) (As)s∈[0,1] : [0, 1] −→ M(w, αw) with arbitrary w ∈ Rn

+

and αw > 0 and any η > 0 there is a finitely piecewise analytical
path

(Âs)s∈[0,1] : [0, 1] −→ M(w, αw)
with ∀s∈[0,1]||As − Âs|| < η.

Proof. Let us begin with the following observation: for any fixed
s ∈ [0, 1] there is an open neighborhood U(As) in M(n × m, R)
such that U(As) ∩ M(w, αw) is piecewise analytically path con-
nected. This follows directly from Theorem 11.7 (see the proof
of Proposition 11.6; replace Rn in Theorem 11.7 by Rn·m, A by
M(w, αw), and y by As).
Without loss of generality let us assume that U(As) is a ball with
center As and radius η/2. Now let us choose a finite covering
U1, . . . , Uk of the arc

⋃
s∈[0,1] As = (As[0, 1])s∈[0,1] consisting of

such balls. Then clearly there exists a finite subdivision 0 = s0 <
s1 < . . . < sl = 1 and a mapping ϑ : {1, . . . , l} −→ {1, . . . , k} such
that ⋃

s∈[si−1,si]

As ⊂ Uϑ(i).

According to the observation above we choose now l finitely pie-
cewise analytical paths

ai : [si−1, si] −→ Uϑ(i) ∩ M(w, αw)
with ai(si−1) = Asi−1 and
ai(si) = Asi for i = 1, . . . , l.

By construction, the composition of the paths ai yields a finitely
piecewise analytical path

(Âs)s∈[0,1] : [0, 1] −→ M(w, αw)

with the desired approximation property.
Putting now pieces together we see that choosing η small enough
for the approximating paths of matrices (Âs))s∈[0,1] and (σ̂s)s∈[0,1]

we obtain two paths (Âs)s∈[0,1] and (Â∗
s)s∈[0,1] =

((aijs − σijs |aijs |)ijs∈[0,1] with the desired properties. (Notice that
|ϕ| : [0, 1] −→ R+ is a finitely piecewise analytical path when-
ever ϕ : [0, 1] −→ R is. This follows from the fact that a finitely
piecewise analytical path has only finitely many zeroes (see Propo-
sition 11.1).) Furthermore, the last statement of Theorem 22.6 is
evident.
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(iii) Finally, we have to convince ourselves that the equilibrium set of
our constructed ε-uniformly approximating evolution
(ζ̂s, t̂s, Âs, Â

∗
s)s∈[0,1] also lies in the compact set W = (Δn−1 ×

[0, β0]) × [0, 1]. Nevertheless, this is straightforward.
Since ε < 1 we have by construction ζ̂s ≥ −w for any s ∈ [0, 1] and
||ζ̂)s(p, r)|| ≥ ||ζs(p, r)||− ||ζs(p, r)− ζ̂s(p, r)|| > (αw +1)− ε > αw

for all (p, r, s) ∈ Δn−1 × [β0,∞[×[0, 1]. From step 1 above and
Proposition 22.8 we know that (Âs)s∈[0,1] : [0, 1] −→ M(w, αw).
Thus it follows from the equilibrium condition (E.2) that no equi-
libria of the approximating evolution can lie outside of W.

Step 3: In the last step we will demonstrate that the equilibrium set of the
constructed approximating evolution has finitely piecewise analytical
equilibrium paths. Our procedure will be to show that the equilibrium
set is semi-analytical which in turn makes it amenable to a general-
ization of Proposition 11.6 to semi-analytical sets.
(i) For checking semi-analyticity of the equilibrium set of

(ζ̂s, t̂s, Âs, Â
∗
s)s∈[0,1] we first choose a finite subdivision s0 = 0 <

s1 < . . . < sb = 1 of [0, 1] such that for all i = 1, . . . , b the restric-
tions (Âs)s∈[si−1,si] and (A∗

s)s∈[si−1,si] are analytical paths. Our
next task will be to provide a certain Rm-semi-algebraic-analytical
subset Z ⊂ Rn × R × [0, 1] × Rm which precisely projects on the
equilibrium set under consideration. Let be

Z :=
b⋃

i=1

Zi with

Zi := {((p, r, s), y) ∈ Rn × R × [0, 1] × Rm|p ∈ Δn−1,

r ∈ [0, β0], s ∈ [si−1, si], y ≥ 0, p′Â∗
s ≤ 0,

ζ̂s(p, r) − Âsy = 0, p′Â∗
sy = 0} for i = 1, . . . , b.

It is not hard to see that all sets Zi, and consequently also Z,
are Rm-semi-algebraic-analytical: one just has to observe that
(ζ̂s)s∈[0,1] equals (ζs)s∈[0,1] on the relevant area W = (Δn−1 ×
[0, β0]) × [0, 1], and (ζs)s∈[0,1] is by construction a polynomial on
Rn × R × R. As to the piecewise analytical paths (Âs)s∈[0,1] and
(Â∗

s)s∈[0,1] notice that analytical pahts are by definition restric-
tions of analytical functions which are defined on open neighbor-
hoods. Keeping these facts in mind it is easy to convince oneself
that any set Zi actually is Rm-semi-algebraic-analytical.

(ii) Now, by the Tarski-Seidenberg-Lojasiewicz-Theorem the projec-
tion p(Z) is also semi-analytical where p is the canonical projection

p : (Rn × R × [0, 1]) × Rm −→ Rn × R × [0, 1].
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But from the construction of the Zi follows directly that p(Z)
equals the equilibrium set of the given evolution
(ζ̂s, t̂s, Âs, Â

∗
s)s∈[0,1].

(iii) Now, the last gap is filled in by the addressed generalization of
Proposition 11.6.

Proposition 22.9. Let A ⊂ Rn be semi-analytical. Then for any y ∈ A
there is an arbitrarily small open neighborhood U(y) of y in Rn such that
U(y)∩A is piecewise analytically path connected. Moreover, the connected
components of A are even piecewise analytically path connected.

