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Foreword

Have you ever started using a new tool and shortly thereafter wondered how
in the world you ever got along without it? Well, that is how I feel about this
book, and many of my technical compatriots here at Dell Computer Corpora-
tion would agree. Let's face it, the fast moving computer world is treacherous
and follows Darwin's Law of Survival of the Fittest, where the strong survive
and the weak get eaten. Don Anderson and Tom Shanley have provided you
with a mechanism to maximize your chances of survival in this exciting world
of computers.

ISA System Architecture is what I call the missing link. There exist many com-
plementary tools to this book such as various chip data books, programming
manuals, “light” architecture books, “how to” books, logic analyzers, scopes,
debuggers, digital logic textbooks and so forth, but none that describe the AT
architecture from a system point of view in such an organized and understand-
able fashion. All of the fundamental and critical areas of a functional ISA sys-
tem are explained in detail with diagrams and examples including bus cycles,
addressing, [/O and memory, decode logic, reset logic, power-up, microproc-
essors, the system kernel, RAM, cache, ROM, interrupts, DMA, busmastering,
RTC and configuration RAM, keyboard/mouse interface, coprocessor, timers,
and more. Ergo, you've got a comprehensive reference on AT system function-
ality; you've got the missing link.

We were fortunate to have Don and Tom conduct several training classes based
on this book here at Dell (and continue to do so). Members of my group consist
of engineers and technicians who are first to test systems after they leave de-
velopment; we perform a variety of tests including hardware, software, and
environmental tests. The information obtained from this class and book was
excellent, but what was pleasantly surprising was the reaction of the folks who
attended these sessions. During the classes and right after, there were people
throughout the lab with big grins saying something to the effect of “This is
great. I've been wanting to tie all of this information together so I could not
only understand it fully, but put it to good use.” And they have put the infor-
mation to good use, which has helped us improve our process and test smarter.

This book is quite valuable as a training tool. The first technical literature that a
new engineer or technician in my group studies is this book. This allows him or
her to learn not only the system but the fundamentals required to test and
troubleshoot a system in the most efficient way. Many technical managers in
other groups here such as design, manufacturing, sustaining, technical support,
and repair use this book in a similar manner. As a matter of fact, training
classes using this book are available on a fairly regular basis within our entire
organization. Not only do our technical people have a sound foundation on the
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building blocks of a system, but throughout the company, the terminology
used is consistent. A BALE is a BALE is a BALE throughout the company.

Finally, I'd like to expand on the concept of testing smarter and improving your
process. All of us in this business know that we must improve our processes to
successfully compete. We need to decrease our time-to-market cycles, perform
more complex processes in this shorter time period, and achieve this improve-
ment on increasingly complex products. This is a real, not imaginary, burden to
bear! However, if implemented successfully, the benefits ['ve mentioned can be
attained in addition to improved methods and throughput, better troubleshoot-
ing techniques, reduction in field returns, and an increase in customer service
quality. Quite simply, this text can be used as a part of this process.

In closing, I'd like to commend Don and Tom for a job well done. There is no
doubt that their blood, sweat and tears have produced an immensely valuable
technical work that they can well be proud of. The book is an invaluable tool
and reference on ISA architecture and time reading it is time well spent. You
might just end up wondering how you ever got along without it!

Dave Greenberg B.S.E.E, C.Q.E.
Managet, Test Operations
Dell Computer Corporation
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Organization of This Book

ISA System Architecture is divided into three parts:

Part 1: The System Kernel. This section provides a detailed tutorial on
how Intel X86 microprocessors communicate with memory and I/0 de-
vices. Included is the support logic which allows the microprocessor to
communicate with 8- and 16-bit devices and detailed descriptions of the
signals and timing involved in all Bus Cycle types.

Part 2: Memory Subsystems. The memory section provides a detailed the-
ory of operation of RAM and ROM devices, along with implementations
commonly used in ISA systems. The section also covers the concepts and
terminology related to cache memory designs.

Part 3: The Industry Standard Architecture. This section provides a de-
tailed discussion of the ISA Bus Architecture including ISA bus cycles and
timing, along with ISA implementations of Interrupts, DMA, Real-Time
Clock and Configuration RAM, Numeric Coprocessors, Keyboard/Mouse
Interface, and Timers.

Who This Book Is For

This book is intended for use by hardware and software design and support
personnel. Due to the clear, concise explanatory methods used to describe each
subject, personnel outside of the design field may also find the text useful.

Prerequisite Knowledge

The approach taken by this book assumes moderate technical knowledge on
the part of the technical audience. It is assumed that the reader has had expo-
sure to PCs in a technical capacity (hardware designer, programmer, technical
support, repair, and so on). Familiarity with the binary and hexadecimal num-
bering systems and their application to electronic computing is essential. To en-
sure an optimum level of understanding, every attempt is made to explain
terminology as it is encountered and to avoid mystifying terms.




About This Book

Documentation Conventions

This section defines the typographical conventions used throughout this book.

Hex Notation

All hex numbers are followed by an “h.” Examples:

9A4Eh
0100h

Binary Notation

All binary numbers are followed by a “b.” Examples:

0001 0101b
01lb

Decimal Notation

When required for clarity, all decimal numbers are followed by a “d.” Exam-
ples:

256d
1284

Signal Name Representation

Fach signal that assumes the logic low state when asserted is followed by a
pound sign (#). As an example, the REFRESH# signal is asserted low when the
refresh logic runs a refresh bus cycle.

Signals that are not followed by a pound sign are asserted when they assume
the logic high state. As an example, DREQ3 is asserted high to indicate that a
device using DMA Channel three is ready for data to be transferred.
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Identification of Bit Fields (logical groups of bits or
signals)

All bit fields are designated as follows:
[X:Y]
where “X” is the most-significant bit and “Y” is the least-significant bit of the

field. As an example, the ISA data bus consists of SD[15:0], where SD15 is the
most-significant and SDO the least-significant bit of the field.

We Want Your Feedback

MindShare values your comments and suggestions. You can contact us via
mail, phone, fax or internet email.

Phone (800) 633-1440
Fax (719) 487-1434
Email tom@mindshare.com

Web Site

Because we are constantly on the road teaching, we can be difficult to get hold
of. To help alleviate problems associated with our migratory habits, we have a
web site to supply the following services:

e Download course abstracts.

e Download tables of contents of each book in the series.
e Facility to inquire about public architecture seminars.
e  Facility to view book errata and clarifications.

Web Site: www.mindshare.com

Mailing Address

MindShare, Inc.
4285 Slash Pine Dr.
Colorado Springs, CO 80908




Overview

This book details the operation of ISA systems. Figure 1 below illustrates most

of the subsystems covered. The book is divided into three major parts:

¢ The System Kernel

e  Memory Subsystems

¢ The Industry Standard Architecture
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Figure 1. Simplified Block Diagram of Typical ISA System
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In addition to detailed analysis of the hardware, many programming examples
are covered with the purpose of tying the software and hardware together. This
provides a very comprehensive understanding of system operation.

Refer to figure 1 during the following discussion of each major section.

System Kernel

The system kernel consists of the microprocessor and bus control logic, as well
as other support circuitry not shown in figure 1. The kernel provides the basic
signal, timing and protocols necessary for the microprocessor to communicate
with the rest of the system.

This section provides a detailed tutorial on how Intel X86 microprocessors
communicate with memory and I/O devices. Included is the support logic
which allows the microprocessor to communicate with 8- and 16-bit devices
and detailed descriptions of the signals and timing involved in all Bus Cycle

types.

Several kernel implementations are possible with ISA systems depending on
the exact processor used. Since ISA Architecture is based on the 8SMHz IBM
PC/AT, the initial kernel discussion is based on the Intel 80286 microprocessor
running at 8MHz. 80286 microprocessors running at speeds faster than 8MHz
require slight modification to the kernel. More drastic changes are required
when using an 80386, 80486 or Pentium microprocessor in ISA systems. All ma-
jor variations to kernel design and implementation are covered. Note that a
thorough understanding of the 80286 kernel is essential before studying the
80386 kernel and that a thorough understanding of the 80386 kernel is essential
before studying the 80486 and Pentium processors.

Memory Subsystems

Memory subsystems include main system memory, system ROM, and cache
memory (not shown in figure 1). Design of the memory subsystem is key to ob-
taining maximum system performance at a reasonable price. A wide variety of
memory devices are used in ISA systems to achieve high yet economical per-
formance. Along with these devices come various memory architectures also
designed to increase system performance.




Overview

The memory section provides a detailed theory of operation of RAM and ROM
devices, along with implementations commonly used in ISA systems. The sec-
tion also covers the concepts and terminology related to cache memory designs.

ISA Subsystem

The ISA subsystem includes the bus structures and standard devices used in all
ISA systems. The ISA buses operate at speeds of 8MHz to 8.33MHz and in-
clude ability to communicate with both 8- and 16-bit devices. By having a range
of allowable bus speeds, the system designer can easily divide the microproces-
sor’s clock frequency down to the ISA clock frequency. Specific functions com-
mon to all ISA systems include Direct Memory Access (DMA), Interrupts,
Keyboard, Real-Time Clock (RTC) and Configuration RAM, and the ISA Tim-
ers. Each of these functions must operate according to ISA standards.

This section provides a detailed discussion of the ISA Bus Architecture includ-
ing ISA bus cycles and timing, along with ISA implementations of Interrupts,
DMA, Real-Time Clock and Configuration RAM, Numeric Coprocessors, Key-
board /Mouse Interface, and Timers.

Some functions within ISA systems can be implemented in different ways de-
pending on manufacturer preference, while others must conform to precise ISA
standards. Items that can be implemented in different ways are described in
general and followed by specific examples that have been chosen based on
common or most recent implementations.

Origins of ISA

The IBM PC

The ISA bus structure is based partially on the first Intel-based PC: the IBM PC.
The original PC used an Intel 8088 running at 4.77MHz, limiting the expansion
bus for this system to eight data lines and twenty address lines. Subsequent de-
signs of the PC included support for features such as fixed disk drives, but the
bus structure remained the same to ensure continuing compatibility for a grow-
ing number of expansion devices.
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The IBM PC/AT

The Intel 80286-based PC/AT maintained compatibility with the PC and of-
fered additional capability. IBM designed the PC/AT so that 8-bit boards used
in the original PC could work in the PC/AT. To accommodate the sixteen data
lines and twenty-four address lines of the Intel 80286, IBM designed an addi-
tional connector to extend the 8-bit PC connector. These two connectors became
the new industry standard.

System compatibility with ISA was originally based on the 8MHz IBM PC/AT;
however, no written specification on the system architecture was available. The
acid test for software and hardware compatibility was “if it ran on the 8MHz
PC/AT it was compatible.” That is, if software and hardware ran successfully
on a PC/AT it should also run on a compatible machine. The lack of a standard
however, created numerous problems for designers of both software and
hardware.

The ISA Concept

The signals found on each ISA slot can be divided into three basic categories:

¢ The Address Bus group
¢ The Control Bus group
e The Data Bus group

These signal groups are present on the 8- and 16-bit expansion slots found in all
ISA-compatible and IBM PC products. In an ISA system, each of these signal
groups has been extended to provide additional capability not found in the
IBM PC and PC/XT architecture.

The ISA standard encompasses more than just the structure of the expansion
connectors. The ISA system must also provide support logic for interrupt han-
dling, direct memory access, timers, error handling, the keyboard interface, and
configuration RAM. Additionally, the IBM PC/AT and ISA compatibles, pro-
vide limited support for bus mastering. The following chapters provide de-
tailed information regarding every aspect of the ISA architecture.




Part 1

The System Kernel

Part 1 covers the background information necessary to an understanding of the
material covered in Parts 2 and 3. The focus is on the mechanism used by mi-

croprocessors in the Intel X86 family when communicating with memory and
I/0 devices.

Part 1 includes the following chapters:

e Chapter 1: Intro To Microprocessor Communications
e Chapter 2: Introduction To the Bus Cycle

e Chapter 3: Addressing I/O and Memory

e Chapter 4: The Address Decode Logic

e Chapter 5: The 80286 Microprocessor

e Chapter 6: The Reset Logic

e Chapter 7: The Power-Up Sequence

e Chapter 8: The 80286 System Kernel

¢ Chapter 9: Detailed View of the 80286 Bus cycle

e Chapter 10: The 80386DX and SX Microprocessors
e Chapter 11: The 80386 System Kernel







Chapter 1: Intro to Microprocessor Communications

Chapter 1

This Chapter

This chapter defines the microprocessor's role in the system, the usage of mem-
ory, and defines the role of the address, control and data buses.

The Next Chapter

The next chapter, “Introduction to the Bus Cycle,” introduces the concept of the
bus cycle and defines the basic sequence of events when the microprocessor
uses a bus cycle to communicate with memory or an I/0O device.

Instruction Fetch and Execution

General

The microprocessor is an engine with only one task in life — to continually
read instructions from memory and execute them (perform the operations
specified by the instructions).

An instruction tells the microprocessor to perform one of three basic types of
operations:

e Read data from an external device.

e  Write data to an external device.

e Perform an internal operation that doesn't involve reading from or writing
to the outside world (such as math functions).

Note — As used in this book, the term external device refers to a device exter-
nal to the microprocessor chip itself. Refer to figure 1-1.

The instructions fetched (read) from memory tell the microprocessor what to
do. When a microprocessor-based system is initially powered up, the micro-
processor knows what address in memory to fetch (read) its first instruction
from. This location is known as the power-on restart address. A group of in-
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structions that cause the microprocessor to perform a particular task is referred
to as a program. After fetching the first instruction from the restart address, the
microprocessor is totally dependent on the program to tell it what to do.

In a properly functioning system, the microprocessor is never idle. At any
given moment in time, the microprocessor is reading data from an external de-
vice, writing data to an external device, or executing an instruction that doesn't
require that a read or write take place (for example, an instruction to add the
contents of two of the microprocessor's internal registers together).

The microprocessor communicates with all external devices by reading data
from them or writing data to them. The terms read and write are extremely im-
portant in any discussion of microprocessors. Always think of reading and
writing from the point of view of the microprocessor rather than from that of
the device the microprocessor is communicating with. The microprocessor does
the reading and writing. Devices are read from and written to by the micro-
processor. If you think of the terms read and write from the device's point of
view, much of the information in this book will not make sense.

12
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Figure 1-1. Microprocessor’s Relationship to External Devices

In-Line Code Fetching

When a microprocessor fetches an instruction from a memory location and exe-
cutes it, the address of the next instruction may or may not be specified as part
of the currently executing instruction.

Case 1: The currently executing instruction doesn't specify the memory
address of the next instruction. The microprocessor automatically
assumes the next instruction is to be fetched from the next sequential
memory location.

or

Case 2: The currently executing instruction specifies the memory address of
the next instruction. Execution of the instruction, called a jump
instruction, causes the microprocessor to alter its program flow (which
is usually sequential). Rather than fetching its next instruction from the
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next sequential memory location, the microprocessor fetches it from the
memory location specified by the instruction.

After executing a JUMP instruction, the microprocessor resumes fetching in-
structions from sequential memory locations until another JUMP instruction is
executed. Most well-written programs do not contain an excessive number of
JUMPs. Statistically then, the microprocessor is executing non-jump instruc-
tions the majority of the time. This means that the microprocessor is performing
what is commonly referred to as in-line code fetches most of the time.

As an example, refer to figure 1-2. Assume that the microprocessor has just
fetched the ADD instruction from location 00000h in memory. The flow of in-
structions fetched and executed proceeds as follows:

1.

The microprocessor executes the ADD instruction fetched from location
00000h. Since it's not a JUMP instruction, the microprocessor fetches its
next instruction from memory location 00001h.

The microprocessor executes the SUBTRACT instruction fetched from loca-
tion 1. Since it's not a JUMP, the microprocessor fetches its next instruction
from memory location 00002h.

The microprocessor executes the MOVE instruction fetched from location 2.
Since it's not a JUMP, the microprocessor fetches its next instruction from
memory location 00003h.

The microprocessor executes the JUMP 10000 instruction fetched from loca-
tion 3. The JUMP instruction alters program flow. Rather than fetch its next
instruction from the next sequential memory location (00004h), the micro-
processor fetches it from memory location 10000h.

The microprocessor executes the MOVE instruction fetched from location
10000h. Since it's not a JUMP, the microprocessor fetches its next instruc-
tion from memory location 10001h.

And so on.

14
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10005h

100040

16003h

106002h

Compare 10001k
Move 10000h
OFFFFh

0FFFEL

~L___ -~~~ TLoFFrDh
" Toooosh

QC007h

00006h
00005h
000C4h
Jump 100001 000030
Move 00002h
Subtract 00001h
Add 00000h

Figure 1-2. Sample Instruction Sequence

Reading and Writing

The microprocessor communicates with external devices under the following
circumstances:

e To fetch (read) the next instruction from memory.

e When the currently executing instruction directs the microprocessor to
read data from an external device.

e When the currently executing instruction directs the microprocessor to
write data to an external device.
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The microprocessor communicates with external devices under some other
special circumstances as well, but reading or writing occurs for one of the three
reasons cited above most of the time.

Type of Information Read from Memory
The microprocessor reads the following types of information from memory:

e Instructions
e Data

The microprocessor reads instructions from memory on an on-going basis.
Data, written into a memory location by a previously executed instruction, is
read from memory when the microprocessor executes an instruction that tells it
to read data from the memory location.

Type of Information Written to Memory

The Intel x86 microprocessors can only write data, not instructions, into mem-
ory locations. Instructions are never written into memory by the microproces-
sor. Instructions (the program) are read from the floppy disk and written into
memory by the DMA Controller, not by the microprocessor. Similarly, instruc-
tions may be read from the hard disk and written into memory by a bus mas-
tering disk controller, instead of by the microprocessor. DMA and bus
mastering are covered in the chapters entitled “Direct Memory Access (DMA)”
and “ISA Bus Masters.”

Back in the bad old days, programmers would sometimes write programs that
modified themselves on-the-fly by writing new instructions into memory and
then executing them. This is known as self-moditying code and, generally
speaking, programmers who write this type of program should be cast into the
pit. Programs of this nature are a nightmare to understand and maintain, even
for the person who wrote them.

The Buses

When the microprocessor must read data from or write data to an external de-
vice, it uses three sets of signal lines to perform the read or write operation.
They are:

16
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e The address bus
e The databus
e The control bus

The following sections describe the role played by each of these three buses
during a read or write operation.

The Address Bus

The microprocessor uses the address bus to identify the external device (and
location within the device) that it wishes to communicate with.

The address bus consists of a number of signal lines known as address lines. As
an example, the 80286 microprocessor has 24 address lines, referred to as
A[23:0]. Refer to figure 1-3.

When the microprocessor must read data from or write data to an external de-
vice, it will place the address on the address bus signal lines as a pattern of
ones and zeros. This address pattern identifies the external device and the loca-
tion within the device. In Figure 1-3, the microprocessor has placed address
000105h on the address bus. For a review of the hexadecimal numbering sys-
tem, refer to the appendix.
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Figure 1-3. The 80286 Address Bus

Fach device has an address decoder that detects if the address currently on the
address bus is one assigned to its respective device. If it is, the address decoder
then informs its associated device that the microprocessor is communicating
with it. The addressed device then examines the address further to identify the
exact location the microprocessor is communicating with within the device.
This subject is covered in the chapter entitled “The Address Decode Logic.”
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Control Bus — Transaction Type and Synchroniza-
tion

The control bus basically consists of all the microprocessor's signal lines other
than the address bus and data bus lines. The fundamental purposes of the con-
trol bus are to:

¢ Identify the type of transaction (for example, as a read or write transac-
tion).

e Synchronize the fast processor to the slow external devices it is reading
from or writing to.

The Data Bus — Data Transfer Path

The microprocessor's only purpose in performing a read or write transaction is
to transfer data between itself and the currently addressed external device. The
sole purpose of the data bus is to provide a data path for the transmission of
the data between the two devices. As an example, the 80286 microprocessor has
16 data bus signal lines, designated D[15:0]. This means that the 80286 micro-
processor can read or write 16 bits of information between itself and an
external device during a single transaction.

The data bus is often referred to as a bi-directional bus. This doesn't mean that
data can be transferred in both directions simultaneously; rather, it means that
data can be transferred from the microprocessor to an external device during a
write operation, or from an external device to the microprocessor during a read
operation. If data is ever sent in both directions at once, something is broken!
Refer to figure 1-4.
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Upper Data Path

Lower Data Path

Figure 1-4. The 80286 Data Bus

Note that the 80286 data bus has been illustrated as two 8-bit data paths, rather
than as one 16-bit data path. This was done for a very good reason that is cov-
ered in the chapter entitled “The 80286 Microprocessor.”

20



Chapter 2: Introduction to the Bus Cycle

Chapter 2

The Previous Chapter

In “Introduction to Microprocessor Communications,” the microprocessor's
role in the system, usage of memory, and the role of the address, control and
data buses were defined.

This Chapter

When the microprocessor must communicate with an external device, it uses its
buses. The sequence of events necessary when using the buses to perform a
read or write transaction is referred to as a bus cycle. This chapter introduces
the microprocessor's bus unit, the concept of a state machine, and defines ad-
dress time, data time and the wait state.

The Next Chapter

The next chapter, “Addressing I/O and Memory,” provides a definition of an
1/0 device. It defines the method used by the x86 processors to distinguish
memory and [/O addresses and the range of memory and I/O addresses avail-
able to the 8088, 8086, 80286, 80386, 80486 and Pentium microprocessors.

Introduction

The microprocessor's internal bus unit is a state machine that performs the re-
quired bus cycle when the microprocessor must communicate with another de-
vice. The concept of the state machine is introduced, as well as the concept of
the clock, or timebase, used by the state machine to define the duration of each
state.

Automatic Dishwasher — Classic State Machine Example

Any task is easier to perform when divided into logical steps. A state machine
is a device (either mechanical, electronic, or software-based) designed to per-
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form a task that can be divided into steps. Prior to starting the task, the state
machine is said to be idle. When commanded to perform the task, the state ma-
chine leaves the idle state and moves through a series of steps, or states. Prede-
fined portions of the overall task are performed during each state. The duration
of each state is defined by a clock, or timebase.

In the case of the automatic dishwasher, the dishwasher is idle until you start it.
A timer then begins to run, defining the duration of each state the dishwasher
must pass through in order to accomplish the overall task of washing dishes.
These states are:

¢ During the first state, the state machine wets down the dishes.
¢ During the second state, the dishes are soaped.

¢ During the third state, the dishes are rinsed.

¢ During the fourth and final state, the dishes are dried.

¢ The state machine then returns to the idle state.

Most dishwashers also have one or more switches the user can manipulate to
alter the sequence of states or possibly to cause the machine to execute a par-
ticular state more than once. A perfect example would be the “Pot Scrubber”
button. When pressed, this might cause the state machine to execute the “rinse”
state two times instead of one.

The System Clock — a Metronome

Every x86 microprocessor has an input called CLOCK (or a similar name). This
signal is produced when a voltage is applied to a crystal oscillator. It then be-
gins to generate an electrical signal of a specific frequency. In essence, the oscil-
lator acts as a highly accurate electronic tuning fork. The signal looks like
Figure 2-1.

CLOCK

Figure 2-1. Crystal Oscillator Output

All microprocessors perform their operations in a highly organized, pre-
defined fashion. Portions of each task are always performed during pre-
defined time slots. The duration of each time slot is defined by the output of the
crystal oscillator.
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Indirectly, the 80286 and 80386 microprocessors use the CLOCK input to de-
fine the length of a time slot. They divide the frequency of the CLOCK input by
two to yield an internal timebase referred to as the Processor Clock (PCLK).
The CLOCK input is referred to as a double-frequency clock because its fre-
quency is double that of the required PCLK. The 486DX microprocessor, on the
other hand, uses the CLOCK input as the PCLK without dividing it. Clock-
doubling or clock-multiplying processors, such as the DX4, use phase-locked
loops or similar technology to multiply (instead of divide) the CLOCK signal to
produce a PCLK that is faster than CLOCK.

PCLK is the real metronome that defines the duration of the time slots during
which the microprocessor performs a task or a pre-defined portion of a task.
Refer to Figure 2-2.

row] | L Lt L |

Figure 2-2. Relationship of CLOCK and PCLK

As illustrated in figure 2-2, PCLK is half the frequency of CLOCK. When a PC
manufacturer refers to the operating speed of their computer as SMHz (mega-
hertz, or million cycles-per-second), 10MHz, etc., they are referring to the mi-
croprocessor's PCLK frequency, not that of CLOCK.

Microprocessor's Bus Cycle State Machine

When the microprocessor performs a read or a write operation, it initiates a se-
quence of events called a bus cycle.

During a bus cycle, the microprocessor places the address on the address bus,
sets the control bus lines to indicate the type of transaction (such as a memory
read or I/O write bus cycle), and transfers the data between the target location
and itself. This happens in a very orderly fashion, with each step occurring at
the proper point during the appropriate time slot.

x86 microprocessor chips include a subsystem called a bus unit, tasked with
the job of running bus cycles when required. The bus unit is a state machine
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that is stepped through its various states by the PCLK signal. The duration of
each state is one cycle of PCLK.

Refer to figure 2-3. As an example, if the CLOCK input frequency is 40MHz (40
million cycles per second), the PCLK frequency is half that frequency, or
20MHz. In order to determine the duration of one cycle of PCLK, just divide 20
million cycles-per-second into one second. In this example, a PCLK cycle is
50ns in duration (50 nanoseconds; 0.000000050 seconds or 50 billionths of a
second). Since the bus unit state machine's states are each one PCLK in dura-
tion, this means that each bus unit state is 50ns in duration.

i i i i i i
i state 1 stale 1 state 1+ siagte t siaie i

ook [LITLIULTU LI LT sore

20MHz

}

i

]

i § } i § }

| 50ns ! 50ns | 50ns | 50as ! 50ns |
Figure 2-3. Each Cycle of PCLK Defines the Duration of a State

If not currently engaged in a bus cycle (a read or a write operation), the bus

unit state machine is said to be in the idle state. It remains in the idle state until
the microprocessor must perform a bus cycle.

Address Time

When the microprocessor must perform a read or a write, its bus unit initiates a
bus cycle. The bus unit leaves the idle state and enters a state that will be re-
ferred to in this text as address time. Although Intel uses a different name for
this state, address time is the name that will be used in this text for clarity's
sake. During address time, one PCLK cycle in duration, the microprocessor
places the address on the address bus and the bus cycle definition (type of bus
cycle) on the control bus lines.
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Data Time

After performing all actions required during address time, the bus unit state
machine immediately enters the state we will refer to as data time. As with ad-
dress time, Intel uses a different name for this state, but, for clarity's sake, data
time is the name that will be used in this text. During data time, one PCLK cy-
cle in duration, the microprocessor expects the data to be transferred between
itself and the currently addressed device. At the end, or trailing edge, of data
time (refer to reference point 1 in figure 2-4), the microprocessor samples (tests
the state of) its READY# input to see if the currently addressed device is ready
to complete the bus cycle. If the READY# input is asserted (low, as indicated by
the pound sign), the bus unit state machine terminates the bus cycle.

If a read were in progress, the bus unit interprets an asserted level on READY#
to mean that the currently addressed device has placed the requested data onto
the data bus for the microprocessor. The microprocessor reads the data from
the data bus and terminates the bus cycle.

If a write were in progress, the bus unit interprets an asserted level on READY#
to mean that the currently addressed device has accepted the data being writ-
ten to it. The microprocessor terminates the bus cycle. The chapter entitled
“The 80286 System Kernel: the Engine” provides a detailed operational de-
scription of the Ready logic. Figure 2-4 illustrates a bus cycle consisting of ad-
dress time and data time.

The 0-wait-state bus cycle is the fastest type of bus cycle the 80286, 80386, 80486
and Pentium microprocessors are capable of performing. In other words, the
fastest x86 bus cycle takes two “ticks” (cycles) of PCLK. If this were an 80386
running at 20MHz (PCLK speed), a O-wait-state bus cycle would take 100ns
(50ns each for address time and data time).
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Figure 2-4. Bus Cycle Consisting of Address Time and Data Time

The Wait State

All bus cycles consist of at least two states: address time and data time. At the
end of address time and data time, however, not every device will be ready to
end a bus cycle. Some devices are slower than others in responding to the mi-
croprocessor's data transfer requests, and are referred to as slow access devices.

Refer to figure 2-5. When the microprocessor samples READY# at the end of
the first data time (see reference point 1 in figure 2-5), READY# may not be as-
serted. This is the currently addressed device's way of saying “Whoa! Wait up
thar big fella!” When the READY# line is sampled deasserted, it causes the bus
unit state machine to re-enter the data time state again.

During this additional data time, the microprocessor keeps all of its outputs the
same. In other words, nothing changes; the microprocessor just waits one tick
of PCLK. This is referred to as a wait state. At the end of this additional data
time, the microprocessor samples the READY# input again (see reference point
2 in figure 2-5) to see if the currently addressed device is ready to complete the
transaction.
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If READY# is sampled deasserted again, the microprocessor inserts another
data time or Wait State into the bus cycle. When READY# is sampled asserted
at the end of data time, the microprocessor terminates the bus cycle.

By holding off the READY# line, the currently addressed device can force the
microprocessor to stretch out the bus cycle as long as necessary until the device
is ready to complete the data transfer. The currently addressed device deasserts
READY# until it's ready to end the transaction.

(Wait
State)

; ; ; 3
Address, Data | Data
y IDLE ¢ IDLE E Time Time ETime

ook [LILIULT LT

PCLKE 5

READY#

READY# sampied by microprocessor

Figure 2-5. Bus Cycle with One Wait State Inserted

27






Chapter 3: Addressing I/O and Memory

Chapter 3

The Previous Chapter

The previous chapter, “Introduction To the Bus Cycle,” provided a basic de-
scription of the microprocessor's communications scheme. Using the three
buses, the microprocessor performs bus cycles to read information from or
write information to memory or I/0O devices.

This Chapter

This chapter explores the addressing scheme used by the x86 processors. It de-
fines the addressing range provided by the 8086, 8088, 286, 386, 486 and Pen-
tium microprocessors. A basic definition of the term [/O device is also
provided.

The Next Chapter

Having covered the addressing scheme used by the x86 processors in this chap-
ter, the next chapter, “The Address Decode Logic,” introduces the concept of
the address decoder. Several examples of address decoders are examined in de-
tail.

Evolution of Memory and I/O Address Space

The Intel 8080 microprocessor is the ancestor of the entire x86 microprocessor
family. Many of the family's characteristics stem from this common ancestor.

Intel 8080 Microprocessor Address Space

The 8080 microprocessor's address bus consists of 16 address lines, A[15:0].
With 16 address lines, the microprocessor can place any address pattern on the
address bus from all zeros (0000h) to all ones (FFFFh). In other words, the 8080
can place any one of 65536 addresses on the address bus and can therefore ad-
dress any one of 65536 locations located in external devices. In the computer
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industry, 65536 is referred to as 64K (K stands for Kilo, Greek for 1,000, but in
the computer industry, kilo is 2" or 1,024). Refer to figure 3-1. This means that
the designer of an 8080-based system can include memory devices with a total
of no more than 64K locations in the system.

focation FFFFhQ

64K

focation 0000h

Figure 3-1. Single 64K Address Space

In addition to memory devices used for program and data storage, the designer
must also use a number of locations for input/output ports (I/O ports) used to
communicate with I/O devices. In simple terms, any device that the micro-
processor can read data from or write data to that isn't a memory device (RAM
or ROM) is an I/0O device. Implementing these ports certainly is necessary, but
depletes the number of addressable locations available to be assigned to mem-
ory devices.
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Rather than use up already scarce memory locations to implement I/O devices,
Intel provided two new instructions to the 8080 microprocessor: IN and OUT,
and added a way for the 8080 to indicate to the system that the 8080 wishes to
communicate with an I/O device instead of a memory device. The system typi-
cally included an Intel 8228 controller chip which detected the 8080’s intention
to communicate with an I/O device.

Some of the functionality of the 8228 was incorporated in the 8085 microproc-
essor, a successor of the 8080. The 8085 has 16 address lines, as does the 8080,
so the 8085 can address 64K locations.

The 8085 has a new output pin called IO/M#. In Intel signal names, the “/”
character should always be read as the English word “or.” IO/M# therefore
stands for “IO or Memory.” Since there is no pound sign after the “10”, a high
on this signal line means an I/O address is being output by the microprocessor.
The pound sign after the “M” portion of the signal name indicates that a mem-
ory address is present on the address bus when IO /M# is low.

The addition of the IO /M# pin actually created two separate address spaces (or
maps), one for Memory and the other for I/O. In essence, the IO/M# pin
“points” to the appropriate address space when the microprocessor places an
address on the address bus.

Refer to figure 3-2. As previously mentioned, the 8085 provides 64K of memory
address space. However, due to the limited number of I/O devices typically
found in systems, Intel only implemented 256 1/0 locations.
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Figure 3-2. The 8085’s Memory and 1/O Address Spaces

As an example, if the microprocessor places address 0010h on the address bus
and places a high on IO/M#, it is addressing 1/0O location 0010h, not memory
location 0010h. On the other hand, if the microprocessor places address 0010h
on the address bus and places a low on IO/M#, it is addressing memory loca-
tion 0010h, not I/O location 0010h.

In addition to the IO/M# pin, Intel also added two I/O instructions, IN and
OUT, to the 8085's instruction set. When executed, the IN instruction causes the
microprocessor to perform a read from the I/O address specified by the pro-
grammer. This address is placed on the address bus and the IO/M# pin is set
high, thereby indicating the presence of an I/O address on the address bus to
external logic. In the same way, the OUT instruction also causes the microproc-
essor to place an I/O address on the address bus with I0/M# set high to indi-
cate the I/O address it wishes to write data to.
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A separate instruction, MOV, is used by the programmer to specify a memory
address to move data to or from. When executed, the MOV instruction causes
the specified memory address to be placed on the address bus and the I0/M#
pin to be set low, indicating the presence of a memory address.

These changes allowed the designer to implement I/O ports without encroach-
ing on memory space.

8086 and 8088 Microprocessor Address Space

When Intel designed the 8086 and 8088 microprocessors, they increased the
number of address lines from 16 to 20. This means that the 8086 and 8088 mi-
croprocessors can place any address from 00000h to FFFFFh on the address
bus, giving them an address range of 1,048,576 or 1M locations. “M” stands for
the Greek prefix Mega, meaning large or great. In physics, M is 1,000,000, but
in the computer industry, M is 2” or 1,048,576. Some computer companies use
M to mean 1,000,000 when referring to disk storage while still using M to mean
2” when referring to memory size, so beware!

As with the 8085 microprocessor, the 8086 and 8088 microprocessors have a pin
to indicate memory or I/O addresses. Note that the pin name and function is
slightly different (or completely different, depending on your point of view).
It’s named M/IO#, meaning that the 8086 and 8088 set the M/IO# pin low
when executing an IN or OUT instruction. The 8086 and 8088 set the M/IO#
pin high when executing a MOV instruction to access memory. This is just the
opposite of the way the 8085 did it.

For the 8086 and 8088 microprocessors, Intel also increased the size of the [/O
address space to 64K. The programmer may specify any memory address
within the 1M memory address range, but is restricted to I/O addresses in the
first 64K locations of address space (0000h to FFFFh). There were two reasons
for this decision:

1. The 8086 and 8088 microprocessors remain backward-compatible with the
1/0 instructions in the 8080 instruction set, although these instructions will
not take full advantage of the processors address capability.

2. Virtually no designer requires more than 64K I/O ports (locations) to im-
plement a full complement of I/O devices, no matter how complex they
might be.
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If you take the example of an IBM PC/AT fully loaded with every conceivable
type of add-in I/O expansion boards, no more than 768 I/O ports are used.
This is less than 1/64th of the total I/O space available. As previously noted,
64K 1/0 locations are more than enough for anyone's needs. Figure 3-3 illus-
trates the 8086 and 8088 microprocessor memory and I/O address space.

FFFFFh
1M
Memory
Address
Space
FEEFL
— e N 64K
T O
o Address
Space
06000h 000Ch
\ «
MAO#

Figure 3-3. 8086 and 8088 Memory and 1/O Address Space

286 and 386SX Address Space

With the introduction of the 286 microprocessor, the number of address lines
was increased from 20 to 24. Refer to figure 3-4. Although this increases the
size of the memory address space available to the designer from 1M to 16M (2%
16,777,216 locations), the 1/O space is still restricted to 64K locations. The
3865X microprocessor also has 24 address lines, allowing access to 16M of
memory and 64K I/O ports.
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Figure 3-4. 286 and 3865X Memory and I/O Address Space

386DX, 486 and Pentium Processor Address Space

The 386DX, 486 and Pentium microprocessors each have 32 address lines, pro-
viding 4G possible memory locations (“G” is borrowed from the Greek word
Giga, meaning giant; used as a prefix in physics, it means 1,000,000,000, but in
the computer industry, it means 2% or 1,073,741,824; thirty-two address lines
yield 2% or 4,294,967,296 locations). Refer to figure 3-5. The I/0O space is still re-
stricted to 64K locations.
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Figure 3-5. 386/486/Pentium Processor Memory and 1/O Address Space

Memory Mapped I/O

Designers can also map 1/0 devices into memory space if they so choose. Care
must be exercised when mapping [/O devices into memory so that the operat-
ing system and application software do not conflict with the address space cho-
sen for the I/O device. For this reason, many designers map 1/0 devices in the
high ranges of memory address space so that it is well beyond the maximum
memory range supported by most PCs.

The I/0 Device

1/0 Ports fall into these following basic categories:

¢ Command Port. The data written to this port by the programmer acts as a
command to the associated I/0O device. The individual bits of data written
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to the command port control different aspects of the device's operation. As
an example, one bit in the data written to the keyboard command port
could be a command to enable or disable the Keyboard.

e Status Port. Data read from this port represents the current status of the as-
sociated 1/0 device. The individual bits of data read from the status port
reflect different aspects of the device's current status. As an example, the
state of a bit in the data read from the printer status port could indicate that
the printer is out of paper.

e Data Port. When an I/0O device has data to be transferred to the micro-
processor, the programmer reads the data from the device's data port.
Similarly, when an I/O device is ready for the next character (for example,
a character for the printer), the programmer writes the character to the de-
vice's data port.

The number of I/O locations needed to control, sense the status of, read data
from, or write data to a particular type of I/O device is device-dependent. Sim-
ple I/0O devices may only require a few [/O locations. As an example, the par-
allel port requires only one location each for its command port, status port, and
data port.

More complex 1/0O devices such as the VGA display interface, can require
many more locations.
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Chapter 4

The Previous Chapter

The previous chapter, “Addressing I/O and Memory,” explored the address-
ing scheme used by the x86 processors. It defined the addressing range pro-
vided by the 8086, 8088, 80286, 80386, 80486 and Pentium microprocessors, and
provided a basic definition of the term “I/O device.”

This Chapter

This chapter describes the function performed by address decoders, discusses
the address decoder design process, defines data bus contention, and provides
a detailed analysis of two example address decoders found in ISA systems.

The Next Chapter

The next chapter, “The 80286 Microprocessor,” provides a detailed description
of the internal hardware architecture of the 80286 microprocessor, describes its
register set, and supplies definitions of real and protected modes.

The Address Decoder Concept

Refer to figure 4-1. When the microprocessor must read data from or write data
to an external device, it places the address on the address bus. Every device
that can be read from or written to has an associated piece of logic called an
address decoder. The address decoder selects its associated device when an
address within its defined range is detected.

In most cases, the selected device contains multiple internal locations. When se-
lected, the addressed device examines the address to identify the exact internal
location with which the microprocessor wishes to perform a data transfer.
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Figure 4-1. Relationship of Address Bus, Address Decoders and Deuvices

A memory or I/O chip does not respond to any pre-assigned address range.
Rather, the device's address decode logic informs it that the address currently
on the address bus is assigned to one of its internal locations by asserting the

device's chip-select input pin.

The overall range of memory and I/O locations addressable by a particular mi-
croprocessor are commonly referred to as address maps. The design of its asso-
ciated address decoder, not that of the memory or [/O device itself, defines
where a device lives within the overall memory or [/O address map of a mi-

Croprocessor.
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Data Bus Contention (Address Conflicts)

Under no circumstances should the address decoders for two devices installed
in a system be designed in such a fashion that they both detect the same ad-
dress ranges. This would cause data bus contention.

Every expansion card installed in an ISA system has its own address decode
logic that defines the address range the card responds to. Address conflicts are
a common problem in the PC world. Consider the problem that arises if the
address decoders on two expansion cards are both designed to detect the same
address range.

As an example, assume that two cards respond to the /O address range 03FOh
to 03F7h. If the microprocessor executes an instruction that causes a read from
1/0 location 03F1h, both devices are chip-selected by their respective address
decoders. Each then places the contents of its respective location 03F1h onto the
common data bus simultaneously. One card may be driving a particular data
bus signal line high while the other card is driving the same data bus signal line
low. In this situation, we have two separate current sources trying to drive five
volts and zero volts onto the same piece of wire.

At best, this situation will cause garbled data and, at worst, hardware damage.
The proper term for this condition is data bus contention, a problem quite
common in the PC world. A user populates a PC with many cards purchased
from various manufacturers. The prospect of an address conflict is very real.

In order to permit resolution of address conflicts, a card designer should allow
the user to easily alter the address range the board responds to. In ISA systems,
this is usually accomplished with configuration switches (or jumpers) on the
board. By changing the switch setting, the user causes the card's address de-
coder to detect a different address range, thereby resolving the conflict.

How Address Decoders Work

The address decoder function is similar to that performed by the post office.
Because it more or less identifies a neighborhood, the zip code is analogous to
the high-order part of the address (upper address bits). The low-order portion
of the address identifies the exact location within the neighborhood.

In much the same way, the address decoder associated with a device examines
the high-order part of the address being output by the microprocessor. It de-
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termines if the address is within the range assigned to its device. If it is, the ad-
dress decoder chip-selects the device. The chip-selected device then examines
the lower part of the address to determine the exact location within it the mi-
croprocessor is addressing.

It should be noted that an address decoder doesn't have to look at the entire
address to determine that the current address is within the address range as-
signed to its respective device. If you were traveling in a car and were told to
keep an eye out for the two thousand block, you would only need to look at the
thousands digit of the address to determine if it was within the desired range.
The lower digits would be insignificant to you.

The following two sections describe example address decoders and how they
function. The first example is that of the ROM address decoder in an IBM
PC/XT. The second example is that of the address decoder that detects ad-
dresses assigned to the [/O devices found on a typical ISA system board.

Example 1— PC and PC/XT ROM Address Decoder

Background

The original IBM PC was designed around the 8088 microprocessor. With an
address bus consisting of 20 lines, designated A[19:0], the 8088 could address
any one of 1,048,576 memory locations. The designers chose to populate this
memory map as illustrated in Figure 4-2.

The memory address range from FOOOOh to FFFFFh was assigned to the system
board ROM. This ROM is frequently referred to as the boot or POST/BIOS
ROM. The 64K addresses from FOOOOh to FFFFFh are set aside for the boot
ROM. It should therefore be selected whenever the uppermost digit on the ad-
dress bus is Fh and the M /IO# pin is high (indicating the presence of a memory
address on the address bus). Table 4-1 illustrates the state of the address lines
when any memory address in this range is accessed.
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Figure 4-2. PC Memory Address Map

Table 4-1. State of the Address Lines When Any Memory Address in Range FOOOOh to

FFFFFh Is Addressed
R JEE JEEAY TN JEER I N JEE R N N D I ) ) D N I
111111 ] x]x|x]x]x|x|x|x]x|x|x]|x]x|x]|x]x
F X X X X

In addition, memory address range EO00Oh to EFFFFh was assigned to the op-
tional ROM that could be installed in the empty ROM socket provided on the
system board. This capability was provided to allow the installation of a ROM
containing the BIOS routines and interrupt service routines for optional devices
that could be added to the machine. This add-in ROM is commonly referred to
as the option ROM. The 64K addresses from EO000h to EFFFFh are set aside for
the option ROM. It should therefore be selected whenever the uppermost digit
on the address bus is Eh and the M/IO# pin is high (indicating the presence of
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a memory address on the address bus). Table 4-2 illustrates the state of the ad-
dress lines when any memory address in this range is accessed.

Table 4-2. State of the Address Lines when any Memory Address in Range EO000h to
EFFFFh Is Addressed

17 |16 |15 |14 | 13 |12 |11 | 10 | 9 8 7 6 5 4 3 2 1

0
X

110 x| x| x| x| x| x]|x|x|x]|x]|x|x]|x]x]x

E X X X X

An address decoder that detects addresses for either ROM must look for any
memory address that has address lines A[19:17] all set to a one. That means its
high-order digit is either Eh or Fh. To discriminate between addresses for the
boot and option ROMs, the decoder would then look at address line Al6. If it is
low, the high-order digit of the address is Eh and the option ROM should be
chip-selected. If address line A16 is high, however, the high-order digit of the
address is Fh and the Boot ROM should be chip-selected.

The PC/XT ROM Address Decode Logic

The PC/XT ROM address decoder pictured in figure 4-3 consists of gates Ul,
U2, U3 and U4.

The ROM address decoder's inputs consist of address bits A[19:16] from the
microprocessor. It has two chip-select outputs, C5 EXXXX# and CS FXXXX#. C5
EXXXX# is attached to the chip-enable (CE) input of the option ROM, while C5
EXXXX# is attached to the chip-enable (CE) input of the boot ROM.

To chip-select the option ROM, the signal C5 EXXXX# (chip-select EOOOOh to
EFFFFh range) would have to be asserted (low, as indicated by the pound
sign). Pins 1 and 2 of gate U4 must both be high in order to set U4-3, C5
EXXXX#, low. U4-2 will be high if pins 1, 2 and 4 of U2 are high. In addition,
address bus lines A[19:17] must all be ones.

A zero on Al6 is inverted (flipped to its opposite state) by Ul, applying a one
to U4-1. U3-1 will be low, keeping U3-3 high and preventing the boot ROM
from being chip-selected.
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Figure 4-3. Example PC/XT ROM Address Decoder

Since the highest I/O address is FFFFh, there is no conflict between the ROM
address decoder and the /O address decoders. The ROM address decoder is
looking for addresses that are well above the highest [/O address. The designer
of the address decoder can therefore ignore the M/IO# signal from the micro-
processor because the 8086, 8088 and 286 microprocessors set the upper ad-
dress lines (A16 and higher) to 0 when M/IO# is low.

Address bus lines A[15:0] aren't connected to the ROM address decoder and
are considered to be “don't care” bits (from the ROM address decoder's view
point).
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Notice, however, that the “don't care” bits are connected to the boot and option
ROMs. Neither of the ROMs will look at these address bus lines unless its re-
spective chip-select signal is asserted by the ROM address decoder.

Table 4-2 illustrates the state the address bus inputs (as defined above) must
assume in order to chip-select the option ROM.

Address bus lines A[15:0] are shown as “x”, representing a “don't care” condi-
tion (can be either a 1 or a 0 because the ROM address decoder doesn't look at
them). If the high-order digit of the memory address on the address bus is an
Eh, the address is considered to be for the option ROM and CS EXXXX# is as-
serted (low).

This enables the option ROM, which then examines the low-order portion of
the memory address, A[15:0], to identify the exact location in the ROM that the
microprocessor wishes to read data from. The option ROM then places the con-
tents of the respective location on the data bus to be sent back to the micro-
processor. The microprocessor reads the data from the data bus, completing the
memory read operation.

To chip-select the boot ROM, the signal CS FXXXX# (chip-select FOOOOh to
FFFFFh range) must be asserted (low, as indicated by the pound sign).

Pins 1 and 2 of gate U3 must both be high in order to set U3-3, C5 FXXXX#,
low. U3-2 will be high if pins 1, 2 and 4 of U2 are high. In addition, address bus
lines A[19:17] must all be ones.

A one on address bus line Al16 places a high on U3-1. A16 is inverted by Ul,
applying a low to U4-1, preventing the option ROM from being chip-selected
by the ROM address decoder.

Address bus bits A[15:0] aren't connected to the ROM address decoder and are
considered to be “don't care” bits (from the ROM address decoder's view
point).

Table 4-1 illustrates the state the address bus lines (as defined in the steps
above) must assume in order to chip-select the boot ROM.

Address bus bits A[15:0] are shown as “x”, representing a “don't care” condi-
tion (can be either a 1 or a 0 because the ROM address decoder doesn't look at
them). If the high-order digit of the memory address on the address bus is an
Fh, the address is for the boot ROM and CS FXXXX# is asserted (low).
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This will enable the boot ROM, which then examines the low-order portion of
the memory address, A[15:0], to identify the exact location in the ROM the mi-
croprocessor wishes to read data from. The boot ROM then places the contents
of the respective location on the data bus to be sent back to the microprocessor.
The microprocessor reads the data from the data bus, completing the memory
read operation.

Example 2 — System Board I/O Address Decoder

When the microprocessor addresses an 1/O location, only address bus lines
A[15:0] are used. This is because the microprocessor is restricted to I/O ad-
dresses in the range 0000h to FFFFh. The 8086, 8088 and 286 microprocessors
always set address bus lines above Al5 to all zeros when placing 1/0 ad-
dresses on the address bus. The 80386 microprocessor is slightly different. Intel
reserved some of the 80386’s I/0O addresses above FFFFh for use with the 80387
numeric coprocessor. This is covered in the chapter entitled “The Numeric Co-
processor.”

This example describes an I/0O address decoder that decodes the chip-selects
for many of the I/O devices that are integrated (included) on ISA system
boards.

The address decoder pictured in figure 4-4 detects most of the I/O addresses
assigned to the I/O devices integrated onto the system board. The overall I/O
address range detected is from 0000h to OOFFh. The address decoder further
breaks this address range down into sub-ranges of 32 locations each. When an
I/0 address within one of these sub-ranges is detected, the respective chip-
select line is asserted (set low) to select the addressed 1/0O device. The sub-
ranges and the I/O devices associated with them are listed in Table 4-3. The
1/0 devices referred to are described in subsequent chapters.
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Table 4-3. System Board 1/O Address Sub-Range Assignments

I/O Sub-Range Device(s) Assigned to Sub-Range
0000h to 001Fh | DMA controller (DMAC) number 1
0020h to 003Fh [ Programmable interrupt controller (PIC) number 1
0040h to 005Fh | Programmable interval timers (PIT) 1 and 2
0060h to 007Fh [ System control port B, keyboard interface, NMI control and
battery-backed RAM ports
0080h to 009Fh [ DMA page registers, PS/2 compatibility port
00A0h to 00BFh [ Programmable interrupt controller (PIC) number 2
00CO0h to 00DFh | DMA controller (DMAC) number 2
00E0h to 00FFh [ Intel 80X87 numeric coprocessor
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Figure 4-4. System Board 1/O Address Decoder

The system board I/O address decoder consists of three gates and a 74138
three-to-eight line decoder. The operation of the 74138 is described in the fol-

lowing paragraphs.

When the microprocessor begins an /O read or write operation, it places the
I/0O address on the address bus and sets the M/IO# line low to indicate the
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presence of an I/0O address. The system board I/O address decoder responds
to the address as described in the following paragraphs.

The enabling of the 74138 is fundamental to the operation of the address de-
coder. This chip has 3 enable inputs, pins 4, 5 and 6. All three must be asserted
to enable the chip:

e DPin 6 does not have a state indicator (a bubble), meaning a high is needed
on this pin to enable the 74138. The pin 6 enable is tied to a high (+5Vdc),
so this enable is always present.

e DPin 4 has a state indicator, indicating it requires a low input to provide an
enable to the chip. The pin 4 enable input is tied to the M/IO# signal line
and is therefore only asserted when the microprocessor places an [/O ad-
dress on the address bus.

e Pin 5 has a state indicator, indicating it requires a low input to provide an
enable to the chip.

Gates Ul and U2 are used to detect all zeros on address lines A[15:8] (an [/O
address in the range 0000h to 00FFh). When all of these address lines are low,
both gates output highs to U3. This causes U3 to output a low, providing the
final enable to the 74138. Only I/O addresses in the range 0000h to 00FFh cause
the 74138 to receive all three enables, enabling it to decode the low-order ad-
dress lines to assert the appropriate chip-select line.

Assuming that the I/O address currently being output by the microprocessor is
within the range 0000h to O0OFFh, the 74138 is enabled and can perform its job.

The 74138 is called a three-to-eight line decoder because, when enabled, it uses
its A, B and C inputs to select one of its eight outputs to assert (they are assert-
ed when low, as indicated by the state indicator on each output). The 74138
uses the binary-weighted value of the three lines on its inputs to select an out-
put to assert. The A input has a value of 1, the B input a value of 2, and the C
input a value of 4. Table 4-4 indicates the output selected for each possible set
of inputs.
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Table 4-4. 74138 Output Selection Criteria
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Assume that the microprocessor is currently performing a read or write with
1/0 address 0012h. Address 0012h is placed on the address bus and the micro-
processor's M/IO# output is set low to indicate it's an I/O address. Figure 4-5

illustrates how this address appears on the address bus.
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Figure 4-5. Microprocessor Placing I/O Address 0012h on the Address Bus

Since address bus lines A[15:8] are all zeros and an I/O operation is in progress
(as indicated by a low on M/IO#), the 74138 is enabled.

Note that address bus lines A[7:5] are all zeros in this address. Since these three
address lines are connected to the 74138's inputs and have a binary-weighted
value of 0, the 74138 will assert (set low) its “0” output, pin 15. This asserts the
chip-select line for DMA controller number one (DMACICS# goes low), ena-
bling DMA controller number one. The DMA controller then uses address lines
A[4:0] to identify the exact location within it the microprocessor wishes to per-
form a data transfer with.

To summarize, address lines A[15:8] set to all zeros during an I/O operation
enables the system board [/O address decoder. The address decoder then uses
address lines A[7:5] to select the chip-select line to assert.
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Address lines A[4:0] aren't connected to the system board I/O address decoder,
so they are “don't care” bits to the address decoder.

This address decoder is designed to detect 32-location I/O address blocks
within the overall address range from 0000h to OOFFh. Any address within a
given block selects the associated device's chip-select line. The designer could
implement up to 32 I/O locations for each device to control it, sense its status
and read data from or write data to it. A read or write to any location in the 32-
location block assigned to the device by the address decoder causes the device
to be chip-selected. The device itself can then use address lines A[4:0] to select
the exact location within itself that the microprocessor wishes to talk to.

Table 4-5 illustrates the I/O address ranges assigned to each of the device chip-
selects.

Table 4-5. /O Address Range Assigned to Each System Board Device

I/O Sub-Range Device(s) Assigned to Sub-Range
0000h to 001Fh | DMA controller (DMAC) number 1
0020h to 003Fh [ Programmable interrupt controller (PIC) number 1
0040h to 005Fh | Programmable interval timers (PIT) 1 and 2
0060h to 007Fh [ System control port B, keyboard interface, NMI control and
battery-backed RAM ports
0080h to 009Fh [ DMA page registers, PS/2 compatibility port
00A0h to 00BFh [ Programmable interrupt controller (PIC) number 2
00CO0h to 00DFh | DMA controller (DMAC) number 2
00EOh to 00FFh [ Intel 80X87 numeric coprocessor

ISA I/O Decoders

Many ISA [/O cards perform an inadequate [/O address decode. Appendix C
provides a description of this problem.
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Chapter 5

The Previous Chapter

The basics of microprocessor communication have been introduced. This in-
cludes concept of the bus cycle and the types of devices that the microprocessor
communicates with (memory and 1/0), along with how these devices are ad-
dressed.

This Chapter

This chapter provides a description of the 80286 microprocessor. Emphasis is
placed on the hardware interface between the 80286 microprocessor and the
remainder of the system. Memory address formation in real mode is covered in
detail and an introduction to protected mode is provided.

The Next Chapter

The next chapter provides a description of the six possible sources for various
reset signals found in ISA systems and the effect each of them has on the sys-
tem. It also explains the actions taken when Ctrl/Alt/Delete are depressed.

The 80286 Functional Units

Any microprocessor is really a system consisting of a number of functional
units. Each unit has a specific job to do and all of the units working together
comprise the microprocessor. Figure 5-1 illustrates the units which make up the
80286 microprocessor.
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Figure 5-1. 80286 Microprocessor Block Diagram

Refer to 5-1. When the microprocessor starts operation, it will automatically
begin fetching (reading) instructions from memory. It is the bus unit's task to
perform the bus cycles required to fetch all instructions from memory. Instruc-
tions are read from memory over the data bus and placed into the instruction
Prefetch Queue. From there they go to the instruction unit where they are de-
coded and sent to the execution unit one at a time for processing.

Execution of some instructions requires that data be read from or written to
memory or I/O devices. If a memory device is specified, the execution unit di-
rects the address unit to form the memory address of the location specified by
the instruction. I/O addresses specified by an instruction do not require special
address formation as do memory address. Instead they are sent directly from

the execution unit to the bus unit to run the bus cycle specified by the instruc-
tion.
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In summary, two types of information may be read into the microprocessor; in-
structions (code) and data. Instructions are read from memory over the data
bus, go through the data transceivers, and are placed into the prefetch queue.
Data to be processed is read from either memory or I/O devices over the data
bus and is transferred via the data transceivers to the execution unit.

An instruction may also specify that data be written to a memory or I/O loca-
tion, in which case data is sent from the execution unit to the data transceivers
for transfer over the data bus.

In short, the 80286 microprocessor consists of four functional units:

1. Instruction unit. Decodes the instruction prior to passing it to the execu-
tion unit for execution.

2. Execution unit. Handles the actual execution of the instruction.

3. Address unit. When the microprocessor must address a memory location,
the address unit forms the memory address that is driven out onto the ad-
dress bus by the bus unit during the bus cycle.

4. Bus unit. Handles communication with the world outside the microproces-
sor chip (by performing bus cycles).

The following sections provide a more detailed description of each of these
units.

The Instruction Unit

One at a time, the 80286 instruction unit pops (reads) instructions from the pre-
fetch queue, decodes them into their component parts and places them into the
decoded instruction queue to be forwarded to the execution unit.

The Execution Unit

Instructions are executed by the 80286 execution unit. In general, instructions
cause either internal processing of data already stored within the execution unit
registers, or reading data from or writing data to devices external to the micro-
processor.

When the currently executing instruction requires writing or reading a memory
or I/0 location, the execution unit issues a bus cycle request to the bus unit.
The execution unit then stalls until the bus unit completes the requested data
transfer.
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Two types of information may be read into the microprocessor: instructions
(code) or data. Instructions are always read from memory and are placed into
the instruction prefetch queue. From there, they are routed to the instruction
unit where they are decoded and sent to the execution unit for processing. Data
to be processed goes directly to registers inside the execution unit. These regis-
ters have several functions as described in the following paragraphs.

A register can be thought of as a storage location within the microprocessor.
Some registers can only be read from, and some can only be written to, while
others are both readable and writable. Registers within the execution unit are
used by the programmer or the microprocessor itself for the following pur-
poses:

e totemporarily hold values to be used in calculations

e toreceive data being read from an external memory or I/O location

e toprovide the data to be written to an external memory or I/O location
e to keep track of the microprocessor's current status

e to control certain aspects of the microprocessor's operation

Although they are storage locations, the programmer refers to the microproces-
sor's registers by names (rather then by the hex addresses used to address ex-
ternal memory and I/O locations). Most of the 80286 registers are 100%
backward-compatible with the 8086 and 8088 microprocessor's registers. The
registers inside the execution unit can be logically divided into two categories:

¢ General Registers
e Status and Control Registers

The following sections describe each of the registers in the General and the
Status and Control register sets.

General Registers

This section offers a description of each of the general registers and examples of
their usage. Figure 5-2 details the registers in the general register set.
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Figure 5-2. The 80286 General Registers

The AX, BX, CX and DX Registers—Each of these four registers can hold 16
bits (two bytes) of information. As an example, the following instruction will
move the 16-bit value 1234h into the AX register:

MOV AX,1234 ;move the value 1234h into AX

In addition, the programmer can individually refer to each of the 8-bit registers
that make up the upper and lower half of each of these 16-bit registers. As an
example, the AX register actually consists of two 8-bit registers: the AL (Lower
half of AX register) and AH (upper half of the AX register) registers. The same
is true of the BX, CX and DX registers.

If the programmer wants to move only one byte of information, he or she
would specify one of the 8-bit registers rather than a 16-bit register. In the fol-
lowing example, the programmer wants to write the value 02h into I/O loca-
tion 60h:

MOV AL, 02 ;move value 02h into AL
OUT 60,AL ;write AL contents to I/O port 60h

In the example above, the programmer first moves the value 02h into the 8-bit
AL register and then performs an /O write instruction to write the contents of
the AL register to I/O location 60h. This will cause an [/O write bus cycle with
address 000060h on the address bus and 02h on the lower part of the data bus
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(see cardinal rule 3 later in this chapter — the 80286 always uses lower data
path for data transfers with even addresses).

In general, the AX, BX, CX and DX registers are used for the following pur-
poses:

e totemporarily hold values to be used in calculations

e toreceive data being read from an external memory or I/O location

e toprovide the data to be written to an external memory or I/O location
¢ tohold values to be used in calculating a memory address

The BP Register—Although available for general use by the programmer, the
Base Pointer (BP) register is frequently used in forming a memory address. The
programmer places the start address of a table of data items in memory (often
referred to as a data structure) into the BP register. A move instruction is then
executed that adds an index value to this base address to form the exact ad-
dress of a data item in the table in memory. This is known as indexing into a
table. The BX register can also be used in the same manner. The BP register is
often used to access the stack without affecting the contents of the SP register.

The index registers—The two index registers are:

e the Source index (SI) register
¢ the Destination index (DI) register

These two registers are frequently used to implement string operations. This is
an operation that is performed on a string of locations, rather than just one. A
classic example would be the move string operation where the programmer
wants to perform a series of memory reads and writes to transfer a block of
data from one area of memory to another. To accomplish this, the programmer
would code (write) the following instructions:

MOV  SI,XXXX ;SI=start address of source
MOV DI,YYYY ;DI=destination start address
MOV CX,ZZZZ ; CX=number bytes to move
REP MOVSB ;move gstring of bytes

;repeat until done

In this example, the programmer places the start memory address of the area of
memory containing the source data into the SI register and the start memory
address of the destination area in memory into the DI register. The number of
bytes to move is placed into CX, which acts as the count register in this context.

58



Chapter 5: The 80286 Microprocessor

The programmer then executes the Repeat Move String of Bytes (REP MOVSB)
instruction. When executed, this instruction performs a memory read from the
memory address specified in the SI register. The byte received from this loca-
tion is then written to the memory location specified in the DI register. The CX
register is then decremented and the SI and DI registers are incremented. When
the count in the CX register is exhausted, all of the bytes have been moved and
the REP MOVSB instruction has completed execution. The next instruction is
then executed. If the count is not exhausted, however, the REP MOVSB is re-
peated as many times as necessary until the move is completed.

The Status and Control Registers

This section describes the Flag and Machine Status Word registers. Three regis-
ters comprise the Status and Control Register group as shown in 5-3.

15
F
P
MSW
Status
and
Control
Hegisters

Figure 5-3. The 80286 Status and Control Registers

The Flag register—Refer to figure 5-4. The 16 bits in the Flag register may be
divided into three fields, or groups:

1. Status Flag bits. Generally speaking, these bits reflect the result of the pre-
viously executed instruction.

2. Control Flag bits. By setting or clearing these bits, the programmer can
modify certain of the microprocessor's operations.

3. System Flag fields. These three bits are related to protected mode operation
and are outside the scope of this book.

Refer to table 5-1 for the definition of the status, control and system flag bits.
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Figure 5-4. The Flag Register’s Status, Control and System Bits
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Table 5-1. The Flag Register’s Status, Control and System Bits

Bit Type Description

CF Status | Carry Flag. Indicates a carry or a borrow from the high-order bit
in the result. Caused by an arithmetic operation.

PF Status | Parity Flag. Set to 1 if low-order 8 bits of result contains an even
number of 1 bits. Cleared to 0 otherwise.

AF Status | Auxiliary Carry Flag. Indicates a carry or a borrow on the low-
order 4 bits of the AL. Caused by an arithmetic operation.

ZF Status [ Zero Flag. Set to 1 if result is 0. Cleared to 0 otherwise.

SF Status | Sign Flag. Set equal to the high-order bit of the result. 0 = positive
result, 1 = negative result.

OF Status | Overflow Flag. Set to 1 if the positive numeric result is too large
(or the negative result is too small) to fit in the destination regis-
ter.

TF Control | Trap Flag. Also called the Single-Step Flag. When set to 1, causes
a Single-Step Exception Interrupt after the execution of each in-
struction. Only used by Debug programs to aid in program de-
bugging.

IF Control | Interrupt Flag. When set to 1, the microprocessor will recognize
interrupts on the INTR line. Programmer can set by executing STI
instruction and clear via the CLI instruction.

DF Control | Direction Flag. When cleared to 0, causes string instructions to
increment SI and DI. They are decremented when DF is set to 1.

IOPL | System | I/O Privilege Level. 2-bit field. Causes the processor to generate
an exception before accesses to specified /O devices if the cur-
rently running task’s privilege level is less privileged than the
IOPL during protected mode operation.

NT System | Nested Task Flag. When set to 1 during protected mode opera-

tion, indicates that the currently executing task (the nested task)
was started by a CALL or interrupt while another task was run-
ning.

The Machine Status Word (MSW) Register—Refer to figure 5-5. The 80286
MSW register is a 16-bit register, but only the lower four bits are used. They are
defined in table 5-2.

When RESET is asserted, the value FFFOh is forced into the MSW register. This
means that the microprocessor operates in real mode, no Numeric Coprocessor
is installed and the microprocessor will not emulate floating-point instructions.
Real mode is described later in this chapter.
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Table 5-2. The 80286 MSW Register Bits

Bit

Description

PE

Protect Enable. When cleared to 0, the 80286 operates in Real Mode (also
known as Real-address Mode). When set to 1, microprocessor operates in
Protected Mode.

MP

Monitor Numeric Coprocessor. When set to a 1, the microprocessor will
check the 80287 Numeric Coprocessor’s BUSY# signal before forwarding all
tloating-point instructions to the coprocessor for execution. Described in de-
tail in the Chapter entitled, “The Numeric Coprocessor.”

EM

Emulate Numeric Coprocessor. When set to a 1, recognition of a floating-
point instruction causes an Exception 7 Interrupt. The Interrupt Service Rou-
tine, which handles this exception interrupt, emulates the particular floating-
point instruction that would have been executed by the Numeric Coproces-
sor if it were present. See the Chapter entitled, “The Numeric Coprocessor”
for details.

TS

Task Switch. This bit is related to protected mode operation and is outside
the scope of this book.

Emulate Numeric Coprocessor

Monitor Numeric Coprocessor

15 4 3 2 1 0
not used EMIMPIPE
£ A

Task Switch

Protected Mode Enable

Figure 5-5. The 80286 Machine Status Word (MSW) Register
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The Address Unit

When the microprocessor needs to read or write a memory location, the ad-
dress unit forms the address to be placed on the address bus during the bus cy-
cle.

The Segment Registers

Four segment registers exist in the 80286. The purpose of the segment register
is to point to the start address of an area of memory containing a specific type
of information (for example, a program or the data used by a program).

When Intel designed the 8086 and 8088 microprocessors (circa 1978), a pro-
gramming discipline commonly referred to as structured programming was
becoming very popular. Programmers were paying more attention to building
programs in a logical fashion.

To aid the programmer in organizing complex programs, Intel created the
segment registers. The idea was to identify a particular area (segment) of mem-
ory to hold the program, another to hold the data upon which the program
acts, a “scratchpad” area of memory known as the stack and a fourth area
known as the extra data segment.

In order to implement this feature, Intel included four 16-bit registers known as
the segment registers:

¢ Code Segment (CS) register
¢ Data Segment (DS) register
e Stack Segment (SS) register
e Extra Segment (ES) register

Segment Register Usage in Real Mode

The following description provides a detailed view of how the microprocessor
operates when in real mode. A description of how the segment registers are
used when the microprocessor is in protected mode can be found in this chap-
ter in the section entitled “Protected Mode.”

When an 80286-, 80386-, 80486- or Pentium processor-based system is powered
up, RESET is asserted until the power has stabilized. The asserted level on RE-
SET causes certain default values to be forced into the microprocessor's internal
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registers. The fact that the microprocessor always starts with the same values in
its registers causes it to begin execution in exactly the same way every time the
system is powered up. The contents of the Machine Status Word (MSW) regis-
ter is forced to FFFOh by RESET. Bit 0 in this register is the PE (Protect Enable)
bit. The fact that this bit always starts off cleared to 0 ensures that the micro-
processor will always come up in real mode.

When in real mode, ISA machines based on the 80286, 80386, 80486 and Pen-
tium microprocessors operate similarly as an 8086 or 8088 microprocessor. In
other words, although they physically have more than the twenty address lines
possessed by an 8086 or 8088 microprocessor, they aren't able to use all of these
additional lines when running programs written for the 8086 or 8088. The
80286 has a limited ability to produce addresses above 1MB in real mode, but
logic on ISA system boards defeats this ability so that the 80286 acts as an 8086
or 8088. This is done to ensure software compatibility. (See the section entitled,
“Accessing Extended Memory in Real Mode.”) This restricts the microproces-
sor to generating memory addresses from 000000h to OFFFFFh. The upper ad-
dress bits above A19 are forced to 0. The microprocessor is therefore limited to
the lower 1IMB of memory address space.

The 80386 and higher microprocessors can address all of their physical memory
address space while in real mode, so long as they have at least once been
switched to protected mode and back to real mode since the last reset. The
80286 lacks this capability since it cannot be switched from Protected to real
mode without resetting the microprocessor and thus clearing the contents of
the segment registers.

The address placed in each of the segment registers points to the actual start
address of the segments in memory. Since each of the segment registers is only
a 16-bit register, however, you can only place an address between 0000h and
FFFFh into a segment register. On the surface, this would mean that the start
address of each segment must be somewhere in the first 64KB of memory ad-
dress space (locations 0000h to FFFFh). Refer to figure 5-6. Although the 8086
and 8088 microprocessors can actually address 1IMB of memory address space,
this would mean that the program, data, stack and extra segments would be
limited to the first 64KB of this space and the rest of the memory would be in-
accessible.

In actuality, the address the programmer places in a segment register is the
four high-order hex digits of the address. The least-significant digit is imagi-
nary and always considered to be zero. Placing 1000h in a segment register
causes it to point to the memory segment (area) starting at address 10000h
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(1000h + imaginary Oh). This means that a 16-bit segment register can be used
to point to the start address of an area in memory anywhere from location
00000h to FFFFOh. This encompasses all but the last 16 locations of the 1MB

memory address range of the 8086 and 8088 microprocessors.

ES
S8
DS

~moe
A4

3000h

2000h

1000h

o
m—
g
B

OFEFEFh

004000h
003000h
00Z2000h
001000
003000h

Figure 5-6. Result If Segment Registers Were Restricted to 16 Bits
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OFFFFFh
ES 4900h
83 3000h
DS 2000h
s 1000h

-~ $40000h

3 030000h

g 0200000

oo $010000h

00000Ch

Figure 5-7. Segment Registers Point to Start Address of Memory Segments

In summary, then, the segment registers tell the microprocessor the start ad-
dress of the Code, Data, Stack and Extra segments in memory. Figure 5-7 illus-
trates how the four segment registers are used to identify the four segments
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available to a programmer. The usage of each of the segment registers is de-
fined in the following sections.

Code Segment (CS) & Instruction Pointer (IP) Registers

Instructions are frequently referred to as code. The Code Segment (CS) register
is always used in conjunction with another register called the instruction
Pointer (IP) register. Together, their only task is to point to the memory location
the microprocessor should fetch its next instruction from.

Refer to figure 5-8. The CS register points to the start address of the code seg-
ment in memory, while the 16-bit IP register points to the exact location within
the code segment where the next instruction should be read from.

The value in the CS register supplies the SEGMENT portion of the address,
while the IP register supplies the OFFSET, or exact location, within the seg-
ment. Intel almost always refers to memory addresses using the SEG-
MENT:OFFSET format, using the colon as a separator. For instance, if the
current contents of CS and IP are 3000:0010, this means that the next instruction
will be fetched (read) from memory location 0010h in the code segment which
starts at memory address 30000h. The 10th (hex) location in the segment start-
ing at 30000h is 30010h. Location 30010h is the actual memory address the mi-
croprocessor will place on the address bus to read the next instruction from.
The address placed on the address bus is called the physical address.

A severe limitation of the segmentation scheme used by the 8086 and 8088 is
tied to the width of the IP register. This register is only 16 bits wide and is used
to point to the exact location (in the code segment) from which the next instruc-
tion will be fetched. The fact that it's only 16 bits wide means that it's physically
impossible to point to any location within the segment greater than 64KB from
the segment's start address (the segment register value). In other words, FFFFh
is the largest value that could be placed in the IP register. The result— seg-
ments are limited to 64KB in length.
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8000:1000 = 8000Ch + 1000h = 81000h

OFFFFFh
P 1000h
Cs 8000h
— 081000h
S 080000h
The next instruction
will be fetched from
1000th (hex) location
in the code segment
that begins at location
080000k,
000000h

Figure 5-8. CS and IP Registers

This means that an entire program would have to fit in 64KB of memory
(unless it resides in more than one segment). In order to have a program bigger
than 64KB, the program must occupy several 64KB blocks of memory and the
programmer must constantly be aware of which segment of memory the next
instruction to execute resides in. The start address of the memory segment
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must then be loaded into the CS register. The offset of the actual instruction
within the new segment is loaded into the IP register.

New values are loaded into the CS and IP registers by executing JUMP instruc-
tions. A JUMP to a location within the same code segment loads a new value
(the offset of the next instruction) into the IP register. Because the JUMP is
within the same segment, this is called a NEAR JUMP.

A JUMP to a location within a different code segment loads new values into
both the CS (loaded with start address of the new code segment) and IP
(loaded with the offset of the instruction to jump to in the new code segment)
registers. Because you're jumping to a different code segment, this is called a
FAR JUMP.

The Data Segment (DS) Register

Refer to figure 5-9. The DS register points to the area of memory that holds data
associated with the program pointed to by the CS register. As an example, as-
sume that the microprocessor executes the following instructions:

MOV AX, 2000 ;value 2000h into AX
MOV DS, AX ;contents of AX into DS
MOV AL, [0100] ;contents of 2000:0100 to AL

This series of instructions will first place the value 2000h into the DS register.
It's illegal to move a value directly into the DS register, so it must be moved
first into AX and then into DS from AX. The data segment then starts at loca-
tion 20000h in memory.

The MOV AL,[0100] instruction is then interpreted as “move the contents of
memory location 0100h in the data segment into the AL register.” As a result,
the microprocessor executes a memory read bus cycle from physical memory
location 20100h (20000h + 0100h) and the byte read will be placed into the mi-
croprocessor's AL register. The brackets are read as “the contents of memory
location.”

When a MOVE instruction doesn't specify what segment, the microprocessor
always assumes the data segment. The value placed within the brackets is the
OFFSET within the segment. Just as the OFFSET portion of the address is re-
stricted to 16 bits in the code segment (by the size of the IP register), it is in the
other segments as well. It is illegal to specify an OFFSET address larger than
FFFFh within the brackets.
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2000:0100 = 20000h + 0100h = 020100h

[y
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ri
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offset 0100h
DS 20000

g 02010
MOV ALJC100] S 02000
The contents of memory

focation 020100h is read and
placed in the AL register

3000000

Figure 5-9. lllustration of Location within the Data Segment

The Extra Segment (ES) Register

The extra segment register is used in the same manner as the data segment reg-
ister. The following series of instructions is the same as that used in the data
segment example above, with one small change:
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MOV AX,3000 ;value 3000h into AX

MOV ES,AX ;contents of AX into ES

MOV AL,ES:[0100] ;contents of 3000:0100
;to AL

The “ES:” added just before the brackets is called a Segment Override. In this
way, the programmer tells the microprocessor to use the ES register to supply
the segment portion of the address, rather than the default DS register. The end
result of executing this series of instructions would be exactly the same as the
series illustrated for the data segment above.

Stack Segment (SS) & Stack Pointer (SP) Registers

The area of memory designated as the stack is used as “scratch-pad memory”
by the programmer and the microprocessor. Whenever the programmer needs
to save a value for a little while and get it back later, the stack is frequently
used for this purpose. The programmer doesn't need to specify a memory ad-
dress when writing to or reading from stack memory. This makes it a very easy
method for temporarily storing information.

The Stack Segment (SS) register points to the start address of the area of mem-
ory to be used as the stack. The Stack Pointer (SP) register provides the OFFSET
portion of the address and points to the exact location in the stack segment
where the last item was stored. At the beginning of a program, the programmer
places the start address of the program's stack segment in the 5S register. As
data items are stored in the program's stack, the stack grows downward to-
wards the stack segment start address specified in the SS register. The value
placed in the SP register determines the size of the program's stack. As an ex-
ample, if the programmer wishes this program's stack to be 512 bytes in size,
the SP register should be initialized to 0200h to point to the five-hundred-
twelfth location in the stack.
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8000 FFFF = 80000h + FFFFh = O8FFFFh

OFFFFFh
p FFFFh
58 8000h
3 08FFFFh
B 080000h
0000000

Figure 5-10. The Stack

Refer to figure 5-10. When the programmer wants to store a value on the stack,
a PUSH instruction is executed. As an example, PUSH AX will cause the con-
tents of the AX register to be written into stack memory where S5:5P is cur-
rently pointing. Assume that the SS register contains 8000h and the stack is
empty. The SP register contains FFFFh. Also assume that the AX register cur-
rently contains 1234h and BX contains AA55h. Now consider the following:

1. When the PUSH AX is executed, the microprocessor first decrements the
SP by 2. It then writes the two bytes from AX, 12h and 34h, into memory
starting at 8FFFDh (80000h + FFFDh). AL is stored in memory location
8FFFDh and AH is stored in 8FFFEh because of the Little-Endian Byte-
Ordering rule which is described later in this chapter.
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2. If BX were now pushed onto the stack, the SP is first decremented by 2 and
the two bytes from BX, AAh and 55h, are then stored in memory starting at
location 8FFFBh.

3. Each time the microprocessor executes a subsequent push operation, it will
first decrement the SP by 2 and then store the data into stack memory.

As you can see, the stack grows downward in memory from the highest mem-
ory location in the stack towards the segment start address.

To read data back from the stack, the programmer uses the POP instruction.
When the programmer executes a POP instruction, such as POP BX, the micro-
processor reads two bytes off the stack using the current value in SS:5P to form
the memory address.

1. Continuing the example used above, a POP BX would cause the micro-
processor to read the two bytes (55h and AAh) from locations 8FFFBh and
8FFFCh and place them into the BX register.

2. The microprocessor then increments SP by two, so S5:5P are now pointing
at 8000:FFFD.

3. A POP AX would then cause the microprocessor to read the two bytes (34h
and 12h) from locations 8FFFDh and 8FFFEh and place them into the AX
register.

4. The microprocessor then increments SP by two, so SS:SP are now pointing
at 8000:FFFF, the top of the stack.

As implemented by the Intel x86 microprocessors, the stack is a LIFO (Last In,
First Out) buffer— the last object in is the first out.

If the programmer attempts to pop more data off the stack than was pushed
onto it, the microprocessor will generate a special type of interrupt called a
Stack Underflow Exception interrupt to indicate that the stack is empty. Con-
versely, if the programmer pushes data onto the stack until the entire 64KB
stack segment (maximum possible size) is full and then attempts to push one
more word onto the stack, the microprocessor will generate a Stack Overflow
Exception interrupt. Interrupts are covered in the chapter entitled “Interrupt
Subsystem.”

Little-Endian Byte-Ordering Rule

When the microprocessor writes two bytes from a 16-bit register to memory,
then there are two possibilities for how the data could appear in memory. As-
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sume that the data segment starts at 000000h (DS register contains 0000h) and
consider the following code:

MOV AX,1234 ;move 1234h into AX

MOV [0200],AX ;move the contents of AX to
;memory locations 0200h and
;0201h

AH contains 12h and AL contains 34h after the first instruction is executed.
When the microprocessor executes the second instruction, it will fill in memory
with the following values:

Table 5-3. Little-Endian Byte Orderin

Memory Address Data Byte
000200h 34h
000201h 12h

Notice that the other possibility is that the microprocessor theoretically could
have put data byte 12h at memory address 000200h and byte 34h at address
000201h. That's only theoretical, because the x86 microprocessors use the Little-
Endian Byte-Ordering Rule to determine which byte goes where, so only one
way is actually used. Little-Endian Byte Ordering requires that the least-
significant byte must be associated with the lowest address. In this case, the
lowest address is 000200h and the least-significant byte is 34h.

The other byte-ordering method is Big-Endian Byte Ordering, which is used on
most non-x86-based computers. The Big-Endian Byte-Ordering Rule requires
that the most significant byte must be associated with the lowest address. Table
5-4 shows how the data would appear in memory.

