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Series Editors Foreword

The topics of control engineering and signal processing continue to flourish and
develop. In common with general scientific investigation, new ideas, concepts and
interpretations emerge quite spontaneously and these are then discussed, used,
discarded or subsumed into the prevailing subject paradigm. Sometimes these
innovative concepts coalesce into a new sub-discipline within the broad subject
tapestry of control and signal processing. This preliminary battle between old and
new usually takes place at conferences, through the Internet and in the journals of
the discipline. After a little more maturity has been acquired by the new concepts
then archival publication as a scientific or engineering monograph may occur.

A new concept in control and signal processing is known to have arrived when
sufficient material has evolved for the topic to be taught as a specialised tutorial
workshop or as a course to undergraduate, graduate or industrial engineers.
Advanced Textbooks in Control and Signal Processing are designed as a vehicle
for the systematic presentation of course material for both popular and innovative
topics in the discipline. It is hoped that prospective authors will welcome the
opportunity to publish a structured and systematic presentation of some of the
newer emerging control and signal processing technologies in the textbook series.

In society today, much of the modern technological infrastructure is event
driven where the system outcome is often dependent on a benign sequence of
desirable actions taking place. In industry, the action sequence may be highly
structured and deterministic but, elsewhere in the community, the action sequence
may be fuzzy or even stochastic, making the constraint of a safe system control
sequence a much more difficult task. Many of the sequentia event-driven systems
found today, may be modelled as discrete-event dynamic systems (DEDS). The
characterising features of DEDS are discrete states that capture the status to change
value at discrete time points. In DEDS, the (logical) conditions that lead to
individual or sets of events being activated to generate a sequence of changing
system states is an important part of the system and its mathematical model. This
viewpoint contrasts with much of the standard control literature which is often
dominated by the exhaustive treatment of systems described by linear or nonlinear
ordinary differential equations systems or even, occasionaly, spatially-dependent
partial differential equation systems.

As the references in this book show, the tools to describe DEDS, analyse their
performance and generate control algorithms have been under development since
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the late 1970s. However, it appears that around 1990 there was a flurry of
publications as Petri nets and other techniques began to receive serious
consideration. Now, in 2007, sufficient development has taken place for this course
textbook on the Modeling and Control of Discrete-event Dynamic Systems to enter
the Advanced Textbooks in Control and Sgnal Processing series. Professors
Branislav Hriiz and MengChu Zhou have had many years of experience of teaching
courses in the methods of DEDS and we are pleased to welcome their new volume
into the series.

This textbook is comprised of three groups of chapters. The first group,
Chapters 1-5, is concerned with establishing the basis mathematical tools for the
modelling and control of DEDS. This includes chapters on the application of
mathematical graph theory, the ideas of formal language concepts and finite
automata. The concepts and structure of control for DEDS appearsin Chapter 5.

Graphical techniques for DEDS then dominate the second group of chapters, 6—
11. These techniques start with flow diagram methods in Chapter 6. This short
chapter is followed by four key chapters, 7-10, on Petri nets. These chapters detail
the basics (Chapter 7), and the properties (Chapter 8) of Petri nets, and then move
on to Grafcet in Chapter 9 and the timed, colored, fuzzy and adaptive varieties of
Petri nets in Chapter 10. A brief look at statecharts and their link to Petri nets in
Chapter 11 closes this second group of chapters.

The final grouping of three chapters looks at what might be termed DEDS
tasks. Chapter 12 has a strong implementation focus with a useful section on ladder
logic diagrams and comments on how Petri nets might contribute to this
widespread programmable-logic-controller programming paradigm. The problems
of supervisory control and job scheduling are considered in the last two chapters of
thisfinal group.

The practitioner will be interested to see the applicability of the DEDS
techniques illustrated by the wide range of systems used as examples in the
textbook. There is a large group of examples based on the problems of flexible
manufacturing systems (FMS). These are based on different cell structures using
components like ‘pick and place’ robots, milling units, conveyor belt systems,
storage units or bins, and workpiece sorting units. Fortunately, all these
components are easily understood by the non-manufacturing specialist and so
provide good accessible introductory examples. Manufacturing industry
transportation systems based on automatic guided vehicles (AGVs) are also used in
examples. Real system complexity is soon experienced by the reader when FMS
and AGV systems are interlinked.

Other examples used in the textbook include crane-based loading systems,
tank-filling systems, distributed computer systems, motor- and motion-control
systems. The discussion of a two-tank-filling system (given in Chapter 8) provides
an aternative view of a control problem often treated in classical control
engineering textbooks. The problem of modelling the operation of a pedestrian
crossing and the human resources problem of when three participants will make it
to a meeting give a fascinating illustration of the potential of DEDS techniques to
model and analyse problemsin fields far removed from manufacturing.

Industrial Control Centre M.J. Grimble
Glasgow, Scotland, U.K. M.A. Johnson
December 2006



Preface

For whatsoever doth make manifest is light
Ephesians 5.13

This book presents results of research achieved in friendly collaboration across
borders and moreover between continents and emphasizes a belief in engineering
science being for the benefit of mankind the world over. This aspect of the book’s
ethos is epitomized by the authors’ profiles, one being from Central Europe and
one from the USA.

Motivation

A number of years ago research work on a woodworking process control raised our
interest in discrete event dynamic systems (DEDS). We remembered that the
process was an automatic production of laminar parquetry precasts. Work-piece
preparation and composition included many discrete events and concurrent
processes. Since then, we have started a systematic study of DEDS. Each school
year since 1993, we have given lecture courses on DEDS within the Master
program at the Department of Automatic Control Systems, Faculty of Electrical
Engineering and Information Technology of the Slovak University of Technology
in Bratislava, and undergraduate and graduate programs in the Department of
Electrical and Computer Engineering, New Jersey Institute of Technology, Newark,
NJ 07102, USA, respectively.

The presented textbook contains most of the lecture material gradually
elaborated in the courses of the past ten years. Our teaching activities have been
accompanied by significant research and student projects in the field of DEDS,
mainly on various topics concerning Petri nets used for modeling, analysis,
performance evaluation, discrete-event control, supervisory control, and job
scheduling of manufacturing processes, automatic guided vehicles in flexible
manufacturing, assembly/disassembly processes, computer networking, and
workflow management. Other discrete event models and their applications under
our study include statecharts, ladder logic diagrams, finite state machines, digraphs,
and Grafcet.

While performing the teaching and research activities, we have felt a strong
need for a textbook that systematically and comprehensively introduces the
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mathematical background and various modeling tools for the purpose of DEDS
analysis, performance evaluation, control, and scheduling. Thus students and
researchers of various background can easily learn and grasp the essence of DEDS
that is of growing importance. Their demand and the needs arising from our
teaching, research and development activities motivate us to write this present
book.

Contents

The mentioned lectures and this book particularly concentrate on Petri nets and
their use in the modelling and control design for DEDS. They serve as a basis for
extending to other tools and approaches such as Grafcet, statecharts, supervisory
control theory and job scheduling. The textbook contains the necessary
mathematics and computer science material. It includes discrete mathematics,
formal languages, and finite automata. They are essential for non-computer
science/engineering students to master the subjects of DEDS. Such material helps
one describe and understand the nature of DEDS as well as the methods to describe
and govern them. Standard and reactive flow diagrams are then introduced. The
substance and properties of Petri nets and other tools useful for the modeling of
DEDS have been built up systematically. Advanced Petri net tools include timed,
stochastic, colored, fuzzy, and adaptive Petri nets. Petri net-related tools include
Grafcet (also terms Sequential Function Charts), and statecharts. Various aspects
concerning control design methods are followed consistently throughout the
textbook. Theoretical aspects are illustrated and explained using numerous
problem-solving examples dealing with various computer-integrated systems. We
summarize the contents of all fourteen chapters as follows.

Chapter 1 introduces the concept of systems and states, continuous, discrete-
time, and discrete-event systems, the definition and properties of DEDS, and some
system examples. Basic transition systems are described in detail as the most
fundamental representation of DEDS.

Chapter 2 presents directed graphs, subgraphs, and directed paths and circuits
in them. Examples are given to illustrate these concepts.

Chapter 3 introduces the concept of formal languages and their classification.
They form the basis for many theoretical developments in both computer science
and supervisory control theory of DEDS.

Chapter 4 discusses DEDS control system including specifications and control
functions.

Chapter 5 introduces the concept of finite automata or state machines. It
discusses through examples how they can be used to describe a real system and
how control specification can be described with their help. Non-deterministic finite
automata are also presented.

Chapter 6 discusses the standard flow diagrams used in software development
and reactive flow diagrams for DEDS.

Chapter 7 introduces the idea of Petri nets, their basic definition, matrix
representation, and various classes. It also discusses how they can be interpreted
for control purposes.
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Chapter 8 presents the important properties of Petri nets and their implications
in modelled systems. Analysis methods based on reachability trees are elaborated.
Examples are given. The structural properties of Petri nets are also discussed.

Chapter 9 presents Grafcet (also named sequential function chart) — its presence
in industry is significant, especially among automatic control and automation
equipment companies. Its comparison with Petri nets is given.

Chapter 10 introduces the advanced concepts resulting from the study of Petri
nets and industrial needs in exploring their utility. They include deterministic and
stochastic timed Petri nets for performance evaluation purposes. Colored Petri nets
are used to specify complex systems with many similar subsystems, components or
specifications. Fuzzy Petri nets combine fuzzy set theory and Petri nets to describe
uncertainty embedded in many practical applications. Adaptive Petri nets further
embed learning capability into Fuzzy Petri nets.

Chapter 11 presents the idea of statecharts and their applications to complex
system design.

Chapter 12 introduces modeling methodology, conflict resolution, ladder logic
diagrams, and control program design for DEDS.

Chapter 13 presents the essential concepts of supervisory control theory based
on automata and Petri nets. Several fundamental approaches are presented.

Chapter 14 discusses the job scheduling problems and the use of Petri nets for
such purposes. The solution method based on max-plus algebra is also introduced.

Aim and Use of this Textbook

This book aims to introduce to students, engineers and researchers the
fundamentals of various discrete event modelling tools, as well as applications.
The discrete mathematics and related background material are included. It is
suitable for class use and can be easily tailored to meet the different needs from
senior undergraduate and graduate students. In an introductory course to DEDS for
engineering students, the following contents are suggested:

Chapters 1-8, and 11

For a more advanced course in DEDS and for students with required
mathematics and entry-level knowledge of DEDS, the following contents should
be offered:

Chapters 1, 2, 4, 7-14.

For computer science and engineering students, such materials as discrete
mathematics, formal language, and automata can be skipped or only their brief
review is needed.
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Notation

AxB

Rc AxB

f:A—>B

abbreviation for “if and only if”

logical operators: conjunction, disjunction,
negation, and implication, respectively

logical implication in both directions
ordered n-tuple of n objects o,,0,,...,0,

set of n elements a,,a,,...,a,

empty set

the number of elements (cardinality) in set A
set intersection, union, and difference

set A is a proper subset of B and A=B is
excluded

A'is a subset of B
Cartesian product of sets A and B

binary relation from set A to set B

function f, which maps elements of set A into set
B
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xeA

xeg A

N

N+

u<v

Z=U+V,z=

X belongs to set A
X is not an element of set A

set of natural numbers N ={0,1,2,...}

set of positive integers, i.e.,, N* = N\{0}

set of integers

set of real numbers

set of positive real numbers

vector u with entries u,,u,,..., U,

iff u <v, forallk=12,...,n

iff
(u, <v,forallk =1,..,n)A(u, <v,at leastfor onek)

sum of vectors z, =u, +v,,forallk=12,...,n

vector time variable

set of |P| -tuples consisting of |P| natural
numbers
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set of transposed |P| -tuples consisting of |P|

integer numbers, i.e., the set of integer number
|P| -vectors

nxm matrix with n rows and m columns

a sequence (string, formal word) of elements

a; ,a; .., @ inthis order
the set of events

the set of all sequences (strings, formal words)
created from elements of set ¥ and the empty
sequence &

set " without the empty sequence z , i.e.,
Tt=3"\¢

length of the sequence (or state path or event

path ) o given as the number of elements in
sequence (or state path or event path) «

empty string, i.e., the string for which |£| =0

set of pre-places (post-places) of the Petri net
transition t

set of input (output) transitions of the Petri net
place p

transition t of a given Petri net is enabled or

fireable at marking m represented in the vector
form and its firing results in marking m'
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Rey (M) reachability set of Petri net PN given initial
marking mg

®,® operations of the max-plus algebra



1

Basic Description of Discrete-event Dynamic Systems

1.1 Introduction

People observe various phenomena of nature and endeavor to comprehend them.
The first step in that is a reflection of the phenomena by imagination and
description. The reflexive process is a process of abstraction. In this process, the
notion of “system” is of basic importance.

A system is defined to be a group of objects separated from the universe and
having mutual relations.

Different physical entities can constitute system objects. If time is included
among the system objects, their temporal properties or the system dynamics can be
considered. The system dynamics is given by the time behavior of the system
objects. The behavior is called the process.

A real physical system is represented by an ideal system created by human
thinking and understanding. Mathematical representations of real systems are the
most abstract and precise descriptions. Since the very beginning of its existence,
mankind strives not only to know and to describe natural systems but also to
govern and control them.

Control of a system is based on knowledge about the particular system. This
knowledge is developed via abstraction based on observation of the system. The
observation is realized by measurements and if possible, by experimentation with
the system. Two main abstractions are to be distinguished, namely:

1. The notion of a continuous system and
2. The notion of a discrete system.

A natural question arises about the substance of these abstractions. A
continuous system is specified by a set of continuous variables, a set of continuous
functions over the respective domains of these variables, and by derivatives of the
variables and functions. Such a system is called a continuous-variable dynamic
system (CVDS). One can find a good systematic survey of the CVDS control
theory in the book by Jérgl (1993). A discrete system is specified by a set of
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discrete variables and relations defined on them. A hybrid system is a combination
of both.

Sometimes the relations of system variables are not treated with respect to time.
Then they describe the static behavior of the studied systems. However, time is
mostly involved in the analysis and synthesis of systems and dynamic system
behavior is considered.

Figure 1.1 illustrates the classification of continuous and discrete systems
considering dynamic behavior. In order to simplify the illustration, a system with
one variable is depicted. Figure 1.1.a shows the case when the continuous variable
x(t) is a continuous function over a continuous time interval. The function domain

and co-domain are real numbers. A system is continuous if it is defined by
continuous variables and continuous functions such as the function depicted in
Figure 1.1.a. A discrete system is given by discrete variables and discrete functions
or relations as illustrated by Figure 1.1.b. The system in Figure 1.1.b consists of
one object in the form of one variable that takes on values from the set of real
numbers in discrete time points.

x(0) x()

x(t) x()

Figure 1.1. Properties of one-variable system

Figures 1.1.c and 1.1.d show the mixed/hybrid cases when the system is semi-
continuous. Usually, a system has more than one object or variable. Then a set of
variables can be aggregated into one or more vector variables. Note that the case
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depicted in Figure 1.1.b can be understood either as a discrete representation of a
continuous system or as a representation of the system that is discrete by its nature.
The role of the semantics or interpretation is obvious. Therefore, the discrete or
digital representation of continuous systems has to be distinguished from the
representation of systems that are discrete in their nature and substance. The
discrete representation of a continuous system is obtained by sampling continuous
variables at discrete time points.

Continuity and discreteness of a system is one aspect of the view on system
properties. Another aspect is that CVDS are time-driven systems. The reason for
the dynamic development of system states is time. On the other hand, discrete
systems can be time-driven or event-driven.

States

qs T

Os 1

92 +
(1 ———--mmmmmmmmmmms oo

Figure 1.2. An event-driven system

Let us compare Figures 1.1 and 1.2. The discrete variable q describes the state
of the system. There are four states qi, 4o, 03, and g4, 1.4 for short, and three events
€1, €, and es, e,.3 for short. Figure 1.2 shows that the state change is event-driven.
The events occur at discrete time points and the state changes depend on the events
only. Such systems are called discrete event dynamic systems or DEDS for short
(Ho 1991; Ho and Cassandras 1983). They are also called discrete event systems
(Ramadge and Wonham 1987; Zhou and DiCesare 1993; Jafari 1995; Bogdan et al.
2006). As mentioned earlier, Figure 1.1.b has a double meaning. It can represent
either time-driven CVDS or event-driven DEDS when the events occur at discrete
time points and cause the change of system states as depicted in Figure 1.1.b.

The applied system analysis and synthesis methods depend on the system
nature. In this textbook we will study systems that are fully discrete in their nature
and event-driven, i.e., discrete event dynamic systems. Their name expresses their
specific character. DEDS are characterized by a set of states which the system can
take, and by the set of events that cause the state changes at discrete time points.
The events may take place asynchronously as opposed to the synchronous nature in
a discrete time system. The change of states and occurrence of events are the
essence of the DEDS dynamic behavior.

A primary task of the DEDS theory is creating a DEDS model. Without such a
model it would be impossible to analyze and control DEDS just as it is true in
classic CDVS control theory. Obviously we are interested in a model that is
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sufficiently general and includes the DEDS dynamics. There are two ways to
consider the dynamics:

1. To specify values of the system variables and system relations in defined
discrete time points; and
2. To specify time order of the states or events.

The latter case means that time is not explicitly expressed and only the precedence
relations for DEDS states and events are given. The order of events can be
determined by means of their indexing. In other words, it is given which event
happens before some other events. Such an approach is more abstract and avoids
problems related to the time relativity.

The control of DEDS can be designed if there is a DEDS model available.
Control engineering design methods perform the following tasks:

Formulation and specification of the given system control tasks;
Determination of control algorithms;

Design of technical means necessary for the control implementation;
Creation and verification of control programs; and

Implementation, testing and maintenance of the control system function.

Control engineering is an applied interdisciplinary technical science. To a
considerable extent, the solution methods are independent of the technological
substance of controlled systems. For a control it is important to achieve such an
influence of various agents on the system that parameters and behavior of the
system are as required (Kozék 2002; Jérgl 1993). The system behavior and various
influences on it are given by physical, chemical, biological or other quantity values.
What is important from the viewpoint of control is the information the quantities
carry, but not their physical substance.

Automatic control is based on the information manifestations of the system. In
other words, a system is described by means of information about the spatial
location of objects, time, system parameters, properties, characteristics, etc. Time
is substantial for the dynamics of events. As mentioned earlier, the time evolution
of system variables is called the process and in the context of DEDS, it is called the
discrete process.

1.2 Discrete Variables and Relations
The notion of DEDS has been specified in the previous section. It is based on the
discrete character of the individual variables and relations. It is useful to study the

property of discreteness in some detail.

Definition 1.1. Let D be a finite set of nelements, i.e.,

D={d,,d,,....d,} (1.1)
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Let v be a variable taking on values only from set D, i.e.,

v=d, eD (1.2)
then v is a discrete variable.
Definition 1.2. Let two non-empty finite sets D and E be given:

D={d,.d,,...d,} (1.3)
E={e.e,..e,} (1.4)

A binary relation R from D into E is defined by
Rc DxE (1.5)

where symbol x denotes the Cartesian product.
If a relation is defined on the sets for which D=E = A then R< Ax A and we

say that R is a binary relation on A . The relation R can be empty. If, e.g.,
(d,.e;)eR we write d, Re,. Functions or mappings are subsets of relations.

They are special relation cases as formally given next.

Definition 1.3. Let a binary relation R from D={d,,d,,..d,} into
E={e,&,,..€,} begiven. Let for any two elements of D x E

(di,ej)e DxE, (dk,el)e DxE,

1.6
e 2l e 2 mbk e L2 nbl e 2, m) (16)

If the following implication holds true
(d;=d, and e, ¢ )=((d;.e;)e Rand (d,.¢, )« R) 1.7

then the relation R is a discrete function or a discrete mapping notated f defined
on the domain

DOM ={d, .d, ,...d, } (1.8)
where DOM is the set of all first elements of the pairs (di ,ej) belonging to the

relation R . A co-domain of the function is set CDOM that consists of all the
second elements of the pairs (di,ej) belonging to the relation R

CDOM ={e ,e, ,....e } (1.9)

i1 iy e G
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We write
e, = f(d;). d; e DOM, e; e CDOM (1.10)

The right-hand side of Equation (1.7) is an AND conjunction of two
propositions. If the premise is true, they both are true. It means that both ordered
pairs (di,ej) and (d, e, ) cannot belong to the relation R. However, one of them

can be in R. Another formulation of this can be as follows. A function is a binary
relation from set D={d,,d,,...,d, } into set E={e,,e,,....e, | if there are no two

ordered pairs (dp,er ),(dp,ev) inRsuch that e, #e, .

1.3 Discrete Processes
Let a finite set X be given as

={e,e,...e,} (1.11)

The set X is called the event set. We assume that an event e, X occurs at the
time point 7, . Let a sequence of events be given as

o=¢€ ,8 ,..,&

[P i

ooy €5

In

(1.12)

where e; €X occurs in the discrete time point z; , e, €X in time point 7, , etc.,
e, in time point z; , etc., and ¢ in time point z; , 7, (z; (...(7; (...{7; . The

sequence & is called a discrete process. In this particular case when elements of a
sequence are events we speak about the event string.

Figure 1.3 shows layout of a manufacturing system including a milling machine
M, a grinding machine G and three belt conveyors C1-C3. The parts to be
processed in the manufacturing system come into the system irregularly with
various gaps as a sequence one by one part. Maximum three parts can be fed up on
the conveyor C1. Input of a part is detected by a photo-sensor P11. The part is
stopped by a stopper at the end of C1. Presence of the part at the end of the
conveyor is signalized by a photo-sensor P12. If the milling machine M is free and
a part is available at the end of C1, the part is transferred by the transportation
means T1 into the milling machine. After milling the part is transferred by T2 onto
the conveyor C2. The photo-sensor P21 detects input of the part on the conveyor
C2. In the conveyor section between the sensors P21 and P22 there can be
maximum two parts. The same mechanism holds for loading of the grinding
machine G. Maximum four parts can be loaded on the conveyor section P31-P32.
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=1

P31 P32

Figure 1.3. Manufacturing system layout

In a manufacturing system, typical events are the input of a part into a conveyor

section, arrival of a part in some position on the conveyor, start of an operation,
e.g., start of milling, end of an operation, e.g., end of milling.
As an example, consider the following event set:

Z::{SCl’eCl’mCl'rnCZ’rnCB’SM’eM’SCZ’eCZ’gCZ’gC3’SG‘e S € } (1'13)

G'¥c31¥Cs

where s., stands for input of a part on conveyor C1, e, means arrival of a part at
the end of the conveyor C1, m., means the transfer of a part from the conveyor C1
into the milling machine, s,, is the start and e,, the end of milling, m., is the
transfer of a part from M on C2. Similarly, g., and g., denote transfers from C2

in G and from G on C3, respectively. The other events are denoted similarly.

Suppose that the manufacturing system is empty in its initial state. Both
machines and conveyors are free. A possible sequence of events starting from the
initial state is

0, = 501961mc1SM SCleM mCZSCZeclmclsM eCZ gCZSG (114)

Event S, occurs at the time pointz, , event e.; atz, ... whereas z,(z,(......
Let us consider another event sequence example:

0, = SCleclsclscl rT]ClSM eCileM mCZSCZmCZlSM eCZQCZEM SCl (115)

Consider the following sequence starting from the initial state when the system is
without parts (empty system):

53 =Sc1€c1€c1 (1.16)

It represents an example of a technologically unfeasible event sequence in the
given system. Consider a sequence from the beginning:

04 =Sc1€c1MeiSy Sci€eiMe (1.17)
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This is an example of a feasible event string, but not an admissible one due to the
requirement that only one part can be present in the milling machine.

As mentioned before, an event is associated with a change of state. For example,
the empty state when all conveyors are empty and both machines are free is
denoted q, . Arrival of a part on conveyor C1 is an event. State q, turns into state

g, characterized by the presence of a part on C1 moving toward the stopper, while

other conveyors and machines are still free.

The manufacturing system in Figure 1.3 is a serially arranged production line.
A serial-parallel production cell example is shown in Figure 1.4. Suppose that four
kinds of semi-products are produced from one kind of parts coming in via
conveyor C1 and transported through the cell via conveyors C2-C4. Table 1.1
describes the options how to produce them.

= & Cedl o s 1.7
_JRr2
(ok]
OUTPUT l'

Figure 1.4. Manufacturing system arranged in a serial-parallel structure

Table 1.1. Job options in the manufacturing system

Operation A B C D
1 M1 M3 M2 M1
2 M2 or M3 M2 or M4 M4 M3
3 M4 M3 or M4 M3 or M4 M3 or M4
4 M4 M2

The system is flexible in that there are several ways to finish the production
tasks having the job alternatives given in Table 1.1. The optimal route of the
processed parts is to be found. A related problem to this is the job scheduling. Both
problems can be solved with respect to the given optimality criterion, e.g., to
minimize the overall production work-span (work-time), also called makespan and
completion time. The operation times have to be available for that task. A joblist
breakdown with respect to operation time specifications is given in Table 1.2. Time
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durations for the semi-products A, B, C, and D are denoted by a, b, ¢, and d,
respectively. The scheduling problem will be treated in detail later.

Individual events of the system depicted in Figure 1.4 can be specified as
before:

aci,Pcyiac,, 005,803, Pc3,8c4, by

Sm11€m1re Smar €mas

Sricim1r Cricimir Sricic2r Cricicz Sricim2 1 Cricim2 1 Sricica Cricicar Srimic2 1 Erimica
Srimim21 Crimam2 s Srimac2 s Erimaca s

2 = {Spocim21Bracim2 s Sracicar Eracicar Sramac4s Eromaca s Sracam 2 Eracam2  Sracacs
€rocacsr Sramacar Cramacas

Sracam3r€racamar Sramacz Cramac2 s Sracamar Cracomar Sramac2r Eramace

SR3C2C4 ' eR3C2C4 ' sR3(34C2 ' eR3C4CZ ' SRSM 3M 41 eR3M 3M 41 SRSM 3C41 eRSM 3C41 SR3C4M3’

eR3C4M3 ) SR3M 4C4» eR3M 4C4» SR3C4M4 ! eR3C4M4

(1.18)
Table 1.2. Job duration times specifications
Products
A B C D

Oper Machines Machines Machines Machines
ation M1 | M2 | M3|M4|M2|M3|M4|M2|M3|M4|M1|M2]|M3| M4
1 ay b3 C12 di

2 a2 | Az b2, D24 Co4 da3

3 das D33 | b C33 | Cas ds3 | daq
4 D44 dz

Occurrence of a part at one side of the conveyor is denoted as eventa, on the
other side as b . Sg,ciy; iS the start of the part transfer via Robot R1 from conveyor

C1 to the machine M1, egc,y; IS the end of the transfer. The system control

depends on the conveyor capacities.

It is assumed that the transfer times consumed by the robots and conveyors are
negligible because they are much smaller than operation times. If such an
assumption is not acceptable times of transfer operations can be considered
separately. In the latter case Table 1.2 would be extended by further time
specifications. Sometimes the transportation times can be included in the operation
times of the processing machines.
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1.4 Basic Properties of DEDS and their Specification

Characteristic properties of DEDS can be best illustrated on examples. DEDS
include flexible manufacturing systems, digital computers, local or global
computer networks, operation centers, and transportation systems on surface or in
air. Various properties of DEDS events are to be studied:

Event synchronization
Concurrency
Parallelism

Conflict

Mutual exclusion
Deadlock

System liveness
Reversibility

State reachability
Event scheduling

Mankind strives not only to observe the natural phenomena but also to govern,
to control and to benefit from them. Many various tools for the specification and
analysis of DEDS are used nowadays. In addition, there is a need for tools that are
suitable for the design of DEDS control. They should be able to specify the
required properties of DEDS and to ensure the real-time reactivity of the controlled
DEDS.

Basically the tools can be divided in three groups:

e Graphical tools
e Algebraic tools
e Formal language-based tools

The graphical tools are frequently used due to their transparency and ability to
provide rich visual information. The main graphical tools include:

State-transition diagrams or finite-automata
Reactive (real-time) flow diagrams
Statecharts

Petri nets

Grafcet

Ladder logic diagrams

The algebraic tools are the following:

Boolean algebra

Algebraic expressions based on the respective state space
Temporal logic

Max-plus algebra

The tools based on formal languages are as follows:

e Formal language models
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e Standard programming languages combined with real-time operating
systems
e Real-time programming languages

The different tools listed above are not equivalent with respect to the
application field. For example, max-plus algebra is effective especially for the
analysis and control of job scheduling, while Grafcet is useful for the specification
of the sequence control (FriStacky et al. 1981, 1990; Zhou and Venkatesh 1998;
Zhou 1995).

The first two basic groups can serve as intermediate means between the
requirements imposed on the system and the control that ensures them. A final
specification and implementation of control requires the third group, namely a
programming language. The specified control will then be implemented on
appropriate hardware components, e.g., personal computer, process computer,
programmable logic controller, etc. From a graphical or algebraic specification a
control program can be generated automatically. Also the transformations among
the different specification tools are useful.

On the other hand, sometimes and for someone there is no need to use any
intermediate means and it is possible to write a control program directly. However,
for most people the opposite is true. A program formulated in any procedural
language is a string of instructions to be performed separately and to force the
system to behave as required. Intermediate means help to avoid the programming
incorrectness.

Each specification tool listed above is based on the concept of the system state
and state transitions described earlier as events. This fact can be illustrated by the
following generally valid system behavior scheme:

— STATE—->TRANSITION - STATE - TRANSITION —>

Because of the generality of this scheme, the "state and transition™ concept is dealt
with in more detail in the following section.

1.5 Basic Transition System

Various DEDS can be described uniquely by means of the so-called basic
transition model proposed by Manna and Pnueli (1991), which serves us as a
general description framework. It is defined by the quadruple

SYST =(11,Q,%,0) (1.19)

where
I ={u,,U,,...,u, } is the finite set of state variables;

Q is the set of states where each state is given by the particular values of

the variables from set IT . This value assignment is called the interpretation
of variables belonging to the set IT;
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> is the set of transitions whereby a transition e € X is a partial function
e:Q—=22. Note that 2° is the power set defined as a set of all subsets
created from set Q including the empty set &, C, is a condition imposed
on a transition e so that e can occur only if C, is fulfilled, and C, can be

empty (meaning no condition); and
O is the set of initial conditions of the system. It includes states in which
the execution of potential events can start.

The modeling power of the Manna and Pnueli model is that any correct
specification by means of any tool described earlier can be transformed into a basic
transition system. In other words, suitable transformations can be established
between different system specifications. We can see that transitions in this model
correspond to events introduced before. The time is not explicitly expressed in a
basic transition. Rather, a possible sequence of events or an event precedence
relation is used.

The function Q —%—2° defining an event e is quite abstract. A standard
particular case by excluding system control (if only controlled system is
represented) is when one state is mapped into one another state due to the condition
C. or because there is only one-to-one mapping. The case when a state is mapped
into state subsets presents indeterminism and its significance is purely theoretical.
An example of that is the indeterministic finite automaton (see Section 5.4). In
practical system control the indeterminism should be removed. If control is
included the function Q—=—2° can map a state to more states. See Chapter 4
for more details.

A general form of the specification of an event e is a transition relation given
as an assertion for each transition e:

p.(T0,IT) (1.20)

which relates the interpretation of state variables given as a state s with the
interpretation of state variables given as a succeeding state S'. Under assertions we
understand Boolean expressions extended by quantificators 3,V , etc. In other

words, in each state the relation p, (H,H') determines the next state or states after

transition e takes place. The following form describing the transition relation e
can be used:

pe(H,H')z C. (M)A (u,=ex)A (u'2 = exz)/\.../\ (u'n = exn) (1.21)

where C,(I1) is an assertion stating a condition for state s under which transition
e is enabled and the system comes over into state S'; ex, , are logic expressions.
Assertion C,(IT) is constructed over state variables such that if the variable values

lead to a true Boolean value from C,(IT), e is enabled and state variables U',_,
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are given the values according to expressions ex, , . These expressions are built up
of state variables u,_ . Notation ex; is shortened in Equation (1.21). It has the
following meaning:

u'; =lex;, if and only if lex;, is true (1.22)

State variables in DEDS are discrete ones. If they are logical variables or
expressions built up of logical variables, then Equation (1.21) can be put together
directly based on them. Other than logic variables can be represented by means of
a set of the auxiliary logic variables further used in Equation (1.21).

Figure 1.5 shows an example of a simple discrete event dynamic system. The
system is an input portion of a flexible manufacturing system. The parts to be
processed are transported into the system by belt conveyor C1. They arrive as an
irregular stream. There are different gaps between individual parts. A video system
VS scans each part when the latter enters the VS range (detected by sensor Pg). It
evaluates the parameters of shape and quality of an incoming part and sorts it in
two groups. These two groups are routed via turntable TT;. Intervals between
individual parts are so that a new part comes in the range of sensor P, when the
preceding part is already on conveyor C2 or C3. The parts of the first group are
placed on conveyor C2 while those of the second group on conveyor C3.

VIDEO
SYSTEM
VS TURNTABLE
T,
° g
|G |[>
rI—

_>

Figure 1.5. A manufacturing system

Now, let us model the system described in the example in a form given by
Equation (1.19). We have
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SYST =(11,Q, %, 0) (1.23)
_ [P PP Yo o THETTIH ETTAV, (1.24)
TTIH,TTV

where Py-P, are logic variables corresponding to sensors Py-P,, respectively. If a
part is under sensor P, then P, =1, etc. Note that the variables are written in italic

in order to distinguish them from the corresponding sources of the variables. y;
and yy, serve for the group distinction: ;=1 and y,,=0 for the first group and 7,=0
and ;=1 for the second one. T1 is a state variable signaling the presence of a part
in turntable TT1 when T1=1; otherwise T1=0. ETT1H and ETT1V indicate the
turntable horizontal and vertical positions, respectively. TT1H, and TT1V are
commands to set the turntable horizontally or vertically. Before the start of the
system operation, conveyors C1-C3 are switched on and remain in this state during
the operation. Let there be the logic C1-C3 corresponding to the conveyor state;
C1=1 if conveyor C1 is switched on and similarly for C2 and C3.
The set of states is as follows:

Q= {q0 (0,0,0;0,0; 0;1,0;1,0),
. =(L0,0;0,0; 0;1,0;1,0),
, =(1,0,0;1,0; 0;1,0;1,0),
, =(0,0,0;1,0; 0;1,0;1,0),
, =(01,0;1,0; 0;1,0;1,0),
s =(0,0,0;1,0;1,1,0;1,0),
s =(0,0110;12,0;10),
. =(1,0,0; 01 0;1,0;1,0),
s =(0,0,0,01; 0;1,0;1,0),
. =(01,0;01 0;1,0;1,0),
q10 =(0,0,0; 01 1,1,0;1,0),
q,, =(0,01011;1,0; 0,1),

,=(00%0110710,1)

,=(0,0,0;0,0;0;0,0.)
., =(10,0;0,0;0;0%01),
s =(10,0,0,1,0;0%01),
. =(0,0,0,010;0101)
,=(010;0%0;0101),
s=(0050%10%01)

o =(10,0;10;0;0% 01),
. =(0,0,0;10;0,0.02),
.=(010;10;0,0%02),
,=(0,0,0;1,0;1,0%0,),
,=(00101110,20}

(1.25)

The set of transitions T is given by the set of the following partial functions:

€ :el(qo):ql' €, :ez(ql):qz- €3 :93(Q2):q3- €, :e4(Q3):q4v---etC
(1.26)

All functions can be given via Tables 1.3 and 1.4. Function values are in the
table cells. Let the initial conditions ® for the occurrence of the events from set X
are these: the system is in state go and C1=C2 =C3=1. Establishing the system
in g is indicated by the logic variable INIT.
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Function argument

Qo

01

Qs

Qs

Us

Qs

Q7

Qs

Qo

Q10

Q11

€

Q1

€

0z

€3

€4

€s

€6

€7

€

€9

€10

€11

€12

€13

€14

€15

€16

€17

€19

€20

€21

€22

€24

€25

€26

15
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Table 1.4. The second part of the transition set functions

Function argument

O12 | 913 | Q14 | O15 | Q16 | Q17 | O1s | Qa9 | G20 | C21 | O22 | Oa2s

- - - - - - - - - - 023 -

All possible event sequences in the analyzed manufacturing system are built up
from the sequences
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o, =6 0, =6€,€;€,6;,€6; € O3 =€ €4 €y €5 €, €56y,
O, =65 O05=6;58;635€56,€6, 05 =0y €y Cy30C,y ExExE

(1.27)

The buildup or concatenations of the event sequences at Equation (1.27)
follows the scheme as shown in Figure 1.6. Activities of the system can start when
the condition © is fulfilled and it means that the first event sequence can be only

o, . Equation (1.21) for the investigated system are
p, (IIT) = (CLAC2AC3 A INIT)/\(F’O, —lex, if and only if lex, = 1) A
(Pl' :E if and only if lex, :1)/\(le :E if and only if lex, :1j/\
(701, =lex, if and only if lex, =1)/\(y02' =lex, if and only if lex, =1j/\

Tl' = E if and only if lex, =1j/\(ETT1H/ =lex, if and only if lex, =1)/\

([ETTav’ = Tex if and only if tex, = 1) {TT1H' = lex, if and only if tex, =1)
A (TTlV/ =lex, if and only if lex, =1
(1.28)

where

lex, =lex,,
T - — (129
lex, =Ry AR AR Ay AYou ATIAETTIH AETTIV ATTIH ATTIV

True logic value is 1 and false 0 in Equation (1.29). For event e, we have

Figure 1.6. Event sequence patterns
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p,,(ILIT) = (C1AC2AC3 A INIT)A(PO/ ~lex, if and only if lex, =1JA
(Pl' —Tex, if and only if lex, :1)/\(P2’ =Tex, if and only if lex, :1JA
(701, =lex, if and only if lex, =1)/\(702/ = E if and only if lex, :1j/\
(Ti' —Tex; if and only if lex, =1)A ([ETT1H" = tex, if and only if lex, = 1)

([ETTav’ = ex, if and only if lex, = 1) [TT1H' = lex, if and only if lex, =1]

/\(TT].V’ = E if and only if lex, =1
(1.30)

where

lex, = lex,,

- — = I —(1.31)
leX, =R AR AR AYu AV ATIAETTIH AETTIV ATTIH ATTIV

Other events would be expressed in a similar way.

Now consider an extension to the above system so that the parts of the first
group are processed in a batch of three by Ra; or Ra,. Both robots perform the
similar operations. The parts of the second group to a cell are routed via turntable
TT,. They are processed in two by Rg robotic cell. The number of parts is checked
by means of photo-sensors Pai—Pazand Pgi—Pg,, respectively. Gate G1 (G2) goes
up when three (two) parts are prepared for the next processing. Transport conveyor
capacities are three transported parts for C2-C5, C8-C9 and two for C6-C7,
respectively. Only one part can be allowed between sensors P, and P, .

When a triple is prepared under sensor Pas, robot Ra; performs the required
processing operations and then transfers the triple onto conveyor Ol. Ra, and Rg
operate similarly. The aim of the control is to coordinate and control operations
and movement of parts within the system. The co-ordination control level is
superior to the process control one. The process control examples are the vision
system’s detection of parts, robots” movement control, and conveyor speed control.
The vision system start is an event commanded from the coordination control level.
Other facts concerning the FMS function are evident from the layout in Figure 1.7.

Now, let us outline the model of the system depicted in Figure 1.7 in a form
given by Equation (1.19). We have

Pos P Pay Pty Pagy Pagy Pags Pasy Pag s Pey s ey Pag, ETTIH,
ETTIV,ETT2H,ETT 2V, ERAL ERA2, ERB;
SC1,EC1,SC2,EC2,SC4,EC4,SC5,EC5,5C7,EC7,SCS8,
EC8,SC9,EC9,GLG2,TTIH,TTIV,TT 2H,TT 2V, RAL RA2, RB;
Yorr Vo2 Y100 71217 2107 221 LC 1 LG, LCyy LGy, LCyy, LGy, LGy,
LC,LC,,, LCy, LC,,LC,,LC,,, LCy,, LCy,, LCy,, LC,

(1.32)
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VIDEO
SYSTEM

C8

G2
» Il

B3

Figure 1.7. Example of a basic transition system: FMS with three robots

where the first part (the first two rows of Equation (1.28)) is inputs fed from the
controlled system to the control system, the second part (the third and fourth rows)
is outputs from the latter fed into the former and the third part is internal state
variables. The variables IT are determined at the higher coordination control level.
The model is built for the coordination control purpose. As in the preceding
example, variable ETT1H indicates the straight position of turntable TT1, ETT1V
its transversal position, etc. We assume that initially conveyors C3 and C6 and
conveyors in both turntables are switched on and moving during the FMS
operation. Conveyor C1 is started by command variable SC1 and stopped by EC1.
Other conveyor variables listed in Equation (1.32) have analogous meanings. The
gates are operated by variables G1 and G2. Variables TT1H, TT1V, etc., are used to
control the turntables, while RAL, RA2, and RB start robot operations. ERA1, ERA2,
and ERB signals the end of the part processing by robots RA1, RA2, and RB,
respectively. Information about routing a part is transferred from j; and j, t0 73
and ys, when the part moves from sensors Py to P; (y1 and y, should be free for the
next part), and analogously for 7, and 7, and sensor P,. LC,; and LCy, stand for
storing the number of parts loaded on C2 so that no part gives LC,, =0,LC,, =0;

one part gives LC,, =0,LC,, =1; two parts LC,, =1,LC,, =1; and three parts
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LC, =1LC,, =1 . Analogously, this holds true for LC; , but in terms of

conveyors C6 and C7, which have the capacity equal 2.

All variables in Equation (1.32) are the Boolean ones taking values of 0 and 1.
The states in set Q are given by pertinent variable values. For example, if P,, =1
and P,, =1 and all other variables are zero, the system is in a state when two parts
are located before gate G1 and otherwise it is empty. Then the arrival of a new part
in C1, signaled by P, =1, is an event given by mapping the previously described
state into one with P, =1,P,, =1,P,; =1 and all remaining variables being zero.

For example, an event e =WP3 - the arrival of a next part — in Py=0, P;=0, ...,
Pa1=0, Pax=1, Paz=1, Pas=0, ..., is

ij

pwpa(H,H'):l/\(P(; :P_O/\El/\.../\a/\ Puy AP /\P_M/\.../\ LCQZ)/\

(PL :_0/\31/\.../\%/\ Pay AP /\P_AA/\"'/\ Lng)/\

(P/;l =_0/\_1/\ /\P_Al/\ Pas APas /\PA4 AL /\LCQZ)/\

(P;\z: OAE /\PAl/\PZ/\P3/\P4/\ /\Lng)/\
( P A

/\PAl/\PZ/\PS/\PA4/\ ALCy, A

0
P,;4:P_O/\E/\ /\P /\PAZ/\PA3/\PA4/\ /\Lngj/\ A

LCq =P, AP, AcAPy AP, AP AP, AvA chzj
(1.33)

where © represents the condition that the system has to be initialized and empty
before the first event can be accepted.

The example illustrates that in a little more complex case the modeling using a
basic transition system is complicated, not transparent and very difficult for
analysis and control design. In the following chapters of this book, we try to
develop systematically theory and a way for practical use of other tools aiming to
model, analyze, evaluate, simulate and control DEDS.

1.6 Problems and Exercises

1.1. Cite some CDVS and DEDS examples from your daily life.

1.2. Derive the basic transition system models for Figures 1.3 and 1.4.

1.3. In the system in Figure 1.5, change the assumption that only one part is

processed in it so that a part can come in when another part is between sensors Py
and P;. Consider capacities of the conveyors.
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1.4. Write the expression for the event next to that given by Equation (1.33) when a
part moves from sensors Py to Py,

1.5. A robaotic cell is depicted in Figure 1.8. A-Parts are loaded into it via input
conveyor I1. The input has capacity of 1 part. The same holds for input 12 and
output O. Robot R2 picks up an A-workpiece from 12 and transfers it onto table T.
R1 picks up a B-work-piece from 11 and puts it into the free milling machine M1
or M2. If both are free, M1 is preferred. After the machining, R1 transfers it onto
palette P. If there is an A-workpiece on T, R2 transfers it from the palette to T and
an assembly starts. After it, R2 transfers the product onto O. a) Analyze the system
as DEDS; and b) Create an event set and event strings corresponding to the
required behavior of the system, a realizable but not admissible event string and a
non-realizable event string.

Milling machine Assembling
M1 table T

=~

/ Pajetts P
Input 11 T JettR Output O
— ! b " —

\ ! d

‘. Robot R1 \(,’ obotR2

N ,
.
\\ PRd \\ PRd

Tlnput 12

Figure 1.8. A robotic cell with two milling machines

Milling machine
M2

1.6. For the system depicted in Figure 1.4 write a realizable event string
corresponding to the technological process A in Table 1.1, a realizable but not
admissible event string and a non-realizable event string.
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Graphs in Modeling DEDS

2.1 Simple Non-labeled Directed Mathematical Graphs

The basic transition model and its derivatives can be very easily and transparently
represented graphically. A platform for this representation is a mathematical graph.

Definition 2.1. A simple non-labeled directed mathematical graph is given by an
ordered pair

G=(AR) (2.1)

where
A is a finite non-empty set of elements called nodes or vertices of the
graph
R is a binary relation on A, which can be empty.

As explained in Section 1.2, binary relation R determines a set of ordered pairs
chosen from nodes in set A. Definition 2.1 allows for isolated nodes in a graph.

The representation of a mathematical graph based on a set-theoretic way
according to Definition 2.1 can be equivalently substituted or transformed into a
true graphical form. Let us call it the drawn graphical form. In this form to each
node corresponds a circle drawn in a plane and to each element of the relation
corresponds an arrow or directed arc. For example, a graph given by

G=({A.ALALA L 1(ALA)(ALA)(ALA)(ALA)(ALA)) (22)

is equivalently represented in a drawn graphical form as shown in Figure 2.1.

Each circle has its individuality and corresponds to one node. Even if the
circles are not denoted with symbols, the drawn graphical form is fully isomorphic
with that of Equation (2.2). Of course, it is cumbersome to refer to the left-upper or
right-lower circle, etc. Therefore, it is convenient and usual to denote the node-
circle correspondence as in Figure 2.2. For short we call a simple non-labeled
directed graph a non-labeled digraph. Obviously a non-labeled digraph G has a
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close connection with relation R. It can be said that a non-labeled digraph
represents the corresponding binary relation. The bipartite simple non-labeled
directed mathematical graphs constitute a special subset of the non-labeled
digraphs. They are characterized by a set of nodes consisting of two disjunctive
node subsets and directed arcs connecting only nodes from the different node sets.
To distinguish the two node subsets graphically, circles and bars or boxes are
usually used to represent them, respectively (see Petri nets in Chapter 7).

Figure 2.1. Graphical form of a mathematical graph

A A

A, A

Figure 2.2. Specification of the correspondence node-circle

Many graph properties of digraphs can be analyzed by analogy with non-directed
graphs. Non-directed graphs are defined as G = (A, M) where M is a set of non-

ordered pairs of graph nodes. In the drawn-graphical form the non-directed edges

are used instead of directed arcs.

2.2 Labeled Mathematical Graphs

Definition 2.1 can be further developed as follows.

Definition 2.2. A simple labeled directed mathematical graph is a 6-tuple
G=(AR, f,f,,5,S,) (2.3)

where

A is a finite set of the nodes;
R is a relation on A, which can be empty;



Graphs in Modeling DEDS 25

f, isafunction A — S, defined if S; is defined,;
f, isafunction R — S, defined if S; is defined; and
S; and S, are sets that can be empty.

If both sets S; and S, are empty, the graph in Definition 2.2 becomes a simple non-
labeled digraph.
The labels can denote, e.g., the arc weights given as integers. In Figure 2.3

there is an example when S, =& (the empty set) and S, = N " (the set of positive
integers).

Figure 2.3. A labeled digraph

Commonly, the non-labeled and labeled digraphs are called digraphs. In this
context, bipartite simple labeled directed mathematical graphs are also defined. We
will see later that Petri nets belong to that kind of mathematical graphs.

There are several ways to represent mathematical graphs equivalently. One
frequently used is the incidence matrix. For instance the graph in Figure 2.2 can be
equivalently represented by the following incidence matrix:

(2.4)

®

I
o o o o
==
» o o R

o O O

In matrix G, its rows and columns correspond to the nodes such that the first row
and first column correspond to node A, the second row and second columnto A, ,
etc. In the matrix form, directions of arcs are considered from rows to columns. If a
directed arc is present in the graph, the corresponding matrix element equals one,
otherwise zero.

2.3 Subgraphs and Components

Subgraphs and graph components defined below play an important role in our next
considerations.
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Definition 2.3. Consider a digraph G = (A, R, f,, f,,S,,S, ). Then:

1. Adigraph G'=(A, R, f,", 1,',S,,S,) is a subdigraph of G if
a. AcA
b. R'=RN(A%A)
c. f"A—>S,suchthatf,'(a)=f,(a)forac A
d. f,"R'—S,,suchthat f,'(r)= f,(r)forreR'
The graph G is also a subdigraph of itself, i.e., G'=G .
2. If G'is a subdigraph of G and G'~= G, then G' is a proper subdigraph of
G.
3. Adigraph G'= (A", R, f,", f,',S,,S,) is a partial subdigraph of G if
a. Itemc. and d. are the same as item 1a, ¢ and d.
b. R'cRN(A%A) but Rz R (AxA)

A subdigraph can be non-labeled or labeled, depending on the digraph for which it
has been constructed. Figure 2.4 illustrates the subdigraph idea.

A

A, A

Figure 2.4. A proper subdigraph of the digraph in Figure 2.2

The digraph in Figure 2.4 is a proper subdigraph of the digraph in Figure 2.2. The
set of nodes of the proper subdigraph is a proper subset

{Ail A, A4}C{A1: AL A, A4}

and all arcs not connecting the nodes of A" are canceled.

A

A, A,

Figure 2.5. A partial subdigraph of the graph in Figure 2.2
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On the other hand the digraph in Figure 2.5 is a partial subdigraph of that in Figure
2.2 because arc (A,, A,) has been omitted.

2.4 Directed Paths

The notion of a directed path is useful later in this book. We deal with it in the
sequel.

Definition 2.4. Consider a digraph G = (A, R, f,, f,,5,,S,) . A sequence of nodes

a=aa ..a (2.5)

= 4 A, i
is called a path from a, to a, inGif

1. a eAforall k=12,..,n
2. (a,Ra, ) or (a, Ra,) holds for all k=12,.,n-1, ie, a

i is in
k+1

i
relation R with a, . In other words, there is an arc either from a, to a;
or from a,  to a, . We say that path a goes from a, to a; .
A path can be non-labeled or labeled, depending on the respective digraph
property.

Definition 2.5. If there is a path of the form of Equation (2.5) in a given digraph
G=(AR,f,f,,S,S,) and

1. Ifforall k=12,..,n-1 either (aik R aim) or (aiMR aik) holds, a is called

a directed path
If a, =a, ,then & is called acycle

3. If a is a directed path and a, =a; the path is called a directed cycle

(cycle for short when no confusion arises)
4. If all nodes in a are distinct except for a, and a, , then & is called a

simple path. In other words, no node repeats in the path. The idea of
simplicity can be applied to directed paths and directed cycles to obtain
directed simple paths and directed simple cycles, respectively.

Definition 2.6. A digraph G = (A, R) is called connected if for every two nodes
a;,a; € A there is a path from a; to a;. G is strongly connected if there are
directed paths from a; to a; and from a; to a;.
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Connected digraphs have neither isolated nodes nor isolated groups of nodes.
The notion of a digraph component is based on the graph connectivity dealt with in
the following definition.

Definition 2.7. A strong component of a digraph G is a strongly connected
subdigraph of G, which is not a proper subdigraph of any strongly connected
subdigraph of G.

The meaning of the last definition is illustrated using the example in Figure
2.6.a. There are two strong components of the digraph depicted in Figures 2.6.b
and 2.6.c. A strong component is a maximum strongly connected subdigraph, i.e.,
not contained in any other strongly connected digraph. Hence, the subdigraph
depicted in Figure 2.6.d is not a strong component. In particular, it is a proper
subdigraph of the connected subdigraph in Figure 2.6.b and this fact is
contradictory to the assumption of Definition 2.7.

Sometimes it is useful to express the multiplicity of arcs in a digraph. This can
be done by introducing a weight function over relation R as shown below. Another
method is to use the multiset concept. A multiset allows multiple same members.
For example X={(A1, A2), (A1, A2), (A1, Az), (A2, Ag), (As, As), (As, Ar), (As, A)}is a
multiset example in which (A;, A;) appears three times and (Az, A;) twice in the
multiset X.

A,

A
? b. c. d.

Figure 2.6a-d. A digraph (a) and its strong components: (b, ¢) while its subdigraph (d) is
not its strong component

Definition 2.8. A directed multigraph is a triple:

G=(AR,f) (2.6)

where A and R are the same as in Definition 2.1 and f is a function f :R—> N™".
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A multigraph in the drawn-graphical form can be equivalently represented as
those in Figures 2.7 and 2.8. Note that label 1 on an arc can be omitted. Function f
is given as follows:

f(ALA)=3 (A, A)=1 f(A,A)=1 f(A,A)=2

Figure 2.7. A multigraph

A A,

As

Figure 2.8. Labeling of arcs in a digraph

An important group of connected digraphs are trees. A tree is a non-labeled
digraph with the following properties: it has exactly one node (root) with no in-
going arcs and all other nodes have exactly one in-going arc. Obviously, a tree
does not contain cycles.

2.5 Problems and Exercises

2.1. Let x1.4 be your last four digits in your identification number, respectively. Let
gi=sign(x;), i=1, 2, 3 and 4. For example, sign(0)=0 and sign(7)=1. Let fi=1-g;.
Present the graphical representation of the following digraph given the below
matrix; and identify its strong component(s) if any:
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9. 9, 9s U4
G-= f, £ f3 f,
9. 9. 93 U4
f, £ f3 f,

2.2. Prove that the rank of the incidence matrix of any connected tree cannot be full.

2.3. A part of a town street map is given in Figure 2.9.

<

Main Street Main Railway

Station

Figure 2.9. A part of the street system in a town

Represent the street system in Figure 2.9 with a directed graph. Find a subdigraph
representing possible connections between Main Street and Main Railway Station.
Find a strong component of the digraph. Find all simple paths connecting Main
Street and Highway. Give some labels to the digraph corresponding to distances
and find a shortest path from Main Railway Station to Main Street.

2.4. Given five instructors A1-A5, and five courses C1-C5 to be taught, use a
circle to represent an instructor and a box a course. Connect a solid line from an
instructor to a course if the instructor is assigned to teach it and a dotted line
meaning that the instructor can teach it if needed. Suppose that each instructor is
familiar with two and only two course materials (hence can teach at most two
courses). Given Figure 2.10a, b, please derive which one can better cover
instruction if an emergency happens such that one instructor cannot come. If an
instructor is assigned to teach a course and can teach at most two courses, how
many courses must s/he be able to teach if any one instructor has an emergency?
How about if any two instructors have an emergency? Assume that these five
courses are offered Monday through Friday, respectively.
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W
gl

| Cz | C3 | C4 | Cs
b.