The proof is completely analogous to the proof of Proposition 11.6.
Due to Proposition 22.9 joining equilibrium components of
(ζ̂s, t̂s, Âs, Â

∗
s)s∈[0,1] are piecewise analytically path connected, and thus

there is at least one nicely behaved equilibrium path for (ζ̂s, t̂s, Âs, Â
∗
s)s∈[0,1]

by Theorem 10.2.
(II) We are still left with pointing out the necessary modifications of the

presented proof for the generalized basic model with production, taxes,
and subsidies from Section 6.2. In summary there are four differences to
the model with production and taxes:
(1) the approximating one-parametrization (t̂s)s∈[0,1] must obey the ad-

ditional condition t̂s(p, r, 0) > 0 for all (p, r) ∈ Δn−1 × R+.
(2) there is another path of matrices (A∗∗

s )s∈[0,1] with a∗∗
ijs

= χijs |aijs |,
χijs ∈ [0, 1].

(3) the equilibrium conditions (E.1) and (E.3) are enlarged by a new
summand γA∗∗

s .
(4) equilibria are now triples (p0, 0, γ0) from Δn−1×R+× [0, 1], or triples

(p0, r0, 1) from Δn−1 × R+ × [0, 1].
Let us now see how to suitably adapt the constructions from (I) to meet
these new requirements.
(1) There is a minimal value δ > 0 of ts(p, r, 0) = r − p · ζs(p, r, 0) on the

compact set (Δn−1 × [0, 2β0]× {0})× [0, 1]. Now for the approximat-
ion the polynomial ζ on Rn × R × R × R must be chosen so that it
ε′′-approximates (ζs)s∈[0,1]|Δn−1×[0,2β0]×{0} with ε′′ := min(δ/n, ε

4n ).
This is sufficient to ensure that t̂s(p, r, 0) := v(r)ts(p, r, 0) + (1 −
v(r))ts(p, r, 0) > 0 for all s ∈ [0, 1] and (p, r) ∈ Δn−1 × R+.

(2) There is no difficulty at all also to apply the method provided in step
2, (ii), above for achieving a piecewise analytical ε-approximating path
(Â∗

s)s∈[0,1] for (A∗∗
s )s∈[0,1].

(3),(4) Finally, it is also straightforward to incorporate the additional
summand γA∗∗

s and the new domain of equilibria into the construc-
tions of step 3 above. We just have to redefine Z :=

⋃b
i=1(Z

1
i

⋃
Z2

i )
where

Z1
i := {((p, r, γ, s), y) ∈ Rn × R × [0, 1]× [0, 1] × Rm|
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p ∈ Δn−1, r ∈ [0, β0], γ = 1, s ∈ [si−1, si], y ≥ 0,

p′(Â∗
s + Â∗∗

s ) ≤ 0, ζ̂s(p, r, 1) − Âsy = 0,
p′(Â∗

s + Â∗∗
s )y = 0} for i = 1, . . . , b,

and

Z2
i := {((p, r, γ, s), y) ∈ Rn × R × [0, 1]× [0, 1] × Rm|

p ∈ Δn−1, r = 0, γ ∈ [0, 1], s ∈ [si−1, si], y ≥ 0,

p′(Â∗
s + γÂ∗∗

s ) ≤ 0, ζ̂s(p, r, γ) − Âsy = 0,
p′(Â∗

s + γÂ∗∗
s )y = 0} for i = 1, . . . , b.

This completes our proof of Theorem 11.8.
�
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Proof of Theorem 13.1

Correspondingly to Mas-Colell’s proof (1977, Section 3) the proof of our Theo-
rem 13.1 will consist of two parts. In the first part we will provide a continu-
ous one-parametrization (fs)s∈[0,1] of market excess demand functions whose
equilibrium set

⋃
s∈[0,1](f

−1
s

(0)×{s}) equals the prescribed set K. In general,
however, there are no additional properties, like for instance differentiability,
of the obtained one-parametrization (fs)s∈[0,1]. Our construction relies on a
result from algebraic topological fixed point theory by H. Schirmer (1983).
In the second part we will check that Mas-Colell’s decomposing construc-
tions (1977) in fact provide all necessary tools to extend the static context to
a continuous one-parametrization of exchange economies (Es)s∈[0,1] with the
desired properties. Roughly spoken we will proceed by demonstrating that our
obtained continuous one-parametrization (fs)s∈[0,1] of market excess demand
functions induces continuous one-parametrizations of the relevant construc-
tions by Mas-Colell.

(I) At the heart of the first part of the proof stands the following intuitive
result from algebraic topological fiberwise fixed point theory:

Proposition 23.1. (H. Schirmer 1983): Let P be a compact and con-

nected polyhedron without local cut points, i.e. without points p which have

a connected neighbourhood N in P so that N \ {p} is not connected. Let

K ⊂ P × [0, 1] be a closed set which contains a compact connected sub-

space C̃ joining P × {0} and P × {1}. Then there exists a continuous

one-parametrization

H : P × [0, 1] → P

with

Fix H := {(p, t) ∈ P × [0, 1]|H(p, t) = p} = K.

This is proven by Schirmer (1983, Section 3).
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Clearly, for l ≥ 3 the closed positive orthant of the sphere Sl−1
+ is a

polyhedron without local cut points, and consequently qualifies for P in
Proposition 23.1. On the contrary, S1

+ obviously has a continuum of local
cut points, namely S1

++. Nevertheless, for P = S1
+ we can prove Proposi-

tion 23.1 directly:

Proposition 23.2. Let K ⊂ S1
+ × [0, 1] be a closed set which contains a

compact connected subspace C̃ joining S1
+ ×{0} and S1

+×{1}. Then there
exists a continuous one-parametrization

H : S1
+ × [0, 1] → S1

+

with
Fix H := {(p, t) ∈ S1

+ × [0, 1]|H(p, t) = p} = K.

Proof. Map S1
+ ⊂ R2

+ by the canonical homeomorphism onto the interval
[0, 1]. Thus S1

+ × [0, 1] ≈ [0, 1]× [0, 1] ⊂ R2. Consider the complement Kc

of K in [0, 1]× [0, 1]. Kc is relatively open. Define

Kc ⊃ K1 := {(p, t) ∈ Kc|there is a point (1, s) ∈ Kc so that (p, t) lies
in the relatively open connected component of Kc

which contains (1, s)}.
In other words,

K1 =
⋃

L , where any L ⊂ Kc

is a relatively open component of Kc with L ∩ ({1} × [0, 1]) 	= ∅.
Clearly, K1 is open, and possibly it is empty (see Figure 23.1 for an
illustration of a non-empty set).
Now we can compose a homotopy H with the desired properties.