Table 5-4. Big-Endian Byte Ordering (not used on x86)

Memory Address Data Byte
000200h 12h
000201h 34h

When the x86 microprocessor reads data from memory, it once again uses the
Little-Endian Byte-Ordering Rule to route the data bytes to the proper ends of
the registers. For example, consider the following code and memory contents:
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Table 5-5. Memory Contents

Memory Address Data Byte
001003h 56h
001004h 78h

MOV AX, [1003] ;move the contents of memory
;locations 1003h and 1004h
;to AX

What's in AX when the instruction is finished? The Little-Endian Rule says that
the least-significant end of AX (AL) must be associated with the lowest address
(1003h), so AX contains 7856h.

An easy way to remember the Little-Endian Byte-Ordering Rule is “Little End
First.” (The Big-Endian Byte-Ordering Rule is “Big End First.”) Note that the
Little-Endian Byte-Ordering Rule applies to I/O accesses as well as to memory
accesses.

Definition of Extended Memory

Refer to figure 5-11. Simply put, extended memory is any memory that resides
at address IMB or higher (above address OFFFFFh). Memory in the lower 1MB
(000000h to OFFFFFh) is frequently referred to as conventional memory. Since
the 8086 and 8088 microprocessors only have twenty address lines, they are
only capable of addressing memory in conventional memory space. This means
that extended memory doesn't exist in machines based on these microproces-
sors.

Unless the microprocessor has been set to protected mode at least once since
the last reset, then the 80286/80386/80486/Pentium microprocessors cannot
access Extended Memory, with one exception. The next section describes the
exception.
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Figure 5-11. Extended Memory

Accessing Extended Memory in Real Mode

It is possible to access a small amount of extended memory (memory above
1MB) while in real mode. Consider the following example:
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MOV AX,FFFF ;FFFFh to AX

MOV DS, AX ;transfer FFFFh to DS

MOV AL, [0010] ;transfer contents of memory
;location FFFF:0010 to AL

In order to form the physical memory address to place on the address bus
when executing the third instruction, the microprocessor would place a 0 on
the end of the data segment value (FFFFh) to point to the start address of the
data segment (FFFFOh). It would then add the offset (0010h) to the data seg-
ment start address to create the physical memory address:

DS + Oh = FFFFOh
OFFSET = 0010h
Physical memory address = 100000h

Refer to figure 5-12. The microprocessor then performs a memory read bus cy-
cle, driving the resultant physical memory address, 100000h, onto the address
bus. Notice that the 21st address bit, A20, is high. The processor is addressing
the first memory location of the 2nd megabyte of memory address space. This
is extended memory and the processor is addressing it in real mode!

Now consider this example:

MOV AX, FFFF ;FFFFh to AX

MOV DS, AX ;transfer FFFFh to DS

MOV AL, [FFFF] ;read byte from memory address
; FFFEF: FFFF to AL

Just as before, in order to form the physical memory address to place on the
address bus when executing the third instruction, the microprocessor would
place a Oh on the end of the data segment value (FFFFh) to point to the start
address of the data segment (FFFFOh). It would then add the offset (FFFFh) to
the data segment start address to create the physical memory address:

DS + Oh = FFEFFOh
OFFSET = FFFFh
Physical memory address = 10FFEFh
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Figure 5-12. A20 High

The microprocessor then performs a memory read bus cycle, driving the resul-
tant physical memory address, 10FFEFh, onto the address bus. With the value
FFFFh in the segment register and by supplying any offset in the range 0010h
to FFFFh, we are able to access any extended memory location from 100000h to
10FFEFh. This is a total of 65520 extended memory locations we can access
while still in real mode.
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This method is used by many MS-DOS memory management programs to ac-
cess extended memory while remaining in real mode. This memory area is
usually referred to as the High Memory Area (HMA).

The 80386 and higher microprocessors can address all of their physical memory
address space while in real mode, so long as they have at least once been
switched to protected mode and back to real mode since the last reset. The
80286 lacks this capability since it cannot be switched from Protected to real
mode without resetting the microprocessor and thus clearing the contents of
the segment registers.

Notice that the code fragments shown above are valid to execute on an 8086 or
8088 microprocessor. The results are different, however. If an 8086 or 8088 exe-
cutes that code, address bit A20 will not be high since the 8086 and 8088 do not
have such a bit. Therefore, the 8086 or 8088 produces an address that is be-
tween 00000h and OFFEFh, for the examples shown above. This is called ad-
dress wraparound or segment wraparound. The address space of the segment
wraps around from the highest physical addresses to the lowest physical ad-
dresses.

Some programs written for the 8086 and 8088 may be depending on the seg-
ment wraparound to occur so that they can access data that is in the low ad-
dresses, such as the Interrupt Table or the BIOS Data Area. If these programs
are executed on an 80286 or higher microprocessor, they will fail to operate cor-
rectly because they will not be accessing the same memory locations that they
were expecting to access. In order for machines based on the 80286 and higher
microprocessors to be compatible with such old code, the microprocessor’s ad-
dress must be truncated (cut off) to simulate the 20-bit address of the 8086 and
8088.

Notice that the highest address bit that was set when the largest segment value
and largest offset were used is address bit 20, A20. Therefore, only A20 needs
to be truncated. A23, A22 and A21 will not be high when executing the old
code. Refer to figure 5-13. On the system board, outside the microprocessor,
A20 is connected to one input of an AND gate. The other input of the AND
gate is A20 GATE (also named A20 MASK#, FORCE A20, etc.). The output of
the AND gate becomes the new A20 address bit that is broadcast with the rest
of the microprocessor’s address bits to the system. When A20 GATE is deas-
serted (low), the AND gate’s output is low, so the system’s A20 bit is low,
simulating an address coming from an 8086 or 8088. The A20 GATE signal
comes from the keyboard controller. See the chapter entitled “The Key-
board /Mouse Interface” for more information.
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Figure 5-13. A20 Gate
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The Bus Unit

Whenever the 80286 microprocessor must communicate with an external de-
vice, the bus unit performs the required bus cycle using the address, data and
control buses. The bus unit consists of the following sub-units:

e Address Latches and Drivers
¢ Instruction prefetcher

e Processor Extension Interface
¢ Bus Control Logic

e Data Transceivers

e O-byte prefetch queue

The following sections describe the purpose of each of the sub-units that com-
prise the bus unit.

Address Latches and Drivers

When the microprocessor must place an address on the address bus, the ad-
dress is latched into (held by) the bus unit's internal address latch. This should
not to be confused with the external address latch that is discussed in a subse-
quent chapter. The address drivers then drive the latched address out onto the
address bus.

Instruction Prefetcher and 6-byte Prefetch Queue

As described in chapter one, the microprocessor is performing in-line (sequen-
tial) code fetches (instruction fetching) on an on-going basis. Only jump
instructions alter program flow and they are statistically rare. Intel designed
the instruction prefetcher to take advantage of this characteristic. Rather than
wait for the execution unit to request the next instruction fetch, the prefetcher
gambles that the next instruction fetch requested will be from the next
sequential memory location and, on its own, performs a memory read bus cycle
to get the next instruction. The 80286 instruction prefetcher always fetches two
bytes at a time when fetching instructions from memory. It then places these
two instruction bytes into the 6-byte prefetch queue.

Since the queue isn't full yet, the prefetcher initiates another memory read bus
cycle to get the next two instruction bytes. These two bytes are also placed into
the prefetch queue. The prefetcher then initiates a third memory read bus cycle
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to get the next two bytes and places them into the prefetch queue. The queue is
now full.

The instructions are decoded by the instruction unit and placed into the de-
coded instruction queue one at a time. This takes place in parallel with instruc-
tion execution by the execution unit and prefetching.

Once the prefetch queue is full, the instruction prefetcher ceases prefetching in-
structions. If the currently executing instruction isn't a JUMP instruction, upon
execution completion the execution unit gets the next decoded instruction from
the instruction unit's decoded instruction queue. The instruction unit then, in
turn, gets the next instruction from the 6-byte prefetch queue, decodes it and
places it into the decoded instruction queue. When two or more bytes open up
in the prefetch queue, the instruction prefetcher resumes operation to fill the
queue back up again.

Most of the time, the execution unit's request for the next instruction can be
filled from the on-chip queues rather than forcing the microprocessor to per-
form a memory read bus cycle to get the next instruction.

When the execution unit executes a JUMP instruction, however, the prefetch
queue and decoded instruction queue are “flushed.” In other words, the pre-
fetcher gambled and lost. All of the entries in the two queues are marked as in-
valid. The instruction prefetcher must then initiate a memory read bus cycle to
get the requested instruction from memory. This stalls the execution unit until
the next instruction becomes available.

Once the instruction has been fetched and placed in the prefetch queue, the
prefetcher begins to prefetch once again to get ahead of the game.

Since JUMP instructions really don't occur very frequently in most programs,
the execution unit may feed off the decoded instruction queue most of the time
without having to wait for memory read bus cycles to be performed. In the
overall scheme of things, the time lost when the queue must be flushed is
minimal when compared with the advantage gained by prefetching.

Processor Extension Interface

This bus unit logic allows the microprocessor to communicate with the numeric
coprocessor (if it is installed). This subject is discussed in the chapter entitled
“The Numeric Coprocessor.”
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Bus Control Logic

This is the bus unit's state machine that performs bus cycles upon request. Bus
cycles are performed under the following circumstances:

¢ Memory read bus cycle request from the instruction prefetcher.

¢ Request from the execution unit to perform a memory read, memory write,
1/0 read or I/O write bus cycle.

¢ Inresponse to an interrupt request (refer to the chapter entitled “The Inter-
rupt Subsystem”).

Data Transceivers

A transceiver is a device that passes data through itself from left to right or visa
versa. During read bus cycles, the bus unit's data transceivers pass the data
coming from the currently addressed device into the microprocessor. During
write bus cycles, the transceivers pass data from the microprocessor onto the
data bus to be written to the currently addressed device.

80286 Hardware Interface to External Devices

This section provides a detailed description of the signal lines the 80286 micro-
processor uses to communicate with the rest of the system. They have been
grouped into the following categories:

e Address Bus
e Data Bus
e Control Bus

The Address Bus

The 80286 microprocessor's address bus consists of twenty-five signal lines:

e twenty-four address lines, A[23:0]
e BHE# (Bus High Enable)

Figure 5-14 illustrates the 80286 address bus.

During a bus cycle, the microprocessor places the full 24-bit address of the tar-
get location on the address lines, A[23:0]. A 24-bit address bus gives the 80286
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the ability to address any of 16,777,216 individual addresses from location
000000h to FEFFFFh.

In addition, the microprocessor asserts BHE# (low) when performing a data
transfer between itself and an odd address.
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Figure 5-14. The 80286 Address Bus
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How 80286 Addresses External Locations

During a bus cycle, the 80286 microprocessor can address just an even-
addressed location, just an odd-addressed location, or an even location and the
next sequential odd-addressed location simultaneously.

Refer to table 5-6. Address bit 0 (A0), has a weighted value of 1. When the mi-
croprocessor outputs an address, a 0 on A0 indicates that the address is an even
address and a 1 on AQO indicates that it is an odd address. For example, address
000100h is an even address (A0 = 0), while address 000509h is an odd address
(AO=1).

Since the microprocessor can only place one 24-bit address on the address bus
at a time, it is incapable of telling external logic that it wants to address an even
address and an odd address during the same bus cycle. A0 would have to be
low and high at the same time; an impossibility.

To indicate that it wishes to address an even and an odd address simultane-
ously, the 80286 microprocessor places the even address out on the address bus
and asserts its BHE# output (Bus High Enable). External logic interprets this to
mean that the microprocessor wishes to perform a data transfer with the cur-
rently addressed even address and the next sequential odd address during the
same bus cycle.

The data to be transferred between the microprocessor and the even address
will be routed over the lower data path, D[7:0], while the data to be transferred
with the odd address will be transferred over the upper data path, D[15:8]. This
is stated as Rule 3 in the next section entitled, “The Cardinal Rules of the Intel
World.”

When the microprocessor outputs an address at the start of a bus cycle, exter-
nal logic interprets A0 and BHE# as indicated in table 5-7. Remember that
BHE# is asserted when low.
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Table 5-6. Binary Weighted Value of each Address Line

Binary
Address Weighted
Line Value
A0 1
Al 2
A2 4
A3 8
A4 16
A5 32
Ab 64
A7 128
A8 256
A9 512
Al0 1024
All 2048
Al2 4096
Al3 8192
Al4 16384
Al5 32768
Al6 65536
Al7 131072
Al8 262144
Al9 524288
A20 1048576
A2l 2097152
A22 4194304
A23 8388608
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Table 5-7. Transfer Size Indicated by AO and BHE#

BHE#

Type of Transfer

The microprocessor is addressing an even address (A0=0) and will
therefore use the lower data path to transfer the data byte between
itself and the addressed location. Since the microprocessor only uses
the upper data path to transfer data between itself and odd ad-
dresses, the asserted level on BHE# indicates that it wants to perform
a data transfer with the odd location immediately following the even
address it is outputting. This is a 16-bit data transfer using both data
paths.

The microprocessor is addressing an even address (A0 = 0) and will
therefore use the lower data path to transfer the data byte between
itself and the addressed location. The deasserted level on BHE# indi-
cates that the microprocessor will not be using the upper data path to
talk to an odd address. This is therefore an 8-bit data transfer using
the lower data path.

The microprocessor is addressing an odd address (A0 = 1) and will
therefore use the upper data path to transfer the data byte between
itself and the addressed location. The asserted level on BHE# indi-
cates that the microprocessor will use the upper data path to talk to
the odd address. This is an 8-bit data transfer using the upper data
path.

Hlegal (will not occur).

The Data Bus

Although it is technically correct to say that the 80286 microprocessor has a 16-
bit data bus, it is more correct to say that it has two 8-bit data paths. The lower
data path consists of data lines D[7:0], while the upper path consists of D[15:8].
Rule three describes the usage of these two data paths. Figure 5-15 illustrates

them.
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Upper Data Path

80286

Figure 5-15. The 80286 Data Bus

The Cardinal Rules

The three rules stated in this section apply directly to the operation of the 80286
and the 803865X microprocessors. The 80386DX, 80486 and Pentium micro-
processors use a slight variation on rule number three. The chapter on the
80386 microprocessor explains the differences.

Cardinal Rule Number One

In any system based on the X86 microprocessors, every memory and 1/O storage loca-
tion contains one byte (8 bits) of information, no more, no less.

The temptation is great to say that storage locations in a system based on the
80286 microprocessor each contain one word (two bytes) of information. Many
people think this is the case because the 80286 has a 16-bit data bus and can
transfer a word at a time. Its 16-bit data bus gives the 80286 the ability to access
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two locations simultaneously. This doesn't alter the fact that each location con-
tains one byte of information.

Cardinal Rule Number Two

Every memory and 1/O address is considered to be either an even address or an odd ad-
dress.

When the 80286 microprocessor must read data from or write data to an exter-
nal device, it begins a bus cycle. The address is placed on the address bus sig-
nal lines. Logic external to the microprocessor looks at the least-significant
address line, AQ, to determine if the address is even or odd. Consider the
sample addresses in table 5-8.

Table 5-8. Examples of Even and Odd Addresses

Address | State of A0 Address Type
000000h 0 Even
000001h 1 Odd
0AFC12h 0 Even
F12345h 1 Odd
101003h 1 Odd

In each case where AQ is 0, the address is even. The address is odd if AOisa 1.

In itself, this rule may not seem important, but in light of Rule 3, it assumes a
great deal of importance.

Cardinal Rule Number Three

When the 80286 microprocessor reads from or writes to an even address, the data (one
byte) is transferred over the lower data path, D[7:0]. When reading from or writing to
an odd address, the data (one byte) is transferred over the upper data path, D{15:8].

The Control Bus

The control bus consists of all the 80286 signal lines other than the address bus
and the data bus. The control bus signal lines can be separated into the follow-
ing subcategories:
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¢ Bus Cycle Definition lines
¢ Bus Mastering lines

¢ Ready line

e Interrupt lines

e  Processor Extension lines
e The Clock line

e The Reset line

The following sections describe each of these signal groups.

Bus Cycle Definition Lines

When the 80286 bus unit must read data from or write data to an external loca-
tion, it must run a bus cycle to do so. During the bus cycle, the microprocessor
indicates the type of bus cycle by placing the proper pattern on the bus cycle
definition signal lines. Table 5-9 indicates each type of bus cycle and the respec-
tive pattern which is output onto the bus cycle definition lines.

Table 5-9. Bus Cycle Definition

M/IO# | S1# S0# | Bus Cycle Type
0 0 0 Interrupt Acknowledge
0 0 1 I/0 Read
0 1 0 1/0O Write
1 0 0 Halt or Shutdown
1 0 1 Memory Read
1 1 0 Memory Write

Technically speaking, there is a fourth bus cycle definition line, COD/INTA#. It
is the Code or Interrupt Acknowledge line and has something in common with
your appendix— if you lost it you wouldn't miss it. A system only needs to use
this line if it must differentiate between a memory read to get data versus a
memory read to get an instruction. In most systems, this pin isn't even hooked

Llp.
Bus Mastering Lines

Most of the time, the microprocessor on the system board “owns” the three
buses and uses them to communicate with external devices. The microproces-
sor is the Bus Master. However, there are situations where it is necessary to
surrender the buses to other bus masters.
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When a device other than the microprocessor wishes to use the buses to com-
municate with another device, it asserts the microprocessor's HOLD (Hold Re-
quest) input. When HOLD is asserted, the manner in which the microprocessor
responds depends on whether or not a microprocessor bus cycle (data transfer)
is currently in progress.

If a bus cycle is in progress when HOLD is asserted by the prospective bus
master, the microprocessor completes the current bus cycle prior to responding
to the HOLD. If a bus cycle isn't in progress, the microprocessor responds to
the hold request immediately.

In response to HOLD, the microprocessor electrically disconnects itself from
the address, data and control buses. It's just as if the microprocessor opens doz-
ens of switches, disconnecting itself from the external buses. This disconnect
process is commonly referred to as “floating” the buses.

The microprocessor then asserts its Hold Acknowledge (HLDA) output to in-
form the requesting bus master that it now owns the buses and is therefore bus
master. The new bus master may now use the buses to run one or more bus cy-
cles. It may keep the buses as long as necessary by keeping HOLD asserted.
When it no longer requires the use of the buses, the bus master releases HOLD.
In response, the microprocessor's bus unit re-attaches itself to the buses and ini-
tiates a bus cycle (if it has one pending).

In addition to HOLD and HLDA, there is a third microprocessor line involved
in bus mastering. In a system designed to take advantage of it, the 80286's
LOCK# output can be used by the programmer to prevent other bus masters
from stealing the buses away from the microprocessor. Refer to figure 5-16.

The microprocessor automatically asserts the LOCK# signal during certain op-
erations that require multiple bus cycles to complete such as:

e Interrupt Acknowledge Bus Cycles
e Execution of Exchange instructions
* Segment Descriptor Reads

There are times when the programmer must force the microprocessor to assert
the LOCK# signal. These situations are described in the next section.
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80286

LOCK# ==4
HOLD

Internal
Hold

Figure 5-16. The Lock Output

Protecting Access To Shared Resource

Two processes (programs in a multi-tasking system) or two processors (in a
multi-processing system) may need to access a shared resource at the same
time. Shared resources are things that each of the processes or processors can
access, such as the printer and data structures in memory. Assume that two mi-
croprocessors, CPU A and CPU B, need to print a file. In order for CPU A and
CPU B to share the printer, they must share the bus that connects to the printer.
An arbiter prevents bus contention between CPU A and CPU B by controlling
the HOLD inputs to both microprocessors. Only one microprocessor owns the
bus at a time.

If CPU A were granted the buses by the arbiter, it could start writing to the
printer. It may take CPU A several bus cycles to write the entire file to the
printer. CPU B might request the buses from the arbiter before CPU A finished
writing the entire file to the printer. If the arbiter granted the buses to CPU B,
then CPU A would have to give up the buses. When CPU B started writing to
the printer, the result would be a mish-mash of printout from CPU A and CPU
B, all mixed up.
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CPU B needs to be told to wait until CPU A has finished the print job. This is
usually handled by “semaphores,” meaning “sign bearers.” (Did you realize
you’d learn Greek while reading this?) Somewhere in memory, a semaphore
indicates whether the printer is available for use. Don’t confuse this with the
printer status byte which indicates whether the printer is busy or out of paper.
The semaphore is like a reservationist. Both microprocessors would have to
check the semaphore before beginning a print job.

CPU A would read a copy of the semaphore into one of its internal registers.
CPU A would then test the copy in its register to see if the printer is available.
If the printer is available, CPU A would set the value in its register. Then CPU
A would write the register’s value (the new semaphore value) back to the
semaphore’s location in memory. This is sometimes referred to as a read-
modify-write operation and the “modify” portion of the operation may be a
test-and-set operation.

Once CPU A has written the new value of the semaphore back to memory, it
may start writing to the printer, so long as the arbiter has still granted the buses
to CPU A.

CPU B has to obey the same rules that CPU A does, so before CPU B writes to
the printer, it must read and test the semaphore. CPU A has already written a
new value back to the semaphore in memory, so when CPU B reads the sema-
phore, CPU B will see that the printer is not available. CPU B will go into a
“spin loop,” sometimes referred to as a “spin lock,” re-reading the semaphore
occasionally until it sees that the printer is once again available. This solves the
mish-mash problem, or so it seems.

If CPU A and CPU B needed to write to the printer at the same time, they
would both need to access the semaphore at the same time. The arbiter would
only allow one of them to use the buses at a time. Assume CPU A has higher
priority, so the arbiter grants the buses to CPU A, and CPU A reads the sema-
phore first. Let’s start off assuming that the semaphore has a 0 in it to indicate
that the printer is available. CPU A tests the semaphore and finds it to be 0,
meaning the printer is available. CPU A then sets its copy of the semaphore (its
general purpose register) to 1, to indicate that the printer is unavailable. While
CPU A is testing and setting its copy of the semaphore, it does not need to use
the buses, since the test and set operations occur entirely within its general
purpose registers which are inside the microprocessor. During this time, CPU B
is still requesting the buses, so the arbiter grants the buses to CPU B. CPU A
hasn’t had a chance to write the semaphore back to memory yet. CPU B reads a
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copy of the semaphore and begins to test it. The semaphore in memory is still 0,
so when CPU B tests it, CPU B thinks that the printer is available.

CPU A has determined that the printer is available and requests the buses from
the arbiter so it can write the new value of the semaphore to memory. CPU A
then requests the buses so it can begin writing to the printer. Meanwhile, CPU
B has also determined that the printer is available because the semaphore was 0
when CPU B read it. CPU B believes that it owns the printer and we have the
same mish-mash problem that we started with.

The intended operation was for CPU A to read the semaphore, test it, set it and
write it back without interference from CPU B. These operations were intended
to be indivisible, or “atomic” (yes, it’s Greek). That’s one of the purposes of
LOCK#. By asserting LOCK#, CPU A prevents the arbiter from granting the
buses to CPU B until after CPU A has written the updated semaphore to mem-
ory. After writing the semaphore, CPU A deasserts LOCK# and the arbiter can
grant the buses to CPU B. Now, when CPU B reads the semaphore, it sees that
the printer is not available and it goes into a spin loop.

If the programmer doesn't want the microprocessor to give up the buses during
a series of instructions, each of the instructions should be prefaced by a LOCK
prefix. Each time that the microprocessor sees a LOCK prefix in front of an in-
struction, it will assert the LOCK# output while the instruction is executed. The
low on the LOCK# line will force the microprocessor's internal Hold request to
remain deasserted and the HLDA output will also remain deasserted, prevent-
ing any bus master from stealing the buses.

The preceding discussion of atomic operations is just an example to illustrate
the lock mechanism of the x86 microprocessors. The memory addresses of the
semaphores and the meanings of the semaphores are system software issues.
There are other ways of protecting access to shared resources other than using
LOCK#. Also, it is rare for ISA machines to have multiple processors in them.
The DMA controllers (which are non-intelligent bus masters) should not access
semaphores since they cannot make decisions on their contents.

Ready Line

The READY# input allows slow access devices to stretch out the microproces-
sor's bus cycles to match their own slow response time. This subject was intro-
duced in the chapter entitled “Introduction to the Bus Cycle” and is explored in
more depth in the chapter entitled “Detailed View of the Bus Cycle.”
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Interrupt Lines

The 80286 microprocessor has two inputs used by external logic to interrupt the
microprocessor's program execution. These two inputs are INTR and NMI.

The microprocessor's Interrupt Request input (INTR) is frequently referred to
as maskable interrupt request. INTR is generated by the Intel 8259A Program-
mable Interrupt Controller when an external hardware device requires servic-
ing (for example, the keyboard interface has a keystroke for the
microprocessor).

INTR is called the maskable interrupt request input because the programmer
has the ability to mask out, or ignore, this input. If the programmer has a sec-
tion of critical code (series of instructions) that he or she doesn't want inter-
rupted, the instructions can be prefaced with a CLI (Clear Interrupt Enable)
instruction. Once the microprocessor executes this instruction, it will ignore the
INTR input until recognition of external hardware interrupts is once again re-
enabled by the programmer. When the critical series of instructions has been
executed without interruption, the programmer should then execute the STI
(Set Interrupt Enable) instruction, re-enabling recognition of external hardware
interrupts on the INTR input line.

Since interrupts arriving on the INTR line will not be recognized while the pro-
grammer has interrupts disabled, the programmer shouldn't disable interrupt
recognition for extended periods of time. If INTR is ignored for too long, im-
portant events can be missed by the microprocessor.

The Non-Maskable Interrupt request (NMI) input to the microprocessor is typi-
cally used by external logic to alert the microprocessor that a critical hardware
or software failure has been detected (for example, a memory parity error). It's
called the non-maskable interrupt request line because the programmer has no
way of masking out recognition of NMI if it should become asserted. The mi-
croprocessor will service NMI interrupts immediately.

A complete explanation of both maskable and non-maskable interrupts can be
found in the chapter entitled “The Interrupt Subsystem.”

Processor Extension Interface Lines

Processor extension is another name for the numeric coprocessor. These four
signal lines are used to connect the numeric coprocessor to the microprocessor.
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Refer to figure 5-17. Processor Extension Request (PEREQ) is an output from
the numeric coprocessor and an input to the microprocessor. It is used by the
numeric coprocessor to ask the microprocessor to perform a memory transfer.
Processor Extension Acknowledge (PEACK#) is an output from the microproc-
essor and an input to the numeric coprocessor. The microprocessor uses
PEACK# to respond to the PEREQ issued by the numeric coprocessor. It in-
forms the numeric coprocessor that the requested memory transfer is in pro-
gress.

80287 80236
Numeric Micreprocessor
Coprocessor
PEREQ | PEREQ
PEACKS
BUSY# Bol BUSY#
+5Vde
ERROR# % ERROR#

E:>£: IBQ13 .

Figure 5-17. Relationship of the Microprocessor and the Numeric Coprocessor

BUSY# is an output from the numeric coprocessor to the microprocessor. The
numeric coprocessor asserts BUSY# when it begins execution of an instruction
received from the microprocessor. While BUSY# is asserted, the microprocessor
shouldn't forward any more instructions to the numeric coprocessor.

ERROR# is an output from the numeric coprocessor to the microprocessor. It
informs the microprocessor that the numeric coprocessor has incurred an error
while executing an instruction. In ISA machines, the numeric coprocessor's ER-
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ROR# output isn't connected to the ERROR# input of the microprocessor. In-
stead, IBM chose to attach the ERROR# output to IRQ13 (Interrupt Request
Level 13). In other words, interrupts are used to report numeric coprocessor er-
Tors.

This subject is covered in more depth in the chapters entitled “The Numeric
Coprocessor” and “The Interrupt Subsystem.” Figure 5-17 illustrates the inter-
face between the microprocessor and the numeric coprocessor.

The Clock Line

Frequently referred to as CLK2, this is the microprocessor's double-frequency
clock input. Internally, the microprocessor then divides CLK2 by two to yield
PCLK, the real heartbeat of the microprocessor.

The Reset Line

Among the possible RESET sources, the RESET input to the microprocessor is
derived from the power supply's POWERGOOD output signal. In addition,
RESET also fans out and is applied to many other system components, includ-
ing cards plugged into the ISA slots. When the power supply is first turned on,
its output voltages are not yet stable. The power supply will keep the POWER-
GOQOD signal deasserted until power has stabilized. While POWERGOOD is
deasserted, RESET will be asserted. When the power supply output voltages
have stabilized, the POWERGOOD signal is asserted and RESET is deasserted.

While RESET is asserted, it has two effects on the microprocessor and other
system components:

1. Keeps any activity from occurring until power has stabilized.

2. Presets the microprocessor and other system devices to a known state prior
to letting them begin to do their job. This ensures that the machine will al-
ways start up the same way.

Refer to figure 5-18. In order to guarantee proper operation of the microproces-
sor, the RESET input must change state in synchronism with the double-
frequency clock. The Reset Sync flip-flop in the illustration accomplishes this
task. On each rising-edge of CLK2, the output of the flip-flop is set to the oppo-
site state of the POWERGOOD input. During the period immediately following
system power-up, POWERGOOD is deasserted and RESET will therefore be
asserted (because the flip-flop is continuously clocking ones through to the RE-
SET line). When the power supply output voltages have stabilized, however,
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the POWERGOOD signal goes high and the flip-flop begins to continuously
clock zeros onto the RESET line.

RESET

Reset
Syne 50286

Figure 5-18. The Reset Logic

More information regarding RESET's effect on the microprocessor can be found
in the chapter entitled “The Power-Up Sequence.”

Protected Mode

This section provides a description of how the 80286 microprocessor forms
physical memory addresses when protected mode is enabled. It does not pro-
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vide an in-depth programmer's guide to all aspects of protected mode opera-
tion. For two reasons, that subject is outside the scope of this book:

e It is purely a programming issue and has absolutely nothing to do with the
hardware interface between the microprocessor and the rest of the system.

e To provide an in-depth description would require a separate volume of
sizable proportions. Since there are already a number of good books avail-
able on the subject, it would be an unnecessary duplication of effort.

Intro to Protected Mode and Multitasking Operating
Systems

The 80286 microprocessor's protected mode was designed to facilitate the im-
plementation of multitasking operating systems like OS/2 and UNIX. Unlike
MS-DOS, which was designed to handle a single-task (applications program) at
a time, a multitasking operating system is designed to run and keep track of
multiple tasks.

A multitasking operating system will typically let a task run until either:

e apredetermined period of time has elapsed or
e the task requires something that isn't immediately available.

Assume that an applications program referred to as task A has not yet run for
its allotted period of time, but it requires something that isn't immediately
available. Good examples would be waiting for a keystroke or the completion
of a disk read operation. Since these operations will take some time, it would be
wasteful to have the microprocessor wait for the operation to complete. In-
stead, the operating system will store all of the microprocessor's registers in a
special segment of memory, known as a Task State Segment (TSS). There is a
separate TSS for every program that the microprocessor is running. This stored
information will later allow the microprocessor to pick up where it had sus-
pended Task A once the requested operation has completed.

Having stored task A's Task State, the microprocessor can then give control to a
task which was previously suspended while waiting for completion of some
other operation. We'll call this task B. The microprocessor loads all of the mi-
croprocessor's registers from the TSS belonging to task B. This TSS holds the in-
formation describing the microprocessor's state at the point when task B was
suspended.
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Task B will then run until either its allotted time has elapsed or it again needs
something it has to wait for, at which point it will be suspended and control
will pass to another task. A multitasking operating system can be viewed as a
juggler who has to keep a number of balls in the air without dropping any.

With the help of the 80286's protected mode features, the operating system
must:

1. Protect application programs from each other. In other words, don't allow
one application program to play with another application program's data
or code segments. Any attempt on the part of one application program to
access another program's areas of memory should result in an Exception
Interrupt which will be handled by the operating system software.

Protect itself from the application programs it is supervising.

3. Provide the interface between applications programs and 1/O devices. It
could be catastrophic if an application program manipulates an I/O device
(for example, a disk) without the Operating System's knowledge. The op-
erating system wouldn't know data on a disk or the state of an [/O device
had been altered.

N

In order to prevent this possibility, any attempt on the part of an application
program to execute an 1/O read or write will cause an Exception Interrupt
when the IOPL bit in the flag register is set. This informs the operating system
of the attempt to access an I/0O device. He may then choose to cast out the de-
mon application program who has violated sacred ground.

In protected mode, segments can be described as:

1. belonging to (accessible by) all programs. This is referred to as a Global
Segment.

2. belonging to a particular application program. This is referred to as a Local
Segment because it's local to the currently running application program.
Any attempt by a program other than the application program that “owns”
this Local Segment or the operating system to access a Local Segment will
cause an Exception Interrupt.

3. belonging to the operating system software. This is referred to as a System
Segment. Any attempt by a program other than the operating system to ac-
cess a System Segment will cause an Exception Interrupt.

4. read-only segments. Any attempt to write to a read-only segment will
cause an Exception Interrupt.

5. execute-only code segments. Any attempt to access an execute-only seg-
ment for anything other than an instruction fetch will cause an Exception
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Interrupt. Even an attempt to read the instructions as data (using MOV in-

structions) will cause this exception. This means that another program can't

disassemble the instructions in a program's code segment to figure out

what makes it tick.

read /write segments. This would be a normal data segment.

7. only accessible by programs with a privilege level equal to or greater than
the segment's privilege level.

o

As will be seen in the next section, the operating system software maintains a
group of tables in memory that describe:

e the Global segments that anyone can access. The Global Descriptor Table
(GDT) resides in memory. Each entry contains a segment descriptor, de-
scribing a globally accessible segment.

e the Local segments that belong to a particular application program. The
Local Descriptor Table (LDT) resides in memory. Each entry contains a
segment descriptor, describing a segment belonging to a particular pro-
gram.

¢ Interrupt Service Routines. The Interrupt Descriptor Table (IDT) resides in
memory. Each entry contains an Interrupt Descriptor which describes the
location and accessibility of the Interrupt Service Routine.

Segment Register Usage in Protected Mode

The microprocessor can be placed in protected mode by setting bit 0, the PE bit,
in the MSW register. Prior to actually setting this bit, however, the programmer
must write certain tables of information into memory. Failure to do so will
cause all hell to break loose when protected mode is enabled.

With the one exception already described, it is impossible to address extended
memory (memory above 1MB) while in real mode. In real mode, the segment
registers can only be used to form a 5-digit address, thus limiting you to ad-
dresses in the range 000000h to OFFFFFh (the lower 1MB). Since the 80286 mi-
croprocessor actually has 24 address lines, A[23:0], it is capable of generating
memory addresses from 000000h to FFFFFFh (a 16MB address range). The
80286 must be switched into protected mode to do this, however.

When in protected mode, the value in the segment register is interpreted dif-
ferently than when in real mode. In real mode, the value in the segment register
(with the imaginary Oh on the end) was the actual start address of the respec-
tive segment (CS, DS, SS or ES) in memory. In protected mode, though, the
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value placed in the segment register (usually referred to as the Segment Selec-
tor when in protected mode) actually contains the following information:

¢ Requester Privilege Level (RPL) field
e Table Indicator (TI) bit
e Table index field

Refer to figure 5-19. The RPL field indicates the privilege level of the program
that is attempting to access the target segment. The Table Indicator (TI) bit

points to one of two tables in memory:

¢ 0= the Global Descriptor Table
¢ 1 =the Local Descriptor Table

The index portion of the value placed in the segment register (or segment selec-
tor) provides an index into the table indicated by the Table Indicator bit.

15 3 2 1.0
Table Index TH1 RPL

Table Indicator {0 = Global, 1 = Local

Reguestor Privilege Level
Figure 5-19. The Segment Selector

In addition to the segment registers, the 80286 also has three registers known as
the Global Descriptor Table Register (GDTR), the Local Descriptor Table Regis-
ter (LDTR) and the Interrupt Descriptor Table Register (IDTR). The operating
system programmer must load the start memory addresses of each of the three
tables into these registers.

Loading a new value into a segment register causes the 80286 microprocessor
to automatically generate a series of four memory read bus cycles to get the 8-
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byte segment descriptor from the indicated entry in the table identified by the
TI bit. The microprocessor computes the start memory address of the 8-byte
segment descriptor by multiplying the index by 8 (because each table entry is 8-
bytes long) and adding the resulting offset to the contents of the respective De-
scriptor Table Register (either Global or Local).

The 8-byte segment descriptor read from memory is loaded into a special mi-
croprocessor register known as a descriptor cache register. There is a corre-
sponding cache register for each of the four segment registers.

As an example, when a value is loaded into the CS register, the microprocessor
uses the TI bit to identify the table to access (Global or Local), multiplies the in-
dex by eight and adds it to the table start address from the GDTR or LDTR. The
8-byte code segment descriptor is read into the microprocessor's code segment
cache register. Only when the microprocessor has the segment descriptor can it
add the offset supplied by IP register to the code segment's actual start address
and generate the bus cycle to access the desired memory location in the code
segment.

This rather involved process may seem tremendously inefficient, and would be
if the microprocessor had to go through all of this every time it needed to ac-
cess a memory location. In actuality, the microprocessor only has to read a
segment descriptor from memory when a new value is placed in a segment reg-
ister by the programmer. All subsequent memory accesses within the same
segment happen quickly because all of the segment's descriptive information is
already on-board the microprocessor chip in the cache register and can be used
immediately in forming the actual physical memory address.

Refer to figure 5-20. A segment descriptor is 8 bytes in length and describes
everything you ever wanted to know about the segment:

1. The 24-bit start address of the segment in memory. This means the pro-
grammer can specify a start memory address anywhere in the microproc-
essor's 16MB address range.

2. Unlike real mode, where the segment length is fixed at 64KB, the length of
the segment can be specified as anywhere between 1 byte and 64KB.

3. Segment access rights byte. The bits in this byte allow the operating system
to specity protection features associated with the segment being described.
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Byte
Byte
Byte
Byte
Byte
Byte

Byte
Byte

Not used by 80286

Not used by 802886

P

DPLI S Type

A

Upper Byie of Base Address

Middle Byte of Base Address

Lower Byte of Base Address

Upper Byte of Size

Lower Byie of Size

Figure 5-20. The Segment Descriptor

Attribute Byte

Bytes 0 and 1, the first two bytes in the descriptor, specify the size of the seg-
ment being described. The next three bytes supply the actual start address of
the segment in memory. Since this is a 24-bit value, the start address may be
anywhere in the 16MB memory address space of the 80286 microprocessor. The
next byte is referred to as the attribute byte and defines the following character-
istics of the segment:
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Table 5-10. Attribute Byte Definition

Field
Name Purpose

A Accessed bit. This bit will be 0 if the segment has not been accessed.

TYPE | This 3-bit field defines the type of segment. Using this field, the segment
may be defined as:

—an executable code segment (only instruction fetches may be performed
from the segment). This prevents another program from reading these in-
structions so they can be disassembled.

—-a code segment that may be read as data or instructions. This code seg-
ment may be read by another program so it can be disassembled.

—a read /writable data segment.

—a read-only data segment.

S S =1 for a Data or code segment. S = 0 for a Control Descriptor.

DPL | Descriptor Privilege Level. The program attempting to access the segment
must have a Requester Privilege Level (RPL) equal to or greater than the
DPL specitied here.

P If 0, descriptor isn't valid (doesn't describe a segment of memory). If 1, de-
scriptor is valid.

Note: An in-depth description of segment descriptors and other Protected
Mode subjects is outside the scope of this book.
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Chapter 6

The Previous Chapter
The first five chapters introduced the concepts of microprocessor communica-

tions and provide a detailed understanding of the 80286 microprocessor's inter-
face signals.

This Chapter

ISA products usually have six separate source for reset, two of which are gen-
erated only by hardware and four that can be initiated by software commands.
This chapter details the reset sources within typical ISA systems.

The Next Chapter

The next chapter explains the sequence of events that occur immediately after
an ISA system is powered on.

The Power Supply Reset

The power supply provides the operating voltages necessary for system opera-
tion. When the power switch is first placed in the on position, it takes some
time for the power supply's output voltages to reach their proper operating
levels. If the system components were allowed to begin operating before the
voltages stabilized, it would result in erratic operation.

Every PC power supply produces an output signal commonly called POWER-
GOQOD. On the system board, the POWERGOOD signal is used to produce the
RESET signal. During the period required for stabilization of the output volt-
ages, the POWERGOOD signal is kept deasserted by the power supply. While
POWERGOOD is deasserted, the RESET signal is kept asserted.

While RESET is asserted, it has two effects on the microprocessor and other
system components:
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1. Keeps any activity from occurring until power has stabilized.

2. Presets the microprocessor and other system devices to a known state prior
to letting them begin to do their job. This ensures that the machine will al-
ways start up the same way.

When POWERGOOD becomes asserted, the RESET signal is deasserted and the
microprocessor can begin to fetch and execute instructions. The first instruction
is always fetched from the power-on restart address which is always located 16
locations from the very top of the memory address space. For the 8088 micro-
processor, this would be FFFFOh, FFFFFOh for the 80286 and 803865X, and
FFFFFFFOh for the 80386DX, 80486 and Pentium microprocessors. This location
contains the first instruction of the POST.

Reset Button

Some systems provide a momentary-contact switch which the user may press
to force the RESET signal to be asserted to the microprocessor and to the rest of
the system. The effect on the system is the same as deasserting POWERGOOD
from the power supply, but the power supply is not actually turned off.

Shutdown Detect

When the microprocessor detects an exception while attempting to execute the
handler for a prior exception, the two exceptions are generally handled serially.
Certain combinations of exceptions cannot be handled serially, however. These
exceptions are caused by protection violations in protected mode. For example,
in protected mode, if an application attempts to access data that is outside its
data segment, the microprocessor will start running the general protection fault
exception handler. If, say, a stack overflow were to occur while the microproc-
essor ran the general protection fault exception handler, the microprocessor
would not be able to handle the two faults serially. The microprocessor would
invoke the double-fault exception instead.

If the microprocessor detects another exception while attempting to service the
double-fault, it goes into a shutdown condition. This is sometimes referred to
as a triple fault. The microprocessor indicates the shutdown condition to exter-
nal logic by running the halt or shutdown bus cycle. Since the microprocessor
has abnormally ceased to fetch and execute instructions, it can’t run a program
to inform the user that a severe error has occurred. Therefore, in an ISA ma-
chine, the shutdown detect logic outside the microprocessor detects the shut-
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down and toggles the microprocessor's RESET line, causing the system to re-
boot.

See the chapters entitled “Detailed View of the 80286 Bus Cycle” and “Detailed
View of the 80386 Bus Cycle” for additional information on the halt or shut-
down bus cycle.

Hot Reset

MS-DOS was written specifically for the Intel 8088 microprocessor using 8088-
specific instructions. Since the 8088 only has 20 address lines, it is incapable of
generating a memory address greater than FFFFFh, or 1MB. Furthermore, pro-
tected mode wasn't introduced until the advent of the 80286 microprocessor.
Consequently, M5-DOS can only address the lower 1MB and doesn't under-
stand protected mode.

When an 80286 is powered up, it operates in real mode. In other words, it op-
erates as if it were an 8088. This means that, although the 80286 has twenty-
four address lines and can physically address up to 16MB of memory address
space, it is limited to the lower 1MB when in real mode.

Most current applications programs are written to run under MS-DOS. Many
of these programs require access to more memory space than allowed under
MS-DOS. As an example, many Lotus 1-2-3 spreadsheets require very large
amounts of memory space, well in excess of that allowed under MS-DOS and
the 8088 microprocessor.

If a system is based on the 80286 microprocessor, the problem can be solved by
switching the microprocessor into protected mode. This allows the microproc-
essor to access up to 16MB of memory space, but M5-DOS presents a problem.
It doesn't understand protected mode and is therefore incapable of generating
addresses above 1MB.

Special software that understands protected mode operation prepares the seg-
ment descriptor tables in memory prior to switching into protected mode. It
also must save the address of the next instruction to be executed when the mi-
croprocessor returns to real mode so MS-DOS can continue to run at the point
where it went to protected mode. The 80286 is then switched into protected
mode and the extended memory above 1MB accessed (for example, to store
spreadsheet data).

Once the extended memory access has been completed, the microprocessor
must be switched back into real mode so the applications program can continue
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to run under MS-DOS. Here's where the problem comes in. In order to switch
the 80286 microprocessor from protected to real mode, the microprocessor
must be reset.

To do this, the following actions must be taken:

1. The programmer stores an address pointer that points to the address of the
real mode instructions that are responsible for restoring the system to its
previous operating condition. This pointer is stored in locations 0040:0067
to 0040:006A. The contents of these locations will be used later when the
processor returns to real mode to find the address in memory where the
real mode instructions reside.

2. A special value (05h or 0Ah) is stored in the configuration CMOS RAM lo-
cation (OFh) to indicate the reason for the reset. Refer to table 6-1 for defini-
tions of the reset byte in CMOS RAM.

3. The system has now been prepared to return to real mode. The Hot Reset
command must now be issued to the keyboard/mouse interface.* This is
accomplished by writing a FEh to the keyboard/mouse interface's com-
mand port at [/O address 0064h.

4. In response, the keyboard/mouse interface pulses its Hot Reset output one
time, causing the hardware to generate a reset to the 80286.

5. When reset becomes deasserted, the microprocessor begins to fetch and
execute instructions at the power-on restart address exactly as if a power-
up had just occurred.

6. At the beginning of the POST, the programmer reads the value stored in
the configuration RAM location to ascertain the reset's cause. In this case,
the value (05h or 0Ah) indicates that it was caused by Hot Reset to get back
to real mode and continue program execution.

7. POST then retrieves the previously stored real mode address pointer found
at location 0040:0067 and jumps to the indicated address and picks up
where it left off in real mode.

* Some manufacturers employ a Hot Reset “intercept” where external circuitry
recognizes an FEh written to the keyboard controller and immediately gener-
ates a Fast Hot Reset. This provides a faster reset signal compared to the slower
generation via a command to the keyboard controller. Later versions of Intel's
microcontrollers (typically used as keyboard controllers) provide an internal in-
tercept that also results in a fast Hot Reset.

Another method used to produce a fast Hot Reset is to cause the microproces-
sor to go into the shutdown condition by intentionally causing faults using
software. This causes the shutdown detect logic to reset the microprocessor.

110



Chapter 6: The Reset Logic

Alternate (Fast) Hot Reset

The Alternate or Fast Hot Reset command is found in some ISA systems that
implement system control port A at [/O address 0092h, sometimes called the
PS/2 compatibility port. Alternate Hot Reset performs the same function as the
Hot Reset command. However, the microprocessor is reset more quickly using
this method than when using Hot Reset. The Hot Reset command must be in-
terpreted by the ROM-based program inside of the keyboard/mouse interface,
while the Alternate Hot Reset command is executed by the hardware much
more quickly.

Alternate Hot Reset is generated by setting bit 0 in system control port A to a
one. This generates a pulse on the Alternate Hot Reset signal line which, in
turn, causes a pulse on the Hot Reset signal. This resets the microprocessor. For
a more extensive explanation of Hot Reset, see the previous section.

Ctri-Alt-Del Soft Reset

When the control and alternate keys are depressed and held, followed by the
delete key being depressed, three “make” codes for these keys are stored in the
keyboard buffer in memory. When the sequence of “make” codes are detected
by the keyboard interrupt service routine, the soft reset routine is invoked. The
soft reset routine causes the system to:

1. Place the value 1234h into the reset flag location (0040:0072) in main mem-
ory. This value tells the system to skip a portion of the POST when reboot-
ing.

2. Store a special value (00h)in configuration RAM to indicate that a Con-
trol/Alternate/Delete is causing the reset (also used for power-on reset).

3. Depending on the computer model and manufacturer one of two methods
is typically used to reset the processor.

e Write a FEh to port 64h, causing a CPU reset. When the reset is re-
moved, the microprocessor begins to fetch and execute code from loca-
tion FFFFOh, the beginning of POST.

¢ Jump to location FFFFOh and begin program execution.

4. Near the beginning of the POST, the programmer reads the value stored in
the configuration RAM location to ascertain the reset's cause. In this case,
the value indicates that it was caused by Control/Alternate/Delete or
power-on reset.
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5. Next, the reset flag at location 0040:0072 is checked for the value 1234h.
1234h indicates a Ctrl-Alt-Del has caused the reset condition and as a re-
sult, only a subset of the POST is executed.

Table 6-1. CMOS Reset Code Definition
Value Meaning

00h Normal Power-Up reset or Ctrl-Alt-Del reset depending on the value of the Reset flag word in
memory at location 0040:0072. When the reset flag contains the value 1234h, the POST mem-
ory test is skipped.

04h POST is skipped. Causes DOS to be loaded from disk.

05h POST is skipped and memory preserved. The 80286 microprocessor cannot be switched from
protected mode into real mode without resetting the processor. This presents problems when
the programmer wishes to temporarily switch to protected mode to access extended memory

and then switch back into real mode to continue execution. When a program must temporar-
ily leave real mode and enter protected mode, the programmer first stores a four byte memory
address (pointer) into memory location 0040:0067. This pointer specifies the address at which
real mode execution will resume. Having done this, the program may switch the processor
into protected mode and access extended memory. Upon completing the protected mode
function, the programmer must place the value 05h or 0Ah into the reset code byte in CMOS
RAM and then reset the 80286 microprocessor. When reset goes away, the processor is in real
mode and begins executing the POST. The POST code checks for a 05h or a 0Ah in the reset
code byte, and, if present, jumps to the memory address specified in memory starting at loca-
tion 0040:0067 to resume execution at the point where it left off in real mode. In addition, if
the reset code byte value is 05h, an EOI command is issued to the interrupt controller.

09h Block-move return. This value is placed in the reset code byte by a BIOS call to INT 15h to
move a block of information between conventional and extended memory. In order to ac-
complish this move, the processor must switch into protected mode. On an 80286-based sys-
tem, the INT 15h routine sets the reset code byte to 09h prior to resetting the processor to
return to real mode after the block move. When reset, the processor starts executing the POST,
checks the reset code byte value, and then performs an interrupt return, or IRET, instruction
to return to the original program after completion of the call to the INT 15h BIOS routine.

0Ah Jump to real mode pointer 0040:0067 without issuing EOL. See the explanation for reset code
byte = 05h.
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Chapter 7

The Previous Chapter

The previous chapter, “The Reset Logic,” provided a detailed description of the
possible sources for RESET.

This Chapter

This chapter provides a description of the ISA machine power-up sequence
from the moment power is applied until the microprocessor begins to fetch and
execute instructions.

The Next Chapter

The next chapter, “The 80286 System Kernel: the Engine,” describes the sup-
port logic necessary to allow the 80286 microprocessor to communicate with 8-
and 16-bit devices.

The Power Supply — Primary Reset Source

The power supply provides the operating voltages necessary for system opera-
tion. When the power switch is first placed in the on position, a period of time
is required for the power supply's output voltages to reach their proper operat-
ing levels. If the system components are allowed to begin operation before the
supply voltages have stabilized, erratic operation would result.

Figure 7-1 illustrates the power supply-related logic that produces the micro-
processor's RESET signal. Every ISA PC power supply produces an output sig-
nal commonly called POWERGOOD. On the system board, the RESET signal is
derived from the POWERGOQD signal. In order to guarantee proper operation
of the microprocessor, the RESET input must change state in synchronism with
the CLK2 signal (the microprocessor's double-frequency clock input). On each
rising edge of CLK2, the state of the POWERGOOD input is latched by the flip-
tlop, inverted to its opposite state, and presented on the flip-flop's output, RE-
SET. During the period required for stabilization of the output voltages, the
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POWERGOOD signal is held deasserted by the power supply. While POWER-
GOQD is deasserted, the RESET signal is held asserted. The flip-flop in the fig-
ure provides a RESET output that is synchronized with CLK2 and is the invert
of the POWERGOQOD signal from the power supply.

POWERGOCD

CLK2

Reset
Syne

80286

Figure 7-1. RESET Is Derived from POWERGOOD

While RESET is asserted, it has two effects on the microprocessor and other
system components:

1. Keeps any activity from occurring until power has stabilized.

2. Presets the microprocessor and other system devices to a known state prior
to letting them begin normal operation. This ensures that the machine will
always start up the same way.
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How RESET Affects the Microprocessor

Table 7-1 defines the values forced into the 8086 and 8088 microprocessor's reg-
isters when RESET is asserted.

Table 7-1. Values Preset Into 8086 and 8088 Microprocessor Registers by RESET

Register Contents
FLAGS 0002h
MSW FFFOh
P FFFOh
CS F000h
DS 0000h
ES 0000h
SS 0000h

While RESET is asserted, the microprocessor cannot fetch and execute instruc-
tions and its outputs are set as illustrated in tables 7-2 and 7-3.

Table 7-2. State of 80386DX Outputs While RESET is Asserted

Pin Name Pin State
LOCK#, D/C#, ADS#, A[31:2] high
W/R#, M/10#, HLDA, BE#[3:0] low
D[31:0] tri-state (floating)

Table 7-3. State of 80286 Outputs While RESET Is Asserted

Pin Name Pin State
A[23:0], SO#, S1#, PEACK#, BHE#, LOCK# high
M/IO#, COD/INTA#, HLDA low
D[15:0] tri-state (floating)

Processor Reaction When Output Voltages Stabilize

When the power supply output voltages have stabilized, the POWERGOOD
signal is asserted and the logic on the system board responds by deasserting
RESET. The deasserted level on RESET allows the microprocessor to begin
functioning. It should be noted that the 386, 486 and Pentium microprocessors
can perform a self-test when RESET becomes deasserted. Details of the proces-
sor self-test are discussed in the chapter entitled “The 80386DX and SX Micro-
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processors” and in the MindShare Architecture Series books 80486 System Ar-
chitecture and Pentium Processor System Architecture published by Addison-
Wesley. The microprocessor initiates the fetching and executing of instructions
from memory, using the code segment (CS) and instruction pointer (IP) register
contents to point to the memory location containing the first instruction.

While RESET was asserted, the machine status word (MSW) register had FFFOh
forced into it. Since the protect enable bit, bit 0, is therefore 0, the microproces-
sor always begins operation in real mode. In real mode, the microprocessor al-
ways appends an extra Oh on the end of the CS register contents, FOOOh,
resulting in a code segment start address of FOOOOh. It then adds the offset por-
tion of the address, FFFOh, contained in the IP register, to the segment start ad-
dress:

CS FO000h
IP + _FFFOh
FFFFOh = physical memory address

The resultant memory address, FFFFOh, is referred to as the power-on restart
address. Since the address is formed exactly the same way every time the sys-
tem is powered up, the 8086 or 8088 microprocessor always fetches its first in-
struction from the power-on restart address.

The First Bus Cycle

The microprocessor then initiates a memory read bus cycle to fetch the first in-
struction from the power-on restart address in memory. The power-on restart
address is always located in the boot ROMs. This is because the first instruction
must be located in non-volatile memory. 1f the first instruction were fetched
from RAM memory, the information returned would be junk. This is because
RAM memory is volatile.

The first instruction fetched from the power-on restart address is always the
first instruction of the power-on self-test, or POST. The POST program is con-
tained in the boot ROMs and is always the first program to be run.

Although they always begin operation in real mode and should therefore func-
tion as a fast 8086, the 286, 386, 486 and Pentium microprocessors have more
than twenty address lines. When the 286 or higher microprocessors place the
power-on restart address on A[19:0] of the address bus, the address lines above
A19 are automatically set high. This results in address FFFFFOh being placed
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on the 286 and 3865X address bus, rather than OFFFFOh. The 386DX, 486 and
Pentium processors place FFFFFFFOh on the address bus.

The processor keeps these upper address lines high until the program performs
a jump to another code segment; in other words, until a new value is loaded
into the CS register. A jump instruction that reloads both the CS and the IP reg-
isters is referred to as an “inter-segment jump” or a “far jump.” The upper ad-
dress lines are then set low and remain low unless the processor is switched
into Protected Mode by the program. In practice, the first instruction executed
from system ROM is always a jump instruction, thus a new CS value is imme-
diately loaded when the first instruction is executed.

After the upper bits are set low, they will not be set high again while the proc-
essor remains in real mode. This means that the processor cannot access ex-
tended memory (memory above the lower megabyte) while in real mode. There
is one exception to this rule. It is discussed in the chapter entitled “The 80286
Microprocessor” under the heading “Accessing Extended Memory in Real
Mode.”
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Chapter 8

The Previous Chapter

The preceding chapters have explained how the 80286 microprocessor commu-
nicates with memory and [/O devices and how the 80286 interfaces with exter-
nal devices. Sources of system reset and the power-up sequence have also been
covered.

This Chapter

This chapter introduces and explains the external logic required by the 80286
microprocessor to communicate with 8- and 16-bit devices. Additional logic
needed to synchronize memory and I/0 devices of varying speeds is also cov-
ered. A thorough understanding of this chapter is crucial to understanding the
80386 kernel.

The Next Chapter

The next chapter provides a detailed look at the bus cycles that an 80286 can
run. The chapter includes timing diagrams and explanations for read, write,
and the halt or shutdown bus cycles.

The Bus Control Logic

In order to perform all of the actions required to complete a bus cycle, the
80286 microprocessor requires the aid of external logic. One of the major pieces
of logic involved in this process is referred to as the bus control logic. Refer to
figure 8-1.

Logic external to the microprocessor can detect the beginning of a bus cycle by
looking at the 80286's bus cycle definition outputs. When either SO# or S1# is
detected going low, this indicates the start of the bus cycle. This triggers the bus
control logic's state machine that works with the microprocessor's Bus Unit to
accomplish a data transfer during a bus cycle. The bus control logic uses CLK2,
the double frequency clock, to define time slots for its state machine. At the
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proper points during a bus cycle, the bus control logic performs the appropri-
ate actions to accomplish the bus cycle.

The functions performed by the bus control logic are described in this chapter.

SO
Si#
M/IO# BUS
A0 51 Control
1016 .
M16# Logic
NOWS#
CHRDY
CPU READY#

Figure 8-1. The Bus Control Logic
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The Address Latch

Refer to figure 8-2. Intel dictates that every 80286-based system must incorpo-
rate an external device known as an address latch. When the microprocessor
outputs the address onto its local address bus during a bus cycle, the bus con-
trol logic signal ALE (address latch enable) commands the address latch to hold
(latch) the address and remember it. Once latched, the address latch outputs
the address to the system on the system address (SA) bus, SA[19:1]. Address
decoders throughout the system can then examine the latched address to see if
the microprocessor is attempting to communicate with their respective device.
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HESET

CLK2

S1#
e
Ui Bus

S2.d Contre

0167 A
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Figure 8-2. The Address Latch

The address latch and LA lines (latchable address lines) must be included to
support the 80286's address pipelining capability. Notice that address lines
A[23:20] are not latched. These address lines go directly to the LA bus through
a buffer, along with address lines A[19:17]. From the buffer, the LA bus is con-
nected directly to the 16-bit slots on the ISA bus. The purpose of the LA bus
will be described later.

Notice that the address latch only latches A[19:1], but not A0 (address bit A0).
The reason for this is clarified later. Rather than going to the address latch, A0
goes to the bus control logic where it is allowed to pass through onto SAQ at the
same time as A[19:1] are latched and presented on SA[19:1].
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Address Pipelining

When the 80286 microprocessor must perform back-to-back memory transfers,
it uses address pipelining. This involves placing the address for the next cycle
on the microprocessor's local address bus during the current bus cycle. This is
possible because the current address will have been latched on the system ad-
dress bus (SA Bus) and held for the duration of the current bus cycle. As a re-
sult, the address for the next bus cycle can be output by the microprocessor
since the address for the current bus cycle has already been latched.

A portion of the next bus cycle's address, LA[23:17], goes directly to the ISA
bus via an address buffer. LA[23:17] (the latchable address bus) are simply a
buffered version of the uppermost bits of the microprocessor's address bus. 16-
bit memory expansion boards are designed to decode the LA address lines.
This allows 16-bit memory expansion boards to chip select their memory de-
vices much earlier than would be possible if they waited for the latched ad-
dress (SA lines).

At the end of address time of the next bus cycle, the bus control logic again
pulses the address latch enable (ALE) line, commanding the address latch to
latch address lines SA[19:0] and SBHE#. Since the high order bits (LA[23:17])
have already been used to generate the chip select, address decoding can be
completed very quickly. Additional information regarding address pipelining
can be found in the chapter entitled “Detailed View of the Bus Cycle.”

Although the 80286 microprocessor pipelines out its entire 24-bit address, the
ISA bus only provides seven of those lines, LA[23:17]. It would have been more
expensive to include all 24 of the pipelined address lines and system designers
are always looking for ways to reduce cost while maintaining or improving
performance. If the designers had provided all 24 lines, the cost would have
gone up but the performance would not have improved. There are two reasons
for this: 1) the vast majority of bus cycles are memory reads since the processor
is constantly fetching instructions and 2) the 4164 memory chip was popular
when the PC/AT was designed. The 4164 has 64Kbits of information in it, but
it’s only one bit wide. Sixteen 4164’s are needed to make a bank of memory for
the 80286 microprocessor. Sixteen times 64Kbits yields 128KB, which is the
smallest block of addresses that can be produced using LA[23:17]. With
LA[23:17], the memory subsystem has enough information to select the proper
bank of memory chips. Additional information about memory banks can be
found in the chapter entitled “RAM Memory: Theory of Operation.”
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AllI/0O addresses are below 128K, so the LA bus always has zeros on it when
I/0 devices are addressed. Therefore, I/O devices can’t benefit from the LA
bus because the [/O address decoders don’t see enough address lines to distin-
guish one I/O device from another. Although the I/O devices could, in theory,
have benefited from seeing the rest of the pipelined address, that benefit would
have been too slight to justify the increased cost.

The Data Bus Transceivers

Refer to figure 8-3. In addition to the address latch, Intel also requires the inclu-
sion of two devices known as transceivers.
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ower
Data Bus
Transceiver|

Y W

CPU READYH

Figure 8-3. The Data Bus Transceivers
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As can be seen in figure 8-3, each of the two data bus transceivers is connected
between the CPU's local data bus and the system data (SD) bus. One of the
transceivers is referred to as the lower data bus transceiver and the other as the
upper data bus transceiver.

During a read bus cycle, the bus control logic places the transceivers into re-
ceive mode to pass data from right-to-left. In this way, the data flows from the
currently-addressed device, over the system data bus, through the transceivers
to the microprocessor. During a write bus cycle, the microprocessor drives data
onto its local data bus. The transceivers are placed in transmit mode by the bus
control logic, thereby allowing the data to flow onto the system data bus so it
can be written to the currently-addressed device.

A transceiver has two control lines that allow the bus control logic to control its
actions.

1. DT/R#. Data transmit or receive is set high to place the transceiver in trans-
mit mode (left-to-right) during write bus cycles. It is set low during read bus
cycles to place it in receive mode (right-to-left).

2. DATA ENABLE. When asserted (high), data enable allows the transceiver
to actually pass the data in the direction selected by the state of the DT/R#
control line. Note that the DATA ENABLE lines are called ENABLE UPPER
for the upper data transceiver and ENABLE LOWER for the lower data
transceiver.

At the proper moment during a bus cycle, the bus control logic always sets the
direction line (DT /R#) to the appropriate level, and then asserts the appropri-
ate data enable control line slightly afterwards to enable one or both of the data
bus transceivers.

Data Bus Steering Logic

Refer to figure 8-4. Since 8-bit devices are not connected to the upper data path,
any data transfer between the microprocessor and an 8-bit device must take
place over the lower data path, one byte per bus cycle. The 80286 microproces-
sor, however, transfers data over the lower and upper data paths in accordance
with the cardinal rules. Recall that the microprocessor transfers data between
itself and odd locations using only the upper path. This means that when an
odd location is involved in a transfer with an 8-bit device that external logic
must “steer” the data between the upper and lower path. This ensures that
both the microprocessor and the 8-bit device transfer data over the expected
data path.
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Whenever an address decoder associated with a 16-bit device detects an ad-
dress within its assigned range, in addition to chip-selecting its respective de-
vice it also asserts the ISA signal M16# (Memory size 16) or [O16# (I/0O size 16).
This tells the bus control logic that the microprocessor is communicating with a
16-bit device (as opposed to an 8-bit device). Note that the bus control logic
samples either the M16# or IO16# signal depending on whether the bus cycle is
referencing a memory or I/0O location. Sampling the appropriate signal is im-
portant because both the M16# and I016# signal may be asserted at the same
time, since the generation of M16# is not qualified by whether the access is to a
memory location or not.

Since two bytes can be transferred between the microprocessor and a 16-bit de-
vice during each bus cycle, data can be transferred twice as fast as it can with 8-
bit devices and can be done without data path steering.

Circumstances requiring the use of the data bus steering logic are described in
the following paragraphs.

Scenario One — Read Even-Addressed Location
in 8-Bit Device

Assume that the microprocessor executes the following instructions:

MOV DX, 03F0 ;Floppy Status port to DX
IN AL,DX ;read Controller Status to AL

The first of these two instructions (MOV DX,03F0h) causes the value 03F0h to
be placed in the microprocessor's DX register. This is the /O address of the
tloppy disk controller's status register.

The second instruction (IN AL,DX) will cause the microprocessor to perform an
1/0 read bus cycle from the I/O address specified in the DX register (I/O loca-
tion 03FOh). The data byte read from the status register is placed in the micro-
processor's AL register.

While executing the second instruction, the microprocessor initiates an 1/0
read bus cycle, placing address 0003FOh on the address bus with BHE# deas-
serted and setting the bus cycle definition lines to the following:
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M/IO# = 0; indicates an [/O operation
SO# = 1; deasserted, so it's not a write operation
S1# = 0; asserted, so it's a read operation

The bus control logic pulses the address latch enable (ALE) signal, causing the
address to be latched into the address latch and presented on the system ad-
dress (SA) bus. Address decoders throughout the system examine the address,
but only the floppy disk controller logic is chip-selected. The bus control logic
decodes the microprocessor's bus cycle definition outputs and asserts its IORC#
(I/0 Read Command line). Since it is a read operation, the floppy disk control-
ler's status is placed onto the data bus by the floppy disk controller. The floppy
disk controller is an 8-bit device, so the byte of status information is placed on
the only part of the data bus available to an 8-bit device, SD[7:0].

Recall that, according to rule three, the microprocessor expects data read from
even-addressed locations to come back over the lower data path. The bus con-
trol logic senses that the microprocessor is communicating with an 8-bit [/O
device because 1016# is not asserted. Since the data from the floppy disk con-
troller status register is already on the proper path (SD[7:0]), the bus control
logic sets the lower data bus transceiver to receive mode (DT/R# = 0) and en-
ables it to pass the data through (ENABLE LOWER = 1) to the microprocessor.
The byte flows through the lower data bus transceiver onto the lower data path
on the microprocessor's local data bus.

At the end of data time, CPU READY# is sampled asserted by the microproces-
sor. The microprocessor reads the data byte off the lower data path and the bus
cycle ends. The status byte is placed in the microprocessor's AL register, com-
pleting the execution of the IN instruction.

In this example, everything worked just fine and no additional logic was re-
quired to complete the data transfer.

Scenario Two — 8-Bit Read from Odd-Addressed
Location in 8-Bit Device

Assume that the microprocessor executes the following instruction:
IN AL,61 ;read contents of Port 61 to AL

1/0 port (address) 61h is an 8-bit [/O address that the programmer reads to as-
certain the cause of a Non-Maskable Interrupt (NMI). The microprocessor will
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initiate an I/O read bus cycle, placing address 000061h on the address bus with
BHE# asserted and setting the bus cycle definition lines to the following states:

M/IO# = 0; indicates an [/O operation
SO# = 1; not asserted, so it's not a write operation
S1# = 0; asserted, so it's a read operation

The bus control logic pulses the address latch enable (ALE) signal, causing the
address to be latched into the address latch and to be presented on the system
address (SA) bus. Address decoders throughout the system examine the ad-
dress, but only the port 61h logic is chip-selected. Since port 61h is an 8-bit de-
vice, the byte of information being read is placed on the only part of data bus
available to an 8-bit device, SD[7:0].

According to cardinal rule number three, the microprocessor expects data read
from odd-addressed locations to come back over the upper data path. The bus
control logic determines that the microprocessor is communicating with an 8-
bit I/O device because IO16# is not asserted. Since the data coming from port
61h is on the wrong path, something must be done. How would you fix this
problem? All you have to do is copy the data to the proper data path. Another
transceiver is added in between the upper and lower system data bus paths.
This is referred to as the Hi/Lo Byte Copier.

The bus control logic sets the upper path data bus transceiver to receive mode
(DT/R# = 0) and enables it to pass the data through (ENABLE UPPER = 1) to
the microprocessor. The low on DT /R# also sets up the Hi/Lo Byte Copier to
pass data from the lower data path to the upper. The bus control logic then as-
serts the ENABLE COPY line. This enables the Hi/Lo Byte Copier to pass the
data byte to the upper system data bus path, SD[15:8].

The byte flows through the upper data bus transceiver onto the upper data
path on the microprocessor's local data bus. At the end of data time, CPU
READY# is sampled asserted by the microprocessor. The microprocessor reads
the data byte off the upper data path and the bus cycle ends. The byte is placed
in the microprocessor's AL register, completing the execution of the IN instruc-
tion.

In this example, the additional logic referred to as the data bus steering logic
was required to complete the data transfer. The data bus steering logic consists
of:
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1. Logic in the bus control logic that senses whether the bus cycle is to a mem-
ory or 1/0 location, and samples the appropriate “data size 16” signal line
(either M16# or I016#) so it can tell if the microprocessor is communicating
with an 8- or 16-bit device.

2. Logic in the bus control logic that observes the A0 and BHE# outputs of the
microprocessor to see what kind of transfer the microprocessor is attempt-
ing to perform (8-bit transfer with an even address; 8-bit transfer with an
odd address; 16-bit transfer starting at an even address).

3. Hi/Lo Byte Copier.

Scenario Three — 8-Bit Write to Odd-Addressed
Location in 8-Bit Device

Assume that the microprocessor executes the following instructions.

MOV DX,03F5 ;set up I/0 address 03F5h in DX
OUT DX,AL ;I/0 write AL to I/O port 03F5h

When executing the OUT instruction, the microprocessor outputs the byte to be
written to the odd address on the upper path of the local data bus (rule number
three). The bus control logic sets the DT /R# control line high, placing the data
bus transceivers into transmit (left-to-right) mode and asserts the ENABLE
UPPER signal to enable the upper data bus transceiver. The byte flows from the
upper path of the local data bus to the upper path of the system data (SD) bus.
The bus control logic also decodes the microprocessor's bus cycle definition
outputs and asserts its IOWC# (I/O Write command) line.

The bus control logic examines A0 and BHE# and determines that the micro-
processor is performing a one byte transfer over the upper data path; and de-
termines that the currently-addressed device is an 8-bit device by checking
1016#. This means that it must enable the Hi/Lo Byte Copier to copy the data
byte from the upper to the lower data path so it can be written to the 8-bit de-
vice. To accomplish this, the bus control logic asserts its ENABLE COPY out-
put.

Because DT/R# is set to transmit mode during write operations, the Hi/Lo
Byte Copier copies the byte being output by the microprocessor on SD[15:8]
down to SD[7:0] on the system data bus. This allows the data byte to get to the
currently-addressed 8-bit device, which will place the byte into the odd-
addressed location.
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Scenario Four — 16-Bit Write to 8-Bit Device

Assume that the microprocessor executes the following instructions:

MOV DX,03F4 ;set up I/0 address 03F4h in DX
OUT DX,AX ;write AX to ports 3F4 and 3F5h

The microprocessor drives the two bytes from the AX register onto the two
data paths, places I/O address 03F4h on the address bus and asserts BHE#. The
bus control logic sets DT /R# high to set the data bus transceivers to pass from
left to right. It also asserts ENABLE LOWER and ENABLE UPPER, allowing
both transceivers to pass the two data bytes onto the SD bus.

The data bus steering logic recognizes that the current bus cycle is a 16-bit
transfer by the lows on address bit A0 and BHE#. During this single bus cycle,
the microprocessor will perform a 16-bit write transfer using both halves of the
data bus simultaneously. When the bus control logic samples IO16# and finds it
deasserted, however, it must perform two separate one-byte transfers over the
lower data path.

Initially, AO is allowed to flow through the bus control logic onto SA0 and the
IOWCH line is asserted. The floppy disk controller is chip-selected and the data
byte on the lower data path is written into location 03F4h in the floppy disk
controller. After the bus control logic samples CHRDY asserted, it blocks A0
and forces SAQ to a one. This increments the address on the SA bus to 03F5h.
The bus control logic also momentarily deasserts and then asserts the IOWCH#
line to fool the floppy controller into thinking another bus cycle has started.
ENABLE LOWER is deasserted, blocking the data byte on the lower data path
from getting through the lower data bus transceiver. ENABLE COPY is assert-
ed and the data byte on the upper half of the SD bus is copied down to SD[7:0]
so it can get to the floppy controller. The data byte is then written into location
03Fbh in the floppy controller. When the bus control logic samples CHRDY as-
serted, it then sets CPU READY# asserted, allowing the microprocessor to end
the bus cycle.

Although it may appear that this was two bus cycles, it was really one pro-
longed bus cycle that was stretched out by deasserting CPU READY# until the
operations were completed.
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Scenario Five — 16-Bit Read from 8-Bit Device

Assume that the microprocessor executes the following instructions:

MOV DX, 03F4 ;set up I/0 address 03F4 in DX
IN AX,DX ;2 bytes from ports 3F4 & 3F5

The microprocessor places /O address 03F4h with BHE# asserted on the ad-
dress bus and sets the bus cycle definition lines to indicate that an I/O read bus
cycle is in progress. The bus control logic sets DT/R# low to set the data bus
transceivers to pass from right to left. It also asserts ENABLE LOWER and
ENABLE UPPER, allowing both transceivers to pass the two data bytes from
the SD bus to the CPU's local data bus.

The data bus steering logic recognizes that the current bus cycle is a 16-bit
transfer by the lows on address bit A0 and BHE#. During this single bus cycle,
the microprocessor will perform a 16-bit read transfer using both halves of the
data bus simultaneously. When the bus control logic samples IO16# and finds it
deasserted, however, it must perform two, separate one-byte transfers over the
lower data path.

Initially, AO is allowed to flow through the bus control logic onto SA0 and the
IORCH# line is asserted. The floppy disk controller is chip-selected and the data
byte from location 03F4h in the floppy disk controller is driven onto SD[7:0].
After the bus control logic samples CHRDY asserted, it asserts LATCH LOW,
causing the lower data bus transceiver to latch the data byte from location 03F4
and hold it in an internal register.

The bus control logic blocks A0 and forces SA0 to a one. This increments the
address on the SA bus to 03F5h. The bus control logic also momentarily deas-
serts and then asserts the IORC# line to fool the floppy controller into thinking
another bus cycle has started. ENABLE COPY is asserted and the data byte on
the lower half of the SD bus is copied up to SD[15:8] so it can get to the micro-
processor on the correct data path. When the bus control logic samples CHRDY
asserted, it asserts ENABLE UPPER and ENABLE LOW simultaneously, caus-
ing the upper byte to pass through the transceiver to the microprocessor and
the lower byte to be output to the microprocessor from the lower data bus
transceiver's internal register.
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The bus control logic then asserts CPU READY#, allowing the microprocessor
to read the two bytes and end the bus cycle. The two bytes are then placed in
the AX register, ending the execution of the IN instruction.

Although it may appear that this was two bus cycles, it was really one pro-
longed bus cycle that was stretched out by deasserting CPU READY# until the
operations were completed.

Scenario Six — 8-Bit Read from 16-Bit Device

No intervention required by the data bus steering logic.

Scenario Seven — 16-Bit Read from 16-Bit Device

No intervention required by the data bus steering logic.

Scenario Eight — 8-Bit Write to 16-Bit Device

No intervention required by the data bus steering logic.

Scenario Nine — 16-Bit Write to 16-Bit Device

No intervention required by the data bus steering logic.

The Ready Logic

Access Time

The access time for a device is both device and manufacturer-dependent. This
means that the access time for different types of RAM, ROM and [/O devices
will differ. This being the case, you would expect each device type to have a
READY# output pin that will be asserted when the device is ready to complete
a data transfer. In reality, though, they have no such pin.

Figure 8-5 illustrates the concept of access time.
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Figure 8-5. Access Time

Stretching the Transfer Time

When you begin to access a slow access device, the microprocessor's bus cycle
must be stretched out to match the access time of the device. This is the pur-
pose of the CPU READY# input on the microprocessor. Since there is no ready
output from I/O or memory devices, some other method for deasserting the
CPU READY# signal until the currently-addressed device is ready to complete
the bus cycle had to be devised.

The Default Ready Timer

ISA systems use a single Default Timer for the different types of devices in the
system. This default tlmer is located on the system board and is usually em-
bedded within the bus cor . Table 8-1 illustrates the number of wait
states that are inserted mto a bus cycle by the default timer when accessing I/0
and memory.

Table 8-1. Number of Wait States—Default Ready Timer

Type of Device | Number of Wait States
16-bit RAM 1
16-bit [/O 1
8-bit RAM 4
8-bit1/0O 4
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It should be noted that the values stated in table 8-1 are based on an 80286 run-
ning at 8MHz. This was the speed of the processor in the version of the IBM
PC/AT that became the industry standard. In other words, a bus cycle access-
ing an 8-bit device would cause the Default Ready Timer to deassert the SMHz
processor's CPU READY# input long enough to insert four wait states in the
bus cycle. At 8MHz, a wait state is 125ns in duration. The total duration of the
bus cycle would therefore consist of address time plus data time plus four wait
states, for a total of 6 x 125ns = 750ns. A bus cycle accessing a 16-bit device
would cause the Default Ready Timer to deassert the 8MHz microprocessor's
CPU READY# input long enough to insert one wait state in the bus cycle. The
total duration of the bus cycle would therefore consist of address time plus
data time plus one wait state, for a total of 3 x 125ns = 375ns.

In later ISA machines, the processors are usually running substantially faster
than 8MHz; however, the actual timing of the ISA bus is governed by the bus
control logic to provide the same timing as an 80286 microprocessor running at
8MHz to 8.33MHz. This means that the actual number of wait states inserted in
the microprocessor's bus cycle by the Default Ready Timer when communicat-
ing with 8- and 16-bit devices may be substantially greater than those stated in
table 8-1.

This default timing is based on compatibility requirements for 8-bit boards de-
signed for the original 8088-based IBM PC and on the speed of typical RAM
chips at the time the IBM PC/AT was designed. The 8088 takes four ticks of its
4.77MHz clock to run a 0-wait-state bus cycle, so a 0-wait-state bus cycle takes
838ns (4 x 209.5ns = 838ns). Cards built for the original PC considered 838ns to
be O-wait-state performance, so the Default Ready Timer provides approxi-
mately that same delay (750nsec) as a default for 8-bit cards. The Default Ready
Timer was also designed such that designers of ISA expansion boards could
modify the default timing using custom ready timers as described in the fol-
lowing section.

Custom Ready Timers

Designers of ISA expansion boards may need to extend the default timing if the
access time of their device is too long for the ISA defaults or they may want to
shorten the default timing if their access time is shorter than the ISA default.
Signals provided on the ISA bus permit designers flexibility in selecting devices
with differing access times. The actual timing ditfers between 8- and 16-bit de-
vices. Refer to figure 8-6. The following list shows the possible number of ISA
wait states that can be achieved with both 8- and 16-bit devices.
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e Shortened 8-bit device bus cycle: 1, 2 or 3 wait states

e Stretched 8-bit device bus cycle: more than 4 wait states

e Shortened 16-bit device ISA bus cycle (Memory only): 0 wait state
e Stretched 16-bit device ISA bus cycle: more than 1 wait state

ISA Expansion Connecters

+5Vdc Microprocessor
s 2 :IZ
M 16#
LT ® B Default
NOWSE i Ready
CHRDY » Timer
Logic

Figure 8-6. Custom Ready Timer Logic
Extending the Default Timing

When designing an ISA card, the access time for the device may be longer than
the ready timeout provided by the Default Ready Timer. Designers can over-
ride the default timer and stretch out the bus cycle by the required number of
wait states to match the access time of the device. This is implemented with the
CHRDY signal (Channel Ready) on the ISA bus.
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When the address decoder on an ISA card decodes an address assigned to its
respective device, it not only chip-selects the device, but also triggers the cus-
tom ready timer on the card. When triggered, the timer forces the normally as-
serted CHRDY signal to become deasserted. When the default timer logic on
the system board sees CHRDY become deasserted, the default timer is overrid-
den and CPU READY# will not be asserted to the microprocessor until the
CHRDY signal is seen to become asserted again. When the access time for the
card has elapsed, the custom timer will then allow CHRDY to become asserted
again. The default ready timer logic on the system board will then immediately
assert CPU READY#, thus informing the microprocessor that it's OK to end the
bus cycle. In this way, the designer of an add-in card can insert any number of
additional wait states into a bus cycle when a particular device is addressed.

Shortening the Default Timing

The NOWSH# (No Wait State) line provides a method to reduce the number of
wait states associated with the default timing. When a fast ISA board is capable
of delivering data faster than the default timing calls for, the board can assert
the NOWSH# line as soon as it recognizes it is being addressed; however, only
16-bit memory boards are capable of ending an ISA bus cycle in zero wait
states. The default timer generates the CPU READY# signal as soon as it sees
the NOWSH# line become asserted, thereby ending the cycle earlier than the de-
fault time. Note that NOWS# doesn’t necessarily or always mean no wait
states; it means fewer wait states. Refer to the Chapter entitled “ISA Bus Cy-
cles” for detailed information and timing requirements.