Figure 2.10a, b. Graph showing who are teaching courses and capable of teaching

additional courses
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Formal Languages

3.1 Notion of the Formal Language

We will follow the way of reasoning developed in the preceding chapters. Consider
an event set Zz{el,ez,...,en} given for a DEDS. Further consider it to be in an

initial state q,. The system behavior can be defined by all possible sequences
(strings or words) of events that can occur in it starting from g, . It is assumed that
an event occurs in a discrete point of time. Further it is assumed that just one event
occurs in one discrete time point. The set of all finite and infinite sequences, which
can be created from the elements of ¥ including the empty sequence & , is
denoted as X . The set that does not include & is denoted as =", i.e., 2" =X"\¢g
where symbol “\” stands for the set subtraction.

Usually only a part L of all possible sequences %" can occur in a given DEDS.
Such a particular behavior of the DEDS is due to a subset L of sequences from %",
i.e., Lcx". L is supposed always to include the empty sequence (string, word)
and is called a formal language. The formal language L defines the behavior of a
DEDS. Our attention is aimed at formal languages with respect to the above-

introduced interpretation related to DEDS. A formal definition is useful in order to
exactly communicate the idea of a formal language.

Definition 3.1. Let a finite non-empty set of events = ={e,,e,,...,e,} be given. The
formal language L over X is a set of sequences formed from the events including
the empty sequence £ . X is called the alphabet of the formal language. A
sequence of L is also called a string or word.

From Definition 3.1 it follows that the empty string £ always belongs to a
formal language.
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Definition 3.2. The length of a word (string) & denoted || is the number of
events in the word. The length of the empty string is 0.

Example 3.1. Consider an alphabet X = {a,ﬁ}. A formal language L, is given by

L =1{2,a, B,ac,ap, BB, B} (3.2)

Language L, can verbally be determined as a set of all strings over ¥ whose
lengths do not exceed 2, including the empty string. It is finite.

Example 3.2. Consider the same alphabet as in Example 3.1. Let a language L,
consist of all strings beginning with some event £ . It is expressed as

L, ={&, B, Ba, paa, paa..a, fPa, fpaa,...} (3.2)

This set obviously has an infinite number of members.

We will focus on how a formal language can be utilized for the description,
analysis and synthesis of DEDS. An important assumption is that only one event
can occur at one discrete time point. Time is not explicitly given for a formal
language string. However, the order of events is specified. The connection of a
formal language string with a discrete process as described in Section 1.3 can
easily be recognized.

Example 3.2 shows that even in very simple cases it is impossible to put down
all strings of a formal language. The example also illustrates that the language
specification is some rule or rules for the creation of strings. Such kinds of rules
are called formal grammars.

3.2 Formal Grammars and Classification of Formal Languages

Any formal language can be defined by a generation rule of its words. The rules for
generating them, called formal grammar, are described below.

Definition 3.3. A formal grammar is formally defined by the quadruple
G=(\,.V;,P,s) (3.3)

where
V, is afinite set of non-terminal elements

V; is a finite set of terminal elements whereby V, nV; = ; the union
V =V, uV; is called the alphabet and its elements are called symbols



Formal Languages 35

P is a finite set of rules P={P,P,,.,P} for generating words. The
generating rule has the form &»?,E, GeV*®, BeV’, V' =V\F,
where the symbol > indicates that a word transformation is accomplished

using the generating rule belonging to grammar G
s is a special non-terminal one in V,, called initial element or symbol.

The fact that the left hand side word of a generating rule is @ €V * means that
a cannot be an empty word (string). On the other hand, aword S eV~ can be an

empty one. In other words, an empty string £ cannot be mapped into a string but
there can exist a production rule mapping a non-empty word into an empty one.

The word generating rules are used for formal language generation. A formal
language L generated by a formal grammar G is a set of all words, which consists
of the words containing only terminal elements of the given grammar and are
generated by the repeated application of one or more rules, always beginning at the
initial element s. Next words are generated from already created words. Rules can
be applied also on a word part. Their application is formally described by the
scheme

aav e apv (3.4)

where V", 7 eV", and as stated before @ eV*, eV and 5?5. The

process starts with s, i.e., z=g andv =g . It continues with the new generated

words according to Equation (3.4). As already mentioned, a part of word can be
transformed into another. If z =v = , the whole word is being transformed into

another one. The word generation can be considered as a replacement rule. The
generation sequence formally proceeds as

M1 SVyy '? HuipVins HiPioaVin '? Hip$ipVizs o HimPimaVim 'E) Hin DoV im
where  fu,611,Viy = fayBioaVig e My 1Brm16V12 = HamPimaVim
HySVy '? H1 @15V 21 Hoo 220V 22 'E) HoaPoonV 231+ Mo BanaV 2n '? Haon®annV 2n

Where 151001,V = oy PraV 201w Hona®an-16Y 201 = HonPanaV2n

(3.5)

In Equation (3.5) f,, =Vy; = fiy = Vy =......= & because each generation process
starts with symbol s. Consider the first row in Equation (3.5). The final word in
the row, which closes the particular generation process, is a word for which there is
no continuation of the generation process. The second generation process starts
again in s. If the sequences starting in s are exhausted, the next possible generation
processes start with the words generated in the previous generation ones. If , is
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generated from «, by the repetitive application of grammar G, a generation
sequence can be briefly written as

%

a, l?&z (3.6)

where symbol * denotes the repeated word generation, and G denotes the used
formal grammar. For the first sequence in Equation (3.5) we have

S'? ﬁ1m¢1mb ‘71m (37)

A language L consists of words that are generated by a given formal grammar
in a described way and contains only terminal elements of the given alphabet > I,

e.g., ﬂ1m¢1me1m consists only of terminal elements (of V; ), then ﬂ1m¢1mb‘/1m elL.

Example 3.3. Let a language L be generated by the following formal grammar:
G=(Vy.V;,P,s), Vy ={s,A B}, V; = {01},

P={s>0A A 1B,Br 0A A1} (3.8)

s is the initial symbol.

The only rule containing s is s»?OA and thus the first generation step (the
first word generation) should be SI?OA. The word 0OA does not belong to
language L generated by grammar G because in the word there is a hon-terminal
symbol A . Thus two rules can be applied to word 0A:

OAn? 01 (3.9
where rule A?l has been used or
OA»? 01B (3.10)

where rule AI?].B has been used.

Because the word from Equation (3.9) consists only of terminal symbols, the
generation Equation (3.9) yields a word belonging to language L, while the
generation Equation (3.10) does not. In the next step we have

0181+ 010A (3.11)
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which is a similar situation to before, i.e., either

010A~> 0101 (3.12)

or

010A~> 01018 (3.13)

We can write 5?0101. Continuing in this way we obtain the infinite set of

words belonging to language L :

L = {01, 0101, 010101, 01010101, ......} (3.14)

The formal grammar as defined in Equation (3.4) is the most general one. It is
called a type 0 grammar and the corresponding generated language is called a type
0 language. If the generation rules in the type 0 grammar are restricted, various
grammars are obtained. They can be classified as type 0 or unrestricted grammar,
type 1 or context grammar, type 2 or context-free grammar, and type 3 or regular
grammar. Correspondingly, there are type 0 or unrestricted, type 1 or context, type
2 or context-free, and type 3 or regular languages. The regular grammar is of the
first-rate interest in DEDS.

The regular grammar has the generation rules in the form

A»? aB or A»?a (3.15)

where A/BeV, and aeV;.

The grammar given in Example 3.3 is regular and thus generates a regular
language. According to the type definition, the set of languages with a lower type
number contains all languages of a higher one. Hence, their set inclusion property
is given:

Type 3 language < Type 2 language < Type 1 language < Type 0 language
ie.,

Regular language < Context-free language < Context language c
Unrestricted language

A formal grammar determines the corresponding language in a generative way.
A different approach to specifying a formal language is the recognition way. The
idea underlying this approach consists in finding an abstract model that can
recognize whether a string over an alphabet belongs to a given language or not. For
each language type a model can be constructed capable of recognizing the
language. A finite automaton is such a model for the set of regular languages (type
3). The next larger set of formal languages, the context-free languages, can be
recognized by push-down automata, etc. In this sense, a recognizing model is a
specification tool for a formal language being recognized. Recognizing models are
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built up as the finite-state machines. In a recognizing model, the symbols of a
processed string are fed into the model being in some state. The model passes a
sequence of states and finishes in a state that determines whether the string belongs
to the formal language specified by the model.

Moreover, a recognizing model can generate the represented language in a
different way to that of a formal grammar. The generation in this case is based
upon the basic transition model described in Section 1.5. The states and allowed
transitions among the states are used for the generation of the language words.

In this book we focus on the topics related to regular languages, as they are the
most important for modeling and control of DEDS. For this type of the languages it
is necessary to know the finite automata, which serve as recognizing models for
regular languages.

3.3 Regular Expressions

Regular languages can be well specified using regular expressions. The adjective
“regular” stresses a provable fact that for each regular language there is a regular
expression that specifies it and vice versa.

Definition 3.4. Regular expressions over a finite set > are recursively defined as:

a. The symbol for the empty set & is a regular expression;

b. The symbol for the empty element of the set X (if included inX) is a
regular expression;

c. The symbol of any element of X is a regular expression, i.e., if ae X, then
ais a regular expression;

d. If r and s are regular expressions, so are rus, rs, and r* where U
means the set union, rs is the concatenation of strings or the sets of strings,
and r” is the iteration of a string or a set.

Three operations in Definition 3.4(d), i.e., union, concatenation and iteration
can be applied on strings or sets. Consider the strings

S =8,5,..8,, [ =nhl.r, (3.16)

The concatenation of strings ¥ and s is string ¢ =rs =r,r,..r,;s,S,..., . If S
and R are the sets of strings (denote them for better clarity as R and S) the
concatenation RS = {F§ |TeR,Se S} is the set of concatenated strings from the

sets R and S. The iteration or Kleene closure is

r =L°_OJFi (3.17)

where T is a string and
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r%=¢ isthe empty string

r'=r
F2=Fr
=TT, r (k times) (3.18)

In Definition 3.4.d, r is supposed to be a regular expression. From the definition
it follows that it can be a string or a set of strings created in the iterative expansion
of regular expressions. Consider the case when r is a set of strings. Denote the set
by R. The Kleene closure is analogously defined as

where

R'=UR' (3.19)
i=0

R® ={¢}

R'=R

R? =RR, itis the concatanation of two sets (3.20)

of strings: RR:{G\7|Ge R, Ve R}

Example 3.4. Let a formal language over Zz{a,ﬂ} be given by the regular
expression

L=af U

The language consists of the strings

L={z, B, a ap, afiB, appB, appps, ..}

i.e., it contains &, B, «, and an infinite number of strings beginning with and
including k times symbol g, where k =1,2,3,... grows to infinity.
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3.4 Problems and Exercises

3.1. Consider for the manufacturing system depicted in Figure 1.3 the capacities of
all conveyors to be 1. Specify a formal language representing the behavior of the
system.

3.2. Let two languages be given by regular expressions L, =af" and

L, = (a ) ﬂ)* . Determine a language given by the concatenation L, L, .

3.3. Let transits between street crossings in Exercise 2.3 define events (the drive
from the station to the closest crossing and contrariwise are events, too). Specify a
language, which is given by possible transits of one car starting from Main Street.

3.4. A robotic cell contains two machines and two robots as shown in Figure 3.2.
Parts are loaded irregularly and sequentially in the cell by two inputs: the first kind
by 11 and the second one by 12. Transfer of parts is done by the robots. Machine
and conveyor capacities are one. The robot R2 transfers the processed parts on the
conveyor C3 whenever is part ready, order is not important.

Explain what is a state and an event in the described system. Explain what it is
a formal language and how it can be represented with regular expressions. Define
the event set for the system and write several strings of the formal language
describing the system.

Input 1 P
"~ Machine M1
Cll \

{

Output O
Robot R1

&ﬁ Robot R2
Input 12 21 -

"Machine M2 T

Figure 3.2. Robotic cell with two machines
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Control of DEDS

4.1 State and Control Variables

Consider the basic transition system Equation (1.19) by Manna and Pnueli
described in Section 1.5 as a general model of a DEDS. As pointed out earlier, time
is not explicitly considered in the model. The DEDS dynamics depends on events
that appear in discrete time points. The events provoke changes of the system states.
The relations and mutual influence of events and states with respect to control are
studied in this chapter. According to that, let a DEDS be given by the event set

s={e,.e,,..e,} (4.1)
A sample event path of the system is

€=¢ € .6 (4.2)

1 IZ Iv

where e; occurs at time point z; ,e; at time point 7, , ..., & at 7, , 7; {7; (.{7; .

We emphasize that just one event can occur in a discrete time point. The path at
Equation (4.2) starts in the system initial state. Let another sequence of time points
be determined as

i, — T, ~ T,
Ty =7 +T, Ty, =T, +T, s To =T, +% (4.3)

i.e., time points at Equation (4.3) are in the middle between the time intervals of
two consecutive events.
Let the set of state variables be represented by a time-dependent vector variable



42 Modeling and Control of Discrete-event Dynamic Systems

u(t)=| > (4.4)

Assume the vector component u(t),i =1.2,...,b, having a value from a finite set

U, of real numbers. The system state dynamics can be expressed by a sequence U,
which is a discrete process

u= u(ra]) U(Taz) u(ra”)z u,u, .u, (4.5)

where the discrete time points are ¢z, (z, (.{z, . Changes of variable u(t) at

discrete time points are changes of the system states, which correspond to events.
The state changes occur as responses to events. In real systems the responses are
delayed some time after points Tips Ty oo T, - Just to come to a conceivable model,

assume that all responses finish before points z, ,z, ,...,z,  so that new states are

a,.
fully observable in these points.

We have not yet dealt with the question of how a certain required behavior of
the system can be achieved. Various system descriptions and models represent the
given system from the observer point of view. The required and for some purpose
useful properties and behavior of the system are achieved by the system control
performed fully automatically or with human participation. In this book we are
interested in both modeling and control. It is necessary to distinguish between the
approach aiming at the description of a system as a whole and the approach aiming
at the control specification. This difference will always be taken into account in the
next chapters. The control function can be extracted from the required behavior of
the whole system.

The system control is enabled through purposeful intervening into the system.
The interventions are represented by control variables. Assume that they can be
represented by a vector variable w(t). The control variables are time-dependent

and react to the actual situation in the system with respect to a required system
behavior. In other words, this is the control. The interventions through the control
variables correspond to requirements imposed on the system behavior. The degree
of agreement of the required system behavior with the actual one is judged by a
relevant criterion specifying the control performance.

4.2 Control System and Control Function
From the observer point of view, a system SYST can be represented as one

including the controlled and control parts as shown in Figure 4.1. The system
described by the basic transition system at Equation (1.19) can be decomposed
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into two subsystems with the feedback structure typical for control: the subsystem
S to be controlled and the control system C. Figure 4.1 shows the decomposition
where W is a sequence of control variable values given at discrete time points as
follows:

w=w(r, +Ar, Jwlz, +A7, ). wlr, +A7, ) (4.6)
and
w, (0 .
w (1) w(z.,)
wit)=| ~ |and w(r, )= 4.7)

<
<

Figure 4.1. Feedback control structure

Let the value w, (t) i=12,...,c, of the vector component be from a finite set W,

of real numbers.

State variables of SYST are decomposed in Figure 4.1 into two subsets given
by s and w. The decomposition model of SYST now distinguishes two subsystems
Sand C. wis input and s output for S, s input and w output for C.

Very often Equation (4.6) can be simplified considering the assumption that

At, =At, =..=A1r, =Ar (4.8)
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i.e., the variable values in Equation (4.6) are given in time points delayed with
respect to %a ~ %, by a fixed time Az suitable chosen with respect to the system

dynamics so that

V~V=W(ra] +Ar) W(raz +Ar) W(T ] -I—Ar) (4.9)

a,
In order to avoid model complications assume that

T, tAT <7,
1 2

T, +tAr <7
2 3

T, +AT<T,
v-1 v

Control of the system S (Figure 4.1) can be described using a vector function
f in the following way:

W(z’alk + Ar): f(s(‘rak ) s(‘raH ) S(Tak,r » (4.10)

where r=0, 1, 2, ..., k-1 and k=r+1r+2,...,v—1. The index r determines the

depth of the influence of the system history on the control in the actual time point.
The function f expresses the overall control strategy with respect to control goals.
Fulfilment of the goals is verified using the control quality criteria.

Now, to illustrate our model of the system states, events, and control actions
Figure 4.2 is used to depict their time development.

Some of the control actions can be empty. If it is not empty an immediate event
after control action represents an effect of the control. There can be more
complicated time relations among the states and events. Our assumptions enable
one to gain the first view of the DEDS function.

It is useful to structure the control scheme depicted in Figure 4.1 in order to

express the relation between the system and its outside objects. Variable S(Tak)
from Figure 4.1 is decomposed into the input variable x(rak), output variable
y(rElk ) and internal state variable z(rElk ) as shown in Figure 4.3.

Classification of the actual system variables in the introduced variable groups
according to the structure in Figure 4.3 is not strictly and uniquely given for a
particular system. It depends largely on a control designer.

Presently, the control systems are predominantly realized by control computers.
There are various designs or versions. Their main and common feature is the
possibility to program their operation by a sequence of instructions — a program.
There are two basic kinds of programs:

e Transformation programs
e Reactive programs
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. . .
W(Ta] +Ar) W(raz +Ar) W(ra ) +Ar) W(Ta ) +Ar)

Figure 4.2. Time diagram for states, events and control

X S y
7
44
C
T

Figure 4.3. Input-output control structure

A transformation program represents a traditional way of computer usage. It
produces a final data result starting from some initial data through a sequence of
instruction steps that depend only on the situation and states within the program
itself. A reactive program has to react to external situation of the system during its
execution, i.e., to states and changes occurring outside the program. In other words,
during its execution, a reactive program has to be able to accept and detect external
variables and external data sources and to produce stimuli for the environment.

The character of reactive programs exactly matches the function of control
systems as described above. A reactive program realizes a control function
according to Equation (4.10) by processing the system variable S(Tak ) in course of

time and producing the control actions generated by the computer realizing the
control program.

Using the above level of abstraction we have not treated technical details on
how reactive programs are implemented in a control system. There are many ways
that external variables can be detected and data conveyed into the control system or
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from it into the system to be controlled. There are basically two ways that the
system reaction can be realized: using interrupts or sampling of external variables.
As we mentioned before there are various control system technical forms. A form
very often used in practice is a programmable logic controller. It is constructed as a
modular input-output system for a reliable and robust realization of control
functions in industrial environments.

In the control system design it is first necessary to know and to be able to
specify the required behavior of the controlled system. It is reasonable to use an
appropriate and formally well-elaborated specification tool. Second, it is necessary
to specify and analyze the control function again using a suitable specification tool.
Third, it is to write, implement and verify the correct final control program.

In this context it is important to emphasize the difference between
specifications of the whole system denoted as SYST (Figure 4.1) and the function
of the control part C. The same tool can be used for both cases. However,
describing the whole system first seems to be natural and facilitating the control
design.

A flow diagram is a conventional type of program specification used prior to
final program writing. However, flow diagrams are insufficient for the
specification of the reactive programs. One of the aims of this book is to present
more effective and suitable specification means for the design of the DEDS control
realized through the reactive programs.

4.3 Problems and Exercises

4.1. Determine the function W(Tak +Ar) given by the expression (4.10) for the
case of deterministic finite automata.

Control
Valve

Max —U

High ——

Average — Outlet
Valve
Low —

Min ———

Figure 4.4. Figure for Problem 4.2

4.2. Given a tank as shown in Figure 4.4, determine controlled part, control, and a
control strategy such that the tank maintains at the average level as much as
possible. The sensory system can detect whether the current level is at Min, Low,
Average, High, and Max levels, and whether the outlet valve is off and on (either
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high or low flow rate). The control on the inlet valve can be controlled so that it is
off and on (high, average, and low).

4.3. Analyze the relation of the basic transition system in Section 5.1 with the
model of the system control described using discrete processes according the input-
output control structure in Figure 4.3.
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Finite Automata

5.1 Basic Definitions

Finite automata are a classical tool used for many years for DEDS modeling. A
finite automaton incorporates both principal system features - system states and
system transitions in an abstract form. The basic definition of a finite automaton is
given in the sequel.

Definition 5.1. The deterministic finite automaton (DFA) is a quintuple
A=(2,Q,q,, 5, F) (5.1)

where
¥ is a nonempty finite set of events,
Q is a nonempty finite set of elements called states,
g, € Q isan initial (or start) state,
O is a state transition partial function given by 6 :QxX — Q, where the
Cartesian product x means that an ordered pair of elements from Q and
> is mapped into an element of set Q, and the term “partial function”
means that the function & may not be defined for all ordered pairs that can
be created of the sets Q and X, and
F is a set of final states given as a subset of Q: F < Q, where F can be the
empty set.

There are several modifications of the deterministic finite automaton definition.
The definition given above is useful in the context of formal languages because a
deterministic finite automaton can serve as a formal language generator or acceptor.

Let a deterministic finite automaton A=(Z,Q,q,, 5, F) be given where

r= {el,e2 en}and Q= {qo,ql,..., dn } Consider sequences of state transitions,
which always start in the initial state g, and the sequential states are obtained by
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repeatedly applying the function & to stepwise generated states. The sequence of
state transitions is given by

slag.e,)=a,. ola,.e)=a;,....5(a;, e )=q, (5:2)

where qg,q;,..,q; arestates, ie., g,€Q,q; €Q,..,q; €Q, and the function
o is defined for each pair (state, event) in Equation (5.2). A sequence

@ =0 0, 0, .0}, (5.3)

for which each part of Equation (5.2) is fulfilled is called the state path in DFA
associated with the event string 77 = e; ...e; . The state path in DFA is oriented.

The length (symbol “| |” ) of the state path is |@|=k . There can be several
different sequences in a given DFA starting with the same element. A singular case
would occur if 5(q,,e, ) is not defined for any element of = .

The sequence

n= €, €, e (5.4)

i

associated with the state path at Equation (5.3), for which each partial expression
in Equation (5.2) holds is called an event path in DFA. Hence, each event path
starts with an event applied in the initial state g, . Now, it is possible to proceed to

the definition of the formal language generator.

Definition 5.2. A deterministic finite automaton given by a quintuple
A:(Z, Q. q,, I, F) is called a generator of the formal language L over the

alphabet X, whereby the language is given by the set of all possible event paths

n=e, e, ..e inthe DFA, and a generator of the marked language L, , where

L_is a set of all possible event paths whose last element of the state path

m

®=q, g, 9;, --9;, , associated with 7, is from the set F . Formally, L is a set of

strings 77 :
L= {;7‘ 5(ay, 77)is defined } (5.5)

where & is an extended partial transition function 5:3% x Q — Q obtained from
the transition function ¢ defined by

5(0,£)=0q,qeQ, £ isthe emptystring (5.6)
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8(a.7)=a; .7 =e;e, e, (6.7)
and

5(q,ei1) isdefinedandd(q,eil):qj.1 (5.8)

(g e, ) isdefinedand 5(q; e, )=q; (5.9)

g(qj“,eik) isdefinedandé(qj“,eik):qjk (5.10)

For the marked language L,,, the ending state q; <F .

From Definition 5.1 it follows that a finite automaton is a simple labeled
directed graph denoted for short in Chapter 2 as a digraph. Recalling Definition 2.2
we can see that the set of states corresponds to the set of graph nodes: A=Q.

Relation R is given recursively by the function ¢ starting from the initial state q,.
Function & determines the next node q, by applying the input €; to the actual

node q,, i.e., q, = 5(q,.€, ). Thus, the function & yields ordered pairs of states

constituting the graph relation. It is used to be given by the state transition table
(see the following example). An oriented arc corresponds to (qa,qb) with label e;,

ie, f, =0 and f,:R— Z. Any finite automaton can be represented in a drawn
graphical form.

Example 5.1. A deterministic finite automaton A=(%,Q,q,,d, F) is given by

2:{011} 5(%,0):(3]1 F:{qz}
Q:{qolqlqu} 5(q1!1):q2
5(a,.0)=a,

This automaton generates a marked language equal to the one from Example
3.3, namely L={£,01, 0101, 010101,...} . It is better understood from the

drawn-graphical automaton form in Figure 5.1.

Figure 5.1. Finite automaton generating a language
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5.2 Description of the System Behavior Using Finite Automata

Application of finite automata for describing the system behavior will be illustrated
through the following example.

Example 5.2. Consider a flexible manufacturing system depicted in Figure 5.2. It
consists of two input and one output conveyors, a servicing robot and a processing-
assembling center. Workpieces to be processed come irregularly in a one-after-
another sequence into the system. The workpieces of type A are delivered via
conveyor C1 and workpieces of type B via conveyor C2. Only one workpiece can
be on the input conveyor. A robot R transfers workpieces one by one into the
processing center M. The next workpiece can be put on the input conveyor when it
has been emptied by the robot. The production technology requires that first one A-
workpiece is inserted into M and processed, then one B-workpiece is added into
the center M, and last both workpieces are assembled. Afterwards, the assembled
product is picked up by the robot and put on the output conveyor C3. The
assembled product can be transferred onto C3 only when the output conveyor is
empty and ready to receive the next product. The finite automaton describing
behavior of the flexible manufacturing system is in Figure 5.3. Following
Definition 5.1 we have

L= { IA 1B, Tan s Tem» Tasos Taen } (5.11)

where
IA denotes input of a workpiece A to conveyor C1,
IB denotes input of a workpiece B to conveyor C2,
T represents transfer of workpiece A into machine M by using robot R,

Tgu represents analogously for a workpiece B,
Taso represents transfer of the product AB assembled of A and B from

machine M onto output conveyor C3 by robot R, and
Tey represents transfer of the product AB from conveyor C3 out of the

manufacturing cell, i.e., emptying the output conveyor.

The automaton states are
Q = {qov VI PR qz3}

where q, is the initial state depicted in Figure 5.3 by a double circle. For final
states we have F = Q.

The transition function ¢ is specified by a graph representation of the
automaton in Figure 5.3. The table form of ¢ called the state transition table is
given in Table 5.1. Actual states are on the left-hand side of the table, inputs are
given as headings of the table columns. Table entries are the next states, and a
hyphen indicates that & is undefined.
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Cl

C2

M

R

Figure 5.2. Flexible manufacturing system with one robot

The arcs of the graph in Figure 5.3 are labeled with events of X . If the
automaton is in some state, e.g., q,, and a workpiece (of type A) arrives in the

system (event 1A), then the automaton passes from g, into state g,. Being in q,

two events can occur; either a workpiece B arrives (event IB) or the workpiece A is
transferred into machine M (event T,,, ). Behavior of the system with respect to

other events is represented analogously.

An additional description of the automaton states is given in Figure 5.3.
Symbol A indicates that a workpiece A is available at the input after it arrives in
the system. Notation using symbol B has an analogous meaning. AinM, BinM
represent states when workpieces A and B are inside machine M. ABO denotes that
in the given state, the product AB is on the output conveyor.

In the adopted finite automaton representation of the system, it is assumed that
just one event occurs at a discrete time point. Technologically simultaneous actions
are performed in the consecutive steps at separate discrete time points. The time
interval between individual steps can be very short relative to the system dynamics.
In practice, the interval is given by the processing time of the considered system
control unit. Thus the required parallelism of the system actions can be ensured by
relatively quick consecutive (serial) system actions, which can be quite sufficient
with respect to time requirements of a particular system.

If we consider the finite automaton in this example as a generator of a formal
language, the generated words can be constructed in the following way (recall
event paths in DFA):

&1 =IA T,, IB

%2 =IA Tapy 1B Toy Tago Taen
a;=1A T,, 1A IB Ty,

a, =1A T,y

TABO TABN

IA 1B Ty Tawo Tan 1B IA etc
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A cyclic repetition of the manufacturing program vyields infinite words which
all belong to the generated formal language. In practice, the process stops on
operator’s command, e.g., at the end of a working shift.

Figure 5.3. Finite automaton for a flexible manufacturing system



Finite Automata

Table 5.1. State transition table for the automaton in Figure 5.3

g \e; IA 1B T av Tgum Tago | Tasn
4o qi ds - - i} B
qi - do a2 - - -
g ds d 10 5 - 3} B
Js - d4 : ) 3 .
das - 5 - gs N N
Js - Jde - - di14 -
Je ) : : i} a7 -
a7 - - Q16 - - 99
Js do 5 5 i - N
do - - d 10 5 : -
410 d4 - - SR - N
q11 ds di12 - - 23 -
di12 Js - - - 913 N
d13 : - } - . s
qi14 - q7 d 15 - - g1
d1s q17 d 16 - : - 92
qd 16 dis - - 919 - 9 10
di7 - J1s - - i s
qgis - - - 422 - A4
Q19 qd 2 d 20 - : - 9
d 20 d21 - - - - g1
421 : i - ' - de
d 22 - Q21 - - i 9s
g3 J14 d13 - - - 9o

5.3 Control Specification Using Finite Automata

55

The goal of the DEDS control is to generate control variables w(t) as shown in

Chapter 4. In the previous section a finite automaton is used for describing the
DEDS behavior. By means of a finite automaton it is also possible to specify the
system control, i.e., the function of a control subsystem C (Figure 4.1). We extend
Definition 5.1 for that purpose. Let the modified model be called a deterministic
finite automaton with outputs — DFAOQ. Its structure is very close to the one of the
finite automaton defined before.
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It is natural to proceed as follows. The set of events X is constructed as inputs
to the control system from system S (Figure 4.1). Definition 5.1 is extended by a
new set — the outputs, and the output function.

Definition 5.3. A deterministic finite automaton with outputs (DFAO) is the triple

AC=(AY,p) (5.12)

where A is a deterministic finite automaton, Y is a finite set of outputs, and ¢ is a
function ¢ :Q > Y.

Example 5.3. Consider a set of events = = {01, R} and a set of outputs Y = {0,1,R}.

0 and 1 are binary digits. R is the symbol denoting the event “no digit”. The
symbol serves as a separator. Let a deterministic finite automaton with outputs be
constructed to model a serial conversion of binary numbers into arithmetic binary
complements used in the computers for the representation of negative numbers. For
instance, the binary number 00 1 1 0 1 0 0 is given. The lowest order bit is at the
right-hand side. The highest order bit is the seventh one on left and the eighth one
is the sign bit. The digits and/or separators appear as a sequence where the first
digit element in the sequence is the lowest bit etc. @ = RO0101100RRR . Now the
arithmetic complement is

0 0110100 — 110010112
+ 1

11001100

The sequence R00101100RRR whose elements are ordered as usual in
sequences, i.e., the lowest order being assigned to the first left-hand digit element
in the sequence should be converted into the sequence R00110011RRR.
The sequences are inversely written compared with the writing of the binary
numbers. Time is not expressed explicitly. Event order is given by event sequences.

The task is to construct DFAO such that the serially arriving binary numbers
are converted into serially generated arithmetic complements. The conversion
function is described as a DFAO as follows:

*={0LR} Q=1{q,,9,,9,.9,} whereq, isthe initial state
Y={0LR} F=Q

The functions & and ¢ are specified in the graphical form in Figure 5.4. The
control function of the DFAO being in an actual state g, and receiving an event e,
is to generate an output y, €Y and to go into the next state q,,, = 5(q, €, ). The
outputs influence the controlled system.
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Figure 5.4. Finite automaton of the binary number conversion

Let us return to Example 5.2. For the sake of a better understanding we notate by
XIA an event related to IA, XIB to IB etc. The DFAO is given as follows:

AC=(AY, p)
A:(Z,Q, o, 0, F)

where
= = {XIA, XIB, XTpy, XTan s XTagor XT gy |

Q = {001 Gz - Gzg Gis Oy reons G |
F=Q

and ¢ is given below.

The meaning of elements in set T is slightly different from Equation (5.11).
XIA denotes a signal from a sensor detecting the arrival of a workpiece A on the
conveyor Cl. An analogous meaning has the element XIB. Similarly,
XT s XTgm s XTago, and XT,g, correspond to signals indicating that a workpiece
A, a workpiece B, and the assembled product are in the machine, on the output
conveyor, and leaving the output conveyor, respectively. The set of outputs is

Y = {1,YAM,YBM,YABO,YABN } (5.13)

where A stands for the empty symbol, YAM is a command for the robot to pick up
a workpiece from conveyor C1 and to insert it into machine M.
Function ¢ is defined as follows:
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ola) =2, ola)=YAM, o(a,)=2, ola;)=2 ola,)=YBM,
("(qs) =4 (p(%) = YABO, (p(q7) =YABN, (P(Qg) =4, (p(%) =YAM,
Q’(qlo) =YBM, @(qlx) =4, etc.

A command for the transfer of a B-workpiece into machine M is realized after a
fixed given time interval when it is certain that the operation in the machine has
been finished. It is analogous for the transfer of a product from M or from
conveyor C3. Another possibility could be to introduce additional signals
announcing completion of the respective operations. A DFAO is to be derived
from the automaton in Figure 5.3 for different  and using the set of outputs
together with the function ¢ . A part of the deterministic finite automaton with

outputs is sketched in Figure 5.5. The state transition table can be written as before.
It must be extended by a table representing function ¢, as exemplified by Table

5.2.

Finally, recall the regular expressions described in Chapter 3. It can be proved
that the languages generated by finite automata are of type 3, i.e., regular
languages. Inversely, regular languages are generated by finite automata or by their
marked languages. The regular languages can be specified by regular expressions.
Therefore, it is possible to apply triangular transformations according to the
scheme in Figure 5.6.

The regular expression L =af" U B in Example 3.4 is generated according to
Definition 5.2 by a deterministic finite automaton depicted in Figure 5.7.

Figure 5.5. A control automaton
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Table 5.2. Table for the output function ¢

o -
g1 AM
q: -
g3 -
g BM
ds -
Jo AM
d 10 BM
q 23 ABN
g 1x -

Deterministic finite automaton

%

Regular language |<¢——| Regular expression

Figure 5.6. Relation between regular language, regular expression and automaton

B

Figure 5.7. Finite automaton generating the language given by a regular expression
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5.4 Non-deterministic Finite Automata

Sometimes uncertainties may occur in the system. There is a whole theoretical
branch, namely the fuzzy set theory and its applications dealing with uncertainties.
In the finite automata, the uncertainty can be represented by a modification of the
transition function & . Instead of the next state a subset of next states is defined.

Definition 5.4. A non-deterministic finite automaton is a quintuple
NA=(Z,Q, ¢, 5, F) (5.14)

where all symbols but the transition function & have the same meaning as in
Definition 5.1. In this case

5. QxT 20 (5.15)

An ordered pair state-event is mapped into a subset of Q. The power set 2° is the
set of all subsets of Q and always including the empty set.

Non-deterministic finite automata are generators of the formal languages in the
sense of Definition 5.2, as well. Both kinds of automata are equivalent with respect
to language generation. If a non-deterministic finite automaton generates a
language then a deterministic finite automaton can be constructed generating the
same language. The inverse holds true, as well.

5.5 Problems and Exercises

5.1. Figure 5.8 shows a robotized manufacturing system with three robots. Robot
R1 picks up a part of type A from input 11 (if available) and loads it in the milling
machine M1. When milling is finished, R2 transfers the part on the assembling
table. Similarly robot R2 picks up from input 12, a part of type B and loads it in M2.
When the milling is finished in M2 and there is part type A on the assembling table,
the part from M2 is transferred onto the assembling table where the final product is
assembled of the parts. Then robot R3 puts the product on the output O. The
manufacturing process repeats cyclically.
Solve the following problems.

a. Represent the described system and its behavior by a finite automaton in a
graphic mode. The number of states is restricted to 30.

b. Show how a finite automaton with outputs can specify control of the
system. The state number is restricted within or to 20.

c. Write several event strings generated by the automaton.
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Input 11 Input 12
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Figure 5.8. Manufacturing system with three robots

€2

Figure 5.9. Two finite automata with outputs for Exercise 5.2

5.2. Two finite automata with outputs are depicted in Figure 5.9. Specify their
event sets, state sets and outputs. Determine the formal languages they are
generating. Choose some states as the set for one automaton and specify the
marked language, which it generates.

Form the so-called product of automata with the set of states given by the
Cartesian product of their state sets using a modeling assumption that only one
event occurs at a discrete time point.

5.3. Modify slightly the flexible manufacturing system in Figure 5.2 as depicted in
Figure 5.10. The system has one input belt conveyor, two working machines and
one assembly center. Parts of one kind are coming into the system one by one via
the input conveyor. The robot transfers parts in free M1 or M2. Both machines
have capacity one part. Then the parts from M1 or M2 are transferred to AC. There
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two parts are necessary for assembly. After assembly the product is transferred on
the output conveyor. M1 and M2 perform the same operation but with different
times.

Make a deterministic finite automaton in the graphic form describing the
function of the system.

M1 M2

C2 O\

Figure 5.10. Modified flexible manufacturing system
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Reactive Flow Diagrams

6.1 Standard Flow Diagrams

Flow diagrams, sometimes called flow charts, are popular in programming. They
are graphical tools for drawn-graphical visualization of algorithms to be
programmed and executed by computers. Flow diagrams make final programming
easier and help one minimize programming errors.

Flow diagrams have been developed and used for decades for transformation
programs dealt with in Section 4.2. A flow diagram prescribes a sequence of
computer operations forced by computer instructions. There are four basic
elementary building blocks used in flow diagrams: operational block (Fig. 6.1a),
decision block (Fig. 6.1b), start and end block (Fig. 6.1c), and subprogram block
(6.1d). The blocks are connected with arrows determining the next operation block.
The decision block is equipped with one or more conditions. A continuation of a
program depends on the conditions. A cyclic repetition of a same group of
operations can be specified by means of a decision block, too.

a. Operational block b. Decision block. c. Start and end block. d. Subprogram block.

Figure 6.1. Elementary building blocks of flow diagrams

Application of the flow diagram technique to transformation programs is well
known. A different situation arises if flow diagrams are used for reactive programs.
In his book Zdbel (1987) analyzes in detail and shows troubles with standard flow
diagrams used for control system programming.
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6.2. Reactive Flow Diagrams

Reactive programs are able to respond to external stimuli during their execution.
Flow diagrams used for reactive program specification must be adapted for that
purpose. An important problem regarding how to manage and process concurrent
processes is connected with the reactivity property. In a controlled DEDS several
technological operations usually run in parallel. In such a system there are signals
mediating data about the system events. Such events are called concurrent.

Let us return to Example 5.2 and consider the state g, in the finite automaton

in Figure 5.5. Both asynchronous and spontaneous concurrent input variables XIA
and XIB are to be detected. Similarly XIB and XTay in the state q,: arrival of a

workpiece B on the input conveyor B (variable XIB) and transfer of a workpiece A
into machine M (variable XTay) are concurrent events. Both events are
spontaneous and do not influence each other. XIB may occur earlier than XTay or
vice versa. The control system passes into the next state according to the occurred
event. As mentioned earlier, in a finite automaton model it is assumed that no two
events occur exactly at the same time. It is clear that this assumption is very well
substantiated in case of one-processor control system.

The adaptation of a traditional flow diagram technique uses a cyclic repetition
of a flow diagram or of its part, and locking or unlocking groups of operations in
order to enable real-time processing of concurrent system events (Hrdz 1994). A
cyclic repetition of program operations has to be sufficiently quick with respect to
the controlled system dynamic requirements.

There are only two ways to ensure fulfilment of the above-mentioned
requirements if one control computer, or generally speaking one control processor
is used in the system:

a. Repetitive or cyclic sampling of concurrent variables
b. Use of the computer interrupt (alarm) system

Both ways can be mixed together in practical DEDS control.

The solution may be different if two or more control processors are used in the
system. Of course, the processors must somehow communicate. We will deal with
the solution mostly encountered in practice, namely the use of one processor and
item a.

We will show the use of a reactive flow diagram to a control finite automaton
(deterministic finite automaton with outputs) whose structure paradigm is depicted
in Figure 6.2. It includes all situations encountered in finite automata: sequences of
states, branching from a state and a feedback. Two related finite automata are used
in order to show better the use of reactive flow diagrams for concurrent processes.

le,.e,.....e5} are inputs, {y,,y,,Yys Y.} are outputs, {g,,0,0,,0,} are the
automaton states, and q, is the initial state for the first automaton. {el,ez,e3} are
inputs, {zl,zz,y3} outpults, {50,51,52} states, and s, is the initial state for the
second automaton. States of the whole shuffle automaton are given by the parallel
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composition of the described automata (treated as sub-automata) states. The set of
outputs is union of the sets of the sub-automata outputs.

The finite automaton has been converted into the reactive flow diagram as
shown in Figure 6.3, where the sampling or polling technique with the cyclic
structure has been utilized. In the reactive flow diagram, the states of a finite
automaton are represented by the operation blocks that are either locked or
unlocked by means of the auxiliary variables from the set K:

K = {ky,Ky,Kq, Ky, ks, Kg Ky

When a transition from one state to another occurs, the block associated with
the active state is locked using variables from set K and the block associated with
the next state is released. Figure 6.3 explains how branching and looping is solved
using the same idea. As mentioned above, another possibility would be to use the
interrupt mechanism or to combine it with the cyclic polling technique just
described.

Control finite automata outputs are control variables for the controlled system.
They are denoted as y or z. Inputs to the automaton are outputs of the controlled
system, that represent events e. Branching in the first automaton in state g, is

solved by a block which is guarded by the variable k; =1 while
k, =0, k, =0, k, =0 so that the other three remaining blocks corresponding to the
first automaton are locked. It also means that the state g, is active. Depending on
the arrival of the events e, or e;, the next active state will be g, or q,,

respectively. Guarding variables associated with the second automaton are ks, ks,
and k;. Processes are parallel when, for example, k; =1 and ky; =1. Two blocks

are accessible in that case in a reactive flow diagram.

Figure 6.2. A structure paradigm for control finite automata
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Y=Y =1
ki ks =1

Ky kg Ky K, Ky =0

Y
Sampling period
ired?
expired? N
Y

Figure 6.3. Reactive flow diagram for the finite automata in Figure 6.2
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As mentioned earlier, the sampling frequency has to be such that the response
to the events is sufficiently quick. Expression y =y, means that the variable y is

set value to y,, z:=z, means that z is set to z,, etc., and similarly for the
variables K;. The rest is clear from Figures 6.2 and 6.3.

6.3 Problems and Exercises

6.1. Minimum time duration of signals that are external ones for the control
systems is decisive for a good control function. Consider a reactivity problem of
the control function with respect to temporal properties of external signals using
reactive flow diagram with its cyclic repetition as described in this chapter.

6.2. Figure 6.4 shows a robotic manufacturing cell. Workpieces A are processed
sequentially with robot R1 and with robot R2 respectively. The sequence results in
the product A.

A similar operation sequence is applied for workpieces B resulting in products of
the kind B. Workpieces come in the cell irregularly. Specify control of the robotic
cell with the use of a reactive flow diagram.

Workpiece Al lWorkpiece B

C1 c21

g F21
%

Assembling Assembling
Table 1 Table 2
C12
F12
Product Al lProduct B

Figure 6.4. A two-robot manufacturing cell
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Petri Net Models of DEDS

7.1 Notion of Petri Nets

As described in Chapter 5, a finite automaton specifies a system by means of a set
of states and a transition function. The arguments of the transition function are the
state and event. We can speak about an actual state. The transition function assigns
a state to an actual state. The assigned state is a next state while the actual state can
be called the active present state. By repeating the assignments, a sequence of
actual states is obtained. In the finite automaton there is always only one state
active.

A system can often be broken down into subsystems. If it is required to
describe activities of subsystems and their mutual relations, a finite automaton
model can be cumbrous because each combination of subsystem states needs a
separate state of the finite automaton. Another model known as a Petri net removes
that inadequacy. Petri nets are named after a German mathematician C. A. Petri
who first proposed a model of that kind (C. A. Petri, 1962). With Petri nets the
main idea is to represent states of subsystems separately. Then, the distributed
activities of a system can be represented very effectively. Many properties of the
DEDS, e.g., synchronization, concurrency, and choices can be well presented and
analyzed using Petri nets. They can be used not only for the specification of the
DEDS behavior but also the control design. However, Petri nets have various other
uses. To illustrate them we introduce, e.g., fuzzy reasoning with Petri nets (Gao et
al. 2003, 2004) or creation of algorithms (Hanzalek 1998a, b). Several supporting
programs exist for design and analysis of Petri nets, e.g., PESIM (Ceka 1994),
MATLAB® Toolbox (Svadova and Hanzalek 2001), CPN analysis tools (Jensen
1997), SPNP (Hirel et al. 2000), and many others.

Let a manufacturing cell be configured as shown in Figure 7.1. A workpiece
arriving at the cell on the input conveyor is transferred to the milling machine.
Both workpiece and robot must be available to perform first the transfer operation
of the workpiece into the machine input. Then the milling is taking place in the
milling machine. Obviously, the milling machine must be free for that. After
milling, the workpiece is moved onto the machine output. Then, if the robot is free,
the processed workpiece is transferred by the robot onto the cell output conveyor.
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Machine input Machine output
MILLING
MACHINE
Input conveyor —» Output conveyor —»
J
Robot

Figure 7.1. A robotic manufacturing cell

Only one workpiece can be located in any of the cell subsystems. So far,
technological conditions and the procedure have been described verbally.

Figure 7.2 shows how the function of the manufacturing cell with its
subsystems can be presented using a Petri net. Let the circles in Figure 7.2 denoted
by p,, p,, ps and p, correspond to four subsystems as follows: input conveyor -

p,, robot - p,, milling machine - p. and output conveyor - p, . Let the other

circles correspond to the following operations: transfer of a workpiece into the
milling machine by means of the robot - p,, milling operation - p,, transfer of

the milled workpiece on the output conveyor - p, . The circles are called places of

Petri nets. The presence or availability of a workpiece at the cell input is modeled
by a dot in place p,. We say that a token is in p,. Analogously, a token in p,
(Figure 7.2b) means that the robot is free or available to transfer a workpiece
somewhere. Figure 7.2a shows a situation when both conditions for the transfer of
a workpiece into the machine are not satisfied. A vertical bar denoted as t, is

called a transition. It symbolizes an event. In this case, it is the start of the transfer
operation. Transition t, represents the end of the transfer and start of the

milling operation. Clearly, realization of this event requires that the transfer has
been performed and the milling machine is available. t, denotes the end of the

milling and start of the workpiece transfer on the output conveyor; t, is the end of

the output transfer and arrival of a workpiece on the output conveyor.

The token distribution describes an actual state of the system. It changes
through a so-called transition firing. A transition firing is possible if all places
before this transition have enough tokens — the transition is said to be enabled.
Firing has the following effect: one token is taken from all places before the
transition and one token is placed into each place located after the transition. The
effect complies with the so-called firing rules just described. According to Figure
7.2b both conditions are met for a workpiece transfer. Figure 7.2c shows the next
system state: the robot moves the workpiece from the input conveyor into the
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milling machine. Figure 7.2d gives the next state when the milling operation is in
progress and the robot is again free.

milling machine
available

workpiece at
input

transfer into
machine

robot available

workpiece at
output

Figure 7.2. Petri net of a manufacturing cell: a. input conditions not met; b. input conditions
met; c. workpiece transfer into the milling machine; and d. milling operation in progress
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d.

Figure 7.2. (continued)

The Petri net places are connected with transitions through oriented arcs. The
arcs pointing to a transition from places (called input places) indicate that those
places should have tokens in order for the transition to fire. Speaking in terms of
systems to be modeled, an event can occur when the required state conditions are
fulfilled. Firing a transition corresponds to occurrence of an associated event with
it. The event causes a state change. In the Petri net, a new state is given by change
or flow of tokens according to the above given rules. Oriented arcs going out of the
transition to some places (called output places) indicate that the place-
corresponding subsystems will be active after the transition fires.

The Petri net model of the DEDS from Figure 7.1 corresponds to a real system
if the meaning of the Petri net elements is properly chosen and used. Our model
bears some risk. Imagine, that the milling operation runs (Figure 7.2d) and a new
workpiece arrives in the cell. The robot is available, thus according to the Petri net
the workpiece can be put into the transfer process. The robot is occupied by the
transfer. On the other hand, the robot is needed for the transfer of the processed
workpiece out of the machine. The system will be in a deadlock, i.e., no
continuation is possible. Occurrence of the deadlock depends on the time
circumstances. If a workpiece, and accordingly a token, comes in p, in due time,

i.e., if the intervals between two inputs of workpieces are not smaller than some
allowed value, the deadlock does not occur in this cell.

Another possibility to avoid the described difficulty with deadlocks is to
improve the Petri net model to be closer to a real manufacturing system. Usually a
milling machine has an input place where a workpiece waits for milling and a place
at the machine output where a workpiece is placed after milling. The next
workpiece can be placed to the machine input during the milling of another
workpiece. A new workpiece can be milled when the processed workpiece is
moved to the output place. A Petri net model describing the work of the
manufacturing cell more realistically is shown in Figure 7.3. There are some new
places and transitions in Figure 7.3 specifying a correct function of the cell without
system deadlocks. If a workpiece appears at the input, a token is placed in p,.

Place p,, ensures that the transfer of a next workpiece into the machine starts only
when the machine input is free. Similarly, a token in p,, means that the machine
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output is empty. Place pg, guards the transfer onto the output conveyor. We can

see that Petri nets can well express the distributed activities in the modeled system.

The situation just described is very often encountered in the design practice. If
the Petri net in Figure 7.2d is correct with respect to the system behavior, the real
system should be re-arranged and improved. Petri nets can thus help discover an
ill-shaped technological layout. On the other hand, they may not correctly specify
the system. A solution of that case is shown in Figure 7.3 using a corrected net.

output conveyor

P2 milling machine empty

available Paz

Pe1

workpiece
at input

tranSfer into machine milling ~ machine/ transferon \ workpiece
robot ava”artr)llaechlne input operation  output cell output at output
Figure 7.3. An improved Petri net model of the manufacturing cell
output conveyor
free
P32 milling machine ta

workpiece available

at input

ty p3 t

transfer into

machine

\@able

Figure 7.4. Petri net model of the manufacturing cell with the arc weights

machine milling machine
input operation  output

transfer on workpiece
cell output

Consider now a situation when three parts are to be fed into the milling
machine. In the machine the parts are simultaneously processed and assembled in
one product. The situation can be modeled using weights of the Petri net arcs.
According to modified rules for transition firing, each place before a transition
must have at least as many tokens as the weight of the arc connecting the place and
the transition. Tokens whose quantity is equal to the arc weight are removed from
each input place of the considered transition. On the other hand, after a transition
fires, as many tokens are put into each output place as the weight of the outgoing
arc from the transition to the place. The weights are positive integers. The use of
weights is illustrated in Figure 7.4. A weight is assumed to be 1 if no number is
associated with an arc. It was the case in Figures 7.2a—d and 7.3. Other weights
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than one are given as arc labels. Transition t,, can be fired only when the machine
is free (a token is in p.) and three tokens in p,,. Then, three tokens are taken
away from p,,, one from p, and one is placed into p, .
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Figure 7.5. Petri net for the manufacturing system from Figure 1.3
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We are now able to construct a Petri net for the manufacturing system in Figure
1.3. The Petri net is depicted in Figure 7.5. The place and transition meaning is
explained in Tables 7.1 and 7.2.

Table 7.1. Meaning of places of the Petri net in Figure 7.5 by a token presence

p:  [Waiting on workpiece arrival

p,  [Workpiece in the detection area of sensor P11

ps  |Workpiece between sensors P11 and P12

ps  |Capacity of conveyor C1

ps  |Workpiece ready at the end of C1 for the transfer into machine M
P Machine M free

p;  |Transfer of the workpiece into machine M is in progress
ps  [Workpiece waitng for processing in M

ps  |Processing of the workpiece in machine M is running
Py  |Workpiece waiting on transfer onto conveyor C2

pu  |Workpiece transfer on conveyor C2

P |Capacity of conveyor C2

Pz |Workpiece waiting on processing

P |Workpiece between sensors P21 a P22

pis  |Workpiece at the end of conveyor C2

P | Transfer of the workpiece into machine G is in progress
Py |Workpiece waiting on processing

Pig  |Machine Gis free

P  |Processing of the workpiece in machine G is running
Py |Workpiece waiting for transfer onto conveyor C3

p1 | Transfer of the workpiece onto conveyor C3 in progress
P,  |Capacity of conveyor C3

P |Workpiece at the begin of conveyor C3

Py |Work-piece between sensors P31 and P32

P |Work-piece at the end of conveyor C3
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Table 7.2. Meaning of transitions of the Petri net in Figure 7.5

t;  |Work-piece arrives into the detection area of sensor P11

t, |Work-piece arrives into the area between sensors P11 and P12

t;  |Work-piece arrives at the end of conveyor C1

t, |Start of the work-piece transfer from conveyor C1 into machine M

t;  |End of the work-piece transfer into machine M

t;  [|Start of the work-piece processing in machine M

t;  |End of the work-piece processing in machine M

ts  |Start of the work-piece transfer from machine M onto conveyor C2

fy  |End of the work-piece transfer from machine M onto conveyor C2
tio |Work-piece arrived in the area between P21 and P22
t;;  [Work-piece arrived at the end of conveyor C2

t, [Start of the work-piece transfer from conveyor C2 into machine G

t;3  |End of the work-piece transfer into machine G

t,  |Start of the work-piece processing in machine G

ti5  |End of the work-piece processing in machine M

tig  |Start of the work-piece transfer from machine G onto conveyor C3

t;7  |End of the work-piece transfer from machine G onto conveyor C3
tig  |Work-piece arrived in the area between P31 and P32
tig  |Work-piece arrived at the end of conveyor C3

tyy |Work-piece left conveyor C3 and the manufacturing system

7.2 Basic Definitions

The notion introduced intuitively in the preceding section is systematically
analyzed and defined in this section. First, the basic definition of a net is given.

Definition 7.1. The net NET is defined by a triple

NET =(P,T,F) (7.1)

where P={py, pa, ..., Pn} is a finite non-empty set of elements called places, T={t;,
ty, ..., tm }s a finite non-empty set of elements called transitions, and F is the union
of two binary relations F; and F,: F = F;UF,. Pand T are the disjunctive sets, i.e.,
PNT= & (empty set). F,is a binary relation from P to T : F;c PxT. Analogously
F,c TxP is the binary relation from T to P. F is the set of ordered pairs consisting
of a place (transition) at the first position and a transition (place) at the second one.
F is called a flow relation. P, T and F are such that the following holds for them:
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vp, e P: 3t, €T suchthat (p,,t;)e F or (t;, p;)e Fand
vt,eT: 3p, €P suchthat (t,,p,)eFor(p,.t)eF.
According to the definition, each place is included at least in one ordered pair of F.