H : [0, 1] × [0, 1] −→ R

(p, t) �→
{

p − dist[(p, t), K] if (p, t) ∈ K1

p + dist[(p, t), K] if (p, t) 	∈ K1.

Let us check the required properties of H : clearly, Fix H = K. So it is
left to verify that (a) every t-state mapping Ht : [0, 1] → R, p �→ H(p, t),
actually is a self-mapping of [0, 1], and (b) that H is continuous.
Both properties are obvious if K1 is empty. Let us therefore assume that
K1 is not empty.
(a) To show (a) we have to ensure that

0 ≤ p − dist[(p, t), K] for (p, t) ∈ K1

and p + dist[(p, t), K] ≤ 1 for (p, t) 	∈ K1.

But for every point (p, t) ∈ K1 there are points (p′, t) ∈ K which
are ‘left’ of (p, t), i.e. p′ < p. Otherwise (p, t) ∈ K1 ⊂ Kc could be
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Fig. 23.1: Auxiliary Set K1

connected with (0, t) in Kc, and this would contradict the assumed
existence of a joining connected component C̃ in K. This proves the
first inequality.
If, on the other hand, (p, t) ∈ (K1)c, then either p = 1 and (p, t) ∈ K,
or there are points (p′′, t) ∈ K ‘right’ of (p, t), i.e. p′′ > p. Conse-
quently, p + dist[(p, t), K] ≤ 1 for (p, t) ∈ (K1)c.

(b) We have to show that H is continuous. Clearly, H |K1 and H |int(K1)c

are continuous because K1 is open. Obviously, the common boundary
of K1 and (K1)c in ]0, 1[× ]0, 1[ is contained in K, i.e.

(K̄1 \ K1)∩ ]0, 1[× ]0, 1[=
[(K1)c \ int (K1)c]∩ ]0, 1[× ]0, 1[⊂ K.

Since dist[(p, t), K] is zero on K, this implies that H is continuous,
and Proposition 23.2 is proven.

After these preparatory results we will continue the proof of the Theorem.
Our task will be to appropriately modify the one-parametrization H near
the boundary of Sl−1

+ such that a one-parametrization of excess demand
functions obtains.
Take the continuous perturbation

H : Sl−1
+ × [0, 1] → Sl−1

+

provided by Propositions 23.1 and 23.2. Now consider the modified con-
tinuous perturbation

Z := (H − id) : Sl−1
+ × [0, 1] → Rl
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(p, s) =

⎛⎜⎜⎜⎝
p1

...
pl

s

⎞⎟⎟⎟⎠ �→ Zs(p) = Hs(p) − p =

⎛⎜⎝H1s(p) − p1

...
Hls(p) − pl

⎞⎟⎠ .

Clearly, the set of fixed points Fix H of H , which equals K, is identical
with the set of zeroes of Z = H − id:

Fix H = (H − id)−1(0).

Actually, Z|Sl−1
++ ×[0,1] is almost – up to its behaviour near the bound-

ary ∂Sl−1
+ – our candidate for the desired one-parametrization (fs)s∈[0,1]

of excess demand functions. Accordingly, let us now modify Z over a
neighbourhood of the boundary ∂Sl−1

+ × [0, 1] such that a continuous
one-parametrization of market excess demand functions with all desired
properties obtains. Obviously, there are many ways to do that. Here we
propose the following one because of its intuitive appeal:
fix an s ∈ [0, 1] and consider the first l − 1 component functions Z1s , . . . ,
Zl−1s of Zs. Choose a positive δ such that K ⊂ Sl−1

δ × [0, 1] (recall that K

is a compact subspace of Sl−1
++ ×[0, 1]), and restrict the Zis , i = 1, . . . , l−1,

to Sl−1
δ . Now take one of these component functions, say Z1s |Sl−1

δ
, and

replace it by the function of its absolute values

|Z1s |Sl−1
δ

(p)|.

Now replace Zls by the function Ẑls which is obtained from the Walras
formula (the budget identity):

for p ∈ Sl−1
δ define Ẑls(p) := −p1

pl
|H1s(p)| −

l−1∑
i=2

pi

pl
H1s(p).

For the following constructions we need some technical preparations: let
us partition the neighbourhood Sl−1

+ \ Sl−1
δ of the boundary ∂Sl−1

+ into
the three areas (note that Sl−1

ϑ is closed for any positive ϑ)

A := Sl−1
2
3 δ

\ Sl−1
δ

B := Sl−1
δ
3

\ Sl−1
2
3 δ

C := Sl−1
++ \ Sl−1

δ
3

.

To simplify the geometrical representation we illustrate this partition on
the unit simplex Δl−1 (see Figure 23.2 below).
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Fig. 23.2: Partition of the Unit Simplex

Now choose some arbitrary market excess demand function ζ̄ =

⎛⎜⎝ ζ̄1

...
ζ̄l

⎞⎟⎠
with a unique equilibrium in the center ( 1√

l
, . . . , 1√

l
) of Sl−1

++ and with
the additional property that the zero sets of ζ̄2 to ζ̄l−1 have an empty
intersection in Sl−1

++ \ Sl−1
δ , i.e.

l−1⋂
i=2

(ζ̄i|Sl−1
++ \Sl−1

δ
)−1(0) = ∅.

(Actually, there is a myriad of such market excess demand functions.)
Choose two continuous gluing functions
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rcl α : Sl−1 → [0, 1]
with α |Sl−1

δ
= 1

and α |Sl−1
+ \Sl−1

2
3 δ

= α|B∪C = 0

and

β : Sl−1 → [0, 1]
with β |Sl−1

2
3 δ

= β|Sl−1
δ ∪A = 1

and β |C = 0.

We still need a further auxiliary mapping on Sl−1
+ . In order to simplify its

description we will here only give the precise description of its canonical
counterpart on the unit simplex Δl−1. This canonical counterpart is the
natural radial retraction γ̃δ from the center (see Figure 23.3)(

1
l
, . . . ,

1
l

)
of Δl−1 onto Δl−1

δ , i.e.