The IBM PC/AT was designed to permit zero-wait-state accesses only to 16-bit
memory devices because only they can decode the LA (Latchable Address)
lines. The LA lines are present on the ISA bus earlier than the latched System
Address (SA) lines, meaning 16-bit memory devices can decode the address
earlier than 16-bit I/O and 8-bit devices. Designers of 16-bit memory devices
should latch the result of the current decode in the event of the LA lines being
pipelined prior to the end of the current bus cycle. Failure to do so might cause
the current device to be deselected when the new address is placed on the LA
bus.
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Chapter 9

The Previous Chapter
Previous chapters have covered how the microprocessor communicates with

memory and I/O devices and have explained the support logic needed to allow
the microprocessor to communicate with both 8- and 16-bit devices.

This Chapter

The exact timing of read and write bus cycles for both memory and I/O are
covered in this chapter. Detailed explanations of the halt and shutdown bus cy-
cles, along with the causes of each are also covered.

The Next Chapter

The next several chapters detail the 80386 microprocessor and the support cir-
cuitry required for the 80386 kernel.

Address and Data Time Revisited

The concept of the bus cycle was introduced in the chapter entitled “Introduc-
tion to the Bus Cycle.” The microprocessor performs a bus cycle when it has to
transfer information between itself and a memory or I/0O location. The micro-
processor's bus unit uses the address, data and control buses to address a de-
vice, indicate the type of transaction in progress and to transfer the data
between the microprocessor and the currently addressed location.

The microprocessor uses the bus cycle definition lines to indicate the type of
transaction. The types of bus cycles are indicated in table 9-1.

With the exception of the interrupt acknowledge bus cycle, this chapter pro-
vides a detailed description of each bus cycle type. The interrupt acknowledge
bus cycle is described in the chapter entitled “The Interrupt Subsystem.”
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Table 9-1. 80286 Bus Cycle Definition

M/1O# S1# So# Bus Cycle Type
0 0 0 Interrupt Acknowledge
0 0 1 1/0 Read
0 1 0 1/0O Write
1 0 0 Halt or Shutdown
1 0 1 Memory Read
1 1 0 Memory Write

When it must perform a bus cycle, the microprocessor's bus unit leaves the idle
state and enters address time. During this “tick” of PCLK, the microprocessor
places the address and bus cycle definition on the buses. Address decoders
throughout the system start decoding the address during this time slot.

Address time is always followed by data time. During this state, the micro-
processor expects the data to be transferred between itself and the currently
addressed device.

In reality, these aren't the state names Intel uses for the 80286 and 80386 bus
unit states. Table 9-2 lists the state names used by Intel:

Table 9-2. 80286 and 80386 Bus Cycle State Names

Nickname 80286 Name 80386 Name
Address Time Ts T1
Data Time Tc T2

These states were renamed for clarity's sake because the names Ts and Tc pro-
vide little information regarding the actions that occur during these states. Intel
calls address time Ts, meaning “Send Status” time, because one of the things
that occurs during Ts is the output of the bus cycle definition on M/IO#, SO#,
and S1#. Intel refers to SO# and S1# as the microprocessor's status outputs,
hence the name “Send Status” time. Data time is called T¢, “Perform Com-
mand” time, because it's time to perform the command, or data transfer, that
the microprocessor initiated.

The various actions that must take place during a bus cycle have been de-
scribed in previous chapters. This chapter provides an in-depth look at the se-
quence and exact timing of these actions in relation to each other.
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The Read Bus Cycle

With the exception of the M/IO# output, I/O and memory read bus cycles are
identical. This section describes the exact timing of the actions performed dur-
ing a read bus cycle. Figure 9-1 is a timing diagram illustrating a series of typi-
cal 80286 read bus cycles.

PCLK has been placed across the top of the timing diagram as a point of refer-
ence. Remember that each cycle of PCLK defines the duration of one bus unit
state. Vertical dotted lines have been superimposed on the diagram to define
each cycle of PCLK (and, therefore, each state). In addition, the name of each
state is written across the top of the diagram.

A general idea of the information presented can be derived from the state
names across the top. In this example, the sequence of states is as follows:

Tc Data Time
Ts Address Time
Tc Data Time
Ts Address Time
Tc Data Time
Tc Data Time
Ts Address Time

Every bus cycle consists of at least an address time and data time pair. Addi-
tional data times (wait states) may be inserted in the bus cycle if the microproc-
essor samples its READY# input deasserted at the end of data time. Based on
these rules, the states illustrated on the diagram can be interpreted as follows:

Te Data Time end of previous bus cycle

Ts Address Time start of bus cycle A

Tc Data Time 1st data time of bus cycle A

Ts Address Time start of bus cycle B

Tc Data Time 1st data time of bus cycle B

Tc Data Time wait state inserted in bus cycle B
Ts Address Time start of next bus cycle

In other words, the diagram illustrates the end of a bus cycle followed by a 0-
wait-state bus cycle (bus cycle A), a 1-wait-state bus cycle (bus cycle B) and the
start of another bus cycle.
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When reading a timing diagram, one scans from left-to-right (from earlier in
time to later in time) looking for the signals that change first, second, and so on.
Since PCLK should always be pulsing (changing), it's not necessary to note the
fact that it changes.
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Figure 9-1. The Read Bus Cycle
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Figure 9-2 shows the 80286 system engine. Referencing both the timing dia-
gram and the functional block diagram will help tie the timing and functions
together for a more complete understanding.
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Figure 9-2. The 80286 System Engine
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Bus Cycle A

Bus cycle A starts at reference point two, the beginning of the Ts time slot (ad-
dress time). Scanning from left-to-right, however, the address and M/IO#
change state prior to the start of bus cycle A. Halfway through the first Tc time
in the previous bus cycle (at reference point 1), the microprocessor starts to
output the address for the up-coming bus cycle (bus cycle A) before the actual
start of bus cycle A. The address change is illustrated by the crossover point at
reference point 1, the crossover indicating that the address starts to change to
the new address at this point. This early address output is caused by the
80286's address pipelining capability. Refer to Figure 9-2.

Since the address for the current bus cycle has already been latched into the
address latch, the microprocessor can safely output a new address onto its local
address bus during the current bus cycle without interfering with the current
bus cycle. Its address is already latched and being presented to the rest of the
system on the System Address (SA) bus for examination. The latchable address
(LA) bus is only used by 16-bit ISA memory boards and provides early decod-
ing for these expansion devices. The early address change on the LA bus does
not interfere with the current cycle because 16-bit boards are designed to de-
code the LA lines and latch the chip select for the current cycle. Since the chip
select for the current bus cycle is latched, the next LA address can be decoded
and latched once the current cycle is completed.

In addition to outputting the address for the up-coming bus cycle early, the mi-
croprocessor also sets the M /IO# line (reference point one) to the appropriate
state for the up-coming bus cycle. This will be a one for a memory operation or
a zero for an I/O operation.

At reference point two, bus cycle A actually begins. The 80286 outputs the re-
mainder of the bus cycle definition on S0# and S1#. In the case of a read bus cy-
cle, S1# will be asserted (low) and S0# will stay high. In addition, 16-bit
expansion boards are free to examine the LA address to determine if it is their
address.

At reference point three (the midpoint of Ts), the bus control logic asserts ad-
dress latch enable (ALE) and keeps it asserted until the end of Ts. The address
latch latches the address on the falling edge of ALE (when it goes low again).
Once latched, the address is continuously presented on the system address
(SA) bus where it can be examined by address decoders throughout the system.
At this point, the microprocessor can safely output the address for the next bus
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cycle without having any effect on the latched address. If the microprocessor
does have another bus cycle to perform, it will start to output the address half-
way through Tc (at reference point eight). In this example, the microprocessor
is, in fact, performing back-to-back bus cycles, so you can see the address
changing at reference point eight.

At reference point four, the microprocessor removes the asserted level from the
S51# line. The bus control logic should have already decoded the microproces-
sor's bus cycle definition lines and determined the type of bus cycle currently in
progress.

At reference point five, the bus control logic sets the DT/R# line (Data Transmit
or Receive) line low because this is a receive (read) operation. This pre-
conditions the Data Bus Transceivers to pass the data being read from the cur-
rently addressed device from right-to-left through the Data Bus Transceivers to
the microprocessor. Slightly after setting the DT /R# line low (at reference point
six), the bus control logic asserts ENABLE UPPER and/or ENABLE LOWER
(transceiver enables), enabling one or both of the Data Bus Transceivers to ac-
tually pass the data. The bus control logic asserts one of its command outputs
(IORCH#, IOWCH#, MRDCH# or MWTCH). At this point (reference point seven), the
data coming from the currently addressed device may begin to show up on the
microprocessor's local data bus.

The microprocessor expects the currently addressed device to complete the
data transfer during Tc. At the end of Tc, in bus cycle A, the microprocessor
samples its READY# input asserted (low) at reference point nine. This tells the
microprocessor that the currently addressed device is ready to end the bus cy-
cle. Since this is a read operation, the microprocessor will read the data the de-
vice is supplying (at reference point ten) and end the bus cycle. This completes
bus cycle A.

Bus Cycle B

Even though its address and M/IO# setting are output during bus cycle A (at
reference point eight, due to pipelining), bus cycle B actually begins at refer-
ence point eleven with the output of S0# and S1#. Since this is another read bus
cycle, S1# will be asserted (low) and SO# deasserted (high).

Bus cycle B proceeds the same as bus cycle A right up until the end of Tc time
(reference point twelve). When the 80286 microprocessor samples READY# at
this point, the currently addressed device hasn't yet asserted it to indicate its
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readiness to end the bus cycle. Sampling READY# deasserted tells the micro-
processor to “stretch” the bus cycle by inserting another Tc time (wait state).

The microprocessor leaves all signals exactly the same, waiting until the end of
this extra Tc to sample READY# again. At the trailing edge (the end) of the ex-
tra Tc (reference point thirteen), the microprocessor samples READY# again.
This time it is sampled asserted (low), telling the microprocessor that it can
safely read the data from its local data bus and end the bus cycle.

Since another Ts time slot follows this bus cycle, another bus cycle is beginning.

The Write Bus Cycle

During a write bus cycle, just as with the read bus cycle, I/O and memory
write bus cycles are identical with the exception of the M /IO# setting. This sec-
tion describes the exact timing of the actions performed during a write bus cy-
cle. Figure 9-3 is a timing diagram illustrating a typical 80286 write bus cycle.

A general idea of the information presented can be derived from the state
names across the top. In this example, the sequence of states is as follows:

Tc Data Time end of previous bus cycle
Ts Address Time start of bus cycle

Tc Data Time end of bus cycle

Ts Address Time start of next bus cycle

Tc Data Time 1st data time of bus cycle
Tc Data Time wait state

Ts Address Time start of next bus cycle

This timing diagram illustrates one O-wait-state bus cycle bracketed by the end
of the previous bus cycle and the start of the next bus cycle.

The address and M/IO# setting for the bus cycle is pipelined out early at refer-
ence point one. At the start of the bus cycle (reference point two), the micro-
processor outputs the remainder of the bus cycle definition on SO# and S1#. SO#
is asserted (low) to indicate a write operation and 51# is deasserted.

Because this is a transmit (write) operation, the bus control logic sets DT /R#
(Data Transmit or Receive) high at reference point three. Since the quiescent
(idle) state for the DT/R# line is high, no change is actually seen on this line,
but it is nonetheless important that it is high at this point. This pre-conditions
the Data Bus Transceivers to pass the data being output by the microprocessor
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(on the local data bus) to the system data, or SD, bus. Immediately after setting
DT/R# high, the bus control logic asserts ENABLE UPPER and/or ENABLE
LOWER (transceiver enables), enabling one or both of the Data Bus Transceiv-
ers to pass the data onto the system data bus (reference point four). At the same
time, the microprocessor begins to output the data to be written to the device
(reference point five).
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Figure 9-3. The Write Bus Cycle

Address latch enable (ALE) is pulsed by the bus control logic at reference point
six, causing the address to be latched into the address latch (at the trailing edge
of ALE). The latched address is now presented on the system address (5A) bus
for examination by all address decoders in the system.
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At reference point seven, the microprocessor deasserts the SO# line. The bus
control logic and logic associated with the currently addressed device should
have decoded the bus cycle definition lines by now to determine the type of
bus cycle (write).

If the microprocessor is going to run another bus cycle immediately after this
one, it will pipeline the next address out at reference point eight.

At the trailing edge of Tc (reference point nine), the microprocessor will sample
its READY# input to see if the currently addressed device has accepted the data
yet. In this example, READY# is sensed asserted (low), so the microprocessor
ends the bus cycle.

It should be noted, however, that the bus control logic continues to keep EN-
ABLE LOWER and/or ENABLE UPPER asserted, and the microprocessor con-
tinues to drive the data onto the local data bus for half a PCLK tick longer. The
microprocessor placed the data on the data bus early (reference point five) and
keeps it out there after the actual end of the bus cycle (reference point ten) for
the reason described in the following paragraphs.

To guarantee that information is received correctly by the device being written
to, every digital device capable of receiving data requires that a manufacturer-
specified setup time and hold time be satisfied. In other words, the data must
be present on the device's inputs for at least the specified setup time before the
latch point and must remain present for at least the specified hold time after
the latch point or the device may not receive the data correctly.

Since the microprocessor has no idea what the setup and hold times are for the
individual device types it may be writing to, Intel's design takes worst-case
setup and hold times into account by placing the data out very early in the bus
cycle and keeping it out there as long as possible after the actual end of the bus
cycle.

Continuing to drive the data onto the data bus for half of a PCLK tick into the
next bus cycle will not disturb the next bus cycle. It takes time for an address
decoder to detect an address and chip-select the next device. The fact that the
data from the previous write bus cycle is still present on the data bus can't af-
fect a device which hasn't even been chip-selected yet.
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The Halt or Shutdown Bus Cycle

When the microprocessor executes a halt or shutdown bus cycle, the bus cycle
definition lines and will reflect the following states:

e Sl# and SO# are asserted (low).
e M/IO# is set high.

Notice there is no way to distinguish between a halt or shutdown during the
bus cycle when looking only at the bus cycle definition lines. However, the
state of address bit 1 (A1) indicates whether a halt or shutdown bus cycle is in
progress.

e Al=1for ahalt
e A1=0 for a shutdown

During a halt or shutdown, the 80286 may service PEREQ (processor extension
request) or HOLD requests. For further information on PEREQ and HOLD, re-
fer to the chapters entitled “The Numeric Coprocessor” and “Direct Memory
Access (DMA)” respectively.

Fither NMI (non-maskable interrupt request) or RESET will force the 80286 out
of either a halt or a shutdown. If interrupts are enabled, an INTR (maskable in-
terrupt request) will also force the microprocessor out of a halt (but not out of
shutdown). For information on interrupts, refer to the chapter entitled “The In-
terrupt Subsystem.”

Halt

When the microprocessor executes a HLT instruction, it will initiate a halt or
shutdown bus cycle and cease fetching and executing instructions. The micro-
processor indicates it is running a halt bus cycle by placing the values on the
bus cycle definition lines and address bit 1 as shown above.

It should be noted that S0# and S1# are only low during the bus cycle itself. The
bus cycle ends when the microprocessor samples READY# asserted at the end
of data time. After the bus cycle has ended, the halt condition can be recog-
nized externally by the following signs:
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e Sl# and S0# are high.
e M/IO# is high.
e Address bit 1 is high.

These conditions are static — that is, they are constant, and therefore easily rec-
ognizable.

Shutdown

The indications of a shutdown are the same as those for a halt (shown above),
with the exception that Address bit Al is low.

When the 80286 microprocessor detects an exception while attempting to exe-
cute the handler for a prior exception, the two exceptions are generally handled
serially. Certain combinations of exceptions cannot be handled serially, how-
ever. These exceptions are caused by protection violations in protected mode.
For example, in protected mode, if an application attempts to access data that is
outside its data segment, the microprocessor will start running the general pro-
tection fault exception handler. If, say, a stack overflow were to occur while the
80286 microprocessor ran the general protection fault exception handler, the
microprocessor would not be able to handle the two faults serially. The micro-
processor invokes the double-fault exception instead.

If the 80286 microprocessor detects another exception while attempting to ser-
vice the double-fault, it goes into a shutdown condition. This is sometimes re-
ferred to as a triple fault. The microprocessor indicates the shutdown condition
to external logic by running the halt or shutdown bus cycle. In an ISA machine,
the shutdown detect logic outside the microprocessor detects the shutdown
and toggles the microprocessor's RESET line, causing the system to reboot.

151






Chapter 10: The 80386DX and SX Microprocessors

Chapter 10

The Previous Chapter

A detailed analysis of the 80286 microprocessor, the kernel logic necessary to
interface it to external devices, and its bus cycle types were covered in prior
chapters.

This Chapter

This chapter provides a detailed description of the 80386DX and SX microproc-
essors. It covers the functional units, processor self-test, enhancements to pro-
tected mode, virtual paging, virtual 8086 mode, and the processor's hardware
interface to external devices.

The Next Chapter

The next chapter, “The 80386 System Kernel,” defines the support logic neces-
sary to interface the 80386DX and SX microprocessors to external devices.

Introduction

This chapter describes the 80386DX and SX microprocessors. The 80386DX and
SX microprocessors are identical internally and only differ in their interface to
external devices. This chapter is therefore divided into three parts:

e adiscussion of the internal structure and operation of the 80386 microproc-
€ssor.

e adiscussion of the 80386DX interface to external devices.

e a discussion of the 803865X interface to external devices.
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The 80386 Functional Units

General

Figure 10-1 illustrates the units that make up the 80386 microprocessor.

Memory
Management
Unit
Execution Segment] Paging
Unit Unit Unit
Address Bus
Bus
Unit Control Bus
Data Bus
Instruction Prefetch
Decoder Queue
Instruction Prefetcher
Queue
Decode Prefetch
Unit Unit

Figure 10-1. 80386 Microprocessor Block Diagram
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The 80386 microprocessor consists of five functional units:

¢ Bus Unit. Handles communication with devices external to the microproc-
essor chip.

e Code Prefetch Unit. Fetches instructions from memory before the micro-
processor actually requests them.

e Instruction Decode Unit. Decodes the instruction prior to passing it to the
execution unit for execution.

e Execution Unit. Handles the actual execution of the instruction.

¢ Memory Management Unit (MMU). When the microprocessor must ad-
dress a memory location, the MMU forms the physical memory address
that is driven out onto the address bus by the bus unit during a bus cycle.

Code Prefetch Unit

The code prefetch unit capitalizes on the predictability of program execution.
Statistically, program instructions are fetched from memory sequentially most
of the time. Only jump instructions alter program flow, causing it to jump to
another area of memory. Once the flow alteration has occurred, however, the
program returns to sequential instruction processing until another jump in-
struction is encountered.

When the bus unit isn't performing bus cycles for the execution unit, the code
prefetch unit uses the bus unit to fetch the next sequential instruction from
memory and stores it in the 16-byte prefetch queue. The code prefetch unit al-
ways attempts to maximize the bus unit's throughput by fetching an entire
doubleword (four bytes) at a time. The prefetched instructions are placed in the
prefetch queue to await processing by the instruction decode unit.

Code prefetch requests are given a lower priority by the bus unit than requests
from the execution unit. This ensures that the execution unit will not be stalled
while waiting for a memory or I/O data transfer to complete. For all practical
purposes, instruction prefetching reduces the time the execution unit spends
waiting for the next instruction to zero.

Instruction Decode Unit

The instruction decode unit takes an instruction from the 16-byte prefetch
queue, converts it into microcode and stores it in a three-deep decoded instruc-
tion queue for use by the execution unit. Any immediate data and offset associ-
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ated with the instruction is also taken from the prefetch queue and stored in the
decoded instruction queue.

Execution Unit

General

The execution unit executes each instruction received from the decoded in-
struction queue. It communicates with the other microprocessor functional
units on an as needed basis in order to execute each instruction. The execution
unit is comprised of three sub-units:

e The control unit's microcode and special parallel hardware speeds multi-
plies, divides and effective address calculation.

¢ The data unit contains the arithmetic logic unit, or ALU, eight general-
purpose registers and a 64-bit barrel shifter. The data unit performs data
operations requested by the control unit.

¢ The protection test unit checks for segmentation violations.

The Registers
The 80386 execution unit incorporates the following registers:

¢ The general registers

¢ The status and control registers
e The debug registers

e The test registers

The following sections describe each of these register groups.
General Registers
The general registers implemented in the 80386 microprocessor are a superset

of those found in the earlier implementations of the X86 processor family. Fig-
ure 10-2 illustrates the general registers.
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Figure 10-2. The 80386 General Registers

Extended versions of the AX, BX, CX, DX, BP, SI, DI and SP registers are now
available to the programmer. The names of each of the extended registers starts
with the letter “E”. Referring to the EAX, EBX, ECX or EDX registers within a
MOV instruction allows the programmer to specify a doubleword, or 32-bit,
object to be moved. Extending the width of BP, SI, DI and SP registers to 32 bits
permits the programmer to specify any memory address within the 4GB ad-
dressing range of the microprocessor without changing the contents of the
segment registers.

Status, MSW and Instruction Registers

Figure 10-3 illustrates the 80386's status and instruction registers.
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Figure 10-3. The 80386 Status and Instruction Registers

An extended version of the 80286 Flags register, the Eflags register, contains
two new control bits:

¢ The RF, or resume flag, bit allows the programmer to disable debug excep-
tions so that the instruction can be restarted after a debug exception with-
out immediately causing another debug exception.

e The VM, or virtual mode, bit allows the programmer to enable or disable
virtual 8086 mode. Virtual 8086 mode is discussed later in this chapter.

Control register 0, or CRO, is a superset of the 80286 machine status word
(MSW) register. CRO contains two new bits not found in MSW. The extension
type, or ET, bit (bit 4) indicates the type of numeric coprocessor present in the
system (80287 or 80387). The ET bit is set to one when an 80387 coprocessor is
detected. The paging bit, PG (bit 31), enables virtual paging when the bit is set
to one. Virtual paging is described later in this chapter in the section entitled
“Page Translation.”

After reset, the 80386 MSW register has a value of 0000h in it. The 80286 MSW
register has FFFOh in it after reset. Since the upper bits in the register aren't
used by either processor, the difference has no effect.
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Debug Registers

Figure 10-4 illustrates the 80386 debug registers. These registers support the
implementation of both code and data breakpoints. In the case of a code break-
point, the microprocessor monitors every instruction fetch for a match on the
specified memory address. When a match is detected, a debug exception occurs
and alerts the programmer. In the case of a data breakpoint, the microprocessor
monitors for a data read from or a data write to the specified memory address
defined by the programmer. When a match is detected, a debug exception oc-
curs and alerts the programmer.

Linear Breakpoint Address O DRO
Linear Breakpoint Address 1 DR
Linear Breakpoint Address 2 DR2
Linear Breakpoint Address 3 DR3
Heserved DR4
Reserved DR5
Breakpoint Status DR6
Breakpoint Control DR7

Figure 10-4. The 80386 Debug Registers

Debug register 7, or DR7, is the debug control register. It is used to define up to
four breakpoints as being enabled or disabled. If enabled, a breakpoint may
take one of three forms:

e Dbreak on instruction execution only.
e Dbreak on data writes only.
e break on data reads or writes, but not on instruction reads.

In addition, bits in DR7 may be used to define a breakpoint as local to a par-
ticular task or global in nature.
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The debug status register, DR6, permits the programmer to determine which
breakpoint condition has been met. DR4 and DR5 aren't used by the 80386. DRO
through DR3 are used to specify up to four breakpoint addresses.

For additional information about the debug registers, refer to Chapter 12 of In-
tel's 80386 Programmer’s Reference Manual, order number 230985.

Test Registers

The 80386 test registers are used to test the paging unit's translation lookaside
buftfer, or TLB. Figure 10-5 illustrates the two registers.

TLB Test Control TRE

TLB Test Status TRY

Figure 10-5. The 80386 Test Registers

TR6 is the command register for TLB accesses, while TR7 is the data register.
Addresses and commands are written to the TLB using the command register,
while data is read from or written to the TLB using the data register.

For further information about the test registers, refer to Chapter 12 of Intel's
80386 Hardware Reference Manual, order number 231732.

Segmentation Unit
The microprocessor must access memory under the following circumstances:

e To fetch the next instruction for the code prefetch unit.

¢ When the execution unit must read data from memory to satisfy a MOV in-
struction.

¢ When the execution unit must write data to memory to satisty a MOV in-
struction.

e To fetch a segment descriptor from memory when a segment register is
loaded with a new value in protected mode.

e To fetch a page directory or page table entry from memory.
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When the microprocessor must access memory, the segmentation unit forms
the memory address by adding the offset within the target segment to the seg-
ment start address contained within the respective segment register. The result-
ing 32-bit memory address, known as the linear address, is then either
submitted to the paging unit (if paging is enabled) or output onto the address
bus during the resulting memory bus cycle.

Refer to figure 10-6. In real mode, all of the segment registers, including FS and
GS, are available to the programmer. The FS and GS segment registers give the
programmer the ability to create two new data segments in addition to the DS
and ES data segments available in the earlier processors. The programmer also
has access to the debug, control and test registers while in real mode.

A description of segment register usage in both real and protected modes can
be found in the chapter entitled “The 80286 Microprocessor.” The differences in
protected mode operation on the 80286 and 80386 microprocessors are dis-
cussed later in this chapter.

Segment
Registers
15 0

CS
DS
SS
ES
FS

GS

Figure 10-6. The 80386 Segment Registers

Paging Unit

A description of the paging unit can be found later in this chapter under the
heading “Page Translation.”
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Bus Unit

The bus unit provides the interface between the microprocessor and external
memory and [/O devices. When the microprocessor must read information
from or write information to an external device, the bus unit uses the address,
data, and control buses to run one or more bus cycles. The bus unit runs bus
cycles when a request is received from:

¢ Execution unit to run an I/O or memory read or write.

e the code prefetch unit to read the next instruction from memory.

e the execution unit to fetch a segment descriptor from memory when a seg-
ment register is loaded with a new value in protected mode.

¢ the paging unit to fetch a page directory or page table entry from memory.

The bus unit also provides the interface between the microprocessor and the
numeric coprocessor. A description of processor/coprocessor inter-
communication can be found in the chapter entitled “Numeric Coprocessor.”

Protected Mode

Figure 10-7 illustrates the segment descriptor format in the 80286 protected
mode environment. Bytes 0 and 1 describe the length, or limit, of the segment.
Since this is only a 16-bit field, the 80286 can only describe segments up to
64KB in length. Bytes 2, 3 and 4 supply the start address of the segment, allow-
ing the segment to start anywhere in the 16MB memory space of the 80286 mi-
croprocessor. Byte 5 is the attribute byte and describes various characteristics of
the segment. Bytes 6 and 7 are not used by the 80286.

Figure 10-8 illustrates the segment descriptor format in the 80386 protected
mode environment. Bytes 0 and 1 and the lower four bits of byte 6 specity the
length of the segment. With a 20-bit field, a segment length of from one byte to
1Mbyte (1,048,576) can be specified. In addition, bit 7 of byte 6 is used to fur-
ther define the segment length. Known as the granularity, or G, bit, it indicates
how the limit (segment length) field is to be interpreted. If G = 0, the length is
in bytes. This allows a segment to be anywhere from one byte to IMB long. If G
=1, the length is specified as the number of 4KB pages of memory. This allows
a segment to be anywhere from 4KB to 4GB in length.

Bytes 2, 3, 4 and 7 are used to specify the start address of the segment, allowing
the segment to be located anywhere in the 4GB address range of the micro-
processor.
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A description of the protected mode concept can be found in the chapter enti-
tled “The 80286 Microprocessor.”

Byte
Byte
Byte
Byie
Byte
Byte

Byte
Byte

Not used by 80286

Not used by 80286

P IDPLIS| Type |A

Upper Byte of Base Address

Middie Byte of Base Address

Lower Byte of Base Addraess

Upper Byte of Size

Lower Byte of Size

Attribute Byte

Figure 10-7. The 80286 Segment Descriptor Format
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Byle 7 Upper Byte of Base Address
Upper Nibble
Byle 6 G of Size
Byte 5 P IDPLIS Type | A | Aliribute Byte
Upper Middie Byte
Byte 4 of Base Address
Lower Middle Byte
Byte 3 of Base Address
Byte 2 Lower Byte of Base Address
Byte 1 Middie Byte of Size
Byte 0 Lower Byte of Size

Figure 10-8. The 80386 General Segment Descriptor Format

Page Translation

Virtual Paging

The 80386 microprocessor incorporates logic to facilitate the implementation of
virtual paging (also referred to as demand paging) in an operating system.

Paging is enabled by setting the PG bit in CRO (bit 31). When enabled, the ad-
dress produced by the segmentation unit, called the linear address, is used as
an input to the paging unit. The linear address output by the segmentation unit
is used by the paging unit to identify a page table, a page described within that
table, and an offset within that page.

Before describing the function performed by the paging unit, the concept of the
page should be defined.

The 80386 paging system provides an indexing system to keep track of the loca-
tion and status of up to 1,048,576 four kilobyte pages (a total of 4GB) of pro-
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gram and/or data that “belongs” to a task (applications program). At a given
moment in time, a page of program and/or data can be:

e ondiskor
¢ ondisk and in main memory

When paging is enabled, the paging unit uses the linear address produced by
the segmentation unit to locate:

¢ the page directory entry that points to the respective page table.

e the page table entry that describes the page containing the location the pro-
grammer is attempting to access.

e the offset within the main memory page.

As illustrated later in this text, each 32-bit page table entry contains a page pre-
sent bit that defines whether or not the desired page is currently resident in
main memory. If it is, the entry also defines the start address of the desired
page in main memory. The lower part of the linear address from the segmenta-
tion unit is then used to identify the offset of the desired location in the target
main memory page and a bus cycle is generated to access the desired main
memory location. If the entry indicates the desired page isn't currently present
in main memory, a page fault (exception 14) occurs, causing the 80386 to jump
to the page fault handler program. In addition, the microprocessor also pushes
a 16-bit error code onto the stack.

In the page fault handler, the operating system can then read CR2 (see figure
10-9) to ascertain the actual 32-bit linear address that caused the page fault. The
linear address can be used to locate the page table entry that defined the page
as “not present.” Since only one bit of the 32-bit entry was used to define the
page as not present, the operating system can use the other 31 bits to define a
disk address where the actual 4KB page of code and/or data can be found on
the disk. The page fault handler can then locate an unused page in main mem-
ory and read the desired page into the respective main memory page. The page
table entry will then be updated to mark the page present in main memory and
point to the page's start address in main memory. The actual bus request to ac-
cess the desired code or data is then initiated.

When a task begins execution, CR3 (see figure 10-9) is automatically loaded
with the start address of the page directory in main memory. Only the upper 20
bits, 31:12, of the page directory start address are actually found in CR3 (the
least-significant 12 bits of the start address are assumed to be 0).
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Figure 10-9. Control Registers CR2 and CR3
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Figure 10-10 illustrates the page directory, page tables, and the translation of
the segmentation unit's linear address output to the physical memory address.
The page directory starts at the location specified in CR3 and is one page (4KB)
in size. It can contain up to 1K (1,024) 32-bit page directory entries, each con-
sisting of 32 bits. Bits 31:22 of the linear address identify which of the 1,024 32-
bit page directory entries to use. A page directory entry has the format illus-
trated in table 10-1. It should be noted that page directory and page table en-
tries have the same format.

<
fan)
o
<
<
o
[en)
[en)

Only the upper 20 bits, 31:12, of the page table start address are actually found
in bits 31:12 of the page directory entry (the least-significant 12 bits of the start
address are assumed to be 0). The other bits in the page table entry are defined
in table 10-1.
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Linear Address from Segment Unit
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Figure 10-10. Translation of Linear Memory Address to Physical Memory Address
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Table 10-1. Format of Page Table Entry Attribute Bits

Bit(s) | Designator Definition

0 P Page Present bit. Set to one if the target page is
currently resident in main memory. Cleared to
zero if the page containing the target page table
must be read from disk.

1 R/W Read /Write bit. When set to one, it is permitted
to both read and write the target page. Cleared to
zero, the page can only be read.

2 u/s User/Supervisor bit. A one in this bit indicates
that the page is accessible by both the operating
system and applications programs. Cleared to
zero, it indicates that the page may only be ac-
cessed by the operating system.

4:3 none Intel reserved, do not use (defined on 80486).

5 A Accessed bit. Set to one by hardware before a
read or write access to the target page. The oper-
ating system can use the state of this bit to de-
termine whether the page has been used
(accessed). If not, the operating system may
choose to read a different page from disk into
this 4KB page of main memory.

6 D Dirty bit. This bit is undefined in a page directory
entry. In a page table entry, the dirty bit is set
before a write to the page described by the page
table entry. When set, it indicates that the operat-
ing system should insure that the page is written
back to disk to maintain coherency between disk
and main memory.

8:7 none Intel reserved, do not use.

11:9 none These three bits aren't used by the 80386 micro-
processor. They may be used by the systems pro-
grammer in a programmer-specified fashion.

As stated above, the page directory entry describes the page which contains the
page table. The upper 20 bits (31:12) point to the start address of the page table.

Bits 21:12 of the linear address are then used to index into the page table
pointed to by the page directory entry. Starting at this address, the page table
can contain up to 1,024 32-bit entries. The format of the page table entry is iden-
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tical to that of the page directory entry described in table 10-1. If the page is
present in memory (P = 1), bits 31:12 of the page table entry point to the actual
start address of the page in main memory. Bits 11:0 of the linear address pro-
vide the offset within the main memory page. The start address of the page and
the offset within the page are then combined to form the physical memory ad-
dress that will be driven onto the address bus.

As stated earlier, if the page table describing the page or the page itself isn't
currently in memory, a page fault will be generated and the page can then be
read from disk into an available page of main memory.

Figure 10-11 shows another view of the page directory, page tables and mem-
ory pages. The page directory and page tables form a tree that provides the
start addresses of the memory pages. Notice that if the present bit, the least
significant bit of a page directory entry, is set to one, then that entry contains
the start address of one of the page tables. If the bit is cleared to zero, the entry
is not currently in use and the entry doesn’t point to anything. Likewise, if the
present bit of a page table entry is one, that entry contains the start address of a
memory page. Remember that the bits of the linear address are used to select
the page directory and page table entries, as shown in figure 10-10.
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Figure 10-11. Another View of the Page Directory, Page Tables and Memory Pages

Translation Lookaside Buffer

Performance would degrade substantially if the microprocessor had to access
two levels of memory-based tables each time memory had to be accessed. To
solve this problem, the 80386 microprocessor maintains an on-chip cache of the
most recently accessed page table entries. This cache is called the translation
lookaside buffer (TLB).

Refer to figure 10-12. The TLB is a four-way set-associative 32-entry page table
cache (set-associative caches are described in the chapter entitled “Cache
Memory Concepts”). The TLB automatically keeps the most-recently-used page
table entries on-board the processor. The 32-entry TLB coupled with a 4KB
page size results in coverage of up to 128KB of memory addresses.

For many multi-tasking operating systems, the TLB will exhibit a hit rate of
about 98%. This means that the processor will only have to access the two-level
page structure on 2% of all memory references.
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Figure 10-12. The Translation Look-Aside Buffer

Reading a new entry into the TLB (referred to as a TLB Refresh) is a two step
process handled by the 80386 microprocessor hardware. The sequence of data
cycles to perform a TLB refresh are:

Read the correct page directory entry, as pointed to by the page base regis-
ter (CR3) and the upper ten bits of the linear address. Optionally perform a
locked read/write to set the accessed bit in the page directory entry. The
page directory entry will actually get read twice if the 80386 microproces-
sor needs to set any of the bits in the entry. If the page directory entry
changes between the two reads, the data returned from the second read
will be used.

Read the correct entry in the page table and place the entry in the TLB. Op-
tionally perform a locked read /write to set the accessed and/or dirty bits
in the page table entry. Again, note that the page table entry will actually
get read twice if the 80386 microprocessor needs to set any of the bits in the
entry. If the page table entry changes between the two reads, the data re-
turned from the second read will be used.
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Note that the TLB contains page table entries only. It does not contain page di-
rectory entries. Nevertheless, if there is a miss on the TLB, the microprocessor
must access both the page directory entry and the page table entry in order to
refresh the TLB. This is because the page directory entry contains the start ad-
dress of the page table. Since both tables are being accessed on a TLB miss,
page faults can be signaled from either the page directory read or the page ta-
ble read.

The paging unit hardware receives a 32-bit linear address from the
segmentation unit. The upper 20 linear address bits are compared with four en-
tries in the TLB (the entries in the four-way-associated set) to determine if there
is a match. If there is a match (a hit), then the 32-bit physical address is calcu-
lated and will be placed on the address bus.

Virtual-8086 Mode

The 80386 microprocessor can execute 8086 code in either of two modes:

e Realmode
e  Virtual 8086 mode

Virtual 8086 Mode establishes an 8086 execution environment within the pro-
tected mode environment of the 80386. Where real mode governs everything
that the 80386 does, virtual 8086 mode can be applied to selected 80386 tasks.
When executing a virtual 8086 mode task, the processor behaves like an 8086,
but upon a switch to a normal task, the processor operates as an 80386. Thus,
virtual 8086 mode enables an operating system to support the execution of
8086, 80286 and 80386 tasks concurrently.

The VM flag bit in the Eflags register, which is loaded from the tss (task state
segment), defines the running task's virtual processor as an 8086 or as an 80386.
When the 80386 loads its registers from a TSS whose VM flag bit is set, the
processor enters virtual 8086 mode. When, on a subsequent task switch, the
processor loads its registers from a TSS where the VM bit is clear, it leaves vir-
tual 8086 mode. Thus, on a task-by-task basis, the processor emulates an 80386
or an 8086 according to the value of the VM bit. The 80386 also leaves virtual
8086 mode when it raises an exception or is interrupted, making the full re-
sources of the architecture available to interrupt and exception handlers. On re-
turn from a handler invoked while in wvirtual 8086 mode, the 80386
automatically re-enters virtual 8086 mode when the Eflags register is reloaded
from the stack.
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Because the address space of an 8086 is one megabyte, the logical addresses
generated by a virtual 8086 mode task fall into the first megabyte of the 80386
linear address space. Multiple virtual 8086 mode tasks could interfere with
each other, since they would all share the low megabyte of the linear address
space. An operating system can use 80386 paging to relocate the linear address
spaces of virtual 8086 mode tasks to different areas of the physical address
space. Using paging in this way not only prevents interference between virtual
8086 mode tasks, but enables a virtual memory operating system to swap the
pages of virtual 8086 mode tasks just as if they were 80386 tasks.

A virtual 8086 mode task may execute a program that was written for execu-
tion on a single-task personal computer. Such a program can contain instruc-
tions that are potentially disruptive if executed in a multi-tasking environment.
For example, allowing a virtual 8086 mode task to execute the clear interrupt
enable (CLI) instruction, thereby disabling recognition of interrupts, could
bring the entire system to a halt. To prevent such disruptions, the 80386 raises
an exception when a virtual 8086 mode task attempts to execute an I/O or in-
terrupt-related instruction. These instructions are referred to as “sensitive” be-
cause their execution depends on (is sensitive to) the state of the I/O privilege
level bits in the Eflag register.

1/0 instructions are prevented from being executed when in virtual 8086 mode
on the basis of an I/O permission map included as part of the TSS. When a real
mode program attempts to access an I/O location, the processor checks the ad-
dress against entries within the I/O permission map. Each bit in the permission
map represents a single I/O location. If the corresponding bit for an I/0O loca-
tion is set, access is allowed. The first bit in the map is assigned to I/O address
zero, the second bit to I/O location one, and so forth up to 64Kbits (8KB). In
this way, all of the possible 64KB of /O addresses can be mapped to allow or
deny access.

Preventing the execution of such instructions protects the rest of the system
from a virtual 8086 mode task, but does not satisty the virtual 8086 mode task’s
need to execute the instructions. The solution is to simulate the “sensitive” in-
structions in an operating system procedure known as a virtual machine moni-
tor. When an exception handler is invoked, it can inspect the VM flag bit in the
Eflags image on the stack to determine if the source of the exception is a virtual
8086 mode task; if so, the exception handler can call the virtual machine moni-
tor which can simulate the instruction and return to the virtual 8086 mode task.
Note that a virtual machine monitor program simulates only a few 8086 in-
structions and that both the simulated instructions and those the 80386 exe-
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cutes directly benefit from the much higher performance of the 80386 com-
pared to the 8086.

Working together, the 80386 and a virtual machine monitor implement the full
8086 instruction set, and paging can provide each virtual 8086 mode task with
its own protected address space. However, most 8086 programs need addi-
tional resources provided by an operating system and peripheral hardware. An
example of the former type of resource is a file system; an example of the latter
is a display controller manipulated directly by an applications program. These
resources may not exist in the same form in the 80386-based system as they did
in the system for which the 8086 program was designed. To simplify the job of
providing these resources in a different environment, the 80386 can trap oper-
ating system and peripheral references made by virtual 8086 mode tasks.

For example, most 8086 operating systems use the INT (Interrupt) instruction
to implement operating system calls. If a virtual 8086 mode task's current privi-
lege level is less privileged than the task’s IOPL (I/O privilege level), the 80386
raises an exception when the virtual 8086 mode task attempts to execute an INT
instruction. The virtual machine monitor can then translate the 8086 operating
system call into a call on the 80386 operating system.

Peripheral references made by a virtual 8086 mode task using IN and OUT in-
structions are always checked against the [/O permission map, regardless of
the IOPL. The 80386 paging facility can be used to redirect references to mem-
ory-mapped peripherals to other addresses, if necessary. Such references can
also be trapped by marking the corresponding pages as read-only (to trap
writes), or not-present (to trap both reads and writes).

Automatic Self-Test

The 80386 microprocessor has the ability to perform a self-test of its three major
logic arrays and to verify the contents of its internal microcode control ROM.
The automatic self-test is initiated by asserting the microprocessor's BUSY# in-
put during initialization (while the RESET signal is asserted). The test result is
stored in the EAX register, and will be non-zero if an error was incurred. The
self-test provides 100% coverage of single-bit faults, which statistically com-
prise a high percentage of total faults.

The RESET input to the 80386 must remain asserted for at least 80 CLK2 peri-
ods if the self-test is to be performed. On the high-to-low transition of RESET,
the BUSY# input is sampled. If asserted, the microprocessor initiates the self-
test which will take approximately 2 + 60 CLK2 cycles to complete. When the
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test completes, the microprocessor initiates program execution without examin-
ing the test results.

80386DX External Interface

This section provides a detailed description of the signal lines the 80386DX mi-
croprocessor uses to communicate with the rest of the system. Many of these
signal lines serve the same purpose as on the 80286 microprocessor. These sig-
nals are listed in table 10-2.

Table 10-2. Signals Common to the 80286 and 80386DX Microprocessors
Signal Name Description

CLK2 Double Frequency clock input
M/I0# Memory or I/0 output
LOCK# Lock output

READY# Ready input

HOLD Hold Request input
HLDA Hold Acknowledge output
PEREQ Processor Extension Request input
BUSY# Processor Extension Busy input
ERROR# Processor Extension Error input

INTR Interrupt Request input

NMI Non-Maskable Interrupt Request input
RESET Reset input

The remainder of the 80386DX signals have been grouped into the following
categories:

e Address Bus
e Data Bus
e Control Bus

The Address Bus

The 80386DX address bus consists of two sets of signal lines:

e the address bus, consisting of 30 signal lines designated A[31:2].
¢ the byte enable bus, consisting of the 4 signal lines designated BE#[3:0].
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As demonstrated later in this chapter, the 80386DX uses the address bus,
A[31:2], to identify a group of four locations, known as a doubleword.

The 80386DX uses the byte enable lines to identify one or more of the four loca-
tions it actually wishes to perform a data transfer with.

Internally, the 80386DX microprocessor actually generates 32-bit addresses. A
32-bit address bus gives it the ability to address any one of 4GB (4 gigabytes;
4,096 megabytes) individual memory locations. When the microprocessor at-
tempts to place this 32-bit address on the address bus, however, the two least-
significant address bits, A0 and A1, get stripped off. This is because these two
address lines don't physically exist on an 80386DX microprocessor.

When designing an 80386DX based system, one should always assume that,
whenever the microprocessor outputs an address during a bus cycle, A0 and
Al are always 0. Let's examine the result. Table 10-3 illustrates a number of
addresses being output by the 80386DX. Remember that address bits 0 and 1
are stripped off during address output and are always assumed to be 0.
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Table 10-3. Example Addresses Output by an 80386DX

Address to be Output (in hex) Address Placed on Address Bus (in hex)
00000000 00000000
00000001 00000000
00000002 00000000
00000003 00000000
00000004 00000004
00000005 00000004
00000006 00000004
00000007 00000004
00000008 00000008
00000009 00000008
0000000A 00000008
0000000B 00000008
0000000C 0000000C
0000000D 0000000C
0000000E 0000000C
0000000F 0000000C
00000010 00000010
00000011 00000010
00000012 00000010
00000013 00000010

The result of always forcing A0 and A1 to 0 is that the 80386DX microprocessor
is only capable of outputting every fourth address. It is physically incapable of
addressing any of the intervening addresses. When the 80386DX outputs an
address, it is really identifying a group of four locations, called a doubleword,
starting at the address presented on the address bus.

In addition to identifying the doubleword address on A[31:2], the microproces-
sor also asserts one or more of the byte enable lines to indicate which of the
four locations it really wants to communicate with during the current bus cycle.
Asserting a byte enable line also identifies which of the 80386DX's four data
paths will be used to communicate with the identified location(s) in the dou-
bleword.
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The BEO# line is associated with the first location in the group of four (double-
word) and with the lowest data path, D[7:0]. BE1# is associated with the second
location in the doubleword and with the second data path, D[15:8]. BE2# is as-
sociated with the third location in the doubleword and with the third data
path, D[23:16]. BE3# is associated with the fourth location in the doubleword
and with the fourth data path, D[31:24]. Table 10-4 illustrates this relationship.

Table 10-4. Relationship of 80386DX Byte Enables, Data Paths and Locations in the
Currently-Addressed Doubleword

Location Addressed In
Byte Enable Data Path Used Doubleword
BEO# D[7:0] first
BE1# D[15:8] second
BE2# D[23:16] third
BE3# D[31:24] fourth

Figure 10-13 illustrates this same relationship. A[31:2] identify the doubleword.
The asserted byte enable lines identify the location(s) within the addressed
doubleword and the data path(s) to be used when communicating with them.
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Figure 10-13. 80386D X Address/Byte Enable Relationship

Table 10-5 summarizes the relationship between the address and byte enables
by showing the address specified by the programmer (in both binary and hex)
along with the address and byte enables that the microprocessor outputs.

179



ISA System Architecture

Table 10-5. Relationship of Addresses and Byte Enables Output by an 80386DX

Address Address
to be Placed on
Address to be Accessed (binary) Accessed | Address Bus Byte
A31 A30 - - - A5 A4 A3 A2 Al AO (in hex) (in hex) Enable
X X - - - X X 0 0 0 0] XXXXXXXO0 XXXXXXXO0 BEO# = 0O
X X - - - X X 0 0 0 1] XXXXXXX1 XXXXXXXO0 BEL1# = 0
X X - - - X X 0 0 1 0] XXXXXXX2 XXXXXXXO0 BE2# = 0
X X - - - X X 0 0 1 1] XXXXXXX3 XXXXXXXO0 BE3# = 0
X X - - - X X 0 1 0 0] XXXXXXX4 XXXXXXX4 BEO# = 0O
X X - - - X X 0 1 0 1] XXXXXXX5 XXXXXXX4 BEL1# = 0
X X - - - X X 0 1 1 0] XXXXXXX6 XXXXXXX4 BE2# = 0
X X - - - X X 0 1 1 1] XXXXXXX7 XXXXXXX4 BE3# = 0
X X--- X X 1 0 0 0] XXXXXXX8 XXXXXXX8 BEO# = 0O
X X - - - X X 1 0 0 1] XXXXXXX¢ XXXXXXX8 BEL1# = 0
X X - - - X X 1 0 1 0] XXXXXXXA XXXXXXX8 BE2# = 0
X X - - - X X 1 0 1 1] XXXXXXXB XXXXXXX8 BE3# = 0
X X - - - X X 1 1 0 0] XXXXXXXC XXXXXXXC | BEO# = 0
X X - - - X X 1 1 0 1] XXXXXXXD XXXXXXXC | BE1# = 0
X X - - - X X 1 1 1 0] XXXXXXXE XXXXXXXC | BE2# = 0
X X - - - X X 1 1 1 1] XXXXXXXF XXXXXXXC | BE3# = 0

Table 10-6 illustrates several example addresses and a description of how they
are interpreted by external logic.

Table 10-6. 80386D X Addressing Examples

Address on Data
Al31:2] BE3# | BE2# | BE1# | BEO# Location(s) addressed Path
00001000h 1 1 1 0 00001000h 0
FA026504h 0 0 1 1 FA026506h, FA026507h 2,3
00000108h 0 0 0 0 00000108h to 0000010Bh | 0,1,2,3
01ADOFOCh 1 0 0 1 01ADOFODh, 1ADOFOEh 1,2

In the first example, the microprocessor is identifying the doubleword starting
at location 00001000h. By asserting the BEO# line, it indicates its intention to
communicate with the first location in the doubleword using the first data path
(D[7:0)).

In the second example, the microprocessor is identifying the doubleword start-
ing at location FA026504h. By asserting the BE2# and BE3# lines, it indicates its
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intention to communicate with the third and fourth locations in the double-
word using the third (D[23:16]) and fourth (D[31:24]) data paths.

In the third example, the microprocessor is identifying the doubleword starting
at location 00000108h. By asserting all four of the byte enable lines, it indicates
its intention to communicate with all four locations in the doubleword using all
four data paths.

In the fourth example, the microprocessor is identifying the doubleword start-
ing at location 01ADOFOCh. By asserting the BE1# and BE2# lines, it indicates
its intention to communicate with the second and third locations in the dou-
bleword using the second (D[15:8]) and third (D[23:16]) data paths.

The 80386DX microprocessor is capable of performing 8-, 16-, 24- and 32-bit
transfers. When asserting multiple byte enables, it may only assert adjacent
byte enables, however. Table 10-7 shows the valid and invalid combinations of
byte enables that can be generated during a bus cycle.

Table 10-7. 80386DX Byte Enable Combinations

BE3# | BE2# | BE1# | BEO# | Transfer Description
1 1 1 1 invalid
1 1 1 0 8-bit transfer with one location
1 1 0 1 8-bit transfer with one location
1 1 0 0 16-bit transfer with two locations
1 0 1 1 8-bit transfer with one location
1 0 1 0 invalid
1 0 0 1 16-bit transfer with two locations
1 0 0 0 24-bit transfer with three locations
0 1 1 1 8-bit transfer with one location
0 1 1 0 invalid
0 1 0 1 invalid
0 1 0 0 invalid
0 0 1 1 16-bit transfer with two locations
0 0 1 0 invalid
0 0 0 1 24-bit transfer with three locations
0 0 0 0 32-bit transfer with four locations

Table 10-8 shows the address and byte enables generated in the bus cycle
caused by execution of the indicated instruction. All examples assume that the
data segment register has O000Oh in it.
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Table 10-8. Example Instructions and Resultant Addresses

Instruction Address BE3# | BE2# | BE1# | BEO# | Transfer Type
MOV AL, [0100] 00000100h 1 1 1 0 8-bit transfer
MOV AL, [0101] 00000100h 1 1 0 1 8-bit transfer
MOV BL, [0102] 00000100h 1 0 1 1 8-bit transfer
MOV AH, [0103] 00000100h 0 1 1 1 8-bit transfer
MOV AX, [0100] 00000100h 1 1 0 0 16-bit transfer
MOV AX, [0101] 00000100h 1 0 0 1 16-bit transfer
MOV AX, [0102] 00000100h 0 0 1 1 16-bit transfer
MOV EAX, [0100] 00000100h 0 0 0 0 32-bit transfer

With regard to the last table entry, the EAX register is the 80386's 32-bit version
of the AX register. It stands for extended AX register.

A 24-bit transfer occurs if the programmer attempts to perform a transfer that
crosses a doubleword address boundary. As an example, assume the DS regis-
ter contains 0000h and the programmer attempts to execute the following in-
struction:
MOV [0101],EAX

This tells the 80386DX to write the four bytes in the 32-bit EAX register to
memory starting at location 00000101h. To do this, the microprocessor must
write the lower three bytes in the EAX register to locations 00000101h to
00000103h in the doubleword starting at 00000100h. It must then write the
most-significant byte in the EAX register to the first location (00000104h) in the
doubleword starting at location 00000104h. Because it can't address two dou-
blewords at the same time, this causes the microprocessor to generate two
back-to-back bus cycles.

During the first bus cycle, the microprocessor places the doubleword address,
00000104h, on the address bus. This identifies the doubleword starting at
memory location 00000104h. Since the programmer instructed the microproces-
sor to write the four bytes in the EAX register to memory locations 00000101h
to 00000104h, the microprocessor now asserts only BEO#. This tells external
logic that the microprocessor wants to communicate with the first location in
the doubleword, but not the upper three. The most-significant byte in the EAX
register is driven out onto the lowest data path, D[7:0], by the microprocessor
and is written into memory location 00000104h. This completes the second bus
cycle and also the execution of the MOV instruction.
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After the first bus cycle, the microprocessor automatically places address
00000101h on the address bus, but A0 and Al are stripped off on the way out.
The resultant address placed on the address bus is 00000100h. This identifies
the doubleword starting at memory location 00000100h. Since the programmer
instructed the microprocessor to write the four bytes in the EAX register to
memory starting at location 00000101h, the microprocessor asserts BE1#, BE2#
and BE3# (but not BEO#) during the first bus cycle. This tells external logic that
the microprocessor wants to communicate with the upper three locations in the
doubleword (00000101h to 00000103h), but not the first one (00000100h). The
least-significant three bytes in the EAX register are driven out onto the upper
three data paths by the microprocessor and are written into memory locations
00000101h to 00000103h.

The 80386DX microprocessor is inefficient when attempting transfers that cross
doubleword address boundaries. To obtain optimum data throughput (transfer
speed), Intel therefore urges programmers to perform data transfers that don't
cross doubleword address boundaries.

The Data Bus

The 80386DX microprocessor has a 32-bit data bus. It is more correct, however,
the think of it as having four 8-bit data paths:

e Data Path 0 is comprised of D[7:0]

e Data Path 1 is comprised of D[15:8]
¢ Data Path 2 is comprised of D[23:16]
¢ Data Path 3 is comprised of D[31:24]

Refer to figure 10-14. Every doubleword consists of four locations and starts at
an even address that is divisible by four. The microprocessor communicates
with the first location over data path 0 (D[7:0]), the second over data path 1
(D[15:8]), the third over data path 2 (D[23:16]) and the fourth over data path 3
(D[31:24]).
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Figure 10-14. The 80386DX Data Bus

The Control Bus

The control bus consists of all the 80386DX signal lines other than the address
bus, byte enables and the data bus. These signal lines can be separated into the
following subcategories:

¢ Bus cycle definition outputs

e Clock input

* Reset input

¢ Ready input

¢ Bus mastering lines

e Interrupt inputs

e Processor extension lines

e Address status output

e Pipelining control input

* DBussize 16 input

The following paragraphs only describe the 80386DX signal lines that are dif-
ferent from the 80286's control bus lines.
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Bus Cycle Definition Outputs

To read data from or write data to an external location, the 80386DX bus unit
must run a bus cycle. During the bus cycle, the microprocessor indicates the
type of bus cycle by placing the proper pattern on the bus cycle definition sig-
nal lines. Table 10-9 shows each type of bus cycle and the respective pattern
which will be output onto the bus cycle definition lines.

Table 10-9. 80386 Bus Cycle Definition

M/1IO# | D/C# | W/R# | Bus Cycle Type
0 0 0 Interrupt Acknowledge
0 1 0 1/0 Read
0 1 1 1/0O Write
1 0 0 Memory Code (instruction) Read
1 1 0 Memory Data Read
1 1 1 Memory Data Write
1 0 1 Halt or Shutdown

Processor Extension Lines

With one exception, the 80386 microprocessor uses the same signal lines as the
80286 microprocessor to interface to the numeric coprocessor. The PEACK#
(processor extension acknowledge) signal line has been eliminated and the
READY# line is now connected to the 80387 coprocessor as well as to the 80386
microprocessor. A detailed description of the processor extension signal lines
can be found in the chapter entitled “Numeric Coprocessor.”

Address Status Output

At the start of a bus cycle, during “Address Time,” the 80386 microprocessor
places the address on the address bus and the bus cycle definition on the con-
trol bus. It also asserts the address status (ADS#) output to indicate that a valid
address and bus cycle definition are present on the buses.

Pipelining Control Input

Discussion of 80286 address pipelining can be found in the chapter entitled
“Detailed View of the Bus Cycle.” The 80386 handles address pipelining differ-
ently than the 80286. The 80386 microprocessor has an input called NA# (next
address). The following actions occur during a bus cycle:
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1. The microprocessor outputs the address of the device it wishes to commu-
nicate with.

2. The device's address decode logic decodes the address on the address bus
and chip-selects its device.

3. Logic associated with the addressed device latches the decoded chip-select
and lower address bits on the address bus.

4. Since the addressed device's logic has now latched the address informa-
tion, it no longer needs the address the microprocessor is presenting on the
bus. It then asserts the 80386's NA# (next address) signal, alerting the mi-
croprocessor that it can place the address for the next bus cycle onto the
address bus early (during the current bus cycle). This is a variation on the
address pipelining scheme used by the 80286 microprocessor. Permitting
the microprocessor to place the address for the upcoming bus cycle onto
the address bus early allows the next device to be addressed to see its ad-
dress early. This allows the designer to use relatively slow access devices.
The early decoding of the address and selection of the addressed device al-
lows the slow device to be ready to complete the bus cycle earlier than if it
hadn't received the address for decoding until the microprocessor had
caused the address to be latched into the external address latch.

When addressed devices allow the microprocessor to place the next address on
the bus early for a number of back-to-back bus cycles, the 80386 microprocessor
is using the buses to their fullest potential. These back-to-back, pipelined bus
cycles provide the highest bandwidth (transfer rate) on the buses.

Dynamic Bus Sizing (BS16#)

The 80386DX microprocessor's bus size 16 (BS16#) input is used to inform the
80386DX that the currently addressed device is a 16-bit device rather than a 32-
bit device. When BS16# is sampled asserted, the 80386DX performs data trans-
fers with the addressed device using only the lower two data paths, D[7:0] and
D[15:8]. This feature is known as dynamic bus sizing. In cases where the
80386DX requires the transfer of more than 16 bits, the microprocessor will
automatically generate additional bus cycles to fulfill the data transfer request
if BS16# is sampled asserted.

As an example, consider the actions caused by the execution of the following
instruction (assume DS = 0000h and the processor is in real mode):

MOV EAX, [1F08]
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Assume that the addressed device is a 16-bit device. The programmer is re-
questing the transfer of a doubleword (the EAX register is four bytes in size)
starting at memory location 00001F08h. At the beginning of the first bus cycle,
the microprocessor places address 00001F08h on the address bus (A[31:2]) and
asserts all four byte enable outputs. When the currently addressed device's ad-
dress decoder detects the address, it asserts BS16#, informing the microproces-
sor that the currently addressed device is only capable of communicating over
the lower two data paths.

The contents of location 00001F08h is placed on D[7:0] and the contents of loca-
tion 00001F0%h is placed on D[15:8] by the addressed 16-bit memory device. At
the end of the bus cycle, when READY# is sampled asserted, the microproces-
sor reads the two data bytes and places them in the lower two bytes of the EAX
register.

The microprocessor then automatically begins a second bus cycle with the same
address (00001F08h) on the address bus and BE2# and BE3# asserted. The ad-
dressed 16-bit device's address decoder once again asserts BS16#, and the con-
tents of 00001FOAh and 00001FOBh are transferred back to the microprocessor
over the two lower data paths. At the end of the bus cycle, the microprocessor
reads the two data bytes from the two lower data paths and places them into
the upper two bytes of the EAX register, completing the overall transfer. More
examples of dynamic bus sizing can be found in the chapter entitled “The
80386 System Kernel.”

80386SX External Interface

Interface Signal Differences

Functionally, the 803865X is identical to the 80386DX microprocessor. The
803865X microprocessor's interface to external devices differs from that of the
80386DX in the structure of its address and data buses. Table 10-10 details the
differences.
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Table 10-10. Interface Signals That Differentiate the 803865X from the 80386DX Mi-
croprocessor

Signal(s) Description

Address Bus | Unlike the DX address bus consisting of A[31:2] and the four byte

enable lines, the SX address bus consists of A[23:0] and BHE#. In
other words, its address bus and its addressing scheme is identical
to that of the 80286 microprocessor.

Data Bus Like the 80286 microprocessor, the SX only has two data paths, ver-

sus four for the DX microprocessor.

BS16# Since the SX does not have a 32-bit data bus, the BS16# input isn't
necessary.
AO or BLE#

The AO output of the 803865X is called BLE#. This is because the 803865X uses
the same rules as the 80286 regarding the usage of its two data paths. This be-
ing the case, the 803865X uses its lower data path to communicate with even-
addressed locations. Since all even addresses have AQ set to a zero, a low on AQ
indicates that the SX will use its lower data path during a bus cycle. A0 can
therefore be thought of as BLE#, or bus low enable.

Addressing Scheme, Data Bus Width Ramifications

Consider the following instruction:
MOV EAX, [0100]

Assume that the processor is in real mode and the DS register currently is set to
0000h. When executed, this instruction will instruct the microprocessor to
transfer four bytes of information from memory starting at location 0100h into
the microprocessor's EAX register. Where the 80386DX microprocessor would
only have to run one bus cycle to address all four locations and transfer all four
bytes simultaneously, the 803865X must run two bus cycles to accomplish the
four byte move.

First, the address 000100h is placed on the address bus, A[23:0], and the BHE#
signal is asserted. The 16-bit memory will interpret this as a read from location
000100h and the next sequential odd location, 000101h. The addressed memory
will place the contents of the even address, 000100h, on the lower data path
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and that of the odd address, 000101h, on the upper data path. At the end of the
bus cycle, the microprocessor inputs the two bytes and places them in the lower
two locations in the target register, AL and AH. Half of the requested data has
now been moved from memory into the target register.

Now, the 803865X microprocessor initiates a second bus cycle, placing the ad-
dress 000102h on the address bus, A[23:0], and asserting the BHE# signal again.
The 16-bit memory will interpret this as a read from location 000102h and the
next sequential odd location, 000103h. The addressed memory will place the
contents of the even address, 000102h, on the lower data path and that of the
odd address, 000103h, on the upper data path. At the end of the bus cycle, the
microprocessor inputs the two bytes and places them in the upper two loca-
tions in the target register. All of the requested data has now been moved from
memory into the target register.

It should also be noted that the 803865X microprocessor is limited to a maxi-
mum of 16MB of installed memory. This is the maximum amount of memory
that can be addressed with a 24-bit address bus.

Throughput and Compatibility Considerations

Due to a couple of factors, the 803865X microprocessor has substantially slower
throughput then an 80386DX.

e Two data paths versus four. This means that, at the same clock rate, the
80386DX has twice the throughput as that of the SX. This is true even if the
DX is running 80286 code that doesn't attempt any 32-bit reads or writes,
because the instruction prefetcher always fetches four bytes at a time.

e The 80386DX microprocessor is available in substantially higher clock rates
than the SX. Where the 5X is available in clock rates up to 25MHz, the DX
is available in clock rates up to 40MHz.

The 803865X and DX microprocessors are both capable of running any code
written for the 8086, 80286 or 80386 microprocessors. The 80286 microproces-
sor, on the other hand, cannot run code written for the 80386 microprocessor.
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Chapter 11

The Previous Chapter

The previous chapter, “The 80386DX and SX Microprocessors,” provided a de-
tailed description of these processors.

This Chapter

This chapter provides a detailed description of the kernel support logic neces-
sary to interface the 80386DX and SX processors to the rest of the system. Sam-
ple instructions are used to illustrate the actions of the processor and support
logic when performing various types of transfers. Interfacing issues are covered
for the 80386DX with and without dynamic bus sizing implemented.

The Next Chapter

The next chapter, “Detailed View of the 80386 Bus Cycle,” provides a detailed
description of bus cycle timing when the 80386 is performing a read or write
transfer. The other types of bus cycles are discussed as well.

Introduction

This chapter covers the essential logic that must surround an 80386 microproc-
essor in order to allow it to communicate with 8-, 16- and 32-bit devices. This is
known as the kernel logic. Three variations are covered:

¢ The 803865X system kernel
e The 80386DX system kernel with dynamic bus sizing implemented
¢ The 80386DX system kernel without dynamic bus sizing implemented
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The 80386SX System Kernel

Figure 11-1 illustrates the kernel logic surrounding an 803865X microprocessor.
It should be immediately apparent that it is virtually identical with the 80286
kernel logic detailed in the chapter entitled “The 80286 System Kernel: the En-
gine.” The only differences are the renamed bus cycle definition signals, W /R#
and D/C#, and the ADS# signal is used to trigger the bus control logic at the
start of a bus cycle. In an 80286-based kernel, the falling edge of SO# or S1# is
used to trigger the bus control logic at the start of a bus cycle.
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Figure 11-1. The 803865 X-Based Kernel
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The 80386DX System Kernel

80386DX System Kernel with Dynamic Bus Sizing

Introduction

Figure 11-2 illustrates the kernel logic surrounding an 80386DX microproces-
sor. In this implementation, the designer has taken advantage of the 80386DX's
dynamic bus sizing capability by hooking up the microprocessor's BS16# input.

If the device addressed during a bus cycle is a 16-bit memory or I/O device, it
will assert either the M16# or IO16# signal. An asserted level on either of these
signals causes an asserted level to be placed on the microprocessor's BS16# in-
put. When the microprocessor samples BS16# asserted at the end of T1, dy-
namic bus sizing is activated and multiple bus cycles are performed as
necessary to transfer the object. The transfer takes place only over the lower
two data paths when communicating with a 16-bit device. A detailed descrip-
tion of dynamic bus sizing can be found in the chapter entitled “The 80386DX
and SX Microprocessors.”

When the 80386DX microprocessor initiates a bus cycle, the target doubleword
address is output onto A[31:2] and the appropriate byte enable outputs are as-
serted. 32-bit devices recognize this address format, but 8- and 16-bit devices
require additional address information. In addition to A[31:2], 8-bit devices re-
quire AQ and Al, while 16-bit devices require A0, Al and BHE#. Since the
80386DX microprocessor is incapable of producing these signals, the bus con-
trol logic must convert the microprocessor's byte enable outputs into these
three signals.

Every doubleword consists of four locations. The first of these locations is al-
ways an even address, the second an odd address, the third even and the
fourth odd. If the microprocessor intends to communicate with the first loca-
tion in the doubleword, an even address, it asserts its BEO# output. When
communicating with the second location in the doubleword, an odd address, it
asserts its BE1# output, and so on for the third and fourth locations.

When a bus cycle is initiated, the bus control logic examines the microproces-
sor's byte enable outputs and determines the locations within the target dou-
bleword that the microprocessor is communicating with. The following
paragraphs describe the interaction between the microprocessor and 8-, 16- and
32-bit devices. Figure 11-2 illustrates the kernel of an 80386DX-based system
with dynamic bus sizing implemented. In all of the example instructions, it is
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assumed that the microprocessor is in Real Mode and the Data Segment (DS)
register contains 0000h.
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Figure 11-2. The 80386D X-Based Kernel with Dynamic Bus Sizing Implemented
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Reading from an 8-Bit Device
One-Byte Read from an 8-Bit Device

In this example, the following instruction is addressing an 8-bit device.

MOV AL, [0100]

The microprocessor must read the contents of memory location 00000100h and
place the resulting byte in the AL register. Address 00000100h is placed on
A[31:2] and BEO# is asserted. In this way, the microprocessor indicates that it
wishes to communicate with location 00000100h in the doubleword that starts
at location 00000100h. When the microprocessor is addressing either of the first
two locations in a doubleword, the bus control logic sets SA1 to 0. The bus con-
trol logic also sets SAQ to a 0 because the asserted level on BEO# indicates that
the microprocessor is addressing the first even address in the target double-
word. BEl# is deasserted, indicating that the microprocessor isn't addressing
the odd location immediately following the addressed even location. As a re-
sult, the bus control logic deasserts SBHE#.

Since the target device is an 8-bit device, M16# remains deasserted. As a result,
the microprocessor finds BS16# deasserted when sampled at the mid-point of
the processor's first data time. This indicates to the microprocessor that it is
communicating with a 32-bit device. Note that the 80386DX microprocessor can
only sense that it is communicating with 16-bit or 32-bit devices and has no
knowledge of 8-bit devices. If BS16# is asserted, the 80386DX knows it is com-
municating with a 16-bit device. If BS16# isn't asserted, the 80386DX assumes
that it is communicating with a 32-bit device.

The 80386DX assumes it is communicating with a 32-bit device and runs a sin-
gle bus cycle. Since the target device is an 8-bit memory device, it asserts nei-
ther M16# nor M32#. The bus control logic samples M16# and M32# at the end
of ISA address time and finds them deasserted. Note that the bus control logic
does not sample [016# because it has previously sampled M/IO# and knows
that a memory location is being accessed.

Sensing neither M16# nor M32# asserted, the bus control logic determines that
it is communicating with an 8-bit memory device and that the data will there-
fore be sent back over the lower data path. The 8-bit device sees address
00000100h on the address bus and the MRDC# line asserted and returns the re-
quested byte over the lower data path. The bus control logic gates the byte
through the lower data bus transceiver to the microprocessor and asserts the
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CPU READY# line. When the microprocessor samples CPU READY# asserted,
it reads the byte from the lower data path and places it in the target register,
AL, completing the execution of the MOV instruction.

Two-Byte Read from an 8-Bit Device

In this example, the following instruction is addressing an 8-bit memory de-
vice.

MOV AX, [0100]

The microprocessor must read the contents of memory locations 00000100h and
00000101h and place the resulting word in the AX register. Address 00000100h
is placed on A[31:2] and BEO# and BE1# are asserted. In this way, the micro-
processor indicates that it wishes to communicate with locations 00000100h and
00000101h in the doubleword that starts at location 00000100h. When the mi-
croprocessor is addressing either of the first two locations in a doubleword, the
bus control logic sets SA1 to 0. The bus control logic also sets SAO to a 0 be-
cause the asserted level on BEO# indicates that the microprocessor is addressing
the first even address in the target doubleword. Since BE1# is also asserted, the
microprocessor is also addressing the odd location immediately following the
addressed even location. As a result, the bus control logic asserts SBHE#.

Since the target device is an 8-bit device, M16# remains deasserted. As a result,
the microprocessor finds BS16# deasserted when sampled at the mid-point of
the processor's first data time. This indicates to the microprocessor that it is
communicating with a 32-bit device. Note that the 80386DX microprocessor can
only sense that it is communicating with 16-bit or 32-bit devices and has no
knowledge of 8-bit devices. If BS16# is asserted, the 80386DX knows it is com-
municating with a 16-bit device. If BS16# isn't asserted, the 80386DX assumes
that it is communicating with a 32-bit device.

The 80386DX assumes it is communicating with a 32-bit device and runs a sin-
gle bus cycle. Since the target device is an 8-bit memory device, it asserts nei-
ther M16# nor M32#. The bus control logic samples M16# and M32# at the end
of ISA address time and finds them deasserted. Note that the bus control logic
does not sample [016# because it has previously sampled M/IO# and knows
that a memory location is being accessed.

Sensing neither M16#, IO16#, nor M32# asserted, the bus control logic deter-
mines that it is communicating with an 8-bit device and that the data will there-
fore be returning over the lower data path. This also means that the device can
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only return one byte at a time. The 8-bit device sees address 00000100h on the
address bus and the MRDC# line asserted and returns the requested byte over
the lower data path. The bus control logic latches the byte into the lower data
bus transceiver. It then increments the address by placing a 1 on the SAO line.
The MRDC# line is momentarily deasserted and then reasserted again to trick
the addressed device into thinking a second bus cycle has begun. The device
then places the contents of memory location 00000101h on the lower data path.
The bus control logic causes the data bus steering logic to copy the byte to the
second data path. All of the requested information has now been assembled, so
the bus control logic simultaneously enables the lower data bus transceiver to
output the first byte to the microprocessor on the lower data path, while ena-
bling the second data bus transceiver to pass the other byte through to the mi-
croprocessor on the second data path.

It then asserts the CPU READY# line. When the microprocessor samples CPU
READY# asserted, it reads the two bytes from the two lower data paths and
places them in the target register, AX. The byte from location 00000100h is
placed in AL and that from 00000101h in AH.

Four-Byte Read from an 8-Bit Device

In this example, the following instruction is addressing an 8-bit memory de-
vice.

MOV EAX, [0100]

The microprocessor must read the contents of memory locations 00000100h
through 00000103h and place the resulting doubleword in the EAX register.
Address 00000100h is placed on A[31:2] and all four byte enables are asserted.
In this way, the microprocessor indicates that it wishes to communicate with
locations 00000100h through 00000103h in the doubleword that starts at loca-
tion 00000100h. When the microprocessor is addressing either of the first two
locations in a doubleword, the bus control logic sets SA1 to 0. The bus control
logic also sets SAQ to a 0 because the asserted level on BEO# indicates that the
microprocessor is addressing the first even address in the target doubleword.
Since BE1# is also asserted, the microprocessor is also addressing the odd loca-
tion immediately following the addressed even location. As a result, the bus
control logic asserts SBHE#.

Since the target device is an 8-bit device, M16# remains deasserted. As a result,
the microprocessor finds BS16# deasserted when sampled at the mid-point of
the processor's first data time. This indicates to the microprocessor that it is
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communicating with a 32-bit device. Note that the 80386DX microprocessor can
only sense that it is communicating with 16-bit or 32-bit devices and has no
knowledge of 8-bit devices. If BS16# is asserted, the 80386DX knows it is com-
municating with a 16-bit device. If BS16# isn't asserted, the 80386DX assumes
that it is communicating with a 32-bit device.

The 80386DX assumes it is communicating with a 32-bit device and runs a sin-
gle bus cycle. Since the target device is an 8-bit memory device, it asserts nei-
ther M16# nor M32#. The bus control logic samples M16# and M32# at the end
of ISA address time and finds them deasserted. Note that the bus control logic
does not sample [016# because it has previously sampled M/IO# and knows
that a memory location is being accessed.

Sensing neither M16# nor M32# asserted, the bus control logic determines that
it is communicating with an 8-bit memory device and that the data will there-
fore be returning over the lower data path. This also means that the device can
only return one byte at a time. The 8-bit device sees address 00000100h on the
address bus and the MRDC# line asserted and returns the requested byte over
the lower data path. The bus control logic latches the byte into the lower data
bus transceiver. It then increments the address by placing a 1 on the SAO line.
The MRDCH# line is momentarily deasserted and then reasserted again, tricking
the addressed device into thinking a second bus cycle has begun. The device
then places the contents of memory location 00000101h on the lower data path.
The bus control logic causes the data bus steering logic to copy the byte to the
second data path and commands the second data bus transceiver to latch and
hold the byte.

Two of the four requested bytes have now been assembled and the bus control
logic must address the next two bytes that have been requested. BE2# is assert-
ed, indicating that the microprocessor is requesting the byte from the second
even address in the doubleword. The bus control logic therefore sets SAQ to a 0.
Since this location is in the second word of the doubleword, the bus control
logic sets SA1 to a 1. The microprocessor has also asserted BE3#, indicating that
it wants the contents of the odd location immediately following the even loca-
tion addressed by BE2#. As a result, the bus control logic asserts SBHE#.

The bus control logic again deasserts and then reasserts the MRDC# line to
trick the 8-bit device into thinking another bus cycle has been initiated. The 8-
bit device now sees address 00000102h. It places the requested byte on the
lower data path and the bus control logic commands the data bus steering logic
to copy it to the third data path, where it is latched by the third data bus trans-
ceiver.
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The bus control logic then increments the address by one by setting SAO to a 1,
and again deasserts and then reasserts the MRDCH# line to trick the 8-bit device
into thinking another bus cycle has been initiated. The 8-bit device now sees
address 00000103h. It places the requested byte on the lower data path and the
bus control logic commands the data bus steering logic to copy it to the fourth
data path.

All of the requested information has now been assembled, so the bus control
logic simultaneously enables the first, second and third data bus transceivers to
pass the first three bytes to the microprocessor on the three lower data paths,
and also enables the fourth data bus transceiver to pass the other byte through
to the microprocessor on the fourth data path.

It then asserts the CPU READY# line. When the microprocessor samples CPU
READY# asserted, it reads the four bytes from all four data paths and places
them in the target register, EAX. The byte from location 00000100h is placed in
AL and that from 00000101h in AH, etc. This completes the execution of the
MOV instruction.

Writing to an 8-Bit Device

One-Byte Write to an 8-Bit Device

In this example, the following instruction is addressing an 8-bit memory de-
vice.

MOV  [0100],AL

The microprocessor must write the byte in the AL register to memory location
00000100h. Address 00000100h is placed on A[31:2] and BEO# is asserted. In
this way, the microprocessor indicates that it is addressing location 00000100h
in the doubleword that starts at location 00000100h. The data byte from the AL
register is driven out onto data path 0, D[7:0], by the microprocessor starting at
the midpoint of T1. When the microprocessor is addressing either of the first
two locations in a doubleword, the bus control logic sets SA1 to 0. The bus con-
trol logic also sets SAQ to a 0 because the asserted level on BEO# indicates that
the microprocessor is addressing the first even address in the target double-
word. Since BE1# is deasserted, the microprocessor isn't addressing the odd lo-
cation that immediately follows the addressed even location. As a result, the
bus control logic deasserts SBHE#.
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Since the target device is an 8-bit device, M16# remains deasserted. As a result,
the microprocessor finds BS16# deasserted when sampled at the mid-point of
the processor's first data time. This indicates to the microprocessor that it is
communicating with a 32-bit device. Note that the 80386DX microprocessor can
only sense that it is communicating with 16-bit or 32-bit devices and has no
knowledge of 8-bit devices. If BS16# is asserted, the 80386DX knows it is com-
municating with a 16-bit device. If BS16# isn't asserted, the 80386DX assumes
that it is communicating with a 32-bit device.

The 80386DX assumes it is communicating with a 32-bit device and runs a sin-
gle bus cycle. Since the target device is an 8-bit memory device, it asserts nei-
ther M16# nor M32#. The bus control logic samples M16# and M32# at the end
of ISA address time and finds them deasserted. Note that the bus control logic
does not sample [016# because it has previously sampled M/IO# and knows
that a memory location is being accessed.

Sensing neither M16# nor M32# asserted, the bus control logic determines that
it is communicating with an 8-bit memory device and that the data must there-
fore be sent to the device over the lower data path. The 8-bit device sees ad-
dress 00000100h on the address bus and the MWTCH# line asserted and accepts
the byte from the lower data path. The bus control logic asserts the CPU
READY# line. When the microprocessor samples CPU READY# asserted, it
ends the bus cycle. This completes the execution of the MOV instruction.

Two-Byte Write to an 8-Bit Device

In this example, the following instruction is addressing an 8-bit memory de-
vice.

MOV  [0100],AX

The microprocessor must write the two bytes in the AX register to memory lo-
cations 00000100h and 00000101h. Address 00000100h is placed on A[31:2] and
BEO# and BE1# are asserted. In this way, the microprocessor addresses loca-
tions 00000100h and 00000101h in the doubleword that starts at location
00000100h. The two bytes from the AX register are driven out onto the two
lower data paths starting at the midpoint of T1. The contents of the AL register
is driven out onto D[7:0], while the contents of AH is driven out onto D[15:8].
When the microprocessor is addressing either of the first two locations in a
doubleword, the bus control logic sets SA1 to 0. The bus control logic also sets
SAQ to a 0 because the asserted level on BEO# indicates that the microprocessor
is addressing the first even address in the target doubleword. Since BE1# is also
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asserted, the microprocessor is also addressing the odd location immediately
following the addressed even location. As a result, the bus control logic asserts
SBHEH#.

Since the target device is an 8-bit device, M16# remains deasserted. As a result,
the microprocessor finds BS16# deasserted when sampled at the mid-point of
the processor's first data time. This indicates to the microprocessor that it is
communicating with a 32-bit device. Note that the 80386DX microprocessor can
only sense that it is communicating with 16-bit or 32-bit devices and has no
knowledge of 8-bit devices. If BS16# is asserted, the 80386DX knows it is com-
municating with a 16-bit device. If BS16# isn't asserted, the 80386DX assumes
that it is communicating with a 32-bit device.

The 80386DX assumes it is communicating with a 32-bit device and runs a sin-
gle bus cycle. Since the target device is an 8-bit memory device, it asserts nei-
ther M16# nor M32#. The bus control logic samples M16# and M32# at the end
of address time and finds them deasserted.