Similarly, each transition is included in at least one ordered pair of F. In other
words there are neither isolated places nor isolated transitions in net NET.

Definition 7.2. A Petri net PN is defined by the triple
PN = (NET,W,M,) (7.2)
where NET is a net by Definition 7.1 such that

PN =(P,T,F,W,M,) (7.3)

W is the weight function given as W:F — N" where N is a set of positive
integers. M, : P — N is a function called the initial marking whose element Mo(p)

is the number of tokens initially in place p where N is a set of non-negative integers.

The numbers to which are mapped the pairs of F are called weights. Obviously,
the weights are positive integers. The initial marking is non-negative integers.

Definition 7.3. The function M : P — N is called the marking of a Petri net. M(p)
represents the number of tokens in place p at marking M.

The initial marking is specifically given in the definition of a Petri net.
Similarly as in finite automata, it is reasonable to include the initial state in Petri
net model definition because any real system begins its activity at an initial state.
The different functions M : P — N correspond to the different markings.

Consider a Petri net PN and a transition t € T . The set of input places of t as
denoted by °t and called preset of t is

.t:{pi|(pi't)EF} (7.4)

According to Equation (7.4), set °t contains each place p; being in the flow

relation F with the given transition t. The set of output places belonging to t, called
post-set of t, is

t* = { pi|(tv pi)E F} (7.5)

Similarly, the set of the input and output transitions pertaining to a given place
pis
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{tj\(tp p)e F} (7.6)
{t;\(Plt;)e F} (7.7)

p
o

Input and output places of a transition are also named pre- and post-places.
Similarly, input and output transitions of a place are also named pre- and post-
transitions.

The next two definitions define the transition enabling and firing rules-they are
together also called the execution rules of a Petri net.

Definition 7.4. (Enabling rule) A transition t in a given Petri net is called fireable
or enabled by a marking M if and only if (iff for short):

a. For each pre-place of t, its marking is equal or greater than the weight of
the arc fromittot, or

b. "t hasno pre-place.
Mathematically, a transition t is fireable iff
vpe't: M(p)=W(p,t) (7.8)
or

‘t =0 (7.9)

Equation (7.9) means that a transition without any pre-place is fireable by any
marking. Such a transition is called a source transition. The notation W(p,t)

means the value of the function W for the ordered pair (p,t). Strictly writing, it is

w((p.1)).

Definition 7.5. (Firing rules) Consider a Petri net and marking
M(p), pe{p,, Py Py} Assume that transition t is fireable. Then, the marking
after t’s firing is

M(p)-W(p,t)+W(t, p) if (pe't)alpet)

wheren stands for the conjunction of logical expressions
M (p)={M(p)-W(p.1 it (pe't)a(pet’)

M(p)+W(t, p) if (pe't)a(pet’)

M(p) it (pet)a(pet’)

(7.10)
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M" is called immediately reachable from M. M is reachable from My if firing a
sequence of enabled transitions leads M, to M. All markings reachable from My
form a set called the reachability set. An alternative definition of a Petri net is often
used as follows.

Definition 7.6. The Petri net PN is defined by a quintuple

PN =(P,T,1,0,M,) (7.11)

where
P= {pl, Pyyees pn} is a finite non-empty set of elements called places,
T ={t,.t,,...t,, } is a finite non-empty set of elements called transitions and
PNT=0,
lisafunction 1 :PxT — N called input function,
O isafunction O:PxT — N called output function, and
M, isafunction M, :P — N called the initial marking.

Definition 7.6 can define an equivalent Petri net with that defined by Definition
7.2. Let us formulate it as a theorem.

Theorem 7.1. A Petri net defined by Definition 7.2 is equivalent with that defined
by Definition 7.6 iff the following conditions hold for F, W, I, and O:

(pt)eF = 1(pt)=W(pt) (7.12)
(p.t)eF = I(p,t)=0 (7.13)
(t.p)eF = O(p,t)=W(t, p) (7.14)
(t,p)eF = O(p,t)=0 (7.15)
and inversely
I(p,t)20 = (p,t)eF and W(p,t)=1(p,t) (7.16)
I(p,t)=0 = (p,t)gF and W(p,t) isnot defined (7.17)
O(p,t)=0 = (t,p)eF and W(t p)=0(p,t) (7.18)
O(p,t)=0 = (t,p)eF and W(t, p) isnot defined (7.19)

This theorem follows directly from Definitions 7.2 and 7.6.

Equation (7.10) can be written in a simple way using Definition 7.6. Firing an
enabled (firable) transition t at M leads to a new marking M such that

vpeP, M'(p)=M(p)-1(p,t)+O(p,t) (7.20)
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From the graph-theoretical viewpoint, the Petri net defined by Definition 7.1 is
a directed bi-partite labeled simple graph (not a multi-graph). The set of Petri net
nodes consists of two disjunctive sets, namely P and T. The flow relation F
corresponds to the set of directed (oriented) graph arcs. An arc is given by the
relevant ordered pair. Direction of the arc is determined by the order of the pair
elements. The weights defined by function W are the arc labels.

The same graph is defined according to Definition 7.6. If I(p,t)=k, k=0

(O(p,t) =k, k # 0) then there exists the directed arc from p to t (from t to p) with
the weight equal k.

7.3 Vector and Matrix Representation of Petri Nets

In a given Petri net PN =(P,T,F,W,M,) for each transition t of PN and always

for all places p € P we create the functions t*, t~ and At as follows:

. W(t, p) if pet
t = 7.21
(p) { 0 otherwise (7.21)
B} W(p,t) if pe't
t —
(p) { 0 otherwise (7.22)

At(p)=t"(p)-t (p) (7.23)

Values of the functions t*,t™,and At along with their argument p can be

represented as vectors t*,t™, and At having the dimension equal to the number n
of the Petri net places. It is assumed that the first entry of each vector corresponds
to place p,, the second one to p,, etc., up to the n-th entry corresponding to p, .
By that construction places and transitions are numerated or indexed ordinarily
according to Definition 7.1, namely, P ={p,, p,..., p,} and T = {t,,t,,....t, }. Then

t*(p,) t(p,) At(p,)
O L) L (] at(p) (7.24)
(n) (5 (p,)

Arithmetic operations of addition and subtraction are performed by vector
entries, e.g., the sum of two vectors At, and At, is
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At (p,) At,(p,) At (p, )+ At (p,)
At + AL, = Atzfpz) . At4fpz) _ Atz(pz)TAtzl(pz) (7.25)
Atz(pn) At4(pn) Atz(pn)+At4(pn)

Another variable useful to be represented as a vector is the Petri net marking M.
Similarly under the above assumptions we have

M(p,) (7.26)

Consider two markings m and m’ given for a Petri net. If
m(p)<m’(p) for Ype P, then m<m’, where m(p) is a vector entry equal
M(p), p € P according to Equation (7.26). Further if m<m’ and m = m’, then

m<m’. The inequality m = m’ is satisfied when at least for one corresponding
pair of the vector entries holds the inequality M (p)=M'(p).

Theorem 7.2. Consider a Petri net. Then a transition t €T is fireable by marking
m iff t7<m . If t is fireable by marking m then marking m'=m-+ At is
obtained by firing of t. The notation used for that event is m[t >m’. Expressed in
another way, m[t >m" means that firing of t leads from markings m to m’.

Proof. The proof refers to Definition 7.4 dealing with the fireability of Petri net
transitions, and to Equation (7.22). Consider a transition t and a marking m . Let t
be fireable by m. If some place p is not a pre-place of the transition then the

corresponding entry of the vector t~ is zero, which is less or equal to the
corresponding entry of m for any value of the marking m . If the considered place

is a pre-place of t, the entry of t™ is the weight W(p,t). According to Equation
(7.8) it should be less or equal to M (p) and this is just the condition contained in

the corresponding vector entry of the expression t~ <m . Thus the necessary
condition (t is fireable = t~<m ) is proved. The sufficient condition

(t”<m =t is fireable) follows directly from the fireability definition. The
validity of the expression m'=m + At results directly from the definition of the
vector At .
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Dynamic behavior of the of a system represented by the Petri net can be
expressed using the Petri net incidence matrix A :(aij) . Ais an nxm matrix

with entries given by

a; =0(p,t;)-1(pi.t;) P ePi=12.,n, t €T, j=12.,m
(7.27)

The incidence matrix A can be given in terms of the vectors At;, j=12,..,m,
as

A =(At,,At,,...,At,) (7.28)

Now, a new marking m’ obtained from the marking m by firing the fireable
transition t; can be expressed using the incidence matrix as

m'=m+AX (7.29)
where
0
0
(7.30)
x= j-th|1
0

is an m-dimensional vector whose j -th vector entry equals 1 while the other
entries equal zero.

Example 7.1. The behavior of the flexible manufacturing system with one robot
was described in Example 5.2, Figure 5.2, Chapter 5, using the finite automaton
(Figure 5.3). We will represent the system by the Petri net shown in Figure 7.6, in
order to compare hoth ways of the DEDS modeling.

A token in the place p,, represents a situation when the conveyor A is empty.
The event “a workpiece occurred at the system input” changes the input state.
Afterwards the workpiece is prepared for manufacturing. The event is represented
by firing t, . Transition t, is fireable and on its firing the token from p,, is

removed and is placed into the place p,,. In the Petri net it is not specified when
the event happens. Places pg, and pg, have an analogous meaning for the input
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Pra PvA  paw Pmas

() Do
O

Processing part A — adding B — assembling AB Pro

ts
Por o
O
tq

Figure 7.6. Petri net model of the flexible manufacturing system from Figure 5.2

workpieces of kind B. If the robot is available (a token is in pg ), a workpiece A is
available (a token in p,,), and the previous machine process is completed (a token
in pye ) then the robotic transfer of the workpiece A can start (firing transition t,).
Place p;,is occupied by a token during the transport. The end of the transport and
loading the workpiece into machine M is specified by transition t,. After firing t,
a token is placed in p,,,. End of processing of the workpiece A is specified by
transition t, and the start of the transport of B into the machine by t,. Then a
token comes to the place p,;, which indicates that the transfer of the workpiece B
is in progress; t. denotes end of the transfer and start of the assembly operation; t,
specifies end of the assembly operation; t, specifies start of the product transfer
from M onto the conveyor C3 (t, is fired and a token appears in p;). After the

transfer of the product AB on C3 and its leaving out the cell, the token moves to
the po= place. The place p,,- ensures that the next part A is loaded into machine
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M only after the assembly process has been finished. The next workpiece A can be
loaded at the earliest on the conveyor C1 (firing t,) when the preceding workpiece

A is in the transfer to the machine M ( p;, marked). Considering it we have: t;
fires and then t, fires. First, A has to arrive to be processed in M (a token in py,)
and after that it waits in the machine (token in p,, ) and only then B can be
loaded into the machine. The place p,g, corresponds to the machine output. A
token is in p,g, if the assembled product AB is at the machine output. After the

product leaves machine M, M is free again.

The created Petri net specifies the structure and behavior of the flexible
manufacturing system in a transparent and concise way. The relation between the
system states and its dynamics is graphically visible using the properties and rules
of Petri nets. A new workpiece can be loaded into the machine M when it is
present at the cell input and the machine M is free (place p,, has a token).

Moreover, the obtained Petri net specifies the cyclic repetition of the
manufacturing process. Conditions and development of the manufacturing process
can be verified thus the Petri net presents a basis for developing the control
program.

The incidence matrix can be computed via the vectors At; or via functions

o(p, ,tj) and 1(p, A ).
The incidence matrix expressed via the vectors is

A =(At,, Aty At AL,,..., Aty, At,) (7.31)

where, for example,
=(010000000000000)", t, =(100000000000000)",

At, =(-110000000000000)" in which the order of the places is

Paos Pair Peos Peis Pras Pmas Paw s Pty Pmaes Pag: Pumr s Pros Pos Por s Pr 5
=(000100000000000)", t;=(001000000000000)"

=(00-1100000000000)" etc.

The functions O(pi ,tj) and I(pi ,tj) are calculated as follows:

O(pAO7tA)=O’ O(pAO’t )ZO O(pAO 1) (pAO 9) 0,
O(pAl’tA):ll O(pAl't ) 0, o(pAl 1) (pAl’ 9) , BtC.
I(pAO’tA)zl’ I(pAO7tB)_O’ I(pA0' ) o (pAOv )=
I(pAl!tA):O’ I(pAlltB)ZO' I(pAl! ) ’I(pAl! 9):0’

etc.
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The incidence matrix using Equation (7.27) or (7.28) is
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The matrix columns from the 1st up to 11th one correspond to the transitions
ty,ts, b, 1, ..., Iy, respectively. The initial marking is

m, =(1,0,,0,0,0,0,0,01,0,011)" (7.33)
The next marking after the initial one is obtained through firing t,, i.e.,

m’ =m, +A(10,0,...,0)" =(011,0,0,0,0,0,01,0,011)" (7.34)

The matrix representation of a Petri net can be simplified for a Petri net class
called pure Petri nets. Figure 7.7 shows the case when the given Petri net includes
a direct loop. A Petri net without the direct loops is called the pure Petri net. The
limitation due to the structural purity condition is relatively small. A direct loop
can be easily removed by the rearrangement shown in Figure 7.8, which practically
does not bring about any discrepancy with the real system.

t

Figure 7.7. A direct loop in a Petri net
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P
t
Figure 7.8. Removal of a direct loop from a Petri net
Formally, a Petri net is pure iff the following implication holds:

(pt)eF=(tp)eF (7.35)

Now let us return to the matrix simplification question. Consider a pure Petri
net. A vector t; can be associated with t, €T in a different way than using

Equation (7.24), in particular,

t1i
t, _
_ ~W(p.t;) if(p.t;)eF
t = RS +W(ti! pk) if (ti’ pk)E F (7.36)
by .
0 otherwise
Yo

The number of the vector t; entries is equal to the number of places in set P, i.e.,
| P| . In the simplified case is the incidence matrix

A=(t,t,..t,) (7.37)

As before the new marking is given by
m’'=m+AX (7.38)
For the vector x see Equation (7.30). The reader can see why a direct loop in a

Petri net cannot be represented in the simplified way. The direct loop case cannot
be distinguished from the one when no arc is connecting the place p, with t,.

The Petri net in Figure 7.6 is a pure Petri net. The simplified incidence matrix is
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-1 0 1. 0 0 O O O O 0 O
1 0 -1 0 0 0 0O O O O O
0 -1 0 0 0 0 1 0 0 0 O
0 1 0 0 0 -1 0 0 0 O O
0 0 1 -1 0 0 0 0O 0O 0 O
0 0 0 1 -1 0 0 0 0O 0 O
0 0 0 0 1 -1 0 0 0 0 O
A={0 0 0 0 O 1 -1 0 0 0 O (7.39)
0 0 0 0 0 0 1 -1 0 0 O
0 0 0 0 0 0 0 1 -1 0 0
0 0 -1 0 0 0 0 O 1 0 O
0 0 0 0 0 0 0 0 1 -10
0 0 0 0 0 0 0 0 0 1 -1
0 0 0 0 0 0 0 0 -1 0 1
0 0 -1 1 0 -11 0 -11 0

The modeling power of Petri nets can be increased by adding inhibitors and/or
incidentors as a new kind of oriented arcs. They are defined next.

Definition 7.7. The Petri net with inhibitors and incidentors is defined by

where

Pl = (PN, INHD, 4,0 » Lo ) (7.40)

PN is the Petri net according to Definition 7.2;
INHD c P xT x {0,1}, and the set of triples (p, t, 0) for peP and teT is

called the set of inhibitors, and the set of triples (p,t,1) is called the set of
incidentors;
Ao - INHD - L p is the function mapping the inhibitors or

incidentors onto a set of logical assertions specifying the function of these
special group of arcs. The assertions are related to markings of place p in (p,
t, 0) or (p, t, 1). Such an assertion specifies additional conditions for the
fireability of a transition pointed by the arc. For an inhibitor, a condition is
defined stating when a transition is not fireable. Inversely, for an incidentor,
a condition is stating when the corresponding transition is fireable.

For example, the following assertion is mapped to an inhibitor: a transition is
not fireable if its inhibitor pre-place has one or more tokens. Another is that it is
fireable if its incidentor pre-place has exactly three tokens. All the other rules for
the net are in effect. Inhibitors and incidentors bring about additional firing
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conditions about transitions. However, they do not affect the token flow during any
transition firing in a sense that no tokens “flow” through them.

Peo o

s

Pa1 .

Processing part A — adding B — assembling AB Pro

Por o §
‘ Po

Figure 7.9. Modification of the Petri net in Figure 7.6 using an inhibitor

Example 7.2. Usage of inhibitors will be illustrated by means of a fine structural
change in the Petri net from Figure 7.6. After substituting the arc (te, pMF) for

(t,, pur ) We have the modification; see Figure 7.9. The new structure indicates
that after firing t; the machine M is again free. As assumed and modeled in Figure
7.6, it is not possible to enter any further workpiece into M for some technological
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reasons. Another way to express the situation is to use an inhibitor (p ABW ,tl,O)
according to Figure 7.9.

Feeder with

components

Robot 2

Robot 1

W orkspace with
printed circuit board

Figure 7.10. Flexible and automatic assembly of printed circuit board

Example 7.3. Another flexible manufacturing system will be considered in this
example (Zhou and Leu 1991). It is a two robot flexible system for the automatic
assembly of printed circuit boards. The block scheme of the system is in Figure
7.10. The two robot system cares for automatic picking and inserting electronic
components onto a printed circuit board (PCB). The components are supplied from
a feeder. The sequence of operations to be realized are: picking up a component
from the feeder by a robot, pulling back the robot arm, moving to the workspace,
inserting the component, pulling back the robot arm, moving back to the feeder etc.,
cyclically.

Only one robot can be in the feeder and workspace, respectively. Therefore the
system control should avoid a collision of robots in those areas. The robot arm is
pulled back after component picking and inserting. Both robots with their arms
pulled back can move in the space between the feeder and the PCB. The Petri net
describing the system behavior is in Figure 7.11. The meaning of places and
transitions with respect to the real system are inscribed in the Petri net. The places
p, and p, ensure that picking or inserting is allowed only for one of the robots.

The initial marking is given in Figure 7.11. In the initial state, both robots are
available. At the beginning it is assumed that the robots are close to the feeder area.
Both the feeder area and the workspace are free at the beginning. The Petri net
shows possible continuations of the system behavior. Either of robots R1 or R2
picks up the electronic component from the feeder. Components of the Petri net
show that either transition t;, or t,, can fire separately, but not together. It is not

specified in the Petri net which transition fires, and when. The next required step
(or in the Petri net terms: the next transition firing) has to be activated by a system
control. We will deal with this question in the following sections. In what follows
an attention will be focused on a kind of indeterminism contained in Petri nets. A
potential possibility of an indeterministic situation arises when there is more than
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one arc coming out of a place. It is the case of the places p, and p, in Figure 7.11.

Using inhibitors and incidentors is one possible way of avoiding this
indeterminism. Let in the analyzed system the robot R1 has always a preference
(priority) before the robot R2. Figure 7.12 shows the use of the inhibitors for this.

An inhibitor (p,,,t,,,0) disables firing of the transition t, by the marking

depicted in Figure 7.12. The effect of using the other inhibitor when both places
p,, and p,, have a token is similar. Another possible behavior would be the

alternation of the robots as shown in Figure 7.13.

Component for R1 Component for R2
o )available available P21 @

Feeder area
available

1

P12 C>R1 picking

2
P22 Cj;icking

t12 _
arm R2
P13 retur-
ning
{13 A
R2
R, Yot

il. R1 moving
p14C to PCB P24 2 )
1 moving

to PCB

PCB area
available

t24

R1 inser-
pZSC ting

| pr—

R1 inserting

Figure 7.11. Petri net for the printed circuit board (PCB) assembly
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Component for R1 Component for R2
pin i available
; Feeder area
11 i
available
- - R 2
p2z ()R picking Ohicking
t2
arm R2
P13 ‘ retur-
ning
ti3
R2
pi( e)RL ) P2 C‘Bavail
avail. R1 moving
P14 i 1
----------------------------------------- . [R1 moving
tus p (=) PCBarea g
available
) ) R1 inser-
P15 R1 inserting PZSC ting
t15—— t25——
; C)afm R1 arm R2
16 returning Pas retur-
ning
ti6=— tae
R1 moving D anf,ving
27
to FA to FA
RL fa tor R2 fa

Figure 7.12. Petri net with inhibitors for the printed circuit board (PCB) assembly

7.4 Petri Net Classes

In Sections 7.1-7.3 we dealt with the most used standard Petri net definitions. They
serve as basic or reference Petri net models. There are many modifications to the
basic models. According to David and Alla (1994), they can be classified as
abbreviations or extensions.
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Component for R1 Component for R2
available available  p,,("e

1
Feeder area

available C>R2
P22 _picking

t12 t22
Cbarm R1 re- arm R2
P13 turning P23 re_tur-
ning
t13 c— t23

[ R2
O
19 avail. R1 moving P2 avail
P1a C to PCB p24C
1 moving

to PCB

tg = tos

p15C> R1 inserting

tis

P16 C

PCB area R1 inser-
available pZSC ting

Psa
tor

arm R2
retur-
ning

)arm R1
returning

R1 moving
to FA

R1_fa to7

Figure 7.13. Petri net for printed circuit board (PCB) assembly with alternation of robots

Abbreviations of the basic Petri net model enable one to represent a DEDS in a
simplified way, for example, colored Petri nets, Petri nets with capacities and
others. An abbreviated representation can always be converted to a basic Petri net
model though the latter may be much larger and less transparent.

On the other hand, the extensions are actually Petri net models with additional
functional rules to those defined for the basic model. Extensions arise, for example,
when special arcs called inhibitors and incidentors are added to the arc set or when
further firing conditions are added to the transitions. The additional conditions may
be deterministic, stochastic, timed etc. In such a case the transition firing is bound



Petri Net Models of DEDS 93

to external or internal states or events — a kind of model synchronization.
Extensions are capable of representing many reactive control functions and
therefore, the extension class is called the Petri nets interpreted for control. The
chosen abbreviation and extension classes will be treated in the sequel.

Petri net models within each class can further be classified into sub-classes,
with respect to the structural properties. Consider the class of standard Petri nets
specified by Definition 7.2. The following sub-classes can be distinguished

1. Binary Petri nets.
A Petri net is called binary or ordinary if all its weights are 1s, i.e.,

W:F —{1} (7.41)
An example of a binary Petri net is in Figure 7.3.

2. Petri net state machines.
A Petri net state machine is a binary Petri net such that each transition has
exactly one input place (pre-place) and exactly one output place (post-
place). Given formally:

VteT fot|=|te=1 (7.42)

The name of this sub-class suggests that it is very close to the finite
automata models. Figure 7.14 shows an example of the vending machine
model. The machine accepts only 5 cent and 10 cent coins and it vends a
bottle of coke for 20 ¢ or candy for 15 c. Arrival of a token in places
p;. P, Starts counting the time interval “int”. It starts a counting renewal if

the interval has not expired. If the required amount of money has not been
accepted within the interval “int” the machine returns coins and waits.

3. Marked graphs.
A binary Petri net is called a marked graph or event graph if each place has
exactly one pre-transition and exactly one post-transition. Formally,

VpeP:|o p|:|po|:1 (7.43)

Figure 7.13 is an example of a marked graph.

4. Free-choice nets.
A free-choice net is a binary Petri net such that every arc going out of a
place is either (a) unique arc incoming into a transition and no other arcs go
out of the place or (b) there are more arcs, but each of them is unique arc
going into the transition. Figure 7.15 shows elementary structures
characterizing the free-choice sub-class. Formal description of the sub-
class is
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get candy for 15¢

no coin in
int, return

return of
other coin

t

depbsit 10c
coin

start time

interval int
P2 it deposit 5¢
waiting o _
on coin coin deposit deposit 5¢
t 5¢ coi coin
return

start time 'Idepogit
interval int 10c

no coin in

int, return
return of

other coin

other coin

get coke for 20c

Figure 7.14. Petri net state machine model of a vending machine

VpeP:|pe <l or e(pe)={p} (7.44)

where (p o) are all post-transitions of place p, and e (p ) means the set of
pre-places of all transitions of the set (p e).
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Note that in Figure 7.15, the first statement of Equation (7.44) holds for p,,
P, Py, and pg: |pyef=1 [p,e=1 |p, =0, [pse=0, and the
second one holds for p,: (p, ¢)={t,.t;}, ®(p; ®)=o{t,,t;} = {ps}.

Figure 7.15. A free-choice net example

5. Safe Petri nets.
A Petri net is safe if for all markings reachable from M :

vpeP, M(p;)<1 (7.45)

For example the Petri net in Figure 7.3 is safe.

Each sub-class is specific as to various Petri net properties, which will be analyzed
in the next chapter.

7.5 Petri Nets Interpreted for Control

In preceding sections Petri nets were used as a tool for discrete event system
description from the observer’s point of view. Internal structural relations in the
system are expressed according to the Petri net components and rules. The
relations determine the Petri net behavior so that the particular Petri net specifies
the actual behavior and function of the represented system. The question of how to
achieve the required behavior using Petri nets has not been treated yet.

DEDS control problems were considered in Chapter 4. It was shown that the
system SYST in Figure 4.1 can be modeled as a Petri net. This was the main
approach in the previous parts of this textbook. Now, we are interested in the
DEDS control design. The control system C in Figure 4.1 can be represented as a
Petri net as well. For that purpose the Petri net introduced in Definition 7.2 should
be augmented. This new class of the modeling tools will be called the Petri nets
interpreted for control.
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Definition 7.8. A Petri net interpreted for the DEDS control is given by the
quintuple

PC =(Pl,y,LOG,¢,COM) (7.46)

where
Pl is a Petri net given by Definition 7.7;
w:T — LOG is a function mapping the transition set T onto a set of

logical assertions containing logical variables, predicates, events, and the
empty symbol;

¢ P — COM is a function mapping the set of places onto a set of value
assignments to control variables including the empty variable, and of
events, the value assignments and events are realized when the place
marking changes from 0 to a non-zero value.

The Petri nets firing rules are completed in a natural way. A transition t, € T of

a Petri net interpreted for control (PC) is fireable if all fireability conditions for
Petri nets with inhibitors and incidentors are fulfilled and all logical assertions
mapped from the transition t; are true. Logical assertions are logical expressions

and predicates consisting of variables aggregated into vector u(t); See equation

(4.1) in Chapter 4. These variables are outputs of the controlled system and inputs
to the control system (as shown in Figure 4.1).

COM serves as a set of control commands. The commands are disabled when in
a considered place to which they are mapped there is no token, and they are
enabled when a token or tokens arrive in the place. Nature of the commands can be
twofold: level commands (corresponding to setting of the control variable values)
or impulse commands (corresponding to event forcing). This issue will be treated
in detail later in connection with Grafcet. It is quite understandable that the
commands correspond to the variable W(t) in Equation (4.7) related to the

feedback structure of Figure 4.1.

As mentioned in the preceding section, Petri nets interpreted for control are
sometimes called synchronized Petri nets (David and Alla 1994) because the
transition firings are conditioned and synchronized by external variables.

Now we are able to generate a Petri net interpreted for control for the flexible
manufacturing system depicted in Figure 5.2. This task is simplified with help of
the Petri net in Figure 7.9. This problem was discussed in Chapter 4. The Petri net
of the controlled system is always structurally very close to the Petri net interpreted
for control of that system. Usually it is not the same. The Petri net interpreted for
control PC is in Figure 7.16. Meanings of logical expressions mapped to transitions
of the Petri net in Figure 7.16 are described in Table 7.3. Notation of control
variables is given in Table 7.4.
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Figure 7.16. Control: processing of part A — adding B — assembling AB
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Table 7.3. Description of logical conditions in the Petri net of Figure 7.16

Logical Expression Meaning
ia=0 No part of kind A at the input
ia=1 A part A at the input
tam=0 No end of transfer of A into the machine M
tam=1 End of transfer of A into the machine M
ea=0 No end of processing A in the machine M
ea=1 End of processing A in the machine M
ib=0 No part of kind B at the input
ib=1 A part B at the input
tbm=0 No end of transfer of B into the machine M
tbm=1 End of transfer of B into the machine M
eab=0 No end of AB assembly
eab=1 End of AB assembly
tabo=0 No end of transfer of AB to the output
tabo=1 End of transfer of AB to the output
tabn=0 AB did not leave conveyor C3
tabn=1 AB left conveyor C3

Table 7.4. Commands realized by control variables

Commands
AM For robot to transfer a part A from the input into the machine M
OPA | For start of processing A
BM For robot to transfer a part B from the input into the machine M
OPAB | To start the assembly of AB
ABO | For transfer AB on the output
ABN | To move AB out of conveyor C3




Petri Net Models of DEDS 99

7.6 Petri Nets with Capacities

The modeling convenience of Petri nets can be enhanced by introducing the place
capacity. The capacity restricts the number of tokens that can be located in a place
as the following definition formally states.

Definition 7.9. The Petri net with capacities is given by a couple
PCA=(PN,K) (7.47)
where PN is a standard Petri net by Definition 7.2 and K is the function
K:P—>N* (7.48)
The firing rules for Petri nets with capacities are
(t<m)a(K=m +at)omft>m, (7.49)

where capacities are expressed by a vector

K = K(.Pz) (7.50)

K('pn)

According to the firing rules it is not allowed to put into a place of a Petri net
with capacities more tokens than its capacity. Such nets are also called finite-
capacity Petri nets. The next manufacturing system example illustrates some
essential differences between a traditional modeling method using Petri nets,
termed as process-oriented modeling, and a resource-oriented modeling method
using finite-capacity Petri nets. The latter was pioneered by Wu (1999) and later
developed for various applications (Wu and Zhou 2001, 2004, 2005).

Example 7.4. An automated manufacturing system is shown in Figure 7.17. It
contains machines M; and M, that can concurrently handle two types of parts, A
and B. An A-part has two operations 1 and 2 to be processed by M; and M,,
respectively while a B-part requires M, to process first, and then M;. We assume
that raw materials are continuously supplied while the produced parts are shipped
away when they are ready, i.e., neither starving nor blocking exists. Each machine
can process a part at a time.

By modeling each part’s process using two places and two types of raw
material availability using two separate places, we can derive the model as shown
in Figure 7.18.
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Figure 7.17. An automated manufacturing system producing A- and B-type parts

Figure 7.18. Petri net model resulting from a process-oriented modeling method

For i=0, 1 and 2, places pai models raw pieces for part A are available, A-part’s
operations 1 and 2, respectively. For i=1, 2 and 3, transitions t,; models starting the
first operation, second operation of a raw piece for part A and completion of an A-
part, respectively. The explanations hold true for pg;, tg; and B-parts. Places py; and
pm2 Models the availability of machines 1 and 2. The arcs are added according to
the operational requirements in order to produce A- and B-parts.

A resource-oriented modeling method models each resource as a finite-capacity
place whose capacity is the resource’s processing capability. In this system, since
machine i has single capacity for i=1 and 2, place p; has capacity K(p;)=1. Place po
models the raw material supply and product take-away and, hence, K(po)=n can be
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viewed as infinity. From the resource-oriented modeling viewpoint, an A-raw piece
visits each resource in a pre-defined order starting from p,, to p; and p,, and then
back to po. Similarly, a B-raw piece visits each resource in a pre-defined order
starting from pg, to p, and py, and then back to p,. They can be built separately as
shown in Figure 7.19a, b. Their union (by sharing those same places and transitions
if applicable) leads to the Petri net model as shown in Figure 19c. Transition t;
means an A- or B-piece is being transferred from resources i to j. For example, to;
means an A-rawpiece being transferred from raw material supply modeled by pg to
machine 1 modeled by p;. Transition t,; means a B-semi-finished piece being
transferred from machine 2 modeled by p, to machine 1 modeled by p;.

t12 t21
1 P2 P1 P2
tor tao ty to
Po Po
a b.

Via Union

P1

Po

t12

P2
C.

Figure 7.19. A finite-capacity Petri net model resulting from a resource-oriented modeling
method



102 Modeling and Control of Discrete-event Dynamic Systems

It is clear that the resource-oriented modeling method can lead to a much
simpler Petri net model and thus bring certain advantages in the system analysis
and deadlock control. On the other hand, a process-oriented Petri net modeling
method is more generic as it can model the details and more complex resource
requirements, e.g., an operation requiring multiple resources.

According to Murata (1989), each finite-capacity Petri net can be transferred
into an equally functioning standard Petri net without capacities called the
complementary Petri net. We leave this to the reader as an exercise problem.

7.7 Problems and Exercises

7.1. Show that the Petri net in Figure 7.20 fits the Petri net Definition 7.2.

Figure 7.20. Petri net for Exercise 7.1
Specify the given Petri net using Definition 7.6.

7.2. Figure 7.21 shows a manufacturing system consisting of three production cells
VA, VB, VC and a robot room SR. Transport of the parts to be processed in the
system is executed by four robots. Their possible movements are indicated with
arrows. Only one robot can move through passages between the cells. Let the robot
movements be controlled by the semaphores located at the passages. The robot
transfers are subordinated to the following rules:

1. Maximum number of robots in VA and VB together can be 3.
2. Maximum number of robots in VB and VC together can be 2.

Solve the following problems:

a. Design the Petri net describing the operation of the system with respect to
the robot motion.

b. Design the Petri net interpreted for the control specifying the robot motion
control. Add to the system sensors necessary for the control.
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Figure 7.21. Manufacturing system with four robots
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7.3. A Petri net is given in Figure 7.22. The initial marking is m, = (100)".
a. Compose vectors t;,t;,At,,i=123.
b. Consider sequential firing of transitions t,,t,,t,. Prove validity of the
expression m, [t, >m,[t, >m,[t, >m, and find values of m,,m,,m,.

Figure 7.22. Petri net for Exercise 7.3

7.4. A pure Petri net is given by the following vectors:

-1 0 0 1
1 -1 0 1
At,=| 1 | At,=| 0 | At,=|-1|,At, =| 0
0 1 0 -1
0 0 1 -1

The vectors correspond to transitions t;—t,. The initial marking is
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Draw the Petri net in the graphic form and check if the transition t, is fireable at
m,.

7.5. A factory transportation system using automatic guided vehicles is
schematically depicted in Figure 7.23. Semi-products S1 are unloaded from the
belt conveyor B1 and transported via the track T1 with vehicle V1 to the
processing center C3. The emptied vehicle V1 returns back along the same track to
load another semi-product from B1. Semi-products S2 are transported to the center
C1. After processing in C1 they are transported with V3 swinging between C1 and
C2. V4 transports semi-products S2 after processing in C3 to C2. S1 and S2 are
assembled in C2 and transported to the factory output.

Describe the transportation system behavior using a Petri net. For that purpose
divide the tracks into sections in which there can always be only one vehicle.
Specify the behavior so that the transport is prevented from the vehicle collision.
Show how the Petri net can be used for the construction of the Petri net interpreted
for control of the system. The system should be equipped for the control purposes
with sensors detecting vehicle arrival in and departure of the track sections.

7.6. Propose for the robotic cell depicted in Figure 6.4 (Exercise 6.2) a Petri net
specifying the required dynamic behavior of the cell.

7.7. Using the Petri net proposed in the previous Exercise 7.6, create a Petri net
interpreted for control, which represents the control function ensured by a control
computer such that the required function of the cell is achieved.

7.8. Convert the finite-capacity Petri net model in Figure 19c¢ into an equivalent
complementary Petri net. Suppose Machine M1’s processing capacity becomes 2
and M2’s becomes 3. What is the new equivalent complementary Petri net?
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Properties of Petri Nets

8.1 Marking Reachability

Many important properties of Petri nets can be analyzed by means of Petri net
reachability and coverability graphs. The reachability graph relates to the Petri net
marking reachability. A frequently asked question is whether a given marking m
is reachable by a transition firing sequence. First let us define the transition firing
sequence. The starting marking is important in that question.

Definition 8.1. Consider Petri net PN and its marking m . The sequence

G=t t, ..t (8.1)

i iyt iy

is called the transition firing sequence starting from marking m iff

t, eT, ti, eT, . . ., t, eT (8.2
t,<m, m, =m+At, (8.3)
t,<mg, m,=m; +At, (8.4)
t, <my,, mg=m, +At, (8.5

The meaning of the notation in Equations (8.2)—(8.5) has been described in
Section 7.3. Marking m, obtained via a transition firing sequence starting from

marking m is called the reachable marking in PN from m . For handling
convenience, assume that m is reachable from m..
Substituting Equation (8.3) in Equation (8.4) yields

m, =m+At, +At; (8.6)

By analogy we obtain
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k
m, =m+ > At, (8.7)

s=1

The validity of Equation (8.7) alone is the necessary condition for the sequence
c =t t, ...t to be the transition firing sequence starting from m. If Equation

(8.7) does not hold, & is not a transition firing sequence starting from m. The
sufficiency can be formulated as follows: & is a transition firing sequence starting
from m if

m, :m+zr:Atis L Vrefl2,... ki (8.8)
s=1
and
t;<m and t, <m_,, Vre {2,3,...,k} (8.9)

The fireability of t, at m_, for pure Petri nets can be formulated in the
following way: t, is fireable at m, iff

m,, +At;, 20. (8.10)

Considering Equation (8.10) in a different formulation: o =t, t, ...t is a

Ik

transition firing sequence starting in marking m for the class of pure Petri nets iff

Osm+iAt. Vre{l,Z,...,k} (8.12)

i !
s=1

To provide a detailed explanation of the above reasoning, consider a non-pure
Petri net. Let a transition has one direct loop consisting of one arc with weight
W(tj, pi) going back from transition t; to its pre-place p;, and another arc going

from p; to t; with weight w(p.t). I w(p,t)>M(p) and
W(pi A )<W(tj , pi) then the condition at Equation (8.10) is fulfilled. However, in
spite of it, t; cannot be fired. Consider the non-sufficiency of Equation (8.7) for
the following case. Let ¢ =t;, M( p;)=1, W(pi,tj)zz and W(tj, pi)=3. Given
M( p;)=2, we have My( p;)=M( p;)+At;. However, M( p;) is not reachable from
M( p;) and & is not a fireable sequence at M( p;).

Equation (8.10) is a necessary and sufficient condition for the fireability of t; at
m,_, in pure Petri nets, which can be explained as follows. Entries of vector m_;
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are m_,(p,), Vp, € P, where p, is either a pre-place or post-place of t, . In pure
Petri nets it is impossible that both cases occur simultaneously. In the former case
t/(p;)=0 and t;(p,)=0 so that from inequality m,,+At, >0 we have
mg,(p)+t () -t (p)=m(p;)—t; (p;)=0 , which is the fireability
condition by definition. In the latter case t;(p,)=0 and t; (p,)=0 vields
m.,(p;)=t (p;)=0 from Equation (8.10), which is always true because

m,,(p;)=0. To conclude: in pure Petri nets m_, +At, >0 is equivalent to

Is

m.,(p;)=t; (p;).Vp, € P, or for vectors m_, >t

The most important reachability property in Petri nets is related to the initial
marking value m,. In PN the set of all reachable markings from m, is simply

called the reachability set of PN. From that we have the following definition.

Definition 8.2. In PN, marking m, is reachable iff a transition firing sequence

k

starting in m, exists for which m, =m, +ZAtis . The set of all reachable
s=1

markings is called the reachability set of PN and is given by

Rpy (M, )={m, |m, is reachable (8.12)
m, is defined as reachable: m, € R, (m,) as introduced after Definition 8.1.

Sometimes it is useful to have an analogously defined set of markings
reachable from other markings m = m,. Such a set is called the reachability set

from m and denoted as R, (m).

8.2. Reachability Graph

The reachability set and firing sequences for a given Petri net can be graphically
visualized using an oriented graph called the reachability graph.

Definition 8.3. Consider a Petri net PN =(P,T,F,W,M,) having a finite
reachability set. The simple labeled directed mathematical graph (see Definition
2.2)

RGpy = (Rpy (M, ) REL, f,, f,,&,T) (8.13)

is the reachability graph for PN, where
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Ry (M ) is the set of nodes that is the reachability set of PN, and the node
associated to M, or m, is called the root of the graph;

REL C Rpy (Mg )x Rpy (M) i the relation defining the set of oriented arcs
connecting the marking pairs (M;,M, ), M,,M, € R, (m,), such that the
marking M is obtained by firing a transition t; at M ;

f, is the function mapping P into the empty set S, =& (the function is
empty);

f,:REL—>T is a function defining the arc label for each arc
(M;,M,)), M;,M, Ry (m,) where the label is transition t; whose
firing changes M; into M, and the arc including its label can be denoted
as a triple (M, My ). Then, the relation REL including labels becomes

Initial data: set of graph nodes
Rey (M) ={m,} set of oriented labeled arcs

nrl f )
NERah T U ST

Repetition of the algorithm steps

Choice of a node m, from R, (m, ) for which a fireable transition t i
exists and m, =m; +At; and (m. t, mk)sz REL,,,

ity

node found
yes no
no m, € Ry (mo) 2 yes
put m, into Re, (m,): %
RPN(mO):: RPN(mO)U{mk} %

put the labeled arc (mi 4 ,mk) in
REL,, : REL, =REL,, U {m,,t,,m, )}

Figure 8.1. Nassi-Schneiderman structogramme of the reachability graph construction

algorithm



Properties of Petri Nets 111

REL, = (M0t M, )| M, M, € Ry (o) At €T A Mit; > M, |
(8.14)

Instead of functions M, M;, and M, the corresponding vectors mg, m;, and my
can be used for the marking representation as explained before. The vector version
of the algorithm for the reachability graph construction using Nassi-
Schneiderman’s structogramme is shown in Figure 8.1. The structogramme form of
the algorithm description supports structured programming without GOTO
instructions and lessens programming errors. Graphical elements of the
structogramme are self-explanatory. Decision blocks are depicted as triangles. An
action always continues through neighboring horizontal edges of the
structogramme. An exception is the repetition block where the continuation edge
after the bottom edge is the top edge of the whole repeated action group. “%”
denotes the empty action, i.e., a skip to the next edge.

More about reachability analysis can be found in Hudak (1999), Jeng and Peng
(1999) and Wang et al. (2004).

Example 8.1. The reachability graph construction will be illustrated on a case study
of a filling and mixing system with two tanks in Figure 8.2. V11, V15, V21, and Vo,
are valves. The required volumes of two liquids to be mixed are prepared using
tanks Ty and T,. The process start is initiated by the push-button S. Valves Vi, and
V,, are opened simultaneously when the liquid levels in both tanks achieve their
maximum detected by the corresponding sensors Limax and Lomex, respectively.
Valves Vi, and V,, are closed separately (independently) when the level Liny, in
the corresponding tank is detected and the tank is immediately filled up: valve Vj;
is opened. After reaching Limax, Valve Vi is closed and, if the other tank is not yet
full, it is necessary to wait. Then again both tanks are emptied together. At any
time the filling can be stopped by the emergency button E. Then regardless of the
system state both valves Vi, and V,; are closed and both valves Vi, and Vy, are
opened. The system returns to the ready state when both tanks are empty.

Vi Vy
=< =<
Limax Lomax
V12 V22
I—lm in ':DQ:\ L2m in .:DQ:\
T T

1
_,ﬁ_ S start

_,ﬁ_ E emergency
emptying T,

Figure 8.2. A two-tank filling system
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Now, the Petri net describing the system behavior (Figure 8.3) is analyzed.
Descriptions of places and transitions are in Tables 8.1 and 8.2. The inhibitors and
incidentor are used in the net. For the sake of brevity, the inhibitors going out from

p,, and p,, are branched from a common arc.

Figure 8.3. Petri net for the two tank system

Table 8.1. Description of the Petri net places

p; [|Ready state of the system, both tanks are empty
p, [|Filling T,

ps |Filling T,

p. |Tqis full

ps |T,is full

Ps |Emptying T,

P, |Emptying T,

ps |Emergent emptying T,

ps |Emergent emptying T,

P [T is empty

Pi1 [Ty is empty

P, [System is not in emergency state
P13 [System is in emergency state
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Table 8.2. Description of the Petri net transitions

t;  [Start of filling

t, |T, achieved its maximum level

t; [T, achieved its maximum level

t, |Start of both tanks emptying

ts |T, achieved its minimum level

ts |T, achieved its minimum level

t;  |Interrupt of T, filling and start emptying by emergency stop
ts  |Interrupt of T, filling and start emptying by emergency stop
ty |Start of T, emptying by emergency stop

tiy  [Start of Ty emprying DY €Mergency stop

t;;  [Confirmation of T, emptying by emergency stop

t;, [Confirmation of T, emptying by emergency stop

ti3 | T2 achieved its minimum level

ti4  |T1 achieved its minimum level

t;s  [Transition to the ready state

tis | The emergency push-button activated

t;; [Start or transition to the non-emergency state when system is in ready state

As already discussed, it is assumed that only one transition can fire in a time
point. For example an “immediate” parallel emptying of the tanks in case of the
emergency stop is in fact decomposed into an event sequence. Consider for
example that a token is in p, and another in p,, i.e., V,, is open and V,, closed,

tank T, is being filled, T, is full, and V,; and V,, are closed. If in such a situation
the emergency switch is pressed, the token from p,, goes into p,,. Transition t,,
corresponds to this event. Transitions t, and t, cannot fire but t, or t,, can. A
possible event sequence can be as follows: firing of t,, then t,,. Transition t,,
cannot fire due to the inhibitor arc (p,,t,;). A next continuation can be t,, and t,,,
so that we obtain the sequence & =t, t,, t,, t;, t,s . Note that a verbal description

of the tank system can hardly be as exact as the Petri net description.

The particular event sequence depends on the chosen control policy. There is
no special priority requirement in our example. Anyhow, a decision should be
made in the control process. From the point of view of the required system
function, the inhibitors going into t,, and t,, are redundant, but they help to reduce

the reachability graph dimension (Figure 8.4). The reachability graph is in Figure
8.4. It has been constructed according to the algorithm described above. By using
inhibitors, the number of nodes has been reduced as indicated above.

According to Definition 8.3, the reachability graph is a simple labeled directed
graph (see also Definition 2.2). Labels of the graph are the underlying Petri net
transitions causing change from one marking to another. The reachability graph is
always a connected one. It follows from the connectivity according to Definition
2.6. The marking reachability can be determined using the reachability graph. In
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PN, marking m, is reachable from m if there exists a directed path a from mto
m, in the reachability graph. The reachability set R, (mo) corresponds to the set
of all nodes of the reachability graph constructed for PN.

10000000000 10 Places distribution in nodes:

[91 P2 P3 P4 Ps P P7 Pg Po P10 P11 P12 P13 ]

v

01100000000 10 \
tig t <7 —
01001000000 10

01001000000 01
00011000000 10

—

00110000000 01
) 00011000000 01
00100000100 01
v
' (00001100000 01
9

00000101000 01

01100000000 01

t] to 00110000000 10

00010010000 10

¢ ﬁ

[ 00100100000 01 ]
t; ts

00001100000 10

13

tis 00000000011 01

Figure 8.4. Reachability graph of the Petri net
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A reachable marking m for which there is no fireable transition is called the
dead marking. It represents the system deadlock. The system stops in the state
corresponding to m because no event is executable.

8.3 Boundedness

On specifying behavior/control of a DEDS, an important question arises about
whether the set of states of the specified system is finite. This question is frequent
in case of real systems. In Petri nets this question concerns boundedness.

Definition 8.4. Let p be a place of PN, i.e., pe P ={p,, p,,..., p, |- It is bounded
if for each m,, which is reachable in PN, i.e., m, e Ry, (m, ), the following holds:

m(p)<j,jeN" (8.15)

If a place of PN is bounded by some j for which m, (p)< j, we can state more
exactly that it is j-bounded. PN is j-bounded if each place of it is j-bounded. PN is

bounded if all its places are bounded. The relationship between PN’s boundedness
and finiteness of its reachability set is well-stated in the following theorem.

Theorem 8.1. A Petri net PN is bounded iff its reachability set is finite.

Proof. < : Any initial marking is given by finite natural numbers associated with
places. Weights of a Petri net are finite positive integers. Due to the firing rules in
Definition 7.5, the generated markings have vector components again including
finite positive integers. This is due to finite reachability set generated using only a
finite number of sums of finite integers. The Petri net is bounded.

= : Conversely, if PN is bounded, markings of the reachability set are
always achieved by a finite number of firings so that the reachability set is finite.

Corollary 8.1. The reachability graph of a Petri net can be constructed if and only
if the Petri net is bounded.

If a Petri net is not bounded, there are an infinite number of markings and
correspondingly an infinite number of reachability graph nodes. Therefore, it is not
possible to construct the entire graph.

Example 8.2. An unbounded Petri net is shown in Figure 8.5. A transition firing
sequence

o=t t,tt,t,t,tt,.. e, (8.16)

generates the sequence of marking vectors as follows:
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Figure 8.5. Unbounded Petri net

1

1) (0)(1)(0)(1)\(O
z=2]10(|2]|0]||2]|0]...| 2| O |. (8.17)
1/{3)\2/{4)\3)(5 o0 )\ 00
Another firing sequence, t, t; t, t; ..., can generate anthoer sequence of markings:
1\ (2)(1)(2)(1)(2 1Y 2
w=|2||4l|2]|4l|2||4]..|2] 4] (8.18)
1)10){2){1){3)\2 oo )| 0o

Marking M (p,) of p, grows to infinity. The number of reachability graph nodes

is unlimited. An application of the reachability graph construction algorithm in
Figure 8.6 shows that the marking of p, can be infinite in combination with many

other markings of p, and p, . These markings are as follows

1) (2) (3 i
21,/41,16],...,|2i| where i=12,...,0 (8.19)
o0 o0 e} o0

As a result, every place can grow its marking to infinity.

8.4 Coverability

The reader could ask how to represent the marking state space for unbounded Petri
nets in a finite way. It is possible using the coverability property and the so-called
coverability graph.

Definition 8.5. Let PN =(P,T,F,W,M,) be a Petri net. A reachable marking
m of the Petri net PN is said to be covered by a marking m’ iff
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Figure 8.6. Construction of the reachability graph for an unbounded Petri net; to construct
the complete graph is impossible

m’'>m (8.20)

The inequality at Equation (8.20) means that for each pair of corresponding vector
entries m'(i)>m(i) for i=12,..|P| . Note that Definition 8.5 concerns any

marking m’ of PN, not only the reachable ones. Here, recall Definition 7.3



118 Modeling and Control of Discrete-event Dynamic Systems

defining both reachable and unreachable Petri net markings. The next definition
deals with coverability with respect to a reachable marking in the given Petri net.

Definition 8.6. Given a Petri net PN. A marking m is said to be coverable in PN if
there is a reachable marking m’ in PN, i.e., m’ € Ry, (m,), such that

m’>m (8.21)

Definition 8.6 specifically deals with the coverability connected with a given
Petri net. The initial marking M, used in the Petri net definition can be replaced

by vector m, .
In order to augment the coverability concept for unbounded Petri nets, @, a

special symbol for infinity, has been supplemented to the marking value set. A
slightly modified definition will serve for the augmentation.
Definition 8.7. Given an unbounded Petri net PN. The function

M:P— N U{ju{w} (8.22)

is called the augmented marking of PN. Foreach neN": w>notn=0,02o.
1

10 .
For example an augmented marking m = 0 in a Petri net with four places

2 2 1
10
is covered by marking m' = @ because @ >m= .
0 0 0
w w ()

8.5 Coverability Graph

Like the reachability graph described above for bounded Petri nets, the coverability
graph is used for unbounded Petri nets. The coverability graph enables to represent
in a finite form the marking state space so that the finite number of augmented
markings cover all actual markings of the considered Petri net. The coverability
graph construction is based on the following theorem.

Theorem 8.2. Given a Petri net PN =(P,T,F,W,M,) and two firing sequences
4 and v, where v is a non-empty firing sequence starting from marking m,, z
can also be the empty firing sequence. If z isempty (u =¢ ), then mO[E >m, . If
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mo[z>m[v>m’ and m'>m (8.23)
the Petri net PN is unbounded.

Proof. Inequality m’ > m means that, at least for one entry of those vectors,
m'(i)>m(i), i €12,...|P) (8.24)

while for the other entries for which Equation (8.24) is not valid, the equality holds.
The vector entries considered in Equation (8.24) correspond to place p;.

Let the first transition in the non-empty firing sequence v be t, . If t, is
fireable by m even more it is fireable by marking m’. The structure and weights
of the Petri net PN are fixed. Some tokens are removed by firing t, from p, and
some are added in p, according to the firing rules in Definition 7.5. If there are
more tokens added to p; than those removed from it, Equation (8.24) holds.
Consider that the firing sequence v is again applied starting from marking m’
and m[v >m”. The inequality m”>m’ holds for the above-mentioned reason.

Continuing the reasoning in the described way, it can be concluded that the number
of tokens in p; grows to infinity. A similar situation can occur for more than one

place. In such a case, the number of tokens in such places increases beyond any
integer limit.

The idea of the coverability graph is to construct a graph of markings using the
augmented markings and to achieve a finite graphical representation so that all
reachable markings even unlimited are covered by a finite number of augmented
markings. Then the coverability graph has a finite number of graph nodes.

Definition 8.8. The coverability set for a given unbounded Petri net PN is a finite
set of augmented markings covering all reachable markings in PN.

Now we can formulate the coverability graph definition similar to the one of
reachability graph.

Definition 8.9. Consider a Petri net PN = (P,T,F,W,M,) be given. The simple
labeled directed mathematical graph

CGpy = (Cpy (M, ) RELC, f,, f,,&,T) (8.25)

is the coverability graph of PN, where
Cey(my) is the coverability set of PN
RELC < Cpy (M, )x Cpy (M, ) is the set of oriented arcs labeled by the
function f,
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f,: Cpy(my)— @ is not defined or empty function

f, :RELC — T is a function mapping the arcs of RELC into the set of
transitions. The labeled arcs are represented via the triples (M airtpM Ak).
The labeled relation is RELC,,, . Transition t ; is fireable by all reachable

markings (standard, i.e., not augmented marking) covered by the
augmented marking M ,; and the firing brings about a marking covered by

an augmented marking M, , t; is a label of the arc from M, to M. In

this way, all reachable markings of PN are covered by C,,(m,) and all
possible transition firings are among the labels of the coverability graph.

A coverability graph node corresponding to an augmented marking may cover
some subset of standard reachable markings in PN. For each possible transition
firing in these reachable markings there exists an arc labeled with the transition and
going into another augmented marking, possibly in the same augmented marking
(feedback loop). Several reachable markings covered by an augmented marking
can enable firing of the same transition represented by the same arc. Construction
of a coverability graph according to Definition 8.9 is not an unambiguous task.
There can be several coverability graphs for the same Petri net. Each node of the
coverability graph represents a marking that covers a subset of the reachable
marking of the given Petri net. Firing of a transition can change a marking that
belongs to one covered subset to another marking belonging to another subset.
Each subset is represented by an augmented marking that covers its subset. In a
special case, a transition firing can return to the same subset.