γ̃δ : Δl−1 → Δl−1
δ

with γ̃δ|Δl−1
δ

= idΔl−1
δ

and γ̃δ(Δl−1) = Δl−1
δ .

Let us denote the canonical counterpart of γ̃δ on Sl−1
+ , i.e. the radial

retraction mapping from Sl−1
+ onto Sl−1

δ , by γδ. After these preparations
we appropriately extend our restricted candidate function

(|Z1s(p)|, Z2s(p), . . . , Zl−1s(p), Ẑls(p)) : Sl−1
δ → Rl

continuously from Sl−1
δ to Sl−1

++ in three steps
(1) extension over A: let be p ∈ A.

(i) Roughly speaking |Z1s(p)| is extended by gluing it with the con-
stant function +1. Formally

p �→ α(p)|Z1s(γδ(p))| + (1 − α(p)) · 1
Note that the image values are positive for p ∈ A.

(ii) Z2s , . . . , Zl−1s are extended accordingly by gluing them with the
corresponding component functions ζ̄i, i.e.

p �→ α(p)Zis(γδ(p)) + (1 − α(p))ζ̄i(p),

i = 2, . . . , l − 1
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Fig. 23.3: Radial Retraction

(iii) Ẑls will be extended simultaneously over A and B in the next step.
(2) extension over B: let be p ∈ B.

(i) glue the constant +1-function with ζ̄1 by means of β, i.e.

p �→ β(p) + (1 − β(p))ζ̄1(p)

(ii) map
p �→ ζ̄i(p)

for i = 2, . . . , l − 1.
(iii) extend Ẑls(p) over A ∪ B according to the Walras formula.

(3) extension over C: for any p ∈ C take ζ̄1(p), . . . , ζ̄l(p).
Clearly, the resulting function

fs : Sl−1
++ → Rl

p �→ (f1s(p), . . . , fls(p))

is a market excess demand function which has no zeroes in Sl−1
++ \ Sl−1

δ

and for which
f−1

s (0) = K ∩ Sl−1
++ × {s}.
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Furthermore, from the construction of fs follows immediately that we
actually have achieved a continuous one-parametrization

(fs)s∈[0,1] : Sl−1
++ × [0, 1] → Rl

of market excess demand functions with an equilibrium set
⋃

s∈[0,1] f
−1
s (0)×

{s} equal to the prescribed set K.
Thus we have completed the first part of our proof. Let us now proceed
to the second part.

(II) Given any positive ε with δ/ε > ε > 0 we will provide a continuous one-
parametrization of exchange economies (Es)s∈[0,1] =

(
(�is , ωis)l

i=1

)
s∈[0,1]

with �is∈ P0
mo
sco

and ωis ∈ Rl
+ such that for any s ∈ [0, 1] the excess

demand function fs equals the derived excess demand function of Es on
Sl−1

ε and, in addition, the equilibrium set of Es equals the zero set of
fs. More precisely the latter means that p ∈ Sl−1

++ is a zero of fs if and
only if it is an equilibrium of Es, i.e. a zero of its derived excess demand
function. Our procedure will be to verify that the constructions in Mas-
Colell (1977, Section 3, Proof of the Theorem) lead to a continuous one-
parametrization (Es)s∈[0,1] of exchange economies when the underlying
market excess demand function is continuously perturbed.
Let us fix an arbitrary s ∈ [0, 1]. Consider the s-state excess demand
function

fs : Sl−1
++ → Rl

of the continuous one-parametrization (fs)s∈[0,1] obtained at the end of
part (I). Going through the relevant constructions by Mas-Colell we will
see that most of them are independent of the very function fs. Thus it will
be left to us to ensure that the constructions which are dependent on fs get
continuously one-parametrized when fs is continuously one-parametrized.
Analogously to the proof by Mas-Colell we will proceed in three main
steps. In the first step we will ensure that the continuous one-parame-
trization (fs)s∈[0,1] induces continuous one-parametrizations (f∗

is
)s∈[0,1],

i = 1, . . . , l, of the l decomposing individual excess demand functions f∗
is

which are generally provided by Mas-Colell on p. 125 in (1977). (To be
more precise, the l individual excess demand functions decompose the gi-
ven excess demand functions only on Sl−1

ε .) In the second step we will
then verify that the induced continuous one-parametrization (f∗

is
)s∈[0,1] of

each individual excess demand function in turn induces a continuous one-
parametrization of the monotone preference relation which is associated to
it by Mas-Colell’s construction on pp. 121–123 in (1977, Proof of Lemma
2). Finally in the third step we will verify that Debreu’s (1974) construc-
tion of strict convexification also applies to our situation and leads to a
continuous one-parametrization of exchange economies with the desired
properties.
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Step 1: The following preparatory result actually poses ourselves into
Mas-Colell’s set-up (cf. 1977, Section 3, (1)).

Lemma 23.3. For the continuous one-parametrization

(fs)s∈[0,1] : Sl−1
++ × [0, 1] → Rl

of market excess demand functions obtained at the end of Part I there is
a τ > 0 such that for all (p, s) ∈ (Sl−1

++ \ Sl−1
τ ) × [0, 1] one has:

fs(p)
[
e − (

∑l
i=1 pi)p

]
=
∑l

i=1 fis(p) > 0.

Proof. Remember that by construction the s-state excess demand func-
tions for all s ∈ [0, 1] are identical on C = Sl−1

++ \ Sl−1
δ/3 . Thus Lemma 23.3

is an easy Corollary of Lemma 1 in Mas-Colell (1977).
Particularly, the prescribed set K ⊂ Sl−1

++ × [0, 1] is contained in Sl−1
τ ×

[0, 1]. Let be ε ∈ ]0, τ [. Define l individual excess demand functions

f∗
is

: Sl−1
++ → Rl, i = 1, . . . , l,

by
f∗

is
(p) := −[η(p) + (1 − η(p))βis (p)] grad vi(p).