Sensing neither M16# nor M32# asserted, the bus control logic determines that
it is communicating with an 8-bit memory device and that the data must there-
fore be transferred over the lower data path. This also means that the device
can only accept one byte at a time. The bus control logic gates the two bytes
through the two lower data bus transceivers. The 8-bit device detects address
00000100h on the address bus and the MWTC# line asserted, accepts the byte
from the lower data path and writes it into location 00000100h. The bus control
logic then increments the address by placing a 1 on the SAQ line. The MWTCH#
line is momentarily deasserted and then reasserted again, tricking the ad-
dressed device into thinking a second bus cycle has begun. The bus control
logic also disables the lower data bus transceiver and commands the data bus
steering logic to copy the second byte from the second data path to the first.
The device detects a write to address 00000101h and accepts the data byte from
the lower path and writes it into location 00000101h.

All of the requested information has now been written to the target device, so
the bus control logic asserts the CPU READY# line. When the microprocessor
samples CPU READY# asserted, it ends the bus cycle, completing the execution
of the MOV instruction.
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Four-Byte Write to an 8-Bit Device

In this example, the following instruction is addressing an 8-bit memory de-
vice.

MOV  [0100], EAX

The microprocessor must write the contents of the EAX register to memory lo-
cations 00000100h through 00000103h. Address 00000100h is placed on A[31:2]
and all four byte enables are asserted. In this way, the microprocessor indicates
that it is addressing locations 00000100h through 00000103h in the doubleword
that starts at location 00000100h. The four bytes from the EAX register are
driven out onto the four data paths starting at the midpoint of T1. When the
microprocessor is addressing either of the first two locations in a doubleword,
the bus control logic sets SA1 to 0. The bus control logic also sets SAQ to a 0 be-
cause the asserted level on BEO# indicates that the microprocessor is addressing
the first even address in the target doubleword. Since BE1# is also asserted, the
microprocessor is also addressing the odd location immediately following the
addressed even location. As a result, the bus control logic asserts SBHE#.

Since the target device is an 8-bit device, M16# remains deasserted. As a result,
the microprocessor finds BS16# deasserted when sampled at the mid-point of
the processor's first data time. This indicates to the microprocessor that it is
communicating with a 32-bit device. Note that the 80386DX microprocessor can
only sense that it is communicating with 16-bit or 32-bit devices and has no
knowledge of 8-bit devices. If BS16# is asserted, the 80386DX knows it is com-
municating with a 16-bit device. If BS16# isn't asserted, the 80386DX assumes
that it is communicating with a 32-bit device.

The 80386DX assumes it is communicating with a 32-bit device and runs a sin-
gle bus cycle. Since the target device is an 8-bit memory device, it asserts nei-
ther M16# nor M32#. The bus control logic samples M16# and M32# at the end
of ISA address time and finds them deasserted.

Sensing neither M16# nor M32# asserted, the bus control logic determines that
it is communicating with an 8-bit memory device and that the data must there-
fore be transferred over the lower data path. This also means that the device
can only accept one byte at a time. All four data bus transceivers are enabled by
the bus control logic, allowing all four data bytes to be driven onto the four
System Data Bus paths (SD bus) by the microprocessor.
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The 8-bit device detects address 00000100h on the address bus and the MWTC#
line asserted, accepts the byte from the lower data path and writes it into loca-
tion 00000100h. The bus control logic then increments the address by placing a
1 on the SAQ line. The MWTC# line is momentarily deasserted and then reas-
serted again, tricking the addressed device into thinking a second bus cycle has
begun. The bus control logic also disables the first data bus transceiver and en-
ables the data bus steering logic to copy the byte from the second path to the
first. The device then accepts the data byte from the lower path and writes it
into memory location 00000101h.

Two of the four requested bytes have now been transferred and the bus control
logic must address the next two locations in the doubleword. BE2# is asserted,
indicating that the microprocessor is writing to the second even address in the
doubleword. The bus control logic therefore sets SAQ to a 0. Since this location
is in the second word of the doubleword, the bus control logic also sets SA1 to a
1. The microprocessor has also asserted BE3#, indicating that it is writing to the
odd address immediately following the even location addressed by BE2#. As a
result, the bus control logic asserts SBHE#.

The second data bus transceiver is disabled and the bus control logic com-
mands the data bus steering logic to copy the byte from the third data path to
the first. It again deasserts and then reasserts the MWTCH# line, tricking the 8-bit
device into thinking another bus cycle has been initiated. The 8-bit device now
detects address 00000102h, accepts the byte on the lower data path and writes
it into location 00000102h. The bus control logic then increments the address by
setting SAQ to a 1, again tricking the 8-bit device into thinking another bus cy-
cle has been initiated by deasserting and reasserting the MWTC# line. The 8-bit
device now detects address 00000103h. The third data bus transceiver is dis-
abled and the data bus steering logic is commanded to copy the byte from the
fourth data path to the first data path. The addressed device accepts the fourth
and final data byte and writes it into memory location 00000103h.

All of the requested information has now been written to the target device, so
the bus control logic then asserts the CPU READY# line. When the microproc-
essor samples CPU READY# asserted, it ends the bus cycle, completing execu-
tion of the MOV instruction.
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Reading from a 16-Bit Device
Two-Byte Read from a 16-Bit Device

In this example, the following instruction is addressing a 16-bit memory device.
MOV AX, [0102]

The microprocessor will read the contents of memory locations 00000102h and
00000103h and place the resulting word in the AX register. Address 00000100h
is placed on A[31:2] and BE2# and BE3# are asserted. In this way, the micro-
processor indicates that it is addressing locations 00000102h and 00000103h in
the doubleword that starts at location 00000100h. When the microprocessor is
addressing either of the last two locations in a doubleword, the bus control
logic sets SA1 to 1. The bus control logic sets SAO to a 0 because the asserted
level on BE2# indicates that the microprocessor is addressing an even address
in the addressed doubleword. Since BE3# is also asserted, the microprocessor is
also addressing the odd location immediately following the addressed even lo-
cation. As a result, the bus control logic asserts SBHE#.

Since the target device is a 16-bit memory device, it asserts M16#. As a result,
the microprocessor finds BS16# asserted when sampled at the mid-point of the
processor's first data time. This indicates to the microprocessor that it is com-
municating with a 16-bit device. The bus control logic samples M16# at the end
of ISA address time and finds it asserted. Since this is a read bus cycle, both the
microprocessor and the bus control logic then expect the data to come back
over the two lower data paths.

The 16-bit device sees address 00000102h on the address bus with SBHE# as-
serted and the MRDCH# line asserted and returns the two requested bytes over
the two lower data paths. The bus control logic passes the bytes through the
two lower data bus transceivers to the microprocessor.

The bus control logic then asserts the CPU READY# line. When the microproc-
essor samples CPU READY# asserted, it reads the two bytes from the two
lower data paths and places them in the target register, AX. The byte from loca-
tion 00000102h is placed in AL and that from 00000103h in AH. This completes
execution of the MOV instruction.
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Four-Byte Read from a 16-Bit Device

In this example, the following instruction is addressing a 16-bit memory device.
MOV EAX, [0100]

The microprocessor will read the contents of memory locations 00000100h
through 00000103h and place the resulting doubleword in the EAX register.
Address 00000100h is placed on A[31:2] and all four byte enables are asserted.
In this way, the microprocessor indicates that it is addressing locations
00000100h through 00000103h in the doubleword that starts at location
00000100h. When the microprocessor is addressing either of the first two loca-
tions in a doubleword, the bus control logic sets SA1 to 0. The bus control logic
sets SAQ to a 0 because the asserted level on BEO# indicates that the microproc-
essor is addressing the first even address in the target doubleword. Since BE1#
is also asserted, the microprocessor is also addressing the odd location imme-
diately following the addressed even location. As a result, the bus control logic
asserts SBHE#.

Since the target device is a 16-bit memory device, it asserts M16#. As a result,
the microprocessor finds BS16# asserted when sampled at the mid-point of the
processor's first data time, indicating to the microprocessor that it is communi-
cating with a 16-bit device. The bus control logic samples M16# at the end of
ISA address time and finds it asserted. Since this is a read bus cycle, both the
microprocessor and the bus control logic then expect the data to come back
over the two lower data paths. This also means that the device can only return
two bytes at a time. Since the microprocessor has requested four bytes, it must
run two back-to-back bus cycles to get all four bytes.

The 16-bit device detects address 00000100h on the address bus with SBHE#
and the MRDC# line asserted and returns the first two of the requested bytes
over the two lower data paths. The bus control logic passes both bytes through
the lower two data bus transceivers to the microprocessor and asserts CPU
READY#. When the microprocessor samples CPU READY# asserted at the end
of the current data time, it reads the two bytes from the bus and stores them in
the lower two bytes of the target EAX register. This completes the first of the
two bus cycles necessary to fulfill the request. Although the microprocessor
had asserted all four byte enable lines, it expected just two bytes on the lower
data paths because BS16# was sampled asserted.

Two of the requested four bytes have now been read and the microprocessor
initiates a second bus cycle using the same address. The same doubleword is
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addressed, 00000100h on A[31:2], but only BE2# and BE3# are now asserted.
BE2# is asserted, indicating that the microprocessor is requesting the byte from
the second even address in the doubleword. The bus control logic therefore sets
SAQ to a 0. Since this location is in the second word of the doubleword, the bus
control logic sets SAl to a 1. The microprocessor has also asserted BE3#, indi-
cating that it must also read the contents of the odd address immediately fol-

lowing the even location addressed by BE2#. As a result, the bus control logic
asserts SBHE#.

When the microprocessor and bus control logic sample their respective size in-
puts, the 16-bit memory device being addressed has asserted M16#. The assert-
ed level on the microprocessor's BS16# input indicates that the 16-bit device
will return the two requested bytes over the lower two data paths, rather than
the upper two as expected. The asserted level on the M16# input to the bus con-
trol logic indicates that the addressed device is a 16-bit memory device and the
requested data will be transferred over the lower two data paths.

The bus control logic asserts the MRDC# line. The 16-bit device now sees ad-
dress 00000102h and SBHE# asserted and places the two requested bytes on the
two lower data paths. The bus control logic passes the two bytes through the
lower two data bus transceivers to the microprocessor and asserts the CPU
READY# line. When the microprocessor samples CPU READY# asserted at the
end of the current data time, it reads the two bytes from the data bus and stores
them in the upper two bytes of the target EAX register. This ends the second
bus cycle, completing the execution of the MOV instruction.

Writing to a 16-Bit Device
Two-Byte Write to a 16-Bit Device

In this example, the following instruction is addressing a 16-bit memory device.

MOV  [0102],AX

The microprocessor must write the contents of the AX register (2 bytes) to
memory locations 00000102h and 00000103h. Address 00000100h is placed on
A[31:2] and BE2# and BE3# are asserted. In this way, the microprocessor indi-
cates that it is addressing locations 00000102h and 00000103h in the double-
word starting at location 00000100h. When the microprocessor is addressing
either of the last two locations in a doubleword, the bus control logic sets SA1
to 1. The bus control logic sets SAQO to a 0 because the asserted level on BE2# in-
dicates that the microprocessor is addressing the second even address in the
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target doubleword. Since BE3# is also asserted, the microprocessor is also ad-
dressing the odd location immediately following the addressed even location.
As a result, the bus control logic asserts SBHE#.

The two bytes from AX register are not only driven onto the two upper data
paths by the 80386DX microprocessor, but are also duplicated on the lower two
paths.

Since the target device is a 16-bit memory device, it asserts M16#. As a result,
the microprocessor finds BS16# asserted when sampled at the mid-point of the
processor's first data time. The bus control logic samples M16# at the end of
ISA address time and finds it asserted. This indicates to both the microproces-
sor and the Bus Controller Logic that they are communicating with a 16-bit de-
vice.

Sensing M16# asserted, the bus control logic determines that it is communicat-
ing with a 16-bit memory device and that the data must therefore be trans-
ferred to the device over the two lower data paths. The two lower data bus
transceivers are enabled, allowing the two bytes from the AX register to be
driven out onto SD[7:0] and SD[15:8]. The 16-bit device sees address 00000102h
on the address bus with SBHE# asserted and the MWTCH# line asserted and ac-
cepts the two bytes from the two lower data paths.

All of the information has now been written to the target device, so the bus con-
trol logic asserts the CPU READY# line. When the microprocessor samples
CPU READY# asserted, it ends the bus cycle, completing execution of the MOV
instruction.

Four-Byte Write to a 16-Bit Device

In this example, the following instruction is addressing a 16-bit memory device.

MOV  [0100],EAX
The microprocessor must write the contents of the EAX register (4 bytes) to
memory locations 00000100h through 00000103h. Address 00000100h is placed
on A[31:2] and all four byte enable lines are asserted. In this way, the micro-
processor indicates that it is addressing locations 00000100h through 00000103h
in the doubleword starting at location 00000100h. When the microprocessor is
addressing either of the first two locations in a doubleword, the bus control
logic sets SA1 to 0. The bus control logic also sets SAO to a 0 because the assert-
ed level on BEO# indicates that the microprocessor is addressing the first even
address in the target doubleword. Since BE1# is also asserted, the microproces-
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sor is also addressing the odd location immediately following the addressed
even location. As a result, the bus control logic asserts SBHE#. The four bytes
from EAX register are driven onto the four data paths by the 80386DX micro-
processor.

Since the target device is a 16-bit memory device, it asserts M16#. As a result,
the microprocessor finds BS16# asserted when sampled at the mid-point of the
processor's first data time, indicating to the microprocessor that it is communi-
cating with a 16-bit device. The bus control logic samples M16# at the end of
ISA address time and finds it asserted.

Sensing M16# asserted, the bus control logic determines that it is communicat-
ing with a 16-bit memory device and that the data must therefore be trans-
ferred to the device over the two lower data paths. All four data bus
transceivers are enabled, allowing the four bytes from the EAX register to be
driven out onto the four SD paths. The 16-bit device sees address 00000100h on
the address bus with SBHE# asserted and the MWTCH# line asserted and ac-
cepts the two bytes from the two lower data paths.

The bus control logic asserts CPU READY# to the microprocessor. When the
microprocessor samples CPU READY# asserted at the end of the current data
time, its asserted state allows the microprocessor to end the first bus cycle. Two
of the four bytes from the EAX register have been written to the target 16-bit
device.

The second bus cycle is automatically initiated by the microprocessor. Address
00000100h is placed on A[31:2] and BE2# and BE3# are asserted. In this way,
the microprocessor indicates that it is addressing locations 00000102h and
00000103h in the doubleword starting at location 00000100h. When the micro-
processor is addressing either of the last two locations in a doubleword, the bus
control logic sets SA1 to 1. The bus control logic sets SAO to a 0 because the as-
serted level on BE2# indicates that the microprocessor is addressing the second
even address in the target doubleword. Since BE3# is also asserted, the micro-
processor is also addressing the odd location immediately following the ad-
dressed even location. As a result, the bus control logic asserts SBHE#.

The two upper bytes from EAX register are not only driven onto the two upper
data paths by the 80386DX microprocessor, but are also duplicated on the
lower two paths.

Since the target device is a 16-bit memory device, it asserts M16#. As a result,
the microprocessor finds BS16# asserted when sampled at the mid-point of the
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processor's first data time, indicating to the microprocessor that it is communi-
cating with a 16-bit device. The bus control logic samples M16# at the end of
ISA address time and finds it asserted.

Sensing M16# asserted, the bus control logic determines that it is communicat-
ing with a 16-bit memory device and that the data must therefore be trans-
ferred to the device over the two lower data paths. The two lower data bus
transceivers are enabled, allowing the two upper bytes from the EAX register
to be driven out onto SD[7:0] and SD[15:8]. The 16-bit device sees address
00000102h on the address bus with SBHE# asserted and the MWTC# line as-
serted and accepts the two bytes from the two lower data paths.

All of the information has now been written to the target device, so the bus con-
trol logic asserts the CPU READY# line. When the microprocessor samples
CPU READY# asserted at the end of the current data time, it ends the bus cycle,
completing execution of the MOV instruction.

Reading from a 32-Bit Device

In an ISA system, the only 32-bit device is the system board RAM memory.
When addressed, it asserts the M32# signal to indicate that it is a 32-bit device.
In this example, the following instruction is addressing a 32-bit memory device.

MOV EAX, [0100]

The microprocessor must read the contents of the memory locations 00000100h
through 00000103h into the EAX register. Address 00000100h is placed on
A[31:2] and all four byte enable lines are asserted. In this way, the microproces-
sor indicates that it is addressing locations 00000100h through 00000103h in the
doubleword starting at address 00000100h. When the microprocessor is ad-
dressing either of the first two locations in a doubleword, the bus control logic
sets SA1 to 0. The bus control logic also sets SAQ to a 0 because the asserted
level on BEO# indicates that the microprocessor is addressing the first even ad-
dress in the target doubleword. Since BE1# is also asserted, the microprocessor
is also addressing the odd location immediately following the addressed even
location. As a result, the bus control logic asserts SBHE#.

Since the device is a 32-bit memory device, it asserts M32#. When the micro-
processor checks its BS16# input at the mid-point of the first data time, it is
sensed deasserted. When the bus control logic checks M16# and M32# at the
end of address time, M32# is sensed asserted. Since this is a read bus cycle,
both the microprocessor and the bus control logic then expect the data to come
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back over all four data paths. This also means that the device can return four
bytes at a time. Since the microprocessor has requested four bytes, it must only
run one bus cycle to get all four bytes.

The bus control logic sets MRDCH# asserted. When the 32-bit memory detects
address 00000100h with all four byte enables asserted, it sends the contents of
all four locations in the doubleword back to the microprocessor over the four
data paths. The bus control logic enables all four data bus transceivers, allow-
ing the four bytes of data to flow through to the microprocessor.

The bus control logic then asserts CPU READY#. When the microprocessor
samples CPU READY# asserted at the end of the current data time, it reads the
four bytes from the four data paths, places them in the EAX register, and ends
the bus cycle. This completes the execution of the MOV instruction.

Writing to a 32-Bit Device

In an ISA system, the only 32-bit device is the system board RAM memory.
When addressed, it asserts the M32# signal to indicate that it is a 32-bit device.
In this example, the following instruction is addressing a 32-bit memory device.

MOV  [0100], EAX

The microprocessor must write the contents of the EAX register to memory lo-
cations 00000100h through 00000103h. Address 00000100h is placed on A[31:2]
and all four byte enable lines are asserted. In this way, the microprocessor indi-
cates that it is addressing locations 00000100h through 00000103h in the dou-
bleword starting at address 00000100h. The four bytes from the EAX register
are driven out onto the four data paths by the microprocessor.

When the microprocessor is addressing either of the first two locations in a
doubleword, the bus control logic sets SA1 to 0. The bus control logic sets SAQ
to a 0 because the asserted level on BEO# indicates that the microprocessor is
addressing the first even address in the target doubleword. Since BE1# is also
asserted, the microprocessor is also addressing the odd location immediately

following the addressed even location. As a result, the bus control logic asserts
SBHE#.

Since the device is a 32-bit memory device, it asserts M32#. When the micro-
processor checks its BS16# input at the mid-point of the first data time, it is
sensed deasserted. When the bus control logic checks M16# and M32# at the
end of address time, M32# is sensed asserted. Since this is a write bus cycle,
both the microprocessor and the bus control logic then expect the data to be
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transferred over all four data paths. Since the microprocessor is communicating
with a 32-bit device, only one bus cycle is necessary.

The bus control logic asserts MWTC# and enables all four data bus transceiv-
ers, allowing the four data bytes to pass through onto the System Data (SD)
bus. When the 32-bit memory detects address 00000100h with all four byte en-
ables and the MWTCH# line asserted, it accepts the four data bytes and stores
them in the four locations within the target doubleword. The bus control logic
asserts CPU READY#. When the microprocessor samples CPU READY# assert-
ed at the end of the current data time, it ends the bus cycle, completing execu-
tion of the MOV instruction.

80386DX System Kernel without Dynamic Bus Siz-
ing
Introduction

Figure 11-3 illustrates the kernel logic surrounding an 80386DX microproces-
sor. In this implementation, the designer has not taken advantage of the
80386DX microprocessor's dynamic bus sizing capability (BS16# is deasserted
by a pull-up resistor to Vcc). The data bus steering logic is used to handle
communication with 8-, 16- and 32-bit devices.

The kernel of a DX-based system without dynamic bus sizing operates identi-
cally to a kernel with this feature, except when the microprocessor is communi-
cating with 16-bit devices. The examples for communication with 8- and 32-bit
devices described in the section entitled, “The 80386DX System Kernel with
dynamic bus sizing Implemented,” are also true for the DX-based system with-
out dynamic bus sizing.
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Figure 11-3. The 80386DX-Based Kernel without Dynamic Bus Sizing Implemented
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Reading from a 16-Bit Device
Two-Byte Read from a 16-Bit Device

In this example, the following instruction is addressing a 16-bit memory device.

MOV AX, [0102]

The microprocessor will read the contents of memory locations 00000102h and
00000103h and place the resulting word in the AX register. Address 00000100h
is placed on A[31:2] and BE2# and BE3# are asserted. In this way, the micro-
processor indicates that it is addressing locations 00000102h and 00000103h in
the doubleword that starts at location 00000100h. When the microprocessor is
addressing either of the last two locations in a doubleword, the bus control
logic sets SA1 to 1. The bus control logic sets SAO to a 0 because the asserted
level on BE2# indicates that the microprocessor is addressing an even address
in the addressed doubleword. Since BE3# is also asserted, the microprocessor is
also addressing the odd location immediately following the addressed even lo-
cation. As a result, the bus control logic asserts SBHE#.

Since the device is a 16-bit memory device, it asserts M16#. When the micro-
processor checks its BS16# input at the mid-point of the processor's first data
time, it is sensed deasserted (because of the pull-up to Vcc). When the bus con-
trol logic checks M16# at the end of address time, it is sensed asserted. Note
that the bus control logic does not sample IO16# because it has previously sam-
pled M/IO# and knows that a memory location is being accessed.

Sampling BS16# deasserted indicates to the microprocessor that it is communi-
cating with a 32-bit device, while the bus control logic recognizes that the target
is really a 16-bit memory device when it samples M16# asserted. In this read
bus cycle, the microprocessor expects the two requested bytes to come back
over the upper two data paths, while the bus control logic expects the data to
come back over the two lower data paths.

The 16-bit device detects address 00000102h on the address bus with SBHE#
and the MRDC# line asserted and returns the two requested bytes over the two
lower data paths. The bus control logic commands the data bus steering logic to
copy the two data bytes from the lower two to the upper two data paths. The
bus control logic then enables the two upper data bus transceivers, passing the
bytes through the two upper data bus transceivers to the microprocessor.
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The bus control logic then asserts the CPU READY# line. When the microproc-
essor samples CPU READY# asserted, it reads the two bytes from the two up-
per data paths and places them in the target register, AX. The byte from
location 00000102h is placed in AL and that from 00000103h in AH, completing
execution of the MOV instruction.

Four-Byte Read from a 16-Bit Device

In this example, the following instruction is addressing a 16-bit memory device.
MOV EAX, [0100]

The microprocessor will read the contents of memory locations 00000100h
through 00000103h and place the resulting doubleword in the EAX register.
Address 00000100h is placed on A[31:2] and all four byte enables are asserted.
In this way, the microprocessor indicates that it is addressing locations
00000100h through 00000103h in the doubleword that starts at location
00000100h. When the microprocessor is addressing either of the first two loca-
tions in a doubleword, the bus control logic sets SA1 to 0. The bus control logic
sets SAQ to a 0 because the asserted level on BEO# indicates that the microproc-
essor is addressing the first even address in the target doubleword. Since BE1#
is also asserted, the microprocessor is also addressing the odd location imme-
diately following the addressed even location. As a result, the bus control logic
asserts SBHE#.

Since the device is a 16-bit memory device, it asserts M16#. When the micro-
processor checks its BS16# input at the mid-point of the processor's first data
time, it is sensed deasserted (because of the pull-up to Vcc). When the bus con-
trol logic checks M16# at the end of ISA address time, it is sensed asserted.
Note that the bus control logic does not sample IO16# because it has previously
sampled M/IO# and knows that a memory location is being accessed.

Sampling BS16# asserted indicates to the microprocessor that it's communicat-
ing with a 32-bit device. The bus control logic, on the other hand, detects that it
is communicating with a 16-bit memory device when it samples M16# asserted.
Since this is a read bus cycle and the microprocessor thinks it's communicating
with a 32-bit device, the it expects all four data bytes to be returned to it simul-
taneously using all four data paths. The bus control logic expects the data to
come back over only the two lower data paths. This also means that the device
can only return two bytes at a time.
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Because the microprocessor has requested four bytes and will only run one bus
cycle because it thinks it's communicating with a 32-bit device. The bus control
logic must trick the 16-bit device into thinking two separate bus cycles have
been generated by the microprocessor.

The 16-bit device detects address 00000100h on the address bus with SBHE#
and the MRDC# line asserted and returns the first two of the requested bytes
over the two lower data paths. The bus control logic causes these two bytes to
be latched into the lower two data bus transceivers. Seeing that the upper two
byte enable lines are also asserted, the bus control logic sets SAl to 1, SA0 to 0,
and asserts SBHE#. It also deasserts and then reasserts the MRDC# line to
simulate a second bus cycle.

The 16-bit device now detects address 00000102h with SBHE# and MRDC# as-
serted and returns the contents of 00000102h and 00000103h on the lower two
data paths. The bus control logic then causes the data bus steering logic to copy
the two bytes to the upper two paths. It then enables the upper two data bus
transceivers to pass the upper two bytes to the microprocessor and simultane-
ously commands the lower two data bus transceivers to pass the two previ-
ously latched bytes to the processor on the lower two data paths.

The bus control logic then asserts CPU READY#. When the microprocessor
samples CPU READY# asserted at the end of the current data time, it reads the
four bytes from the bus and stores them in the EAX register. This completes the
bus cycle and completes the execution of the MOV instruction.

Writing to a 16-Bit Device
Two-Byte Write to a 16-Bit Device

In this example, the following instruction is addressing a 16-bit memory device.

MOV  [0102],AX

The microprocessor must write the contents of the AX register (2 bytes) to
memory locations 00000102h and 00000103h. Address 00000100h is placed on
A[31:2] and BE2# and BE3# are asserted. In this way, the microprocessor indi-
cates that it is addressing locations 00000102h and 00000103h in the double-
word starting at location 00000100h. When the microprocessor is addressing
either of the last two locations in a doubleword, the bus control logic sets SA1
to 1. The bus control logic sets SAQO to a 0 because the asserted level on BE2# in-
dicates that the microprocessor is addressing the second even address in the
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target doubleword. Since BE3# is also asserted, the microprocessor is also ad-
dressing the odd location immediately following the addressed even location.
As a result, the bus control logic asserts SBHE#.

The two bytes from the AX register are not only driven onto the two upper data
paths by the 80386DX microprocessor, but are also duplicated on the lower two
paths.

Since the device is a 16-bit memory device, it asserts M16#. When the micro-
processor checks it BS16# input at the mid-point of the processor's first data
time, it is sensed deasserted (because of the pull-up to Vcc). When the bus con-
trol logic checks M16# at the end of ISA address time, it is sensed asserted.
Note that the bus control logic does not sample IO16# because it has previously
sampled M/IO# and knows that a memory location is being accessed. Sam-
pling BS16# deasserted indicates to the microprocessor that it's communicating
with a 32-bit device, while the bus control logic detects that it's communicating
with a 16-bit memory device when sampling M16# asserted.

Sensing M16# asserted, the bus control logic determines that it is communicat-
ing with a 16-bit memory device and that the data must therefore be trans-
ferred to the device over the two lower data paths. Because the 80386DX
duplicates the data from the upper paths on the lower paths, the two lower
data bus transceivers are enabled, allowing the two bytes from the AX register
to be driven out onto SD[7:0] and SD[15:8]. The 16-bit device sees address
00000102h on the address bus with SBHE# asserted and the MWTC# line as-
serted and accepts the two bytes from the two lower data paths.

All of the information has now been written to the target device, so the bus con-
trol logic asserts the CPU READY# line. When the microprocessor samples
CPU READY# asserted, it ends the bus cycle, completing execution of the MOV
instruction.
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Four-Byte Write to a 16-Bit Device

In this example, the following instruction is addressing a 16-bit memory device.
MOV  [0100], EAX

The microprocessor must write the contents of the EAX register (4 bytes) to
memory locations 00000100h through 00000103h. Address 00000100h is placed
on A[31:2] and all four byte enable lines are asserted. In this way, the micro-
processor indicates that it is addressing locations 00000100h through 00000103h
in the doubleword starting at location 00000100h. When the microprocessor is
addressing either of the first two locations in a doubleword, the bus control
logic sets SA1 to 0. The bus control logic also sets SAO to a 0 because the assert-
ed level on BEO# indicates that the microprocessor is addressing the first even
address in the target doubleword. Since BE1# is also asserted, the microproces-
sor is also addressing the odd location immediately following the addressed
even location. As a result, the bus control logic asserts SBHE#. The four bytes
from EAX register are driven onto the four data paths by the 80386DX micro-
processor.

Since the device is a 16-bit memory device, it asserts M16#. When the micro-
processor checks its BS16# input at the mid-point of the processor's first data
time, it is sensed deasserted (because of the pull-up to Vcc). As a result, the mi-
croprocessor thinks that it's communicating with a 32-bit device and can trans-
fer the entire doubleword in one bus cycle. However, when the bus control
logic checks M16# at the end of address time it is sensed asserted. This indi-
cates that it is communicating with a 16-bit device. This means that the bus con-
trol logic must trick the 16-bit device into thinking two separate bus cycles
occur, while the microprocessor only performs one.

Sensing M16# asserted, the bus control logic determines that it is communicat-
ing with a 16-bit memory device and that the data must therefore be trans-
ferred to the device over the two lower data paths. All four data bus
transceivers are enabled, allowing the four bytes from the EAX register to be
driven out onto the System Data (S5D) bus. The 16-bit device sees address
00000100h on the address bus with SBHE# asserted and the MWTC# line as-
serted and accepts the two bytes from the two lower data paths.

The bus control logic now deasserts and then reasserts the MWTCH# line to trick
the 16-bit device into thinking another bus cycle has begun. In addition, the bus
control logic alters the address by setting SA1 to 1, SAO to 0 and by asserting
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SBHE#. This is done because the microprocessor must also write the upper two
bytes into the doubleword and the 16-bit device must see the address for these
two locations. The bus control logic disables the lower two data bus transceiv-
ers and commands the data bus steering logic to copy the upper two bytes to
the two lower paths. The 16-bit device then accepts the two bytes and writes
them into the addressed locations, 00000102h and 00000103h.

The bus control logic asserts CPU READY# to the microprocessor. When the
microprocessor samples CPU READY# asserted at the end of the current data
time, its asserted state allows the microprocessor to end the bus cycle. The four
bytes from the EAX register have been written to the target 16-bit device, com-
pleting execution of the MOV instruction.
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Chapter 12

The Previous Chapter

The chapters prior to this one provided a detailed description of the 80386DX
and SX microprocessors, as well as the basic structure and operation of the ker-
nel logic associated with these two variations of the 80386 microprocessor.

This Chapter

This chapter provides a detailed description of the 80386 bus cycle. Timing
diagrams are used to illustrate the sequence of events during the 80386 micro-
processor's communication with external devices.

The Next Chapter

Part 2, “Memory Subsystems,” follows immediately after this chapter, provid-
ing a detailed description of RAM memory, cache architecture and ROM mem-
ory. Since the processor spends more of its time accessing memory then any
other subsystem, it is imperative that the linkage between memory and the
processor be optimized to provide the fastest possible throughput. The chapter
on cache provides a detailed look at the most common method of achieving this
optimization.

The Bus Cycle Types

The 80386 microprocessor is capable of running precisely the same seven types
of bus cycles that the 80286 microprocessor can run:

Memory instruction read
Memory data read
Memory data write

I/0O data read

1/0 data write

Interrupt Acknowledge
Halt or Shutdown
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Address Pipelining Overview

The subject of address pipelining was discussed in the chapter entitled “The
80386DX and SX Microprocessors.” Unlike the 80286 microprocessor, however,
the 80386 microprocessor can turn address pipelining on and off on a bus-
cycle-by-bus-cycle basis. This is accomplished by asserting or deasserting the
processor's NA#, next address, input. During the current bus cycle, the 80386
microprocessor samples NA# to determine whether or not to output the ad-
dress for the upcoming bus cycle early. If NA# is sampled deasserted, the proc-
essor will not output the address and bus cycle definition for the upcoming bus
cycle until the bus cycle has actually begun. If, on the other hand, NA# is sam-
pled asserted during the current bus cycle, the processor will place the address
and bus cycle definition for the upcoming bus cycle on the bus during the cur-
rent bus cycle. The following discussion of the read and write bus cycles as-
sumes that pipelining is disabled — the NA# input is sampled deasserted
during each bus cycle. The section entitled, “Address Pipelining Example,”
provides a detailed discussion of bus cycle timing when the 80386 microproces-
sor is using address pipelining.

Memory or I/O Read Bus Cycle

Figure 12-1 illustrates the sequence of events during a memory or an I/O read
bus cycle. The following numbered steps can be cross-referenced to the num-
bered referenced points in the timing diagram. The 80386's address time is re-
ferred to as T1, while data time is referred to as T2. The small, dark rectangles
identify the points at which a signal is sampled.
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Figure 12-1. Non-Pipelined Read Bus Cycle
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1. Because the processor's bus unit is in the idle state prior to this bus cycle,
the address for the next bus cycle is not output early. Intel documentation
shows that the 80386’s internal clock (PCLK) is different than the 80286’s
PCLK. The 80386’s PCLK is inverted when compared to the 80286’s.

2. The processor places the memory or I/O address on A[31:2] and asserts the
appropriate byte enable lines at the start of T1. The microprocessor also in-
dicates the bus cycle type on its bus cycle definition lines and asserts ADS#
to indicate the start of the bus cycle and the presence of a valid address and
bus cycle definition.

3. Atthe end of T1, the microprocessor deasserts the ADS# signal.

4. At the midpoint of T2, the microprocessor samples its BS16# and NA# in-
puts. In this example, NA# is sampled deasserted, causing the microproc-
essor to maintain the address for the current bus cycle on the address bus
until the bus cycle ends. In this example, BS16# is sampled deasserted, in-
dicating that the currently addressed device is a 32-bit device.

5. The currently addressed device begins to drive the requested data onto the
data bus. The exact moment this occurs is dependent upon the addressed
device's access time.

6. At the end of T2, the microprocessor samples its READY# input to deter-
mine if the currently addressed device is ready to end the bus cycle. In this
example, READY# is sampled asserted. The microprocessor reads the re-
quested data from the data bus and ends the bus cycle. The microprocessor
immediately initiates the next bus cycle, placing the new address and bus
cycle definition on the buses and asserting ADS# again.

If READY# had been sampled deasserted, the microprocessor inserts a wait
state into the bus cycle to provide additional time for the addressed device
to respond to the request for data. The wait state consists of an additional
T2 time.

Memory or I/O Write Bus Cycle

Figure 12-2 illustrates the sequence of events during a memory or an /O write
bus cycle. The following numbered steps can be cross-referenced to the num-
bered referenced points in the timing diagram. The 80386's address time is re-
ferred to as T1, while data time is referred to as T2. The small, dark rectangles
identify the points at which a signal is sampled.
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Figure 12-2. Non-Pipelined Write Bus Cycle
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Because the processor's bus unit is in the idle state prior to this bus cycle,
the address for the next bus cycle is not output early. Intel documentation
shows that the 80386’s internal clock (PCLK) is different than the 80286’s
PCLK. The 80386’s PCLK is inverted when compared to the 80286’s.

The processor places the memory or I/O address on A[31:2] and asserts the
appropriate byte enable lines at the start of T1. The microprocessor also in-
dicates the bus cycle type on its bus cycle definition lines and asserts ADS#
to indicate the start of the bus cycle and the presence of a valid address and
bus cycle definition.

The microprocessor begins to drive the data to be written onto the data bus
at the midpoint of T1.

At the end of T1, the microprocessor deasserts the ADS# signal.

At the midpoint of T2, the microprocessor samples its BS16# and NA# in-
puts. In this example, NA# is sampled deasserted. This causes the micro-
processor to maintain the address for the current bus cycle on the address
bus until the bus cycle ends. In this example, BS16# is sampled deasserted,
indicating that the currently addressed device is a 32-bit device.

At the end of T2, the microprocessor samples its READY# input to deter-
mine if the currently addressed device is ready to end the bus cycle. In this
example, READY# is sampled asserted, indicating that the currently ad-
dressed device has accepted the data being written by the microprocessor.
The microprocessor immediately initiates the next bus cycle, placing the
new address and bus cycle definition on the buses and asserting ADS#
again. If READY# had been sampled deasserted, the microprocessor inserts
a wait state into the bus cycle to provide additional time for the addressed
device to respond to the request for data. The wait state consists of an addi-
tional T2 time.

The microprocessor continues to drive the write data onto the data bus un-
til the midpoint of T1 in the next bus cycle, thus ensuring that it satisfies the
hold time for the target device.

Address Pipelining Example

Figure 12-3 illustrates the transition from non-pipelined to pipelined operation.
Table 12-1 defines the states used in the example. The small, dark rectangles
identify the points at which a signal is sampled.

1.

The microprocessor's bus unit is idle because no internal bus cycle requests
are pending. The prefetch queue is full and the currently executing instruc-
tion doesn't require a bus cycle. Intel documentation shows that the 80386’s
internal clock (PCLK) is different than the 80286’s PCLK. The 80386’s PCLK
is inverted when compared to the 80286's.
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2. At the start of T1, the microprocessor initiates a bus cycle to fulfill an inter-
nal bus cycle request from the prefetcher or the execution unit. The micro-
processor drives the address and bus cycle definition onto the buses and
asserts ADS#. W/R# is set high, indicating that this is a write bus cycle.
Address decoders begin to see the new address shortly after the start of T1.
Address pipelining isn't in effect because the bus unit is just coming out of
the idle state. The address can't be placed on the address bus during the
prior bus cycle because there isn't one.

3. At the midpoint of T1, the microprocessor begins to drive the write data on
the data bus.

4. ADGS# is deasserted at the end of T1. Address decoders may latch the ad-
dress or their chip select on the rising edge of ADS#.

5. At the midpoint of T2, the microprocessor samples its B516# and NA# in-
puts. At this point, the deasserted state of BS16# indicates that the micro-
processor is communicating with a 32-bit device. The deasserted state on
NA# indicates that the currently addressed device does not support ad-
dress pipelining. As a result, the microprocessor will not place the address
and bus cycle definition for the next bus cycle on the buses until the end of
the current bus cycle.

6. The microprocessor samples READY# asserted at the end of T2, indicating
that the currently addressed device has accepted the write data and is
ready to end the bus cycle. In response, the microprocessor ends the bus
cycle, but continues to drive the data onto the data bus until the midpoint
of T1 in the next bus cycle to ensure that the device successfully latches the
data. The microprocessor initiates the next bus cycle at the start of T1. This
bus cycle is a read, as indicated by the low on W/R#.

7. At the midpoint of T2, the microprocessor samples BS16# and NA#. BS16#
is again deasserted, indicating that the currently addressed device is a 32-
bit device. NA# is asserted, however, indicating that the currently ad-
dressed device supports address pipelining. The microprocessor must
therefore output the address and bus cycle definition for the upcoming bus
cycle early (during this bus cycle).

If READY# is sampled asserted at the end of T2, however, NA# is ignored
because the asserted READY# causes the bus cycle to terminate.

8. READY# is sampled deasserted, causing the microprocessor to insert a wait
state (T2p) in the bus cycle.

9. At the leading edge of T2p, the microprocessor places the address and bus
cycle definition for the next bus cycle on the buses and asserts ADS#. W/R#
is set high, indicating that the next bus cycle is a write. The pipelining of
the address and bus cycle type allows the device to be addressed in the
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10.

11.

12.

13.

14.
15.

16.

17.

18.

next bus cycle to begin its access early so it will be ready to end the bus cy-
cle earlier.

At the end of T2p, the microprocessor samples READY# asserted and reads
the data from the data bus, ending the current bus cycle. The microproces-
sor deasserts ADS# and the microprocessor's bus unit enters the T1p state.
This is the first PCLK cycle of a pipelined bus cycle.

ADSH# is only asserted for one PCLK cycle when the microprocessor out-
puts a new address and bus cycle type onto the buses. Since the address
and bus cycle type for a pipelined bus cycle are output during T2p of the
previous bus cycle, ADS# isn't asserted during T1p.

At the midpoint of T1p, the microprocessor begins to drive the write data
onto the data bus. At this point, the microprocessor samples NA# asserted,
indicating that the currently addressed device supports address pipelining.
BS16# is sampled deasserted, indicating that the device addressed in the
current bus cycle is a 32-bit device.

At the leading edge of T2p, the microprocessor outputs the address and
bus cycle type for the upcoming bus cycle and asserts ADS#. W/R# is set
low, indicating that the next bus cycle is a read.

At the end of T2p, the microprocessor samples READY# asserted, indicat-
ing that the device addressed in the current bus cycle is ready to end the
write transfer. The microprocessor ends the bus cycle, but continues to
drive the write data onto the data bus to ensure the device latches the data
correctly. The microprocessor deasserts ADS#.

The next bus cycle begins with T1p.

At the midpoint of T1p, the microprocessor samples NA# asserted, indicat-
ing that the currently addressed device supports address pipelining. In this
case, however, the microprocessor's bus unit doesn't have another bus cycle
to run, so the next address and bus cycle type are not pipelined out early.
The microprocessor samples BS16# deasserted at the midpoint of T1p, indi-
cating that the device addressed in the current bus cycle is a 32-bit device.
The microprocessor's bus unit enters the T2i state. This is data time and the
bus unit is preparing to go back to the idle state after this bus cycle com-
pletes. At the start of T2i, the microprocessor ceases to drive the address
and bus cycle type.

At the end of T2i, the microprocessor samples READY# asserted, indicating
that the device addressed in the current bus cycle is ready to end the bus
cycle. The microprocessor reads the data from the data bus and ends the
bus cycle.

The microprocessor's bus unit enters the idle state until the prefetcher or
the execution unit request another bus cycle.
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Table 12-1. 80386 Bus Unit States
State Description

Ti The idle state. The bus unit remains in the idle state when it has no bus cy-
cles to run (the prefetch queue is full and the currently executing instruction
does not require a bus cycle).

T1 Address time. The microprocessor places the address and bus cycle type on
the buses and asserts ADSH#. If pipelining is in effect, the address is output
prior to T1. If this is a write bus cycle, the microprocessor also begins to
drive the data onto the data bus at the midpoint of T1.

T2 Data time. Time period allocated to allow data to be transferred between
the microprocessor and the target device. NA# is sample at the T2 midpoint
to determine if the processor should initiate early address output (address
pipelining). BS16# is also sampled at the T2 midpoint to determine if the
microprocessor is communicating with a 16- or 32-bit device. READY# is
sampled at the end of T2 to determine if the currently addressed device is
ready to end the bus cycle.

Tlp Address time in a pipelined bus cycle. NA# is sampled at the T1p mid-
point to determine if the next address and bus cycle definition should be
output early (at the start of T2p). BS16# is also sampled at the midpoint of
T1p to determine if the currently addressed device is a 16- or 32-bit device.
If this is a write bus cycle, the microprocessor begins to drive the data onto
the data bus at the midpoint of T1p.

T2p Data time in a pipelined bus cycle. The address and bus cycle definition
for the upcoming bus cycle are placed on the buses at the start of T2p.
ADGSH# is asserted for the duration of T2p. READY# is sampled at the end of
T2p to determine if the currently addressed device is ready to end the bus
cycle.

Interrupt Acknowledge Bus Cycle

The interrupt acknowledge bus cycle is discussed in the chapter entitled “The
Interrupt Subsystem.”

Halt or Shutdown Bus Cycle

The processor runs the halt or shutdown bus cycle under either of the following
circumstances:
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e The HLT (HALT) instruction causes the microprocessor to cease fetching
and executing instructions.
¢ The microprocessor detects a fault while running the double-fault handler.

When the microprocessor executes the HLT instruction, it runs the halt or
shutdown bus cycle to indicate its intention to halt to external logic. In an ISA
machine, this has no effect on external logic.

When the 80386 microprocessor detects an exception while attempting to exe-
cute the handler for a prior exception, the two exceptions are generally handled
serially. Certain combinations of exceptions (including page faults and what In-
tel refers to as “contributory exceptions”) cannot be handled serially, however,
so the 80386 microprocessor invokes a double-fault exception instead. If the
microprocessor detects an exception while attempting to service the double-
fault, it goes into a shutdown condition. It indicates this to external logic by
running the halt or shutdown bus cycle. In an ISA machine, the shutdown de-
tect logic outside the microprocessor detects the shutdown and toggles the mi-
croprocessor's RESET line, causing the system to reboot.

The contributory exceptions are mostly caused by protection violations in pro-
tected mode. For example, in protected mode, if an application attempts to ac-
cess data that is outside its data segment, the microprocessor will start running
the general protection fault exception handler. If, say, a stack overflow were to
occur while the microprocessor ran the general protection fault exception han-
dler, the microprocessor would not be able to handle the two faults serially.
The microprocessor would invoke the double-fault exception instead. If the mi-
croprocessor detected another exception while attempting to service the dou-
ble-fault, it would go into a shutdown condition. This is sometimes referred to
as a triple fault.

The halt or shutdown bus cycle is indicated by ADS# being asserted and:

e M/IO# and W/R# driven high.
o D/C#driven low.

In addition, the microprocessor asserts BEO# to indicate a shutdown, or asserts
BE2# to indicate a halt. The address bus outputs are driven low.

During a halt or shutdown, the 80386 may service PEREQ (processor extension
request) or HOLD requests. For further information on PEREQ and HOLD, re-
fer to the chapters entitled “Numeric Coprocessor” and “Direct Memory Ac-
cess (DMA)” respectively.
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Fither NMI (non-maskable interrupt request) or RESET will force the 80386 out
of either a halt or a shutdown. If interrupts are enabled, an INTR (maskable in-
terrupt request) will also force the microprocessor out of a halt (but not out of
shutdown). For information on interrupts, refer to the chapter entitled “The In-
terrupt Subsystem.”
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Part 2

Memory
Subsystems

Part 2 covers the major memory subsystems that can be found in ISA systems.
The memory chapters cover specific devices along with implementations of
these devices found within the ISA environment.

Part 2 includes the following chapters:

¢ Chapter 13: RAM Memory: Theory of Operation
e Chapter 14: Cache Memory Concepts
e Chapter 15: ROM Memory

Two of the memory subsystems, “RAM memory” often referred to as system
memory, and the “system ROM” are found in all ISA systems. The other sub-
system covered, “cache memory,” is typically found in 80386 or higher systems
running at 20MHz and above.
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Chapter 13

The Previous Chapter

Part 1 of the book provided a detailed description of microprocessor communi-
cations and the kernel support logic.

This Chapter

Many memory designs can be found in ISA systems. These designs are based
on two broad classifications of memory devices: dynamic RAM and static
RAM. The primary emphasis of any memory design revolves around perform-
ance and cost, but other factors such as physical space available, power con-
sumption, and external support circuitry play important roles in determining
the design of a RAM subsystem. This chapter details the most commonly found
memory types and memory implementations.

The Next Chapter

Chapter 14 explains the concept of cache memory.

Dynamic RAM (DRAM) Memory

Dynamic RAM (DRAM) memory is the most commonly used RAM device in
PCs due to its lower cost when compared to static RAM, or SRAM. Though its
cost is less than SRAM, DRAM chips are much slower. Many innovations have
occurred in DRAM designs to increase speed. As a result, much of this chapter
focuses on the various types of DRAM and associated subsystem design.

A DRAM memory chip contains many storage locations. Depending on the
manufacturer and the chip type, a DRAM memory chip may contain 64K,
256K, 1M, 4M, or more storage locations. Internally, the storage locations are
laid out in rows and columns.

As it is with any other device in the system, DRAM is accessed by the current
bus master. The current bus master is the device that currently owns the ad-
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dress, data and control buses. It is the device that runs the bus cycle that is cur-
rently under way and it broadcasts the address. It may be the system micro-
processor, one of the DMA controllers or a 16-bit bus master plugged into the
ISA bus. In order to identify the specific location that the current bus master
wants to communicate with, the DRAM chip must receive the address in two
steps:

e the row address
e the column address

DRAM must always be addressed in that order: row, then column. The inter-
section of the row and column defines the exact location the current bus master
wants to communicate with. The state of the DRAM's read /write pin, high or
low, defines the type of memory operation. The data bus is connected to the
DRAM chip so that the data can be transferred from the DRAM chip to the cur-
rent bus master during a read or from the current bus master to the DRAM
chip during a write.

DRAM Addressing Sequence

The following paragraphs describe the exact sequence of events that must oc-
cur when addressing a DRAM memory location. Refer to figure 13-1.

1. First, the row address must be routed to the DRAM's address pins on the
memory address bus.

2. The RASH# (row address strobe) line must then be asserted by the DRAM
addressing logic. This causes the row address present on the DRAM's ad-
dress inputs to be latched into the row latch inside the DRAM. The
DRAM's row address decoder begins to decode the latched row address,
selecting one row line to be activated.

3. The DRAM addressing logic then delays a fixed amount of time before giv-
ing the column address to the DRAM chip. This is called the RAS/CAS de-
lay and is described later in this chapter.

4. After the RAS/CAS delay has elapsed, the DRAM addressing logic routes
the column portion of the address to the DRAM's address inputs on the
memory address bus and asserts CAS# (column address strobe). This
causes the column address to be latched into the column address latch in-
side the DRAM chip.

5. The DRAM chip now has all the information it needs to identity the loca-
tion that the current bus master is attempting to communicate with. The
DRAM's internal row address decoder has already selected the specified
row line. The DRAM's internal column address decoder now selects and
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activates the specified column line. The point at which the row and the col-
umn lines intersect identifies the storage location that the current bus mas-
ter is attempting to communicate with.

6. The state of the DRAM's read/write input pin indicates whether the cur-
rent bus master is attempting to read the information stored in the speci-
fied storage location or write information into that location.

lemo Addre =
CASH# o Column Laich
Data
Column Address Decoder P
RAS#
. How
LR?“L Address
aich Decoder

Figure 13-1. Block Diagram of a DRAM Memory Chip
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If a read operation is in progress, the contents of the indicated location are
placed on the data bus by the DRAM so they can be read by the current bus
master. If a write operation is in progress, the information that the current bus
master is presenting on the data bus is written into the specified storage loca-
tion, completing the bus cycle.

Row and Column Address Source

The fact that the DRAM expects to see the address presented in two steps, row
and column, presents a special problem. The DRAM expects the address in a
form other than that output by the current bus master. This necessitates the in-
clusion of some type of logic to translate the address being output by the cur-
rent bus master into a row and column address. This address translation logic
is commonly referred to as the DRAM addressing logic.

Bus masters always output 24- (the 80286 and 803865X microprocessors) or 32-
bit (the 80386DX, 80486 and Pentium microprocessors) addresses onto the ad-
dress Bus. From the DRAM addressing logic's perspective, the address is
treated as three packets of information. Refer to figure 13-2.

¢ The upper-most bits on the address bus are used by the DRAM address de-
coder to determine if the address currently on the bus is within the address
range assigned to the DRAM.
¢ The lower portion of the address is divided into two packets of equal size:
e The row address
e The column address
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DRAM Addressing Logic

As stated earlier, the steps involved in addressing DRAM must occur in an ex-
act sequence and at specified intervals. A special timer device is included in the
DRAM addressing logic, sequencing the actions of the DRAM addressing logic
at the proper intervals. This timer is usually implemented using a time delay
device.

The time delay device has one input called a trigger and a series of outputs.
Once triggered by an asserted level on its trigger input, the time delay device
asserts each of its outputs at precise intervals. As an example, the time delay
device shown in figure 13-3 has a ten nanosecond (10ns) resolution. 10ns after it
is triggered, its first output is asserted; 10ns later the second output is asserted,
etc. By tapping off selected outputs of the time delay device, the designer can
choose the exact moment in time (relative to the trigger point) for a specific
event to occur.
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Figure 13-3. The Time Delay Device
The major components of the DRAM addressing logic are:

¢ the DRAM address decoder

e the time delay

¢ the DRAM addressing multiplexer, or MUX
e the RAS/CAS generation logic

Refer to figure 13-4. The DRAM address multiplexer (MUX) has two sets of in-
puts and one set of outputs. It has only one control line, called a select line, that
controls its function, and this line can be set either high or low. A low selects
the “A” set of inputs to be gated through to the MUX's outputs. When the se-
lect line is high, the “B” set of inputs is selected and gated through to the
MUX's outputs. In other words, a MUX is nothing more than a switch, in this
case a two position switch, that can select one of two groups of input signals to
gate through to its output lines.

The upper-most bits on the address bus are connected to the DRAM address
decoder so it can determine if the address currently on the bus falls within
those assigned to this DRAM.
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Figure 13-4. Block Diagram of DRAM Addressing Logic

The lower bits on the address bus are connected to the two sets of inputs on the
DRAM address multiplexer. One half of these bits are connected to the MUX's
“A” set of inputs, and the other half to its “B” set of inputs. Initially, the select
line on the MUX is set to zero, selecting the “A” set of inputs to be gated
through to the MUX's outputs. The outputs of the MUX are connected to the
memory address bus, which is attached to the address inputs of the DRAM.
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Detailed Description of DRAM Addressing Sequence

The following paragraphs describe the sequence of events during the address-
ing of a DRAM memory location. Refer to the block diagram in figure 13-4 and
the timing diagram illustrated in figure 13-5.

1.

DRAM address decode. At the beginning of the bus cycle, the current bus
master places the address on the address bus, and the bus cycle definition
on the bus cycle definition lines. The DRAM address decoder determines
that it is a memory address by the high on the M/IO# line, and decodes the
upper-most bits on the address bus to determine if the address is within the
range of addresses assigned to the DRAM. If it is, the DRAM address de-
coder's chip-select output is asserted, providing a trigger to the time delay
device.

The row address. When initially triggered, the time delay outputs are all
deasserted, causing the MUX's select input to be set low. This selects the
MUX's “A” set of inputs, address bits A[19:10], to be gated onto the mem-
ory address bus. This portion of the address provides the row address to
the DRAM memory.

Row address strobe (RAS#). In the example DRAM addressing logic (fig-
ure 13-4), 10ns is allowed to permit the row address to settle on the mem-
ory address bus prior to latching it into the DRAM chips. 10ns after the
time delay was triggered by the chip-select, the first output of the time de-
lay is asserted (high), causing RAS# (row address strobe) to be asserted.
The high-to-low transition on the RAS# line causes the DRAM's internal
row address latch to latch the row address presented to it on the memory
address bus.

RAS/CAS delay. For correct operation, the designer must delay a DRAM-
specific amount of time prior to presenting the column address to the
DRAM chips. If the column address is presented too soon, the DRAM chips
will not function correctly. This delay between the presentation of the row
address and the presentation of the column address is known as the
RAS/CAS delay. The exact duration of the delay is specific to the type of
DRAM chips being used.

The column address. In the example DRAM addressing logic, 30 nanosec-
onds after the trigger, the time delay's second output is asserted, setting the
MUX's select line to a one. This selects the MUX's “B” set of inputs, A[9:0],
to be gated onto the memory address bus. This portion of the address pro-
vides the column address to the DRAM memory.

Column address strobe (CAS#). In the example logic, 10ns is allowed to
pass to allow the column address to settle on the memory address bus prior
to latching it into the DRAM chip. 10ns later, the time delay's third output
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is asserted, causing CAS# (column address strobe) to be asserted (low). The
high-to-low transition on CAS# causes the DRAM chip's internal column
address latch to latch the column address being presented to it on the
memory address bus.

7. Read or write? Internally, the DRAM chip has now latched the row and
column addresses and activates one row and one column line. The point at
which they intersect defines the location the current bus master is attempt-
ing to access. The DRAM addressing logic uses the SO# and S1# (80286-
specific lines; W/R# if an 80386, 80486 or Pentium processor-based system)
bus cycle definition lines (or signals derived from them) to determine if a
read or write operation is in progress. The read/write control input of the
DRAM chip is set accordingly.

8. The data transfer. Assuming a read operation is in progress, the contents of
the addressed DRAM storage location are placed on the data bus so they
may be read by the current bus master. If a write operation, the data sent to
the DRAM by the current bus master is written into the addressed storage
location.
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Figure 13-5. DRAM Addressing Timing Diagram
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How Data is Stored in DRAM

A typical DRAM location can only store one bit of information, a one or a zero.
This one-bit storage location is referred to as a bit cell and consists of a capaci-
tor and a transistor. As an example, an electrical charge is placed on the capaci-
tor to store a one, while the capacitor is discharged to store a zero in the
location.

The most important operational characteristic of a capacitor is its tendency to
lose a charge, or drain, over a period of time. The discharge time is related
partly to the size of the capacitor. The capacitors in DRAM cells are quite small.
They have a capacity of around 100 femtofarads, or 10™F. When a bit is stored
in a DRAM bit cell by placing a charge on its capacitor, therefore, the capacitor
discharges in a relatively short period of time and loses the bit stored in it. This
would appear to be a highly inefficient form of storage.

DRAM Refresh

To ensure that information stored in DRAM memory isn't lost, the bit cells con-
taining charges must be periodically recharged to a good level. The process of
rejuvenating DRAM locations with information stored in them is known as “re-
freshing” the DRAM. DRAM memory is called “dynamic” because it must be
refreshed on a dynamic, ongoing basis or it will lose the information stored in
it.

Storage locations within a row in a typical DRAM chip are refreshed by activa-
tion of the row line. When a row line is activated with the DRAM's read /write
pin in the read state, every bit cell (every storage location) that contains a
charge along the row is automatically recharged up to a good level. In other
words, it is refreshed.

Since a row line is activated whenever any location along the row is addressed,
one way to refresh DRAM memory would be to create a program that reads
from one DRAM location within each row on an on-going basis. This would
cause the activation of every row line within every DRAM chip and therefore
refresh every location. This method for refreshing DRAM isn't feasible because
the microprocessor would be tied up refreshing DRAM memory all of the time
and would not have any time left over to do any useful work.

Refresh Logic and RAS-only Refresh
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DRAM refresh is actually handled by logic separate from the microprocessor
known as the refresh logic. In ISA machines, the refresh logic consists mainly of
a refresh row counter and timer #1, the refresh timer. Refer to figure 13-6.
When the system is first powered up, the system's RESET signal is asserted un-
til the power has come up and stabilized. The asserted level on reset causes the
refresh row counter to be preset to a count of zero (row zero). Timer #1, the re-
fresh timer, is designed to assert REFRESH TRIGGER once every 15 microsec-
onds.

When the power has stabilized and RESET becomes deasserted, the system be-
gins to run, meaning the microprocessor begins to fetch and execute instruc-
tions. Fifteen microseconds after the system begins to run, the refresh timer
asserts the REFRESH TRIGGER signal.

In order to refresh a row of DRAM memory, the refresh logic must send a row
address to the DRAM and set the DRAM's read /write control line to the read
state. To do this, the refresh logic must run a special memory read bus cycle. In
other words, the refresh logic must become bus master before running the re-
fresh bus cycle. The numbered list that follows figure 13 - 6 describes the se-
quence of events involved in DRAM refresh.
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1. The refresh timer sends a REFRESH TRIGGER to the refresh logic on the
system board.
2. The refresh logic sends a Hold Request (HOLD) to the microprocessor to
request the buses and awaits HLDA from the CPU.
3. The refresh logic asserts the ISA bus cycle definition line MRDC# to indi-
cate that a memory read bus cycle is in progress.
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4.

10.

The refresh row counter outputs its current row number (initially, row
zero) onto the lower portion of the address bus. At the same time, the row
counter is internally incremented by one (to row one).

The ISA REFRESH# signal informs every memory card in the system that a
refresh bus cycle is in progress. Consequently, on every memory card, the
row address from the refresh row counter is applied to the “A” set of in-
puts of the card's DRAM Address MUX. The row address, currently row
zero, is gated through every memory card's MUX onto its memory address
bus. The card's DRAM addressing logic then asserts RAS# to latch the row
address into every DRAM chip in the system simultaneously.

Since the ISA bus is indicating a memory read bus cycle is in progress, the
read /write pin on every DRAM chip will be set to the read state.

This set of actions causes the exact same row line (initially, row zero)
within every DRAM chip in the system to be activated at the same time,
thereby refreshing every location along that row in every DRAM chip.
After completion of the refresh bus cycle, the refresh logic returns bus
ownership to the system board microprocessor by deasserting HOLD.

The microprocessor reconnects itself to the buses and deasserts HLDA to
indicate that it is bus master again. Normal operation (program execution)
then resumes and continues until another fifteen microseconds has elapsed.
At that time, the refresh timer asserts REFRESH TRIGGER again to request
another refresh bus cycle.

When the refresh logic has once again been granted bus mastership, it
again outputs the contents of the refresh row counter (incremented by one
during the previous refresh bus cycle) onto the portion of the address bus
that supplies the row address to the DRAMs.

In this way, the next sequential row in every DRAM chip in the system is re-
freshed. This action continues once every fifteen microseconds as long as the
system is powered on. When the last row within the DRAM chips has been re-
freshed, the row counter rolls over to all zeros again and the process starts over
at the first row in the DRAM chips.

The actions described earlier in step 5 are for what’s called RAS-only refresh.
There are three other ways that the DRAM addressing logic can handle a re-
fresh bus cycle: CAS-before-RAS refresh, hidden refresh and self refresh.
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CAS-before-RAS Refresh

A DRAM chip capable of doing CAS-before-RAS refresh (CBR refresh) has an
internal refresh row counter, so it does not need to receive a row address from
the refresh logic. To refresh a CBR refreshed DRAM, the DRAM controller as-
serts CASH# first, then RAS#, without regard to the row or column address on
the memory address bus. The DRAM chip responds by refreshing the row
pointed to by its internal refresh row counter and then incrementing that row
counter.

Hidden Refresh

Hidden refresh is just a variation of CBR refresh. Normally, an access to a
DRAM chip is terminated by deasserting both RAS# and CAS#. When CASH# is
deasserted at the end of a read cycle, the DRAM chip stops driving the data out
on its data pin. However, if CAS# is left asserted when RASH# is deasserted at
the end of the access, then a DRAM chip capable of hidden refresh will get
ready to refresh the row pointed to by its refresh row counter. The DRAM chip
will actually do the refresh if RAS# becomes asserted again while CAS# is still
asserted. Simultaneously, the DRAM chip will continue to drive the data from
the previously accessed bit cell onto the data bus, as long as CAS# remains as-
serted. The DRAM is thus providing data and doing refresh simultaneously,
thus the refresh appears to be hidden.

Self-Refresh

Fach of the preceding types of refresh requires intervention by the system
board to tell the DRAM chip to do the refresh. Self-refreshing DRAMs are dif-
ferent. They have the ability to do refreshes based on their internal refresh row
counters and based on their own internal refresh timer, without waiting for a
signal from the system board. Self-refreshing DRAMs are used in lieu of static
RAM for low power, battery-backed storage.

To understand self-refreshing DRAM, it may help to understand what the al-
ternatives are for battery-backed storage. Often, SRAM or a variation of ROM
called non-volatile RAM (NVRAM) are used to store critical data immediately
during a power failure. SRAM is well suited to this task due to its infinitesi-
mally small current drain when it is not being accessed. The contents of the
SRAM can be maintained by a small battery. NVRAM requires no power at all
to maintain its contents since it is actually SRAM and EEPROM put together
(EEPROM is described in the chapter entitled “ROM Memory”). Neither the
SRAM nor the NVRAM need to be refreshed, so no logic has to be running on
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the system board to maintain the SRAM or NVRAM contents while the main
power supply is off.

Standard DRAM requires refresh logic to be running, and it is thus not as well
suited for battery-backed applications as SRAM due to this complexity and due
to the power drain caused by the standard refresh logic. Self-refreshing DRAM
eliminates this complexity and is thus competitive with SRAM for battery-
backed use.

Self-refreshing DRAM initiates its refresh operation when it sees CAS# asserted
followed by RASH#, just as with a CBR-refresh DRAM. If CAS# and RAS# both
remain asserted for a long time (like a dog’s life, a long time is relative), typi-
cally 100 microseconds (forever in computer time), then the DRAM’s internal
timer takes over and begins self-refresh. The self-refreshing DRAM continues
to refresh itself until it sees RAS# and CAS# deasserted.

As noted above, RAS-only refresh, CBR-refresh and hidden refresh require a
REFRESH TRIGGER from the system board. In an ISA system, timer #1 pro-
vides that trigger. The refresh interval of timer #1 is programmable, allowing a
programmer to change the refresh interval to something other than fifteen mi-
croseconds. This practice is dangerous, however, because alteration of the re-
fresh interval raises the possibility that some DRAM memory locations will
have entirely discharged by the time the refresh logic gets around to refreshing
their respective rows again. In other words, data in DRAM memory may be
lost.

It should be noted that a refresh bus cycle may also be triggered by an ISA bus
master. In the event that an ISA bus master has control of the buses for a period
longer than 15 microseconds, it can trigger a refresh cycle by asserting the RE-
FRESH# signal. When the refresh controller detects that the REFRESH# signal
is asserted, it will run a refresh cycle. During the refresh cycle the ISA bus mas-
ter will not use the buses. See the chapter entitled “ISA Bus Masters” for more
details.
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Destructive Read: Pre-Charge Delay and Cycle Time

When a DRAM location is read, the DRAM must have some way of determin-
ing if the location contains a charge (if it contains a one or a zero). The only way
it can ascertain the presence of a charge is to discharge the bit cell. In other
words, DRAM chips use a destructive read process. It must discharge the ca-
pacitor used to store a bit in order to determine if there was in fact a bit stored
in that location. A storage device that can only be read one time would be use-
less.

Every DRAM chip contains logic that recharges a DRAM location back to a
good level after the destructive read takes place. The location is only recharged
if it is determined that it originally held a charge. It takes an appreciable
amount of time to recharge a DRAM location back to a good level again. This
period of time is known as the pre-charge delay.

Refer to figure 13-7. This timing diagram illustrates the pre-charge delay im-
mediately following the access time. If a bus master attempts to read data from
any memory location during the pre-charge period, the data received may very
well be garbage (because the DRAM logic is tied up recharging the row last
read from).

To ensure that the data read from the DRAM is good data, the hardware
should not allow a bus master to access the DRAM again until the pre-charge
delay has elapsed. The bus master can be held off by keeping its READY# line
deasserted until both the access time and pre-charge delay has elapsed. When
READY# is then asserted, the bus master is allowed to complete the first trans-
fer and can immediately and safely initiate a subsequent transfer.

When a DRAM chip manufacturer specifies the access time on a DRAM (for
example, 60ns, 70ns, 80ns or 100ns access time), it doesn't paint an entirely ac-
curate picture. Although the first access to a 60ns DRAM chip can be safely ac-
complished in 60ns, the hardware must delay initiation of a subsequent access
until the DRAM's pre-charge delay has elapsed. Since the pre-charge delay is
typically equal to the access time for the DRAM, the access time should be
doubled to ascertain how often the DRAM chip may be safely accessed. As an
example, a DRAM chip with a rated access time of 60ns could only be accessed
safely once every 120ns (60ns access time + 60ns pre-charge delay). The overall
period of time consisting of the access time and the pre-charge delay is known
as the cycle time, and this factor should be considered when designing a mem-
ory system using DRAM chips.
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DRAM Bank

Refer to figure 13-8, the DRAM bank. The typical DRAM chip used in personal
computers stores one bit of information per location. Since the current bus mas-
ter expects to be able to read or write at least one byte of information at a time,
the ability to store and retrieve one bit per location appears relatively useless.

To create a usable design, the engineer combines a series of eight DRAM chips
so that, taken collectively, they can store one byte of information per location.
This is referred to as a bank of DRAM. The designer connects the memory ad-
dress bus in parallel to all eight DRAM chips. The RAS# and CAS# lines are
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also connected to all eight DRAM chips, as well as the read /write control line.
This give the bus master the ability to address the exact same location in all
eight DRAM chips simultaneously.

The designer connects each individual data bus line to the data input/output
pin on a separate DRAM chip within the bank of DRAM.

When the bus master performs a memory write operation and places the ad-
dress on the address bus, the DRAM addressing logic performs the necessary
breakdown of the address into the row and column addresses and selects the
exact same row and column within each of the eight DRAM chips within the
bank. The read /write pin on the DRAM chips is set to the write state and each
of the eight data bits that make up the byte to be written into the memory loca-
tion is presented to its respective DRAM chip within the bank. The eight data
bits are then written into exactly the same location within the eight individual
DRAM chips.

When the bus master performs a memory read operation to read a byte of in-
formation from DRAM, it simultaneously addresses precisely the same row
and column location within each of the eight DRAM chips. The bit stored in
that location within each of the eight DRAM chips is driven out onto the re-
spective data bus line by the individual DRAM chip. From the bus master's
perspective, it's communicating with DRAM memory that can store one byte of
information per location.
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DRAM Bank Width

The original IBM PC and PC/XT were based on the Intel 8088 microprocessor,
which had an 8-bit data bus. A bank of DRAM in those machines consisted of
eight DRAM chips plus a parity bit (parity is discussed later in this chapter).

Refer to figure 13-9. The IBM PC/AT (or any PC based on the 80286 or 803865X
microprocessors) has a 16-bit data bus, so a bank of DRAM consists of 16
DRAM chips, divided into two halves. All even-addressed locations are located
in the lower half (connected to the lower data path, D[7:0]), while all odd-
addressed locations are in the upper half (connected to the upper data path,
D[15:8]). Each half consists of eight data DRAMs and a parity DRAM.
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Figure 13-9. 16-Bit DRAM Bank

Refer to figure 13-10. Systems based on the 80386DX or 80486 microprocessor
have a 32-bit data bus, so each bank of DRAM consists of thirty-two data
DRAM chips, plus four parity DRAMs.

In other words, a bank of DRAM is sized to match the width of the data bus so
the microprocessor can transfer the maximum amount of information per bus

cycle.
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DRAM Error Detection and Correction

The tiny capacitors used to store data in DRAM are susceptible to soft errors.
Soft errors are data bits that were initially stored correctly but which have sub-
sequently lost their charge due to electrical and cosmic interference or due to
improper refresh. It’s possible for the bus master to read incorrect data or in-
structions from DRAM that has suffered a soft error. If this happens, the bus
master may execute the wrong instruction or make a bad decision on data
without realizing that an error has occurred.

Crosstalk and noise on the data bus can cause data that was stored and re-
trieved correctly by the DRAM chip to become garbled between the DRAM
chip and the bus master. This isn’t necessarily the fault of the DRAM chip. As it
is with soft errors, the bus master may execute the wrong instruction or make a
bad decision on data.

Parity memory and error-checking-and-correcting memory are two approaches
to solving these problems.

DRAM Parity

The DRAM memory subsystem used in most ISA products incorporates parity
generation and checking logic. Consider the DRAM bank pictured in figure
13-11. This bank of DRAM consists of eight DRAM chips and an additional,
ninth DRAM chip referred to as the parity DRAM. All of the address lines, as
well as the RAS# and CAS# lines and the read /write control line are connected
in parallel to all nine DRAM chips. The eight data lines are connected to the
eight data DRAM chips. The data bus is not only connected to the data DRAM
chips, but also to the parity generator/checker chip.

When the bus master writes a byte of information to the DRAM chips, it is pre-
sented to the DRAM chips and to the parity generator/checker. During a mem-
ory write operation, parity is generated and written into the parity DRAM chip.
Parity is not checked for correctness during memory write operations, only
during memory reads (as described further on).

When the data byte is presented to the parity generator/checker chip during a
write operation, it checks the number of one bits in the data byte. If the parity
generator is using “even parity” and the number of one bits in the data byte is
even, then the parity generator places a zero on the PARITY line going to the
parity DRAM chip. The parity bit and the data byte are simultaneously written
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into the same address within the parity DRAM and the data DRAM. That
means that a total of nine bits of information is written into the addressed
memory location during a write operation.

If the parity generator is using “even parity” and it had not detected an even
number of one bits in the data byte being written to the data DRAM, it would
place a one on the PARITY line to the parity DRAM. The total number of one
bits in the 9-bit pattern written into the addressed memory location is therefore
always an even number of one bits. In other words, the parity generator's job is
to force the 9-bit pattern written into memory to always consist of an even
number of one bits.

When the data is later read back from memory, the nine bits of information are
driven out onto the data bus and the parity line by the data and parity DRAMs.
The data byte is sent back to the bus master over the data bus and is also pre-
sented to the parity generator/checker, now acting as a parity checker, rather
than a parity generator. In addition to the 8-bit data byte being presented to the
parity checker, the parity bit is also being presented to it. The parity checker
examines the 9-bit pattern and checks it to see if it contains an even number of
one bits (which it always should if even parity is being used).

If the 9-bit pattern doesn't contain an even number of one bits, an error has oc-
curred and the parity check logic generates a parity error. The parity error
causes a non-maskable interrupt (NMI) request to the microprocessor, and the
microprocessor is forced to jump to the NMI interrupt service routine. In this
routine, the programmer performs an [/O read from system control B at [/O
address 0061h to ascertain the cause of the NMIL. If bit 7 is set to a 1, a parity
check was encountered while reading from system board DRAM memory. The
NMI routine then reports a DRAM parity error on the screen and halts the sys-
tem. The parity error is not recoverable because the parity generator/checker
can’t correct the parity error. It only knows that one or more bits in a byte are
bad, but it can’t determine which bit is bad. Nevertheless, it is better for the
system to halt before further (possibly worse) damage is done.

The preceding discussion assumes that the parity generator/checker is using
even parity. If, instead, the parity generator/checker is using odd parity, then it
will force the 9-bit pattern written into memory to always consist of an odd
number of one bits. Likewise, on a read bus cycle, the parity checker examines
the 9-bit pattern and checks it to see if it contains an odd number of one bits.
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Figure 13-11. The System Board DRAM Parity Logic

Since parity memory systems have 9 bits for every 8-bit byte of data, they re-
quire one-eighth or about 13% more memory (and cost) than non-parity mem-
ory systems. Since the amount of DRAM in modern PC’s is much greater than
it was in the original PC (about 100 to 2,000 times more), system designers
must consider the cost of parity versus its error catching benefit. Modern
DRAMs protect the capacitors in a semiconductor “well” which deflects the ra-
diation that caused soft errors in older DRAMs. Also, improved board manu-
facturing and component handling techniques have reduced the
manufacturing-induced failure rates on DRAMs. As a result, many systems do
not use parity memory. But then, consider that PCs are depended on more
heavily today than they were over a decade ago and there is a lot more mem-
ory being used.
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Error-Checking-and-Correcting Memory

On very high-end PCs such as file servers for reservation systems (“mission
critical” systems), error detection and correction is vital. Users of these systems
do not want the system to crash when a soft error occurs. These systems may
have hundreds of megabytes of memory in them, so the chances for a soft error
are greater than on a typical PC.

Since the parity generator/checker can only detect errors and cannot correct
them, the mission critical systems use error-checking-and-correcting (ECC)
memory. ECC memory may be wider than 9 bits. When the bus master writes
data to ECC memory, the ECC memory controller encodes the bytes before
storing them. There are more bits in the ECC memory than there are in the
original data byte, so some of the possible bit patterns that could exist in ECC
memory do not correspond to data bytes. Those bit patterns are invalid. If the
ECC memory controller subsequently reads one of these invalid patterns from
the ECC memory, it knows that an error has occurred because it did not write
that pattern into memory. The ECC memory controller can then usually correct
the error by finding the valid bit pattern that it “closest” to the invalid bit pat-
tern.

Page-Mode DRAM and Its Variations

Some ISA systems incorporate page mode DRAM in one of its various forms.
The following sections explain the advantages of page-mode, enhanced page-
mode, burst-mode (nibble-mode), static column page-mode memory and syn-
chronous DRAM.

Page Mode DRAM

Page mode DRAM is just a variation on standard DRAM memory. In most re-
spects, its operation is identical. As with standard DRAM, sequential page
mode DRAM locations are laid out or distributed sequentially along a row. In
other words, location 0 in a page mode DRAM chip is located in row 0, column
0; location 1 is located in row 0, column 1; location 2 at row 0, column 2, etc.

If the currently executing program is performing sequential memory accesses,
sequential locations within a row are accessed. Since the majority of program
execution is sequential in nature (in-line code fetches), program execution very
often proceeds along a row of memory. At the end of a row in a page mode
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DRAM chip, the next sequential location is in column 0 at the beginning of the
next row. Subsequent locations are located along that row.

As an example, a 1Mbit (1 megabit) page mode DRAM chip consists of a 1,024-
by-1,024 row/column matrix. This means that each row contains 1,024 loca-
tions. The microprocessor could perform 1,024 memory accesses within the row
before having to cross over into the next row. Page mode DRAM is called by
that name because the designer considered one row of RAM memory to be a
page of DRAM memory.

In a standard DRAM chip, a memory location is addressed in the following
fashion:

The row address is placed on the memory address bus.
The RAS# line is asserted.

RAS/CAS delay to ensure proper operation.

The column address is placed on the memory address bus.
The CASH# line is asserted.

A

At that point, the DRAM chip has the row and the column address and can
therefore identify the addressed memory location. The data transfer can be per-
formed.

Refer to figure 13-12. To take full advantage of the operational characteristics of
page mode DRAM chips, some external support logic is necessary. This con-
sists of a row latch and a row comparator.

The first access to a page mode DRAM is identical to that for a standard
DRAM. The row address is placed on the memory address bus and RASH# is as-
serted. When RASH# is asserted in a page mode DRAM system, two things oc-
cur:

¢ The DRAM chips latch the row address.
e The row address is latched into the row latch that is external to the DRAM
chips.

The output of the row latch is applied to one side of the row comparator. After
the RAS/CAS delay has elapsed, the DRAM addressing logic places the col-
umn address on the memory address bus and asserts CAS#. This causes the
column address to be latched by the DRAM. Up to this point, the page mode
DRAM addressing scheme is identical to that for standard DRAM.
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One other ingredient that is necessary for the page mode DRAM architecture to
work efficiently is the address pipelining capability of the 80286, 80386 and
Pentium microprocessors. These microprocessors have the ability to place the
address for the upcoming bus cycle on the address bus during the current bus
cycle.

The row comparator compares the row address currently held by the row latch
to the portion of the address bus that contains the row address for the next up-
coming DRAM access. If equal, it means that the upcoming DRAM access is go-
ing to be within the same row (or page) within the page mode DRAM chips.
This is called a page hit. When the row comparator detects that they are equal,
it informs the DRAM addressing logic. The DRAM addressing logic responds
by keeping RAS# asserted at the end of the current bus cycle.

The continued assertion of RAS# tells the page mode DRAM chips to remember
the previously latched row address because the upcoming access to going to be
within the same row. Since the page mode DRAM chip already has the row
address, the new column address can be immediately gated through the
DRAM addressing MUX onto the memory address bus and CAS# can be as-
serted. This commands the DRAM chips to latch the new column address.

When sequential accesses fall within the same row of page mode DRAM mem-
ory, it isn't necessary to wait for the RAS/CAS delay to elapse before giving the
DRAM chip the next column address. Since the RAS/CAS delay is approxi-
mately 50% of the overall access time for the DRAM chips, the access time can
effectively be cut in half by eliminating this delay.

261



ISA System Architecture
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Refer to figure 13-13. As an example, page mode DRAM chips rated at 100ns
per access would require 100ns for the first access, but subsequent sequential
accesses within the same row could be performed in approximately 50ns, sub-
stantially improving the transfer rate. As long as subsequent, back-to-back
memory reads are within the same row, the RAS# line stays asserted through-
out multiple accesses, while new column addresses appear on the memory ad-
dress bus and CAS# is asserted once for each new column address.

When the row comparator detects that the upcoming bus cycle will access a
row other than the one internally latched within the DRAM chips, it must in-
struct the DRAM addressing logic that a miss has occurred and the page mode
DRAM chips must therefore forget the currently latched row address. This is
accomplished by deasserting RAS#. This is called a page miss.

The next access is exactly the same as a standard DRAM access. The new row
address must be sent to the DRAMs and latched, followed by the RAS/CAS
delay and the latching of the column address. If, however, subsequent accesses
past that point are within the same row, then the memory logic can cut the ac-
cess time in half by doing away with the RAS/CAS delay again.

Page mode DRAM takes advantage of one very important characteristic of any
microprocessor. What is the microprocessor always doing on an ongoing basis?
The answer is fetching instructions. Since the majority of program execution is
sequential in nature (in-line code fetches), program execution very often pro-
ceeds along a row of memory. A series of memory reads from locations located
within the same row can take place quickly because the DRAM access time is
cut approximately in half by keeping RAS# asserted thus eliminating the
RAS/CAS delay.