A coverability graph of PN can be constructed according to the following
verbal algorithm. The algorithm proceeds in consecutive steps if not otherwise
specified.

STEP 1. Define three empty sets denoted as “NOT_ANALYZED”, “DEAD”,
and “ANALYZED”.

STEP 2. Put the initial marking represented by the vector m, into
NOT_ANALYZED.

STEP 3. If NOT_ANALYZED is empty, go to STEP 11, otherwise go to
STEP 4.

STEP 4. Select and withdraw a marking from the set NOT_ANALYZED and
denote it as m . Draw a node of the coverability graph which
corresponds to the marking m .

STEP 5. If no transition is fireable by m put marking m into DEAD and go to
STEP 3, otherwise go to STEP 6.

STEP 6. Define set T,, < T of all fireable transitions by m.

STEP 7. If T,, isempty go to STEP 3, and otherwise go to STEP 8.
STEP 8. Withdraw a transition t from T, and by its firing in PN obtain
marking m’, that is m[t>m’.
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STEP 9. If there is a marking m, equal to m" in ANALYZED or DEAD,
draw an arc from node mto m,, label it with t and go to STEP 7,

otherwise go to STEP 10.
STEP 10. If there is one or more markings m” on any possible directed path
from m, to m’, for which m">m", then replace the number of

tokens for each place p e P for which m'(p)>m"(p) with symbol

w standing for the infinite number of tokens, i.e., the original
marking is replaced by an appropriate augmented marking. Recall
that @ does not strictly cover @ because it is defined that v > @ ,
this case does not lead to a new covering marking. In the case that
there is not the same marking as m’ in ANALYZED or DEAD, add
a new node corresponding to the modified augmented marking m’
into the coverability graph and draw an arc from m to the modified
marking m’ . Put marking m’ into set NOT_ANALYZED, else
draw only an arc. Go to STEP 7.
STEP 11. END.

It is evident that STEP 10 is directly implied by Theorem 8.2. If some newly
generated marking “sharply” covers a marking somewhere on the backtracked path
in the coverability graph, then Theorem 8.2 can be applied. The fact that in one
place tokens will be cumulated without limits is interpreted by replacing the
marking with infinity @ . From this moment when a transition t is fired by m’, the
number of tokens in place p is considered infinitely large. Recall that the addition
of k tokens to p gives w+k = @ and similarly for any subtraction. For covering
w holds v > w.

A Nassi-Schneiderman structogramme is depicted in Figure 8.7. It specifies
practically the same construction algorithm as verbally described earlier. The
structogramme is more transparent and enables to program better the algorithm
using a computer. The structogramme design principles have been explained when
constructing the reachability graph.

Example 8.3. Construction of the coverability graph is illustrated using the Petri net
from Example 8.2, which is depicted in Figure 8.5.

The initial marking is m, = (1 2 1)". There are two transitions fireable by m:
t, and t,. Next markings are (0 0 3)" and (2 4 0)". None of these markings
cover some of their ancestors, namely (0 0 3)'#(121) and
(240)#(@21)" , either. Now there are two markings in the set
NOT_ANALYZED. Considering first (0 0 3)", only t, is fireable at (0 0 3)".
The next marking is (L 2 2)" which sharply covers m,=(1 2 1)" as
m=@122)>@121" =m"=m,.For p,,since m'(p;)> m"(ps), the marking
at ps becomes w. Since w—1=w, the next marking resulting from firing t; is
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(0 0 )" . Continue the process according to the algorithm; we obtain the
coverability graph in Figure 8.8. It has only six distinct nodes, i.e.,

0) (2) (1 0 0]
L 1 y 2 Ll 0 l
and | “
3)10) \w) \@ w
Initial data: set of graph nodes Cpy(Mmy)=m,
set of labeled oriented graph arcs RELC,, ={., }= @ (empty)

Repetition of algorithm steps

Choice of anode m; such that 3m; e C, (m,),3t; T,

vm, € Cpy(My): (m [t,>m,)a (m,,t,,m,)e RELC

irbij

node found
yes no

no m, eCPN(mo) ? yes
Creation of an augmented W ithdrawal of the existing
marking m * marking m, of set
m*(p)= @ if m, hasan Cpy (M) and creation of
ancestor m~ such that marking m *
m, >m~ and m*(p)=e if m, hasan
m,(p)>m (p), ancestor m~ such that
otherwise m, >m~ and
m*(p)=m,(p) m,(p)>m (p), %

oherwise

m*(p)=m,(p)

Con (mo)::CPN (mo)U {m *}

RELC,, = RELC,, U {(m,t,,m *)}

ozm

Figure 8.7. Nassi-Schneiderman structogramme for the coverability graph construction
algorithm
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Figure 8.9. Coverability graph for the Petri net in Figure 8.5

The example allows one to demonstrate the ambiguity of the coverability graph
construction. In Figure 8.9 there is a different coverability graph that complies with
Definition 8.9 though it has not been designed using the above described algorithm.

With its augmented markings the coverability graph in Figure 8.9 covers all
reachable markings of the net in Figure 8.5. Each possible firing has an associated
arc from one augmented marking covering of the coverability graph to another of
the next marking after the firing.

Example 8.4. Consider the net in Figure 8.10. It comprises a transition without any
outgoing arc. Such a structure complies with Definition 7.2. Its coverability graph
is shown in Figure 8.11 and has two dead markings. They are contained in the set
DEAD filled up during the algorithm execution.
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lOOa)I

dead

Figure 8.11. Coverability graph for the Petri net in Figure 8.10

Design of the reachability and coverability graphs can be analogously done for
the Petri nets with inhibitors and incidentors PI, for the Petri nets with capacities
PCA, and for the Petri nets interpreted for control PC. The PI’s and PCA’s firing of
a transition is subordinated to the existence of inhibitors or incidentors, and to the
place capacities, as well. For PC the arcs in the reachability and coverability
graphs are labeled both with firing transitions and with additional firing conditions.

8.6 Liveness

The next property we intend to study is the liveness. It is related to the deadlock
free operation of discrete event systems. Liveness can be analyzed in terms of
marking and event.
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Given a Petri net PN we say that a reachable marking m, € R, (m,) is dead if
there is no transition fireable at m, . Put simply, if a Petri net is a correct model of

a real system and reaches m, , then the system cannot continue its

operation/function. No event is executable and the system is in a deadlock.

Moreover, we are interested in the system event history leading to a deadlock.
The history can be expressed in terms of firing sequences. Firing sequences are a
very basis for the definition of Petri net liveness.

Definition 8.10. Consider PN = (P,T,F,W,M,). A transition t € T is said to be

e Live at level LO (or dead) if there is no firing sequence beginning at m,and
containing t,

e Liveatlevel L1 iftcan be fired at least once in a firing sequence beginning
at my,

e Live at level L2 if t can be fired at least k (k>1) times in a firing sequence
beginning at m,,

e Live at level L3 if t can be fired infinite times in a firing sequence
beginning at m,,

e Live at level L4 (or live) if at each reachable marking of PN, there is at
least one firing sequence in which t fires at least once.

It is possible to express L4 in terms of L1 as follows: transition t is live at level
L4 if for each reachable marking m e R, (m,) it is L1-live. In other words,
starting from every reachable marking there should exist a firing sequence in which
t fires at least once.

Liveness at level Lk is denoted as Lk-liveness for brevity.

The following implications can be easily understood:

L4-liveness = L3-liveness = L2-liveness = L1-liveness

t is said to be strictly Lk-live if it is Lk-live but at the same time it is not
L (k +1)-live.

The minimum liveness property with respect to all transitions of a Petri net is
transferred into the property of the whole Petri net, i.e., if all transitions of PN are
Lk-live, PN is Lk-live.

Many authors use the tag “live” for the L4-liveness. Consequently if t is not live
then it may not be dead, it can be, e.g., L2-live, and inverse of dead (LO-liveness) is
not live but can be any Lk-liveness, k=1,2,3, and 4.

Example 8.5. Figure 8.12 shows a Petri net that serves for liveness study. Only t;
is fireable at initial marking m, = (1 001 0)T . After firing t; the next marking is
(0100 0) and then only t, is fireable. Firing it leads to (1010 0) .
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Afterwards, t, and t; can alternate their firing infinitely. Transition t, never fires.
Therefore it is LO-live. Transitions t, and t, fire exactly once — they are strictly
L1-live, and t, and t; can fire for infinite times — they are live at level L3. The
Petri net as a whole is live at level LO, thus it is dead. The liveness situation is
evident from the reachability graph in Figure 8.13. Obviously, in the loop
(10100)" -»(00001)" - (10100)" — ... transitions t, and t, can fire for an

infinity number of times.
The analyzed Petri net is bounded.

t1
[01000 }
ts3
y
[ 10100 ]
ts ta

[00001 ]

Figure 8.13. Reachability graph for the Petri net in Figure 8.12
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8.7 Reversibility

Many processes in DEDS have a cyclic character. For example, production jobs in
manufacturing systems run cyclically. Some product is manufactured out of input
parts through a sequence of operations that are repeatedly executed during a work
shift. The Petri net model of a DEDS reflects the cyclic character through a
property called reversibility defined as follows.

Definition 8.11. A Petri net PN is reversible iff for each reachable marking
m e Ry, (M, ) the initial marking m, belongs to the reachability set from m in

PN, i.e.,
m, € Rpy (M) (8.26)

Simply speaking, the reversibility property says that for every reachable
marking there exists at least one firing sequence beginning at it and going back to
the initial marking. From the point of view of the reachability graph, for every
graph node there exists a directed path starting in the node and going back to the
root. The reversibility is illustrated via the following example.

Example 8.6. Consider the Petri net in Figure 8.14. At the beginning, just t, is
fireable, then, either t, or t, is fireable. After having fired t,, transition t, can be
fired. After repeating this sequence k-times, k-tokens are delivered into p,. When

afterwards transitions t, and t, are fired k-times, the initial marking (0 1 0 1 0)"
is obtained.

P1 P2

t2

t3
Pa Ps
t

4

Figure 8.14. Petri net for the reversibility illustration
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01010

t

10110

i i3

0lwl0 10001

t1 L

lOa)lO [ 01001 ] [ 01001 ]

Figure 8.15. Coverability graph for the reversible Petri net in Figure 8.14

Evidently, the Petri net is a reversible one because from any reachable marking
it is always possible to return to the initial marking through appropriate transition
firings. The corresponding coverability graph is given in Figure 8.15. The graph
will later be used in the summary analysis of the Petri net properties in Section
8.12.

8.8 Persistence and Fairness

An interesting property of the DEDS is the realizeability of an event with respect to
the realization of another event. The question formulated in terms of Petri nets is
whether a transition once being fireable or enabled can lose the fireability prior to
its actually being fired.

A Petri net is said to be persistent if, having two or more transitions fireable in
a state, firing a transition of them does not remove the fireability of the other
transitions.

A property closely related to the persistence is fairness. A Petri net is said to be
bounded fair if every pair of its transitions is bounded fair. A transition pair is
bounded fair if every transition of the pair can fire k-times at maximum before the
other transition in the pair fires. More about persistence in connection with
concurrency and conflict will be written later in this textbook. Fairness is dealt
with, for example, in the excellent survey paper of Murata (1989).
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8.9 Conservativeness

Petri nets are often used to model the utilization of various system resources. For
example, the utilization of computer processors, memory devices, input/output
units etc., requires modeling their availability or occupation in distributed
computer systems. Frequently the number of resources in a system remains
constant. In Petri nets the situation is reflected through conservativeness.

Definition 8.12. A Petri net PN is strictly conservative if in all reachable markings
the total sum of tokens in the net is constant. Formally expressed

[Pl [Pl

Zm(pi):;mo(pi)for vm e Rey (m,) (8.27)

i=1

If two or more resources, e.g., a part and robot, are represented each by a
separate token and then the action “The robot picks up the part” by one token, then
the number of tokens is changed from two to one. That kind of system situation can
be coped with the weighted conservativeness, which is subject of the next
definition.

Definition 8.13. A Petri net PN is conservative with respect to a weight vector v if

[P [Pl

vim=vim,= ZV(pi)m(pi)= Zv(pi)mo(pi)

= = (8.28)

for vm e Ry (M, ) and v N

Example 8.7. Distributed computer networks are a frequently used discrete event
systems. In the adapted example inspired by Starke (1990), the system comprises
three processors communicating via two transmission channels. Conflict situations
occur due to the use of only two communication resources by three competing
users. The system layout with main data channels is shown in Figure 8.16.

Variables:
I, represents the requirement of the processor Proc i to communicate data;

f. announces disconnection from the used channel and end of the

I
communication;
w, is the communication start command for Proc i.

First, the system is specified as a deterministic finite automaton, and then as a
Petri net. Thus the example is used to compare both approaches.
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Chanl
Chan2

Proc 2 | Proc 3 |_

1

| 1
1

1 f2 1
1 1
¥ ¥
Communication server
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Figure 8.16. Data communication network

There are seven states characterizing the system situations and six events
driving the system behavior. Only one processor can use a channel at a time. The
state transition table of the automaton is shown in Table 8.3 and its graphical
representation is in Figure 8.17. The abbreviation “Proc i” is used for the i-th
system processor. The used communication channel is not specified, as it can be
seen from the state transition table.

Important information is if one channel, regardless which one of two available
channels, is busy or not. The Petri net of the described system is shown in Figure
8.18. The meaning of places and transitions is described in Tables 8.4 and 8.5.

The state transition table or graph of the finite automaton (Figure 8.17)
provides much less information about structural and behavioral properties of the
modeled system than the corresponding Petri net does. From the finite automaton
specification it can be found that, if a state change occurs by event e, the inverse

back leading change occurs by event e;,, .

A finite automaton specifying the control of the communication is shown in
Figure 8.19. It is a part of the complete automaton. Control commands w; are set
to value C, in the respective states. The complete automaton would be rather
complex.

Place p, in the Petri net represents free channels. The initial marking
mo(p7): 2 says that there are two free channels available for processors at the
beginning. From the net we know that two activities run in parallel at a reachable
marking m=(1 01010 0)T . processor 1 works using one channel and

processor 3 works using the other channel. No other channel is available until one
of the processors returns a channel it occupies.
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Table 8.3. State transition table
€1 € €3 €4 €5 €e
Jo ol gz 03 Initial state
Procl uses
el Ga Us Yo one channel
Proc2 uses
b2 Ga Yo o one channel
Proc3 uses
Us Gs Yo Yo one channel
Procl and
04 0z J: Proc2 use
both channels
Procl and
Us U3 (o} Proc3 use
both channels
Proc2 and
Js U3 0> Proc3 use
both channels
Procl Proc2 Proc3 Procl Proc2 Proc3
starts starts starts ends ends ends
usinga |usinga |usinga |usinga |usinga |usinga
channel | channel | channel | channel | channel | channel

Figure 8.17. Graphical representation of the finite automaton
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Figure 8.18. Petri net for a three-processor and two-channel system

Table 8.4. Meaning of the Petri net places

Meaning

P, | Procl uses one channel

P, | Proc2 uses one channel

P; | Proc3 uses one channel

P, | Procl does not use a channel

Ps | Proc2 does not use a channel

Pe¢ | Proc3 does not use a channel

P; | Number of tokens in it indicates the number of free channels

Table 8.5. Meaning of the Petri net transitions

Meaning

ty Procl starts using one free channel

t Proc2 starts using one free channel

t3 Proc3 starts using one free channel

ty Procl ends using one channel

ts Proc2 ends using one channel

ts Proc3 ends using one channel
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Figure 8.20. Petri net interpreted for control of a three-processor and two-channel system

The Petri net interpreted as a control model for the system of three processors
and two channels is shown in Figure 8.20. A new element is used in the net,
namely the source place. Source places are hatched in the figure. A token is
generated in the source place when an associated requirement of the system
resource occurs. Depositing a token in source places py, pr. and pys indicates the
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requirement of the corresponding processor to be connected to a free channel. The
token presence in p,; indicates the end of the transmission process of the i-th

processor and the demand for disconnecting from the used channel. Place p is
used to indicate that the disconnection takes place. C; is the command for

connecting the i-th processor.

The above examples clearly show that the control specification using Petri nets
is much more effective than the one using a finite automaton. The Petri net model
in Figure 8.20 specifies the main function of the server managing the connections.
Other control functions can be completed using the shown approach.

Furthermore, the presented example shows an alternative way of how to build-
in input signals from the controlled system into the control one, by using the source
places to associate logical conditions with transitions (in comparison with the way
in Section 7.4).

8.10 P-invariants and T-invariants

In a Petri net, the existence of a P-invariant and/or T-invariant is a structural
property, i.e., the properties are independent of the initial marking.

Definition 8.14. A vectori, € NPT where N is the set of natural numbers, the

cardinality of the set P is |P| =n and N'" is the set of the transposed n-tuples, is
called the P-invariant of a Petri net PN =(P,T,F,W,M,) if

NTi,=0,i,=| (8.29)

where at least one entry of vector i, is nonzero. N, is an incidence matrix of PN
(also denoted as A in Section 7) and the dimension of the zero vector 0 is |T| =m.

The case when i, =(0,0,...,0)" is trivial and hence it is excluded by definition.
Equation (8.29) is in fact a system of homogeneous linear algebraic equations

P: P: Pi _
a, h+a, L,+..+a, 1, =0

P- P. P.
Ay L +a, l,+..+3,, 1,=0 (8.30)

p. p. P.
a, h+a, L+..+a, 1, =0
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Obviously, its zero solution always exists. Generally, it is implied by the
Frobenius theorem stating that if the rank of the coefficient matrix of the system at
Equation (8.29) is equal to the rank of the augmented matrix, the system has a
solution. The zero solution of Equation (8.30) is

Pi,=Pi, =...=Fi, =0 (8.31)

For a system of linear algebraic equations it is well known that when the rank r
of its coefficient matrix is equal to the number of equations r =n, exactly one
solution exists. For the case of the homogeneous system at Equation (8.30) there is
the solution at Equation (8.31). Coefficients a; in the system at Equation (8.30)

are integers as it follows from the construction of the A -incidence matrix. If the
searched unknowns are allowed to be real numbers then there are infinitely many
solutions for r < n. If only integers are allowed, the condition r < n is necessary
but not sufficient for the existence of solutions other than Equation (8.31).
Sometimes, even a stronger restriction can be imposed on the solution space,
namely that the unknowns should be natural numbers (hon-negative integers). In
this case, even more so the condition r < n is not sufficient.

As mentioned above we are interested in nonzero P-invariants and
consequently in nonzero solutions of Equation (8.30) in the integer space or even
in the space of natural numbers.

In what follows we will show that the conservativeness property of a Petri net
is a corollary of the Petri net P-invariant presence. Suppose a given Petri net has a
P-invariant i, . Then owing to Definition 8.14

NTi, =0 (8.32)

Recalling Equation (7.29), Definition 8.1 and Equation (8.7) we have for a
reachable marking m,

m, =m, + > At (8.33)
s=1
which can be given as
m,=my+N, z (8.34)

where z=(z,,2,,...,2,,)", z; €N , i €(1,2,...,m) determines how many times the
vector At; occurs in a particular firing sequence.
From Equation (8.34) we have

m,-my;=N, z (8.35)
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Transposing Equation (8.35) yields

m, -mg =z" N (8.36)
and multiplying by i, gives

(my —m? )i, =2z NT i, (8.37)
Due to the assumption of P-invariant

(mI—m{)i,=z"0=0 (8.38)
my i, =mg i, (8.39)
P P

I I

(mlk,mZK,...,m‘P‘k) Ps'z :(mlo,mzo,...,mmo) E (8.40)

P
1

n

P P; Pi _ P: P P
My “ig My Ty oMy Ty =My i My iy M T

(8.41)

According to Equation (8.41) in a Petri net the sum of tokens distributed in
places with respect to the initial marking, and weighted (multiplied) by the
components of P-invariant i, is constant  for all reachable markings
m, € Rpy (M, ). If some of the P-invariant components is zero, the number of

tokens in the corresponding place is excluded from the sum (8.41). A term P-
invariant support is used in this connection. The P-invariant support is the set of
Petri net places corresponding to nonzero entries in i, . Using the concept of

support, the weighted sum of tokens in the places of the P-invariant support is
constant for all reachable markings.
It is possible to prove the inverse proposition to (8.32) = (8.39), namely

(8.39) = (8.32) for L1-live Petri net. Assume for L1-live Petrinet m; i, =mg i,
for all reachable markings m, € R, (m,) and for some i, e NPT Then
m; i, —mg i, =0 and (m[—mg)ip =0 . Further m; =mj +z" N, so that
(mg+zT NZ—mg)iP =0 where z" # 0. We have (zT N )ip =0and z" N} #0
for entries corresponding i, yielding N} i, =0.

The concept of P-invariants is useful for the solution to various problems in

Petri nets and via them also in DEDS as we will see later on. A similar concept of
T-invariants is introduced in the following definition.



Properties of Petri Nets 137

Definition 8.15. A vector i; € NI, where N is the set of natural numbers, the
cardinality of set T is [T|=mand NI""is the set of transposed m-tuples, is called
the T-invariant of a Petri net PN = (P,T,F,W,M,) if

N, i, =0, i, =| ° (8.42)

where at least one entry of the vector i; is nonzero. N, is an incidence matrix of
the Petri net PN and the dimension of the zero vector 0 is [P|=n.

Note that the incidence matrix in the definition is not transposed. If t, t, ...t is

Sk
a transition firing sequence beginning in marking m, and referring to (8.33) and
(8.34) we have

k
m,=my+Y At, =my+N, z (8.43)

s=1
If z is a T-invariant it follows
N,z=0 and m, =m, (8.44)

Theorem 8.3. The existence of a T-invariant is a necessary condition for a Petri net
to be reversible.

Proof. The principle of the Petri net reversibility consists in that for each reachable
marking m, there is a transition firing sequence continuation from m, reaching

the marking m,, i.e, in terms of Equation 8.43, m, =m,+N, z . Therefore
N,z=0 has to hold, hence z is a T-invariant.

Proposition of Theorem 8.3 can be expressed by the implication:
Petri net is reversible = T-invariant exists

Using a counterexample it will be shown that the inverse implication:
T-invariant exists = Petri net is reversible

does not hold. See Petri net in Figure 8.21. We have:
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P2

P1 b . {3
O,
()

Figure 8.21. Petri net with a T-invariant

Figure 8.22. Reachability graph for the Petri net in Figure 8.21

-1 0 0}0 0
1 -1 1|1/=|0
1 1 -1)1 0
0
A T-invariant exists, itis i; =| 1|, but the reachability graph indicates that the
1

Petri net is not reversible (Figure 8.22).

A way to find the solutions to the linear algebraic system of equations (8.32) in
the space of integer numbers is to use the standard methods used for the real
number space hoping that an integer solution could be obtained or extracted from a
real number solution. The following example illustrates this solution way. An exact
method yielding the solution directly is described later.

Example 8.8. A robotic manufacturing cell as adapted from Abel (1990) is depicted
in Figure 8.23. Workpieces of type A are transported into the cell with conveyor
C1 and workpieces B with C3. The Petri net specifying this cell’s operation is
shown in Figure 8.24. Presence of a token in place p, corresponds to the presence

of a workpiece A ready for technological processing at the end of conveyor C1.
The part of the net for B-workpieces is quite symmetrical with respect to that for
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A-workpieces. Transition t, expresses the technological processing start with
assistance of robot R1. Availability of R1 is expressed by a token in p, . After t;
fires the tokens are removed from p, and p, and a token is placed in p,, which
means that the processing is in progress in machine center MA1 using robot R1.
An example is coachwork welding in the automobile industry. The end of this
technological step and start of the processing in MA2 using R2 is marked by firing
t,. Firing t; means that the processing in MA2 has been completed and the next

workpiece to be processed is available at the input on C1. The last event
represented by t, may seem to be a little bit artificial: the end of the processing

and arrival of an A-workpiece both represented by one transition means that the
robot R2 is kept busy until the A-workpiece arrival.

It would be possible to add more places and transitions and to express the
operation more precisely. The used representation illustrates a natural way of a
Petri net construction — from a simpler and rough net to the extensions. This
construction way is called top-down design. We will keep the Petri net in the form
in Figure 8.24 just for the sake of simplicity of the following considerations.

l !

C3

M A1 MB1
R1

M A 2 M B2
R2

c2 C4

| !

Figure 8.23. A two-robot manufacturing cell
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In the example, the task is to find P-invariants for the Petri net describing the
robotic cell. The transposed A -incidence matrix is

-1 1 0 0 0 0 -1 o0
0 -1 1. 0 0 O 1 -1
NT = 1 0-1 0 0 0 0 1 (8.45)
0o 0 0 -1 1 0 -1
o 0 0 0 -1 1 1 -1
0o 0o 0 1 0 -1 0 1

From the equation N} i, =0, we get a system of equations to be solved
(having omitted the index P for simplicity):

-, + =0
-, + i + i, — ig =0

i - + i =0
-, + g - =0

-y + g + i, — iy =0

i, - + iy =0

(8.46)

Figure 8.24. Petri net for the robotic manufacturing cell



Properties of Petri Nets 141

The calculation of the coefficient matrix determinant and of the lower order
determinants shows that the rank of the coefficient matrix is r = 4. It means that
there are two equations in Equation (8.46), which linearly depend on the remaining
four. Summing the first and second equations gives:

-+ 0 - 1 =

0
-0, + I + i, — ig =0 (8.47)
—i; + - g =0

and multiplication by -1 gives the third equation in Equation (8.46). Similarly, the
sum of the fourth and fifth equations multiplied by —1 gives the sixth equation.
Hence, both the third and sixth equations can be omitted and we have finally

-, + - i =0
-0, + i + i, — g =0

—i, + i - i =0

-, + i + i, — g =0

(8.48)

The particular integer values of four unknowns can be chosen arbitrarily of and
the remaining four unknowns can be calculated. Values of the four unknowns are
chosen as follows:

ilzﬂ'.l.
i, =4,
I, =4,
g =4,

(8.49)

and for transparency we denote the remaining dependent unknowns as

(8.50)
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Now, the system is

Xy = A4L+4
X o+ X = A4
X3 = L+
—-X; + X, = A4
Using the Cramer’s rule
M+Ad 0 0O
MW=2 1 00 1 0
L+ik 0 1 0 (L+4)0 1
-4 0 -1 1 0 -1
“TTTTo0 o0 1
-11 00
00 10
00 -11
X, =4 +4,
X=X+
X, =4 +4,

Returning to the original notation the P-invariants are given by

+ 41,

-
O O O O O - - -

O O P B P O O O

+ A4

O O P O O B+ O

+ A,

P O P O O F»r O O

At

(8.51)

(8.52)

(8.53)

This equation determines all P-invariants for the values of 1,,4,,4;,4,; A4, 42,

A3, and A4 are chosen from the set of integers. Obviously, the non-negative P-
invariants are obtained choosing them from the set of natural numbers. First,
consider the P-invariants obtained for their values from {0,1} only. The obtained

P-invariants and their corresponding supports are listed below:
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1 0 0

1 0 1

1 0 0

0 1 0

ol = PPl | 1= PP Pt | (= AP PSPy
0 1 0

0 0 1

0 0 0

0 1 1

0 1 2

1 1 1

0 1 0

0 3{p3,p6,pa}, 1 D{pl vvvvv ps} 1 3{p1vpzvp3vpsvp7}'
1 1 0

0 0 1

1 0 0

etc.

(8.54)

For example, according to the first P-invariant the number of tokens in places
{p,. P, p5} is equal to 1 for all reachable markings. Consider the last P-invariant

shown above. The number of tokens in p, is weighted by 2. By inspection of the
Petri net in Figure 8.24 the weighted sum of tokens in places {p,, p,, Ps.Ps, P, | is

always 2.

The P-invariants express the grouping of the system components from the
viewpoint of technology and operation. For example the first P-invariant in
Equation (8.54) groups the places comprising the component route of the
workpieces A. The second P-invariant has an analogous meaning for the
workpieces B. On the other hand, the third P-invariant is associated with the
operation state of robot R1. It works either with workpiece A or B or is waiting to
start work.

The procedure shown above may not be successful in finding the existing
integer solutions of the equation system at Equation (8.30). The main idea of a
method always giving the answer about the system solvability and in the positive
case the solutions themselves will be presented next.

For the sake of a transparent explanation, consider a very simple case

a X, +a,x, =b (8.55)

where the coefficients a,a,and b and unknowns x, and x, are supposed to be
integers, i.e.,

a,a,,b,x,% ¢el. (8.56)
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The greatest common divisor of the coefficients a,,a, will be denoted
GDIV(al, az). It can always be extracted from the left-hand side of Equation (8.55)

GDIV(a,,a,)(a’, x, +a', x)=b, a',,a', € | (8.57)

and

al X +a',x, = (8.58)

GDIV(a,,a,)

The following theorem is based on the previous facts.

Theorem 8.4. Equation (8.55) under the condition at Equation (8.56) has a solution
if and only if the right-hand side coefficient b is divisible by the greatest common
divisor of a, and a, .

Theorem 8.4 can be easily extended to the system

A Xy +apX, tot X+t aX, =b

Ay Xy +8yXy +o 8y X+t 8y X, =Dy

n

(8.59)

A Xy + Xy ot Ay X ot X, =0y

The divisibility of b, through GDIV(ail, Qin sy ain) is a necessary and sufficient
condition for the solution existence of the system at Equation (8.59) together with
Frobenius condition.

Further consider that for the absolute values in Equation (8.55) the following

holds:

2| 2[a, | (8.60)
Using the Euclid algorithm we can write

GDIV(a,,a,)=GDIV(Mod(a,,a, ), a,) (8.61)

where Mod(a,,a, ) is the remainder after the integer division of a, by a,. The

. S a
result of the integer division is denoted by [—IJ . For example, for

a,
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a, =21, a, =18, Mod(21, 18)=3, because E—;J =1 with the remainder 3. The
following inequality is always fulfilled:

[Mod(a,, a, ) <|a,| (8.62)

if Equation (8.60) holds. By substituting in Equation (8.55) the following
unknowns,

X = 51
Xy = _[ing +&, (653
aZ
we obtain
a
algl +a, [52 - {jJ‘flj =b (8-64)
a1
(al -a, L‘_Dé +a,&, =b (8.65)
Mod(a,,a, )&, +a,&, =b (8.66)

Applying Theorem 8.4, the necessary and sufficient condition for an integer
solution of Equation (8.66) is divisibility of b by GDIV (Mod(a, a, )) a,, which is
equivalent to the divisibility of b by GDIV(a,,a,) due to (8.61). Therefore, if
Equation (8.66) has an integer solution then Equation (8.55) does have, too.
Between unknowns & (£, ) and x, (x, ) there is an injection relation. Due to the
important fact, namely [Mod(a,,a, ) <|a,|, repeating transformation at Equation

(8.63) we either find that an integer solution does not exist, or obtain a unit
coefficient of some unknown. In the latter case we multiply the transformed
equation by a suitable integer and subtract it from another equation following the
Gauss reduction technique.

The backward transformation from Equation (8.63) to the explicitly given
unknowns x,, X,,..., X, is unambiguously executable, as we can see from

51:)(1

&2 :{ﬁJ X+ X,

a,

(8.67)
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It is reasonable to start the solution of Equation (8.59) with the equation
containing the least coefficient. Let this coefficient in system at Equation (8.59) be
a; - For such a general case we have the following transformation:

X 1 0 0 ézl
X, 0 0 . 0 £
1 0 0
) 0 0 1 0 . 0 .
i _| &G | g ] B &
Xj aij a’lj a‘ij a‘ij é:j
. 0 0 0 1 0 0 .
. 01 0
Xin 0 0 Sm
(8.68)
The coefficients of the i-th equation of the transformed system are
ay,
a'y, =y, — l‘a—J = Mod(aip , aij) for p=12,...,n (8.69)
i
and
|a'ip| < |aij| (8.70)

The reader can see that the divisibility conditions are similar to before and the
value of coefficients in the equations can be lowered step-by-step to one, if of
course an integer solution exists. As far as this is achieved, the equation is used for
the reduction of the number of unknowns.

It can be shown that a reverse transformation of step-by-step (8.68) leads
unambiguously back to the original unknowns of the original system of the
equations. In terms of the algebraic structure theory the described method applies
only operations over the ring of integers. Division of the integer numbers is not
defined there. Such a division requires the rational numbers.

Interested reader can find more about the method in Abel (1990) containing
further references. The described method is clearer with the help of a simple
example.
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Example 8.9. Find the integer solutions of
3x, —2X, =5 (8.71)
There are two unknowns in just one equation. Evidently,
GDIV(a,;,a,,)=GDIV(3-2)=1 (8.72)

The right-hand side of Equation (8.71) is divisible by 1, hence an integer
solution exists. The transformed equation is

Mod(3-2)¢, +(-2)&, =5 (8.73)
164 -2&=-5 = &=2& -5 (8.74)

Let &, be a free unknown. Its value can be a number k, then
&=k and ¢ =2k-5 (8.75)

Returning to the original unknowns we have

X =& X, =2k -5
8.76
Xzzfz—{&Jgﬂ X, =k +1(2k —5)=3k -5 (876)
a12
The integer solution is illustrated in Table 8.6.
Table 8.6. Integer solutions of equation: 3x; — 2x, = -5
k -1 0 1 2 3
Xi
X1 -7 -5 -3 -1 +1
X2 -8 -5 -2 +1 +4
Example 8.10. Two equations (m=2) in three unknowns (n=3) are given:
3X, +2x, —4%x, =0
o (8.77)

—2X; +5X, +3X%; =0

We are searching integer solutions of Equation (8.77). The rank of the
coefficient matrix r =2, r=m<n, i.e,, the integer value of one unknown, can be
chosen arbitrarily and the values of the remaining two are determined. Choose
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coefficient a; =a,,, 1 =1 j=2. According to Equation (8.68) the transformation

equation is

X, 1 0 0)\(¢
X, |=|-1 1 2||¢,
Xq 0 0 1)\¢

The second row of the transformation matrix is
_ ﬂ :—[EJ:_l; 1 _E :—__4 :_(_2):2
a, 2 a, 2

X, =&
X, = _6(:1 +§2 +2§3
X3 = &3

and

And by substituon into Equation (8.77)

61125, =0
—7& +5&, +138, =0

Multiplying the first equation by 7 and adding it to the second one yields
19¢, +13&, =0
or

19
-135, =195, = §3Z_E

S
When choosing
&, =-13k, kel

the solution is kept in the integer domain, as it is evident from

& = —B(—13k) =19k

(8.78)

(8.79)

(8.80)

(8.81)

(8.82)

(8.83)

(8.84)

(8.85)
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The last unknown will be
& = -2&, = —2(-13k) = 26k (8.86)

Returning to the original unknowns, all integer solutions of the equation system
at Equation (8.77) are obtained as follows:

X, =&, =26k
X, ==& +&, +2&, = -39k + 38k = —k (8.87)
X, =19k

where ke | .

8.11 Concurrency and Conflict

The notions “concurrency” and “parallelism” are frequently used in the DEDS.
They are related to the time evolution of the system events. In such considerations
a certain time scale is necessary. There can be troubles with time relations if
systems are distributed in space because of the physical relativity phenomena. One
can imagine the problems when time synchronization signals are transmitted over
long distance among individual components of a system.

Petri nets as a tool for the DEDS representation can reflect the considered
notions in some way. Let us introduce the following definition coping with the
problem.

Definition 8.16. Consider Petri net PN = (P,T,F,W,M,). Let ST be a subset

of its transitions with cardinality greater than 1 and m be a reachable marking in
PN. S is called the concurrent subset of the transitions at m if

sT=Yt <m (8.88)

teS

Vectors t~ has been defined in Section 7.2. The meaning of the definition will
be illustrated in the following example.

Example 8.11. Consider a Petri net depicted in Figure 8.25 with the initial marking
specified. Let us analyze whether S, :{tl,tz} is a concurrent subset of the

transitions by m, . We have
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-
Ll
Il

O O O - =
—
N
Il

O O kB O O

1) (0} (1) (1
1 o] 1] |2

S;= .t =|0[+|1|=|1|<|1|=m,
e o| |o| [o] |0
o) (o) (o) (o

(8.89)

(8.90)

It can be concluded that S, is a concurrent subset of the transitions at m,. On

the other hand,
S; = {tlvtz:ts}

is not a concurrent subset of the transitions at m, because

Figure 8.25. Petri net for concurrency analysis

(8.91)

(8.92)
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The main idea of Definition 8.16 is that a marking, as m,in the example,
should have so many tokens in the pre-places of transitions belonging to set S,
that all transitions in S; can fire simultaneously. In other words, firing a transition
from S, does not influence the possibility to fire any of the remaining transitions

in it. We remember that a standard way of the Petri net modeling technique is
based on the assumption that at a time point just one transition fires. When
considering concurrency, the possibility of simultaneous firing is investigated.
Obviously, the modeling can be based on the assumption of simultaneous transition
firing but the risk of conflicts and behavior complexity grow considerably.

The concurrency is closely related to the possibility of arbitrary order of the
firing, which is dealt with in the following theorems.

Theorem 8.5. Consider a Petri net PN = (P,T,F,W,M,). Let S be a concurrent

subset of transitions at a reachable marking m . Let a firing sequence o start
inm and contain any transition of S just once. Then the order of transition firing is
arbitrary.

Proof. Concurrency of transitions in S enables simultaneous firing of all transitions
at m, i.e., for a single firing of transitions from S there are enough tokens in the
pre-places of transitions belonging to S, regardless of a firing order.

A slightly more complicated situation is with the reverse theorem.

Theorem 8.6. Consider a pure Petri net PN = (P,T,F,W,M,). If each transition

of a subset S is fireable once in an arbitrary ordered firing sequence beginning in
m and containing just transitions of S (the order of the transition firing is arbitrary),
then S is a concurrent subset of transitions at m .

The proof of the theorem can be found in Starke (1990). The role of the Petri
net purity can be illustrated by a simple Petri net in Figure 8.26. Transitions t, and

t, can fire in an arbitrary order by m, . However, despite this, the subset
S ={t,,t,} does not meet the requirement of Definition 8.16, as easily checked:

s =t +t, =1)+@)=(2)>m, =(1) (8.93)
O/
4] P1 t

Figure 8.26. Non-pure Petri net and concurrency
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It is also evident that both t, and t, cannot fire simultaneously. The next
definition deals with the concurrency and conflict.

Definition 8.17. Consider a Petri net PN = (P,T,F,W,M,). A conflict is said to
be in a subset S of the PN transitions at a reachable marking m if all transitions in S
are fireable at m but S is not a concurrent subset of the transitions at m. In
particular, two transitions t, tj € T of PN are said to be in the conflict at the
reachable marking m if there is a conflict in the subset S={t;, t;}.

Definition 8.18. A Petri net PN = (P,T,F,W,M,) is said to be conflictless iff
there is no such a reachable marking at which two transitions of PN are in conflict.

8.12 Analysis of Petri Net Properties

Several properties of Petri nets can be analyzed using the reachability graph or the
coverability graph. Using them may be different. The difference will be treated.
Next, we consider a particular Petri net PN = (P,T,F,W, M) to be analyzed.

Marking Reachability

Let a marking represented by a vector m be given. Its dimension is |P|:n .

Consider a bounded Petri net PN so that the reachability graph can be constructed.
The vector m is not reachable if there is no node corresponding to m in the
reachability graph. If such a node exists, m is reachable.

If the considered PN is unbounded, the coverability graph can be constructed
instead the reachability graph. In the coverability graph a node covering a given m
is searched. Its existence is a necessary but not a sufficient condition for the
reachability of m. The strings leading from m, to the nodes covering m should be
analyzed and checked whether m is contained in some of them.

A necessary condition for m to be reachable is the existence of an integer
solution of the linear algebraic system of equations

m-m, =N ,X (8.94)

where N, is a A -incidence matrix of PN and x < (N* L {0})"'" . The necessary

condition is a consequence of Definitions 8.1 and 8.7. ( )‘T‘T is a transposition of
m-tuple giving vectors.
The system deadlock can be analyzed using the following definition.

Definition 8.19. In a Petri net a dead marking is such a marking at which no
oriented arc goes out the corresponding node in the reachability graph.
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Boundedness

Very often, the inspection of a given Petri net and a simulation of transition firing
by means of a Petri net graphical editor reveals the Petri net boundedness.

Another possibility is to use the reachability graph. A Petri net is bounded if the
reachability graph exists, i.e., if the number of nodes does not grow to infinity on
constructing the graph. The coverability graph construction algorithm can be
directly used. In such a case if the Petri net is bounded, the result will be the
reachability graph. Otherwise the coverability graph is obtained and the Petri net is
unbounded.

Liveness

A Petri net PN is LO-live or dead if there exists a transition t e T that does not
occur as a label of any arc of PN’s reachability or coverability graph. Transition t is
L1-live if it appears as a label of at least one arc in the reachability or coverability
graphs. It is L2-live if in the reachability or coverability graphs there exists an
oriented path a; a; ... &, , containing at least two arcs labeled with t. t is L3-live
if t is a label of an arc in the reachability or coverability graphs and the arc is an
element of a cycle.

The L4-livenes is more complicated. It can be resolved by means of the strong
connectivity of the reachability or coverability graphs. First, a sufficient condition
for the L4-livenes can be formulated as a theorem.

Theorem 8.7. Consider a Petri net PN. If either its reachability or coverability
graph is strongly connected and PN is L1-live then PN is L4-live.

Proof. In the strongly connected reachability or coverability graph each pair of
nodes is connected by an oriented path in both directions. Each transition occurs at
least once in the graphs because PN is L1-live. There is always at least one oriented
paths going out of each reachable marking and reaching the initial marking and
from there continuing with paths, in which according to L1-liveness there are all
transitions as labels at least once, as it is required by the L4-liveness.

It is not necessary that the whole reachability or coverability graph be strongly
connected as shown in the following theorem. The notion of the graph strong
component was treated in Chapter 2. The extended notion of the sink strong
component used in the theorem denotes such a strong component for which no arc
of its component nodes goes out to a node not belonging to it.

Theorem 8.8. A Petri net PN is live (i.e., L4-live) iff there is at least one sink
strong component in the reachability or coverability graph of PN ,and all sink
strong components are L1-live.

Proof. The L1-liveness of the strong component is defined analogously as that of
the whole Petri net. A slight difference consists in that in case of the L1-liveness of
the strong component, for each transition t there is a firing sequence going out of a
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node of the component and containing transition t as a label. Then, considerations

of the proof of Theorem 8.7 apply.
Obviously, all results in this section hold for Petri nets with capacities, too. In
order to diversify provided examples, the following one uses this kind of Petri net.

Example 8.12. An illustrative example from Abel (1990) is used to show the point
of the last two theorems. The analyzed Petri net is shown in Figure 8.27. Its
reachability graph is in Figure 8.28.

Figure 8.27. Petri net with capacities illustrating meaning of strong components for the
liveness

Figure 8.28. One L1-live sink strong component in the reachability graph for Petri net in
Figure 8.27
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Reversibility

In terms of reachability/coverability graph, a Petri net is reversible if from each
node of the graph a directed path exists ending in the initial node. The reversibility
and connectivity are dealt with in the following theorem.

Theorem 8.9. A Petri net is reversible if its reachability or coverability graph is
strongly connected.

Proof. The theorem is a direct result of the graph strong connectivity property. On
the other hand, an unbounded Petri net can be reversible even if its coverability
graph is not strongly connected. We refer to Example 8.6 with Figure 8.15 in
Section 8.7 illustrating the case. In such cases reversibility can be analyzed
analogously as liveness using the properties of the sink strong components of the
coverability graph.

A necessary and sufficient condition for reversibility is formulated in the
following theorem.

Theorem 8.10. A bounded Petri net is reversible iff its reachability graph is
strongly connected.

Proof. If a bounded Petri net is reversible, then from each node of its reachability
graph a firing sequence leads to the initial marking m, and from it to each

reachable marking. A consequence of this is the strong connectivity of the
reachability graph. The inverse implication is dealt with in the Theorem 8.9.

Finally, an important relation of the main Petri net properties is given next.

Theorem 8.11. All three Petri net properties, i.e., liveness, boundedness and
reversibility, are mutually independent.

Proof. The proof through counterexamples is applied. Some examples showing
independence have already been introduced. See live, unbounded, non-reversible
PN in Figure 8.5; non-live, unbounded, non-reversible PN in Figure 8.10; non-live,
bounded, non-reversible PN in Figure 8.12; live, unbounded, reversible PN in
Figure 8.14; etc.

8.13 Structural Properties

The main properties of Petri nets were analyzed in the previous section. However,
it is necessary to mention briefly basic structural properties of Petri nets. A
structural property does not depend on the initial marking. Let us define the Petri
net structure for this purpose.
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Definition 8.20. Consider a Petri net PN = (P,T,F,W,M, ). The structure of the
Petri net PN is given by

PS=(P,T,F,W) (8.95)
Some chosen structural properties based on PS only are listed below.
Structural Liveness

PN is said to be structurally live if there exists an initial marking M, at which PN
is live.

Structural Boundedness

PN is said to be structurally bounded if it is bounded given any initial marking M, .

Structural Conservativeness

PN is structurally conservative if for any initial marking, PN is conservative with
respect to a vector v, .

Siphons and Traps

Siphons and traps are two important structural objects in a PN and closely related
to the Petri net properties, especially deadlock and liveness. Before their definition,
the following notation is introduced. The pre-set of a place p, denoted as °p, is the
set of p’s input transitions, i.e., *p={teT, O(p, t) #0} formally. Its post-set is
p*={teT, I(p, t) #0}. Consider a set of non-empty places ScP. Its pre-set is
*S= U *p and and post-set S*= U p*.

peS peS

Definition 8.21. A set of place ScP is called a siphon if *ScS°. It is a trap if S°<*S.

Their physical meanings are explained as follows. A siphon can keep or lose its
tokens during any transition firing. Once it loses all tokens, it remains empty and
thus disables all of its output transitions. An empty siphon is, therefore, the cause
of partial or complete deadlock. A trap can keep or gain tokens during any
transition firings. Once it receives tokens or is marked, it remains marked
regardless which transition fires.

Example 8.13. Consider the Petri net in Figure 7.18 and S={pm1, Pm2, Pa2, Pe2}- It is
easy to find that:

pmi={ taz, tea}, “Pme={ tas, teo}, “Pac={ taz }, *Peo={ te2}
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Pv " ={ tas, teo}, Pm2"={ taz, ter}, Paz"={ tas }, Pe2"={ tas}

Thus
*S={ taz, tas, teo, tas} and S*={ tay, tay, taz, ta1, te2, taal}.

Clearly, *ScS®. Hence, S is a siphon. Initially it is marked with two tokens.
Starting at the initial marking in Figure 7.18, after firing transitions ta; and tg;
respectively, S is empty and the net enters a deadlock marking.

Now consider S={pm1, Pa1, Pe2}- We can easily find that *S=S"={ ta1, tay, tso,
tss}. Hence it is a siphon and trap as well. It is initially marked with a token and
remains so regardless of marking evolution.

A siphon is minimal iff it contains no other siphons as its proper subset. A
minimal siphon is strict if it contains no marked trap. A strict minimal siphon may
become empty during the marking evolution. Hence, to make such net live is
control such siphons so that they are never empty. A P-invariant-based control
method can be developed to achieve this purpose. By adding a control place (called
monitor), these siphons can be well controlled (Ezpeleta et al. 1995). Unfortunately,
the number of such siphons grows exponentially with the size of a Petri net and
thus leads to very complex control structure for a sizable system. To reduce the
control complexity, Li and Zhou (2004, 2006) invented the concept of elementary
siphons whose control can prevent all other siphons from being emptied. They
number is bounded by the smaller of |P| and |T]|.

There are other structural properties related to non-structural ones studied by
many researchers. Often, they are studied in relation to a particular Petri net class,
e.g., marked graphs, free-choice nets, assembly Petri nets, disassembly Petri nets,
augmented marked graphs, and production Petri nets. A very good systematic
treatment of them can be found in an excellent tutorial paper written by Murata
(1989) and books such as Zhou and Venkatesh (1998).

8.14 Problems and Exercises

8.1. A pure Petri net is given by the vectors

) 0 0 1 1
1 -1 0 0 -1
T N e el AU B T
1 10 2 ) 3 10 4 1 5 0
0 1 0 -1 0
0 1 0 -1

corresponding to transitions t,~ts. The initial marking is m, =(100000)".
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Represent the Petri net in the graphic form. Using vector representation
determine if t, is fireable at m,. Construct the reachability graph. Analyze the

Petri net properties: boundedness, liveness and reversibility.

8.2. A Petri net is depicted in Figure 8.29. Draw the coverability graph for it.

Figure 8.29. A Petri net the coverability graph to be drawn for Exercise 8.2

8.3. Analyze basic properties of the following Petri net in Figure 8.30.

P1 t, Ps

Figure 8.30. A Petri net for Exercise 8.3

What graph is it possible to construct: the reachability or coverability one? Use
Theorem 8.2 to show whether the Petri net is unbounded.

8.4. A Petri net is given in Figure 8.31. Draw the reachability graph for it and using
the graph determine its following properties: boundedness, liveness and
reversibility. Find a P—invariant for the given Petri net.

8.5. Consider a computer processor with an input buffer having capacity 1 for
waiting task to be processed by the processor. If a task requires processing, either
the buffer is free and the task is put into it or if the buffer is occupied the task is
refused. If a task is in the buffer and the processor is free, the task is moved from
the buffer to the processor. Only one task can be processed in the processor. After
processing, the task is removed from the processor and the processor is free.

e Describe the behavior of the specified buffer-processor system using a
deterministic finite automaton.
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e Describe the same with a Petri net and compare both representations.
o Modify the Petri net for the case when the buffer capacity is two.
e Analyze the properties of both Petri nets.

Figure 8.31. A Petri net for Exercise 8.4

8.6. The Petri net in Figure 8.32 has the initial marking m,=(0 0 1 1)". Find a

concurrent subset of transitions at m=(2 2 1 0)" where the number of elements in

the subset is greater than 1. Prove the concurrency using vectors.
Is there a conflict in the Petri net at some reachable marking?

p1 t Ps

Figure 8.32. A Petri net for concurrency analysis

8.7. Is it possible that a Petri net live at level 4 is not reversible? Find a counter-
example.

8.8. Prove that the existence of T-invariant is a necessary condition for a Petri net
to be reversible.

8.9. Derive all the structural properties of the Petri net in Figure 8.31.
8.10. Derive all the structural properties of the Petri net in Figure 8.32.
8.11. Given the Petri net in Figure 8.33, 1) derive the reachability graphs when

initial marking is m=(2 0 0 0)" and my=(2 1 0 0)"; 2) derive P and T-invariants; 3)
find all deadlocks; and 4) analyze its structural properties.
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1
pa
2
p1 P 5 »O
ps3 ta

[P

Figure 8.33. A Petri net for property analysis in Exercise 8.11

1y

Figure 8.34. A Petri net for property analysis in Exercise 8.12

8.12. Given the Petri net in Figure 8.34, 1) derive the reachability graphs when
initial marking is me=(2 1 0 0 0 0)" and me=(2 2 0 0 0 0)"; 2) derive P and T-
invariants; 3) find all deadlocks; and 4) analyze its structural properties.

8.13. Construct Petri net examples such that 1) it is live and safe but non-reversible;
and 2) it is reversible and safe but non-live, respectively.

8.14. Given the Petri net in Figure 8.33, find all the minimal siphons.
8.15. Given the Petri net in Figure 8.34, find all the minimal siphons. Define a
minimum trap as one that contains no trap as its proper set. Find all the minmim

traps for the net in Figure 8.34.

8.16. Given the Petri net in Figure 8.33, when the net evovles to a deadlock, e.g., (0,
2,0,0)", prove that {py, ps, pa} is a siphon.

8.17. Prove that given any Petri net with an initial marking, at any deadlock
marking, all the places with no token form a siphon.
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9.1 Basic Grafcet Components

Grafcet is designed as a specification tool for logic control to be implemented
preferably on programmable logic controllers (PLC). It is a tool related closely to
the binary safe Petri nets interpreted for control (Section 7.5). The marking of such
Petri nets is formally expressed by

M, (p;)=v, ve{dl} VM, eR,y(m,), Vp, e P (9.1)

Equation (9.1) results in the weights of the Petri net given by W : F — {1} i.e.,

the weights are units.

The syntax of Grafcet components and elements has been precisely elaborated
in order to support effective and correct implementation of the control policy into
final control programs. In that context the position of the Grafcet is similar to that
of the finite automata, Petri nets, state charts, etc., being a tool standing between
the system control requirements and the instruction codes realizing the control
programs in the used hardware environment.

Like the Petri nets interpreted for control, Grafcet may be viewed as an
extension of standard Petri nets defined in Definition 7.2. Quoting David and Alla
(1994), the extension makes it possible to describe not only what “happens” but
also “when it happens”.

A series of international standards like IEC 848, 1SO 7185 establishes concepts
and guidelines for PLC recommended properties and programming technology.
The standardization efforts in this field resulted in a complex standard IEC 61131,
which supports design of industrial automation systems using programmable logic
controllers both in hardware and software aspects. Basic features of hardware and
software automation means are specified in the standard IEC 61131. Grafcet
belongs to the tools keeping in line with concepts and ideas of that standard.

IEC 61131, part 3, provides three textual PLC programming languages and
three graphical ones (John and Tiegelkamp 2001). The Sequential Function Chart
graphical programming language is in essence close to Grafcet, while it has several
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additional language constructs (e.g., sequence, loop or divergent path with user-
defined priority) and it is framed into broader structural context with other PLC
programming languages. We refer readers for more details to an excellent book
(John and Tiegelkamp 2001).

The aim of this chapter is to follow up concepts of the Petri nets interpreted for
control, which are melted into Grafcet, and not all PLC programming languages
used in practice.

It is possible to define a class of Petri nets, which corresponds to a set of
Grafcet models. The class is characterized as Petri nets with capacities and weights
equal to one, and the binary initial marking. Firing rules of the Petri net class
corresponding to Grafcet models should have been slightly adapted in order to
ensure the correspondence.

We emphasize that Grafcet is intended for the DEDS control specification
within the structure of Figure 4.1, enabling one to consider the system inputs and
outputs, synchronization of events by external inputs and generation of output
control commands. Particular graphic models, which are put together by means of
Grafcet are called grafcets and written with the small letter. A grafcet is a simple
labeled oriented mathematical graph with two disjunctive sets of nodes: steps and
transitions, i.e., it is a bipartite oriented graph.

Initial step 1
1
1 4
Inactive step 2 hd
Q) =—n
A
2
Active step 3 @ ——r
°
3
(3) ==t
Transition () + n
a. b.