Furthermore, define f∗
s (p) :=

∑l
i=1 f∗

is
(p). Now we have to explain the

ingredients of f∗
is

(p). Let us start with those which are independent of fis :

η : Sl−1
++ → [0, 1]

is some C2 gluing function with

η|Sl−1
++ \Sl−1

ε
2

= 1

and
η|Sl−1

ε
= 0.

vi : Sl−1
++ → R

is a fixed function with certain properties (see Mas-Colell (1977), pp. 121–
125).
The only ingredients of f∗

is
(p) which depend on fis are the coefficients

βis(p) ∈ R+. They are determined in the following way:
let Γ denote a closed convex cone in Rn

+ with vertex 0 which is spanned
by an l-tuple of linearly independent vectors (a1, . . . , al) of Sl−1

++ such that

Sl−1
ε
2

⊂ int Γ and (Γ ∩ Sl−1
++ ) ⊂ Sl−1

μ ⊂ Sl−1
++

with an arbitrary μ ∈ ]0, ε
2 [.

For any r > 0 there is a ϑ(r) > 0 such that
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∀x∈Bl
r(0) ∀p∈Sl−1

ε
2

(x + ϑ(r)p) ∈ Γ

(recall that Sl−1
ε
2

⊂ int Γ ).
Now pick an

r̃ > max
(p,s)∈Sl−1

μ ×[0,1]
||fis(p)||.

Clearly, ∀p∈Sl−1
ε/2

∀s∈[0,1] fis(p)+ ϑ(r̃)p ∈ int Γ . Since a1, . . . , al are linearly

independent one can write for p ∈ Sl−1
ε
2

and s ∈ [0, 1]

fis(p) + ϑ(r̃)p =
l∑

i=1

βis(p)ai

with βis(p) > 0

in a unique and continuous (in p and s) manner. From this follows imme-
diately that for every i, . . . , l the one-parametrization (f∗

is
)s∈[0,1] is also

continuous .
Projecting now the vector fis(p)+ϑ(r̃)p orthogonally on T (p), i.e. on the
normal hyperplane to p, one obtains from the definition of vi the following
equation (Mas-Colell, 1977, p. 125):

f∗
is

(p) =
l∑

i=1

βis(p)(−grad vi(p)).

Furthermore, for all i = 1, . . . , l and s ∈ [0, 1], f∗
is

(p) and f∗
s (p) are excess

demand functions (see Mas-Colell, 1977, p. 125). By construction one has

∀s∈[0,1]f
∗
s |Sl−1

ε
= fs|Sl−1

ε
,

and, moreover, there are no zeroes of f∗
s in Sl−1

++ \ Sl−1
ε (see Mas-Colell,

1977, p. 125, last paragraph). In other words, the l functions f∗
is

(p) de-
compose the given s-state market excess demand function fs on Sl−1

ε in
an equilibria preserving manner as desired.
Now we have to show that for each f∗

is
the rationalizing pair of an in-

dividual preference relation �is∈ P0
mo
sco

and an initial endowment bundle

ωis ∈ Rl
+ from Mas-Colell’s construction (1977, proof of Lemma 2) is con-

tinuously one-parametrized when (f∗
is

) is continuously one-parametrized.

Step 2: Fix an i ∈ {1, . . . , l} and take the continuous one-parametrization

(f∗
is

)s∈[0,1] : Sl−1
++ × [0, 1] → Rl

from Step 1. Fix also an s ∈ [0, 1]. For f∗
is

Mas-Colell’s constructions in
(1977, proof of Lemma 2) provide an individual preference relation and
an initial endowment bundle with all desired properties.
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First we will recall this static construction, and then we will verify that it is
continuously one-parametrized in dependence on (f∗

is
)s∈[0,1]. Analogously

to Step 1, we only have to take care of the ingredients of this construction
which are dependent on the very function f∗

is
.

Let us start with introducing the ingredients which are independent of
f∗

is
: recall recall that f∗

is
(p) := −[η(p) + (1 − η(p))βis (p)]grad vi(p). vi is

a fixed function from Sl−1
++ into R (see Mas-Colell, 1977, p. 121), and the

real coefficient [η(p)+ (1− η(p))βis (p)] is positive and uniformly bounded
away from 0. From the properties of vi follows that vi is minimized in at
most one point. Hence there is a unique p̄i ∈ Sl−1

++ such that f∗
is

(p̄i) = 0
(Mas-Colell, 1977, pp. 121–122). Thus, p̄i is the only zero of any f∗

is
(p),

s ∈ [0, 1]. Now Rl is partitioned into the following three regions:

P̂ := Rl
+ \ {0},

A1 := {x ∈ Rl|∃ixi < 0 and p̄ix > 0}
B1 := {x ∈ Rl|p̄ix ≤ 0}.

Actually, this partition is independent of f∗
is

.

Fig. 23.4: Auxiliary Constructions I for Proving Lemma 23.3

Furthermore, choose some continuous function
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ui : Sl−1
++ → [0, 1],

which is closely linked to vi in the following way:

ui(p̄i) = 0, and for all p, q ∈ Sl−1
++

ui(p ) > ui(q) ⇔ vi(p) > vi(q)
and ui(p ) = ui(q) ⇔ vi(p) = vi(q).

In other words, ui is a ‘pre-image-preserving’ and bounded modification
of vi.
We need a last preparatory observation: by the properties of vi there is
for every x ∈ A1 a unique p̃i(x) ∈ Sl−1

++ such that x belongs to the pos-
itive ray spanned by f∗

is
(p̃i(x)) = −[η(p̃i(x)) + (1 − η(p̃i(x)))βis (p̃i(x))] ·

grad vi(p̃i(x)). In other words there is a unique tis(x) ∈ ]0,∞[ such that
x = tis(x) ·f∗

is
(p̃i(x)) (cf. Figure 23.4). The function x �→ p̃i(x) is continu-

ous (Mas-Colell, 1977, p. 122) and independent of s because it is only de-
pendent on vi. Obviously, the continuous one-parametrization (fis)s∈[0,1]

also induces a continuous one-parametrization

(tis)s∈[0,1] : A1 × [0, 1] → ]0,∞[
(x, s) �→ tis(x)

Now a utility function can be provided which will generate the desired
preference relation:
first a preliminary function is defined by