Anything that can be done to increase the rate at which instructions are sent to
the microprocessor has a substantial impact on the overall performance of a
PC. In addition, any program that tends to access large blocks of data from
page mode DRAM memory sequentially will take advantage of this architec-
ture as well.
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Figure 13-13. Page Mode DRAM RAS/CAS Timing

Enhanced Page Mode DRAM

Enhanced page mode DRAM provides faster access time than standard page
mode DRAM by beginning the column address decode as soon as a new col-
umn address appears on the memory address bus, even before CAS# is as-
serted. The column address latch is a transparent latch, so that its input (the
column address) is immediately available to its output (the column address de-
coder) while CAS# is deasserted. Since the column address decoder starts its
decode early, the DRAM’s access time is improved. As with standard page
mode DRAM, when CAS# is subsequently asserted, the column address latch
latches the column address.
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Burst and Nibble Mode DRAM

Burst mode and nibble mode DRAMSs are designed to provide optimum per-
formance when the cache is reading or writing lines of information from main
RAM. The next chapter describes caches and defines cache lines in detail, but
briefly, a cache line is the minimum information that the cache can store. Cache
lines are typically many bytes in length, requiring that the cache controller per-
form multiple accesses to main DRAM in order to read an entire cache line.
Each of those cache accesses are to DRAM locations that are adjacent to one an-
other. In other words, the DRAM locations are contiguous.

Normally, an x86 microprocessor bus cycle consists of one address time (Ts or
T1) followed by one or more data times or wait states (Tc or T2). The maximum
amount of information that can be transferred during the bus cycle is limited to
the width of the microprocessor’s data bus. For example, if the cache controller
needed 16 bytes of information (so the cache line size is 16 bytes) and if the mi-
croprocessor’s data bus were four bytes wide, then the microprocessor would
have to run four bus cycles to fill a cache line. Each of those bus cycles would
have an address time. But since all 16 of the bytes are contiguous with one an-
other, some time could be saved by not broadcasting the addresses of all of the
bytes. In a burst bus cycle, as used by the 80486 microprocessor, the starting
address of the cache line is broadcast during the address time (T1) and 16 bytes
come back, a doubleword at a time, in the following data times, without any
further T1 times. (The memory subsystem still has the ability to insert wait
states in the transaction.) The memory subsystem must have its own address
counter internally so that it can calculate the address of the second and subse-
quent doublewords that the cache is requesting. The Pentium processor uses a
burst bus cycle as well, but its cache line size is larger than the 80486s.

Burst and nibble mode DRAM take advantage of the fact that the cache ac-
cesses several contiguous locations in rapid succession. Refer to figure 13-14.
As with standard DRAM, burst and nibble mode DRAM accept a row address
and a starting column address from the DRAM controller. Burst and nibble
mode DRAM have internal column counters, so they do not need to see new
column addresses during the burst. This eliminates the setup and hold time for
the second and subsequent column addresses and thus improves the DRAM
access time when compared to standard page mode DRAM. CASH# is toggled to
cause the DRAM to increment its internal column counter and to access that
column.

The second and subsequent column addresses that the DRAM generates inter-
nally must match the column portion of the address that the cache controller is
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Figure 13-14. Burst Mode Access Timing

Notice that burst mode and nibble mode DRAM lack the ability to do random
accesses along the current row. Standard page mode DRAM can provide in-
formation from any column in the currently selected row, but burst and nibble
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mode DRAM can only provide information from the contiguous columns that
were selected with the starting column number.

The access time improvement in burst and nibble mode DRAM comes from
saving the setup and hold time on the second and subsequent column ad-
dresses, at the expense of no longer being able to do random page mode ac-
cesses along the currently selected row. The next section describes static
column page mode DRAM, which retains the ability to do random accesses
along the same row and has access times similar to burst mode DRAM.

Static Column RAM (SCRAM)

Static column RAM, or SCRAM, probably has one of the most misleading
names in the industry. Many people believe that static column RAM is a form
of static RAM. It is not. Static RAM is discussed later in this chapter. Static col-
umn RAM is another form of DRAM memory. It is extremely similar to page
mode DRAM, so much so that they are frequently mixed up in trade articles.
Just as with page mode DRAM, SCRAM is structured with sequential memory
locations distributed along a row. SCRAM also requires the same external sup-
port logic as page mode RAM. That is, it requires a row latch and a row com-
parator and takes advantage of address pipelining.

The only ditference between the two technologies lies in how SCRAM recog-
nizes that a new column address has been presented to it. Whereas page mode
DRAM requires that CAS# be asserted each time a new column address is pre-
sented to it, SCRAM is slightly more intelligent.

Refer to figure 13-15. When the SCRAM chip detects RAS# and CAS# remain-
ing asserted from one access to another, it recognizes that it will not be receiv-
ing a new row address, only a column address. It then observes the memory
address bus. When it sees the value on the address lines begin to change, it in-
terprets this as a new column address appearing and waits a predetermined
amount of time for the column address to stabilize. It then generates its own
CAS internally, latching the new column address. The name static column
RAM stems from the fact that the column address strobe line, CASH#, stays static
asserted for multiple accesses within the same row.

It is possible to design a memory subsystem that accommodates either SCRAM
or page mode DRAM chips. This is possible because, although the SCRAM chip
doesn't need to have CASH# reasserted each time a new column address is pre-
sented to it, it still operates properly if CAS# is reasserted. In other words, if a
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memory subsystem is designed for page mode DRAM, it would also work with
SCRAM.
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Figure 13-15. SCRAM Access Timing

Synchronous DRAM

Synchronous DRAM isn’t a type of DRAM by itself. Instead, it is a way that the
DRAM chip interfaces its internal storage array to its pins. The preceding sec-
tions described asynchronous DRAM interfaces which do not require a clock.
Synchronous interfaces are based on a clock so that the memory address and
control signals (RAS# and CAS#) are only valid at appropriate edges of the
clock.
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Synchronous DRAM interfaces can simplify the design of the interface between
the DRAM chips and the microprocessor because the microprocessor is a syn-
chronous (clocked) device. To achieve optimum performance with the micro-
processor, the DRAM must be synchronized to the microprocessor, and thus to
the microprocessor’s clock. For asynchronous DRAM, the system designer
must provide logic external to the DRAM to synchronize it to the microproces-
sor. Synchronous DRAM can be run from the same clock that runs the micro-
processor, thus reducing the amount and complexity of the external logic.

Synchronous DRAM interfaces are often used on burst mode DRAM.

Interleaved Memory Architecture

Interleaved memory architecture takes advantage of the sequential nature of
program execution. The problem addressed by the interleaved memory archi-
tecture is the period of time the microprocessor is forced to wait when perform-
ing back-to-back accesses to the same DRAM chip. This wait is necessary
because the DRAM chip is charging back up again after a destructive read. This
is referred to as the pre-charge delay.

When an interleaved memory architecture is used, what would ordinarily be
one bank of DRAM memory is split up into two banks. As an example, refer to
figure 13-16. In an 80386DX- or 80486-based system, the microprocessor is ca-
pable of fetching a doubleword (four bytes) per bus cycle. The memory address
decode logic is designed so that the doubleword consisting of the first four
memory locations, locations 00000000h through 00000003h, is physically lo-
cated in DRAM bank A. The second doubleword, consisting of locations
00000004h through 00000007h, is physically located in DRAM bank B. The next
doubleword is physically located in DRAM bank A and consists of locations
00000008h through 0000000Bh, while the following doubleword is physically
located in DRAM bank B and consists of locations 0000000Ch through
0000000Fh, and so on.

Assume that the 80386DX microprocessor has just fetched an instruction from
the doubleword starting at location 00000000h in DRAM bank A. That means
that the microprocessor will more than likely fetch the next instruction from the
doubleword starting at memory address 00000004h in DRAM bank B. While
the microprocessor is performing the second instruction prefetch from the dou-
bleword in bank B, the DRAMs that make up bank A are going through pre-
charge delay and charging back up again.
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When the microprocessor completes the fetch from the doubleword in bank B,
the next instruction fetch is more than likely going to be from the next double-
word in bank A starting at location 00000008h. While the microprocessor is
fetching the third doubleword from bank A, the DRAMs that make up bank B
will be charging back up again.
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Figure 13-16. Interleaved Memory Architecture

The microprocessor is able to perform back-to-back read operations (in this
case, instruction fetches) without waiting for the pre-charge delay. The only
times that the microprocessor will have to wait for the pre-charge delay to
elapse will be when the next memory access is within the same bank as the
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previous access. This occurs, for instance, when a jump instruction instructs the
microprocessor to fetch its next instruction from a location residing in the same
bank that the previous instruction was read from.

It also occurs when the currently executing instruction instructs the microproc-
essor to access a memory location within the same bank as the previous access.

Refer to figure 13-16. Support logic within the interleaved memory subsystem
keeps track of which bank was accessed last. Using address pipelining, the sub-
system can detect that the upcoming access is from the same bank or the other
bank. If from the other bank, then the memory logic doesn't have to allow for
the pre-charge delay and can let the microprocessor access it immediately. Ad-
dress bit A2 indicates which bank is to be accessed in the upcoming bus cycle.
The support logic remembers which DRAM bank is currently being accessed
via the A2 Latch. The A2 Comparator compares this to the state of A2 for the
upcoming access (using address pipelining). The timeout value for the Memory
Ready Logic is adjusted accordingly.

On the other hand, if the upcoming access is within the same bank, the memory
logic keeps the READY# line deasserted until the pre-charge delay has elapsed.
The memory logic then asserts READY#, letting the current bus cycle end and
letting the microprocessor safely begin the next bus cycle within the same bank.

If page mode DRAM is used in the interleaved banks, then the pre-charge de-
lay may be avoided even if the current bus master accesses the same bank con-
secutively. Of course, accesses to the same bank would have to be to the same
row in order to avoid the pre-charge delay. By combining page mode DRAM
and interleaving, the system designer can eliminate most of the pre-charge de-
lays.

Static RAM (SRAM)

Unlike DRAM, static RAM, or SRAM, memory doesn't require refreshing at
regular intervals in order to maintain the information stored in memory. This is
because, unlike a DRAM bit cell which uses a capacitor and a transistor to store
information, SRAM uses single-bit latches known as D flip-flops. A typical
SRAM bit cell consists of four or six transistors. A four transistor design costs
less and a six transistor design consumes less power.

Once a bit of information has been written into one of these latches (or flip-
tlops), the SRAM chip continues to hold the data as long as power is applied to
the SRAM chip. The information doesn't degrade (discharge) over a period of
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time as it does with DRAM. SRAM is called static because, once the informa-
tion is written into it, it remains static, or steady, without being refreshed at
regular intervals.

Another important characteristic of SRAM is its relatively short access time.
This is mainly due to the fact that, rather than providing it the address in two
steps (as with DRAMs), the SRAM receives the entire address at once. Once
chip-selected, the SRAM uses the address on its address inputs to identify the
addressed memory location and the data transfer takes place.

Although SRAM is typically much faster than DRAM memory, it is cost-
prohibitive to populate an entire system with it. SRAM chips typically cost ten
times more than DRAMs, are physically larger, consume more power and gen-
erate more heat. All of these factors, taken collectively, substantially add to the
overall cost of a system. In the faster 80386, 80486 and Pentium processor-based
systems, limited amounts of high-speed SRAM are used as cache memory to
improve the microprocessor's overall transfer rate when addressing memory.
This subject is covered in the chapter entitled “Cache Memory Concepts.”

As with DRAM, SRAM can be designed to operate either asynchronously or
synchronously. Likewise, SRAM can be designed to use a burst mode, which
simplifies the interface of SRAM used in caches, since caches usually operate
synchronously, in burst mode.
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Chapter 14

The Previous Chapter

Earlier chapters described the 80386DX microprocessor and DRAM memory.
The 80386DX microprocessor is capable of performing data transfers at sub-
stantially higher clock rates than the 80286 microprocessor. Combine the in-
creased performance of the 80386DX microprocessor with the relatively slow
access time of DRAM memory and a problem presents itself. Whenever the mi-
croprocessor attempts to access memory, wait states will be inserted into the
bus cycles to accommodate the DRAM's slow access time. Since the microproc-
essor accesses memory far more than any other system element (to fetch in-
structions), processor performance would suffer severe degradation.

This Chapter

In this chapter, cache memory is discussed. This is the most common method
used to achieve superior memory performance while holding down the cost of
implementation. Various memory cache strategies found in 80386-, 80486- and
Pentium processor-based systems are discussed, along with advantages and
disadvantages of each.

The Next Chapter

The next chapter discusses the types and configurations of ROM memory typi-
cally found in ISA systems.

The Problem

When the IBM PC was introduced, it was based on the Intel 8088 microproces-
sor running at 4.77MHz. The 8088 takes four ticks of its 4.77MHz PCLK to run
a O-wait-state bus cycle, so a 0-wait-state bus cycle takes 838ns (4 x 209.5ns =
838ns). Virtually any DRAM or ROM on the market at the time could respond
well within this period of time, so wait states really weren't an issue.
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As processor speeds have rapidly increased, the speed of economical dynamic
RAM (DRAM) has increased at a slower pace. Thus, in order to gain the maxi-
mum performance benefit of the faster and more powerful processors, faster
and more expensive static RAM devices must be used. Static RAM is easily ca-
pable of providing zero-wait-state performance; however, for several reasons,
this solution is seldom considered:

e SRAM is typically ten times more expensive than DRAM memory.

e SRAM chips are typically larger than DRAMs, requiring more real estate
for the same amount of memory.

¢ During normal operation, SRAMs consume more power than DRAMs and
may require a more powerful, and therefore more expensive, power sup-
ply.

¢ During normal operation, SRAMs generate more heat than DRAMs and
may therefore require a larger cooling fan.

To be fair, it’s true that SRAM consumes less power than DRAM when it is not
being accessed. But why put of expensive SRAM in a system and then not ac-
cess it repetitively at high speed?

The Solution

The solution chosen by most manufacturers of fast 80386-, 80486- and Pentium
processor-based PCs is cache memory. Implementation of a cache memory sub-
system is an attempt to achieve acceptable system cost and a high percentage of
0-wait-state bus cycles when accessing DRAM memory.

A cache memory subsystem is implemented by populating main memory with
relatively slow access, cheap DRAM, while also incorporating a relatively small
amount of high cost, fast access SRAM into the system. The SRAM memory is
referred as cache memory and a cache memory controller attempts to maintain
copies of frequently accessed information read from DRAM memory in the
cache.

Refer to figure 14-1. The cache memory controller keeps track of the informa-
tion it has copied into the cache memory. When the cache memory controller
sees the microprocessor initiate a memory read bus cycle, it checks to deter-
mine if it has a copy of the requested information in cache memory. If a copy is
present, it immediately reads the information from the cache, sends it back to
the system board microprocessor over the microprocessor's data bus, and as-
serts the microprocessor's READY# signal. This is known as a read hit. The ac-
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cess can be completed in 0 wait states because the information is fetched from
the fast access cache SRAM.

Microprocessor

Cache cache AT
Controller Memory (@l 8

Main System Memory

Figure 14-1. The Cache Memory Concept

If, on the other hand, the cache memory controller determines that it does not
have a copy of the requested information in cache, the information must be
read from DRAM memory. This is known as a read miss and, due to the slow
access time of the DRAM memory, results in wait states. The requested infor-
mation is sent from DRAM back to the microprocessor to fulfill the request. In
addition, the information is also copied into the cache memory by the cache
memory controller. The cache controller updates an internal directory that
keeps track of information stored in cache memory.
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On the surface, it may not be evident how this can speed up the microproces-
sor's memory accesses. However, most programs, such as Lotus 1-2-3, contain
program loops that are executed many times. A program loop is a series of in-
structions that must be executed a number of times in succession to produce
the desired results.

As an example, Lotus 1-2-3 uses a program loop to recalculate spreadsheet
cells. Depending on the number of calculations to be made during a recalc, this
program loop may have to be executed hundreds or even thousands of times.

Assume that the cache memory is empty — it contains no copies of information
from DRAM memory. The first time the program loop is executed, the follow-
ing series of events takes place:

1. The microprocessor initiates a memory read bus cycle to fetch the first in-
struction from memory.

2. The cache memory controller uses the memory address to determine if a
copy of the requested information is already in the cache memory. Since
the cache is initially empty, a copy doesn't exist and a read miss occurs.

3. The cache memory controller initiates a memory read bus cycle on its own
buses to fetch the requested information (the instruction) from DRAM
memory. This will take one or more wait states, depending on the access
time of the DRAM.

4. The information from DRAM memory (the instruction) is sent back to the
microprocessor and the cache memory controller also copies it into the
cache memory and updates a directory within the controller to reflect the
presence of the new information. No advantage was realized during this
memory read because the information had to be read from slow DRAM
memory.

5. Upon completion of the first instruction in the program loop, the micro-
processor initiates a series of memory read bus cycles to fetch the remain-
ing instructions in the program loop. If the cache is sufficiently large, all of
the instructions in the program loop will be resident in cache memory after
the last instruction in the loop has been read from DRAM memory and
copied into the cache. No advantage was realized during the first execution
of this program loop.

6. The last instruction in the program loop is an instruction to jump to the be-
ginning of the loop and start over again. In other words, the microproces-
sor starts fetching and executing instructions at the memory address of the
first instruction in the program loop again.

7. When the microprocessor initiates the memory read bus cycle to fetch the
first instruction again, the cache memory controller checks its cache direc-
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tory and detects the presence of the requested information in cache mem-
ory. The cache memory controller immediately reads the information from
the fast access SRAM that makes up the cache and sends it back to the mi-
croprocessor with 0 wait states incurred.

The microprocessor is thus able to fetch and begin executing the instruction
faster than it was able to the first time through the loop. This proves true for
the remaining instructions in the program loop as well. The second and subse-
quent times through the program loop, the microprocessor incurs no wait states
in fetching the instructions, so the program runs substantially faster.

Principles of Locality

The term used to explain the characteristics of programs which run in relatively
small loops in consecutive memory locations is the “locality of reference.” As
shown in the previous example, cache subsystems work because most pro-
grams that run on PCs require the same information from consecutive memory
locations over and over again. The locality of reference principle is comprised
of two components: temporal locality and spatial locality.

Temporal Locality

Since programs run in loops, the same instructions must be fetched from mem-
ory on a frequent and continuing basis, meaning that programs tend to use the
most recently used information again. The older the information in cache, the
less likely it is to be used again. This is known as the principle of “temporal”
locality. How well a cache subsystem performs is tied directly to how often the
software requests the same information from memory. If a program were inten-
tionally designed to never access information more than one time, the cache
subsystem would provide absolutely no performance increase.

Spatial Locality

Programs and the data they request tend to reside in consecutive memory loca-
tions. This means that programs are likely to need code or data that are close to
or adjacent to locations already in use. This characteristic is called the principle
of spatial locality.

Cache Performance
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Performance of cache subsystems depends primarily on the frequency of cache
hits. Performance is usually stated in terms of a percentage of cache hits or hit
rate. Hit rate can be expressed as:

Hit Rate % = Cache Hits X 100%
Total Memory Requests

Since cache hits only occur on subsequent accesses to the same location, per-
formance of cache systems then can be linked directly to the way in which
software runs or how well it satisfies the principle of locality of reference. If the
program runs in a fairly small area of memory and repeats or loops, a high per-
centage of accesses to memory will be cache hits. If on the other hand, the pro-
gram runs long strings of non-looping code, every access will be a cache miss.
Fortunately, most programs run in a looping fashion and therefore cache hits
occur a high percentage of the time (approximately 85 to 95%).

Several factors contribute to the cache hit rate in addition to the principle of lo-
cality of reference. These include the cache's architecture, size of the cache
memory and the cache memory organization, which are discussed later in this
chapter.

Overall System Performance

In addition to providing fast access to the memory subsystem, cache subsys-
tems can also provide performance advantages by improving bus utilization.
Bus utilization is of particular concern when multiple processors and bus mas-
ters are used. The percentage of the time that any bus master occupies the sys-
tem bus is called its bus utilization. If the total bus utilization of all bus master
devices add up to over 100%, performance would drop due to exceeding the
bandwidth of the bus. Well designed cache subsystems reduce the amount of
time processors spend on the system bus by making access to the bus as short
as possible (zero wait states).

An additional benefit related to bus utilization, called bus concurrency, is pos-
sible when look-through cache architectures are used. Bus concurrency means
that a processor can gain access to memory from its cache memory, while an-
other bus master accesses main memory over the system bus at the same time.
Look-through cache designs permit concurrency because they decouple the
processor's local bus from the main system bus. See the section on look-through
cache designs for additional information.
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Cache Consistency

In order for cache subsystems to work properly, the contents of cache and main
memory must be exact duplicates. There are several possible instances in which
locations stored in cache memory are updated in cache or in main memory
while the duplicate copy remains unchanged. When either the cache memory
or main memory is updated, the duplicate copy will contain old information
called “stale” data. Cache systems must be designed to eliminate potential
cache consistency problems. See the section on cache consistency for details.

Components of a Cache Subsystem

Cache subsystems are comprised of three basic parts as shown in figure 14-2:

¢ The cache Memory (High speed Static RAM)
¢ The cache management logic
e The cache memory directory (tag RAM)

Cache Memory

The cache memory is comprised of SRAM chips that can provide the processor
with data at zero wait states. Cache memory is accessed when a copy of an ad-
dress being accessed in main memory is found in the cache memory directory
by the cache management logic.

Some literature refers to the cache memory as the “data cache RAM” to distin-
guish it from the cache memory directory or “tag RAM.” But beware that “data
cache RAM” is easily confused with a “data cache” (which would be half of a
split-cache system, described in the “Cache Architectures” section).

The size and organization of the memory cache varies according to design and
is covered in the section entitled “Cache Organization and Size.”

279



ISA System Architecture

LD
A
5 Lower
Address
Lines
Bg > Cache Memory
. Directory
. Hit {cache enable)
: i)
¥

Cache Memory

Figure 14-2. Cache Subsystem Components
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Cache Management Logic

During a read access to main memory, the cache management logic compares
the memory address output by the processor with the cache memory directory
which contains a record of which locations are stored in cache memory. If a
match occurs, the cache management logic enables cache memory to output in-
formation from the addressed location, and the bus cycle is completed in zero
wait states. If a match does not occur, the requested information is supplied by
main memory. The information is sent back to the processor from main mem-
ory and also stored in cache memory so that the latest information is now avail-
able in cache.

Cache Memory Directory

The cache memory directory, also called tag RAM, contains a listing of all the
memory addresses that have copies stored in cache memory. Each cache loca-
tion (sometimes referred to as a set) has a corresponding entry in the cache di-
rectory as shown in figure 14-3. The contents of the directory are compared to
the memory address from the processor to determine if a copy of the requested
information is contained in cache memory. The contents of the directory are
updated each time new information is stored in cache memory.

Dirgctory Cache Bank
A A

Entry o Set ¢
1 1
2 2
3 3
4 4
5 5
8 8
7 7
8 2

9 L
499 499
500 & 500
501 501
504 504
505 505
506 506
507 507
508 538
290 2%
~ } . 10
Entry 519 Set 511

Figure 14-3. Relationship of Cache Directory to the Cache Memory
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Intro to Cache Architecture, Coherency, Write
Policies and Organization

The next several sections describe various parameters which specify caches.
These parameters and some of their possible values are listed below. A cache
may be designed by selecting one parameter from each of the lists. For exam-
ple, a cache could be designed as an 8KB, look-through, level 1, split, write-
back policy, two-way set-associative cache with a 32-byte line size, that main-
tains coherency by snooping the system bus. An example of that type of cache
is the data cache in the Pentium processor. There are three lists for Architecture
because three independent parameters define the physical layout (architecture)
of the cache.

Architecture
¢ Look-through
e Look-aside

Architecture
o Levell
o Level2

o Level 3, etc.

Architecture
e Combined (unified)
e Split (dedicated)

Coherency Protocol (ways of maintaining coherency)
¢ Flushing

¢ Snooping (bus watching)

e Software-enforced coherency

Write Policy

e  Write-through policy

¢ Buffered write-through policy
e  Write-back policy

Organization or Set Associativity
e fully-associative cache

e direct-mapped cache

e two-way set-associative cache
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e four-way set-associative cache, etc.

Line Size
e Dytes per line

Cache Size
e KB of data SRAM

Addressing
¢ physical
e virtual

Although each of these parameters are independent of one another, it is possi-
ble to select values that result in impractical or inefficient cache designs. For
example, a small (1KB), look-through cache statistically degrades (instead of
improving) overall system performance due to the lookup penalty imposed by
the high miss rate of the small cache.

The cache parameters are defined and described in detail in the sections that
follow.

Cache Architectures
Two basic architectures are used in today's systems:

e Look-through cache designs
¢ Look-aside cache designs

Fach type of cache architecture has its advantages and disadvantages. The fol-
lowing sections detail both types of architectures and analyzes their benefits
and liabilities.

Look-Through Cache

Performance in look-through cache designs is typically higher overall than for
look-aside designs. Figure 14-4 illustrates the look-through cache design. As its
name implies, the look-through cache “looks through” its internal cache to de-
termine if a copy of the requested information is in the cache. If found,
information is sent back to the processor in zero wait states. Notice that the
memory request from the processor is not automatically transferred to the
system bus. This keeps the system bus free for use by other bus masters. Only
on cache misses will a request be passed to the system bus. Look-through cache
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misses will a request be passed to the system bus. Look-through cache designs
isolate the processor's local bus from the system bus, thereby reducing the use
of the system bus and permitting concurrent operations to take place.

Microprocessor

Cache

Bus
Master
1

Main T Ee
System Master
Memory 2

Bus
Master
n

Figure 14-4. Look-Through Cache Architecture

A closer look at the look-through design reveals buffers on the address and
data buses that isolate the processor and system buses. Refer to figure 14-5.
These buffers are controlled by the cache management logic. If a request from
the processor is a cache hit, information is accessed directly from cache mem-
ory and the processor and system bus remain isolated. If the requested infor-
mation is not in cache (a read miss), the cache management logic will enable
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the buffers allowing the request to be sent over the system bus to get the re-
quested information from main memory. The information is passed through a
latch in the data path back to the processor, as well as into the memory cache.

&

Microprocessor

RAR GXO6
) )
Cache :
Management 5
L Logic
Lower
Address
Lines
: Cachs Memory
. Directory Miss
Hit {cache enable)
v
Trans-
Buffer ceiver

Cache Memuory

Main System Memory

Figure 14-5. Look-Through—Concurrent Bus Operation

A major advantage of look-through designs is that they permit two bus masters
to operate simultaneously in the same system. The processor can be running
zero-wait-state operations out of the cache memory, while a bus master such as
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the DMA controller or refresh logic can use the system bus to access main
memory. These two operations can be run at the same time without affecting
each other and are typically referred to as system concurrency.

To expansion devices, look-through cache controllers appear as if they are the
main microprocessor. In single processor systems, when a bus master needs ac-
cess to main memory it requests use of the system bus directly from the cache
controller. The cache controller will grant the use of the system bus by sending
an acknowledge to the bus master just as the microprocessor would normally
do.

Since look-through cache controllers isolate the system bus and processor bus
and since they can be designed to run their own bus cycles to main memory,
they also provide performance advantages during write operations. During
memory writes, look-through cache designs can provide zero-wait-state opera-
tion for write misses. During write operations, many look-through designs will
trick the microprocessor into thinking the information was written within zero
wait states, but in fact no write need have taken place at all. The look-through
cache subsystem memorizes the entire write operation so that it can complete
the memory write to main memory later. This is called a posted write or buft-
ered write.

In summary, look-through designs provide performance benefits by:

* reducing system bus utilization since most memory accesses come from
cache memory, leaving the system bus free for other bus master's use.

¢ allowing system concurrency, where both the processor and another bus
master can perform bus cycles at the same time, and

e completing write operations in zero wait states using posted writes.

The primary disadvantages of look-through designs are:

¢ The local CPU's memory requests go first to its cache subsystem to deter-
mine if there is a copy of the target location is in its cache memory. This
lookup process delays the request to main memory in the event that the
memory request is a cache miss. This delay is commonly referred to as the
“lookup penalty.”

¢ look-through caches are more complex and difficult to design and imple-
ment.

¢ look-through designs are costly.
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Look-Aside Cache

Refer to figure 14-6. Look-aside caches do not isolate the processor bus from
the system bus as do look-through caches. When the processor begins a bus cy-
cle all devices in the system see the address as they do in non-cache systems.
The cache controller monitors each memory request to see if cache memory
contains a copy of the requested information. The cache controller terminates
the bus cycle in zero wait states if the operation is a hit, and informs the main
memory subsystem to abort the request. If the operation is a miss, the bus cycle
completes in normal fashion from main memory.

Note that even when a memory request is a cache hit, main system memory
will start the access thus creating an unnecessary memory precharge cycle in
many cases. This means that other bus masters in the system needing access to
memory must wait until the precharge cycle has completed.

The major advantages of look-aside cache designs are:

* Response time on cache miss cycles. Cache miss cycles complete faster in
look-aside caches because the bus cycle is already in progress to main
memory and no lookup penalty is incurred.

e Simplicity of design. Look-aside designs need only monitor one address
bus, whereas, look-through designs must interface with both the processor
bus and system bus.

e Lower cost of implementing due to their simplicity.
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Figure 14-6. Look-Aside Cache Architecture
The disadvantages of look-aside cache designs are:

e System bus utilization is not reduced. Each access to main memory goes to
both the cache subsystem and main memory.

e All memory requests, whether a hit or miss, result in the start of a memory
cycle in main memory. This causes a precharge cycle to begin which pre-
vents other devices from accessing main memory until the precharge time
has expired.
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e Concurrent operations are not possible since all masters reside on the same
bus.

First- and Second-Level Caches

Some systems use two levels of cache to improve overall system performance.
Figure 14-7 shows the relationship between first- and second-level caches in
typical 80386- and 80486-based systems.

First-level caches provide the processor with the most often used code and
data. These caches are typically small (4KB to 64KB). An example of this type of
cache is the internal cache used in the 486.

80488
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Microprocessor -~

8us
Master
5

Main Main i
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Figure 14-7. First- and Second-Level Caches

Second-level caches are sometimes added between the first-level cache and
main memory. These caches are usually much larger than first-level caches
(64KB to 512KB) because they hold all the information contained in the first-
level cache, as well as information that the first-level cache is unable to retain.
Second-level caches improve overall performance since the first-level cache can

289



ISA System Architecture

get information from the second-level cache at zero wait states even on most
misses.

Most modern microprocessors include a level-one cache on the same silicon die
as the microprocessor core. The second-level cache is typically a separate com-
ponent or group of components on the motherboard.

Caches are managed by the cache management logic using hardware algo-
rithms that are very similar to the algorithms used by the operating system
when it manages virtual memory (see “Page Translation” in the chapter enti-
tled “The 80386DX and SX Microprocessors”). The cache contains the most re-
cently accessed lines from main memory while main memory contains the most
recently accessed pages from mass storage. Due to this similarity, main DRAM
is sometimes referred to as the level three cache in computer mainframe de-
signs, since main DRAM caches the contents of mass storage.

Combined (Unified) and Split (Dedicated) Caches

There are two entities in the microprocessor which need efficient access to
memory: the instruction prefetcher and the execution unit. Unless the micro-
processor is halted, the prefetcher is constantly making sure that its prefetch
queue is full of instruction bytes for the instruction decoder to decode. While
the prefetcher is fetching bytes, the execution unit may need access to memory
to read or write data as the result of executing a MOV instruction. The micro-
processor’s bus unit gives priority to the execution unit since it is the execution
unit that actually gets work done in the microprocessor. The prefetcher is
merely a performance enhancement tool. But if the execution unit is very fast
and if it is performing many memory accesses, the execution unit may execute
all of the prefetched instructions, thus emptying the prefetch queue, before the
prefetcher has had a chance to access memory. When the prefetch queue emp-
ties out, the execution unit will starve, thus stalling the processor until the pre-
fetcher can once again access memory. The access to memory becomes a
bottleneck.

Even with a cache, there’s still a bottleneck since the prefetcher and the execu-
tion unit are still contending for access to the cache. To eliminate this bottle-
neck, the code that the prefetcher needs may be put in a dedicated code cache
while the data that the execution unit needs may be put in a dedicated data
cache. As long as there are separate interfaces to these two caches, the bottle-
neck may be avoided. Both the prefetcher and the execution unit may be served
simultaneously from their own caches. Caches that are designed this way are
referred to as split or dedicated caches and the two caches are called the in-
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struction cache and the data cache. Sometimes, the instruction cache is referred
to as the code cache. The Pentium processor has dedicated internal code and
data caches while the 486 microprocessor has a combined internal cache. After
a miss on the internal cache, the microprocessor’s external bus becomes the bot-
tleneck for access to external memory, so it is rare to see dedicated external
caches except on microprocessors that have two sets of address buses and two
sets of data buses, such as high-speed digital signal processors.

The ability to access code and data simultaneously is a significant advantage of
split caches vs. combined caches, but that doesn’t mean that split caches are
always better. Unified or combined caches have the ability to dynamically
reallocate space to store more code and less data, or to store more data and less
code, depending on what information the microprocessor is actually accessing
during a specific period of time. The combined cache decides what to keep in
the cache by using a least-recently-used algorithm (described later in this chap-
ter) based on the principles of locality (described earlier in this chapter). The
combined cache doesn’t know or care whether the information that it stores
represents code or data, so it does not have to base its decision on whether the
requests are coming from the prefetcher or the execution unit.

Split caches lack the ability to dynamically reallocate space to store more code
or more data, and they run the risk of the toll-booth problem. If you live in a
city with toll roads, you may have noticed that lines form when there are dedi-
cated lanes, say for trucks only, or for exact change only, while other lanes,
such as for “receipts given,” will be empty. That means that some lanes have
too much capacity (they are empty) and others lack capacity (they are backed
up). The same can happen with dedicated caches. If all the toll lanes provided
all the same services, then the lines would even out and overall throughput
would increase. So why do they have dedicated lanes? To provide priority to
certain classes of traffic. That’s exactly what the dedicated caches do — they
provide priority service to their specific entities in the microprocessor. But
combined caches typically provide the ability to store more code and data
overall since every location in the cache may be used for either code or data.

Cache Consistency (Coherency)

Loss of cache consistency occurs when the copy of a location in cache no longer
matches the contents of the information stored in main memory. Cache consis-
tency (also known as cache coherency) problems can result from either the
cache memory being updated while the main memory location is not, or main
memory being updated while the cache memory is not. In each of these in-
stances, some action must be taken to ensure that the conflict is resolved.
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It is imperative that any microprocessor or bus master that is accessing main
memory be guaranteed access to the latest copy of information that is, or
should be, stored in main RAM.

Causes of Cache Consistency Problems

Loss of cache consistency occurs when the information stored in cache and the
corresponding location in main memory do not match. Consistency problems
occur under two conditions:

¢ Cache memory is updated while main memory is not.
¢ Main memory is updated while cache memory is not.

In the situations above, either cache memory or main memory contains stale
data. In the first case, stale data is caused by a cache write hit within the cache
memory. In the second case, a bus master wrote to main memory. Stale data in
the cache must be updated before the microprocessor accesses the cache. Stale
data in main RAM must be updated before another bus master accesses that lo-
cation in main RAM. Note that this does not necessarily mean that the cache
and main RAM must always be exact copies of one another. It does mean that
none of the microprocessors or bus masters should ever be allowed to access
stale data. To detect a coherency problem, the cache controller must monitor
(snoop) the system bus to detect memory read and write operations to locations
contained in cache memory.

Consistency problems are handled differently depending on the cache's write
policy.

Write Policy

When a cache write hit occurs, the cache memory is updated. Cache memory
then contains the latest information and main memory contains outdated in-
formation. The location in main memory is said to have “stale” information and
the cache location is said to be “dirty,” or modified, since it no longer is an ex-
act duplicate of its corresponding location in main memory. To correct this
cache consistency problem, the corresponding main memory location must be
updated to reflect the change made in cache. If main memory is not updated,
another bus master could receive stale data when it reads from a memory loca-
tion that has not been updated. Three write policies commonly used to prevent
this type of consistency problem are:
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e write-through
¢ Dbuffered write-through
e write-back

These three write policies are covered in the following sections.

Write-Through Cache Designs

Many look-through cache controllers pass each write operation on to main
memory. This ensures that main memory always contains valid data. This is
called a write-through policy. This implementation is very simple and effective,
but results in poor performance since each write operation must access slow
main memory.

Buffered Write-Through Designs

A variation of the write-through policy is the buffered or posted write-through
operation. The buffered write-through cache has the advantage of providing
zero-wait-state write operations for both hits and misses. When a write occurs,
a buffered look-through cache tricks its associated processor into thinking the
information was written in zero wait states, but the write to memory has not
taken place yet. The look-through cache controller stores the entire write opera-
tion in a buffer so that it can complete the memory write to main memory later.

If there are two back-to-back memory write bus cycles, the cache controller in-
serts wait states into the second bus cycle until the first memory write has actu-
ally been completed. The second bus cycle is then posted and the CPU's
READY# line is asserted. Since memory writes typically occur as single occur-
rences, a large percentage of memory writes are completed at zero wait states.

In a buffered write-through cache, another bus master is not permitted use of
the buses until the write-through is completed, thereby ensuring that the bus
master receives the latest information from main memory.

The write-through operations described above require use of the system bus.
As a result, when the write-through to memory is taking place, bus masters are
prevented from accessing main memory. Note, however, that the cache consis-
tency problem only occurs when a bus master reads from a location in main
memory that has not yet been updated by the cache controller. The frequency
of this type of occurrence is very small. In fact, the memory location will likely
be updated numerous times by the CPU before another bus master reads that
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particular location. As a result, write-through designs, as well as buffered-
write-through designs, update main memory each time a memory write is per-
formed, though the need for such action may not be required immediately.

In summary, cache coherency problems can occur when the cache memory is
updated on a write hit, but the corresponding location in main memory is not
updated. Problems would occur if another bus master read from a location in
main memory that contains stale data. The write-through policy prevents this
potential consistency problem by automatically passing each write operation
on to main memory, thereby ensuring that main memory always has the latest
data.

Write-Back Cache Designs

Write-back designs improve overall system performance by updating memory
only when it is necessary, thereby keeping the system bus free for use by other
processors and bus masters. Main memory is updated (written to) only when
another bus master accesses a main memory location that contains stale data or
when a cache location that contains modified information is about to be over-
written to make room for a new cache line.

Cache memory locations are marked as modified in the cache directory when
they are updated and the update is not propagated through to memory. When
another master is reading from main memory, the cache subsystem must moni-
tor, or snoop, the system bus to check for reads or writes to main memory loca-
tions that have modified data in cache memory.

Write-back cache designs are more complicated to implement because they
must make decisions on when to update main memory.
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Bus Master/Cache Interaction

When another device in the system requires the use of the buses, it must be-
come bus master. In a system that doesn't incorporate a cache controller, the
device requesting bus mastership asserts HOLD to seize the buses from the mi-
croprocessor. In a system incorporating a look-through cache, however, the re-
questing device must force the cache controller, rather than the microprocessor,
to relinquish control of the system buses. To do this, the requester asserts the
cache controller's HOLD input to request control of the buses. In response, the
controller disconnects from the system bus and asserts HLDA (Hold Acknowl-
edge) to grant the system bus to the requester. The new bus master can then
use the system bus to perform one or more bus cycles to transfer data.

Since a bus master can read from and write to main memory, cache consistency
problems can occur under two circumstances:

¢  Writes to main memory—When bus masters write to main memory they
update locations that may also be cached by the cache controller. In these
instances, main memory is updated and the data in cache memory becomes
stale. The cache controller must monitor writes to main memory to detect
potential coherency problems.

¢ Reads from main memory (with write-back cache)—When bus masters
read from main memory in write-back cache implementations, they may
read from a location that contains stale data. That is, the location is in cache
and has been updated in cache but not in main memory. If the bus master
is allowed to read the data from main memory, stale data would be re-
ceived. To detect this potential coherency problem, write-back caches must
also monitor reads from main memory.

The following section discusses the process of monitoring the buses to detect
potential cache consistency problems.

Bus Snooping/Snarfing

Bus snooping is the method used by cache subsystems to monitor main mem-
ory accesses made by another bus master. The cache controller monitors
(snoops) the system bus when another bus master is performing a bus cycle to
main memory. If the location being accessed in main memory is also contained
in the cache memory, it is termed a cache snoop hit. In such cases, cache mem-
ory or main memory may contain stale data. Two conditions arise that create
the need to snoop the buses:
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A bus master writes to a location in main memory. Assume that the cache
controller has relinquished control to the DMA controller so that it may
transfer a block of data from a disk controller into main memory. It is quite
possible that the DMA controller will alter the contents of main memory
locations that have already been copied into the cache. This means that the
cache and main memory would no longer be coherent. In other words, the
information in the cache will not accurately reflect the actual information in
main memory. This is a potentially dangerous situation because the micro-
processor may now fetch stale information from the cache and make bad
decisions based on it.

Cache subsystems handle this situation differently depending on how they
are designed and depending on their write policies.

a) Write-through policy caches may invalidate the line in cache. The
next time that particular location is accessed by the cache's local m-
icroprocessor, it results in a cache miss, forcing the cache subsys-
tem to get the information from main memory where the valid
data resides.

b) Write-back policy caches cannot simply invalidate the line since
modifications that may have been made by the microprocessor
would be lost. Typically, the cache line is wider than the data bus,
so the bus master is not updating the entire cache line. Since the
cache cannot remember which bytes in the line are modified, it
must push back the entire line to memory. Write-back policy
caches must force the bus master to abort the bus cycle to prevent
access to the stale data in main RAM. The cache then pushes back
the modified line to memory and invalidates its copy of the line.
The bus master then retries the bus cycle again and writes its
changes into main RAM. When the microprocessor tries to access
that location in the future, the cache has a miss and reads the latest
information from main memory.

¢) FEither write-through or write-back policy caches may snarf the
data that the bus master is writing to memory. When the cache
subsystem snoops the bus during another bus master's write op-
eration and detects a snoop hit, it captures the data from the sys-
tem bus while its being written to main memory by the bus master.
In this way, both main memory and cache memory get updated at
the same time, thus eliminating the potential consistency problem.
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2. A bus master reads from a location in main memory. Only cache subsys-
tems that use a write-back policy monitor the system buses for memory
reads. In this case, the cache controller snoops memory reads by another
bus master to determine if the location being read from is a location that
has been updated in cache, but not in main memory (i.e. the cached loca-
tion is modified). If so, this is a snoop hit on a modified line and the cache
subsystem must force the bus master accessing the location to suspend its
bus cycle (backoff) until the cache subsystem has updated main memory.
Once the main memory location has been updated by the cache subsystem,
the bus master is allowed to complete its access to main memory.

Alternatively, when a snoop read hit is detected, the cache controller could
cause the access to main memory to be aborted and supply the valid data
directly to the bus master performing the read.

Coherency may be maintained in a variety of ways. The primary method is
based on bus watching, or snooping, as described above, but there are at least
two other, less commonly used (but perfectly viable), alternatives.

Coherency via Cache Flushing

All of the information in a write-through policy cache is an exact copy of the in-
formation currently in main RAM. Information would not be permanently
damaged or lost if the write-through cache’s contents were flushed (invali-
dated), because the information is also resident in main RAM. Therefore, one
way to ensure that a write-through policy cache always gets the latest and
greatest information that a bus master wrote to main RAM is to flush the cache
whenever a bus master issues HOLD request to the cache. When the micro-
processor subsequently tries to access any new information, the cache has a
miss and gets the information from main RAM. Admittedly, this is a rather
draconian method of maintaining coherency, but it works, and it’s simple.

In fact, flushing is an economical method of maintaining coherency in systems
where the cache rarely has to give up the busses to another bus master. A good
example is a laptop system. It's very rare for a bus master (other than the re-
fresh logic) to seize the busses away from the cache in a laptop. The cache
doesn’t need to maintain coherency with the RAM refresh logic, so the cache
does not need to be flushed when the refresh logic asserts HOLD. In general,
the only other bus master in the laptop is the DMA controller, and it is rarely
used. So, the expense of bus snooping logic can be saved by merely flushing the
write-through policy cache on those rare times that the DMA controller be-
comes the bus master.
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It would be a major mistake to invalidate the contents of a write-back policy
cache in this manner since the write-back policy cache may contain information
that does not appear in main RAM. The information would be lost.

Software-Enforced Coherency

Most of the descriptions of how to maintain cache coherency are based on forc-
ing the cache controller hardware to automatically enforce coherency. Hard-
ware-enforced coherency isn’t always necessary. If the operating system
software can guarantee that no two microprocessors or bus masters will ever
access the same memory locations, then there’s no need for the cache controller
to worry about another bus master’s memory accesses.

Ultimately, the operating system software has control over the microprocessor
and over every bus master in the system. The operating system’s device drivers
give commands to the bus masters, telling them which memory locations to ac-
cess. The operating system can therefore issue commands that prevent bus
masters from accessing (sharing) memory locations whose contents are cur-
rently contained in the microprocessor’s cache.

Software-enforced coherency can provide better throughput than hardware-
enforced coherency when transferring large blocks of data between main mem-
ory and peripherals by avoiding the time-consuming backoft’s and pushbacks
that are often used for hardware-enforced coherency. The pushbacks are
avoided because the cache does not contain any of the locations that the bus
master is accessing.

Of course, if software-enforced coherency is used, the operating system has to
be smart enough to manage the cache itself. The caches used in the 486 and
Pentium processors are designed to provide hardware-enforced coherency,
software-enforced coherency, or both.
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Cache Organization and Size

Cache memory can be organized in various ways to improve the likelihood of
cache hits. In other words, cache memory of the same size can provide different
hit rates depending on the way it is organized. The following sections discuss
the common methods of organizing cache memory.

Fully-Associative Cache

The fully-associative method of organization provides the optimum structure
for ensuring cache hits, and for a given cache size it provides the highest per-
formance of all other organizations. Fully-associative caches view memory as a
single page or block regardless of its size. See figure 14-8. Any location in main
memory can be copied to any location within the cache. This provides maxi-
mum flexibility in storing information from anywhere in memory.

In order to keep track of any location in memory, the cache directory must
store the entire address. Any given memory location requested might be found
in any one of the cache locations. Thus, each access to memory requires that the
address of the requested information be compared to each entry in the entire
cache directory to determine if the requested information is in cache memory.
The time needed to check the address against the directory entries (called the
look-up penalty) can be unacceptably long in fully-associative caches. Since the
look-up penalty can be substantial, fully-associative caches are usually quite
small (4KB or less) reducing the number of cache entries that have to be
checked with each memory request.

These types of smaller caches do not provide acceptable hit rates with most ap-
plications typically run on ISA machines. The challenge is to design a larger
cache that provides higher hit rates without the associated look-up penalty. The
concept of the direct-mapped cache provides this solution.

299



ISA System Architecture

Ol

atg 6 _§ Read
atg 5 __§ Read
ala 4 Read

!
N I T O I = =] B O O

Address of Data 6 :: : :
Address oiData 5 —
Address of Data 4 Data 3§ Read
Address of Data 2 Daia 2 1 Read
Address of Dala 2 Data 1§ Read
Address of Data 1

Cache Directory Cache Main Memory

Figure 14-8. Fully-Associative Cache Organization

300



Chapter 14: Cache Memory Concepts

Direct-Mapped Cache (One-Way Set-Associative)

Direct-mapped caches require that only one directory entry be checked to de-
termine whether the requested memory location is in cache. This means that
cache hits and misses can be determined very quickly. Single look-ups are pos-
sible due to the way direct-mapped cache controllers organize cache and view
memory.

Figure 14-9 is a simplified diagram of the memory structure in a direct-mapped
cache system. Notice that the cache is subdivided into units called sets and each
set has its own directory entry.

The cache controller views memory as logically divided into numerous pages
each being the same size and having the same organization as the cache mem-
ory. Every location in memory occupies a given set position within a page.
When a memory location is read, it is placed in cache at the same set location
that it occupies in main memory. In other words, information from a given set
in main memory is mapped into the same set within the cache. For a direct-
mapped cache, each set has a single directory entry, therefore, the information
stored in a set must come from one page in memory.

Direct-mapped cache structures allow the cache controller to identify the loca-
tion of information in cache based on two criteria:

1. the set position that a location occupies in the cache (the set where the
memory location comes from within a page)

2. the page number contained in the cache directory (the page number the lo-
cation comes from in main memory)
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Figure 14-9. Set-Associative Organization—Direct-Mapped

Figure 14-10 is a simplified example of a direct-mapped cache organization and
operation. This example illustrates how the cache would handle six read re-
quests from locations not currently stored in cache. Each time the processor re-
quests information from memory, the cache system compares the address to a
directory entry. Each directory entry keeps track of which page in main mem-
ory information from each set comes from. Unlike the fully-associative cache,
the processor need only compare the requested memory address with a single
directory entry. The lower portion of the address identifies which set the loca-
tion occupies in main memory, and thus identifies the directory entry that must
be checked. The upper portion of the address is compared to the directory en-
try to determine if the memory page requested matches the entry. If they
match, the request is a cache hit and if not it is a cache miss.
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Following is the sequence of events that occurs when each instruction is fetched
from memory. Note that each of the following requests results in a cache miss
and the information must be obtained from main memory.

1. The first request (read 1) is for information which resides in set 1 of page 0.
Since the information read from memory is from set 1 of a given page, the
information is stored in the set 1 position in cache memory. The corre-
sponding directory entry for set 1 is updated to indicate that the informa-
tion in set 1 of the cache is from page 0.

2. Similarly, read 2 is from a memory location that resides in set 2 of page 0 in
main memory. This information is placed into the cache in the set 2 posi-
tion and the corresponding directory entry is updated to indicate that the
source page was 0.

3. Next, read 3 is accessed from set 3 of page 0 and is placed in the cache in
the set 3 position and the corresponding directory entry is updated to page
0.

4. Read 4 jumps to a higher memory location that occupies set n (the last set
within page 1. This information is stored in the set n position in cache and
the directory for set n is updated to indicate page 1.

5. Read 5 comes from the first set (set 0) in page 2 and is placed in the set 0
position of cache. The corresponding directory entry is updated to page 2.

6. The last request from memory (read 6) is from set 1 in page 2. However, set
1 in the cache is already occupied by information from set 1 of page 0. Since
no other set 1 position exists in the cache, the information currently in set 1
must be replaced. The new information from read 6 is placed in set position
1 and the directory entry is updated to page 2.

With a direct-mapped cache, two memory sets cannot be kept in cache at the
same time if the sets come from different pages in memory. As you can see, a
direct-mapped cache provides only one way to store information read from a
given set.

Other cache organizations have more than one place to store information from
a given set in cache. For example, the two-way set-associative cache provides
two places, or ways, to store information that occupies the same set position in
different memory pages.

Two-Way Set-Associative Cache

In a two-way set-associative organization, when the cache controller gets in-
formation from main memory, it has a choice of two cache memory banks to
store the data in. Cache banks are frequently referred to as ways. In other
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words, the controller must choose one of two ways to store the data in. Hence,
the term two-way set-associative.

Figure 14-11 shows the same example used in the direct-mapped discussion to
show the effect that two-way cache organizations can have on performance.
Assume that the six memory reads access the same exact locations in main
memory as before and that the total cache memory size is the same as the di-
rect-mapped example in figure 14-10.

Notice that each cache way (A and B) has its own directory. Since there are two
ways for information from a given set to be cached in, each memory request
must be compared to two directory entries to determine whether or not the in-
formation is currently stored in cache.

When compared to the direct-mapped cache, the example two-way set-
associative cache controller views memory as being organized in pages equal to
one-half the size of the direct-mapped pages. The following steps illustrate the
sequence of the six memory accesses. Note that the first three reads are identi-
cal to the direct-mapped example.

1. The first request (read 1) is for information which resides in set 1 of page 0.
Since the information read from memory is from set 1 of a page, the infor-
mation is stored in the set 1 position in cache way A. A subsequent section
entitled “Least-Recently Used (LRU) Algorithm” describes howway A was
selected to store the set. The corresponding directory entry for set 1 is up-
dated to indicate information in set 1 of the cache is from page 0.

2. Similarly, read 2 is from a memory location that resides in set 2 of page 0 in
main memory. This information is placed into way A in the set 2 position
and the corresponding directory entry is updated to indicate page 0.

3. Next, read 3 is accessed from set 3 of page 0 and placed in way A in the set

3 position and the corresponding directory entry is updated to page 0.

Read 4 is from set n of page 3 and is placed in the set n position in way A.

5. The location for Read 5 occupies set 0 of page 4. This information is stored
in cache way A in the set 0 position.

6. Read 6 comes from set position 1 within page 4 and cannot be stored in
way A because it is already occupied with data from read 1. Data from
read 6 instead is placed in set position 1 of way B.

=
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As you can see a two-way memory structure is more flexible than direct-
mapped. The two-way set-associative cache was able to cache all six of the
memory requests without overwriting an entry, while the direct-mapped cache
could not. Generally speaking the two-way set-associative cache results in a
higher percentage of cache hits.

Four-Way Set-Associative Cache

The four-way set-associative cache memory organization is simply an extension
of the two-way structure. Cache memory is divided into four banks (ways) of
equal size and main memory is viewed as divided into pages each equal in size
to that of a way. The four-way structure provides even more flexibility than the
two-way organization.

The four-way set-associative cache requires four entries to be checked to make
sure the information is not in cache. Each time the number of cache ways in-
creases, the number of look-ups increase proportionally. A cache with multiple
ways usually implements a comparator that compares the target page address
to all of the selected tags simultaneously (e.g., a four-way set associative cache
compares the target page number to the four selected directory entries). Note
that continuing to increase the number of ways would eventually lead to a
tully-associative structure.

The internal cache of the 486 microprocessor is four-way set-associative. See the
MindShare Architecture Series publication entitled 80486 System Architecture
from Addison-Wesley for details on the 486’s internal cache.

Least-Recently Used (LRU) Algorithm

In two- or four-way caches, when all cache ways have valid information stored
in a given set and new information needs to be stored in that set position, a de-
cision must be made as to which information to replace. Most cache controllers
use a least-recently used (LRU) algorithm to determine which cache entry to
overwrite. The LRU logic keeps track of the cache locations within a set that
have been least recently used. This is consistent with the principle of temporal
locality, meaning that information that has not recently been used will not be
likely to be used again soon.

Although the processor designer may implement an LRU algorithm that strictly
keeps track of the least-recently used directory entry within the selected group,
this can require a fairly substantial amount of logic. Rather, many designers
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choose to implement a pseudo-LRU algorithm that makes a “best attempt” at
keeping track of the least-recently used directory element. As an example, the
486 processor uses a pseudo-LRU algorithm.

Cache Line Size

When a cache miss occurs, the cache subsystem must go to main memory to get
the requested information. The cache subsystem can be designed to fetch more
information than was actually requested. The amount of information fetched
from memory by the cache controller is defined as a line by Intel. Other manu-
facturers use the terms block or sector to define the amount of information the
cache fetches in the event of a cache miss. Line size varies according to design,
but typically ranges from 4 bytes to 32 bytes. The line is the smallest unit of in-
formation that a cache can map. This means that each time a cache miss occurs
an entire line of information must be read from main memory. This is called a
cache line fill.

For a given cache data RAM size, as the line size increases, the cache directory
(tag RAM) size decreases. Since the cache directory is “overhead” and doesn’t
store data or code that the microprocessor can use, it makes sense to try to re-
duce the amount of tag RAM that the cache uses. The cache directory contains
the numbers of the pages in main memory that lines come from. For example, a
4KB direct-mapped cache needs to be able to address 1,048,576 4KB-long pages
in main memory (assume the cache is designed to handle addresses anywhere
in a 4GB range, 4GB / 4KB = 1M.) Each of the cache directory entries is thus 20
bits wide to select 1 of 1M pages. Each of the 4KB-long pages consists of lines.
Assume that the line size is 4 bytes. In this case, there are 1,024 sets in the cache
(4KB cache data RAM / 4 bytes = 1,024 sets). Therefore, there must be 1,024 en-
tries in the cache directory. Since each entry is 20 bits wide, the cache needs
1,024 x 20 bits or 2,560 bytes of SRAM for the directory. 2.5KB is a lot of over-
head for a 4KB cache.

If the line size is increased to 16 bytes, the number of sets required drops to 256
(4KB / 16 bytes = 256). The width of the cache directory entries stays the same
(20 bits) since the cache is still addressing 1M of 4KB-long pages in main mem-
ory. So, the cache needs 256 x 20 bits or 640 bytes of SRAM for the directory.
That's 75% less.

Along with saving space and money, larger line sizes can increase cache per-
formance, because a larger amount of information is stored as a result of each
miss. Since instructions are normally requested from sequential memory loca-
tions (principle of spatial locality), a larger line size can result in a higher hit
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rate. The cache line fill operation tends to prefetch instructions that the micro-
processor will require in the near future, placing them in the high-speed cache
before the microprocessor needs them.

Larger line size doesn’t always mean better performance. There are limits to
how large the line size can be before performance begins to suffer. A perform-
ance tradeoff of larger line sizes is that line sizes larger than the data path to
main memory require several memory accesses to complete each cache line fill.
This takes time and increases the system bus utilization. To counter this prob-
lem some cache subsystems are designed to do burst transfers when perform-
ing cache line fills. One example of such a cache is the internal cache in the 486.

Another performance tradeoff of larger line sizes is slack (wasted) space in the
cache. If the line size is too large, then the cache may be storing many bytes that
the microprocessor does not intend to access. Since the cache can only track
complete lines, it must get all the bytes in a line, even if the microprocessor
only wants one of the bytes in that line. The rest of the SRAM in the line is used
up storing unwanted bytes. Statistically, the optimal line size for each cache de-
sign is based on the typical operating system/application mix and data struc-
ture requirements that the system is targeted for.

As discussed above, the larger the line size, the smaller the cache directory (but
big line sizes can hurt performance). An approach that allows for small directo-
ries and good performance is the sectored cache. Intel defines a sector as a
group of consecutively-addressed lines that share the same cache directory en-
try. Other manufacturers define sector and line differently, but the sectored
cache concept is the same.

In a sectored cache, each sector consists of two or more lines. The lines must
come from locations that are adjacent to one another in main memory because
all of the lines in the sector have the same tag or page number in the cache di-
rectory. Although the cache directory only has one page number for the lines in
a sector, it does have an individual set of state bits for each line. That means
that the line is still the smallest unit of data that the cache can track.
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Cache Size

The cache memory is relatively small compared to the main system memory.
The size of the cache varies by design, but typically ranges from 4KB to 512KB
and depends on whether the cache is a first- or second-level cache. The follow-
ing are some general design considerations for first- and second-level cache
subsystems.

First-Level Cache Size

To achieve the highest cache performance, information requested by the proc-
essor must reside in the first-level cache a high percentage of the time. The
chances that information is in cache is related to cache size and organization. In
general, a larger cache will give a higher hit rate and thus higher performance.

The rule of larger caches giving higher performance must be tempered in light
of two factors: cost and locality of reference. Since SRAM, used in cache de-
signs, is extremely expensive, tradeoffs must be made between cost of addi-
tional cache memory and increased performance. This tradeoff becomes
particularly germane when considering the non-linear increase in performance
as cache size increases. Refer to table 14-1. The information in this table is typi-
cal of results during design process simulations. Notice that additional cache
memory provides only minimal increases in performance once cache size in-
creases beyond 16KB. However, the optimum size of cache is highly dependent
on how well the application fits the locality of reference model.

Table 14-1. Cache Size vs. Hit Rate

Size Hit Rate
1KB 41%
8KB 73%
16KB 81%
32KB 86%
64KB 88%
128KB 89%

Second-Level Cache Size

The principle advantage of the second-level cache is that it can supply a line of
information to the level one cache when it incurs a cache miss. The perform-
ance gains of second-level caches then relate to shortening the time needed for
the first-level cache to perform a cache line fill. For example, if the first-level
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cache has a hit rate of 85%, then 15% of all accesses to memory result in cache
misses. A certain percentage of the misses from the first-level cache will result
in cache hits at the second-level cache. Assuming the secondary cache also has
a hit rate of 85%, then 85% of the 15% missed by the first-level cache result in
cache hits. Overall then, 97.75% of all requests to memory are supplied by
cache.

As is true for first-level caches, second-level caches enhance performance due
to the locality of reference principles. Second-level caches must hold copies of
information that the first-level cache misses. In other words, second-level
caches hold information currently in the first-level cache along with informa-
tion that was previously in the first-level cache (but was subsequently elimi-
nated to make room for new information). By design then, second-level caches
must be several times larger than the first-level cache so that information pre-
viously held in the first-level cache can be obtained from the second-level cache
when it is needed again.

It should be apparent that the optimum size of any cache depends on the na-
ture of the programs that access memory for code and data. Some manufactur-
ers spend considerable time, money and effort to understand the nature of
memory access in various operating environments so that the best cache can be
designed and implemented.

Cache Addressing

Caches in x86-based systems are physically addressed. That means that the
memory management unit (the segmentation unit and the paging unit) trans-
lates the logical address into the physical address before the physical address is
submitted to the cache for a look-up.

Some other computer architectures submit the address to the cache before page
translation is done. This speeds the access to the cache because it saves a step.
Such caches are virtually-addressed instead of physically-addressed.

I/0 Information Not Cached

Cache controllers do not cache information read from /O addresses. It doesn't
make sense to do so. Consider the scenario wherein a cache controller keeps a
copy of the printer status that is returned in response to an I/O read from the
printer status I/O port. If the microprocessor requests the printer status at
some time in the future, the request would be honored from the cache, and the
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program would be given the status of the printer five minutes ago. In fact, the
printer may have run out of paper two minutes ago.

When the cache controller intercepts a processor-initiated I/0O bus cycle, it im-
mediately initiates the bus cycle on the system bus. When the I/0O data is read
from the I/O device, it is returned to the microprocessor and a copy is not kept
in the cache.

Non-Cacheable Memory

Certain areas of memory space must be designated as non-cacheable address
space. If the cache controller were to attempt to keep copies of information
from these areas of memory space, it may end up with stale information that
doesn't accurately reflect the actual contents of main memory.

A network controller card with dual-ported RAM is a good example. The net-
work controller card can receive information over the network and write it into
this memory without using the bus. The system board microprocessor can also
access the memory. If the cache controller on the system board were to cache
information from this area of memory, it would be unable to detect memory al-
terations performed by the network controller using its on-card buses. The in-
formation in the cache would no longer be coherent with main memory.

The system board must incorporate a memory address decoder that detects
non-cacheable memory addresses and tells the cache controller not to keep a
copy of information read from these memory locations. The requested informa-
tion should be read from main memory and given to the microprocessor with-
out making a copy in the cache. The 82385 cache controller has an input called
NCA# (non-cacheable access) that is used to tell it when the microprocessor is
accessing a non-cacheable memory location. The system board designer can ac-
complish this in one of two ways:

¢ The designer may set aside one or more pre-defined memory address
ranges as non-cacheable space. Any expansion cards with addressable
dual-ported memory should then be configured so as to map their on-
board RAM into this space. The system board would include a memory
address decoder designed to detect accesses within these fixed memory
address ranges and assert NCA# to the cache controller.

¢ The designer may include a programmable memory address decoder on
the system board. Each time the machine is powered up, the programma-
ble address decoder is automatically configured to recognize the memory
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address ranges used by expansion cards with non-cacheable memory on-
board.

Testing Memory

When running main memory diagnostics, the cache controller can cause prob-
lems by intercepting memory reads and never letting them propagate out to
main memory. The diagnostic would assume that data is being read from main
memory when, in fact, it is being returned from the cache.

In order to ensure that this problem doesn't occur, cache controllers typically
include an input called FLUSH#. When asserted, it causes the cache controller
to clear the valid bit in every directory entry to 0, thereby invalidating all cache
entries. All of the valid bits remain cleared as long as the FLUSH# input is kept
asserted. Typically, the FLUSH# line is asserted or deasserted by writing the
appropriate value to an [/O location that has been set aside for this purpose.
The I/0 location used and the data necessary to assert or deassert FLUSH# is
system design-specific.

When FLUSH# is asserted, every memory read initiated by the microprocessor
results in a memory read bus cycle, causing main memory to be accessed for
every memory read.
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Chapter 15

The Previous Chapter

Prior chapters covered the subject of RAM memory and memory cache subsys-
tems.

This Chapter

This chapter covers the various types of ROM memory encountered in ISA sys-
tems. This includes PROM, MROM, EPROM, EEPROM and flash EEPROM. In
addition, the subjects of ROM diagnostics, shadow RAM, double-mapping, and
device ROMSs are covered.

The Next Chapter

This chapter concludes Parts 1 and 2, which describe the background technol-
ogy necessary to a complete understanding of any ISA machine. Part 3 follows
this chapter and covers the ISA architecture. This includes ISA history, the ISA
bus structure, ISA bus cycles, the interrupt subsystem, direct memory access
(DMA), bus mastering, the real-time clock and configuration RAM, the key-
board/mouse interface, numeric coprocessors, and the ISA timers.

ROM Memory — Theory of Operation

Introduction

ROM stands for read-only memory. ROM memory can only be read once it is
installed in a system and it is non-volatile — it retains its stored information
indefinitely after power is removed from the system.

As illustrated in figure 15-1, the ROM memory chips used in ISA machines con-
tain one byte of information per internal storage location. Each storage location
consists of eight bit cells, each of which can store a1 or a 0.
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Figure 15-1. The Bit Cell

The information stored in a ROM typically consists of both programs and data
to be used by the programs. The programs and data are developed by a pro-
grammer and are then assembled or compiled into machine language. Machine
language is the series of hex numbers that the microprocessor treats as instruc-
tions and data.

The machine language representation of the programs and data is then loaded
into a device called a ROM programmer. This is typically accomplished by
transmitting the information to the ROM programmer using a serial or parallel
communications link.

The ROM is inserted into a socket on the ROM programmer and the informa-
tion is written into it. Once placed in the target unit, such as an ISA system, the
ROM may only be read from.

The following sections discuss the types of ROM typically used in ISA ma-
chines:

e Fusible-Link PROM

e Masked ROM, or MROM
¢ EPROM

¢ EEPROM

e Flash EEPROM
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Fusible-Link PROM

Figure 15-2 represents one storage location in fusible-link PROM (programma-
ble read-only memory). Every bit cell contains a fuse, or fusible-link. In order to
store the programs and data into the PROM's storage locations, it must be in-
serted into the socket on the ROM programmer. When the programming proc-
ess begins, a byte is written into each location by blowing, or vaporizing, the
fuses in some bit cells, while leaving others intact.

When the PROM is installed in an ISA system, the microprocessor may only
read from it. When a PROM storage location is read from, the pattern of ones
and zeros represented by the eight fuses is simultaneously output onto the data
bus and sent back to the microprocessor.

Because some of the fusible links are physically vaporized during the pro-
gramming process, a PROM may not be re-programmed with new information

after its initial programming. For this reason, if a systems manufacturer intends
to update the information stored in the ROMs periodically, PROMs should not

be used.

Figure 15-2. The PROM Bit Cells

Masked ROM (MROM)

The masked ROM is a variation of the fusible-link PROM. If the systems manu-
facturer is absolutely certain that the information in the ROMs will never
change, it may choose to have the ROM chip manufacturer pre-program the in-
formation into the ROMs for them. The systems manufacturer sends the mem-
ory chip manufacturer a copy of the information to be stored in the ROM. The
memory chip manufacturer then produces a photographic mask that represents
the opens and shorts that would be produced by blowing some fuses and leav-
ing others intact. This mask is then used to etch thousands of pre-programmed
ROMs that are then shipped to the systems manufacturer.
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Eraseable Programmable Read-Only Memory
(EPROM)

If the systems manufacturer wants to reserve the option of re-programming the
ROMs at some time in the future, EPROMs should be used instead of PROMs
or Masked ROMs.

EPROM stands for erasable programmable read-only memory. When received
from the memory chip manufacturer, the EPROM is blank (contains no infor-
mation). As with the PROM, information is written into it using a ROM pro-
grammer.

Figure 15-3 illustrates the heart of the EPROM bit cell. At the bit cell level, the
EPROM basically consists of a transistor. A transistor is nothing more than a
switch. With a certain voltage, or charge, on its gate, the transistor provides a
path for current flow through its source and drain. In other words, the switch is
closed, allowing current to flow. With a different charge on its gate, however,
the transistor ceases to conduct.

The gate of the transistor is floating, surrounded by a thin layer of silicon diox-
ide. Since silicon dioxide is an insulator (it doesn't conduct electricity), a charge
placed on the floating gate doesn't have anywhere to go and tends to stay there.

When the EPROM is placed in the ROM programmer and the programming
process is initiated, a bit is written into a bit cell by either charging the floating
gate or discharging it. The charge on the floating gate may be changed by ap-
plying a large positive or negative voltage to either the control gate, source or
drain. At the completion of the programming process, some of the bit cells have
had charges placed on their floating gates and some have not.

The EPROM is removed from the ROM programmer and placed in the system.
When the microprocessor attempts to read from one of the EPROM's storage
locations, some of the eight transistors that make up the storage location con-
duct, while others do not as a result of the charge (or lack of a charge) placed
on their floating gates. It acts just like a series of eight switches, producing a
group of eight bits of information. The eight bits of information are then driven
out onto the data bus and sent back to the microprocessor.

When the information in the EPROM must be altered, the EPROM is removed
from the system and placed under a special ultraviolet light. An EPROM can be
easily identified by the small, rectangular crystal window on its upper surface.
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The EPROM is left under the light for approximately twenty-one minutes. Dur-
ing this period of time, every floating gate is bombarded with high energy ul-
traviolet light and a charge begins to build on every gate. Eventually, by the
end of the twenty-one minute period, every floating gate has built up a charge
sufficient to jump the thin layer of silicon dioxide and discharge. In this way,
all of the data in the EPROM is cleared. The EPROM is then removed from the
light source and may be re-programmed with new information.

Source Drain

s o3

Floating Gate
W e==Silicon Dioxide
Control Gate /

Figure 15-3. The EPROM Bit Cell

Electrically Eraseable Programmable Read-Only
Memory (EEPROM)

In operation, EEPROM memory is very similar to EPROM. Each bit cell con-
tains a transistor with a floating gate. There is no crystal window, however, so
the EEPROM cannot be erased by ultraviolet light. Rather, the EEPROM is
erased by placing a special programming voltage on its PROGRAM pin and
addressing a specific location. The location is then erased and a new byte of in-
formation may be written into it. Each location to be altered must addressed,
erased and re-written. A properly designed PC allows the EEPROM's contents
to be altered while it is still installed in the machine.
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The drawback arises in erasing each location, as it takes a considerable amount
of time. Typically, the erase/rewrite time is in the millisecond range. The
EEPROM is best used in applications where only a few bytes will be altered at
a time (such as for storage of configuration information).

Flash EEPROM

The flash EEPROM is a variation on the EEPROM. Rather than erasing and re-
writing a location at a time, the flash EEPROM is flash erased — the entire con-
tents of the flash EEPROM (or a large block of it) is erased simultaneously.
New data may then be written into the flash EEPROM. The erasure/rewrite
time is considerably longer than the EEPROM due to the large bulk of informa-
tion to be updated. Due to this operational characteristic, the flash EEPROM is
better suited to applications wherein large amounts of information are altered
at a time, while the EEPROM is better suited to applications where only a few
bytes are altered at a time. A typical application of flash EEPROM would be as
a substitute for a floppy drive for storing program and data files.

Flash EEPROMSs cost approximately 75% less than an EEPROM of comparable
bit density. As a result, EEPROM is considered to be too expensive for PC ap-
plications. As the bit density of flash EEPROMs has increased, they have be-
come quite attractive to PC system designers. On the other hand, typical flash
EEPROMs require both a 5Vdc and a 12Vdc power supply, while the typical
EEPROM only requires a 5Vdc power supply. This means that flash EEPROM
requires a more complex power supply, adding cost to the system. TI and sev-
eral other chip vendors are developing flash EEPROMs that only require a sin-
gle 5Vdc power supply, thus removing this disadvantage.

ROM's Interface to System

Figure 15-4 illustrates the ROM interface to the system. It consists of the signals
described in table 15-1.
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Table 15-1. The ROM's Interface Signals

Signal(s) Description

CE# Chip-Enable or Chip-Select. This signal is asserted by the ROM
address decoder when it detects a memory address within the
range of addresses assigned to the ROM. When CE# is asserted,
the ROM uses its address inputs to select the target location to be
read.

Address Lines | Once CE# is detected, the ROM uses the address present on its
address inputs to select the target location to be read.

OE# Output Enable. When OE# is asserted, the ROM outputs the byte
of information from the target location onto the data bus lines to
be sent back to the microprocessor.

Data Lines The data lines are used by the ROM to send the byte read from the

target location back to the microprocessor.

As an example, assume that the ROM in figure 15-4 is a 64KB ROM and the
ROM's address decoder is designed to detect the memory address range from
FO00Oh to FFFFFh. The ROM address decoder observes the upper address lines,
A[19:16], to detect an Fh as the uppermost digit in the memory address. When
an Fh is detected, the ROM address decoder chip-selects the ROM by asserting
its CE# input. The ROM responds by using its address inputs, A[15:0], to select
the exact location within the 64K locations of storage within the ROM. If the
ROM's output enable (OF#) input is also asserted, the ROM reads the byte from
the target location and drives it onto the data bus lines to be sent back to the
microprocessor.

ROM

ROMCSH#

1 M

MRDC#

00
O O
MR

Figure 15-4. The ROM's Interface to the System
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System Board ROM Memory

Many ISA system boards contain 128KB of ROM memory. This ROM contains
the following:

¢ the power-on self-test, or POST.

e The BIOS routines for the standard I/0 devices integrated onto the system
board.

¢ The interrupt service routines for the standard I/O devices integrated onto
the system board.

e The BASIC language interpreter that is executed if the boot program fails
to find a valid operating system on either the floppy or hard drive (the BA-
SIC language interpreter is only included in some ISA machines).

e The boot program used to read the operating system software, such as
MS-DOS or OS5/2, from the floppy or hard drive.

Testing

Checksumming is typically used to check ROMs for proper operation. When
the programmer originally develops the programs and data to be written to the
ROM, a simple utility program is used to add the contents of every ROM loca-
tion together. As the utility program is running, it keeps the result of the addi-
tions (the running total) in an 8-bit register. An 8-bit register can’t hold values
larger than FFh or 255d, so an overflow occurs when the running total would
exceed FFh. The utility program ignores the overflow. The following example
illustrates the process:

Byte 1: 1011 1001b
Byte 2: + 1001 1110b
Running Total: 0101 011l1lb

The programmer always stores a value in the last location in the ROM that will
force the result to zero. As an example, assume that adding every ROM loca-
tion but the last resulted in DAh (1101 1010b). The programmer would store
the following value in the last ROM location to cause the overall result to be
Zero:

Running Total: 1101 1010b
Last Byte: + 0010 0110b
Resulting Checksum: 0000 0000b
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During the POST, the program reads the contents of every system board ROM
location and adds them together. If the final result isn't zero, either the data in
the ROM has changed, which it never should, or the system cannot properly
read from the ROM. In either case, the ROM cannot be reliably read from and a
ROM checksum error is generated.

In some ISA systems, a slightly different method is used. The POST adds the
contents of every ROM location together, accumulating a 16-bit running total.
The correct value is stored in the last two locations of the ROM to force the
running total to 0000h when the last two bytes are added. If the final result isn't
zero, a ROM checksum error is generated.

Checksumming only tests the contents of the ROM once, during the POST. This
is usually sufficient because ROM is quite reliable and it is unlikely that a cell
will ever fail in the useful lifetime of the machine. A primary reason that the
POST even bothers to test the ROM is because there may be address conflicts in
the system that make it impossible to reliably access the ROM. The conflicts oc-
cur because multiple cards may be decoding the same ROM addresses. There’s
no clearinghouse that says which addresses a manufacturer should use for the
device ROMs on ISA expansion cards. Those contlicts show up as data bus con-
tention during the checksum calculation, resulting in a garbled running total.
There’s only one chance in 256 (0.4%) that the checksum will fail to catch the
conflict.

However, in systems where reliability is paramount, parity bits can be stored
along with the data bytes in the ROM when the ROM is initially programmed.
After that, every time any bytes are read from the ROM, a parity checker can
check for failures in the ROM. If a failure occurs, it may not be the fault of the
ROM. Instead, it may be noise or crosstalk on the system’s data bus which gar-
bles the data between the time it leaves the ROM and the time it reaches the
bus master. This can occur in very high speed applications. For example, par-
ity-protected ROM is often used to store the microcode (inside the microproc-
essor chip) that runs the microprocessor’s execution unit.

Note that the DRAM parity generator/checker is part of the DRAM controller
and it normally only checks for parity when reading from RAM. Therefore, de-
vice ROMs on ISA expansion cards do not need parity bits.
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Shadow RAM

Many ISA systems based on the 80386DX or SX microprocessors copy the sys-
tem board ROM contents into shadow RAM during the POST. This is done to
compensate for the notoriously slow access time of ROMs.

If an applications program depends heavily on the BIOS routines in ROM, the
instructions that make up the BIOS routines must be fetched from system ROM
frequently. Since ROM memory has a notoriously slow access time relative to
that of RAM memory, the instructions could be read more quickly and the
BIOS routine therefore executed more quickly if the BIOS routines were located
in RAM rather than ROM. In addition, the shadow RAM is a 32-bit device,
while the ROM is typically implemented as a 16-bit device. Information stored
in shadow RAM can therefore be accessed at double the rate of the ROM.

Although there may be plenty of extra RAM in the system to hold a copy of the
ROM'’s contents, the applications programs and system software that make use
of the ROM’s contents must know where the ROM is. Those programs assume
the ROM is at EOOOOh to FFFFFh. That means it would be a wasted effort to
copy the ROM to RAM that had a different address after the copy was com-
plete. There are several solutions to this problem and different systems use dif-
ferent solutions.

Shadow RAM and ROM Occupying Different Address Spaces

One solution is to use the 80386’s virtual page translation feature to translate
the ROM’s address range into RAM addresses. A system software program
would first copy the ROM into RAM and then set up the page directory and
page table with entries that point to the RAM that contains a copy of the ROM’s
contents. Subsequently, when a program submits a ROM address to the mem-
ory management unit (MMU), the paging unit inside the MMU translates the
ROM address to the address of the RAM that contains the ROM’s contents.
Programs are unaware that page translation is occurring. The address that the
program submits to the MMU is called the linear address. The MMU translates
the linear address to the physical address. Page translation is described in the
chapter entitled “The 80386DX and SX Microprocessors.”

Compared to the other solutions described below, page translation has the
benefit that it does not require special address decoders or DRAM controllers.
The limitations of this approach are that the microprocessor must be an 80386
or higher (the 80286 does not have a paging unit), it must be running in pro-
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tected mode (page translation is not available in real mode) and it must be in
virtual-8086 mode (to run code in ROM that was written for real mode). The
following solutions do not have these limitations.

Shadow RAM and ROM Occupy Same Address Space

Two devices occupying the same address space is a unique situation. Any
memory read within the ROM's assigned address range accesses the system
ROM, while any memory write within the same range accesses the top 128KB
of the RAM, known as the shadow RAM.

After POST has verified that RAM is working correctly, the complete contents
of the 128KB system ROM is copied to RAM memory. This is accomplished by
performing a read from each location in the 000E0000h to OOOFFFFFh address
range followed immediately by a write to the same location. In this manner, the
data is read from the ROM location and written to the RAM location with the
same address. Reading and writing every address in the range places a com-
plete copy of the system ROM in the shadow RAM.

After the copy has been completed, the programmer uses an I/O control regis-
ter to disable the ROM address decoder and make the shadow RAM read-only
(as if it were ROM). Any subsequent calls to the BIOS or interrupt service rou-
tines now access the shadow RAM rather than the ROMs. The substantially
faster RAM access time causes the BIOS routines to be executed more quickly
from this point forward and can result in substantial speed increases when
running applications programs that call the BIOS routines frequently.

Double Mapping ROM and Shadow RAM Address Space

This method of implementing shadow RAM designates an area at the very top
of the microprocessor’s address map (just below 16MB or 4GB) for the shadow
RAM. After the ROM is copied into this RAM area, all addresses that are in-
tended for ROM are redirected to the location in RAM where the ROM contents
have been copied.

After the POST has verified that RAM is working correctly, the complete con-
tents of the 128KB system ROM is copied to shadow RAM. This is accom-
plished on an 80286- or 803865X-based system by performing a read from each
location in the 000E0000h to OOOFFFFFh address range followed immediately
by a write to the new location in the 00FEOO0Oh to OOFFFFFFh range. Similarly,
a system based on the 80386DX or higher processor would do the writes to the
new location in the FFFEOOOOh to FFFFFFFFh range. In this manner, the data is
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read from the ROM location and written to the shadow RAM location. Reading
and writing every address in the ranges places a complete copy of the system
ROM in the shadow RAM.

After the copy has been completed, the programmer uses an I/O control regis-
ter to modify the operation of the ROM address decoder so that the ROMs are
never chip-selected again and all accesses within the ROM address range now
accesses the shadow RAM instead. The shadow RAM is also write-protected so
that it is read-only (as if it were ROM). Any subsequent calls to the BIOS rou-
tines now access the 32-bit shadow RAM rather than the ROMs. The substan-
tially faster RAM access time causes the BIOS routines to be executed more
quickly from this point forward and results in substantial speed increases when
running applications programs that call the BIOS routines frequently.