Figure 9.1. Grafcet steps, transitions, and oriented arcs

Steps in a grafcet are connected with the transitions and vice versa transitions
with steps via oriented arcs. Steps correspond to Petri net places and Grafcet
transitions to Petri net transitions. A step can be active or inactive. An active step
indicates some partial situation or state in a system and a Grafcet transition, when
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fired, implies occurrence of an event. A step activity is marked by a token located
in the step. The step is represented by a square, the initial step by a double square,
and the transition by a short bar (Figure 9.1a). The initial step is automatically set
active at the beginning of the system control based on Grafcet.

In Grafcet the arcs are oriented always from the top down; in such case arrows
are not used. An arrow is added only to the bottom-up running part of an arc
(Figure 9.1b). A layout of a simple sequence of steps and transitions is shown in
Figure 9.1b.

A natural question arises about arcs joining or branching. Their syntax is ruled
in the following way:

a.  Two or more arcs coming in a transition can be joined only by a double bar
as shown in Figure 9.2a. The joining is called junction AND.

b. An arc going out of a transition can be branched into arcs and go to steps
only through a double bar as shown in Figure 9.2b. The branching is called
distribution AND.

1
1 2 3 4 ®
[] [} [ ] [ ]
| | | | @ n
(1)—|—r | |
' 2 3 4
5
a b.
Tk 1
[}

Dty Q=

e ~

Figure 9.2a—f. Syntax of the Grafcet graphical components
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¢. Two or more arcs each coming out from a transition can join and go in a
step as shown in Figure 9.2c. Such joining is called junction OR.

d. An arc going out of a step can branch into arcs going each in its transition
as shown in Figure 9.2d. The branching is called distribution OR.

The combination of cases a and b from Figure 9.2a, b is possible, resulting in
Figure 9.2e. It is to be underlined that component connections other than those
presented in Figure 9.2a—d are not allowed. For example, the structure depicted in
Figure 9.2f is not allowed.

Step and transition indexing is clear from Figure 9.2. Steps and transitions
without input (output) arcs are allowed and are called source (sink) steps or source
(sink) transitions.

A logic expression has to be associated with each transition. The expression is a
Boolean variable or function. It is called the receptivity. If being true, it expresses
that the transition firing condition is met. In Figure 9.2 the receptivity is denoted as
r,,i=1,2and 3.

9.2 Dynamics Modeling with Grafcet
In Grafcet the system dynamics is represented via the following firing rules:

1. A transition is fireable iff all preceding steps (the pre-steps) are active and
the transition receptivity is logically true. This rule is graphically expressed
by a double bar in the junction AND.

2. If a transition is fireable it is immediately fired whereby firing consists in
deactivating all steps preceding the transition and activating all steps
following it (the post-steps). Again this rule is graphically expressed by a
double bar in the distribution AND.

3. Simultaneously fireable transitions are simultaneously fired.

4. When a step has to be simultaneously activated and deactivated, it remains
active.

5. When a transition is fireable, the tokens are removed from all its pre-steps
and are put into all post-steps.

The transition receptivity is built up of Boolean variables, which can be internal
or external ones. The internal variables are states of the steps. It is usual that for a
step with index i a Boolean variable X; is defined. If X; =1, i.e., X; is true, then

the step i is active. Inversely, X, =0 means that the step i is inactive. A general
form of the receptivity is

R=EAC 9.2)

where A denotes logical conjunction of the event E and the logic condition C.
Event E =T a is defined as a Boolean variable or function that is true for the rising
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edge of another Boolean variable a. The variable is true in a discrete time point,
i.e., for an infinitely short time interval. In other words, Ta=true iff a changes
from 0 to 1. Similarly, { a is related to the falling edge of an external logic
variable or function. C in Equation (9.2) is a logic variable or function, which can
be external or internal one with respect to a given Grafcet. Condition C may not
contain events.

The distribution OR elementary structure (see Figure 9.2d) may bring about an
indeterminism in the case when receptivities ry, r,, and r; are not mutually logic
exclusive. PLC hardware implementations of the receptivities may not be
simultaneous in spite of the designer’s assumption they are when step 1 is active
(Figure 9.2d) and, e.g., receptivities r; and r,are true in “the same time”. In such a
case, despite of the assumption, hazardous dynamics causes the post-step of
transition (1) can be activated, step 1 deactivated and post-step of transition (2)
may not be active. Designers have to analyze hardware features in order to obtain
the required behavior. A safer way is to use mutual logic receptivity exclusion in
divergence OR.

Active influence on the controlled and control systems is modeled in the
Grafcet by the so called actions. They are graphically represented by rectangles
positioned to the right from the steps (Figure 9.3). There are two kinds of actions:
level and impulse actions. An action is set if its associated step is active.

A level action is realized by means of a Boolean variable, e.g.,
switch_on_motor M where switch_on_motor_M=1 means that motor M is
switched on; switch_on_motor_M=0 means that there is no signal for keeping
motor M on; similarly switch_off_motor_M=1 represents a signal for motor
switching off while switch_off_motor_M=0 means that there is no signal for motor
switching off. The Boolean variable switch_on_motor_M is set to logic 1 if the
corresponding step is active. The action for deactivation of switching has the

variable switch_on_motor _ M (logic inversion).

1
[
1 T h
2 Switch_on_motor_M
——r4
(2) et
4 3 Switch_off _motor M
if X, AY

g (3) =T

Figure 9.3. Level actions: unconditioned for step 2, conditioned for step 3
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} n I I
O == wl o —
2 Order_to_switch_motor_M_on :
o I
3 i : :
A ) ) H
o o
4 Order_to_switch_motor_M_off X, iﬁ' ; E
@) == . ’ ; i 5
Order_to_switch_motor_M_on ‘ | , : i
X, 1
X, lﬁ' I
Order_to_switch_motor_M_off ‘ i
J [
State of motor switching on ]—1

Figure 9.4. Impulse actions

Boolean variables associated with level actions are actually control commands
that force either the external system to be controlled to some action by the Grafcet,
or internally influence the control system itself via internal variables. The level
actions may be unconditioned or conditioned by a Boolean variable or Boolean
function. The use of the level actions is illustrated in Figure 9.3. The variable
“switch_off_motor_M” is true if step 3 is active and step 4 is active and variable y
is true.

An impulse action associated with step X; is called as event T X that sets a
command variable w; to a logic value w; for an infinitely short duration. The

variable W, may be interpreted as an order. Figure 9.4 shows a Grafcet and the

corresponding time diagrams illustrating the impulse actions. Impulse actions are
represented by hatched rectangles. The impulse action produces an impulse
Boolean variable, which causes the motor switching on. Impulse actions can be
unconditioned or conditioned, similarly as the level actions.

A useful component of the Grafcet is a macrostep. Its idea is to represent a part
of a Grafcet by one step, which is described in detail elsewhere. The macrostep
should have an identification tag. A detailed macrostep presentation, the so-called
macrostep expansion, is presented separately and begins with an input step | and
ends with an output step O.

The use and properties of macrosteps depend on particular hardware units. The
macrostep design must comply with the following rules:



Grafcet 167

1. The macrostep expansion contains just one input and one output step.

2. Each transition firing before a macrostep activates the input step of the
macrostep expansion.

3. The output step of the macrostep expansion contributes in enabling the
downstream transitions according to the Grafcet structure.

4. There are no arc connections between the macrostep expansion (of course
with the exception of the input and output steps) and the rest of the grafcet

An example of a macrostep is given in Figure 9.5.
Grafcet considers time via time logic variable denoted as

v=t/ilA (9.3)

where t indicates a time variable, i refers to the logic variable X, and A is a time
interval. If v=0 before X, becomes 1, then after event T X, the interval A
elapses and v changes from 0 to 1. If v=1 and X, changes from 0 to 1, v becomes
0 and, similarly as before, v will be 1 after the interval A. If after T X, event
T X, repeats in time period shorter than A, time counting starts from the last

event T X, . Figure 9.6 illustrates the use of a time variable in a Grafcet. A Grafcet

with a time variable t/4/6 is given. The time unit is 1 s. Time diagrams for the
grafcet in Figure 9.6 is given in Figure 9.7.

A situation when several transitions can be fired immediately one after another
is called unstable. If a step is activated and after its activation the related transition
is fireable, the situation is unstable. Such an iterated firing ends in a step whose
deactivation depends on the next transition’s receptivity that has not yet been true,
or on activities of other pre-steps of this transition. Such a situation is stable. A
level action can be realized only in the stable situation while an impulse action can
be realized both in a stable as well as in an unstable situation.

7
T () ==
1 1 Action
M
. (2) ==—tm=r,
o

Figure 9.5. Expansion of the macrostep
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1

[ ]
(1)—i— r=s

|
2 3
A () —|— r=a (3)—|— rp=a
4 AV 5
(4) —|—r4=t/4/6
6

(5)—|— rs=1

Figure 9.6. Work with time in Grafcet

X[ ] [

Xz

X3

X, |

Xs 1

X |

Vi | | l
v, —

Figure 9.7. Time diagram for grafcet in Figure 9.6.
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9.3 Comparison of Petri Nets and Grafcet

Petri nets interpreted for control (Section 7.4) and Grafcet have many common
features. In fact, Grafcet may be viewed as being derived from the Petri nets. Both
tools produce models that are bipartite oriented labeled mathematical graphs. Petri
nets have places and transitions, while Grafcet has steps and transitions as graph
nodes. Distributed and parallel activities are specified through markings and the
system dynamics through transition firings subdued to firing rules.

Grafcet has a few specific properties differentiating it from Petri nets
interpreted for control (PNC). The differences are as follows.

Marking of grafcets is a binary one whereas marking of PNC can be numerical.
Firing rules in Grafcet are consequently subjected to the binary marking case. A
step can only be active or inactive. Figure 9.8 illustrates how it works. Transition
(1) is fireable and its firing only confirms activation of step 2 as shown in Figure
9.8b.

P1 P1 1 1
[
X = X 1) ——17X = (D——r=X
P2 P2 2 2
a. b.

Figure 9.8a, b. The marking in Grafcet is strictly binary

Fireable transitions in Grafcet fire simultaneously while in the Petri nets
fireable transitions can fire only one at a time. Figure 9.9 shows the marking
development in PNC and in grafcets; x is a logic expression constituting a
receptivity in grafcets or a logic firing condition in PNC. The marking result in
Figure 9.9c is reached after firing t, and then t,. Another possibility is firing t,

first and then t; .

Mutual relation of Petri nets and Grafcet is the following. If a Petri net is safe,
then an equivalent Grafcet exists. On the other hand, it is not possible to represent
every grafcet by an equivalent PNC according to Definiton 7.2. This is true if in a
grafcet there is not any of the structures, which differentiate Grafcet from PNC
(depicted in Figures 9.8 and 9.9), as then a PNC exists being equivalent to it. In
such a case, all tools for Petri net analysis are applicable for Grafcet as well.
Otherwise, the analysis tools are to be adapted for Grafcet. More comparisons
between Petri nets and Grafcet can be found in Giua and DiCesare (1993) and
Zhou and Twiss (1996).
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Example 9.1. Figure 9.10 shows the crossing of cars and pedestrians. They all need
to pass through the narrow part of the street. Either one car at a time can pass
through the narrow part in one of the two directions, or pedestrians may cross the
street there. The crossing control ensures a cyclic alteration of the car directions.
Pedestrians are allowed to cross the street only after pushing the button on any side
of the street when the time interval for car passing has expired.

P1 P1 P1
ty t, X = t, X or ta t, X
X X X
P2 P3 p p3 p Ps

a.
T 1
°
| |
(1) ——Tr=X (2) =X = (l) ——TI1=X (2) ——TI2=X
2 3 2 3
b.
P1 P1 P1 P1 p1 P1
E X t, } X t, } X t,
tl X = tl X or tl X
Pz (% Ps
C.
1 2 1 2
i °

(O)——r=X QX = O=—r1=X  (@——T27X

d.

Figure 9.9. Comparison of the firing rules



Grafcet 171
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button b,
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swO, swl
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CONTROL START

Figure 9.10. Situation on a crossing

Grafcet specifying the control of the crossing is shown in Figure 9.11. If a push
button is pressed, the pedestrian is allowed to cross after the time interval for cars
expires. Then a car can pass through. If swl is activated and the running time
interval is finished, the system returns to the initial state. Other details are evident
from the Grafcet.
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Figure 9.11. Grafcet for the example with crossing

Example 9.2. Control of the manufacturing cell in Figure 5.1 is written by a
Grafcet in Figure 9.12. The reader can compare it with the Petri net in Figure 7.16.
As an exercise it is possible to complete receptivities in the Grafcet (as is done for

transitions (1) and (2) in Figure 9.12).
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Figure 9.12. Grafcet for the manufacturing cell in Figure 5.1

9.4 Problems and Exercises

9.1. Complete all receptivities in Figure 9.12. Compare the grafcet with the
corresponding Petri net.

9.2. Machine M serves for the production of products C from input workpieces A
and B, respectively as Figure 9.13 shows. One workpiece A and one B must be
available for the start of production. Solve the following design problems:
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a. Complete the system with necessary sensors enabling its control according
to the function described above.

b. Draw a grafcet specifying the system control with respect to the workpiece
transfer and execution of the production.

M

S ] O

2 000

Figure 9.13. Production cell with one machine

9.3. Find a Petri net interpreted for control specifying the crossing control from
Example 9.1. Compare both Petri net and Grafcet of this syetem. Think about the
use of the found Grafcet and the Petri net to write a control program of the crossing.

|
1
(1) =—s
l |
2 3
(2)—— a (3)—— ab
4 HH w1 5 H V2
(A)——t/4/6
6
|
G)——=1

Figure 9.14. A grafcet for Exercise 9.4

9.4. A Grafcet is given in Figure 9.14. Analyze the control specified by the Grafcet.
Figure 9.15 is a diagram of the logic variables s, a, and b. Complete the diagram
with the time courses of the logic variables X,,..., X, corresponding to the grafcet
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steps and the time course of the logic time variable t/4/6. Time is given in

seconds.

A
sII
a I |
ﬁ
b
[ I I I
& & &% ”
o 1 2 3 4 5 6 7 8 9 10  t

Figure 9.15. Timing diagram of logical variables s, a and b
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Timed and High-level Petri Nets

10.1 From Standard to Higher-level Petri Nets

Petri nets in the standard form as considered until now are an effective tool for
DEDS modeling and control design. They enable one to specify powerfully the
system function. Analysis methods are used for testing Petri net model properties
and hence to check the correct system function (Desel 2000). Very often
quantitative properties of the system behavior are another point of interest. In other
words, a kind of system function performance or system efficiency is dealt with. In
order to make the performance analysis feasible, additional values, parameters, and
variables are used within the Petri nets (Capkovi¢ 1993, 1994, 1998). Another
reason for additional values to be built in the Petri nets is to make the Petri net
models more transparent and understandable even for large and complex DEDS.
Such extensions are often denoted as high level Petri nets (Struhar 2000) or
generalized Petri nets (Juhas 2000).

Standard Petri nets are not suitable for performance analysis. Undoubtedly, for
performance analysis, an important system variable is time. Time enriches
information by telling in what time or time interval a particular event occurs or
should occur (Capek and Hanzalek 2000). There are three ways to embed time into
Petri nets. The first is to map the Petri net places into time intervals given as real or
integer numbers; the second is to map them analogously into the Petri net
transitions; and the last is to map into the arcs (Zhou and Venkatesh 1998). The
options can be used separately or together. The given time intervals cause delays in
firing the respective transitions. Time intervals can be considered in deterministic
or stochastic ways. The deterministic case of the timed Petri nets will be studied in
Section 10.2 and the stochastic case in Section 10.3.

Section 10.4 deals with a class of high level Petri nets called colored Petri nets.
The main idea is that each token in a colored Petri net has its individuality
represented by a specific data value called color. Places, transitions and arcs of a
Petri net can be equipped with logic conditions respecting the particular color of
each token. Section 10.5 deals with a class of the high level Petri nets including the
fuzziness property. Adaptive Petri nets are studied in Section 10.6 and Petri net-
based design tools are presented in Section 10.7.
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10.2 Deterministic Timed Petri Nets

Time may be associated either with the Petri net places or transitions, or with both.
We will follow a general approach in (Zhou and Venkatesh 1998) covering three
associations either together or separately in a deterministic way. The deterministic
time association is a Petri net model extension enabling performance analysis using
time relations. Deterministic approach is not applicable for all Petri nets defined by
Definition 7.2. The problem originates mainly from the Petri net conflicts not
excluded in the definition. A typical Petri net class with conflicts is the class of
free-choice nets described in Section 7.4. Two or more arcs outgoing from a place
bring about conflicts. The uncertainty about the continuation of the transition firing
being in a conflict needs to model time behavior in a stochastic way. The
deterministic way is very difficult or rather impossible to apply in praxis.
Therefore, the deterministic time association is mostly restricted to the class of the
marked graphs (see Section 7.4) — also named event graphs. The timed marked
graphs are delimited by the following definition.

Definition 10.1. A timed marked graph is given by

™G =(P,T,F,W.M,7,7) (10.1)

where the meaning of P, T,F,W,M, is the same as in Definition 7.2,
MG =(P,T,F,W,M,) is a marked graph (i.e.,vp e P:le p|:|p-|=l), and 7 is the

place delay function 7 :P — R™ ( the set of non-negative real numbers), 7 is the
transition firing time function z:T — R™ and

1. A token, which arrives in a place, is not available for the connected
transition with the place during the time associated with the place.

2. A transition is fireable and fires if all its pre-places contain the available
tokens (i.e., tokens not time blocked) required by the arc weights.

3. Ifatransition is fireable, its firing starts by removing the respective number
of tokens from pre-places and firing completes after the time associated
with the transition expires and the tokens are deposited in the respective
post-places.

In what follows, we will show a paradigm for the system performance analysis
via deterministic timed Petri nets. For this purpose the timed marked graphs will be
considered having all arc weights equal to one. In other words, we consider Petri
nets belonging to the class of timed binary marked graphs. Moreover, we consider
strongly connected timed binary marked graphs where for the graph connectivity
property both places and transitions are considered as graph nodes.

In the above delimited Petri net sub-class, the performance analysis is based on
directed simple cycles contained in the particular Petri net, which is taken as a
mathematical graph with places and transitions given as a set of nodes. In a
directed simple cycle, the total time delay is a sum of times associated with all
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places and transitions comprised in the cycle. In a simple cycle the total number of
tokens is the number of tokens present in all the places in the cycle. Note that a
directed simple cycle is one that contains no repeated nodes except the beginning
and ending ones. The minimum cycle time of the analyzed marked graph as a
whole is

D.
e m_axN—' (10.2)

where D; is the total time delay of the i-th directed simple cycle and N; is the total
number of tokens in this cycle, Di/N; is the cycle time.

The bottleneck cycle is the j-th one where Dy/N; = p holds. A system may have
multiple such cycles. When additional resources are available to improve the
system productivity, one should certainly invest into the facility causing the
bottleneck. The acquisition of a same machine can be reflected through the
increase of a token in a loop. The improvement in the speed of a process can be
reflected through the reduction of the delay in a place or transition. The delay can
also be associated with the arcs in a marked graph, simulating the time for a token
to flow through the arc. This extension is useful in modeling transportation of
goods over conveyors, or fluid flowing through a pipe in process industry.

The use of the above approach via the enumeration of cycles is of exponential
computational complexity. In other words, it is not applicable to large-size marked
graphs. Fortunately, the minimum cycle times can be obtained, e.g., by linear
programming (Morioka and Yamada 1991; Campos et al. 1992; Zhou and
Venkatesh 1998).

The described analysis method via the cycle enumeration is illustrated in the
following example.

Example 10.1. The Petri net in Figure 10.1 is a model of a manufacturing system
where p, stands for the processed part availability (if marked with a token),

P,. Ps, P, Stand for manufacturing process on the machines A, B, C, respectively,
and p, for availability of machine A. Maximum two parts can be prepared for

processing at the input. Time delays associated with places and transitions are
introduced in the Petri net. A part from input is deposited with delay z, =3 in the
working range of machines A and C. When A completes its job, the processing
continues in machine B, which starts its required operation. When machines B and
C complete their operations, the product is transferred to the output and the next
part is deposited to the input. The delays connected with the places mean the
lengths of operations and are denoted as ¢,. Simple cycles and delays are in Table
10.1. The resulting minimum cycle time is 13 time units. The manufacturing
process can start again not earlier than after 13 time units. The bottleneck takes
place at cycle pit; p2 t ps ts pi.
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Figure 10.1. Timed marked graph with time delays

Table 10.1. Time delays of simple cycles in the Petri net of Figure 10.1

Simple cycle Total time delay Token sum Cycle time
Paty P2t P3 t3 P2 26 2 13

P1tiPatz Py 16 2 8

Psti P2tz Ps 1 1 11

The timed marked graphs can be developed as a powerful tool for bottleneck
analysis and thus help identify where one should invest and where one should not.
For the above example, adding another machine of type A, i.e., ps receiving one
more token, contributes none to the cycle time reduction. On the other hand,
doubling Machine A’s processing speed, i.e., reducing p,’s delay to 3, can reduce
the system cycle time from 13 to 11.5 time units.

10.3 Stochastic Timed Petri Nets

In stochastic timed Petri nets, firing rates and time delays associated with Petri net
transitions are assumed to be random variables. In this section, we are restricted to
the cases when the stochastic time variables are associated with transitions only
and exponentially distributed. Such models are termed stochastic Petri nets, SPN
for short. Primarily, firing rates associated with transitions are considered. They
determine firing repetitions when firing conditions are permanently fulfilled. The
reciprocals of average firing rates are average time delays and vice versa.
Stochastic timed Petri net models are related to the models based on the Markov
chains (Zhou and Zurawski 1995; Bause and Kritzinger 1996). A thorough
treatment of this topic can also be found in (Ajmone Marsan et al. 1995) and
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(Wang 1998). Basic properties and application of the stochastic timed Petri nets are
illustrated through an example.

There are a number of extensions to the above discussed stochastic Petri nets. If
some transitions can fire much faster than others, their firing rate can be viewed as
an infinite value. In other words, firing them takes nearly zero time. Such
transitions are called immediate transitions. They always fire before any timed
transitions if enabled at the same time. The resulting model is called Generalized
Stochastic Petri Nets, GSPN for short (Ajmone Marsan et al. 1995). It is proved
that both SPN and GSPN can be converted into their equivalent Markov chain
models. Hence, the technique used to solve Markov chain models can be utilized to
solve both models. Under certain conditions, some transitions are allowed to have
deterministic time delay, resulting in Deterministic Stochastic Petri Nets (DSPN).
They can assume to have arbitrary distributed time delay and lead to Extended
Stochastic Petri Nets (ESPN). Both DSPN and ESPN can be converted into their
equivalent semi-Markov chains for their solutions. When a transition is associated
with a delay of arbitrary distribution, the resulting timed Petri nets cannot be
analytically analyzed in general. The in-depth treatment of the topic can be found
in (Wang 1998). The following is an exhibit of solving a stochastic Petri net via an
example.

Example 10.2. Consider a manufacturing layout, which is modeled with a Petri net
(Figure 10.2). Marked place p, represents a work-piece available at the input; p,,
and p, represent operations executed during processing a work-piece with

machines A and B, respectively. When both operations are finished (a token is both
in p, and p;) the processed workpiece is unloaded and a new part is deposited in

the input. Places p, — p, represent states when A or B is in repair.

Figure 10.2. Stochastic timed Petri net with firing rates
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Average firing rates A, are associated with transitions. Reciprocals of the rates

are the average times of the respective operations. For example, when a token
arrives in place p,, transition t, starts firing, which takes a delay comprising

operation at machine A and unloading the workpiece from the machine when the
operation is finished. The time is a random variable with an average equal to 1/ 4, .

For other transitions, the situation is similar. Table 10.2 describes the transition
meanings.

Table 10.2. Meaning of transitions in the Petri net of Figure 10.2

Transition Meaning

th Loading work-piece from input into the processing range of machines
Aand B

t, Processing a work-piece by machine A and unloading

t3 When both operations are finished, removing the processed work-
piece and loading a new work-piece at the input

1, Processing of a work-piece by machine B and unloading

ts Machine A breaks down

tg Machine A is being repaired

t; Machine B breaks down

tg Machine B is being repaired

Table 10.3. Firing rates in the example

Transition Firing rate
t 2, =20
t2 A, =4
ts Ay =15
ts Ay =2
ts Ag =2
ts A =1
t7 Ay =2
ts Ag =2
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By comparing the net in Figure 10.2 with the one in Figure 10.1 with respect to
machine A it is evident that p, has been added. It represents a state when A is in
repair after a breakdown. The place is connected to new transitions t, and t,. Each
transition in the net represents a whole process that takes some randomly
distributed time, and during it the tokens are blocked in the transition. Table 10.2
shows that more actions can be covered by one transition.

The i-th average firing rate associated to t; is denoted as 4, the i-th time delay
is z; . Firing rates for our example are given in Table 10.3. When a transition starts

its firing, tokens from pre-places are taken and when firing ends the tokens are

deposited in post-places. All weights are equal to one. The firing rules are usual.
The reachability graph for the Petri net is shown in Figure 10.3. Each arc of the

graph is labeled as usual with t; leading to the passage from one marking to its

successor. Each arc is additionally labeled with the average firing rate A,

associated with the corresponding transition. The markings are the states of the
system. A Markov chain can be generated for the states. Its topology is the same as
of the reachability graph. In the Markov chain transit arcs between states are
equally labeled with the firing rates A,. The transition rate matrix for the Markov

chain is

-a, a, 0 0 0 0 0 0

0 -a,-a,—-a,—a, a, 0 a, 0 a, a,

0 0 -a,—a, a, a 0 0 0 0

a, 0 0 -a, O 0 0 0 0

A=| 0 0 ag 0 -4 0 0 0 0
0 0 0 a, 0 -a,—-a, a 0 0

0 0 0 0 0 a, -a, O 0

0 ag 0 0 0 0 0 -a O
0 ag 0 0 0 0 0 0 -—a

The first row and first column correspond to marking (state) m,, the second ones
to m, etc.; 4, is assigned to the matrix entry (i, j), i# ], if there is a transit from
state m; to m; via transition t, . For i= j, the negative sum of firing rates of the
rest of entries in the i-th row is assigned to the entry (i,i). The assignment is

evident from the reachability graph and matrix A. The following matrix equation is
well known from the theory of Markov chains
(mg my 7y oo ... 7g)A=0 (10.3)

and, of course,

Mo+ +7,+..+7mg =1 (10.4)
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Figure 10.3. Reachability graph for Petri net in Figure 10.2

where 7; is a probability that the system is in a state represented by a marking m;, .
To explain Equation (10.3), consider, e.g., the first column of matrix A: entries for
m, —m, correspond to transits from them to m,; the entry for m, in this row
according to the construction of A corresponds to all transits from m, to other

markings. The sum of products of probabilities and firing rates for passes into the
state m, should be balanced with the same sum for the passes out of m .

The solution to Equations (10.3) and (10.4) with the firing rates in Table 10.3
provides probabilities given in Table 10.4.

Table 10.4. Calculated probabilities for Example 10.2

7Ty v T, 7Ty 7T, g g s g

0.029 | 0.098 | 0.196 | 0.039 | 0.196 | 0.050 | 0.098 | 0.196 | 0.098

Various performance characteristics can be calculated from the model, e.g.,
exploitation of machine A is 24.6% as follows from

7+ 7 + g =0.246 (10.5)
The system throughput given as a rate can be calculated as follows:

73 A, =0.585 (10.6)
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which corresponds to

1

T3 3

=1.71 time units (10.7)

A breakdown of the machine B is characterized by probability
7, +mg =0.294 (10.8)

or 29.4% of the production execution time.

10.4 Colored Petri Nets

If the relations between the system states given by markings are complex and/or
the system consists of many identical subsystems, then the Petri nets in the
standard form become very complicated and difficult to read. Each subsystem
requires its own Petri net subset. The colored Petri nets (CP-nets) were introduced
by Jensen (1981) in order to solve the problem of the Petri net invariants for the so-
called high-level Petri nets presented by Genrich and Lautenbach (1981). Jensen’s
improved version of the high level Petri nets was later developed into a nice tool-
CPN (Jensen 1997).

The basic idea is that in colored Petri net tokens have their own individuality or
identity represented by data values of some prescribed type called colors. Logic
expressions and functions can be built up using the token colors and can be
associated with places, transitions and arcs of a CP-net.

An exact description of colors has to be attached to each colored Petri net.
Nowadays, colored Petri net designers often use a language called CPN ML for the
CP-net design. CPN ML is closely related to the constructions and declarations
used in ordinary high level programming languages. In what follows we give a
basic introduction to CP-nets using the following example. In its development we
rely on reader’s intuition bearing in mind that the notation of CPN ML is familiar.

Example 10.3. Consider a system with two processes sharing two different kinds of
resources. There are one resource of type R and three resources of kind S available.
These may be for instance a robot and machines in a manufacturing line,
concurrently manufacturing two kinds of products. The process p (manufacturing
of a product of type p) needs two machines of type S to be assigned in a certain
time. The process g needs, besides two machines S, also robot R for its finishing.
Both processes are running cyclically. A model of the system represented by a P/T
Petri net is shown in Figure 10.4.

Each process is represented by one “subnet”, the subnets are mutually
interconnected through places R and S representing the shared resources. A
standard Petri net representation of this kind of system would be very complicated
due to a higher number of processes and resources. In this situation modeling by a
colored Petri net is very helpful (Figure 10.5).
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Process q

Process p

Figure 10.4. A system with two processes modeled by a P/T Petri net

color U=withp| g; @) ifx:q\ -
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_

Figure 10.5. A system with two processes modeled by a colored Petri net

By inspecting the two figures, it is clear that colored Petri net notation is
slightly different compared with the standard P/T Petri net conventions. A colored
net consists of three parts: a net structure (places, transitions and arcs),
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declarations (listed in a frame in the left upper corner) and net inscriptions
connected with the net elements. A fundamental difference with respect to P/T
Petri nets lies in the token color. Each token is assigned its own color as some
value of certain data type. This data type can also be complex, e.g., a structure or a
record, where for instance the first item is a real number, the second is a text string
and the third could be a record of integer pairs. In this example we have used
tokens of two color types (Figure 10.5, in a frame): P and E, where color P is a
Cartesian product of colors U and I. Color U contains a binary value of two options:
p and g, corresponding to the type of the process. Color | is introduced in addition
to the standard P/T net representation and contains an integer value, which counts
the total number of finished cycles for each process. By introducing a color 1, it is
demonstrated how it is possible to extend simply modeling convenience of the
standard P/T nets using the token colors. Now, color P contains information about
the process and also about the number of finished products — outcomes of the
process. Color E contains just information about the type of the shared resource.
Hence, there are two different kinds of tokens in the net, but in each place only
tokens of one certain type is possible in this example.

A possible color, called color set, is expressed by inscription in italic associated
with each place. Thus places R and S can contain tokens of color E and places A, B,
and C tokens of color P. A careful reader has surely noted different marking
inscriptions. The names of places are written inside the places instead of tokens.
Because of the need to know both the number of tokens and their color, the
marking is written near the places in such a manner that the total number of tokens
in the respective place is written as a number in a small ring followed by a multi-
set inscription representing color and number of tokens. For example, next to place

A there is a marking @ 1(a,0) , which means that in the place, there is one token
in total, namely one token with color (q,0) (q is the process type and 0 means the
number of finished products of type ). By convention, we omit the marking of
places with no token. The initial marking is represented by underlined expressions
placed next to the respective places. The system in Figure 10.5 is in the initial state.
Hence, the actual marking is equal to the initial one.

Assigning a color to each token and a color set to each place allows one to use a
smaller number of places than in standard P/T nets. In this example, places Bp, Bq
and Cp, Cq have been joined. Using colors we do not lose the possibility to
distinguish the process types. This possibility brings about an important benefit in
more complicated systems. However, by introducing colors the Petri net dynamics
becomes more complex. It is necessary to introduce more complex expressions
associated with arcs to describe fine possibilities of the marking evolution.
Therefore arcs contain expressions whose results are elements of multi-sets,
namely colored tokens. Sometimes such an arc can “transmit” a token without any
change, e.g., the arc connecting A and T1, where arc (x,i) moves the token from
place A via transition T1 into place B without change. We can use an abbreviation.
Instead of 1’e it is sufficient to write the symbol e as, e.g., for the arc connecting R
and T1. A transition is enabled/fireable iff all its pre-places contain tokens with
proper colors as specified by its input arcs. There is a more complex arc inscription:
“if x=p then 1°(p,i+1) else empty” at the arc leading from T3 to B. The token
passes this arc only if it is the token concerning process p. This arc also increases



188 Modeling and Control of Discrete-event Dynamic Systems

the number of finished products of type p. There is a similar inscription at arc
connecting S and T2: “case x of p=>2"e |g=>1"e". In case when the value of color x
of the token passing transition T2 is p, two tokens of type e are withdrawn from
place S (if available). If it is a token of color g, only one token is withdrawn
(according to the structure in Figure 10.4). A condition [x=q] at transition T1
means that there is a part of the net concerning only process g and that no token of
the type p may pass this transition (such a kind of token is not possible here
because of the net structure, initial marking and arc expressions). When a transition
fires, tokens with colors specified by its output arcs are deposited to its post-places.

It is further possible to develop and adapt the described CP-net, e.g., by joining
places concerning the shared resources into one place and adding the necessary arc
inscriptions, etc. However, such subsequent adaptations could reduce the
transparency or readability of the net.

Example 10.4. Consider an automatic guided vehicle system depicted in Figure
10.6. The system consists of fixed tracks divided into sections. This is a long
practice to ensure transportation safety. A collision-free function is achieved by the
condition that only one vehicle can be in a section. The vehicles move through the
sections in both directions. The switches are routing vehicles according to the
chosen vehicle path. A normal stop is not allowed in the switch area except
between switches SW2 and SW1, and between SW7 and SW8. There a vehicle can
stop and change its direction, if necessary. Sensors detect the presence of a vehicle
in a section. There are no sensors in the switch sections, with the exceptions
mentioned above. Processing centers are situated along some sections.

A control system provides a collision-free guidance of the vehicles to fulfil
their transportation tasks. The route optimization problem has not been considered
here. We have adopted an acceptable solution to determine for each vehicle’s
section position, possible continuations to the goal section avoiding collisions (see
more in Hruz et al. 2002).

SwW2 swi
S2
|| t
S1
S12 ®
4 SW9
S8
S10
S11 S7

Figure 10.6. AGV system with fixed tracks
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An ordinary Petri net modeling the transportation system is given in Figure
10.7. There are three subnets in it corresponding to three vehicles moving in the
system. An identical subnet has been added for each further vehicle. Places p14
and pl3 correspond to the special switch sections SW1-SW2 and SW7-SWS8.
Other switch sections are not represented by places. A vehicle presence is modeled
by a deposit of a token in the place of a corresponding subnet. Analyze the
movement control of the 1st vehicle. According to its task we have the following:
for a transit from sections S; to S;, a command is released for its motion to the
next chosen section that has no other vehicle. It is clear that many vehicles will

make the ordinary Petri net very complicated and cumbersome to model and solve
the transportation control problem.

Figure 10.7. Petri net for the transportation system



190 Modeling and Control of Discrete-event Dynamic Systems

Figure 10.8. A part of CP-net

Table 10.5. Definitions of token colors

color Id = int; (* AGV id — number *)

color Start = int; (* starting section of transfer *)
color Dest = int; (* final section of transfer *)
color Pd = int; (* partial destination *)

color Job = int; (* assigned job *)

color Prio = int; (* priority of the job (vehicle)*)
color C = product Id*Start*Dest*Pd*Job*Prio;

An efficient way to solve the problem is to use CP-nets. For the illustration
consider a situation around switches SW6-SW8 with help of a colored Petri net,
which would be a part of the complete CP-net.

The net with the colors and their description is shown in Figure 10.8. The
switch section is represented by psw and the surrounding sections by ps;. The color
inscriptions are in Table 10.5.

The token color contains more additional information according to the needs of
the control system, e.g., starting section of the transfer, final section of the transfer,
job number assigned to a vehicle and its priority. We also add a value for “partial
destination” — the next section, through which an AGV should move to execute the
actual transfer.

At the start of the transfer as well as in each section crossed by the AGV, the
partial destination is computed from the reachability graph to select the optimal
path direction of the movement (with respect to path length or transfer time). All
places in the net can contain a token of color type C, which is the Cartesian product
of all needed value elements. For safety we assume the capacity of all places to be
1. In terms of CP-nets we do not indicate current marking by dots put in places;
instead, a token is represented by a small circle next to the place showing overall
count of tokens in this place followed by the text representation of particular values
as shown with place psg.
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Table 10.6. Arc expressions

fst :

(* call next section planning algorithm and set pd *)
fst’ :

if (pd in {4,6,7,9} then 1°(Id,Start,Dest,Pd,Job,Prio);
fst :

1°(Id,Start,Dest,Pd,Job,Prio);

fsw8’ :

if (pd=8) then 1’(ld,Start,Dest,8,Job,Prio);

The main functionality of this CP-net is realized by arc expressions represented
by functions f;. By means of f;; the next section is computed, to which the vehicle
will be directed and the movement is realized by setting appropriate external
signals.

A simplified example of arc expressions for Section 8 is shown in Table 10.6,
and expressions for other arcs are generated similarly (not shown in Figure 10.8.).

When the net is externally synchronized with the process, we obtain a control
algorithm represented by the CP-net. It is easy to see that the movements of all
vehicles can be represented in one net. It is not necessary to have a separate subnet
for each vehicle. The inscriptions of colors are easy to to understand: ,,int* means
values of the type integer; “Id” is a color identifying a vehicle, with three vehicles
having the colors 1, 2, and 3. Similarly, it is with starting and goal section of
atransfer job; “Pd” is a color for the partial destination calculated by an
optimization program. The calculation considers possible partial destinations and
tries to find the best way respecting the occupation of the continuation places.
Further, there are colors “Job” and “Prio”. The tokens in the CP-net (three in the
example) are given colors according to the product ld*Start*Dest*Pd*Job*Prio.
The arc expression constructs are self-explanatory. An idea is that the expressions
set the condition of the arc to the token color if the achievable partial destination is
in the vicinity.

To model a smart card associated with a batch of parts/materials to be
processed and meet the need to analyze and control deadlocks in automated
production, a token’s colors are introduced into Petri nets, which are different from
the above introduced in (Wu 1999 and Wu and Zhou 2001, 2004, 2005, 2007).
They represent the output transitions of a place, which a token in the place intends
to enable following the determined part routes. The resulting models are called
colored resource-oriented Petri nets. They has been applied to DEDS in flexible
manufacturing and assembly, Automated Guided Vehicle (AGV) systems, track
systems and cluster tools in semincoductor fabrication, and oil-refinary scheduling
problems. The work has great significance in simplifying the deadlock modeling,
analysis and control complexity. It can also facilitate the scheduling and help
derive optimal schedules.
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10.5 Fuzzy Petri Nets

The fuzziness concept can be incorporated in Petri nets. Some additional aspects
should be supplemented for that purpose. Fuzzy Petri nets are useful as models for
expert rule-based decisions, temporal reasoning and many others. A rich collection
of contributions to various aspects of the fuzziness used with Petri nets can be
found in Cardoso and Camargo (1999).

In this section we have chosen from many possibilities a kind of fuzzy Petri
nets adapted for the temporal problem solutions. First of all, let us introduce a few
notions from the fuzzy set theory.

Definition 10.2. A fuzzy set A in a universe of discourse U, written A in U, is
defined by a set of pairs

A= {4 (%), )} (10.9)

where 1, :U —[0,1] (a real number interval) is a membership function, which
represents the element’s x e U degree of membership (by mapping U into interval
[0,1]) of the fuzzy set A.

The notion of a fuzzy number is further necessary for data operations in fuzzy
Petri nets. If a fuzzy set in the domain U consisting of real numbers is

a) normal, i.e., max 1, (x)=1 and

b) convex, i.e., VX, X, X, €U, X, <X<X,, ,(x)>min(z,(x,), 224(%,))
then it is a fuzzy number. Binary fuzzy operations are defined for fuzzy numbers
(recall that a binary operation on a set M is a mapping M xM — M ); they are
similar to ordinary binary operations on the real number domain. Fuzzy number
operations @, (-),®, () max, min can be defined similarly as ordinary arithmetic

operations +,—,x,:,max,min. For example, fuzzy operation @ for fuzzy numbers
A, and B is defined by

Hros (Z): sup [min(,uA(x), IUB(y))]I X,y,zeU (10.20)

z=X+y

The resulting fuzzy number Z = A® B is given by the membership function
ﬂA@B(Z)- Consider its value for one particular z. It is calculated as a supremum of

all pairs of ordinary numbers x and y, which give the value z by taking a minimum
of the membership functions of x and y; and the supremum of those minimums
defines the resulting membership value for one value of z. In this way, all points of
the membership function of Z can be calculated.

Consider the timed fuzzy Petri nets from (Ribari¢ and BaSi¢ 1998). The time
value is given on a time scale T, which is a linearly ordered set like R* and N*.
Following the fuzzy concept there is an uncertainty in determining a time point.
This uncertain knowledge about the time a (when some event occurs) can be
expressed by a possibility distribution function z, : T —[0.], i.e., z,(t)e[0,] for
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VteT . 7z, is a numerical estimate of a possibility that the time point a is
precisely t, whereby the time as a physical variable varies independently. =, is
equivalent to #A(t) under the assumptions that z, is normal and convex, and
1,(t) is normal and convex, too. Then the fuzzy set A is associated with the
considered fuzzy time point a and A is a fuzzy number determining the time point
a in a fuzzy way. Denote by D(T) the set of all normal and convex possibility

distributions 7 defined on T.

Now we are ready for the following example taken from Ribari¢ and Basi¢
(1998): Fred, John and Mark have a meeting as soon as all arrive at work. Fred
leaves home about 7:00 in the morning. He goes by car and arrives to work about
20 minutes later. John comes to work a few min earlier than Fred. Mark leaves the
house approximately at the same time as Fred. He takes a bus. The bus takes about
20 min to reach the bus stop nearest to the office. Then it takes him a few minutes
more to get to the office. The question is: What are possible starting times of the
meeting?

We can well present the fuzzy temporal relations by means of a fuzzy Petri net
in Figure 10.9. Marked places can represent partial states as described in Figure
10.9. Transitions represent actions described by fuzzy temporal linguistic
expressions. The places can be marked with fuzzy tokens. Each token has its
identity given by data values as in colored Petri nets. A possible marking of place

p; is one of the following ordered pairs: (z,,@)(2, 7, ) (7, 7)) @ (D, D).
The last case means that no token is in place p;. 7, and 7z, are possibility
distribution functions. 7z stands for the time point of the beginning of a token
presence in place p;, 7. is for the end time point. A token is assigned the

distributions as values on its arrival in a particular place.
In the treated fuzzy Petri nets, three functions have been used:

1. Function 7:P > D(T)u@ . Let 7, be associated with place p;. It

determines in a fuzzy way the detainment of a token in p;.
2. Function © related to function z . When a token arrives in a place p; itis

assigned value (;zb(i),Q). Function ® changes according to 7 (;zb(i),Q)
on (ﬂb(i),ﬂe(i)) where 7. =75 © 7.

3. Function 1, which maps the set T of transitions to a set of fuzzy operations
®x, (-) x, min, max, etc., where « is a fuzzy number. The operations
are applied to a pair (ﬂ'b , ﬂ'e). Practically, the beginning given by the fuzzy
number in the post-place ;) is obtained by a fuzzy operation, e.g.,
o) = To(i) @ Ky where p; is a pre-place of a transition t, .
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P1

Approximately at the same Fred leaves

About 20 minutes

Mark is in the
bus

Fred is coming to work

) A few minutes earlier
A few minutes later

John is coming to work

ts As soon as last

Ps ‘ , Meeting begins

Figure 10.9. Fuzzy Petri net model of temporal relations

Table 10.7 lists the results of functions z and A . Fuzzy numbers in Table 10.7
are represented in the so-called triangular form when the membership function is
given as a triangle (see Figure 10.10 for «,). Using the triangle membership

function, the statement “about 20 min later” is interpreted according to Figure
10.10 as “within £ 5 min around 20 min”.

Starting from the initial marking m, :[(zb(l),g),@@,@,@,@r and
performing fuzzy operations by stepwise applying the functions z and 4 we
obtain the final marking

(2,2,2,2,2,m,)
where m; =(max(;zb(z),zzb(4),7rb(5)), @). Max is a fuzzy operation of maximum as
illustrated in Figure 10.11. It is the fuzzy expression of the time of the meeting
beginning by using the membership function or the corresponding fuzzy number. It

is easy to imagine that similar fuzzy temporal relations can occur in various kinds
of DEDS.
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Table 10.7. Description of fuzzy relations

State, action

Infliction of = and A

State: Fred leaves home

r(pl)z 0 because it is the start of the
process

Action: about 20 min later

Alt,)=@x,, x, =(15,20,25)

State: Fred is coming to work

r(p2 ): 0 because he is ready for the

meeting immediately after the arrival
of all others

Action: approximately at the same time

Alt,)=@x,, x,=(-505)

State: Mark is in the bus

#(p, ) = (15,20,25), Mark is about 20
min in bus, therefore
74(s) = (15,20,25)

Action: a few minutes later

Alty)=®x;, x5 =(0,510)

State: Mark is coming to work

<
—_
=]
~
~
Il
o

Action: a few minutes earlier

State: John is coming to work

Action: as soon as last

1 Membership Function

| |
20 25

Figure 10.10. Membership function of a fuzzy number
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6.55 700 705 710 715 720 725 730 735 740 7.45 7.50

Figure 10.11. Resulting fuzzy expressed time of the meeting beginning expressed by the
membership function

10.6 Adaptive Petri Nets

Incorporating learning capability into a Petri net framework leads to adaptive Petri
nets. Broadly speaking, intelligent techniques such as artificial neural network,
fuzzy logic and knowledge based systems together can bring adaptable feature to
Petri nets. Consequently, adaptive Petri nets can become a framework for dynamic
knowledge inference under changing environments (Asar et al. 2005). The basic
conditions need to be defined under which a Petri net can be modeled to qualify for
adaptive task similar to biological neural network. The related approaches have
borrowed the concepts from the work based purely on biological brain model. Thus
the developed models can mimic a biological brain in terms of its distributed
function feature. Some work involves synergy of Petri nets and intelligent
techniques where ideas are motivated from the concepts of fuzzy logic and neural
networks through the weights and learning features. A small percentage of
researchers are active in applying intelligent techniques in conjunction with the
Petri net methodology on real world problems. This section intends to focus on
presenting the concept and examples of adaptive Petri nets based on the work (Li et
al. 2000; Yeung and Tsang 1998; and Gao et al. 2003) for the purpose of dynamic
knowledge inference.

In many situations, it is difficult to capture data in a precise form. In order to
represent certain knowledge, fuzzy production rules are used for knowledge
representation (Chen et al. 1990, Gao et al. 2003). A fuzzy production rule is a rule
which describes the fuzzy relation between two propositions. Its antecedent portion
may contain "AND" or "OR" connectors. If the relative degree of importance of
each proposition in the antecedent contributing to the consequent is considered, a
Weighted Fuzzy Production Rule is needed (Yeung and Tsang 1998). For example,

Ri: IF it is dark (p,) and Vision Processing System (VPS) works well
(p2) THEN the data from VPS is not dependable (ps) with certainty
factor 14=0.9, threshold 1,=0.5, and weights w;=0.6 and w,=0.4.
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p1 Vision Processing
It is dark System (VPS)
works well

W2:O.8
H1:0.9 and 7\41:0.5

Data from VPS
is not dependable

Figure 10.12. The Petri net representation of a weighted fuzzy production rule
This rule means that

1. p; and p, are two antecedent propositions and ps a consequent one (may

become an antecedent proposition of other rules).

This rule’s certainty factor is 0.9.

3. If the sum of p; and p,’s truth degrees (not given) weighted by their
weights w;=0.6 and w,=0.4 exceeds the firing threshold value 1,=0.5, this
rule is executable.

4. p;and p,’s weights are 0.6 and 0.4-implying that p; is more important than
p2. Their sum should be one given a conjunctive rule.

N

The importance weight should be one by default for the cases of a single
antecedent proposition, or multiple propositions connected with OR. Please note
that in (Yeung and Tsang 1998), the threshold value is defined for each proposition
and then an exactly same or close statement is as an input to the rule’s antecedent
propositions. The similarity value between an input proposition and that in a rule
has to be computed. The rule can be executed only if it exceeds the threshold for
each proposition.

This example rule can be easily converted to a Petri net as shown in Figure
10.12 where each place represents a proposition and transition t; represents rule R;.
Suppose that p; and p’s truth degrees are given as 6,=0.4 and 6=0.5. Since
y=w; 6;+W,6=0.24+0.2=0.44<),=0.5, this rule cannot be executed. However, if 6,
increases to 0.6, y=0.36+0.2=0.56>4,=0.5. Hence, this rule can generate the results.
If p3 has no other input transitions, its truth degree is: 6;=y:4,=0.56x0.9=0.504.

In addition, different from the other “non-reasoning” Petri nets, 6,=0.4 and
0,=0.5 remain unchanged at p; and p, unless new updates arrive. Note that some
previous work removes them as they are treated as tokens (Li et al. 2000). When p
has multiple input transitions fired, e.g., t,, with y; as the weighted truth degrees
and g4 as the certainty factor of t;, j=1, 2, .., k, p’s truth degree is derived as the
center of gravity of these fired transitions, i.e.,
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%yjﬂi
0(p) =
(p) Su

i

With the above background of fuzzy reasoning Petri nets, we can now
introduce an adaptive Petri net concept as follows.

Definition 10.3. An adaptive Petri net is a 9-tuple

APN = (P,T,1,0,0,W, 4, 1)

where P, T, I, and O defines APN structure, or more specifically

=

© =~

P={p,, p,, - P,} is afinite set of propositions or called places.

T ={t,,t,,---t,} is afinite set of rules or called transitions.

I: PxT—{0,1}, is an nxm input matrix defining the directed arcs from
propositions to rules. 1( p; ,tj ) =1, if there is a directed arc from p; to t;;

and I( p;,t;)=0, if there is no directed arcs from p; to t;, for i=1,2,...,n,

and j=1,2,...,m.
O: PxT—>{0,1}, is an nxm output matrix defining the directed arcs from
rules to propositions. O( p; ,tj ) =1, if there is a directed arc from tj to p;;

O( p; ,t;) =0, if there is no directed arcs from t; to p; for i=1,2,...,n, and

j=1,2,....m.
0: T —[0,1] is a truth degree vector. #=(6, ,6, --,6,)", where 6, € [0,1]
means the truth degree of p;,i=1, 2, ..., n. The initial truth degree vector

is denoted by 6°. It is treated as a marking (no longer integer but any real
number between 0 and 1).
W : PxT —[0,1] is the weight function that associates a weight with an

input arc from a place to a transition. If a transition t has multiple input
places, the sum of all the weights from these places to t must equal one. If t
has a single input place p, then W(p,t)=1.

A: T —[0,1] is the function that assigns a threshold value to ;.

u: T —[0,1] is the function that assigns a certainty factor value to {;.

Assume that the weights need to be learned given the input and output date of
place truth degrees. To do so, we need to define the execution rule first.

Definition 10.4. Given APN, VteT, t is enabled if Vpe®t, #(p) > 0. Firing an
enabled t produces the new truth degree for its output place(s), denoted by y(t):
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Z@(pj)-W(pj,t) ) Zj:g(pj)'w(pj:t) > A(t)

yo=1"" >6(p;) - W(p; 1) < A) (10.12)

1. If p has no input transition, its truth degree must be given initially.

If p has only one input transition t, 8(p) = y(t)«(t) .

3. If p has multiple fired input transitions, t;. with y; as the weighted truth
degrees and g4 as the certainty factor of tj, j=1, 2, .., k, p’s truth degree is
derived as the center of gravity of the fired transitions, i.e.,

N

%y,—,u,-
0(p) =
(p) i

i

According to the above definitions, a transition t is enabled if all its input places
have their truth degrees positive. If the sum of their weighted truth degrees is
greater than its threshold A(t), t fires. Thus, through firing transitions, truth degrees
can be reasoned from a set of known antecedent propositions to a set of consequent
propositions step by step. We may use a continuous function y(t,x) to

approximate y(t) in Equation (10.11). Let

y(t, xX) = x- F(X)
where

X:Z‘g(pj)'w(pjvt)
i

F(x) is asigmoid function that approximates the threshold of t,

F(x) =1/ +e00)

where b is a large constant called steepness. If b is large enough, when x > A(t),
e P x0 |, then F(x)~1, and when x<A(t), e**® 5w | then
F(x) = 0. This approximation is essential to equip the net with learning capability
to be shown later.

Algorithm 10.1. (Fuzzy Reasoning)

INPUT: APN with initial truth degrees of a set of antecedent propositions, i.e., 6°.
OUTPUT: The truth degrees of consequence propositions
Initialization: k = 0.
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Step 1. Let k = k+1. Find and fire all enabled transitions and update truth
degree of places according to Definition 10.4 to obtain 6* .
Step 2. If 6% =6, go to Step 1.

Theorem 10.1. If an APN is acyclic, i.e., it contains no cycles, then Algorithm
10.1 terminates in a finite number of steps.

Proof. It is clear that when input places to a transition have the same truth degrees,
the result from firing it changes no truth degrees. As the net is acyclic, only limited
number of steps will be needed such that all places will end up with their constant
truth degrees.

Example 10.5. Suppose that an expert system has the following weighted fuzzy
production rules:

R:: IF p1 THEN p4 with certainty factor z4 and threshold 4.

R,: IF p, AND p, THEN ps with certainty factor u, threshold A,, and
weights w; (input arc from p, to t,) and w, (input from p, to t,).

Rs: IF p3 OR ps THEN pg with certainty factors gz for t; between ps
and ps, 14 for t4 between ps and pe, and thresholds 4; and 4.

The system is converted into Figure 10.13 where R; and R; are clear while R; is
converted into a subnet with two transitions t; and t,.

‘pl’el

Lt A1,
@ éb 04 0; = Truth value of place p;
Wi W A; = Threshold of transition t;
LZ pi = Certainty factor of ;
t2 Ao, o . .
w; = Weight of the corresponding arc

P3 Ps 95
b Az, 13 B Ha
Ps }o s

Figure 10.13. APN of a given expert system
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Suppose that the data are given as follows:

4, =0.80, 4, =085, s, =075 1, =082
4, =050, A, =055 A, =060, A, =0.40
w, =0.63, w, =0.37

We use the following sigmoid functions as

. Hi L
F,(x) = —1+e7bi(Hi) , 1=12,3/4

to approximate the four thresholds A, , where steepness b; is selected as b=200.
These functions vs x are drawn in Figure 10.14. For transition t, , y(t2,X)= XF,(X)
where X = 8(p,)w, +0(p,)w,.