ξis : Rl → R

x �→

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mini xi for x ∈ P̂

u(p̃i(x)) for x ∈ A1

and x = tis(x)f∗
is

(p̃i(x))
with 0 < tis(x) ≤ 1

u(p̃i(x)) − ||x − f(p̃i(x))|| for x ∈ A1

and x = tis(x)f∗
is

(p̃i(x))
with tis(x) > 1

−||x|| for x ∈ B1

ξis is continuous (Mas-Colell, 1977, p. 123), and clearly also (ξis)s∈[0,1] is
a continuous one-parametrization.
Now define

ξ̂is : Rl → R

x �→ max{ξis(y)|y ≤ x}

ξ̂is(x) is continuous, strictly monotone, i.e. x > y implies ξ̂is(x) > ξ̂is(y),
and for any p ∈ Sl−1

++ and any x ∈ Rl one has:
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px ≤ 0 and x 	= f∗
is

(p) ⇒ ξ̂is(x) < ξ̂is(f
∗
is

(p))

(see Mas-Colell, 1977, p. 123). Clearly, (ξ̂is)s∈[0,1] is a continuous one-para-
metrization.
The definition x �′′′′

is
y ⇔ ξ̂is(x) > ξ̂is(y) provides a continuous and

monotone preference relation �′′′′
is

on Rl (Mas-Colell, 1977, p. 123).
Moreover it is clear that we have achieved a Hausdorff continuous one-
parametrization of continuous and monotone preference relations (�′′′′

is

)s∈[0,1] on Rl for the i-th agent such that for any s ∈ [0, 1] the pair (�′′′′
is

, 0)
generates f∗

is
(p) on the whole price space Sl−1

++ .

Step 3: Now we are still left with the following task : to alter �′′′′
is

into
a preference relation which is strictly convex on Rl

+ and generates f∗
is

on
Sl−1

++ such that agent i’s demand is nonnegative for all commodities and
all prices.
We will proceed in four steps .
(1) First, we will convexify the preference relation �′′′′

is
by the following

construction (c.f. Hildenbrand (1974), problem 1.1, 7): for x ∈ Rl

ψ′′′′
is

(x) denotes the closed upper contour set (the indifference or pref-
erence set) of x with respect to �′′′′

is
. Define the new convexified closed

upper contour set of x by

ψ′′′
is

(x) :=
⋂

y∈Rl

x∈coψ′′′′
is

(y)

coψ′′′′
is

(y).

Clearly, the associated new preference relation �′′′
is

is continuous, mo-
notone, and convex. Moreover, �′′′

is
generates f∗

is
on Sl−1

++ , i.e., for any
p ∈ Sl−1

++ and any x ∈ Rl, px ≤ 0 and x 	= f∗
is

(p) implies x ≺′′′
is

f∗
is

(p).
This is an immediate consequence of the obvious relationship

ψ′′′
is

(x) ⊂ coψ′′′′
is

(x) for all x ∈ Rl.

This is true because in our situation the convexification process does
not add any further best elements to any budget set. (Particularly,
this is also a direct consequence of the more general result

coϕ(�′′′′, w, p) = ϕ(�′′′, w, p)

for every (w, p) ∈ R+ × Rl (Hildenbrand, 1974, p. 95) where
ϕ(�, w, p) denotes the demand set

{x ∈ Rl|px ≤ w and py ≤ w for y ∈ Rl implies y � x}.)
Furthermore, from the definition it is clear that (ψ′′′

is
(x))s∈[0,1] is a

Hausdorff continuous one-parametrization for any x ∈ Rl.
Actually, for our further constructions we will only use the upper con-
tour sets which are contained in (are “equal or better than”) ψ′′′

is
(0).
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(2) Now we will apply Debreu’s construction of strict convexification
(1974, pp. 19-20) to �′′′

is
(cf. Mas-Colell, 1977, p. 122, proof of Lemma

2). It will turn out that also the strictly convexified preference rela-
tion is continuously one-parametrized in dependence on the continuous
one-parametrization (f∗

is
)s∈[0,1].

We have to show that Debreu’s construction (1974, from the 3rd para-
graph of p. 19 to p. 20) really applies to the situation of �′′′

is
. We will

proceed by first recalling the main line of Debreu’s construction and
then ensuring that our situation with �′′′

is
is essentially the same as

Debreu’s situation.
Debreu provides a fixed hyperplane H ⊂ Rl \ (Rl

+ \ {0}) such that all
his convex upper contour sets Gt lie on one side of H , namely on the
same side as Rl

+. Moreover, every Gt is contained in a strictly convex
cone L∗

t with vertex 0 which also lies on the same side of H as Gt and
intersects H only in 0. Furthermore, the set Gt ∪ ∂L∗

t is a certain set
of image points of the excess demand function under consideration.
Actually, this ensures that the preference relation represented by the
sets Gt generates the excess demand function.
For any t two mappings

λt : H → R+

γt : H → R+

are considered where λt(q) is the least s′ ∈ R+ such that q + s′e ∈ L∗
t

(recall e = (1, 1, . . . , 1)) and γt(q) is the least s′′ ∈ R+ such that
q+s′′e ∈ Gt. λt and γt are convex functions, λt ≤ γt, and λt(q) = γt(q)
is equivalent to q + λt(q)e ∈ Gt ∩ ∂L∗

t (cf. Figure 23.5 below).
Finally, a fixed continuous and convex function

ρ : {(x, y) ∈ R2
+|x ≤ y} → R+

is introduced which makes

μt : H → R+

(p, q) �→ ρ[λt(q), γt(q)]

continuous and strictly convex. Then

Mt := {q + s̄e|q ∈ H, s̄ ≥ μt(q)}

is the new strictly convexified upper contour set.
Now we have to verify that this procedure is also applicable to our
situation here: actually, the role of H is played now by the normal
hyperplane Tp̄i to p̄i. From the properties of vi follows that for any
p1 ∈ Sl−1

++ the preimage v−1
i ]−∞, vi(p1)] = u−1

i [0, ui(p1)] ⊂ Sl−1
++ spans

a strictly convex cone (with vertex 0) such that grad vi(p1) ∈ Tp̄1 is
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Fig. 23.5: Auxiliary Constructions II for Proving Lemma 23.3

normal to a supporting hyperplane Sp1 at p1 of that cone (see Mas-
Colell, 1977, p. 121). Figure 23.5 illustrates that for l = 2 (for this low
dimension the cone v−1

i ]−∞, vi(p1)] actually is only convex).
The role of the upper contour sets Gt is played here by the upper con-
tour sets contained in ψ′′′

is
(0), i.e. by the upper contour sets ψ′′′

is
(f∗

is
(p)),

p ∈ Sl−1
++ , and those which are ‘better’ than these.