Recovering Unused ROM Address Space

Although IBM reserved ranges of addresses in the first megabyte of memory
for use by ROMs (boot ROM, option ROM and device ROMs), those ranges of
addresses are not always fully occupied. For example, 128KB of space is re-
served for device ROMs, but many systems have only a couple of small (2KB or
so) device ROMs in them. That leaves a lot of unused address space. Often it is
possible to map RAM into the addresses that were reserved for ROM so that
MS-DOS and other real-mode applications can access more than the 640KB of
RAM that IBM specified.

To determine if an address is actually assigned to a ROM, a system software
program will do a hot memory search, writing and reading values to and from
memory. If a location can be altered, it is assumed to be RAM. If the location
cannot be altered, it is assumed to be either vacant or ROM. If the location and
its neighboring locations contain FFh (all ones), it is assumed to be an address
that is vacant because the ISA data bus floats high (to ones) when no device is
driving it. The vacant addresses can be reassigned to RAM. The assumptions
that the memory search makes are not foolproof and the memory search can
cause the system to crash if a memory-mapped [/O location is accessed. If the
system survives the memory search without crashing, RAM will be mapped to
the vacant ROM addresses.

Real mode programs that were written to run on an 8086 or 8088 microproces-
sor only intend to produce addresses from 00000h to FFFFFh. In order for these
programs to access more than 640KB of RAM, the RAM must have addresses
below 100000h (1MB), from the program’s perspective.
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Using page translation and virtual-8086 mode, the system software can provide
an exclusive 1MB linear address range for the real-mode program to use. The
program believes it is accessing the first physical megabyte of RAM, but in fact
the paging unit translates the linear address to a physical address that may be
anywhere in the microprocessor’s physical address range.

If the system uses one of the other ROM shadowing techniques that is compati-
ble with the 80286 microprocessor and real mode, the unused ROM address
space can still be recovered. The DRAM address decoder is programmed to
map a block (usually 16KB at a time) of RAM into the unused ROM addresses.
The mapped RAM is then tested at these new addresses to ensure that the
memory search was not fooled when it found the vacant locations.

These blocks of ROM addresses that are freed up so that real-mode applica-
tions can access more RAM are called upper memory blocks (UMB).

Along with accessing upper memory blocks, real mode applications that were
written for the 80286 microprocessor can access almost 64KB of extended mem-
ory in the high memory area (HMA). HMA addresses start at 1MB. See the sec-
tion entitled “Accessing Extended Memory in Real Mode” in the chapter
entitled “The 80286 Microprocessor” for information on accessing the HMA.

32KB System Board ROM Configuration

In figure 15-5, the ROMs are divided into two pairs, one of which responds to
the address range from EQ00Oh to EFFFFh and the other to the address range
from FOOOOh to FFFFFh. Each of these pairs consists of two 32KB ROMs desig-
nated as the upper or odd ROM and the lower or even ROM.

The upper or odd ROM is called the upper ROM because it is connected to the
upper data path, D[15:8]. It is also called the odd ROM because all of the odd-
addressed ROM locations are within this ROM. This is evident because it is
connected to the upper data path and the microprocessor always communi-
cates with odd-addressed locations over the upper data path.

The lower or even ROM is called the lower ROM because it is connected to the
lower data path, D[7:0]. It is also called the even ROM because all of the even-
addressed ROM locations are within this ROM. This is evident because it is
connected to the lower data path and the microprocessor always communicates
with even-addressed locations over the lower data path.

When the programmer loads data into the ROMs using the ROM programmer,
a utility program is first executed that divides the information in half. All of the
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information to be stored in even addresses is programmed into the lower or
even ROM, while all information to be stored in odd-addressed locations is
programmed into the upper or odd ROM.

Whenever an address in the range from EOOOOh to EFFFFh is detected by the
system board ROM address decoder, the EXXXXCS# line (chip-select for
EQ000h to EFFFFh range) is asserted by the decoder. This selects the EXXXX
ROM pair. The two ROMs then use the lower part of the address from the mi-
croprocessor, A[15:1], to select one of 32K locations in each of the two ROMs.
The system’s bus control logic asserts the memory Read command line
(MRDC#) which is connected to the Output Enable pin (OE#) on both ROMs.
Fach of the ROMs outputs the byte from the addressed location onto the data
bus when OE# and CE# are both asserted. The lower or even ROM outputs the
byte from the even address onto the lower data path, D[7:0], while the other
ROM outputs the byte from the next sequential odd address onto the upper
data path, D[15:8]. Even though the FXXXX ROMs also see their OF# pins as-
serted, they will not interfere with the transaction because their CE# pins are
deasserted. The FEXXXX ROM pair responds to the address range from FO000Oh
to FFFFFh.
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Figure 15-5. System Board ROM Configuration with 32KB ROMs

64KB System Board ROM Configuration

In figure 15-6, there are two 64KB ROMs that respond to the address range
from EO00OOh to FFFFFh. They are designated as the upper or odd ROM and the
lower or even ROM. This designation is explained in the previous section.

Whenever an address in the range from EO00Oh to FFFFFh is detected by the
system board ROM address decoder, the ROMCS# line (ROM chip-select) is as-
serted by the decoder. This selects the ROM pair. The two ROMs then use the
lower part of the address from the microprocessor, A[16:1], to select one of 64K
locations in each of the two ROMs. The system’s bus control logic asserts the
memory read command line (MRDCH#) which is connected to the output enable
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pin (OE#) on both ROMs. Each of the ROMs outputs the byte from the ad-
dressed location onto the data bus when OE# and CE# are both asserted. The
lower or even ROM outputs the byte from the even address onto the lower data
path, D[7:0], while the other ROM outputs the byte from the next sequential
odd address onto the upper data path, D[15:8].

Upper
A ROM

ROMCSH#

Lower
ROM

MRDC#

[eNe¢]
T
T

Figure 15-6. System Board ROM Configuration with 64KB ROMs

ROMSs on ISA Cards (Device ROMs)

As already pointed out, the system board ROM contains:

e the POST for the standard devices.
e the BIOS routines for the standard devices.
e the interrupt service routines for the standard I/0O devices.

A card designed to be installed in an ISA slot also needs to be tested during
POST and may require a BIOS routine and an interrupt service routine. The
card designer can include a ROM on the ISA card and place its self-test pro-
gram, BIOS routine and interrupt service routine in it. This is called a device

ROM.

ISA systems provide a way to automatically execute the ISA card's self-test
during POST and to automatically update the interrupt table in RAM to point
to the card's BIOS routine and interrupt service routine.
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During the POST, a process called ROM scan is performed. Starting at memory
address C0000h and going through DFFFFh, the POST program scans for de-
vice ROMs. The process is simple:

1.

The POST reads two bytes starting at memory location C0000h. If the byte
from C0000h is 55h and the byte from C0001h is AAh, then the POST has
found the signature of a device ROM on an ISA card.

POST reads the next byte from location C0002h. This location contains the
length of the device ROM in increments of 512 bytes. As an example, a 2KB
device ROM would have a 04h in its third location (4 x 512 = 2048, or 2KB).
Knowing the start address and the length of the device ROM, the POST
then checksums it to ensure it can be read from properly. Checksumming is
described in the section entitled “Testing.” The result should be zero. If it
isn't, a checksum error is displayed on the screen along with the segment
start address. As an example:

CHECKSUM ERROR €C000:0000 is interpreted as a device ROM checksum
error for an ISA card whose device ROM starts at memory address
C000:0000 (segment:offset format).

If the ROM checksum is OK, the POST program does a “call” to the fourth
location in the device ROM, in this case, location C0003h. This is the start
address of the initialization code, or program, in the ROM. A “call” is simi-
lar to a jump, except that by using a call, the system remembers where to
return to when the device ROM program is finished.

The initialization code:

e Runs a self-test on the card.

e  Writes the start address of its BIOS routine into the proper slot in
the interrupt table.

e Writes the start address of its interrupt service routine into the
proper slot in the interrupt table.

e Initializes any programmable [/O registers on the card to set it up
for normal operation.

¢ Returns to the POST program.

In this way, the device ROM is automatically detected and tested, and its BIOS
and interrupt service routine pointers are installed in the interrupt table.

The POST then adds 2K (0800h) to the start address, C0000h, and checks for
another ROM starting at CO800h. If another device ROM is detected, the proc-
ess is repeated. This process is repeated at 2K address intervals up to location
DFFFFh, the end of the ROM Scan address range.
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When the ROM scan is completed, the POST has automatically detected, tested
and executed the initialization programs for every installed ISA card that has a
device ROM on it.
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The Industry

Standard
Architecture

Part 1, “The System Kernel,” covered the mechanism utilized by microproces-
sors in the Intel X86 family when communicating with memory and I/0 de-
vices. This included the 80286 and 80386 microprocessors, as well as the kernel
support logic necessary to interface these processors to 8-, 16-, and 32-bit de-
vices. Part 2, “Memory Subsystems,” provided detailed descriptions of RAM,
ROM and cache memory. Together, the first two parts provide the background
necessary to an understanding of the ISA architecture.

Part 3, “The Industry Standard Architecture,” examines all ISA-specific aspects
of system design. It includes the following chapters:

e Chapter 16: ISA Bus Structure

e Chapter 17: Types of ISA Bus Cycles

e Chapter 18: Interrupt Subsystem

¢ Chapter 19: Direct Memory Access (DMA)
e Chapter 20: ISA Bus Masters

e Chapter 21: RTC and Configuration RAM
e Chapter 22: Keyboard /Mouse Interface

e Chapter 23: Numeric Coprocessors

e Chapter 24: ISA Timers







Chapter 16: ISA Bus Structure

Chapter 16

The Previous Chapter
The previous chapter covered the various types of ROM memory encountered
in ISA systems. This included PROM, MROM, EPROM, EEPROM and flash

EEPROM. In addition, the subjects of ROM diagnostics, shadow RAM, double-
mapping, and device ROMs were covered.

This Chapter

This chapter provides a detailed description of the ISA bus. All signals on the
expansion bus are fully defined, as well as the related system board logic.

The Next Chapter

The next chapter, “Types of ISA Bus Cycles,” provides a detailed description of
bus cycles as they appear on the ISA expansion bus.

Introduction

The expansion bus in ISA machines is frequently referred to as the I/O bus.
This is incorrect. Both memory and 1/O cards are interfaced to the system
through the expansion bus. Figures 16-1, 16-2 and 16-3 illustrate the 8- and 16-
bit ISA expansion bus connectors. The following sections describe the capabili-
ties provided by the ISA interface. The characteristics of the 8-bit ISA slots were
defined in the original IBM PC. The IBM PC/AT added additional functional-
ity. The signals have been grouped by function and are described in the follow-
ing sections.
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REFRESH# §B19 A19 | SA12
BCLK §B20 A20 1 SAT
IRQ7 §B21 A21 1 8A10
iRG6 §B22 A22 1 5A9
IRQ5 B2 A23 | SA8
IRG4 § B4 A24 1 BAT
IRG3 §B25 A25 | SA6
DAKZ¥ §B26 AZ26 | SAS
TC §B27 A27 1 8A4
BALE §B28 A28 | SA3
+5Vde §B29 A29 1 SA2
08¢ §B30 A30 1 SAY
0vde | B31 A31 | SAD

Figure 16-1. The 8-bit Portion of the ISA Bus
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+5Vde § D16 C16 §SD13
MASTER186% D17 C17 §5D14
0Vde LIS LI8.d SD15

Figure 16-2. The 16-bit Portion of the ISA Bus
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Figure 16-3. The ISA Connector
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Address Bus

When the CPU initiates a bus cycle, it places the address on the address bus
during address time (Ts).The address is visible to all installed ISA cards and to
the logic on the system board. In other words, the current bus master can com-
municate with any memory or I/O slave in the system. Table 16-1 provides a
description of the signals involved in addressing devices on the ISA expansion

bus.
Table 16-1. The ISA Address-Related Signals
Signal Function
SA[19:0] System address bus. This is the microprocessor's latched address bus.

The SA bus only latches the lower 20 bits of the address (A[19:0]) be-
ing emitted by the microprocessor. The address for a bus cycle begins
to appear on the SA bus at the rising (leading) edge of BALE and is
latched at the trailing edge of BALE (buffered address latch enable).
LA[23:17] Latchable address bus. These signals are a buffered version of the
upper bits on the microprocessor's address bus. During address pipe-
lining, the address for the next bus cycle is present on this bus prior to
the beginning of the actual bus cycle. When an ISA expansion board
requires an early address decode, the LA bus should be decoded
rather than the SA bus. The address for a bus cycle does not begin to
appear on the SA bus until the midpoint of the ISA’s address time.
Decoding the LA bus allows the expansion board address decoder to
start the address decode process early, ensuring that the addressed
device will be ready to complete the bus cycle earlier than if its chip-
select had been decoded from the SA bus. Designers use this method
to allow boards employing relatively slow memory devices to respond
to the microprocessor with fewer wait states.

SBHE# System bus high enable. Also see the section on the data bus steering
logic. The 80286 or 803865X microprocessor asserts BHE# during an 8-
bit transfer with an odd address and during a 16-bit transfer starting
at an even address. When asserted, it signals that the upper half of the
data bus, D[15:8], will be used to transfer a byte between the micro-
processor and an odd address.
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Data Bus

During a bus cycle's data time (Tc), data is transferred over the data bus. The
ISA data bus consists of two 8-bit data paths: SD[7:0] and SD[15:8]. Table 16-2
describes these paths.

Table 16-2. The ISA Data Bus Paths
Signal Function

SD[7:0] System data bus, lower path. During transfers with 16-bit devices, the
lower data path is used to transfer data between the current bus mas-
ter and even-addressed locations. During transfers with 8-bit devices,
the lower data path is used to transfer data between the current bus
master and both even and odd-addressed locations. This data path is
available on all 8- and 16-bit ISA expansion slots.

SD[15:8] System data bus, upper path. During transfers with 16-bit devices,
the upper data path is used to transfer data between the current bus
master and odd-addressed locations. During transfers with 8-bit de-
vices, the upper data path is not used. This data path is available only
on 16-bit ISA expansion slots.

Bus Cycle Definition

When the system board processor initiates a bus cycle, it places the bus cycle
definition on its bus cycle definition lines during address time (Ts). The state of
these lines must be decoded by the system board's bus control logic to deter-
mine the type of bus cycle in progress. The bus control logic then asserts the
appropriate command line to indicate the bus cycle type to all ISA expansion
cards. Table 16-3 defines the setting of the microprocessor's bus cycle definition
lines for the various types of bus cycles.

Table 16-3. Bus Cycle Definition Line Decoding

Microprocessot's Bus
Cycle Definition Signals ISA Command

M/1O# So# S1# Bus Cycle Type Lines Asserted
0 0 0 Interrupt Acknowledge none
0 0 1 1/0O Write IOWCH
0 1 0 1/0 Read IORCH#
1 0 0 Halt or Shutdown none
1 0 1 Memory Write MWTCH# and SMWTC#
1 1 0 Memory Read MRDC# and SMRDC#

The ISA command lines are described in table 16-4.
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Table 16-4. The ISA Command Lines

Signal

Function

SMRDC#

System memory read command. This signal is asserted by the system
board logic during a memory read bus cycle that addresses a location
in the lower 1IMB memory address space (000000h to OFFFFFh). This
signal is connected to the 8-bit portion of all 8- and 16-bit ISA expan-
sion connectors. 8-bit memory cards should use this command line as
an enable to decode the memory address on the address bus. This pre-
vents 8-bit memory cards from being selected when a memory address
greater than 1MB is on the address bus. Also see MRDCH#.

SMWTC#

System memory write command. This signal is asserted by the system
board logic during a memory write bus cycle that addresses a location
in the lower 1IMB memory address space (000000h to OFFFFFh). This
signal is connected to the 8-bit portion of all 8- and 16-bit ISA expan-
sion connectors. 8-bit memory cards should use this command line as
an enable when decoding the memory address on the address bus.
This prevents 8-bit memory cards from being selected when a memory
address greater than 1MB is on the address bus. Also see MWTCH.

IOWCH#

I/O write command. This signal is asserted by the system board logic
during an I/O write bus cycle.

IORC#

I/O read command. This signal is asserted by the system board logic
during an 1/0 read bus cycle.

MRDC#

The memory read command line is asserted by the system board logic
during a memory read bus cycle. 16-bit memory cards should use this
signal as an enable when decoding the memory address on the ad-
dress bus. This prevents 8-bit memory cards from being selected when
a memory address greater than 1MB is on the address bus. Also see
SMRDCH.

MWTC#

The memory write command line is asserted by the system board
logic during a memory write bus cycle. 16-bit memory cards should
use this signal as an enable when decoding the memory address on the
address bus. This prevents 8-bit memory cards from being selected
when a memory address greater than 1MB is on the address bus. Also
see SMWTCH#.
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Bus Cycle Timing

The timing for an ISA bus cycle is derived from BCLK. Table 16-5 describes the
ISA bus signals related to bus cycle timing.

Table 16-5. Bus Cycle Timing Signals

Signal

Function

BCLK

Bus clock. The BCLK signal is derived from the input clock to the sys-
tem board microprocessor. ISA bus is based on the version of the IBM
PC/AT that was based on an 80286 microprocessor running at a speed
of 8MHz (internal PCLK speed). The microprocessor's double-
frequency clock input, CLK2, is divided by two to yield an 8MHz sig-
nal. In order to synchronize it to each bus cycle generated by the mi-
croprocessor, the BCLK generator on the system board monitors the
S0# and S1# outputs of the microprocessor. The falling edge of either
of these signals marks the start of a bus cycle and is used to synchro-
nize the 8MHz BCLK supplied to the ISA expansion cards. Since
BCLK is re-synchronized at the leading edge of every bus cycle, it will
appear to jitter when viewed with an oscilloscope. One cycle of BCLK
defines the duration of address time or data time on the ISA bus.

In later ISA machines, the BCLK speed is usually 8.33MHz. This dates
from the introduction of the first 25MHz 80386 machines. The design-
ers of these machines simply divided the 50MHz CLK2 by six to yield
a BCLK speed of 8.33MHz. Some problems were anticipated due to
the slightly faster BCLK and the resulting shorter duration of address
time and data time on the ISA bus, but few actual problems were en-
countered.
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Table 16-5. Bus Cycle Timing Signals, continued

Signal

Function

BALE

Buffered address latch enable. On the leading, or rising, edge of
BALE, the microprocessor’s address bus (A[19:0]) is gated through the
system board's Address Latch and through the bus control logic onto
the SA bus (SA[19:0]). On the trailing edge of BALE, the address latch
and the bus control logic hold the current address on the SA bus for
the duration of the current bus cycle.

The falling edge of BALE should be used to by 16-bit ISA memory
boards to latch the result of the decoded LA bus address (LA[23:17])
and hold it for the duration of the current bus cycle.

BALE is deasserted and reasserted (pulsed) for every bus cycle that
the bus control logic runs. If address pipelining is enabled, A[19:0] is
not gated through the address latch to SA[19:0] on the second and sub-
sequent ISA cycles when the bus control logic is running multiple ISA
bus cycles to satisfy one microprocessor bus cycle.

BALE is asserted (high) constantly whenever the system’s microproc-
essor is not the current bus master.

CHRDY

Channel ready. When an ISA expansion board requires more wait
states than would normally be supplied by the default ready timer on
the system board, it should deassert CHRDY when its address decoder
recognizes an address and the appropriate command line (SMRDCH#,
SMWTCH#, MRDCH, etc.). This prevents the default ready timer on the
system board from timing out and issuing READY# to the microproc-
essor until CHRDY is asserted again by the currently-addressed ISA
device. As long as the currently-addressed ISA card holds CHRDY
deasserted, the microprocessor's READY# input is kept deasserted,
causing wait states to be inserted in the bus cycle. When the currently-
addressed device is ready to end the bus cycle, it allows CHRDY to
become asserted again (CHRDY has a pull-up resistor on the system
board), enabling the default ready timer to assert the microprocessor's
READY# input. When the microprocessor samples its READY# input
asserted at the end of the current data time, it ends the bus cycle.
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Table 16-5. Bus Cycle Timing Signals, continued

NOWS# No wait state. When an 8- or 16-bit ISA memory expansion board re-
quires zero wait states rather than the number that would normally be
supplied by the default ready timer on the system board, it should
assert NOWS# when its address decoder recognizes an address and
the appropriate command line (SMRDC#, SMWTC#, MRDCH, etc.).
This causes the default ready timer to assert READY# immediately.
This signals to the microprocessor that the device is ready to end the
bus cycle. NOWSH# can be used to shorten an access to an 8-bit card
from the default of four wait states down to one wait state, or an ac-
cess to a 16-bit memory card from one to zero wait states. Accesses to
16-bit I/O cards may not be shortened from the default of one wait
state, but may be lengthened using the CHRDY signal.

Device Size

When a 16-bit slave's address decoder detects an address within its assigned
range, it not only should assert the device's chip-select line, but should also as-
sert the appropriate 16-bit size line. Refer to table 16-6. An asserted level on ei-
ther of the 16-bit size lines informs the current bus master that it is
communicating with a device that is connected to both data paths, SD[7:0] and
SD[15:8].

If neither of these signals is asserted during a bus cycle, the bus master is com-
municating with an 8-bit device and all communications must take place over
the lower data path, SD[7:0]. When necessary, the system board's data bus
steering logic is automatically enabled by the bus control logic to route the data
over the correct data path.

The device size lines (M16# and 1016#) control these aspects of the bus control
logic:

1. ISA bus cycle timing, including:
¢  whether the command lines are asserted early or are delayed, and
¢ the number of default wait states

2. Bus sizing, including:
e data bus steering, and
e the number of ISA bus cycles that must be run
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ISA bus cycle timing is described in detail in the next chapter. Bus sizing is de-
scribed in detail in the chapters entitled “The 80286 System Kernel: The En-
gine” and “The 80386 System Kernel.”

Table 16-6. The Size 16 Signal Lines

Signal

Function

M16#

Memory size 16. This signal is generated by a 16-bit memory expan-
sion card when it recognizes it is being addressed. M16# tells the data
bus steering logic that the addressed memory device is capable of
communicating over both data paths. When accessing an 8-bit mem-
ory device, the M16# signal line remains deasserted, indicating to the
data bus steering logic that the currently addressed device is an 8-bit
memory device capable of communicating over the lower data path
only. When asserted, M16# also pre-conditions the default ready timer
on the system board to insert one wait state into the bus cycle unless
NOWSH# is asserted. If NOWSH# is asserted, zero wait states are inserted
in the bus cycle.

[1016#

/O size 16. This signal is generated by a 16-bit ISA I/0O expansion
board when it recognizes that it is being addressed. IO16# provides
the same function for 16-bit I/O expansion devices as the M16# signal
provides for 16-bit memory devices. IO16# also pre-conditions the de-
fault ready timer on the system board to insert one wait state into the
bus cycle.

Reset

When the unit is first powered up, the RESDRYV (reset drive) signal on the ISA
bus remains asserted until the power supply voltages have stabilized. RESDRV
is also asserted when power has dropped below an acceptable level. When as-
serted, RESDRYV has two effects on the installed ISA cards:

The cards are prevented from doing anything until the power has stabi-
lized and RESDRV has become deasserted.

Forces all of the installed ISA cards to a known, initialized state to ensure
that they always begin operating exactly the same way every time the unit
is powered up.
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DMA

Figure 16-4 illustrates the system board logic and ISA bus signals related to
DMA. ISA systems employ two 8237 DMA controllers cascaded together to
provide seven DMA channels for use by I/O cards. The signals associated with
DMA operations are listed and defined in table 16-7. For a detailed description
of DMA, see the chapters entitled “Direct Memory Access (DMA)” and “ISA
Bus Masters.”

Table 16-7. The ISA DMA Signal Lines and Associated System Board Logic

Signal

Function

DRQ[3:0]
DRQI[7:5]

DMA request for channels 0 through 3 and 5 through 7. DRQ4 isn't present on the
ISA expansion Bus because it's used by the Slave 8237 DMA controller to request
the use of the buses from the master 8237. The other DMA request lines are used
by I/0 devices to request that a block data transfer between the I/O device and
memory be performed by the DMAC. DRQJ[3:1] are connected to all 8- and 16-bit
ISA expansion slots, while DRQ[7:5] and DRQO are only connected to the 16-bit
ISA expansion slots.

DAK#[3:0]
DAK#[7:5]

DMA acknowledge for channels 0 through 3 and 5 through 7. DAK4# isn't present
on the ISA expansion bus because it's used by the master 8237 DMAC to inform
the slave 8237 DMAC that it has been granted the use of the buses. When a DMA
channel has possession of the buses, it responds to a DMA request (DRQx) by
asserting the corresponding DMA acknowledge line (DAKx#), along with either
the I/O Read or I/ O Write command line (IORC# or IOWC#). This combination of
DAKx# and IORC# or IOWCH# selects the I/O device that initiated the request,
allowing it to transfer a byte (for the slave DMAC) or a word (for the master
DMAC) between itself and memory.

TC

Transfer complete. Asserted by the master or slave DMAC when the word or byte
transfer count for a DMA channel has been exhausted.

AEN

Address enable. Asserted when one of the system board's DMACs (master or
slave) has been granted the buses. When asserted, AEN prevents the I/O devices
from responding to the [/O command lines. The DMAC has placed a memory
address on the address bus (not an I/O address) but it has asserted one of the I/O
command lines.

MASTER16#

Asserted by a 16-bit ISA bus master expansion board when it has been granted
the buses. On the system board, an asserted level on MASTER16# causes the direc-
tion of the bus buffers to be reversed so the ISA bus master expansion card can
drive addresses and bus cycle information onto the ISA bus and into the system
board. The asserted level on MASTER16# also causes the system board to deassert
AEN, thereby allowing the I/O devices to respond to the ISA command lines. This
enables the bus master card to address any device on the system board and any
device located on the ISA bus.
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Figure 16-4. The ISA DMA Signals and Associated System Board Logic
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Interrupts

Figure 16-5 illustrates the interrupt support logic on the system board and the
interrupt-related signals on the ISA bus. Two Intel 8259 programmable inter-
rupt controllers (PICs) are located on the system board. When a device on the
ISA bus requires servicing by the system board microprocessor, it should assert
its respective interrupt request (IRQ) line to inform the system board micro-
processor. A detailed description of interrupts is located in the chapter entitled
“Interrupt Subsystem.” Table 16-8 lists the ISA interrupt request lines and the
1/0 devices that normally use them. The assignments of system interrupt re-
quest lines that are not on the ISA connector are shown in table 16-9.

Table 16-8. ISA Bus Interrupt Request Line Assignment

Interrupt Line Device usually assigned to

IRQ3 Serial port 2

IRQ4 Serial port 1

IRQ5 Parallel port 2

IRQ6 Floppy disk interface

IRQ7 Parallel port 1

IRQ9 none (named IRQ2 on PC and PC/XT)
IRQ10 none

IRQ11 none

IRQ12 Mouse interface
IRQ14 Hard disk interface
IRQ15 none

Table 16-9. Interrupt Request Line Assignment, Lines Not on ISA Bus

Interrupt Line Device assigned to
IRQO System timer
IRQ1 Keyboard interface
IRQ2 Cascade interrupt from slave PIC
IRQS8 Real time clock
IRQ13 Numeric coprocessor
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Error Reporting Signal

The ISA expansion bus signal line associated with error reporting is described
in table 16-10. Figure 16-6 illustrates the relationship between the ISA bus
CHCHK# signal and the system board logic.

Table 16-10. The ISA Error Reporting Signal

Signal

Function

CHCHK#

Channel or I/O check. This signal is asserted by an ISA expansion
board to signal an error condition to the microprocessor. An NMI
interrupt is issued to the microprocessor if NMI interrupts have been
enabled (bit 7 of port 70h is a 0) and if recognition of channel check

has been enabled (bit 3 of port 61h is a 0).

Watchdog Timer Timeout#

- NMI
Parity Check#  pee, ] - Enable/Disable Gate
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RAM Parity Error] &7 I
Enabie/Disable i
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Channel Check
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Figure 16-6. The Channel Check Logic
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Miscellaneous Signals

The remaining signals on the ISA bus are listed and described in table 16-11.

Table 16-11. Miscellaneous ISA Signals

Signal Function

REFRESH# [ This signal is asserted whenever the system board refresh logic is
executing a DRAM refresh bus cycle. See discussion of DRAM refresh
in the chapter entitled “RAM Memory: Theory of Operation.”

0OsC Oscillator. This is a free-running 14.31818MHz clock that may be

used by ISA expansion boards. OSC runs at a multiple of the color
burst frequency and was used by video display adapter cards. Addi-
tional information about OSC is in the chapter entitled “ISA Timers.”
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Chapter 17

The Previous Chapter
The previous chapter, “The ISA Bus Structure,” provided a detailed description

of all of the signals on the ISA expansion bus and their associated system board
support logic.

This Chapter

This chapter provides a detailed description of the types of transfers performed
over the ISA expansion bus.

The Next Chapter

The next chapter, “Interrupt Subsystem,” provides a detailed description of the
interrupt subsystem found in all ISA machines.

Introduction

The fastest bus cycle that can be run by an 80286 or higher microprocessor is a
0-wait-state bus cycle, with a duration of two PCLK cycles. For the clock-
multiplied 486 and Pentium processors, a 0-wait-state bus cycle takes two ticks
of the CLK input to the microprocessor. PCLK may be the same as or may be
faster than CLK. The clock that is used to synchronize ISA bus transfers is
called BCLK, or bus clock. The ISA bus is based on the 8MHz version of the
80286-based IBM PC/AT. In that machine, BCLK was a copy of PCLK, so
BCLK ran at SMHz.

In later ISA machines, the BCLK speed is up to 8.33MHz. This dates from the
introduction of the first 25MHz 80386 machines. The designers of these ma-
chines simply divided the 50MHz CLK2 by six to yield a BCLK speed of
8.33MHz. BCLK can run at any frequency up to 8.33MHz, with typical fre-
quencies of 8MHz, 8.25MHz and 8.33MHz. A single tick, or cycle, of BCLK is
therefore 120ns to 125ns in duration. A 0-wait-state bus cycle on the ISA bus
consists of two BCLK ticks, lasting 240ns to 250ns.
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Note that for simplicity in the rest of this chapter, BCLK is assumed to run at
8MHz.

During a bus cycle, a maximum of two bytes may be transferred by using both
data paths. At this rate, the machine can perform four million (1 second di-
vided by 250ns per bus cycle) two-byte transfers per second. This yields a
maximum transfer rate of 8MB/second.

The ISA bus allows both 8-bit transfers, for compatibility with the 8-bit expan-
sion boards used in the original IBM PC, as well as 16-bit transfers. The follow-
ing sections describe the basic types of ISA bus cycles.

Transfers with 8-bit Devices

The ISA bus cycle types used to communicate with 8-bit devices include:

e Standard 8-bit device ISA bus cycle — 4 wait states
e Shortened 8-bit device bus cycle — 1, 2, or 3 wait states
e Stretched 8-bit device bus cycle — more than 4 wait states

The steps below describe the sequence of events that take place during an 8-bit
bus cycle using the default READY# timing and explains how the default tim-
ing can be either shortened or stretched. Figure 17-1 illustrates an example bus
cycle. The step numbers in the text that follows corresponds to the numbered
reference points in figure 17-1.

1. The address being presented by the microprocessor begins to appear on the
LA bus at the start of address time. This corresponds to the leading edge of
Ts. If the system board is based on an 80286, 80386 or Pentium microproc-
essor and address pipelining is enabled, the address may actually be pre-
sent on the LA bus prior to the beginning of the bus cycle (as is the case in
this example). 16-bit ISA memory expansion cards can use the portion of
the address on the LA bus to perform an early address decode. 8-bit ISA
expansion cards do not have access to the LA bus and therefore cannot per-
form an early address decode. I/O cards only use the lower 16 address bits
and therefore cannot take advantage of address pipelining either.
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Figure 17-1. Standard Access to an 8-bit ISA Device

2. BALE is asserted halfway through address time, gating the address
through the system board address latch and through the bus control logic
onto the SA bus.

3. If this is a write bus cycle, the microprocessor's output data is gated onto
the SD bus halfway through address time. It remains on the SD bus until
half a BCLK cycle into the next bus cycle (halfway through address time of

the next transfer).

4. The trailing edge of BALE (at the beginning of data time) causes the system
board address latch and the bus control logic to latch the address being
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output by the CPU so it will remain static on the SA bus for the remainder
of the bus cycle. Also at this time, the addressed device can safely complete
the decoding process.

If this is a memory transaction (M/IO# from microprocessor is high), then
at the end of address time, the M16# signal is sampled by the system board
bus control logic. Since this is a transaction to an 8-bit device, M16# is sam-
pled deasserted, and the bus control logic does not assert the command line
until halfway through the first data time. During a transfer with an 8-bit
device, the assertion of the command line is delayed until the midpoint of
data time to allow more time for address decode before command line as-
sertion. (See the section entitled, “Transfers with 16-bit Devices” to see
when the command lines are asserted early.)

The appropriate command line (SMRDC#, SMWTCH#, IORC# or IOWCH#) is
asserted halfway through data time. The command line remains asserted
until the end of the bus cycle (end of last Tc). If this is a memory transac-
tion, M16# is also sampled by the bus control logic halfway through the
first data time. Since this is a transaction to an 8-bit device, M16# is sam-
pled deasserted. The second sample point on M16# gives additional time
for 16-bit memory devices that failed to assert M16# early enough for the
first sample point. These devices either did not see LA[23:17] early enough
to assert M16# by the first sample point, or they are waiting for BALE to be
asserted before decoding LA[23:17].

If this is an I/O transaction (M/IO# from microprocessor is low), then at
the midpoint of the second data time (the first wait state), the IO16# signal
is sampled by the system board bus control logic. Since this is a transaction
to an 8-bit device, I0O16# is sampled deasserted, indicating that the ad-
dressed expansion board is an 8-bit device.

Halfway through the second data time and halfway through each subse-
quent data time, the default ready timer on the system board samples the
NOWS# and CHRDY lines. If both NOWS# and CHRDY are sampled as-
serted, the CPU READY# line is asserted and the bus cycle ends on the next
rising edge of BCLK (the end of the current data time). In this way, an ISA
board can terminate a bus cycle earlier than the default number of BCLK
cycles (wait states) by asserting NOWSH#. On the other hand, if CHRDY is
deasserted, the default ready timer ignores NOWSH# and inserts wait states.
(Note that the EISA specification warns that devices should not assert
NOWSH# while deasserting CHRDY, implying that some bus controllers
may not ignore NOWS# when CHRDY is deasserted.)

A bus cycle addressing an 8-bit ISA device defaults to six BCLK cycles
(four wait states) if the following two conditions are met:
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e the bus cycle isn't terminated earlier by the assertion of NOWSH#
and
e CHRDY is asserted when sampled during the first half of the last
data time of the default cycle (first half of the 5th data time).
This means that the duration of an ISA bus cycle accessing an 8-bit device
defaults to four wait states unless shortened by NOWSH# (to 3, 4, or 5 BCLK
cycles) or lengthened by CHRDY. The default bus cycle ends at the trailing
edge of the fifth data time.

8. During a read bus cycle, the microprocessor reads the data on the data bus
at the end of the last BCLK (Tc) of the bus cycle and the bus cycle is then
terminated by deasserting the command line (SMRDC#, MRDC#, IORCH#).
When a write bus cycle terminates, the SMWTC# or IOWC# command line
is deasserted but write data remains on the SD bus until halfway through
address time of the next bus cycle. This accommodates the hold time of the
device being written to and doesn't disturb the device being addressed in
the next bus cycle because the command line for that bus cycle hasn't been
asserted yet.

Transfers with 16-bit Devices
The ISA bus cycle types used to communicate with 16-bit devices include:

e Standard 16-bit device ISA bus cycle (Memory & I/0O) — 1 wait state
e Shortened 16-bit device ISA bus cycle (Memory only) — 0 wait state
e Stretched 16-bit device ISA bus cycle — more than 1 wait state

Standard 16-bit Memory Device ISA Bus Cycle

Figure 17-2 illustrates the timing of a bus cycle on the ISA bus when the micro-
processor is communicating with a one-wait-state 16-bit memory device. The
timing diagram and the following numbered steps illustrate the sequence of
events that occur during a default ISA 16-bit memory access. Each of the num-
bered steps corresponds to the numbered reference points in figure 17-2.

1. If the system board is based on an 80286, 80386 or Pentium microprocessor
and address pipelining is enabled, the address is present on the LA bus
prior to the beginning of the bus cycle. This allows the addressed memory
device to start decoding the address early which may speed up access.

2. BALE is asserted halfway through address time. Some 16-bit memory de-
vices wait until the rising edge of BALE before decoding the LA lines to de-
termine if the address is for them. Also when BALE becomes asserted, the
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lower portion of the address from the processor is transferred through the
system board's address latch and through the bus control logic onto the SA
bus.

The addressed memory board asserts M16# as a result of decoding the LA
lines, indicating to the system board's bus control logic that it is capable of
handling a 16-bit transfer without data bus steering being performed by
the steering logic on the system board.

If this is a write bus cycle, the microprocessor's output data is gated onto
the SD bus halfway through address time and remains on the SD bus until
half a BCLK cycle into the next bus cycle (half-way through address time of
the next bus cycle).

At the end of address time, the trailing edge of BALE causes two events to
take place:

a) 16-bit ISA memory devices latch the LA lines (or the chip select) so
the addressed device will not be deselected when the LA lines are
pipelined before the end of the current bus cycle.

b) The address latch on the system board and the bus control logic
latch the lower twenty bits of the address, SA[19:0], so they remain
static on the SA bus for the remainder of the bus cycle. The ad-
dressed device can safely complete decoding the SA address on the
bus on the falling edge of BALE.
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Figure 17-2. Standard Access to a 16-bit ISA Memory Device
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The system board's bus control logic samples M16# at the end of address
time to determine if the addressed device can take advantage of the
MRDC# or MWTC# command lines being asserted immediately. 16-bit
memory devices see the pipelined address long before 8-bit and I/0 de-
vices see the address on SA[19:0]. 16-bit memory devices can therefore as-
sert M16# very early in the bus cycle. The appropriate command line
(MRDC# or MWTCH#) is asserted at the leading edge of data time if M16#
was sampled asserted. This command line remains asserted until the end of
the bus cycle (end of last Tc).If M16# is sampled deasserted, the command
line (MRDC# or MWTCH) is asserted halfway through data time.

The system board's bus control logic samples M16# a second time at the
midpoint of the first data time to determine if data bus steering is neces-
sary. Since this is an access to a 16-bit device, no steering is necessary. The
second sample point on M16# gives additional time for 16-bit memory de-
vices that failed to assert M16# early enough for the first sample point.
These devices either did not see LA[23:17] early enough to assert M16# by
the first sample point, or they are waiting for BALE to be asserted before
decoding LA[23:17]. Also at the midpoint of the first data time, the default
ready timer on the system board samples the NOWS# and CHRDY lines. If
NOWSH# and CHRDY are sampled asserted, the microprocessor's READY#
line is asserted and the bus cycle terminates at the end of the first data time.
In this way, a 16-bit ISA memory board can complete a bus cycle in two
BCLK cycles. On the other hand, if CHRDY is deasserted, the default ready
timer ignores NOWS# and inserts wait states. (Note that the EISA specifica-
tion warns that devices should not assert NOWS# while deasserting
CHRDY, implying that some bus controllers may not ignore NOWS# when
CHRDY is deasserted.)

During address pipelining, the microprocessor is free to output the address
for the next bus cycle during the current bus cycle. Only the upper portion
of the pipelined address appears at this time on the LA bus because these
bits are buffered but not latched from the microprocessor's address bus.
The remainder of the address will not appear on the SA bus until the mid-
point of address time in the next bus cycle.

CHRDY is sampled by the default ready timer during the second data time
to determine if the device will be ready to complete the bus cycle at the end
of this BCLK cycle. If the device cannot complete the bus cycle by the end
of this BCLK cycle, it should deassert the CHRDY line. If CHRDY were
sampled deasserted by the default ready timer, it would respond by ex-
tending the bus cycle by adding another data time. CHRDY is then checked
at the beginning of each additional data time until the device releases
CHRDY to indicate that the bus cycle can be completed.
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10. An ISA 16-bit memory bus cycle defaults to three BCLK cycles (one wait

state) if the bus cycle isn't terminated earlier by the assertion of NOWSH#
and if CHRDY stays asserted throughout the bus cycle. This means that the
length of an ISA bus cycle when accessing a 16-bit memory card defaults to
one wait state unless shortened by NOWS# or lengthened by CHRDY.
READY# is then asserted to the microprocessor, telling it to read the data
from the data bus. The bus control logic then deasserts the command line
(MRDC#, MWTCH#, SMRDC#, SMWTC#). When a memory write bus cycle
terminates, the MWTC# command line is deasserted, but the data remains
on the SD bus for the first half of address time in the next bus cycle. This
provides hold time for the device being written to and doesn't affect the
device being addressed in the next bus cycle because the command line
hasn't been asserted yet.

Standard 16-bit I/O Device ISA Bus Cycle

Figure 17-3 illustrates the timing of a bus cycle on the ISA bus when the micro-
processor is communicating with a 16-bit I/O device. The timing diagram and
the following numbered steps illustrate the sequence of events that occur dur-
ing a default ISA 16-bit I/O access. Each of the numbered steps corresponds to
the numbered reference points in figure 17-3.

1.

If the system board is based on an 80286, 80386 or Pentium microprocessor
and address pipelining is enabled, the address is present on the LA bus
prior to the beginning of the bus cycle. The LA bus has no impact on I/O
bus cycles since the LA bus will always be zeros during I/O operations.
BALE is asserted halfway through address time, gating the address
through the system board's address latch and through the bus control logic
onto the SA bus.

If this is a write bus cycle, the microprocessor's output data is gated onto
the SD bus halfway through address time and remains on the SD bus until
half a BCLK cycle into the next bus cycle (half-way through address time of
the next bus cycle).

At the start of data time, the trailing edge of BALE causes the address latch
on the system board and the bus control logic to latch the lower twenty bits
of the address, SA[19:0], so it remains static on the SA bus for the remain-
der of the bus cycle. The addressed device can safely complete decoding
the SA address on the falling edge of BALE.
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10.

The appropriate command line (IORC# or IOWCH) is also asserted at the
midpoint of data time. This command line remains asserted until the end of
the bus cycle (end of last Tc).

At the midpoint of the first data time, the default ready timer on the system
board ignores the NOWS# and CHRDY lines since an I/O device is being
accessed. The only devices that can have zero-wait-state ISA bus cycles are
16-bit memory devices.

During address pipelining, the microprocessor is free to output the address
for the next bus cycle during the current bus cycle. Only the upper portion
of the pipelined address appears at this time on the LA bus because these
bits are buffered but not latched from the microprocessor's address bus.
The remainder of the address will not appear on the SA bus until the mid-
point of address time in the next bus cycle.

1016# is sampled at the midpoint of the second data time to determine if
the I/O device is an 8- or 16-bit device. If sampled asserted, no data bus
steering will be performed and the bus cycle is terminated on the next ris-
ing edge of BCLK, which is the end of the second data time. The bus cycle
will not be terminated if the CHRDY line is sampled deasserted.

CHRDY is sampled by the default ready timer during the second data time
to determine if the device is ready to complete the bus cycle. If the device
cannot complete the bus cycle by the end of the second BCLK cycle, it
should have deasserted the CHRDY line. If CHRDY were sampled deas-
serted by the default ready timer, it would respond by extending the bus
cycle by one data time. CHRDY is then checked during each additional
data time until the device releases CHRDY to indicate that the bus cycle
can be completed.

An ISA 16-bit I/0O bus cycle defaults to three BCLK cycles (one wait state)
if CHRDY stays asserted throughout the bus cycle. The bus cycle cannot be
terminated earlier by the assertion of NOWSH#. This means that the length
of an ISA bus cycle when accessing a 16-bit I/O card defaults to one wait
state unless lengthened by CHRDY. READY# is then asserted to the micro-
processor, telling it to read the data from the data bus and the bus control
logic deasserts the command line. When an I/O write bus cycle terminates,
the IOWC# command line is deasserted, but the data remains on the SD
bus for the first half of address time in the next bus cycle. This accommo-
dates the hold time of the device being written to and doesn't disturb the
device being addressed in the next bus cycle because the command line for
that bus cycle hasn't been asserted yet.
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0-Wait State Access to 16-bit Memory Device

Figure 17-4 illustrates the timing of a bus cycle on the ISA bus when the CPU is
communicating with a zero-wait-state 16-bit memory device. Note that only 16-
bit memory devices can complete bus cycles at zero wait states. The timing
diagram and the following numbered steps illustrate the sequence of events
during this bus cycle. Each of the numbered steps corresponds to the numbered
reference points in figure 17-4.

1.

In this example, address pipelining is enabled and the LA address is pre-

sent on the ISA bus prior to the beginning of the bus cycle. This allows the

addressed device to start decoding the address early. In some cases, this al-
lows a device to operate at 0 wait states.

BALE is asserted halfway through address time. When BALE becomes as-

serted, the lower portion of the address from the processor is transferred

through the system board's address latch and through the bus control logic
onto the SA bus.

The addressed memory board asserts M16# as a result of decoding the LA

lines, indicating to the system board's bus control logic that it is capable of

handling a 16-bit transfer without data bus steering being performed by
the steering logic on the system board.

If this is a write bus cycle, the microprocessor's output data is gated onto

the SD bus halfway through address time and remains on the SD bus until

half a BCLK cycle into the next bus cycle (half-way through address time of
the next bus cycle).

At the end of address time, the trailing edge of BALE causes two events to

take place:

a) 16-bit ISA memory devices latch the LA lines (or latch the chip select)
so the addressed device will not be deselected when the LA lines are
pipelined before the end of the current bus cycle.

b) the address latch on the system board and the bus control logic latch
the lower twenty bits of the address, SA[19:0], so they remain static on
the SA bus for the remainder of the bus cycle. The addressed device
can safely complete decoding the SA address on the bus on the falling
edge of BALE.
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The system board's bus control logic samples M16# at the end of address
time to determine if the addressed device can take advantage of the
MRDC# or MWTC# command lines being asserted immediately. M16# is
sampled asserted and the appropriate command line (MRDC# or MWTC#)
is asserted at the leading edge of data time. This command line remains as-
serted until the end of the bus cycle (end of Tc).

The system board's bus control logic samples M16# a second time at the
midpoint of the first data time to determine if data bus steering is neces-
sary. Since this is an access to a 16-bit device, no steering is necessary. The
second sample point on M16# gives additional time for 16-bit memory de-
vices that failed to assert M16# early enough for the first sample point.
These devices either did not see LA[23:17] early enough to assert M16# by
the first sample point, or they are waiting for BALE to be asserted before
decoding LA[23:17]. Since the M16# line is asserted, the default ready timer
samples the NOWS# and CHRDY lines to see if the bus cycle can end in
zero ISA wait states. In this example, M16#, NOWS# and CHRDY are sam-
pled asserted, forcing the default ready timer to assert the microprocessor's
READY# line before the end of the current data time. In this way, faster
ISA memory boards can complete a bus cycle in two rather than three
BCLK cycles. (Note that the EISA Specification warns that devices should
not assert NOWSH# while deasserting CHRDY, implying that some bus con-
trollers may not ignore NOWS# when CHRDY is deasserted.)

Since the LA lines have already done their job, (the addressed device has
already decoded the LA lines and latched the chip select), the microproces-
sor is free to output the address for the next bus cycle.

During a read, the microprocessor latches the contents of the data bus, and
the bus control logic deasserts the command line (SMRDC#, SMWTCH#,
MRDC#, MWTCH#) thereby ending the bus cycle. During a write, the com-
mand line is deasserted, but the data remains on the SD bus for the first
half of address time in the next bus cycle. This accommodates the hold time
of the device being written to and doesn't disturb the device being ad-
dressed in the next bus cycle because the command line for that bus cycle
hasn't been asserted yet.
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Chapter 18

The Previous Chapter

The two chapters prior to this one described the ISA expansion bus and the bus
cycle types that are used to transfer data over it.

This Chapter

This chapter provides a detailed discussion of the interrupt subsystem found in
every ISA machine. This includes in-depth hardware and software descriptions
of its operation and programming.

The Next Chapter

The next chapter, “Direct Memory Access (DMA)” provides a detailed descrip-
tion of the DMA subsystem found in all ISA machines.

What Is an Interrupt?

At various times, an I/O device within a PC system may require help, or ser-
vice, from the microprocessor. The /O device uses a signal line known as an
interrupt request line to request the microprocessor's help.

The exact type of servicing a device requires is defined by the type of device
and its current condition. For example, a parallel port connected to a printer
may generate an interrupt request to ask the microprocessor for the next char-
acter to be sent to the printer. In this case, the microprocessor would respond
by performing an I/O write bus cycle to send the next character to the parallel
port.

A second example would be the interrupt request generated by a hard disk
controller to tell the microprocessor that a data transfer to or from memory has
been completed. If this were a disk read operation, for example, the microproc-
essor would respond to the interrupt request by using the data that has been
transferred from the disk controller into memory.
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As a third and final example, the keyboard interface generates an interrupt re-
quest to inform the microprocessor that a key has been pressed. The micro-
processor should respond by performing an I/O read from the keyboard
interface to get the keyboard character.

In each of these cases, the microprocessor responds to an interrupt request by
executing a special program known as an interrupt service routine, or ISR. The
interrupt service routine's task is to service the request. Different types of inter-
rupt requests require different types of servicing on the part of the microproc-
essor. This means that there must be a separate interrupt service routine for
each type of interrupt request that can be generated by the various hardware
devices found in an ISA system.

An interrupt causes the microprocessor to temporarily suspend execution of
the current program and forces it to jump to another program, the ISR. At the
conclusion of the ISR, the microprocessor must then return to the original pro-
gram flow at the point it was interrupted.

Microprocessor Response to Interrupt Request

This section provides a detailed explanation of how an Intel x86 microprocessor
services an interrupt request. Figure 18-1 flowcharts the series of actions that
must take place.

The Intel x86 microprocessors have one interrupt request input that is used to
detect service requests from [/O devices. The interrupt request lines from the
various [/O devices are not connected directly to the microprocessor's single
interrupt request input, but rather to a device known as an interrupt controller.
The actual device used in PC-compatible machines is the Intel 8259 program-
mable interrupt controller, or PIC. Up to eight interrupt request lines can be
tied to one 8259 interrupt controller.
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Figure 18-2 illustrates the 8259 PIC. At any given moment in time, one or more
of the PIC's interrupt request inputs may be asserted. The PIC uses a priority
scheme to determine which of the pending interrupt requests is the most im-
portant. [t then passes that interrupt request along to the microprocessor by as-
serting the microprocessor's interrupt request, or INTR, input.

b a1
B iR
b‘ Vi
raguest lines =%
from /O B
devices » R4
INTR -
o IRE
3 1R6
I IR7

Figure 18-2. The Intel 8259 Programmable Interrupt Controller (PIC)

The INTR input to the microprocessor is referred to as the maskable interrupt
request line. While executing a series of instructions, the programmer has the
ability to turn off recognition of external interrupt requests by executing a CLI,
or clear interrupt enable, instruction. The programmer is then ensured that
subsequent instructions will not be interrupted. As soon as the critical series of
instructions has been executed, the programmer re-enables recognition of ex-
ternal interrupt requests by executing an STI, or set interrupt enable, instruc-
tion. Any interrupt request pending on the INTR line will now be recognized
by the microprocessor. The programmer should take care, however, to ensure
that interrupt recognition isn't disabled for an appreciable amount of time. To
do so could possibly cause problems.

As an example, the serial port may be generating an interrupt request because
it has a character to be placed in memory. If the microprocessor doesn't read
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the character from it on a timely basis, it may be written over by the next char-
acter received over the communications line. This is referred to as a data over-
run condition.

Interrupt Acknowledge Bus Cycles

The microprocessor's immediate response to an interrupt request is to find out
what device initiated the request. The microprocessor performs this inquiry by
executing two, back-to-back interrupt acknowledge bus cycles. Logic external
to the microprocessor converts the bus cycles into two pulses on the PIC's inter-
rupt acknowledge (INTA) input. When the PIC senses these two interrupt ac-
knowledges, it recognizes that the microprocessor is requesting the ID of the
highest-priority interrupting device.

The microprocessor must determine the highest-priority requesting device so it
can jump to the proper interrupt service routine. As with any other program,
each of the interrupt service routines, or ISRs, reside in memory. In order to
execute an ISR, the microprocessor must know the start memory address of
each one of the ISRs. Intel sets aside the first 1,024 memory locations, from
00000h through 003FFh, as the default locations for the interrupt table. On the
80286 and higher microprocessors, the LIDT (Load interrupt descriptor table)
instruction can be used to change the start address and the size of the interrupt
table. LIDT may be executed in either real or protected mode, but if the inter-
rupt table is relocated in real mode, then programs that initialize the interrupt
table (such as those in expansion ROMs) may initialize the wrong locations in
memory. The interrupt table may be located anywhere in memory in either real
or protected mode. This discussion focuses on real mode operation and as-
sumes that the interrupt table starts at address 00000h. Refer to figure 18-3. See
the section entitled, “Protected Mode Interrupts” for differences between real
mode and protected mode interrupts.
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Figure 18-3. The Interrupt Table (in Real Mode)
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The interrupt table is subdivided into 256 individual entries, each containing 4
bytes of information (256 divided into 1024 equals 4 locations per entry). The
system ROMs that are shipped with ISA systems contain (among other things):

¢ The Power-On Self-Test, or POST.

¢ The interrupt service routines (ISRs) for the standard [/O devices that are
shipped with the system.

e The BIOS routines for the standard 1/0O devices that are shipped with the
system (discussed later).

In other words, the programmers who write the system ROM code (instruc-
tions) determine the start memory address of each of the interrupt service rou-
tines for the standard I/0O devices that are shipped with the system. During the
execution of the POST, the programmer copies the start memory address of
each of these interrupt service routines into the proper entry in the interrupt
table. At the completion of the POST, the interrupt table entries associated with
each of the standard I/O devices have been filled with the start memory ad-
dress of their respective interrupt service routines located in ROM memory.

When the microprocessor generates the two interrupt acknowledge bus cycles
to request the ID of the interrupting device from the PIC, the PIC responds as
follows:

e If the interrupt request line is high during the first acknowledge bus cycle
(which it normally is), then the PIC resets the highest-priority bit that is
currently set in the interrupt request register, or IRR, and sets the respec-
tive bit in the in-service register. If the interrupt request line is low, a phan-
tom interrupt has occurred. These are described later.

e The second acknowledge causes the PIC to place an 8-bit number on the
lower data path, D[7:0]. This number is commonly referred to by the fol-
lowing names: interrupt type code; interrupt ID; interrupt vector; interrupt
table entry number. It is formed by adding the three-bit binary value of the
highest-priority bit set in the in-service register to the base address stored
in register ICW2 (covered later in this chapter).

Note: Although interrupt vector is the most commonly used term, interrupt ta-
ble entry number is used in this chapter because it is the most correct of the
four. Also note that many documents use the same abbreviation “ISR” to stand
for two different items: interrupt service routine and in-service register. For
clarity in this chapter, the abbreviation ISR always refers to interrupt service
routine.
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At the end of the second interrupt acknowledge bus cycle, the microprocessor
reads the interrupt table entry number from the lower data path. The entry
number must then be converted into the actual start memory address of the re-
spective entry in the interrupt table. Since each entry in the interrupt table con-
sists of four locations, the microprocessor indexes into the interrupt table by
multiplying the entry number from the PIC by the number four. This will pro-
duce the actual start memory address of the desired table entry. This entry con-
tains the start memory address of the target interrupt service routine in the
form of a new CS and IP value.

The microprocessor then automatically performs one or two memory read bus
cycles (the 80386DX, 80486 and Pentium processors perform one bus cycle,
while the 80286 and the 803865X must perform two) to read the four bytes of
information from the interrupt table entry. These four bytes of information are
temporarily stored inside the processor.

As an example, the keyboard interface uses the IRQ1 input to the master inter-
rupt controller to generate an interrupt request when a key is pressed. the
interrupt table entry number assigned to this input is 09h. This means that en-
try nine in the interrupt table contains the four byte start address of the key-
board interrupt service routine in memory.

The microprocessor calculates the actual start memory address of entry nine in
the interrupt table by multiplying the interrupt table entry number, 09h in this
case, by a factor of four. Nine times four equals 36 in decimal, or 24h, so the
start memory address of entry nine in the interrupt table is 00024h.

The start address of the keyboard interrupt service routine is contained in
memory addresses 00024h through 00027h. The microprocessor then:

1. Reads the contents of locations 00024h and 00025h.
2. Reads the contents of locations 00026h and 00027h.

The microprocessor will use these stored values later to fetch the first instruc-
tion of the interrupt service routine for the keyboard. First, the microprocessor
must save its current place in the program that was interrupted.
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Saving Pointer to Interrupted Program

The microprocessor is engaged in fetching, or reading, instructions from mem-
ory until the interrupt request is recognized. The only purpose of the micro-
processor's code segment (CS) and instruction pointer (IP) registers is to point
to the location in memory where the next instruction should be fetched from.
The microprocessor had just completed the execution of an instruction and was
about to fetch the next instruction from memory when the interrupt request
was sensed. The CS and IP registers now point to where the microprocessor
would have fetched its next instruction from had it not been interrupted. If the
microprocessor is to resume execution successfully where it left off after servic-
ing the request, it must save the contents of these two registers. In other words,
the microprocessor must save a bookmark.

sp | FFFEh

1) 5000h e

— OSFFFERh Bottom of Stack

¥
o)
5
C

50000k Top of Stack

Figure 18-4. The Stack
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The microprocessor's immediate response to an interrupt request is to run two
interrupt acknowledge bus cycles to obtain the interrupt table entry number.
The microprocessor then reads the new CS and IP values from the entry and
saves them. Before these new CS and IP values are actually placed in their re-
spective registers, the contents of the current CS and IP registers must be saved
in stack memory. Refer to figure 18-4.

Assume that the stack is currently empty (contains no data). In the figure, the
stack segment register, S5, contains 5000h, indicating that the stack segment
starts at memory location 50000h. The stack pointer register, SP, contains
FFFEh. In response to an interrupt request, the microprocessor automatically
performs three push operations. Note that the programmer does not need to
write code to cause these automatic push operations to occur.

Before jumping to the interrupt service routine, the microprocessor must first
save its place in the current program flow by performing the following opera-
tions:

1. The microprocessor first pushes the contents of the flag register onto the
stack. To do this, the microprocessor decrements SP by 2 (FFFEh - 2 =
FFFCh), and then performs a 16-bit memory write to the address specified
by SS:5P (5000:FFFCh). Figure 18-5 illustrates the stack's contents after the
contents of the flag register has been pushed into stack locations SFFFCh
and 5FFFDh.
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Figure 18-5. Stack After Flag Register Push Operation
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The microprocessor then pushes the contents of the CS register onto the
stack. To do this, the microprocessor decrements SP by 2, and then per-
forms a 16-bit memory write to the address specified by SS:SP
(5000:FFFAh). Figure 18-6 illustrates the stack's contents after the contents
of the CS register has been pushed into stack locations 5FFFAh and

5FFFBh.
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Figure 18-6. Stack After CS Register Push Operation
3. The microprocessor then pushes the contents of the IP register onto the

stack. To do this, the microprocessor decrements SP by 2, and then per-
forms a 16-bit memory write to the address specified by SS:SP
(5000:FFF8h). Figure 18-7 illustrates the stack's contents after the contents
of the IP register has been pushed into stack locations 5FFF8h and SFFFSh.
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Figure 18-7. Stack After IP Register Push Operation

The microprocessor saves the contents of the Flag register because it is quite
possible that the instruction that will be executed when normal program execu-
tion resumes will check the Flag bits to determine the result of the instruction
executed just prior to the interruption.

Summarizing, the microprocessor's immediate response to an interrupt request
is to get the starting address of the interrupt service routine (ISR) from the in-
terrupt table. The starting address in the form of new CS and IP values are
stored inside the microprocessor. Next the microprocessor pushes the contents
of the Flag, CS and IP registers into stack memory. This is done so the micro-
processor can resume its original program flow after the interrupt request ser-
vicing has been completed.

Clearing the Interrupt Enable Flag
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Once the Flag, CS and IP registers have been saved to the stack, the microproc-
essor clears the interrupt enable flag to prevent another interrupt request from
interrupting the interrupt service routine (ISR) currently running. If the pro-
grammer of an ISR chooses to permit another interrupt request to interrupt his
interrupt service routine (called nesting of interrupts), the programmer must
enable interrupts by writing an STI instruction. At the conclusion of an inter-
rupt service routine, the contents of the Flag register are popped off the stack,
restoring the original value of the interrupt enable flag.

Jumping to the ISR

The CS and IP values that were read from the interrupt table and stored in the
un-named registers are moved into the CS and IP registers. The microprocessor
then uses the contents of the CS and IP registers to determine the memory loca-
tion to read the next instruction from. Since these two registers have just been
loaded from the interrupt table entry, they now point to the first instruction of
the appropriate interrupt service routine. In this way, the microprocessor be-
gins to fetch and execute the instructions that make up the interrupt service
routine. The interrupt table entry number assignments are detailed later in this
chapter.

Does the microprocessor “jump to” the ISR or does it “call” the ISR? At this
point in the sequence of events, the microprocessor is simply reloading CS and
IP, which is exactly the same as a jump, or more specifically, a far jump. By
previously saving the old CS and IP on the stack before jumping to the ISR, the
microprocessor is doing some of the same things that it would do when execut-
ing a CALL instruction, but there are two significant differences. When execut-
ing a CALL instruction, the microprocessor does not save the Flag register and
the new CS and IP come from the CALL instruction instead of from the inter-
rupt table. As a result, it may be misleading to say that the microprocessor
“calls” an interrupt service routine.

In the interrupt service routine, the programmer must first save the contents of
any registers that will be altered within the service routine. This is accom-
plished by performing a series of one or more PUSH instructions to save the
register contents on the stack. The programmer then performs the actions nec-
essary to service the request that was issued by the I/O device. As an example,
if this were the keyboard interrupt service routine, the programmer causes the
microprocessor to perform an /O read from the keyboard data port at I/O ad-
dress 0060h to get the keyboard scan code (the character pressed on the key-
board).
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After servicing the request, but before the end of the interrupt service routine,
the programmer must write a non-specific EOI (End-of-Interrupt) command to
the interrupt controller. This forces the interrupt controller to reset the highest-
priority bit that is currently set in its in-service register. The interrupt controller
uses the in-service register to maintain a fixed priority scheme so that higher-
priority interrupt service routines are never interrupted by lower-priority [/0O
devices. The interrupt controller will assert a new interrupt request output
(INTR) only when the interrupt request (IR pin) has a higher priority than the
highest-priority bit that is set in the in-service register. By issuing the EOI
command, the programmer is letting the interrupt controller know that the cur-
rently-highest-priority interrupt service routine has finished servicing the /0O
device and that a lower-priority interrupt may now be passed on to the micro-
processor.

At the end of the interrupt service routine, the programmer must perform a se-
ries of one or more POP instructions to restore the original contents of any reg-
isters PUSHed onto the stack at the start of the service routine.

Resuming the Interrupted Program

Fach interrupt service routine must end with an IRET (interrupt Return) in-
struction. When the microprocessor executes the IRET instruction, it automati-
cally performs three pop operations to read the original IP, CS and Flag register
contents from the stack.

1. Refer to figure 18-8. The microprocessor first pops the old contents of the IP
register off the stack. To do this, the microprocessor performs a 16-bit read
from the memory locations specified by SS:SP (5000:FFF8h), and then in-
crements SP by 2. The two bytes that were read are placed in the IP regis-
ter.
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Figure 18-8. Stack Before Pop Operation to Read IP Register
2. Refer to figure 18-9. Next, the microprocessor pops the old contents of the

CS register off the stack. To do this, the microprocessor performs a 16-bit
read from the memory locations specified by S5:5P (5000:FFFAh), and then
increments SP by 2. The two bytes that were read are placed in the CS reg-
ister.
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Figure 18-9. Stack Before Pop Operation to Read CS Register

3. Refer to figure 18-10. Next, the microprocessor pops the old contents of the
Flag register off the stack. To do this, the microprocessor performs a 16-bit
read from the memory locations specified by 55:5P (5000:FFFCh), and then
increments SP by 2. The two bytes that were read are placed in the Flag
register. The stack is now empty again.
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Figure 18-10. Stack Before Pop Operation to Read Flag Register

At this point, the C5, IP and Flag registers have been reloaded with the values
that were present when the interrupt occurred. Specifically, the Flag register
has been restored to reflect the status of the last instruction that was executed
prior to the interrupt. Note that restoring the flag value also causes interrupts
to be enabled once again. Finally, the microprocessor uses the restored contents
of the CS and IP registers to fetch the next instruction from memory. In this
way, the microprocessor has automatically returned to its original program
tlow after completing the interrupt service routine.
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When One 8259 Interrupt Controller Isn't Enough

The PC and PC/XT only had one 8259 Programmable interrupt controller. This
imposed a limit of eight interrupt request lines available for usage by I/0O de-
vices. In order to provide an expanded number of usable I/O interrupt request
lines, the designers of the PC/AT added a second 8259 interrupt controller.

Refer to figure 18-11. As shown in the illustration, the two interrupt controller
chips are in a master/slave configuration. The 8259 PIC connected directly to
the microprocessor is the master interrupt controller, while the additional PIC
is designated as a slave interrupt controller. The interrupt request output of the
slave interrupt controller is connected to one of the interrupt request inputs of
the master interrupt controller (IR2). This is referred to as cascading one inter-
rupt controller through another.

In the original PC and PC/XT, the master interrupt controller’s IR2 input pin is
tied to the system’s IRQ2 line on the PC’s 8-bit connector. But in ISA machines,
the slave interrupt controller’s IR1 input pin is tied to the 8-bit connector pin
that used to be IRQ2 in the PC. In ISA systems (at least in most of the various
and competing ISA specifications), the pin is named IRQ9. Beware that IRQ2
and IRQ9 are the same pin. More information is in the section entitled, “IRQ2
Redirect.”

Fach of these highly programmable PIC chips contains a series of registers. By
programming (writing values to) these registers during the POST, the pro-
grammer can specify the operational characteristics of each of the chips.

During the POST, a special 8-bit register in the master interrupt controller is
programmed with a value indicating that the interrupt request Level Two (IR2)
input of the master interrupt controller is connected to the slave interrupt con-
troller rather than an I/0O device. All of the other interrupt request inputs of the
master interrupt controller are designated as I/O interrupt request inputs to be
handled in the fashion described earlier.

The slave interrupt controller contains a register known as the slave ID register.
During the POST, this register is programmed with the value 02h. This is its
slave ID number and corresponds to the input on the master it is connected to.

In addition, during the POST, both of the interrupt controllers are programmed
to use a fixed priority scheme. This means that, on each of the interrupt control-
lers, the interrupt request Level 0 (IR0) input has the highest-priority, while the
interrupt request Level 7 (IR7) input has the lowest priority. If all of the inter-
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rupt request lines were to be asserted at the same time, the interrupt request
Level 0 input would be serviced first, followed by the others in decreasing or-
der of priority.

Up until now, the terms interrupt request levels 0 through 7 have been used to
identify the individual interrupt request inputs to the interrupt controller chip.
The actual signal lines connected to the these inputs are designated as shown in
figure 18-11. The signal names given to these lines are IRQO (interrupt request
Level 0) through IRQ15. IR0 through IR7 are chip pin names. IRQO through
IRQ15 are ISA system signal names.
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IRQO through IRQ7 are connected to the master interrupt controller, while
IRQ8 through IRQ15 are connected to the slave interrupt controller. Note that
IRQ2 and IRQY are on the same ISA bus pin so there is not a unique IRQ2 inter-
rupt pin in an ISA machine. More information is in the section entitled, “IRQ2
Redirect.” With the exception of IRQ2, each of the interrupt request lines is
available to be connected to the interrupt request output of an I/O device.

The fact that both controllers are programmed for fixed priority yields the fol-
lowing overall priority. IRQO is the highest-priority, followed immediately by
IRQ1. Since IR2 on the master interrupt controller is the interrupt request out-
put of the slave interrupt controller, the slave's eight inputs, IRQ8 through
IRQ15, come next in the priority sequence. Finally, IRQ3 through IRQ7 are the
lowest five in the priority sequence.

Refer to figure 18-11. Some of the interrupt request lines are dedicated to spe-
cial I/O devices that reside on the system board.

e IRQO is connected to the output of Timer 0, frequently called the System
Timer. This timer and other timers are discussed in detail in the chapter en-
titled “ISA Timers.”

e [RQ1 is connected to the keyboard interrupt request line coming from the
Keyboard Interface. The keyboard interface is described in the chapter enti-
tled “Keyboard/Mouse Interface.”

e [RQ8 is connected to the Alarm output of the Real Time Clock and Con-
figuration RAM chip. This subject is covered in more detail in the chapter
entitled “RTC and Configuration RAM.”

e IRQ13 is connected to the ERROR# output of the Numeric Coprocessor.
This is described in the chapter entitled “Numeric Coprocessors.”

The remainder of the interrupt request lines are attached to the ISA connectors
and are available for use by ISA cards. Although available for general use, the
following ISA interrupt request lines are typically used by the indicated de-
vices.

e IRQ3 is used as the interrupt request line for serial port 2. It is connected to
all 8- and 16-bit ISA expansion slots.

e [RQ4 is used by the interrupt request output of serial port 1. It is connected
to all 8- and 16-bit ISA expansion slots.

e [RQ5 is used by parallel port 2. It is connected to all 8- and 16-bit ISA ex-
pansion slots.

e [RQ6 is used by the Floppy Disk Controller on the system board. It is con-
nected to all 8- and 16-bit ISA expansion slots.
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e [RQ7, is typically used by parallel port 1. It is connected to all 8- and 16-bit
ISA expansion slots.

e [RQY is available for use by ISA cards. It is connected to all 8- and 16-bit
ISA expansion slots. In some systems, the pin is named IRQ2. See the dis-
cussion under the heading, “IRQ2 Redirect.”

e [RQI10 is available for use by ISA cards. It is connected to all 16-bit ISA ex-
pansion slots.

e [RQ11 is available for use by ISA cards. It is connected to all 16-bit ISA ex-
pansion slots.

e [RQI12 is available for use by ISA cards, but is typically used by the mouse
interface. It is connected to all 16-bit ISA expansion slots.

e [RQ14 is available for use by ISA cards. It is typically used by Hard Disk
Controllers. It is connected to all 16-bit ISA expansion slots.

e [RQ15 is available for use by ISA cards. It is connected to all 16-bit ISA ex-
pansion slots.

Servicing Requests to Slave Interrupt Controller

When the slave interrupt controller detects an interrupt request on one or more
of its inputs, it generates an interrupt request to the master interrupt controller.
If no higher priority interrupts are currently being serviced, the master inter-
rupt controller senses its IR2 input asserted and generates an interrupt request
to the microprocessor on the INTR line. If higher-priority interrupts are being
serviced (system timer or keyboard interrupts), then the master interrupt con-
troller waits for the higher-priority interrupts to finish before interrupting the
microprocessor. This enforces the fixed priority scheme.

The microprocessor requests the interrupt type by generating two back-to-back
interrupt acknowledge bus cycles. When the master interrupt controller detects
the double interrupt acknowledge, it interprets this as the microprocessor's re-
quest for the interrupt type. If IR2, the output of the slave interrupt controller,
is the highest-priority request pending on the master's inputs, the master com-
mands the slave to supply the interrupt type to the microprocessor.

To do this, the master interrupt controller drives the slave ID, a 2 (010b), onto
the three-bit cascade bus. The slave interrupt controller compares the slave ID
present on the cascade bus to its slave ID (written into its slave ID register dur-
ing the POST) and responds by placing the proper interrupt table entry number
onto the lower data path, D[7:0].
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At the end of the second interrupt acknowledge bus cycle, the microprocessor
reads the interrupt table entry number from the lower data path. It multiplies
the entry number by four to produce the start memory address of the entry in
the interrupt table, and reads the four bytes of information from the entry. Af-
ter saving the current CS, IP and Flag register on the stack, the microprocessor
places the four bytes from the interrupt table in the CS and IP registers.

The microprocessor then uses the contents of the CS and IP registers to identify
the memory location to read the next instruction from. This is the address of the
first instruction in the target interrupt service routine. At the end of the inter-
rupt service routine, the programmer must issue two non-specific EOI (End-of-
Interrupt) commands:

¢ One to the master interrupt controller to reset bit 2 in its in-service register.
Note that bit 2 was the highest-priority bit that was set before the EOI
command was issued, due to the fixed priority scheme. Therefore, the non-
specific EOI command works correctly.

¢ One to the slave to reset the highest-priority bit that is currently set in its
in-service register.

Interrupt Table Entry Assignments

During the POST, the two interrupt controllers are each programmed with the
interrupt table entry numbers for each of their interrupt request inputs. Table
18-1 defines the entry number assignments.
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Table 18-1. Standard ISA Interrupt Table entry number Assignments

Assigned Interrupt
IRQ Line entry number
0 08h
1 0%h
3 0Bh
4 0Ch
5 0Dh
6 OEh
7 OFh
8 70h
9 (or 2) 71h
10 72h
11 73h
12 74h
13 75h
14 76h
15 77h

IRQ2 Redirect

The original IBM PC, PC/XT and compatibles have IRQ2 available on the 8-bit
expansion slots and that pin is connected to IR2 of the master interrupt control-
ler. An expansion device installed in the PC or PC/XT may use IRQ2 to request
service. The software device driver that controls the expansion device will ini-
tialize entry OAh in the interrupt table during POST or when the device driver
is loaded from disk and executed so that entry 0Ah points to the start address
of the ISR in the device driver. Afterwards, when the expansion device issues
an IRQ2 interrupt in the PC or PC/XT, the master interrupt controller gives in-
terrupt entry number 0Ah (IR2 plus base of 8 = 10d = Ah) to the microproces-
sor. The microprocessor reads the CS and IP from entry 0Ah in the interrupt
table and runs the ISR for the expansion device.

In an ISA machine, IRQ2 is IRQ9 and it is connected to IR1 of the slave inter-
rupt controller. When the old expansion device generates what it thinks is
IRQ2, the slave interrupt controller reports entry number 71h (IR1 plus base of
70h = 71h) to the microprocessor. The microprocessor reads the CS and IP from
entry number 71h in the interrupt table, but it does not run the expansion de-
vice’s ISR because entry number 71h was not initialized by the expansion de-
vice’s driver. This is a problem.
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The solution is to redirect IRQ9 interrupts (entry 71h) to what used to be IRQ2
(entry 0Ah). During POST or during initialization of the operating system,
entry 71h in the interrupt table is initialized to point to the IRQ2 redirect rou-
tine in the boot ROM or in the operating system. The IRQ2 redirect routine uses
the software interrupt instruction, INT 0A, to cause the microprocessor to run
the ISR pointed to by entry OAh in the interrupt table, thus causing the micro-
processor to run the expansion device’s ISR. The INT instruction is described in
the section entitled, “The Software Interrupt Instruction.”

Recall that each interrupt service routine (ISR) must perform an End Of Inter-
rupt (EOI) command to clear its bit in the in-service register. ISRs using IRQ
lines that connect to the master interrupt controller must perform a single EQI
command, whereas, ISRs using IRQ lines that connect to the slave interrupt
controller must perform two EOI commands (one for the master and one for
the slave). ISRs designed for IRQ2 expect it to be connected to the master inter-
rupt controller (as it was in the PC and PC/XT) and therefore perform a single
EOI command; however, since the IRQ2 line connects to the slave interrupt
controller (IRQ9Y), two EOIls are needed. The following code sample shows how
a typical IRQ2 Redirect routine transfers control from IRQ9 to IRQ2 and han-
dles the second EOI command:

PUSH AX ;save contents of AX register

MOV AL, 20 ;move 20h into AL register

OuUT A0,AL ;write 20h to slave interrupt
;controller (EOI command)

POP AX ;restore AX

INT O0A ;use goftware interrupt to

;redirect interrupt to interrupt
;table entry 0Ah (0ld IRQ2)
IRET ;interrupt return from IRQ9

Note that the redirect code must perform the EOI for the slave interrupt con-
troller since the ISR for IRQ2 performs only the master controller EOI.
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Shareable Interrupts in ISA Machines

When expansion devices (add-in cards) that use interrupts are installed in an
ISA system, they typically use one of the available interrupt request lines that is
not used by the standard [/O devices (such as the printer port or the floppy
controller). In some environments however, the demand for IRQ lines exceeds
the number of available lines. In such cases, the temptation is great to share a
single interrupt line between two devices.

The conditions required to share interrupts in an ISA environment include the
following:

e The devices should generate interrupts by driving the IRQ line low and
then not driving it, allowing the pull-up resistor to generate the rising edge
(as opposed to driving the IRQ line high).

e Initialization of expansion devices must be done properly to ensure the
starting addresses for the interrupt service routines of shared devices are
linked.

¢ Expansion devices must implement an interrupt pending status bit.

e Interrupt service routines must check the interrupt pending bit for their
devices and pass control to the next ISR in the chain.

e If a standard device is sharing the interrupt, then either the standard de-
vice must also meet all these requirements, or the interrupts must be guar-
anteed to never occur simultaneously.

These requirements are described in the next sections.

Generating the Interrupt Request

On ISA systems, the 8259 interrupt controllers are programmed to recognize a
positive-going edge as a valid interrupt request on an input. There are a couple
of ways to generate these low-to-high transitions. The ISA IRQ lines are pulled
high by resistors on the system board. When an ISA expansion device must
generate an interrupt request, the card may drive the line low and then stop
driving the line (set its driver to a high-impedance state so it is neither driving
high nor low), thus allowing the line to float high again due to the pull-up re-
sistor. Alternatively, the expansion card can be designed to actively drive the
IRQ line low and then actively drive it high. In either case, the low-to-high
transition is registered as an interrupt request by the 8259 interrupt controller
on the system board.
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The 8259 specification requires that the 8259’s IR input must remain high until
after the leading edge of the first interrupt acknowledge bus cycle in order for
the interrupt request to be valid. To meet this requirement, the expansion de-
vice must either stop driving the IRQ line and allow the pull-up resistor to keep
the line high or the expansion device must actively drive the IRQ line high at
least until the interrupt service routine has begun servicing the device.

If there is only one expansion device using a particular IRQ line, the interrupt is
not being shared. When more than one expansion device is connected to the
same IRQ line, that line is being shared.

For non-shared IRQ lines, only one expansion device is driving the IRQ line, so
it doesn’t matter whether the expansion device drives the IRQ line low, drives
it high or doesn’t drive it at all after the first interrupt acknowledge bus cycle.
Contention will not occur on a non-shared IRQ line. In order to share the IRQ
line, however, the expansion device should use the first method that was de-
scribed above for generating the interrupt. That is, it should drive the line low,
then stop driving it, allowing the pull-up resistor to cause the low-to-high tran-
sition. This can be accomplished with an open-collector or open-drain driver.
With open-collector or open-drain drivers, the line is never actively driven
high, so it is safe for one driver to drive the line low while the other drivers are
not driving, and it is safe for several drivers to drive the same line low at the
same time.

Fach of the expansion devices that are sharing the IRQ line would have to gen-
erate interrupts this way. Interestingly enough, there is no requirement for
manufacturers to use this technique, so interrupts are often not shareable.

Interrupt Table Initialization — Add-in Devices

Standard 1/0O devices that use interrupts normally have interrupt service rou-
tines that reside in the manufacturer’s system ROM. When an expansion card
using an interrupt is installed in an ISA system, the interrupt service routine
(ISR) must be provided by the manufacturer. The ISR may be contained either
in a ROM located on the card or on a diskette shipped with the card. In each
case, the starting address of the ISR must be placed in the interrupt table entry
assigned to the IRQ line used.

Assuming the IRQ line to be shared is already in use by a standard device, the
starting address of the standard device will already occupy the entry. The ex-
pansion device then will overwrite the starting address of the standard device
when it initializes. However, during initialization of the expansion card, the
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contents of the interrupt entry to be used (which currently contains the starting
address of the standard device's ISR) must be saved before overwriting the en-
try with its own ISR address. In this way, a link is created between the ISR ad-
dress of the expansion device (which occupies the entry after initialization) and
the ISR address of the standard device (which has been saved).

Designers of expansion cards who use ROM to store their ISR typically imple-
ment [/O locations on their cards to store the contents of the interrupt table en-
try they are about to overwrite. Designers who implement their ISR via
installable device drivers typically leave space in the header of their ISR for
saving the current value of the interrupt table entry.

Shared Interrupt Procedure

When two devices share an single interrupt request line, the device installed
last will have its starting address in the interrupt table entry corresponding to
the IRQ in use. Regardless of which device issued the interrupt request, the ISR
of the device last installed will be executed first. In the previous example, this
means that even though the standard device requests servicing, the expansion
device's ISR occupies the interrupt table entry and its ISR will be executed.

The expansion device's ISR must first check the interrupt pending bit to deter-
mine if its device needs to be serviced. If so, the expansion device is serviced in
normal fashion. If the interrupt pending bit indicates that no interrupt is pend-
ing for its device, the ISR will pass control to the ISR belonging to the standard
device by using the value it previously saved. The standard device then would
be serviced as usual.