0.9r1 i L _______

| Al Ty

0.6

0.5

0.3

0.2

]
I
1
I
I
]
1
]
1
1
0.4F : i
. |
]
|
I
I
]
I
I
I
1
1

Figure 10.14. Four sigmoid functions in Example 10.5

Table 10.8 gives the reasoning results of APN given the above data, and truth
degrees of places p;.3. Each process involves only two steps. If multiple transition
fires, they can fire together following Definition 10.4. This is one major difference
between standard Petri nets and “Petri nets for reasoning”.

One can see that some truth degrees of places are zero. This means that the
corresponding thresholds are not passed. For example, in Group 1, since
&p,)=0.219< 4, =0.5, t, cannot fire, leading to &p,)=0.

In Example 10.5, we assume that weights are known. Suppose that weights are
unknown but we have sufficient data obtained from the expert system. We can then
introduce the neural network concept and related back-propagation algorithm to
learn these weights. These weights can be updated when new data are introduced.
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Table 10.8. APN Reasoning results given the weights, threshold, certainty factor, steepness,
and truth degrees &p;)—-&ps)

Group No. O(p1) O(p2) O(ps) O(ps) O(ps) O(ps)
1 0.2190 0.0470 0.6789 0 0 0.3243

2 0.6793 0.9347 0.3835 0.5434 0.5850 0.3055
3 0.5194 0.8310 0.0346 0.4072 0.4517 0.2359
4 0.0535 0.5297 0.6711 0 0 0.3206
5 0.0077 0.3834 0.0668 0 0 0

6 0.4175 0.6868 0.5890 0 0 0.0279
7 0.9304 0.8462 0.5269 0.7443 0.6647 0.3472
8 0.0920 0.6539 0.4160 0 0 0

9 0.7012 0.9103 0.7622 0.5610 0.5867 0.6705
10 0.2625 0.0475 0.7361 0 0 0.3516

Example 10.6. (continued from Example 10.5) The learning part of the APN (see
the part in the dashed box in Figure 10.13) may be formed as a standard single-
layer neural network as shown in Figure 10.15. Assume the ideal weights are

w; =0.63, and w, =0.37 .

The sigmoid function for transition t, is

] 0.85
F(x) = 1+ g 2000:-055)

6(p2) 6(p4)

Wy W2

0(ps) is the real data
obtained from the expert
system.
) 0’(ps) is the output of
6'(ps) neural network

Figure 10.15. The neural network translation of the learning part in Example 10.6
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Suppose that inputs &p;) and &p,) are given random data from 0 to 1, and the
real output &ps) is obtained according to the expert system. Given any initial
condition for w, and w,, put the same inputs to the neural network. The error

between the output of neural network 6{ps) and that of the expert system &(ps) can
be used to modify the weights with the following learning law:

Wk +1)=W (k)+ yce(k)o(k)

e(k):: 6’(p5)(k)— el(ps )(k)

where
Wk +1) =[w, (k +1), w, (k +1)] is the weight at iteration k+1;

W (k) =[w, (k), w, (k)] is the weight at iteration k;
0.85x

= 1 4 g200(x-055)

d is the learning rate whose small value assures that the learning process
converges. Select 6 =0.07;
0(k) =[0(p,)(k),8(p,)(k)], and &p2)(K) is a given truth degree of p,

Ap4)(K) is the reasoned truth degree of py;

61ps)(Kk) the reasoned truth degree of ps (the output of neural network); and
Aps)(k) is the given truth degree of ps from the expert system, all at
iteration k.

After a training process (k > 400), the weights converge to real values. Figure
10.16 shows simulation results.

In this example there is only one learning layer. A more complicated case with
two learning layers can be found in (Li et al. 2000).

The development of theory and applications of Adaptive Petri Net (APN) still
represents a hot research direction. APN promises to solve the knowledge learning
problem in expert systems and other application problems.

0.8 N
0.7 M Wi |

W

0o 100 200 300 400 500 600

Figure 10.16. Single layer learning results of Example 10.5
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10.7 Petri Net-based Design Tools

This section presents a brief overview of many significant tools that have been
constructed and applied in academia and industry. The Petri net community has
well maintained an active website, i.e., the Petri Nets World, and e-mail list. The
website address for about seventy registered Petri net-based design tools is

http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html

Most of these tools are free of charge for academic research. There are also many
tools in use, which may be found in a variety of publications. The authors have
directly or indirectly used the following tools.

SPNP
http://www.ee.duke.edu/~kst/

SPNP supports the analysis of stochastic Petri nets. It was developed by Ciardo et
al. (Hirel et al. 2000). The model type used for input is a stochastic reward net
(SRN). SRNs incorporate several structural extensions to GSPNs such as marking
dependencies (marking dependent arc cardinalities, guards, etc.) and allow reward
rates to be associated with each marking. The reward function can be marking
dependent as well. They are specified using CSPL (C based SRN Language)
which is an extension of the C programming language with additional constructs
for describing the SRN models. SRN specifications are automatically converted
into a Markov reward model which is then solved to compute a variety of transient,
steady-state, cumulative, and sensitivity measures. For SRNs with absorbing
markings or deadlocks, mean time to absorption and expected accumulated reward
until absorption can be computed. This tool has been widely used for performance
evaluation of various discrete event systems (Zhou and Venkatesh 1998).

GreatSPN
http://www.di.unito.it/~greatspn/index.html

GreatSPN stands for GRaphical Editor and Analyzer for Timed and Stochastic
Petri Nets. It is one of the earliest tools that can graphically represent Petri nets,
simulate them, and evaluate Generalized Stochastic Petri nets (GSPN). In GSPN,
both immediate and exponentially distributed timed transitions are allowed.

The most recent version is called GreatSPN2.0. It is a software package for the
modeling, validation, and performance evaluation of distributed systems using
Generalized Stochastic Petri Nets and their colored extension. It provides a friendly
framework and implements efficient algorithms for complex applications not just
toy examples. One of its unique features is that it is composed of many separate
programs that cooperate in the construction and analysis of PN models by sharing
files. Using network file system capabilities, different analysis modules can be run
on different machines in a distributed computing environment. Its modular
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structure allows easy addition of new analysis modules. All modules are written in
C programming language to guarantee portability and efficiency on different Unix
machines. All solution modules use special storage techniques to save memory
both for intermediate result files and for program data structures. Its applications to
various DEDS are well documented in a book (Ajmone Marsan et al. 1995).

INA
http://lwww2.informatik.hu-berlin.de/~starke/ina.html

INA represents Integrated Net Analyzer. INA is a tool package supporting the
analysis of Petri nets and colored Petri nets. It consists of:

A textual editor for nets

A by-hand simulation part

A reduction part for Petri nets
An analysis part to compute

- Structural information
- Place and transition invariants
- Reachability and coverability graphs

The by-hand simulation part allows starting at a given marking to forward fire
either single transitions or maximal steps; the user can thus traverse parts of the
reachability graph.

The reduction part can be used to reduce the size of a net (and of its
reachability graph) whilst preserving liveness and boundedness.

The analysis can be carried out under different transition rules (normal, safe,
under capacities), with or without priorities or time restrictions (three types), and
under firing of single transitions or maximal sets of concurrently enabled
transitions. INA can compute the following structural information:

e Conflicts (static, dynamic) and their structure (e.g., free choice property)
e Deadlocks and traps (deadlock-trap-property)
e State machine decomposition and covering

Invariant analysis can be done by computing generator sets of all
place/transition invariants and of all non-negative invariants. Vectors can be tested
for invariance properties.

For bounded nets, the reachability graph can be computed and analysed for
liveness, reversability, realizable transition invariants, and livelocks. The
symmetries of a given net can be computed and used to reduce the reachability
graph size. It is also possible to apply stubborn reduction. Furthermore, minimal
paths can be computed, and the non-reachability of a marking can be decided.

Some external graphical editors and tools can export nets to INA. This tool has
been proven robust and very useful. For example it is used for deadlock control
design in (Li and Zhou 2006) and (Uzam and Zhou 2006).
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Another influential tool is CPN Tools at the following site:
http://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db/cpntools.html

It is a widespread tool for editing, simulating and analyzing colored Petri nets. It
features incremental syntax checking and code generation which take place while a
net is being constructed. A fast simulator efficiently handles both untimed and
timed nets. Full and partial state spaces can be generated and analyzed for
boundedness and liveness properties. It is possible to specify and check system-
specific properties. The tool also provides support for simulation-based
performance analysis.

10.8 Problems and Exercises

10.1. Figure 10.17 models a discrete event system. Initial marking is shown in the
figure, times delay j time units is associated with place p; and i units with t;. Please
show all the cycles and find the system cycle time delay. Given two extra tokens,
which place(s) should receive them to minimize the cycle time?

t1 P, te

p2 . o p6 ‘

pi2
p11 {2 e ts ey o

p7

ps p9 o p4

ts3 ps ts

Figure 10.17. A marked graph for Exercise 10.1

10.2. Assume initial marking of the stochastic Petri net is shown in Figure 10.18
and transition t; has its firing rate ;. Please derive the productivity if firing t,
signifies the completion of a product. Do so for me=(4 1 0 0 0 0)" when 4; =i.



Timed and High-level Petri Nets 207

1y

Figure 10.18. A stochastic Petri net for Exercise 10.2

10.3. A serial manufacturing system is schematically given in Figure 10.19. It
consists of three cells. Products are coming one by one to the system via input.
After processing in cell 3 they are moved onto the output. Draw a color Petri net
specifying the function of the manufacturing system.

Cell 1 Cell 2 Cell 3

output

Figure 10.19. A serial manufacturing line

10.4. For Example 10.3 create a Petri net modeling the behavior of the given
system. Consider a serial manufacturing system with ten cells and compare the
Petri net and the color Petri net models.

10.5. A circle rail track is shown in Figure 10.20. Two trains are moving on the
track clockwise. A train can pass in the next section only if next two sections are
free.

a. Find a Petri net describing the prescribed moves of the trains.
b. Analyze the basic properties of the derived Petri net.
¢. Find a color Petri net describing the prescribed train behavior.

10.6. Suppose that in Example 10.6, w; and w, are fixed but the certainty factors
and x4 are unknown. Assume that the random input and accurate output data from
the expert system can be obtained with their ideal values at

L = 0.8 and M= 0.5.
Derive the back-propagation algorithm to learn these two parameters, and

investigate the convergence with different initial values of 4, and y4 between 0 and
1, different steepness, and learning rates.
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Figure 10.20. Circular rail track with two trains and seven sections
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Statecharts

11.1 Introduction

So far it could be observed how some shortcomings of finite automata used for
DEDS modeling were overcome by Petri nets and Grafcet. This is mainly due to
the latter’s ability to specify the parallel activities of subsystem states and
concurrency of events. However, a certain imperfection of both persists.
Difficulties in visualizing large and complex DEDS require to apply a sort of
hierarchical decomposition. Another tool for coping with this problem is
statecharts (Havel 1987 and Fogel 1997, 1998).

Statecharts use the same notions as the tools mentioned above, namely state and
event, and are based on the basic transition system as well. They represent
structure and dynamic behavior in a drawn graphical form. Their set-theoretic and
functional description is possible, too. The next section introduces their concepts
and Section 11.3 presents their applications to DEDS.

11.2 Basic Statechart Components

In a statechart, states are represented by rounded rectangles marked with a symbol,
usually a letter as illustrated in Figure 11.1.

The state Q in Figure 11.1a, which can be decomposed into three sub-states A,
B, and C as shown in Figure 11.1b, can be viewed as a superstate. Transition from
Figure 11.1a to Figure 11.1b is an example of state refinement as opposed to state
clustering (corresponding to the transition from Figure 11.1b to Figure 11.1a.

According to the principle of state encapsulation, the state Q encapsulates states
A, B, and C. Figure 11.1c depicts a three-level state hierarchy. The semantics of
the decomposition depicted in Figure 11.1 is exclusive-or (XOR) whereby in
Figure 11.1b the situation “state Q is active” means that one and only one of states
A, B, and C is active at some time. If saying “the system is in state Q” we mean
that it is, e.g., in state B. If the system in Fig, 11.1c is in state Q it can be in state A
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being in state V. In such a case Q can be neither in state B nor C, nor A nor U at
the same time.

Transition from one state into another one is represented by an arrow labeled
with abbreviation of an event. The event label “e” may be completed with a
condition in parentheses e(P) indicating that through event “e” the system transits
from one state to the other if the additional condition P holds on the event
occurrence (Figure 11.2). An option is that an arrow is labeled only with condition
(P).

Figures 11.2a and b are equivalent as for the representation of the state transfer
Q — R, which is carried out if condition P holds on event e;. Arrows can be
directed either into a superstate, e.g., the arrow labeled with e, in Figure 11.2b or
out of a superstate, e.g., the arrows labeled with e;.

Thus far, time was not explicitly considered in the described statechart
components. There are several possibilities to include time conditions in the
statecharts, for example, similarly to those in Petri nets. The order of state
transitions is specified like that in untimed Petri nets.

o ) (Y ()

"D
- = =/

a. b. C.

Figure 11.1. Representation of states for exclusive-or activities with hierarchical
involvement

e1(P)

a. b.

Figure 11.2. State transit representation using arrows labeled with events
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In statecharts a default state activation can be specified with an arrow and a dot
as shown in Figure 11.3. The state transfer is performed according to the arrows
pointing at default states. In Figure 11.3a, the default transit to state Q by event “e”
is accomplished through the transit in A given by the transit to the default state V.
As a whole, event “e” transfers the system from state R to V. Other needed arrows
are left out.
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Figure 11.3. Default state activation
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Figure 11.5. Orthogonal states Q; and Q,
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Figure 11.6. Use of the orthogonal states

Another useful component is a history node as shown in Figure 11.4. The
semantics of the graphical scheme is as follows: if a system is in state R and event
“e,” occurs, the system goes into one of the states from the level of the superstate
Q, which is A, B or C depending on the most recently active state before Q was left
by event e,. If by chance it were A, state R would be transferred in V because of
the arrow indicating a default state. Notation H* means the transit in the most
recently active state on the lowest hierarchical level.

Concurrency and independency are represented by dashed rectangles within a
superstate (Figure 11.5). It represents an AND relation of the state activities. On
entering state Q, both states Q; and Q, are active. The activity by refinement means
that both states A and D are active simultaneously. For Q; it is A and then via “e;”
B, for Q, it is D and then via event “e;” C. The same event can effect both
components of Q if, , e;= e;. The states within a superstate being in the AND
relation are called orthogonal. Entering from a state into an AND box ensures the
activation of a state in each component of the box as shown in Figure 11.6. In
hierarchically embedded levels the AND boxes can be used similarly as the XOR
boxes.

There are two kinds of the stimuli considered for state transitions: the event “e”
alone or “e” accompanied by a condition P denoted by a label e(P). The event
represents a stimulus acting over an infinitely short time interval or in a discrete
time point. State transfer by an event is realized if a durable (level kind) condition
P is met. The generation of events can be connected with transits of states (notation
es1/s) or with the states themselves. The possibilities are explained in Figure 11.7.
The generated events are called actions and the changes of values are called
activities. Thus s is an action, which is generated by the transfer P —Q and is

firing transit A— B. Start (X) and end (X) are special events setting and resetting
X. An example of an activity is setting Y by entering state C, setting Z by the exit
from C, setting W during the activity of state C.

The reader can find more information about the statecharts and their formal
definitions in (Harel 1987) and (Harel et al. 1987). Their applications to the
modeling of reactive systems together with a statechart-based structured analysis
method called STATEMATE are in detail presented in (Harel and Politi 1998). A
thorough treatment of converting Petri nets into statecharts is given in (Eshuis



Statecharts 213

2006). An algorithm of polynomial complexity is proposed to translate a class of
Petri nets into an equivalent statechart. Meanwhile, the Petri net structure is
preserved. Some recent applications to industrial automation can be found in (Lee
et al. 2005).

11.3 Statechart Application

A printed circuit board (PCB) assembly cell in Figure 7.10 is used as an illustrating
example. The Petri net interpreted for control and a statechart specification are
compared. Figure 11.8 shows the Petri net interpreted for the cell control. The
alteration of the robots by both the component picking and inserting has been
chosen. The cell and the Petri net specification are described in Example 7.3,
Section 7.3. The meaning of additional transition conditions and control commands
associated with places is given in Table 11.1. If a transition bears a condition,
CR1 _a, itis a shortage for a test if variable CR1_a = = true (logic one).

The same control as that from the Petri net has been specified using the
statechart depicted in Figure 11.9. Both representations offer the similar
complexity graphically.

eo(in A) l

P A
eifs S
A 4 4
Q B
es/start(X) eslend(X)
A 4 A 4

Figure 11.7. Actions and activities in a statechart
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Table 11.1. Petri net logic conditions and control commands

Logical conditions attached to transitions

CR1 a (CR2_a) Electronic component for R1 (R2) is available

R1 ep (R2_ep) End of component picking from feeder by robot R1 (R2)
ARl b (AR2_b) Arm of robot R1 (R2) pulling back done

R1_pcb (R2_pch) Robot R1 (R2) is near to PCB area prepared for inserting
R1_cins (R2_pch) Inserting of a component by R1 (R2) done

R1_fa (R2_fa) Robot R1 (R2) is near to feeder area prepared for picking

Control commands

R1 P (R2_P) Command for R1 (R2) to pick an electronic component
AR1 B (AR2_B) Command pull back the arm of robot R1 (R2)
R1_MPC (R2_MPC) | Command for R1 (R2) to move to PCB area

R1_IC (R2_IC) Command to insert a component

R1_MFA (R2_MFA) | Command to move to feeder area

11.4 Problems and Exercises

11.1. For the manufacturing system in Exercise 1.5, elaborate a statechart
specifying its control according to the required function of the system.

11.2. Compare the state chart in Exercise 11.1 with the specification using Petri
nets interpreted for control.

11.3. Derive the statechart for the Petri net model given in Figure 7.12.



Statecharts 215

P11\ ®e
tia
P12 C) R1_P
tz—3— R1 ep too=—f—
R2_ep
P13 <> AR1_B P23 C)
AR2_B
t13 = o3t
0 ARZ2 b | p,
D ) e O O
R2_MPC
R2_pcb
)RZ_IC
_R2_eins
) AR2_B
AR2 b
R2_MFA

Figure 11.8. Petri net interpreted for control of the PCB assembly
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DEDS Modeling, Control and Programming

12.1 Modeling Methodology

Finite automata, Petri nets, Grafcet, statecharts, etc., are tools for DEDS
specification and analysis. They represent a system as a whole or its chosen parts.
The function of the control system to be designed requires specific extensions of
the expression means in order to enable a reactive performance of the control in a
feedback system structure.

Generating a DEDS model is a highly creative process. There are many ways
how to achieve this goal. However, precise and exhausting hints for it do not exist.
Rather there are several supporting methodologies. One of useful practical ways is
to first elaborate a model of the complete system as it appears to an observer with
the control included. Second, a model of the system control is to be elaborated,
which may serve for the control function analysis and writing control programs.

Operations in execution represent partial system states, which change through
events. From the abstract system viewpoint the basic DEDS features are generally
as follows:

a. Concurrency of operations

b. Synchronization of operations

¢. Sharing common resources such as machines, robots, storages, data blocks,
etc.

d. Limitation of resources

e. Cyclic behavior, i.e., the repetition of some procedure schemes

f. Failure-safe processing without shutdowns, deadlocks, etc.

g. Achieving maximum efficiency with respect to some criteria, e.g., right

product mix, maximum throughput, minimum make-span and other, via
optimal routing of objects in the system and scheduling of operations.

Considering Petri nets as a main DEDS modeling tool in this book, it is easy to
verify that the individual features are ensured as follows:
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Features a through c: they are contained in the very substance of Petri nets;
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Figure 12.1. Basic Petri net transformation rules

Feature d: by the boundedness;

Feature e: by the reversibility;

Feature f: by the liveness;

Feature g: by the Petri nets interpreted for control.

Then a basic goal is to create a bounded, reversible and live Petri net as a
DEDS model having all required states or markings reachable. There are two ways
to achieve it:

1. To generate a Petri net without any constraints and then to check the
analyzed features and make necessary corrections.

2. To use elementary building blocks preserving the required features in
bottom-up composition or in top-down refinement.

Frequently, the complexity of a real DEDS leads to a large and complex Petri
net. Analyzing such nets is practically very difficult and time consuming.
Therefore, availability of a systematic approach to the Petri net design is highly
desirable. The substance of such approaches is model reduction and composition
techniques. Such a transformation, either reduction or composition, helps to
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simplify or create Petri nets preserving the required properties, and makes an
analysis of Petri nets easier.

A basic list of the most frequently used transformation rules is presented
graphically in Figure 12.1. The rules (Murata 1989; Zhou and Venkatesh 1998)
include:

Fusion of series places;

Fusion of series transitions;

Fusion of parallel places;

Fusion of parallel transitions;
Elimination of self-loop places;
Elimination of self-loop transitions.

~O0oO0OCE

Often it is advantageous to use a hierarchical decomposition of a Petri net (a
higher level) into subnets (lower level). A standard way is to develop either a
transition of a hierarchically higher Petri net into a subnet or place into a subnet
(Abel 1990). In the former case, the developed transition splits into two transitions
between which the subnet is located, whereby no arcs are permitted between the
subnet and the nodes of the higher level Petri net. The latter case is treated
similarly using place splitting. Decomposition of a transition is illustrated in Figure
12.2.

P
ta1
t 7
.
P2 7 P21
.
t . t
S P22
N
P3 S

t2
Figure 12.2. Decomposition of a transition

Consider a composition method (Ferrarini 1992, 1995 and Ferrarini et al. 1994)
as a model of such efforts. The basic idea is to represent an elementary control task
using a strongly connected binary Petri net state machine (SCSM, see Section 7.4)
with one and only one marked place within the initial marking. A complex control
function is designed using a composition of a group of elementary control tasks
represented by a composition of the corresponding elementary SCSMs. The SCSM
interactions have to satisfy various relations, e.g., synchronization and blocking.
Properties like liveness and boundedness are preserved by the composition.
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Various kinds of interconnections are shown in Figure 12.3. There are: (a) self-
loop, (b) inhibitor arc, and (c) synchronization. The functions of the
interconnections are easy to understand from the graphical representation where
the elementary SCSM are noted as Ey, E,, ... , and Eq.

Zhou and DiCesare (1991) and Zhou et al. (1992) proposed one of the excellent
reduction/composition methodologies. The core idea of their methodology is a top-
down refinement of a relatively simple first-level Petri net, which models basic
system operations, and a bottom-up completion of the net with places and
transitions corresponding to the system resources. More discussions can be found
in (Zhou and DiCesare 1993). Brief introduction to their results is presented below.

A common DEDS feature is the possibility to distinguish the following system
components:

1. Operations performed in the system, e.g., processing parts in a flexible
manufacturing system (FMS), and processing pieces of data in a distributed
computer system.

2. Subsystems representing fixed resources, e.g., machines and robots in FMS,
and computer processors.

3. Subsystems representing variable resources, e.g., pallets or fixtures in FMS,
and external memory devices in the computer systems.

Petri net models reflect the three groups of components. A set of places
corresponds to each group. Petri net places for the first group are characterized by
a zero initial marking places; for the second group by some non-zero binary or
fixed marking place, and for the third group by some non-zero possibly variable
numerical marking places.

The first-level Petri net represents the system operations. Then, using the top-
down approach more details are added by refining the net of operations and their
relations. Afterwards, the Petri net places for resources are added to the net in a
bottom-up manner.

Figure 12.3. Three kinds of elementary structure connections by the composition
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Figure 12.4. A sequence Petri net
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Figure 12.5. A parallel Petri net
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Figure 12.6. A choice Petri net

The first-level Petri net is composed of basic design modules. They are chosen
to posses the three most important properties reflecting real-world systems, namely
boundedness, reversibility and liveness. The basic design modules include:

Sequence Petri net (Figure 12.4),

Parallel Petri net (Figure 12.5),

Choice Petri net (Figure 12.6),
Decision-free choice Petri net (Figure 12.7).

oo ow

It has been proved in the above-mentioned works of Zhou et al., that any
composition of basic design modules preserves the three mentioned basic
properties: boundedness, reversibility and liveness. In the refinement process,
modules a and b can replace a place, and modules ¢ and d can replace a transition.

The bottom-up procedure resolves the problem of sharing the system resources.
Two kinds of resource sharing can be distinguished: a parallel mutual exclusion of
resources and a serial mutual exclusion of resources. Resource sharing situations in
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tl P1 tn+1

Figure 12.8a. Parallel mutual exclusion and b. Serial mutual exclusion, also called
sequential mutual exclusion
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DEDS expressed by means of the Petri net elementary structures are depicted in
Figures 12.8. The initial marking in Figure 12.8 is one possible example. However,
there are several possibilities depending on the actual requirements. It has been
proved that structures in Figure 12.8 preserve the basic Petri net properties
considered above both individually or in combination with the basic design
modules under certain conditions.

The described methodology is applicable in the DEDS regardless of the
system’s substance. Next this methodology will be illustrated on a flexible
manufacturing system depicted in Figure 12.9 (Niemi et al. 1992).

Vision
system
Input conveyor |
Milling
machine Storage
Output conveyor
- Robot
Measuring
station

Drilling
machine

Control
computer

Figure 12.9. Layout of an FMS

This system comprises a semiconductor camera vision system for the
recognition and location of parts coming into the system on an input conveyor. A
central transferring server of the system is a robot. Further, there are two NC
machining units: a drilling machine with two drills above an xy-table and a three-
axis milling machine with a tool changer. A measuring station is located between
the milling and drilling machines. There is an intermediate storage where the robot
can temporarily put the parts, and an output conveyor. The intermediate storage
can be used as a multiple storage for more types of the products. The system is
equipped with control computers on both process and coordination levels.

A particular technological process to be cyclically realized in the system is as
follows. There are two different types of raw parts at the input. The first is intended
for the product of type A, the second for type B. The parts come irregularly, i.e.,
with random time intervals between two parts and with a random number of
consecutive parts of one type. The parts are recognized and located by the camera
vision system. Product A is obtained by drilling followed by measuring. Product B
is obtained by milling. The cell robot provides the necessary transfers of the parts
or products. No intermediate storage is considered in this particular example.
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Example 12.1. Figure 12.10 shows the first step of a Petri net system performance
modeling. The places of Petri nets correspond to operations. For the sake of brevity
the meaning of the system places is given in Figure 12.11, which shows the next
stage-refined model. Transitions correspond to the starts and ends of operations.
The first stage Petri net model is drawn in full lines (the Petri net is not a strongly
connected one). The question of reachability, boundedness, liveness and
reversibility is to be resolved. Undoubtedly a full-line Petri net is bounded, live and
each of its marking is reachable. However, it is not reversible. The additional parts
of the net drawn in dashed lines turn the Petri net into a reversible one.

R, Pe
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Figure 12.10. First stage Petri net model

The next refined Petri net model is shown in Figure 12.11. The availability of
machines is given by marked places, e.g., the drilling machine is free if place pp
contains a token. If the part of the net modeling the robot function is omitted, a
marked graph (Section 7.4) is obtained which is evidently bounded, reversible and
live for the given initial marking. The robot presents a shared resource with
conflicts (there are more arcs outgoing of place pg). The conflicts are of mutual
exclusion type. Though the resulting net is no more a marked graph, nevertheless it
is bounded, reversible and live as discussed earlier in this section.
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tDOA

Description of places (under assumption
they are occupied with a token):

Availability of parts at input Descriptions of transitions: p02
pa. part of the type A
pg, Partof the type B tpa Start of transfer of the part A t
in drilling machine OEB
Availability of system resources t s end of transfer and start of
P robot drilling
po drilling machine t pe end of drilling
pv milling machine t poastart of transfer of the product A
po measuring system on the ouput conveyer
Poa OUtput conveyer for product A tosa €nd Of transfer and moving by output conveyer
s Output conveyer for product B etc.
Operations
Poa transfer of the part A from input to drilling by robot
Poa drilling A

» Part A waiting in drilling machine
Poa transfer from drilling machine to output by robot
p,, transfer of the product A at output by conveyer
Ps transfer of the part B from input to milling by robot

pwve milling B
P, Measuring of the semiproduct B, etc., analogously as for A

Figure 12.11. Petri net model for FMS

12.2 Resolution of Conflicts

System conflicts reflected as Petri net conflicts are to be removed by practical
control solutions (Hraz et al. 1996; Hruz 1997). The following three figures show
the basic Petri net interpreted for control structures corresponding to three basic
conflict situations in which the resources can be involved.
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P te
S1:=1 H
to2

Figure 12.12. Resources and operations (a) without (b) with conflict

Figure 12.12(a) shows a typical conflict-free situation. Places pyi—pi Specify
the semi-products s;—sy needed for the job realization. If the places are occupied
with tokens, the required semi-products are available. Tokens in p,, pp, ..., and p,
indicate that the second kind of resources described in the preceding section like
processing machines, robots etc., are available for the job performance. The job or
operation itself is represented by p,. In this Petri net the command for the

operation start is S:=1. Place p, specifies a required transfer of semi-products to
the input of the processing machine (command I:=1), and p, (command O:=1) is

connected with the transfer out of the manufacturing cell. Various events, e.g.,
semi-product presence signals, start or end of the operations etc., can be associated
with the transitions. Output places p,;—p, indicate that the operation brings about
several different workpieces as the output. Let us follow a portion of the model
dynamics. After firing t, (if condl is met), a token goes to p, and the command
I:=1 is generated forcing the transfer of semi-products to the processing machine,
start of conveyors etc. When the process variable i gets the value 1, transition t,

fires and a token comes to p, and p,, respectively. The command S is set to one

which triggers the operation. Analogously, after the end of operation (process
variable e ==1), the semi-products obtained in the operation are transferred to the

output and the machine is free. The outgoing arcs from the transitions t,,t,,t,
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specify that, after the corresponding events, the resources are again available. The
Petri net in Figure 12.12a belongs to the Petri net class called marked graphs with
respect to the structure. There are no conflicts in the marked graphs.

The next typical situation in FMS is modeled by a Petri net interpreted for
control as depicted in Figure 12.12b. One resource, e.g., a robot (available if place
pr is occupied with a token) is used or shared by two operations, namely a

workpiece transfer to the first machine (place p,, control command T1:=1)
and a workpiece transfer to the second one ( ps, control command T2:=1). The

individual machine operations are initiated by means of commands S1 and S2.
There can be more shared resources. For brevity, the elementary structure in Figure
12.12b is limited to one shared resource only. Obviously, it is a parallel mutual
exclusion. Finally, Figure 12.13 shows a situation when a job decision or choice
occurs in the system. Then, p indicates the availability of a semi-product for the
next processing that can be performed either by operation O1 (place pp, ) or by O2

(place pep, ), etc., up to the operation Oj ( pep;). As is clear from Figure 12.13,

machine M1 is required for the operation O1, machine M2 for 02, etc.

The composition of the above described elementary building blocks (Figures
12.12 and 12.13) can generate aggregated and more complex Petri net structures
containing conflicts. Consider a Petri net interpreted for control (further denoted as
a PC) is built up of the elementary structures shown in Figures 12.12b and 12.13.
The conflicts which may occur in the PC are to be eliminated in order to achieve a
required deterministic behavior via control.

Assume that a reversible, bounded and live (on level L4) PC has been designed
using the methodology described in Section 12.1 and it specifies the desired
control. Conflicts due to the shared resources with or without operation choice can
be eliminated by means of inhibitors and incidentors. The elimination method
consists of the following steps.

Figure 12.13. Conflict situation due to operation choice
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Step 1
The given PC is inspected in order to find all places with two or more outgoing
arcs. Let the set of such places be denoted as P, . Then the set of places with more

than one incoming arcs is found and denoted P, . The two sets may not be
disjunctive (they can intersect), i.e., generally P, " P, # & . If the PC contains

operation choice, it is assumed that according to the elementary structure in Figure
12.13, the resources for the operations are represented by the corresponding places
in the net.

Step 2
For each place p, € P, the set of outgoing arcs is

Ac={(pi.t, ). (Pt ) (Pt )i (12.1)
where

(pity, ) Fopeoty, JeFuon (Pt Je F (12.2)
Step 3
For each place p,, P, asetof incoming arcs is

B, =1{(t;,, P (1, P ) (85, P )} (12.3)
where

(t,. P)eF(t;, Po)eF oty po)eF (12.4)
Step 4

Denote the elements of the sets A, and B, respectively as

A, ={ak1,ak2,...,akjk } and B, = {bml,bmz,...,bmjm} (12.5)

All combinations of two elements (arcs) from set A, are taken into account.
Consider one such combination, say {a,,a,}, where a, =(p,.t,),a, =(p,.t,).
The arcs a,, a, point to the transitions t,t,, respectively. Further, the pre-places
p, and p, of t, and t, other than p, are considered. An inhibitor going out of
p, is generated pointing to the post-transition of p,. Depending on the required

system behavior this can also be done inversely. If there are more pre-places, it is
sufficient to generate just one inhibitor for one combination of arcs.
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This step is repeated for all combinations of elements from set A, ; the
procedure is repeated for all sets A, , k = 1,2,...,. If necessary, it is also repeated
for sets B, , m=1,2,...... In case of shared resources it is sufficient to deal with sets

A, only.
The case when neither p, nor p, exists has to be specially treated. It should

be noted that a formal application of the described method can generate redundant
inhibitors because several inhibitors can eliminate the same conflict. After adding
inhibitors, reversibility, boundedness and liveness of the obtained Petri net has to
be analyzed.

Example 12.2. In this example a more complicated situation is shown using a
technology layout of Figure 12.9. For the system in Figure 12.9 Let us consider
two intermediate storages of parts and the following production task: one type of
product is to be produced by a freely ordered milling and drilling of a raw part
coming irregularly at the input. Input, output and storages are considered as
operations in a broader sense. Possible prescribed sequences of operations are:

1. Input 1. Input 1. Input 1. Input

2. Milling 2. Milling 2. Drilling 2. Drilling

3. Drilling 3. Storage no. 1 3. Milling 3. Storage no. 2
4. Outputno.1 4. Drilling 4. Outputno.2 4. Milling

5.Outputno.1 5. Output no. 2

An ordinary Petri net modeling the given system behavior is drawn in full line
in Figure 12.14. Places and transitions are similar to those in Figure 12.12. The
capacity of storages is 5, and the same are capacities of the corresponding places,
namely pq;, Pys:» @S Well as of places ps,, Pys, - AS in the previous case, sharing

of resources appears with places pg,p,, and p, . It brings about mutual
exclusions, treated in the previous section.

The arcs (p,,ty) and (p,.t,) represent a conflict situation, namely an
operation conflict. It occurs if the places p,, ps, Pu,Pp all contain a token.
Analogously an operation conflict can appear with place pyy, Of Pwp, - The
places associated with the operation conflict are crosshatched in Figure 12.14. This
type of conflicts is called a branching operation conflict. On the other hand, pgruso
and prpgy Dring about the so-called merging operation conflict.

For control design it is necessary to eliminate the indeterminacy produced by
any type of conflict. PC extends the modeling power of standard Petri nets,
involving a larger class of flexible manufacturing systems. Control needs to deal
with the conflicts of all three groups, i.e., 1) branching operation conflicts, 2)
merging operation conflicts, and 3) resource sharing conflicts that should be
identified and eliminated using PC.
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Figure 12.14. FMS Petri net model with conflicting operations

Let us consider the first group. In Figure 12.14 the involved places are
crosshatched. Take p, and extensions drawn in dashed lines. A token in p,, the
empty place p, and a token in all places p,, pgr,Pw.Pp represent a situation

when (under safe rules respecting capacities) an otherwise conflicting situation is
removed. Let M(p, r) denote the marking in p at the r-th time point.
A similar situation occurs if
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M(p,,r)=1M(p,,r)=0M(p,.,r)=1
M(pg.r)=LM(py.r)=LM(py.r)=0

The incidentor (p,, t,, ) eliminates the conflict for the marking

M(pa.r)=1M(p,,r)=0M(p,.,r)=0,
M(per):LM(pM ,r)=1,M(pD,r):1

whereby the control policy giving priority milling over drilling in a symmetric
situation has been used. The inhibitor (py,,.t,,) eliminates the conflict in case

when drilling both as the first operation as well as the second one is possible. The
branching operations conflicts associated with p,,, and p,y, are solved

similarly as with p, .

The merging operation conflict associated with pgyso 1S Solved by means of
the inhibitors (pyu..ts;) and (ps.ts ) giving priority to the firing of t,, . The latter
inhibitor “covers” the whole occupation of the drilling machine. Similarly it is with
place Pgpgy -

Each resource sharing conflict has to be solved by analyzing the situation in the
pre-places of the transitions involved in the conflict. The pre-places are hatched or

crosshatched. A resource sharing conflict can be solved by an appropriate use of
inhibitors, e.g., if for the markings at the r-th time point

'vl(pWSl'r)::L M(per):L M (s r)::L
M(Po, 1) =1 M(py, ) =0, M(po, ) =1,

then the conflict is eliminated by means of the inhibitor (py;,t,;) Whereby a
priority is given to the transfer to the drilling machine, according to the second
operation sequence introduced above. Some resource sharing conflicts can be
solved within the solution of operation conflicts. For example, a resource sharing
conflict with (pg.t,;) and (pg.t, ) is solved within the solution of the branching
operation conflict associated with p,. The same happens if both p; and pyu;
are occupied and a branching operation conflict for p,,, is solved.

Inhibitors and incidentors eliminate conflicts and generate the final PC-Petri
net with complete transition conditions and place control variables.

Example 12.3. A PC is to be generated (Figure 12.15) for the technological layout
in Figure 12.9 and the following production:

two products are to be produced, each from its own input raw part
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product X1: 1st operation—drilling
2nd operation—-milling
product X2: one operation—-milling

After drilling, semi-product X1 can be stored in the intermediate storage if the
milling machine is occupied; and product X2 can only go directly to the output.
Each product has its own output. Drilling X1 is preferred to milling X2. Milling X2
is preferred, if possible, to storing. Other relations are obtainable, at least the
authors hope, from the “talk” of the Petri net model.

11 9 Control actionfor [
t 4
' 12 ifw==0 RDMXL:=1,;
p i plo ifw==1 RSMXL:=1;
02
hm_ N '
MX2:=1
t pll t
13 1
enr=1

RMx2=1  fMc==1

Figure 12.15. FMS job with operation conflicts due to the use of storage
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Example 12.4. Figure 12.16 represents a robotic cell with one robot R, two
processing machines M1 and M2, input (C1) and output (C2) belt conveyors.
Workpieces gather at the stop S where a photo-sensor P1 detects a workpiece to be
prepared for the processing in the cell. The machines perform different jobs with
different operation times. A prepared workpiece is transferred to a free machine. If
both machines are free, M1 has priority.

After finishing the job, the robot transfers the processed workpiece on the
output conveyor C2 (assuming that there is free space for it). The robotic cell
coordination control is represented by a PC in Figure 12.17.

P2 C2
| H—
R o
M1 M2
C1 Plg
e
o

Figure 12.16. A robotic manufacturing cell

Figure 12.17. PC-Petri net for the control of robotic cell
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In this example, the robot is a typical shared resource. The corresponding place
in the PC in Figure 12.17 is pg . Place pgg if occupied with a token, specifies a

control situation when the command is generated to return the robot to the home
position. Places p,, and p,, stand for the availability of M1 and M2,

analogously place p,, for the conveyor C2. Condition f1==1(or shortly f1=1)

signals the presence of a workpiece at the input. The control commands are
associated with places, e.g., the command C1M1:=1 starts the transfer of the
workpiece from a fixed position at conveyor C1 into machine M1, and the
command C1M2 into M2.

12.3 Control Programs in DEDS

The framework for the DEDS control problems was treated in Chapter 4. After
control specification, the next step towards writing a control program is choice of a
suitable tool. Control programs belong to the reactive kind of programs. The
programming language for reactive programs can be procedural or graphical. In
both cases the control system reactivity can be achieved either by a cyclic sampling
of the system variables or by system interrupts (Z6bel 1987). The former case
means that the control program should repeat sufficiently rapidly the following
control scheme: evaluation of the actual system data and successive production of
the required actions. The latter requires a possibility to program responses to
system interrupts. Petri nets interpreted for control, Grafcet, and statecharts support
the creation of control reactive programs responding to external events.

The so-called real-time programming languages and instruction lists pertain to
the group of the procedural programming languages for reactive programs. On the
other hand popular ladder logic diagrams pertain to the group of the graphical
programming languages for the reactive programs. The borders between system
control specification tools and programming languages are fuzzy. In fact, the
control program written using a programming language is the final specification or
determination of the system control.

There are many real-time programming languages, e.g., PEARL, Occam, Forth,
and Ada. A possible real-time programming way is to use a standard programming
language co-operating with a real-time operating system that completes the real-
time and reactive control functions. There are many combinations of the control
specification tools and real-time programming languages. In this section, the
substance of the control synthesis methods using such combinations is illustrated
on a few chosen cases.

The real-time programming language PEARL (Werum and Windauer 1989;
Zobel 1987) will be treated as a representative of the procedural programming
languages for reactive programs. PEARL is a multitasking language with all the
real-time specific features:

e Modularity
e Language elements and constructs for real time
e Processing of external events
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Programming of input/output operations
Parallel processes

Process synchronization

Exceptions

A program module is delimited with instruction words MODULE <name>; and
MODEND;. Modules are compiled independently. A module consists of a system
division and/or problem division introduced by words SYSTEM; and PROBLEM,;
respectively. Data are allowed to be used only when defined. PEARL distinguishes
local (on the module level) and global (for all modules) data and variables. The
system division contains description of the system hardware components and their
mutual connections in the particular configuration. The description has to meet the
given syntax rules but its actual contents depends on the computer system used and
the language compiler for the system.

The problem division contains specification of the input and output data
stations and interrupt specification referring to the description in the system
division. Further it contains the declaration of all variables used in the program.
The specifications are introduced by the keyword SPECIFY or by short SPC. The
data submitted by a data station can be specified in details with keywords IN, OUT,
INOUT, ALPHIC, BASIC and others. The following statements provide data from
the data stations: READ with its counterpart WRITE (for data transfer without
transformation), GET — PUT (for data transfer with transformation from the
external alphabetic form into the computer internal binary form), and TAKE -
SEND (for transfering data with attribute BASIC without transformation). One can
declare (DECLARE or DCL) all usual types of variables and types necessary for
the reactive programs with the keywords FLOAT, FIXED, BIT, DURATION,
CLOCK, CHARACTER, SEMA, STRUCT, etc.

The subroutines and function are available through the keyword pair
PROCEDURE - RETURN. They are called using CALL <identifier>
[list_of actual parameters]. The brackets [ ] denote an option, i.e., a non-
compulsory fraction of the statement.

PEARL has rich expression facilities like IF — THEN — ELSE - FIN block,
CASE - ALT - OUT - FIN block, FOR - FROM - BY — TO — REPEAT - END
block, and many others. PEARL enables one to write highly structured programs
where transferring data via data stations and data manipulating in the statement
expressions are possible only if the conform variables are correspondingly
specified or declared. The reader can find a detailed description e.g., in Werum and
Windauer (1989), or in ReiRenweber (1988).

The possibility of dealing with interrupts is an important property of the
reactive programs. The following self-explanatory program example shows how it
is possible to deal with interrupts in PEARL (keywords are written bold).

MODULE MOD1,;
SYSTEM;
ALARM: INT*3; /*INT*3 is the name recognized by the compiler
in the actual computer systems*/
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PROBLEM;
SPECIFY ALARM INTERRUPT
START: TASK PRIORITY 10;
WHEN ALARM ACTIVATE EMERGI,
END;
MODEND;

The TASK definition is an important property for the program reactivity. Tasks
specified and started in PEARL represent autonomous processes competing
mutually for the computer processor. The following instructions are available to
define the time or event condition for activating a task, which after its activation
competes for getting the processor:

Task definition

<name>: TASK [PRIORITY <priority level>];
task statements
END;

Task activation or suspension

[<schedule>] ACTIVATE <name>;

SUSPEND  [<name>];
[<simple schedule>] CONTINUE [<name>];
<simple schedule> RESUME;

PREVENT  [<name>]; /*task schedule is suspended*/
TERMINATE [<name>]; /*task is terminated, schedule

remained*/
Task control
AT <time>
AFTER <duration>
WHEN <interrupt>
UNTIL <time>

DURING <duration>



DEDS Modeling, Control and Programming 237

The structure of the above-introduced options is graphically illustrated in
Figure 12.18.

Start by
interrupt

WHEN
<name>

Start delayed?

Start by
statement

ACTIVATE

<name>

Start delayed?
no

yes

AT AFTER
<time> <time>

Alternative continuation: \I/J%/

Merging point: o

Periodic start?

ALL
<duration>

no

ACTIVATE

<name>

Figurel2.18. Activation condition for a task
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Figure 12.19. A Petri net transition activation paradigm

Consider a Petri net belonging to a class of the Petri nets interpreted for control.
A method of transforming PEARL program consists in writing an individual task
for each transition. A general one-transition structure is shown in Figure 12.19.

The pre-places of transition t are p;;,..., p;, , its post-places are p,..., Py, ; L iS
a set of logical conditions for firing t; w,,,...,w,,, and w,,,...,w,, are pre-place and
post-place arc weights, respectively; w,,w,,...,w, are vector control variables
having a level character. For example, in Figure 12.19, the control variables are set
to v,,V,,..., v, whenever the associated place with an assigned variable changes

marking state from non-marked to marked. The structure around t is transformed
into the PEARL program part in the following way.

PROBLEM;

T: TASK PRIO 16;
IF MPI1>=WI1 AND MPI2>=WI2 AND... AND MPIA>=WIA
AND X1==U1 AND X2==U2 AND... AND XC==UC

THEN

MPI1:=MPI1-WI1; MPI2:=MPI2-WI12;
MPIA:=MPIA-WIA,;
MPO1:=MO1+WO1; MPO2:=MPO2+WO2;...,
MPOB:=MPOB+WOB;
W1:=V1;, W2:=V2; ... WB:=VB;
PREVENT;
ACT_T:=0;
IFACT _TA==0
THEN ALL DA SEC ACTIVATE TA;
ACT_T:=0; ACT_TA:=1,;
FIN;
IF ACT_TB==0
THEN ALL DB SEC ACTIVATE TB;
ACT_T:=0; ACT_TB:=1;
FIN;
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IF ACT_TZ==
THEN ALL DZ SEC ACTIVATE TZ; ACT T:=0;
ACT _TZ:=1;
FIN;
END;

Note that the notation of variables complies with the PEARL requirements, and
therefore, they are written in capitals. Value 1 of the variable ACT_T means that
the task T corresponding to transition t is active; analogously for transitions
t,.t,,...t, . These variables help to protect an active transition from being

activated again. Some PEARL versions do not support this. A task T is deactivated
by instruction PREVENT <name>. If name is not specified, the instruction refers
to the task where it is located; otherwise it is applied to the task name. A task T
ends with END;. Note that it finishes immediately with TERMINATE;, if this
instruction is used, all its scheduling is cancelled so that it can no longer start. The
structure of activation of the next transitions can be modified according to the
possibilities described above. Time intervals DA, DB, ..., and DZ can be equal,
which is a simpler case. Their values must correspond to the dynamics of the
system variables. The above program part can be further improved following the
introduced programming paradigm.We will show the use of the PEARL language
program based on the Petri net in Example 12.5.

Example 12.5. The technological layout is given in Figure 12.20. The workpieces
arrive separately and irregularly into the manufacturing line. A row of workpieces
stops at the gate Gt being down. The gate is operated down and up by a pneumatic
cylinder ClI2. A workpiece is pressed down by cylinder CI1 located on the plate
between belt conveyors B1 and B2 when there is a sufficient stock of parts at the
input. The stock of parts is considered sufficient if all four photo-sensors P1
through P4 are signaling simultaneously a workpiece presence. Thus, the minimum
number of parts is four. The variables associated with the photo-sensors P1 through
P4 are denoted as F1 through F4, respectively. In case of a sufficient stock, the gate
Gt driven by the cylinder CI2 lifts up and the pair of workpieces moves on
conveyor B2. When it reaches the inductive sensor IS, a manipulator Sb shifts the
pair aside onto conveyor B3, which starts moving. When the pair is passing photo-
sensor P5, Gt goes down and the pairing cycle can start again. A collision can
occur if the manipulator is not in the basic position back when a pair is at sensor P5.
In such a case motor M2 stops and the pair has to wait until the manipulator comes
back. Then B2 is started again. The paired workpieces move to the working space
of the 3-axial Cartesian robot, which picks it up and puts into one of the two
processing machines or into the buffer to wait.

Now the system variable table to be put together (Table 12.1) and a Petri net
interpreted for the control (Figure 12.21) specify the control of the manufacturing
line. In the Petri net it is strictly assumed that just one transition fires at a time
point. The meaning of the places and transitions of the Petri net is given in Table
12.2. It is a binary Petri net model.
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3-axial robotic system
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Figure 12.20. Manufacturing line for handling workpieces

Table 12.1. Meaning of the input and output variables for the control unit

Input variables
(to the process computer)

START=1
STOP=1
Fi=1 (0)

ISP=1 (0)
PF=1 (0)
PB=1(0)

Output variables
(commands from the control
computer)

MD1=1 (0)
MD2=1 (0)
MD3=1 (0)
V1=1 and V2=0 and V3=0

V1=0 and V2=1
V1=0and V3=1
MF=1 (0)
MB=1 (0)

Meaning

Start given by an operating personnel
Stop the input and empty the line

A workpiece is (is not) at sensor Pi,
i=1,2,...,6

A workpiece is (is not) at ind. sens. IS
Manipulator Sh is (is not) shifted out
Manipulator Sb is (is not) in the basic
position

Meaning

The belt conveyor B1 on (off)

The belt conveyor B2 on (off)

The belt conveyor B3 on (off)
Cylinder CI1 pushes the break up and
the gate Gt down

Cylinder CI1 down

Gate Gt up

Manipulator Sb moves forward
Manipulator Sb moves back
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Figure 12.21. Petri net for the manufacturing line
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Table 12.2. Definition of Petri net places and transitions

Place Meaning

P1 Initial state before the operation starts

P2 Waiting for the input (workpieces)

P3 Command state: break down, gate up

P4 Wait for sufficient workpiece stock or STOP

P5 Open the break and close the gate

P6 Interstate after a pair is at sensor P5

P7 Manipulator was free and a pair moves toward sensor IS

P8 Command for the manipulator forward

P9 Manipulator backward

P10 Start of conveyor B3

P11 Conveyor B3 free

P12 Manipulator free

P13 Stop conveyor B3 because the manipulator is busy

P14 Start B3 again

P15 After STOP signal time delay during which no new
workpieces are paired and the line is emptied

P16 All drives off

Transition Meaning

T1 Transition from the initial state when it was waiting for the
START signal to the state in which the needed drives are
set on

T2 If there is a sufficient stock of workpieces and P2 is active
(marked) passage to the state in which the break is pressed
down and the gate opens

etc. The meaning of the other transitions is evident from the
place definitions and Figure 12.21.

A partial control action is associated with the particular place, which is active if
the place is marked. Some of the transitions introduce additional logical variables
or functions, which should be true in order to enable the transition firing. It is
denoted as, e.g., START instead of the full condition START==1 or
F1A F2 A F3 A F4 instead of the expression

(FL==1) AND (F2==1) AND (F3==1) AND (F4 ==1).

An inhibitor coming from place P12 to T11 removes the conflict between T6
and T11 if P6 is marked. If P12 is marked, T11 is inhibited and only T6 can fire.
This corresponds to the situation when manipulator Sb is in its basic position. On
the contrary, if P12 is not marked, T6 cannot fire (token flow rule) but T11 is not
inhibited and can fire. Then B2 stops because new pair is at F5 but Sb is not back.
A subtle problem is solved by inhibitor (P6,T3). If there is a gap between
workpieces of a pair and P3 is marked (indicating that a new pair is on the way) the
gap produces a false firing of T3 and the control collapses. A time delay introduced
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in the place P15 provides time for waiting until the manufacturing line is empty
and all drives are switched off (place P16).

A part of the control program written in PEARL illustrates the method
described in this section.

MODULE (MAIN);
SYSTEM;
TERM: CON;
DIG_IN_0: DIGE(0)*1*0,15;
DIG_OUT _0: DIGA(1)*1*0,15;
PROBLEM;
SPC DIG_IN_0 DATION IN BASIC;
SPC DIG_OUT_0 DATION OUT BASIC;
SPC DID_IO_INIT ENTRY GLOBAL;
DCL SCREEN DATION INOUT ALPHIC DIM(2,24,80)
DIRECT GLOBAL CREATED (TERM);
DCL VARINP BIT(16) INIT (“0000’B4);
DCL (PERL, PER2) DUR INIT (0,0);
DCL (START, STOP) FIXED INIT (0, 0);
DCL (F1, F2, F3, F4, F5, F6) FIXED INIT (0, 0, 0, 0, 0, 0);
DCL (ISP, PF, PB) FIXED INIT (0, 0, 0);
DCL (MD1, MD2, MD3) FIXED INIT (0, 0, 0);
DCL (V1, V2, V3) FIXED INIT (0, 0, 0);
DCL (MF, MB) FIXED INIT (0,0);
DCL (P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14,
P15, P16)
FIXED INIT (1,0,0,0,0,0,0,0,0,0,1,1,0,0,0, 1);
DCL (ACT_T1, ACT_T2, ACT_T3, ACT T4, ACT_T5, ACT_TS6,
ACT_T7, ACT_T8, ACT_T9, ACT_T10, ACT_T11, ACT_T12,
ACT _T13, ACT _T14, ACT_T15)
FIXED INIT(0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0);
DIN: PROC RETURNS (BIT(16));
DCL WD BIT(16);
TAKE WD FROM DIG_IN_0;
RETURN (WD);
END;
DOUT:PROC (B FIXED, H FIXED); /*INDEX OF THE BIT IN
THE OUTPUT WORD FOR MD11S 1,
MD2:2,MD3:3,V1:4,V/2:5,
V3:6,MF:7,MB:8*/
IF H==
THEN SEND 0 TO DIG_OUT_0 BY CONTROL((B-1),
(0));
ELSE SEND 1 TO DIG_OUT BY CONTROL((B-1),(0));
FIN;
END;
DINALL:  TASK PRIO 6;
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STRT:

END;

END;

VARINP:=DIN;
F1:=VARINP.BIT(16);
F2:=VARINP.BIT(15);
F3:=VARINP.BIT(14);
F4:=VARINP.BIT(13);
F5:=VARINP.BIT(12);
F6:=VARINP.BIT(L1);
START:=VARINP.BIT(10);
STOP:= VARINP.BIT(9);
ISP:= VARINP.BIT(8);
PF:= VARINP.BIT(7);
PB:= VARINP.BIT(6);

TASK PRIO 8;

CALL DID_IO_INIT;
ACTIVATE STARTTASK;

STARTTASK: TASK PRIO 8;

END;

OPEN SCREEN;

PUT *‘START WITH START-PUSH-
BUTTON’ TO SCREEN BY
POS(1,2,2), A;

ALL PER1 ACTIVATE DINALL;

ALL PER2 ACTIVATE T1;

TASK PRIO 7;

IF P1==1 AND P16==1 AND START==1

THEN CLOSE SCREEN,;
P1:=0; P16:=0; P2:=1;
DOUT (4,1); DOUT (5,0); DOUT (6,0);

DOUT (1,1); DOUT (2,1); DOUT (3,0); DOUT (7,0); DOUT (8,1);

PREVENT;
ACT_T1:=0;

IF ACT_T2==0

END;

THEN ALL PER2 ACTIVATE T2,
FIN;
FIN;

TASK PRIO 7;

IF P2==1 AND F1==1 AND F2==1 AND F3==1 AND F4==1

THEN

P2:=0; P1:=1; P3:=1;
DOUT(4,0),
DOUT(5,1);
DOUT(6,1);
PREVENT;
ACT_T2:=0;

IF ACT_T3==0
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THEN ACT_T3:=1; ALL PER2 ACTIVATE T3;

FIN;
IF ACT_T1==0
THEN ACT_T1:=1; ALL PER2 ACTIVATE T1;
FIN;
FIN;
END;

T3: TASK PRIO 7;
IF P3==1 AND P6==0 AND F5==1
THEN P3:=0; P4:=1; P6:=1;
PREVENT;
ACT _T3:=0;
IF ACT _T6==
THEN ACT_T6:=1; ALL PER2 ACTIVATE
T6;
FIN;
IF ACT_T11==0
THEN ACT_T11:=1;
ALL PER2 ACTIVATE T11;
FIN;
IF ACT _T14==0
THEN ACT_T14:=1;
ALL PER2 ACTIVATE T14;

FIN;
IF ACT T4==
THEN ACT_T4:=1;
ALL PER2 ACTIVATE T4;
FIN;
FIN;
END;
MODEND:

Let us make a few remarks about the program. The keywords and syntax signs
are written in bold and the variables not in bold in order to make the program more
transparent. DID_IO_INIT is an external procedure containing the driver of the
input and output modules and their initialization. The task with the label STRT in
the module MAIN is automatically activated after the program is loaded by the
system. Other tasks should be activated internally in the program. Instruction
w.BIT(K) picks out the k-th bit from the bit string word w.