The role of the sets L∗
t is played by the cones

Λi(p1) := {x ∈ Rl|xp ≥ 0 for all p ∈ u−1
i [0, ui(p1)]},

p1 ∈ Sl−1
++ . By construction Λi(p1) = Λi(p2) if and only if ui(p1) =

ui(p2). Furthermore one has

ψ′′′
is

(f∗
is

(p1)) ∩ ∂Λi(p1) = f∗
is

(u−1
i (ui(p1))).

(Clearly, u−1
i (ui(p1)) is the boundary of u−1

i [0, ui(p1)] ⊂ Sl−1
++ .) Also

by construction the set-valued function

p �→ u−1
i [0, ui(p)]

is Hausdorff continuous, and hence also p1 �→ Λi(p1) is Hausdorff
continuous.
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From these considerations it is clear that Debreu’s strict convexifica-
tion process directly applies to our situation. Thus we obtain strictly
convex upper contour sets ψ′′

is
(x) which are on the ‘positive’ side of

Tp̄i , and, moreover, are contained in ψ′′
is

(0). Because of the properties
of ρ, particularly that of convexity, the new upper contour sets ψ′′

is
(x)

generate f∗
is

on the whole domain Sl−1
++ .

It is clear from the construction that the continuous one-parametri-
zation (�′′′

is
)s∈[0,1] also induces a continuous one-parametrization

(�′′
is

)s∈[0,1]: the reference hyperplane Tp̄i , the mapping ρ, and the
analogous mapping to λt are invariant when s varies in [0, 1]. The
one-parametrization of the analogue to γt clearly is a continuous one-
parametrization since the convex upper contour sets of �′′′

is
are Haus-

dorff continuously varying with s.
(3) It is still left to us to translate the achieved upper contour sets of

�′′
is

by an appropriate initial endowment vector ωi ∈ Rl
+ such that

for all s ∈ [0, 1] and all p ∈ Sl−1
++ agent i’s demand f∗

is
(p) + ωi is

nonnegative. Afterwards we have to fill in the hole between the origin
and the lowest new upper contour set by Debreu’s intuitive homothetic
shrinking technique (1974, p. 20).
Actually, there is no problem at all to find an ωi with the desired
properties: any f∗

is
: Sl−1

++ → Rl is an excess demand function, and
consequently it is bounded from below, say by kise, kis < 0. Since [0, 1]
is compact, also the whole continuous one-parametrization (f∗

is
)s∈[0,1]

is uniformly bounded from below, say by kie, ki < 0. Providing agent
i with the constant initial endowment l-vector ωi with all components
equal to |ki|, for instance, pushes his individual demand

f∗
is

(p) + ωi = f∗
is

(p) +

⎛⎜⎜⎜⎝
|ki|
|ki|
...

|ki|

⎞⎟⎟⎟⎠
for all p ∈ Sl−1

++ and s ∈ [0, 1] into Rl
+. Accordingly we translate all

upper contour sets ψ′′
is

(x) by ωi, i.e. we replace ψ′′
is

(x) by ψ′
is

(x) :=
ψ′′

is
(x) + ωi. Clearly, f∗

is
is generated by the obtained pair (�′

is
, ωi).

(4) Now, in a last step, we restrict the preference relation �′
is

to Rl
+

by intersecting its upper contour sets with Rl
+, and fill in the hole

between 0 and Ωi := (ψ′′
is

(0) + ωi) ∩ Rl
+ using Debreu’s homothetic

radial shrinking technique: we just take the strictly convex sets tΩi,
t ∈ ]0, ||ωi||]. Thus, a preference relation �is on Rl

+ obtains such that
(�is , ωi) generates f∗

is
on Sl−1

++ .
Let us summarize: for any i ∈ {1, . . . , l} and any s ∈ [0, 1] we have
achieved a pair (�is , ωi) with �is∈ P0

mo
sco

such that (�is , ωi) generates

f∗
is

on the whole price space Sl−1
++ . Moreover, the one-parametrization
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(�is)s∈[0,1] is continuous, and thus we have obtained a continuous
one-parametrization of exchange economies

(Es)s∈[0,1] =
(

(�is , ωis)
l
i=1

)
s∈[0,1]

=

⎛⎜⎜⎝
⎛⎜⎝�is ,

⎛⎜⎝ |ki|
...

|ki|

⎞⎟⎠
⎞⎟⎠

l

i=1

⎞⎟⎟⎠
s∈[0,1]

with the desired properties.
�

Proof of Corollary 13.2

Pulling back the unbounded price space Rl
+\{0l} to T l

0\Δl−1 ⊂ Rl
+ by

means of the homeomorphism ϕ−1, and replacing T l by Sl
+, Part (I) of

the proof of Theorem 13.1 can immediately be adapted to the present
situation.

�

Proof of Proposition 13.4

Let us denote the price space by P and the two given compact subsets by
K1 and K2. Now consider the convex hull M of K1 and K2 in P, and the
compact subspace

K := K1 × [0, 1/2[ ∪ M × {1/2} ∪ K2×]1/2, 1]

of P. Clearly K qualifies for Theorem 13.1 and Corollary 13.2, respectively,
and Proposition 13.4 is proved.

�
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Proof of Proposition 14.3

We have to show that for any regular path η = (ηs)s∈[0,1] ∈ J ′ there is an
open neighborhood Vη in J ′ so that ψ is constant on Vη, i.e. ψ is locally
constant. Consider first the two bordering regular economies η0 and η1 of η.
Denote their equilibrium sets by Eη0 and Eη1 respectively. Clearly, there are
real numbers ε0, ε1 > 0 such that ηs remains in the same regular component
of the space of economies as η0 which implies #Eη0 = #Eηs for 0 ≤ s ≤ ε0
and correspondingly #Eη1 = #Eηs for 1 − ε1 ≤ s ≤ 1 (see Figure 24.1).
Furthermore, #Eη0 and #Eη1 are odd.