If both of the devices generate interrupts simultaneously (or at least before the
microprocessor runs the interrupt acknowledge bus cycle), then only one inter-
rupt request will be registered in the 8259. Since the expansion device gener-
ated an interrupt, the interrupt pending bit that is on the expansion device
would be set. The expansion device’s ISR is run first since its CS and IP are in
the interrupt table. The expansion device’s ISR detects that the expansion de-
vice’s interrupt pending bit is set, so it services the expansion device and re-
turns to the interrupted program. Note that the standard device’s interrupt
never gets serviced.

There are two solutions to this problem. If the standard device has an interrupt
pending bit, then the expansion device’s ISR can do a software interrupt (INT)
to run the standard device’s ISR. Since the standard device’s interrupt pending
bit is set, the standard device’s ISR will service the standard device correctly.
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The expansion device’s ISR must be written to always do the software inter-
rupt, regardless of whether the expansion device generated an interrupt. In
fact, in order to share an interrupt request line among two or more expansion
devices, the expansion device’s ISR must always do the software interrupt to
link back to the other ISR’s in the list.

If the standard device lacks an interrupt pending bit or if the standard device’s
ISR fails to test that bit, then it could be a mistake for the standard device’s ISR
to service the device if no interrupt had occurred.

The other solution is to guarantee that the two devices never generate inter-
rupts simultaneously. (Easier said than done. There are many potholes in the
road to sharing interrupts in ISA.)

Phantom Interrupts

On ISA systems, the 8259 interrupt controllers are programmed to recognize a
positive-going edge as a valid interrupt request on an input. A transitory noise
spike on an interrupt request line could be registered as a valid interrupt re-
quest in the 8259’s interrupt request register (IRR). What happens next depends
on how the expansion card is designed to drive the IRQ line. The methods for
driving the IRQ line are described in the section above entitled, “Shareable In-
terrupts in ISA Machines.”

After an interrupt is serviced (indeed, any time after the first interrupt ac-
knowledge), it doesn’t matter whether the expansion device drives the IRQ line
low, drives it high or doesn’t drive it at all, so long as no low-to-high transitions
occur (unless, of course, the expansion device was requesting more service).
This is true because the 8259 is programmed to latch low-to-high transitions
only.

If the expansion device uses the shareable method of generating interrupts and
a transitory noise spike occurs on the IRQ line, then the IRQ line will be high
when the first interrupt acknowledge bus cycle occurs. In response to the inter-
rupt acknowledge bus cycle, the 8259 will clear the bit in its IRR and will set the
corresponding bit in its in-service register. The 8259 will then give the entry
number of the expansion device to the microprocessor during the second inter-
rupt acknowledge bus cycle. The microprocessor will then run the interrupt
service routine for the expansion device. This is a problem because the expan-
sion device did not request service. Some expansion devices will cease to func-
tion correctly if they are serviced prematurely. The solution to this problem is
for the expansion device to internally have an interrupt request pending bit
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which it sets along with generating any interrupt. The ISR should first check
this bit before actually servicing the expansion device. If the interrupt were
caused by a noise spike, the interrupt pending bit on the expansion card would
not be set and the ISR would exit without servicing the expansion device.

If the expansion device uses a non-shareable method to generate the interrupt,
then the expansion device either continues to drive the IRQ line high or it
drives the line low after the interrupt is serviced instead of ceasing to drive the
line. If the expansion device drives the IRQ line high after an interrupt has been
serviced, then a noise spike on the IRQ line will have to be handled the same
way that it was for the shareable technique (that is, the ISR should check the in-
terrupt pending bit).

Things are more interesting when the expansion device drives the IRQ line low
after an interrupt has been serviced. In this case, if a noise spike is registered by
the 8259, the IRQ line is low when the first interrupt acknowledge bus cycle oc-
curs. The 8259 requires that its IR input be high at least until the first interrupt
acknowledge in order for the interrupt to be valid. In this case, the IR input is
low, so the 8259 knows that a ghost or phantom interrupt has occurred.

When the second interrupt acknowledge bus cycle occurs, the 8259 must report
an entry number to the microprocessor, but no valid interrupts have occurred.
Intel designed the 8259 to automatically return the entry number for its number
seven input in this case. On the master 8259, this will be 0Fh, the entry number
for IRQ7. On the slave, it will be 77h, the entry number for IRQ15. The micro-
processor will therefore run either the IRQ7 or the IRQ15 interrupt service rou-
tine.

As stated earlier, some expansion devices will cease to operate correctly if they
are serviced when they did not request service. In these two ISRs, therefore, the
programmer must perform a check to see if the IRQ7 or the IRQ15 was real.
This is accomplished by reading the contents of the respective 8259's in-service
register and checking to see if bit seven is really set. If it is, then the request is
real and the programmer should execute the remainder of the interrupt service
routine to service the request. If, on the other hand, the bit is clear, it was a
phantom or ghost interrupt and the programmer should just return to the inter-
rupted program flow without servicing the expansion device.

Programming the 8259

Introduction
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This section is intended as an introduction to programming the 8259 interrupt
controller. For a more detailed description, refer to the appropriate Intel man-
ual.

Programming the Registers

All of the 8259 registers are accessed through two 1/0O locations. The master
8259's registers are accessed through I/O ports 20h and 21h, while the slave's
are accessed through AOh and Alh. The 8259 accepts two types of commands:
initialization command words, or ICWs; and operation command words, or
OCWs.

Before the 8259 can be used to prioritize interrupt requests, it must be initial-
ized to a known state. This is accomplished by writing a series of bytes to the
ICWs and OCWs. The contents of these initialization bytes define the basic op-
erational characteristics of the 8259. Tables 18-2 and 18-3 illustrate the sequence
of ICWs and OCWs written to the 8259s during the ISA POST initialization.
The ICW registers must be accessed in a predefined sequence. The programmer
begins the sequence by writing to ICW1. This is accomplished by writing the
desired data to port 20h or AOh (master or slave 8259) with data bit 4 set to a 1.
The 8259 then expects three subsequent writes to port 21h or Alh with the val-
ues for ICW2 through ICW4. After all of the ICW registers have been loaded,
any subsequent data written to port 21h or Alh is loaded into OCW]1, the inter-
rupt mask register.
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Table 18-2. Initialization Sequence for the Master Interrupt Controller

Data Written
to Master

Description

1) 15h written
to I/0 port
20h

An I/0 write to port 20h with bit 4 = 1 accesses ICW1. Bit 0 set to 1
instructs the 8259 to expect ICW4. Bit 1 set to 0 indicates that one or
more slaves are cascaded through the master's IRQ inputs. Bit 2 has
no effect when the 8259s are programmed for 8086/8088 operation.
Bit 3 set to 0 places the 8259 in edge-triggered mode. The remainder
of the bits have no meaning when the 8259s are programmed for
8086/8088 operation.

2) 08h written
to I/0 port
21h

First access to port 21h after ICW1 is written accesses ICW2. Upper
five bits of the data written to port 21h are the upper five bits of the
master's interrupt ID. The lower three bits of the interrupt ID repre-
sents the level of interrupt currently being serviced. This means that
the master 8259's eight inputs have interrupt ID's ranging from 08h
through OFh.

3) 04h written
to I/0 port
21h

After writing ICW2, the next write to port 21h accesses ICW3. The
data written to this register indicates which of the master's IRQ in-
puts are connected to slave 8259s. Since bit 2 is set to 1 and the re-
maining bits are 0, IRQ2 is connected to a slave while the remaining
inputs are connected to I/O devices.

4) 01h written
to I/0 port
21h

After writing ICW3, the next write to port 21h accesses ICW4. The
data written to this register indicates the following:

bit 0 = 1: The system is based on an 8086/8088, not an 8080/8085.
This means that the 8259 must send an interrupt ID to the
processor in response to interrupt acknowledge, not a call
instruction.

0: The programmer must write a non-specific End-of-
Interrupt, or EOI, command to the 8259 to reset the high-
est-priority bit that was set in the in-service register at the
end of each interrupt service routine.

bits 3:2 = 00b — non-buffered mode. Has no effect.

bit 4 = 0 — special fully-nested mode off.

bits 7:5 = 000b — not used.

bit 1 =

5) FBh written
to I/0 port
21h

After the four ICW registers have been loaded, any subsequent
write to port 21h accesses OCW1, the interrupt mask register(IMR).
Writing a FBh to this register disables all interrupt request inputs
other than IRQ2 (requests from the slave 8259).
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Table 18-3. Initialization Sequence for the Slave Interrupt Controller

Data Written
to Slave Description

1) 15h written | See description of write to master's port 20h.
to I/0 port
AOh

2) 70h written | First access to port Alh after ICW1 is written accesses ICW2. Upper
to I/O port | five bits of the data written to port Alh are the upper five bits of the
Alh interrupt ID. The lower three bits of the interrupt ID represents the

level of interrupt currently being serviced. This means that the slave
8259's eight inputs have interrupt ID's ranging from 70h through
77h.

3) 02h written | After writing ICW2, the next write to port Alh accesses ICW3. The
to I/O port | data written to this register loads the slave's ID into ICW3. Since the
Alh slave is connected to IRQ2 on the master, it's slave ID is two.

4) 01h written | After writing ICW3, the next write to port Alh accesses ICW4. The
to I/O port | data written to this register indicates the following:

Alh

bit 0 = 1: The system is based on an 8086/8088, not an 8080/8085.
This means that the 8259 must send an interrupt ID to the
processor in response to interrupt acknowledge, not a call
instruction.

bit 1 = 0: The programmer must write a non-specific End-of-
Interrupt, or EOI, command to the 8259 to reset the high-
est-priority bit that was set in the in-service register at the
end of each interrupt service routine.

bits 3:2 = 00b — non-buffered mode. Has no effect.

bit 4 = 0 — special fully-nested mode off.

bits 7:5 = 000b — not used.

5) FFh written | After the four ICW registers have been loaded, any subsequent
to I/O port | writes to port Alh access OCWI, the interrupt mask register. Writ-
Alh ing a FFh to this register disables all of the slave's interrupt request

inputs.

After the interrupt controllers have been initialized, any subsequent read from
or write to I/O port 21h or Alh accesses the interrupt mask register, OCW1, in
either the master or slave interrupt controller, respectively.

In an interrupt service routine, the programmer must issue a non-specific End-
of-Interrupt, or EOI, command to the interrupt controller to clear the highest-
priority bit that was set in the in-service register. This is accomplished by writ-
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ing 20h to port 20h or AOh, OCW?2. In an interrupt service routine for a request
originating on the slave, a non-specific EOl command must be issued to both
the slave and the master to clear the respective bits in both of their in-service
registers.

The programmer writes to OCW3 under two circumstances:

e To set or reset the special mask mode. For further information, refer to the
Intel hardware reference manual.
e Toidentity a register to be read on a subsequent read.

To read from the in-service register or the interrupt request register (IRR), the
programmer first writes either 03h (in-service register) or 02h (IRR) to OCW3 at
port 20h or AOh. The next time port 20h is read from, the contents of the identi-
fied register is placed on the data bus. There is no need to write to OCW3 every
time a read is to be performed from the IRR or in-service register (as long as the
same register is to be read from again). After initialization, the 8259 will return
the status of the IRR when port 20h or AOh is read from.

Non-Maskable Interrupt Requests (NMI)

In addition to the maskable interrupt request input, INTR, Intel x86 microproc-
essors have an additional interrupt request input known as the NMI input.
Unlike the maskable interrupt request input, the non-maskable interrupt re-
quest input, or NMI, can not be masked out by the programmer. In other
words, if the NMI input is asserted, the microprocessor must immediately ser-
vice that interrupt request. The NMI line is typically used to report serious or
fatal hardware failures to the microprocessor.

A classic example would be a memory parity error. When the microprocessor
senses an asserted signal on the NMI input, it responds by first pushing the
Flag, CS and IP registers onto the stack.

Rather than request the interrupt table entry number from the interrupt con-
troller, however, the microprocessor automatically accesses entry two in the in-
terrupt table. This entry is dedicated to the NMI interrupt. During the POST,
the programmer writes the start address of the NMI interrupt service routine
located in ROM memory into entry two of the interrupt table.

After saving the three registers on the stack, the microprocessor then jumps to
the NMI interrupt service routine by loading CS and IP from entry two. In the
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NMI interrupt service routine, the programmer reads the contents of the fol-
lowing I/O ports to determine the cause of the NMI:

e system control port B at [/O address 0061h.
¢ system control port A at /O address 0092h.

The error is then reported on the screen.

Tables 18-4 and 18-5 define the bit assignment of these two ports and identify
the bits related to NMI with an asterisk. The bit assignments shown are fairly
standard, but they are different on some systems. The NMI interrupt service
routine that examines these bits is normally in the system’s boot ROM. Since
the boot ROM is written specifically for a particular style of system board, the
ROM will know what the bit assignments are. The meaning of the bits in sys-
tem control port B at I/O address 0061h are different for a read versus a write.
For more information, see the “ISA /O Addresses” section in the Appendix.

Table 18-4. System Control Port B at I/O Address 0061h (Read)

Bit Function
7* System Board RAM Parity Check
6* Channel Check
5 Timer 2 (Speaker Timer) Output
4 Refresh Request
3 Channel Check Enabled
2 Parity Check Enabled
1 Speaker Data Enable
0 Timer 2 Gate to speaker

Table 18-5. System Control Port A at 1/O Address 0092h

Bit Function
7 Fixed Disk Activity LED
6 Fixed Disk Activity LED
5 Reserved
4* Watchdog Timer Status
3 Security Lock Latch
2 Reserved
1 Alternate Gate A20
0 Alternate Hot Reset
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As illustrated in the preceding tables and in figure 18-12, there are three possi-
ble causes for an NMI:

e System board RAM parity check. The chapter entitled “RAM Memory:
Theory of Operation,” contains a detailed description of the system board
RAM parity check logic.

e Channel check. The chapter entitled “ISA Bus Structure,” provides a de-
tailed description of the channel check logic.

e  Watchdog timer status. The chapter entitled “ISA Timers,” provides a de-
tailed description of the watchdog timer.

The programmer can selectively enable or disable the ability of external logic to
generate an NMI. This is accomplished by writing the desired value to /O port
0070h. A 1 written to bit 7 disables the NMI logic's ability to generate an NMI,
while a 0 enables it. For additional information, see the chapter entitled “ISA
Bus Structure,” under the heading “Error Reporting Signal.”

Waichdog Timer Timeout#

NMI
Parity Check# Bocosent R Enable/Disable Gate

Enable/Disable
Gate

CHCHK#

““Channal Chack
Enable/Tisable
Gate

Port 61h
Bit 3

Figure 18-12. Causes of a NM!
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Software Interrupts

There are two types of software conditions that can cause an interrupt to an In-
tel x86 microprocessor:

e Exception interrupts.
e Software interrupts generated by the INT (interrupt) instruction.

Both types of software conditions are discussed in the following paragraphs.

Software Exceptions

Generally speaking, an exception interrupt results when the microprocessor at-
tempts to execute an instruction and incurs an error while during so. A classic
example would be an attempt to divide a number by zero. When an Intel x86
microprocessor attempts execute of an instruction that would cause a divide-
by-zero condition, the microprocessor immediately generates a divide-by-zero
exception interrupt. Entry 0 in the interrupt table is dedicated to this condition
and points to the start address of the divide-by-zero interrupt service routine
supplied by the programmer.

Various other types of illegal software conditions can cause exception inter-
rupts as well. When Intel introduced the 8086, Intel reserved thirty two entries
in the lower-most part of the interrupt table to point to the interrupt service
routines for various software error conditions. Table 18-6 defines the conditions
and their respective entries in the interrupt table for an 80386 microprocessor.
Due to the hardware orientation of this book, a detailed description of each of
these conditions is not included. This information may be found in the Intel
programmer's reference manuals.

Notice that in table 18-6 exception interrupts use entry numbers 8 through 10h
which coincide with entry numbers used by hardware devices. To eliminate
possible contflicts, the exception handlers (ISRs) share the table entries with the
hardware devices just as two hardware devices share the same entry.
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Table 18-6. Interrupt Table Entry Assignment

entry number Assigned To
0 Divide-By-Zero Exception
1 Single Step, or Trap, Interrupt
2 NMI
3 Breakpoint
4 Interrupt on Overflow
5 BOUND Range Exceeded Exception
6 Invalid Opcode Exception
7 Processor Extension Not Available Exception
8 Double Exception Detected
9 Processor Extension Segment Overrun Exception
Ah Invalid Task State Segment
Bh Segment Not Present
Ch Stack Segment Overrun or Not Present Exception
Dh General Protection Exception
Eh Page Fault
Fh Reserved by Intel
10h Coprocessor Error
11h to 1Fh Reserved by Intel

Software Interrupt Instruction

The interrupt instruction allows the program to simulate a hardware interrupt
request. This instruction take the following format:

INT 13

When the microprocessor executes the example instruction shown above, it re-
acts very much as it would to a hardware interrupt request received on the
maskable interrupt request line, INTR.

It first saves the contents of the Flag, CS and IP registers on the stack. At this
time, CS and IP point to the instruction immediately after the INT instruction.
Since the interrupt was not actually caused by a hardware interrupt request on
the INTR line, the microprocessor doesn't perform two interrupt acknowledge
bus cycles to request the interrupt table entry number from the 8259 interrupt
controller. Instead, the interrupt table entry number is supplied by the hexa-
decimal number to the right of the INT instruction.
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In the example above, the programmer has designated entry number 13h (a
decimal 19). The microprocessor multiplies this number by four (13h x 4 = 4Ch)
to yield the start memory address of entry 13h in the interrupt table.

Just as it would for a hardware request, the microprocessor then reads the four
bytes of information starting at this memory address and places them into the
CS and IP registers. The CS and IP registers now point to the start address of
the INT 13h interrupt service routine in memory. The microprocessor begins to
fetch and execute the instructions that make up this routine. As defined by
IBM, entry 13h in the interrupt table always points to the disk BIOS routine. At
the conclusion of the routine, execution of the IRET (interrupt Return) instruc-
tion pops the original CS and IP off the stack, causing the microprocessor to re-
sume executing the original program at the instruction immediately after the
INT instruction.

The true value of the INT instruction lies in the fact that a programmer can call
(jump to) a routine (e.g., a BIOS routine) without knowing where it actually re-
sides in memory. All the programmer needs to know is the entry number that
contains its start address.

When Microsoft first came out with the disk operating system (DOS) for the
IBM PC, it was identified as version 1.0. An operating system such as MS-DOS
is really nothing more than a collection of useful routines that the programmer
can call (jump to) to perform various commonly used functions. The MS-DOS
routines allow the programmer to control the various devices in the system
without having an intimate knowledge of the operations required to control
them.

One direction that Microsoft could have taken would have been to publish a
list of the start memory addresses of the various routines that make up
MS-DOS. A programmer could then jump to the start memory address of the
appropriate routine to accomplish a particular task. This method would have
caused tremendous compatibility problems.

Consider this. Not too long after version 1.0 of MS-DOS was released, IBM re-
leased version 1.1. This was followed rather closely by various other versions
leading up to the version currently on the market. Now consider the fact that as
the various versions of MS-DOS were issued, the size, functionality, and
placement of the various routines that make up MS-DOS were altered. This
means that the list of start memory addresses for the various routines specified
in version 1.0 is no longer valid for any of the other versions. In fact, it would
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require a separate list of start memory addresses for the routines in each and
every version of M5-DOS on the market.

If the designers of an applications program had accessed the MS-DOS routines
by jumping to the start memory addresses of the various routines embedded in
version of 1.0 of M5-DOS, that version of the applications program would only
run correctly with version 1.0 of MS-DOS. They would have had to issue a
separate version of the applications program for every version of M5-DOS.

It would also mean that the end-user would have to know the version of
MS-DOS that they are running in order to buy the correct version of the appli-
cation program they want to run. The end-user could never upgrade MS-DOS
without relegating virtually all of his or her application's programs to the scrap
heap. This obviously would have been an untenable solution to the problem.

As MS-DOS is loaded into memory when the machine is powered up, the
MS-DOS load procedure includes the automatic placement of the start memory
addresses for the various MS-DOS routines into pre-defined entries in the in-
terrupt table. IBM guaranteed applications program developers that the point-
ers to the various MS-DOS routines would always reside in the same entries in
the interrupt table, irrespective of the MS-DOS version. This means that an ap-
plication program developer doesn't need to know the actual start memory ad-
dress of a MS-DOS routine that he or she wants to use. To call the routine, all
the programmer has to do is specify the correct entry number in an interrupt
instruction. The Microsoft and IBM technical reference guides contain informa-
tion detailing the routines called by each interrupt entry.

MS-DOS routines aren't the only ones that can be called using the interrupt in-
struction. The BIOS (basic input/output system) routines are a collection of
useful routines written by the PC manufacturer and embedded in the system
ROMs. There is one routine for each standard [/O device shipped with the sys-
tem. Some examples would be the keyboard, floppy disk, and hard disk BIOS
routines.

Rather than expect each application's programmer to understand the proper
sequence of [/O writes and reads required in order to control and sense the
status of various I/O devices, the PC manufacturer supplies the BIOS routines.
All the applications programmer has to know is how to call the appropriate
routine to access the target /0O device. During the POST, the start memory ad-
dress of each of the BIOS routines is stored in predefined entries in the inter-
rupt table. The PC manufacturer supplies a list of the interrupt entries assigned
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to each BIOS routine. This list is typically available in the technical reference
guide for the PC system.

Protected Mode Interrupts

The discussions thus far in this chapter have assumed that the microprocessor
is in real mode. Due to the hardware orientation of this book, a detailed discus-
sion of protected mode is not included, but some of the basic similarities and
differences between real mode and protected mode interrupts are described
here.

In protected mode, the interrupt table is more properly named the interrupt
descriptor table, or IDT, because it contains 8-byte interrupt descriptors. The
IDT can be located anywhere in memory. The location (base address) and size
(limit) of the IDT is specified by the interrupt descriptor table register, IDTR,
which is the same register that specifies the location of the interrupt table in
real mode.

The 8259 interrupt controllers handle interrupt requests the same way in pro-
tected mode as they did in real mode. They report interrupt table entry num-
bers to the microprocessor on the second interrupt acknowledge bus cycle.

When the microprocessor receives an entry number from the 8259, the micro-
processor multiplies the entry number by 8 if it is in protected mode (It multi-
plies by 4 if it is in real mode.). It then adds the result to the IDT base address
from the IDTR. The final result is the address of the interrupt descriptor in
memory. The microprocessor multiplies the entry number by 8 because the in-
terrupt descriptors are each 8 bytes long.

The microprocessor then runs memory read bus cycles to the calculated ad-
dress to read in all eight bytes of the interrupt descriptor. The interrupt de-
scriptor includes a new CS register value, a new IP register value and other
bytes which control how protected mode will handle the interrupt. For an
80386 or higher microprocessor, the interrupt descriptor may contain a new EIP
instead of just IP.

Similarly to real mode, the microprocessor pushes the old Flags, CS and IP reg-
isters onto the stack before putting the new CS and IP values that it read in
from the interrupt descriptor into its CS and IP registers. Depending on the set-
ting of the control bytes in the interrupt descriptor, the microprocessor may
also push the old 55 and SP registers before pushing the CS and IP registers.
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Whenever a segment register is reloaded in protected mode, the microproces-
sor automatically reads a descriptor from either the global descriptor table
(GDT) or the local descriptor table (LDT). There are several types of interrupt
descriptors, so to just get the basic idea across, let’s use a segment descriptor.
Segment descriptors are described in the chapter entitled “The 80286 Micro-
processor” in the section entitled “Segment Register Usage in Protected Mode.”

Since the interrupt caused the microprocessor to reload its CS segment register
with the value from the interrupt descriptor, the microprocessor now reads the
segment descriptor that the CS register points to, from the GDT or the LDT.
The segment descriptor defines the base address and the limit of the new code
segment. The microprocessor adds the new code segment base address to the
new IP (that it already read from the interrupt descriptor) and forms the ad-
dress of the first instruction of the interrupt service routine (ISR). The micro-
processor is then fetches the first instruction of the ISR.

Since the microprocessor is in protected mode, the ISR must either be written
for protected mode, or the microprocessor must be placed in virtual-8086 mode
or back in real mode before running a real mode ISR.
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Chapter 19

The Previous Chapter

Definitions of the ISA bus signal lines and functions were introduced along
with details about ISA bus cycles. Details of the implementation and operation
of interrupts within the ISA environment were provided.

This Chapter

Transfers between memory and I/O devices can be handled either by the mi-
croprocessor or by the direct memory access (DMA) controller. DMA allows
the processor to continue to execute instructions from its prefetch queue or
cache while transfers are being made between 1/0O and memory. This chapter
explains the process, logic and timing of the ISA DMA subsystem.

The Next Chapter

ISA bus mastering is explained, including its relationship to DMA and its ca-
pabilities and limitations in the ISA structure.

DMA Concept

When using direct memory access (DMA) to transfer a block of information be-
tween an [/O device and memory, the microprocessor must still initiate the
block data transfer between the /O device and memory, but the actual data
transfer and its termination are handled solely by the DMA controller (DMAC).
This frees up the microprocessor to continue with other productive activities
while the data transfer is taking place. Once a DMA block data transfer has
been initiated, the DMA controller and the 1/0O device do not disturb the mi-
croprocessor again until the entire block of data has been transferred. The
DMAC used in ISA machines performs a “fly-by” transfer; that is, it is able to
transfer data between memory and an [/O device (read and write) in a single
DMA cycle without latching the data internally, a job that would normally re-
quire two separate bus cycles (a read followed by a write) by the microproces-
SOT.
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Upon completion of the overall data transfer, the I/O device interrupts the mi-
croprocessor to indicate completion. In response, the microprocessor temporar-
ily suspends its current task and performs an I/O read from the I/O device to
check the completion status of the transfer. If the I/O device indicates no errors
were encountered, the microprocessor may continue processing.

DMA Example

The DMAC used in ISA machines is the Intel 8237, providing four separate
DMA channels. Two 8237s are used in a master/slave configuration, providing
a total of seven DMA channels. Each DMA channel is used by a separate 1/0O
device to handle block data transfers with memory.

Four distinct steps must occur to initiate and complete a DMA transfer.

e Set up the DMA channel for the transfer.

e Command the I/O device to initiate the block data transfer.

¢ Grant the system buses to the DMA controller so it can run the bus cycle.
¢ Notify the microprocessor that the transfer is complete.

Fach DMA channel within the DMA controller has its own set of I/O registers
that the programmer uses to set up the data transfer. The set of [/O registers
associated with each DMA channel allows the programmer to specify:

e The Transfer Count (number of DMA bus cycles to run).

e The start memory address (start address in memory where data will be
read from or written to).

¢ The direction of transfer with reference to memory (type of transfer).

After the DMA channel has been set up by the programmer, the I/O device
must be programmed to initiate the overall block data transfer. As an example,
the programmer would issue the proper series of /O write commands to a
tloppy disk controller to initiate a disk read operation.

Having set up the respective DMA channel and issued the proper commands
to the I/O device (in this case, the floppy disk controller and DMA channel
two), the microprocessor can then go on to another task. The entire data trans-
fer and its termination will be handled by the I/O device and its respective
DMA channel. The following paragraphs describe an example data transfer be-
tween system memory and a floppy disk controller.
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When performing a floppy disk transfer, the programmer may only perform
data transfers in multiples of the sector size. When running MS-DOS, a sector
on a floppy disk contains 512 bytes of information. This would be the smallest

data transfer possible when transferring information between a disk drive and
memory.

Refer to figure 19-1 for a block diagram of the components involved.

DRAM

Floppy Lo a1 pua | 12Ep
Drive IORCH Controller HLDA
Controller [OWG # E
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3 Micro-
..................................... prgcessg{
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AR AAAAAAAAAAA
Interrupt NTR
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Figure 19-1. Example Disk/DMA Hardware System
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10.

The programmer issues a series of I/O writes to DMA channel two's regis-
ters to set up the start memory address, transfer count and the direction of
the transfer with reference to memory. In the disk read example, assume
that the start memory address is 1000h, the transfer count is 512 bytes (one
sector) and that this is a write transfer (with reference to memory).

The floppy controller must be programmed with the disk read command,
the cylinder number, the head (or surface) number, the start sector number
and the number of sectors to be read. In this example, we will assume a one
sector (512 bytes) read from cylinder three, head one, sector five.

Upon receiving the parameters and the disk read command, the disk con-
troller initiates a seek operation to position the read/write head mecha-
nism over cylinder three. It must then wait for the disk to spin until the
start of sector five is detected under the read head on surface one. As the
disk is a mechanical device, this will take some time.

In the example of a read operation from a floppy disk controller, some time
will elapse before the disk controller has read the first byte from disk.
When the first byte has been transferred from the disk to the disk control-
ler, the tloppy disk controller must then request that its associated DMA
channel transfer the data. The floppy disk controller asserts DMA request
line two (DRQ2) that goes to the DMAC.

The DMAC responds by asserting its HRQ hold request output to seize the
buses (address, data, and control buses) from the microprocessor. Since the
refresh logic must also be able to seize the buses, the refresh logic also has a
hold request output. These two hold request lines go to a tiny first-come-
first-served arbiter which in turn drives the microprocessor's HOLD re-
quest input.

Depending on the X86 microprocessor that is being used, the microproces-
sor will either complete the current bus cycle, complete the current instruc-
tion, or perform all the writes in its posted write buffer. Then the
microprocessor will tri-state all of its bus output drivers, thereby floating
the buses. The microprocessor also asserts HLDA to tell the requesting de-
vice (the DMAC in this case) that it is now the bus master. Logic on the sys-
tem board asserts the ISA bus AEN signal when it sees HLDA asserted.
Note that the ISA bus AEN signal is not the same as the DMAC AEN pin.
The DMAC then responds to DRQ2 from the disk controller by asserting
DMA Acknowledge (DAK2#) and the I/0O read command line (IORCH#).
These two lines go to the disk controller via the ISA bus.

The disk controller deasserts DRQ2 and begins the access to the data reg-
ister to place data onto the data bus.

The DMAC asserts the memory write command line (MWTCH#) and places
the address from channel two's start address register onto the address bus.
Normally, the command lines indicate whether the address bus carries a
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memory or I/O address. At this point, however, two command lines
(IORC# and MRDC#) are asserted. The asserted ISA bus AEN signal pre-
vents all [/O devices, except for the one that is connected to DAK2#, from
responding during this bus cycle.

11. The data on the data bus is written into memory at the address currently
on the address bus.

12. The DMAC then increments channel two's memory address register by one
to point to the address in the RAM where it will store the next byte it re-
ceives from the disk controller.

13. The DMAC also decrements the byte transfer count. If the transfer count is
not exhausted, the data transfer is not complete and the DMAC waits for
another DMA Request (DRQ2) from the floppy drive controller, indicating
that it has another byte to transfer (step eight).

14. When the transfer count is exhausted, the data transfer is complete. The
DMAC will then deassert the hold request line (HRQ) to tell the micro-
processor that it no longer needs the buses. The microprocessor will re-
attach itself to the buses (exit the tri-state condition) and deassert the Hold
Acknowledge line (HLDA) to tell the DMAC it has resumed control of the
buses. The microprocessor is now bus master again. Logic on the system
board deasserts the ISA bus AEN signal so that [/O devices can resume
decoding their addresses.

15. The DMAC also generates EOP (end-of-process). This supplies the signal
TC (terminal count reached) to the disk controller. The disk controller will
then generate a device-specific interrupt request to the 8259 interrupt con-
troller which in turn generates INTR (interrupt request) to the microproc-
essor to inform it that the transfer operation is complete.

This was an example of a DMA channel operating in block transfer mode.
Block transfer mode is best suited for I/O devices that can store or retrieve all
of the requested data in memory that is on the I/O device before requesting a
DMA transfer. Single transfer mode is preferable for devices such as the floppy
disk controller which can hold only one or two bytes of data in their buffers.
Demand transfer mode is preferable for I/O devices, such as later versions of
the floppy disk controller, which have FIFO (first-in-first-out) buffers. All three
modes are explained later in this chapter.

In the rest of this chapter, for the sake of simplicity, the tiny first-come-first-
serve “arbiter” that routes the hold requests from the DMAC and the refresh
logic to the microprocessor is not shown in the figures. Also, the descriptions
assume that the DMAC’s HRQ output is tied directly to the microprocessor’s
HOLD input.
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DMA Controller (DMAC)

Fach 8237 DMA controller has four DMA channels. In the original IBM PC, a
single 8237 controller was used, limiting the number of channels to four. The
IBM PC/AT added another DMAC, increasing the total number of channels
available to seven (one channel is used to cascade the controllers together). Re-
fer to figure 19-2.

DMA Transfer Types

Fach of the seven DMA channels may be programmed to perform one of three
types of transfers. This selection defines the method used to transfer a byte or
word during one DMA bus cycle. The three types are:

¢ Read transfer. When the read transfer type is selected for a DMA channel,
the DMAC will read data from memory and write it to the I/O device as-
sociated with the DMA channel.

¢  Write transfer. When the write transfer type is selected for a DMA channel,
the DMAC will read data from the I/O device associated with the DMA
channel and write to the memory.

e  Verify transfer. The verify transfer type causes the DMAC channel to exe-
cute DMA transfer bus cycles, including generation of memory addresses,
but neither the read nor the write command liness is asserted. It was used
by DMA channel zero to implement DRAM refresh in the original IBM PC
and PC/XT.

DMA Transfer Modes

In the preceding example, the DMAC controlled the buses while the entire
block of data was transferred from the disk controller to memory. This is called
block transfer mode. An 8237 DMAC channel however, may be programmed to
operate in one of four modes. The mode selected defines the DMAC treatment
of the overall information transfer. The four modes are:

414



Chapter 19: Direct Memory Access (DMA)

Single Transfer Mode
Block Transfer Mode
Demand Transfer Mode
Cascade Mode

Single Transfer Mode

Single transfer mode is the one most commonly used because it allows the
DMAC to timeshare the buses with the microprocessor. The DMAC gives up
the buses after each byte (or word) is transferred so the microprocessor can
have access to the buses on a regular basis. This is imperative, especially in
situations where relatively large amounts of data will be transferred, because,
otherwise, the microprocessor and the refresh logic get locked out for too long.

When a DMA channel is programmed to operate in single transfer mode, it op-
erates as follows:

1.

2.

The DRQ(n) is received from the requesting 1/O device (e.g., the floppy
disk controller) when it is ready to transfer data.

The DMAC asserts HOLD to request the use of the buses from the micro-
processor.

The microprocessor asserts HLDA, granting the buses to the DMAC. Logic
on the system board asserts the ISA bus AEN signal, disabling the I/O ad-
dress decoders.

The DMAC issues DAK(n)# to the requesting 1/O device in conjunction
with either IORC# or IOWCH#. The [/0O device deasserts its DRQ(n) because
the DMAC is servicing its data transfer request.

The DMAC executes a DMA bus cycle to move the byte (or word) between
the I/0 device and memory by driving the memory address and appropri-
ate memory command line as described earlier.

The word /byte transfer count is decremented and the memory address is
incremented.

After the byte has been transferred, DAK(n)# is deasserted.

The HOLD line is deasserted to surrender the buses back to the microproc-
essor. ISA bus AEN signal is deasserted also. HOLD is reasserted to re-
quest the use of the buses again when the I/O device has another byte or
word to transfer. Upon receipt of HLDA from the CPU, the next bus cycle
will occur. This process continues until the transfer is completed.

When the transfer count is exhausted, TC is generated to signal the end of
the transfer and the I/O device interrupts the CPU.

Block Transfer Mode
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Block transfer mode can be used when the DMAC needs to transfer a block of
data, but the designer and programmer must keep in mind that if the DMAC
retains ownership of the buses for too long, the DRAM refresh interval may be
exceeded and there may also be harmful effects from locking the microproces-
sor out for too long. An example of operation under block transfer mode was
already covered under the heading, “A DMA Example.”

Demand Transfer Mode

When demand mode is used, the DMAC runs DMA bus cycles back-to-back as
long as the I/O device keeps it DRQ(n) line asserted, meaning it can continue
to supply data. If the I/O device falls behind the DMAC's ability to transfer
data, the DMA transfer is temporarily suspended. This is done when the [/O
device deasserts its DRQ(n) line. When the [/O device is ready to resume de-
mand transfers, it again asserts its DRQ(n) line.

As an example, if a streaming tape drive uses DMA to transfer information, it
could transfer information on a continuing basis until it reached the end of a
track. While the tape drive mechanism reverses the direction of the tape, data
tlow would be interrupted and the transfer would temporarily be suspended.

When a DMA channel is programmed to operate in demand transfer mode, it
operates as follows:

1. The DRQ(n) is received from the requesting 1/0O device (e.g., the streaming
tape controller).

2. The DMAC asserts HOLD to request the use of the buses from the micro-
processor.

3. The microprocessor asserts HLDA, granting the buses to the DMAC. ISA
bus AEN signal is asserted.

4. The DMAC asserts DAK(n)# and either the IORC# or IOWCH# to the re-
questing /O device. Note that the [/O device keeps DRQ(n) asserted.

5. As described earlier, the DMAC executes a DMA bus cycle to move a byte
(or word) between the I/O device and memory.

6. After the transfer, the word/byte transfer count is decremented and the
memory address is incremented.

7. The DMAC continues to execute transfer cycles until the [/O device deas-
serts DRQ(n) indicating its inability to continue delivering data. The
DMAC deasserts HOLD to give the buses back to the microprocessor and
the DMAC deasserts DAK(n)#. Logic on the system board deasserts ISA
bus AEN signal. The I/0O device can re-initiate the demand transfer by re-
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asserting DRQ(n). Each time the I/O device deasserts DRQ(n) the buses
will be released to the microprocessor.

8. Transfer continues in this fashion until the transfer count has been ex-
hausted.

Cascade Mode

When a DMA channel is programmed to operate in cascade mode, this means
that it is connected to another DMAC or to an ISA bus master, rather than an
1/0 device. See the discussion of ISA bus mastering in this chapter.

Refer to figure 19-2. To get more than four DMA channels, two DMACs are
cascaded together. This is accomplished by designating one of the 8237s as the
master and the other as the slave. The HRQ (hold request) output of the slave is
tied to the DRQO input of the master (channel 4) and the master's DAKO# out-
put is tied to the slave's HLDA (hold acknowledge) input. In this way, the slave
uses the master to obtain control of the buses.

During POST, channel zero of the master DMAC must be programmed for cas-
cade mode. When the slave requires the use of the buses, it asserts its Hold Re-
quest output. The master DMAC detects the request for the buses and asserts
its HRQ output to seize the buses from the microprocessor. When the micro-
processor surrenders the buses and asserts HLDA, the master DMAC asserts its
DAKO# output to grant the buses to the slave DMAC. The master's DAKO#
output is connected to the slave's HLDA input. It should be noted that the sig-
nals interconnecting the master and slave are commonly referred to as DRQ4

and DAK4#, even though they are connected to channel zero on the master
DMAC.

DMAC Priority Logic
The 8237 DMAC offers two types of software-selectable priority schemes:

¢ Fixed priority. The channels are fixed in priority order based upon the de-
scending value of their number. Channel 0 has the highest priority and
channel 3 has the lowest priority. After the recognition of any channel for
service, the other channels are prevented from interfering with that service
until it is completed.

¢ Rotating priority. The last channel to get service becomes the lowest prior-
ity channel with the priority of the others rotating accordingly. This pre-
vents any one channel from monopolizing the system.
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Both DMACs in an ISA system are default-programmed by the POST for fixed
priority. As a result, the highest priority channel on both the slave and the mas-
ter is channel zero, followed by channels one through three. This results in
master channel zero having the highest priority. Since master channel zero is
really connected to the slave DMAC, this means that the slave's four DMA
channels have the highest priority, with channel zero as highest and channel
three as the lowest. Immediately following slave channel three, master channel
one, also known as channel five, is the next highest, followed by channels six
and seven (master channels two and three).
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Figure 19-2. Cascaded DMA Controllers
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DMA Bus Cycle

The 8237 is built around a state machine with seven possible states, each one
DMA clock period wide. When a DMAC is bus master, it uses its own clock
when executing bus cycles. This clock is referred to as the DMA clock and is
1/2 the BCLK frequency. Depending on the unit and the selected processor
speed, this will yield a DMA clock of either 3MHz (6MHz PC/AT), or 4MHz
(8MHz ISA-compatible machine) to 4.166MHz (8.33MHz ISA-compatible ma-
chine).

Table 19-1 lists the clock period for three possible BCLK speed settings:

Table 19-1. DMA Clock Frequency

BCLK Speed Setting DMA Clock Frequency DMA Clock Period
6MHz 3MHz 333.3ns
8MHz 4MHz 250ns

8.33MHz 4.166MHz 240ns

Prior to receiving a DMA Request, the DMAC is in the idle state, 5i. When a
DRQ is sensed, the DMAC enters a state where it asserts HOLD (hold request)
to the microprocessor and awaits the HLDA (hold acknowledge). This state is
called SO (S zero). The DMAC remains in the SO state until HLDA is sensed as-
serted.

The DMAC can then proceed with the DMA transfer. 51, 52, 53 and 54 are the
states used to execute a transfer (of a byte or word) between the requesting [/0O
device and system memory. In addition, when accessing a device that is slow to
respond, a DMA transfer cycle can be stretched by deasserting the DMAC's
READY input until the device is ready to complete the transfer. This will cause
the DMAC to insert wait states, Sw, in the bus cycle until READY is asserted
again.

Table 19-2 describes the actions that take place during states S1 through 54. See
figure 19-3 for the actual timing of a single transfer.
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Table 19-2. DMAC States

State

Actions Taken

S1

During single transfer mode, 51 is used to output the middle byte of the
memory address, A[15:8] during each transfer. The middle byte of the
memory address is output onto data bus pins D[7:0]. The DMAC also
pulses its address strobe (ADSTB) output during S1 and on the falling edge
of ADSTB the new middle byte of the address to be latched into the external
DMA address latch. Address lines A[15:8] receive the middle portion of the
address during 52.

During block and demand transfers, the middle byte of the memory ad-
dress only changes once every 256th transfer. For this reason, when in these
modes the DMAC only enters the S1 state every 256th transfer to update
the middle byte of the address.

52

During 52, the lower byte (A[7:0]) of the memory address is output directly
onto the address bus, A[7:0]. The DMAC's AEN output is asserted causing
the external DMA address latch to output the middle portion of the address
and to act as an enable for the DMA page register addressing. Note that
DMAC’s AEN pin is not the ISA bus AEN signal. In addition, DAKn# is
asserted to tell the I/O device that the transfer is in progress.

53

53 will only occur in a bus cycle if compressed timing hasn't been selected
for this DMA channel. See text below for a discussion of compressed tim-
ing. During S3, the MRDCH# or the IORCH# line is asserted. If the DMA chan-
nel is programmed for extended writes, the MWTC# or IOWCH# line is also
asserted during S3.

54

If the DMA channel was not programmed for extended write, the MWTC#
or IOWCH# is asserted at the start of 54. If extended write had been selected,
the write command line was already asserted at the start of S3. The actual
read/write takes place at the trailing edge of 54 when both the read and
write command lines are deasserted by the DMAC. This completes the
transfer of a byte or word between memory and the requesting [/0 device.

When compressed timing is selected, 53 is eliminated from the DMA transfer
cycle. The only real purpose of S3 is to allow the read command line to be as-
serted for twice the duration it is when compressed timing is used. Not all
memory and I/O devices will tolerate this abbreviated read command line, so
it must be used cautiously.

When extended write is selected, it causes the write command line to be
asserted during 53 rather than 54, effectively doubling the duration of the write
command line's asserted period.
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It should be obvious that extended write and compressed timing are mutually
exclusive because S3 is essential for extended write and is eliminated when
compressed timing is selected.
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Figure 19-3. Single Transfer Mode Timing
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Byte or Word Transfers

ISA systems can perform byte transfers via slave channels zero through three
and word transfers via master channels five through seven. The DMACs were
designed to handle byte transfers, but the master DMAC is connected to the
address bus in a way that allows 16-bit transfers.

The address outputs of the master DMAC and its associated address latch and
page registers are connected to SA[23:1]. SAQ is not connected to it. This means
that the programmer must program the master DMA memory address registers
with the correct start address for a word transfer. For example, to access loca-
tion 1000h in memory, the master DMAC’s memory address register would
need to be programmed to 0800h. Whenever the master DMAC becomes bus
master, logic external to the DMAC asserts SBHE# and forces SA0 to a 0 (even
address) to indicate a word transfer. Note that DMA channels five through
seven can only perform 16-bit transfers because SAQ is always set to zero and
SBHE# is always asserted when the master DMAC outputs a memory address.
The slave DMAC and its associated memory address and page registers, on the
other hand, are connected to SA[23:0] and can therefore generate both even and
odd addresses one at a time. This gives DMA channels zero through three the
ability to perform byte-oriented transfers.

DMAC Addressing Capability

Fach DMA channel can address any memory location within the 16MB range
from 000000h to FFFFFFh. This is accomplished by using the DMAC's 16-bit
Memory address registers associated with each DMA channel in conjunction
with an 8-bit external DMA page register. This pair of registers associated with
each channel provides the 24-bit memory address capability.

The starting address in memory where data is to be written to or read from
must be programmed into the DMAC and the channel's respective page regis-
ter prior to beginning the DMA transfer. The lower sixteen bits of the address
are written into the channel's 16-bit memory address register inside the DMAC
using two successive write operations over its 8-bit data path. Table 19-3 identi-
fies the I/O location associated with each channel’s memory address register.
The most significant byte of the address must be written to the DMA channel's
respective page register. Table 19-3 also gives the page register locations.

Table 19-3. DMAC Memory Address and Page Registers—I/O Locations
| Slave DMAC Channel | Master DMAC Channel |
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0 1 2 3 4 5 6 7
Memory Address 00h 02h 04h 06h COh C4h C8h | CCh
Register I/O
Address

Page Register I/O 87h 83h 81h 82h none 8Bh 89h 8Ah

Address

Since the DMAC has only eight address pins, it must output the lower sixteen
bits of the address using both A[7:0] and D[7:0]. The lower byte of the memory
address is output onto A[7:0], while the middle byte of the memory address is
output onto D[7:0].

Refer to figure 19-4. The slave DMAC first places the middle byte of the ad-
dress (bits 15:8) on data bus lines D[7:0]. Once the data has stabilized, it is
latched into the external address latch by the address strobe signal, ADSTB.
The slave DMAC outputs the lower byte of the memory address onto A[7:0]
and asserts AEN, enabling both the address latch and the channel's DMA page
register to transfer their contents to address lines A[15:8] and A[23:16] respec-
tively. (Note that the DMAC’s AEN pin is not the same as the ISA bus AEN
signal.) The appropriate DMA page register is selected by the DAKn# line asso-
ciated with the channel in use.

Refer to figure 19-5. The master DMAC first places the middle byte of the ad-
dress (bits 16:9) on data bus lines D[7:0]. Once the data has stabilized, it is
latched into the external address latch by the address strobe signal, ADSTB.
The master DMAC outputs the lower byte of the memory address (bits 8:1)
onto A[7:0] and asserts AEN, enabling both the address latch and the channel's
DMA page register to transfer their contents to address lines A[16:9] and
A[23:17] respectively. Note that the DMAC’s AEN pin is not the same as the
ISA bus AEN signal. The appropriate DMA page register is selected by the
DAKn# line associated with the channel in use.
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Addressing ISA Memory

Refer to figure 19-6. The DMA controller (DMAC) resides on the X-bus, and
must be capable of addressing memory that resides on the ISA bus. To do this
the address must be passed from the X-bus to the SA bus. Normally, when the
main CPU is running bus cycles the buffer passes the address from the SA bus
on to the X-bus to address the I/O devices that reside on the X-bus; however,
when the DMAC is the bus master, addresses produced by the DMAC must go
in the opposite direction. During DMA transfers, the DMAC's AEN output
goes to the X-bus address buffer to change the direction of the address.
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X-Bus Page
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Figure 19-6. Master DMAC Addressing 16-bit ISA Memory
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Addressing Local Bus Memory

ISA systems based on 80386 or higher microprocessors typically have main sys-
tem memory on the processor’s local bus. This design allows the processor to
access memory at the full speed and data path width of the microprocessor.
However, this design also creates the need to perform address translation and
data bus steering in order for the DMAC to access 32-bit memory. Refer to fig-

ure 19-7.
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Figure 19-7. DMA (16-bit channel) Addressing 32-bit System Memory
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Refer to figure 19-8. Notice also that the address buffers in addition to the X-
bus buffer must be reversed so that the address can be passed from the X-bus
bus back toward main memory. This reversal of the buffer occurs whenever the
main CPU gives up control of the buses (asserts the HLDA signal). The HLDA
signal causes the buffers to change direction.
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Figure 19-8. 16-bit Access to 32-bit Memory with DMA
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The system address used by the DMACs consists only of SA[16:0]. Note that
SA[16:2] pass through the buffer back to system memory, while SAO, SA1 and
SBHE# must be converted to BE#[3:0] by the bus controller. The LA lines pass
through a bi-directional buffer whose direction is controlled by HLDA. When
the CPU has control of the buses, the buffer passes the address from the CPU to
the ISA bus. When the CPU gives up ownership of the buses, the direction is
reversed to pass the address from the ISA bus back toward the CPU and sys-
tem memory.

Address Translation

Since the DMA subsystem resides on the X-bus (a subset of the ISA bus) it has
access only to the ISA bus and cannot supply the 32-bit address needed by the
32-bit memory. Therefore, the bus controller must be designed to translate the
8- or 16-bit address from the DMA subsystem (SA[16:0], LA[23:17] and SBHE#)
to the 32-bit address (A[31:2] and BE#[3:0]) required by memory.

Address lines SAO, SA1 and SBHE#, normally outputs from the bus controller
when the CPU is running bus cycles, are inputs when DMA or bus masters
other than the CPU are running bus cycles. When the HLDA signal from the
CPU becomes asserted, the bus controller begins translating the ISA type ad-
dresses to 32-bit memory addresses.

Data Bus Steering

The bus controller in ISA machines with 32-bit memory subsystems must also
perform data bus steering to ensure proper operation with DMA. The MRDC#
and MWTCH# lines are used by the DMA subsystem to indicate the type of bus
cycle being run. These command lines, along with SA0, SA1 and SBHE#, and
the M32# size line are used by the bus controller to ensure information trans-
ferred between the DMA subsystem and the 32-bit memory subsystem is trans-
ferred over the correct path(s). In essence, the data bus steering required by
DMA is the exact inverse of the data bus steering required when an 80386 or
higher microprocessor communicates with an 8- or 16-bit device. In this in-
stance, the DMA controller is either an 8- or 16-bit device communicating with
32-bit memory, necessitating the steering.
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DMA Transfer Rate

Table 19-4 illustrates the transfer speeds possible at the three clock speeds un-
der the following conditions:

e Compressed timing turned off
e Compressed timing turned on

The table assumes that the transfer is no more than 256 DMA bus cycles in
length. This was done for simplicity's sake. Once for every 256 bus cycles, the
DMAC must insert an 51 state in the bus cycle to update the middle byte of the
memory address (A[16:9] for master DMAC or A[15:8] for slave DMAC),
which must be latched into the external DMA address latch. This adds one
DMA clock period to the length of every 256th bus cycle. In short, table 19-4
gives rates based on DMA bus cycles consisting of states 52, 53 and 54 (3 DMA
clock cycles with compressed timing off) and states 52 and 54 (2 DMA clock cy-
cles with compressed timing on). Using the master DMAC, the maximum
DMA transfer rate in an ISA system is 4.166MB/sec (16 bits times 2.083M bus
cycles per second).

Table 19-4. ISA DMA Transfer Rates

Compressed Off Compressed On
DMA Clock | 3MHz | 4MHz 4.166MHz | 3MHz 4MHz | 4.166MHz
Frequency
Transfers per | 1IM/s | 1.33M/s | 1.39M/s 1.5M/s | 2M/s | 2.083M/s
Second

DMAC Initialization During POST

During POST, both the slave and master DMA controllers are initialized for
ISA operation. Recall that the DMA controllers are programmed during POST
to operate in single mode, using fixed priority, normal timing, and are cas-
caded together via master channel zero. Two registers are programmed to pro-
vide these ISA operational characteristics:

e DMAC control register
¢  DMAC mode register

The programming sequence typically used is shown in table 19-5. For a com-
plete definition of each bit see the I/O address map in the appendix.
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Table 19-5. Initialization of DMACs

Slave DMAC Master DMAC
/O /O
Register Addr. Functions Controlled Addr. Functions Controlled
Control 08h Normal timing, fixed DOh Normal timing, fixed
priority, DMAC en- priority, DMAC en-
abled, no memory-to- abled, no memory-to-
memory transfers memory transfers
Mode 0Bh Channel 0 - single Déh Channel 4 - cascade
transfer mode mode
Mode 0Bh Channel 1 - single Déh Channel 5 - single
transfer mode transfer mode
Mode 0Bh Channel 2 - single Déh Channel 6 - single
transfer mode transfer mode
Mode 0Bh Channel 3 - single Déh Channel 7 - single

transfer mode

transfer mode
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Chapter 20

The Previous Chapter

The previous chapter explains the process, logic and timing of the ISA DMA
subsystem.

This Chapter

This chapter covers ISA bus mastering. The previous chapter on DMA provides
a foundation for understanding ISA bus masters, since bus masters must use
the DMA subsystem to gain control of the system buses.

The Next Chapter

The next chapter explains the [SA implementation of the real time clock and
configuration memory.

ISA Bus Master Capability

The microprocessor on the system board is the bus master most of the time in
ISA systems. It is also possible for a card inserted into an ISA expansion slot to
become bus master, but there is a major drawback. When a card becomes bus
master in a ISA system, it can remain bus master as long as it keeps the micro-
processor's HOLD line asserted. There are no safety mechanisms built into a
PC/AT or compatible to prevent a bus master card from monopolizing the use
of the buses to the exclusion of the microprocessor on the system board, the
RAM refresh logic and potential bus master cards inserted into other expansion
slots.

Refer to figure 20-1. In order to gain ownership of the buses, the requesting de-
vice must be interfaced to the system board via DMA channel 5, 6 or 7. These
are the channels connected to the master 8237 DMAC on the system board.
Prior to requesting the use of the buses, the respective channel of the master
DMAC must be programmed for cascaded operation (to indicate that a slave
DMAC is attached to that channel). In this case the [SA bus master will be at-
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tached to the cascade channel rather than a slave DMAC. When the DMA ac-
knowledge is sent to the bus master it has been granted control of the buses
and will maintain ownership until the DMA request is released.
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Figure 20-1. DMA and Bus Mastering
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When the ISA expansion board wishes to request the use of the buses, the fol-
lowing sequence of actions takes place:

1.
2.

3.

The requesting device asserts its respective DRQ line.

The Master 8237 DMAC asserts HOLD (hold request) to the microproces-
sor to request the use of the buses.

When the microprocessor's bus unit completes the current bus cycle, the
microprocessor floats the buses and asserts HLDA (hold acknowledge) to
inform the master DMAC that it is now the bus master.

Upon sensing the HLDA, the master DMAC asserts the DAK line (DMA
acknowledge) associated with the DRQ line from the requesting bus master
card.

The requesting ISA expansion board is now the bus master and can run bus
cycles to communicate with other system devices.

The ISA bus master card must assert the MASTER16# signal if it wishes to
access 1/0O devices. When the CPU asserts the HLDA signal, the AEN sig-
nal is asserted, disabling all I/O address decoders. This prevents I/O de-
vices from mistaking the memory address as theirs during DMA transfers
(see the chapter entitled “Direct Memory Access (DMA)” for details). As-
serting MASTER16# causes the AEN signal to become deasserted, thereby
enabling all I/O address decoders.

When the expansion device has completed its use of the buses, it must
deassert its DRQ line.

Upon sensing that DRQ is deasserted, the master DMAC on the system
board will deassert DAK and HOLD.

The microprocessor will deassert HLDA and re-attach itself to the buses.

ISA Bus Masters in 80386DX and Higher Systems

ISA systems based on 80386DX and higher microprocessors typically have
main system memory on the processor’s local bus. This design allows the proc-
essor to access memory at the full speed and data path width of the microproc-
essor. However, this design also creates the need to perform address
translation and data bus steering in order for the ISA bus master to access 32-
bit memory. Refer to figure 20-2.
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80386
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Figure 20-2. ISA Bus Master Addressing 32-bit System Memory

Refer to figure 20-3. Notice also that the address buffers must be reversed so
that the address can be passed from the ISA bus back toward main memory.
This reversal of the buffer occurs whenever the main CPU gives up control of
the buses (asserts the HLDA signal). The HLDA signal causes the buffers to
change direction. ISA bus masters generate addresses using the following ISA
address lines:
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e SAJ[16:0]
e SBHE#
e LA[23:17]
32-bit
System Memory
g
Buffer
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Figure 20-3. Addressing 32-bit Memory with ISA Bus Masters
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The system address used by ISA bus masters consists only of SA[16:0]. Recall
that SA0, SA1 and SBHE# are converted to BE#[3:0] by the bus controller. Only
SA[16:2] pass through the buffer back to system memory.

The LA lines pass through a bi-directional buffer whose direction is controlled
by HLDA. When the CPU has control of the buses, the buffer passes the ad-
dress from the CPU to the ISA bus. When the CPU gives up ownership of the
buses, the direction is reversed to pass the address from the ISA bus back to-
ward the CPU and system memory.

Address Translation

Since ISA bus master reside on the ISA bus they have access only to the ISA bus
and cannot supply the 32-bit address needed by the 32-bit memory. The bus
controller must be designed to translate the 16-bit address from the bus master
(SA[16:0], LA[23:17] and SBHE#) to the 32-bit address (A[31:2] and BE#[3:0])
required by memory.

Address lines SAO, SA1 and SBHE#, normally outputs from the bus controller
when the CPU is running bus cycles, are inputs when a bus master other than
the CPU is running bus cycles. When the HLDA signal from the CPU becomes
asserted, the bus controller begins translating the ISA type addresses to 32-bit
memory addresses.

Data Bus Steering

The bus controller in ISA machines with 32-bit memory subsystems must also
perform data bus steering to ensure proper operation with ISA bus masters.
The MRDC# and MWTC# lines are used by ISA bus masters to indicate the
type of bus cycle being performed. These command lines, the status of address
lines SAOQ, SA1 and SBHE#, and the M32# size line are used by the bus control-
ler to ensure that information transferred between the bus master and 32-bit
memory subsystem is transferred over the correct path(s). In essence, the data
bus steering required by ISA bus masters is the exact inverse of the data bus
steering required when a 80386DX or higher microprocessor communicates
with a 16-bit device. In this instance, the bus master is a 16-bit device commu-
nicating with 32-bit memory.
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Bus Masters and DRAM Refresh

Since DRAM refresh is usually handled by the refresh logic on the system
board, DRAM will start to lose information if it is not refreshed within the re-
fresh interval specified by the DRAM chip manufacturer. The system board re-
fresh logic refreshes one row every fifteen microseconds. The refresh logic
requires the use of the buses to accomplish this task. It should be noted that an
ISA bus master that controls the buses for any period of time should be pre-
pared to handle DRAM refresh. The bus master should either give up owner-
ship of the buses a least every 15 microseconds or should request that a refresh
cycle be run every 15 microseconds.

ISA bus masters can trigger the refresh logic to run a refresh bus cycle by as-
serting the REFRESH# signal. The refresh logic normally asserts the REFRESH#
signal when running a bus cycle to inform DRAM address decoders that a re-
fresh cycle is in progress; however, the REFRESH# signal also acts as an input
to the refresh logic to provide ISA bus masters with a means to trigger a refresh
bus cycle. Note that ISA bus masters do not give up ownership of the buses
during the refresh cycle, but must wait until the refresh cycle completes before
continuing use of the buses. The steps involved in triggering a refresh cycle via
bus mastering is as follows:

1. REFRESH# is asserted by the bus master. The bus master will not use the
buses again until the refresh cycle has been completed.

2. The refresh logic sees the REFRESH# signal become asserted and starts a
refresh bus cycle.

3. The refresh logic outputs the lower portion of the address to identify a row
of memory to be refreshed, along with the MRDC# line.

4. The ISA bus master watches for the MRDC# line to become deasserted in-
dicating that the refresh cycle has ended.

5. The bus master continues to run bus cycles.
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Chapter 21

The Previous Chapter

The previous chapter provided a detailed description of system support re-
quired for ISA bus masters to function in various ISA machines.

This Chapter

This chapter describes the operation and usage of the real-time clock and con-
figuration RAM found in all ISA machines.

The Next Chapter

The next chapter, “Keyboard/Mouse Interface,” describes the interface be-
tween the keyboard and mouse and the system.

Introduction

Most ISA machines contain either a Motorola MC146818 real-time clock and
configuration RAM chip or a Dallas Semiconductor equivalent. These chips
consist of two functional areas:

1. 64 locations of CMOS low power RAM memory that retains stored infor-
mation after power-down via a battery backup. In the case of the Motorola
version, the battery is external, whereas the Dallas Semiconductor chip has
the battery built in. This means that the Dallas Semiconductor chip must be
replaced approximately every ten years.

2. The real-time clock function automatically keeps track of the date and time.

An external, 32.768KHz crystal oscillator supplies the RTC chip's timebase. The
first ten RAM locations are used by the real-time clock function to keep track of
the date (day and month) and time. The next four locations are used to control
the real-time clock function. The remaining fifty locations are used to store sys-
tem configuration information and the century portion of the date.
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Accessing the RAM Locations

Via a two-step process, RAM locations inside the chip are accessed using 1/O
operations.

1. The programmer first identifies which of the 64 RAM locations is to be ac-
cessed by writing the RAM address to I/O port 70h, the chip's address
port. The address must be in the range from 00h to 3Fh. Caution should be
exercised when writing the address to port 70h because port 70h has a sec-
ond function — bit 7 controls the enabling or disabling of NMI interrupts
to the microprocessor (0 = enable NMI).

2. Next, the programmer either reads the contents of the previously identified
CMOS RAM location from the chip's data port, I/O port 71h, or writes the
desired data byte to the data port.

As an example, the proper sequence to read the contents of CMOS RAM loca-
tion five would be:

1. Write the RAM address, 05, to the address port at [/O port 70h.
2. Read RAM location 5's contents by performing an I/O read from the data
port, I/O port 71h.

Caution must be exercised to always follow a write to the address port with ei-
ther a read from or a write to the data port. Failure to do so may result in unre-
liable operation of the real-time clock.

Address Decoder and RTC's Hardware Interface

Figure 21-1 provides a basic view of the RTC chip's interface to the system. The
RTC's address decoder is designed to generate one of three possible chip-
selects to the RTC chip:

e ADSWR. Address write is generated whenever the address decoder de-
tects an I/O write to port 70h, the RTC's address port. When ADSWR goes
high, the RTC chip accepts the data from the lower data path, D[7:0], and
latches it into its address port. This identifies the CMOS RAM location to
be communicated with during a subsequent read from or write to the data
port (I/O port 71h).

e DATARD#. Data read is generated whenever the address decoder detects
an 1/0 read from port 71h, the RTC's data port. When DATARD# goes
low, the RTC chip reads the data from the CMOS RAM location identified
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by the address currently in its address port. The data is placed onto the
lower data path, D[7:0], to be read by the microprocessor.

e  DATAWR# Data write is generated whenever the address decoder detects
an [/O write to port 71h, the RTC's data port. When DATAWR# goes low,
the RTC chip accepts the data from the lower data path, D[7:0], and stores
it into the CMOS RAM location identified by its address port.

32.768KHz .
Heal-
Time
Clock
DATARD# >
DATAWR#
ADSWR » Alarm

ERQS»

Figure 21-1. The RTC/Configuration RAM Chip

Real-Time Clock Function

The first ten RAM locations are used by the real-time clock function and are de-

fined in table 21-1.

Table 21-1. The Real-Time Clock Bytes

Address

Function

)

Seconds

Seconds Alarm

Minutes

Minutes Alarm

Hours

Hours Alarm

Day of Week

Date of Month

Ol ||| G| = ]|WIN|—

Month

Year
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Locations 1, 3 and 5 can be used to specify an alarm event to occur once per
day (IRQ8 will be generated).

Locations Ah through Dh are referred to as status registers A through D and
are used to control the operational characteristics of the real-time clock func-
tion. Tables 21-2 through 21-5 define the function of the bits in the four real-
time clock status registers.

Table 21-2. RTC Status Register A

Bit(s) Description
7 Update in progress. When set to 1, indicates that the chip is updating the
time and date.

6:4 22-Stage divider. Indicate timebase in use. Always set to 010b to indicate a
32.768KHz timebase.

3:0 Rate selection bits. Allow selection of an output frequency. Set to 0110b,
selects a 1.024KHz square-wave output frequency and a 976.562 microsec-
ond Periodic Interrupt rate.

Table 21-3. RTC Status Register B
Bit(s) Description

7 Set bit. When 0, this bit allows the date/time to be updated normally at the
rate of once per second. When set to a 1, updates are disallowed and the
programmer may change the date and time without interference from up-
dates.

6 Periodic interrupt enable. When set to 1, allows IRQ8 to occur at the
1.024KHz rate specified in status register A. This bit is normally 0.

5 Alarm interrupt enable. When set to 1, this bit allows an IRQS to be gener-
ated at the selected alarm date/time. This bit is normally 0.

4 Update-ended interrupt enable. When set to 1, the chip will generate an
IRQS8 each time a date/time update is completed in the device's RAM. This
bit is normally 0.

3 Square-wave enabled. When set to 1, this bit enables the generation of the
output frequency selected in status register A. This bit is normally 0.

2 Date mode. This bit defines whether the date and time will be represented
in Binary or BCD formats. A 1 selects binary mode. This bit is normally 0.

1 24-hour mode. This bit defines whether the hours byte is presented in 24 or
12 hour format. A 1 selects 24-hour mode. This bit is normally 1.

0 Daylight-savings enabled. A 1 enables daylight-savings time mode. This

bit is normally 0.
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Table 21-4. RTC Status Register C

Bit(s) Description
7 Interrupt request flag. This bit is set to a 1 when the chip has generated an
interrupt on IRQS. Bits 4, 5 and 6 of this register may then be checked to
ascertain the cause of the interrupt.
6 Periodic interrupt flag. Set to 1 when an periodic interrupt is generated.
5 Alarm interrupt flag. Set to 1 when an alarm interrupt is generated.
4 Update-ended interrupt flag. Set to 1 when an update-ended interrupt is
generated.
3:0 Not Used.
Table 21-5. RTC Status Register D
Bit(s) Description
7 RAM valid. When set to 0, indicates that the battery is dead or discon-
nected and RAM data has therefore been lost.
6:0 Not Used.

Using BIOS to Control Real-Time Clock

The recommended method for controlling the real-time clock chip is through
BIOS function calls. INT 1Ah can be used to call the time-of-day BIOS routine.
A complete description of this BIOS routine's usage can be found in either of
the following publications:

The IBM PS/2 and Personal Computer BIOS Interface Technical Reference pub-
lished by IBM.

System BIOS for IBM PC’s, Compatibles, and EISA Computers by Phoenix
Technologies Ltd., published by Addison-Wesley.
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Configuration RAM Usage

Table 21-6 defines the ISA-standard usage of the fifty configuration RAM loca-
tions in the MC146818 chip.

Table 21-6. Configuration RAM Usage

Location (Hex) Description of Use
OFE Diagnostic Status Byte
OF Reset Code Byte
10 Diskette Drive Type Byte
11 Reserved
12 Fixed Disk Drive Type Byte
13 Reserved
14 Equipment Installed Byte

15 to 16 Low and High Base Memory Bytes
17 to 18 Low and High Extended Memory Bytes
19 to 2C Reserved
2D Additional Flags
2E to 2F Checksum Value
30 to 31 | Memory above IMB
32 Century part of time and date function

33 System information
34 to 3F Reserved

Table 21-7 identifies the valid values that may be stored in the reset code byte
at CMOS RAM location OFh. Whenever the microprocessor is reset, it begins
executing the POST again. At the beginning of the POST, the program reads the
reset code byte from CMOS RAM to determine the course of action to be taken.
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Table 21-7. The Reset Code Byte

Value Meaning

00h | Normal Power-Up reset or Control-Alternate-Delete reset, depending on
the value of the reset flag word in memory at location 0040:0072. When the
reset flag contains the value 1234h, the POST memory test is skipped.

04h | POST is skipped. Causes DOS to be loaded from disk.

05h | POST is skipped and memory preserved. The 80286 microprocessor cannot
be switched from protected mode into real mode without resetting the
processor. This presents problems when the programmer wishes to tempo-
rarily switch to protected mode to access extended memory and then
switch back into real mode to continue execution. When a program must
temporarily leave real mode and enter protected mode, the programmer
first stores a four byte memory address (pointer) into memory location
0040:0067. This pointer specifies the address at which real mode execution
will resume. Having done this, the program may switch the processor into
protected mode and access extended memory. Upon completing the pro-
tected mode function, the programmer must place the value 05h or 0Ah
into the reset code byte in CMOS RAM and then reset the 80286 microproc-
essor. When reset goes away, the processor is in real mode and begins exe-
cuting the POST. The POST code checks for a 05h or a 0Ah in the reset code
byte, and, if present, jumps to the memory address specified in memory
starting at location 0040:0067 to resume execution at the point where it left
off in real mode. In addition, if the reset code byte value is 05h, an EOI
command is issued to the interrupt controller.

09h | Block-move return. This value is placed in the reset code byte by a BIOS
call to INT 15h to move a block of information between conventional and
extended memory. In order to accomplish this move, the processor must
switch into protected mode. On an 80286-based system, the INT 15h rou-
tine sets the reset code byte to 09h prior to resetting the processor to return
to real mode after the block move. When reset, the processor starts execut-
ing the POST, checks the reset code byte value, and then performs an inter-
rupt return, or IRET, instruction to return to the original program after
completion of the call to the INT 15h BIOS routine.

OAh | Jump to reset vector 0040:0067 without issuing EOL. See the explanation for
reset code byte = 05h.

It should be noted that systems based on the 80386 and higher microprocessors
can switch from protected mode to real mode without resetting the processor
(by turning off the PE bit in the MSW register).
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Chapter 22

The Previous Chapter

The methods of communication over the ISA bus have been covered, including
read and write operations, interrupt driven communication with /O devices,
DMA communication between memory and /0O, and bus mastering.

This Chapter

The interface for the keyboard controller is implemented using an Intel 8042 se-
ries microcontroller known as a universal peripheral interface. This device also
serves other miscellaneous system functions. This chapter discusses the 8042
implementation of the combination keyboard/mouse interface and the stan-
dard ISA functions handled by this interface.

The Next Chapter

The next chapter explains the interface between the microprocessor and nu-
meric coprocessor. The Intel 80287, 80387 and the Weitek coprocessors are cov-
ered.

Keyboard/Mouse Interface

Every ISA system includes a keyboard interface on the system board and some
systems implement a combined keyboard /mouse interface. Both implementa-
tions consist of an Intel 8042 microcomputer with its own RAM, ROM and 1/0O.
The 8042 is a self-contained computer system that the system board microproc-
essor communicates with using two [/O registers.

The 8042 communicates with the keyboard and the mouse using two inde-
pendent serial interfaces. The keyboard and the mouse both receive their
power from the system board.

The 8042 microprocessor has additional input and output pins that can be used
for other functions. Four of the output functions are ISA specific: IRQ1 (the
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keyboard interrupt request), IRQ12 (the mouse interrupt request), Hot Reset
and A20 Gate. These signals are covered in detail later in this chapter. Other
input and output functions may also be found in ISA systems but are manufac-
turer specific.

Keyboard

The key switches are laid out in rows and columns within the keyboard. An-
other 8042 (or a dedicated part such as an 8052) controller resides in the key-
board and is constantly scanning the key matrix to see if a key has been
pressed. When a key is pressed, the 8042 creates an 8-bit scan code that repre-
sents the key pressed. This code is commonly referred to as the “make” code.
The scan code is then converted to a serial bit stream and sent to the key-
board /mouse interface on the system board. When the key is released, another
scan code is generated and is called the “break” code.

Once an entire 8-bit scan code has been received, the keyboard/mouse inter-
face generates an IRQ1 interrupt request to alert the microprocessor. The mi-
croprocessor jumps to the keyboard interrupt service routine and an [/O read
from data port 60h is performed to read the scan code from the 8042 on the sys-
tem board. IRQ1 remains asserted until the scan code is read and is then
automatically deasserted.

Mouse

Like the keyboard, the mouse generates an 8-bit code that is handled in the
same manner by the keyboard/mouse interface. When the mouse code is re-
ceived by the interface, it generates an IRQ12 to alert the microprocessor that a
byte is ready to be transferred.

8042 Local 1/0 Ports

Refer to figure 22-1. The keyboard controller's input and output ports have ad-
ditional lines that can be used for other functions besides the keyboard and
mouse interface. Many older ISA systems use the local input ports to read sys-
tem configuration information from switches or jumpers. These inputs are de-
fined in various ways and are manufacturer dependent. However, the
keyboard controller output signals HOT RESET and A20 GATE are ISA specific
and virtually all manufacturers implement these outputs in order to remain
compatible. Figure 22-1 shows the standard uses of the local ports.
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Hot Reset >
A20 Gate >
8042 = >
Keyboard IRQ12 >
Controller
Keyboard
+5Vde —N\p—---—
= Mouse
Mouse Data >
Mouse Clock >

Figure 22-1. The Keyboard Controller

Hot Reset

The 80286 microprocessor must be reset to change the processor from protected
back to real mode. Hot Reset causes the “CPU only” reset needed to change the
microprocessor from protected to real mode. Writing a FEh to I/O port 64h, the
keyboard command port, causes the HOT RESET line to be pulsed. Refer to the
chapter entitled “The 80286 Microprocessor” for additional information on
changing from protected back to real mode.

A20 Gate

Depending on the schematic, A20 GATE may be called A20MASK#, PASS A20,
FORCE A20, etc., all of which apply to the same function and signal. When
deasserted, A20 GATE inhibits the generation of address line A20 during real
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mode operation, making the 80286 and higher microprocessors compatible
with the segment wrap-around that occurs on 8086 and 8088 microprocessors.
Note that the polarity of the signal affects its meaning. Whereas A20 GATE
would be asserted to pass A20 from the microprocessor to memory,
A20MASK# would be deasserted to do the same thing.

Local Port Definition

The 8042 microcontroller has three local ports that are used in most configura-
tions as shown in figure 22-2. These ports include:

e An 8-bit input port used for keyboard data, mouse data and miscellaneous

inputs.

e An 8-bit output port used for keyboard data, mouse data, Hot Reset, A20

Gate and miscellaneous outputs.

e A 2-bit test port used to read the keyboard and mouse clock signals.

Keyboard/Mouse
Controller

‘ |
Command Port |

HO4 Inding jBooy

N
+

¥ ¥ Y ¥ ¥ ¥ ¥ Y

0

Test fnpuis

Hod indy) jesoy
A A A A A X

30,0 pIBOgASY

¥20i0 9SNCW

Het Reset

A20 Gate
Mouse Data
Mouse Clock
iRQ1

iRO12
Keyboard Clock

Keyboard Data

Keyboard Date
Mouse Data
notused

not used

not used

not used
notused

not used

Figure 22-2. Sample 8042 Configuration
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Note that these definitions are typical of the keyboard /mouse interface. Use of
these ports vary depending on the specific implementation. Tables 22-1
through 22-3 provide sample bit assignments for the 8042's local I/O ports.

Table 22-1. Sample Keyboard/Mouse Interface—Local Input Port
Bit | Description

7:2 | Not used.
1 Mouse Data input line.
Keyboard Data input line.

Table 22-2. Sample Keyboard/Mouse Interface—Local Output Port
Bit | Description

Keyboard Data output line

Keyboard Clock output line

IRQ12

IRQ1

Mouse Clock output line

Mouse Data output line

Gate Address Bit 20

Reset microprocessor (Generates Hot Reset)

jeo) Ll NS] RO FTEN RO 1 K@xY N |

Table 22-3. Keyboard/Mouse Interface—Test Port
Test Port Description

0 Keyboard Clock input
1 Mouse Clock input

System Interface

The microprocessor uses two 1/0 registers to communicate with the 8042 key-
board /mouse interface:

e Command /Status Port 64h
e Data In/Out Port 60h
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Command/Status Port

To command the keyboard /mouse interface (the 8042) to perform a task, the
microprocessor uses an 1/O write to send the command to the 8042. The 8042
microcomputer's ROM program then interprets the command and jumps to the
appropriate subroutine (series of instructions) to accomplish the requested task.

The microprocessor issues commands to the keyboard /mouse command port
at I/O address 0064h. Table 22-4 provides a list of typical commands that can
be sent to the 8042 keyboard/mouse interface's command port. The precise
commands used by a particular system can vary depending on the features
built into the system. For example, not all systems support the password fea-
ture that is found in the list. In short, the commands listed in table 22-4 will not
necessarily match the commands found in all ISA systems. Some systems will
not support all of the commands found in this list, while others may include
additional commands.

Note that the command port allows the microprocessor to indirectly read from
and write to the keyboard/mouse interface's local ports. For example, to read
the contents of the local input port requires that a COh be first written to the
command port (64h). This command causes the values at the local input port to
be sent to the data port (60h) where they can then be read by the microproces-
sor.

This command port can also be read to obtain status information from the key-
board /mouse interface.
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Table 22-4. 8042 Sample Keyboard/Mouse Interface Command List

Cmd
(hex) Description
20 to | Bits 5 through 0 of this command designate one of 64 possible 8042 internal
3F RAM locations to be read. As an example, 23h causes internal RAM location
03h to be read. Its contents are placed in the data port at I/O address 0060h
so the microprocessor can read it.
60 to | Bits 5 through 0 of this command designate one of 64 possible 8042 internal

7F RAM locations to be written. The next byte written to the data port at I/O
address 0060h is written to the designated internal RAM location. As an
example, 63h causes internal RAM location 03h to be written. The next byte
written to the data port at I/O address 0060h is written to the designated
location.

A4 | Test password installed. This command checks for a password installed in
the 8042's internal RAM. FAh is placed in the data port at I/O address
0060h if the password is installed. A F1h indicates it isn't installed.

A5 | Load password. Initiates the password load procedure. The 8042 then ac-
cepts input from the data port at I/O address 0060h until a null (00h) is re-
ceived.

A6 | Enable password feature.

A7 | Disable mouse Interface.

A8 | Enable mouse Interface.

A9 | Mouse interface test. Tests the mouse clock and data lines. Result is placed
in the 8042's data port at [/O address 0060h.

AA | Self-test. Runs an 8042 self-test. 55h placed in the data port at I/O address
0060h if no errors are detected.

AB | Keyboard interface test. Tests the keyboard clock and data lines. Result is
placed in the 8042's data port at [/O address 0060h.

AD | Disable keyboard interface.

AE [ Enable keyboard interface.

CO | Read input port. Allows the programmer to read the contents of the 8042's
local input I/O port. The result is placed in the data port at [/O address
0060h.

C1 Poll input port low. Bits 3:0 of the 8042's local input I/O port are read and
placed in bits 7:4 of the status register at [/O address 0064h.

C2 Poll input port high. Bits 7:4 of the 8042's local input I/O port are read and
placed in bits 7:4 of the status register at [/O address 0064h.

DO | Read output port. Causes the 8042 to read the current state of its local out-
put I/0 port and place the result in the data port at [/O address 0060h.

D1 | Write output port. The next byte written to the data port at [/O address

0060h is written to the 8042's local output /O port.
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Table 22-4. 8042 Sample Keyboard/Mouse Interface Command List, continued

D2

Write keyboard output buffer. The next byte written to the data port at I/O
address 0060h causes a keyboard Interrupt on IRQ1 (if the keyboard Inter-
face is enabled). The byte is supplied as the keyboard scan code when the
data port is read.

D3

Write mouse output buffer. The next byte written to the data port at I/O
address 0060h causes a mouse Interrupt on IRQ12 (if the mouse Interface is
enabled). The byte supplies the mouse scan code when the data port is read.

D4

Write to mouse. The next byte written to the data port at I/O address 0060h
is transmitted to the mouse.

EO

Read test inputs. Causes the 8042 to read the current state of the keyboard
and mouse clock lines. The results are stored in bits 0 and 1, respectively, of
the data port at [/O address 0060h.

FO to
FF

1/0 port are pulsed low for approximately 6 microseconds. Bits 3:0 of this
command indicate which bits are to be pulsed. 0 indicates the respective bit
should be pulsed, while 1 indicates the respective bit shouldn't be altered.

Data Port
The keyboard /mouse data port at I/O address 0060h is used to:

¢ Read the scan code sent from the keyboard or mouse.
¢ Send data/commands to the keyboard.

Scan codes from the keyboard and mouse go directly to the output buffer (port
60h) where they can be read from the microprocessor. The local output port
and test port also can be read at port 60h. By writing the proper command to
port 64h, the contents of the local ports are sent to port 60h where they also can
be read by the microprocessor.

Through port 64h, the keyboard Interface can also be commanded to write the
contents of port 60h to the local ports. In this way, the Hot Reset and Gate A20
commands can be issued to the system.
Most keyboards have LED indicators for scroll lock, num lock, caps lock, etc.,
that can be turned on and off by issuing commands to the keyboard.
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BIOS Routine

The recommended method for controlling the keyboard/mouse interface is
through BIOS function calls. INT 09h and INT 16h can be used to call the key-
board /mouse BIOS routine.