There are many programming languages that enable to set programs similarly
as shown above. The instruction lists can be more or less comprehensive but they
have to enable to interpret the basic real-time or reactive features of a control
system.
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2.4 Ladder Logic Diagrams

The popular programming technique is based on the so-called ladder diagrams.
Ladder diagrams are a graphical tool for presenting the instruction set. The
reactivity of the control program is provided by cyclically repeating the ladder
rungs from the beginning of the program to its end. Each rung is subordinated to
the scheme

CONDITIONS = ACTIONS

ap a ax by by o Y1

HE——AHHE——
Hb A G-

Zr

U

-

Figure 12.22. One rung of a ladder diagram

The conditions are given by states and actual events in the controlled system. A
state is a consequence of its preceding events. The actions are programmed
interventions of the control system to the controlled one. Figure 12.22 shows a
generalized rung of a ladder diagram. The conditions are expressed using the
Boolean logic. a,,a,,..,a,, b;,b,,...b, C,Cpreees Cpys d,,d,,...d,,
Y1, Yo Yoo 21y 25, 2, @re Boolean variables. The sense of the logical condition

at the left-hand part of the rung in Figure 12.22 expressed in the logic form is

C :(al ANdy A AR /\b_l/\g/\.../\a)v(cl ACy A AC /\I/\a/\.../\a)v...
(12.6)

where the inversion of b, is denoted as b, , etc. A serial arrangement of the
conditions expresses the logical conjunction of the Boolean variables, the parallel
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arrangement the logical disjunction. Obviously, the diagram in Figure 12.22 is
based on the properties of the contact relay networks. If condition C or Equation
(12.6) is true, then the values “logical true” are assigned to all variables
Y1, Y20 ¥, and the values “logical false” to all variables z;,z,,...,z, . In this way

an IF ....THEN.....ELSE is incorporated in the ladder diagram. Letter L means
that if the whole condition is true the rung circuit is latched, i.e., the associated
action or control variable is set. Letter U stands for unlatched.

The ladder logic diagram consists of rungs that are translated into the machine
instructions of a particular PLC and executed (Hruz et al. 2000; Mudron¢ik and
Zolotova 2000). The possibilities and the form of the ladder diagrams depend on
the properties of the used PLC and its programming facilities, e.g., an action may
set some variables and start the counters as well. The condition part of the rungs
can contain the counter states, which can influence the generation of other actions.

The ladder diagrams have several drawbacks from the software engineering
point of view. They are less transparent. Their readability is comparatively difficult
by other programmers than by the program authors. This is very bulging when such
a program is put into operation and debugged. Any change or adaptation of the
ladder diagram program to other control computers is usually difficult. An inter-
stage specification link like Petri nets is therefore useful. In what follows we will
show the transformation of the Petri nets into the ladder diagrams.

Consider a binary and safe elementary Petri net given in Figure 12.23. L is the
set of Boolean conditional expressions for firing transition t; y;,y,,..., ¥, are
control variables representing the control actions.

The ladder diagram presentation of the required control function ensuring the
partial dynamic behavior related to t’s firing is in Figure 12.24. In Figure 12.24 the
block L is broken down by the corresponding serial and/or parallel structure of the
contacts in a manner treated earlier. The Petri net marking is represented using the

variables Vi VposeVpr Vo) Vo) 1+ Vpgras) in the ladder diagram.

Y

Figure 12.23. An elementary Petri net structure for transformation into a ladder program
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Vp1 Vp2 Vpr

Va(r+1)

HHF———H v )

Vp(r+2)

Figure 12.24. Ladder diagram for the Petri net of Figure 12.23

Another possible basic Petri net structure is shown in Figure 12.25. As before a
binary and safe Petri net interpreted for control is assumed. The partial logical
conditions L,, L,,...,L, are such that only one of them is true. Then the diagram in

Figure 12.26 corresponds to the Petri net in Figure 12.25. The reader can imagine
how different Petri net structures can be transformed into ladder diagrams. An
inverse situation to that of Figures 12.25 and 12.26 is depicted in Figures 12.27
and 12.28. For each transition of the Petri net being transformed into the ladder
diagram, a rung is constructed under the assumption that in the Petri net there are
no conflicts, and it is safe and only one transition can fire at a discrete time point.
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Figure 12.25. A Petri net elementary structure

Veo L Vi
l
_| [ [LJ
Vipi Voo
|1 [
11 W J
Vpo L2 Vo2
| l 1
_||_|| [LJ
Vop2 Voo
|1 7
11 W J
Voo L« Vopk
| | 1
||_|| [LJ
Vopk Vopo
. | M, ]
—|| W J

Figure 12.26. A ladder diagram for the Petri net of Figure 12.25

Figure 12.27. A Petri net elementary structure
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Vo1 L Voo
| | (]
Vpo L Vopi
N B (v]

Vip2 L Voo

| (-]

Voo L Vo2

Nl (v]

Vpk Lk Voo
i (]

Vipo Vopk
— I—I (v]

Figure 12.28. A ladder diagram for the Petri net of Figure 12.27

A non-binary Petri net can also support the ladder diagram programming. In
such a case an instruction set of the used PLC has to be available. An elementary
net in Figure 12.29 illustrates the case. The control variables are omitted in the
example. The corresponding ladder diagram is in Figure 12.30.

Figure 12.29. An elementary non-binary Petri net structure

The elementary structures and their transformation into ladder diagrams
depicted in Figures 12.22-12.30 serve as paradigms for the transformation
procedure. They can be used and extended to build up complex ladder diagram
programs based on the Petri nets specifying DEDS control.

Example 12.6. Figure 12.31 shows an electro-pneumatic motion drive. It consists
of three pneumatic pistons, A, B and C, operated by electro-pneumatic two-way
solenoid valves. The basic position of the pistons is the terminal position on the left.
Pressure air is fed to the left-hand part of each piston after the activation of the
valve. The activation signal for A is a"=1, while a™=0, etc., for others. On a"=1, a~
=0 piston A moves to the right. If a"=0 and a =1 piston A moves back to the basic
position on the left. The inductive sensors indicate terminal positions of the
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X1
—1 C, 22 [L]
X2
— C, 23 [L]

Lo —c.o-

C,=C,-2)
C,=C,-3

Figure 12.30. Ladder diagram for the Petri net of Figure 12.29

.
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—— 4 A
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= D
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Figure 12.31. Three-piston electro-pneumatic motion system
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P1

’
EE L

P = P
,

pb3::

delay _expired=

Figure 12.32. Petri net for the piston motion system
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Figure 12.33. Ladder diagram program for the piston system: segments A and B
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Figure 12.33. (continued): segments C and D
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pistons. Consider the pistons having to accomplish a sequence of motions defined
by the following expression:

[A+, B+, (C+, A-), 5 sec, (B—, C-)] (12.7)

where A+ means the motion of the piston A to the right, A— to the left; analogously
it is for other pistons. Motions in the square brackets are to be executed
sequentially while those in the round brackets simultaneously or in parallel. The
value 5 s in Equation (12.7) means that the motion will continue after the
expiration of a 5-s time delay. ao, aj, by, etc., are variables representing the piston
positions, a’, a*, b~ etc., are valve control variables. The sequence is initiated by
operation of push-button PB1. A regular stop is given by PB2. After pushing PB2
the actually running cycle is completed and then the pistons stop in their basic
positions. A new start is initiated again by PB1. The push-button PB3 causes the
emergency stop; the piston motions are interrupted and the pistons return to their
basic position on the left. Petri net for the system is shown in Figure 12.32 and its
ladder transformation in Figure 12.33.

Concurrent processes can be graphically specified by reactive flow diagrams
(Chapter 6). To know their relation to Petri nets may be useful. The relation will be
demonstrated on an example of the Petri net in Figure 12.34, which is a typical
structure reflecting concurrent processes.

The Petri net in Figure 12.34 is interpreted for control; y,,y,... are control
variables. Their values are set by token arrival. Ly, L,, ... are logic expressions
extending the fireability conditions. Figure 12.35 is a reactive flow diagram
corresponding to the described Petri net. ki, k,, ... are auxiliary internal variables
determining the system states in the diagram, At is a time interval for a periodic
execution of individual flow diagram blocks.

t pZ tz p4 t4
P1
y2:d2 I—2 y4:d4

p t3
L, ya=d; L ys=ds L4

3

Figure 12.34. A Petri net with concurrent events

12.5 Problems and Exercises

12.1. Exercise 6.2 deals with a manufacturing cell using two robots. Derive a Petri
net interpreted for control specifying the required function of the system. On the
basis of the Petri net model, write a program in the form of the ladder logic
diagram for the system control. For the comparison of the programming technique,
write a part of the program in a real-time programming language, e.g., in the
language PEARL or in some other language you know.
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k1:=1, ko:=0, ka:=0, k4:=0, ks:=0,
y1:=0;

Figure 12.35. Reactive flow diagram corresponding to the Petri net in Figure 12.34

12.2. Consider a four-piston electro-pneumatic move system. Complete necessary
sensors for the system control purpose. Let the pistons perform repeatedly the
following cycle of movements:

[A+, B+, (C+, D+, A-), 5 sec. interval, (B-, C-, D-)]
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Consider one push button for the start of the move execution and another for the
emergency stop of the execution. For the control specification, use Grafcet. With
the help of Grafcet, write the ladder logic diagram realizing the move control.

12.3. A robotic cell for the PCB assembly is depicted in Figure 11.8. Write the
control program in the form of a ladder logic diagram.

12.4. Workpieces are fed by conveyors C1 and C2 in a sorter as shown in Figure
12.36. Each workpiece is stopped at photosensor P1 and inspected by the vision
system VS, which determines which box the workpiece is to be thrown out by a
manipulator.

a. Construct a Petri net describing the required function of the sorter.
Hint: use a shift register for storing the box number where the
inspected workpiece should be placed. The number is shifted in the
register or deleted on signals from photocells. Analyze the time
relations, for instance, C1 is started again only after signal from P1
etc., is received.
Construct a Petri net interpreted for control of the sorter.
Create a Grafcet specifying the sorter control.
Write the control program in the form of the ladder logic diagram.
Write the control program using a real-time programming language.

® o0 o

B2 B3 B4

B1
VS

 m—
 m—

 —

_m

c1 D, C2 .
— —i|| [ I

- TPz TP3 ] P4

Figure 12.36. Workpiece sorter with four manipulators

12.5. A train loaded with containers is to be unloaded as shown in Figure 12.37. Its
containers are to be moved on to the second empty train. The trains are under two
automatic portal cranes operating on the same rails. The transferring scheme is
given from the coordination control level.
a. Express the collision-free movements of the cranes by means of a
Petri net. Hint: create for each crane a partial Petri net where the
marking of one place represents the number of free crane positions to
the left of the crane and the marking of another place serves similarly
for the free positions to the right of the crane. For positions between
the cranes the two places merge in one place. For readers interested
in more details of this exercise we recommend the book of Abel
(1990) and references for Chapters 7-9.
b. Outline how you could utilize the created Petri net for the control of
the crane operation.
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c. Analyze the properties of the Petri net. How can the number of the
crane movements for a given reloading scheme be optimized? Note
that it is possible to consider genetic algorithms for that optimization

CRANE 1 CRANE 2

TRAIN 1

purpose

Figure 12.37. Train reloading station
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Supervisory Control

13.1 Basic Notion

The basic notion of discrete event dynamic systems (DEDS) was introduced in
Chapter 1. Finite automata and Petri nets have been studied as powerful models of
DEDS for their behavior modeling and control. It has been shown that the states
and transitions are key features of both models.

Consider an event-driven system being in its initial state. The complete
behavior of the system is given by all possible event strings beginning in the initial
state. The event strings are formally described by Equations (1.11) and (1.12).
Such a system description is the core of a DEDS model proposed by Wonham and
Ramadge (1987) and Ramadge and Wonham (1989) in the form

s=(z2" LK) (13.1)

where X is a finite non-empty set of events, X" is the set of all sequences (strings)
that can be generated from the elements of £ and the empty sequence &, Lc X"
is a formal language comprising all event sequences realizable in the underlying
real system, and K c L is a sub-language of L, where K specifies the required
behavior of the system.

The assumption for the model at Equation (13.1) has been adopted that only
one event can occur at a discrete time point. The model at Equation (13.1)
describes the behavior of a system in terms of the event strings; but considers no
system states. It represents a different approach as usually the state machine
models do.

In DEDS two types of the control can be distinguished, namely process control
and supervisory control. The considerations developed in Chapters 1 and 4 will be
used to characterize these two types. Equation (4.10) determines a control action,
which is a function of states and the states depend on the event string starting in a

system state and developing from the first event up to the (v—l)-st event at the
(v—1)-st discrete time point. At the time point 7,,, the system reaches the state
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when function f in Equation (4.10) determines the value of the control
variable W(TaH +Az'). In the overall system SYST in Figure 4.1, setting W is

considered as a new state. In system S (considering refined structure
decompoasition), W(ra + Ar) represents an input activity effecting the behavior of

system S. We can see that it is a system point of view.
In the case when for each k=1,2,...,v-2,

S(Tak-l): pcontr(w(rak +Az, », 7, tAr, <7, (13.2)

where pcontr is a vector function, we speak about the process control. In the case
when W(rak +Az’ak) only delimits possible states and the particular next state

depends on the next event in S, we speak about the supervisory control. The range
of the possibilities is a matter of system autonomy. The function of the supervisory
control is to keep the system within some subsets of the state set Q. It means that

{set of admissible statesinz, }z supvis(w(rak +Ar7, »

From the point of view of the model at Equation (13.1), S is to be ruled so that
only strings of sub-language K occur in it.

There are two kinds of requirements to be laid on an event-driven system. The
first is characterized by defining prohibited states. The second is characterized by
requirements to preserve some event strings without violating the state prohibition.

A required system behavior cannot be achieved if a controllable agent does not
exist in the system. A subset £, c £ of controllable events serves for that. A

controllable event can be allowed or prohibited by a control system. This is not
possible with the uncontrollable events of set X, — X . Together we have

=X, uX,, 2, NX, =0 (13.3)

C u

The supervisory control keeps the system within limits, enabling only event
strings of language K to occur. It means that the range of the system autonomy or
freedom is adjusted by the supervisory control via the controllable events. When
X, =, the interventions into the controlled system have to anticipate possible
occurrence of uncontrollable events that could violate the behavior limits given by
the sub-language K.

13.2 System Controllability

Assume the system to be specified by Equations (13.1) and (13.3) and the required
behavior by language K < L. Another possible way, in this context, to express the
restriction on the event strings is the prohibition of certain states and preservation
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of certain event strings as always possible. This will be explained by using
examples.

The behavior restriction determined by states and event strings may not always
be easy to transform into language K or vice versa. An important question
concerning K is whether the language can be secured by the supervisory control. It
is known as the question of the DEDS controllability.

A common feature of real systems is the existence of an initial state. Any
activity of a real system starts in this state. Suppose that an event string
c=¢e e ... e has been realized starting from the initial state. Obviously, all

partial event strings are also realized in the system, namely

0,=€,,0,=€ €, 0;=€ € €, ...,0,=€ & .6 (13.4)

Tl

Such strings are related to the prefix languages. A string U is a prefix of a
string Ve X if V=UW and We X . It follows that W can be the empty string

denoted & , i.e., W=g ; thus aword V is a prefix to itself. If V is an event string
in a real system, then all its prefixes have to occur in the system.

The prefix language L of language Le X" is

L:{G|GWEL,W62*} (13.5)
From Equation (13.5) we have

LclL (13.6)

i.e., all strings of L pass over in language L because W can be .
If language L describes a real system, then L should contain all its prefixes, i.e.,

LcL (13.7)

From Equations (13.6) and (13.7), a language L describing the real system must
meet the condition

L=L (13.8)
A language with the property at Equation (13.8) is called a prefix closed language.

Example 13.1. Consider a language L over the event set ¥ = {a,ﬂ} containing the
empty string & and strings beginning with & or B whereby in each string «
and S alternate. The language has the following strings:
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L={¢,a, B, ap, pa, apa, fap, ...}
Obviously, the prefix language L of L is the same as L:

L={¢,a, B, ap, Ba, afa, ap, ...}
such that

L=L
The conclusion is that L is a prefix closed language.
Example 13.2. Let a language L describe the events of a palette buffer with a
capacity equal to three palettes. The empty buffer represents the initial state. The
event set is X ={w,y |, where @ means one palette insertion and  one palette

pick-up from the buffer. The events occur irregularly and asynchronously. The
number of insertions |ins| has to be always greater or at least equal to the number

of the pick-ups |pck|
lins| > | pck|
The set of strings of L is
L= {E,a), 00, OOG, OY, DAY , DOWYY , OOYE, OYO, DODY }
Thus it is a prefix closed language.

Properties of prefix formal languages can be used to check the supervisory
controllability of systems. A language K is said to be controllable with respect to a
language L iff

K3, nLcK , by assumption 3, # & (13.9)

where RZU is the set of all strings VW given by the concatenation of all strings

V e K and all strings consisting of one uncontrollable event, i.e., We X, .

The controllability property at Equation (13.9) is induced by the fact that for an
eventstring o, =e; e, ...e; starting in the initial state, the system goes through all

prefixes of &, . Formally stated it means that in the system the following event
strings have been realized:

01=6,6 .6 , 0,=6¢6..6 , .. 0,=¢¢, o=¢ (13.10)
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First, Equation (13.9) means that the considered strings are limited to be from
the realizable language L and therefore there is the set intersection operation mL
in Equation (13.9). Second, the strings realizable in a system S and belonging to
language K as well as all prefixes of these strings (which altogether are strings of

language K ) with a supplemented uncontrollable event should still be the strings of

K . The reason for that is that no control can prevent an uncontrollable event to
occur. Note that there is nothing said about the closure property of K. Generally

speaking, K can be controllable with respect to L without property K = K. In other

words, there can be strings of K not belonging to K (it is not the case in languages
based on real systems). For those strings the condition at Equation 13.9 has to hold,
too. Such considerations are rather theoretical and we concentrate in Section 13.3
later on the case of the prefix-closed languages K.

For controllability by definition the following proposition holds: K is

controllable if and only if K is controllable. It is understandable because K =K .
Controllable events are used to keep the system within K. However,
uncontrollable events represent a frequent and serious problem in supervisory
control.
A natural question is how to resolve the situation when K is not controllable.

First consider a more general case without condition K = K. In such a situation
we seek a language closest to K, which is controllable and prefix closed just
following the property of DEDS. Such a language is called the supremal
controllable sublanguage to K and is defined as

supC(K)=u{J :J c K and J is controllable with respect to L}~ (13.11)

Here the symbol “ ™ denotes the set union of all controllable languages J or more
strictly the set union of all their strings. Then obviously J satisfies

Js,NnLcd (13.12)

The fixpoint characterization of sup C(K) underlies the theoretical reasoning

that makes for the supervisory control resolution. We explain it below.
Let A be the set of all languages over the event set X=X, U, and let QO be

an operator
Q: A>A (13.13)
such that for some given languages, M, Le A and K c L

Q(M)szsupremum{r:T gZ*,TzT_,TZUngM} (13.14)

Over the event set X, operator (M ) transforms a language M to another one with
respect to the given languages L and K. The obtained language is derived from the
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supremum of the languages (in the sense of the number of strings of languages T)
that are prefix-closed and all its strings (including prefixes of T delimited by K )
with a supplemented event of X, are realizable (the strings are included in L) and

contained in M , as well as in K.
Wonham and Ramadge proved (1987) the following proposition.

Proposition 13.1. Given languages L, K and operator Q(M) over the event set
¥ =3, UZ, by Equation (13.14). Denote S =supC(K ). Then

S=0Q(s) (13.15)
and for every M such that M =Q(M ):

McS (13.16)

Obviously, the operator Q is purposely chosen. It includes an important
property for the controllability, namely, T=T . In looking for a supremal
controllable language for a given language K with respect to L , it considers just
prefix-closed languages.

According to Proposition 13.1 sup C(K) is the fixpoint of operator Q and any
fixpoint of Q, i.e., M =Q(M) is a sublanguage of S from Equation (13.16). V
(13.16) valid for M =Q(M ) supports the idea of using a limit process to find
sup C(K). The authors of the above-mentioned paper have proved that an iteration
process as follows:

M, =K (13.17)
M, =Q(M,) (13.18)
M, = (Ml) (13.19)
M= Q(M 1) (13.20)

converges to S in the sense that

limM, =M, (13.21)

jA)oo
exists and
ScM 13.22
LIM

If languages L and K in Equation (13.14) are regular then, in addition,
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SoM,y =S=M_, (13.23)

In what follows we confine ourselves to the regular languages and their
controllability as an important case with respect to the real systems encountered in
practice.

A task of the following example is used to elucidate the above mentioned
concepts.

Example 13.3. A production layout is depicted in Figure 13.1. It consists of the
cells Al and A2 located on the plant’s first floor, the connecting area A3, and the
cells BO up to B4 on the second floor. Two mobile robots are moving in the layout
performing various transport and production tasks. We are going to study the
behavior of the robots in the described production system using a formal language
approach. Our considerations are restricted on robot R1. The case for R2 is similar.
We need to define the event set: it is the set of controllable and uncontrollable
transfers between cells including transfers between cells and the platform A3, as
well. They are listed in Table 13.1 where, for example, ALA3; means a
controllable event that a robot at room Al enters A3; and A1A2, means an
uncontrollable event that a robot at room Al enters A2.

e
7
4

-

\

S—a

Uncontrollable events

Figure 13.1. lllustration of the relation between languages L, K, and M
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Table 13.1. Controllable and uncontrollable events for the layout in Figure 13.1

Controllable events

A1A3,, A3AL, B1B3,, B3B1,, B1BO0,, BOB1,, B3B4,, B4B3, BOB2,, B2B0,, BOB4;,
B4BO,

Uncontrollable events
AlA2,, A2AL,, A2A3,, A3A2,, A3B1,, B1A3, A3B2,, B2A3,, A1B3, B3Al,

All formal languages considered in this example for the system description are
given by the strings generated from the position of robot R1 in cell BO. If the robot
returns to BO, the string is assumed to be finished. The next movements represent
new strings. Clearly, all considered languages are prefix closed ones.

The set A of languages over the event set > =% U X, specified in Table 13.1

is defined according to Equation (13.14). Let language L correspond to all possible
movements of robot R1 in the layout of Figure 13.1 from the initial position as
stated before. The movements and transfer strings occur within the dashed line area
in Figure 13.1. Let a language K < L be given corresponding to the solid line area
encompassing the movements of this language and a language M corresponding to
the dashed and dotted line area. One can see that language K is not controllable
because an uncontrollable event cannot be prevented for example after the string
BOB1,, B1B3,, B3Al,, and A1A2,, which belongs obviously to K but the string
BOB1,, B1B3,, B3A1,, A1A2,, A2A3, not. Hence one has to look for the supremal
controllable sublanguage S =supC(K ).

Consider, for example, a language M for the application of operator Q as
given in Equation (13.14). The language T from Equation (13.14) consists of
strings from M, which do not contain events BOB1. and B3B1. because the
uncontrollable event B1A3, leads a string not belonging to M. Equation (13.14)
determines an operator on a set of languages respecting two given languages K and
L whereK c L.

Conjunction with K in Equation (13.14) means deleting all strings from T
containing event A2A3,. After the deletion, we get the language Q(M ) T obtained
as described obviously, which is supremal.

The iteration process in Equations (13.17) to (13.20) can be illustrated as
follows. Iteration starts with K. The first step yields language T'. It isa language T
without strings containing A1A2, because after that event A2A3, could occur
giving strings not present in K. On the other hand, in T’ strings with B3A1, can
exist according to the first application of Q. The second iteration step, i.e., the
second application of Q requires to delete strings with B3A1, from T' because
A1A2,coming after B3A1, causes an exit from T’ (T':Q(K)) and this deletion

gives T”:Q(T’). T" is then the supremal controllable sublanguage for K
according to the assumptions of this example.
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13.3 Supervisory Control Solution Based on Finite Automata

Regular languages play a decisive role in practical applications of the supervisory
control. As treated in Chapter 5 every regular language corresponds to a finite
automaton, called the generator in this context. In other words, every finite
automaton A:(Z,Q,qo,é,F) generates a regular language L and a regular

marked language L, (see Definition 5.2).

Proposition 13.2. A language generator generates languages L for which L=L .

Proof. The proof follows directly from the definitions of the language generator
and the prefix closure property.

A language L, may not be the prefix-closed language.

As mentioned in Section 5.1, a simple labeled directed mathematical graph
corresponds one-to-one to a language generator A= (Z, Q.,q,.9, F).

For a finite automaton A, the accessible set Q. is

Q. ={q:qeQandé(qo,ﬁ):qforsome ﬁez*} (13.24)

and the co-accessible set is
Qco ={q:quand S(q,ﬁ)e F for some ﬁez*} (13.25)

A finite automaton A is said to be accessible if Q,, =Q, and co-accessible if
Q,, =Q. Itissaid to be the trim iff

Qu =Qc =Q (13.26)

A marked language has the following property for a trim.

Proposition 13.3. Let a generator of a formal language L and a marked formal
language L,, be atrim. Then

L=L (13.27)

m

Proof. First, L, c L and each string of E belongs to L according to the
generation rules for L and L, , that is L, < L. But second also L gq because
each string of L belongs to L_m as each string of L can be prolonged to reach a state

of F (the trim property). L, c L and L ¢ E results in Equation (13.27).
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The trim property means that some required system states (set F) can be
reached from each state. It is useful to use the trim property under the supervisory
control solution when it is required to preserve the system state reachability. This is
contained in the following proposition.

Now consider a question: what does it mean when a generator of a formal
language is accessible but not co-accessible? It means that there are states, or at
least one state, from which it is not possible to reach the set F. We say that such a
generator or finite automaton is blocking. Obviously, it is not a trim. It yields that

such strings, from which F cannot be reached, are not contained in L, and,

therefore, Equation (13.27) is not valid, i.e., Liq. As far as all strings of L_m
belongs to L, it yields L < L. The last expression is a necessary and sufficient

condition a finite automaton to be blocking. The states from which the set F cannot
be reached are:

a. States, from which no transition to another state exists, the so-called
deadlocks

b. States, from which transitions to another states exist (but no path to F),
forming the so-called livelocks

Figure 13.2 illustrates the blocking property. The generator (finite automaton)
depicted in Figure 13.2 is accessible and not co-accessible. The states q,,q, € F

are not reachable from q. and g., which are forming a livelock, and g, is a
deadlock.
By the supervisory control solution it is often a task to find sup C(K) and its

corresponding generator to be not blocking. It is meant to find such a supremal
sublanguage for K, which is a trim.

Prior to formulating the proposition, consider A that is not a trim. Then the trim
component Tr(A) of the automaton A=(Z,Q,q,,5, F) is a finite automaton given

by
Tr(A)=(2.Qy. 0.8, . F N Q) (13.28)

where Q, #J , Q, =Q, N Qq,, 0, =0 Tfor set 2 xQ, ; and o, is a partial
function with respectto set 2'xQ .
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Figure 13.2. An accessible and not co-accessible finite automaton

Proposition 13.4. Let A=(%,Q,q,,6,F) and B, = =P, poj,ij,Hj) be trim
finite automata. The automaton A generates the formal language L and the marked
formal language L, that is denoted as (A) indicating the relation with automaton

A. Let automaton B; generate the marked language J; =<Bj>c<A>; further let
the mathematical graph corresponding to B; be a proper subdigraph of the
mathematical graph corresponding to A such that p,; corresponds to g, . It means

that the subdigraph includes the initial state, which corresponds to q,. The event

sets in both automata are the same and consist of the controllable and
uncontrollable events: =% UX X . NXZ, =< . Then there exists the unique

function

h;:P, >Q (13.29)

satisfying the following equality:
h; léj(poj ,5)J= (. ) (13.30)

for each string

5 e <B J. > (13.31)
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where @ is the prefix language of language <Bj> .

Proof. Equations (13.29) and (13.30) follows directly from the fact that the graph
of B; is a proper mathematical subdigraph of the graph of automaton A. The state
node set of the graph of B; is a proper subset of the set of the state nodes of the

graph of A. The unique mapping according to Equation (13.29) exists for this
subset. The end node of any path in the graph of B; is mapped into the node of A,

i.e., Equation (13.30); and there is always a path in A ending in that node. As a
matter of fact A covers B; .

Recall from Chapter 5 that the automaton A generates the formal language L
and the marked formal language L, :<A> representing all realizable event strings

ending in the states of set F. We can imagine such event strings as those
corresponding to all feasible finished jobs in the real system considered. Obviously,

<Bj> has a sense if H; is not empty.
Proposition 13.5. Let A=(%,Q,q,,6,F) and B, =(,P,, py;.&;,H;) be trim
automata as assumed in Proposition 13.4. The operator Q for given languages

L,and J, <L, (L, and J, stands for L and K, respectively, in Equation (13.14))
is determined by the transformation of automaton B; to B,; described in details
below. Q is such that B;,, is a trim automaton. The transformation gives the

searched supremum of controllable language T. The supremum is generated by the
trim automaton resulting from the transformation. Define the transformation such
that it goes through an intermediate automaton B, i.e., B; is transformed to B;
and then B} to B, . The automata generate the following languages
3, =(B;) 3, =(B"), Ja=(Bis) - Thus, 3, =0(3;) where
a(3,)=9, msup{T T T=T,T3, nL, gf} An iteration process for i=0,
1, 2, ... has been anticipated as shown below. For all subsequent iterations of the
iteration process the following setting K =J, :<BO> is taken as language K in

Equation (13.14). The automata transformation realizing Q is a reduction, which
is carried out in two steps:

1. The states of automaton B; are mapped by a partial injection mapping
(one-to-one mapping) to the states of automaton Bj . Such states are

mapped, which fulfil the conditions described below. The partial mapping
is a subset of the one-to-one correspondences p,; <> Po;

P © pl’,j, ...., etc., where Pojs Prjr-€Pj, p('”, pl'yj,...e PJ.’ . A string
n satisfies
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el ,=0,)and p;, P (13.32)

j+l

if and only if 7 € J; and for each prefix 7 of 77 holds
Pi; = éj,(pé,j ’ 77)3 Z(h} (p{(,j ))“Zu c Z(p,’('j) (13.33)

where Z(p;,j) denotes a subset of ¥ for which the partial function fj, is
defined in state p; ;. Similarly it is for Z(h](p;vj)) and function & .
Proposition 13.4 holds for function h’. The states not satisfying Equation

(13.33) are cancelled from set P/ and function (,‘jl is adjusted

correspondingly to the state cancellation. In the graphical representation
the arcs connected to the cancelled state nodes are removed, as well. If
Py,; is not cancelled and H = then the automaton

B; (2P, ph, &, M) (1334)

is obtained; and otherwise it is not defined.
2. If B; is defined, then the trim component of B; is constructed as follows:

Bj+1 = (21 Pj+l’ po,j+11§j+1’ H j+1):Tr(B} )=
C (13.35)
Tr((z, P P& ,HjD

where the partial injection mapping of the states from set P; is given as
before. The mapping yields a subset of correspondences p;; <> Pg .1
PLj <> Prjuas - Where po i, P €P/ s Pojias Pyjir-€ Py - Here,
some of the correspondences do not exist because of the reduction of the
states of B} in order for B;,; to be a trim automaton. B, is defined if the
correspondence for the initial states pg ; <> P, ;,, is preserved on the way
to obtain the trim; otherwise B ,, is not defined. B;,; generates language
Jia :Q(J j) and the graph of B;,, is a proper mathematical subgraph of
B;.
Proof. This proposition concerns the controllability. The operator Q(J j) provides
supremum of the prefix closed languages, which fulfils the condition
Tz, NL,)c J; . Parameters of the operator are languages L, and J, c L, (in
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comparison with Equation (13.14)). The concatenation of any uncontrollable event
to the strings of T does not break the membership of the strings in J;. The

conjunction NL,, in the condition ensures the restriction of strings only to the
strings of language (A) . The supremal language T is obtained by meeting the

condition at Equation (13.33). It cancels those states in which uncontrollable
events may occur and realize prohibited strings. It is the first step towards creating
operator Q and possible canceling of some states; the next step in completing
operator Q is to create the trim automaton. The creation of the trim automaton is
substantiated because the set of strings is limited to the strings of J,. Namely, this

limitation can spoil the trim property. Strings, which do not end in the states of H',

are to be removed. Possibly some additional states are to be cancelled next along
with their related arcs, as well. The iterative application of Q gives the supremal
controllable sublanguage. It is based on Proposition 13.1 and the fact that all
languages generated by finite automata are regular and Equation (13.23) holds.

By Proposition 13.4 we have established a way for determining operator
and are prepared to formulate an algorithm for finding the supremal sublanguage
given a language. The algorithm is given below:

Algorithm 13.1.
1. Let A:(Z,Q,qo,é, F) be a trim automaton generating the language L, .
2. Thevariablejissetto j=0.
3. Let B,=(X,P, p,,& H) be a trim automaton generating the language of
the required behavior J, =K .
4. For automaton B, automaton B;,, is constructed satisfying the onditions
at Equations (13.33) and (13.35). B;,; generates language J; ;.
If B ;.1 cannot be constructed, go to Step 9.
If B;,, =B, goto Step 8.
Increase j by one, i.e., j:==j+1 and go to Step 4.
End. B; generates the supremal sublanguage for the required language K.

© © N o o

End. B;,, cannot be constructed.

If the algorithm ends with step 8, a solution has been found. In each state the
resulting automaton B; determines which controllable events are allowed and

which are prohibited. A control automaton can be constructed for that purpose. It is
illustrated in the following example.
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Example 13.4. For the purpose of surveillance, a sea region is divided into sections
according to the shape of the seabed as it is schematically shown in Figure 13.3.
Two submarines A and B cruise and guard the sea region. A has its own separate
repair port — section No. 5, its home harbor is section No. 2, while B has home and
repair harbor in section No. 4. Due to the seabed form and the sea underwater
streams, as well as different size of the submarines, possible and controllable
transits of the submarines between sections are those shown in Figure 13.3.

Meeting of the submarines in any section of the guarded sea region is
prohibited for safety reasons. At the beginning of the inspection, A is in section No.
5 and B in section No. 4. As for event strings it is required that in any situation
each submarine can start from its home harbor and return there. Such a requirement
is meant in the sense that a submarine has possibly to wait until the other
submarine undertakes some admissible transits. Thus the start or return is not
immediately feasible but in no case does a deadlock occur when no transit is
possible because of the violation of the “no-meeting” condition. A stronger
condition could be put on the guard system, i.e., the transits of a submarine to start
or return are always and immediately realizable without waiting for the other
submarine.

In this example the supervisory control of the submarine guard system can be
solved using finite automaton modeling. The task of the supervisory control is to
prevent the violation of the requirements described above.

*~—> controllable event for submarine A
—_— uncontrollable event for submarine A
*o--» controllable event for submarine B

Figure 13.3. Space guarded by the submarines
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The finite automaton specifying all possible and feasible transits in the studied
system is shown in Figure 13.4. Considering the automaton as a language generator
we can see that it generates L,, when the final state set is F = {24} and q, = {54}.

A state notation ij means that submarine A is in the i-th and B in the j-th section,

respectively. In other words an automaton state is a combination of submarine
positions. Such an automaton is called the shuffle automaton and is designed by
combining two sub-automata. The choice of state 24 for F represents the
requirement that transit event strings always exist enabling each submarine to

return to its home harbor. Automaton A in Figure 13.4 is accessible and co-
accessible.

Figure 13.4. The finite automaton representing all possible states and transits in the
submarine system

Figure 13.5. The finite automaton after removing the prohibited states
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Figure 13.6. The trim automaton

Now let finite automaton B, specifying the required behavior be constructed.
It is done by a reduction of automaton A. Obviously the forbidden states are 00
and 33. They are removed from A as shown in Figure 13.5. The automaton is
accessible but not co-accessible. The state 03 must be removed in order to keep

the co-accessibility of the automaton (Figure 13.6). The automaton in Figure 13.6
is a trim and it is a finite automaton denoted B, in Algorithm 13.1. Recall that by

Proposition 13.5 both automata A and B; should be trims in order to be able to

form the operator Q by the finite automata reduction.
Now, the operator Q is given first by the changeover from automaton B, to

B, and by changeover from automaton B; to B, in the sense of Proposition 13.5.
By comparing with Equation (13.29), the function h, is obviously

h(54,)=54, h,(24,)=24, h,(04,)=04, h,(34,)=34
h(14,)=14, h,(53,)=53, hy(23,)=23 h,(13,)=1
hy(50,)=50, h,(20,)=20, h,(30,)=30, ho(_o)—

Function h; is

h(’)(5_40'j =54, hé(ﬁo’j =24 etc.

as Figure 13.7 specifies.
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Figure 13.7. Reduction according to the condition (13.35)

The condition at Equation (13.33) is checked based on Table 13.2. For the
empty set & < {a3,b1} holds and analogously for other rows of Table 13.2. The

condition is not fulfilled in one row of the table, namely for state 13, . There

as & {a6 : bz} and state 1_30' should be cancelled (Figure 13.7) in order to approach
the finite automaton, which results from the application of the operator Q.

Table 13.2. The transition table for checking the condition at Equation (13.33)

04y | 100" | 130" | 14" | 200" | 230" | 24¢’ | 30¢’ | 340’ | 50¢’ | 53¢’ | 54¢’ Z(ho(?j»mzu
EE("JJ)
04y’ az 1) as, by
10’ bs | ag as as as, ag, b3
13y b, as as 2, b,
14y b, as as as as, ag, by
20y’ bs a ] ag, bs
230 b, Qg 1) ag, by
240 | & b, a |9 ag, az, by
30y’ ay b, a ay, bs
34y ay ay ay
50¢’ a; b; |@ ay, by
53y’ a b, o ay, by
54y a b, 1) ag, by
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The next step is to preserve the trim property. The states 30," and 10, are not
accessible and are to be cancelled. According to Figure 13.8, h, is defined

h1(5_41)=%: h1(2_41)=2_41 etc.
The result of the last step is depicted in Figure 13.8 and Tables 13.3-13.5.
Then, the above steps are repeated. A table corresponding to Table 13.2 is
Table 13.3. As there is no more reduction of the automaton, the algorithm stops.
The automaton depicted in Figure 13.8 generates the supremal controllable

sublanguage of language B, .

Figure 13.8. Finite automaton B; generating language J;

Table 13.3. The transition table for the next step of Algorithm 13.1.

04, | 14y | 20, | 23, | 24 | 34, |50, |53, | 5417 | =(ng (p) )}z, < 2(p))

04y’ a3 as, by

14y as as as as, ag, by
20, bs ao ap, bs

23; b, 2 2, by

24, | a, b, ag ag, ay, by
34y’ ay ay ay

50, a by ay, bs

53, a b, a, b,

54y’ a b, a, by
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The supervisory control is performed through the controllable events. In each
possible system state the allowed or prohibited events are set up. For example let

the system be in state 04,. The study of state 04 in Figures 13.8 and 13.4 yields
that event b, is to be prohibited and a, is to be allowed.

Table 13.4. States of the control automaton

04, | 14, | 20, | 23; | 24, | 34, | 50, | 53; | 544
04, az

14, dg as
201 b3 ap
23; b, Ch)

24, a, by ag
34,4 ay
50, a bs
53, a b,
54, a by

Table 13.5. Outputs of the control automaton

Wao War | Wa2 | Wag | Was | Wphr | Wi Wh3

04, 1 0

14, 1 0

20, 1 0 1
23, 1 0 1

24, 1 1 1

34, 0

50, 1 1
53; 1 1

54, 1 1

A deterministic finite automaton with outputs can be constructed by setting up
the controllable events. Such an automaton would have the same topology as B,
with outputs for the event control. It can be minimized by finding the state classes
equivalent from the output point of view. Denote the automaton outputs w_ and

al

w,. If w,; =1, w,; =1, events a, and b; are allowed, while in the inverse case
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they are prohibited. The free outputs or the so-called “don’t care” are purposely
completed with suitable values.
The equivalent classes are
Cl= {%1!%1}' C2= {_41']£' ’@1’531!3_41'@1’531}
(Table 13.6).
A suitable completion of the output function is given in Table 13.5. The

minimum control automaton is depicted in Figure 13.9. The outputs
W,g, Wy, W,s, W,e, Wy, , Wy, are permanently set to logical one.

Table 13.6. Completion of the “don’t care”

04,14, |20, | 23, | 24, | 341 | 50; | 531 | 541 | Wag | Wa1 | Waz | Wag | Wag | W | Whp | W3

04, as 1{1]o|2|1|0|1]1
14, ds | a5 1 1 0 1 1 0 1 1
20, bs ay 1 1 011 1 0 1 1
23, b, ap 1 1 011 1 011 1
24, | a bl dg 1 1 1 1 1 1 1 1
%1 ay 1 1 0 1 1 0 1 1
50, a bs | 1 11011 1 0 1 1
53; a b, 1 11011 1 011 1
54, a; b, 1 1 1 1 1 1 1 1

Waz—o
Wep=1 041-14,-20,-23;- Wp1=0
Wp1=1 34,-50:-53;

Waozl
Wao=1 Wa=1
Wa=1 Wy3=1
Wiz=1 Was=1
Wae=1 Wp2=1
Who=1 Wip3=1
Wp3=1

Figure 13.9. The supervisory control finite automaton with outputs
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13.4 Supervisory Control Solution with P-invariants

A method based on Petri nets and place invariants (Moody and Antsaklis 1998;
Yamalidou et al. 1996) appeared to be able to cope with the state space
dimensionality. The dimensionality problem can appear in the method which uses
the finite automaton described in the previous section or the reachability graph of
the Petri net to be discussed later. The P-invariant method does not require the
state space construction, is computationally very effective and can be used for
large and complex systems. On the other hand the method neither resolves the
problem of uncontrollable transitions nor the problem of the required accessibility
of the home places directly. A partial elimination of these drawbacks is possible by
transforming the problem into the proper system constraints. There is also the
possibility to transform the constraints given in other forms into the form required
by the method.

The method using the place invariants, P-invariants for short, of a Petri net
enables design of the feedback supervisory controller. The idea is to enhance the
given Petri net describing the system so that the enhanced Petri net contains the
required P-invariants. The P-invariants are derived from the linear constraints
imposed on the Petri net markings, which represent the supervisory requirements
and restrictions imposed on the system under supervisory control. It was shown in
Section 8.10 that a place invariant determines the set of places for which the
weighted sum of tokens remains constant for all markings in the reachability set
Rey (M, ) of a Petri net PN,

Consider aPetri net PN with n places and m transitions representing the
controlled system. Let N, be the A -incidence matrix of this net. Control

requirements for PN are realized by a Petri net supplement representing a Petri net
controller. The A -incidence matrix of the supplemented control part of the Petri
net is denoted by N, .

A control requirement imposed on the system is formulated in the form of
inequality

iliMr(pi)Sﬂ, (13.36)

where M, (p;) is the marking of the place p, (given as an integer) and
M, € Rpy(m,) is any reachable marking in Petri net PN, I, and S are the

coefficients given as the natural numbers.
The constraint at Equation (13.36) can be transformed into equality by

introducing a nonnegative integer slack variable . :

i'iMr(pi)+ﬂrC =p (13.37)
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where g, represents a marking of the supplementary control place p., which

holds the extra tokens to meet the equality. Values of x,  are chosen to preserve

the equality for all reachable markings for the extended Petri net. The described
procedure can be applied to more constraints given in the form of Equation (13.36)
leading to more supplemented places. Then the structure of the supplemented
control part of the Petri net is to be determined. As a matter of fact it is necessary
to determine the arcs connecting the supplemented places with the transitions of
the Petri net PN and the initial marking of the control places. This is based on the
determination of the place invariants. A constraint in the form of equality
introduces a place invariant into the Petri net, i.e., the weighted sum of tokens in all

places of PN and in the supplementary place p, are constant and equal . The

number of supplementary places of the controller part of the Petri net is equal to
the number of constraints to be enforced. Every place of the controller part adds
one row to the incidence matrix N, of the whole controlled system. Thus, N,

is composed of two matrices, namely N, of the system to be controlled and N,

of the controller net.
The arcs connecting the controller places to the original Petri net of the system
can be computed by Equation (8.29) defining place-invariants

NTi,=0=ilN, =0", 0" =(00,.,0) (13.38)
\q/_—/

m-—times

where the unknowns are the elements of the new rows of the matrix N , i.e., the
elements of matrix N,. and vector i, is the desired P-invariant according to
Equations (8.41) and (13.37) and it is obviously given by

ip=(,..1,1) (13.39)

n

The variable g, has a coefficient one.
All constraints in the form of Equation (13.36) can be aggregated in a matrix

where the number of constraints is n:
Lm, <b (13.40)
The matrix equality is

Lm,+m;=b, (13.41)

where L is an n,xn matrix of non-negative integers containing the constraint
coefficients, bis an n, x1 vector of non-negative integers, m, is a vector variable
representing reachable markings of the original Petri net with n components (for
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places of the original Petri net), m; is an n_ x1 vector variable of non-negative

integers that represents markings of the supplementary controller places, and n, is
the number of constraints. For all constraints we have

L N, =0)=(L n>(“ﬁ]

N s (13.42)

= LN, +N, =(0)

where L is a matrix whose rows are the transposed P-invariant vectors, I is an
n, xn, identity matrix and (0) isan n_ xm zero matrix. The matrix N, contains

arcs that connect the controller net places with the transitions of the original Petri
net PN and is given by

N, =-LN, (13.43)

The initial marking of the supplementary controller part of the extended Petri
net is calculated from the place invariant conditions that are initially met:

Lmy+m,=Db (13.44)

where m, is the initial marking of the Petri net PN and m_, is the searched initial
marking of the supplementary places, i.e.,

My, =b-Lm, (13.45)

The described control is maximally permissive from the point of view of
possible transition firings in the controlled Petri net. Consider A - incidence matrix
N, and assume its rank r <n. Then the Petri net PN has k =(n —r) P-invariants

because the homogenous equation at Equation (8.29) has k basic linearly
independent non-zero solutions (each solution is a vector). The invariants represent
bindings or restrictions contained in the original PN. The A - incidence matrix of
the extended Petri net is

NA _ NA
N s =(NMJ—[_LNJ (13.46)

The rows of the lower matrix part are linear combinations of the rows of N, .
The rank of N, =k, i.e., it is equal to the rank of N,. Thus there are no new
bindings due to the control extension of the Petri net PN.
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s1 ([ [ | 52

C1 = C3

i | D3
C2 _/

Figure 13.10. A manufacturing layout with the transport system

D2

Example 13.5. A technological layout is schematically illustrated in Figure 13.10.
Its transportation part works as follows. Four palettes are in room P and four
automatic guided vehicles in room A at the beginning. The palettes are cleaned in
P after some number of uses. The accumulators of the vehicles are loaded when
necessary in room A. The palettes are transported to room C1 by belt conveyor S1,
which has capacity of four palettes. The capacity of S2 is four palettes, too. The
vehicles go one by one to room C1 where a palette is mounted on a vehicle. Only
one vehicle can be in one-way corridor D1 at a time. The same holds true for D5.
Each vehicle with a palette on it can move between the manufacturing cells as the
arrows indicate. The manufactured parts are transported with the help of vehicles
with the palettes. After some transportation a palette is taken from the vehicle and
transported back in P via the belt conveyor S2 while the vehicle goes to room A for
the accumulator reloading.

Only one vehicle with a palette can pass through bidirectional corridors D2 up
to D4. The number of the vehicles can be maximally two in rooms C1 and C2
together including the corridor between the rooms. Moreover in the corridor D2
can be only one vehicle. Analogously maximally three vehicles can be in rooms C2
and C3 together with corridor D3 and one vehicle in corridor D3. Maximally one
vehicle can be in corridor D4.

The Petri net describing the transportation part of the system is represented by
solid lines in Figure 13.11.

The inequalities expressing the condition of the system behavior given above
are
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2Y Mr p6)+Mr(p7)+Mr(p8)+Mr(pQ)S3
Mr(p10)+ Mr(pll)S]" Mr(p4)+ Mr(pS)Sl’ Mr(p7)+ '\/Ir(ps)gl1 Mr(p15)S1’
Mr(plz)gl

The slack variables for the inequalities are M, (p,) M, (ps,) ..M, (pe;)
respectively.

P1 lig P13

®: I= P14

Figure 13.11. Petri net of the system transportation part
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The controller Petri net structure is given by the A -incidence matrix N, . It
specifies a supplementary structure, which binds the system behavior. It is drawn
with dashed lines in the Petri net in Figure 13.11. The Petri net is a base for the
system supervisory control. Suppose that the passages of vehicles and palettes are
controllable. The Petri net transitions correspond to the passages. The transition
firings are guarded by places p,..., p.; - If a transition in the Petri net is not
fireable the corresponding passage is not allowed. Using the Petri net of Figure
13.11, a control program for the control of the passages can be written.

The A -incidence matrix N, is

N, =
0011110000O0O0O0O00
0000OO0O111100O0O0O00
0000O0O0COOO1I1O0O0O00
-LN,=-/0 0 01 100O0O0O0O0O0O0O0O0| x
0000O0O0C111O0O0O0OO0OO0O0O
000O0OOOOOOOOOO OO O1
0000O0O0COOOOO11O0O00O0
-1 0 0 0 0 0O OO O OCOOO O O0O 0 0 1
1 -1 0 0 0 0 0 O 0O O OO O O O O O O
o 1 -10 01 0 0O OO O 1 -1 0 0 0 0 O
o 0 1. -1 0 0 O OTOTOOOOOOTU OOFDO
o 0 o0 0o 1. -1 0 0 O0OOO OO O O O0 0 O
o 0 01 -10-10 01 0 0 O O OO OO
o o0 o o o o1 -10 00 0 O 0 O O0O 0 O
o o0 0o 0o o 0o 001 .20 0 0 0 0 0 0 0f|=
o o0 o o o o o0 1 -10-10 01 -10 0 O
o 0 0o o o o 000 0 0 0 1 -10 0 0 O
o 0 0o o o 0o 00 0 0 1 -2 0 0 0 0 0 O
6o o o 0o 0 0 00 0 0 00 0 0 1 -10 O
o o o 0o 0o 0 00 0 0 0 0 O O 1 0 0 -1
o o o 0o 0o 0 00 0 0600 0 0 o0 1 -10
0o -1 0 0 0 0 0O O O O OOOOTU OOTI1I0oO
po(0 -1 0 0 0 0 1 0 0 -1 0 -1 1 0 O0OOTO
p,/0 0 0 -1 1. 0 0 0 0 0 1 0 O -1 1 0 0 O
p,/0 0 0 0 0 0 0 00 0 -11 -11 0O0O0 O
ps/0 0 -2 1 -121 0 0 0 0 0 0 O O O O O O
ps/0 0 0 0 0 0 -11 -1 1 1 0 0 O 0 0 0 O
ps/0 1. 0 0 0 0O O O O O O O O O O 0 -10
p,\0 0 0 0 0 0 0OOO O O O O O -1100
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A correct required behavior depends on the formulation of the inequalities at
Equation (13.40). If for example we put the restrictions as follows

M(ps)+M(ps)<2, M(ps)+M(p,)<3

While the rest are given as before, the P-invariant method gives a structure that
includes dead-locks. Seemingly the inequalities specify the same behavior but the
control structure is not good. We postpone the supervisory control for the
erroneous inequalities to the reader.

The presented method does not directly solve the case of uncontrollable events.
It can be resolved by a suitable set of inequalities at Equation (13.40). The problem
of proper inequalities will be treated in the following example.

Example 13.6. Consider Example 13.5 with the same behavior requirements. It is
required that in every situation each submarine can immediately start from its
home position or to return there. As before, transits a, and as are uncontrollable,
and the other transitions are controllable (in comparison with Figure 13.2). The
system Petri net is represented via solid arcs in Figure 13.12. Obviously, to prevent
the submarines’ meeting requires the following inequalities:

Mr(pA0)+Mr(pBO)S1' Mr(pA3)+Mr(pBB)S1 (1347)

where the place p,,corresponds to the presence of the submarine A in section 0,
and similarly for other places. The prohibition of uncontrollable event a. when

submarine B is accidentally in section 3 requires that sections 1 and 3 together
contain just one submarine. Moreover, in the situation when submarine A is in
section 0 and B in section 3 the system is in a deadlock because B cannot return
immediately to its home section 4 unless it meets A. The last problem can be coped
with by requirement that if A is in section 1, there cannot be B in section 3, and if
A'is in 0, B cannot be in section 3, and finally if B is in 3, A cannot be in 1 or 0.
Expressing it by an inequality we have

M, (Pu)+ M, (pes)+ M, (p,)<1 (13.48)

Now Equations (13.47) and (13.48) completely cover requirements of the
admitted states or events and the deadlock prevention. The solution with the P-
invariants is
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N,,=-LN, =
1 -1 0 0 0 O O O O O
-11 -1 0 0 0 1 0 O0 O
o 0o 1. -1 0 0 O O O O
001000001
o 0 0 1 -1 1 0 O O O
-0 001 0010 =
o 0o 0 01 -1-10 0 O
00101010
o 0 0 0 0 0 0 -1 0 1
o 0o 0 0o 0 00 1 -10
o 0 0 0 0 0 0 0 1
00-11 0 0 O0O0 -1

1
o0 0 -1 1 -10-1120
001 1 -1 1 1-11020

where the columns of L and the rows of N, correspond to the places pas, Paz, Pao,
Pas, Pa1s Peas Pr3, and pgo, , respectively, and the columns of N, correspond to the

transitions t,o—t,; and ty—tys respectively. The supplementary control places are pci,
Pe2, @nd pez corresponding respectively to the rows of matrix L. The control part of
the Petri net is depicted with dashed lines in Figure 13.12.