Fig. 24.1: Auxiliary Constructions I for Proving Proposition 14.3

Now let us look at the equilibrium set of the regular path η. We know that
up to diffeomorphisms it consists of finitely many disjoint joining segments,
running back segments, and circles such that only the joining segments and
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the running back segments intersect the border faces Sl−1×{0} and Sl−1×{1}
of the homotopy space.

We are only interested in changes of the number of joining segments.
Clearly, such changes must be either due to vanishing or to appearing join-
ing segments. The key for our subsequent argumentation is provided by the
following straightforward observation:

(+) from the oddness of the number of equilibria of a regular economy
follows directly that if η is changed in J ′ so carefully that the bordering econo-
mies are not pushed out of their respective regular components, then joining
segments can only appear pairwise so that one running back segment simulta-
neously vanishes on each border face of the homotopy space. Correspondingly,
joining segments can only vanish pairwise so that one running back segment
simultaneously appears on each side of the homotopy space.

After these preparatory observations we begin with the main line of our
proof. Actually, the whole proof bases on the simple idea that vanishing or
appearing joining equilibrium segments must generate points in areas which,
nevertheless, can be shown to remain free of equilibria for paths η close to η.
Denote the equilibrium set of η by K and its components by k, j, . . . . Let be
δ := min[d[K, ∂Sl−1

+

× [0, 1]], mink,j∈K d(k, j)]. Since K is a compact subset of Sl−1
++ × [0, 1] and

any two k, j ∈ K are compact and disjoint we know that δ > 0. Now, for any
component k ∈ K we consider its closed relative 1/5-tubular neighborhood
D1

k := {(x, s) ∈ Sl−1
+ × [0, 1]|d(k, (x, s)) ≤ 1/5δ} and its closed relative 2/5δ-

tubular neighborhood D2
k. Consider furthermore the compact difference set

Zk := D2
k\

◦
Δ

1

k⊂ Sl−1
+ × [0, 1] which we will call the compact tubular jacket of

k (see the shaded areas in Figure 24.2). Notice that by construction for any k

Fig. 24.2: Auxiliary Constructions II for Proving Proposition 14.3

we have Zk ∩K = ∅, and Zk ∩Zj = ∅ for any two components k 	= j from K.
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Now pick any k ∈ K and any point (x, s) from Zk. Since Zk ∩K = ∅ there
must be at least one market excess demand function ζsi

of (ηs)s∈[0,1] for some
commodity i with

ζsi
(x) > 0, or ζsi

(x) < 0.

Without loss of generality let us assume that ζsi(x) > 0. We also say that the
commodity number i is associated with (x, s). Since ζsi

(−) is continuous there
is an open neighborhood U(x, s) of ζsi

in the space of market excess demand
functions such that, furthermore, there is clearly a relative open neighborhood
V(x, s) of x in Sl−1

++ such that

∀ fi∈U(x,s)
y∈V(x,s)

fi(y) > 0.

Since
⋃

k∈K Zk ⊂ Sl−1
+ × [0, 1] is compact, a finite number of such open

neighborhoods V(x1, s1),U(x1, s1), . . . ,V(xr, sr),U(xr , sr) suffices “to cover”⋃
k∈K Zk, i.e.

⋃
k∈K Zk ⊆ ⋃r

h=1(V(xh, sh) × Ih) with Ih := {s ∈ [0, 1]|ηsi ∈
U(xh, sh)} ⊆ [0, 1]. (Clearly, all intervals Ih are non-empty and

⋃r
h=1 Ih =

[0, 1].)
Let us now choose two open neighborhoods U0, U1 of the bordering econo-

mies η0 and η1 in the space of economies which are contained in the respective
regular components of η0 and η1 with the property that no equilibrium leaves
its relative open 1/5δ-neighborhood in Sl−1

++ when η0 (η1) is varied in U0 (U1).
Choose furthermore two open neighborhoods Ũ0, Ũ1 of the path η in J ′ such
that Ũ0|η0 ⊆ U0 and Ũ1|η1 ⊆ U1.

Now choose for any h = 1, . . . , r an open neighborhood Wh of the given
regular path η in J ′ whose restriction to the sh-state economy and to that
(market) component function whose index is associated with (xh, sh) equals
U(xh, sh).

Now consider the open neighborhood

Vη :=
⋂

h=1,...,r

Wh ∩ Ũ0 ∩ Ũ1

of η in J ′. By construction clearly

(∗) ∀η∈Vη Equη ∩ (
⋃

k∈K

Zk) = ∅

where Equη denotes the equilibrium set of η. But this means that for any η
from the neighborhood Vη of η the number of joining equilibrium segments
remains constant. Otherwise property (∗) would be violated due to our obser-
vation (+) from above. This completes our proof.

�



References

1. Allen B (1981) Utility Perturbations and the Equilibrium Price Set. J. of
Math. Econ. 8:277–307

2. Allgower E, Georg K (1980) Simplicial and Continuation Methods for Appro-
ximating Fixed Points and Solutions to Systems of Equations. SIAM Review
22, 1:28–85

3. Arrow KJ, Hahn F (1971) Competitive Equilibrium Analysis. Holden-Day
4. Balasko Y (1975a) The Graph of the Walras Correspondence. Econometrica

43:907–912
5. Balasko Y (1975b) Some Results on Uniqueness and on Stability of Equi-

librium in General Equilibrium Theory. J. of Math. Econ. 2:95–118
6. Balasko Y (1978a) Economic Equilibrium and Catastrophe Theory: An Intro-

duction. Econometrica 46:557–569
7. Balasko Y (1978b) The Behaviour of Economic Equilibria: A Catastrophe

Theory Approach. Behavioral Science 23:375–382
8. Balasko Y (1978c) Equilibrium Analysis and Envelope Theory. J. of Math.

Econ. 5:153–172
9. Balasko Y (1979) A Geometric Approach to Equilibrium Analysis. J. of Math.

Econ. 6:217–228
10. Balasko Y (1980) Number and Definiteness of Economic Equilibria. J. of Math.

Econ. 7:215–225
11. Balasko Y (1988) Foundations of the Theory of General Equilibrium. Aca-

demic Press
12. Balasko Y (1996) Equilibres et Discontinuité. Campus. Magazine de
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