457






Chapter 23: Numeric Coprocessor

Chapter 23

The Previous Chapter

The previous chapter provided a detailed description of the keyboard and
mouse interfaces to the system.

This Chapter

This chapter provides a description of the numeric coprocessors commonly
found in ISA systems. This includes both Intel and Weitek coprocessors.

The Next Chapter

The next chapter describes the timers found in all ISA systems.

Introduction

When Intel was designing the 8086 and 8088 microprocessors, they had a deci-
sion to make — should the 8086 and 8088 be given the ability to perform float-
ing-point mathematics? Floating-point numbers are numbers with decimal
places. If this ability were included within the microprocessor itself, it would
substantially increase the price of the microprocessor. Marketing information
indicated that most users didn't need this capability, so it was not included in
the final processor design. The microprocessor can perform integer, or whole
number, calculations, but not floating-point.

Rather than completely eliminate the floating-point capability, however, they
included hooks on the microprocessor that would enable users to include a
companion floating-point processor in designs that required this capability. The
companion processor, or coprocessor, was the 8087 numeric coprocessor. It is
also referred to as a processor extension because it extends the microprocessor's
instruction set. When the 80286 and 80386 microprocessors were introduced,
the same philosophy was adhered to — the 80286 can be coupled with the
80287 and the 80386 with either the 80287 or the 80387 numeric coprocessor.

The microprocessor treats the numeric coprocessor as an I/O device. When the
microprocessor fetches an instruction from memory and senses that it is an in-
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struction for the coprocessor, it automatically performs a series of one or more
1/0 writes to forward the instruction to the coprocessor, which then executes
the instruction. The I/O address range from 00F8h through O0FFh are assigned
to the coprocessor.

Setup

At the beginning of the POST, the programmer checks the configuration RAM
to see if a numeric coprocessor is installed. Bits 1 and 2 of the microprocessor's
machine status word (MSW) register are then set according to table 23-1.

Table 23-1. The Numeric Coprocessor Control Bits in the MSW Register

Bit 2 (EM) Bit 1 (MP) Description

0 0 Coprocessor is installed. Microprocessor forwards
all floating point instructions to coprocessor. Micro-
processor does not check to see if the it has switched
tasks when executing floating point instructions.
Microprocessor operates as an 8086 or 8088, single-
tasking.

0 1 Coprocessor is installed. Microprocessor forwards
all floating point instructions to coprocessor. Micro-
processor checks to see if it has switched tasks when
executing floating point instructions. Used for multi-

tasking.
1 0 Coprocessor not installed. Emulate coprocessor.
1 1 Invalid.

Note: In the 80386 and higher microprocessors, the MSW register is found in
the lower half of CRO (control register 0).

With Numeric Coprocessor Installed

Refer to figure 23-1. The microprocessor is aware of the I/O addresses of the
coprocessor's two ports. The coprocessor's opcode, or instruction, register re-
sides at port O0F8h in an 80286-based system, 8000F8h in an 803865X-based
system, and 800000F8h in an 80386DX-based system. The coprocessor's data
register resides at port OOFCh in an 80286-based system, 8000FCh in an
803865X-based system, and 800000FCh in an 80386DX-based system. When the
coprocessor is installed and the MP bit is set to one, the following actions take
place when the microprocessor fetches a coprocessor instruction from memory:

460



Chapter 23: Numeric Coprocessor

If the execution of the coprocessor instruction requires a memory read or a
memory write operation, the microprocessor saves the memory address,
the length of the data and notes whether a memory read or write is re-
quired.

If the coprocessor's BUSY# output is deasserted, indicating that it is avail-
able to accept the next instruction, the microprocessor performs one or
more [/O writes to the coprocessor's instruction register at [/O port 00F8h
(800000F8h for the 80386DX or 8000F8h for the 803865X) in order to for-
ward the instruction to the coprocessor. The 80286 and 803865X microproc-
essors have a 16-bit data bus, allowing one or two bytes to be transferred to
the coprocessor in a single bus cycle. The 80386DX microprocessor, on the
other hand, has a 32-bit data bus, allowing from one to four bytes to be
transferred to the coprocessor in a single bus cycle. Simple instructions that
are only one or two bytes in length can be transferred in a single [/O write
bus cycle, while more complex instructions consisting of three or more
bytes may require additional I/O write bus cycles.

When the coprocessor begins execution of the instruction, it asserts its
BUSY# output, thereby signaling that it cannot accept another instruction
from the microprocessor until the currently executing instruction is com-
pleted. The microprocessor will not attempt to forward another instruction
to the coprocessor until BUSY# is deasserted.

If execution of the instruction requires that a memory read or memory
write bus cycle take place, the coprocessor asserts PEREQ) (processor exten-
sion request) to request that the microprocessor run the memory read or
write bus cycle.

This step only applies to the 80286. The 80386 microprocessor does not
have a PEACK# output. The 80286 microprocessor responds with PEACK#
(processor extension acknowledge) to inform the coprocessor that the
transfer request has been acknowledged.
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80287 80286
Numeric Microprocessor
Coprocesso

PEREQ Bl FEREQ

PEACK PEACK#

BUSY! Bt BUSYH

+5Vde
ERROR ................ iﬂm EHROR#

IRQ13

Y

Figure 23-1. The 80287 Numeric Coprocessor

If the requested transfer is a memory write, the microprocessor performs
two (or more) bus cycles to transfer the data into memory. During the first
bus cycle, the microprocessor performs an I/O read from the coprocessor's
data register at I/O address O0FCh (800000FCh for the 80386DX or
8000FCh for the 803865X) to get the data. The processor then performs a
memory write bus cycle to write the data into the target memory locations.

If the requested transfer is a memory read, the microprocessor performs
two (or more) bus cycles to transfer the data from memory to the coproces-
sor. During the first bus cycle, the microprocessor performs a memory read
from the target memory locations to get the data. The processor then per-
forms an /O write to [/O address 00FCh (800000FCh for the 80386DX or
8000FCh for the 803865X) to pass the data to the coprocessor's data register.
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7. If the coprocessor incurs an error while executing the instruction, its ER-
ROR# and BUSY# outputs are asserted. This generates an IRQ13 to the mi-
croprocessor and prevents the microprocessor from forwarding another
coprocessor instruction. In the IRQ13 interrupt service routine, the pro-
grammer reads the coprocessor's status register to ascertain the cause of the
error. Any coprocessor error may be reset by writing 00h to I/O address
00FOh. This causes the coprocessor's RESET input to be asserted, clearing
any error conditions.

8. When the coprocessor completes execution of the instruction, it deasserts
its BUSY# output to inform the microprocessor that it is ready to accept an-
other coprocessor instruction.

Numeric Coprocessor Reset

In systems incorporating the 80287 numeric coprocessor, an output to I/O port
F1h is necessary to reset the 80287 and return it to real mode operation after
execution of a FSETPM (floating-point set processor mode) instruction. Writing
any data to this port causes the 80287's reset line to be asserted momentarily.
The 80387 numeric coprocessor doesn't require a reset when changing proces-
sor modes.

Writing a 00h to I/O port FOh causes the numeric coprocessor to clear its
BUSY# and ERROR# outputs.

Table 23-2 provides a description of the Intel coprocessor signals involved in
communication with the microprocessor.
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Table 23-2. Intel Coprocessor/Processor Communication Signals

Signal
Name

Coprocessor
Type

Description

PEREQ

287/387

Processor extension request. Asserted by the coprocessor when a
transfer to or from memory is required. In response, the microproc-
essor performs two or more bus cycles to transfer the data between
memory and the coprocessor.

PEACK#

287

Processor extension acknowledge. Asserted by the 80286 coproces-
sor in response to PEREQ.

BUSY#

287/387

Asserted by the coprocessor when it begins executing an instruction.
The processor may not send another instruction to the coprocessor
while this signal is asserted.

ERROR#

287/387

Generated by the coprocessor when an error condition is encoun-
tered while executing an instruction. In an ISA machine, ERROR# is
connected to the IRQ13 line.

D[31:0]

287/387

Data bus is used to transfer instructions or data to the coprocessor
from the processor. Also used to transfer data or status from the
coprocessor to the processor. The 80286 and 803865SX processors and
the 80287 and 80387SX coprocessors have a 16-bit data bus, while
the 80386DX processor and the 80387DX coprocessor have a 32-bit
data bus.

W/R#

387

This is the 80386 processor's write or read output. During an access
to the coprocessor, W/R# indicates whether a write or read opera-
tion is in progress.

ADSH#

387

This is the 80386 processor's address status output.
When asserted at the start of a bus cycle, indicates to
the coprocessor that it should examine its chip-select
inputs to determine if the processor is addressing the
COPToOCessor.

READY#

387

This is the same signal that is connected to the micro-
processor's READY# input. It indicates when a bus
cycle is being completed by the processor.

READYO#

387

This is the coprocessor's ready output to the processor. It indicates
to the processor when the coprocessor is ready to end a bus cycle
initiated by the microprocessor.

STEN

387

Status Enable. This pin serves as a chip-select to the coprocessor.
When sensed asserted, the coprocessor examines its CMD and NPSn
inputs to determine which of its internal registers is currently being
addressed.

NPS1#

287/387

Numeric Processor Select 1. When asserted (low), indicates that an
[/O operation is in progress. Should be connected to the microproc-
essor's M/IO# output. In conjunction with NPS2, the CMD input(s)
and STEN (in the case of an 80387), it is used as a chip-select for the
COProcessor.
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Table 23-2 Intel Coprocessor/Processor Communication Signals, continued

Signal Coprocessor
Name Type Description
NPS2 287/387 Numeric Processor Select 2. In conjunction with NPS1#, the CMD

input(s) and STEN (in the case of an 80387), it is used as a chip-
select for the coprocessor. In a system incorporating the 80287,
NPS2 is usually just tied high. In an 803865X/80387SX system, it is
tied to A23, while in an 80386DX/80387DX system, it is tied to A31.

CMDO or 287 (CMDO0) Used to select the target I/O register in the coprocessor. In an 80386-

CMDO# 387 (CMDO0#) based system, the processor's A2 output is connected to CMDO# on

the 80387. A2 goes high when the coprocessor's data register is ad-
dressed, and low when its instruction register is addressed. In an
80286-based system, CMD0 and CMD1 are used to select the target
[/0O register in the coprocessor. CMDO is connected to the proces-
sor's Al output.

NPRD# 287 Numeric Processor Read. Connected to the bus control logic's
[ORCH# line. Indicates to the coprocessor when an I/O read bus cycle
is in progress.

NPWR# 287 Numeric Processor Write. Connected to the bus control logic's
[OWCH# line. Indicates to the coprocessor when an I/O write bus
cycle is in progress.

CMD1 287 In an 80286-based system, CMDO0 and CMD1 are used to select the
target 1/O register in the coprocessor. CMDI1 is connected to the
processor's A2 output.

Detailed information about coprocessor programming may be found in the fol-
lowing Intel manuals:

e iAPX 286 Hardware Reference Manual

e iAPX 286 Programmer’s Reference Manual including the iAPX 286 Numeric
Supplement

e 80386 Hardware Reference Manual

Without Numeric Coprocessor Installed (Emulation)

When a system running Lotus 1-2-3 recalculates a spreadsheet, the decimal
portion of the numbers are calculated correctly, even if the coprocessor isn't in-
stalled. Since the microprocessor can only perform integer mathematics, this
doesn't seem possible. In this case, the floating-point calculations are per-
formed by special routines known as floating-point emulation routines. These
routines are supplied as part of the applications program (such as Lotus 1-2-3).

Using the standard instruction set, floating-point calculations can be performed
through laborious manipulation of floating-point numbers stored in memory.
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This process is much less efficient than the floating-point instruction capability
embedded within the coprocessor. Where the coprocessor can directly execute
a single floating-point instruction with its hardware, an emulation routine
would have to execute hundreds of instructions to accomplish the same end.
When running applications programs that are floating-point intensive, the per-
formance improvement provided by the coprocessor can be quite dramatic.
Improvements of from 100% to 500% aren't uncommon.

Floating-point emulation requires the following:

¢ Inclusion of a set of emulation routines in the applications program (such
as 1-2-3).
¢ Inthe MSW register, the EM bit must be set to 1 and the MP bit set to 0.

This section describes the actions taken when a coprocessor isn't installed and
the EM bit is set to 1 in the MSW register.

1. The microprocessor fetches a coprocessor instruction from memory. When
the microprocessor decodes the instruction and senses that it belongs to the
coprocessor, it checks the MP bit in the MSW register to see if a coprocessor
is installed. If it isn't (MP = 0), it checks the EM bit to see if the coprocessor
instruction is to be emulated. In this case, it is (EM = 1).

2. The microprocessor internally generates an exception 7 interrupt request.
As with any interrupt, the microprocessor responds by pushing the con-
tents of the CS, IP and Flag registers into stack memory. The stored CS and
IP values point to the coprocessor instruction that caused the exception.

3. The microprocessor jumps to the exception 7 interrupt service routine. This
is the emulation program supplied as part of the applications program. In
the routine, the programmer reads the coprocessor instruction using the
memory address stored in the stack and determines the type of instruction
(such as a floating-point divide). The programmer then jumps to the rou-
tine (in the package of emulation routines) that emulates that particular
type of instruction.

4. Upon conclusion of the instruction emulation, the programmer alters the IP
value stored on the stack to point to the instruction immediately following
the coprocessor instruction that caused the exception.

5. The programmer executes an IRET (interrupt return) instruction. The mi-
croprocessor responds by reloading the CS, IP and Flag registers from the
stack and resuming normal operation — in other words, the microproces-
sor fetches the next instruction from the memory location pointed to by CS
and IP. This is the instruction after the coprocessor instruction that caused
the exception.
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Weitek Numeric Coprocessor

Introduction

ISA systems may incorporate either an Intel or a Weitek coprocessor, or both.
The Weitek coprocessor does not reside in the same address space as the Intel
coprocessor, so addressing conflicts will not arise if both are implemented.
Rather than using [/O addresses as does the Intel coprocessor, the Weitek de-
vice is memory-mapped. It responds to memory addresses C0000000h through
C1FFFFFFh.

Systems Incorporating Just the Weitek

General

In a system using the Weitek coprocessor to perform floating-point calcula-
tions, two possible scenarios may coexist:

e By re-compiling a program that uses Intel coprocessor-specific instructions,
the Weitek can handle the execution of all Intel coprocessor-specific in-
structions, or alternatively a driver routine can be installed to automatically
handle the instructions.

e Applications programs can incorporate Weitek-specific instructions as in-
line code within the applications itself.

The second case is clear-cut, but the first one merits some explanation.

Weitek Handling of Intel Coprocessor Instructions

Most developers that use the Weitek coprocessor embed move instructions into
their floating-point code to pass the instruction directly to the Weitek Coproc-
essor. Alternatively, a Weitek driver routine could perform a memory write to
pass the instruction and any data operands to the Weitek coprocessor.

In order for a driver to direct all instances of Intel coprocessor-specific instruc-
tions to the Weitek, the EM bit in the MSW register should be set to a one. An
Intel-specific floating-point instruction fetched from memory then causes the
processor to experience an exception 7 interrupt. As a result, the processor
jumps to the exception 7 handler routine. This is the Weitek driver routine.
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As illustrated in table 23-3, the memory address that is written to identifies
both the coprocessor's internal register as well as the instruction type. In addi-
tion, up to four bytes of data are simultaneously written to the Weitek over the
four data paths. Upon receipt of the instruction, the coprocessor asserts
READY#, permitting the processor to end the bus cycle. Having passed the in-
struction to the coprocessor, the Weitek driver routine modifies the return ad-
dress pointer on the stack to point to the instruction after the one that caused
the exception. It then executes an interrupt return, or IRET, instruction to re-
turn to the original program flow.

Table 23-3. Weitek Interpretation of the Memory Address

Address Bits Identify
A[31:16] The register within the Weitek coprocessor.
A[15:10] Instruction opcode, or type.
AJ9:7] Source 1 register in the Weitek.
Af6:2] Source 2 or destination register in the Weitek.
BE#[2:0] Additional information regarding the source 1 register in
the Weitek.

Systems Incorporating Both Coprocessor Types

In a system incorporating both coprocessor types, the Intel coprocessor handles
execution of all Intel coprocessor-specific instructions, while the Weitek han-
dles execution of all Weitek-specific code embedded within applications pro-
grams. In the MSW register, EM is set to zero and MP is set to one to indicate
the presence of an Intel coprocessor.
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Chapter 24

The Previous Chapter

The previous chapter provided a description of the numeric coprocessor inter-
face and floating-point emulation.

This Chapter

This chapter describes the system timers incorporated in all ISA-compatible
machines.

ISA Oscillator, OSC

ISA systems include a free-running 14.31818MHz clock named OSC that may
be used by ISA add-in boards. OSC runs at four times the television color burst
frequency and may be used by video display adapter cards or any other device
needing a free-running clock.

The 14.31818MHz OSC oscillator signal is divided by 12 by logic on the system
board to provide the 1.19318MHz signal that drives timer 0, timer 1 and timer
2. The OSC signal was divided by 3 by the 8284 clock chip in the original PC to
provide the 4.77MHz clock that drove the 8088 microprocessor.

System Timer (Timer 0)

The system timer, timer 0, is a programmable frequency source. The program-
mer specifies a divisor to be divided into the input clock to yield the desired
output frequency. During the POST, the divisor FFFFh, or a decimal 65535, is
programmed into timer O at I/O address 0040h. Based on the 1.19318MHz in-
put clock, the output frequency of timer 0 after POST is 18.21Hz.

Refer to figure 24-1. Timer 0's output is connected to the IRQO latch. When
timer 0's output becomes asserted, the latch is set, sending IRQO to the master
8259 interrupt controller. In the IRQO interrupt service routine, the programmer
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can reset (deassert) IRQO by setting bit 7 of system control port B at I/O ad-
dress 0061h to a one.

At a frequency of 18.21Hz, IRQO is generated every 54.9ms, causing the IRQ in-
terrupt service routine to be executed once every 54.9ms.

In the original IBM PC and XT, this interrupt service routine was used to main-
tain the date and time in RAM memory. In the IBM PC/AT, a real-time clock
chip was added to perform this function, but timer 0 is still available for use as
a general purpose timer by programmers.

There's a funny story about this timer. In 1989, a number of industry publica-
tions reported the astounding news that a designer in Taiwan had altered a
PC/AT so that it could perform at the positively astounding rate of 100 MIPS
(million instructions per second). A number of benchmark (performance verifi-
cation) programs had been run on the system to verify his claims. Quite a few
people in the industry were reeled in; hook, line and sinker. All this guy had
done was re-program timer 0 to interrupt at a different rate. Since the bench-
mark programs used this interrupt as their timebase, it altered the results. Red
faces all around.

System Conirol Port B, Bit 7

Reset
1.16318MHz § .. . [RQQ
........................... B -\/EOCK QU’(::)LH 18 21 HZ »
input
, IRQO0
Timer 0 i atch

Figure 24-1. The System Timer, Timer 0
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Refresh Timer (Timer 1)

The refresh timer, or timer 1, is a programmable frequency source. The same
1.19318MHz signal (used by timer 0) provides the refresh timer's clock input.
The programmer specifies a divisor to be divided into the input clock to yield
the desired output frequency. During the POST, a divisor of 0012h, or a deci-
mal 18, is written to the refresh timer at I/O address 0041h. The input clock
frequency of 1.19318MHz is therefore divided by 18 to yield an output fre-
quency of 66287.77Hz, or a pulse every 15.09 microseconds.

This is the refresh request signal that triggers the DRAM refresh logic to be-
come bus master once every 15.09 microseconds so it can refresh another row
in DRAM memory throughout the system. For more information on DRAM re-
fresh, refer to the chapter entitled “RAM Memory: Theory of Operation.”

In 1988, a number of industry publications published a brief but dangerous ar-
ticle that addressed the issue of the refresh timer. It was revealed that this de-
mon timer “steals” the buses from your computer once every 15 microseconds
to refresh DRAM memory. A small program was provided that would re-
program this timer so it couldn't ask for the buses quite so frequently, thereby
giving more bus time to your computer.

This was an extremely dangerous factor to be messing around with. It's entirely
possible that users who implemented this change would start to experience
mysterious RAM parity errors from time to time and lose all data they cur-
rently had in RAM because the unit locked up after outputting the message.

Speaker Timer (Timer 2)

Timer 2, the speaker timer, resides at I/O address 0042h and, as with timer 0, is
a programmable frequency source derived from the 1.19318MHz timebase.

The programmer specifies a divisor to be divided into the input clock to yield
the desired output frequency. The divisor is written to timer 2 at I/O address
0042h. Figure 24-2 illustrates the speaker timer and its associated logic.

In order for timer 2 to actually use the input clock, bit 0 of system control port B
at I/O address 0061h must be a 1. The timer then divides the timebase by the
programmer-specified divisor, yielding an output frequency that is applied to
one input of a two input AND gate. If the AND gate's other input is a 1 (from
bit 1 of system control port B at I/O address 0061h), the timer 2 output is gated
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through the AND gate and applied to the speaker driver chip, where it is am-
plified and applied to the speaker.

The output frequency of timer 2 is applications-specific — it can be pro-
grammed to make happy or sad sounds, depending on the occasion.

Figure 24-2. The Speaker Timer and Associated Logic

Timer
2

Speaker
1.19318Mhz Driver

System Fort B, Bit 0

System Port B, Bit 1

Watchdog Timer

The watchdog timer is used to detect ill-behaved programs. If a multitasking
operating system, such as O5/2, were to give control to a program that disables
interrupt recognition for an extended period of time, problems could result.
The various devices generating interrupt requests to obtain microprocessor
servicing could experience problems due to the resulting delay in servicing.

One of the interrupt requests that wouldn't be serviced is the system timer in-
terrupt, IRQO. The system timer, or timer 0, requires servicing every 54.9ms.
The watchdog timer is designed to detect a cessation of IRQO servicing.

Many systems do not have watchdog timers. For those that do have timers, the
address and function of the timers varies from system to system. The following
discussion applies to the IBM PS/2.
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Figure 24-3 illustrates the watchdog timer and its associated logic. The watch-
dog timer at I/O address 0044h is programmed with a count (a number). The
output of timer 0 is connected to the IRQO latch and to the clock input of the
watchdog timer. When timer 0 generates a pulse, it sets the IRQO latch and
generates IRQO to the interrupt controller. When IRQO becomes asserted, it en-
ables the watchdog timer. Starting with the next timer 0 output pulse, the
watchdog timer begins to count down once for each pulse received on its clock
input.

In the IRQO interrupt service routine, the programmer should set bit 7 of sys-
tem control port B to a 1 to reset the IRQO latch, thereby deasserting IRQO.
When IRQO is deasserted, it disables the watchdog timer so it can't count down
any more. The programmer should also reload the start count into the watch-
dog timer. (Note that the meaning of the bits in system control port B at [/O
address 0061h are different for an [/O read versus an [/O write.)

If interrupt recognition has been disabled for an extended period of time by an
ill-behaved program, IRQO will not be reset. The watchdog timer will therefore
continue to count down towards zero because of the repeated timer 0 output
pulses. If the count is exhausted, the watchdog timer's output is asserted,
thereby asserting NMI to the microprocessor.

In the NMI interrupt service routine, the programmer can check bit 4 of system
control port A at I/O address 0092h to see if the watchdog timer was the source
of the NMI. Bit 4 will be set to 1 if the watchdog timer generated the NMIL
Writing a new count to the watchdog timer will deassert NML.
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System Port B, Bit 7

18.21Hz Heset IRQQ
G3o B
1.19318MHz RGO
R Latch
Timer
{0
ol Enable
b piack N# P’
input
Watchdog
Timer

Figure 24-3. The Watchdog Timer and Associated Logic

Slowdown Timer

When faster microprocessors were introduced, several problems began to occur
with programs that were timing sensitive. For example, some games ran too
fast for reasonable user interaction and some copy protection schemes failed to
operate properly at the faster processor speeds.

The slowdown timer is implemented in systems using microprocessors running
at speeds of 16MHz and faster, to provide a method for artificially slowing
them down. The term artificial is used because the microprocessors are not
slowed at all, rather the refresh hold time is extended, causing the microproces-
sor to remain in the hold state longer than normal. Since the processor is unable
to fetch and execute programs it appears to slow down.

Figure 24-4 illustrates the logic associated with the slowdown timer. The slow-
down timer is triggered by the refresh request signal that goes to the refresh
logic. When the refresh timer generates refresh request, two things occur:
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®  The refresh logic generates HOLD to seize the buses from the microproces-
sor. This HOLD causes the OR gate to generate HOLD to the microproces-
sor. The microprocessor is forced off the buses.

¢ The slowdown timer is triggered. When triggered, its output goes high for
a pre-determined amount of time. The high on this output causes the OR
gate to output a high.

The refresh logic only keeps its HOLD output asserted long enough to run one
refresh bus cycle. It then deasserts its HOLD output to release the buses back to
the processor so it can continue to fetch and execute instructions. The slow-
down timer, however, may not have timed out yet and its HOLD output may
still be high. This would delay the release of the buses back to the processor.
The programmer defines the duration of the slowdown timer's output pulse by
writing a count into its register at I/O address 0046h. The PC vendor's MODE
command is usually used to program this timer.

HLDA from Micreprocessor

Refresh
HRequest

Refresh *Refresh

Timer Logic
HOLD
HOLD to
Microprocessar
Pt Trigasr

N

Slowdown
Timer

Figure 24-4. The Slowdown Timer
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access time - The time span between a device being addressed and when it delivers or
accepts valid data.

active - see asserted

address bus - The group of signal lines that carry an address from a bus master.

address decoder - Every device that can be read from or written to has an associated
piece of logic called an address decoder. The address decoder selects its associ-
ated device when an address within its defined range is detected.

address latch - A device connected to the microprocessor's local address bus. This de-
vice drives the address to all devices throughout the system and latches (holds)
the address for the duration of the bus cycle. Once latched, the Address Latch
outputs the address to the system on the system address (SA) bus, SA19:5A1.

address pipelining - A process in which the microprocessor places the address for the
next cycle on its local address bus during the current bus cycle. This can reduce
access time to system memory if designed to take advantage of address pipelin-
ing.

address translation - The process of converting one type of address to another. For ex-
ample: translating the address from an ISA bus master (SA16:5A0, LA23:LA17
and SBHE#) to a 32-bit memory address (A31:A2 and BE3#:BEO#) required by
32-bit memory.

AEN - An ISA bus signal or a pin on the 8237 DMA controllers. Note that the same
name is used for two differently-acting signals. When the CPU asserts the
HLDA signal, the ISA bus AEN signal is asserted, disabling all [/O address de-
coders to prevent /O devices from mistaking the address as theirs during
DMA transfers. When the DMA controller sees its HLDA input asserted, it as-
serts its AEN pin to enable the outputs of its address latch and page register.

ALE - The Address Latch Enable signal that controls the operation of the Address
Latch.

arbiter - An arbiter is a device that evaluates the pending requests for access to the bus
and grants the bus to a bus master based on a system-specific algorithm.

asserted - A signal is asserted when it is at its logic true state. A signal such as HOLD is
asserted when it is high (positive logic). A signal such as MRDC# is asserted
when it is low (negative logic). A signal such as W /R# is always asserted since
both its high and low states represent true logic states. The opposite of asserted
is deasserted. The term “asserted” is used in this book instead of “active” be-
cause “active” is ambiguous. The term “active” can mean either that a high im-
pedance buffer’s output is on (driven), or that a signal is at a logic true state.
For example, a tri-state buffer may be actively driving CHRDY low (false), in
which case the signal is active (by one of the ambiguous definitions) but inac-
tive (by the other definition). In this case, CHRDY is deasserted.

BALE - An ISA bus signal that is used by expansion devices to notify them that a valid
address is on the ISA bus. BALE is a buffered version of ALE on 8088- and
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80286-based PC’s, but it is asserted at different times than ALE on 80386 and
higher PC’s.

BCLK - An ISA bus signal (bus clock) that provides the timing reference for all bus
transactions.

big-endian byte-ordering - A bus master using big-endian byte-ordering stores the
MSB from the specified source register into the start memory address and the
less-significant bytes from the register into the ascending memory locations
immediately following the start address.

BIOS - Basic Input/Output System routines usually contained in system ROM and de-
vice ROMs that provide a low level interface to devices.

bit cell - A one bit storage location in a typical DRAM consisting mainly of a capacitor.

block - Same as cache line in X86 processors. The cache stores information in its cache
in blocks of a fixed length. The cache block length is processor design-
dependent. As an example, an 80486 cache block is 16 bytes long.

block transfer mode - A DMA transfer mode in which an entire block of data is trans-
ferred prior to the DMA Controller giving up ownership of the buses.

bridge - The device that provides the interface between two independent buses. An
example is the Bus Control Logic and associated transceivers between the
80386 host processor’s bus and the ISA bus.

buffered write-through - A variation of the write-through policy where a look-through
cache controller stores an entire write operation in a buffer so that it can com-
plete the memory write to main memory later.

bus concurrency - Separate transfers occurring simultaneously on two or more separate
buses. An example would be an ISA bus master transferring data to or from
another ISA device while the host processor is transferring data to or from sys-
tem memory. Bus concurrency allows a processor to gain access to memory
from its memory cache, while another bus master accesses main memory over
the system bus at the same time.

bus control logic - The logic that assists the microprocessor in running bus cycles over

the ISA bus.
bus master, ISA - An ISA card that can gain ownership of the ISA buses and run bus
cycles.

bus snooping - Bus snooping is the method used by cache subsystems to monitor main
memory accesses made by another bus master.

byte enables - 80386 and higher X86 processor address bus signals that indicate which
data paths will be used during a transfer. The byte enables indicate which bytes
within an addressed doubleword are being accessed.

cache - A relatively small amount of high-speed static RAM (SRAM) that is used to
keep copies of information recently read from system DRAM memory. The
cache controller maintains a directory that tracks the information currently
resident within the cache. If the host processor should request any of the in-
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formation currently resident in the cache, it will be returned to the processor
quickly (due to the fast access time of the SRAM).

cache coherency - If the information resident in a cache accurately reflects the informa-
tion in DRAM memory, the cache is said to be coherent or consistent.

cache consistency - see cache coherency

cache controller - A cache memory controller manages cache memory which stores
copies of frequently accessed information read from DRAM memory.

cache directory - Memory inside of a cache controller that keeps track of information
stored in cache memory. Sometimes called the tag RAM.

cache FLUSH# - A cache controller input that causes the cache controller to clear the
valid bit in every directory entry to 0, thereby invalidating all cache entries.

cache line - A line is the smallest unit of data that a cache can keep track of.

cache line fill - When a processor's internal cache, or its external second level cache has
a miss on a read attempt by the processor, it will read a fixed amount (referred
to as a line) of information from the external cache or system DRAM memory
and record it in the cache. This is referred to as a cache line fill. The size of a
line of information is cache controller design dependent.

cache memory - Cache memory is a relatively small amount of high cost, fast access
SRAM designed to improve access to system memory.

cache page - The size of the cache data RAM in direct-mapped caches and the size of
each way in a set-associative cache. The cache views main memory as divided
into pages that are the same size as the cache pages.

cache read hit - The process in which the cache memory controller sees the microproc-
essor initiate a memory read bus cycle, checks to determine if it has a copy of
the requested information in cache memory, and if a copy is present, immedi-
ately reads the information from the cache and sends it back to the microproc-
essor at zero wait-states.

cache read miss - The process in which the cache memory controller sees the micro-
processor initiate a memory read bus cycle, checks to determine if it has a copy
of the requested information in cache memory, and find no copy is present. The
cache memory controller then passes the read bus cycle on to slow main mem-
ory.

CAS# - A memory enable called Column Address Strobe used to latch the column por-
tion of the address inside a DRAM chip.

CAS before RAS refresh - Some DRAMs incorporate their own row counters to be
used for DRAM refresh. The external DRAM refresh logic has only to assert the
DRAM's CAS line and then assert its RAS line. The DRAM will automatically
increment its internal row counter and refresh (recharge) the next row of stor-
age.

CBR refresh - see CAS before RAS refresh

channel check - This signal is asserted by an ISA expansion board to signal a catastro-
phic error condition to the microprocessor.
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channel ready - By using the CHRDY signal (Channel Ready) on the ISA bus, designers
can override the default timer and stretch out the bus cycle by the required
number of wait states to match the access time of the device.

CHCHK# - see channel check

CHRDY - see channel ready

CMOS RAM - see configuration RAM

coherency - see cache coherency

concurrent bus operation - see bus concurrency

configuration RAM - A small amount of low power battery-backed memory used to
store configuration information used during the boot-up process.

consistency - see cache coherency

control bus - A group of signal lines used by the microprocessor to control a variety of
miscellaneous functions.

cycle time - The amount of time needed between accesses to DRAM memory, consist-
ing of access time plus precharge delay.

DAKn# - A group of signals on the ISA bus (named DACKn# or DAKn#) used to notify
DMA [/0O devices that a DMA cycle is about to be performed to transfer data
for them.

data bus - The group of signal lines used to transfer data between devices.

data bus contention - An address decoding problem that arises if the address decoders
for two devices are both designed to detect the same address range. In such
cases both devices would deliver data to the data bus simultaneously during a
read operation, causing contention.

data bus steering logic - Logic used to match transfers between devices with different
sized data busses. Consists of transceivers connected between the data paths.

deasserted - A signal is deasserted when it is at its logic false state. See asserted.

debug registers - Six programmer-accessible debug registers provide on-chip support
for debugging and are present in the 80386. Debug registers DRO through DR3
specify the four linear breakpoint addresses. The Breakpoint Control Register,
DR7, is used to set the breakpoints, define them as data or code breakpoints,
and whether to break on an attempted read or write. The Breakpoint Status
Register, DR6, reflects the current state of the breakpoints.

demand transfer mode - The transfer mode where the DMAC runs DMA bus cycles
back-to-back as long as the I/O device can continue to supply data.

device ROM - ROM on an [SA expansion device. Also known as expansion ROM. This
ROM typically contains the initialization code and possibly the BIOS and inter-
rupt service routines for its associated device. Device ROMs should reside in
memory address space between CO000h and DFFFFh.

direct-mapped cache - A cache organization in which only one directory entry needs to
be checked to determine whether the requested memory location is in the
cache. A direct-mapped cache is the same size as a (cache) page in memory.
When a line of information is fetched from a position within a page of DRAM
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memory, it is stored in the same relative position within the cache. If the proc-
essor should subsequently request a line of information from the same relative
position within a different page of memory, the cache controller will fetch the
new line from memory and must overwrite the line currently in the cache.

dirty line - A write-back policy cache controller has cached a line of information from
memory. The processor subsequently performs a memory write to a location
within the cache line. There is a hit on the cache and the cache line is updated
with the new information, but the cache controller will not perform a memory
write bus cycle to update the line in memory. The line in the cache no longer re-
tlects the line in memory and now has the latest information. The cache line is
said to be “dirty” and the memory line is “stale.” Dirty is another way of say-
ing “modified.”

dirty bit - A bit in a write-back cache directory that when set, indicates that the cache
controller should ensure that the line is written back to memory to maintain
coherency between cache and main memory. Also, a bit in the page table en-
tries of 80386 and higher microprocessors used to maintain coherency between
disk and main memory when page translation is enabled.

DMA acknowledge - see DAKn#

DMA channels - [SA has seven DMA channels. Each channel consists of a pair of [SA
signal lines (DRQn and DAKn#) used by ISA DMA devices and the DMA con-
troller to establish communication channels between the I/0O device and mem-
ory.

DMA clock - The clock used by the DMA Controller to control its data transfer timing.
DMA clock also called DCLK is typically one-half the speed of BCLK.

DMA controller - DMAC. The devices used to perform the DMA transfers in an ISA
system. Two 8237 DMA controllers are cascaded together to provide support
for seven DMA channels.

DMA page register - Each DMA channel has an external Page Register used to provide
additional address capability. The slave DMAC and its associated DMA ad-
dress latch produce the least-significant 16 bits of the address. The DMA page
register provides the most-significant 8 bits of the address.

DMA request - The signal (DRQn) used by a DMA device to request the DMAC to
move data for it.

DMAC - see DMA controller

fly-by transfer - The name given to ISA DMA bus cycles due to their ability to send
information between an I/0O device and memory in a single bus cycle.

DRAM - see dynamic RAM memory

DRAM bank - An organization of main system memory that supplies information to
fill all data paths.
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DRAM controller - The DRAM controller converts memory read or write bus cycles on
the host bus to the proper sequence of actions on the memory bus to access the
target DRAM location.

DRAM parity - A reliability measure used to notify the system that information read
from memory is not the same as the information initially written.

DRQO0:DRQ3 - DMA request lines used by 8-bit ISA DMA devices to request that data
be transferred.

DRQ5:DRQ7 - DMA request lines used by 16-bit ISA DMA devices to request that data
be transferred.

dynamic RAM memory - Dynamic Random Access Memory. This type of RAM is
commonly used as main system memory due to its low cost, high density, low
power consumption and relatively good performance.

end-of-interrupt command - see EOI command

EOI command - End-of-interrupt command issued to the interrupt controller to notify
it that the interrupt has been serviced. The 8259 responds by clearing a bit in its
in-service register (ISR). If the EOI command is non-specific, the 8259 clears the
highest-priority bit that is currently set in its ISR.

EOP (End-of-Process) - The name of the pin on the DMACSs which is routed to ISA TC
signal, terminal count.

EPROM - Erasable Programmable Read Only Memory. A type of ROM that can be
erased when exposed to ultraviolet light and reused. Commonly used in PCs as
the System or Boot ROM.

exception interrupts - A type of internally generated interrupt that generally results
when the microprocessor attempts to execute an instruction and incurs an error
while doing so.

exclusive access - A series of accesses to a target by one bus master while other masters
are prevented from accessing the device. Also known as exclusive ownership.

exclusive state - One of the states in the MESI protocol. A cache line is said to be exclu-
sively owned by a cache if it is in the exclusive state. This indicates two things:
no other cache has a copy of the line; and the cache line is an exact copy of
main memory. Having a copy of a cache line in the exclusive state does not
mean that no other cache may obtain a copy from memory. It just means that,
at this instant in time, no other cache has a copy of it.

expansion ROM - see device ROM

first-level cache - see L1 cache

flag register - A status and control register inside the microprocessor that performs a
variety of functions. Generally used to check the status of the previously exe-
cuted instruction.

floating-point processor - Also known as the numeric coprocessor used to process
tloating-point math operations.
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FLUSH# - A input to cache memory controllers to cause all entries in the cache direc-
tory to be ignored. The effect is that the cache memory is disabled because all
requests made to cache will be cache misses.

four-way set-associative cache - A cache organization that provides four cache mem-
ory banks (ways) in which information can be stored.

fully-associative cache - A cache organization that allows information from anywhere
in memory to be stored in any location within cache memory.

ghost interrupt - see phantom interrupt

halt - A type of microprocessor bus cycle initiated by instructions that cause the micro-
processor to stop.

hidden refresh - If a DRAM controller uses the memory bus to perform DRAM refresh
when the system is currently accessing a device other than DRAM memory,
this is referred to as hidden refresh. Refreshing DRAM in this fashion doesn't
impact system performance.

hi/lo byte copier - The transceiver that connects SD15:5D8 to SD7:SDO0. Part of the data
bus steering logic.

hit - Refers to a hit on the cache. The processor or a bus master initiates a memory read
or write and the cache controller has a copy of the target line in its cache.

HLDA - Hold acknowledge. A microprocessor output that notifies the requesting bus
master that the microprocessor has given up ownership of the buses.

HOLD - Hold request. A microprocessor input that is used by bus masters to gain
ownership of the buses.

I/O ports - [ /O address locations

I/O Size 16 - see IO16#

IN instruction - An I/0 read instruction

in-line code fetch - Sequential fetching of instructions from memory by the instruction
prefetcher.

in-service register - A register in the 8259 interrupt controller which tracks which inter-
rupt service routines are currently running. Also known as ISR (one of two
meanings). The respective bit in the ISR is set when a valid interrupt is ac-
knowledged by the microprocessor. The highest-priority bit that is currently set
in the ISR is cleared when the 8259 receives a non-specific end-of-interrupt
command.

inactive - Either means that a high impedance buffer is off or that a signal is at its logic
false state. See asserted.

INT instruction - see interrupt instruction

INTA - see interrupt acknowledge
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interleaved memory - A DRAM memory architecture in which multiple memory banks
are structured such that each can supply the maximum amount of data the
processor can request in one access. In other words, the width of each DRAM
bank matches the width of the processor's data bus. As an example, the 80386’s
data bus is four bytes (one doubleword) wide. Two-way interleaved memory is
structured so that each successive doubleword is in the opposite bank of mem-
ory. During a cache line fill operation, the processor reads a doubleword from
one bank, the second doubleword from the opposite bank, the third from the
original bank and the fourth from the other bank. When a DRAM bank is ac-
cessed for a read, the DRAM cells are discharged during the read and need to
charge back up before the bank can be successfully accessed again. If an inter-
leaved memory architecture is used, the charge up (referred to as the precharge
delay) of each DRAM bank is hidden behind the processor’s access to the op-
posite bank. This results in better performance.

interrupt acknowledge - The host X86 processor responds to an interrupt request on its
INTR input by generating two, back-to-back interrupt acknowledge bus cycles.
The Bus Control Logic translates the two cycles into pulses on the INTA# pin
which goes to the 8259 interrupt controllers. In response to the second interrupt
acknowledge pulse, the interrupt controller sends the interrupt entry number
corresponding to the highest priority device generating the request back to the
processor.

interrupt cascade bus - A three signal bus used to notify the slave interrupt controller
that this interrupt acknowledge cycles belong to it.

interrupt controller - Intel 8259 Programmable Interrupt controller (PIC) used in ISA
systems.

interrupt instruction - An instruction that calls an interrupt service routine referenced
by an interrupt table entry number.

interrupt request lines - [SA signal lines named IRQ. The ISA bus has eleven IRQ lines
available and are used by devices to request servicing by programs designed
for them, called interrupt service routines.

interrupt service routine - A program written to service hardware devices that gener-
ate interrupts. Each interrupting device typically has its own unique interrupt
service routine.

interrupt table - A data structure in the low range of memory (real mode) that contains
pointers to the start address of interrupt service routines.

interrupt type code - The code sent by the interrupt controller to the microprocessor to
identify which entry in the interrupt controller to call.

interrupt vector - Another name for an interrupt table entry which points to the start-
ing address of an interrupt service routine.

INTR - Microprocessor Interrupt Request. The microprocessor's input that notifies it
that an interrupt-driven device needs servicing.
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invalid state - One of the states in the MESI protocol. State of a cache line that does not
currently contain a valid copy of a line from main memory.

IO16# - An ISA signal used to indicate to the system board when a 16-bit I/O device is
being addressed.

IORC# - I/0O Read Command. The ISA signal that specifies that an I/O read bus cycle
is being run.

IOWCH# - [/O Write Command. The ISA signal that specifies that a I/O write bus cycle
is being run.

IRET instruction - Interrupt Return instruction. The last instruction in an interrupt ser-
vice routine that tells the microprocessor that the interrupt service routine has
completed and it is time to return to normal program flow.

ISA address bus - The buses used to transfer the address over the ISA bus. SA19:SAO0,
LA23:LA17 and SBHE#.

ISR - see interrupt service routine and in-service register

jump instruction - An instruction that causes the microprocessor to change the address
location from which the processor in performing in-line code fetching. The new
location is specified in the jump instruction.

kerchunk - Sound the microprocessor makes when it latches data from the data bus.

keyboard command port - The [/O location (64h) that commands are sent to for the
keyboard.

keyboard data port - The I/O location (60h) that data is transferred to and from for the
keyboard.

keyboard IRQ - The keyboard's interrupt request line, IRQ1.

keyboard scan code - The code sent from the keyboard to the keyboard controller that
represents keystrokes that have been entered.

keyboard interface - Usually an 8042 series microcontroller used as an interface be-
tween the system and keyboard.

L1 cache - Also known as level-one cache or first-level cache. The first layer of cache
memory that the microprocessor’s prefetcher and/or execution unit is con-
nected to. The internal cache of the 80486 or the external cache that connects di-
rectly to an 80386 microprocessor are examples of first-level caches.

L2 cache - Also known as level-two cache or second-level cache. A secondary cache
that is several times larger than the L1 cache. Used primarily in systems that
have a small L1 cache, such as the 8KB internal cache in the 80486.

LA bus - see latchable address bus

latchable address bus - Pipelined address bus consisting of LA23:LA17 on the ISA bus
that connects to 16-bit memory devices.

level-one cache - see L1 cache

level-two cache - see L2 cache

line - see cache line

linear address - The 32-bit address produced by the X86 processor’s segmentation unit.
The address submitted to the paging unit if page translation is enabled, or
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submitted to the bus unit if page translation is disabled. The linear address is
the same as the physical address on an 80286 since it lacks a paging unit.

little-endian byte-ordering - A bus master using little-endian byte-ordering stores the
LSB from the specified source register into the start memory address and the
more-significant bytes from the register into the ascending memory locations
immediately following the start address.

local data bus - Used typically to reference the processor’s data bus.

logical address - The 16- or 32-bit address submitted by the X86 processor’s execution
unit to the segmentation unit. The offset portion of SEGMENT:OFFSET ad-
dresses.

look-aside cache - A cache memory design in which the cache controller sets in parallel
with main system memory. When memory is addressed both the cache control-
ler and system memory are addressed. Compare Look-through Cache.

look-through cache - A cache memory design in which memory request go first to the
cache controller which looks through its cache memory to determine if this re-
quest is a hit or miss. If the information is not in cache then the bus cycle is
broadcast on to main memory.

LRU algorithm - Least Recently Used Algorithm. Used in cache memory designs to
determine which cache entry is to be overwritten by newer data. Conforms to
the principle of temporal locality.

M/IO# - Memory or I/O. The signal output from the microprocessor that informs ex-
ternal logic whether the address on the bus is for memory or [/O devices.

M16# - Memory size 16 line. This ISA signal is asserted by 16-bit memory devices to
inform the system they are being addressed.

machine status word - A control and Status register inside the microprocessor to con-
trol a variety of functions including the processor’s mode of operation (real or
protected).

MASTERI16# - An ISA signal asserted by ISA bus masters to enable access to I/0O de-
vices. The ISA AEN signal prevents [/O devices from responding to the mem-
ory addresses which are on the address bus during DMA transfers.
MASTER16# overrides AEN and allows I/O address decoders to resume de-
coding the I/O addresses which ISA bus masters can generate.

memory-based semaphore - see semaphore

memory-mapped I/O port - An [/O register that responds to memory rather than [/O
accesses.

MESI protocol - A protocol for maintaining cache coherency. At a given instant in time,
each line in a write-back policy cache may be one of the following states: modi-
fied (M), exclusive (E), shared, (5), or invalid (I). Each of these states is defined
in this glossary.

miss - Refers to a miss on the cache. The processor or a bus master initiates a memory
read or write and the cache controller does not have a copy of the target line in
its cache.
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modified state - One of the states in the MESI protocol. When a cache line is in the
modified state, it has been modified by the processor since it was copied from
memory.

MOV instruction - An assembly instruction used to transfer information to and from
memory.

MRDC# - Memory Read Command. The ISA signal that specifies that a memory read
bus cycle is in process.

MSW register - see machine status word

MWTC# - Memory Write Command. The ISA signal that specifies that a memory write.

NCA# - Non-Cacheable Address. Specifies which address locations should not be
cached in main memory.

NMI - Non-Maskable Interrupt. Typically used to report serious system problems.

non-cacheable memory - Memory whose contents can be altered by a local processor
without using the bus should be designated as non-cacheable. A cache some-
where else in the system would have no visibility to the change and could end
up with stale data and not realize that it no longer accurately reflects the con-
tents of memory.

no wait state - The fastest bus cycle that a microprocessor can run consisting of two
complete cycles of the processor clock.

NOWS# - No Wait State. An ISA signal that permits designers to end the bus cycle ear-
lier than the default timing. Asserting NOWSH# before the default timing ex-
pires causes the bus cycle to be shortened.

numeric coprocessor - A processor that handles floating point instructions.

OUT instruction - An I/0O write instruction.

page - The most over-worked term in the computer industry. It is used to represent at
least four independent, unrelated items: virtual memory page, page mode
DRAM, cache page and DMA page register, each of which is defined in this
glossary.

page granular segment - Also known as a large grain segment. A memory segment for
which the segment descriptor has the G bit set to 1, indicating that the size of
the segment is limited to multiples of 4KB, from 4KB to 4GB. As opposed to
byte granular segments (small grain segments) for which the size is multiples
of one byte, from 1 byte to 1MB. 4KB is also the size of the virtual memory
pages, thus the reference to “page.” This has no relationship to cache pages,
page mode DRAM or DMA page registers.

page mode DRAM - A variation of DRAM that provides improved performance when
accesses occur along the same row (sequentially). All accesses occurring on the
same row can be done in approximately half the time because the RAS timing
can be eliminated, since the row does not change.

page register - The upper portion of the start memory address for a DMA transfer is
written to the respective DMA channel's page register. The contents of this reg-
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ister are then driven onto the upper part of the address bus during a DMA
transfer.

parity - see DRAM parity

phantom interrupt - An erroneous interrupt triggered at the input of the interrupt con-
troller, usually caused by a noise spike.

physical address - The address output onto the address bus by the processor, as con-
trasted to logical, linear or virtual addresses which may not be equal to the
physical address.

PIC - see interrupt controller

policy of inclusion - When a processor is connected (via its local bus) to a look-through
L2 cache, all information that is read into the L1 cache has to pass through the
L2 cache. The L2 cache therefore may have a complete copy of the information
that is contained in the L1 cache at a given instant in time. If the L2 cache al-
ways maintains a copy of information that is in the L1 cache, then it is enforc-
ing the policy of inclusion. The L2 cache can then act as a snoop filter for the L1
cache. Whenever another bus master is accessing main memory, the L2 cache
snoops the address to determine if it has a copy of the cache line. If it doesn't,
then it needn't force the L1 cache to snoop the access. The L2 cache only has to
alert the L1 cache about another bus master's memory access when it has a hit
on the L2 cache.

POST - see power-on self-test

posted-write capability - The ability of a device to “memorize” or post a write transac-
tion and signal immediate completion to the bus master. As long as there is
room in the posted-write buffer, the bus master can complete writes with no
wait states. After posting the write and signaling completion to the bus master,
the device will then perform the actual memory write.

power-on restart address - The first address that the microprocessor places on the ad-
dress bus after being powered up.

power-on self-test - POST. The instructions performed when the system is first turned
on. Usually refers to the entire power-up sequence until the operating system is
loaded.

POWERGOOD - The signal that is asserted by the power supply after all voltages have
stabilized. When POWERGOOQOD is asserted, RESET is deasserted to the micro-
processor and the microprocessor begins to run.

principles of locality - Principles used to explain the nature of code and data access
from memory, which provides cache memory systems their performance gains.

PROM - Programmable Read Only Memory

RAS# - Row Address Strobe. Used to latch the row portion of the address into DRAM
chips.

RAS/CAS delay - The time interval required by DRAM between the start of RAS# and
CAS# signals.
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real mode - The microprocessor mode of operation when it is first powered up. Real
mode is the mode of operation that is available with the 8086 and 8088 micro-
processors. It is designed for single tasking and has address capability of 1IMB

real-time clock chip - The battery-backed device used to keep track of the date, time
and configuration information.

refresh - The process of keeping dynamic memory from loosing information from the
bit cell due to capacitor discharge. All DRAM throughout the system is re-
freshed approximately every fifteen microseconds.

refresh logic - The logic that runs refresh bus cycles. The refresh logic is a bus master
capable of gaining ownership of the buses on a regular basis.

refresh request - The output of the refresh timer used to trigger the refresh logic.

refresh timer - The timer used to trigger the refresh logic to run bus cycles every 15
microseconds.

ROM scan - The process of scanning device ROMs during the power-up sequence to
identity and initialize expansion devices.

RTC chip - see real-time clock chip

SA bus - see system address bus

SBHE# - System Bus High Enable. An ISA address signal that is asserted when an odd-
addressed location is accessed.

SCRAM - Static Column RAM. A variety of DRAM that works on the same principles
as page mode RAM. The difference between page mode and static column
RAM lies only in the way SCRAM recognized that a new column address has
been presented to it.

second-level cache - see L2 cache

segment wrap-around - The method used to generate addresses in real mode in an
8086 or 8088 make it possible to form an address that goes beyond 1 MB inter-
nally. However, since these processors have only 20 physical address lines, ad-
dresses formed above 1MB effectively wrap around to the very bottom of the
address space, to address zero.

semaphore - A special memory operand used by a task to determine if a resource
shared with other processors or other tasks running on the same processor is
currently available for access.

shadow RAM - RAM memory that has a copy of the contents of ROM. Information
from ROM is copied into faster main memory during the power-up sequence to
improve performance.

shared state - One of the states in the MESI protocol. Indicates that copies of the cache
line may exist in other caches in the system and none of the caches with copies
of the line have altered their copy since reading it from main memory.

shutdown - A microprocessor bus cycle type that is run when the processor encounters
errors that it cannot handle. Similar to the halt bus cycle the processor stops af-
ter a shutdown cycle.
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single transfer mode - The DMA transfer mode where the DMAC releases control of
the buses after transferring each byte of data.

slowdown timer - An ISA timer used to slow the average execution time of fast proces-
sors, so that code appears to run at the same speed as it does on an 8MHz
80286 processor.

SMRDC# - The ISA signal that specifies that a memory read bus cycle is in process to a
location within the first 1IMB of address space.

SMWTC# - The ISA signal that specifies that a memory write bus cycle is in process to
a location within the first IMB of address space.

snarfing - A cache memory implementation where cache memory is updated along
with main memory when the cache detects a snoop hit during a bus master
write to main memory.

snoop hit - A match between an entry in the cache directory and the address being
driven on the address bus by a bus master other than the microprocessor. Indi-
cates that the bus master is accessing a main memory location that is also in the
cache.

snooping - A technique used by cache memory controllers to monitor the system buses
to detect an access to main memory that might cause a cache consistency prob-
lem.

spatial locality - One of the principles of locality that explain the nature of how code
typically resides in main memory. Spatial locality suggests that information to
be read from memory nest is likely to be adjacent or reside in a memory loca-
tion that is close to the location previously accessed.

speaker data timer - An ISA timer that can be programmed to provide the speaker with
a wide variety of audible frequencies.

SRAM - see static RAM

stack - An area of memory used as a temporary storage location for applications and
the processor.

stale data - In a cache memory system, data in cache or in main memory that has not
been updated to reflect a change in the other copy.

static RAM - Memory typically used in cache designs due to its fast speed, high cost,
and greater power consumption than DRAM.

system address bus - SA bus. The ISA address bus consisting of SA19:5A0 that con-
nects to 8- and 16-bit devices.

system control port A - An /0 location (92h) that contains status and control informa-
tion. This port is typically known as the PS/2 compatibility port.

system control port B - An [/O location (61h) standard in all [ISA machine that provide
status and control information.

system data bus - The ISA data bus, consisting of SD7:5D0 (8- and 16-bit devices) and
SD15:5D8 (16-bit devices).

system timer - Also called Timer 0, this timer connects to the master interrupt control-
ler to provide system interrupts every 54.9ms.
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tag RAM - see cache directory

TC - see terminal count

temporal locality - One of the principles of locality that explain the nature of how code
typically resides in main memory. Temporal locality suggests that information
recently read from memory is likely to soon be needed again by the microproc-
€ssor.

terminal count - TC. Also known as transfer complete. A signal on the ISA bus issued
by the DMAC to notifty a DMA device that the transfer has completed.

timer 0 - see system timer

timer 1 - see refresh timer

timer 2 - see speaker data timer

transfer complete - see terminal count

two-way set-associative cache - A cache organization that provides two cache memory
banks (ways) in which information can be stored.

virtual address - An address that never appears on any bus in the system, but instead
resides in the imagination of the system software engineer, and which is
formed by a combination of the X86 protected-mode segment descriptors and
logical addresses. Since there are up to 8K global descriptors and up to 8K local
descriptors, and since each descriptor can describe 4GB of linear address space,
the 80386 and higher processors can manage (8K + 8K) x 4GB = 64TB of mem-
ory. The virtual address can be thought of as consisting of the base address
from the segment descriptor plus the logical address. Alternatively, it may be
thought of as the segment selector (which is just an index), and the logical ad-
dress (but not added together).

virtual memory page - For X86 processors, a 4KB range of information starting on a
4KB boundary. The information on mass storage devices is divided into pages
by the operating system, as is the array of physical memory in the system. Used
for virtual memory management using demand paging.

wait state - A delay of one bus clock period injected into a transaction because the cur-
rently-addressed device is not yet ready to complete the data transfer. When an
X86 processor samples its READY# input deasserted at the end of data time, it
inserts one wait state in the transaction and samples READY# again at the end
of the wait state.

watchdog timer - A timer used in some ISA machines to detect ill-behaved programs in
multitasking environments.

Weitek - A type of numeric coprocessor that provides superior performance over the
standard Intel coprocessors.

write-back cache - A type of write policy in which the cache controller only updates
main system memory when necessary.

write miss - The processor initiates a memory write and the cache controller does not
have a copy of the target memory location within its cache.
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write policy - The method used to maintain cache consistency on memory write opera-
tions.

write-through cache - A type of write policy in which the cache controller updates
main system memory immediately.

X-bus - The X-bus is located on the system board and is a buffered version of the stan-
dard ISA expansion bus. Devices such as the keyboard controller, CMOS RAM,
and floppy controller typically reside on the X-bus.
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ISA I/0 Decode

ISA I/0O cards reside in the I/O address range from 0100h through 03FFh.
Many of these cards perform an inadequate I/O address decode. The card's
1/0 address decoder typically inspects A[9:5] to determine which of the 24, 32
location blocks of I/0O space is currently being addressed. If the currently ad-
dressed 1/0 location is within the block of 32 locations assigned to the I/O ex-
pansion card, the card's logic examines address bits A[4:0] to determine if one
of up to 32 I/0O ports on the addressed expansion card is being addressed. Ad-
dress bits A[15:10] are ignored by the I/O decoders. The I/O address range as-
signed for usage by expansion cards is 0100h through 03FFh. Within the group
of address bits used by expansion /O address decoders, A[9:5], bits A9 and A8
would therefore be either 01b (0100h through 01FFh range), 10b (0200h
through 02FFh range), or 11b (0300h through 03FFh range). When the micro-
processor places any address within these I/0O address ranges on the address
bus, an I/0O card may respond.

As an example, assume that a machine has two 1O cards installed. One of them
performs an inadequate address decode using A[9:5] and has eight registers re-
siding at I/O ports 0100h through 0107h. The other card performs a full decode
using A[15:5] and has four registers residing at I/O ports 0500h through 0503h.
Now assume that the microprocessor initiates a one byte /O read from [/O
port 0500h. The address placed on the bus is shown in the table that follows.

Example I/O Address
A15 | A14 | A13 | A12 | A11 | A10 | A9 | A8 | A7 | A6 | A5 | A4 | A3 | A2 | A1 | A0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

The board that occupies the 0500h through 0503h range looks at A[15:5] and
determines that the address is within the 0500h through 051Fh block. It then
looks at A[1:0] and determines that location 0500h is being addressed. Since
this is an I/O read bus cycle, the card places the contents of location 0500h on
the lower data path (this is an even address).

At the same time, the board that occupies the 0100h through 0107h range looks
at A[9:5], a subset of the address seen by the other card's address decoder, and
determines that the address appears to be within the 0100h through 011Fh
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block. It then looks at A[2:0] and determines that location 0100h is being ad-
dressed. Since this is an I/O read bus cycle, the card places the contents of loca-
tion 0100h on the lower data path (this is an even address).

Since both cards are driving a byte of data onto the lower data path, SD[7:0],
data bus contention is occurring. This results in garbage data and possible
hardware damage because two separate current sources are driving the lower
data path. The problem occurs because the card residing in the 0100h through
0107h range looks at A[9:8] and thinks that this address is within the 0100h
through 01FFh range. If the card were designed to perform a full address de-
code using A[15:5], the problem could have been avoided.

Addresses above 03FFh may be used as long as A[9:8] are always 00b, thus en-
suring that the address does not appear to be in the 0100h through 01FFh,
0200h through 02FFh, or 0300h through O3FF ranges. The table that follows il-
lustrates the usability or unusability of address ranges above 03FFh.

Usable and Unusable 1/0 Address Ranges Above O3FFh

I/O Address Range Usable or Unusable

x000h - x0FFh usable

x100h - x1FFh Unusable. Appears to be 0100h - 01FFh
x200h - x2FFh Unusable. Appears to be 0200h - 02FFh
x300h - x3FFh Unusable. Appears to be 0300h - 03FFh
x400h - x4FFh usable

x500h - x5FFh Unusable. Appears to be 0100h - 01FFh
x600h - x6FFh Unusable. Appears to be 0200h - 02FFh
x700h - x7FFh Unusable. Appears to be 0300h - 03FFh
x800h - x8FFh usable

x900h - x9FFh Unusable. Appears to be 0100h - 01FFh
XxA00h - xAFFh Unusable. Appears to be 0200h - 02FFh
xB00Oh - xBFFh Unusable. Appears to be 0300h - 03FFh
xC00h - xCFFh usable

xD00h - xDFFh Unusable. Appears to be 0100h - 01FFh
XxE00Oh - xEFFh Unusable. Appears to be 0200h - 02FFh
xF00h - xFFFh Unusable. Appears to be 0300h - 03FFh

Note: where x = any hex digit.
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1.19318MHz clock, 469, 471
14.31818MHz clock, 350, 469
16-bit read from 16-bit device, 134
16-bit read from 8-bit device, 133
16-bit write to 16-bit device, 134
16-bit ISA bus master, 345

16-bit write to 8-bit device, 132

s 1

32KHz crystal oscillator, 441

|| 8 ||

80286 and 80386 bus cycle state names, 140

80286 bus cycle definition, 140

80286 microprocessor address space, 34

80287, 459

80386DX outputs while RESET is asserted,
115

80386SX microprocessor address space, 34

80387, 459

8042 local 1/O ports, 450

8042 microcomputer, 449

8042 sample keyboard /mouse interface
command list, 455

8042 test port, 452

8080 microprocessor, 29

8086, 33

8087 numeric coprocessor, 459

8088, 33

8237 DMA controller, 410

8259 programmable interrupt controller,
366

8-bit read from 16-bit device, 134

8-bit write to 16-bit device, 134

8-bit write to odd addressed location in 8-
bit device, 131

8-Bit read from odd addressed location in
8-bit device, 129

|| A ||

A2 output, 465

A20 GATE, 79, 450

A20 MASK#, 79

access time, 134

address pipelining, 123

address bus, 17

address decoder, 18, 39

address enable, 345

address latch, 121

address translation, 438

AEN, 345, 424

alarm output of real-time clock and con-
figuration RAM chip, 386

ALE (address latch enable), 121

alternate gate A20, 400

alternate hot reset, 400

atomic access, 94

B8 1

BALE, 342

basic input/output system (BIOS) routines,
405

BASIC language, 322

battery, 441

buffered write-through cache, 293

bus control logic, 119

bus snooping, 295

BCLK, 341

BHE#, 83

big-endian byte ordering rule, 74

BIOS, 322

BIOS ROM, 42

BIOS routine, 43, 404

bit cell, 244, 315, 318

BLE#, 188

boot program, 322

boot ROM, 42,116

BOUND range exceeded exception, 403

breakpoint, 403

buffered address latch enable, 342

bus clock, 341
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bus concurrency, 278

bus high enable (BHE#), 83
bus low enable (BLE#), 188
bus master capability, ISA, 433
BUSY#, 461, 464

< 1

cache coherency, 292

cache FLUSH#, 313

cache handling of non-cacheable memory,
312

cache line, 283

cache memory, 279

cache memory controller, 274

cache read hit, 274

cache read miss, 275

cache ways, 305

cache, advantage of, 276

CAS# (column address strobe), 236, 242

CAS-before-RAS refresh, 248

CBR refresh, 248

cache and testing memory, 313

cache consistency, 279

cache directory, 281

cache handling of I/O information, 311

cache line size, 308

cache management logic, 281

cache performance, 278

cache size, 310

column address decoder, 237

column address latch, 236

column address strobe (CAS#), 242

channel or I/0 check, 349, 400

channel ready, 342

CHCHK#, 349

checksum error, 331

checksumming, 322

CHRDY, 137, 342

clear interrupt enable instruction, 368

CLI 368

CMDO, 465

CMDO0#, 465

CMD1, 465

CMOS address decoder, 442

CMOS address port, 442

CMOS century part of time and date func-
tion, 446

CMOS checksum value, 446

CMOS data port, 442

CMOS diagnostic status byte, 446

CMOS diskette drive type byte, 446

CMOS equipment installed byte, 446

CMOS fixed disk drive type byte, 446

CMOS indicator for memory above 1MB,
446

CMOS low and high base memory bytes,
446

CMOS RAM memory, 441

CMOS RAM valid, 445

CMOS reset code byte, 446, 447

CMOS system information byte, 446

CMOS, accessing, 442

code cache, 291

column address, 236, 238, 239, 242

combined cache, 290

command outputs, 145

command port, 36

configuration RAM, 460

configuration RAM usage, 446

control bus, 19

control/alternate/delete soft reset, 111, 447

coprocessor chip-select, 465

coprocessor emulation, 460, 465

coprocessor error, 403

coprocessor error conditions, clearing, 463

coprocessor RESET, 463

coprocessor status register, 463

coprocessor's data register, 460

coprocessor's opcode, or instruction, regis-
ter, 460

coprocessor, systems using Intel and
Weitek, 468

coprocessor / processor communication
signals, 464

copy protection scheme, 474

o 1

DAKO#:DAK3#, 345
DAK?2#, 412
DAK4#, 417
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DAKS#:DAK7#, 345

Dallas Semiconductor real-time clock and
configuration RAM chip, 441

data bus, 19

data bus contention (address conflicts), 41

data bus transceivers, 124

data cache, 291

DATA ENABLE, 126

data port, 37

date and time, 441, 470

data bus steering logic, 126

default ready timer, 135

direct-mapped cache, 301

dynamic RAM (DRAM) memory, 235

dedicated cache, 290

descriptor, 101, 162

descriptor privilege level (DPL), 105

device ROMs, 330

divide-by-zero condition, 402

DMA acknowledge, 412

DMA acknowledge for channels 0 through
3 and 5 through 7, 345

DMA address latch, 424, 431

DMA ADSTB signal, 424

DMA AEN signal, 424

DMA block transfer mode, 416

DMA bus cycle, 420

DMA byte or word transfers, 423

DMA channels, 410

DMA clock, 420

DMA compressed timing, 421

DMA controller (DMAC), 409, 414

DMA controllers cascaded, 419

DMA demand transfer mode, 416

DMA direction of transfer with reference to
memory, 410

DMA extended write option, 422

DMA master and slave controllers, 417

DMA memory address logic, 425, 426

DMA page register, 423, 424

DMA read transfer, 414

DMA request, 412

DMA request for channels 0 through 3 and
5 through 7, 345

DMA single transfer mode, 415

DMA start memory address, 410

DMA transfer count, 410

DMA transfer count exhausted, 413

DMA transfer modes, 414

DMA transfer rate, 431

DMA transfer types, 414

DMA verify transfer, 414

DMA write transfer, 414

DMA, EOP (end-of-process), 413

DMA, fly-by transfer, 409

DMA, TC (terminal count reached), 413

DMAC, 409

DMAC control register, 431

DMAC initialization during POST, 431

DMAC mode register, 431

DMAC states, 420

don't care bits, 46

double exception detected, 403

DPL, 105

DRAM, 235

DRAM addressing sequence, 236, 242

DRAM access time, 250

DRAM address decoder, 240

DRAM addressing logic, 238

DRAM addressing multiplexer, or MUX,
240

DRAM bank, 251

DRAM bank width, 253

DRAM memory chip block diagram, 237

DRAM parity, 256

DRAM refresh logic, 471

DRAM refresh, 244

DRAM, burst mode, 265

DRAM, cycle time, 250

DRAM, destructive read, 250

DRAM, enhanced page-mode, 264

DRAM, interleaved memory architecture,
269

DRAM, nibble mode, 265

DRAM, page-mode, 259

DRAM, pre-charge delay, 250

DRAM, static column RAM (SCRAM), 267

DRQO:DRQ3, 345

DRQ2, 412

DRQM4, 417

DRQ5:DRQY7, 345

DT/R#, data transmit or receive, 126
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ECC memory, 259

EEPROM, 319

EM bit, 460, 466

ENABLE LOWER, 126

ENABLE UPPER, 126

EOI (end-of-interrupt) command, 379

EOI (end-of-interrupt) command, for slave,
388

EOP (end-of-process), 413

EPROM, 318

ERROR# output of the numeric coproces-
sor, 386, 463, 464

error-checking-and-correcting memory, 259

exception 7 interrupt request, 466

exception 7 interrupt service routine, 466

exception interrupts, 402

extended memory block-move return, 447

I ——

first level cache, 289

four-way set-associative cache, 307
fully associative cache, 299
fixed disk activity LED, 400
flag register, 374

floating gate, 318
floating-point, 459
floating-point calculations, 466
floating-point processor, 459
floppy disk controller, 387
FLUSH#, 313

FORCE A20, 79, 451

¢ 1

GDT, 101

GDTR, 102

general protection software exception, 403
global descriptor table (GDT), 101

global descriptor table register (GDTR), 102

I

halt, 150, 230

halt or shutdown bus cycle, 150
hard disk controllers, 387
Hi/Lo byte copier, 130
hidden refresh, 248

high memory area, 79, 327
HLDA, 412

HMA, 79, 327

HOLD, 412, 475

hold time, 149

hot reset, 450

L r 1

1/0O address decoder, system board, 47

1/0 address range assigned to system
board devices, 52

1/O bus, 335

1/0 check, 349

1/O ports, 30, 36

1/0 read command, 340

1/O size 16, 344

1/0O write command, 340

ICWT1, 397

ICW2, 371, 397

ICW3, 397

ICW4, 397

IDT, 101

IDTR, 102

interleaved memory architecture, 269

IMR, 397

IN instruction, 32

in-line code fetch, 14

in-service register, 371

instruction cache, 291

INT instruction, 403

INTA, 369

integer math, 465

interrupt acknowledge, 369, 374

interrupt cascade bus, 387

interrupt controller, 366

interrupt controller cascading, 383

interrupt controller, slave, 387
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interrupt descriptor table (IDT), 101

interrupt descriptor table register (IDTR),
102

interrupt ID, 371

interrupt instruction, 403

interrupt mask register, 397

interrupt on overflow, 403

interrupt priority scheme, 368, 384

interrupt request, 365

interrupt request (IRQ) lines, 347, 366

interrupt request level 0, 384

interrupt request level 7, 384

interrupt request register (IRR), 371, 399

interrupt return instruction, 379

interrupt service routines, 43, 322, 366, 369

interrupt servicing flowchart, 367

interrupt servicing, clearing the interrupt
enable flag, 378

interrupt servicing, jumping to the ISR, 378

interrupt servicing, saving instruction
pointer, 374

interrupt table, 369

interrupt table entry assignments, 388

interrupt table entry number, 371

interrupt table initialization, 371

interrupt type code, 371

interrupt vector, 371

interrupts, dedicated IRQ lines, 386

interrupts, edge-triggered mode, 397

interrupts, end-of-interrupt, or EOIL com-
mand, 397, 398

interrupts, exception, 402

interrupts, initialization command words,
or ICWs, 396

interrupts, initialization sequence for the
master interrupt controller, 397

interrupts, initialization sequence for the
slave interrupt controller, 398

interrupts, in-service register, 398

interrupts, master's interrupt ID, 397

interrupts, operation command words, or
OCWs, 396

interrupts, programming the 8259, 396

interrupts, software interrupts, 402

interrupts, special fully-nested mode, 397

interrupts, special mask mode, 399

INTR, 368

invalid opcode exception, 403
invalid task state segment, 403
1016#, 128

IORCH#, 340

IOWCH#, 340

IRET (interrupt return) instruction, 379, 404
IRQ lines, 347

IRQO, 386,472

IRQO frequency, 470

IRQO interrupt service routine, 470
IRQO latch, 469, 473

IRQO through IRQ7, 386
IRQO, resetting, 470

IRQ1, 372, 386, 449

IRQ10, 387

IRQ11, 387

IRQ12, 387, 450

IRQ13, 386, 463, 464

IRQ13 interrupt service routine, 463
1IRQ14, 387

IRQ15, 387

TIRQ2, 383, 386, 387

IRQ2 redirect, 387, 389

TIRQ3, 386

TRQ4, 386

IRQ5, 386

IRQS6, 387

IRQY7, 387

, 391, 395

IRQ8, 386, 444

IRQ8 through IRQ15, 386
IRQ9, 387

IRR, 371

ISA address bus, 338

ISA bus cycle definition, 339
ISA bus cycle timing, 341

ISA bus master capability, 433
ISA command lines, 340

ISA connector, 337

ISA connector, 16-bit, 336

ISA connector, 8-bit, 336

ISA device size lines, 343

ISA DMA transfer rates, 431
ISA DMA-related signals, 345
ISA error reporting signal, 349
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ISA interrupt request (IRQ) lines, 347
ISA interrupt-related signals, 347
ISA miscellaneous signals, 350

ISA reset signal, 344

ISR, 366

ISRs, 369

| ] ||

jump instruction, 13

k1

key matrix, 450

keyboard, 449, 450

keyboard BIOS routine, 457

keyboard break scan code, 450

keyboard command port,, 451

keyboard data port, 450

keyboard interrupt request, 450

keyboard interrupt request line, 386

keyboard interrupt service routine, 372, 450

keyboard make scan code, 450

keyboard scan, 450

keyboard scan code, 450

keyboard/mouse command/status port,
454

keyboard/mouse data port, 456

keyboard/mouse interface, 449

et 1

LA bus, 122

LA23:LA17, 338

latchable address bus, 122, 338

LDT, 101

LDTR, 102

line, 283, 308

little-endian byte ordering rule, 74

least recently used (LRU) algorithm, 307
local data bus, 126

look-aside cache, 287

local descriptor table (LDT), 101

local descriptor table register (LDTR), 102
look-through cache, 283

I

M/IOH#, 33

M16#, 128, 344

machine status word (MSW) register, 116

maskable interrupt request line (INTR), 368

master interrupt controller, 383

MASTER16#, 345, 435

MC146818 real-time clock and configura-
tion RAM chip, 441

memory address bus, 236, 241

memory parity error, 399

memory read command, 340

memory size 16, 344

memory write command, 340

memory-based semaphore, 93

miscellaneous ISA signals, 350

MODE command, 475

Motorola MC146818 real-time clock and
configuration RAM chip, 441

mouse, 449, 450

mouse BIOS routine, 457

mouse interface, 387

mouse interrupt request, 450

MOV instruction, 33

MP bit, 460, 466

MRDCH, 340

MROM, 317

MS-DOS function calls, 404

MSW register, 460

multitasking operating system, 472

MUX, 240

MWTCH#, 340

I —

NCA#, 312

NMI, 349, 399, 442, 473
no wait state, 343
non-specific EOI, 379
NOWSH#, 138, 343
NPRD#, 465

NPS1#, 464

NPS2, 465

NPWR#, 465
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numeric coprocessor, 459

numeric coprocessor control bits in the
MSW register, 460

numeric coprocessor installed, description
of operation, 460

numeric coprocessor, Weitek, 467

numeric processor read, 465

numeric processor select 1, 464

numeric processor select 2, 465

numeric processor write, 465

o 1

OCW1, 397

option ROM, 43

OSC, oscillator signal, 350
OUT instruction, 32
overrun condition, 369

L r 1

page fault, 403

parallel port 1, 387

parallel port 2, 386

parity, 256

parity generator/checker, 256

PASS A20, 451

PEACK#, 461, 464

PEREQ, 461, 464

PIC, 366

POST, 322

POST/BIOS ROM, 42

POWERGOOD, 113

power-on reset, 447

power-on restart address, 12, 116

power-on self-test, or POST, 116, 322

page-mode DRAM, 259

principle of locality, 277

prefetcher, 54

processor extension acknowledge
(PEACKH#), 461, 464

processor extension not available exception,
403

processor extension request (PEREQ), 461,
464

processor extension segment overrun ex-
ception, 403

program, 12

PROM, 317

protect enable, 62

protected mode, 62, 98, 162

protected mode to real mode, 447

__r 1

RAM parity check, 400

RAM refresh logic, 433

RAM, dual-ported, 312

RASH#, 236, 242

RAS/CAS delay, 236, 242
RAS/CAS generation logic, 240
RAS-only refresh, 245

read, 12

read bus cycle, 141

read-only memory, 315

ready line, 141

ready timer, 135

READY#, 141

READYO#4, ready output, 464
real mode, 369

real-time clock bytes, 443
real-time clock chip, 470
real-time clock function, 443
refresh, 474

refresh and ISA bus masters, 439
refresh interval, 249

refresh logic, 245, 433

refresh request, 400

refresh request signal, 471
refresh row counter, 245

refresh timer, 471

refresh timer, reprogramming, 471
REFRESH#, 247, 350

requestor privilege level (RPL), 102, 105
RESDRYV (reset drive) signal, 344
reset code byte, 447

reset register values, 115

RESET signal, 113

ROM address decoder, 42

ROM checksum, 322

ROM chip-enable, 321
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ROM chip-select, 321

ROM memory\: theory of operation, 315

ROM output enable, 321

ROM programmer, 316

ROM scan, 330

ROM, device ROM signature, 331

ROM, device ROMs, 330

ROM, electrically eraseable programmable
read-only memory (EEPROM), 319

ROM, eraseable programmable read-only
memory (EPROM), 318

ROM, erasing contents of EPROM, 319

ROM, flash EEPROM, 320

ROM, fusible-link PROM, 317

ROM, masked ROM (MROM), 317

ROM, system board, 322

row address, 236, 238

RPL, 102, 105

read from even addressed location in 8-bit
device, 128

refresh timer, 245

row address decoder, 237

row address strobe (RAS#), 242

row latch, 236

RTC 24-hour mode, 444

RTC alarm interrupt enable, 444

RTC alarm interrupt flag, 445

RTC BIOS control, 445

RTC chip, 441

RTC chip's status registers A through D,
444

RTC date mode, 444

RTC daylight-savings enable, 444

RTC interrupt request flag, 445

RTC periodic interrupt enable, 444

RTC periodic interrupt flag, 445

RTC rate selection bits, 444

RTC set bit, 444

RTC square-wave enable, 444

RTC status register A, 444

RTC status register B, 444

RTC status register C, 445

RTC update in progress, 444

RTC update-ended interrupt enable, 444

RTC update-ended interrupt flag, 445

—

SA19:SA0, 338

SBHE#, 338

scan code, 450

SCRAM, 267

SD15:5D8, 339

SD7:5D0, 339

security lock latch, 400

segment descriptor, 101

segment not present, 403
segment wrap-around, 452
segment wraparound, 79

self refresh, 248

self-modifying code, 16
semaphore, 93

serial port 1, 386

serial port 2, 386

set interrupt enable instruction, 368
setup time, 149

shadow RAM, 324

shared resource, 92

shutdown, 108, 151, 185, 230
single step, or trap, interrupt, 403
slave ID, 387, 398

slave ID register, 383, 387

slave interrupt controller, 383, 387
slowdown timer, 474

SMRDCH#, 340

SMWTCH#, 340

snoop hit, 295

software interrupt instruction, 403
software interrupts, 402
software-enforced coherency, 298
speaker data timer, 471

split cache, 290

SRAM, 271

second level cache, 289

snarfing, 295

snooping, 295

spatial locality, 277

static RAM (SRAM), 271

system address (SA) bus, 121
stack, 374
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stack segment overrun or not present ex-
ception, 403

stale data, 279

status enable, 464

status port, 37

STEN, 464

STI (Set Interrupt Enable) instruction, 368

synchronous DRAM, 268

system address (SA) bus, 338

system bus high enable, 338

system configuration information, 446, 450

system control port A, 400, 473

system control port B, 400, 471, 473

system data (SD) bus, 126

system data bus, lower path, 339

system data bus, upper path, 339

system memory read command, 340

system memory write command, 340

system timer, 386, 469

system timer frequency, 469

system timer interrupt, 472

I

T1, 140

T2, 140

Te, 140

TC (DMA terminal count), 345, 413
time delay device, 239

timer 0, 469

timer O frequency, 469

timer 1,471

timer 2,471

timer 2 (speaker timer) output, 400
transfer complete, 345

trap interrupt, 403

Ts, 140

tag RAM, 281

temporal locality, 277

two-way set-associative cache, 304

|| U ||

UMB, 327
unified cache, 290
upper memory blocks, 327

w1

watchdog timer, 472

watchdog timer status, 400

Weitek interpretation of the memory ad-
dress, 468

Weitek numeric coprocessor, 467

Weitek-specific driver routine, 467

wraparound, 79

write, 12

write bus cycle, 146

write policy, 292

write-back cache, 294

write-through cache, 293
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