Figure 13.12. Petri net for the submarine system
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Impact of the requirement inequalities on the solution is visible from the next
reasoning. The inequalities at Equations (13.47) and (13.48) can be equivalently
substituted by two inequalities as follows

Mr(pA0)+Mr(pA3)+ Mr(pA1)+ Mr(sz)Sl
Mr(pA0)+Mr(pBO)S1

In this case

0010000O01

00111010
Ny =-LN, =- x

1 -1 0 0 0 0 0 0 0 O
11 -1 0 0 0 1 0 0 O
0 0 1 -1 0 0 0 O 0 O
000 1 -11 0 0 0 0
0 0 0 0 1 -1-10 0 0]
0 0 0 00 0 0 -10 1
0 0 0 0 00 0 1 -10
0 0 0 0 00 0 0 1 -1
00 -10001-110

oo-11oooo-11J

The Petri net for the described case is shown in Figure 13.13.

Example 13.7. Figure 13.14 shows landing and starting fields of an airport. Q1 and
Q2 are the air parking sections. On commands from the control tower airplanes can
transfer from Q1 or Q2 to parking airspace S consisting of sections S1 through S4.
In S can be only one airplane. Transfers between sections S1 through S4 are
uncontrollable events. Transfers between sections Al, K, and A2 of the landing
field I are controllable events. So are those for the landing field Il and the starting
field. In sections A1, K, and A2 together can be only one airplane. The same holds
for the landing field Il. Each of sections R1, K, and R2 can host at most one
airplane. In T1 and T2 together is allowed one airplane. The airport traffic is
subdued to the control requirements given below. Of course, the goal of the
supervisory control is to avoid the airplane collisions.

The Petri net for the P-invariant method of the supervisory control solution is in
Figure 13.15. The respective matrices are given in a tabular form as shown in
Tables 13.7-13.9. Control places are connected to the system Petri net model with
dashed lines.
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Starting field

Figure 13.14. Organization of the airport traffic
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Figure 13.15. Petri net for the supervisory control of the airport traffic
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Corresponding control place:

Control requirements:

Pc:
Pca

Por <1
Pc

Pca

pSl + pSZ + pS3 + pS4 Sl

Pg <1
PatP
Pr. <1

pC4

Pcs

+Pap <1

1
K

Pce

Pcy

Pg + Pry + Py <1

Pry + Py <1

Pcs

Pco

2<1
Pro <1

p
p

Pcio

pCll

+pi<1

1
K
Place markings are for simplicity denoted equally as corresponding places.

Table 13.7. Matrix N,
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Table 13.8. Matrix L
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Table 13.9. Matrix N ,c
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The initial marking of control places is

mcoz

b-Lm, =
1111121112111)"-(00000000000) =
@1111111111)".

The system of conditions can be simplified. The conditions pg + py; + pr, <1,
pg <1 and p;, + Py, <1 can be equivalently substituted by condition

Pg + Pry + Py, <1. Similarly pZ <1 and pi + pZz <1 by pi + p2 <1. Eight
conditions give the same result as the original eleven ones.

The discussed method is widely used. Its recent application is to synthesize the
deadlock control policies in (Uzam and Zhou 2006).

13.5 Supervisory Control Solution with Reachability Graph

The Petri net reachability graphs offer a good tool for the study and design of the
supervisory control. In what follows their use in supervisory control will be
described. The Petri nets interpreted for DEDS control will be used.

Let a Petri net interpreted for the control PCN be given. Petri nets interpreted
for the control were treated in Section 7.5. For the given PCN a function
w:T — LOG is defined where LOG is a set of the logical expressions whose
value can be true or false, and T is the set of the transitions of PCN. In this section
we assume the logic expressions are Boolean propositions in the form w;, ==1

where w; is a Boolean variable. One such a proposition is associated with each
transition so that w; ==1 is associated with transition t,, t; e T . If w; =1 then
the value of the propositionw; ==1 is true. Transition t, in turn is associated with

event e, . The functiong is empty (see Section 7.5). Transition t; is fireable if the

actual marking fulfils the firing conditions valid for PNC, which includes a
condition that the logical proposition associated with t; is true.

The first step of the method for the solution of the supervisory control of a
DEDS is design of PNC specifying the complete and possible system behavior. In
terms of the model Equation (13.1) the behavior is specified by the language L.
The strings or words of events of language L are given by the set of all possible
transition firing sequences from the initial marking of the given Petri net PNC. All

Boolean variables w, have value w, =1 for the specification of language L by
PNC. The event string 5—=ei1ei2...eip clearly corresponds to transition string

K=tt .t; in the time points given by T=1,7, .7

[
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For language K the values w; determine whether the corresponding transitions

of the Petri net are fireable in a particular situation represented by an actual
marking. The words of K are given by the restriction through the supervisory

control. A function F : Rpy(m,)— 2" can be defined where W = {w,,w, ..., w,, }

is the set of the variables associated with the Petri net transitions that have value
1 for the actual marking while the other have value 0. As a matter of fact the
variables of set W control the fireability of the transitions depending on the
marking.

The Petri net reachability graph (see Section 8.2) is useful for the supervisory
control solution. Each arc of the reachability graph is labeled with a transition. The
transition is fireable and a change of marking arises if the associated variable w; is

true, i.e., w; =1. It is assumed in the method that the Petri net, which models the

given system, is bounded so that the reachability graph can be composed.

The second step of the method is assure by means of a sublanguage K the
system behavior, which is represented by the model at Equation (13.1). Using the
Petri net PNC as the system model the behavior is specified by means of
inadmissible system states and/or a set of the graph nodes that can be reachable by
oriented paths from any reachable and admissible graph node in the reachability
graph. As explained above, inadmissible states can be represented by inadmissible
markings of the system modeling Petri net. It follows naturally that no oriented
path of the required connection can contain an inadmissible marking. The nodes to
be always accessible are called the home states or home markings. A general case
is a requirement that at least one element of the set of the home markings should be
reachable from any reachable marking. These can be distinguished by mulitple sets
of the home markings denoted as H1, H2, ..., Hz. The sense of the accessibility
results from the system function and the supervisory requirements. It was discussed
in the connection with the P-invariant methods studied in the previous section.
More will be understandable from the example discussed below.

The third step of the method can be modified according to the behavior
requirements. The first version is suitable for the case when only inadmissible
states are defined and no achievability of home nodes is required. The second more
complete version satisfies both requirements. The third step varies depending on
the computational problem with respect to the state space dimension. The problem
can be formulated in terms of Petri nets as a problem of the cardinality of its
reachability set. If it is computationally acceptable the reachability graph for the
given Petri net is constructed. The procedure using the reachability graph will be
described below. The procedure covers both system requirements: avoidance of the
inadmissible states and/or preserving of the paths to the specified home states.

The third step can be modified for the case when the reachability graph is too
large and its computation is practically impossible. The predecessors of the
inadmissible markings are computed and if they are connected to the inadmissible
markings with uncontrollable arcs, the predecessors are put into the set of
inadmissible markings, too. Possible transition activations are searched for in the
actual state (marking). Those transitions are further analyzed which do not lead
into an inadmissible marking. The required paths to the home markings should be
checked from the admissible next markings in order to exclude the deadlocks. If
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via a reasonable computation one finds that the path to the home marking exists,
the next marking is finally allowed. In the opposite case the next marking is
denoted as inadmissible. The supervisor should decide if in that case the system
can undergo the risk of the deadlock in some of the successor states. The
supervisor decision can be based on heuristic approaches.

In the rest of this section we will study the case when it is possible to construct
the reachability graph for a given bounded Petri net starting from the given initial
marking, and the construction is computationally acceptable. As explained above,
each arc of the graph is labeled with the transition whose activation causes the
transfer from one marking to the next. The arc is also associated with the control
variable that can enable or disable the transition and accordingly can enable or
disable the corresponding event. The uncontrollable transitions are specified and
they are associated with control variables having a constant value of 1 that means
they are permanently enabled..

The method can be divided into the following three parts.

Part 1

We denote the set of inadmissible markings as IA. The set IA initially consists of
the a priori given forbidden markings and of the dead markings if there are any. A
dead marking is characterized by the property that no arc is going out of it. Then
we add to IA all those markings from which an arc labeled with uncontrollable
transitions goes to an inadmissible marking from IA.

Part 2

The set of not allowed arcs denoted as NA is further formed. To the set belong
those arcs that are labeled with the controllable transitions and go in an
inadmissible node belonging to the set 1A. The so-called NA-dead-markings are
searched for and put in the set 1A. The NA-dead-marking is the marking from
which only not allowed (belonging to the set NA) arcs go out.

Part 3

Each element of the reachability set is analyzed and its outgoing allowed arcs are
checked. If there is an oriented path leading into an element of the given set or sets
of the home markings, the arc remains allowed; otherwise it is not allowed and is
placed into the set NA. After that the conditions on inadmissibility of the nodes are
repeated continuing from Part 1 because it is possible that the new not allowed arcs
cause some nodes to become inadmissible. The procedure is repeated until no new
and not allowed arcs and no new inadmissible markings spring up.

An algorithm resolving the supervisory control is described concisely as
follows.

Step 1. Construct the reachability graph for the supervisory control
assuming an bounded Petri net interpreted for the control is given. Label
each arc with the corresponding activated transition.

Step 2. Create empty sets IA and NA, respectively.
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Step 3. Put in set IA the inadmissible markings according to the system
requirements.

Step 4. Add into set 1A dead markings (those with no arcs going out at all).
Step 5. Add into 1A the markings from which an arc labeled with an
uncontrollable transition goes in an inadmissible marking.

Step 6. Put into set NA the allowed arcs labeled with a controllable
transition and going in an inadmissible marking.

Step 7. Add NA-dead-markings into IA. The NA-dead-marking is the
marking from which no outgoing arcs are allowed, i.e., the arcs belonging
to NA.

Step 8. If in Steps 4 through 6 a new not-allowed arc arises and/or in Step 7
a new inadmissible marking arises continue with Step 4; and otherwise
with Step 9.

Step 9. Check if from any admissible marking (not an element of 1A), there
exist, an oriented path leading to at least one element of the home markings
H1, the same into H2, ..., up to Hz. Put the admissible marking not
fulfilling the condition into IA.

Step 10. If in Step 9 a marking was added to IA continue with Step 4; and
otherwise end.

Example 13.8. A manufacturing cell with mobile robots for the handling of the
manufactured parts is depicted in Figure 13.16. Two robots R1 and R2 transfer
parts of two kinds A and B within the cell. Robot R1 picks up a part A from the
input conveyor C1 and transports it into rooms S2-S4 to machines M1-M5. The
doorway to S5 is not passable for R1. Analogously it is for the movements of robot
R2 as Figure 13.16 shows. Manufacturing runs according to an actual
technological scheme including the processing at machines and movements of the
robots with semi-products.

Whether the movements are managed by an operator or control unit, the task of
the supervisory control is to prevent the forbidden situations which are the
meetings of the robots in the same room. On the other hand the return of R1 to S1
and R2 to S5 in each position of the robots should be possible under the
assumption that robots can realize movements, which loosen the movements of the
other robot. For example, one robot moves back to a room and the second can
continue in its route.

The control agent used in the system determines the back tracking maneuvers.
It is important that the system leads to no deadlock. The initial position of the
robots is indicated in Figure 13.16.

The Petri net serving for the supervisory control design is in Figure 13.17. The
reachability graph is in Figure 13.18.
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Figure 13.16. A manufacturing cell with mobile robots

t

P1

uncontrollable
transition

P4 Ps

pi: R1atroom S;, i=1, 2, 3 and 4;

ps: R2 at room Ss; pe: R2 at room Ss; p;: R2 at room S,; and pg: R2 at room S,.
Transitions represent the movement of a robot from one room to another.
Hollow-bar transitions are uncontrollable while solid-bar ones are controllable.

Figure 13.17. Petri net for the manufacturing system (two separate Petri nets are in fact two
automata)
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Collisions of the robots are represented by nodes: (00100100),(000100
0 1), and (0 1 0 0 0 0 1 0). The predecessors connected with them by
uncontrollable transitions are: (0010001 0)and (01000 10 0). A reduced

reachability graph is shown in Figure 13.19. There is no NA-dead-marking, and
crosses denote the arcs from the NA set.

The algorithm is finished because set IA and NA are stablized. The reachability
graph renders the values of the transition control variables w; in each marking

(state) of the system. The movements of the robot for any schedule are subdued to
the reduced reachability graph.
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Figure 13.18. Reachability graph in the supervisory control design
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Figure 13.19. The reduced reachability graph

13.6 Problems and Exercises

13.1. Propose supervisory control for the robotized manufacturing system depicted
in Figure 7.18 (Exercise 7.2) using P-invariant method. For the robot movements
assume the same requirements as in Exercise 7.2.

Give a basic idea of how the supervisory control could be realized from the
technical and programming point of view.
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13.2. Two robots R1 and R2 are moving in the space divided into rooms (Figure
13.20). Initially R1 is in the room 2 and R2 in the room 4. Doors between rooms
denoted A are passable in the directions of arrows for R1, denoted B for R2. All
doors except for the movements A13 and A3l are controllable. Robots execute
transfers of objects within the given space. One such task is defined by a start and a
final room. Tasks are given by a supervisory control level while a particular path is
elaborated by a local control system. Supervisory control level determines which
doors can be used in every actual situation.

1 2 .,
—79 Al2 Aij means Robot R1 can
pass from

Room i to Room j.

Bij means Robot R2 can
pass from
Room i to Room j.

There are in total five
rooms.

Figure 13.20. Movement space for two robots

Describe the movements of robots with a Petri net. The required supervisory
control propose using the P-invariant method and compare it with the reachability
graph method.

13.3. A popular story of eating philosophers is illustrated in Figure 13.21. A meal

is prepared.
O,

F2 F3

Figure 13.21. Three philosopher problem
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Each philosopher has one fork right and one left. When a philosopher wants to eat
he takes forks one by one and afterwards drops them on the table. Philosophers are
stubborn - if they want to eat they do not give warning. A philosopher needs both
forks left and right to eat; otherwise he waits for free ones. Solve the supervisory
control problem saying what forks cannot be picked up in order to prevent dead-
lock when all philosophers want to eat.

Represent the behavior of philosophers using the Petri net and solve the
supervisory control problem with the reachability graph of the Petri net.

13.4. Consider the transportation system in Figure 7.20 of Exercise 7.5. It is
reasonable for transportation control to divide the vehicle tracks into sections. A
crossing is always a separate section. Let only the entry to the first section of each
track be a controllable event. Solve the supervisory control for such an
arrangement of the system.

13.5. A transportation system using three automatic guided vehicles (AGV) in a
manufacturing plant is depicted in Figure 13.22. The vehicle tracks are divided
into sections. Only one AGV can be present in a section — to go through or to stop
there. No AGV can stop in any crossing. Each section is separated by two control
points using sensors.

A way to solve the AGV control is the supervisory control approach. As far as
the supervisory control is preventing the AGVs from collisions and deadlocks, the
personnel doesn’t have to take care about contemporary state of the system during
the programming of new transportation requests. Use a Petri subnet for each AGV
as it is shown in Figure 13.23.

SSW2 SSw1

m S

SSW9

SS10
SS11

T
SSW5 SS6 SSW7

Figure 13.22. An AGV transportation system operating in a manufacturing plant
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pl4

Figure 13.23. Petri net for the transportation system

Places p2, p16, p30 in the respective subnets correspond to the presence of an
AGYV in the same section, namely the section S2.

Formulate the solution of the supervisory control preventing collisions and
deadlocks using the reachability graph of the Petri net consisting of the three
subnets according to Figure 13.23. The nodes of the graph can be calculated
comparatively easily by enumerating combinations of the AGV positions by a
computer program. The forbidden nodes serve to avoid AGV collisions by
performing the planned routes of the vehicles. What do you propose for planning at
least near to optimal routing of the vehicles from given the initial section to the
required goal.
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Job Scheduling

14.1 Problem Formulation

Job scheduling or operation scheduling is a typical problem frequently appearing
within DEDS. The core of the problem consists in how to achieve an optimal
distribution of jobs or operations among the processing units or servers available in
the system under various criteria. In other words, the problem is the optimal
allocation of the system resources (Frankovi¢ and Budinska 1998).

Typical environments in which a scheduling problem occurs are flexible
manufacturing systems, distributed computer systems, database systems, and other.
For example, flexible manufacturing systems (FMS) usually consist of product
processing or machining units, measuring and testing equipments, transportation
facilities, manipulators and robots, intermediate storages, input and output devices.
Various methods have been developed for scheduling problems (Engell 1989; Li et
al., 1995; Zhou and Venkatesh, 1998).

It has been discussed earlier in this book that process control means control of
the basic processes at the level responsible for direct control. It is the control level
or layer closest to the system processes. A hierarchically higher level is the co-
ordination level of the basic processes. Here, the co-ordination is considered as a
selection of servers performing basic processing, if there are more options. For
example, in flexible manufacturing systems it is a selection of production units if
there are more options to realize a prescribed technological recipe. One of co-
ordination aims is to accomplish the required jobs in the minimum time span. For
this aim it is necessary to know the duration times of the scheduled operations.
Other scheduling optimization criteria can be, e.g., the maximum utilization of the
resources and minimum tardiness of the required operations. A problem related to
the job scheduling is routing of semi-products to servers according to a chosen
scheduling.

The first step in the solution of a job scheduling problem is a system
specification using a suitable tool. The specification has to bring about such an
abstraction that enables to present and solve the problem. An efficient specification
is based on Petri nets (Lee and F. DiCesare, 1994, 1995; Xiong and Zhou 1998;
Zhou and Venkatesh, 1998) and max-plus algebra (MoRig and Rehkopf, 1996).
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The first approach to be dealt with in this chapter is oriented on Petri net
specification (Section 14.2). Obviously, from the nature of the scheduling
problems, some extension with respect to time relations is necessary. Some
researchers associate time with Petri net transitions. In Section 14.2 another
approach is presented by utilizing a certain kind of place timing. Another approach
is the max-plus algebra (Section 14.3).

For our purposes, consider a system specified as

SYST =(S,Q,0p,T) (14.1)

where
S: asetofservers S = iSl, Sy 3\5\ }
Q: aset of all different operations realizable in system SYST by servers,
op: S — 2 is a mapping of the set S into the set of the operation subsets,

tu:SxQ — N* is a function mapping a particular operation performed at
a particular server into a positive integer representing the number of time
units consumed by the operation.

Let the i-th individual subset of the co-domain of the function op be denoted as

Q= {i/q, i/cz,..., il(‘m }, iKl, iK‘Z,..., iK"QI‘ e (14.2)
where Q, denotes the set of operations available at the server S, , i:1,2,...,|S|.
The operations are from the set Q ; then the function op can be expressed as

op(S;)=, (14.3)
From Equations (14.2) and (14.3) it is possible to write
(S, e ' i =12, [S], k =12, [ (14.4)

The system flexibility is due to the fact that an operation can alternatively be
performed on different system resources (servers). Thus

Q, NQ, #Q forsome i, =i, (14.5)

In such a case times of the same operation performed on different servers may not
be the same.

Various processing procedures can be realized in the system SYST. In FMS
terminology it means various technological work-plans. Let the p-th processing
procedure be defined by a sequence of operations

0, =0,,0,,..0, (14.6)
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where 0p1,0p7,..,0, €€ arE operations taken from the set Q defined in Equation

(14.1). Each procedure is determined by its own sequence, e.g., the p-th procedure
by O, . There are several alternatives how to use the servers in a case when more

servers can perform the same operation o,; . It is the case when the required

operation is included in several subsets Q,. It is assumed that each operation

depends only on one preceding operation, and a next operation can start after the
preceding operation has been accomplished..

A system SYST can be additionally completed with the input servers
X ={X;,X,,... X, } and the output servers Y ={Y,,Y,,...,Y,}. Availability of an
object to be processed can be specified by means of an input server. Analogously,
output servers are used for outputs. A particular scheduling task can be defined as
follows. A part available at an input server passes through a prescribed processing
procedure realized on a chosen set of servers realizing a sequence of operations.
Finally, the part appears at an output server ready for a next use.

The scheduling problem formulation as presented above will be illustrated on
an example. Figure 14.1 shows a manufacturing system with three servers, two
inputs and two outputs. Let a technological work-plan be realized on the described
manufacturing system. The work-plan is specified in Table 14.1. There are two
kinds of products to be produced. The notation S,/S, means an optional

realization of the first technological step for the job J, either on the server S, or
on the server S, . Figure 14.1 depicts possible transportation routes of parts.

Through Xy, X, parts are fed in a random sequence. When the manufacturing is
finished, the manufactured parts are placed at the output servers Y3, Y,. For each
job and each step of a particular work-plan operations are assigned so that the set
of servers is S=1{S,,S,,S,} and the set of operations is Q ={w,,®,,w;,®,}. The
same operation can be prescribed in different jobs. Keeping in mind the notation at
Equation (14.2) we have

/T
~

Figure 14.1. Technological layout of the manufacturing cell
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Q {1’(1’1’(2’1’(3}_ {a)l,a)3,a)4}
Q, {ZKI,ZKZ, } lo, 0, 0, (14.7)
Q {Kl, Ky, K3} a)z,a)s,a)4

3

Order of elements in equal sets of Equation (14.7) determines the element
correspondence. Processing procedures are given by the following sequences:

0,=0,, 0, =, @, = ( K, Or ZK_l)(lKZ or 3K'1) (14.8)
0, =0,, 0, =@, W, = (11(2 or 3/<2)(11<3 or ’xc; or 3K'1> .
Table 14.1. A particular work-plan to be realised in the manufacturing cell
Job N Job Jo
Step Step

Operation Available at Operation Available at

1 w, Sll Sz 1 W3 81/ Sg
2 w, 52/ S3 2 [an 51/ Sz/ Sg

@

Figure 14.2. Optional routes of workpieces in the processing according to the work-plan in

Table 14.1
Table 14.2. Operation times in the manufacturing cell
Operation , o, ®, o, N IoN o, o, o,
Server S, S, S, S3 S, S3 St S S
Duration 3 4 3 2 4 2 3 4 4
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Figure 14.2 shows optional transfer of workpieces according to the work-plan
given in Table 14.1. The operation times are given in Table 14.2.

14.2 Job Scheduling and Petri Nets

Job scheduling can be solved using Petri nets. There are many ways to use Petri
nets for this purpose. Two approaches based on the scheduling analysis presented
in the previous section will be presented. Timed Petri nets are always necessary.

Pi2s22

Figure 14.3. Petri net representation of the scheduling solution

In the first approach, the binary timed safe Petri nets are considered, in which
the scheduled operations are associated with timed places (Lee and DiCesare 1995).
The timed places are mapped to times equal to the respective operation durations.
A token is blocked after arriving in the timed place during the corresponding
operation time. By convention, the operation time is expressed by the number of
time units. After expiration of the time the token is free for transition firing under
standard firing rules. Figure 14.3 shows a Petri net for the manufacturing cell
depicted in Figure 14.1 and for the work-plan given in Table 14.1. The work-plan
is cyclically repeated. It is assumed that there is sufficient stock of parts at the
input. The cycle is finished when both parts to be processed are at the output. Only
then does a new manufacturing cycle start. An alternative for a production
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optimization is to minimize the time (work-span) from start to end of one cycle.
The optimal solution of scheduling chosen from possible routings can be achieved
by means of the reachability graph. A time account has to be accomplished for the
timed places in the reachability graph. A change in the Petri net marking is
possible when the blocking time for some place has expired and some transition is
fireable.

The places py,, py, Stand for the input servers. Presence of a token in one of

them indicates that a part is available for processing. An analogous notation is used
for output. A timed place is denoted by p,,,; it corresponds to an operation

running in the job J; on the server S; in the step 1 and similarly for the rest of the
operations. The place p,, is an intermediate place used to avoid potential

deadlocks.

If the reachability graph is too large, a suitable heuristic decision technique can
be used to seek the optimum path, as in artificial intelligence methods. In such a
case, only a part of the reachability graph nodes is considered. The sequence of
nodes and the continuation towards the final node are selected according to some
heuristic rule. For example, the next node to proceed in the graph is the one
enabling unblocking at the earliest opportunity a timed place of the considered
node. Such similar heuristic rules provide very good results in practice.

Next, another way of using a Petri net is presented. Let a technological layout
shown in Figure 14.1 be used for the work-plan given in Table 14.3. X is the input
for the job J; , Y1 is the output, X; is the input for the job J, , Y is the output.

Table 14.3. Example of a work-plan to be realised in the manufacturing cell in Figure 14.1

Step Job J; Step Job J,
Operation Available at Operation Available at
1 o 51/ Sz 1 (o8 Sl
2 w, Ss 2 @, Ss

Table 14.4. Operation times in the manufacturing cell for the second example

Operation , w, N w,
Server S, S, Ss S S3
Duration 4 3 3 1 2

For this case operation times are given in Table 14.4. There are two Kinds of
parts to be processed simultaneously available at the input. A part of the first
(second) kind is processed into the first (second) kind of product.

As in the previous example, the optimum manufacturing is considered in terms
of the optimum of one production cycle. The servers perform the following
different operations in the respective steps:
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Q, {1K111’(2}:{a’1'w3}
Q, = {2’(1}: {wl} (14.9)
Q. =

3 {3’(1’3’(2}: {a)z,a)4}

and processing is executed by the following sequences:

0,=0,, 0, =, ® =(1K0r21c)31c
~1 = O Orz 1 @, 1 13 1) K1 (14.10)
0, =0, 0y =0; ®,= K, K,

A special class of Petri nets supporting operation scheduling analysis and
solution is defined in the following where the timed Petri net for the scheduling
problem is given by the 6-tuple

TPNS = (P,T,F,W, Mg, c, INH (14.11)

where P,T,F,M, are defined as usual. The function c:P — N* associates

capacities with places, INH c PxT is a set of inhibitors disabling transition

firings if the source node of an inhibitor has at least one token. Timing consists in
that the marking is a function of places and of the discrete time M :Px® — N,

0={9,9,..}, 0<9 <9, <...are discrete time points. W is a specially defined
function

W:F —{c(p,)} forpand vt, T forwhich (t,,p)eF,
F—{1} for ¥(pt,)eF

Firing of a transition t; in the TPNS Petri net is enabled iff
0=m, +t;<c, M, &Rppys(m,) (14.12)

where the actual marking M in the discrete time point 9, is aggregated into the
vector m, ; t; is a vector associated with the transition t; ; Rppys(m,) is a
reachability set. If the transition t; is firable (enabled), a new marking is obtained
according to the vector equation

My, =My +1; (14.13)

Consider a system SYST according to Equation (14.1), which can be
represented by the TPNS Petri net. The Petri net construction is as follows.
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Figure 14.4. The Petri net representing the required processing

Elements of the operation sequences o} , are associated with the TPNS places.
For each 0,, €Q;, v=12..r; i=12..]S|, a place denoted as 0,,S; is put
into the net. The place is given a capacity equal to 7, +1, where z; is given by
Equation (14.4). The arcs connecting the place o, S; with all places 0,,,,S; via

post-transitions are added to the net. According to the TPNS definition weights of
the arcs are 1 and (rik +1), respectively. Input and output servers are associated
with corresponding places. The TPNS Petri net construction is depicted in Figure
14.4.

Inhibitors are used to prevent a transition firing when a token is in the
respective place. Not to prevent the firing would be considered as a misuse of the
already occupied server.

The first step of the scheduling problem solution procedure is creation of the
system model SYST defined by Equation (14.1). Operation times z; are expressed
in terms of multiples of the basic sampling time period Az, whereby Az is
chosen as large as possible with respect to a sufficiently accurate representation of
the system dynamics.

The model SYST at Equation (14.1) is transformed into the TPNS Petri net. The
initial marking represents input availability of the objects to be processed. It is non-
zero for the places associated with the input servers. Initial marking of places
0,,S; is set to zero as well. Fireable transitions in the created TPNS Petri net are

fired in discrete time points, which are multiples of the basic time period Az, i.e.,
0, At, 2Az, ..., KAz, .... Prior to firing the transitions, the marking of each place
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0,,S; is decreased by one if M(o S )>1, otherwise it remains unchanged. After

pv =i
the marking is decreased, the fireable transitions are fired and a new marking is
obtained.

The obtained TPNS may contain conflicts reflecting existence of various
possibilities of how to perform the required operation sequences. Consider the
minimum time span criterion applied to the operation sequences. Hence the goal is
to find out preferences among the possible ways of performing the operation
sequence with respect to the specified cost function.

The optimization problem can be solved using the reachability graph of the
TPNS. The nodes of the graph correspond to the reachable markings m, . Possible

paths in the reachability graph corresponding to the individual required operation
sequences can be analyzed in order to select the best solution with respect to the
chosen criterion.

The described approach will be illustrated on an FMS layout with a required
work-plan defined in Table 14.3. As mentioned earlier, processing of the next pair
of input parts can start when both products are ready at the output. The goal is to
find the processing procedure requiring minimum overall time for processing one
pair of the parts. The reachability graph of the TPNS Petri net is in Figure 14.5.
There are three possible paths specifying the operation scheduling. The first, which
starts with the activation of transition t,, is the most time consuming. The other

two are better with respect to the minimum work-span criterion. The path starting
with tg is the best.

In this section an approach to the scheduling problem solution using a special
class of Petri nets is presented. It constitutes a framework to cope with the problem.
The drawback of the solution is a tremendous increase of the nodes number in the
reachability graph to be analyzed. One possibility to avoid this difficulty is to apply
heuristic searches as mentioned in the description of the first approach in this
section. The case of the dynamic processing of inputs during processing of the
previous ones can be solved following the presented framework, too.

14.3 Job Scheduling Based on the Max-plus Algebra

The job scheduling problem in Sections 14.1 and 14.2 was studied under the
restriction that each operation depends on one preceding and finished operation.
But frequently there can be the dependence on more operations. Such dependence
can be presented in a graphical form. Figure 14.6 shows an example. Circles
represent operations and arc weights given as real numbers represent the necessary
durations of the preceding operations, after which the next operation can start. For
example, the second operation can start when time equal to 3 from the start of the
first operation elapsed and time equal to 2 from the start of the third operation
elapsed. Note that the example is adopted from MoRig and Rehkop (1996).
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Figure 14.5. A reachability graph considering duration of operations
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Figure 14.6. Graphical representation of operation dependence

Note that there are no cycles in the graph in Figure 14.6. Such a situation will
be supposed in the sequel until another assumption is made.

The Petri net approach can be less effective if there is the operation dependence
described above. The so-called max-plus algebra may be more productive. The
max-plus algebra is used as a tool for modeling the time development operations
and the scheduling problem can be solved on the simulation basis trying different
operation setup.

The max-plus algebra [R,, .®,®]is defined by:

The fundamental set R,

Roae = R {00,400} (14.14)

max

where R is the set of real numbers; —oo,+c are additional elements, for
which

—m< X<+, VXeR (14.15)

The binary operation @ , defined as the maximum of two real numbers —
elements of R, , whereby the inequality at Equation (14.15) provides the

result of the operation @ for elements — co,+00.

The operation ® is commutative, associative, with the neutral element — o,
and is idempotent (Vae R, a®@ -0 =—0®a=a).

The binary operation ®, defined as

a®b=a+b, VabeR (14.16)

where + is the usual operation over the field of the real numbers [R,+,.].
For the additional elements —co,+c0 holds:
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a®-—00=—0®a=—w

a®+o=+0®a =+

+ 00 @ +00 =+ (14.17)
— 00 ® —00 = —00

+ 00 ® —00 = —00 ® +00 = —00
d. The operation ® is commutative, associative, and distributive over @ , i.e.,

va,b,ceR,,,, (a®b)®c=(a®c)d(b®c)
c®(adb)=(c®a)®(c®b) '

The following does not hold:
(a®b)@c=(a®c)®(b@c)
for example, if

a=2,b=3,c=6,(2®3)®6=max[(2+3)6]=6=(2®6)®(306)=
max[2,6]+ max(3,6]=6+ 6 =12

The neutral element in the operation ®is 0, as it is in the field of real
numbers. The following holds —co+0=—0, + 0+ 0=+ .

From the viewpoint of algebraic structure theory the max-plus algebra
[Rmax,@,(@] as defined above is a special commutative field (sometimes simply
called the field). It is because R, .®®] is a ring where R, .®] is a monoid
and [R,,, —{—o0+0},®] is a commutative group. In other words, [R,®] is a

commutative group.
The max-plus algebra can be extended to the fundamental set of matrices M.
Let the matrix entries be elements of R, . The operation © then

max ?

(A®B); =3, @b, (14.18)

where ga; is the entry in the i-th row and the j-th column of the matrix A,

A € (Rmax )mxr ! B € (Rmax )mxr "
The operation ® is given by

r

(A®B); = 9:91( & ®by ): mfx(aik ®by ) ARy )™ B e(Rpw )™
(14.19)
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The max-plus algebra [M,®,®] has the same properties as [R,,,,®,®] except
for the neutral element in @ being the matrix
The neutral element in ® is the matrix
. . 0 fori=]j
I=(i} i = T 14.21
(i), {_wfor,ﬂ (1421)

The dependence of an operation on the others can be expressed by the equation

X = m?x( a; + xj) (14.22)

where X; is the start time of the j-th operation preceding the i-th operation, a; is
the time necessary to run the j-th operation before the i-th operation starts. Because
the i-th operation depends on several operations, the start of X; is given by

Equation (14.22) as the maximum time of the preceding operation starts and the
operation durations.

The diagrams in Figure 14.7 illustrate the meaning of Equation (14.22). The 3"
operation can start only when the times a,, and a,, of the 1% and 2" operations

respectively have elapsed. The starting point of the 3 operation is then
Xg = max(xi, x’z): X, (14.23)
Using the max-plus algebra

x =(a; ®x,; Jola, ®x, )o..0(, ®x,) (14.24)

ik

Moreover, it is possible to extend Equation (14.22) by an additional time
condition, namely that the i-th operation cannot start before a given time point u; .
It can be either u; > x; where x; is calculated by Equation (14.22) and then the i-th

operation starts in u;, or u; < x; and then the i-th operation starts in x;. Extension
of Equation (14.22) is as follows:

X = max(aij + xj,ui) (14.25)
]

In terms of the max-plus algebra

X; :(aijl ®le )@(aijz ®xj2 )@....@(a.. ®xjk )@u.

i i

(14.26)
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N

3" operation

2" operation

1% operation

>
X1 X2 X Xy = X3 t
Figure 14.7. Dependence of operations
Using the matrix the dependence of n operations can be expressed as follows:
"% &y &y - - . Ay "y, b, b, . . . by Uy
"X, Ay 8y - - 8y r-1X2 by by .o..by, u,
= ® ® ®
' Xn anl anZ . . . ann r—an bnl bn2 bnn un
(14.27)
or shortly
x=(A® “X)e(B®u) (14.28)

where r denotes the r-th step of the iterative operation dependence. Recall that the
dependence is without feedback loops, i.e., without cycles in the graph
representation. One starts with the step for r=2 and r—1=1 and continues with
r:=r+1. If there is no dependence between the j-th and i-th operation, the entry

a; in the matrix A is equal — . According to Equation (14.27) dependent

operations are associated with the rows of the matrix (index i). Entries of matrix B
are 0 or —o . In the former case an additional time condition is put into force, in
the latter there is no additional condition on the start. If there is no forced starting
condition Uu; is set to zero as illustrated in the accompanying example. Equation

(14.28) represents the state equation of the system with operation dependence.
In the example the state equation without additional starting conditions (Figure
14.6) is considered:
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X, -0 —0 —0 — X,
"X 3 -0 2 - Iy
. 2= ® 2 (14.29)
Xq 2 —o —0 —o© X,
rx4 4 1 5 - r‘1x4

The neutral element —oo for the operation @ is used when there is no
dependence between two operations. The starting time point for the first operation

issetto 'x, =0; e.g.,
= (38, )@ (- 0 X, )@ (287X, )@ (- 0@, ) = (30 X, )@ (287X, )
is a dependence, which can be verified by the graph in Figure 14.6.

The development of the state equation is possible considering n operations in
the system

"ix)e (B®U)

(A® x)@(BoU)o(BOU)

=(a2® " x)e(A®BOU)®(BOU)

= (a2 (( ®”3) (Bou)e(AeBoU)e(BOU))
=((a*® —x)o(a* @ (BEU)e(A®BEU)D(BOU)

=((An ® *x)o(A™ @ (Bou)® (A ®(Bou)e...e (Bou))
-(Arex)e(Am @A @ . .0 1)eB U
(14.30)

Entries of the matrix A" are the maximum weight sums of the paths of the
length n between the column and row operation pairs of the graph nodes. As there
are no cycles in the graph

—o0 —00 —00 —

A'=N=| =~ (14.31)

so that
-(AmeA 0. .01)eBou (14.32)

In our example
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‘x=(A*0A’@A®I)®BOU (14.33)
0 -0 —o —o® 0 - —o —o© 0

4 4 0 2 - -0 0 -0 - 0

X = ® ® (14.34)
2 —o 0 - -0 —o 0 -—-w 0
7 1 5 0 —w —w - 0 0

where the first operation starts in time 0 and setting the entries of u to zero means
that there is no forced starting condition applied. According to Equation (14.34)

‘x| (0
4
4
‘x=| 2= (14.35)
Xs 2
4X4 7

Time developments of operations are depicted in Figure 14.8.
Let the first and the second operation has the forced starting points u, and u,,

u, =6, u, =11. Then Equation (14.30) becomes

4)(l 0 -0 —o —w 0 -0 —o —w u,
4 4 0 2 - - 0 - - u
e |- = © 7% el 2| (14.36)
X3 2 —o 0 - —® —0 —00 —
4X4 7 1 5 0 —® —00 —00 —00 0
% 0®u
4 4Qu,)Du
4X2 _ ( 1) 2 (14.37)
X 20u,
%, ) (Tou)eleu,)
and the result is
‘x| (6
4 11
E (14.38)
Xg 8
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A

4™ operation

3" operation

2" operation

|

1% operation |

l

X1 X3 X2 X4 t
Figure 14.8. The development of operations

Figure 14.9 shows the operation diagrams in case of additional starting conditions.
Additional starting conditions can be utilized in the solution when the graph of
the operation dependences illustrated in Figure 14.6 contains cycles. The values of
the vector u are changing during the steps of the iterative process analogous to
Equation (14.30) and depend on the operation starting points according to the

function "u=R "!x where R is a transfer matrix. The reader can learn more in

(Dorn and MoRig 1997), and from the references listed therein. Optimal scheduling
solution can be found by simulation approaches based on models obtained with the
described method and by changing the system structure.

4" operation

|

3" operation

[

2" operation

1% operation

1

X1 X3 X2 X4

t

Figure 14.9. Development of operations under additional starting conditions

14.4 Problems and Exercises

14.1. An actual technological process in a manufacturing system with two
processing machines is given in the following table.
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Technologic steps Jobs
J J
1 M/M, M;
2 M, My/M,

The same input semi-products are manufactured in both jobs. Find an optimal
process assuming that both jobs always start simultaneously. The start is possible
whenever both products are at the output. Optimum is decided on the operation
time basis according to the following table.

Operation Duration
Olll 2
O112 1
O122 3
O212 2
O221 1
0222 2

Create a Petri net necessary for use of the heuristic scheduling method where
the schedule is searched for using the function f(m)=g(m)+h(m). mis a

marking vector, g the shortest time to reach m, and h is the minimum time to be
left of the remaining times to the end of the running operations in the state
corresponding to m. On about 10 nodes of the reachability graph show the use of
the method.

14.2. Apply the max-plus algebra on the planning of the design activities
characterized by the following figure.

Al 2 AZ

Az A
Figure 14.9. A graph of the design activities and their dependences

Durations in the graph is in time units, e.g., months. Find when the whole design
process could be on earliest finished using the max-plus algebra approach.
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14.3. Duration of the processes in the distributed computer network and their
dependences are depicted in Figure 14.10. Write the state equation of the process
starts in term of the max-plus algebra. Calculate times when earliest can start
separate processes.

Py

Ps P2

Figure 14.10. Dependences of the processes in the distributed computer network
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acceptor 49

accessible 65, 270, 276, 277
definition 269

ACT_T 238

action 165, 212

activated 164

active 162, 165, 209, 242
state 69

active step 162

acyclic 199

Ada 234

adaptive Petri net 195, 197

AGV  see automatic guided vehicle

airport traffic 291

alphabet 33, 34, 50

ALPHIC 235

antecedent proposition 196

APN  see adaptive Petri net

artificial intelligence 310

artificial neural network 195

assembly cell 213

assembly Petri net 157

augmented marked graph 157

augmented marking 118

automated manufacturing system
example 99

automatic control 4

automatic guided vehicle
system 188

190, 285

back-propagation algorithm 200
BASIC 235

basic design modules 223
behavior 84
restriction 263
binary fuzzy operation 191
binary operation
® 315
associativity 315
commutativity 315
® 315
associativity 316
commutativity 316
binary Petri net 93
binary Petri net model 239
binary relation 5
bipartite oriented graph 162
bipartite oriented labeled mathematical
graph 169
BIT 235
blocking 219
Boolean algebra 13
Boolean variable 246

bottleneck
analysis 180
cycle 179

example 180
bottom-up 218
bounded fair 128
bounded Petri Net 218
example 126
boundedness 115, 153, 218
branch 163
branching 65
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branching operation conflicts 229

CALL 235
cardinality 137
Cartesian product 6, 49
CASE-ALT-OUT-FIN 235
certainty factor 196
CHARACTER 235
choice 228

Petrinet 221
circle 23
CLOCK 235
co-accessible 270, 276, 277

definition 269
co-domain 5, 306
color 177,185

set 187

type 187
colored Petrinet 92, 177, 185, 188
commutative field 316
commutative group 316
compiler 235
complex 186
composition method 219
concatenation 17, 38
concurrency 149, 212, 217
concurrent 151
condition 164
conflict 152, 204, 225, 248
conjunctive rule 196
connected 27
consequent 196
conservativeness 129
context grammar 37
context-free grammar 37
context-free languages 37
continuous system 1
continuous-variable dynamic system

1

control 42,55

action 44

automaton 58, 274

command 96

engineering 4

finite automata

example 65
function 42

performance 42
place 293
program 46, 234
example 243
requirement 293
specification 162, 234
system 42, 46, 56, 188
design 46
variable 42,43
controllability 263
controllable 262, 264
controllable event 262
controlled system 4, 65, 262
convex possibility distribution 192
coordination 223, 305
coverability graph 118
construction algorithm 122
definition 119
example 121
node 120
covered 116
CPN Tools 206
CP-net 185,190
Cramer’srule 142
CVDS see continuous-variable
dynamic system
cycle 27
cycle time 179
cycle time reduction 180
cyclic behavior 217
cyclic repetition 63
cyclic sampling 64

A-incidence matrix 134, 135, 137,

140, 152, 287
data 235
database system 305
DCL 235

deactivated 164

deactivation 165

dead 125,153

dead marking 115, 152

deadlock 204, 270

decision block 63

decision-free choice Petri net 221
declaration 186

DECLARE 235



DEDS see discrete-event dynamic
system
default state 212
deterministic 92
deterministic finite automaton
example 51
with outputs 55, 56, 57, 280
Deterministic Stochastic Petri Nets
181
see deterministic finite
automaton
see deterministic finite
automaton with outputs
DID_IO_INIT 245
digraph 25
dimensionality problem 282
direct loop 85, 86
directed arc 23
directed bi-partite labeled simple graph
80
directed cycle 27
directed multigraph 28
directed path 27
disassembly Petri net 157
discrete-event dynamic system 3, 34,
41,217, 261
example 13
discrete event systems 3
discrete process 6, 42
discrete system 1
discrete variable 5
disjunctive 24, 228
distributed computer system 305
distribution AND 163
distribution OR 164
distributive 319
divergence OR 165
DSPN  see Deterministic Stochastic
Petri Nets
durable 212
DURATION 235
dynamic behavior 81

49, 50

DFA

DFAO

electro-pneumatic motion drive 250
elementary control task 219
elementary net 250

elementary non-binary Petri net

Index 335

example 250
elementary Petri net 247
elementary SCSM 220
elementary structures 227
elimination method 228
empty sequence 33
empty set 49
empty word 35
enabled 70
definition 78
END 238
enumeration 179
ESPN  see Extended Stochastic Petri
Net
event 4,12, 33, 44, 164, 210, 261
graph 93
string 262
event-driven system 3
exceptions 235
exclusive-or activities 210
executable 115
expert system
example 199
exponential computational complexity
179
exponentially distributed 180
Extended Stochastic Petri Net 181
external event 234

fairness 128

feedback 43

feedback control structure 43

feedback system 217

field 319

filling and mixing system 111

final state 49, 52

finite automaton

261

example 52,131
with outputs 281

finite-capacity Petri net 99
example 101

finite-state machine 37

fireability 81, 87, 108

10, 38, 49, 64, 69,

fireable 78, 96, 108, 164, 178
firing 70,78
rate 180
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rule 70 graph component 25
threshold 196 graph node 178
first-level Petri net 220 GreatSPN 203
FIXED 235 GSPN  see Generalized Stochastic
flexibility 307 Petri Net
flexible 8

flexible manufacturing system, 52, 305 . . .
example 82, 89, 96, 232 Heuristic decision technique 310

heuristic rule 310
1":|Ic_>vov€r-l1—art 2323 h!erarch?cal dec_ompositio_n 219
hierarchically higher Petrinet 219
higher-level Petri net 219
high-level Petrinet 185
homogenous equation 284

flow diagram 46, 63
flow relation 77
FMS  see flexible manufacturing

system :
FOR— FROM _ BY - TO—REPEAT  'Wbrid system * 2
—-END 235
formal grammar 34, 36 idempotent 315
example 36 IF-THEN -ELSE-FIN 235
formal language 10, 33, 50 immediate transition 181
example 34 immediately reachable 79
generator 50 impulse 165
Forth 234 action 166
free-choice net 93 IN 235
example 95 INA 204
Frobenius theorem 135 inactive 162
function 49 incidence matrix 25, 82
fuzziness 191 incidentor 87, 228
fuzzy logic 195 example 90, 112, 231
fuzzy number 191, 194 incoming arc 231
fuzzy operation 191 independency 212
fuzzy Petrinet 191 inhibitor 87, 228, 312
fuzzy production rule 195 arc 220
fuzzy reasoning 198 example 88, 90, 112, 242
fuzzy set 60, 191 initial element 35
fuzzy set theory 191 initial marking 77, 187
fuzzy temporal relation 192 definition 79
fuzzy time point 192 example 194
fuzzy token 192 initial state 49, 187
initial step 163
general one-transition structure 237 INOUT 235
Generalized Stochastic Petri Net 181,  input 44
203 function 79
generation rule 37 place 72,77
generator 50 step 166
GET 235 interrupt 64, 234
grafcet 162 mechanism 65

Grafcet 10, 161, 169 intersect 228



j-bounded 115

job realization 226
job scheduling 305
join 163

junction AND 163
junction OR 164

keyword 245
Kleene closure 39
knowledge-based system 195

LO-live 125,153
L1-live 125,153
L2-live 125,153
L3-live 125,153
L4-live 125, 153
ladder diagram 246

example 251
ladder logic diagram 10, 234
language

example 36
language generator 269
learning 202

law 202

rate 202
length 33,50
level 165

action 165

kind 212
live 125,153,218
livelock 270
liveness 124,218

example 125

Lk-live 125
logic expression 164
looping 65

macrostep 166
manufacturing cell 69
example 173, 298
manufacturing line 240
example 185
manufacturing system 307
example 6, 8, 299
marked 156, 238
marked graph 93, 178, 224, 227
marked language 50, 51
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marked trap 157
marking

definition 77

reachability 107
Markov chain 181, 183
matrix representation 85
maximally permissive 284
maximum strongly connected

subdigraph 28

max-plus algebra 10, 315
membership function 191
merging operation conflict 229
minimal 157
minimum cycle time 179
modeling power 87
modularity 234

module 235
monoid 316
multiplicity 28
multiset 28

Nassi-Schneiderman’s structogramme
111
net
definition 76
inscription 186
structure 186
neural network 200, 202
neutral element 319
node 23
non-deterministic finite automaton
60
non-directed graph 24
non-labeled digraph 23
non-marked 238
non-terminal element 34

object 1

Occam 234

operation 306
dependence 315
scheduling 305
time 312

operational block 63

ordinary Petri net 93, 188

oriented arc 87

orthogonal state 212
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OuT 235
outgoing arc 228
output 44, 56
output function 56
definition 79
example 59
place 77
step 166

P/T Petrinet 186
parallel 65
parallel mutual exclusion 221
parallel Petri net 221
parallel places 219
parallel processes 234
parallel transitions 219
parallelism 149
partial control action 242
partial function 49
partial injection mapping 272
partial subdigraph 26
partial transition function 50
path 27,50
PC 96
PCB  see printed circuit board
PCN 295
pcontr 262
PEARL 234
performance analysis 179
persistent 128
Petrinet 10, 25, 69, 169, 217, 261
basic structure 248
definition 77
example 71,132,241
for control
example 233
interpreted for control 91, 96,
169, 213, 218, 237, 295
interpreted for DEDS control 95
model 220
example 74,225
state machine 92
structure 227
with capacities 92
P-invariant 134
method 290
support 136

vector 284
piston motion system 252
place 72,76
place delay function 178
place-invariant 283
PLC see programmable logic
controller
polling 65
post-place 108, 178
post-set 156
post-step 164, 165
post-transition 95
power set 60
prefix 263
closed language 263
example 264
language 263
pre-place 78, 95, 108, 178, 229
preset 77
pre-set 156
pre-step 164
PREVENT 238
printed circuit board 90
PROBLEM 235
problem division 235
PROCEDURE 235
process 1
control 261
synchronization 234
product of automata 61
production execution time 185
production Petri net 157
productionrule 35
productivity 179
program module 235
programmable logic controller 161,
247
programming language 234
prohibited state 262
proper subdigraph 26
pure 86
pure Petri net 85, 108
push-down automata 37
PUT 235

random variable 180
randomly distributed time 183



rank 284
reachability 152
graph 107, 109, 296, 310
construction algorithm 110
example 113, 126, 183, 314
set 79,109
example 115
reachable 79, 95, 107, 109, 152, 218
reactive flow diagram 10, 256
reactive program 45, 46, 64, 234
reactive system 212
READ 235
realizable 261
realizable transition invariant 204
real-time operating system 234
real-time programming language
238
receptivity 164
refined Petri net model 224
refinement 212
regular expression
example 39
regular grammar 38
regular language 38, 58
relation 5
repetitive 64
requirements 262
resource sharing 221
resource-oriented modeling method
100
RETURN 235
reversibility 127, 155, 218
reversible 137, 155, 218
definition 127
reward function 203
robotic cell 41, 232
robotic manufacturing cell
example 233
robotized manufacturing system 60
root 29,109
route optimization problem 188
routes 308
rule
example 37
rung 247,248

38, 58

70, 138

Index 339

safe 170
safe Petri net 95
sampling frequency 66
scheduling analysis 309
SCSM  see strongly connected binary
Petri net state machine
self-loop 220
self-loop places 219
self-loop transitions 219
SEMA 235
SEND 235
separator 56
sequence 33, 261
sequence Petrinet 221
Sequential Function Chart 161
serial mutual exclusion 221
series places 219
series transitions 219
shared resource 185
shuffle automaton 64, 276
sigmoid function 198
simple labeled directed mathematical
graph 24,109
simple non-labeled digraph 25
simple non-labeled directed
mathematical graph 23
simple path 27
sink 164
siphon 156
source 164
SPC 235
specification 42,217
SPECIFY 235
SPNP 203
SRN  see stochastic reward net
standard Petri net 177
standard single-layer neural network
201
state 4, 11, 49, 209
encapsulation 209
equation 319
hierarchy 209

Space 282
transfer 210
variable 41,44
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statechart 10, 209

state-event 60

STATEMATE 212

step 162

stochastic 92

stochastic reward net 203

stochastic timed Petri net 180

strict 163

strict minimal siphon 163

strictly conservative 131

string 33, 50, 261

strong component 28

strongly connected 27,178

strongly connected binary Petri net
state machine 219

STRUCT 235

structural property 161

structural purity condition 85

structurally bounded 161

structurally live 156

structure 84

subdigraph 26

subgraph 25

sub-language 261

submarine system 297

subnet 185

subprogram block 63

subsystem 43

superstate 209

supervisory control 261

supplementary control place 283

supplementary controller 284

supplementary place 283

support 136

supremal controllable sublanguage
265, 274, 279

supremal sublanguage 270, 274

supremum 192, 266

symbol 34

synchronization 93, 162, 217, 219,
220

synchronized Petrinet 96

syntax rule 235

syntax sign 245

system 1,2,42
behavior 42
deadlock 115
state 44
throughput 184

SYSTEM 235

TAKE 235
tardiness 305
TASK 236
temporal logic 10
terminal element 34
TERMINATE 238
time delay 180
time diagram 45, 166
timed 92
timed binary marked graph 178
timed marked graph 178
example 180
timed Petri net 309
timed place 310
timed transition 181
time-dependent 42
time-driven systems 3
T-invariant 134
token 72,77,178
example 82
top-down 218
top-down approach 220
top-down refinement 220
TPNS 312
transfer matrix 321
transformation program 63
transit 212
transition 11, 12, 49, 65, 76, 162,
248
basic model 11
basic system 209
firing 70
sequence 107
time function 178
function 52, 60
rate matrix 183
transport system 285



trap 156, 204
tree 29
triangular form 193
trim 270
automaton
example 277
definition 269
finite automata 271
type O grammar 37
type 1 grammar 37

unbounded Petri net 116

example 116
unboundedness 152
uncertainty 60
uncontrollable event 262, 288
union 38, 65

Index 341

universe of discourse 191
unreachable 118
utilization 305

vertices 23

weight function 77
Weighted Fuzzy Production Rule
195

word 33

generation 35
work-plans 306
work-span 8
WRITE 235
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